A Competency-Based Guided-Learning Algorithm Applied on Adaptively Guiding E-Learning
ERIC Educational Resources Information Center
Hsu, Wei-Chih; Li, Cheng-Hsiu
2015-01-01
This paper presents a new algorithm called competency-based guided-learning algorithm (CBGLA), which can be applied on adaptively guiding e-learning. Computational process analysis and mathematical derivation of competency-based learning (CBL) were used to develop the CBGLA. The proposed algorithm could generate an effective adaptively guiding…
NASA Astrophysics Data System (ADS)
Li, Xiaofeng; Xiang, Suying; Zhu, Pengfei; Wu, Min
2015-12-01
In order to avoid the inherent deficiencies of the traditional BP neural network, such as slow convergence speed, that easily leading to local minima, poor generalization ability and difficulty in determining the network structure, the dynamic self-adaptive learning algorithm of the BP neural network is put forward to improve the function of the BP neural network. The new algorithm combines the merit of principal component analysis, particle swarm optimization, correlation analysis and self-adaptive model, hence can effectively solve the problems of selecting structural parameters, initial connection weights and thresholds and learning rates of the BP neural network. This new algorithm not only reduces the human intervention, optimizes the topological structures of BP neural networks and improves the network generalization ability, but also accelerates the convergence speed of a network, avoids trapping into local minima, and enhances network adaptation ability and prediction ability. The dynamic self-adaptive learning algorithm of the BP neural network is used to forecast the total retail sale of consumer goods of Sichuan Province, China. Empirical results indicate that the new algorithm is superior to the traditional BP network algorithm in predicting accuracy and time consumption, which shows the feasibility and effectiveness of the new algorithm.
NASA Astrophysics Data System (ADS)
Zhu, Maohu; Jie, Nanfeng; Jiang, Tianzi
2014-03-01
A reliable and precise classification of schizophrenia is significant for its diagnosis and treatment of schizophrenia. Functional magnetic resonance imaging (fMRI) is a novel tool increasingly used in schizophrenia research. Recent advances in statistical learning theory have led to applying pattern classification algorithms to access the diagnostic value of functional brain networks, discovered from resting state fMRI data. The aim of this study was to propose an adaptive learning algorithm to distinguish schizophrenia patients from normal controls using resting-state functional language network. Furthermore, here the classification of schizophrenia was regarded as a sample selection problem where a sparse subset of samples was chosen from the labeled training set. Using these selected samples, which we call informative vectors, a classifier for the clinic diagnosis of schizophrenia was established. We experimentally demonstrated that the proposed algorithm incorporating resting-state functional language network achieved 83.6% leaveone- out accuracy on resting-state fMRI data of 27 schizophrenia patients and 28 normal controls. In contrast with KNearest- Neighbor (KNN), Support Vector Machine (SVM) and l1-norm, our method yielded better classification performance. Moreover, our results suggested that a dysfunction of resting-state functional language network plays an important role in the clinic diagnosis of schizophrenia.
Zhang, Huaguang; Qin, Chunbin; Jiang, Bin; Luo, Yanhong
2014-12-01
The problem of H∞ state feedback control of affine nonlinear discrete-time systems with unknown dynamics is investigated in this paper. An online adaptive policy learning algorithm (APLA) based on adaptive dynamic programming (ADP) is proposed for learning in real-time the solution to the Hamilton-Jacobi-Isaacs (HJI) equation, which appears in the H∞ control problem. In the proposed algorithm, three neural networks (NNs) are utilized to find suitable approximations of the optimal value function and the saddle point feedback control and disturbance policies. Novel weight updating laws are given to tune the critic, actor, and disturbance NNs simultaneously by using data generated in real-time along the system trajectories. Considering NN approximation errors, we provide the stability analysis of the proposed algorithm with Lyapunov approach. Moreover, the need of the system input dynamics for the proposed algorithm is relaxed by using a NN identification scheme. Finally, simulation examples show the effectiveness of the proposed algorithm. PMID:25095274
NASA Astrophysics Data System (ADS)
Ma, Chao; Ouyang, Jihong; Chen, Hui-Ling; Ji, Jin-Chao
2016-04-01
In this paper, we propose a novel learning algorithm, named SABC-MKELM, based on a kernel extreme learning machine (KELM) method for single-hidden-layer feedforward networks. In SABC-MKELM, the combination of Gaussian kernels is used as the activate function of KELM instead of simple fixed kernel learning, where the related parameters of kernels and the weights of kernels can be optimised by a novel self-adaptive artificial bee colony (SABC) approach simultaneously. SABC-MKELM outperforms six other state-of-the-art approaches in general, as it could effectively determine solution updating strategies and suitable parameters to produce a flexible kernel function involved in SABC. Simulations have demonstrated that the proposed algorithm not only self-adaptively determines suitable parameters and solution updating strategies learning from the previous experiences, but also achieves better generalisation performances than several related methods, and the results show good stability of the proposed algorithm.
NASA Astrophysics Data System (ADS)
Sheng-Hui, Rong; Hui-Xin, Zhou; Han-Lin, Qin; Rui, Lai; Kun, Qian
2016-05-01
Imaging non-uniformity of infrared focal plane array (IRFPA) behaves as fixed-pattern noise superimposed on the image, which affects the imaging quality of infrared system seriously. In scene-based non-uniformity correction methods, the drawbacks of ghosting artifacts and image blurring affect the sensitivity of the IRFPA imaging system seriously and decrease the image quality visibly. This paper proposes an improved neural network non-uniformity correction method with adaptive learning rate. On the one hand, using guided filter, the proposed algorithm decreases the effect of ghosting artifacts. On the other hand, due to the inappropriate learning rate is the main reason of image blurring, the proposed algorithm utilizes an adaptive learning rate with a temporal domain factor to eliminate the effect of image blurring. In short, the proposed algorithm combines the merits of the guided filter and the adaptive learning rate. Several real and simulated infrared image sequences are utilized to verify the performance of the proposed algorithm. The experiment results indicate that the proposed algorithm can not only reduce the non-uniformity with less ghosting artifacts but also overcome the problems of image blurring in static areas.
Adaptive continuous twisting algorithm
NASA Astrophysics Data System (ADS)
Moreno, Jaime A.; Negrete, Daniel Y.; Torres-González, Victor; Fridman, Leonid
2016-09-01
In this paper, an adaptive continuous twisting algorithm (ACTA) is presented. For double integrator, ACTA produces a continuous control signal ensuring finite time convergence of the states to zero. Moreover, the control signal generated by ACTA compensates the Lipschitz perturbation in finite time, i.e. its value converges to the opposite value of the perturbation. ACTA also keeps its convergence properties, even in the case that the upper bound of the derivative of the perturbation exists, but it is unknown.
ERIC Educational Resources Information Center
Limongelli, Carla; Sciarrone, Filippo; Temperini, Marco; Vaste, Giulia
2011-01-01
LS-Lab provides automatic support to comparison/evaluation of the Learning Object Sequences produced by different Curriculum Sequencing Algorithms. Through this framework a teacher can verify the correspondence between the behaviour of different sequencing algorithms and her pedagogical preferences. In fact the teacher can compare algorithms…
Optree: a learning-based adaptive watershed algorithm for neuron segmentation.
Uzunbaş, Mustafa Gökhan; Chen, Chao; Metaxas, Dimitris
2014-01-01
We present a new algorithm for automatic and interactive segmentation of neuron structures from electron microscopy (EM) images. Our method selects a collection of nodes from the watershed mergng tree as the proposed segmentation. This is achieved by building a onditional random field (CRF) whose underlying graph is the merging tree. The maximum a posteriori (MAP) prediction of the CRF is the output segmentation. Our algorithm outperforms state-of-the-art methods. Both the inference and the training are very efficient as the graph is tree-structured. Furthermore, we develop an interactive segmentation framework which selects uncertain regions for a user to proofread. The uncertainty is measured by the marginals of the graphical model. Based on user corrections, our framework modifies the merging tree and thus improves the segmentation globally. PMID:25333106
NASA Astrophysics Data System (ADS)
Hou, Zuoxun; Ma, Yitao; Zhu, Hongbo; Zheng, Nanning; Shibata, Tadashi
2013-04-01
A very large-scale integration (VLSI) recognition system equipped with an on-chip learning capability has been developed for real-time processing applications. This system can work in two functional modes of operation: adaptive K-means learning mode and recognition mode. In the adaptive K-means learning mode, the variance ratio criterion (VRC) has been employed to evaluate the quality of K-means classification results, and the evaluation algorithm has been implemented on the chip. As a result, it has become possible for the system to autonomously determine the optimum number of clusters (K). In the recognition mode, the nearest-neighbor search algorithm is very efficiently carried out by the fully parallel architecture employed in the chip. In both modes of operation, many hardware resources are shared and the functionality is flexibly altered by the system controller designed as a finite-state machine (FSM). The chip is implemented on Altera Cyclone II FPGA with 46K logic cells. Its operating clock is 25 MHz and the processing times for adaptive learning and recognition with 256 64-dimension feature vectors are about 0.42 ms and 4 µs, respectively. Both adaptive K-means learning and recognition functions have been verified by experiments using the image data from the COIL-100 (Columbia University Object Image Library) database.
Cubit Adaptive Meshing Algorithm Library
2004-09-01
CAMAL (Cubit adaptive meshing algorithm library) is a software component library for mesh generation. CAMAL 2.0 includes components for triangle, quad and tetrahedral meshing. A simple Application Programmers Interface (API) takes a discrete boundary definition and CAMAL computes a quality interior unstructured grid. The triangle and quad algorithms may also import a geometric definition of a surface on which to define the grid. CAMALs triangle meshing uses a 3D space advancing front method, the quadmore » meshing algorithm is based upon Sandias patented paving algorithm and the tetrahedral meshing algorithm employs the GHS3D-Tetmesh component developed by INRIA, France.« less
Adaptive protection algorithm and system
Hedrick, Paul [Pittsburgh, PA; Toms, Helen L [Irwin, PA; Miller, Roger M [Mars, PA
2009-04-28
An adaptive protection algorithm and system for protecting electrical distribution systems traces the flow of power through a distribution system, assigns a value (or rank) to each circuit breaker in the system and then determines the appropriate trip set points based on the assigned rank.
Genetic algorithms in adaptive fuzzy control
NASA Technical Reports Server (NTRS)
Karr, C. Lucas; Harper, Tony R.
1992-01-01
Researchers at the U.S. Bureau of Mines have developed adaptive process control systems in which genetic algorithms (GA's) are used to augment fuzzy logic controllers (FLC's). GA's are search algorithms that rapidly locate near-optimum solutions to a wide spectrum of problems by modeling the search procedures of natural genetics. FLC's are rule based systems that efficiently manipulate a problem environment by modeling the 'rule-of-thumb' strategy used in human decision making. Together, GA's and FLC's possess the capabilities necessary to produce powerful, efficient, and robust adaptive control systems. To perform efficiently, such control systems require a control element to manipulate the problem environment, an analysis element to recognize changes in the problem environment, and a learning element to adjust fuzzy membership functions in response to the changes in the problem environment. Details of an overall adaptive control system are discussed. A specific computer-simulated chemical system is used to demonstrate the ideas presented.
Adaptive computation algorithm for RBF neural network.
Han, Hong-Gui; Qiao, Jun-Fei
2012-02-01
A novel learning algorithm is proposed for nonlinear modelling and identification using radial basis function neural networks. The proposed method simplifies neural network training through the use of an adaptive computation algorithm (ACA). In addition, the convergence of the ACA is analyzed by the Lyapunov criterion. The proposed algorithm offers two important advantages. First, the model performance can be significantly improved through ACA, and the modelling error is uniformly ultimately bounded. Secondly, the proposed ACA can reduce computational cost and accelerate the training speed. The proposed method is then employed to model classical nonlinear system with limit cycle and to identify nonlinear dynamic system, exhibiting the effectiveness of the proposed algorithm. Computational complexity analysis and simulation results demonstrate its effectiveness.
Learning and Domain Adaptation
NASA Astrophysics Data System (ADS)
Mansour, Yishay
Domain adaptation is a fundamental learning problem where one wishes to use labeled data from one or several source domains to learn a hypothesis performing well on a different, yet related, domain for which no labeled data is available. This generalization across domains is a very significant challenge for many machine learning applications and arises in a variety of natural settings, including NLP tasks (document classification, sentiment analysis, etc.), speech recognition (speakers and noise or environment adaptation) and face recognition (different lighting conditions, different population composition).
Adaptive Batch Mode Active Learning.
Chakraborty, Shayok; Balasubramanian, Vineeth; Panchanathan, Sethuraman
2015-08-01
Active learning techniques have gained popularity to reduce human effort in labeling data instances for inducing a classifier. When faced with large amounts of unlabeled data, such algorithms automatically identify the exemplar and representative instances to be selected for manual annotation. More recently, there have been attempts toward a batch mode form of active learning, where a batch of data points is simultaneously selected from an unlabeled set. Real-world applications require adaptive approaches for batch selection in active learning, depending on the complexity of the data stream in question. However, the existing work in this field has primarily focused on static or heuristic batch size selection. In this paper, we propose two novel optimization-based frameworks for adaptive batch mode active learning (BMAL), where the batch size as well as the selection criteria are combined in a single formulation. We exploit gradient-descent-based optimization strategies as well as properties of submodular functions to derive the adaptive BMAL algorithms. The solution procedures have the same computational complexity as existing state-of-the-art static BMAL techniques. Our empirical results on the widely used VidTIMIT and the mobile biometric (MOBIO) data sets portray the efficacy of the proposed frameworks and also certify the potential of these approaches in being used for real-world biometric recognition applications.
Streamlining algorithms for complete adaptation
NASA Technical Reports Server (NTRS)
Erickson, J. C., Jr. (Editor); Chevallier, J. P.; Goodyer, Michael J.; Hornung, Hans G.; Mignosi, Andre; Sears, William R.; Smith, J.; Wedemeyer, Erich H.
1990-01-01
For purposes of the adaptive-wall algorithms to be described, the modern era is considered to have begun with the simultaneous, independent recognition of the concept of matching an experimental inner flow across an interface to a computed outer flow by Chevallier, Ferri, Goodyer, Lissaman, Rubbert, and Sears. Fundamental investigations of the adaptive-wall matching concept by means of numerical simulations and theoretical considerations are described. An overview of the development and operation of 2D adaptive-wall facilities from about 1970 until the present is given, followed by similar material for 3D adaptive-wall facilities from approximately 1978 until the present. A general formulation of adaptation strategy is presented, with a theoretical basis for adaptation followed by 2D flexible, impermeable-wall applications; 2D ventilated-wall applications; 3D flexible, impermeable-wall applications; and 3D ventilated-wall applications. Representative experimental and 3D results are given, with 2D, followed by a discussion of limitations and open questions.
Adaptive path planning: Algorithm and analysis
Chen, Pang C.
1993-03-01
Path planning has to be fast to support real-time robot programming. Unfortunately, current planning techniques are still too slow to be effective, as they often require several minutes, if not hours of computation. To alleviate this problem, we present a learning algorithm that uses past experience to enhance future performance. The algorithm relies on an existing path planner to provide solutions to difficult tasks. From these solutions, an evolving sparse network of useful subgoals is learned to support faster planning. The algorithm is suitable for both stationary and incrementally-changing environments. To analyze our algorithm, we use a previously developed stochastic model that quantifies experience utility. Using this model, we characterize the situations in which the adaptive planner is useful, and provide quantitative bounds to predict its behavior. The results are demonstrated with problems in manipulator planning. Our algorithm and analysis are sufficiently general that they may also be applied to task planning or other planning domains in which experience is useful.
Synaptic dynamics: linear model and adaptation algorithm.
Yousefi, Ali; Dibazar, Alireza A; Berger, Theodore W
2014-08-01
In this research, temporal processing in brain neural circuitries is addressed by a dynamic model of synaptic connections in which the synapse model accounts for both pre- and post-synaptic processes determining its temporal dynamics and strength. Neurons, which are excited by the post-synaptic potentials of hundred of the synapses, build the computational engine capable of processing dynamic neural stimuli. Temporal dynamics in neural models with dynamic synapses will be analyzed, and learning algorithms for synaptic adaptation of neural networks with hundreds of synaptic connections are proposed. The paper starts by introducing a linear approximate model for the temporal dynamics of synaptic transmission. The proposed linear model substantially simplifies the analysis and training of spiking neural networks. Furthermore, it is capable of replicating the synaptic response of the non-linear facilitation-depression model with an accuracy better than 92.5%. In the second part of the paper, a supervised spike-in-spike-out learning rule for synaptic adaptation in dynamic synapse neural networks (DSNN) is proposed. The proposed learning rule is a biologically plausible process, and it is capable of simultaneously adjusting both pre- and post-synaptic components of individual synapses. The last section of the paper starts with presenting the rigorous analysis of the learning algorithm in a system identification task with hundreds of synaptic connections which confirms the learning algorithm's accuracy, repeatability and scalability. The DSNN is utilized to predict the spiking activity of cortical neurons and pattern recognition tasks. The DSNN model is demonstrated to be a generative model capable of producing different cortical neuron spiking patterns and CA1 Pyramidal neurons recordings. A single-layer DSNN classifier on a benchmark pattern recognition task outperforms a 2-Layer Neural Network and GMM classifiers while having fewer numbers of free parameters and
Research on algorithms for adaptive antenna arrays
NASA Astrophysics Data System (ADS)
Widrow, B.; Newman, W.; Gooch, R.; Duvall, K.; Shur, D.
1981-08-01
The fundamental efficiency of adaptive algorithms is analyzed. It is found that noise in the adaptive weights increases with convergence speed. This causes loss in mean-square-error performance. Efficiency is considered from the point of view of misadjustment versus speed of convergence. A new version of the LMS algorithm based on Newton's method is analyzed and shown to make maximally efficient use of real-time input data. The performance of this algorithm is not affected by eigenvalue disparity. Practical algorithms can be devised that closely approximate Newton's method. In certain cases, the steepest descent version of LMS performs as well as Newton's method. The efficiency of adaptive algorithms with nonstationary input environments is analyzed where signals, jammers, and background noises can be of a transient and nonstationary nature. A new adaptive filtering method for broadband adaptive beamforming is described which uses both poles and zeros in the adaptive signal filtering paths from the antenna elements to the final array output.
An adaptive algorithm for noise rejection.
Lovelace, D E; Knoebel, S B
1978-01-01
An adaptive algorithm for the rejection of noise artifact in 24-hour ambulatory electrocardiographic recordings is described. The algorithm is based on increased amplitude distortion or increased frequency of fluctuations associated with an episode of noise artifact. The results of application of the noise rejection algorithm on a high noise population of test tapes are discussed.
The Dropout Learning Algorithm
Baldi, Pierre; Sadowski, Peter
2014-01-01
Dropout is a recently introduced algorithm for training neural network by randomly dropping units during training to prevent their co-adaptation. A mathematical analysis of some of the static and dynamic properties of dropout is provided using Bernoulli gating variables, general enough to accommodate dropout on units or connections, and with variable rates. The framework allows a complete analysis of the ensemble averaging properties of dropout in linear networks, which is useful to understand the non-linear case. The ensemble averaging properties of dropout in non-linear logistic networks result from three fundamental equations: (1) the approximation of the expectations of logistic functions by normalized geometric means, for which bounds and estimates are derived; (2) the algebraic equality between normalized geometric means of logistic functions with the logistic of the means, which mathematically characterizes logistic functions; and (3) the linearity of the means with respect to sums, as well as products of independent variables. The results are also extended to other classes of transfer functions, including rectified linear functions. Approximation errors tend to cancel each other and do not accumulate. Dropout can also be connected to stochastic neurons and used to predict firing rates, and to backpropagation by viewing the backward propagation as ensemble averaging in a dropout linear network. Moreover, the convergence properties of dropout can be understood in terms of stochastic gradient descent. Finally, for the regularization properties of dropout, the expectation of the dropout gradient is the gradient of the corresponding approximation ensemble, regularized by an adaptive weight decay term with a propensity for self-consistent variance minimization and sparse representations. PMID:24771879
Natural gradient learning algorithms for RBF networks.
Zhao, Junsheng; Wei, Haikun; Zhang, Chi; Li, Weiling; Guo, Weili; Zhang, Kanjian
2015-02-01
Radial basis function (RBF) networks are one of the most widely used models for function approximation and classification. There are many strange behaviors in the learning process of RBF networks, such as slow learning speed and the existence of the plateaus. The natural gradient learning method can overcome these disadvantages effectively. It can accelerate the dynamics of learning and avoid plateaus. In this letter, we assume that the probability density function (pdf) of the input and the activation function are gaussian. First, we introduce natural gradient learning to the RBF networks and give the explicit forms of the Fisher information matrix and its inverse. Second, since it is difficult to calculate the Fisher information matrix and its inverse when the numbers of the hidden units and the dimensions of the input are large, we introduce the adaptive method to the natural gradient learning algorithms. Finally, we give an explicit form of the adaptive natural gradient learning algorithm and compare it to the conventional gradient descent method. Simulations show that the proposed adaptive natural gradient method, which can avoid the plateaus effectively, has a good performance when RBF networks are used for nonlinear functions approximation. PMID:25380332
QPSO-based adaptive DNA computing algorithm.
Karakose, Mehmet; Cigdem, Ugur
2013-01-01
DNA (deoxyribonucleic acid) computing that is a new computation model based on DNA molecules for information storage has been increasingly used for optimization and data analysis in recent years. However, DNA computing algorithm has some limitations in terms of convergence speed, adaptability, and effectiveness. In this paper, a new approach for improvement of DNA computing is proposed. This new approach aims to perform DNA computing algorithm with adaptive parameters towards the desired goal using quantum-behaved particle swarm optimization (QPSO). Some contributions provided by the proposed QPSO based on adaptive DNA computing algorithm are as follows: (1) parameters of population size, crossover rate, maximum number of operations, enzyme and virus mutation rate, and fitness function of DNA computing algorithm are simultaneously tuned for adaptive process, (2) adaptive algorithm is performed using QPSO algorithm for goal-driven progress, faster operation, and flexibility in data, and (3) numerical realization of DNA computing algorithm with proposed approach is implemented in system identification. Two experiments with different systems were carried out to evaluate the performance of the proposed approach with comparative results. Experimental results obtained with Matlab and FPGA demonstrate ability to provide effective optimization, considerable convergence speed, and high accuracy according to DNA computing algorithm.
Adaptive sensor fusion using genetic algorithms
Fitzgerald, D.S.; Adams, D.G.
1994-08-01
Past attempts at sensor fusion have used some form of Boolean logic to combine the sensor information. As an alteniative, an adaptive ``fuzzy`` sensor fusion technique is described in this paper. This technique exploits the robust capabilities of fuzzy logic in the decision process as well as the optimization features of the genetic algorithm. This paper presents a brief background on fuzzy logic and genetic algorithms and how they are used in an online implementation of adaptive sensor fusion.
Ensemble algorithms in reinforcement learning.
Wiering, Marco A; van Hasselt, Hado
2008-08-01
This paper describes several ensemble methods that combine multiple different reinforcement learning (RL) algorithms in a single agent. The aim is to enhance learning speed and final performance by combining the chosen actions or action probabilities of different RL algorithms. We designed and implemented four different ensemble methods combining the following five different RL algorithms: Q-learning, Sarsa, actor-critic (AC), QV-learning, and AC learning automaton. The intuitively designed ensemble methods, namely, majority voting (MV), rank voting, Boltzmann multiplication (BM), and Boltzmann addition, combine the policies derived from the value functions of the different RL algorithms, in contrast to previous work where ensemble methods have been used in RL for representing and learning a single value function. We show experiments on five maze problems of varying complexity; the first problem is simple, but the other four maze tasks are of a dynamic or partially observable nature. The results indicate that the BM and MV ensembles significantly outperform the single RL algorithms.
Ensemble algorithms in reinforcement learning.
Wiering, Marco A; van Hasselt, Hado
2008-08-01
This paper describes several ensemble methods that combine multiple different reinforcement learning (RL) algorithms in a single agent. The aim is to enhance learning speed and final performance by combining the chosen actions or action probabilities of different RL algorithms. We designed and implemented four different ensemble methods combining the following five different RL algorithms: Q-learning, Sarsa, actor-critic (AC), QV-learning, and AC learning automaton. The intuitively designed ensemble methods, namely, majority voting (MV), rank voting, Boltzmann multiplication (BM), and Boltzmann addition, combine the policies derived from the value functions of the different RL algorithms, in contrast to previous work where ensemble methods have been used in RL for representing and learning a single value function. We show experiments on five maze problems of varying complexity; the first problem is simple, but the other four maze tasks are of a dynamic or partially observable nature. The results indicate that the BM and MV ensembles significantly outperform the single RL algorithms. PMID:18632380
AIDA: Adaptive Image Deconvolution Algorithm
NASA Astrophysics Data System (ADS)
Hom, Erik; Haase, Sebastian; Marchis, Franck
2013-10-01
AIDA is an implementation and extension of the MISTRAL myopic deconvolution method developed by Mugnier et al. (2004) (see J. Opt. Soc. Am. A 21:1841-1854). The MISTRAL approach has been shown to yield object reconstructions with excellent edge preservation and photometric precision when used to process astronomical images. AIDA improves upon the original MISTRAL implementation. AIDA, written in Python, can deconvolve multiple frame data and three-dimensional image stacks encountered in adaptive optics and light microscopic imaging.
Adaptive link selection algorithms for distributed estimation
NASA Astrophysics Data System (ADS)
Xu, Songcen; de Lamare, Rodrigo C.; Poor, H. Vincent
2015-12-01
This paper presents adaptive link selection algorithms for distributed estimation and considers their application to wireless sensor networks and smart grids. In particular, exhaustive search-based least mean squares (LMS) / recursive least squares (RLS) link selection algorithms and sparsity-inspired LMS / RLS link selection algorithms that can exploit the topology of networks with poor-quality links are considered. The proposed link selection algorithms are then analyzed in terms of their stability, steady-state, and tracking performance and computational complexity. In comparison with the existing centralized or distributed estimation strategies, the key features of the proposed algorithms are as follows: (1) more accurate estimates and faster convergence speed can be obtained and (2) the network is equipped with the ability of link selection that can circumvent link failures and improve the estimation performance. The performance of the proposed algorithms for distributed estimation is illustrated via simulations in applications of wireless sensor networks and smart grids.
Adaptive cuckoo search algorithm for unconstrained optimization.
Ong, Pauline
2014-01-01
Modification of the intensification and diversification approaches in the recently developed cuckoo search algorithm (CSA) is performed. The alteration involves the implementation of adaptive step size adjustment strategy, and thus enabling faster convergence to the global optimal solutions. The feasibility of the proposed algorithm is validated against benchmark optimization functions, where the obtained results demonstrate a marked improvement over the standard CSA, in all the cases. PMID:25298971
Adaptive cuckoo search algorithm for unconstrained optimization.
Ong, Pauline
2014-01-01
Modification of the intensification and diversification approaches in the recently developed cuckoo search algorithm (CSA) is performed. The alteration involves the implementation of adaptive step size adjustment strategy, and thus enabling faster convergence to the global optimal solutions. The feasibility of the proposed algorithm is validated against benchmark optimization functions, where the obtained results demonstrate a marked improvement over the standard CSA, in all the cases.
Adaptive Learning and Risk Taking
ERIC Educational Resources Information Center
Denrell, Jerker
2007-01-01
Humans and animals learn from experience by reducing the probability of sampling alternatives with poor past outcomes. Using simulations, J. G. March (1996) illustrated how such adaptive sampling could lead to risk-averse as well as risk-seeking behavior. In this article, the author develops a formal theory of how adaptive sampling influences risk…
Organization of Distributed Adaptive Learning
ERIC Educational Resources Information Center
Vengerov, Alexander
2009-01-01
The growing sensitivity of various systems and parts of industry, society, and even everyday individual life leads to the increased volume of changes and needs for adaptation and learning. This creates a new situation where learning from being purely academic knowledge transfer procedure is becoming a ubiquitous always-on essential part of all…
Adaptive path planning: Algorithm and analysis
Chen, Pang C.
1995-03-01
To address the need for a fast path planner, we present a learning algorithm that improves path planning by using past experience to enhance future performance. The algorithm relies on an existing path planner to provide solutions difficult tasks. From these solutions, an evolving sparse work of useful robot configurations is learned to support faster planning. More generally, the algorithm provides a framework in which a slow but effective planner may be improved both cost-wise and capability-wise by a faster but less effective planner coupled with experience. We analyze algorithm by formalizing the concept of improvability and deriving conditions under which a planner can be improved within the framework. The analysis is based on two stochastic models, one pessimistic (on task complexity), the other randomized (on experience utility). Using these models, we derive quantitative bounds to predict the learning behavior. We use these estimation tools to characterize the situations in which the algorithm is useful and to provide bounds on the training time. In particular, we show how to predict the maximum achievable speedup. Additionally, our analysis techniques are elementary and should be useful for studying other types of probabilistic learning as well.
Adaptive improved natural gradient algorithm for blind source separation.
Liu, Jian-Qiang; Feng, Da-Zheng; Zhang, Wei-Wei
2009-03-01
We propose an adaptive improved natural gradient algorithm for blind separation of independent sources. First, inspired by the well-known backpropagation algorithm, we incorporate a momentum term into the natural gradient learning process to accelerate the convergence rate and improve the stability. Then an estimation function for the adaptation of the separation model is obtained to adaptively control a step-size parameter and a momentum factor. The proposed natural gradient algorithm with variable step-size parameter and variable momentum factor is therefore particularly well suited to blind source separation in a time-varying environment, such as an abruptly changing mixing matrix or signal power. The expected improvement in the convergence speed, stability, and tracking ability of the proposed algorithm is demonstrated by extensive simulation results in both time-invariant and time-varying environments. The ability of the proposed algorithm to separate extremely weak or badly scaled sources is also verified. In addition, simulation results show that the proposed algorithm is suitable for separating mixtures of many sources (e.g., the number of sources is 10) in the complete case.
Adaptive Process Control with Fuzzy Logic and Genetic Algorithms
NASA Technical Reports Server (NTRS)
Karr, C. L.
1993-01-01
Researchers at the U.S. Bureau of Mines have developed adaptive process control systems in which genetic algorithms (GA's) are used to augment fuzzy logic controllers (FLC's). GA's are search algorithms that rapidly locate near-optimum solutions to a wide spectrum of problems by modeling the search procedures of natural genetics. FLC's are rule based systems that efficiently manipulate a problem environment by modeling the 'rule-of-thumb' strategy used in human decision-making. Together, GA's and FLC's possess the capabilities necessary to produce powerful, efficient, and robust adaptive control systems. To perform efficiently, such control systems require a control element to manipulate the problem environment, an analysis element to recognize changes in the problem environment, and a learning element to adjust to the changes in the problem environment. Details of an overall adaptive control system are discussed. A specific laboratory acid-base pH system is used to demonstrate the ideas presented.
Adaptive process control using fuzzy logic and genetic algorithms
NASA Technical Reports Server (NTRS)
Karr, C. L.
1993-01-01
Researchers at the U.S. Bureau of Mines have developed adaptive process control systems in which genetic algorithms (GA's) are used to augment fuzzy logic controllers (FLC's). GA's are search algorithms that rapidly locate near-optimum solutions to a wide spectrum of problems by modeling the search procedures of natural genetics. FLC's are rule based systems that efficiently manipulate a problem environment by modeling the 'rule-of-thumb' strategy used in human decision making. Together, GA's and FLC's possess the capabilities necessary to produce powerful, efficient, and robust adaptive control systems. To perform efficiently, such control systems require a control element to manipulate the problem environment, and a learning element to adjust to the changes in the problem environment. Details of an overall adaptive control system are discussed. A specific laboratory acid-base pH system is used to demonstrate the ideas presented.
Evaluating Knowledge Structure-Based Adaptive Testing Algorithms and System Development
ERIC Educational Resources Information Center
Wu, Huey-Min; Kuo, Bor-Chen; Yang, Jinn-Min
2012-01-01
In recent years, many computerized test systems have been developed for diagnosing students' learning profiles. Nevertheless, it remains a challenging issue to find an adaptive testing algorithm to both shorten testing time and precisely diagnose the knowledge status of students. In order to find a suitable algorithm, four adaptive testing…
A meta-learning system based on genetic algorithms
NASA Astrophysics Data System (ADS)
Pellerin, Eric; Pigeon, Luc; Delisle, Sylvain
2004-04-01
The design of an efficient machine learning process through self-adaptation is a great challenge. The goal of meta-learning is to build a self-adaptive learning system that is constantly adapting to its specific (and dynamic) environment. To that end, the meta-learning mechanism must improve its bias dynamically by updating the current learning strategy in accordance with its available experiences or meta-knowledge. We suggest using genetic algorithms as the basis of an adaptive system. In this work, we propose a meta-learning system based on a combination of the a priori and a posteriori concepts. A priori refers to input information and knowledge available at the beginning in order to built and evolve one or more sets of parameters by exploiting the context of the system"s information. The self-learning component is based on genetic algorithms and neural Darwinism. A posteriori refers to the implicit knowledge discovered by estimation of the future states of parameters and is also applied to the finding of optimal parameters values. The in-progress research presented here suggests a framework for the discovery of knowledge that can support human experts in their intelligence information assessment tasks. The conclusion presents avenues for further research in genetic algorithms and their capability to learn to learn.
Interoperability in Personalized Adaptive Learning
ERIC Educational Resources Information Center
Aroyo, Lora; Dolog, Peter; Houben, Geert-Jan; Kravcik, Milos; Naeve, Ambjorn; Nilsson, Mikael; Wild, Fridolin
2006-01-01
Personalized adaptive learning requires semantic-based and context-aware systems to manage the Web knowledge efficiently as well as to achieve semantic interoperability between heterogeneous information resources and services. The technological and conceptual differences can be bridged either by means of standards or via approaches based on the…
A parallel adaptive mesh refinement algorithm
NASA Technical Reports Server (NTRS)
Quirk, James J.; Hanebutte, Ulf R.
1993-01-01
Over recent years, Adaptive Mesh Refinement (AMR) algorithms which dynamically match the local resolution of the computational grid to the numerical solution being sought have emerged as powerful tools for solving problems that contain disparate length and time scales. In particular, several workers have demonstrated the effectiveness of employing an adaptive, block-structured hierarchical grid system for simulations of complex shock wave phenomena. Unfortunately, from the parallel algorithm developer's viewpoint, this class of scheme is quite involved; these schemes cannot be distilled down to a small kernel upon which various parallelizing strategies may be tested. However, because of their block-structured nature such schemes are inherently parallel, so all is not lost. In this paper we describe the method by which Quirk's AMR algorithm has been parallelized. This method is built upon just a few simple message passing routines and so it may be implemented across a broad class of MIMD machines. Moreover, the method of parallelization is such that the original serial code is left virtually intact, and so we are left with just a single product to support. The importance of this fact should not be underestimated given the size and complexity of the original algorithm.
Fully implicit adaptive mesh refinement MHD algorithm
NASA Astrophysics Data System (ADS)
Philip, Bobby
2005-10-01
In the macroscopic simulation of plasmas, the numerical modeler is faced with the challenge of dealing with multiple time and length scales. The former results in stiffness due to the presence of very fast waves. The latter requires one to resolve the localized features that the system develops. Traditional approaches based on explicit time integration techniques and fixed meshes are not suitable for this challenge, as such approaches prevent the modeler from using realistic plasma parameters to keep the computation feasible. We propose here a novel approach, based on implicit methods and structured adaptive mesh refinement (SAMR). Our emphasis is on both accuracy and scalability with the number of degrees of freedom. To our knowledge, a scalable, fully implicit AMR algorithm has not been accomplished before for MHD. As a proof-of-principle, we focus on the reduced resistive MHD model as a basic MHD model paradigm, which is truly multiscale. The approach taken here is to adapt mature physics-based technologyootnotetextL. Chac'on et al., J. Comput. Phys. 178 (1), 15- 36 (2002) to AMR grids, and employ AMR-aware multilevel techniques (such as fast adaptive composite --FAC-- algorithms) for scalability. We will demonstrate that the concept is indeed feasible, featuring optimal scalability under grid refinement. Results of fully-implicit, dynamically-adaptive AMR simulations will be presented on a variety of problems.
Perceptual learning in sensorimotor adaptation.
Darainy, Mohammad; Vahdat, Shahabeddin; Ostry, David J
2013-11-01
Motor learning often involves situations in which the somatosensory targets of movement are, at least initially, poorly defined, as for example, in learning to speak or learning the feel of a proper tennis serve. Under these conditions, motor skill acquisition presumably requires perceptual as well as motor learning. That is, it engages both the progressive shaping of sensory targets and associated changes in motor performance. In the present study, we test the idea that perceptual learning alters somatosensory function and in so doing produces changes to human motor performance and sensorimotor adaptation. Subjects in these experiments undergo perceptual training in which a robotic device passively moves the subject's arm on one of a set of fan-shaped trajectories. Subjects are required to indicate whether the robot moved the limb to the right or the left and feedback is provided. Over the course of training both the perceptual boundary and acuity are altered. The perceptual learning is observed to improve both the rate and extent of learning in a subsequent sensorimotor adaptation task and the benefits persist for at least 24 h. The improvement in the present studies varies systematically with changes in perceptual acuity and is obtained regardless of whether the perceptual boundary shift serves to systematically increase or decrease error on subsequent movements. The beneficial effects of perceptual training are found to be substantially dependent on reinforced decision-making in the sensory domain. Passive-movement training on its own is less able to alter subsequent learning in the motor system. Overall, this study suggests perceptual learning plays an integral role in motor learning.
Intelligent robots that adapt, learn, and predict
NASA Astrophysics Data System (ADS)
Hall, E. L.; Liao, X.; Ghaffari, M.; Alhaj Ali, S. M.
2005-10-01
The purpose of this paper is to describe the concept and architecture for an intelligent robot system that can adapt, learn and predict the future. This evolutionary approach to the design of intelligent robots is the result of several years of study on the design of intelligent machines that could adapt using computer vision or other sensory inputs, learn using artificial neural networks or genetic algorithms, exhibit semiotic closure with a creative controller and perceive present situations by interpretation of visual and voice commands. This information processing would then permit the robot to predict the future and plan its actions accordingly. In this paper we show that the capability to adapt, and learn naturally leads to the ability to predict the future state of the environment which is just another form of semiotic closure. That is, predicting a future state without knowledge of the future is similar to making a present action without knowledge of the present state. The theory will be illustrated by considering the situation of guiding a mobile robot through an unstructured environment for a rescue operation. The significance of this work is in providing a greater understanding of the applications of learning to mobile robots.
Adaptively Ubiquitous Learning in Campus Math Path
ERIC Educational Resources Information Center
Shih, Shu-Chuan; Kuo, Bor-Chen; Liu, Yu-Lung
2012-01-01
The purposes of this study are to develop and evaluate the instructional model and learning system which integrate ubiquitous learning, computerized adaptive diagnostic testing system and campus math path learning. The researcher first creates a ubiquitous learning environment which is called "adaptive U-learning math path system". This system…
Adaptive sensor array algorithm for structural health monitoring of helmet
NASA Astrophysics Data System (ADS)
Zou, Xiaotian; Tian, Ye; Wu, Nan; Sun, Kai; Wang, Xingwei
2011-04-01
The adaptive neural network is a standard technique used in nonlinear system estimation and learning applications for dynamic models. In this paper, we introduced an adaptive sensor fusion algorithm for a helmet structure health monitoring system. The helmet structure health monitoring system is used to study the effects of ballistic/blast events on the helmet and human skull. Installed inside the helmet system, there is an optical fiber pressure sensors array. After implementing the adaptive estimation algorithm into helmet system, a dynamic model for the sensor array has been developed. The dynamic response characteristics of the sensor network are estimated from the pressure data by applying an adaptive control algorithm using artificial neural network. With the estimated parameters and position data from the dynamic model, the pressure distribution of the whole helmet can be calculated following the Bazier Surface interpolation method. The distribution pattern inside the helmet will be very helpful for improving helmet design to provide better protection to soldiers from head injuries.
Algorithms for adaptive nonlinear pattern recognition
NASA Astrophysics Data System (ADS)
Schmalz, Mark S.; Ritter, Gerhard X.; Hayden, Eric; Key, Gary
2011-09-01
In Bayesian pattern recognition research, static classifiers have featured prominently in the literature. A static classifier is essentially based on a static model of input statistics, thereby assuming input ergodicity that is not realistic in practice. Classical Bayesian approaches attempt to circumvent the limitations of static classifiers, which can include brittleness and narrow coverage, by training extensively on a data set that is assumed to cover more than the subtense of expected input. Such assumptions are not realistic for more complex pattern classification tasks, for example, object detection using pattern classification applied to the output of computer vision filters. In contrast, we have developed a two step process, that can render the majority of static classifiers adaptive, such that the tracking of input nonergodicities is supported. Firstly, we developed operations that dynamically insert (or resp. delete) training patterns into (resp. from) the classifier's pattern database, without requiring that the classifier's internal representation of its training database be completely recomputed. Secondly, we developed and applied a pattern replacement algorithm that uses the aforementioned pattern insertion/deletion operations. This algorithm is designed to optimize the pattern database for a given set of performance measures, thereby supporting closed-loop, performance-directed optimization. This paper presents theory and algorithmic approaches for the efficient computation of adaptive linear and nonlinear pattern recognition operators that use our pattern insertion/deletion technology - in particular, tabular nearest-neighbor encoding (TNE) and lattice associative memories (LAMs). Of particular interest is the classification of nonergodic datastreams that have noise corruption with time-varying statistics. The TNE and LAM based classifiers discussed herein have been successfully applied to the computation of object classification in hyperspectral
A kernel adaptive algorithm for quaternion-valued inputs.
Paul, Thomas K; Ogunfunmi, Tokunbo
2015-10-01
The use of quaternion data can provide benefit in applications like robotics and image recognition, and particularly for performing transforms in 3-D space. Here, we describe a kernel adaptive algorithm for quaternions. A least mean square (LMS)-based method was used, resulting in the derivation of the quaternion kernel LMS (Quat-KLMS) algorithm. Deriving this algorithm required describing the idea of a quaternion reproducing kernel Hilbert space (RKHS), as well as kernel functions suitable with quaternions. A modified HR calculus for Hilbert spaces was used to find the gradient of cost functions defined on a quaternion RKHS. In addition, the use of widely linear (or augmented) filtering is proposed to improve performance. The benefit of the Quat-KLMS and widely linear forms in learning nonlinear transformations of quaternion data are illustrated with simulations. PMID:25594982
Adaptive Trajectory Prediction Algorithm for Climbing Flights
NASA Technical Reports Server (NTRS)
Schultz, Charles Alexander; Thipphavong, David P.; Erzberger, Heinz
2012-01-01
Aircraft climb trajectories are difficult to predict, and large errors in these predictions reduce the potential operational benefits of some advanced features for NextGen. The algorithm described in this paper improves climb trajectory prediction accuracy by adjusting trajectory predictions based on observed track data. It utilizes rate-of-climb and airspeed measurements derived from position data to dynamically adjust the aircraft weight modeled for trajectory predictions. In simulations with weight uncertainty, the algorithm is able to adapt to within 3 percent of the actual gross weight within two minutes of the initial adaptation. The root-mean-square of altitude errors for five-minute predictions was reduced by 73 percent. Conflict detection performance also improved, with a 15 percent reduction in missed alerts and a 10 percent reduction in false alerts. In a simulation with climb speed capture intent and weight uncertainty, the algorithm improved climb trajectory prediction accuracy by up to 30 percent and conflict detection performance, reducing missed and false alerts by up to 10 percent.
Adaptive snakes using the EM algorithm.
Nascimento, Jacinto C; Marques, Jorge S
2005-11-01
Deformable models (e.g., snakes) perform poorly in many image analysis problems. The contour model is attracted by edge points detected in the image. However, many edge points do not belong to the object contour, preventing the active contour from converging toward the object boundary. A new algorithm is proposed in this paper to overcome this difficulty. The algorithm is based on two key ideas. First, edge points are associated in strokes. Second, each stroke is classified as valid (inlier) or invalid (outlier) and a confidence degree is associated to each stroke. The expectation maximization algorithm is used to update the confidence degrees and to estimate the object contour. It is shown that this is equivalent to the use of an adaptive potential function which varies during the optimization process. Valid strokes receive high confidence degrees while confidence degrees of invalid strokes tend to zero during the optimization process. Experimental results are presented to illustrate the performance of the proposed algorithm in the presence of clutter, showing a remarkable robustness.
Adaptable, Personalised E-Learning Incorporating Learning Styles
ERIC Educational Resources Information Center
Peter, Sophie E.; Bacon, Elizabeth; Dastbaz, Mohammad
2010-01-01
Purpose: The purpose of this paper is to discuss how learning styles and theories are currently used within personalised adaptable e-learning adaptive systems. This paper then aims to describe the e-learning platform iLearn and how this platform is designed to incorporate learning styles as part of the personalisation offered by the system.…
PAC learning algorithms for functions approximated by feedforward networks
Rao, N.S.V.; Protopopescu, V.
1996-06-01
The authors present a class of efficient algorithms for PAC learning continuous functions and regressions that are approximated by feedforward networks. The algorithms are applicable to networks with unknown weights located only in the output layer and are obtained by utilizing the potential function methods of Aizerman et al. Conditions relating the sample sizes to the error bounds are derived using martingale-type inequalities. For concreteness, the discussion is presented in terms of neural networks, but the results are applicable to general feedforward networks, in particular to wavelet networks. The algorithms can be directly adapted to concept learning problems.
MLEM algorithm adaptation for improved SPECT scintimammography
NASA Astrophysics Data System (ADS)
Krol, Andrzej; Feiglin, David H.; Lee, Wei; Kunniyur, Vikram R.; Gangal, Kedar R.; Coman, Ioana L.; Lipson, Edward D.; Karczewski, Deborah A.; Thomas, F. Deaver
2005-04-01
Standard MLEM and OSEM algorithms used in SPECT Tc-99m sestamibi scintimammography produce hot-spot artifacts (HSA) at the image support peripheries. We investigated a suitable adaptation of MLEM and OSEM algorithms needed to reduce HSA. Patients with suspicious breast lesions were administered 10 mCi of Tc-99m sestamibi and SPECT scans were acquired for patients in prone position with uncompressed breasts. In addition, to simulate breast lesions, some patients were imaged with a number of breast skin markers each containing 1 mCi of Tc-99m. In order to reduce HSA in reconstruction, we removed from the backprojection step the rays that traverse the periphery of the support region on the way to a detector bin, when their path length through this region was shorter than some critical length. Such very short paths result in a very low projection counts contributed to the detector bin, and consequently to overestimation of the activity in the peripheral voxels in the backprojection step-thus creating HSA. We analyzed the breast-lesion contrast and suppression of HSA in the images reconstructed using standard and modified MLEM and OSEM algorithms vs. critical path length (CPL). For CPL >= 0.01 pixel size, we observed improved breast-lesion contrast and lower noise in the reconstructed images, and a very significant reduction of HSA in the maximum intensity projection (MIP) images.
Adaptive Numerical Algorithms in Space Weather Modeling
NASA Technical Reports Server (NTRS)
Toth, Gabor; vanderHolst, Bart; Sokolov, Igor V.; DeZeeuw, Darren; Gombosi, Tamas I.; Fang, Fang; Manchester, Ward B.; Meng, Xing; Nakib, Dalal; Powell, Kenneth G.; Stout, Quentin F.; Glocer, Alex; Ma, Ying-Juan; Opher, Merav
2010-01-01
Space weather describes the various processes in the Sun-Earth system that present danger to human health and technology. The goal of space weather forecasting is to provide an opportunity to mitigate these negative effects. Physics-based space weather modeling is characterized by disparate temporal and spatial scales as well as by different physics in different domains. A multi-physics system can be modeled by a software framework comprising of several components. Each component corresponds to a physics domain, and each component is represented by one or more numerical models. The publicly available Space Weather Modeling Framework (SWMF) can execute and couple together several components distributed over a parallel machine in a flexible and efficient manner. The framework also allows resolving disparate spatial and temporal scales with independent spatial and temporal discretizations in the various models. Several of the computationally most expensive domains of the framework are modeled by the Block-Adaptive Tree Solar wind Roe Upwind Scheme (BATS-R-US) code that can solve various forms of the magnetohydrodynamics (MHD) equations, including Hall, semi-relativistic, multi-species and multi-fluid MHD, anisotropic pressure, radiative transport and heat conduction. Modeling disparate scales within BATS-R-US is achieved by a block-adaptive mesh both in Cartesian and generalized coordinates. Most recently we have created a new core for BATS-R-US: the Block-Adaptive Tree Library (BATL) that provides a general toolkit for creating, load balancing and message passing in a 1, 2 or 3 dimensional block-adaptive grid. We describe the algorithms of BATL and demonstrate its efficiency and scaling properties for various problems. BATS-R-US uses several time-integration schemes to address multiple time-scales: explicit time stepping with fixed or local time steps, partially steady-state evolution, point-implicit, semi-implicit, explicit/implicit, and fully implicit numerical
Adaptive numerical algorithms in space weather modeling
NASA Astrophysics Data System (ADS)
Tóth, Gábor; van der Holst, Bart; Sokolov, Igor V.; De Zeeuw, Darren L.; Gombosi, Tamas I.; Fang, Fang; Manchester, Ward B.; Meng, Xing; Najib, Dalal; Powell, Kenneth G.; Stout, Quentin F.; Glocer, Alex; Ma, Ying-Juan; Opher, Merav
2012-02-01
Space weather describes the various processes in the Sun-Earth system that present danger to human health and technology. The goal of space weather forecasting is to provide an opportunity to mitigate these negative effects. Physics-based space weather modeling is characterized by disparate temporal and spatial scales as well as by different relevant physics in different domains. A multi-physics system can be modeled by a software framework comprising several components. Each component corresponds to a physics domain, and each component is represented by one or more numerical models. The publicly available Space Weather Modeling Framework (SWMF) can execute and couple together several components distributed over a parallel machine in a flexible and efficient manner. The framework also allows resolving disparate spatial and temporal scales with independent spatial and temporal discretizations in the various models. Several of the computationally most expensive domains of the framework are modeled by the Block-Adaptive Tree Solarwind Roe-type Upwind Scheme (BATS-R-US) code that can solve various forms of the magnetohydrodynamic (MHD) equations, including Hall, semi-relativistic, multi-species and multi-fluid MHD, anisotropic pressure, radiative transport and heat conduction. Modeling disparate scales within BATS-R-US is achieved by a block-adaptive mesh both in Cartesian and generalized coordinates. Most recently we have created a new core for BATS-R-US: the Block-Adaptive Tree Library (BATL) that provides a general toolkit for creating, load balancing and message passing in a 1, 2 or 3 dimensional block-adaptive grid. We describe the algorithms of BATL and demonstrate its efficiency and scaling properties for various problems. BATS-R-US uses several time-integration schemes to address multiple time-scales: explicit time stepping with fixed or local time steps, partially steady-state evolution, point-implicit, semi-implicit, explicit/implicit, and fully implicit
Pitch-Learning Algorithm For Speech Encoders
NASA Technical Reports Server (NTRS)
Bhaskar, B. R. Udaya
1988-01-01
Adaptive algorithm detects and corrects errors in sequence of estimates of pitch period of speech. Algorithm operates in conjunction with techniques used to estimate pitch period. Used in such parametric and hybrid speech coders as linear predictive coders and adaptive predictive coders.
AIDA: An Adaptive Image Deconvolution Algorithm
NASA Astrophysics Data System (ADS)
Hom, Erik; Marchis, F.; Lee, T. K.; Haase, S.; Agard, D. A.; Sedat, J. W.
2007-10-01
We recently described an adaptive image deconvolution algorithm (AIDA) for myopic deconvolution of multi-frame and three-dimensional data acquired through astronomical and microscopic imaging [Hom et al., J. Opt. Soc. Am. A 24, 1580 (2007)]. AIDA is a reimplementation and extension of the MISTRAL method developed by Mugnier and co-workers and shown to yield object reconstructions with excellent edge preservation and photometric precision [J. Opt. Soc. Am. A 21, 1841 (2004)]. Written in Numerical Python with calls to a robust constrained conjugate gradient method, AIDA has significantly improved run times over the original MISTRAL implementation. AIDA includes a scheme to automatically balance maximum-likelihood estimation and object regularization, which significantly decreases the amount of time and effort needed to generate satisfactory reconstructions. Here, we present a gallery of results demonstrating the effectiveness of AIDA in processing planetary science images acquired using adaptive-optics systems. Offered as an open-source alternative to MISTRAL, AIDA is available for download and further development at: http://msg.ucsf.edu/AIDA. This work was supported in part by the W. M. Keck Observatory, the National Institutes of Health, NASA, the National Science Foundation Science and Technology Center for Adaptive Optics at UC-Santa Cruz, and the Howard Hughes Medical Institute.
Learning algorithm of environmental recognition in driving vehicle
Qiao, L.; Sato, M.; Takeda, H.
1995-06-01
We consider the problem of recognizing driving environments of a vehicle by using the information obtained from some sensors of the vehicle. Previously, we presented recognition algorithms based on a usual method of pattern matching by use of distance on a vector space and fuzzy reasoning. These algorithms can not be applied to meet the demands of nonstandard drivers and changes of vehicle properties, because the standard pattern or membership function for the pattern matching is always fixed. Then to cover such weakness we presented adaptive recognition algorithms with adaptive change of the standard pattern and membership function. In this work, we put forward a fuzzy supervisor in the learning process. Also we presented an algorithm into which a new learning method is introduced to improve the performance of the previous ones and to meet the above demands. 18 refs.
An Adaptive Path Planning Algorithm for Cooperating Unmanned Air Vehicles
Cunningham, C.T.; Roberts, R.S.
2000-09-12
An adaptive path planning algorithm is presented for cooperating Unmanned Air Vehicles (UAVs) that are used to deploy and operate land-based sensor networks. The algorithm employs a global cost function to generate paths for the UAVs, and adapts the paths to exceptions that might occur. Examples are provided of the paths and adaptation.
Adaptive path planning algorithm for cooperating unmanned air vehicles
Cunningham, C T; Roberts, R S
2001-02-08
An adaptive path planning algorithm is presented for cooperating Unmanned Air Vehicles (UAVs) that are used to deploy and operate land-based sensor networks. The algorithm employs a global cost function to generate paths for the UAVs, and adapts the paths to exceptions that might occur. Examples are provided of the paths and adaptation.
Mathur, Neha; Glesk, Ivan; Buis, Arjan
2016-10-01
Monitoring of the interface temperature at skin level in lower-limb prosthesis is notoriously complicated. This is due to the flexible nature of the interface liners used impeding the required consistent positioning of the temperature sensors during donning and doffing. Predicting the in-socket residual limb temperature by monitoring the temperature between socket and liner rather than skin and liner could be an important step in alleviating complaints on increased temperature and perspiration in prosthetic sockets. In this work, we propose to implement an adaptive neuro fuzzy inference strategy (ANFIS) to predict the in-socket residual limb temperature. ANFIS belongs to the family of fused neuro fuzzy system in which the fuzzy system is incorporated in a framework which is adaptive in nature. The proposed method is compared to our earlier work using Gaussian processes for machine learning. By comparing the predicted and actual data, results indicate that both the modeling techniques have comparable performance metrics and can be efficiently used for non-invasive temperature monitoring. PMID:27452775
Adapting Online Education to Different Learning Styles.
ERIC Educational Resources Information Center
Muir, Diana J.
The purpose of this research project was to determine if online learning could be adapted to individual learning styles and if this made a difference in the standardized testing scores of Internet students. An overview is provided of current learning theories, including the four stages of learning (exposure, guided learning, independent, mastery)…
Adaptive Units of Learning and Educational Videogames
ERIC Educational Resources Information Center
Moreno-Ger, Pablo; Thomas, Pilar Sancho; Martinez-Ortiz, Ivan; Sierra, Jose Luis; Fernandez-Manjon, Baltasar
2007-01-01
In this paper, we propose three different ways of using IMS Learning Design to support online adaptive learning modules that include educational videogames. The first approach relies on IMS LD to support adaptation procedures where the educational games are considered as Learning Objects. These games can be included instead of traditional content…
Adaptive RED algorithm based on minority game
NASA Astrophysics Data System (ADS)
Wei, Jiaolong; Lei, Ling; Qian, Jingjing
2007-11-01
With more and more applications appearing and the technology developing in the Internet, only relying on terminal system can not satisfy the complicated demand of QoS network. Router mechanisms must be participated into protecting responsive flows from the non-responsive. Routers mainly use active queue management mechanism (AQM) to avoid congestion. In the point of interaction between the routers, the paper applies minority game to describe the interaction of the users and observes the affection on the length of average queue. The parameters α, β of ARED being hard to confirm, adaptive RED based on minority game can depict the interactions of main body and amend the parameter α, β of ARED to the best. Adaptive RED based on minority game optimizes ARED and realizes the smoothness of average queue length. At the same time, this paper extends the network simulator plat - NS by adding new elements. Simulation has been implemented and the results show that new algorithm can reach the anticipative objects.
Learning Intelligent Genetic Algorithms Using Japanese Nonograms
ERIC Educational Resources Information Center
Tsai, Jinn-Tsong; Chou, Ping-Yi; Fang, Jia-Cen
2012-01-01
An intelligent genetic algorithm (IGA) is proposed to solve Japanese nonograms and is used as a method in a university course to learn evolutionary algorithms. The IGA combines the global exploration capabilities of a canonical genetic algorithm (CGA) with effective condensed encoding, improved fitness function, and modified crossover and…
An adaptive algorithm for motion compensated color image coding
NASA Technical Reports Server (NTRS)
Kwatra, Subhash C.; Whyte, Wayne A.; Lin, Chow-Ming
1987-01-01
This paper presents an adaptive algorithm for motion compensated color image coding. The algorithm can be used for video teleconferencing or broadcast signals. Activity segmentation is used to reduce the bit rate and a variable stage search is conducted to save computations. The adaptive algorithm is compared with the nonadaptive algorithm and it is shown that with approximately 60 percent savings in computing the motion vector and 33 percent additional compression, the performance of the adaptive algorithm is similar to the nonadaptive algorithm. The adaptive algorithm results also show improvement of up to 1 bit/pel over interframe DPCM coding with nonuniform quantization. The test pictures used for this study were recorded directly from broadcast video in color.
Adaptive Learning Systems: Beyond Teaching Machines
ERIC Educational Resources Information Center
Kara, Nuri; Sevim, Nese
2013-01-01
Since 1950s, teaching machines have changed a lot. Today, we have different ideas about how people learn, what instructor should do to help students during their learning process. We have adaptive learning technologies that can create much more student oriented learning environments. The purpose of this article is to present these changes and its…
Generation of attributes for learning algorithms
Hu, Yuh-Jyh; Kibler, D.
1996-12-31
Inductive algorithms rely strongly on their representational biases. Constructive induction can mitigate representational inadequacies. This paper introduces the notion of a relative gain measure and describes a new constructive induction algorithm (GALA) which is independent of the learning algorithm. Unlike most previous research on constructive induction, our methods are designed as preprocessing step before standard machine learning algorithms are applied. We present the results which demonstrate the effectiveness of GALA on artificial and real domains for several learners: C4.5, CN2, perceptron and backpropagation.
Learning algorithms for feedforward networks based on finite samples
Rao, N.S.V.; Protopopescu, V.; Mann, R.C.; Oblow, E.M.; Iyengar, S.S.
1994-09-01
Two classes of convergent algorithms for learning continuous functions (and also regression functions) that are represented by feedforward networks, are discussed. The first class of algorithms, applicable to networks with unknown weights located only in the output layer, is obtained by utilizing the potential function methods of Aizerman et al. The second class, applicable to general feedforward networks, is obtained by utilizing the classical Robbins-Monro style stochastic approximation methods. Conditions relating the sample sizes to the error bounds are derived for both classes of algorithms using martingale-type inequalities. For concreteness, the discussion is presented in terms of neural networks, but the results are applicable to general feedforward networks, in particular to wavelet networks. The algorithms can be directly adapted to concept learning problems.
An Adaptive Unified Differential Evolution Algorithm for Global Optimization
Qiang, Ji; Mitchell, Chad
2014-11-03
In this paper, we propose a new adaptive unified differential evolution algorithm for single-objective global optimization. Instead of the multiple mutation strate- gies proposed in conventional differential evolution algorithms, this algorithm employs a single equation unifying multiple strategies into one expression. It has the virtue of mathematical simplicity and also provides users the flexibility for broader exploration of the space of mutation operators. By making all control parameters in the proposed algorithm self-adaptively evolve during the process of optimization, it frees the application users from the burden of choosing appro- priate control parameters and also improves the performance of the algorithm. In numerical tests using thirteen basic unimodal and multimodal functions, the proposed adaptive unified algorithm shows promising performance in compari- son to several conventional differential evolution algorithms.
Alternative learning algorithms for feedforward neural networks
Vitela, J.E.
1996-03-01
The efficiency of the back propagation algorithm to train feed forward multilayer neural networks has originated the erroneous belief among many neural networks users, that this is the only possible way to obtain the gradient of the error in this type of networks. The purpose of this paper is to show how alternative algorithms can be obtained within the framework of ordered partial derivatives. Two alternative forward-propagating algorithms are derived in this work which are mathematically equivalent to the BP algorithm. This systematic way of obtaining learning algorithms illustrated with this particular type of neural networks can also be used with other types such as recurrent neural networks.
Visualizing output for a data learning algorithm
NASA Astrophysics Data System (ADS)
Carson, Daniel; Graham, James; Ternovskiy, Igor
2016-05-01
This paper details the process we went through to visualize the output for our data learning algorithm. We have been developing a hierarchical self-structuring learning algorithm based around the general principles of the LaRue model. One example of a proposed application of this algorithm would be traffic analysis, chosen because it is conceptually easy to follow and there is a significant amount of already existing data and related research material with which to work with. While we choose the tracking of vehicles for our initial approach, it is by no means the only target of our algorithm. Flexibility is the end goal, however, we still need somewhere to start. To that end, this paper details our creation of the visualization GUI for our algorithm, the features we included and the initial results we obtained from our algorithm running a few of the traffic based scenarios we designed.
Integrating Learning Styles into Adaptive E-Learning System
ERIC Educational Resources Information Center
Truong, Huong May
2015-01-01
This paper provides an overview and update on my PhD research project which focuses on integrating learning styles into adaptive e-learning system. The project, firstly, aims to develop a system to classify students' learning styles through their online learning behaviour. This will be followed by a study on the complex relationship between…
Zhang, Zhihua; Sheng, Zheng; Shi, Hanqing; Fan, Zhiqiang
2016-01-01
Using the RFC technique to estimate refractivity parameters is a complex nonlinear optimization problem. In this paper, an improved cuckoo search (CS) algorithm is proposed to deal with this problem. To enhance the performance of the CS algorithm, a parameter dynamic adaptive operation and crossover operation were integrated into the standard CS (DACS-CO). Rechenberg's 1/5 criteria combined with learning factor were used to control the parameter dynamic adaptive adjusting process. The crossover operation of genetic algorithm was utilized to guarantee the population diversity. The new hybrid algorithm has better local search ability and contributes to superior performance. To verify the ability of the DACS-CO algorithm to estimate atmospheric refractivity parameters, the simulation data and real radar clutter data are both implemented. The numerical experiments demonstrate that the DACS-CO algorithm can provide an effective method for near-real-time estimation of the atmospheric refractivity profile from radar clutter. PMID:27212938
Zhang, Zhihua; Sheng, Zheng; Shi, Hanqing; Fan, Zhiqiang
2016-01-01
Using the RFC technique to estimate refractivity parameters is a complex nonlinear optimization problem. In this paper, an improved cuckoo search (CS) algorithm is proposed to deal with this problem. To enhance the performance of the CS algorithm, a parameter dynamic adaptive operation and crossover operation were integrated into the standard CS (DACS-CO). Rechenberg's 1/5 criteria combined with learning factor were used to control the parameter dynamic adaptive adjusting process. The crossover operation of genetic algorithm was utilized to guarantee the population diversity. The new hybrid algorithm has better local search ability and contributes to superior performance. To verify the ability of the DACS-CO algorithm to estimate atmospheric refractivity parameters, the simulation data and real radar clutter data are both implemented. The numerical experiments demonstrate that the DACS-CO algorithm can provide an effective method for near-real-time estimation of the atmospheric refractivity profile from radar clutter.
Zhang, Zhihua; Sheng, Zheng; Shi, Hanqing; Fan, Zhiqiang
2016-01-01
Using the RFC technique to estimate refractivity parameters is a complex nonlinear optimization problem. In this paper, an improved cuckoo search (CS) algorithm is proposed to deal with this problem. To enhance the performance of the CS algorithm, a parameter dynamic adaptive operation and crossover operation were integrated into the standard CS (DACS-CO). Rechenberg's 1/5 criteria combined with learning factor were used to control the parameter dynamic adaptive adjusting process. The crossover operation of genetic algorithm was utilized to guarantee the population diversity. The new hybrid algorithm has better local search ability and contributes to superior performance. To verify the ability of the DACS-CO algorithm to estimate atmospheric refractivity parameters, the simulation data and real radar clutter data are both implemented. The numerical experiments demonstrate that the DACS-CO algorithm can provide an effective method for near-real-time estimation of the atmospheric refractivity profile from radar clutter. PMID:27212938
Adaptive DNA Computing Algorithm by Using PCR and Restriction Enzyme
NASA Astrophysics Data System (ADS)
Kon, Yuji; Yabe, Kaoru; Rajaee, Nordiana; Ono, Osamu
In this paper, we introduce an adaptive DNA computing algorithm by using polymerase chain reaction (PCR) and restriction enzyme. The adaptive algorithm is designed based on Adleman-Lipton paradigm[3] of DNA computing. In this work, however, unlike the Adleman- Lipton architecture a cutting operation has been introduced to the algorithm and the mechanism in which the molecules used by computation were feedback to the next cycle devised. Moreover, the amplification by PCR is performed in the molecule used by feedback and the difference concentration arisen in the base sequence can be used again. By this operation the molecules which serve as a solution candidate can be reduced down and the optimal solution is carried out in the shortest path problem. The validity of the proposed adaptive algorithm is considered with the logical simulation and finally we go on to propose applying adaptive algorithm to the chemical experiment which used the actual DNA molecules for solving an optimal network problem.
A Learning Algorithm for Multimodal Grammar Inference.
D'Ulizia, A; Ferri, F; Grifoni, P
2011-12-01
The high costs of development and maintenance of multimodal grammars in integrating and understanding input in multimodal interfaces lead to the investigation of novel algorithmic solutions in automating grammar generation and in updating processes. Many algorithms for context-free grammar inference have been developed in the natural language processing literature. An extension of these algorithms toward the inference of multimodal grammars is necessary for multimodal input processing. In this paper, we propose a novel grammar inference mechanism that allows us to learn a multimodal grammar from its positive samples of multimodal sentences. The algorithm first generates the multimodal grammar that is able to parse the positive samples of sentences and, afterward, makes use of two learning operators and the minimum description length metrics in improving the grammar description and in avoiding the over-generalization problem. The experimental results highlight the acceptable performances of the algorithm proposed in this paper since it has a very high probability of parsing valid sentences.
LAHS: A novel harmony search algorithm based on learning automata
NASA Astrophysics Data System (ADS)
Enayatifar, Rasul; Yousefi, Moslem; Abdullah, Abdul Hanan; Darus, Amer Nordin
2013-12-01
This study presents a learning automata-based harmony search (LAHS) for unconstrained optimization of continuous problems. The harmony search (HS) algorithm performance strongly depends on the fine tuning of its parameters, including the harmony consideration rate (HMCR), pitch adjustment rate (PAR) and bandwidth (bw). Inspired by the spur-in-time responses in the musical improvisation process, learning capabilities are employed in the HS to select these parameters based on spontaneous reactions. An extensive numerical investigation is conducted on several well-known test functions, and the results are compared with the HS algorithm and its prominent variants, including the improved harmony search (IHS), global-best harmony search (GHS) and self-adaptive global-best harmony search (SGHS). The numerical results indicate that the LAHS is more efficient in finding optimum solutions and outperforms the existing HS algorithm variants.
Validation of Learning Effort Algorithm for Real-Time Non-Interfering Based Diagnostic Technique
ERIC Educational Resources Information Center
Hsu, Pi-Shan; Chang, Te-Jeng
2011-01-01
The objective of this research is to validate the algorithm of learning effort which is an indicator of a new real-time and non-interfering based diagnostic technique. IC3 Mentor, the adaptive e-learning platform fulfilling the requirements of intelligent tutor system, was applied to 165 university students. The learning records of the subjects…
Adaptive Routing Algorithm in Wireless Communication Networks Using Evolutionary Algorithm
NASA Astrophysics Data System (ADS)
Yan, Xuesong; Wu, Qinghua; Cai, Zhihua
At present, mobile communications traffic routing designs are complicated because there are more systems inter-connecting to one another. For example, Mobile Communication in the wireless communication networks has two routing design conditions to consider, i.e. the circuit switching and the packet switching. The problem in the Packet Switching routing design is its use of high-speed transmission link and its dynamic routing nature. In this paper, Evolutionary Algorithms is used to determine the best solution and the shortest communication paths. We developed a Genetic Optimization Process that can help network planners solving the best solutions or the best paths of routing table in wireless communication networks are easily and quickly. From the experiment results can be noted that the evolutionary algorithm not only gets good solutions, but also a more predictable running time when compared to sequential genetic algorithm.
Self-adaptive algorithm for segmenting skin regions
NASA Astrophysics Data System (ADS)
Kawulok, Michal; Kawulok, Jolanta; Nalepa, Jakub; Smolka, Bogdan
2014-12-01
In this paper, we introduce a new self-adaptive algorithm for segmenting human skin regions in color images. Skin detection and segmentation is an active research topic, and many solutions have been proposed so far, especially concerning skin tone modeling in various color spaces. Such models are used for pixel-based classification, but its accuracy is limited due to high variance and low specificity of human skin color. In many works, skin model adaptation and spatial analysis were reported to improve the final segmentation outcome; however, little attention has been paid so far to the possibilities of combining these two improvement directions. Our contribution lies in learning a local skin color model on the fly, which is subsequently applied to the image to determine the seeds for the spatial analysis. Furthermore, we also take advantage of textural features for computing local propagation costs that are used in the distance transform. The results of an extensive experimental study confirmed that the new method is highly competitive, especially for extracting the hand regions in color images.
On Learning Algorithms for Nash Equilibria
NASA Astrophysics Data System (ADS)
Daskalakis, Constantinos; Frongillo, Rafael; Papadimitriou, Christos H.; Pierrakos, George; Valiant, Gregory
Can learning algorithms find a Nash equilibrium? This is a natural question for several reasons. Learning algorithms resemble the behavior of players in many naturally arising games, and thus results on the convergence or non-convergence properties of such dynamics may inform our understanding of the applicability of Nash equilibria as a plausible solution concept in some settings. A second reason for asking this question is in the hope of being able to prove an impossibility result, not dependent on complexity assumptions, for computing Nash equilibria via a restricted class of reasonable algorithms. In this work, we begin to answer this question by considering the dynamics of the standard multiplicative weights update learning algorithms (which are known to converge to a Nash equilibrium for zero-sum games). We revisit a 3×3 game defined by Shapley [10] in the 1950s in order to establish that fictitious play does not converge in general games. For this simple game, we show via a potential function argument that in a variety of settings the multiplicative updates algorithm impressively fails to find the unique Nash equilibrium, in that the cumulative distributions of players produced by learning dynamics actually drift away from the equilibrium.
Paradigms for Realizing Machine Learning Algorithms.
Agneeswaran, Vijay Srinivas; Tonpay, Pranay; Tiwary, Jayati
2013-12-01
The article explains the three generations of machine learning algorithms-with all three trying to operate on big data. The first generation tools are SAS, SPSS, etc., while second generation realizations include Mahout and RapidMiner (that work over Hadoop), and the third generation paradigms include Spark and GraphLab, among others. The essence of the article is that for a number of machine learning algorithms, it is important to look beyond the Hadoop's Map-Reduce paradigm in order to make them work on big data. A number of promising contenders have emerged in the third generation that can be exploited to realize deep analytics on big data.
Managing and learning with multiple models: Objectives and optimization algorithms
Probert, William J. M.; Hauser, C.E.; McDonald-Madden, E.; Runge, M.C.; Baxter, P.W.J.; Possingham, H.P.
2011-01-01
The quality of environmental decisions should be gauged according to managers' objectives. Management objectives generally seek to maximize quantifiable measures of system benefit, for instance population growth rate. Reaching these goals often requires a certain degree of learning about the system. Learning can occur by using management action in combination with a monitoring system. Furthermore, actions can be chosen strategically to obtain specific kinds of information. Formal decision making tools can choose actions to favor such learning in two ways: implicitly via the optimization algorithm that is used when there is a management objective (for instance, when using adaptive management), or explicitly by quantifying knowledge and using it as the fundamental project objective, an approach new to conservation.This paper outlines three conservation project objectives - a pure management objective, a pure learning objective, and an objective that is a weighted mixture of these two. We use eight optimization algorithms to choose actions that meet project objectives and illustrate them in a simulated conservation project. The algorithms provide a taxonomy of decision making tools in conservation management when there is uncertainty surrounding competing models of system function. The algorithms build upon each other such that their differences are highlighted and practitioners may see where their decision making tools can be improved. ?? 2010 Elsevier Ltd.
An adaptive inverse kinematics algorithm for robot manipulators
NASA Technical Reports Server (NTRS)
Colbaugh, R.; Glass, K.; Seraji, H.
1990-01-01
An adaptive algorithm for solving the inverse kinematics problem for robot manipulators is presented. The algorithm is derived using model reference adaptive control (MRAC) theory and is computationally efficient for online applications. The scheme requires no a priori knowledge of the kinematics of the robot if Cartesian end-effector sensing is available, and it requires knowledge of only the forward kinematics if joint position sensing is used. Computer simulation results are given for the redundant seven-DOF robotics research arm, demonstrating that the proposed algorithm yields accurate joint angle trajectories for a given end-effector position/orientation trajectory.
Adaptive Educational Software by Applying Reinforcement Learning
ERIC Educational Resources Information Center
Bennane, Abdellah
2013-01-01
The introduction of the intelligence in teaching software is the object of this paper. In software elaboration process, one uses some learning techniques in order to adapt the teaching software to characteristics of student. Generally, one uses the artificial intelligence techniques like reinforcement learning, Bayesian network in order to adapt…
Different Futures of Adaptive Collaborative Learning Support
ERIC Educational Resources Information Center
Rummel, Nikol; Walker, Erin; Aleven, Vincent
2016-01-01
In this position paper we contrast a Dystopian view of the future of adaptive collaborative learning support (ACLS) with a Utopian scenario that--due to better-designed technology, grounded in research--avoids the pitfalls of the Dystopian version and paints a positive picture of the practice of computer-supported collaborative learning 25 years…
Animal social learning: associations and adaptations.
Reader, Simon M
2016-01-01
Social learning, learning from others, is a powerful process known to impact the success and survival of humans and non-human animals alike. Yet we understand little about the neurocognitive and other processes that underpin social learning. Social learning has often been assumed to involve specialized, derived cognitive processes that evolve and develop independently from other processes. However, this assumption is increasingly questioned, and evidence from a variety of organisms demonstrates that current, recent, and early life experience all predict the reliance on social information and thus can potentially explain variation in social learning as a result of experiential effects rather than evolved differences. General associative learning processes, rather than adaptive specializations, may underpin much social learning, as well as social learning strategies. Uncovering these distinctions is important to a variety of fields, for example by widening current views of the possible breadth and adaptive flexibility of social learning. Nonetheless, just like adaptationist evolutionary explanations, associationist explanations for social learning cannot be assumed, and empirical work is required to uncover the mechanisms involved and their impact on the efficacy of social learning. This work is being done, but more is needed. Current evidence suggests that much social learning may be based on 'ordinary' processes but with extraordinary consequences. PMID:27635227
Animal social learning: associations and adaptations
Reader, Simon M.
2016-01-01
Social learning, learning from others, is a powerful process known to impact the success and survival of humans and non-human animals alike. Yet we understand little about the neurocognitive and other processes that underpin social learning. Social learning has often been assumed to involve specialized, derived cognitive processes that evolve and develop independently from other processes. However, this assumption is increasingly questioned, and evidence from a variety of organisms demonstrates that current, recent, and early life experience all predict the reliance on social information and thus can potentially explain variation in social learning as a result of experiential effects rather than evolved differences. General associative learning processes, rather than adaptive specializations, may underpin much social learning, as well as social learning strategies. Uncovering these distinctions is important to a variety of fields, for example by widening current views of the possible breadth and adaptive flexibility of social learning. Nonetheless, just like adaptationist evolutionary explanations, associationist explanations for social learning cannot be assumed, and empirical work is required to uncover the mechanisms involved and their impact on the efficacy of social learning. This work is being done, but more is needed. Current evidence suggests that much social learning may be based on ‘ordinary’ processes but with extraordinary consequences. PMID:27635227
Animal social learning: associations and adaptations
Reader, Simon M.
2016-01-01
Social learning, learning from others, is a powerful process known to impact the success and survival of humans and non-human animals alike. Yet we understand little about the neurocognitive and other processes that underpin social learning. Social learning has often been assumed to involve specialized, derived cognitive processes that evolve and develop independently from other processes. However, this assumption is increasingly questioned, and evidence from a variety of organisms demonstrates that current, recent, and early life experience all predict the reliance on social information and thus can potentially explain variation in social learning as a result of experiential effects rather than evolved differences. General associative learning processes, rather than adaptive specializations, may underpin much social learning, as well as social learning strategies. Uncovering these distinctions is important to a variety of fields, for example by widening current views of the possible breadth and adaptive flexibility of social learning. Nonetheless, just like adaptationist evolutionary explanations, associationist explanations for social learning cannot be assumed, and empirical work is required to uncover the mechanisms involved and their impact on the efficacy of social learning. This work is being done, but more is needed. Current evidence suggests that much social learning may be based on ‘ordinary’ processes but with extraordinary consequences.
Adaptively resizing populations: Algorithm, analysis, and first results
NASA Technical Reports Server (NTRS)
Smith, Robert E.; Smuda, Ellen
1993-01-01
Deciding on an appropriate population size for a given Genetic Algorithm (GA) application can often be critical to the algorithm's success. Too small, and the GA can fall victim to sampling error, affecting the efficacy of its search. Too large, and the GA wastes computational resources. Although advice exists for sizing GA populations, much of this advice involves theoretical aspects that are not accessible to the novice user. An algorithm for adaptively resizing GA populations is suggested. This algorithm is based on recent theoretical developments that relate population size to schema fitness variance. The suggested algorithm is developed theoretically, and simulated with expected value equations. The algorithm is then tested on a problem where population sizing can mislead the GA. The work presented suggests that the population sizing algorithm may be a viable way to eliminate the population sizing decision from the application of GA's.
Adaptations to a Learning Resource
ERIC Educational Resources Information Center
Libbrecht, Paul
2015-01-01
Learning resources have been created to represent digital units of exchangeable materials that teachers and learners can pull from in order to support the learning processes. They resource themselves. Leveraging the web, one can often find these resources. But what characteristics do they need in order to be easily exchangeable? Although several…
A novel hybrid self-adaptive bat algorithm.
Fister, Iztok; Fong, Simon; Brest, Janez; Fister, Iztok
2014-01-01
Nature-inspired algorithms attract many researchers worldwide for solving the hardest optimization problems. One of the newest members of this extensive family is the bat algorithm. To date, many variants of this algorithm have emerged for solving continuous as well as combinatorial problems. One of the more promising variants, a self-adaptive bat algorithm, has recently been proposed that enables a self-adaptation of its control parameters. In this paper, we have hybridized this algorithm using different DE strategies and applied these as a local search heuristics for improving the current best solution directing the swarm of a solution towards the better regions within a search space. The results of exhaustive experiments were promising and have encouraged us to invest more efforts into developing in this direction.
A Novel Hybrid Self-Adaptive Bat Algorithm
Fister, Iztok; Brest, Janez
2014-01-01
Nature-inspired algorithms attract many researchers worldwide for solving the hardest optimization problems. One of the newest members of this extensive family is the bat algorithm. To date, many variants of this algorithm have emerged for solving continuous as well as combinatorial problems. One of the more promising variants, a self-adaptive bat algorithm, has recently been proposed that enables a self-adaptation of its control parameters. In this paper, we have hybridized this algorithm using different DE strategies and applied these as a local search heuristics for improving the current best solution directing the swarm of a solution towards the better regions within a search space. The results of exhaustive experiments were promising and have encouraged us to invest more efforts into developing in this direction. PMID:25187904
An adaptive algorithm for low contrast infrared image enhancement
NASA Astrophysics Data System (ADS)
Liu, Sheng-dong; Peng, Cheng-yuan; Wang, Ming-jia; Wu, Zhi-guo; Liu, Jia-qi
2013-08-01
An adaptive infrared image enhancement algorithm for low contrast is proposed in this paper, to deal with the problem that conventional image enhancement algorithm is not able to effective identify the interesting region when dynamic range is large in image. This algorithm begin with the human visual perception characteristics, take account of the global adaptive image enhancement and local feature boost, not only the contrast of image is raised, but also the texture of picture is more distinct. Firstly, the global image dynamic range is adjusted from the overall, the dynamic range of original image and display grayscale form corresponding relationship, the gray scale of bright object is raised and the the gray scale of dark target is reduced at the same time, to improve the overall image contrast. Secondly, the corresponding filtering algorithm is used on the current point and its neighborhood pixels to extract image texture information, to adjust the brightness of the current point in order to enhance the local contrast of the image. The algorithm overcomes the default that the outline is easy to vague in traditional edge detection algorithm, and ensure the distinctness of texture detail in image enhancement. Lastly, we normalize the global luminance adjustment image and the local brightness adjustment image, to ensure a smooth transition of image details. A lot of experiments is made to compare the algorithm proposed in this paper with other convention image enhancement algorithm, and two groups of vague IR image are taken in experiment. Experiments show that: the contrast ratio of the picture is boosted after handled by histogram equalization algorithm, but the detail of the picture is not clear, the detail of the picture can be distinguished after handled by the Retinex algorithm. The image after deal with by self-adaptive enhancement algorithm proposed in this paper becomes clear in details, and the image contrast is markedly improved in compared with Retinex
Flexible Ubiquitous Learning Management System Adapted to Learning Context
NASA Astrophysics Data System (ADS)
Jeong, Ji-Seong; Kim, Mihye; Park, Chan; Yoo, Jae-Soo; Yoo, Kwan-Hee
This paper proposes a u-learning management system (ULMS) appropriate to the ubiquitous learning environment, with emphasis on the significance of context awareness and adaptation in learning. The proposed system supports the basic functions of an e-learning management system and incorporates a number of tools and additional features to provide a more customized learning service. The proposed system automatically corresponds to various forms of user terminal without modifying the existing system. The functions, formats, and course learning activities of the system are dynamically and adaptively constructed at runtime according to user terminals, course types, pedagogical goals as well as student characteristics and learning context. A prototype for university use has been implemented to demonstrate and evaluate the proposed approach. We regard the proposed ULMS as an ideal u-learning system because it can not only lead students into continuous and mobile 'anytime, anywhere' learning using any kind of terminal, but can also foster enhanced self-directed learning through the establishment of an adaptive learning environment.
Embedding Knowledge Management into Business Logic of E-learning Platform for Obtaining Adaptivity
NASA Astrophysics Data System (ADS)
Burdescu, Dumitru Dan; Mihaescu, Marian Cristian; Logofatu, Bogdan
Obtaining adaptivity is one of the main concerns in current e-Learning development. This chapter proposes a methodology for obtaining adaptivity by embedding knowledge management into the business logic of the e-Learning platform. Naïve Bayes classifier is used as machine learning algorithm for obtaining the resources that need to be further accessed by learners. The analysis is accomplished on a discipline that is well structured according to a concept map.
Adaptive image contrast enhancement algorithm for point-based rendering
NASA Astrophysics Data System (ADS)
Xu, Shaoping; Liu, Xiaoping P.
2015-03-01
Surgical simulation is a major application in computer graphics and virtual reality, and most of the existing work indicates that interactive real-time cutting simulation of soft tissue is a fundamental but challenging research problem in virtual surgery simulation systems. More specifically, it is difficult to achieve a fast enough graphic update rate (at least 30 Hz) on commodity PC hardware by utilizing traditional triangle-based rendering algorithms. In recent years, point-based rendering (PBR) has been shown to offer the potential to outperform the traditional triangle-based rendering in speed when it is applied to highly complex soft tissue cutting models. Nevertheless, the PBR algorithms are still limited in visual quality due to inherent contrast distortion. We propose an adaptive image contrast enhancement algorithm as a postprocessing module for PBR, providing high visual rendering quality as well as acceptable rendering efficiency. Our approach is based on a perceptible image quality technique with automatic parameter selection, resulting in a visual quality comparable to existing conventional PBR algorithms. Experimental results show that our adaptive image contrast enhancement algorithm produces encouraging results both visually and numerically compared to representative algorithms, and experiments conducted on the latest hardware demonstrate that the proposed PBR framework with the postprocessing module is superior to the conventional PBR algorithm and that the proposed contrast enhancement algorithm can be utilized in (or compatible with) various variants of the conventional PBR algorithm.
Detection of Human Impacts by an Adaptive Energy-Based Anisotropic Algorithm
Prado-Velasco, Manuel; Ortiz Marín, Rafael; del Rio Cidoncha, Gloria
2013-01-01
Boosted by health consequences and the cost of falls in the elderly, this work develops and tests a novel algorithm and methodology to detect human impacts that will act as triggers of a two-layer fall monitor. The two main requirements demanded by socio-healthcare providers—unobtrusiveness and reliability—defined the objectives of the research. We have demonstrated that a very agile, adaptive, and energy-based anisotropic algorithm can provide 100% sensitivity and 78% specificity, in the task of detecting impacts under demanding laboratory conditions. The algorithm works together with an unsupervised real-time learning technique that addresses the adaptive capability, and this is also presented. The work demonstrates the robustness and reliability of our new algorithm, which will be the basis of a smart falling monitor. This is shown in this work to underline the relevance of the results. PMID:24157505
Exploring Adaptability through Learning Layers and Learning Loops
ERIC Educational Resources Information Center
Lof, Annette
2010-01-01
Adaptability in social-ecological systems results from individual and collective action, and multi-level interactions. It can be understood in a dual sense as a system's ability to adapt to disturbance and change, and to navigate system transformation. Inherent in this conception, as found in resilience thinking, are the concepts of learning and…
Adaptive-mesh algorithms for computational fluid dynamics
NASA Technical Reports Server (NTRS)
Powell, Kenneth G.; Roe, Philip L.; Quirk, James
1993-01-01
The basic goal of adaptive-mesh algorithms is to distribute computational resources wisely by increasing the resolution of 'important' regions of the flow and decreasing the resolution of regions that are less important. While this goal is one that is worthwhile, implementing schemes that have this degree of sophistication remains more of an art than a science. In this paper, the basic pieces of adaptive-mesh algorithms are described and some of the possible ways to implement them are discussed and compared. These basic pieces are the data structure to be used, the generation of an initial mesh, the criterion to be used to adapt the mesh to the solution, and the flow-solver algorithm on the resulting mesh. Each of these is discussed, with particular emphasis on methods suitable for the computation of compressible flows.
Brain aerobic glycolysis and motor adaptation learning
Shannon, Benjamin J.; Vaishnavi, Sanjeev Neil; Vlassenko, Andrei G.; Shimony, Joshua S.; Rutlin, Jerrel; Raichle, Marcus E.
2016-01-01
Ten percent to 15% of glucose used by the brain is metabolized nonoxidatively despite adequate tissue oxygenation, a process termed aerobic glycolysis (AG). Because of the known role of glycolysis in biosynthesis, we tested whether learning-induced synaptic plasticity would lead to regionally appropriate, learning-dependent changes in AG. Functional MRI (fMRI) before, during, and after performance of a visual–motor adaptation task demonstrated that left Brodmann area 44 (BA44) played a key role in adaptation, with learning-related changes to activity during the task and altered resting-state, functional connectivity after the task. PET scans before and after task performance indicated a sustained increase in AG in left BA 44 accompanied by decreased oxygen consumption. Intersubject variability in behavioral adaptation rate correlated strongly with changes in AG in this region, as well as functional connectivity, which is consistent with a role for AG in synaptic plasticity. PMID:27217563
A Bayesian Adaptive Basis Algorithm for Single Particle Reconstruction
Kucukelbir, Alp; Sigworth, Fred J.; Tagare, Hemant D.
2012-01-01
Traditional single particle reconstruction methods use either the Fourier or the delta function basis to represent the particle density map. This paper proposes a more flexible algorithm that adaptively chooses the basis based on the data. Because the basis adapts to the data, the reconstruction resolution and signal-to-noise ratio (SNR) is improved compared to a reconstruction with a fixed basis. Moreover, the algorithm automatically masks the particle, thereby separating it from the background. This eliminates the need for ad-hoc filtering or masking in the refinement loop. The algorithm is formulated in a Bayesian maximum-a-posteriori framework and uses an efficient optimization algorithm for the maximization. Evaluations using simulated and actual cryogenic electron microscopy data show resolution and SNR improvements as well as the effective masking of particle from background. PMID:22564910
Noise-enhanced clustering and competitive learning algorithms.
Osoba, Osonde; Kosko, Bart
2013-01-01
Noise can provably speed up convergence in many centroid-based clustering algorithms. This includes the popular k-means clustering algorithm. The clustering noise benefit follows from the general noise benefit for the expectation-maximization algorithm because many clustering algorithms are special cases of the expectation-maximization algorithm. Simulations show that noise also speeds up convergence in stochastic unsupervised competitive learning, supervised competitive learning, and differential competitive learning.
A neural-network learning theory and a polynomial time RBF algorithm.
Roy, A; Govil, S; Miranda, R
1997-01-01
This paper presents a new learning theory (a set of principles for brain-like learning) and a corresponding algorithm for the neural-network field. The learning theory defines computational characteristics that are much more brain-like than that of classical connectionist learning. Robust and reliable learning algorithms would result if these learning principles are followed rigorously when developing neural-network algorithms. This paper also presents a new algorithm for generating radial basis function (RBF) nets for function approximation. The design of the algorithm is based on the proposed set of learning principles. The net generated by this algorithm is not a typical RBF net, but a combination of "truncated" RBF and other types of hidden units. The algorithm uses random clustering and linear programming (LP) to design and train this "mixed" RBF net. Polynomial time complexity of the algorithm is proven and computational results are provided for the well known Mackey-Glass chaotic time series problem, the logistic map prediction problem, various neuro-control problems, and several time series forecasting problems. The algorithm can also be implemented as an online adaptive algorithm.
Adapting Active Learning in Ethiopia
ERIC Educational Resources Information Center
Casale, Carolyn Frances
2010-01-01
Ethiopia is a developing country that has invested extensively in expanding its educational opportunities. In this expansion, there has been a drastic restructuring of its system of preparing teachers and teacher educators. Often, improving teacher quality is dependent on professional development that diversifies pedagogy (active learning). This…
Adaptive NUC algorithm for uncooled IRFPA based on neural networks
NASA Astrophysics Data System (ADS)
Liu, Ziji; Jiang, Yadong; Lv, Jian; Zhu, Hongbin
2010-10-01
With developments in uncooled infrared plane array (UFPA) technology, many new advanced uncooled infrared sensors are used in defensive weapons, scientific research, industry and commercial applications. A major difference in imaging techniques between infrared IRFPA imaging system and a visible CCD camera is that, IRFPA need nonuniformity correction and dead pixel compensation, we usually called it infrared image pre-processing. Two-point or multi-point correction algorithms based on calibration commonly used may correct the non-uniformity of IRFPAs, but they are limited by pixel linearity and instability. Therefore, adaptive non-uniformity correction techniques are developed. Two of these adaptive non-uniformity correction algorithms are mostly discussed, one is based on temporal high-pass filter, and another is based on neural network. In this paper, a new NUC algorithm based on improved neural networks is introduced, and involves the compare result between improved neural networks and other adaptive correction techniques. A lot of different will discussed in different angle, like correction effects, calculation efficiency, hardware implementation and so on. According to the result and discussion, it could be concluding that the adaptive algorithm offers improved performance compared to traditional calibration mode techniques. This new algorithm not only provides better sensitivity, but also increases the system dynamic range. As the sensor application expended, it will be very useful in future infrared imaging systems.
Learning and adaptation in fuzzy neural systems
NASA Astrophysics Data System (ADS)
Gupta, Madan M.
1992-03-01
In recent years, an increasing number of researchers have become involved in the subject of fuzzy neural networks in the hope of combining the reasoning strength of fuzzy logic and the learning and adaptation power of neural networks. This provides a more powerful tool for fuzzy information processing and for exploring the functioning of human brains. In this paper, an attempt has been made to establish some basic models for fuzzy neurons. First, several possible fuzzy neuron models are proposed. Second, synaptic and somatic learning and adaptation mechanisms are proposed. Finally, the possibility of applying nonfuzzy neural networks approaches to fuzzy systems is also described.
Fast Adapting Ensemble: A New Algorithm for Mining Data Streams with Concept Drift
Ortíz Díaz, Agustín; Ramos-Jiménez, Gonzalo; Frías Blanco, Isvani; Caballero Mota, Yailé; Morales-Bueno, Rafael
2015-01-01
The treatment of large data streams in the presence of concept drifts is one of the main challenges in the field of data mining, particularly when the algorithms have to deal with concepts that disappear and then reappear. This paper presents a new algorithm, called Fast Adapting Ensemble (FAE), which adapts very quickly to both abrupt and gradual concept drifts, and has been specifically designed to deal with recurring concepts. FAE processes the learning examples in blocks of the same size, but it does not have to wait for the batch to be complete in order to adapt its base classification mechanism. FAE incorporates a drift detector to improve the handling of abrupt concept drifts and stores a set of inactive classifiers that represent old concepts, which are activated very quickly when these concepts reappear. We compare our new algorithm with various well-known learning algorithms, taking into account, common benchmark datasets. The experiments show promising results from the proposed algorithm (regarding accuracy and runtime), handling different types of concept drifts. PMID:25879051
An Experimental Method for the Active Learning of Greedy Algorithms
ERIC Educational Resources Information Center
Velazquez-Iturbide, J. Angel
2013-01-01
Greedy algorithms constitute an apparently simple algorithm design technique, but its learning goals are not simple to achieve.We present a didacticmethod aimed at promoting active learning of greedy algorithms. The method is focused on the concept of selection function, and is based on explicit learning goals. It mainly consists of an…
Adaptive Cognitive-Based Selection of Learning Objects
ERIC Educational Resources Information Center
Karampiperis, Pythagoras; Lin, Taiyu; Sampson, Demetrios G.; Kinshuk
2006-01-01
Adaptive cognitive-based selection is recognized as among the most significant open issues in adaptive web-based learning systems. In order to adaptively select learning resources, the definition of adaptation rules according to the cognitive style or learning preferences of the learners is required. Although some efforts have been reported in…
Data-adaptive algorithms for calling alleles in repeat polymorphisms.
Stoughton, R; Bumgarner, R; Frederick, W J; McIndoe, R A
1997-01-01
Data-adaptive algorithms are presented for separating overlapping signatures of heterozygotic allele pairs in electrophoresis data. Application is demonstrated for human microsatellite CA-repeat polymorphisms in LiCor 4000 and ABI 373 data. The algorithms allow overlapping alleles to be called correctly in almost every case where a trained observer could do so, and provide a fast automated objective alternative to human reading of the gels. The algorithm also supplies an indication of confidence level which can be used to flag marginal cases for verification by eye, or as input to later stages of statistical analysis. PMID:9059812
Efficient Algorithm for Optimizing Adaptive Quantum Metrology Processes
NASA Astrophysics Data System (ADS)
Hentschel, Alexander; Sanders, Barry C.
2011-12-01
Quantum-enhanced metrology infers an unknown quantity with accuracy beyond the standard quantum limit (SQL). Feedback-based metrological techniques are promising for beating the SQL but devising the feedback procedures is difficult and inefficient. Here we introduce an efficient self-learning swarm-intelligence algorithm for devising feedback-based quantum metrological procedures. Our algorithm can be trained with simulated or real-world trials and accommodates experimental imperfections, losses, and decoherence.
Efficient algorithm for optimizing adaptive quantum metrology processes.
Hentschel, Alexander; Sanders, Barry C
2011-12-01
Quantum-enhanced metrology infers an unknown quantity with accuracy beyond the standard quantum limit (SQL). Feedback-based metrological techniques are promising for beating the SQL but devising the feedback procedures is difficult and inefficient. Here we introduce an efficient self-learning swarm-intelligence algorithm for devising feedback-based quantum metrological procedures. Our algorithm can be trained with simulated or real-world trials and accommodates experimental imperfections, losses, and decoherence.
Adaptive clustering algorithm for community detection in complex networks.
Ye, Zhenqing; Hu, Songnian; Yu, Jun
2008-10-01
Community structure is common in various real-world networks; methods or algorithms for detecting such communities in complex networks have attracted great attention in recent years. We introduced a different adaptive clustering algorithm capable of extracting modules from complex networks with considerable accuracy and robustness. In this approach, each node in a network acts as an autonomous agent demonstrating flocking behavior where vertices always travel toward their preferable neighboring groups. An optimal modular structure can emerge from a collection of these active nodes during a self-organization process where vertices constantly regroup. In addition, we show that our algorithm appears advantageous over other competing methods (e.g., the Newman-fast algorithm) through intensive evaluation. The applications in three real-world networks demonstrate the superiority of our algorithm to find communities that are parallel with the appropriate organization in reality. PMID:18999501
Paradigms for Realizing Machine Learning Algorithms.
Agneeswaran, Vijay Srinivas; Tonpay, Pranay; Tiwary, Jayati
2013-12-01
The article explains the three generations of machine learning algorithms-with all three trying to operate on big data. The first generation tools are SAS, SPSS, etc., while second generation realizations include Mahout and RapidMiner (that work over Hadoop), and the third generation paradigms include Spark and GraphLab, among others. The essence of the article is that for a number of machine learning algorithms, it is important to look beyond the Hadoop's Map-Reduce paradigm in order to make them work on big data. A number of promising contenders have emerged in the third generation that can be exploited to realize deep analytics on big data. PMID:27447253
Adaptive Learning Resources Sequencing in Educational Hypermedia Systems
ERIC Educational Resources Information Center
Karampiperis, Pythagoras; Sampson, Demetrios
2005-01-01
Adaptive learning resources selection and sequencing is recognized as among the most interesting research questions in adaptive educational hypermedia systems (AEHS). In order to adaptively select and sequence learning resources in AEHS, the definition of adaptation rules contained in the Adaptation Model, is required. Although, some efforts have…
Learning algorithms for perceptrons from statistical physics
NASA Astrophysics Data System (ADS)
Gordon, Mirta B.; Peretto, Pierre; Berchier, Dominique
1993-02-01
Learning algorithms for perceptrons are deduced from statistical mechanics. Thermodynamical quantities are used as cost functions which may be extremalized by gradient dynamics to find the synaptic efficacies that store the learning set of patterns. The learning rules so obtained are classified in two categories, following the statistics used to derive the cost functions, namely, Boltzmann statistics, and Fermi statistics. In the limits of zero or infinite temperatures some of the rules behave like already known algorithms, but new strategies for learning are obtained at finite temperatures, which minimize the number of errors on the training set. Nous déduisons des algorithmes d'apprentissage pour des perceptrons à partir de considérations de mécanique statistique. Des quantités thermodynamiques sont considérées comme des fonctions de coût, dont on obtient, par une dynamique de gradient, les efficacités synaptiques qui apprennent l'ensemble d'apprentissage. Les règles ainsi obtenues sont classées en deux catégories suivant les statistiques, de Boltzmann ou de Fermi, utilisées pour dériver les fonctions de coût. Dans les limites de températures nulle ou infinie, la plupart des règles trouvées tendent vers les algorithmes connus, mais à température finie on trouve des stratégies nouvelles, qui minimisent le nombre d'erreurs dans l'ensemble d'apprentissage.
Accuracy estimation for supervised learning algorithms
Glover, C.W.; Oblow, E.M.; Rao, N.S.V.
1997-04-01
This paper illustrates the relative merits of three methods - k-fold Cross Validation, Error Bounds, and Incremental Halting Test - to estimate the accuracy of a supervised learning algorithm. For each of the three methods we point out the problem they address, some of the important assumptions that are based on, and illustrate them through an example. Finally, we discuss the relative advantages and disadvantages of each method.
A self-learning algorithm for biased molecular dynamics.
Tribello, Gareth A; Ceriotti, Michele; Parrinello, Michele
2010-10-12
A new self-learning algorithm for accelerated dynamics, reconnaissance metadynamics, is proposed that is able to work with a very large number of collective coordinates. Acceleration of the dynamics is achieved by constructing a bias potential in terms of a patchwork of one-dimensional, locally valid collective coordinates. These collective coordinates are obtained from trajectory analyses so that they adapt to any new features encountered during the simulation. We show how this methodology can be used to enhance sampling in real chemical systems citing examples both from the physics of clusters and from the biological sciences. PMID:20876135
Ozone ensemble forecast with machine learning algorithms
NASA Astrophysics Data System (ADS)
Mallet, Vivien; Stoltz, Gilles; Mauricette, Boris
2009-03-01
We apply machine learning algorithms to perform sequential aggregation of ozone forecasts. The latter rely on a multimodel ensemble built for ozone forecasting with the modeling system Polyphemus. The ensemble simulations are obtained by changes in the physical parameterizations, the numerical schemes, and the input data to the models. The simulations are carried out for summer 2001 over western Europe in order to forecast ozone daily peaks and ozone hourly concentrations. On the basis of past observations and past model forecasts, the learning algorithms produce a weight for each model. A convex or linear combination of the model forecasts is then formed with these weights. This process is repeated for each round of forecasting and is therefore called sequential aggregation. The aggregated forecasts demonstrate good results; for instance, they always show better performance than the best model in the ensemble and they even compete against the best constant linear combination. In addition, the machine learning algorithms come with theoretical guarantees with respect to their performance, that hold for all possible sequences of observations, even nonstochastic ones. Our study also demonstrates the robustness of the methods. We therefore conclude that these aggregation methods are very relevant for operational forecasts.
An Adaptive Tradeoff Algorithm for Multi-issue SLA Negotiation
NASA Astrophysics Data System (ADS)
Son, Seokho; Sim, Kwang Mong
Since participants in a Cloud may be independent bodies, mechanisms are necessary for resolving different preferences in leasing Cloud services. Whereas there are currently mechanisms that support service-level agreement negotiation, there is little or no negotiation support for concurrent price and timeslot for Cloud service reservations. For the concurrent price and timeslot negotiation, a tradeoff algorithm to generate and evaluate a proposal which consists of price and timeslot proposal is necessary. The contribution of this work is thus to design an adaptive tradeoff algorithm for multi-issue negotiation mechanism. The tradeoff algorithm referred to as "adaptive burst mode" is especially designed to increase negotiation speed and total utility and to reduce computational load by adaptively generating concurrent set of proposals. The empirical results obtained from simulations carried out using a testbed suggest that due to the concurrent price and timeslot negotiation mechanism with adaptive tradeoff algorithm: 1) both agents achieve the best performance in terms of negotiation speed and utility; 2) the number of evaluations of each proposal is comparatively lower than previous scheme (burst-N).
Adaptation algorithms for 2-D feedforward neural networks.
Kaczorek, T
1995-01-01
The generalized weight adaptation algorithms presented by J.G. Kuschewski et al. (1993) and by S.H. Zak and H.J. Sira-Ramirez (1990) are extended for 2-D madaline and 2-D two-layer feedforward neural nets (FNNs).
Adapting Cooperative Learning in Tertiary ELT
ERIC Educational Resources Information Center
Ning, Huiping
2011-01-01
An updated guideline for tertiary ELT in China has shifted the emphasis to the development of learners' ability to communicate in English. Using group work and getting learners actively involved in the actual use of English are highlighted more than before. This article focuses on adapting cooperative learning methods for ELT with tertiary…
Making Mistakes: Emotional Adaptation and Classroom Learning
ERIC Educational Resources Information Center
McCaslin, Mary; Vriesema, Christine C.; Burggraf, Susan
2016-01-01
Background: We studied how students in Grades 4-6 participate in and emotionally adapt to the give-and-take of learning in classrooms, particularly when making mistakes. Our approach is consistent with researchers who (a) include cognitive appraisals in the study of emotional experiences, (b) consider how personal concerns might mediate…
Adaptable Learning Assistant for Item Bank Management
ERIC Educational Resources Information Center
Nuntiyagul, Atorn; Naruedomkul, Kanlaya; Cercone, Nick; Wongsawang, Damras
2008-01-01
We present PKIP, an adaptable learning assistant tool for managing question items in item banks. PKIP is not only able to automatically assist educational users to categorize the question items into predefined categories by their contents but also to correctly retrieve the items by specifying the category and/or the difficulty level. PKIP adapts…
An Adaptive Immune Genetic Algorithm for Edge Detection
NASA Astrophysics Data System (ADS)
Li, Ying; Bai, Bendu; Zhang, Yanning
An adaptive immune genetic algorithm (AIGA) based on cost minimization technique method for edge detection is proposed. The proposed AIGA recommends the use of adaptive probabilities of crossover, mutation and immune operation, and a geometric annealing schedule in immune operator to realize the twin goals of maintaining diversity in the population and sustaining the fast convergence rate in solving the complex problems such as edge detection. Furthermore, AIGA can effectively exploit some prior knowledge and information of the local edge structure in the edge image to make vaccines, which results in much better local search ability of AIGA than that of the canonical genetic algorithm. Experimental results on gray-scale images show the proposed algorithm perform well in terms of quality of the final edge image, rate of convergence and robustness to noise.
Flight data processing with the F-8 adaptive algorithm
NASA Technical Reports Server (NTRS)
Hartmann, G.; Stein, G.; Petersen, K.
1977-01-01
An explicit adaptive control algorithm based on maximum likelihood estimation of parameters has been designed for NASA's DFBW F-8 aircraft. To avoid iterative calculations, the algorithm uses parallel channels of Kalman filters operating at fixed locations in parameter space. This algorithm has been implemented in NASA/DFRC's Remotely Augmented Vehicle (RAV) facility. Real-time sensor outputs (rate gyro, accelerometer and surface position) are telemetered to a ground computer which sends new gain values to an on-board system. Ground test data and flight records were used to establish design values of noise statistics and to verify the ground-based adaptive software. The software and its performance evaluation based on flight data are described
A new adaptive GMRES algorithm for achieving high accuracy
Sosonkina, M.; Watson, L.T.; Kapania, R.K.; Walker, H.F.
1996-12-31
GMRES(k) is widely used for solving nonsymmetric linear systems. However, it is inadequate either when it converges only for k close to the problem size or when numerical error in the modified Gram-Schmidt process used in the GMRES orthogonalization phase dramatically affects the algorithm performance. An adaptive version of GMRES (k) which tunes the restart value k based on criteria estimating the GMRES convergence rate for the given problem is proposed here. The essence of the adaptive GMRES strategy is to adapt the parameter k to the problem, similar in spirit to how a variable order ODE algorithm tunes the order k. With FORTRAN 90, which provides pointers and dynamic memory management, dealing with the variable storage requirements implied by varying k is not too difficult. The parameter k can be both increased and decreased-an increase-only strategy is described next followed by pseudocode.
Adaptive bad pixel correction algorithm for IRFPA based on PCNN
NASA Astrophysics Data System (ADS)
Leng, Hanbing; Zhou, Zuofeng; Cao, Jianzhong; Yi, Bo; Yan, Aqi; Zhang, Jian
2013-10-01
Bad pixels and response non-uniformity are the primary obstacles when IRFPA is used in different thermal imaging systems. The bad pixels of IRFPA include fixed bad pixels and random bad pixels. The former is caused by material or manufacture defect and their positions are always fixed, the latter is caused by temperature drift and their positions are always changing. Traditional radiometric calibration-based bad pixel detection and compensation algorithm is only valid to the fixed bad pixels. Scene-based bad pixel correction algorithm is the effective way to eliminate these two kinds of bad pixels. Currently, the most used scene-based bad pixel correction algorithm is based on adaptive median filter (AMF). In this algorithm, bad pixels are regarded as image noise and then be replaced by filtered value. However, missed correction and false correction often happens when AMF is used to handle complex infrared scenes. To solve this problem, a new adaptive bad pixel correction algorithm based on pulse coupled neural networks (PCNN) is proposed. Potential bad pixels are detected by PCNN in the first step, then image sequences are used periodically to confirm the real bad pixels and exclude the false one, finally bad pixels are replaced by the filtered result. With the real infrared images obtained from a camera, the experiment results show the effectiveness of the proposed algorithm.
Adaptive Flocking of Robot Swarms: Algorithms and Properties
NASA Astrophysics Data System (ADS)
Lee, Geunho; Chong, Nak Young
This paper presents a distributed approach for adaptive flocking of swarms of mobile robots that enables to navigate autonomously in complex environments populated with obstacles. Based on the observation of the swimming behavior of a school of fish, we propose an integrated algorithm that allows a swarm of robots to navigate in a coordinated manner, split into multiple swarms, or merge with other swarms according to the environment conditions. We prove the convergence of the proposed algorithm using Lyapunov stability theory. We also verify the effectiveness of the algorithm through extensive simulations, where a swarm of robots repeats the process of splitting and merging while passing around multiple stationary and moving obstacles. The simulation results show that the proposed algorithm is scalable, and robust to variations in the sensing capability of individual robots.
TAO-robust backpropagation learning algorithm.
Pernía-Espinoza, Alpha V; Ordieres-Meré, Joaquín B; Martínez-de-Pisón, Francisco J; González-Marcos, Ana
2005-03-01
In several fields, as industrial modelling, multilayer feedforward neural networks are often used as universal function approximations. These supervised neural networks are commonly trained by a traditional backpropagation learning format, which minimises the mean squared error (mse) of the training data. However, in the presence of corrupted data (outliers) this training scheme may produce wrong models. We combine the benefits of the non-linear regression model tau-estimates [introduced by Tabatabai, M. A. Argyros, I. K. Robust Estimation and testing for general nonlinear regression models. Applied Mathematics and Computation. 58 (1993) 85-101] with the backpropagation algorithm to produce the TAO-robust learning algorithm, in order to deal with the problems of modelling with outliers. The cost function of this approach has a bounded influence function given by the weighted average of two psi functions, one corresponding to a very robust estimate and the other to a highly efficient estimate. The advantages of the proposed algorithm are studied with an example.
An adaptive grid algorithm for one-dimensional nonlinear equations
NASA Technical Reports Server (NTRS)
Gutierrez, William E.; Hills, Richard G.
1990-01-01
Richards' equation, which models the flow of liquid through unsaturated porous media, is highly nonlinear and difficult to solve. Step gradients in the field variables require the use of fine grids and small time step sizes. The numerical instabilities caused by the nonlinearities often require the use of iterative methods such as Picard or Newton interation. These difficulties result in large CPU requirements in solving Richards equation. With this in mind, adaptive and multigrid methods are investigated for use with nonlinear equations such as Richards' equation. Attention is focused on one-dimensional transient problems. To investigate the use of multigrid and adaptive grid methods, a series of problems are studied. First, a multigrid program is developed and used to solve an ordinary differential equation, demonstrating the efficiency with which low and high frequency errors are smoothed out. The multigrid algorithm and an adaptive grid algorithm is used to solve one-dimensional transient partial differential equations, such as the diffusive and convective-diffusion equations. The performance of these programs are compared to that of the Gauss-Seidel and tridiagonal methods. The adaptive and multigrid schemes outperformed the Gauss-Seidel algorithm, but were not as fast as the tridiagonal method. The adaptive grid scheme solved the problems slightly faster than the multigrid method. To solve nonlinear problems, Picard iterations are introduced into the adaptive grid and tridiagonal methods. Burgers' equation is used as a test problem for the two algorithms. Both methods obtain solutions of comparable accuracy for similar time increments. For the Burgers' equation, the adaptive grid method finds the solution approximately three times faster than the tridiagonal method. Finally, both schemes are used to solve the water content formulation of the Richards' equation. For this problem, the adaptive grid method obtains a more accurate solution in fewer work units and
Efficient implementation of the adaptive scale pixel decomposition algorithm
NASA Astrophysics Data System (ADS)
Zhang, L.; Bhatnagar, S.; Rau, U.; Zhang, M.
2016-08-01
Context. Most popular algorithms in use to remove the effects of a telescope's point spread function (PSF) in radio astronomy are variants of the CLEAN algorithm. Most of these algorithms model the sky brightness using the delta-function basis, which results in undesired artefacts when used to image extended emission. The adaptive scale pixel decomposition (Asp-Clean) algorithm models the sky brightness on a scale-sensitive basis and thus gives a significantly better imaging performance when imaging fields that contain both resolved and unresolved emission. Aims: However, the runtime cost of Asp-Clean is higher than that of scale-insensitive algorithms. In this paper, we identify the most expensive step in the original Asp-Clean algorithm and present an efficient implementation of it, which significantly reduces the computational cost while keeping the imaging performance comparable to the original algorithm. The PSF sidelobe levels of modern wide-band telescopes are significantly reduced, allowing us to make approximations to reduce the computational cost, which in turn allows for the deconvolution of larger images on reasonable timescales. Methods: As in the original algorithm, scales in the image are estimated through function fitting. Here we introduce an analytical method to model extended emission, and a modified method for estimating the initial values used for the fitting procedure, which ultimately leads to a lower computational cost. Results: The new implementation was tested with simulated EVLA data and the imaging performance compared well with the original Asp-Clean algorithm. Tests show that the current algorithm can recover features at different scales with lower computational cost.
An adaptive mesh refinement algorithm for the discrete ordinates method
Jessee, J.P.; Fiveland, W.A.; Howell, L.H.; Colella, P.; Pember, R.B.
1996-03-01
The discrete ordinates form of the radiative transport equation (RTE) is spatially discretized and solved using an adaptive mesh refinement (AMR) algorithm. This technique permits the local grid refinement to minimize spatial discretization error of the RTE. An error estimator is applied to define regions for local grid refinement; overlapping refined grids are recursively placed in these regions; and the RTE is then solved over the entire domain. The procedure continues until the spatial discretization error has been reduced to a sufficient level. The following aspects of the algorithm are discussed: error estimation, grid generation, communication between refined levels, and solution sequencing. This initial formulation employs the step scheme, and is valid for absorbing and isotopically scattering media in two-dimensional enclosures. The utility of the algorithm is tested by comparing the convergence characteristics and accuracy to those of the standard single-grid algorithm for several benchmark cases. The AMR algorithm provides a reduction in memory requirements and maintains the convergence characteristics of the standard single-grid algorithm; however, the cases illustrate that efficiency gains of the AMR algorithm will not be fully realized until three-dimensional geometries are considered.
Fast frequency acquisition via adaptive least squares algorithm
NASA Technical Reports Server (NTRS)
Kumar, R.
1986-01-01
A new least squares algorithm is proposed and investigated for fast frequency and phase acquisition of sinusoids in the presence of noise. This algorithm is a special case of more general, adaptive parameter-estimation techniques. The advantages of the algorithms are their conceptual simplicity, flexibility and applicability to general situations. For example, the frequency to be acquired can be time varying, and the noise can be nonGaussian, nonstationary and colored. As the proposed algorithm can be made recursive in the number of observations, it is not necessary to have a priori knowledge of the received signal-to-noise ratio or to specify the measurement time. This would be required for batch processing techniques, such as the fast Fourier transform (FFT). The proposed algorithm improves the frequency estimate on a recursive basis as more and more observations are obtained. When the algorithm is applied in real time, it has the extra advantage that the observations need not be stored. The algorithm also yields a real time confidence measure as to the accuracy of the estimator.
PHURBAS: AN ADAPTIVE, LAGRANGIAN, MESHLESS, MAGNETOHYDRODYNAMICS CODE. I. ALGORITHM
Maron, Jason L.; McNally, Colin P.; Mac Low, Mordecai-Mark E-mail: cmcnally@amnh.org
2012-05-01
We present an algorithm for simulating the equations of ideal magnetohydrodynamics and other systems of differential equations on an unstructured set of points represented by sample particles. Local, third-order, least-squares, polynomial interpolations (Moving Least Squares interpolations) are calculated from the field values of neighboring particles to obtain field values and spatial derivatives at the particle position. Field values and particle positions are advanced in time with a second-order predictor-corrector scheme. The particles move with the fluid, so the time step is not limited by the Eulerian Courant-Friedrichs-Lewy condition. Full spatial adaptivity is implemented to ensure the particles fill the computational volume, which gives the algorithm substantial flexibility and power. A target resolution is specified for each point in space, with particles being added and deleted as needed to meet this target. Particle addition and deletion is based on a local void and clump detection algorithm. Dynamic artificial viscosity fields provide stability to the integration. The resulting algorithm provides a robust solution for modeling flows that require Lagrangian or adaptive discretizations to resolve. This paper derives and documents the Phurbas algorithm as implemented in Phurbas version 1.1. A following paper presents the implementation and test problem results.
Improving Adaptive Learning Technology through the Use of Response Times
ERIC Educational Resources Information Center
Mettler, Everett; Massey, Christine M.; Kellman, Philip J.
2011-01-01
Adaptive learning techniques have typically scheduled practice using learners' accuracy and item presentation history. We describe an adaptive learning system (Adaptive Response Time Based Sequencing--ARTS) that uses both accuracy and response time (RT) as direct inputs into sequencing. Response times are used to assess learning strength and…
Landsat ecosystem disturbance adaptive processing system (LEDAPS) algorithm description
Schmidt, Gail; Jenkerson, Calli; Masek, Jeffrey; Vermote, Eric; Gao, Feng
2013-01-01
The Landsat Ecosystem Disturbance Adaptive Processing System (LEDAPS) software was originally developed by the National Aeronautics and Space Administration–Goddard Space Flight Center and the University of Maryland to produce top-of-atmosphere reflectance from LandsatThematic Mapper and Enhanced Thematic Mapper Plus Level 1 digital numbers and to apply atmospheric corrections to generate a surface-reflectance product.The U.S. Geological Survey (USGS) has adopted the LEDAPS algorithm for producing the Landsat Surface Reflectance Climate Data Record.This report discusses the LEDAPS algorithm, which was implemented by the USGS.
Adaptive functional systems: Learning with chaos
NASA Astrophysics Data System (ADS)
Komarov, M. A.; Osipov, G. V.; Burtsev, M. S.
2010-12-01
We propose a new model of adaptive behavior that combines a winnerless competition principle and chaos to learn new functional systems. The model consists of a complex network of nonlinear dynamical elements producing sequences of goal-directed actions. Each element describes dynamics and activity of the functional system which is supposed to be a distributed set of interacting physiological elements such as nerve or muscle that cooperates to obtain certain goal at the level of the whole organism. During "normal" behavior, the dynamics of the system follows heteroclinic channels, but in the novel situation chaotic search is activated and a new channel leading to the target state is gradually created simulating the process of learning. The model was tested in single and multigoal environments and had demonstrated a good potential for generation of new adaptations.
Learning algorithms for stack filter classifiers
Porter, Reid B; Hush, Don; Zimmer, Beate G
2009-01-01
Stack Filters define a large class of increasing filter that is used widely in image and signal processing. The motivations for using an increasing filter instead of an unconstrained filter have been described as: (1) fast and efficient implementation, (2) the relationship to mathematical morphology and (3) more precise estimation with finite sample data. This last motivation is related to methods developed in machine learning and the relationship was explored in an earlier paper. In this paper we investigate this relationship by applying Stack Filters directly to classification problems. This provides a new perspective on how monotonicity constraints can help control estimation and approximation errors, and also suggests several new learning algorithms for Boolean function classifiers when they are applied to real-valued inputs.
[Adaptive algorithm for automatic measurement of retinal vascular diameter].
Münch, K; Vilser, W; Senff, I
1995-11-01
A new adaptive computer-aided method for the measurement of blood vessel diameters has been developed. Within areas of interest in the image, the algorithm detects, line-wise, the edges of the vessels, which are then used for image-wise approximation and noise filtration. A high level of adaptivity with respect to numerous measuring parameters ensures its use in a wide range of applications. Thus, it has been shown to significantly improve clinically relevant reproducibility in the area of follow-up observations. The standard deviation for vessel diameter was (2.2 +/- 0.7)% in the case of arteries and (1.8 +/- 0.5)% in the case of veins. Testing the algorithm in images of poor quality revealed its high level of reliability and sensitivity.
An adaptive phase alignment algorithm for cartesian feedback loops
NASA Astrophysics Data System (ADS)
Gimeno-Martin, A.; Pardo-Martin, J.; Ortega-Gonzalez, F.
2010-01-01
An adaptive algorithm to correct phase misalignments in Cartesian feedback linearization loops for power amplifiers has been presented. It yields an error smaller than 0.035 rad between forward and feedback loop signals once convergence is reached. Because this algorithm enables a feedback system to process forward and feedback samples belonging to almost the same algorithm iteration, it is suitable to improve the performance not only of power amplifiers but also any other digital feedback system for communications systems and circuits such as all digital phase locked loops. Synchronizing forward and feedback paths of Cartesian feedback loops takes a small period of time after the system starts up. The phase alignment algorithm needs to converge before the feedback Cartesian loop can start its ideal behavior. However, once the steady state is reached, both paths can be considered synchronized, and the Cartesian feedback loop will only depend on the loop parameters (open-loop gain, loop bandwidth, etc.). It means that the linearization process will also depend only on these parameters since the misalignment effect disappears. Therefore, this algorithm relieves the power amplifier linearizer circuit design of any task required for solving phase misalignment effects inherent to Cartesian feedback systems. Furthermore, when a feedback Cartesian loop has to be designed, the designer can consider that forward and feedback paths are synchronized, since the phase alignment algorithm will do this task. This will reduce the simulation complexity. Then, all efforts are applied to determining the suitable loop parameters that will make the linearization process more efficient.
An efficient sampling algorithm with adaptations for Bayesian variable selection.
Araki, Takamitsu; Ikeda, Kazushi; Akaho, Shotaro
2015-01-01
In Bayesian variable selection, indicator model selection (IMS) is a class of well-known sampling algorithms, which has been used in various models. The IMS is a class of methods that uses pseudo-priors and it contains specific methods such as Gibbs variable selection (GVS) and Kuo and Mallick's (KM) method. However, the efficiency of the IMS strongly depends on the parameters of a proposal distribution and the pseudo-priors. Specifically, the GVS determines their parameters based on a pilot run for a full model and the KM method sets their parameters as those of priors, which often leads to slow mixings of them. In this paper, we propose an algorithm that adapts the parameters of the IMS during running. The parameters obtained on the fly provide an appropriate proposal distribution and pseudo-priors, which improve the mixing of the algorithm. We also prove the convergence theorem of the proposed algorithm, and confirm that the algorithm is more efficient than the conventional algorithms by experiments of the Bayesian variable selection.
MEAT: An Authoring Tool for Generating Adaptable Learning Resources
ERIC Educational Resources Information Center
Kuo, Yen-Hung; Huang, Yueh-Min
2009-01-01
Mobile learning (m-learning) is a new trend in the e-learning field. The learning services in m-learning environments are supported by fundamental functions, especially the content and assessment services, which need an authoring tool to rapidly generate adaptable learning resources. To fulfill the imperious demand, this study proposes an…
An adaptive learning control system for aircraft
NASA Technical Reports Server (NTRS)
Mekel, R.; Nachmias, S.
1978-01-01
A learning control system and its utilization as a flight control system for F-8 Digital Fly-By-Wire (DFBW) research aircraft is studied. The system has the ability to adjust a gain schedule to account for changing plant characteristics and to improve its performance and the plant's performance in the course of its own operation. Three subsystems are detailed: (1) the information acquisition subsystem which identifies the plant's parameters at a given operating condition; (2) the learning algorithm subsystem which relates the identified parameters to predetermined analytical expressions describing the behavior of the parameters over a range of operating conditions; and (3) the memory and control process subsystem which consists of the collection of updated coefficients (memory) and the derived control laws. Simulation experiments indicate that the learning control system is effective in compensating for parameter variations caused by changes in flight conditions.
DSP-based on-line NMR spectroscopy using an anti-Hebbian learning algorithm
Razazian, K.; Dieckman, S.L.; Raptis, A.C.; Bobis, J.P. |
1995-07-01
This paper describes a nuclear magnetic resonance (NMR) system that uses an adaptive algorithm to carry out real-time NMR spectroscopy. The system employs a digital signal processor (DSP) chip to regulate the transmitted and received signal together with spectral analysis of the received signal to determine free induction decay (FID). To implement such a signal-processing routine for detection of the desired signal, an adaptive line enhancer filter that uses an anti-Hebbian learning algorithm is applied to the FID spectra. The results indicate that the adaptive filter can be a reliable technique for on-line spectroscopy study.
Adaptive Load-Balancing Algorithms Using Symmetric Broadcast Networks
NASA Technical Reports Server (NTRS)
Das, Sajal K.; Biswas, Rupak; Chancellor, Marisa K. (Technical Monitor)
1997-01-01
In a distributed-computing environment, it is important to ensure that the processor workloads are adequately balanced. Among numerous load-balancing algorithms, a unique approach due to Dam and Prasad defines a symmetric broadcast network (SBN) that provides a robust communication pattern among the processors in a topology-independent manner. In this paper, we propose and analyze three novel SBN-based load-balancing algorithms, and implement them on an SP2. A thorough experimental study with Poisson-distributed synthetic loads demonstrates that these algorithms are very effective in balancing system load while minimizing processor idle time. They also compare favorably with several other existing load-balancing techniques. Additional experiments performed with real data demonstrate that the SBN approach is effective in adaptive computational science and engineering applications where dynamic load balancing is extremely crucial.
Analysis of hypersonic aircraft inlets using flow adaptive mesh algorithms
NASA Astrophysics Data System (ADS)
Neaves, Michael Dean
The numerical investigation into the dynamics of unsteady inlet flowfields is applied to a three-dimensional scramjet inlet-isolator-diffuser geometry designed for hypersonic type applications. The Reynolds-Averaged Navier-Stokes equations are integrated in time using a subiterating, time-accurate implicit algorithm. Inviscid fluxes are calculated using the Low Diffusion Flux Splitting Scheme of Edwards. A modified version of the dynamic solution-adaptive point movement algorithm of Benson and McRae is used in a coupled mode to dynamically resolve the features of the flow by enhancing the spatial accuracy of the simulations. The unsteady mesh terms are incorporated into the flow solver via the inviscid fluxes. The dynamic solution-adaptive grid algorithm of Benson and McRae is modified to improve orthogonality at the boundaries to ensure accurate application of boundary conditions and properly resolve turbulent boundary layers. Shock tube simulations are performed to ascertain the effectiveness of the algorithm for unsteady flow situations on fixed and moving grids. Unstarts due to a combustor and freestream angle of attack perturbations are simulated in a three-dimensional inlet-isolator-diffuser configuration.
An adaptive gyroscope-based algorithm for temporal gait analysis.
Greene, Barry R; McGrath, Denise; O'Neill, Ross; O'Donovan, Karol J; Burns, Adrian; Caulfield, Brian
2010-12-01
Body-worn kinematic sensors have been widely proposed as the optimal solution for portable, low cost, ambulatory monitoring of gait. This study aims to evaluate an adaptive gyroscope-based algorithm for automated temporal gait analysis using body-worn wireless gyroscopes. Gyroscope data from nine healthy adult subjects performing four walks at four different speeds were then compared against data acquired simultaneously using two force plates and an optical motion capture system. Data from a poliomyelitis patient, exhibiting pathological gait walking with and without the aid of a crutch, were also compared to the force plate. Results show that the mean true error between the adaptive gyroscope algorithm and force plate was -4.5 ± 14.4 ms and 43.4 ± 6.0 ms for IC and TC points, respectively, in healthy subjects. Similarly, the mean true error when data from the polio patient were compared against the force plate was -75.61 ± 27.53 ms and 99.20 ± 46.00 ms for IC and TC points, respectively. A comparison of the present algorithm against temporal gait parameters derived from an optical motion analysis system showed good agreement for nine healthy subjects at four speeds. These results show that the algorithm reported here could constitute the basis of a robust, portable, low-cost system for ambulatory monitoring of gait.
Data-adaptive Shrinkage via the Hyperpenalized EM Algorithm
Boonstra, Philip S.; Taylor, Jeremy M. G.; Mukherjee, Bhramar
2015-01-01
We propose an extension of the expectation-maximization (EM) algorithm, called the hyperpenalized EM (HEM) algorithm, that maximizes a penalized log-likelihood, for which some data are missing or unavailable, using a data-adaptive estimate of the penalty parameter. This is potentially useful in applications for which the analyst is unable or unwilling to choose a single value of a penalty parameter but instead can posit a plausible range of values. The HEM algorithm is conceptually straightforward and also very effective, and we demonstrate its utility in the analysis of a genomic data set. Gene expression measurements and clinical covariates were used to predict survival time. However, many survival times are censored, and some observations only contain expression measurements derived from a different assay, which together constitute a difficult missing data problem. It is desired to shrink the genomic contribution in a data-adaptive way. The HEM algorithm successfully handles both the missing data and shrinkage aspects of the problem. PMID:26834856
Discrete-time minimal control synthesis adaptive algorithm
NASA Astrophysics Data System (ADS)
di Bernardo, M.; di Gennaro, F.; Olm, J. M.; Santini, S.
2010-12-01
This article proposes a discrete-time Minimal Control Synthesis (MCS) algorithm for a class of single-input single-output discrete-time systems written in controllable canonical form. As it happens with the continuous-time MCS strategy, the algorithm arises from the family of hyperstability-based discrete-time model reference adaptive controllers introduced in (Landau, Y. (1979), Adaptive Control: The Model Reference Approach, New York: Marcel Dekker, Inc.) and is able to ensure tracking of the states of a given reference model with minimal knowledge about the plant. The control design shows robustness to parameter uncertainties, slow parameter variation and matched disturbances. Furthermore, it is proved that the proposed discrete-time MCS algorithm can be used to control discretised continuous-time plants with the same performance features. Contrary to previous discrete-time implementations of the continuous-time MCS algorithm, here a formal proof of asymptotic stability is given for generic n-dimensional plants in controllable canonical form. The theoretical approach is validated by means of simulation results.
Adaptive firefly algorithm: parameter analysis and its application.
Cheung, Ngaam J; Ding, Xue-Ming; Shen, Hong-Bin
2014-01-01
As a nature-inspired search algorithm, firefly algorithm (FA) has several control parameters, which may have great effects on its performance. In this study, we investigate the parameter selection and adaptation strategies in a modified firefly algorithm - adaptive firefly algorithm (AdaFa). There are three strategies in AdaFa including (1) a distance-based light absorption coefficient; (2) a gray coefficient enhancing fireflies to share difference information from attractive ones efficiently; and (3) five different dynamic strategies for the randomization parameter. Promising selections of parameters in the strategies are analyzed to guarantee the efficient performance of AdaFa. AdaFa is validated over widely used benchmark functions, and the numerical experiments and statistical tests yield useful conclusions on the strategies and the parameter selections affecting the performance of AdaFa. When applied to the real-world problem - protein tertiary structure prediction, the results demonstrated improved variants can rebuild the tertiary structure with the average root mean square deviation less than 0.4Å and 1.5Å from the native constrains with noise free and 10% Gaussian white noise. PMID:25397812
Adaptive firefly algorithm: parameter analysis and its application.
Cheung, Ngaam J; Ding, Xue-Ming; Shen, Hong-Bin
2014-01-01
As a nature-inspired search algorithm, firefly algorithm (FA) has several control parameters, which may have great effects on its performance. In this study, we investigate the parameter selection and adaptation strategies in a modified firefly algorithm - adaptive firefly algorithm (AdaFa). There are three strategies in AdaFa including (1) a distance-based light absorption coefficient; (2) a gray coefficient enhancing fireflies to share difference information from attractive ones efficiently; and (3) five different dynamic strategies for the randomization parameter. Promising selections of parameters in the strategies are analyzed to guarantee the efficient performance of AdaFa. AdaFa is validated over widely used benchmark functions, and the numerical experiments and statistical tests yield useful conclusions on the strategies and the parameter selections affecting the performance of AdaFa. When applied to the real-world problem - protein tertiary structure prediction, the results demonstrated improved variants can rebuild the tertiary structure with the average root mean square deviation less than 0.4Å and 1.5Å from the native constrains with noise free and 10% Gaussian white noise.
Generalized pattern search algorithms with adaptive precision function evaluations
Polak, Elijah; Wetter, Michael
2003-05-14
In the literature on generalized pattern search algorithms, convergence to a stationary point of a once continuously differentiable cost function is established under the assumption that the cost function can be evaluated exactly. However, there is a large class of engineering problems where the numerical evaluation of the cost function involves the solution of systems of differential algebraic equations. Since the termination criteria of the numerical solvers often depend on the design parameters, computer code for solving these systems usually defines a numerical approximation to the cost function that is discontinuous with respect to the design parameters. Standard generalized pattern search algorithms have been applied heuristically to such problems, but no convergence properties have been stated. In this paper we extend a class of generalized pattern search algorithms to a form that uses adaptive precision approximations to the cost function. These numerical approximations need not define a continuous function. Our algorithms can be used for solving linearly constrained problems with cost functions that are at least locally Lipschitz continuous. Assuming that the cost function is smooth, we prove that our algorithms converge to a stationary point. Under the weaker assumption that the cost function is only locally Lipschitz continuous, we show that our algorithms converge to points at which the Clarke generalized directional derivatives are nonnegative in predefined directions. An important feature of our adaptive precision scheme is the use of coarse approximations in the early iterations, with the approximation precision controlled by a test. Such an approach leads to substantial time savings in minimizing computationally expensive functions.
A local adaptive discretization algorithm for Smoothed Particle Hydrodynamics
NASA Astrophysics Data System (ADS)
Spreng, Fabian; Schnabel, Dirk; Mueller, Alexandra; Eberhard, Peter
2014-06-01
In this paper, an extension to the Smoothed Particle Hydrodynamics (SPH) method is proposed that allows for an adaptation of the discretization level of a simulated continuum at runtime. By combining a local adaptive refinement technique with a newly developed coarsening algorithm, one is able to improve the accuracy of the simulation results while reducing the required computational cost at the same time. For this purpose, the number of particles is, on the one hand, adaptively increased in critical areas of a simulation model. Typically, these are areas that show a relatively low particle density and high gradients in stress or temperature. On the other hand, the number of SPH particles is decreased for domains with a high particle density and low gradients. Besides a brief introduction to the basic principle of the SPH discretization method, the extensions to the original formulation providing such a local adaptive refinement and coarsening of the modeled structure are presented in this paper. After having introduced its theoretical background, the applicability of the enhanced formulation, as well as the benefit gained from the adaptive model discretization, is demonstrated in the context of four different simulation scenarios focusing on solid continua. While presenting the results found for these examples, several properties of the proposed adaptive technique are discussed, e.g. the conservation of momentum as well as the existing correlation between the chosen refinement and coarsening patterns and the observed quality of the results.
Adaptive Mesh Refinement Algorithms for Parallel Unstructured Finite Element Codes
Parsons, I D; Solberg, J M
2006-02-03
This project produced algorithms for and software implementations of adaptive mesh refinement (AMR) methods for solving practical solid and thermal mechanics problems on multiprocessor parallel computers using unstructured finite element meshes. The overall goal is to provide computational solutions that are accurate to some prescribed tolerance, and adaptivity is the correct path toward this goal. These new tools will enable analysts to conduct more reliable simulations at reduced cost, both in terms of analyst and computer time. Previous academic research in the field of adaptive mesh refinement has produced a voluminous literature focused on error estimators and demonstration problems; relatively little progress has been made on producing efficient implementations suitable for large-scale problem solving on state-of-the-art computer systems. Research issues that were considered include: effective error estimators for nonlinear structural mechanics; local meshing at irregular geometric boundaries; and constructing efficient software for parallel computing environments.
ERIC Educational Resources Information Center
Chang, Yi-Hsing; Chen, Yen-Yi; Chen, Nian-Shing; Lu, You-Te; Fang, Rong-Jyue
2016-01-01
This study designs and implements an adaptive learning management system based on Felder and Silverman's Learning Style Model and the Mashup technology. In this system, Felder and Silverman's Learning Style model is used to assess students' learning styles, in order to provide adaptive learning to leverage learners' learning preferences.…
NASA Technical Reports Server (NTRS)
Rogers, David
1991-01-01
G/SPLINES are a hybrid of Friedman's Multivariable Adaptive Regression Splines (MARS) algorithm with Holland's Genetic Algorithm. In this hybrid, the incremental search is replaced by a genetic search. The G/SPLINE algorithm exhibits performance comparable to that of the MARS algorithm, requires fewer least squares computations, and allows significantly larger problems to be considered.
Information Theory, Inference and Learning Algorithms
NASA Astrophysics Data System (ADS)
Mackay, David J. C.
2003-10-01
Information theory and inference, often taught separately, are here united in one entertaining textbook. These topics lie at the heart of many exciting areas of contemporary science and engineering - communication, signal processing, data mining, machine learning, pattern recognition, computational neuroscience, bioinformatics, and cryptography. This textbook introduces theory in tandem with applications. Information theory is taught alongside practical communication systems, such as arithmetic coding for data compression and sparse-graph codes for error-correction. A toolbox of inference techniques, including message-passing algorithms, Monte Carlo methods, and variational approximations, are developed alongside applications of these tools to clustering, convolutional codes, independent component analysis, and neural networks. The final part of the book describes the state of the art in error-correcting codes, including low-density parity-check codes, turbo codes, and digital fountain codes -- the twenty-first century standards for satellite communications, disk drives, and data broadcast. Richly illustrated, filled with worked examples and over 400 exercises, some with detailed solutions, David MacKay's groundbreaking book is ideal for self-learning and for undergraduate or graduate courses. Interludes on crosswords, evolution, and sex provide entertainment along the way. In sum, this is a textbook on information, communication, and coding for a new generation of students, and an unparalleled entry point into these subjects for professionals in areas as diverse as computational biology, financial engineering, and machine learning.
ERIC Educational Resources Information Center
Bryant, Diane Pedrotty; Bryant, Brian R.
1998-01-01
Discusses a process for integrating technology adaptations for students with learning disabilities into cooperative-learning activities in terms of three components: (1) selecting adaptations; (2) monitoring use of adaptations during cooperative-learning activities; and (3) evaluating the adaptations' effectiveness. Barriers to and support systems…
NASA Astrophysics Data System (ADS)
Li, Xiao-Dong; Lv, Mang-Mang; Ho, John K. L.
2016-07-01
In this article, two adaptive iterative learning control (ILC) algorithms are presented for nonlinear continuous systems with non-parametric uncertainties. Unlike general ILC techniques, the proposed adaptive ILC algorithms allow that both the initial error at each iteration and the reference trajectory are iteration-varying in the ILC process, and can achieve non-repetitive trajectory tracking beyond a small initial time interval. Compared to the neural network or fuzzy system-based adaptive ILC schemes and the classical ILC methods, in which the number of iterative variables is generally larger than or equal to the number of control inputs, the first adaptive ILC algorithm proposed in this paper uses just two iterative variables, while the second even uses a single iterative variable provided that some bound information on system dynamics is known. As a result, the memory space in real-time ILC implementations is greatly reduced.
A biomimetic adaptive algorithm and low-power architecture for implantable neural decoders.
Rapoport, Benjamin I; Wattanapanitch, Woradorn; Penagos, Hector L; Musallam, Sam; Andersen, Richard A; Sarpeshkar, Rahul
2009-01-01
Algorithmically and energetically efficient computational architectures that operate in real time are essential for clinically useful neural prosthetic devices. Such devices decode raw neural data to obtain direct control signals for external devices. They can also perform data compression and vastly reduce the bandwidth and consequently power expended in wireless transmission of raw data from implantable brain-machine interfaces. We describe a biomimetic algorithm and micropower analog circuit architecture for decoding neural cell ensemble signals. The decoding algorithm implements a continuous-time artificial neural network, using a bank of adaptive linear filters with kernels that emulate synaptic dynamics. The filters transform neural signal inputs into control-parameter outputs, and can be tuned automatically in an on-line learning process. We provide experimental validation of our system using neural data from thalamic head-direction cells in an awake behaving rat.
A Biomimetic Adaptive Algorithm and Low-Power Architecture for Implantable Neural Decoders
Rapoport, Benjamin I.; Wattanapanitch, Woradorn; Penagos, Hector L.; Musallam, Sam; Andersen, Richard A.; Sarpeshkar, Rahul
2010-01-01
Algorithmically and energetically efficient computational architectures that operate in real time are essential for clinically useful neural prosthetic devices. Such devices decode raw neural data to obtain direct control signals for external devices. They can also perform data compression and vastly reduce the bandwidth and consequently power expended in wireless transmission of raw data from implantable brain-machine interfaces. We describe a biomimetic algorithm and micropower analog circuit architecture for decoding neural cell ensemble signals. The decoding algorithm implements a continuous-time artificial neural network, using a bank of adaptive linear filters with kernels that emulate synaptic dynamics. The filters transform neural signal inputs into control-parameter outputs, and can be tuned automatically in an on-line learning process. We provide experimental validation of our system using neural data from thalamic head-direction cells in an awake behaving rat. PMID:19964345
Analysis of adaptive algorithms for an integrated communication network
NASA Technical Reports Server (NTRS)
Reed, Daniel A.; Barr, Matthew; Chong-Kwon, Kim
1985-01-01
Techniques were examined that trade communication bandwidth for decreased transmission delays. When the network is lightly used, these schemes attempt to use additional network resources to decrease communication delays. As the network utilization rises, the schemes degrade gracefully, still providing service but with minimal use of the network. Because the schemes use a combination of circuit and packet switching, they should respond to variations in the types and amounts of network traffic. Also, a combination of circuit and packet switching to support the widely varying traffic demands imposed on an integrated network was investigated. The packet switched component is best suited to bursty traffic where some delays in delivery are acceptable. The circuit switched component is reserved for traffic that must meet real time constraints. Selected packet routing algorithms that might be used in an integrated network were simulated. An integrated traffic places widely varying workload demands on a network. Adaptive algorithms were identified, ones that respond to both the transient and evolutionary changes that arise in integrated networks. A new algorithm was developed, hybrid weighted routing, that adapts to workload changes.
The POP learning algorithms: reducing work in identifying fuzzy rules.
Quek, C; Zhou, R W
2001-12-01
A novel fuzzy neural network, the Pseudo Outer-Product based Fuzzy Neural Network (POPFNN), and its two fuzzy-rule-identification algorithms are proposed in this paper. They are the Pseudo Outer-Product (POP) learning and the Lazy Pseudo Outer-Product (LazyPOP) leaning algorithms. These two learning algorithms are used in POPFNN to identify relevant fuzzy rules. In contrast with other rule-learning algorithms, the proposed algorithms have many advantages, such as being fast, reliable, efficient, and easy to understand. POP learning is a simple one-pass learning algorithm. It essentially performs rule-selection. Hence, it suffers from the shortcoming of having to consider all the possible rules. The second algorithm, the LazyPOP learning algorithm, truly identifies the fuzzy rules which are relevant and does not use a rule-selection method whereby irrelevant fuzzy rules are eliminated from an initial rule set. In addition, it is able to adjust the structure of the fuzzy neural network. The proposed LazyPOP learning algorithm is able to delete invalid feature inputs according to the fuzzy rules that have been identified. Extensive experimental results and discussions are presented for a detailed analysis of the proposed algorithms.
Classification of multiple sclerosis lesions using adaptive dictionary learning.
Deshpande, Hrishikesh; Maurel, Pierre; Barillot, Christian
2015-12-01
This paper presents a sparse representation and an adaptive dictionary learning based method for automated classification of multiple sclerosis (MS) lesions in magnetic resonance (MR) images. Manual delineation of MS lesions is a time-consuming task, requiring neuroradiology experts to analyze huge volume of MR data. This, in addition to the high intra- and inter-observer variability necessitates the requirement of automated MS lesion classification methods. Among many image representation models and classification methods that can be used for such purpose, we investigate the use of sparse modeling. In the recent years, sparse representation has evolved as a tool in modeling data using a few basis elements of an over-complete dictionary and has found applications in many image processing tasks including classification. We propose a supervised classification approach by learning dictionaries specific to the lesions and individual healthy brain tissues, which include white matter (WM), gray matter (GM) and cerebrospinal fluid (CSF). The size of the dictionaries learned for each class plays a major role in data representation but it is an even more crucial element in the case of competitive classification. Our approach adapts the size of the dictionary for each class, depending on the complexity of the underlying data. The algorithm is validated using 52 multi-sequence MR images acquired from 13 MS patients. The results demonstrate the effectiveness of our approach in MS lesion classification.
Classification of multiple sclerosis lesions using adaptive dictionary learning.
Deshpande, Hrishikesh; Maurel, Pierre; Barillot, Christian
2015-12-01
This paper presents a sparse representation and an adaptive dictionary learning based method for automated classification of multiple sclerosis (MS) lesions in magnetic resonance (MR) images. Manual delineation of MS lesions is a time-consuming task, requiring neuroradiology experts to analyze huge volume of MR data. This, in addition to the high intra- and inter-observer variability necessitates the requirement of automated MS lesion classification methods. Among many image representation models and classification methods that can be used for such purpose, we investigate the use of sparse modeling. In the recent years, sparse representation has evolved as a tool in modeling data using a few basis elements of an over-complete dictionary and has found applications in many image processing tasks including classification. We propose a supervised classification approach by learning dictionaries specific to the lesions and individual healthy brain tissues, which include white matter (WM), gray matter (GM) and cerebrospinal fluid (CSF). The size of the dictionaries learned for each class plays a major role in data representation but it is an even more crucial element in the case of competitive classification. Our approach adapts the size of the dictionary for each class, depending on the complexity of the underlying data. The algorithm is validated using 52 multi-sequence MR images acquired from 13 MS patients. The results demonstrate the effectiveness of our approach in MS lesion classification. PMID:26055435
Should the parameters of a BCI translation algorithm be continually adapted?
McFarland, Dennis J; Sarnacki, William A; Wolpaw, Jonathan R
2011-07-15
People with or without motor disabilities can learn to control sensorimotor rhythms (SMRs) recorded from the scalp to move a computer cursor in one or more dimensions or can use the P300 event-related potential as a control signal to make discrete selections. Data collected from individuals using an SMR-based or P300-based BCI were evaluated offline to estimate the impact on performance of continually adapting the parameters of the translation algorithm during BCI operation. The performance of the SMR-based BCI was enhanced by adaptive updating of the feature weights or adaptive normalization of the features. In contrast, P300 performance did not benefit from either of these procedures. PMID:21571004
Adaptable Learning Pathway Generation with Ant Colony Optimization
ERIC Educational Resources Information Center
Wong, Lung-Hsiang; Looi, Chee-Kit
2009-01-01
One of the new major directions in research on web-based educational systems is the notion of adaptability: the educational system adapts itself to the learning profile, preferences and ability of the student. In this paper, we look into the issues of providing adaptability with respect to learning pathways. We explore the state of the art with…
AH-Questionnaire: An Adaptive Hierarchical Questionnaire for Learning Styles
ERIC Educational Resources Information Center
Ortigosa, Alvaro; Paredes, Pedro; Rodriguez, Pilar
2010-01-01
One of the main concerns when providing learning style adaptation in Adaptive Educational Hypermedia Systems is the number of questions the students have to answer. Most of the times, adaptive material available will discriminate among a few categories for each learning style dimension. Consequently, it is only needed to take into account the…
Critical Thinking, Developmental Learning, and Adaptive Flexibility in Organizational Leaders.
ERIC Educational Resources Information Center
Duchesne, Robert E., Jr.
A study examined how developmental learning and adaptive flexibility relate to critical thinking though a survey of 119 organizational leaders (of 341) who had attended a 5-day Leadership Development Program. A questionnaire adapted from the Center for Creative Leadership's Job Challenge Profile measured developmental learning, the Adaptive Style…
Statistical behaviour of adaptive multilevel splitting algorithms in simple models
Rolland, Joran Simonnet, Eric
2015-02-15
Adaptive multilevel splitting algorithms have been introduced rather recently for estimating tail distributions in a fast and efficient way. In particular, they can be used for computing the so-called reactive trajectories corresponding to direct transitions from one metastable state to another. The algorithm is based on successive selection–mutation steps performed on the system in a controlled way. It has two intrinsic parameters, the number of particles/trajectories and the reaction coordinate used for discriminating good or bad trajectories. We investigate first the convergence in law of the algorithm as a function of the timestep for several simple stochastic models. Second, we consider the average duration of reactive trajectories for which no theoretical predictions exist. The most important aspect of this work concerns some systems with two degrees of freedom. They are studied in detail as a function of the reaction coordinate in the asymptotic regime where the number of trajectories goes to infinity. We show that during phase transitions, the statistics of the algorithm deviate significatively from known theoretical results when using non-optimal reaction coordinates. In this case, the variance of the algorithm is peaking at the transition and the convergence of the algorithm can be much slower than the usual expected central limit behaviour. The duration of trajectories is affected as well. Moreover, reactive trajectories do not correspond to the most probable ones. Such behaviour disappears when using the optimal reaction coordinate called committor as predicted by the theory. We finally investigate a three-state Markov chain which reproduces this phenomenon and show logarithmic convergence of the trajectory durations.
Adaptivity and smart algorithms for fluid-structure interaction
NASA Technical Reports Server (NTRS)
Oden, J. Tinsley
1990-01-01
This paper reviews new approaches in CFD which have the potential for significantly increasing current capabilities of modeling complex flow phenomena and of treating difficult problems in fluid-structure interaction. These approaches are based on the notions of adaptive methods and smart algorithms, which use instantaneous measures of the quality and other features of the numerical flowfields as a basis for making changes in the structure of the computational grid and of algorithms designed to function on the grid. The application of these new techniques to several problem classes are addressed, including problems with moving boundaries, fluid-structure interaction in high-speed turbine flows, flow in domains with receding boundaries, and related problems.
Characterization of atmospheric contaminant sources using adaptive evolutionary algorithms
NASA Astrophysics Data System (ADS)
Cervone, Guido; Franzese, Pasquale; Grajdeanu, Adrian
2010-10-01
The characteristics of an unknown source of emissions in the atmosphere are identified using an Adaptive Evolutionary Strategy (AES) methodology based on ground concentration measurements and a Gaussian plume model. The AES methodology selects an initial set of source characteristics including position, size, mass emission rate, and wind direction, from which a forward dispersion simulation is performed. The error between the simulated concentrations from the tentative source and the observed ground measurements is calculated. Then the AES algorithm prescribes the next tentative set of source characteristics. The iteration proceeds towards minimum error, corresponding to convergence towards the real source. The proposed methodology was used to identify the source characteristics of 12 releases from the Prairie Grass field experiment of dispersion, two for each atmospheric stability class, ranging from very unstable to stable atmosphere. The AES algorithm was found to have advantages over a simple canonical ES and a Monte Carlo (MC) method which were used as benchmarks.
Improved Adaptive-Reinforcement Learning Control for morphing unmanned air vehicles.
Valasek, John; Doebbler, James; Tandale, Monish D; Meade, Andrew J
2008-08-01
This paper presents an improved Adaptive-Reinforcement Learning Control methodology for the problem of unmanned air vehicle morphing control. The reinforcement learning morphing control function that learns the optimal shape change policy is integrated with an adaptive dynamic inversion control trajectory tracking function. An episodic unsupervised learning simulation using the Q-learning method is developed to replace an earlier and less accurate Actor-Critic algorithm. Sequential Function Approximation, a Galerkin-based scattered data approximation scheme, replaces a K-Nearest Neighbors (KNN) method and is used to generalize the learning from previously experienced quantized states and actions to the continuous state-action space, all of which may not have been experienced before. The improved method showed smaller errors and improved learning of the optimal shape compared to the KNN. PMID:18632393
Improved Adaptive-Reinforcement Learning Control for morphing unmanned air vehicles.
Valasek, John; Doebbler, James; Tandale, Monish D; Meade, Andrew J
2008-08-01
This paper presents an improved Adaptive-Reinforcement Learning Control methodology for the problem of unmanned air vehicle morphing control. The reinforcement learning morphing control function that learns the optimal shape change policy is integrated with an adaptive dynamic inversion control trajectory tracking function. An episodic unsupervised learning simulation using the Q-learning method is developed to replace an earlier and less accurate Actor-Critic algorithm. Sequential Function Approximation, a Galerkin-based scattered data approximation scheme, replaces a K-Nearest Neighbors (KNN) method and is used to generalize the learning from previously experienced quantized states and actions to the continuous state-action space, all of which may not have been experienced before. The improved method showed smaller errors and improved learning of the optimal shape compared to the KNN.
Development of Adaptive Kanji Learning System for Mobile Phone
ERIC Educational Resources Information Center
Li, Mengmeng; Ogata, Hiroaki; Hou, Bin; Hashimoto, Satoshi; Liu, Yuqin; Uosaki, Noriko; Yano, Yoneo
2010-01-01
This paper describes an adaptive learning system based on mobile phone email to support the study of Japanese Kanji. In this study, the main emphasis is on using the adaptive learning to resolve one common problem of the mobile-based email or SMS language learning systems. To achieve this goal, the authors main efforts focus on three aspects:…
How Language Supports Adaptive Teaching through a Responsive Learning Culture
ERIC Educational Resources Information Center
Johnston, Peter; Dozier, Cheryl; Smit, Julie
2016-01-01
For students to learn optimally, teachers must design classrooms that are responsive to the full range of student development. The teacher must be adaptive, but so must each student and the learning culture itself. In other words, adaptive teaching means constructing a responsive learning culture that accommodates and even capitalizes on diversity…
NASA Astrophysics Data System (ADS)
Zu, Yun-Xiao; Zhou, Jie
2012-01-01
Multi-user cognitive radio network resource allocation based on the adaptive niche immune genetic algorithm is proposed, and a fitness function is provided. Simulations are conducted using the adaptive niche immune genetic algorithm, the simulated annealing algorithm, the quantum genetic algorithm and the simple genetic algorithm, respectively. The results show that the adaptive niche immune genetic algorithm performs better than the other three algorithms in terms of the multi-user cognitive radio network resource allocation, and has quick convergence speed and strong global searching capability, which effectively reduces the system power consumption and bit error rate.
Fully implicit adaptive mesh refinement algorithm for reduced MHD
NASA Astrophysics Data System (ADS)
Philip, Bobby; Pernice, Michael; Chacon, Luis
2006-10-01
In the macroscopic simulation of plasmas, the numerical modeler is faced with the challenge of dealing with multiple time and length scales. Traditional approaches based on explicit time integration techniques and fixed meshes are not suitable for this challenge, as such approaches prevent the modeler from using realistic plasma parameters to keep the computation feasible. We propose here a novel approach, based on implicit methods and structured adaptive mesh refinement (SAMR). Our emphasis is on both accuracy and scalability with the number of degrees of freedom. As a proof-of-principle, we focus on the reduced resistive MHD model as a basic MHD model paradigm, which is truly multiscale. The approach taken here is to adapt mature physics-based technology to AMR grids, and employ AMR-aware multilevel techniques (such as fast adaptive composite grid --FAC-- algorithms) for scalability. We demonstrate that the concept is indeed feasible, featuring near-optimal scalability under grid refinement. Results of fully-implicit, dynamically-adaptive AMR simulations in challenging dissipation regimes will be presented on a variety of problems that benefit from this capability, including tearing modes, the island coalescence instability, and the tilt mode instability. L. Chac'on et al., J. Comput. Phys. 178 (1), 15- 36 (2002) B. Philip, M. Pernice, and L. Chac'on, Lecture Notes in Computational Science and Engineering, accepted (2006)
Location-Aware Mobile Learning of Spatial Algorithms
ERIC Educational Resources Information Center
Karavirta, Ville
2013-01-01
Learning an algorithm--a systematic sequence of operations for solving a problem with given input--is often difficult for students due to the abstract nature of the algorithms and the data they process. To help students understand the behavior of algorithms, a subfield in computing education research has focused on algorithm…
Path Planning Algorithms for the Adaptive Sensor Fleet
NASA Technical Reports Server (NTRS)
Stoneking, Eric; Hosler, Jeff
2005-01-01
The Adaptive Sensor Fleet (ASF) is a general purpose fleet management and planning system being developed by NASA in coordination with NOAA. The current mission of ASF is to provide the capability for autonomous cooperative survey and sampling of dynamic oceanographic phenomena such as current systems and algae blooms. Each ASF vessel is a software model that represents a real world platform that carries a variety of sensors. The OASIS platform will provide the first physical vessel, outfitted with the systems and payloads necessary to execute the oceanographic observations described in this paper. The ASF architecture is being designed for extensibility to accommodate heterogenous fleet elements, and is not limited to using the OASIS platform to acquire data. This paper describes the path planning algorithms developed for the acquisition phase of a typical ASF task. Given a polygonal target region to be surveyed, the region is subdivided according to the number of vessels in the fleet. The subdivision algorithm seeks a solution in which all subregions have equal area and minimum mean radius. Once the subregions are defined, a dynamic programming method is used to find a minimum-time path for each vessel from its initial position to its assigned region. This path plan includes the effects of water currents as well as avoidance of known obstacles. A fleet-level planning algorithm then shuffles the individual vessel assignments to find the overall solution which puts all vessels in their assigned regions in the minimum time. This shuffle algorithm may be described as a process of elimination on the sorted list of permutations of a cost matrix. All these path planning algorithms are facilitated by discretizing the region of interest onto a hexagonal tiling.
NASA Technical Reports Server (NTRS)
Matthews, Bryan L.; Srivastava, Ashok N.
2010-01-01
Prior to the launch of STS-119 NASA had completed a study of an issue in the flow control valve (FCV) in the Main Propulsion System of the Space Shuttle using an adaptive learning method known as Virtual Sensors. Virtual Sensors are a class of algorithms that estimate the value of a time series given other potentially nonlinearly correlated sensor readings. In the case presented here, the Virtual Sensors algorithm is based on an ensemble learning approach and takes sensor readings and control signals as input to estimate the pressure in a subsystem of the Main Propulsion System. Our results indicate that this method can detect faults in the FCV at the time when they occur. We use the standard deviation of the predictions of the ensemble as a measure of uncertainty in the estimate. This uncertainty estimate was crucial to understanding the nature and magnitude of transient characteristics during startup of the engine. This paper overviews the Virtual Sensors algorithm and discusses results on a comprehensive set of Shuttle missions and also discusses the architecture necessary for deploying such algorithms in a real-time, closed-loop system or a human-in-the-loop monitoring system. These results were presented at a Flight Readiness Review of the Space Shuttle in early 2009.
Adaptive and perceptual learning technologies in medical education and training.
Kellman, Philip J
2013-10-01
Recent advances in the learning sciences offer remarkable potential to improve medical education and maximize the benefits of emerging medical technologies. This article describes 2 major innovation areas in the learning sciences that apply to simulation and other aspects of medical learning: Perceptual learning (PL) and adaptive learning technologies. PL technology offers, for the first time, systematic, computer-based methods for teaching pattern recognition, structural intuition, transfer, and fluency. Synergistic with PL are new adaptive learning technologies that optimize learning for each individual, embed objective assessment, and implement mastery criteria. The author describes the Adaptive Response-Time-based Sequencing (ARTS) system, which uses each learner's accuracy and speed in interactive learning to guide spacing, sequencing, and mastery. In recent efforts, these new technologies have been applied in medical learning contexts, including adaptive learning modules for initial medical diagnosis and perceptual/adaptive learning modules (PALMs) in dermatology, histology, and radiology. Results of all these efforts indicate the remarkable potential of perceptual and adaptive learning technologies, individually and in combination, to improve learning in a variety of medical domains.
Automated training for algorithms that learn from genomic data.
Cilingir, Gokcen; Broschat, Shira L
2015-01-01
Supervised machine learning algorithms are used by life scientists for a variety of objectives. Expert-curated public gene and protein databases are major resources for gathering data to train these algorithms. While these data resources are continuously updated, generally, these updates are not incorporated into published machine learning algorithms which thereby can become outdated soon after their introduction. In this paper, we propose a new model of operation for supervised machine learning algorithms that learn from genomic data. By defining these algorithms in a pipeline in which the training data gathering procedure and the learning process are automated, one can create a system that generates a classifier or predictor using information available from public resources. The proposed model is explained using three case studies on SignalP, MemLoci, and ApicoAP in which existing machine learning models are utilized in pipelines. Given that the vast majority of the procedures described for gathering training data can easily be automated, it is possible to transform valuable machine learning algorithms into self-evolving learners that benefit from the ever-changing data available for gene products and to develop new machine learning algorithms that are similarly capable.
A novel adaptive multi-resolution combined watermarking algorithm
NASA Astrophysics Data System (ADS)
Feng, Gui; Lin, QiWei
2008-04-01
The rapid development of IT and WWW technique, causing person frequently confronts with various kinds of authorized identification problem, especially the copyright problem of digital products. The digital watermarking technique was emerged as one kind of solutions. The balance between robustness and imperceptibility is always the object sought by related researchers. In order to settle the problem of robustness and imperceptibility, a novel adaptive multi-resolution combined digital image watermarking algorithm was proposed in this paper. In the proposed algorithm, we first decompose the watermark into several sub-bands, and according to its significance to embed the sub-band to different DWT coefficient of the carrier image. While embedding, the HVS was considered. So under the precondition of keeping the quality of image, the larger capacity of watermark can be embedding. The experimental results have shown that the proposed algorithm has better performance in the aspects of robustness and security. And with the same visual quality, the technique has larger capacity. So the unification of robustness and imperceptibility was achieved.
An adaptive correspondence algorithm for modeling scenes with strong interreflections.
Xu, Yi; Aliaga, Daniel G
2009-01-01
Modeling real-world scenes, beyond diffuse objects, plays an important role in computer graphics, virtual reality, and other commercial applications. One active approach is projecting binary patterns in order to obtain correspondence and reconstruct a densely sampled 3D model. In such structured-light systems, determining whether a pixel is directly illuminated by the projector is essential to decoding the patterns. When a scene has abundant indirect light, this process is especially difficult. In this paper, we present a robust pixel classification algorithm for this purpose. Our method correctly establishes the lower and upper bounds of the possible intensity values of an illuminated pixel and of a non-illuminated pixel. Based on the two intervals, our method classifies a pixel by determining whether its intensity is within one interval but not in the other. Our method performs better than standard method due to the fact that it avoids gross errors during decoding process caused by strong inter-reflections. For the remaining uncertain pixels, we apply an iterative algorithm to reduce the inter-reflection within the scene. Thus, more points can be decoded and reconstructed after each iteration. Moreover, the iterative algorithm is carried out in an adaptive fashion for fast convergence.
Grossberg, Stephen
2013-01-01
Adaptive Resonance Theory, or ART, is a cognitive and neural theory of how the brain autonomously learns to categorize, recognize, and predict objects and events in a changing world. This article reviews classical and recent developments of ART, and provides a synthesis of concepts, principles, mechanisms, architectures, and the interdisciplinary data bases that they have helped to explain and predict. The review illustrates that ART is currently the most highly developed cognitive and neural theory available, with the broadest explanatory and predictive range. Central to ART's predictive power is its ability to carry out fast, incremental, and stable unsupervised and supervised learning in response to a changing world. ART specifies mechanistic links between processes of consciousness, learning, expectation, attention, resonance, and synchrony during both unsupervised and supervised learning. ART provides functional and mechanistic explanations of such diverse topics as laminar cortical circuitry; invariant object and scenic gist learning and recognition; prototype, surface, and boundary attention; gamma and beta oscillations; learning of entorhinal grid cells and hippocampal place cells; computation of homologous spatial and temporal mechanisms in the entorhinal-hippocampal system; vigilance breakdowns during autism and medial temporal amnesia; cognitive-emotional interactions that focus attention on valued objects in an adaptively timed way; item-order-rank working memories and learned list chunks for the planning and control of sequences of linguistic, spatial, and motor information; conscious speech percepts that are influenced by future context; auditory streaming in noise during source segregation; and speaker normalization. Brain regions that are functionally described include visual and auditory neocortex; specific and nonspecific thalamic nuclei; inferotemporal, parietal, prefrontal, entorhinal, hippocampal, parahippocampal, perirhinal, and motor cortices
An Adaptive Scaffolding E-Learning System for Middle School Students' Physics Learning
ERIC Educational Resources Information Center
Chen, Ching-Huei
2014-01-01
This study presents a framework that utilizes cognitive and motivational aspects of learning to design an adaptive scaffolding e-learning system. It addresses scaffolding processes and conditions for designing adaptive scaffolds. The features and effectiveness of this adaptive scaffolding e-learning system are discussed and evaluated. An…
Adaptive properties of differential learning rates for positive and negative outcomes.
Cazé, Romain D; van der Meer, Matthijs A A
2013-12-01
The concept of the reward prediction error-the difference between reward obtained and reward predicted-continues to be a focal point for much theoretical and experimental work in psychology, cognitive science, and neuroscience. Models that rely on reward prediction errors typically assume a single learning rate for positive and negative prediction errors. However, behavioral data indicate that better-than-expected and worse-than-expected outcomes often do not have symmetric impacts on learning and decision-making. Furthermore, distinct circuits within cortico-striatal loops appear to support learning from positive and negative prediction errors, respectively. Such differential learning rates would be expected to lead to biased reward predictions and therefore suboptimal choice performance. Contrary to this intuition, we show that on static "bandit" choice tasks, differential learning rates can be adaptive. This occurs because asymmetric learning enables a better separation of learned reward probabilities. We show analytically how the optimal learning rate asymmetry depends on the reward distribution and implement a biologically plausible algorithm that adapts the balance of positive and negative learning rates from experience. These results suggest specific adaptive advantages for separate, differential learning rates in simple reinforcement learning settings and provide a novel, normative perspective on the interpretation of associated neural data.
ERIC Educational Resources Information Center
Squires, David R.
2014-01-01
The aim of this paper is to examine the potential and effectiveness of m-learning in the field of Education and Learning domains. The purpose of this research is to illustrate how mobile technology can and is affecting novel change in instruction, from m-learning and the link to adaptive learning, to the uninitiated learner and capacities of…
A New Modified Artificial Bee Colony Algorithm with Exponential Function Adaptive Steps
Mao, Wei; Li, Hao-ru
2016-01-01
As one of the most recent popular swarm intelligence techniques, artificial bee colony algorithm is poor at exploitation and has some defects such as slow search speed, poor population diversity, the stagnation in the working process, and being trapped into the local optimal solution. The purpose of this paper is to develop a new modified artificial bee colony algorithm in view of the initial population structure, subpopulation groups, step updating, and population elimination. Further, depending on opposition-based learning theory and the new modified algorithms, an improved S-type grouping method is proposed and the original way of roulette wheel selection is substituted through sensitivity-pheromone way. Then, an adaptive step with exponential functions is designed for replacing the original random step. Finally, based on the new test function versions CEC13, six benchmark functions with the dimensions D = 20 and D = 40 are chosen and applied in the experiments for analyzing and comparing the iteration speed and accuracy of the new modified algorithms. The experimental results show that the new modified algorithm has faster and more stable searching and can quickly increase poor population diversity and bring out the global optimal solutions. PMID:27293426
A New Modified Artificial Bee Colony Algorithm with Exponential Function Adaptive Steps.
Mao, Wei; Lan, Heng-You; Li, Hao-Ru
2016-01-01
As one of the most recent popular swarm intelligence techniques, artificial bee colony algorithm is poor at exploitation and has some defects such as slow search speed, poor population diversity, the stagnation in the working process, and being trapped into the local optimal solution. The purpose of this paper is to develop a new modified artificial bee colony algorithm in view of the initial population structure, subpopulation groups, step updating, and population elimination. Further, depending on opposition-based learning theory and the new modified algorithms, an improved S-type grouping method is proposed and the original way of roulette wheel selection is substituted through sensitivity-pheromone way. Then, an adaptive step with exponential functions is designed for replacing the original random step. Finally, based on the new test function versions CEC13, six benchmark functions with the dimensions D = 20 and D = 40 are chosen and applied in the experiments for analyzing and comparing the iteration speed and accuracy of the new modified algorithms. The experimental results show that the new modified algorithm has faster and more stable searching and can quickly increase poor population diversity and bring out the global optimal solutions. PMID:27293426
Zhu, Feng; Aziz, H. M. Abdul; Qian, Xinwu; Ukkusuri, Satish V.
2015-01-31
Our study develops a novel reinforcement learning algorithm for the challenging coordinated signal control problem. Traffic signals are modeled as intelligent agents interacting with the stochastic traffic environment. The model is built on the framework of coordinated reinforcement learning. The Junction Tree Algorithm (JTA) based reinforcement learning is proposed to obtain an exact inference of the best joint actions for all the coordinated intersections. Moreover, the algorithm is implemented and tested with a network containing 18 signalized intersections in VISSIM. Finally, our results show that the JTA based algorithm outperforms independent learning (Q-learning), real-time adaptive learning, and fixed timing plans in terms of average delay, number of stops, and vehicular emissions at the network level.
Zhu, Feng; Aziz, H. M. Abdul; Qian, Xinwu; Ukkusuri, Satish V.
2015-01-31
Our study develops a novel reinforcement learning algorithm for the challenging coordinated signal control problem. Traffic signals are modeled as intelligent agents interacting with the stochastic traffic environment. The model is built on the framework of coordinated reinforcement learning. The Junction Tree Algorithm (JTA) based reinforcement learning is proposed to obtain an exact inference of the best joint actions for all the coordinated intersections. Moreover, the algorithm is implemented and tested with a network containing 18 signalized intersections in VISSIM. Finally, our results show that the JTA based algorithm outperforms independent learning (Q-learning), real-time adaptive learning, and fixed timing plansmore » in terms of average delay, number of stops, and vehicular emissions at the network level.« less
A Genetic Algorithm Approach to Recognise Students' Learning Styles
ERIC Educational Resources Information Center
Yannibelli, Virginia; Godoy, Daniela; Amandi, Analia
2006-01-01
Learning styles encapsulate the preferences of the students, regarding how they learn. By including information about the student learning style, computer-based educational systems are able to adapt a course according to the individual characteristics of the students. In accomplishing this goal, educational systems have been mostly based on the…
A neural learning classifier system with self-adaptive constructivism for mobile robot control.
Hurst, Jacob; Bull, Larry
2006-01-01
For artificial entities to achieve true autonomy and display complex lifelike behavior, they will need to exploit appropriate adaptable learning algorithms. In this context adaptability implies flexibility guided by the environment at any given time and an open-ended ability to learn appropriate behaviors. This article examines the use of constructivism-inspired mechanisms within a neural learning classifier system architecture that exploits parameter self-adaptation as an approach to realize such behavior. The system uses a rule structure in which each rule is represented by an artificial neural network. It is shown that appropriate internal rule complexity emerges during learning at a rate controlled by the learner and that the structure indicates underlying features of the task. Results are presented in simulated mazes before moving to a mobile robot platform.
Region Adaptive Color Demosaicing Algorithm Using Color Constancy
NASA Astrophysics Data System (ADS)
Kim, Chang Won; Oh, Hyun Mook; Yoo, Du Sic; Kang, Moon Gi
2010-12-01
This paper proposes a novel way of combining color demosaicing and the auto white balance (AWB) method, which are important parts of image processing. Performance of the AWB is generally affected by demosaicing results because most AWB algorithms are performed posterior to color demosaicing. In this paper, in order to increase the performance and efficiency of the AWB algorithm, the color constancy problem is examined during the color demosaicing step. Initial estimates of the directional luminance and chrominance values are defined for estimating edge direction and calculating the AWB gain. In order to prevent color failure in conventional edge-based AWB methods, we propose a modified edge-based AWB method that used a predefined achromatic region. The estimation of edge direction is performed region adaptively by using the local statistics of the initial estimates of the luminance and chrominance information. Simulated and real Bayer color filter array (CFA) data are used to evaluate the performance of the proposed method. When compared to conventional methods, the proposed method shows significant improvements in terms of visual and numerical criteria.
A wavelet packet adaptive filtering algorithm for enhancing manatee vocalizations.
Gur, M Berke; Niezrecki, Christopher
2011-04-01
Approximately a quarter of all West Indian manatee (Trichechus manatus latirostris) mortalities are attributed to collisions with watercraft. A boater warning system based on the passive acoustic detection of manatee vocalizations is one possible solution to reduce manatee-watercraft collisions. The success of such a warning system depends on effective enhancement of the vocalization signals in the presence of high levels of background noise, in particular, noise emitted from watercraft. Recent research has indicated that wavelet domain pre-processing of the noisy vocalizations is capable of significantly improving the detection ranges of passive acoustic vocalization detectors. In this paper, an adaptive denoising procedure, implemented on the wavelet packet transform coefficients obtained from the noisy vocalization signals, is investigated. The proposed denoising algorithm is shown to improve the manatee detection ranges by a factor ranging from two (minimum) to sixteen (maximum) compared to high-pass filtering alone, when evaluated using real manatee vocalization and background noise signals of varying signal-to-noise ratios (SNR). Furthermore, the proposed method is also shown to outperform a previously suggested feedback adaptive line enhancer (FALE) filter on average 3.4 dB in terms of noise suppression and 0.6 dB in terms of waveform preservation.
Design of infrasound-detection system via adaptive LMSTDE algorithm
NASA Technical Reports Server (NTRS)
Khalaf, C. S.; Stoughton, J. W.
1984-01-01
A proposed solution to an aviation safety problem is based on passive detection of turbulent weather phenomena through their infrasonic emission. This thesis describes a system design that is adequate for detection and bearing evaluation of infrasounds. An array of four sensors, with the appropriate hardware, is used for the detection part. Bearing evaluation is based on estimates of time delays between sensor outputs. The generalized cross correlation (GCC), as the conventional time-delay estimation (TDE) method, is first reviewed. An adaptive TDE approach, using the least mean square (LMS) algorithm, is then discussed. A comparison between the two techniques is made and the advantages of the adaptive approach are listed. The behavior of the GCC, as a Roth processor, is examined for the anticipated signals. It is shown that the Roth processor has the desired effect of sharpening the peak of the correlation function. It is also shown that the LMSTDE technique is an equivalent implementation of the Roth processor in the time domain. A LMSTDE lead-lag model, with a variable stability coefficient and a convergence criterion, is designed.
A wavelet packet adaptive filtering algorithm for enhancing manatee vocalizations.
Gur, M Berke; Niezrecki, Christopher
2011-04-01
Approximately a quarter of all West Indian manatee (Trichechus manatus latirostris) mortalities are attributed to collisions with watercraft. A boater warning system based on the passive acoustic detection of manatee vocalizations is one possible solution to reduce manatee-watercraft collisions. The success of such a warning system depends on effective enhancement of the vocalization signals in the presence of high levels of background noise, in particular, noise emitted from watercraft. Recent research has indicated that wavelet domain pre-processing of the noisy vocalizations is capable of significantly improving the detection ranges of passive acoustic vocalization detectors. In this paper, an adaptive denoising procedure, implemented on the wavelet packet transform coefficients obtained from the noisy vocalization signals, is investigated. The proposed denoising algorithm is shown to improve the manatee detection ranges by a factor ranging from two (minimum) to sixteen (maximum) compared to high-pass filtering alone, when evaluated using real manatee vocalization and background noise signals of varying signal-to-noise ratios (SNR). Furthermore, the proposed method is also shown to outperform a previously suggested feedback adaptive line enhancer (FALE) filter on average 3.4 dB in terms of noise suppression and 0.6 dB in terms of waveform preservation. PMID:21476661
The Adaptive Analysis of Visual Cognition using Genetic Algorithms
Cook, Robert G.; Qadri, Muhammad A. J.
2014-01-01
Two experiments used a novel, open-ended, and adaptive test procedure to examine visual cognition in animals. Using a genetic algorithm, a pigeon was tested repeatedly from a variety of different initial conditions for its solution to an intermediate brightness search task. On each trial, the animal had to accurately locate and peck a target element of intermediate brightness from among a variable number of surrounding darker and lighter distractor elements. Displays were generated from six parametric variables, or genes (distractor number, element size, shape, spacing, target brightness, distractor brightness). Display composition changed over time, or evolved, as a function of the bird’s differential accuracy within the population of values for each gene. Testing three randomized initial conditions and one set of controlled initial conditions, element size and number of distractors were identified as the most important factors controlling search accuracy, with distractor brightness, element shape, and spacing making secondary contributions. The resulting changes in this multidimensional stimulus space suggested the existence of a set of conditions that the bird repeatedly converged upon regardless of initial conditions. This psychological “attractor” represents the cumulative action of the cognitive operations used by the pigeon in solving and performing this search task. The results are discussed regarding their implications for visual cognition in pigeons and the usefulness of adaptive, subject-driven experimentation for investigating human and animal cognition more generally. PMID:24000905
Geological Mapping Using Machine Learning Algorithms
NASA Astrophysics Data System (ADS)
Harvey, A. S.; Fotopoulos, G.
2016-06-01
Remotely sensed spectral imagery, geophysical (magnetic and gravity), and geodetic (elevation) data are useful in a variety of Earth science applications such as environmental monitoring and mineral exploration. Using these data with Machine Learning Algorithms (MLA), which are widely used in image analysis and statistical pattern recognition applications, may enhance preliminary geological mapping and interpretation. This approach contributes towards a rapid and objective means of geological mapping in contrast to conventional field expedition techniques. In this study, four supervised MLAs (naïve Bayes, k-nearest neighbour, random forest, and support vector machines) are compared in order to assess their performance for correctly identifying geological rocktypes in an area with complete ground validation information. Geological maps of the Sudbury region are used for calibration and validation. Percent of correct classifications was used as indicators of performance. Results show that random forest is the best approach. As expected, MLA performance improves with more calibration clusters, i.e. a more uniform distribution of calibration data over the study region. Performance is generally low, though geological trends that correspond to a ground validation map are visualized. Low performance may be the result of poor spectral images of bare rock which can be covered by vegetation or water. The distribution of calibration clusters and MLA input parameters affect the performance of the MLAs. Generally, performance improves with more uniform sampling, though this increases required computational effort and time. With the achievable performance levels in this study, the technique is useful in identifying regions of interest and identifying general rocktype trends. In particular, phase I geological site investigations will benefit from this approach and lead to the selection of sites for advanced surveys.
Particle Swarm Social Model for Group Social Learning in Adaptive Environment
Cui, Xiaohui; Potok, Thomas E; Treadwell, Jim N; Patton, Robert M; Pullum, Laura L
2008-01-01
This report presents a study of integrating particle swarm algorithm, social knowledge adaptation and multi-agent approaches for modeling the social learning of self-organized groups and their collective searching behavior in an adaptive environment. The objective of this research is to apply the particle swarm metaphor as a model of social learning for a dynamic environment. The research provides a platform for understanding and insights into knowledge discovery and strategic search in human self-organized social groups, such as insurgents or online communities.
A Structure-Adaptive Hybrid RBF-BP Classifier with an Optimized Learning Strategy
Wen, Hui; Xie, Weixin; Pei, Jihong
2016-01-01
This paper presents a structure-adaptive hybrid RBF-BP (SAHRBF-BP) classifier with an optimized learning strategy. SAHRBF-BP is composed of a structure-adaptive RBF network and a BP network of cascade, where the number of RBF hidden nodes is adjusted adaptively according to the distribution of sample space, the adaptive RBF network is used for nonlinear kernel mapping and the BP network is used for nonlinear classification. The optimized learning strategy is as follows: firstly, a potential function is introduced into training sample space to adaptively determine the number of initial RBF hidden nodes and node parameters, and a form of heterogeneous samples repulsive force is designed to further optimize each generated RBF hidden node parameters, the optimized structure-adaptive RBF network is used for adaptively nonlinear mapping the sample space; then, according to the number of adaptively generated RBF hidden nodes, the number of subsequent BP input nodes can be determined, and the overall SAHRBF-BP classifier is built up; finally, different training sample sets are used to train the BP network parameters in SAHRBF-BP. Compared with other algorithms applied to different data sets, experiments show the superiority of SAHRBF-BP. Especially on most low dimensional and large number of data sets, the classification performance of SAHRBF-BP outperforms other training SLFNs algorithms. PMID:27792737
Adaptive Device Context Based Mobile Learning Systems
ERIC Educational Resources Information Center
Pu, Haitao; Lin, Jinjiao; Song, Yanwei; Liu, Fasheng
2011-01-01
Mobile learning is e-learning delivered through mobile computing devices, which represents the next stage of computer-aided, multi-media based learning. Therefore, mobile learning is transforming the way of traditional education. However, as most current e-learning systems and their contents are not suitable for mobile devices, an approach for…
The Influence of Learning Behaviour on Team Adaptability
ERIC Educational Resources Information Center
Murray, Peter A.; Millett, Bruce
2011-01-01
Multiple contexts shape team activities and how they learn, and group learning is a dynamic construct that reflects a repertoire of potential behaviour. The purpose of this developmental paper is to examine how better learning behaviours in semi-autonomous teams improves the level of team adaptability and performance. The discussion suggests that…
An Adaptive E-Learning System Based on Students' Learning Styles: An Empirical Study
ERIC Educational Resources Information Center
Drissi, Samia; Amirat, Abdelkrim
2016-01-01
Personalized e-learning implementation is recognized as one of the most interesting research areas in the distance web-based education. Since the learning style of each learner is different one must fit e-learning with the different needs of learners. This paper presents an approach to integrate learning styles into adaptive e-learning hypermedia.…
How to Represent Adaptation in e-Learning with IMS Learning Design
ERIC Educational Resources Information Center
Burgos, Daniel; Tattersall, Colin; Koper, Rob
2007-01-01
Adaptation in e-learning has been an important research topic for the last few decades in computer-based education. In adaptivity the behaviour of the user triggers some actions in the system that guides the learning process. In adaptability, the user makes changes and takes decisions. Progressing from computer-based training and adaptive…
Jambek, Asral Bahari; Neoh, Siew-Chin
2015-01-01
A novel clinical decision support system is proposed in this paper for evaluating the fetal well-being from the cardiotocogram (CTG) dataset through an Improved Adaptive Genetic Algorithm (IAGA) and Extreme Learning Machine (ELM). IAGA employs a new scaling technique (called sigma scaling) to avoid premature convergence and applies adaptive crossover and mutation techniques with masking concepts to enhance population diversity. Also, this search algorithm utilizes three different fitness functions (two single objective fitness functions and multi-objective fitness function) to assess its performance. The classification results unfold that promising classification accuracy of 94% is obtained with an optimal feature subset using IAGA. Also, the classification results are compared with those of other Feature Reduction techniques to substantiate its exhaustive search towards the global optimum. Besides, five other benchmark datasets are used to gauge the strength of the proposed IAGA algorithm. PMID:25793009
Adaptive Sampling Algorithms for Probabilistic Risk Assessment of Nuclear Simulations
Diego Mandelli; Dan Maljovec; Bei Wang; Valerio Pascucci; Peer-Timo Bremer
2013-09-01
Nuclear simulations are often computationally expensive, time-consuming, and high-dimensional with respect to the number of input parameters. Thus exploring the space of all possible simulation outcomes is infeasible using finite computing resources. During simulation-based probabilistic risk analysis, it is important to discover the relationship between a potentially large number of input parameters and the output of a simulation using as few simulation trials as possible. This is a typical context for performing adaptive sampling where a few observations are obtained from the simulation, a surrogate model is built to represent the simulation space, and new samples are selected based on the model constructed. The surrogate model is then updated based on the simulation results of the sampled points. In this way, we attempt to gain the most information possible with a small number of carefully selected sampled points, limiting the number of expensive trials needed to understand features of the simulation space. We analyze the specific use case of identifying the limit surface, i.e., the boundaries in the simulation space between system failure and system success. In this study, we explore several techniques for adaptively sampling the parameter space in order to reconstruct the limit surface. We focus on several adaptive sampling schemes. First, we seek to learn a global model of the entire simulation space using prediction models or neighborhood graphs and extract the limit surface as an iso-surface of the global model. Second, we estimate the limit surface by sampling in the neighborhood of the current estimate based on topological segmentations obtained locally. Our techniques draw inspirations from topological structure known as the Morse-Smale complex. We highlight the advantages and disadvantages of using a global prediction model versus local topological view of the simulation space, comparing several different strategies for adaptive sampling in both
Immune allied genetic algorithm for Bayesian network structure learning
NASA Astrophysics Data System (ADS)
Song, Qin; Lin, Feng; Sun, Wei; Chang, KC
2012-06-01
Bayesian network (BN) structure learning is a NP-hard problem. In this paper, we present an improved approach to enhance efficiency of BN structure learning. To avoid premature convergence in traditional single-group genetic algorithm (GA), we propose an immune allied genetic algorithm (IAGA) in which the multiple-population and allied strategy are introduced. Moreover, in the algorithm, we apply prior knowledge by injecting immune operator to individuals which can effectively prevent degeneration. To illustrate the effectiveness of the proposed technique, we present some experimental results.
A Framework for Adaptive E-Learning Based on Distributed Re-Usable Learning Activities.
ERIC Educational Resources Information Center
Brusilovsky, Peter; Nijhavan, Hemanta
This paper suggests that a way to the new generation of powerful E-learning systems starts on the crossroads of two emerging fields: courseware re-use and adaptive educational systems. The paper presents the KnowledgeTree, a framework for adaptive E-learning based on distributed re-usable learning activities currently under development. The goal…
Diminished neural adaptation during implicit learning in autism.
Schipul, Sarah E; Just, Marcel Adam
2016-01-15
Neuroimaging studies have shown evidence of disrupted neural adaptation during learning in individuals with autism spectrum disorder (ASD) in several types of tasks, potentially stemming from frontal-posterior cortical underconnectivity (Schipul et al., 2012). The aim of the current study was to examine neural adaptations in an implicit learning task that entails participation of frontal and posterior regions. Sixteen high-functioning adults with ASD and sixteen neurotypical control participants were trained on and performed an implicit dot pattern prototype learning task in a functional magnetic resonance imaging (fMRI) session. During the preliminary exposure to the type of implicit prototype learning task later to be used in the scanner, the ASD participants took longer than the neurotypical group to learn the task, demonstrating altered implicit learning in ASD. After equating task structure learning, the two groups' brain activation differed during their learning of a new prototype in the subsequent scanning session. The main findings indicated that neural adaptations in a distributed task network were reduced in the ASD group, relative to the neurotypical group, and were related to ASD symptom severity. Functional connectivity was reduced and did not change as much during learning for the ASD group, and was related to ASD symptom severity. These findings suggest that individuals with ASD show altered neural adaptations during learning, as seen in both activation and functional connectivity measures. This finding suggests why many real-world implicit learning situations may pose special challenges for ASD.
A Model of Adaptive Language Learning
ERIC Educational Resources Information Center
Woodrow, Lindy J.
2006-01-01
This study applies theorizing from educational psychology and language learning to hypothesize a model of language learning that takes into account affect, motivation, and language learning strategies. The study employed a questionnaire to assess variables of motivation, self-efficacy, anxiety, and language learning strategies. The sample…
Robust facial expression recognition algorithm based on local metric learning
NASA Astrophysics Data System (ADS)
Jiang, Bin; Jia, Kebin
2016-01-01
In facial expression recognition tasks, different facial expressions are often confused with each other. Motivated by the fact that a learned metric can significantly improve the accuracy of classification, a facial expression recognition algorithm based on local metric learning is proposed. First, k-nearest neighbors of the given testing sample are determined from the total training data. Second, chunklets are selected from the k-nearest neighbors. Finally, the optimal transformation matrix is computed by maximizing the total variance between different chunklets and minimizing the total variance of instances in the same chunklet. The proposed algorithm can find the suitable distance metric for every testing sample and improve the performance on facial expression recognition. Furthermore, the proposed algorithm can be used for vector-based and matrix-based facial expression recognition. Experimental results demonstrate that the proposed algorithm could achieve higher recognition rates and be more robust than baseline algorithms on the JAFFE, CK, and RaFD databases.
Fault-tolerant nonlinear adaptive flight control using sliding mode online learning.
Krüger, Thomas; Schnetter, Philipp; Placzek, Robin; Vörsmann, Peter
2012-08-01
An expanded nonlinear model inversion flight control strategy using sliding mode online learning for neural networks is presented. The proposed control strategy is implemented for a small unmanned aircraft system (UAS). This class of aircraft is very susceptible towards nonlinearities like atmospheric turbulence, model uncertainties and of course system failures. Therefore, these systems mark a sensible testbed to evaluate fault-tolerant, adaptive flight control strategies. Within this work the concept of feedback linearization is combined with feed forward neural networks to compensate for inversion errors and other nonlinear effects. Backpropagation-based adaption laws of the network weights are used for online training. Within these adaption laws the standard gradient descent backpropagation algorithm is augmented with the concept of sliding mode control (SMC). Implemented as a learning algorithm, this nonlinear control strategy treats the neural network as a controlled system and allows a stable, dynamic calculation of the learning rates. While considering the system's stability, this robust online learning method therefore offers a higher speed of convergence, especially in the presence of external disturbances. The SMC-based flight controller is tested and compared with the standard gradient descent backpropagation algorithm in the presence of system failures.
Multi-element array signal reconstruction with adaptive least-squares algorithms
NASA Technical Reports Server (NTRS)
Kumar, R.
1992-01-01
Two versions of the adaptive least-squares algorithm are presented for combining signals from multiple feeds placed in the focal plane of a mechanical antenna whose reflector surface is distorted due to various deformations. Coherent signal combining techniques based on the adaptive least-squares algorithm are examined for nearly optimally and adaptively combining the outputs of the feeds. The performance of the two versions is evaluated by simulations. It is demonstrated for the example considered that both of the adaptive least-squares algorithms are capable of offsetting most of the loss in the antenna gain incurred due to reflector surface deformations.
Clustering of tethered satellite system simulation data by an adaptive neuro-fuzzy algorithm
NASA Technical Reports Server (NTRS)
Mitra, Sunanda; Pemmaraju, Surya
1992-01-01
Recent developments in neuro-fuzzy systems indicate that the concepts of adaptive pattern recognition, when used to identify appropriate control actions corresponding to clusters of patterns representing system states in dynamic nonlinear control systems, may result in innovative designs. A modular, unsupervised neural network architecture, in which fuzzy learning rules have been embedded is used for on-line identification of similar states. The architecture and control rules involved in Adaptive Fuzzy Leader Clustering (AFLC) allow this system to be incorporated in control systems for identification of system states corresponding to specific control actions. We have used this algorithm to cluster the simulation data of Tethered Satellite System (TSS) to estimate the range of delta voltages necessary to maintain the desired length rate of the tether. The AFLC algorithm is capable of on-line estimation of the appropriate control voltages from the corresponding length error and length rate error without a priori knowledge of their membership functions and familarity with the behavior of the Tethered Satellite System.
NASA Astrophysics Data System (ADS)
Sheng, Zheng; Wang, Jun; Zhou, Shudao; Zhou, Bihua
2014-03-01
This paper introduces a novel hybrid optimization algorithm to establish the parameters of chaotic systems. In order to deal with the weaknesses of the traditional cuckoo search algorithm, the proposed adaptive cuckoo search with simulated annealing algorithm is presented, which incorporates the adaptive parameters adjusting operation and the simulated annealing operation in the cuckoo search algorithm. Normally, the parameters of the cuckoo search algorithm are kept constant that may result in decreasing the efficiency of the algorithm. For the purpose of balancing and enhancing the accuracy and convergence rate of the cuckoo search algorithm, the adaptive operation is presented to tune the parameters properly. Besides, the local search capability of cuckoo search algorithm is relatively weak that may decrease the quality of optimization. So the simulated annealing operation is merged into the cuckoo search algorithm to enhance the local search ability and improve the accuracy and reliability of the results. The functionality of the proposed hybrid algorithm is investigated through the Lorenz chaotic system under the noiseless and noise condition, respectively. The numerical results demonstrate that the method can estimate parameters efficiently and accurately in the noiseless and noise condition. Finally, the results are compared with the traditional cuckoo search algorithm, genetic algorithm, and particle swarm optimization algorithm. Simulation results demonstrate the effectiveness and superior performance of the proposed algorithm.
Sheng, Zheng; Wang, Jun; Zhou, Shudao; Zhou, Bihua
2014-03-01
This paper introduces a novel hybrid optimization algorithm to establish the parameters of chaotic systems. In order to deal with the weaknesses of the traditional cuckoo search algorithm, the proposed adaptive cuckoo search with simulated annealing algorithm is presented, which incorporates the adaptive parameters adjusting operation and the simulated annealing operation in the cuckoo search algorithm. Normally, the parameters of the cuckoo search algorithm are kept constant that may result in decreasing the efficiency of the algorithm. For the purpose of balancing and enhancing the accuracy and convergence rate of the cuckoo search algorithm, the adaptive operation is presented to tune the parameters properly. Besides, the local search capability of cuckoo search algorithm is relatively weak that may decrease the quality of optimization. So the simulated annealing operation is merged into the cuckoo search algorithm to enhance the local search ability and improve the accuracy and reliability of the results. The functionality of the proposed hybrid algorithm is investigated through the Lorenz chaotic system under the noiseless and noise condition, respectively. The numerical results demonstrate that the method can estimate parameters efficiently and accurately in the noiseless and noise condition. Finally, the results are compared with the traditional cuckoo search algorithm, genetic algorithm, and particle swarm optimization algorithm. Simulation results demonstrate the effectiveness and superior performance of the proposed algorithm.
Sheng, Zheng; Wang, Jun; Zhou, Shudao; Zhou, Bihua
2014-03-01
This paper introduces a novel hybrid optimization algorithm to establish the parameters of chaotic systems. In order to deal with the weaknesses of the traditional cuckoo search algorithm, the proposed adaptive cuckoo search with simulated annealing algorithm is presented, which incorporates the adaptive parameters adjusting operation and the simulated annealing operation in the cuckoo search algorithm. Normally, the parameters of the cuckoo search algorithm are kept constant that may result in decreasing the efficiency of the algorithm. For the purpose of balancing and enhancing the accuracy and convergence rate of the cuckoo search algorithm, the adaptive operation is presented to tune the parameters properly. Besides, the local search capability of cuckoo search algorithm is relatively weak that may decrease the quality of optimization. So the simulated annealing operation is merged into the cuckoo search algorithm to enhance the local search ability and improve the accuracy and reliability of the results. The functionality of the proposed hybrid algorithm is investigated through the Lorenz chaotic system under the noiseless and noise condition, respectively. The numerical results demonstrate that the method can estimate parameters efficiently and accurately in the noiseless and noise condition. Finally, the results are compared with the traditional cuckoo search algorithm, genetic algorithm, and particle swarm optimization algorithm. Simulation results demonstrate the effectiveness and superior performance of the proposed algorithm. PMID:24697395
Sheng, Zheng; Wang, Jun; Zhou, Bihua; Zhou, Shudao
2014-03-15
This paper introduces a novel hybrid optimization algorithm to establish the parameters of chaotic systems. In order to deal with the weaknesses of the traditional cuckoo search algorithm, the proposed adaptive cuckoo search with simulated annealing algorithm is presented, which incorporates the adaptive parameters adjusting operation and the simulated annealing operation in the cuckoo search algorithm. Normally, the parameters of the cuckoo search algorithm are kept constant that may result in decreasing the efficiency of the algorithm. For the purpose of balancing and enhancing the accuracy and convergence rate of the cuckoo search algorithm, the adaptive operation is presented to tune the parameters properly. Besides, the local search capability of cuckoo search algorithm is relatively weak that may decrease the quality of optimization. So the simulated annealing operation is merged into the cuckoo search algorithm to enhance the local search ability and improve the accuracy and reliability of the results. The functionality of the proposed hybrid algorithm is investigated through the Lorenz chaotic system under the noiseless and noise condition, respectively. The numerical results demonstrate that the method can estimate parameters efficiently and accurately in the noiseless and noise condition. Finally, the results are compared with the traditional cuckoo search algorithm, genetic algorithm, and particle swarm optimization algorithm. Simulation results demonstrate the effectiveness and superior performance of the proposed algorithm.
The "Juggler" algorithm: a hybrid deformable image registration algorithm for adaptive radiotherapy
NASA Astrophysics Data System (ADS)
Xia, Junyi; Chen, Yunmei; Samant, Sanjiv S.
2007-03-01
Fast deformable registration can potentially facilitate the clinical implementation of adaptive radiation therapy (ART), which allows for daily organ deformations not accounted for in radiotherapy treatment planning, which typically utilizes a static organ model, to be incorporated into the fractionated treatment. Existing deformable registration algorithms typically utilize a specific diffusion model, and require a large number of iterations to achieve convergence. This limits the online applications of deformable image registration for clinical radiotherapy, such as daily patient setup variations involving organ deformation, where high registration precision is required. We propose a hybrid algorithm, the "Juggler", based on a multi-diffusion model to achieve fast convergence. The Juggler achieves fast convergence by applying two different diffusion models: i) one being optimized quickly for matching high gradient features, i.e. bony anatomies; and ii) the other being optimized for further matching low gradient features, i.e. soft tissue. The regulation of these 2 competing criteria is achieved using a threshold of a similarity measure, such as cross correlation or mutual information. A multi-resolution scheme was applied for faster convergence involving large deformations. Comparisons of the Juggler algorithm were carried out with demons method, accelerated demons method, and free-form deformable registration using 4D CT lung imaging from 5 patients. Based on comparisons of difference images and similarity measure computations, the Juggler produced a superior registration result. It achieved the desired convergence within 30 iterations, and typically required <90sec to register two 3D image sets of size 256×256×40 using a 3.2 GHz PC. This hybrid registration strategy successfully incorporates the benefits of different diffusion models into a single unified model.
Wang, Donghao; Wan, Jiangwen; Chen, Junying; Zhang, Qiang
2016-01-01
To adapt to sense signals of enormous diversities and dynamics, and to decrease the reconstruction errors caused by ambient noise, a novel online dictionary learning method-based compressive data gathering (ODL-CDG) algorithm is proposed. The proposed dictionary is learned from a two-stage iterative procedure, alternately changing between a sparse coding step and a dictionary update step. The self-coherence of the learned dictionary is introduced as a penalty term during the dictionary update procedure. The dictionary is also constrained with sparse structure. It's theoretically demonstrated that the sensing matrix satisfies the restricted isometry property (RIP) with high probability. In addition, the lower bound of necessary number of measurements for compressive sensing (CS) reconstruction is given. Simulation results show that the proposed ODL-CDG algorithm can enhance the recovery accuracy in the presence of noise, and reduce the energy consumption in comparison with other dictionary based data gathering methods. PMID:27669250
Wang, Donghao; Wan, Jiangwen; Chen, Junying; Zhang, Qiang
2016-09-22
To adapt to sense signals of enormous diversities and dynamics, and to decrease the reconstruction errors caused by ambient noise, a novel online dictionary learning method-based compressive data gathering (ODL-CDG) algorithm is proposed. The proposed dictionary is learned from a two-stage iterative procedure, alternately changing between a sparse coding step and a dictionary update step. The self-coherence of the learned dictionary is introduced as a penalty term during the dictionary update procedure. The dictionary is also constrained with sparse structure. It's theoretically demonstrated that the sensing matrix satisfies the restricted isometry property (RIP) with high probability. In addition, the lower bound of necessary number of measurements for compressive sensing (CS) reconstruction is given. Simulation results show that the proposed ODL-CDG algorithm can enhance the recovery accuracy in the presence of noise, and reduce the energy consumption in comparison with other dictionary based data gathering methods.
Implementing a self-structuring data learning algorithm
NASA Astrophysics Data System (ADS)
Graham, James; Carson, Daniel; Ternovskiy, Igor
2016-05-01
In this paper, we elaborate on what we did to implement our self-structuring data learning algorithm. To recap, we are working to develop a data learning algorithm that will eventually be capable of goal driven pattern learning and extrapolation of more complex patterns from less complex ones. At this point we have developed a conceptual framework for the algorithm, but have yet to discuss our actual implementation and the consideration and shortcuts we needed to take to create said implementation. We will elaborate on our initial setup of the algorithm and the scenarios we used to test our early stage algorithm. While we want this to be a general algorithm, it is necessary to start with a simple scenario or two to provide a viable development and testing environment. To that end, our discussion will be geared toward what we include in our initial implementation and why, as well as what concerns we may have. In the future, we expect to be able to apply our algorithm to a more general approach, but to do so within a reasonable time, we needed to pick a place to start.
Any Two Learning Algorithms Are (Almost) Exactly Identical
NASA Technical Reports Server (NTRS)
Wolpert, David H.
2000-01-01
This paper shows that if one is provided with a loss function, it can be used in a natural way to specify a distance measure quantifying the similarity of any two supervised learning algorithms, even non-parametric algorithms. Intuitively, this measure gives the fraction of targets and training sets for which the expected performance of the two algorithms differs significantly. Bounds on the value of this distance are calculated for the case of binary outputs and 0-1 loss, indicating that any two learning algorithms are almost exactly identical for such scenarios. As an example, for any two algorithms A and B, even for small input spaces and training sets, for less than 2e(-50) of all targets will the difference between A's and B's generalization performance of exceed 1%. In particular, this is true if B is bagging applied to A, or boosting applied to A. These bounds can be viewed alternatively as telling us, for example, that the simple English phrase 'I expect that algorithm A will generalize from the training set with an accuracy of at least 75% on the rest of the target' conveys 20,000 bytes of information concerning the target. The paper ends by discussing some of the subtleties of extending the distance measure to give a full (non-parametric) differential geometry of the manifold of learning algorithms.
An Adaptable Power System with Software Control Algorithm
NASA Technical Reports Server (NTRS)
Castell, Karen; Bay, Mike; Hernandez-Pellerano, Amri; Ha, Kong
1998-01-01
A low cost, flexible and modular spacecraft power system design was developed in response to a call for an architecture that could accommodate multiple missions in the small to medium load range. Three upcoming satellites will use this design, with one launch date in 1999 and two in the year 2000. The design consists of modular hardware that can be scaled up or down, without additional cost, to suit missions in the 200 to 600 Watt orbital average load range. The design will be applied to satellite orbits that are circular, polar elliptical and a libration point orbit. Mission unique adaptations are accomplished in software and firmware. In designing this advanced, adaptable power system, the major goals were reduction in weight volume and cost. This power system design represents reductions in weight of 78 percent, volume of 86 percent and cost of 65 percent from previous comparable systems. The efforts to miniaturize the electronics without sacrificing performance has created streamlined power electronics with control functions residing in the system microprocessor. The power system design can handle any battery size up to 50 Amp-hour and any battery technology. The three current implementations will use both nickel cadmium and nickel hydrogen batteries ranging in size from 21 to 50 Amp-hours. Multiple batteries can be used by adding another battery module. Any solar cell technology can be used and various array layouts can be incorporated with no change in Power System Electronics (PSE) hardware. Other features of the design are the standardized interfaces between cards and subsystems and immunity to radiation effects up to 30 krad Total Ionizing Dose (TID) and 35 Mev/cm(exp 2)-kg for Single Event Effects (SEE). The control algorithm for the power system resides in a radiation-hardened microprocessor. A table driven software design allows for flexibility in mission specific requirements. By storing critical power system constants in memory, modifying the system
An Intelligent E-Learning System Based on Learner Profiling and Learning Resources Adaptation
ERIC Educational Resources Information Center
Tzouveli, Paraskevi; Mylonas, Phivos; Kollias, Stefanos
2008-01-01
Taking advantage of the continuously improving, web-based learning systems plays an important role for self-learning, especially in the case of working people. Nevertheless, learning systems do not generally adapt to learners' profiles. Learners have to spend a lot of time before reaching the learning goal that is compatible with their knowledge…
A Learning Style Perspective to Investigate the Necessity of Developing Adaptive Learning Systems
ERIC Educational Resources Information Center
Hwang, Gwo-Jen; Sung, Han-Yu; Hung, Chun-Ming; Huang, Iwen
2013-01-01
Learning styles are considered to be one of the factors that need to be taken into account in developing adaptive learning systems. However, few studies have been conducted to investigate if students have the ability to choose the best-fit e-learning systems or content presentation styles for themselves in terms of learning style perspective. In…
Learning Experiences Reuse Based on an Ontology Modeling to Improve Adaptation in E-Learning Systems
ERIC Educational Resources Information Center
Hadj M'tir, Riadh; Rumpler, Béatrice; Jeribi, Lobna; Ben Ghezala, Henda
2014-01-01
Current trends in e-Learning focus mainly on personalizing and adapting the learning environment and learning process. Although their increasingly number, theses researches often ignore the concepts of capitalization and reuse of learner experiences which can be exploited later by other learners. Thus, the major challenge of distance learning is…
Adaptive strategies for cumulative cultural learning.
Ehn, Micael; Laland, Kevin
2012-05-21
The demographic and ecological success of our species is frequently attributed to our capacity for cumulative culture. However, it is not yet known how humans combine social and asocial learning to generate effective strategies for learning in a cumulative cultural context. Here we explore how cumulative culture influences the relative merits of various pure and conditional learning strategies, including pure asocial and social learning, critical social learning, conditional social learning and individual refiner strategies. We replicate the Rogers' paradox in the cumulative setting. However, our analysis suggests that strategies that resolved Rogers' paradox in a non-cumulative setting may not necessarily evolve in a cumulative setting, thus different strategies will optimize cumulative and non-cumulative cultural learning.
Enhancing Student Motivation and Learning within Adaptive Tutors
ERIC Educational Resources Information Center
Ostrow, Korinn S.
2015-01-01
My research is rooted in improving K-12 educational practice using motivational facets made possible through adaptive tutoring systems. In an attempt to isolate best practices within the science of learning, I conduct randomized controlled trials within ASSISTments, an online adaptive tutoring system that provides assistance and assessment to…
Implementation of an Adaptive Learning System Using a Bayesian Network
ERIC Educational Resources Information Center
Yasuda, Keiji; Kawashima, Hiroyuki; Hata, Yoko; Kimura, Hiroaki
2015-01-01
An adaptive learning system is proposed that incorporates a Bayesian network to efficiently gauge learners' understanding at the course-unit level. Also, learners receive content that is adapted to their measured level of understanding. The system works on an iPad via the Edmodo platform. A field experiment using the system in an elementary school…
Integrating Adaptive Games in Student-Centered Virtual Learning Environments
ERIC Educational Resources Information Center
del Blanco, Angel; Torrente, Javier; Moreno-Ger, Pablo; Fernandez-Manjon, Baltasar
2010-01-01
The increasing adoption of e-Learning technology is facing new challenges, such as how to produce student-centered systems that can be adapted to each student's needs. In this context, educational video games are proposed as an ideal medium to facilitate adaptation and tracking of students' performance for assessment purposes, but integrating the…
Estimating Position of Mobile Robots From Omnidirectional Vision Using an Adaptive Algorithm.
Li, Luyang; Liu, Yun-Hui; Wang, Kai; Fang, Mu
2015-08-01
This paper presents a novel and simple adaptive algorithm for estimating the position of a mobile robot with high accuracy in an unknown and unstructured environment by fusing images of an omnidirectional vision system with measurements of odometry and inertial sensors. Based on a new derivation where the omnidirectional projection can be linearly parameterized by the positions of the robot and natural feature points, we propose a novel adaptive algorithm, which is similar to the Slotine-Li algorithm in model-based adaptive control, to estimate the robot's position by using the tracked feature points in image sequence, the robot's velocity, and orientation angles measured by odometry and inertial sensors. It is proved that the adaptive algorithm leads to global exponential convergence of the position estimation errors to zero. Simulations and real-world experiments are performed to demonstrate the performance of the proposed algorithm. PMID:25265622
New Approach for IIR Adaptive Lattice Filter Structure Using Simultaneous Perturbation Algorithm
NASA Astrophysics Data System (ADS)
Martinez, Jorge Ivan Medina; Nakano, Kazushi; Higuchi, Kohji
Adaptive infinite impulse response (IIR), or recursive, filters are less attractive mainly because of the stability and the difficulties associated with their adaptive algorithms. Therefore, in this paper the adaptive IIR lattice filters are studied in order to devise algorithms that preserve the stability of the corresponding direct-form schemes. We analyze the local properties of stationary points, a transformation achieving this goal is suggested, which gives algorithms that can be efficiently implemented. Application to the Steiglitz-McBride (SM) and Simple Hyperstable Adaptive Recursive Filter (SHARF) algorithms is presented. Also a modified version of Simultaneous Perturbation Stochastic Approximation (SPSA) is presented in order to get the coefficients in a lattice form more efficiently and with a lower computational cost and complexity. The results are compared with previous lattice versions of these algorithms. These previous lattice versions may fail to preserve the stability of stationary points.
Estimating Position of Mobile Robots From Omnidirectional Vision Using an Adaptive Algorithm.
Li, Luyang; Liu, Yun-Hui; Wang, Kai; Fang, Mu
2015-08-01
This paper presents a novel and simple adaptive algorithm for estimating the position of a mobile robot with high accuracy in an unknown and unstructured environment by fusing images of an omnidirectional vision system with measurements of odometry and inertial sensors. Based on a new derivation where the omnidirectional projection can be linearly parameterized by the positions of the robot and natural feature points, we propose a novel adaptive algorithm, which is similar to the Slotine-Li algorithm in model-based adaptive control, to estimate the robot's position by using the tracked feature points in image sequence, the robot's velocity, and orientation angles measured by odometry and inertial sensors. It is proved that the adaptive algorithm leads to global exponential convergence of the position estimation errors to zero. Simulations and real-world experiments are performed to demonstrate the performance of the proposed algorithm.
Combining Adaptive Hypermedia with Project and Case-Based Learning
ERIC Educational Resources Information Center
Papanikolaou, Kyparisia; Grigoriadou, Maria
2009-01-01
In this article we investigate the design of educational hypermedia based on constructivist learning theories. According to the principles of project and case-based learning we present the design rational of an Adaptive Educational Hypermedia system prototype named MyProject; learners working with MyProject undertake a project and the system…
Adaptive versus Learner Control in a Multiple Intelligence Learning Environment
ERIC Educational Resources Information Center
Kelly, Declan
2008-01-01
Within the field of technology enhanced learning, adaptive educational systems offer an advanced form of learning environment that attempts to meet the needs of different students. Such systems capture and represent, for each student, various characteristics such as knowledge and traits in an individual learner model. Subsequently, using the…
Adaptive E-Learning Environments: Research Dimensions and Technological Approaches
ERIC Educational Resources Information Center
Di Bitonto, Pierpaolo; Roselli, Teresa; Rossano, Veronica; Sinatra, Maria
2013-01-01
One of the most closely investigated topics in e-learning research has always been the effectiveness of adaptive learning environments. The technological evolutions that have dramatically changed the educational world in the last six decades have allowed ever more advanced and smarter solutions to be proposed. The focus of this paper is to depict…
RASCAL: A Rudimentary Adaptive System for Computer-Aided Learning.
ERIC Educational Resources Information Center
Stewart, John Christopher
Both the background of computer-assisted instruction (CAI) systems in general and the requirements of a computer-aided learning system which would be a reasonable assistant to a teacher are discussed. RASCAL (Rudimentary Adaptive System for Computer-Aided Learning) is a first attempt at defining a CAI system which would individualize the learning…
Gradient Learning Algorithms for Ontology Computing
Gao, Wei; Zhu, Linli
2014-01-01
The gradient learning model has been raising great attention in view of its promising perspectives for applications in statistics, data dimensionality reducing, and other specific fields. In this paper, we raise a new gradient learning model for ontology similarity measuring and ontology mapping in multidividing setting. The sample error in this setting is given by virtue of the hypothesis space and the trick of ontology dividing operator. Finally, two experiments presented on plant and humanoid robotics field verify the efficiency of the new computation model for ontology similarity measure and ontology mapping applications in multidividing setting. PMID:25530752
ERIC Educational Resources Information Center
Cikrikci-Demirtash, R. Nukhet
2005-01-01
The study presented in this article was conducted to determine psychometric features of scales for Turkish students by adapting the Patterns of Adaptive Learning Scales (PALS) developed by Midgley and others (2000) to the Turkish language in order to measure personal and classroom goal orientations. The scales were developed to test…
Learning Sorting Algorithms through Visualization Construction
ERIC Educational Resources Information Center
Cetin, Ibrahim; Andrews-Larson, Christine
2016-01-01
Recent increased interest in computational thinking poses an important question to researchers: What are the best ways to teach fundamental computing concepts to students? Visualization is suggested as one way of supporting student learning. This mixed-method study aimed to (i) examine the effect of instruction in which students constructed…
NASA Astrophysics Data System (ADS)
Rehman, Muhammad Zubair; Nawi, Nazri Mohd.
Despite being widely used in the practical problems around the world, Gradient Descent Back-propagation algorithm comes with problems like slow convergence and convergence to local minima. Previous researchers have suggested certain modifications to improve the convergence in gradient Descent Back-propagation algorithm such as careful selection of input weights and biases, learning rate, momentum, network topology, activation function and value for 'gain' in the activation function. This research proposed an algorithm for improving the working performance of back-propagation algorithm which is 'Gradient Descent with Adaptive Momentum (GDAM)' by keeping the gain value fixed during all network trials. The performance of GDAM is compared with 'Gradient Descent with fixed Momentum (GDM)' and 'Gradient Descent Method with Adaptive Gain (GDM-AG)'. The learning rate is fixed to 0.4 and maximum epochs are set to 3000 while sigmoid activation function is used for the experimentation. The results show that GDAM is a better approach than previous methods with an accuracy ratio of 1.0 for classification problems like Wine Quality, Mushroom and Thyroid disease.
Vectorizable algorithms for adaptive schemes for rapid analysis of SSME flows
NASA Technical Reports Server (NTRS)
Oden, J. Tinsley
1987-01-01
An initial study into vectorizable algorithms for use in adaptive schemes for various types of boundary value problems is described. The focus is on two key aspects of adaptive computational methods which are crucial in the use of such methods (for complex flow simulations such as those in the Space Shuttle Main Engine): the adaptive scheme itself and the applicability of element-by-element matrix computations in a vectorizable format for rapid calculations in adaptive mesh procedures.
Design and optimisation of a (FA)Q-learning-based HTTP adaptive streaming client
NASA Astrophysics Data System (ADS)
Claeys, Maxim; Latré, Steven; Famaey, Jeroen; Wu, Tingyao; Van Leekwijck, Werner; De Turck, Filip
2014-01-01
In recent years, HTTP (Hypertext Transfer Protocol) adaptive streaming (HAS) has become the de facto standard for adaptive video streaming services. A HAS video consists of multiple segments, encoded at multiple quality levels. State-of-the-art HAS clients employ deterministic heuristics to dynamically adapt the requested quality level based on the perceived network conditions. Current HAS client heuristics are, however, hardwired to fit specific network configurations, making them less flexible to fit a vast range of settings. In this article, a (frequency adjusted) Q-learning HAS client is proposed. In contrast to existing heuristics, the proposed HAS client dynamically learns the optimal behaviour corresponding to the current network environment in order to optimise the quality of experience. Furthermore, the client has been optimised both in terms of global performance and convergence speed. Thorough evaluations show that the proposed client can outperform deterministic algorithms by 11-18% in terms of mean opinion score in a wide range of network configurations.
An Adaptive Learning Rate for RBFNN Using Time-Domain Feedback Analysis
Ali, Syed Saad Azhar; Moinuddin, Muhammad; Raza, Kamran
2014-01-01
Radial basis function neural networks are used in a variety of applications such as pattern recognition, nonlinear identification, control and time series prediction. In this paper, the learning algorithm of radial basis function neural networks is analyzed in a feedback structure. The robustness of the learning algorithm is discussed in the presence of uncertainties that might be due to noisy perturbations at the input or to modeling mismatch. An intelligent adaptation rule is developed for the learning rate of RBFNN which gives faster convergence via an estimate of error energy while giving guarantee to the l 2 stability governed by the upper bounding via small gain theorem. Simulation results are presented to support our theoretical development. PMID:24987745
An adaptive learning rate for RBFNN using time-domain feedback analysis.
Ali, Syed Saad Azhar; Moinuddin, Muhammad; Raza, Kamran; Adil, Syed Hasan
2014-01-01
Radial basis function neural networks are used in a variety of applications such as pattern recognition, nonlinear identification, control and time series prediction. In this paper, the learning algorithm of radial basis function neural networks is analyzed in a feedback structure. The robustness of the learning algorithm is discussed in the presence of uncertainties that might be due to noisy perturbations at the input or to modeling mismatch. An intelligent adaptation rule is developed for the learning rate of RBFNN which gives faster convergence via an estimate of error energy while giving guarantee to the l 2 stability governed by the upper bounding via small gain theorem. Simulation results are presented to support our theoretical development.
Motor sequence learning and motor adaptation in primary cervical dystonia.
Katschnig-Winter, Petra; Schwingenschuh, Petra; Davare, Marco; Sadnicka, Anna; Schmidt, Reinhold; Rothwell, John C; Bhatia, Kailash P; Edwards, Mark J
2014-06-01
Motor sequence learning and motor adaptation rely on overlapping circuits predominantly involving the basal ganglia and cerebellum. Given the importance of these brain regions to the pathophysiology of primary dystonia, and the previous finding of abnormal motor sequence learning in DYT1 gene carriers, we explored motor sequence learning and motor adaptation in patients with primary cervical dystonia. We recruited 12 patients with cervical dystonia and 11 healthy controls matched for age. Subjects used a joystick to move a cursor from a central starting point to radial targets as fast and accurately as possible. Using this device, we recorded baseline motor performance, motor sequence learning and a visuomotor adaptation task. Patients with cervical dystonia had a significantly higher peak velocity than controls. Baseline performance with random target presentation was otherwise normal. Patients and controls had similar levels of motor sequence learning and motor adaptation. Our patients had significantly higher peak velocity compared to controls, with similar movement times, implying a different performance strategy. The preservation of motor sequence learning in cervical dystonia patients contrasts with the previously observed deficit seen in patients with DYT1 gene mutations, supporting the hypothesis of differing pathophysiology in different forms of primary dystonia. Normal motor adaptation is an interesting finding. With our paradigm we did not find evidence that the previously documented cerebellar abnormalities in cervical dystonia have a behavioral correlate, and thus could be compensatory or reflect "contamination" rather than being directly pathological.
An Adaptive Digital Image Watermarking Algorithm Based on Morphological Haar Wavelet Transform
NASA Astrophysics Data System (ADS)
Huang, Xiaosheng; Zhao, Sujuan
At present, much more of the wavelet-based digital watermarking algorithms are based on linear wavelet transform and fewer on non-linear wavelet transform. In this paper, we propose an adaptive digital image watermarking algorithm based on non-linear wavelet transform--Morphological Haar Wavelet Transform. In the algorithm, the original image and the watermark image are decomposed with multi-scale morphological wavelet transform respectively. Then the watermark information is adaptively embedded into the original image in different resolutions, combining the features of Human Visual System (HVS). The experimental results show that our method is more robust and effective than the ordinary wavelet transform algorithms.
Comparative study of adaptive-noise-cancellation algorithms for intrusion detection systems
Claassen, J.P.; Patterson, M.M.
1981-01-01
Some intrusion detection systems are susceptible to nonstationary noise resulting in frequent nuisance alarms and poor detection when the noise is present. Adaptive inverse filtering for single channel systems and adaptive noise cancellation for two channel systems have both demonstrated good potential in removing correlated noise components prior detection. For such noise susceptible systems the suitability of a noise reduction algorithm must be established in a trade-off study weighing algorithm complexity against performance. The performance characteristics of several distinct classes of algorithms are established through comparative computer studies using real signals. The relative merits of the different algorithms are discussed in the light of the nature of intruder and noise signals.
Impedance learning for robotic contact tasks using natural actor-critic algorithm.
Kim, Byungchan; Park, Jooyoung; Park, Shinsuk; Kang, Sungchul
2010-04-01
Compared with their robotic counterparts, humans excel at various tasks by using their ability to adaptively modulate arm impedance parameters. This ability allows us to successfully perform contact tasks even in uncertain environments. This paper considers a learning strategy of motor skill for robotic contact tasks based on a human motor control theory and machine learning schemes. Our robot learning method employs impedance control based on the equilibrium point control theory and reinforcement learning to determine the impedance parameters for contact tasks. A recursive least-square filter-based episodic natural actor-critic algorithm is used to find the optimal impedance parameters. The effectiveness of the proposed method was tested through dynamic simulations of various contact tasks. The simulation results demonstrated that the proposed method optimizes the performance of the contact tasks in uncertain conditions of the environment. PMID:19696001
Impedance learning for robotic contact tasks using natural actor-critic algorithm.
Kim, Byungchan; Park, Jooyoung; Park, Shinsuk; Kang, Sungchul
2010-04-01
Compared with their robotic counterparts, humans excel at various tasks by using their ability to adaptively modulate arm impedance parameters. This ability allows us to successfully perform contact tasks even in uncertain environments. This paper considers a learning strategy of motor skill for robotic contact tasks based on a human motor control theory and machine learning schemes. Our robot learning method employs impedance control based on the equilibrium point control theory and reinforcement learning to determine the impedance parameters for contact tasks. A recursive least-square filter-based episodic natural actor-critic algorithm is used to find the optimal impedance parameters. The effectiveness of the proposed method was tested through dynamic simulations of various contact tasks. The simulation results demonstrated that the proposed method optimizes the performance of the contact tasks in uncertain conditions of the environment.
Zou, Han; Lu, Xiaoxuan; Jiang, Hao; Xie, Lihua
2015-01-01
Nowadays, developing indoor positioning systems (IPSs) has become an attractive research topic due to the increasing demands on location-based service (LBS) in indoor environments. WiFi technology has been studied and explored to provide indoor positioning service for years in view of the wide deployment and availability of existing WiFi infrastructures in indoor environments. A large body of WiFi-based IPSs adopt fingerprinting approaches for localization. However, these IPSs suffer from two major problems: the intensive costs of manpower and time for offline site survey and the inflexibility to environmental dynamics. In this paper, we propose an indoor localization algorithm based on an online sequential extreme learning machine (OS-ELM) to address the above problems accordingly. The fast learning speed of OS-ELM can reduce the time and manpower costs for the offline site survey. Meanwhile, its online sequential learning ability enables the proposed localization algorithm to adapt in a timely manner to environmental dynamics. Experiments under specific environmental changes, such as variations of occupancy distribution and events of opening or closing of doors, are conducted to evaluate the performance of OS-ELM. The simulation and experimental results show that the proposed localization algorithm can provide higher localization accuracy than traditional approaches, due to its fast adaptation to various environmental dynamics. PMID:25599427
Zou, Han; Lu, Xiaoxuan; Jiang, Hao; Xie, Lihua
2015-01-01
Nowadays, developing indoor positioning systems (IPSs) has become an attractive research topic due to the increasing demands on location-based service (LBS) in indoor environments. WiFi technology has been studied and explored to provide indoor positioning service for years in view of the wide deployment and availability of existing WiFi infrastructures in indoor environments. A large body of WiFi-based IPSs adopt fingerprinting approaches for localization. However, these IPSs suffer from two major problems: the intensive costs of manpower and time for offline site survey and the inflexibility to environmental dynamics. In this paper, we propose an indoor localization algorithm based on an online sequential extreme learning machine (OS-ELM) to address the above problems accordingly. The fast learning speed of OS-ELM can reduce the time and manpower costs for the offline site survey. Meanwhile, its online sequential learning ability enables the proposed localization algorithm to adapt in a timely manner to environmental dynamics. Experiments under specific environmental changes, such as variations of occupancy distribution and events of opening or closing of doors, are conducted to evaluate the performance of OS-ELM. The simulation and experimental results show that the proposed localization algorithm can provide higher localization accuracy than traditional approaches, due to its fast adaptation to various environmental dynamics. PMID:25599427
Zou, Han; Lu, Xiaoxuan; Jiang, Hao; Xie, Lihua
2015-01-15
Nowadays, developing indoor positioning systems (IPSs) has become an attractive research topic due to the increasing demands on location-based service (LBS) in indoor environments. WiFi technology has been studied and explored to provide indoor positioning service for years in view of the wide deployment and availability of existing WiFi infrastructures in indoor environments. A large body of WiFi-based IPSs adopt fingerprinting approaches for localization. However, these IPSs suffer from two major problems: the intensive costs of manpower and time for offline site survey and the inflexibility to environmental dynamics. In this paper, we propose an indoor localization algorithm based on an online sequential extreme learning machine (OS-ELM) to address the above problems accordingly. The fast learning speed of OS-ELM can reduce the time and manpower costs for the offline site survey. Meanwhile, its online sequential learning ability enables the proposed localization algorithm to adapt in a timely manner to environmental dynamics. Experiments under specific environmental changes, such as variations of occupancy distribution and events of opening or closing of doors, are conducted to evaluate the performance of OS-ELM. The simulation and experimental results show that the proposed localization algorithm can provide higher localization accuracy than traditional approaches, due to its fast adaptation to various environmental dynamics.
Cascade Error Projection: A Learning Algorithm for Hardware Implementation
NASA Technical Reports Server (NTRS)
Duong, Tuan A.; Daud, Taher
1996-01-01
In this paper, we workout a detailed mathematical analysis for a new learning algorithm termed Cascade Error Projection (CEP) and a general learning frame work. This frame work can be used to obtain the cascade correlation learning algorithm by choosing a particular set of parameters. Furthermore, CEP learning algorithm is operated only on one layer, whereas the other set of weights can be calculated deterministically. In association with the dynamical stepsize change concept to convert the weight update from infinite space into a finite space, the relation between the current stepsize and the previous energy level is also given and the estimation procedure for optimal stepsize is used for validation of our proposed technique. The weight values of zero are used for starting the learning for every layer, and a single hidden unit is applied instead of using a pool of candidate hidden units similar to cascade correlation scheme. Therefore, simplicity in hardware implementation is also obtained. Furthermore, this analysis allows us to select from other methods (such as the conjugate gradient descent or the Newton's second order) one of which will be a good candidate for the learning technique. The choice of learning technique depends on the constraints of the problem (e.g., speed, performance, and hardware implementation); one technique may be more suitable than others. Moreover, for a discrete weight space, the theoretical analysis presents the capability of learning with limited weight quantization. Finally, 5- to 8-bit parity and chaotic time series prediction problems are investigated; the simulation results demonstrate that 4-bit or more weight quantization is sufficient for learning neural network using CEP. In addition, it is demonstrated that this technique is able to compensate for less bit weight resolution by incorporating additional hidden units. However, generation result may suffer somewhat with lower bit weight quantization.
Adaptive Image Denoising by Mixture Adaptation
NASA Astrophysics Data System (ADS)
Luo, Enming; Chan, Stanley H.; Nguyen, Truong Q.
2016-10-01
We propose an adaptive learning procedure to learn patch-based image priors for image denoising. The new algorithm, called the Expectation-Maximization (EM) adaptation, takes a generic prior learned from a generic external database and adapts it to the noisy image to generate a specific prior. Different from existing methods that combine internal and external statistics in ad-hoc ways, the proposed algorithm is rigorously derived from a Bayesian hyper-prior perspective. There are two contributions of this paper: First, we provide full derivation of the EM adaptation algorithm and demonstrate methods to improve the computational complexity. Second, in the absence of the latent clean image, we show how EM adaptation can be modified based on pre-filtering. Experimental results show that the proposed adaptation algorithm yields consistently better denoising results than the one without adaptation and is superior to several state-of-the-art algorithms.
Evolutionary and adaptive learning in complex markets: a brief summary
NASA Astrophysics Data System (ADS)
Hommes, Cars H.
2007-06-01
We briefly review some work on expectations and learning in complex markets, using the familiar demand-supply cobweb model. We discuss and combine two different approaches on learning. According to the adaptive learning approach, agents behave as econometricians using time series observations to form expectations, and update the parameters as more observations become available. This approach has become popular in macro. The second approach has an evolutionary flavor and is sometimes referred to as reinforcement learning. Agents employ different forecasting strategies and evaluate these strategies based upon a fitness measure, e.g. past realized profits. In this framework, boundedly rational agents switch between different, but fixed behavioral rules. This approach has become popular in finance. We combine evolutionary and adaptive learning to model complex markets and discuss whether this theory can match empirical facts and forecasting behavior in laboratory experiments with human subjects.
Binocular self-calibration performed via adaptive genetic algorithm based on laser line imaging
NASA Astrophysics Data System (ADS)
Apolinar Muñoz Rodríguez, J.; Mejía Alanís, Francisco Carlos
2016-07-01
An accurate technique to perform binocular self-calibration by means of an adaptive genetic algorithm based on a laser line is presented. In this calibration, the genetic algorithm computes the vision parameters through simulated binary crossover (SBX). To carry it out, the genetic algorithm constructs an objective function from the binocular geometry of the laser line projection. Then, the SBX minimizes the objective function via chromosomes recombination. In this algorithm, the adaptive procedure determines the search space via line position to obtain the minimum convergence. Thus, the chromosomes of vision parameters provide the minimization. The approach of the proposed adaptive genetic algorithm is to calibrate and recalibrate the binocular setup without references and physical measurements. This procedure leads to improve the traditional genetic algorithms, which calibrate the vision parameters by means of references and an unknown search space. It is because the proposed adaptive algorithm avoids errors produced by the missing of references. Additionally, the three-dimensional vision is carried out based on the laser line position and vision parameters. The contribution of the proposed algorithm is corroborated by an evaluation of accuracy of binocular calibration, which is performed via traditional genetic algorithms.
A novel algorithm for real-time adaptive signal detection and identification
Sleefe, G.E.; Ladd, M.D.; Gallegos, D.E.; Sicking, C.W.; Erteza, I.A.
1998-04-01
This paper describes a novel digital signal processing algorithm for adaptively detecting and identifying signals buried in noise. The algorithm continually computes and updates the long-term statistics and spectral characteristics of the background noise. Using this noise model, a set of adaptive thresholds and matched digital filters are implemented to enhance and detect signals that are buried in the noise. The algorithm furthermore automatically suppresses coherent noise sources and adapts to time-varying signal conditions. Signal detection is performed in both the time-domain and the frequency-domain, thereby permitting the detection of both broad-band transients and narrow-band signals. The detection algorithm also provides for the computation of important signal features such as amplitude, timing, and phase information. Signal identification is achieved through a combination of frequency-domain template matching and spectral peak picking. The algorithm described herein is well suited for real-time implementation on digital signal processing hardware. This paper presents the theory of the adaptive algorithm, provides an algorithmic block diagram, and demonstrate its implementation and performance with real-world data. The computational efficiency of the algorithm is demonstrated through benchmarks on specific DSP hardware. The applications for this algorithm, which range from vibration analysis to real-time image processing, are also discussed.
Teachers' Use of a Verbally Governed Algorithm and Student Learning
ERIC Educational Resources Information Center
Keohane, Dolleen-Day; Greer, R. Douglas
2005-01-01
The effects of instructing teachers in the use of a verbally governed algorithm to solve students' learning problems were measured. The teachers were taught to analyze students' responses to instruction using a strategic protocol, which included a series of verbally governed questions. The study was designed to determine whether the instructional…
Convergence of reinforcement learning algorithms and acceleration of learning
NASA Astrophysics Data System (ADS)
Potapov, A.; Ali, M. K.
2003-02-01
The techniques of reinforcement learning have been gaining increasing popularity recently. However, the question of their convergence rate is still open. We consider the problem of choosing the learning steps αn, and their relation with discount γ and exploration degree ɛ. Appropriate choices of these parameters may drastically influence the convergence rate of the techniques. From analytical examples, we conjecture optimal values of αn and then use numerical examples to verify our conjectures.
Learning & retention in adaptive serious games.
Bergeron, Bryan P
2008-01-01
Serious games are being actively explored as supplements to and, in some cases, replacement for traditional didactic lectures and computer-based instruction in venues ranging from medicine to the military. As part of an intelligent tutoring system (ITS) for nuclear event first responders, we designed and evaluated two serious games that were integrated with adaptive multimedia content. Results reveal that there was no decay in score six weeks following game-based training, which contrasts with results expected with traditional training. This study suggests that adaptive serious games may help integrate didactic content presented though conventional means.
Adaptive Load-Balancing Algorithms using Symmetric Broadcast Networks
NASA Technical Reports Server (NTRS)
Das, Sajal K.; Harvey, Daniel J.; Biswas, Rupak; Biegel, Bryan A. (Technical Monitor)
2002-01-01
In a distributed computing environment, it is important to ensure that the processor workloads are adequately balanced, Among numerous load-balancing algorithms, a unique approach due to Das and Prasad defines a symmetric broadcast network (SBN) that provides a robust communication pattern among the processors in a topology-independent manner. In this paper, we propose and analyze three efficient SBN-based dynamic load-balancing algorithms, and implement them on an SGI Origin2000. A thorough experimental study with Poisson distributed synthetic loads demonstrates that our algorithms are effective in balancing system load. By optimizing completion time and idle time, the proposed algorithms are shown to compare favorably with several existing approaches.
Teacher Adaptation to Open Learning Spaces
ERIC Educational Resources Information Center
Alterator, Scott; Deed, Craig
2013-01-01
The "open classroom" emerged as a reaction against the industrial-era enclosed and authoritarian classroom. Although contemporary school architecture continues to incorporate and express ideas of openness, more research is needed about how teachers adapt to new and different built contexts. Our purpose is to identify teacher reaction to…
The immune system, adaptation, and machine learning
NASA Astrophysics Data System (ADS)
Farmer, J. Doyne; Packard, Norman H.; Perelson, Alan S.
1986-10-01
The immune system is capable of learning, memory, and pattern recognition. By employing genetic operators on a time scale fast enough to observe experimentally, the immune system is able to recognize novel shapes without preprogramming. Here we describe a dynamical model for the immune system that is based on the network hypothesis of Jerne, and is simple enough to simulate on a computer. This model has a strong similarity to an approach to learning and artificial intelligence introduced by Holland, called the classifier system. We demonstrate that simple versions of the classifier system can be cast as a nonlinear dynamical system, and explore the analogy between the immune and classifier systems in detail. Through this comparison we hope to gain insight into the way they perform specific tasks, and to suggest new approaches that might be of value in learning systems.
Learning sorting algorithms through visualization construction
NASA Astrophysics Data System (ADS)
Cetin, Ibrahim; Andrews-Larson, Christine
2016-01-01
Recent increased interest in computational thinking poses an important question to researchers: What are the best ways to teach fundamental computing concepts to students? Visualization is suggested as one way of supporting student learning. This mixed-method study aimed to (i) examine the effect of instruction in which students constructed visualizations on students' programming achievement and students' attitudes toward computer programming, and (ii) explore how this kind of instruction supports students' learning according to their self-reported experiences in the course. The study was conducted with 58 pre-service teachers who were enrolled in their second programming class. They expect to teach information technology and computing-related courses at the primary and secondary levels. An embedded experimental model was utilized as a research design. Students in the experimental group were given instruction that required students to construct visualizations related to sorting, whereas students in the control group viewed pre-made visualizations. After the instructional intervention, eight students from each group were selected for semi-structured interviews. The results showed that the intervention based on visualization construction resulted in significantly better acquisition of sorting concepts. However, there was no significant difference between the groups with respect to students' attitudes toward computer programming. Qualitative data analysis indicated that students in the experimental group constructed necessary abstractions through their engagement in visualization construction activities. The authors of this study argue that the students' active engagement in the visualization construction activities explains only one side of students' success. The other side can be explained through the instructional approach, constructionism in this case, used to design instruction. The conclusions and implications of this study can be used by researchers and
ERIC Educational Resources Information Center
Chen, Hsinchun
1995-01-01
Presents an overview of artificial-intelligence-based inductive learning techniques and their use in information science research. Three methods are discussed: the connectionist Hopfield network; the symbolic ID3/ID5R; evolution-based genetic algorithms. The knowledge representations and algorithms of these methods are examined in the context of…
Assessing the Reliability of Computer Adaptive Testing Branching Algorithms Using HyperCAT.
ERIC Educational Resources Information Center
Shermis, Mark D.; And Others
The reliability of four branching algorithms commonly used in computer adaptive testing (CAT) was examined. These algorithms were: (1) maximum likelihood (MLE); (2) Bayesian; (3) modal Bayesian; and (4) crossover. Sixty-eight undergraduate college students were randomly assigned to one of the four conditions using the HyperCard-based CAT program,…
SIMULATION OF DISPERSION OF A POWER PLANT PLUME USING AN ADAPTIVE GRID ALGORITHM. (R827028)
A new dynamic adaptive grid algorithm has been developed for use in air quality modeling. This algorithm uses a higher order numerical scheme––the piecewise parabolic method (PPM)––for computing advective solution fields; a weight function capable o...
SIMULATION OF DISPERSION OF A POWER PLANT PLUME USING AN ADAPTIVE GRID ALGORITHM
A new dynamic adaptive grid algorithm has been developed for use in air quality modeling. This algorithm uses a higher order numerical scheme?the piecewise parabolic method (PPM)?for computing advective solution fields; a weight function capable of promoting grid node clustering ...
SIMULATION OF A REACTING POLLUTANT PUFF USING AN ADAPTIVE GRID ALGORITHM
A new dynamic solution adaptive grid algorithm DSAGA-PPM, has been developed for use in air quality modeling. In this paper, this algorithm is described and evaluated with a test problem. Cone-shaped distributions of various chemical species undergoing chemical reactions are rota...
Research of adaptive threshold edge detection algorithm based on statistics canny operator
NASA Astrophysics Data System (ADS)
Xu, Jian; Wang, Huaisuo; Huang, Hua
2015-12-01
The traditional Canny operator cannot get the optimal threshold in different scene, on this foundation, an improved Canny edge detection algorithm based on adaptive threshold is proposed. The result of the experiment pictures indicate that the improved algorithm can get responsible threshold, and has the better accuracy and precision in the edge detection.
Adaptive algorithm for cloud cover estimation from all-sky images over the sea
NASA Astrophysics Data System (ADS)
Krinitskiy, M. A.; Sinitsyn, A. V.
2016-05-01
A new algorithm for cloud cover estimation has been formulated and developed based on the synthetic control index, called the grayness rate index, and an additional algorithm step of adaptive filtering of the Mie scattering contribution. A setup for automated cloud cover estimation has been designed, assembled, and tested under field conditions. The results shows a significant advantage of the new algorithm over currently commonly used procedures.
Bornholdt, S.; Graudenz, D.
1993-07-01
A learning algorithm based on genetic algorithms for asymmetric neural networks with an arbitrary structure is presented. It is suited for the learning of temporal patterns and leads to stable neural networks with feedback.
Adaptive Politics, Social Learning, and Military Institutions.
ERIC Educational Resources Information Center
Bobrow, Davis B.
Rates and forms of change in post-industrial societies will increasingly test the viability of democratic political systems. Social learning must become faster and more powerful as the deadline on political demands becomes shorter and the complexity and variety of demands become greater. The military can play an almost uniquely helpful role in…
Professional Learning to Nurture Adaptive Teachers
ERIC Educational Resources Information Center
Lee, Kar-Tin
2013-01-01
This paper presents the findings of a study conducted in China to identify the potential benefits of incorporating robotics as an educational tool for 100 primary and 320 secondary school teachers of general technology. The Professional Learning Program was conducted from 2010-2013 in China. The major focus of the program was on the development…
Women, Subjectivities and Learning to Be Adaptable
ERIC Educational Resources Information Center
Cavanagh, Jillian
2010-01-01
Purpose: The purpose of this paper is to advance understandings of the subjectivities that influence auxiliary-level female employees' work and learning experiences in general legal practice. Moreover, the aim is to maximise the opportunities for these workers. Design/methodology/approach: A broader critical ethnographic study investigated…
Strategies for adding adaptive learning mechanisms to rule-based diagnostic expert systems
NASA Technical Reports Server (NTRS)
Stclair, D. C.; Sabharwal, C. L.; Bond, W. E.; Hacke, Keith
1988-01-01
Rule-based diagnostic expert systems can be used to perform many of the diagnostic chores necessary in today's complex space systems. These expert systems typically take a set of symptoms as input and produce diagnostic advice as output. The primary objective of such expert systems is to provide accurate and comprehensive advice which can be used to help return the space system in question to nominal operation. The development and maintenance of diagnostic expert systems is time and labor intensive since the services of both knowledge engineer(s) and domain expert(s) are required. The use of adaptive learning mechanisms to increment evaluate and refine rules promises to reduce both time and labor costs associated with such systems. This paper describes the basic adaptive learning mechanisms of strengthening, weakening, generalization, discrimination, and discovery. Next basic strategies are discussed for adding these learning mechanisms to rule-based diagnostic expert systems. These strategies support the incremental evaluation and refinement of rules in the knowledge base by comparing the set of advice given by the expert system (A) with the correct diagnosis (C). Techniques are described for selecting those rules in the in the knowledge base which should participate in adaptive learning. The strategies presented may be used with a wide variety of learning algorithms. Further, these strategies are applicable to a large number of rule-based diagnostic expert systems. They may be used to provide either immediate or deferred updating of the knowledge base.
Crane, N K; Parsons, I D; Hjelmstad, K D
2002-03-21
Adaptive mesh refinement selectively subdivides the elements of a coarse user supplied mesh to produce a fine mesh with reduced discretization error. Effective use of adaptive mesh refinement coupled with an a posteriori error estimator can produce a mesh that solves a problem to a given discretization error using far fewer elements than uniform refinement. A geometric multigrid solver uses increasingly finer discretizations of the same geometry to produce a very fast and numerically scalable solution to a set of linear equations. Adaptive mesh refinement is a natural method for creating the different meshes required by the multigrid solver. This paper describes the implementation of a scalable adaptive multigrid method on a distributed memory parallel computer. Results are presented that demonstrate the parallel performance of the methodology by solving a linear elastic rocket fuel deformation problem on an SGI Origin 3000. Two challenges must be met when implementing adaptive multigrid algorithms on massively parallel computing platforms. First, although the fine mesh for which the solution is desired may be large and scaled to the number of processors, the multigrid algorithm must also operate on much smaller fixed-size data sets on the coarse levels. Second, the mesh must be repartitioned as it is adapted to maintain good load balancing. In an adaptive multigrid algorithm, separate mesh levels may require separate partitioning, further complicating the load balance problem. This paper shows that, when the proper optimizations are made, parallel adaptive multigrid algorithms perform well on machines with several hundreds of processors.
Mean-shift tracking algorithm based on adaptive fusion of multi-feature
NASA Astrophysics Data System (ADS)
Yang, Kai; Xiao, Yanghui; Wang, Ende; Feng, Junhui
2015-10-01
The classic mean-shift tracking algorithm has achieved success in the field of computer vision because of its speediness and efficiency. However, classic mean-shift tracking algorithm would fail to track in some complicated conditions such as some parts of the target are occluded, little color difference between the target and background exists, or sudden change of illumination and so on. In order to solve the problems, an improved algorithm is proposed based on the mean-shift tracking algorithm and adaptive fusion of features. Color, edges and corners of the target are used to describe the target in the feature space, and a method for measuring the discrimination of various features is presented to make feature selection adaptive. Then the improved mean-shift tracking algorithm is introduced based on the fusion of various features. For the purpose of solving the problem that mean-shift tracking algorithm with the single color feature is vulnerable to sudden change of illumination, we eliminate the effects by the fusion of affine illumination model and color feature space which ensures the correctness and stability of target tracking in that condition. Using a group of videos to test the proposed algorithm, the results show that the tracking correctness and stability of this algorithm are better than the mean-shift tracking algorithm with single feature space. Furthermore the proposed algorithm is more robust than the classic algorithm in the conditions of occlusion, target similar with background or illumination change.
Improving GPU-accelerated adaptive IDW interpolation algorithm using fast kNN search.
Mei, Gang; Xu, Nengxiong; Xu, Liangliang
2016-01-01
This paper presents an efficient parallel Adaptive Inverse Distance Weighting (AIDW) interpolation algorithm on modern Graphics Processing Unit (GPU). The presented algorithm is an improvement of our previous GPU-accelerated AIDW algorithm by adopting fast k-nearest neighbors (kNN) search. In AIDW, it needs to find several nearest neighboring data points for each interpolated point to adaptively determine the power parameter; and then the desired prediction value of the interpolated point is obtained by weighted interpolating using the power parameter. In this work, we develop a fast kNN search approach based on the space-partitioning data structure, even grid, to improve the previous GPU-accelerated AIDW algorithm. The improved algorithm is composed of the stages of kNN search and weighted interpolating. To evaluate the performance of the improved algorithm, we perform five groups of experimental tests. The experimental results indicate: (1) the improved algorithm can achieve a speedup of up to 1017 over the corresponding serial algorithm; (2) the improved algorithm is at least two times faster than our previous GPU-accelerated AIDW algorithm; and (3) the utilization of fast kNN search can significantly improve the computational efficiency of the entire GPU-accelerated AIDW algorithm. PMID:27610308
Improving GPU-accelerated adaptive IDW interpolation algorithm using fast kNN search.
Mei, Gang; Xu, Nengxiong; Xu, Liangliang
2016-01-01
This paper presents an efficient parallel Adaptive Inverse Distance Weighting (AIDW) interpolation algorithm on modern Graphics Processing Unit (GPU). The presented algorithm is an improvement of our previous GPU-accelerated AIDW algorithm by adopting fast k-nearest neighbors (kNN) search. In AIDW, it needs to find several nearest neighboring data points for each interpolated point to adaptively determine the power parameter; and then the desired prediction value of the interpolated point is obtained by weighted interpolating using the power parameter. In this work, we develop a fast kNN search approach based on the space-partitioning data structure, even grid, to improve the previous GPU-accelerated AIDW algorithm. The improved algorithm is composed of the stages of kNN search and weighted interpolating. To evaluate the performance of the improved algorithm, we perform five groups of experimental tests. The experimental results indicate: (1) the improved algorithm can achieve a speedup of up to 1017 over the corresponding serial algorithm; (2) the improved algorithm is at least two times faster than our previous GPU-accelerated AIDW algorithm; and (3) the utilization of fast kNN search can significantly improve the computational efficiency of the entire GPU-accelerated AIDW algorithm.
A fast learning algorithm for deep belief nets.
Hinton, Geoffrey E; Osindero, Simon; Teh, Yee-Whye
2006-07-01
We show how to use "complementary priors" to eliminate the explaining-away effects that make inference difficult in densely connected belief nets that have many hidden layers. Using complementary priors, we derive a fast, greedy algorithm that can learn deep, directed belief networks one layer at a time, provided the top two layers form an undirected associative memory. The fast, greedy algorithm is used to initialize a slower learning procedure that fine-tunes the weights using a contrastive version of the wake-sleep algorithm. After fine-tuning, a network with three hidden layers forms a very good generative model of the joint distribution of handwritten digit images and their labels. This generative model gives better digit classification than the best discriminative learning algorithms. The low-dimensional manifolds on which the digits lie are modeled by long ravines in the free-energy landscape of the top-level associative memory, and it is easy to explore these ravines by using the directed connections to display what the associative memory has in mind.
Auditory-Perceptual Learning Improves Speech Motor Adaptation in Children
Shiller, Douglas M.; Rochon, Marie-Lyne
2015-01-01
Auditory feedback plays an important role in children’s speech development by providing the child with information about speech outcomes that is used to learn and fine-tune speech motor plans. The use of auditory feedback in speech motor learning has been extensively studied in adults by examining oral motor responses to manipulations of auditory feedback during speech production. Children are also capable of adapting speech motor patterns to perceived changes in auditory feedback, however it is not known whether their capacity for motor learning is limited by immature auditory-perceptual abilities. Here, the link between speech perceptual ability and the capacity for motor learning was explored in two groups of 5–7-year-old children who underwent a period of auditory perceptual training followed by tests of speech motor adaptation to altered auditory feedback. One group received perceptual training on a speech acoustic property relevant to the motor task while a control group received perceptual training on an irrelevant speech contrast. Learned perceptual improvements led to an enhancement in speech motor adaptation (proportional to the perceptual change) only for the experimental group. The results indicate that children’s ability to perceive relevant speech acoustic properties has a direct influence on their capacity for sensory-based speech motor adaptation. PMID:24842067
Modelling Adaptive Learning Behaviours for Consensus Formation in Human Societies.
Yu, Chao; Tan, Guozhen; Lv, Hongtao; Wang, Zhen; Meng, Jun; Hao, Jianye; Ren, Fenghui
2016-01-01
Learning is an important capability of humans and plays a vital role in human society for forming beliefs and opinions. In this paper, we investigate how learning affects the dynamics of opinion formation in social networks. A novel learning model is proposed, in which agents can dynamically adapt their learning behaviours in order to facilitate the formation of consensus among them, and thus establish a consistent social norm in the whole population more efficiently. In the model, agents adapt their opinions through trail-and-error interactions with others. By exploiting historical interaction experience, a guiding opinion, which is considered to be the most successful opinion in the neighbourhood, can be generated based on the principle of evolutionary game theory. Then, depending on the consistency between its own opinion and the guiding opinion, a focal agent can realize whether its opinion complies with the social norm (i.e., the majority opinion that has been adopted) in the population, and adapt its behaviours accordingly. The highlight of the model lies in that it captures the essential features of people's adaptive learning behaviours during the evolution and formation of opinions. Experimental results show that the proposed model can facilitate the formation of consensus among agents, and some critical factors such as size of opinion space and network topology can have significant influences on opinion dynamics. PMID:27282089
Auditory-perceptual learning improves speech motor adaptation in children.
Shiller, Douglas M; Rochon, Marie-Lyne
2014-08-01
Auditory feedback plays an important role in children's speech development by providing the child with information about speech outcomes that is used to learn and fine-tune speech motor plans. The use of auditory feedback in speech motor learning has been extensively studied in adults by examining oral motor responses to manipulations of auditory feedback during speech production. Children are also capable of adapting speech motor patterns to perceived changes in auditory feedback; however, it is not known whether their capacity for motor learning is limited by immature auditory-perceptual abilities. Here, the link between speech perceptual ability and the capacity for motor learning was explored in two groups of 5- to 7-year-old children who underwent a period of auditory perceptual training followed by tests of speech motor adaptation to altered auditory feedback. One group received perceptual training on a speech acoustic property relevant to the motor task while a control group received perceptual training on an irrelevant speech contrast. Learned perceptual improvements led to an enhancement in speech motor adaptation (proportional to the perceptual change) only for the experimental group. The results indicate that children's ability to perceive relevant speech acoustic properties has a direct influence on their capacity for sensory-based speech motor adaptation.
Modelling Adaptive Learning Behaviours for Consensus Formation in Human Societies
Yu, Chao; Tan, Guozhen; Lv, Hongtao; Wang, Zhen; Meng, Jun; Hao, Jianye; Ren, Fenghui
2016-01-01
Learning is an important capability of humans and plays a vital role in human society for forming beliefs and opinions. In this paper, we investigate how learning affects the dynamics of opinion formation in social networks. A novel learning model is proposed, in which agents can dynamically adapt their learning behaviours in order to facilitate the formation of consensus among them, and thus establish a consistent social norm in the whole population more efficiently. In the model, agents adapt their opinions through trail-and-error interactions with others. By exploiting historical interaction experience, a guiding opinion, which is considered to be the most successful opinion in the neighbourhood, can be generated based on the principle of evolutionary game theory. Then, depending on the consistency between its own opinion and the guiding opinion, a focal agent can realize whether its opinion complies with the social norm (i.e., the majority opinion that has been adopted) in the population, and adapt its behaviours accordingly. The highlight of the model lies in that it captures the essential features of people’s adaptive learning behaviours during the evolution and formation of opinions. Experimental results show that the proposed model can facilitate the formation of consensus among agents, and some critical factors such as size of opinion space and network topology can have significant influences on opinion dynamics. PMID:27282089
Modelling Adaptive Learning Behaviours for Consensus Formation in Human Societies
NASA Astrophysics Data System (ADS)
Yu, Chao; Tan, Guozhen; Lv, Hongtao; Wang, Zhen; Meng, Jun; Hao, Jianye; Ren, Fenghui
2016-06-01
Learning is an important capability of humans and plays a vital role in human society for forming beliefs and opinions. In this paper, we investigate how learning affects the dynamics of opinion formation in social networks. A novel learning model is proposed, in which agents can dynamically adapt their learning behaviours in order to facilitate the formation of consensus among them, and thus establish a consistent social norm in the whole population more efficiently. In the model, agents adapt their opinions through trail-and-error interactions with others. By exploiting historical interaction experience, a guiding opinion, which is considered to be the most successful opinion in the neighbourhood, can be generated based on the principle of evolutionary game theory. Then, depending on the consistency between its own opinion and the guiding opinion, a focal agent can realize whether its opinion complies with the social norm (i.e., the majority opinion that has been adopted) in the population, and adapt its behaviours accordingly. The highlight of the model lies in that it captures the essential features of people’s adaptive learning behaviours during the evolution and formation of opinions. Experimental results show that the proposed model can facilitate the formation of consensus among agents, and some critical factors such as size of opinion space and network topology can have significant influences on opinion dynamics.
Bauer, Robert; Gharabaghi, Alireza
2015-01-01
Restorative brain-computer interfaces (BCI) are increasingly used to provide feedback of neuronal states in a bid to normalize pathological brain activity and achieve behavioral gains. However, patients and healthy subjects alike often show a large variability, or even inability, of brain self-regulation for BCI control, known as BCI illiteracy. Although current co-adaptive algorithms are powerful for assistive BCIs, their inherent class switching clashes with the operant conditioning goal of restorative BCIs. Moreover, due to the treatment rationale, the classifier of restorative BCIs usually has a constrained feature space, thus limiting the possibility of classifier adaptation. In this context, we applied a Bayesian model of neurofeedback and reinforcement learning for different threshold selection strategies to study the impact of threshold adaptation of a linear classifier on optimizing restorative BCIs. For each feedback iteration, we first determined the thresholds that result in minimal action entropy and maximal instructional efficiency. We then used the resulting vector for the simulation of continuous threshold adaptation. We could thus show that threshold adaptation can improve reinforcement learning, particularly in cases of BCI illiteracy. Finally, on the basis of information-theory, we provided an explanation for the achieved benefits of adaptive threshold setting. PMID:25729347
Bauer, Robert; Gharabaghi, Alireza
2015-01-01
Restorative brain-computer interfaces (BCI) are increasingly used to provide feedback of neuronal states in a bid to normalize pathological brain activity and achieve behavioral gains. However, patients and healthy subjects alike often show a large variability, or even inability, of brain self-regulation for BCI control, known as BCI illiteracy. Although current co-adaptive algorithms are powerful for assistive BCIs, their inherent class switching clashes with the operant conditioning goal of restorative BCIs. Moreover, due to the treatment rationale, the classifier of restorative BCIs usually has a constrained feature space, thus limiting the possibility of classifier adaptation. In this context, we applied a Bayesian model of neurofeedback and reinforcement learning for different threshold selection strategies to study the impact of threshold adaptation of a linear classifier on optimizing restorative BCIs. For each feedback iteration, we first determined the thresholds that result in minimal action entropy and maximal instructional efficiency. We then used the resulting vector for the simulation of continuous threshold adaptation. We could thus show that threshold adaptation can improve reinforcement learning, particularly in cases of BCI illiteracy. Finally, on the basis of information-theory, we provided an explanation for the achieved benefits of adaptive threshold setting.
Bauer, Robert; Gharabaghi, Alireza
2015-01-01
Restorative brain-computer interfaces (BCI) are increasingly used to provide feedback of neuronal states in a bid to normalize pathological brain activity and achieve behavioral gains. However, patients and healthy subjects alike often show a large variability, or even inability, of brain self-regulation for BCI control, known as BCI illiteracy. Although current co-adaptive algorithms are powerful for assistive BCIs, their inherent class switching clashes with the operant conditioning goal of restorative BCIs. Moreover, due to the treatment rationale, the classifier of restorative BCIs usually has a constrained feature space, thus limiting the possibility of classifier adaptation. In this context, we applied a Bayesian model of neurofeedback and reinforcement learning for different threshold selection strategies to study the impact of threshold adaptation of a linear classifier on optimizing restorative BCIs. For each feedback iteration, we first determined the thresholds that result in minimal action entropy and maximal instructional efficiency. We then used the resulting vector for the simulation of continuous threshold adaptation. We could thus show that threshold adaptation can improve reinforcement learning, particularly in cases of BCI illiteracy. Finally, on the basis of information-theory, we provided an explanation for the achieved benefits of adaptive threshold setting. PMID:25729347
Generalized perceptual learning in the absence of sensory adaptation.
Harris, Hila; Gliksberg, Michael; Sagi, Dov
2012-10-01
Repeated performance of visual tasks leads to long-lasting increased sensitivity to the trained stimulus, a phenomenon termed perceptual learning. A ubiquitous property of visual learning is specificity: performance improvement obtained during training applies only for the trained stimulus features, which are thought to be encoded in sensory brain regions [1-3]. However, recent results show performance decrements with an increasing number of trials within a training session [4, 5]. This selective sensitivity reduction is thought to arise due to sensory adaptation [5, 6]. Here we show, using the standard texture discrimination task [7], that location specificity is a consequence of sensory adaptation; that is, it results from selective reduced sensitivity due to repeated stimulation. Observers practiced the texture task with the target presented at a fixed location within a background texture. To remove adaptation, we added task-irrelevant ("dummy") trials with the texture oriented 45° relative to the target's orientation, known to counteract adaptation [8]. The results indicate location specificity with the standard paradigm, but complete generalization to a new location when adaptation is removed. We suggest that adaptation interferes with invariant pattern-discrimination learning by inducing network-dependent changes in local visual representations.
Stochastic Leader Gravitational Search Algorithm for Enhanced Adaptive Beamforming Technique
Darzi, Soodabeh; Islam, Mohammad Tariqul; Tiong, Sieh Kiong; Kibria, Salehin; Singh, Mandeep
2015-01-01
In this paper, stochastic leader gravitational search algorithm (SL-GSA) based on randomized k is proposed. Standard GSA (SGSA) utilizes the best agents without any randomization, thus it is more prone to converge at suboptimal results. Initially, the new approach randomly choses k agents from the set of all agents to improve the global search ability. Gradually, the set of agents is reduced by eliminating the agents with the poorest performances to allow rapid convergence. The performance of the SL-GSA was analyzed for six well-known benchmark functions, and the results are compared with SGSA and some of its variants. Furthermore, the SL-GSA is applied to minimum variance distortionless response (MVDR) beamforming technique to ensure compatibility with real world optimization problems. The proposed algorithm demonstrates superior convergence rate and quality of solution for both real world problems and benchmark functions compared to original algorithm and other recent variants of SGSA. PMID:26552032
Computer aided lung cancer diagnosis with deep learning algorithms
NASA Astrophysics Data System (ADS)
Sun, Wenqing; Zheng, Bin; Qian, Wei
2016-03-01
Deep learning is considered as a popular and powerful method in pattern recognition and classification. However, there are not many deep structured applications used in medical imaging diagnosis area, because large dataset is not always available for medical images. In this study we tested the feasibility of using deep learning algorithms for lung cancer diagnosis with the cases from Lung Image Database Consortium (LIDC) database. The nodules on each computed tomography (CT) slice were segmented according to marks provided by the radiologists. After down sampling and rotating we acquired 174412 samples with 52 by 52 pixel each and the corresponding truth files. Three deep learning algorithms were designed and implemented, including Convolutional Neural Network (CNN), Deep Belief Networks (DBNs), Stacked Denoising Autoencoder (SDAE). To compare the performance of deep learning algorithms with traditional computer aided diagnosis (CADx) system, we designed a scheme with 28 image features and support vector machine. The accuracies of CNN, DBNs, and SDAE are 0.7976, 0.8119, and 0.7929, respectively; the accuracy of our designed traditional CADx is 0.7940, which is slightly lower than CNN and DBNs. We also noticed that the mislabeled nodules using DBNs are 4% larger than using traditional CADx, this might be resulting from down sampling process lost some size information of the nodules.
Beyond adaptive-critic creative learning for intelligent mobile robots
NASA Astrophysics Data System (ADS)
Liao, Xiaoqun; Cao, Ming; Hall, Ernest L.
2001-10-01
Intelligent industrial and mobile robots may be considered proven technology in structured environments. Teach programming and supervised learning methods permit solutions to a variety of applications. However, we believe that to extend the operation of these machines to more unstructured environments requires a new learning method. Both unsupervised learning and reinforcement learning are potential candidates for these new tasks. The adaptive critic method has been shown to provide useful approximations or even optimal control policies to non-linear systems. The purpose of this paper is to explore the use of new learning methods that goes beyond the adaptive critic method for unstructured environments. The adaptive critic is a form of reinforcement learning. A critic element provides only high level grading corrections to a cognition module that controls the action module. In the proposed system the critic's grades are modeled and forecasted, so that an anticipated set of sub-grades are available to the cognition model. The forecasting grades are interpolated and are available on the time scale needed by the action model. The success of the system is highly dependent on the accuracy of the forecasted grades and adaptability of the action module. Examples from the guidance of a mobile robot are provided to illustrate the method for simple line following and for the more complex navigation and control in an unstructured environment. The theory presented that is beyond the adaptive critic may be called creative theory. Creative theory is a form of learning that models the highest level of human learning - imagination. The application of the creative theory appears to not only be to mobile robots but also to many other forms of human endeavor such as educational learning and business forecasting. Reinforcement learning such as the adaptive critic may be applied to known problems to aid in the discovery of their solutions. The significance of creative theory is that it
Personalized tuning of a reinforcement learning control algorithm for glucose regulation.
Daskalaki, Elena; Diem, Peter; Mougiakakou, Stavroula G
2013-01-01
Artificial pancreas is in the forefront of research towards the automatic insulin infusion for patients with type 1 diabetes. Due to the high inter- and intra-variability of the diabetic population, the need for personalized approaches has been raised. This study presents an adaptive, patient-specific control strategy for glucose regulation based on reinforcement learning and more specifically on the Actor-Critic (AC) learning approach. The control algorithm provides daily updates of the basal rate and insulin-to-carbohydrate (IC) ratio in order to optimize glucose regulation. A method for the automatic and personalized initialization of the control algorithm is designed based on the estimation of the transfer entropy (TE) between insulin and glucose signals. The algorithm has been evaluated in silico in adults, adolescents and children for 10 days. Three scenarios of initialization to i) zero values, ii) random values and iii) TE-based values have been comparatively assessed. The results have shown that when the TE-based initialization is used, the algorithm achieves faster learning with 98%, 90% and 73% in the A+B zones of the Control Variability Grid Analysis for adults, adolescents and children respectively after five days compared to 95%, 78%, 41% for random initialization and 93%, 88%, 41% for zero initial values. Furthermore, in the case of children, the daily Low Blood Glucose Index reduces much faster when the TE-based tuning is applied. The results imply that automatic and personalized tuning based on TE reduces the learning period and improves the overall performance of the AC algorithm. PMID:24110480
NASA Technical Reports Server (NTRS)
Whitmore, S. A.
1985-01-01
The dynamics model and data sources used to perform air-data reconstruction are discussed, as well as the Kalman filter. The need for adaptive determination of the noise statistics of the process is indicated. The filter innovations are presented as a means of developing the adaptive criterion, which is based on the true mean and covariance of the filter innovations. A method for the numerical approximation of the mean and covariance of the filter innovations is presented. The algorithm as developed is applied to air-data reconstruction for the space shuttle, and data obtained from the third landing are presented. To verify the performance of the adaptive algorithm, the reconstruction is also performed using a constant covariance Kalman filter. The results of the reconstructions are compared, and the adaptive algorithm exhibits better performance.
NASA Astrophysics Data System (ADS)
Li, Jinsha; Li, Junmin
2016-07-01
In this paper, the adaptive fuzzy iterative learning control scheme is proposed for coordination problems of Mth order (M ≥ 2) distributed multi-agent systems. Every follower agent has a higher order integrator with unknown nonlinear dynamics and input disturbance. The dynamics of the leader are a higher order nonlinear systems and only available to a portion of the follower agents. With distributed initial state learning, the unified distributed protocols combined time-domain and iteration-domain adaptive laws guarantee that the follower agents track the leader uniformly on [0, T]. Then, the proposed algorithm extends to achieve the formation control. A numerical example and a multiple robotic system are provided to demonstrate the performance of the proposed approach.
Simple and Effective Algorithms: Computer-Adaptive Testing.
ERIC Educational Resources Information Center
Linacre, John Michael
Computer-adaptive testing (CAT) allows improved security, greater scoring accuracy, shorter testing periods, quicker availability of results, and reduced guessing and other undesirable test behavior. Simple approaches can be applied by the classroom teacher, or other content specialist, who possesses simple computer equipment and elementary…
Self-learning metabasin escape algorithm for supercooled liquids.
Cao, Penghui; Li, Minghai; Heugle, Ravi J; Park, Harold S; Lin, Xi
2012-07-01
A generic history-penalized metabasin escape algorithm that contains no predetermined parameters is presented in this work. The spatial location and volume of imposed penalty functions in the configurational space are determined in self-learning processes as the 3N-dimensional potential energy surface is sampled. The computational efficiency is demonstrated using a binary Lennard-Jones liquid supercooled below the glass transition temperature, which shows an O(10(3)) reduction in the quadratic scaling coefficient of the overall computational cost as compared to the previous algorithm implementation. Furthermore, the metabasin sizes of supercooled liquids are obtained as a natural consequence of determining the self-learned penalty function width distributions. In the case of a bulk binary Lennard-Jones liquid at a fixed density of 1.2, typical metabasins are found to contain about 148 particles while having a correlation length of 3.09 when the system temperature drops below the glass transition temperature.
Towards an Adaptive Multimedia Learning Environment: Enhancing the Student Experience.
ERIC Educational Resources Information Center
Kurzel, Frank; Slay, Jill; Rath, Michelle; Chau, Yenha
This paper describes the development of an adaptive multimedia learning environment that utilizes multimedia presentation techniques in its interface while still providing Internet connectivity for management and delivery purposes. The system supports the WWW as its addressing space but uses the local client areas to store media items expensive in…
Adaptive Learning in Psychology: Wayfinding in the Digital Age
ERIC Educational Resources Information Center
Dziuban, Charles D.; Moskal, Patsy D.; Cassisi, Jeffrey; Fawcett, Alexis
2016-01-01
This paper presents the results of a pilot study investigating the use of the Realizeit adaptive learning platform to deliver a fully online General Psychology course across two semesters. Through mutual cooperation, UCF and vendor (CCKF) researchers examined students' affective, behavioral, and cognitive reactions to the system. Student survey…
Managing Adaptive Challenges: Learning with Principals in Bermuda and Florida
ERIC Educational Resources Information Center
Drago-Severson, Eleanor; Maslin-Ostrowski, Patricia; Hoffman, Alexander M.; Barbaro, Justin
2014-01-01
We interviewed eight principals from Bermuda and Florida about how they identify and manage their most pressing challenges. Their challenges are composed of both adaptive and technical work, requiring leaders to learn to diagnose and manage them. Challenges focused on change and were traced to accountability contexts, yet accountability was not…
Adaptive Knowledge Management of Project-Based Learning
ERIC Educational Resources Information Center
Tilchin, Oleg; Kittany, Mohamed
2016-01-01
The goal of an approach to Adaptive Knowledge Management (AKM) of project-based learning (PBL) is to intensify subject study through guiding, inducing, and facilitating development knowledge, accountability skills, and collaborative skills of students. Knowledge development is attained by knowledge acquisition, knowledge sharing, and knowledge…
Mispronunciation Detection for Language Learning and Speech Recognition Adaptation
ERIC Educational Resources Information Center
Ge, Zhenhao
2013-01-01
The areas of "mispronunciation detection" (or "accent detection" more specifically) within the speech recognition community are receiving increased attention now. Two application areas, namely language learning and speech recognition adaptation, are largely driving this research interest and are the focal points of this work.…
Adaptive inpainting algorithm based on DCT induced wavelet regularization.
Li, Yan-Ran; Shen, Lixin; Suter, Bruce W
2013-02-01
In this paper, we propose an image inpainting optimization model whose objective function is a smoothed l(1) norm of the weighted nondecimated discrete cosine transform (DCT) coefficients of the underlying image. By identifying the objective function of the proposed model as a sum of a differentiable term and a nondifferentiable term, we present a basic algorithm inspired by Beck and Teboulle's recent work on the model. Based on this basic algorithm, we propose an automatic way to determine the weights involved in the model and update them in each iteration. The DCT as an orthogonal transform is used in various applications. We view the rows of a DCT matrix as the filters associated with a multiresolution analysis. Nondecimated wavelet transforms with these filters are explored in order to analyze the images to be inpainted. Our numerical experiments verify that under the proposed framework, the filters from a DCT matrix demonstrate promise for the task of image inpainting.
Amygdala-prefrontal interactions in (mal)adaptive learning.
Likhtik, Ekaterina; Paz, Rony
2015-03-01
The study of neurobiological mechanisms underlying anxiety disorders has been shaped by learning models that frame anxiety as maladaptive learning. Pavlovian conditioning and extinction are particularly influential in defining learning stages that can account for symptoms of anxiety disorders. Recently, dynamic and task related communication between the basolateral complex of the amygdala (BLA) and the medial prefrontal cortex (mPFC) has emerged as a crucial aspect of successful evaluation of threat and safety. Ongoing patterns of neural signaling within the mPFC-BLA circuit during encoding, expression and extinction of adaptive learning are reviewed. The mechanisms whereby deficient mPFC-BLA interactions can lead to generalized fear and anxiety are discussed in learned and innate anxiety. Findings with cross-species validity are emphasized.
A framework for porting the NeuroBayes machine learning algorithm to FPGAs
NASA Astrophysics Data System (ADS)
Baehr, S.; Sander, O.; Heck, M.; Feindt, M.; Becker, J.
2016-01-01
The NeuroBayes machine learning algorithm is deployed for online data reduction at the pixel detector of Belle II. In order to test, characterize and easily adapt its implementation on FPGAs, a framework was developed. Within the framework an HDL model, written in python using MyHDL, is used for fast exploration of possible configurations. Under usage of input data from physics simulations figures of merit like throughput, accuracy and resource demand of the implementation are evaluated in a fast and flexible way. Functional validation is supported by usage of unit tests and HDL simulation for chosen configurations.
Roemmich, Ryan T; Hack, Nawaz; Akbar, Umer; Hass, Chris J
2014-07-15
Persons with Parkinson's disease (PD) are characterized by multifactorial gait deficits, though the factors which influence the abilities of persons with PD to adapt and store new gait patterns are unclear. The purpose of this study was to investigate the effects of dopaminergic therapy on the abilities of persons with PD to adapt and store gait parameters during split-belt treadmill (SBT) walking. Ten participants with idiopathic PD who were being treated with stable doses of orally-administered dopaminergic therapy participated. All participants performed two randomized testing sessions on separate days: once while optimally-medicated (ON meds) and once after 12-h withdrawal from dopaminergic medication (OFF meds). During each session, locomotor adaptation was investigated as the participants walked on a SBT for 10 min while the belts moved at a 2:1 speed ratio. We assessed locomotor adaptive learning by quantifying: (1) aftereffects during de-adaptation (once the belts returned to tied speeds immediately following SBT walking) and (2) savings during re-adaptation (as the participants repeated the same SBT walking task after washout of aftereffects following the initial SBT task). The withholding of dopaminergic medication diminished step length aftereffects significantly during de-adaptation. However, both locomotor adaptation and savings were unaffected by levodopa. These findings suggest that dopaminergic pathways influence aftereffect storage but do not influence locomotor adaptation or savings within a single session of SBT walking. It appears important that persons with PD should be optimally-medicated if walking on the SBT as gait rehabilitation.
A Case-Study for Life-Long Learning and Adaptation in Cooperative Robot Teams
Parker, L.E.
1999-09-19
While considerable progress has been made in recent years toward the development of multi-robot teams, much work remains to be done before these teams are used widely in real-world applications. Two particular needs toward this end are the development of mechanisms that enable robot teams to generate cooperative behaviors on their own, and the development of techniques that allow these teams to autonomously adapt their behavior over time as the environment or the robot team changes. This paper proposes the use of the Cooperative Multi-Robot Observation of Multiple Moving Targets (CMOMMT) application as a rich domain for studying the issues of multi-robot learning and adaptation. After discussing the need for learning and adaptation in multi-robot teams, this paper describes the CMOMMT application and its relevance to multi-robot learning. We discuss the results of the previously- developed, hand-generated algorithm for CMOMMT and the potential for learning that was discovered from the hand-generated approach. We then describe the early work that has been done (by us and others) to generate multi- robot learning techniques for the CMOMMT application, as well as our ongoing research to develop approaches that give performance as good, or better, than the hand-generated approach. The ultimate goal of this research is to develop techniques for multi-robot learning and adaptation in the CMOMMT application domain that will generalize to cooperative robot applications in other domains, thus making the practical use of multi-robot teams in a wide variety of real-world applications much closer to reality.
Recursive least-squares learning algorithms for neural networks
Lewis, P.S. ); Hwang, Jenq-Neng . Dept. of Electrical Engineering)
1990-01-01
This paper presents the development of a pair of recursive least squares (RLS) algorithms for online training of multilayer perceptrons, which are a class of feedforward artificial neural networks. These algorithms incorporate second order information about the training error surface in order to achieve faster learning rates than are possible using first order gradient descent algorithms such as the generalized delta rule. A least squares formulation is derived from a linearization of the training error function. Individual training pattern errors are linearized about the network parameters that were in effect when the pattern was presented. This permits the recursive solution of the least squares approximation, either via conventional RLS recursions or by recursive QR decomposition-based techniques. The computational complexity of the update is in the order of (N{sup 2}), where N is the number of network parameters. This is due to the estimation of the N {times} N inverse Hessian matrix. Less computationally intensive approximations of the RLS algorithms can be easily derived by using only block diagonal elements of this matrix, thereby partitioning the learning into independent sets. A simulation example is presented in which a neural network is trained to approximate a two dimensional Gaussian bump. In this example, RLS training required an order of magnitude fewer iterations on average (527) than did training with the generalized delta rule (6331). 14 refs., 3 figs.
Optimization in Quaternion Dynamic Systems: Gradient, Hessian, and Learning Algorithms.
Xu, Dongpo; Xia, Yili; Mandic, Danilo P
2016-02-01
The optimization of real scalar functions of quaternion variables, such as the mean square error or array output power, underpins many practical applications. Solutions typically require the calculation of the gradient and Hessian. However, real functions of quaternion variables are essentially nonanalytic, which are prohibitive to the development of quaternion-valued learning systems. To address this issue, we propose new definitions of quaternion gradient and Hessian, based on the novel generalized Hamilton-real (GHR) calculus, thus making a possible efficient derivation of general optimization algorithms directly in the quaternion field, rather than using the isomorphism with the real domain, as is current practice. In addition, unlike the existing quaternion gradients, the GHR calculus allows for the product and chain rule, and for a one-to-one correspondence of the novel quaternion gradient and Hessian with their real counterparts. Properties of the quaternion gradient and Hessian relevant to numerical applications are also introduced, opening a new avenue of research in quaternion optimization and greatly simplified the derivations of learning algorithms. The proposed GHR calculus is shown to yield the same generic algorithm forms as the corresponding real- and complex-valued algorithms. Advantages of the proposed framework are illuminated over illustrative simulations in quaternion signal processing and neural networks. PMID:26087504
Optimization in Quaternion Dynamic Systems: Gradient, Hessian, and Learning Algorithms.
Xu, Dongpo; Xia, Yili; Mandic, Danilo P
2016-02-01
The optimization of real scalar functions of quaternion variables, such as the mean square error or array output power, underpins many practical applications. Solutions typically require the calculation of the gradient and Hessian. However, real functions of quaternion variables are essentially nonanalytic, which are prohibitive to the development of quaternion-valued learning systems. To address this issue, we propose new definitions of quaternion gradient and Hessian, based on the novel generalized Hamilton-real (GHR) calculus, thus making a possible efficient derivation of general optimization algorithms directly in the quaternion field, rather than using the isomorphism with the real domain, as is current practice. In addition, unlike the existing quaternion gradients, the GHR calculus allows for the product and chain rule, and for a one-to-one correspondence of the novel quaternion gradient and Hessian with their real counterparts. Properties of the quaternion gradient and Hessian relevant to numerical applications are also introduced, opening a new avenue of research in quaternion optimization and greatly simplified the derivations of learning algorithms. The proposed GHR calculus is shown to yield the same generic algorithm forms as the corresponding real- and complex-valued algorithms. Advantages of the proposed framework are illuminated over illustrative simulations in quaternion signal processing and neural networks.
Projection learning algorithm for threshold - controlled neural networks
Reznik, A.M.
1995-03-01
The projection learning algorithm proposed in [1, 2] and further developed in [3] substantially improves the efficiency of memorizing information and accelerates the learning process in neural networks. This algorithm is compatible with the completely connected neural network architecture (the Hopfield network [4]), but its application to other networks involves a number of difficulties. The main difficulties include constraints on interconnection structure and the need to eliminate the state uncertainty of latent neurons if such are present in the network. Despite the encouraging preliminary results of [3], further extension of the applications of the projection algorithm therefore remains problematic. In this paper, which is a continuation of the work begun in [3], we consider threshold-controlled neural networks. Networks of this type are quite common. They represent the receptor neuron layers in some neurocomputer designs. A similar structure is observed in the lower divisions of biological sensory systems [5]. In multilayer projection neural networks with lateral interconnections, the neuron layers or parts of these layers may also have the structure of a threshold-controlled completely connected network. Here the thresholds are the potentials delivered through the projection connections from other parts of the network. The extension of the projection algorithm to the class of threshold-controlled networks may accordingly prove to be useful both for extending its technical applications and for better understanding of the operation of the nervous system in living organisms.
Approach for Using Learner Satisfaction to Evaluate the Learning Adaptation Policy
ERIC Educational Resources Information Center
Jeghal, Adil; Oughdir, Lahcen; Tairi, Hamid; Radouane, Abdelhay
2016-01-01
The learning adaptation is a very important phase in a learning situation in human learning environments. This paper presents the authors' approach used to evaluate the effectiveness of learning adaptive systems. This approach is based on the analysis of learner satisfaction notices collected by a questionnaire on a learning situation; to analyze…
An adaptive grid-based all hexahedral meshing algorithm based on 2-refinement.
Edgel, Jared; Benzley, Steven E.; Owen, Steven James
2010-08-01
Most adaptive mesh generation algorithms employ a 3-refinement method. This method, although easy to employ, provides a mesh that is often too coarse in some areas and over refined in other areas. Because this method generates 27 new hexes in place of a single hex, there is little control on mesh density. This paper presents an adaptive all-hexahedral grid-based meshing algorithm that employs a 2-refinement method. 2-refinement is based on dividing the hex to be refined into eight new hexes. This method allows a greater control on mesh density when compared to a 3-refinement procedure. This adaptive all-hexahedral meshing algorithm provides a mesh that is efficient for analysis by providing a high element density in specific locations and a reduced mesh density in other areas. In addition, this tool can be effectively used for inside-out hexahedral grid based schemes, using Cartesian structured grids for the base mesh, which have shown great promise in accommodating automatic all-hexahedral algorithms. This adaptive all-hexahedral grid-based meshing algorithm employs a 2-refinement insertion method. This allows greater control on mesh density when compared to 3-refinement methods. This algorithm uses a two layer transition zone to increase element quality and keeps transitions from lower to higher mesh densities smooth. Templates were introduced to allow both convex and concave refinement.
Premaladha, J; Ravichandran, K S
2016-04-01
Dermoscopy is a technique used to capture the images of skin, and these images are useful to analyze the different types of skin diseases. Malignant melanoma is a kind of skin cancer whose severity even leads to death. Earlier detection of melanoma prevents death and the clinicians can treat the patients to increase the chances of survival. Only few machine learning algorithms are developed to detect the melanoma using its features. This paper proposes a Computer Aided Diagnosis (CAD) system which equips efficient algorithms to classify and predict the melanoma. Enhancement of the images are done using Contrast Limited Adaptive Histogram Equalization technique (CLAHE) and median filter. A new segmentation algorithm called Normalized Otsu's Segmentation (NOS) is implemented to segment the affected skin lesion from the normal skin, which overcomes the problem of variable illumination. Fifteen features are derived and extracted from the segmented images are fed into the proposed classification techniques like Deep Learning based Neural Networks and Hybrid Adaboost-Support Vector Machine (SVM) algorithms. The proposed system is tested and validated with nearly 992 images (malignant & benign lesions) and it provides a high classification accuracy of 93 %. The proposed CAD system can assist the dermatologists to confirm the decision of the diagnosis and to avoid excisional biopsies. PMID:26872778
Premaladha, J; Ravichandran, K S
2016-04-01
Dermoscopy is a technique used to capture the images of skin, and these images are useful to analyze the different types of skin diseases. Malignant melanoma is a kind of skin cancer whose severity even leads to death. Earlier detection of melanoma prevents death and the clinicians can treat the patients to increase the chances of survival. Only few machine learning algorithms are developed to detect the melanoma using its features. This paper proposes a Computer Aided Diagnosis (CAD) system which equips efficient algorithms to classify and predict the melanoma. Enhancement of the images are done using Contrast Limited Adaptive Histogram Equalization technique (CLAHE) and median filter. A new segmentation algorithm called Normalized Otsu's Segmentation (NOS) is implemented to segment the affected skin lesion from the normal skin, which overcomes the problem of variable illumination. Fifteen features are derived and extracted from the segmented images are fed into the proposed classification techniques like Deep Learning based Neural Networks and Hybrid Adaboost-Support Vector Machine (SVM) algorithms. The proposed system is tested and validated with nearly 992 images (malignant & benign lesions) and it provides a high classification accuracy of 93 %. The proposed CAD system can assist the dermatologists to confirm the decision of the diagnosis and to avoid excisional biopsies.
Simulation of Biochemical Pathway Adaptability Using Evolutionary Algorithms
Bosl, W J
2005-01-26
The systems approach to genomics seeks quantitative and predictive descriptions of cells and organisms. However, both the theoretical and experimental methods necessary for such studies still need to be developed. We are far from understanding even the simplest collective behavior of biomolecules, cells or organisms. A key aspect to all biological problems, including environmental microbiology, evolution of infectious diseases, and the adaptation of cancer cells is the evolvability of genomes. This is particularly important for Genomes to Life missions, which tend to focus on the prospect of engineering microorganisms to achieve desired goals in environmental remediation and climate change mitigation, and energy production. All of these will require quantitative tools for understanding the evolvability of organisms. Laboratory biodefense goals will need quantitative tools for predicting complicated host-pathogen interactions and finding counter-measures. In this project, we seek to develop methods to simulate how external and internal signals cause the genetic apparatus to adapt and organize to produce complex biochemical systems to achieve survival. This project is specifically directed toward building a computational methodology for simulating the adaptability of genomes. This project investigated the feasibility of using a novel quantitative approach to studying the adaptability of genomes and biochemical pathways. This effort was intended to be the preliminary part of a larger, long-term effort between key leaders in computational and systems biology at Harvard University and LLNL, with Dr. Bosl as the lead PI. Scientific goals for the long-term project include the development and testing of new hypotheses to explain the observed adaptability of yeast biochemical pathways when the myosin-II gene is deleted and the development of a novel data-driven evolutionary computation as a way to connect exploratory computational simulation with hypothesis
Bergeron, Bryan; Cline, Andrew; Shipley, Jaime
2012-01-01
We have developed a distributed, standards-based architecture that enables simulation and simulator designers to leverage adaptive learning systems. Our approach, which incorporates an electronic competency record, open source LMS, and open source microcontroller hardware, is a low-cost, pragmatic option to integrating simulators with traditional courseware. PMID:22356955
The No-Prop algorithm: a new learning algorithm for multilayer neural networks.
Widrow, Bernard; Greenblatt, Aaron; Kim, Youngsik; Park, Dookun
2013-01-01
A new learning algorithm for multilayer neural networks that we have named No-Propagation (No-Prop) is hereby introduced. With this algorithm, the weights of the hidden-layer neurons are set and fixed with random values. Only the weights of the output-layer neurons are trained, using steepest descent to minimize mean square error, with the LMS algorithm of Widrow and Hoff. The purpose of introducing nonlinearity with the hidden layers is examined from the point of view of Least Mean Square Error Capacity (LMS Capacity), which is defined as the maximum number of distinct patterns that can be trained into the network with zero error. This is shown to be equal to the number of weights of each of the output-layer neurons. The No-Prop algorithm and the Back-Prop algorithm are compared. Our experience with No-Prop is limited, but from the several examples presented here, it seems that the performance regarding training and generalization of both algorithms is essentially the same when the number of training patterns is less than or equal to LMS Capacity. When the number of training patterns exceeds Capacity, Back-Prop is generally the better performer. But equivalent performance can be obtained with No-Prop by increasing the network Capacity by increasing the number of neurons in the hidden layer that drives the output layer. The No-Prop algorithm is much simpler and easier to implement than Back-Prop. Also, it converges much faster. It is too early to definitively say where to use one or the other of these algorithms. This is still a work in progress. PMID:23140797
Neuromorphic implementations of neurobiological learning algorithms for spiking neural networks.
Walter, Florian; Röhrbein, Florian; Knoll, Alois
2015-12-01
The application of biologically inspired methods in design and control has a long tradition in robotics. Unlike previous approaches in this direction, the emerging field of neurorobotics not only mimics biological mechanisms at a relatively high level of abstraction but employs highly realistic simulations of actual biological nervous systems. Even today, carrying out these simulations efficiently at appropriate timescales is challenging. Neuromorphic chip designs specially tailored to this task therefore offer an interesting perspective for neurorobotics. Unlike Von Neumann CPUs, these chips cannot be simply programmed with a standard programming language. Like real brains, their functionality is determined by the structure of neural connectivity and synaptic efficacies. Enabling higher cognitive functions for neurorobotics consequently requires the application of neurobiological learning algorithms to adjust synaptic weights in a biologically plausible way. In this paper, we therefore investigate how to program neuromorphic chips by means of learning. First, we provide an overview over selected neuromorphic chip designs and analyze them in terms of neural computation, communication systems and software infrastructure. On the theoretical side, we review neurobiological learning techniques. Based on this overview, we then examine on-die implementations of these learning algorithms on the considered neuromorphic chips. A final discussion puts the findings of this work into context and highlights how neuromorphic hardware can potentially advance the field of autonomous robot systems. The paper thus gives an in-depth overview of neuromorphic implementations of basic mechanisms of synaptic plasticity which are required to realize advanced cognitive capabilities with spiking neural networks. PMID:26422422
Neuromorphic implementations of neurobiological learning algorithms for spiking neural networks.
Walter, Florian; Röhrbein, Florian; Knoll, Alois
2015-12-01
The application of biologically inspired methods in design and control has a long tradition in robotics. Unlike previous approaches in this direction, the emerging field of neurorobotics not only mimics biological mechanisms at a relatively high level of abstraction but employs highly realistic simulations of actual biological nervous systems. Even today, carrying out these simulations efficiently at appropriate timescales is challenging. Neuromorphic chip designs specially tailored to this task therefore offer an interesting perspective for neurorobotics. Unlike Von Neumann CPUs, these chips cannot be simply programmed with a standard programming language. Like real brains, their functionality is determined by the structure of neural connectivity and synaptic efficacies. Enabling higher cognitive functions for neurorobotics consequently requires the application of neurobiological learning algorithms to adjust synaptic weights in a biologically plausible way. In this paper, we therefore investigate how to program neuromorphic chips by means of learning. First, we provide an overview over selected neuromorphic chip designs and analyze them in terms of neural computation, communication systems and software infrastructure. On the theoretical side, we review neurobiological learning techniques. Based on this overview, we then examine on-die implementations of these learning algorithms on the considered neuromorphic chips. A final discussion puts the findings of this work into context and highlights how neuromorphic hardware can potentially advance the field of autonomous robot systems. The paper thus gives an in-depth overview of neuromorphic implementations of basic mechanisms of synaptic plasticity which are required to realize advanced cognitive capabilities with spiking neural networks.
Adaptive merit function in SPGD algorithm for beam combining
NASA Astrophysics Data System (ADS)
Yang, Guo-qing; Liu, Li-sheng; Jiang, Zhen-hua; Wang, Ting-feng; Guo, Jin
2016-09-01
The beam pointing is the most crucial issue for beam combining to achieve high energy laser output. In order to meet the turbulence situation, a beam pointing method that cooperates with the stochastic parallel gradient descent (SPGD) algorithm is proposed. The power-in-the-bucket ( PIB) is chosen as the merit function, and its radius changes gradually during the correction process. The linear radius and the exponential radius are simulated. The results show that the exponential radius has great promise for beam pointing.
Jawarneh, Sana; Abdullah, Salwani
2015-01-01
This paper presents a bee colony optimisation (BCO) algorithm to tackle the vehicle routing problem with time window (VRPTW). The VRPTW involves recovering an ideal set of routes for a fleet of vehicles serving a defined number of customers. The BCO algorithm is a population-based algorithm that mimics the social communication patterns of honeybees in solving problems. The performance of the BCO algorithm is dependent on its parameters, so the online (self-adaptive) parameter tuning strategy is used to improve its effectiveness and robustness. Compared with the basic BCO, the adaptive BCO performs better. Diversification is crucial to the performance of the population-based algorithm, but the initial population in the BCO algorithm is generated using a greedy heuristic, which has insufficient diversification. Therefore the ways in which the sequential insertion heuristic (SIH) for the initial population drives the population toward improved solutions are examined. Experimental comparisons indicate that the proposed adaptive BCO-SIH algorithm works well across all instances and is able to obtain 11 best results in comparison with the best-known results in the literature when tested on Solomon's 56 VRPTW 100 customer instances. Also, a statistical test shows that there is a significant difference between the results.
Jawarneh, Sana; Abdullah, Salwani
2015-01-01
This paper presents a bee colony optimisation (BCO) algorithm to tackle the vehicle routing problem with time window (VRPTW). The VRPTW involves recovering an ideal set of routes for a fleet of vehicles serving a defined number of customers. The BCO algorithm is a population-based algorithm that mimics the social communication patterns of honeybees in solving problems. The performance of the BCO algorithm is dependent on its parameters, so the online (self-adaptive) parameter tuning strategy is used to improve its effectiveness and robustness. Compared with the basic BCO, the adaptive BCO performs better. Diversification is crucial to the performance of the population-based algorithm, but the initial population in the BCO algorithm is generated using a greedy heuristic, which has insufficient diversification. Therefore the ways in which the sequential insertion heuristic (SIH) for the initial population drives the population toward improved solutions are examined. Experimental comparisons indicate that the proposed adaptive BCO-SIH algorithm works well across all instances and is able to obtain 11 best results in comparison with the best-known results in the literature when tested on Solomon's 56 VRPTW 100 customer instances. Also, a statistical test shows that there is a significant difference between the results. PMID:26132158
Jawarneh, Sana; Abdullah, Salwani
2015-01-01
This paper presents a bee colony optimisation (BCO) algorithm to tackle the vehicle routing problem with time window (VRPTW). The VRPTW involves recovering an ideal set of routes for a fleet of vehicles serving a defined number of customers. The BCO algorithm is a population-based algorithm that mimics the social communication patterns of honeybees in solving problems. The performance of the BCO algorithm is dependent on its parameters, so the online (self-adaptive) parameter tuning strategy is used to improve its effectiveness and robustness. Compared with the basic BCO, the adaptive BCO performs better. Diversification is crucial to the performance of the population-based algorithm, but the initial population in the BCO algorithm is generated using a greedy heuristic, which has insufficient diversification. Therefore the ways in which the sequential insertion heuristic (SIH) for the initial population drives the population toward improved solutions are examined. Experimental comparisons indicate that the proposed adaptive BCO-SIH algorithm works well across all instances and is able to obtain 11 best results in comparison with the best-known results in the literature when tested on Solomon’s 56 VRPTW 100 customer instances. Also, a statistical test shows that there is a significant difference between the results. PMID:26132158
Introduction to project ALIAS: adaptive-learning image analysis system
NASA Astrophysics Data System (ADS)
Bock, Peter
1992-03-01
As an alternative to preprogrammed rule-based artificial intelligence, collective learning systems theory postulates a hierarchical network of cellular automata which acquire their knowledge through learning based on a series of trial-and-error interactions with an evaluating environment, much as humans do. The input to the hierarchical network is provided by a set of sensors which perceive the external world. Using both this perceived information and past experience (memory), the learning automata synthesize collections of trial responses, periodically modifying their memories based on internal evaluations or external evaluations from the environment. Based on collective learning systems theory, an adaptive transputer- based image-processing engine comprising a three-layer hierarchical network of 32 learning cells and 33 nonlearning cells has been applied to a difficult image processing task: the scale, phase, and translation-invariant detection of anomalous features in otherwise `normal' images. Known as adaptive learning image analysis system (ALIAS), this parallel-processing engine has been constructed and tested at the Research institute for Applied Knowledge Processing (FAW) in Ulm, Germany under the sponsorship of Robert Bosch GmbH. Results demonstrate excellent detection, discrimination, and localization of anomalies in binary images. Recent enhancements include the ability to process gray-scale images and the automatic supervised segmentation and classification of images. Current research is directed toward the processing of time-series data and the hierarchical extension of ALIAS from the sub-symbolic level to the higher levels of symbolic association.
A novel algorithm for scalable and accurate Bayesian network learning.
Brown, Laura E; Tsamardinos, Ioannis; Aliferis, Constantin F
2004-01-01
Bayesian Networks (BN) is a knowledge representation formalism that has been proven to be valuable in biomedicine for constructing decision support systems and for generating causal hypotheses from data. Given the emergence of datasets in medicine and biology with thousands of variables and that current algorithms do not scale more than a few hundred variables in practical domains, new efficient and accurate algorithms are needed to learn high quality BNs from data. We present a new algorithm called Max-Min Hill-Climbing (MMHC) that builds upon and improves the Sparse Candidate (SC) algorithm; a state-of-the-art algorithm that scales up to datasets involving hundreds of variables provided the generating networks are sparse. Compared to the SC, on a number of datasets from medicine and biology, (a) MMHC discovers BNs that are structurally closer to the data-generating BN, (b) the discovered networks are more probable given the data, (c) MMHC is computationally more efficient and scalable than SC, and (d) the generating networks are not required to be uniformly sparse nor is the user of MMHC required to guess correctly the network connectivity
ERIC Educational Resources Information Center
Corbalan, Gemma; Kester, Liesbeth; van Merrienboer, Jeroen J. G.
2008-01-01
Complex skill acquisition by performing authentic learning tasks is constrained by limited working memory capacity [Baddeley, A. D. (1992). Working memory. "Science, 255", 556-559]. To prevent cognitive overload, task difficulty and support of each newly selected learning task can be adapted to the learner's competence level and perceived task…
ERIC Educational Resources Information Center
Standal, Oyvind F.; Jespersen, Ejgil
2008-01-01
The purpose of this study was to investigate the learning that takes place when people with disabilities interact in a rehabilitation context. Data were generated through in-depth interviews and close observations in a 2 one-half week-long rehabilitation program, where the participants learned both wheelchair skills and adapted physical…
ERIC Educational Resources Information Center
Polat, Elif; Adiguzel, Tufan; Akgun, Ozcan Erkan
2012-01-01
Because there is, currently, no education system for primary school students in grades 1-3 who have specific learning disabilities in Turkey and because such students do not receive sufficient support from face-to-face counseling, a needs analysis was conducted in order to prepare an adaptive, web-assisted learning system according to variables…
SSD-Optimized Workload Placement with Adaptive Learning and Classification in HPC Environments
Wan, Lipeng; Lu, Zheng; Cao, Qing; Wang, Feiyi; Oral, H Sarp; Settlemyer, Bradley W
2014-01-01
In recent years, non-volatile memory devices such as SSD drives have emerged as a viable storage solution due to their increasing capacity and decreasing cost. Due to the unique capability and capacity requirements in large scale HPC (High Performance Computing) storage environment, a hybrid config- uration (SSD and HDD) may represent one of the most available and balanced solutions considering the cost and performance. Under this setting, effective data placement as well as movement with controlled overhead become a pressing challenge. In this paper, we propose an integrated object placement and movement framework and adaptive learning algorithms to address these issues. Specifically, we present a method that shuffle data objects across storage tiers to optimize the data access performance. The method also integrates an adaptive learning algorithm where real- time classification is employed to predict the popularity of data object accesses, so that they can be placed on, or migrate between SSD or HDD drives in the most efficient manner. We discuss preliminary results based on this approach using a simulator we developed to show that the proposed methods can dynamically adapt storage placements and access pattern as workloads evolve to achieve the best system level performance such as throughput.
Wang, Ying-Chung; Chien, Chiang-Ju; Teng, Ching-Cheng
2004-06-01
In this paper, a direct adaptive iterative learning control (DAILC) based on a new output-recurrent fuzzy neural network (ORFNN) is presented for a class of repeatable nonlinear systems with unknown nonlinearities and variable initial resetting errors. In order to overcome the design difficulty due to initial state errors at the beginning of each iteration, a concept of time-varying boundary layer is employed to construct an error equation. The learning controller is then designed by using the given ORFNN to approximate an optimal equivalent controller. Some auxiliary control components are applied to eliminate approximation error and ensure learning convergence. Since the optimal ORFNN parameters for a best approximation are generally unavailable, an adaptive algorithm with projection mechanism is derived to update all the consequent, premise, and recurrent parameters during iteration processes. Only one network is required to design the ORFNN-based DAILC and the plant nonlinearities, especially the nonlinear input gain, are allowed to be totally unknown. Based on a Lyapunov-like analysis, we show that all adjustable parameters and internal signals remain bounded for all iterations. Furthermore, the norm of state tracking error vector will asymptotically converge to a tunable residual set as iteration goes to infinity. Finally, iterative learning control of two nonlinear systems, inverted pendulum system and Chua's chaotic circuit, are performed to verify the tracking performance of the proposed learning scheme.
A geometry-based adaptive unstructured grid generation algorithm for complex geological media
NASA Astrophysics Data System (ADS)
Bahrainian, Seyed Saied; Dezfuli, Alireza Daneh
2014-07-01
In this paper a novel unstructured grid generation algorithm is presented that considers the effect of geological features and well locations in grid resolution. The proposed grid generation algorithm presents a strategy for definition and construction of an initial grid based on the geological model, geometry adaptation of geological features, and grid resolution control. The algorithm is applied to seismotectonic map of the Masjed-i-Soleiman reservoir. Comparison of grid results with the “Triangle” program shows a more suitable permeability contrast. Immiscible two-phase flow solutions are presented for a fractured porous media test case using different grid resolutions. Adapted grid on the fracture geometry gave identical results with that of a fine grid. The adapted grid employed 88.2% less CPU time when compared to the solutions obtained by the fine grid.
Building Adaptive Game-Based Learning Resources: The Integration of IMS Learning Design and
ERIC Educational Resources Information Center
Burgos, Daniel; Moreno-Ger, Pablo; Sierra, Jose Luis; Fernandez-Manjon, Baltasar; Specht, Marcus; Koper, Rob
2008-01-01
IMS Learning Design (IMS-LD) is a specification to create units of learning (UoLs), which express a certain pedagogical model or strategy (e.g., adaptive learning with games). However, the authoring process of a UoL remains difficult because of the lack of high-level authoring tools for IMS-LD, even more so when the focus is on specific topics,…
An adaptive numeric predictor-corrector guidance algorithm for atmospheric entry vehicles
NASA Astrophysics Data System (ADS)
Spratlin, Kenneth Milton
1987-05-01
An adaptive numeric predictor-corrector guidance is developed for atmospheric entry vehicles which utilize lift to achieve maximum footprint capability. Applicability of the guidance design to vehicles with a wide range of performance capabilities is desired so as to reduce the need for algorithm redesign with each new vehicle. Adaptability is desired to minimize mission-specific analysis and planning. The guidance algorithm motivation and design are presented. Performance is assessed for application of the algorithm to the NASA Entry Research Vehicle (ERV). The dispersions the guidance must be designed to handle are presented. The achievable operational footprint for expected worst-case dispersions is presented. The algorithm performs excellently for the expected dispersions and captures most of the achievable footprint.
Performance study of LMS based adaptive algorithms for unknown system identification
Javed, Shazia; Ahmad, Noor Atinah
2014-07-10
Adaptive filtering techniques have gained much popularity in the modeling of unknown system identification problem. These techniques can be classified as either iterative or direct. Iterative techniques include stochastic descent method and its improved versions in affine space. In this paper we present a comparative study of the least mean square (LMS) algorithm and some improved versions of LMS, more precisely the normalized LMS (NLMS), LMS-Newton, transform domain LMS (TDLMS) and affine projection algorithm (APA). The performance evaluation of these algorithms is carried out using adaptive system identification (ASI) model with random input signals, in which the unknown (measured) signal is assumed to be contaminated by output noise. Simulation results are recorded to compare the performance in terms of convergence speed, robustness, misalignment, and their sensitivity to the spectral properties of input signals. Main objective of this comparative study is to observe the effects of fast convergence rate of improved versions of LMS algorithms on their robustness and misalignment.
Performance study of LMS based adaptive algorithms for unknown system identification
NASA Astrophysics Data System (ADS)
Javed, Shazia; Ahmad, Noor Atinah
2014-07-01
Adaptive filtering techniques have gained much popularity in the modeling of unknown system identification problem. These techniques can be classified as either iterative or direct. Iterative techniques include stochastic descent method and its improved versions in affine space. In this paper we present a comparative study of the least mean square (LMS) algorithm and some improved versions of LMS, more precisely the normalized LMS (NLMS), LMS-Newton, transform domain LMS (TDLMS) and affine projection algorithm (APA). The performance evaluation of these algorithms is carried out using adaptive system identification (ASI) model with random input signals, in which the unknown (measured) signal is assumed to be contaminated by output noise. Simulation results are recorded to compare the performance in terms of convergence speed, robustness, misalignment, and their sensitivity to the spectral properties of input signals. Main objective of this comparative study is to observe the effects of fast convergence rate of improved versions of LMS algorithms on their robustness and misalignment.
A novel pseudoderivative-based mutation operator for real-coded adaptive genetic algorithms
Kanwal, Maxinder S; Ramesh, Avinash S; Huang, Lauren A
2013-01-01
Recent development of large databases, especially those in genetics and proteomics, is pushing the development of novel computational algorithms that implement rapid and accurate search strategies. One successful approach has been to use artificial intelligence and methods, including pattern recognition (e.g. neural networks) and optimization techniques (e.g. genetic algorithms). The focus of this paper is on optimizing the design of genetic algorithms by using an adaptive mutation rate that is derived from comparing the fitness values of successive generations. We propose a novel pseudoderivative-based mutation rate operator designed to allow a genetic algorithm to escape local optima and successfully continue to the global optimum. Once proven successful, this algorithm can be implemented to solve real problems in neurology and bioinformatics. As a first step towards this goal, we tested our algorithm on two 3-dimensional surfaces with multiple local optima, but only one global optimum, as well as on the N-queens problem, an applied problem in which the function that maps the curve is implicit. For all tests, the adaptive mutation rate allowed the genetic algorithm to find the global optimal solution, performing significantly better than other search methods, including genetic algorithms that implement fixed mutation rates. PMID:24627784
Adaptive control and noise suppression by a variable-gain gradient algorithm
NASA Technical Reports Server (NTRS)
Merhav, S. J.; Mehta, R. S.
1987-01-01
An adaptive control system based on normalized LMS filters is investigated. The finite impulse response of the nonparametric controller is adaptively estimated using a given reference model. Specifically, the following issues are addressed: The stability of the closed loop system is analyzed and heuristically established. Next, the adaptation process is studied for piecewise constant plant parameters. It is shown that by introducing a variable-gain in the gradient algorithm, a substantial reduction in the LMS adaptation rate can be achieved. Finally, process noise at the plant output generally causes a biased estimate of the controller. By introducing a noise suppression scheme, this bias can be substantially reduced and the response of the adapted system becomes very close to that of the reference model. Extensive computer simulations validate these and demonstrate assertions that the system can rapidly adapt to random jumps in plant parameters.
Learning to speciate: The biased learning of mate preferences promotes adaptive radiation
Gilman, R. Tucker; Kozak, Genevieve M.
2015-01-01
Bursts of rapid repeated speciation called adaptive radiations have generated much of Earth's biodiversity and fascinated biologists since Darwin, but we still do not know why some lineages radiate and others do not. Understanding what causes assortative mating to evolve rapidly and repeatedly in the same lineage is key to understanding adaptive radiation. Many species that have undergone adaptive radiations exhibit mate preference learning, where individuals acquire mate preferences by observing the phenotypes of other members of their populations. Mate preference learning can be biased if individuals also learn phenotypes to avoid in mates, and shift their preferences away from these avoided phenotypes. We used individual‐based computational simulations to study whether biased and unbiased mate preference learning promotes ecological speciation and adaptive radiation. We found that ecological speciation can be rapid and repeated when mate preferences are biased, but is inhibited when mate preferences are learned without bias. Our results suggest that biased mate preference learning may play an important role in generating animal biodiversity through adaptive radiation. PMID:26459795
Learning to speciate: The biased learning of mate preferences promotes adaptive radiation.
Gilman, R Tucker; Kozak, Genevieve M
2015-11-01
Bursts of rapid repeated speciation called adaptive radiations have generated much of Earth's biodiversity and fascinated biologists since Darwin, but we still do not know why some lineages radiate and others do not. Understanding what causes assortative mating to evolve rapidly and repeatedly in the same lineage is key to understanding adaptive radiation. Many species that have undergone adaptive radiations exhibit mate preference learning, where individuals acquire mate preferences by observing the phenotypes of other members of their populations. Mate preference learning can be biased if individuals also learn phenotypes to avoid in mates, and shift their preferences away from these avoided phenotypes. We used individual-based computational simulations to study whether biased and unbiased mate preference learning promotes ecological speciation and adaptive radiation. We found that ecological speciation can be rapid and repeated when mate preferences are biased, but is inhibited when mate preferences are learned without bias. Our results suggest that biased mate preference learning may play an important role in generating animal biodiversity through adaptive radiation.
Adaptation algorithms for satellite communication systems equipped with hybrid reflector antennas
NASA Astrophysics Data System (ADS)
Kartsan, I. N.; Zelenkov, P. V.; Tyapkin, V. N.; Dmitriev, D. D.; Goncharov, A. E.
2015-10-01
This paper reviews adaptation algorithms influenced by active interferences in satellite communication systems. A multi-beam antenna is suggested as an adaptive system; it is built on the basis of a hybrid reflector antenna with a 19-element array feed element, which incorporates a modified algorithm for radiation pattern synthesis used for suppressing targeted interferences. As a criterion for this synthesis, antenna gains are used at fixed points. As a result, the size of the objective function and time required for the synthesis can be significantly limited.
Quadratic adaptive algorithm for solving cardiac action potential models.
Chen, Min-Hung; Chen, Po-Yuan; Luo, Ching-Hsing
2016-10-01
An adaptive integration method is proposed for computing cardiac action potential models accurately and efficiently. Time steps are adaptively chosen by solving a quadratic formula involving the first and second derivatives of the membrane action potential. To improve the numerical accuracy, we devise an extremum-locator (el) function to predict the local extremum when approaching the peak amplitude of the action potential. In addition, the time step restriction (tsr) technique is designed to limit the increase in time steps, and thus prevent the membrane potential from changing abruptly. The performance of the proposed method is tested using the Luo-Rudy phase 1 (LR1), dynamic (LR2), and human O'Hara-Rudy dynamic (ORd) ventricular action potential models, and the Courtemanche atrial model incorporating a Markov sodium channel model. Numerical experiments demonstrate that the action potential generated using the proposed method is more accurate than that using the traditional Hybrid method, especially near the peak region. The traditional Hybrid method may choose large time steps near to the peak region, and sometimes causes the action potential to become distorted. In contrast, the proposed new method chooses very fine time steps in the peak region, but large time steps in the smooth region, and the profiles are smoother and closer to the reference solution. In the test on the stiff Markov ionic channel model, the Hybrid blows up if the allowable time step is set to be greater than 0.1ms. In contrast, our method can adjust the time step size automatically, and is stable. Overall, the proposed method is more accurate than and as efficient as the traditional Hybrid method, especially for the human ORd model. The proposed method shows improvement for action potentials with a non-smooth morphology, and it needs further investigation to determine whether the method is helpful during propagation of the action potential. PMID:27639239
Comparison of adaptive algorithms for the control of tonal disturbances in mechanical systems
NASA Astrophysics Data System (ADS)
Zilletti, M.; Elliott, S. J.; Cheer, J.
2016-09-01
This paper presents a study on the performance of adaptive control algorithms designed to reduce the vibration of mechanical systems excited by a harmonic disturbance. The mechanical system consists of a mass suspended on a spring and a damper. The system is equipped with a force actuator in parallel with the suspension. The control signal driving the actuator is generated by adjusting the amplitude and phase of a sinusoidal reference signal at the same frequency as the excitation. An adaptive feedforward control algorithm is used to adapt the amplitude and phase of the control signal, to minimise the mean square velocity of the mass. Two adaptation strategies are considered in which the control signal is either updated after each period of the oscillation or at every time sample. The first strategy is traditionally used in vibration control in helicopters for example; the second strategy is normally referred to as the filtered-x least mean square algorithm and is often used to control engine noise in cars. The two adaptation strategies are compared through a parametric study, which investigates the influence of the properties of both the mechanical system and the control system on the convergence speed of the two algorithms.
NASA Technical Reports Server (NTRS)
Ianculescu, G. D.; Klop, J. J.
1992-01-01
Classical and adaptive control algorithms for the solar array pointing system of the Space Station Freedom are designed using a continuous rigid body model of the solar array gimbal assembly containing both linear and nonlinear dynamics due to various friction components. The robustness of the design solution is examined by performing a series of sensitivity analysis studies. Adaptive control strategies are examined in order to compensate for the unfavorable effect of static nonlinearities, such as dead-zone uncertainties.
Adaptive distance metric learning for diffusion tensor image segmentation.
Kong, Youyong; Wang, Defeng; Shi, Lin; Hui, Steve C N; Chu, Winnie C W
2014-01-01
High quality segmentation of diffusion tensor images (DTI) is of key interest in biomedical research and clinical application. In previous studies, most efforts have been made to construct predefined metrics for different DTI segmentation tasks. These methods require adequate prior knowledge and tuning parameters. To overcome these disadvantages, we proposed to automatically learn an adaptive distance metric by a graph based semi-supervised learning model for DTI segmentation. An original discriminative distance vector was first formulated by combining both geometry and orientation distances derived from diffusion tensors. The kernel metric over the original distance and labels of all voxels were then simultaneously optimized in a graph based semi-supervised learning approach. Finally, the optimization task was efficiently solved with an iterative gradient descent method to achieve the optimal solution. With our approach, an adaptive distance metric could be available for each specific segmentation task. Experiments on synthetic and real brain DTI datasets were performed to demonstrate the effectiveness and robustness of the proposed distance metric learning approach. The performance of our approach was compared with three classical metrics in the graph based semi-supervised learning framework.
Adaptive Distance Metric Learning for Diffusion Tensor Image Segmentation
Kong, Youyong; Wang, Defeng; Shi, Lin; Hui, Steve C. N.; Chu, Winnie C. W.
2014-01-01
High quality segmentation of diffusion tensor images (DTI) is of key interest in biomedical research and clinical application. In previous studies, most efforts have been made to construct predefined metrics for different DTI segmentation tasks. These methods require adequate prior knowledge and tuning parameters. To overcome these disadvantages, we proposed to automatically learn an adaptive distance metric by a graph based semi-supervised learning model for DTI segmentation. An original discriminative distance vector was first formulated by combining both geometry and orientation distances derived from diffusion tensors. The kernel metric over the original distance and labels of all voxels were then simultaneously optimized in a graph based semi-supervised learning approach. Finally, the optimization task was efficiently solved with an iterative gradient descent method to achieve the optimal solution. With our approach, an adaptive distance metric could be available for each specific segmentation task. Experiments on synthetic and real brain DTI datasets were performed to demonstrate the effectiveness and robustness of the proposed distance metric learning approach. The performance of our approach was compared with three classical metrics in the graph based semi-supervised learning framework. PMID:24651858
NASA Technical Reports Server (NTRS)
Troudet, Terry; Merrill, Walter C.
1989-01-01
The ability of feed-forward neural net architectures to learn continuous-valued mappings in the presence of noise is demonstrated in relation to parameter identification and real-time adaptive control applications. Factors and parameters influencing the learning performance of such nets in the presence of noise are identified. Their effects are discussed through a computer simulation of the Back-Error-Propagation algorithm by taking the example of the cart-pole system controlled by a nonlinear control law. Adequate sampling of the state space is found to be essential for canceling the effect of the statistical fluctuations and allowing learning to take place.
Experimental Investigation of Three Machine Learning Algorithms for ITS Dataset
NASA Astrophysics Data System (ADS)
Yearwood, J. L.; Kang, B. H.; Kelarev, A. V.
The present article is devoted to experimental investigation of the performance of three machine learning algorithms for ITS dataset in their ability to achieve agreement with classes published in the biologi cal literature before. The ITS dataset consists of nuclear ribosomal DNA sequences, where rather sophisticated alignment scores have to be used as a measure of distance. These scores do not form a Minkowski metric and the sequences cannot be regarded as points in a finite dimensional space. This is why it is necessary to develop novel machine learning ap proaches to the analysis of datasets of this sort. This paper introduces a k-committees classifier and compares it with the discrete k-means and Nearest Neighbour classifiers. It turns out that all three machine learning algorithms are efficient and can be used to automate future biologically significant classifications for datasets of this kind. A simplified version of a synthetic dataset, where the k-committees classifier outperforms k-means and Nearest Neighbour classifiers, is also presented.
Orthogonal least squares learning algorithm for radial basis function networks.
Chen, S; Cowan, C N; Grant, P M
1991-01-01
The radial basis function network offers a viable alternative to the two-layer neural network in many applications of signal processing. A common learning algorithm for radial basis function networks is based on first choosing randomly some data points as radial basis function centers and then using singular-value decomposition to solve for the weights of the network. Such a procedure has several drawbacks, and, in particular, an arbitrary selection of centers is clearly unsatisfactory. The authors propose an alternative learning procedure based on the orthogonal least-squares method. The procedure chooses radial basis function centers one by one in a rational way until an adequate network has been constructed. In the algorithm, each selected center maximizes the increment to the explained variance or energy of the desired output and does not suffer numerical ill-conditioning problems. The orthogonal least-squares learning strategy provides a simple and efficient means for fitting radial basis function networks. This is illustrated using examples taken from two different signal processing applications.
Learners' Perceptions and Illusions of Adaptivity in Computer-Based Learning Environments
ERIC Educational Resources Information Center
Vandewaetere, Mieke; Vandercruysse, Sylke; Clarebout, Geraldine
2012-01-01
Research on computer-based adaptive learning environments has shown exemplary growth. Although the mechanisms of effective adaptive instruction are unraveled systematically, little is known about the relative effect of learners' perceptions of adaptivity in adaptive learning environments. As previous research has demonstrated that the learners'…
Evaluation of an adaptive filtering algorithm for CT cardiac imaging with EKG modulated tube current
NASA Astrophysics Data System (ADS)
Li, Jianying; Hsieh, Jiang; Mohr, Kelly; Okerlund, Darin
2005-04-01
We have developed an adaptive filtering algorithm for cardiac CT scans with EKG-modulated tube current to optimize resolution and noise for different cardiac phases and to provide safety net for cases where end-systole phase is used for coronary imaging. This algorithm has been evaluated using patient cardiac CT scans where lower tube currents are used for the systolic phases. In this paper, we present the evaluation results. The results demonstrated that with the use of the proposed algorithm, we could improve image quality for all cardiac phases, while providing greater noise and streak artifact reduction for systole phases where lower CT dose were used.
NASA Astrophysics Data System (ADS)
Chen, Xinjia
2015-05-01
We consider the general problem of analysis and design of control systems in the presence of uncertainties. We treat uncertainties that affect a control system as random variables. The performance of the system is measured by the expectation of some derived random variables, which are typically bounded. We develop adaptive sequential randomized algorithms for estimating and optimizing the expectation of such bounded random variables with guaranteed accuracy and confidence level. These algorithms can be applied to overcome the conservatism and computational complexity in the analysis and design of controllers to be used in uncertain environments. We develop methods for investigating the optimality and computational complexity of such algorithms.
Adaptive algorithm for active control of high-amplitude acoustic field in resonator
NASA Astrophysics Data System (ADS)
Červenka, M.; Bednařík, M.; Koníček, P.
2008-06-01
This work is concerned with suppression of nonlinear effects in piston-driven acoustic resonators by means of two-frequency driving technique. An iterative adaptive algorithm is proposed to calculate parameters of the driving signal in order that amplitude of the second harmonics of the acoustic pressure is minimized. Functionality of the algorithm is verified firstly by means of numerical model and secondly, it is used in real computer-controlled experiment. The numerical and experimental results show that the proposed algorithm can be successfully used for generation of high-amplitude shock-free acoustic field in resonators.
Xia, Xuewen
2016-01-01
In recent years, some researchers considered image color quantization as a single-objective problem and applied heuristic algorithms to solve it. This paper establishes a multiobjective image color quantization model with intracluster distance and intercluster separation as its objectives. Inspired by a multipopulation idea, a multiobjective image color quantization algorithm based on self-adaptive hybrid differential evolution (MoDE-CIQ) is then proposed to solve this model. Two numerical experiments on four common test images are conducted to analyze the effectiveness and competitiveness of the multiobjective model and the proposed algorithm. PMID:27738423
An Adaptive Weighting Algorithm for Interpolating the Soil Potassium Content
Liu, Wei; Du, Peijun; Zhao, Zhuowen; Zhang, Lianpeng
2016-01-01
The concept of spatial interpolation is important in the soil sciences. However, the use of a single global interpolation model is often limited by certain conditions (e.g., terrain complexity), which leads to distorted interpolation results. Here we present a method of adaptive weighting combined environmental variables for soil properties interpolation (AW-SP) to improve accuracy. Using various environmental variables, AW-SP was used to interpolate soil potassium content in Qinghai Lake Basin. To evaluate AW-SP performance, we compared it with that of inverse distance weighting (IDW), ordinary kriging, and OK combined with different environmental variables. The experimental results showed that the methods combined with environmental variables did not always improve prediction accuracy even if there was a strong correlation between the soil properties and environmental variables. However, compared with IDW, OK, and OK combined with different environmental variables, AW-SP is more stable and has lower mean absolute and root mean square errors. Furthermore, the AW-SP maps provided improved details of soil potassium content and provided clearer boundaries to its spatial distribution. In conclusion, AW-SP can not only reduce prediction errors, it also accounts for the distribution and contributions of environmental variables, making the spatial interpolation of soil potassium content more reasonable. PMID:27051998
An Adaptive Weighting Algorithm for Interpolating the Soil Potassium Content
NASA Astrophysics Data System (ADS)
Liu, Wei; Du, Peijun; Zhao, Zhuowen; Zhang, Lianpeng
2016-04-01
The concept of spatial interpolation is important in the soil sciences. However, the use of a single global interpolation model is often limited by certain conditions (e.g., terrain complexity), which leads to distorted interpolation results. Here we present a method of adaptive weighting combined environmental variables for soil properties interpolation (AW-SP) to improve accuracy. Using various environmental variables, AW-SP was used to interpolate soil potassium content in Qinghai Lake Basin. To evaluate AW-SP performance, we compared it with that of inverse distance weighting (IDW), ordinary kriging, and OK combined with different environmental variables. The experimental results showed that the methods combined with environmental variables did not always improve prediction accuracy even if there was a strong correlation between the soil properties and environmental variables. However, compared with IDW, OK, and OK combined with different environmental variables, AW-SP is more stable and has lower mean absolute and root mean square errors. Furthermore, the AW-SP maps provided improved details of soil potassium content and provided clearer boundaries to its spatial distribution. In conclusion, AW-SP can not only reduce prediction errors, it also accounts for the distribution and contributions of environmental variables, making the spatial interpolation of soil potassium content more reasonable.
Adaptive motion artifact reducing algorithm for wrist photoplethysmography application
NASA Astrophysics Data System (ADS)
Zhao, Jingwei; Wang, Guijin; Shi, Chenbo
2016-04-01
Photoplethysmography (PPG) technology is widely used in wearable heart pulse rate monitoring. It might reveal the potential risks of heart condition and cardiopulmonary function by detecting the cardiac rhythms in physical exercise. However the quality of wrist photoelectric signal is very sensitive to motion artifact since the thicker tissues and the fewer amount of capillaries. Therefore, motion artifact is the major factor that impede the heart rate measurement in the high intensity exercising. One accelerometer and three channels of light with different wavelengths are used in this research to analyze the coupled form of motion artifact. A novel approach is proposed to separate the pulse signal from motion artifact by exploiting their mixing ratio in different optical paths. There are four major steps of our method: preprocessing, motion artifact estimation, adaptive filtering and heart rate calculation. Five healthy young men are participated in the experiment. The speeder in the treadmill is configured as 12km/h, and all subjects would run for 3-10 minutes by swinging the arms naturally. The final result is compared with chest strap. The average of mean square error (MSE) is less than 3 beats per minute (BPM/min). Proposed method performed well in intense physical exercise and shows the great robustness to individuals with different running style and posture.
An adaptive ant colony system algorithm for continuous-space optimization problems.
Li, Yan-jun; Wu, Tie-jun
2003-01-01
Ant colony algorithms comprise a novel category of evolutionary computation methods for optimization problems, especially for sequencing-type combinatorial optimization problems. An adaptive ant colony algorithm is proposed in this paper to tackle continuous-space optimization problems, using a new objective-function-based heuristic pheromone assignment approach for pheromone update to filtrate solution candidates. Global optimal solutions can be reached more rapidly by self-adjusting the path searching behaviors of the ants according to objective values. The performance of the proposed algorithm is compared with a basic ant colony algorithm and a Square Quadratic Programming approach in solving two benchmark problems with multiple extremes. The results indicated that the efficiency and reliability of the proposed algorithm were greatly improved. PMID:12656341
Modified fast frequency acquisition via adaptive least squares algorithm
NASA Technical Reports Server (NTRS)
Kumar, Rajendra (Inventor)
1992-01-01
A method and the associated apparatus for estimating the amplitude, frequency, and phase of a signal of interest are presented. The method comprises the following steps: (1) inputting the signal of interest; (2) generating a reference signal with adjustable amplitude, frequency and phase at an output thereof; (3) mixing the signal of interest with the reference signal and a signal 90 deg out of phase with the reference signal to provide a pair of quadrature sample signals comprising respectively a difference between the signal of interest and the reference signal and a difference between the signal of interest and the signal 90 deg out of phase with the reference signal; (4) using the pair of quadrature sample signals to compute estimates of the amplitude, frequency, and phase of an error signal comprising the difference between the signal of interest and the reference signal employing a least squares estimation; (5) adjusting the amplitude, frequency, and phase of the reference signal from the numerically controlled oscillator in a manner which drives the error signal towards zero; and (6) outputting the estimates of the amplitude, frequency, and phase of the error signal in combination with the reference signal to produce a best estimate of the amplitude, frequency, and phase of the signal of interest. The preferred method includes the step of providing the error signal as a real time confidence measure as to the accuracy of the estimates wherein the closer the error signal is to zero, the higher the probability that the estimates are accurate. A matrix in the estimation algorithm provides an estimate of the variance of the estimation error.
Reinforcement learning by Hebbian synapses with adaptive thresholds.
Pennartz, C M
1997-11-01
A central problem in learning theory is how the vertebrate brain processes reinforcing stimuli in order to master complex sensorimotor tasks. This problem belongs to the domain of supervised learning, in which errors in the response of a neural network serve as the basis for modification of synaptic connectivity in the network and thereby train it on a computational task. The model presented here shows how a reinforcing feedback can modify synapses in a neuronal network according to the principles of Hebbian learning. The reinforcing feedback steers synapses towards long-term potentiation or depression by critically influencing the rise in postsynaptic calcium, in accordance with findings on synaptic plasticity in mammalian brain. An important feature of the model is the dependence of modification thresholds on the previous history of reinforcing feedback processed by the network. The learning algorithm trained networks successfully on a task in which a population vector in the motor output was required to match a sensory stimulus vector presented shortly before. In another task, networks were trained to compute coordinate transformations by combining different visual inputs. The model continued to behave well when simplified units were replaced by single-compartment neurons equipped with several conductances and operating in continuous time. This novel form of reinforcement learning incorporates essential properties of Hebbian synaptic plasticity and thereby shows that supervised learning can be accomplished by a learning rule similar to those used in physiologically plausible models of unsupervised learning. The model can be crudely correlated to the anatomy and electrophysiology of the amygdala, prefrontal and cingulate cortex and has predictive implications for further experiments on synaptic plasticity and learning processes mediated by these areas.
STAR adaptation of QR algorithm. [program for solving over-determined systems of linear equations
NASA Technical Reports Server (NTRS)
Shah, S. N.
1981-01-01
The QR algorithm used on a serial computer and executed on the Control Data Corporation 6000 Computer was adapted to execute efficiently on the Control Data STAR-100 computer. How the scalar program was adapted for the STAR-100 and why these adaptations yielded an efficient STAR program is described. Program listings of the old scalar version and the vectorized SL/1 version are presented in the appendices. Execution times for the two versions applied to the same system of linear equations, are compared.
Adaptivity in Game-Based Learning: A New Perspective on Story
NASA Astrophysics Data System (ADS)
Berger, Florian; Müller, Wolfgang
Game-based learning as a novel form of e-learning still has issues in fundamental questions, the lack of a general model for adaptivity being one of them. Since adaptive techniques in traditional e-learning applications bear close similarity to certain interactive storytelling approaches, we propose a new notion of story as the joining element of arbitraty learning paths.
Designing a Semantic Bliki System to Support Different Types of Knowledge and Adaptive Learning
ERIC Educational Resources Information Center
Huang, Shiu-Li; Yang, Chia-Wei
2009-01-01
Though blogs and wikis have been used to support knowledge management and e-learning, existing blogs and wikis cannot support different types of knowledge and adaptive learning. A case in point, types of knowledge vary greatly in category and viewpoints. Additionally, adaptive learning is crucial to improving one's learning performance. This study…
Library support for problem-based learning: an algorithmic approach.
Ispahany, Nighat; Torraca, Kathren; Chilov, Marina; Zimbler, Elaine R; Matsoukas, Konstantina; Allen, Tracy Y
2007-01-01
Academic health sciences libraries can take various approaches to support the problem-based learning component of the curriculum. This article presents one such approach taken to integrate information navigation skills into the small group discussion part of the Pathophysiology course in the second year of the Dental school curriculum. Along with presenting general resources for the course, the Library Toolkit introduced an algorithmic approach to finding answers to sample clinical case questions. While elements of Evidence-Based Practice were introduced, the emphasis was on teaching students to navigate relevant resources and apply various database search techniques to find answers to the clinical problems presented.
ERIC Educational Resources Information Center
Thalmann, Stefan
2014-01-01
Personalised e-Learning represents a major step-change from the one-size-fits-all approach of traditional learning platforms to a more customised and interactive provision of learning materials. Adaptive learning can support the learning process by tailoring learning materials to individual needs. However, this requires the initial preparation of…
MODIS Science Algorithms and Data Systems Lessons Learned
NASA Technical Reports Server (NTRS)
Wolfe, Robert E.; Ridgway, Bill L.; Patt, Fred S.; Masuoka, Edward J.
2009-01-01
For almost 10 years, standard global products from NASA's Earth Observing System s (EOS) two Moderate Resolution Imaging Spectroradiometer (MODIS) sensors are being used world-wide for earth science research and applications. This paper discusses the lessons learned in developing the science algorithms and the data systems needed to produce these high quality data products for the earth sciences community. Strong science team leadership and communication, an evolvable and scalable data system, and central coordination of QA and validation activities enabled the data system to grow by two orders of magnitude from the initial at-launch system to the current system able to reprocess data from both the Terra and Aqua missions in less than a year. Many of the lessons learned from MODIS are already being applied to follow-on missions.
Jirayucharoensak, Suwicha; Pan-Ngum, Setha; Israsena, Pasin
2014-01-01
Automatic emotion recognition is one of the most challenging tasks. To detect emotion from nonstationary EEG signals, a sophisticated learning algorithm that can represent high-level abstraction is required. This study proposes the utilization of a deep learning network (DLN) to discover unknown feature correlation between input signals that is crucial for the learning task. The DLN is implemented with a stacked autoencoder (SAE) using hierarchical feature learning approach. Input features of the network are power spectral densities of 32-channel EEG signals from 32 subjects. To alleviate overfitting problem, principal component analysis (PCA) is applied to extract the most important components of initial input features. Furthermore, covariate shift adaptation of the principal components is implemented to minimize the nonstationary effect of EEG signals. Experimental results show that the DLN is capable of classifying three different levels of valence and arousal with accuracy of 49.52% and 46.03%, respectively. Principal component based covariate shift adaptation enhances the respective classification accuracy by 5.55% and 6.53%. Moreover, DLN provides better performance compared to SVM and naive Bayes classifiers. PMID:25258728
ERIC Educational Resources Information Center
Green, Steve; Jones, Ray; Pearson, Elaine; Gkatzidou, Stavroula
2006-01-01
The case for learning patterns as a design method for accessible and adaptable learning objects is explored. Patterns and templates for the design of learning objects can be derived from successful existing learning resources. These patterns can then be reused in the design of new learning objects. We argue that by attending to criteria for reuse…
Huang, X N; Ren, H P
2016-01-01
Robust adaptation is a critical ability of gene regulatory network (GRN) to survive in a fluctuating environment, which represents the system responding to an input stimulus rapidly and then returning to its pre-stimulus steady state timely. In this paper, the GRN is modeled using the Michaelis-Menten rate equations, which are highly nonlinear differential equations containing 12 undetermined parameters. The robust adaption is quantitatively described by two conflicting indices. To identify the parameter sets in order to confer the GRNs with robust adaptation is a multi-variable, multi-objective, and multi-peak optimization problem, which is difficult to acquire satisfactory solutions especially high-quality solutions. A new best-neighbor particle swarm optimization algorithm is proposed to implement this task. The proposed algorithm employs a Latin hypercube sampling method to generate the initial population. The particle crossover operation and elitist preservation strategy are also used in the proposed algorithm. The simulation results revealed that the proposed algorithm could identify multiple solutions in one time running. Moreover, it demonstrated a superior performance as compared to the previous methods in the sense of detecting more high-quality solutions within an acceptable time. The proposed methodology, owing to its universality and simplicity, is useful for providing the guidance to design GRN with superior robust adaptation. PMID:27323043
Alavandar, Srinivasan; Nigam, M J
2009-10-01
Control of an industrial robot includes nonlinearities, uncertainties and external perturbations that should be considered in the design of control laws. In this paper, some new hybrid adaptive neuro-fuzzy control algorithms (ANFIS) have been proposed for manipulator control with uncertainties. These hybrid controllers consist of adaptive neuro-fuzzy controllers and conventional controllers. The outputs of these controllers are applied to produce the final actuation signal based on current position and velocity errors. Numerical simulation using the dynamic model of six DOF puma robot arm with uncertainties shows the effectiveness of the approach in trajectory tracking problems. Performance indices of RMS error, maximum error are used for comparison. It is observed that the hybrid adaptive neuro-fuzzy controllers perform better than only conventional/adaptive controllers and in particular hybrid controller structure consisting of adaptive neuro-fuzzy controller and critically damped inverse dynamics controller.
An adaptive online learning framework for practical breast cancer diagnosis
NASA Astrophysics Data System (ADS)
Chu, Tianshu; Wang, Jie; Chen, Jiayu
2016-03-01
This paper presents an adaptive online learning (OL) framework for supporting clinical breast cancer (BC) diagnosis. Unlike traditional data mining, which trains a particular model from a fixed set of medical data, our framework offers robust OL models that can be updated adaptively according to new data sequences and newly discovered features. As a result, our framework can naturally learn to perform BC diagnosis using experts' opinions on sequential patient cases with cumulative clinical measurements. The framework integrates both supervised learning (SL) models for BC risk assessment and reinforcement learning (RL) models for decision-making of clinical measurements. In other words, online SL and RL interact with one another, and under a doctor's supervision, push the patient's diagnosis further. Furthermore, our framework can quickly update relevant model parameters based on current diagnosis information during the training process. Additionally, it can build flexible fitted models by integrating different model structures and plugging in the corresponding parameters during the prediction (or decision-making) process. Even when the feature space is extended, it can initialize the corresponding parameters and extend the existing model structure without loss of the cumulative knowledge. We evaluate the OL framework on real datasets from BCSC and WBC, and demonstrate that our SL models achieve accurate BC risk assessment from sequential data and incremental features. We also verify that the well-trained RL models provide promising measurement suggestions.
Distributed reinforcement learning for adaptive and robust network intrusion response
NASA Astrophysics Data System (ADS)
Malialis, Kleanthis; Devlin, Sam; Kudenko, Daniel
2015-07-01
Distributed denial of service (DDoS) attacks constitute a rapidly evolving threat in the current Internet. Multiagent Router Throttling is a novel approach to defend against DDoS attacks where multiple reinforcement learning agents are installed on a set of routers and learn to rate-limit or throttle traffic towards a victim server. The focus of this paper is on online learning and scalability. We propose an approach that incorporates task decomposition, team rewards and a form of reward shaping called difference rewards. One of the novel characteristics of the proposed system is that it provides a decentralised coordinated response to the DDoS problem, thus being resilient to DDoS attacks themselves. The proposed system learns remarkably fast, thus being suitable for online learning. Furthermore, its scalability is successfully demonstrated in experiments involving 1000 learning agents. We compare our approach against a baseline and a popular state-of-the-art throttling technique from the network security literature and show that the proposed approach is more effective, adaptive to sophisticated attack rate dynamics and robust to agent failures.
Design of scheduling and rate-adaptation algorithms for adaptive HTTP streaming
NASA Astrophysics Data System (ADS)
Hesse, Stephan
2013-09-01
In adaptive HTTP streaming model, the HTTP server stores multiple representations of media content, encoded at different rates. It is the function of a streaming client to select and retrieve segments of appropriate representations to enable continuous media playback under varying network conditions. In this paper we describe design of a control mechanism enabling such a selection and retrieval of media data during streaming session. We also describe the architecture of a streaming client for adaptive HTTP streaming and provide simulation data illustrating the effectiveness of the proposed control mechanism for handling bandwidth fluctuations typical for TCP traffic.
Adaptive switching detection algorithm for iterative-MIMO systems to enable power savings
NASA Astrophysics Data System (ADS)
Tadza, N.; Laurenson, D.; Thompson, J. S.
2014-11-01
This paper attempts to tackle one of the challenges faced in soft input soft output Multiple Input Multiple Output (MIMO) detection systems, which is to achieve optimal error rate performance with minimal power consumption. This is realized by proposing a new algorithm design that comprises multiple thresholds within the detector that, in real time, specify the receiver behavior according to the current channel in both slow and fast fading conditions, giving it adaptivity. This adaptivity enables energy savings within the system since the receiver chooses whether to accept or to reject the transmission, according to the success rate of detecting thresholds. The thresholds are calculated using the mutual information of the instantaneous channel conditions between the transmitting and receiving antennas of iterative-MIMO systems. In addition, the power saving technique, Dynamic Voltage and Frequency Scaling, helps to reduce the circuit power demands of the adaptive algorithm. This adaptivity has the potential to save up to 30% of the total energy when it is implemented on Xilinx®Virtex-5 simulation hardware. Results indicate the benefits of having this "intelligence" in the adaptive algorithm due to the promising performance-complexity tradeoff parameters in both software and hardware codesign simulation.
A High Fuel Consumption Efficiency Management Scheme for PHEVs Using an Adaptive Genetic Algorithm
Lee, Wah Ching; Tsang, Kim Fung; Chi, Hao Ran; Hung, Faan Hei; Wu, Chung Kit; Chui, Kwok Tai; Lau, Wing Hong; Leung, Yat Wah
2015-01-01
A high fuel efficiency management scheme for plug-in hybrid electric vehicles (PHEVs) has been developed. In order to achieve fuel consumption reduction, an adaptive genetic algorithm scheme has been designed to adaptively manage the energy resource usage. The objective function of the genetic algorithm is implemented by designing a fuzzy logic controller which closely monitors and resembles the driving conditions and environment of PHEVs, thus trading off between petrol versus electricity for optimal driving efficiency. Comparison between calculated results and publicized data shows that the achieved efficiency of the fuzzified genetic algorithm is better by 10% than existing schemes. The developed scheme, if fully adopted, would help reduce over 600 tons of CO2 emissions worldwide every day. PMID:25587974
A source reconstruction algorithm based on adaptive hp-FEM for bioluminescence tomography.
Han, Runqiang; Liang, Jimin; Qu, Xiaochao; Hou, Yanbin; Ren, Nunu; Mao, Jingjing; Tian, Jie
2009-08-17
As a novel modality of molecular imaging, bioluminescence tomography (BLT) is used to in vivo observe and measure the biological process at cellular and molecular level in small animals. The core issue of BLT is to determine the distribution of internal bioluminescent sources from optical measurements on external surface. In this paper, a new algorithm is presented for BLT source reconstruction based on adaptive hp-finite element method. Using adaptive mesh refinement strategy and intelligent permissible source region, we can obtain more accurate information about the location and density of sources, with the robustness, stability and efficiency improved. Numerical simulations and physical experiment were both conducted to verify the performance of the proposed algorithm, where the optical data on phantom surface were obtained via Monte Carlo simulation and CCD camera detection, respectively. The results represent the merits and potential of our algorithm for BLT source reconstruction.
A high fuel consumption efficiency management scheme for PHEVs using an adaptive genetic algorithm.
Lee, Wah Ching; Tsang, Kim Fung; Chi, Hao Ran; Hung, Faan Hei; Wu, Chung Kit; Chui, Kwok Tai; Lau, Wing Hong; Leung, Yat Wah
2015-01-01
A high fuel efficiency management scheme for plug-in hybrid electric vehicles (PHEVs) has been developed. In order to achieve fuel consumption reduction, an adaptive genetic algorithm scheme has been designed to adaptively manage the energy resource usage. The objective function of the genetic algorithm is implemented by designing a fuzzy logic controller which closely monitors and resembles the driving conditions and environment of PHEVs, thus trading off between petrol versus electricity for optimal driving efficiency. Comparison between calculated results and publicized data shows that the achieved efficiency of the fuzzified genetic algorithm is better by 10% than existing schemes. The developed scheme, if fully adopted, would help reduce over 600 tons of CO2 emissions worldwide every day.
NASA Astrophysics Data System (ADS)
Irondi, Iheanyi; Wang, Qi; Grecos, Christos
2016-04-01
Adaptive video streaming using HTTP has become popular in recent years for commercial video delivery. The recent MPEG-DASH standard allows interoperability and adaptability between servers and clients from different vendors. The delivery of the MPD (Media Presentation Description) files in DASH and the DASH client behaviours are beyond the scope of the DASH standard. However, the different adaptation algorithms employed by the clients do affect the overall performance of the system and users' QoE (Quality of Experience), hence the need for research in this field. Moreover, standard DASH delivery is based on fixed segments of the video. However, there is no standard segment duration for DASH where various fixed segment durations have been employed by different commercial solutions and researchers with their own individual merits. Most recently, the use of variable segment duration in DASH has emerged but only a few preliminary studies without practical implementation exist. In addition, such a technique requires a DASH client to be aware of segment duration variations, and this requirement and the corresponding implications on the DASH system design have not been investigated. This paper proposes a segment-duration-aware bandwidth estimation and next-segment selection adaptation strategy for DASH. Firstly, an MPD file extension scheme to support variable segment duration is proposed and implemented in a realistic hardware testbed. The scheme is tested on a DASH client, and the tests and analysis have led to an insight on the time to download next segment and the buffer behaviour when fetching and switching between segments of different playback durations. Issues like sustained buffering when switching between segments of different durations and slow response to changing network conditions are highlighted and investigated. An enhanced adaptation algorithm is then proposed to accurately estimate the bandwidth and precisely determine the time to download the next
A self-adaptive genetic algorithm to estimate JA model parameters considering minor loops
NASA Astrophysics Data System (ADS)
Lu, Hai-liang; Wen, Xi-shan; Lan, Lei; An, Yun-zhu; Li, Xiao-ping
2015-01-01
A self-adaptive genetic algorithm for estimating Jiles-Atherton (JA) magnetic hysteresis model parameters is presented. The fitness function is established based on the distances between equidistant key points of normalized hysteresis loops. Linearity function and logarithm function are both adopted to code the five parameters of JA model. Roulette wheel selection is used and the selection pressure is adjusted adaptively by deducting a proportional which depends on current generation common value. The Crossover operator is established by combining arithmetic crossover and multipoint crossover. Nonuniform mutation is improved by adjusting the mutation ratio adaptively. The algorithm is used to estimate the parameters of one kind of silicon-steel sheet's hysteresis loops, and the results are in good agreement with published data.
Performance & Emotion--A Study on Adaptive E-Learning Based on Visual/Verbal Learning Styles
ERIC Educational Resources Information Center
Beckmann, Jennifer; Bertel, Sven; Zander, Steffi
2015-01-01
Adaptive e-Learning systems are able to adjust to a user's learning needs, usually by user modeling or tracking progress. Such learner-adaptive behavior has rapidly become a hot topic for e-Learning, furthered in part by the recent rapid increase in the use of MOOCs (Massive Open Online Courses). A lack of general, individual, and situational data…
ERIC Educational Resources Information Center
Yang, Tzu-Chi; Hwang, Gwo-Jen; Yang, Stephen Jen-Hwa
2013-01-01
In this study, an adaptive learning system is developed by taking multiple dimensions of personalized features into account. A personalized presentation module is proposed for developing adaptive learning systems based on the field dependent/independent cognitive style model and the eight dimensions of Felder-Silverman's learning style. An…
Online Adaptation and Over-Trial Learning in Macaque Visuomotor Control
Braun, Daniel A.; Aertsen, Ad; Paz, Rony; Vaadia, Eilon; Rotter, Stefan; Mehring, Carsten
2011-01-01
When faced with unpredictable environments, the human motor system has been shown to develop optimized adaptation strategies that allow for online adaptation during the control process. Such online adaptation is to be contrasted to slower over-trial learning that corresponds to a trial-by-trial update of the movement plan. Here we investigate the interplay of both processes, i.e., online adaptation and over-trial learning, in a visuomotor experiment performed by macaques. We show that simple non-adaptive control schemes fail to perform in this task, but that a previously suggested adaptive optimal feedback control model can explain the observed behavior. We also show that over-trial learning as seen in learning and aftereffect curves can be explained by learning in a radial basis function network. Our results suggest that both the process of over-trial learning and the process of online adaptation are crucial to understand visuomotor learning. PMID:21720526
Ffrench, P A; Zeidler, J H; Ku, W H
1997-01-01
Two-dimensional (2-D) adaptive filtering is a technique that can be applied to many image processing applications. This paper will focus on the development of an improved 2-D adaptive lattice algorithm (2-D AL) and its application to the removal of correlated clutter to enhance the detectability of small objects in images. The two improvements proposed here are increased flexibility in the calculation of the reflection coefficients and a 2-D method to update the correlations used in the 2-D AL algorithm. The 2-D AL algorithm is shown to predict correlated clutter in image data and the resulting filter is compared with an ideal Wiener-Hopf filter. The results of the clutter removal will be compared to previously published ones for a 2-D least mean square (LMS) algorithm. 2-D AL is better able to predict spatially varying clutter than the 2-D LMS algorithm, since it converges faster to new image properties. Examples of these improvements are shown for a spatially varying 2-D sinusoid in white noise and simulated clouds. The 2-D LMS and 2-D AL algorithms are also shown to enhance a mammogram image for the detection of small microcalcifications and stellate lesions.
Maximal use of minimal libraries through the adaptive substituent reordering algorithm.
Liang, Fan; Feng, Xiao-jiang; Lowry, Michael; Rabitz, Herschel
2005-03-31
This paper describes an adaptive algorithm for interpolation over a library of molecules subjected to synthesis and property assaying. Starting with a coarse sampling of the library compounds, the algorithm finds the optimal substituent orderings on all of the functionalized scaffold sites to allow for accurate property interpolation over all remaining compounds in the full library space. A previous paper introduced the concept of substituent reordering and a smoothness-based criterion to search for optimal orderings (Shenvi, N.; Geremia, J. M.; Rabitz, H. J. Phys. Chem. A 2003, 107, 2066). Here, we propose a data-driven root-mean-squared (RMS) criteria and a combined RMS/smoothness criteria as alternative methods for the discovery of optimal substituent orderings. Error propagation from the property measurements of the sampled compounds is determined to provide confidence intervals on the interpolated molecular property values, and a substituent rescaling technique is introduced to manage poorly designed/sampled libraries. Finally, various factors are explored that can influence the applicability and interpolation quality of the algorithm. An adaptive methodology is proposed to iteratively and efficiently use laboratory experiments to optimize these algorithmic factors, so that the accuracy of property predictions is maximized. The enhanced algorithm is tested on copolymer and transition metal complex libraries, and the results demonstrate the capability of the algorithm to accurately interpolate various properties of both molecular libraries.
Shan, Hai; Yasuda, Toshiyuki; Ohkura, Kazuhiro
2015-06-01
The artificial bee colony (ABC) algorithm is one of popular swarm intelligence algorithms that inspired by the foraging behavior of honeybee colonies. To improve the convergence ability, search speed of finding the best solution and control the balance between exploration and exploitation using this approach, we propose a self adaptive hybrid enhanced ABC algorithm in this paper. To evaluate the performance of standard ABC, best-so-far ABC (BsfABC), incremental ABC (IABC), and the proposed ABC algorithms, we implemented numerical optimization problems based on the IEEE Congress on Evolutionary Computation (CEC) 2014 test suite. Our experimental results show the comparative performance of standard ABC, BsfABC, IABC, and the proposed ABC algorithms. According to the results, we conclude that the proposed ABC algorithm is competitive to those state-of-the-art modified ABC algorithms such as BsfABC and IABC algorithms based on the benchmark problems defined by CEC 2014 test suite with dimension sizes of 10, 30, and 50, respectively.
Shan, Hai; Yasuda, Toshiyuki; Ohkura, Kazuhiro
2015-06-01
The artificial bee colony (ABC) algorithm is one of popular swarm intelligence algorithms that inspired by the foraging behavior of honeybee colonies. To improve the convergence ability, search speed of finding the best solution and control the balance between exploration and exploitation using this approach, we propose a self adaptive hybrid enhanced ABC algorithm in this paper. To evaluate the performance of standard ABC, best-so-far ABC (BsfABC), incremental ABC (IABC), and the proposed ABC algorithms, we implemented numerical optimization problems based on the IEEE Congress on Evolutionary Computation (CEC) 2014 test suite. Our experimental results show the comparative performance of standard ABC, BsfABC, IABC, and the proposed ABC algorithms. According to the results, we conclude that the proposed ABC algorithm is competitive to those state-of-the-art modified ABC algorithms such as BsfABC and IABC algorithms based on the benchmark problems defined by CEC 2014 test suite with dimension sizes of 10, 30, and 50, respectively. PMID:25982071
An improved cooperative adaptive cruise control (CACC) algorithm considering invalid communication
NASA Astrophysics Data System (ADS)
Wang, Pangwei; Wang, Yunpeng; Yu, Guizhen; Tang, Tieqiao
2014-05-01
For the Cooperative Adaptive Cruise Control (CACC) Algorithm, existing research studies mainly focus on how inter-vehicle communication can be used to develop CACC controller, the influence of the communication delays and lags of the actuators to the string stability. However, whether the string stability can be guaranteed when inter-vehicle communication is invalid partially has hardly been considered. This paper presents an improved CACC algorithm based on the sliding mode control theory and analyses the range of CACC controller parameters to maintain string stability. A dynamic model of vehicle spacing deviation in a platoon is then established, and the string stability conditions under improved CACC are analyzed. Unlike the traditional CACC algorithms, the proposed algorithm can ensure the functionality of the CACC system even if inter-vehicle communication is partially invalid. Finally, this paper establishes a platoon of five vehicles to simulate the improved CACC algorithm in MATLAB/Simulink, and the simulation results demonstrate that the improved CACC algorithm can maintain the string stability of a CACC platoon through adjusting the controller parameters and enlarging the spacing to prevent accidents. With guaranteed string stability, the proposed CACC algorithm can prevent oscillation of vehicle spacing and reduce chain collision accidents under real-world circumstances. This research proposes an improved CACC algorithm, which can guarantee the string stability when inter-vehicle communication is invalid.
NASA Astrophysics Data System (ADS)
Hegde, Veena; Deekshit, Ravishankar; Satyanarayana, P. S.
2011-12-01
The electrocardiogram (ECG) is widely used for diagnosis of heart diseases. Good quality of ECG is utilized by physicians for interpretation and identification of physiological and pathological phenomena. However, in real situations, ECG recordings are often corrupted by artifacts or noise. Noise severely limits the utility of the recorded ECG and thus needs to be removed, for better clinical evaluation. In the present paper a new noise cancellation technique is proposed for removal of random noise like muscle artifact from ECG signal. A transform domain robust variable step size Griffiths' LMS algorithm (TVGLMS) is proposed for noise cancellation. For the TVGLMS, the robust variable step size has been achieved by using the Griffiths' gradient which uses cross-correlation between the desired signal contaminated with observation or random noise and the input. The algorithm is discrete cosine transform (DCT) based and uses symmetric property of the signal to represent the signal in frequency domain with lesser number of frequency coefficients when compared to that of discrete Fourier transform (DFT). The algorithm is implemented for adaptive line enhancer (ALE) filter which extracts the ECG signal in a noisy environment using LMS filter adaptation. The proposed algorithm is found to have better convergence error/misadjustment when compared to that of ordinary transform domain LMS (TLMS) algorithm, both in the presence of white/colored observation noise. The reduction in convergence error achieved by the new algorithm with desired signal decomposition is found to be lower than that obtained without decomposition. The experimental results indicate that the proposed method is better than traditional adaptive filter using LMS algorithm in the aspects of retaining geometrical characteristics of ECG signal.
Protein Sequence Classification with Improved Extreme Learning Machine Algorithms
2014-01-01
Precisely classifying a protein sequence from a large biological protein sequences database plays an important role for developing competitive pharmacological products. Comparing the unseen sequence with all the identified protein sequences and returning the category index with the highest similarity scored protein, conventional methods are usually time-consuming. Therefore, it is urgent and necessary to build an efficient protein sequence classification system. In this paper, we study the performance of protein sequence classification using SLFNs. The recent efficient extreme learning machine (ELM) and its invariants are utilized as the training algorithms. The optimal pruned ELM is first employed for protein sequence classification in this paper. To further enhance the performance, the ensemble based SLFNs structure is constructed where multiple SLFNs with the same number of hidden nodes and the same activation function are used as ensembles. For each ensemble, the same training algorithm is adopted. The final category index is derived using the majority voting method. Two approaches, namely, the basic ELM and the OP-ELM, are adopted for the ensemble based SLFNs. The performance is analyzed and compared with several existing methods using datasets obtained from the Protein Information Resource center. The experimental results show the priority of the proposed algorithms. PMID:24795876
Genetic algorithm approach for adaptive power and subcarrier allocation in multi-user OFDM systems
NASA Astrophysics Data System (ADS)
Reddy, Y. B.; Naraghi-Pour, Mort
2007-04-01
In this paper, a novel genetic algorithm application is proposed for adaptive power and subcarrier allocation in multi-user Orthogonal Frequency Division Multiplexing (OFDM) systems. To test the application, a simple genetic algorithm was implemented in MATLAB language. With the goal of minimizing the overall transmit power while ensuring the fulfillment of each user's rate and bit error rate (BER) requirements, the proposed algorithm acquires the needed allocation through genetic search. The simulations were tested for BER 0.1 to 0.00001, data rate of 256 bit per OFDM block and chromosome length of 128. The results show that genetic algorithm outperforms the results in [3] in subcarrier allocation. The convergence of GA model with 8 users and 128 subcarriers performs better in power requirement compared to that in [4] but converges more slowly.
Self-adaptive predictor-corrector algorithm for static nonlinear structural analysis
NASA Technical Reports Server (NTRS)
Padovan, J.
1981-01-01
A multiphase selfadaptive predictor corrector type algorithm was developed. This algorithm enables the solution of highly nonlinear structural responses including kinematic, kinetic and material effects as well as pro/post buckling behavior. The strategy involves three main phases: (1) the use of a warpable hyperelliptic constraint surface which serves to upperbound dependent iterate excursions during successive incremental Newton Ramphson (INR) type iterations; (20 uses an energy constraint to scale the generation of successive iterates so as to maintain the appropriate form of local convergence behavior; (3) the use of quality of convergence checks which enable various self adaptive modifications of the algorithmic structure when necessary. The restructuring is achieved by tightening various conditioning parameters as well as switch to different algorithmic levels to improve the convergence process. The capabilities of the procedure to handle various types of static nonlinear structural behavior are illustrated.
Liu, Derong; Li, Hongliang; Wang, Ding
2015-06-01
In this paper, we establish error bounds of adaptive dynamic programming algorithms for solving undiscounted infinite-horizon optimal control problems of discrete-time deterministic nonlinear systems. We consider approximation errors in the update equations of both value function and control policy. We utilize a new assumption instead of the contraction assumption in discounted optimal control problems. We establish the error bounds for approximate value iteration based on a new error condition. Furthermore, we also establish the error bounds for approximate policy iteration and approximate optimistic policy iteration algorithms. It is shown that the iterative approximate value function can converge to a finite neighborhood of the optimal value function under some conditions. To implement the developed algorithms, critic and action neural networks are used to approximate the value function and control policy, respectively. Finally, a simulation example is given to demonstrate the effectiveness of the developed algorithms.
An adaptive learning control system for large flexible structures
NASA Technical Reports Server (NTRS)
Thau, F. E.
1985-01-01
The objective of the research has been to study the design of adaptive/learning control systems for the control of large flexible structures. In the first activity an adaptive/learning control methodology for flexible space structures was investigated. The approach was based on using a modal model of the flexible structure dynamics and an output-error identification scheme to identify modal parameters. In the second activity, a least-squares identification scheme was proposed for estimating both modal parameters and modal-to-actuator and modal-to-sensor shape functions. The technique was applied to experimental data obtained from the NASA Langley beam experiment. In the third activity, a separable nonlinear least-squares approach was developed for estimating the number of excited modes, shape functions, modal parameters, and modal amplitude and velocity time functions for a flexible structure. In the final research activity, a dual-adaptive control strategy was developed for regulating the modal dynamics and identifying modal parameters of a flexible structure. A min-max approach was used for finding an input to provide modal parameter identification while not exceeding reasonable bounds on modal displacement.
Adapted to explore: reinforcement learning in Autistic Spectrum Conditions.
Yechiam, Eldad; Arshavsky, Olga; Shamay-Tsoory, Simone G; Yaniv, Shoshana; Aharon, Judith
2010-03-01
Recent studies have recorded a tendency of individuals with Autism Spectrum Conditions (ASC) to continually change their choices in repeated choice tasks. In the current study we examine if this finding implies that ASC individuals have a cognitive style that facilitates exploration and discovery. Six decision tasks were administered to adolescents with ASC and matched controls. Significant differences in shifting between choice options appeared in the Iowa Gambling task (Bechara, Damasio, Damasio, & Anderson, 1994). A formal cognitive modeling analysis demonstrated that for about half of the ASC participants the adaptation process did not conform to the standard reinforcement learning model. These individuals were only coarsely affected by choice-outcomes, and were more influenced by the exploratory value of choices, being attracted to previously un-explored alternatives. An examination of the five simpler decision tasks where the advantageous option was easier to determine showed no evidence of this pattern, suggesting that the shifting choice pattern is not an uncontrollable tendency independent of task outcomes. These findings suggest that ASC individuals have a unique adaptive learning style, which may be beneficial is some learning environment but maladaptive in others, particularly in social contexts. PMID:19913345
Applicability of statistical learning algorithms in groundwater quality modeling
NASA Astrophysics Data System (ADS)
Khalil, Abedalrazq; Almasri, Mohammad N.; McKee, Mac; Kaluarachchi, Jagath J.
2005-05-01
Four algorithms are outlined, each of which has interesting features for predicting contaminant levels in groundwater. Artificial neural networks (ANN), support vector machines (SVM), locally weighted projection regression (LWPR), and relevance vector machines (RVM) are utilized as surrogates for a relatively complex and time-consuming mathematical model to simulate nitrate concentration in groundwater at specified receptors. Nitrates in the application reported in this paper are due to on-ground nitrogen loadings from fertilizers and manures. The practicability of the four learning machines in this work is demonstrated for an agriculture-dominated watershed where nitrate contamination of groundwater resources exceeds the maximum allowable contaminant level at many locations. Cross-validation and bootstrapping techniques are used for both training and performance evaluation. Prediction results of the four learning machines are rigorously assessed using different efficiency measures to ensure their generalization ability. Prediction results show the ability of learning machines to build accurate models with strong predictive capabilities and hence constitute a valuable means for saving effort in groundwater contamination modeling and improving model performance.
A parallel second-order adaptive mesh algorithm for incompressible flow in porous media.
Pau, George S H; Almgren, Ann S; Bell, John B; Lijewski, Michael J
2009-11-28
In this paper, we present a second-order accurate adaptive algorithm for solving multi-phase, incompressible flow in porous media. We assume a multi-phase form of Darcy's law with relative permeabilities given as a function of the phase saturation. The remaining equations express conservation of mass for the fluid constituents. In this setting, the total velocity, defined to be the sum of the phase velocities, is divergence free. The basic integration method is based on a total-velocity splitting approach in which we solve a second-order elliptic pressure equation to obtain a total velocity. This total velocity is then used to recast component conservation equations as nonlinear hyperbolic equations. Our approach to adaptive refinement uses a nested hierarchy of logically rectangular grids with simultaneous refinement of the grids in both space and time. The integration algorithm on the grid hierarchy is a recursive procedure in which coarse grids are advanced in time, fine grids are advanced multiple steps to reach the same time as the coarse grids and the data at different levels are then synchronized. The single-grid algorithm is described briefly, but the emphasis here is on the time-stepping procedure for the adaptive hierarchy. Numerical examples are presented to demonstrate the algorithm's accuracy and convergence properties and to illustrate the behaviour of the method.
A Parallel Second-Order Adaptive Mesh Algorithm for Incompressible Flow in Porous Media
Pau, George Shu Heng; Almgren, Ann S.; Bell, John B.; Lijewski, Michael J.
2008-04-01
In this paper we present a second-order accurate adaptive algorithm for solving multiphase, incompressible flows in porous media. We assume a multiphase form of Darcy's law with relative permeabilities given as a function of the phase saturation. The remaining equations express conservation of mass for the fluid constituents. In this setting the total velocity, defined to be the sum of the phase velocities, is divergence-free. The basic integration method is based on a total-velocity splitting approach in which we solve a second-order elliptic pressure equation to obtain a total velocity. This total velocity is then used to recast component conservation equations as nonlinear hyperbolic equations. Our approach to adaptive refinement uses a nested hierarchy of logically rectangular grids with simultaneous refinement of the grids in both space and time. The integration algorithm on the grid hierarchy is a recursive procedure in which coarse grids are advanced in time, fine grids areadvanced multiple steps to reach the same time as the coarse grids and the data atdifferent levels are then synchronized. The single grid algorithm is described briefly,but the emphasis here is on the time-stepping procedure for the adaptive hierarchy. Numerical examples are presented to demonstrate the algorithm's accuracy and convergence properties and to illustrate the behavior of the method.
An adaptive metamodel-based global optimization algorithm for black-box type problems
NASA Astrophysics Data System (ADS)
Jie, Haoxiang; Wu, Yizhong; Ding, Jianwan
2015-11-01
In this article, an adaptive metamodel-based global optimization (AMGO) algorithm is presented to solve unconstrained black-box problems. In the AMGO algorithm, a type of hybrid model composed of kriging and augmented radial basis function (RBF) is used as the surrogate model. The weight factors of hybrid model are adaptively selected in the optimization process. To balance the local and global search, a sub-optimization problem is constructed during each iteration to determine the new iterative points. As numerical experiments, six standard two-dimensional test functions are selected to show the distributions of iterative points. The AMGO algorithm is also tested on seven well-known benchmark optimization problems and contrasted with three representative metamodel-based optimization methods: efficient global optimization (EGO), GutmannRBF and hybrid and adaptive metamodel (HAM). The test results demonstrate the efficiency and robustness of the proposed method. The AMGO algorithm is finally applied to the structural design of the import and export chamber of a cycloid gear pump, achieving satisfactory results.
A structured multi-block solution-adaptive mesh algorithm with mesh quality assessment
NASA Technical Reports Server (NTRS)
Ingram, Clint L.; Laflin, Kelly R.; Mcrae, D. Scott
1995-01-01
The dynamic solution adaptive grid algorithm, DSAGA3D, is extended to automatically adapt 2-D structured multi-block grids, including adaption of the block boundaries. The extension is general, requiring only input data concerning block structure, connectivity, and boundary conditions. Imbedded grid singular points are permitted, but must be prevented from moving in space. Solutions for workshop cases 1 and 2 are obtained on multi-block grids and illustrate both increased resolution of and alignment with the solution. A mesh quality assessment criteria is proposed to determine how well a given mesh resolves and aligns with the solution obtained upon it. The criteria is used to evaluate the grid quality for solutions of workshop case 6 obtained on both static and dynamically adapted grids. The results indicate that this criteria shows promise as a means of evaluating resolution.
Mustapha, Ibrahim; Mohd Ali, Borhanuddin; Rasid, Mohd Fadlee A; Sali, Aduwati; Mohamad, Hafizal
2015-01-01
It is well-known that clustering partitions network into logical groups of nodes in order to achieve energy efficiency and to enhance dynamic channel access in cognitive radio through cooperative sensing. While the topic of energy efficiency has been well investigated in conventional wireless sensor networks, the latter has not been extensively explored. In this paper, we propose a reinforcement learning-based spectrum-aware clustering algorithm that allows a member node to learn the energy and cooperative sensing costs for neighboring clusters to achieve an optimal solution. Each member node selects an optimal cluster that satisfies pairwise constraints, minimizes network energy consumption and enhances channel sensing performance through an exploration technique. We first model the network energy consumption and then determine the optimal number of clusters for the network. The problem of selecting an optimal cluster is formulated as a Markov Decision Process (MDP) in the algorithm and the obtained simulation results show convergence, learning and adaptability of the algorithm to dynamic environment towards achieving an optimal solution. Performance comparisons of our algorithm with the Groupwise Spectrum Aware (GWSA)-based algorithm in terms of Sum of Square Error (SSE), complexity, network energy consumption and probability of detection indicate improved performance from the proposed approach. The results further reveal that an energy savings of 9% and a significant Primary User (PU) detection improvement can be achieved with the proposed approach. PMID:26287191
Mustapha, Ibrahim; Ali, Borhanuddin Mohd; Rasid, Mohd Fadlee A.; Sali, Aduwati; Mohamad, Hafizal
2015-01-01
It is well-known that clustering partitions network into logical groups of nodes in order to achieve energy efficiency and to enhance dynamic channel access in cognitive radio through cooperative sensing. While the topic of energy efficiency has been well investigated in conventional wireless sensor networks, the latter has not been extensively explored. In this paper, we propose a reinforcement learning-based spectrum-aware clustering algorithm that allows a member node to learn the energy and cooperative sensing costs for neighboring clusters to achieve an optimal solution. Each member node selects an optimal cluster that satisfies pairwise constraints, minimizes network energy consumption and enhances channel sensing performance through an exploration technique. We first model the network energy consumption and then determine the optimal number of clusters for the network. The problem of selecting an optimal cluster is formulated as a Markov Decision Process (MDP) in the algorithm and the obtained simulation results show convergence, learning and adaptability of the algorithm to dynamic environment towards achieving an optimal solution. Performance comparisons of our algorithm with the Groupwise Spectrum Aware (GWSA)-based algorithm in terms of Sum of Square Error (SSE), complexity, network energy consumption and probability of detection indicate improved performance from the proposed approach. The results further reveal that an energy savings of 9% and a significant Primary User (PU) detection improvement can be achieved with the proposed approach. PMID:26287191
Mustapha, Ibrahim; Mohd Ali, Borhanuddin; Rasid, Mohd Fadlee A; Sali, Aduwati; Mohamad, Hafizal
2015-08-13
It is well-known that clustering partitions network into logical groups of nodes in order to achieve energy efficiency and to enhance dynamic channel access in cognitive radio through cooperative sensing. While the topic of energy efficiency has been well investigated in conventional wireless sensor networks, the latter has not been extensively explored. In this paper, we propose a reinforcement learning-based spectrum-aware clustering algorithm that allows a member node to learn the energy and cooperative sensing costs for neighboring clusters to achieve an optimal solution. Each member node selects an optimal cluster that satisfies pairwise constraints, minimizes network energy consumption and enhances channel sensing performance through an exploration technique. We first model the network energy consumption and then determine the optimal number of clusters for the network. The problem of selecting an optimal cluster is formulated as a Markov Decision Process (MDP) in the algorithm and the obtained simulation results show convergence, learning and adaptability of the algorithm to dynamic environment towards achieving an optimal solution. Performance comparisons of our algorithm with the Groupwise Spectrum Aware (GWSA)-based algorithm in terms of Sum of Square Error (SSE), complexity, network energy consumption and probability of detection indicate improved performance from the proposed approach. The results further reveal that an energy savings of 9% and a significant Primary User (PU) detection improvement can be achieved with the proposed approach.
NASA Astrophysics Data System (ADS)
Naser, Mohamed A.; Patterson, Michael S.; Wong, John W.
2014-04-01
A reconstruction algorithm for diffuse optical tomography based on diffusion theory and finite element method is described. The algorithm reconstructs the optical properties in a permissible domain or region-of-interest to reduce the number of unknowns. The algorithm can be used to reconstruct optical properties for a segmented object (where a CT-scan or MRI is available) or a non-segmented object. For the latter, an adaptive segmentation algorithm merges contiguous regions with similar optical properties thereby reducing the number of unknowns. In calculating the Jacobian matrix the algorithm uses an efficient direct method so the required time is comparable to that needed for a single forward calculation. The reconstructed optical properties using segmented, non-segmented, and adaptively segmented 3D mouse anatomy (MOBY) are used to perform bioluminescence tomography (BLT) for two simulated internal sources. The BLT results suggest that the accuracy of reconstruction of total source power obtained without the segmentation provided by an auxiliary imaging method such as x-ray CT is comparable to that obtained when using perfect segmentation.
Lober, R.R.; Tautges, T.J.; Vaughan, C.T.
1997-03-01
Paving is an automated mesh generation algorithm which produces all-quadrilateral elements. It can additionally generate these elements in varying sizes such that the resulting mesh adapts to a function distribution, such as an error function. While powerful, conventional paving is a very serial algorithm in its operation. Parallel paving is the extension of serial paving into parallel environments to perform the same meshing functions as conventional paving only on distributed, discretized models. This extension allows large, adaptive, parallel finite element simulations to take advantage of paving`s meshing capabilities for h-remap remeshing. A significantly modified version of the CUBIT mesh generation code has been developed to host the parallel paving algorithm and demonstrate its capabilities on both two dimensional and three dimensional surface geometries and compare the resulting parallel produced meshes to conventionally paved meshes for mesh quality and algorithm performance. Sandia`s {open_quotes}tiling{close_quotes} dynamic load balancing code has also been extended to work with the paving algorithm to retain parallel efficiency as subdomains undergo iterative mesh refinement.
Adaptive vector quantization of MR images using online k-means algorithm
NASA Astrophysics Data System (ADS)
Shademan, Azad; Zia, Mohammad A.
2001-12-01
The k-means algorithm is widely used to design image codecs using vector quantization (VQ). In this paper, we focus on an adaptive approach to implement a VQ technique using the online version of k-means algorithm, in which the size of the codebook is adapted continuously to the statistical behavior of the image. Based on the statistical analysis of the feature space, a set of thresholds are designed such that those codewords corresponding to the low-density clusters would be removed from the codebook and hence, resulting in a higher bit-rate efficiency. Applications of this approach would be in telemedicine, where sequences of highly correlated medical images, e.g. consecutive brain slices, are transmitted over a low bit-rate channel. We have applied this algorithm on magnetic resonance (MR) images and the simulation results on a sample sequence are given. The proposed method has been compared to the standard k-means algorithm in terms of PSNR, MSE, and elapsed time to complete the algorithm.
Adaptive Sampling for Learning Gaussian Processes Using Mobile Sensor Networks
Xu, Yunfei; Choi, Jongeun
2011-01-01
This paper presents a novel class of self-organizing sensing agents that adaptively learn an anisotropic, spatio-temporal Gaussian process using noisy measurements and move in order to improve the quality of the estimated covariance function. This approach is based on a class of anisotropic covariance functions of Gaussian processes introduced to model a broad range of spatio-temporal physical phenomena. The covariance function is assumed to be unknown a priori. Hence, it is estimated by the maximum a posteriori probability (MAP) estimator. The prediction of the field of interest is then obtained based on the MAP estimate of the covariance function. An optimal sampling strategy is proposed to minimize the information-theoretic cost function of the Fisher Information Matrix. Simulation results demonstrate the effectiveness and the adaptability of the proposed scheme. PMID:22163785
Improving Voluntary Environmental Management Programs: Facilitating Learning and Adaptation
NASA Astrophysics Data System (ADS)
Genskow, Kenneth D.; Wood, Danielle M.
2011-05-01
Environmental planners and managers face unique challenges understanding and documenting the effectiveness of programs that rely on voluntary actions by private landowners. Programs, such as those aimed at reducing nonpoint source pollution or improving habitat, intend to reach those goals by persuading landowners to adopt behaviors and management practices consistent with environmental restoration and protection. Our purpose with this paper is to identify barriers for improving voluntary environmental management programs and ways to overcome them. We first draw upon insights regarding data, learning, and adaptation from the adaptive management and performance management literatures, describing three key issues: overcoming information constraints, structural limitations, and organizational culture. Although these lessons are applicable to a variety of voluntary environmental management programs, we then present the issues in the context of on-going research for nonpoint source water quality pollution. We end the discussion by highlighting important elements for advancing voluntary program efforts.
Adaptive-mesh-based algorithm for fluorescence molecular tomography using an analytical solution.
Wang, Daifa; Song, Xiaolei; Bai, Jing
2007-07-23
Fluorescence molecular tomography (FMT) has become an important method for in-vivo imaging of small animals. It has been widely used for tumor genesis, cancer detection, metastasis, drug discovery, and gene therapy. In this study, an algorithm for FMT is proposed to obtain accurate and fast reconstruction by combining an adaptive mesh refinement technique and an analytical solution of diffusion equation. Numerical studies have been performed on a parallel plate FMT system with matching fluid. The reconstructions obtained show that the algorithm is efficient in computation time, and they also maintain image quality.
NASA Astrophysics Data System (ADS)
Wang, Youming; Chen, Xuefeng; He, Zhengjia
2011-02-01
Structural eigenvalues have been broadly applied in modal analysis, damage detection, vibration control, etc. In this paper, the interpolating multiwavelets are custom designed based on stable completion method to solve structural eigenvalue problems. The operator-orthogonality of interpolating multiwavelets gives rise to highly sparse multilevel stiffness and mass matrices of structural eigenvalue problems and permits the incremental computation of the eigenvalue solution in an efficient manner. An adaptive inverse iteration algorithm using the interpolating multiwavelets is presented to solve structural eigenvalue problems. Numerical examples validate the accuracy and efficiency of the proposed algorithm.
Towards Motivation-Based Adaptation of Difficulty in E-Learning Programs
ERIC Educational Resources Information Center
Endler, Anke; Rey, Gunter Daniel; Butz, Martin V.
2012-01-01
The objective of this study was to investigate if an e-learning environment may use measurements of the user's current motivation to adapt the level of task difficulty for more effective learning. In the reported study, motivation-based adaptation was applied randomly to collect a wide range of data for different adaptations in a variety of…
Anticipation versus adaptation in Evolutionary Algorithms: The case of Non-Stationary Clustering
NASA Astrophysics Data System (ADS)
González, A. I.; Graña, M.; D'Anjou, A.; Torrealdea, F. J.
1998-07-01
From the technological point of view is usually more important to ensure the ability to react promptly to changing environmental conditions than to try to forecast them. Evolution Algorithms were proposed initially to drive the adaptation of complex systems to varying or uncertain environments. In the general setting, the adaptive-anticipatory dilemma reduces itself to the placement of the interaction with the environment in the computational schema. Adaptation consists of the estimation of the proper parameters from present data in order to react to a present environment situation. Anticipation consists of the estimation from present data in order to react to a future environment situation. This duality is expressed in the Evolutionary Computation paradigm by the precise location of the consideration of present data in the computation of the individuals fitness function. In this paper we consider several instances of Evolutionary Algorithms applied to precise problem and perform an experiment that test their response as anticipative and adaptive mechanisms. The non stationary problem considered is that of Non Stationary Clustering, more precisely the adaptive Color Quantization of image sequences. The experiment illustrates our ideas and gives some quantitative results that may support the proposition of the Evolutionary Computation paradigm for other tasks that require the interaction with a Non-Stationary environment.
ERIC Educational Resources Information Center
Reio, Thomas G., Jr.
The influence of selected discrete emotions on socialization-related learning and perception of workplace adaptation was examined in an exploratory study. Data were collected from 233 service workers in 4 small and medium-sized companies in metropolitan Washington, D.C. The sample members' average age was 32.5 years, and the sample's racial makeup…
The Study and Design of Adaptive Learning System Based on Fuzzy Set Theory
NASA Astrophysics Data System (ADS)
Jia, Bing; Zhong, Shaochun; Zheng, Tianyang; Liu, Zhiyong
Adaptive learning is an effective way to improve the learning outcomes, that is, the selection of learning content and presentation should be adapted to each learner's learning context, learning levels and learning ability. Adaptive Learning System (ALS) can provide effective support for adaptive learning. This paper proposes a new ALS based on fuzzy set theory. It can effectively estimate the learner's knowledge level by test according to learner's target. Then take the factors of learner's cognitive ability and preference into consideration to achieve self-organization and push plan of knowledge. This paper focuses on the design and implementation of domain model and user model in ALS. Experiments confirmed that the system providing adaptive content can effectively help learners to memory the content and improve their comprehension.
Xue, Y.; Liu, S.; Hu, Y.; Yang, J.; Chen, Q.
2007-01-01
To improve the accuracy in prediction, Genetic Algorithm based Adaptive Neural Network Ensemble (GA-ANNE) is presented. Intersections are allowed between different training sets based on the fuzzy clustering analysis, which ensures the diversity as well as the accuracy of individual Neural Networks (NNs). Moreover, to improve the accuracy of the adaptive weights of individual NNs, GA is used to optimize the cluster centers. Empirical results in predicting carbon flux of Duke Forest reveal that GA-ANNE can predict the carbon flux more accurately than Radial Basis Function Neural Network (RBFNN), Bagging NN ensemble, and ANNE. ?? 2007 IEEE.
Algorithme d'adaptation du filtre de Kalman aux variations soudaines de bruit
NASA Astrophysics Data System (ADS)
Canciu, Vintila
This research targets the case of Kalman filtering as applied to linear time-invariant systems having unknown process noise covariance and measurement noise covariance matrices and addresses the problem represented by the incomplete a priori knowledge of these two filter initialization parameters. The goal of this research is to determine in realtime both the process covariance matrix and the noise covariance matrix in the context of adaptive Kalman filtering. The resultant filter, called evolutionary adaptive Kalman filter, is able to adapt to sudden noise variations and constitutes a hybrid solution for adaptive Kalman filtering based on metaheuristic algorithms. MATLAB/Simulink simulation using several processes and covariance matrices plus comparison with other filters was selected as validation method. The Cramer-Rae Lower Bound (CRLB) was used as performance criterion. The thesis begins with a description of the problem under consideration (the design of a Kalman filter that is able to adapt to sudden noise variations) followed by a typical application (INS-GPS integrated navigation system) and by a statistical analysis of publications related to adaptive Kalman filtering. Next, the thesis presents the current architectures of the adaptive Kalman filtering: the innovation adaptive estimator (IAE) and the multiple model adaptive estimator (MMAE). It briefly presents their formulation, their behavior, and the limit of their performances. The thesis continues with the architectural synthesis of the evolutionary adaptive Kalman filter. The steps involved in the solution of the problem under consideration is also presented: an analysis of Kalman filtering and sub-optimal filtering methods, a comparison of current adaptive Kalman and sub-optimal filtering methods, the emergence of evolutionary adaptive Kalman filter as an enrichment of sub-optimal filtering with the help of biological-inspired computational intelligence methods, and the step-by-step architectural
The Influence of Student Characteristics on the Use of Adaptive E-Learning Material
ERIC Educational Resources Information Center
van Seters, J. R.; Ossevoort, M. A.; Tramper, J.; Goedhart, M. J.
2012-01-01
Adaptive e-learning materials can help teachers to educate heterogeneous student groups. This study provides empirical data about the way academic students differ in their learning when using adaptive e-learning materials. Ninety-four students participated in the study. We determined characteristics in a heterogeneous student group by collecting…
Zarepisheh, Masoud; Li, Nan; Long, Troy; Romeijn, H. Edwin; Tian, Zhen; Jia, Xun; Jiang, Steve B.
2014-06-15
Purpose: To develop a novel algorithm that incorporates prior treatment knowledge into intensity modulated radiation therapy optimization to facilitate automatic treatment planning and adaptive radiotherapy (ART) replanning. Methods: The algorithm automatically creates a treatment plan guided by the DVH curves of a reference plan that contains information on the clinician-approved dose-volume trade-offs among different targets/organs and among different portions of a DVH curve for an organ. In ART, the reference plan is the initial plan for the same patient, while for automatic treatment planning the reference plan is selected from a library of clinically approved and delivered plans of previously treated patients with similar medical conditions and geometry. The proposed algorithm employs a voxel-based optimization model and navigates the large voxel-based Pareto surface. The voxel weights are iteratively adjusted to approach a plan that is similar to the reference plan in terms of the DVHs. If the reference plan is feasible but not Pareto optimal, the algorithm generates a Pareto optimal plan with the DVHs better than the reference ones. If the reference plan is too restricting for the new geometry, the algorithm generates a Pareto plan with DVHs close to the reference ones. In both cases, the new plans have similar DVH trade-offs as the reference plans. Results: The algorithm was tested using three patient cases and found to be able to automatically adjust the voxel-weighting factors in order to generate a Pareto plan with similar DVH trade-offs as the reference plan. The algorithm has also been implemented on a GPU for high efficiency. Conclusions: A novel prior-knowledge-based optimization algorithm has been developed that automatically adjust the voxel weights and generate a clinical optimal plan at high efficiency. It is found that the new algorithm can significantly improve the plan quality and planning efficiency in ART replanning and automatic treatment
The Teaching and Learning of Algorithms in School Mathematics. 1998 Yearbook.
ERIC Educational Resources Information Center
Morrow, Lorna J., Ed.; Kenney, Margaret J., Ed.
This 1998 yearbook aims to stimulate and answer questions that all educators of mathematics need to consider to adapt school mathematics for the 21st century. The papers included in this book cover a wide variety of topics, including student-invented algorithms, the assessment of such algorithms, algorithms from history and other cultures, ways…
Adjoint-Based Algorithms for Adaptation and Design Optimizations on Unstructured Grids
NASA Technical Reports Server (NTRS)
Nielsen, Eric J.
2006-01-01
Schemes based on discrete adjoint algorithms present several exciting opportunities for significantly advancing the current state of the art in computational fluid dynamics. Such methods provide an extremely efficient means for obtaining discretely consistent sensitivity information for hundreds of design variables, opening the door to rigorous, automated design optimization of complex aerospace configuration using the Navier-Stokes equation. Moreover, the discrete adjoint formulation provides a mathematically rigorous foundation for mesh adaptation and systematic reduction of spatial discretization error. Error estimates are also an inherent by-product of an adjoint-based approach, valuable information that is virtually non-existent in today's large-scale CFD simulations. An overview of the adjoint-based algorithm work at NASA Langley Research Center is presented, with examples demonstrating the potential impact on complex computational problems related to design optimization as well as mesh adaptation.
Experiments on Supervised Learning Algorithms for Text Categorization
NASA Technical Reports Server (NTRS)
Namburu, Setu Madhavi; Tu, Haiying; Luo, Jianhui; Pattipati, Krishna R.
2005-01-01
Modern information society is facing the challenge of handling massive volume of online documents, news, intelligence reports, and so on. How to use the information accurately and in a timely manner becomes a major concern in many areas. While the general information may also include images and voice, we focus on the categorization of text data in this paper. We provide a brief overview of the information processing flow for text categorization, and discuss two supervised learning algorithms, viz., support vector machines (SVM) and partial least squares (PLS), which have been successfully applied in other domains, e.g., fault diagnosis [9]. While SVM has been well explored for binary classification and was reported as an efficient algorithm for text categorization, PLS has not yet been applied to text categorization. Our experiments are conducted on three data sets: Reuter's- 21578 dataset about corporate mergers and data acquisitions (ACQ), WebKB and the 20-Newsgroups. Results show that the performance of PLS is comparable to SVM in text categorization. A major drawback of SVM for multi-class categorization is that it requires a voting scheme based on the results of pair-wise classification. PLS does not have this drawback and could be a better candidate for multi-class text categorization.
IDEAL: Images Across Domains, Experiments, Algorithms and Learning
NASA Astrophysics Data System (ADS)
Ushizima, Daniela M.; Bale, Hrishikesh A.; Bethel, E. Wes; Ercius, Peter; Helms, Brett A.; Krishnan, Harinarayan; Grinberg, Lea T.; Haranczyk, Maciej; Macdowell, Alastair A.; Odziomek, Katarzyna; Parkinson, Dilworth Y.; Perciano, Talita; Ritchie, Robert O.; Yang, Chao
2016-09-01
Research across science domains is increasingly reliant on image-centric data. Software tools are in high demand to uncover relevant, but hidden, information in digital images, such as those coming from faster next generation high-throughput imaging platforms. The challenge is to analyze the data torrent generated by the advanced instruments efficiently, and provide insights such as measurements for decision-making. In this paper, we overview work performed by an interdisciplinary team of computational and materials scientists, aimed at designing software applications and coordinating research efforts connecting (1) emerging algorithms for dealing with large and complex datasets; (2) data analysis methods with emphasis in pattern recognition and machine learning; and (3) advances in evolving computer architectures. Engineering tools around these efforts accelerate the analyses of image-based recordings, improve reusability and reproducibility, scale scientific procedures by reducing time between experiments, increase efficiency, and open opportunities for more users of the imaging facilities. This paper describes our algorithms and software tools, showing results across image scales, demonstrating how our framework plays a role in improving image understanding for quality control of existent materials and discovery of new compounds.
An adaptive displacement estimation algorithm for improved reconstruction of thermal strain.
Ding, Xuan; Dutta, Debaditya; Mahmoud, Ahmed M; Tillman, Bryan; Leers, Steven A; Kim, Kang
2015-01-01
Thermal strain imaging (TSI) can be used to differentiate between lipid and water-based tissues in atherosclerotic arteries. However, detecting small lipid pools in vivo requires accurate and robust displacement estimation over a wide range of displacement magnitudes. Phase-shift estimators such as Loupas' estimator and time-shift estimators such as normalized cross-correlation (NXcorr) are commonly used to track tissue displacements. However, Loupas' estimator is limited by phase-wrapping and NXcorr performs poorly when the SNR is low. In this paper, we present an adaptive displacement estimation algorithm that combines both Loupas' estimator and NXcorr. We evaluated this algorithm using computer simulations and an ex vivo human tissue sample. Using 1-D simulation studies, we showed that when the displacement magnitude induced by thermal strain was >λ/8 and the electronic system SNR was >25.5 dB, the NXcorr displacement estimate was less biased than the estimate found using Loupas' estimator. On the other hand, when the displacement magnitude was ≤λ/4 and the electronic system SNR was ≤25.5 dB, Loupas' estimator had less variance than NXcorr. We used these findings to design an adaptive displacement estimation algorithm. Computer simulations of TSI showed that the adaptive displacement estimator was less biased than either Loupas' estimator or NXcorr. Strain reconstructed from the adaptive displacement estimates improved the strain SNR by 43.7 to 350% and the spatial accuracy by 1.2 to 23.0% (P < 0.001). An ex vivo human tissue study provided results that were comparable to computer simulations. The results of this study showed that a novel displacement estimation algorithm, which combines two different displacement estimators, yielded improved displacement estimation and resulted in improved strain reconstruction.
Spatio-temporal adaptation algorithm for two-dimensional reacting flows
NASA Astrophysics Data System (ADS)
Pervaiz, Mehtab M.; Baron, Judson R.
1988-01-01
A spatio-temporal adaptive algorithm for solving the unsteady Euler equations with chemical source terms is presented. Quadrilateral cells are used in two spatial dimensions which allow for embedded meshes tracking moving flow features with spatially varying time-steps which are multiples of global minimum time-steps. Blast wave interactions corresponding to a perfect gas (frozen) and a Lighthill dissociating gas (nonequilibrium) are considered for circular arc cascade and 90 degree bend duct geometries.
An Adaptive Displacement Estimation Algorithm for Improved Reconstruction of Thermal Strain
Ding, Xuan; Dutta, Debaditya; Mahmoud, Ahmed M.; Tillman, Bryan; Leers, Steven A.; Kim, Kang
2014-01-01
Thermal strain imaging (TSI) can be used to differentiate between lipid and water-based tissues in atherosclerotic arteries. However, detecting small lipid pools in vivo requires accurate and robust displacement estimation over a wide range of displacement magnitudes. Phase-shift estimators such as Loupas’ estimator and time-shift estimators like normalized cross-correlation (NXcorr) are commonly used to track tissue displacements. However, Loupas’ estimator is limited by phase-wrapping and NXcorr performs poorly when the signal-to-noise ratio (SNR) is low. In this paper, we present an adaptive displacement estimation algorithm that combines both Loupas’ estimator and NXcorr. We evaluated this algorithm using computer simulations and an ex-vivo human tissue sample. Using 1-D simulation studies, we showed that when the displacement magnitude induced by thermal strain was >λ/8 and the electronic system SNR was >25.5 dB, the NXcorr displacement estimate was less biased than the estimate found using Loupas’ estimator. On the other hand, when the displacement magnitude was ≤λ/4 and the electronic system SNR was ≤25.5 dB, Loupas’ estimator had less variance than NXcorr. We used these findings to design an adaptive displacement estimation algorithm. Computer simulations of TSI using Field II showed that the adaptive displacement estimator was less biased than either Loupas’ estimator or NXcorr. Strain reconstructed from the adaptive displacement estimates improved the strain SNR by 43.7–350% and the spatial accuracy by 1.2–23.0% (p < 0.001). An ex-vivo human tissue study provided results that were comparable to computer simulations. The results of this study showed that a novel displacement estimation algorithm, which combines two different displacement estimators, yielded improved displacement estimation and results in improved strain reconstruction. PMID:25585398
NASA Astrophysics Data System (ADS)
Peña, M.
2016-10-01
Achieving acceptable signal-to-noise ratio (SNR) can be difficult when working in sparsely populated waters and/or when species have low scattering such as fluid filled animals. The increasing use of higher frequencies and the study of deeper depths in fisheries acoustics, as well as the use of commercial vessels, is raising the need to employ good denoising algorithms. The use of a lower Sv threshold to remove noise or unwanted targets is not suitable in many cases and increases the relative background noise component in the echogram, demanding more effectiveness from denoising algorithms. The Adaptive Wiener Filter (AWF) denoising algorithm is presented in this study. The technique is based on the AWF commonly used in digital photography and video enhancement. The algorithm firstly increments the quality of the data with a variance-dependent smoothing, before estimating the noise level as the envelope of the Sv minima. The AWF denoising algorithm outperforms existing algorithms in the presence of gaussian, speckle and salt & pepper noise, although impulse noise needs to be previously removed. Cleaned echograms present homogenous echotraces with outlined edges.
Adaptive local backlight dimming algorithm based on local histogram and image characteristics
NASA Astrophysics Data System (ADS)
Nadernejad, Ehsan; Burini, Nino; Korhonen, Jari; Forchhammer, Søren; Mantel, Claire
2013-02-01
Liquid Crystal Display (LCDs) with Light Emitting Diode (LED) backlight is a very popular display technology, used for instance in television sets, monitors and mobile phones. This paper presents a new backlight dimming algorithm that exploits the characteristics of the target image, such as the local histograms and the average pixel intensity of each backlight segment, to reduce the power consumption of the backlight and enhance image quality. The local histogram of the pixels within each backlight segment is calculated and, based on this average, an adaptive quantile value is extracted. A classification into three classes based on the average luminance value is performed and, depending on the image luminance class, the extracted information on the local histogram determines the corresponding backlight value. The proposed method has been applied on two modeled screens: one with a high resolution direct-lit backlight, and the other screen with 16 edge-lit backlight segments placed in two columns and eight rows. We have compared the proposed algorithm against several known backlight dimming algorithms by simulations; and the results show that the proposed algorithm provides better trade-off between power consumption and image quality preservation than the other algorithms representing the state of the art among feature based backlight algorithms.
Sung, Wen-Tsai; Lin, Jia-Syun
2013-01-01
This work aims to develop a smart LED lighting system, which is remotely controlled by Android apps via handheld devices, e.g., smartphones, tablets, and so forth. The status of energy use is reflected by readings displayed on a handheld device, and it is treated as a criterion in the lighting mode design of a system. A multimeter, a wireless light dimmer, an IR learning remote module, etc. are connected to a server by means of RS 232/485 and a human computer interface on a touch screen. The wireless data communication is designed to operate in compliance with the ZigBee standard, and signal processing on sensed data is made through a self adaptive weighted data fusion algorithm. A low variation in data fusion together with a high stability is experimentally demonstrated in this work. The wireless light dimmer as well as the IR learning remote module can be instructed directly by command given on the human computer interface, and the reading on a multimeter can be displayed thereon via the server. This proposed smart LED lighting system can be remotely controlled and self learning mode can be enabled by a single handheld device via WiFi transmission. Hence, this proposal is validated as an approach to power monitoring for home appliances, and is demonstrated as a digital home network in consideration of energy efficiency.
NASA Astrophysics Data System (ADS)
Sun, Yang; Wu, Ke-nan; Gao, Hong; Jin, Yu-qi
2015-02-01
A novel optimization method, stochastic parallel proportional-integral-derivative (SPPID) algorithm, is proposed for high-resolution phase-distortion correction in wave-front sensorless adaptive optics (WSAO). To enhance the global search and self-adaptation of stochastic parallel gradient descent (SPGD) algorithm, residual error and its temporal integration of performance metric are added in to incremental control signal's calculation. On the basis of the maximum fitting rate between real wave-front and corrector, a goal value of metric is set as the reference. The residual error of the metric relative to reference is transformed into proportional and integration terms to produce adaptive step size updating law of SPGD algorithm. The adaptation of step size leads blind optimization to desired goal and helps escape from local extrema. Different from conventional proportional-integral -derivative (PID) algorithm, SPPID algorithm designs incremental control signal as PI-by-D for adaptive adjustment of control law in SPGD algorithm. Experiments of high-resolution phase-distortion correction in "frozen" turbulences based on influence function coefficients optimization were carried out respectively using 128-by-128 typed spatial light modulators, photo detector and control computer. Results revealed the presented algorithm offered better performance in both cases. The step size update based on residual error and its temporal integration was justified to resolve severe local lock-in problem of SPGD algorithm used in high -resolution adaptive optics.
Overlay improvements using a real time machine learning algorithm
NASA Astrophysics Data System (ADS)
Schmitt-Weaver, Emil; Kubis, Michael; Henke, Wolfgang; Slotboom, Daan; Hoogenboom, Tom; Mulkens, Jan; Coogans, Martyn; ten Berge, Peter; Verkleij, Dick; van de Mast, Frank
2014-04-01
While semiconductor manufacturing is moving towards the 14nm node using immersion lithography, the overlay requirements are tightened to below 5nm. Next to improvements in the immersion scanner platform, enhancements in the overlay optimization and process control are needed to enable these low overlay numbers. Whereas conventional overlay control methods address wafer and lot variation autonomously with wafer pre exposure alignment metrology and post exposure overlay metrology, we see a need to reduce these variations by correlating more of the TWINSCAN system's sensor data directly to the post exposure YieldStar metrology in time. In this paper we will present the results of a study on applying a real time control algorithm based on machine learning technology. Machine learning methods use context and TWINSCAN system sensor data paired with post exposure YieldStar metrology to recognize generic behavior and train the control system to anticipate on this generic behavior. Specific for this study, the data concerns immersion scanner context, sensor data and on-wafer measured overlay data. By making the link between the scanner data and the wafer data we are able to establish a real time relationship. The result is an inline controller that accounts for small changes in scanner hardware performance in time while picking up subtle lot to lot and wafer to wafer deviations introduced by wafer processing.
Effective and efficient optics inspection approach using machine learning algorithms
Abdulla, G; Kegelmeyer, L; Liao, Z; Carr, W
2010-11-02
The Final Optics Damage Inspection (FODI) system automatically acquires and utilizes the Optics Inspection (OI) system to analyze images of the final optics at the National Ignition Facility (NIF). During each inspection cycle up to 1000 images acquired by FODI are examined by OI to identify and track damage sites on the optics. The process of tracking growing damage sites on the surface of an optic can be made more effective by identifying and removing signals associated with debris or reflections. The manual process to filter these false sites is daunting and time consuming. In this paper we discuss the use of machine learning tools and data mining techniques to help with this task. We describe the process to prepare a data set that can be used for training and identifying hardware reflections in the image data. In order to collect training data, the images are first automatically acquired and analyzed with existing software and then relevant features such as spatial, physical and luminosity measures are extracted for each site. A subset of these sites is 'truthed' or manually assigned a class to create training data. A supervised classification algorithm is used to test if the features can predict the class membership of new sites. A suite of self-configuring machine learning tools called 'Avatar Tools' is applied to classify all sites. To verify, we used 10-fold cross correlation and found the accuracy was above 99%. This substantially reduces the number of false alarms that would otherwise be sent for more extensive investigation.
Iterative learning control algorithm for spiking behavior of neuron model
NASA Astrophysics Data System (ADS)
Li, Shunan; Li, Donghui; Wang, Jiang; Yu, Haitao
2016-11-01
Controlling neurons to generate a desired or normal spiking behavior is the fundamental building block of the treatment of many neurologic diseases. The objective of this work is to develop a novel control method-closed-loop proportional integral (PI)-type iterative learning control (ILC) algorithm to control the spiking behavior in model neurons. In order to verify the feasibility and effectiveness of the proposed method, two single-compartment standard models of different neuronal excitability are specifically considered: Hodgkin-Huxley (HH) model for class 1 neural excitability and Morris-Lecar (ML) model for class 2 neural excitability. ILC has remarkable advantages for the repetitive processes in nature. To further highlight the superiority of the proposed method, the performances of the iterative learning controller are compared to those of classical PI controller. Either in the classical PI control or in the PI control combined with ILC, appropriate background noises are added in neuron models to approach the problem under more realistic biophysical conditions. Simulation results show that the controller performances are more favorable when ILC is considered, no matter which neuronal excitability the neuron belongs to and no matter what kind of firing pattern the desired trajectory belongs to. The error between real and desired output is much smaller under ILC control signal, which suggests ILC of neuron’s spiking behavior is more accurate.
Ye, Zhiwei; Wang, Mingwei; Hu, Zhengbing; Liu, Wei
2015-01-01
Image enhancement is an important procedure of image processing and analysis. This paper presents a new technique using a modified measure and blending of cuckoo search and particle swarm optimization (CS-PSO) for low contrast images to enhance image adaptively. In this way, contrast enhancement is obtained by global transformation of the input intensities; it employs incomplete Beta function as the transformation function and a novel criterion for measuring image quality considering three factors which are threshold, entropy value, and gray-level probability density of the image. The enhancement process is a nonlinear optimization problem with several constraints. CS-PSO is utilized to maximize the objective fitness criterion in order to enhance the contrast and detail in an image by adapting the parameters of a novel extension to a local enhancement technique. The performance of the proposed method has been compared with other existing techniques such as linear contrast stretching, histogram equalization, and evolutionary computing based image enhancement methods like backtracking search algorithm, differential search algorithm, genetic algorithm, and particle swarm optimization in terms of processing time and image quality. Experimental results demonstrate that the proposed method is robust and adaptive and exhibits the better performance than other methods involved in the paper. PMID:25784928
An adaptive importance sampling algorithm for Bayesian inversion with multimodal distributions
Li, Weixuan; Lin, Guang
2015-03-21
Parametric uncertainties are encountered in the simulations of many physical systems, and may be reduced by an inverse modeling procedure that calibrates the simulation results to observations on the real system being simulated. Following Bayes’ rule, a general approach for inverse modeling problems is to sample from the posterior distribution of the uncertain model parameters given the observations. However, the large number of repetitive forward simulations required in the sampling process could pose a prohibitive computational burden. This difficulty is particularly challenging when the posterior is multimodal. We present in this paper an adaptive importance sampling algorithm to tackle these challenges. Two essential ingredients of the algorithm are: 1) a Gaussian mixture (GM) model adaptively constructed as the proposal distribution to approximate the possibly multimodal target posterior, and 2) a mixture of polynomial chaos (PC) expansions, built according to the GM proposal, as a surrogate model to alleviate the computational burden caused by computational-demanding forward model evaluations. In three illustrative examples, the proposed adaptive importance sampling algorithm demonstrates its capabilities of automatically finding a GM proposal with an appropriate number of modes for the specific problem under study, and obtaining a sample accurately and efficiently representing the posterior with limited number of forward simulations.
Ye, Zhiwei; Wang, Mingwei; Hu, Zhengbing; Liu, Wei
2015-01-01
Image enhancement is an important procedure of image processing and analysis. This paper presents a new technique using a modified measure and blending of cuckoo search and particle swarm optimization (CS-PSO) for low contrast images to enhance image adaptively. In this way, contrast enhancement is obtained by global transformation of the input intensities; it employs incomplete Beta function as the transformation function and a novel criterion for measuring image quality considering three factors which are threshold, entropy value, and gray-level probability density of the image. The enhancement process is a nonlinear optimization problem with several constraints. CS-PSO is utilized to maximize the objective fitness criterion in order to enhance the contrast and detail in an image by adapting the parameters of a novel extension to a local enhancement technique. The performance of the proposed method has been compared with other existing techniques such as linear contrast stretching, histogram equalization, and evolutionary computing based image enhancement methods like backtracking search algorithm, differential search algorithm, genetic algorithm, and particle swarm optimization in terms of processing time and image quality. Experimental results demonstrate that the proposed method is robust and adaptive and exhibits the better performance than other methods involved in the paper.
An adaptive importance sampling algorithm for Bayesian inversion with multimodal distributions
Li, Weixuan; Lin, Guang
2015-08-01
Parametric uncertainties are encountered in the simulations of many physical systems, and may be reduced by an inverse modeling procedure that calibrates the simulation results to observations on the real system being simulated. Following Bayes' rule, a general approach for inverse modeling problems is to sample from the posterior distribution of the uncertain model parameters given the observations. However, the large number of repetitive forward simulations required in the sampling process could pose a prohibitive computational burden. This difficulty is particularly challenging when the posterior is multimodal. We present in this paper an adaptive importance sampling algorithm to tackle these challenges. Two essential ingredients of the algorithm are: 1) a Gaussian mixture (GM) model adaptively constructed as the proposal distribution to approximate the possibly multimodal target posterior, and 2) a mixture of polynomial chaos (PC) expansions, built according to the GM proposal, as a surrogate model to alleviate the computational burden caused by computational-demanding forward model evaluations. In three illustrative examples, the proposed adaptive importance sampling algorithm demonstrates its capabilities of automatically finding a GM proposal with an appropriate number of modes for the specific problem under study, and obtaining a sample accurately and efficiently representing the posterior with limited number of forward simulations.
Ye, Zhiwei; Wang, Mingwei; Hu, Zhengbing; Liu, Wei
2015-01-01
Image enhancement is an important procedure of image processing and analysis. This paper presents a new technique using a modified measure and blending of cuckoo search and particle swarm optimization (CS-PSO) for low contrast images to enhance image adaptively. In this way, contrast enhancement is obtained by global transformation of the input intensities; it employs incomplete Beta function as the transformation function and a novel criterion for measuring image quality considering three factors which are threshold, entropy value, and gray-level probability density of the image. The enhancement process is a nonlinear optimization problem with several constraints. CS-PSO is utilized to maximize the objective fitness criterion in order to enhance the contrast and detail in an image by adapting the parameters of a novel extension to a local enhancement technique. The performance of the proposed method has been compared with other existing techniques such as linear contrast stretching, histogram equalization, and evolutionary computing based image enhancement methods like backtracking search algorithm, differential search algorithm, genetic algorithm, and particle swarm optimization in terms of processing time and image quality. Experimental results demonstrate that the proposed method is robust and adaptive and exhibits the better performance than other methods involved in the paper. PMID:25784928
An adaptive importance sampling algorithm for Bayesian inversion with multimodal distributions
Li, Weixuan; Lin, Guang
2015-03-21
Parametric uncertainties are encountered in the simulations of many physical systems, and may be reduced by an inverse modeling procedure that calibrates the simulation results to observations on the real system being simulated. Following Bayes’ rule, a general approach for inverse modeling problems is to sample from the posterior distribution of the uncertain model parameters given the observations. However, the large number of repetitive forward simulations required in the sampling process could pose a prohibitive computational burden. This difficulty is particularly challenging when the posterior is multimodal. We present in this paper an adaptive importance sampling algorithm to tackle thesemore » challenges. Two essential ingredients of the algorithm are: 1) a Gaussian mixture (GM) model adaptively constructed as the proposal distribution to approximate the possibly multimodal target posterior, and 2) a mixture of polynomial chaos (PC) expansions, built according to the GM proposal, as a surrogate model to alleviate the computational burden caused by computational-demanding forward model evaluations. In three illustrative examples, the proposed adaptive importance sampling algorithm demonstrates its capabilities of automatically finding a GM proposal with an appropriate number of modes for the specific problem under study, and obtaining a sample accurately and efficiently representing the posterior with limited number of forward simulations.« less
Spin-adapted density matrix renormalization group algorithms for quantum chemistry
NASA Astrophysics Data System (ADS)
Sharma, Sandeep; Chan, Garnet Kin-Lic
2012-03-01
We extend the spin-adapted density matrix renormalization group (DMRG) algorithm of McCulloch and Gulacsi [Europhys. Lett. 57, 852 (2002)], 10.1209/epl/i2002-00393-0 to quantum chemical Hamiltonians. This involves using a quasi-density matrix, to ensure that the renormalized DMRG states are eigenfunctions of hat{S}^2, and the Wigner-Eckart theorem, to reduce overall storage and computational costs. We argue that the spin-adapted DMRG algorithm is most advantageous for low spin states. Consequently, we also implement a singlet-embedding strategy due to Tatsuaki [Phys. Rev. E 61, 3199 (2000)], 10.1103/PhysRevE.61.3199 where we target high spin states as a component of a larger fictitious singlet system. Finally, we present an efficient algorithm to calculate one- and two-body reduced density matrices from the spin-adapted wavefunctions. We evaluate our developments with benchmark calculations on transition metal system active space models. These include the Fe2S2, [Fe2S2(SCH3)4]2-, and Cr2 systems. In the case of Fe2S2, the spin-ladder spacing is on the microHartree scale, and here we show that we can target such very closely spaced states. In [Fe2S2(SCH3)4]2-, we calculate particle and spin correlation functions, to examine the role of sulfur bridging orbitals in the electronic structure. In Cr2 we demonstrate that spin-adaptation with the Wigner-Eckart theorem and using singlet embedding can yield up to an order of magnitude increase in computational efficiency. Overall, these calculations demonstrate the potential of using spin-adaptation to extend the range of DMRG calculations in complex transition metal problems.
[An adaptive scaling hybrid algorithm for reduction of CT artifacts caused by metal objects].
Chen, Yu; Luo, Hai; Zhou, He-qin
2009-03-01
A new adaptively hybrid filtering algorithm is proposed to reduce the artifacts caused by metal in CT image. Firstly, the method is used to preprocess the projection data of metal region and is reconstruct by filtered back projection (FBP) method. Then the expectation maximization algorithm (EM) is performed on the iterative original metal project data. Finally, a compensating procedure is applied to the reconstructed metal region. The simulation result has demonstrated that the proposed algorithm can remove the metal artifacts and keep the structure information of metal object effectively. It ensures that the tissues around the metal will not be distorted. The method is also computational efficient and effective for the CT images which contains several metal objects.
NASA Astrophysics Data System (ADS)
Wu, Xia; Wu, Genhua
2014-08-01
Geometrical optimization of atomic clusters is performed by a development of adaptive immune optimization algorithm (AIOA) with dynamic lattice searching (DLS) operation (AIOA-DLS method). By a cycle of construction and searching of the dynamic lattice (DL), DLS algorithm rapidly makes the clusters more regular and greatly reduces the potential energy. DLS can thus be used as an operation acting on the new individuals after mutation operation in AIOA to improve the performance of the AIOA. The AIOA-DLS method combines the merit of evolutionary algorithm and idea of dynamic lattice. The performance of the proposed method is investigated in the optimization of Lennard-Jones clusters within 250 atoms and silver clusters described by many-body Gupta potential within 150 atoms. Results reported in the literature are reproduced, and the motif of Ag61 cluster is found to be stacking-fault face-centered cubic, whose energy is lower than that of previously obtained icosahedron.
NASA Astrophysics Data System (ADS)
Shams Esfand Abadi, Mohammad; AbbasZadeh Arani, Seyed Ali Asghar
2011-12-01
This paper extends the recently introduced variable step-size (VSS) approach to the family of adaptive filter algorithms. This method uses prior knowledge of the channel impulse response statistic. Accordingly, optimal step-size vector is obtained by minimizing the mean-square deviation (MSD). The presented algorithms are the VSS affine projection algorithm (VSS-APA), the VSS selective partial update NLMS (VSS-SPU-NLMS), the VSS-SPU-APA, and the VSS selective regressor APA (VSS-SR-APA). In VSS-SPU adaptive algorithms the filter coefficients are partially updated which reduce the computational complexity. In VSS-SR-APA, the optimal selection of input regressors is performed during the adaptation. The presented algorithms have good convergence speed, low steady state mean square error (MSE), and low computational complexity features. We demonstrate the good performance of the proposed algorithms through several simulations in system identification scenario.
Shi, Junwei; Liu, Fei; Pu, Huangsheng; Zuo, Simin; Luo, Jianwen; Bai, Jing
2014-11-01
Fluorescence molecular tomography (FMT) is a promising in vivo functional imaging modality in preclinical study. When solving the ill-posed FMT inverse problem, L1 regularization can preserve the details and reduce the noise in the reconstruction results effectively. Moreover, compared with the regular L1 regularization, reweighted L1 regularization is recently reported to improve the performance. In order to realize the reweighted L1 regularization for FMT, an adaptive support driven reweighted L1-regularization (ASDR-L1) algorithm is proposed in this work. This algorithm has two integral parts: an adaptive support estimate and the iteratively updated weights. In the iteratively reweighted L1-minimization sub-problem, different weights are equivalent to different regularization parameters at different locations. Thus, ASDR-L1 can be considered as a kind of spatially variant regularization methods for FMT. Physical phantom and in vivo mouse experiments were performed to validate the proposed algorithm. The results demonstrate that the proposed reweighted L1-reguarization algorithm can significantly improve the performance in terms of relative quantitation and spatial resolution.
Learning Adaptive Forecasting Models from Irregularly Sampled Multivariate Clinical Data
Liu, Zitao; Hauskrecht, Milos
2016-01-01
Building accurate predictive models of clinical multivariate time series is crucial for understanding of the patient condition, the dynamics of a disease, and clinical decision making. A challenging aspect of this process is that the model should be flexible and adaptive to reflect well patient-specific temporal behaviors and this also in the case when the available patient-specific data are sparse and short span. To address this problem we propose and develop an adaptive two-stage forecasting approach for modeling multivariate, irregularly sampled clinical time series of varying lengths. The proposed model (1) learns the population trend from a collection of time series for past patients; (2) captures individual-specific short-term multivariate variability; and (3) adapts by automatically adjusting its predictions based on new observations. The proposed forecasting model is evaluated on a real-world clinical time series dataset. The results demonstrate the benefits of our approach on the prediction tasks for multivariate, irregularly sampled clinical time series, and show that it can outperform both the population based and patient-specific time series prediction models in terms of prediction accuracy. PMID:27525189
Environmental Monitoring Networks Optimization Using Advanced Active Learning Algorithms
NASA Astrophysics Data System (ADS)
Kanevski, Mikhail; Volpi, Michele; Copa, Loris
2010-05-01
The problem of environmental monitoring networks optimization (MNO) belongs to one of the basic and fundamental tasks in spatio-temporal data collection, analysis, and modeling. There are several approaches to this problem, which can be considered as a design or redesign of monitoring network by applying some optimization criteria. The most developed and widespread methods are based on geostatistics (family of kriging models, conditional stochastic simulations). In geostatistics the variance is mainly used as an optimization criterion which has some advantages and drawbacks. In the present research we study an application of advanced techniques following from the statistical learning theory (SLT) - support vector machines (SVM) and the optimization of monitoring networks when dealing with a classification problem (data are discrete values/classes: hydrogeological units, soil types, pollution decision levels, etc.) is considered. SVM is a universal nonlinear modeling tool for classification problems in high dimensional spaces. The SVM solution is maximizing the decision boundary between classes and has a good generalization property for noisy data. The sparse solution of SVM is based on support vectors - data which contribute to the solution with nonzero weights. Fundamentally the MNO for classification problems can be considered as a task of selecting new measurement points which increase the quality of spatial classification and reduce the testing error (error on new independent measurements). In SLT this is a typical problem of active learning - a selection of the new unlabelled points which efficiently reduce the testing error. A classical approach (margin sampling) to active learning is to sample the points closest to the classification boundary. This solution is suboptimal when points (or generally the dataset) are redundant for the same class. In the present research we propose and study two new advanced methods of active learning adapted to the solution of
NASA Astrophysics Data System (ADS)
Miao, Zuohua; Xu, Hong; Chen, Yong; Zeng, Xiangyang
2009-10-01
Back-propagation neural network model (BPNN) is an intelligent computational model based on stylebook learning. This model is different from traditional adaptability symbolic logic reasoning method based on knowledge and rules. At the same time, BPNN model has shortcoming such as: slowly convergence speed and partial minimum. During the process of adaptability evaluation, the factors were diverse, complicated and uncertain, so an effectual model should adopt the technique of data mining method and fuzzy logical technology. In this paper, the author ameliorated the backpropagation of BPNN and applied fuzzy logical theory for dynamic inference of fuzzy rules. Authors also give detail description on training and experiment process of the novel model.
Learning Cue Phrase Patterns from Radiology Reports Using a Genetic Algorithm
Patton, Robert M; Beckerman, Barbara G; Potok, Thomas E
2009-01-01
Various computer-assisted technologies have been developed to assist radiologists in detecting cancer; however, the algorithms still lack high degrees of sensitivity and specificity, and must undergo machine learning against a training set with known pathologies in order to further refine the algorithms with higher validity of truth. This work describes an approach to learning cue phrase patterns in radiology reports that utilizes a genetic algorithm (GA) as the learning method. The approach described here successfully learned cue phrase patterns for two distinct classes of radiology reports. These patterns can then be used as a basis for automatically categorizing, clustering, or retrieving relevant data for the user.
Optimizing the Learning Order of Chinese Characters Using a Novel Topological Sort Algorithm
Wang, Jinzhao
2016-01-01
We present a novel algorithm for optimizing the order in which Chinese characters are learned, one that incorporates the benefits of learning them in order of usage frequency and in order of their hierarchal structural relationships. We show that our work outperforms previously published orders and algorithms. Our algorithm is applicable to any scheduling task where nodes have intrinsic differences in importance and must be visited in topological order. PMID:27706234
Standal, Øyvind F; Jespersen, Ejgil
2008-07-01
The purpose of this study was to investigate the learning that takes place when people with disabilities interact in a rehabilitation context. Data were generated through in-depth interviews and close observations in a 2 (1/2) week-long rehabilitation program, where the participants learned both wheelchair skills and adapted physical activities. The findings from the qualitative data analysis are discussed in the context of situated learning (Lave & Wenger, 1991; Wenger, 1998). The results indicate that peer learning extends beyond skills and techniques, to include ways for the participants to make sense of their situations as wheelchair users. Also, it was found that the community of practice established between the participants represented a critical corrective to instructions provided by rehabilitation professionals.
Viejo, Guillaume; Khamassi, Mehdi; Brovelli, Andrea; Girard, Benoît
2015-01-01
Current learning theory provides a comprehensive description of how humans and other animals learn, and places behavioral flexibility and automaticity at heart of adaptive behaviors. However, the computations supporting the interactions between goal-directed and habitual decision-making systems are still poorly understood. Previous functional magnetic resonance imaging (fMRI) results suggest that the brain hosts complementary computations that may differentially support goal-directed and habitual processes in the form of a dynamical interplay rather than a serial recruitment of strategies. To better elucidate the computations underlying flexible behavior, we develop a dual-system computational model that can predict both performance (i.e., participants' choices) and modulations in reaction times during learning of a stimulus-response association task. The habitual system is modeled with a simple Q-Learning algorithm (QL). For the goal-directed system, we propose a new Bayesian Working Memory (BWM) model that searches for information in the history of previous trials in order to minimize Shannon entropy. We propose a model for QL and BWM coordination such that the expensive memory manipulation is under control of, among others, the level of convergence of the habitual learning. We test the ability of QL or BWM alone to explain human behavior, and compare them with the performance of model combinations, to highlight the need for such combinations to explain behavior. Two of the tested combination models are derived from the literature, and the latter being our new proposal. In conclusion, all subjects were better explained by model combinations, and the majority of them are explained by our new coordination proposal. PMID:26379518
Viejo, Guillaume; Khamassi, Mehdi; Brovelli, Andrea; Girard, Benoît
2015-01-01
Current learning theory provides a comprehensive description of how humans and other animals learn, and places behavioral flexibility and automaticity at heart of adaptive behaviors. However, the computations supporting the interactions between goal-directed and habitual decision-making systems are still poorly understood. Previous functional magnetic resonance imaging (fMRI) results suggest that the brain hosts complementary computations that may differentially support goal-directed and habitual processes in the form of a dynamical interplay rather than a serial recruitment of strategies. To better elucidate the computations underlying flexible behavior, we develop a dual-system computational model that can predict both performance (i.e., participants' choices) and modulations in reaction times during learning of a stimulus-response association task. The habitual system is modeled with a simple Q-Learning algorithm (QL). For the goal-directed system, we propose a new Bayesian Working Memory (BWM) model that searches for information in the history of previous trials in order to minimize Shannon entropy. We propose a model for QL and BWM coordination such that the expensive memory manipulation is under control of, among others, the level of convergence of the habitual learning. We test the ability of QL or BWM alone to explain human behavior, and compare them with the performance of model combinations, to highlight the need for such combinations to explain behavior. Two of the tested combination models are derived from the literature, and the latter being our new proposal. In conclusion, all subjects were better explained by model combinations, and the majority of them are explained by our new coordination proposal.
Viejo, Guillaume; Khamassi, Mehdi; Brovelli, Andrea; Girard, Benoît
2015-01-01
Current learning theory provides a comprehensive description of how humans and other animals learn, and places behavioral flexibility and automaticity at heart of adaptive behaviors. However, the computations supporting the interactions between goal-directed and habitual decision-making systems are still poorly understood. Previous functional magnetic resonance imaging (fMRI) results suggest that the brain hosts complementary computations that may differentially support goal-directed and habitual processes in the form of a dynamical interplay rather than a serial recruitment of strategies. To better elucidate the computations underlying flexible behavior, we develop a dual-system computational model that can predict both performance (i.e., participants' choices) and modulations in reaction times during learning of a stimulus–response association task. The habitual system is modeled with a simple Q-Learning algorithm (QL). For the goal-directed system, we propose a new Bayesian Working Memory (BWM) model that searches for information in the history of previous trials in order to minimize Shannon entropy. We propose a model for QL and BWM coordination such that the expensive memory manipulation is under control of, among others, the level of convergence of the habitual learning. We test the ability of QL or BWM alone to explain human behavior, and compare them with the performance of model combinations, to highlight the need for such combinations to explain behavior. Two of the tested combination models are derived from the literature, and the latter being our new proposal. In conclusion, all subjects were better explained by model combinations, and the majority of them are explained by our new coordination proposal. PMID:26379518
NASA Astrophysics Data System (ADS)
Onur Ari, Evrim; Kocaoglan, Erol
2016-02-01
In this paper, a self-recurrent wavelet neural network (SRWNN)-based indirect adaptive control architecture is modified for performing speed control of a motion platform. The transient behaviour of the original learning algorithm has been improved by modifying the learning rate updates. The contribution of the proposed modification has been verified via both simulations and experiments. Moreover, the performance of the proposed architecture is compared with robust RST designs performed on a similar benchmark system, to show that via adaptive nonlinear control, it is possible to obtain a fast step response without degrading the robustness of a multi-body mechanical system. Finally, the architecture is further improved so as to possess structural learning for populating the SRWNNs automatically, rather than employing static network structures, and simulation results are provided to show the performance of the proposed structural learning algorithm.
NASA Astrophysics Data System (ADS)
Huang, Yin; Chen, Jianhua; Xiong, Shaojun
2009-07-01
Mobile-Learning (M-learning) makes many learners get the advantages of both traditional learning and E-learning. Currently, Web-based Mobile-Learning Systems have created many new ways and defined new relationships between educators and learners. Association rule mining is one of the most important fields in data mining and knowledge discovery in databases. Rules explosion is a serious problem which causes great concerns, as conventional mining algorithms often produce too many rules for decision makers to digest. Since Web-based Mobile-Learning System collects vast amounts of student profile data, data mining and knowledge discovery techniques can be applied to find interesting relationships between attributes of learners, assessments, the solution strategies adopted by learners and so on. Therefore ,this paper focus on a new data-mining algorithm, combined with the advantages of genetic algorithm and simulated annealing algorithm , called ARGSA(Association rules based on an improved Genetic Simulated Annealing Algorithm), to mine the association rules. This paper first takes advantage of the Parallel Genetic Algorithm and Simulated Algorithm designed specifically for discovering association rules. Moreover, the analysis and experiment are also made to show the proposed method is superior to the Apriori algorithm in this Mobile-Learning system.
Muckley, Matthew J; Noll, Douglas C; Fessler, Jeffrey A
2015-02-01
Sparsity-promoting regularization is useful for combining compressed sensing assumptions with parallel MRI for reducing scan time while preserving image quality. Variable splitting algorithms are the current state-of-the-art algorithms for SENSE-type MR image reconstruction with sparsity-promoting regularization. These methods are very general and have been observed to work with almost any regularizer; however, the tuning of associated convergence parameters is a commonly-cited hindrance in their adoption. Conversely, majorize-minimize algorithms based on a single Lipschitz constant have been observed to be slow in shift-variant applications such as SENSE-type MR image reconstruction since the associated Lipschitz constants are loose bounds for the shift-variant behavior. This paper bridges the gap between the Lipschitz constant and the shift-variant aspects of SENSE-type MR imaging by introducing majorizing matrices in the range of the regularizer matrix. The proposed majorize-minimize methods (called BARISTA) converge faster than state-of-the-art variable splitting algorithms when combined with momentum acceleration and adaptive momentum restarting. Furthermore, the tuning parameters associated with the proposed methods are unitless convergence tolerances that are easier to choose than the constraint penalty parameters required by variable splitting algorithms.
Noll, Douglas C.; Fessler, Jeffrey A.
2014-01-01
Sparsity-promoting regularization is useful for combining compressed sensing assumptions with parallel MRI for reducing scan time while preserving image quality. Variable splitting algorithms are the current state-of-the-art algorithms for SENSE-type MR image reconstruction with sparsity-promoting regularization. These methods are very general and have been observed to work with almost any regularizer; however, the tuning of associated convergence parameters is a commonly-cited hindrance in their adoption. Conversely, majorize-minimize algorithms based on a single Lipschitz constant have been observed to be slow in shift-variant applications such as SENSE-type MR image reconstruction since the associated Lipschitz constants are loose bounds for the shift-variant behavior. This paper bridges the gap between the Lipschitz constant and the shift-variant aspects of SENSE-type MR imaging by introducing majorizing matrices in the range of the regularizer matrix. The proposed majorize-minimize methods (called BARISTA) converge faster than state-of-the-art variable splitting algorithms when combined with momentum acceleration and adaptive momentum restarting. Furthermore, the tuning parameters associated with the proposed methods are unitless convergence tolerances that are easier to choose than the constraint penalty parameters required by variable splitting algorithms. PMID:25330484
Chen, S; Wu, Y; Luk, B L
1999-01-01
The paper presents a two-level learning method for radial basis function (RBF) networks. A regularized orthogonal least squares (ROLS) algorithm is employed at the lower level to construct RBF networks while the two key learning parameters, the regularization parameter and the RBF width, are optimized using a genetic algorithm (GA) at the upper level. Nonlinear time series modeling and prediction is used as an example to demonstrate the effectiveness of this hierarchical learning approach.
Modeling and Simulation of An Adaptive Neuro-Fuzzy Inference System (ANFIS) for Mobile Learning
ERIC Educational Resources Information Center
Al-Hmouz, A.; Shen, Jun; Al-Hmouz, R.; Yan, Jun
2012-01-01
With recent advances in mobile learning (m-learning), it is becoming possible for learning activities to occur everywhere. The learner model presented in our earlier work was partitioned into smaller elements in the form of learner profiles, which collectively represent the entire learning process. This paper presents an Adaptive Neuro-Fuzzy…
Breast image feature learning with adaptive deconvolutional networks
NASA Astrophysics Data System (ADS)
Jamieson, Andrew R.; Drukker, Karen; Giger, Maryellen L.
2012-03-01
Feature extraction is a critical component of medical image analysis. Many computer-aided diagnosis approaches employ hand-designed, heuristic lesion extracted features. An alternative approach is to learn features directly from images. In this preliminary study, we explored the use of Adaptive Deconvolutional Networks (ADN) for learning high-level features in diagnostic breast mass lesion images with potential application to computer-aided diagnosis (CADx) and content-based image retrieval (CBIR). ADNs (Zeiler, et. al., 2011), are recently-proposed unsupervised, generative hierarchical models that decompose images via convolution sparse coding and max pooling. We trained the ADNs to learn multiple layers of representation for two breast image data sets on two different modalities (739 full field digital mammography (FFDM) and 2393 ultrasound images). Feature map calculations were accelerated by use of GPUs. Following Zeiler et. al., we applied the Spatial Pyramid Matching (SPM) kernel (Lazebnik, et. al., 2006) on the inferred feature maps and combined this with a linear support vector machine (SVM) classifier for the task of binary classification between cancer and non-cancer breast mass lesions. Non-linear, local structure preserving dimension reduction, Elastic Embedding (Carreira-Perpiñán, 2010), was then used to visualize the SPM kernel output in 2D and qualitatively inspect image relationships learned. Performance was found to be competitive with current CADx schemes that use human-designed features, e.g., achieving a 0.632+ bootstrap AUC (by case) of 0.83 [0.78, 0.89] for an ultrasound image set (1125 cases).
Modeling the Swift BAT Trigger Algorithm with Machine Learning
NASA Technical Reports Server (NTRS)
Graff, Philip B.; Lien, Amy Y.; Baker, John G.; Sakamoto, Takanori
2015-01-01
To draw inferences about gamma-ray burst (GRB) source populations based on Swift observations, it is essential to understand the detection efficiency of the Swift burst alert telescope (BAT). This study considers the problem of modeling the Swift BAT triggering algorithm for long GRBs, a computationally expensive procedure, and models it using machine learning algorithms. A large sample of simulated GRBs from Lien et al. (2014) is used to train various models: random forests, boosted decision trees (with AdaBoost), support vector machines, and artificial neural networks. The best models have accuracies of approximately greater than 97% (approximately less than 3% error), which is a significant improvement on a cut in GRB flux which has an accuracy of 89:6% (10:4% error). These models are then used to measure the detection efficiency of Swift as a function of redshift z, which is used to perform Bayesian parameter estimation on the GRB rate distribution. We find a local GRB rate density of eta(sub 0) approximately 0.48(+0.41/-0.23) Gpc(exp -3) yr(exp -1) with power-law indices of eta(sub 1) approximately 1.7(+0.6/-0.5) and eta(sub 2) approximately -5.9(+5.7/-0.1) for GRBs above and below a break point of z(sub 1) approximately 6.8(+2.8/-3.2). This methodology is able to improve upon earlier studies by more accurately modeling Swift detection and using this for fully Bayesian model fitting. The code used in this is analysis is publicly available online.
Corbacho, Fernando; Nishikawa, Kiisa C; Weerasuriya, Ananda; Liaw, Jim-Shih; Arbib, Michael A
2005-12-01
The previous companion paper describes the initial (seed) schema architecture that gives rise to the observed prey-catching behavior. In this second paper in the series we describe the fundamental adaptive processes required during learning after lesioning. Following bilateral transections of the hypoglossal nerve, anurans lunge toward mealworms with no accompanying tongue or jaw movement. Nevertheless anurans with permanent hypoglossal transections eventually learn to catch their prey by first learning to open their mouth again and then lunging their body further and increasing their head angle. In this paper we present a new learning framework, called schema-based learning (SBL). SBL emphasizes the importance of the current existent structure (schemas), that defines a functioning system, for the incremental and autonomous construction of ever more complex structure to achieve ever more complex levels of functioning. We may rephrase this statement into the language of Schema Theory (Arbib 1992, for a comprehensive review) as the learning of new schemas based on the stock of current schemas. SBL emphasizes a fundamental principle of organization called coherence maximization, that deals with the maximization of congruence between the results of an interaction (external or internal) and the expectations generated for that interaction. A central hypothesis consists of the existence of a hierarchy of predictive internal models (predictive schemas) all over the control center-brain-of the agent. Hence, we will include predictive models in the perceptual, sensorimotor, and motor components of the autonomous agent architecture. We will then show that predictive models are fundamental for structural learning. In particular we will show how a system can learn a new structural component (augment the overall network topology) after being lesioned in order to recover (or even improve) its original functionality. Learning after lesioning is a special case of structural
Albert, O; Sherman, L; Mourou, G; Norris, T B; Vdovin, G
2000-01-01
Off-axis aberrations in a beam-scanning multiphoton confocal microscope are corrected with a deformable mirror. The optimal mirror shape for each pixel is determined by a genetic learning algorithm, in which the second-harmonic or two-photon fluorescence signal from a reference sample is maximized. The speed of the convergence is improved by use of a Zernike polynomial basis for the deformable mirror shape. This adaptive optical correction scheme is implemented in an all-reflective system by use of extremely short (10-fs) optical pulses, and it is shown that the scanning area of an f:1 off-axis parabola can be increased by nine times with this technique. PMID:18059779
Automatic ultrasonic imaging system with adaptive-learning-network signal-processing techniques
O'Brien, L.J.; Aravanis, N.A.; Gouge, J.R. Jr.; Mucciardi, A.N.; Lemon, D.K.; Skorpik, J.R.
1982-04-01
A conventional pulse-echo imaging system has been modified to operate with a linear ultrasonic array and associated digital electronics to collect data from a series of defects fabricated in aircraft quality steel blocks. A thorough analysis of the defect responses recorded with this modified system has shown that considerable improvements over conventional imaging approaches can be obtained in the crucial areas of defect detection and characterization. A combination of advanced signal processing concepts with the Adaptive Learning Network (ALN) methodology forms the basis for these improvements. Use of established signal processing algorithms such as temporal and spatial beam-forming in concert with a sophisticated detector has provided a reliable defect detection scheme which can be implemented in a microprocessor-based system to operate in an automatic mode.
Design of Learning Model of Logic and Algorithms Based on APOS Theory
ERIC Educational Resources Information Center
Hartati, Sulis Janu
2014-01-01
This research questions were "how do the characteristics of learning model of logic & algorithm according to APOS theory" and "whether or not these learning model can improve students learning outcomes". This research was conducted by exploration, and quantitative approach. Exploration used in constructing theory about the…
Learning about stress: neural, endocrine and behavioral adaptations.
McCarty, Richard
2016-09-01
In this review, nonassociative learning is advanced as an organizing principle to draw together findings from both sympathetic-adrenal medullary and hypothalamic-pituitary-adrenocortical (HPA) axis responses to chronic intermittent exposure to a variety of stressors. Studies of habituation, facilitation and sensitization of stress effector systems are reviewed and linked to an animal's prior experience with a given stressor, the intensity of the stressor and the appraisal by the animal of its ability to mobilize physiological systems to adapt to the stressor. Brain pathways that regulate physiological and behavioral responses to stress are discussed, especially in light of their regulation of nonassociative processes in chronic intermittent stress. These findings may have special relevance to various psychiatric diseases, including depression and post-traumatic stress disorder (PTSD). PMID:27294884
Learning about stress: neural, endocrine and behavioral adaptations.
McCarty, Richard
2016-09-01
In this review, nonassociative learning is advanced as an organizing principle to draw together findings from both sympathetic-adrenal medullary and hypothalamic-pituitary-adrenocortical (HPA) axis responses to chronic intermittent exposure to a variety of stressors. Studies of habituation, facilitation and sensitization of stress effector systems are reviewed and linked to an animal's prior experience with a given stressor, the intensity of the stressor and the appraisal by the animal of its ability to mobilize physiological systems to adapt to the stressor. Brain pathways that regulate physiological and behavioral responses to stress are discussed, especially in light of their regulation of nonassociative processes in chronic intermittent stress. These findings may have special relevance to various psychiatric diseases, including depression and post-traumatic stress disorder (PTSD).
NASA Astrophysics Data System (ADS)
Tiilikainen, J.; Tilli, J.-M.; Bosund, V.; Mattila, M.; Hakkarainen, T.; Airaksinen, V.-M.; Lipsanen, H.
2007-01-01
Two novel genetic algorithms implementing principal component analysis and an adaptive nonlinear fitness-space-structure technique are presented and compared with conventional algorithms in x-ray reflectivity analysis. Principal component analysis based on Hessian or interparameter covariance matrices is used to rotate a coordinate frame. The nonlinear adaptation applies nonlinear estimates to reshape the probability distribution of the trial parameters. The simulated x-ray reflectivity of a realistic model of a periodic nanolaminate structure was used as a test case for the fitting algorithms. The novel methods had significantly faster convergence and less stagnation than conventional non-adaptive genetic algorithms. The covariance approach needs no additional curve calculations compared with conventional methods, and it had better convergence properties than the computationally expensive Hessian approach. These new algorithms can also be applied to other fitting problems where tight interparameter dependence is present.
A comparison of two adaptive algorithms for the control of active engine mounts
NASA Astrophysics Data System (ADS)
Hillis, A. J.; Harrison, A. J. L.; Stoten, D. P.
2005-08-01
This paper describes work conducted in order to control automotive active engine mounts, consisting of a conventional passive mount and an internal electromagnetic actuator. Active engine mounts seek to cancel the oscillatory forces generated by the rotation of out-of-balance masses within the engine. The actuator generates a force dependent on a control signal from an algorithm implemented with a real-time DSP. The filtered-x least-mean-square (FXLMS) adaptive filter is used as a benchmark for comparison with a new implementation of the error-driven minimal controller synthesis (Er-MCSI) adaptive controller. Both algorithms are applied to an active mount fitted to a saloon car equipped with a four-cylinder turbo-diesel engine, and have no a priori knowledge of the system dynamics. The steady-state and transient performance of the two algorithms are compared and the relative merits of the two approaches are discussed. The Er-MCSI strategy offers significant computational advantages as it requires no cancellation path modelling. The Er-MCSI controller is found to perform in a fashion similar to the FXLMS filter—typically reducing chassis vibration by 50-90% under normal driving conditions.
An Energy Aware Adaptive Sampling Algorithm for Energy Harvesting WSN with Energy Hungry Sensors.
Srbinovski, Bruno; Magno, Michele; Edwards-Murphy, Fiona; Pakrashi, Vikram; Popovici, Emanuel
2016-03-28
Wireless sensor nodes have a limited power budget, though they are often expected to be functional in the field once deployed for extended periods of time. Therefore, minimization of energy consumption and energy harvesting technology in Wireless Sensor Networks (WSN) are key tools for maximizing network lifetime, and achieving self-sustainability. This paper proposes an energy aware Adaptive Sampling Algorithm (ASA) for WSN with power hungry sensors and harvesting capabilities, an energy management technique that can be implemented on any WSN platform with enough processing power to execute the proposed algorithm. An existing state-of-the-art ASA developed for wireless sensor networks with power hungry sensors is optimized and enhanced to adapt the sampling frequency according to the available energy of the node. The proposed algorithm is evaluated using two in-field testbeds that are supplied by two different energy harvesting sources (solar and wind). Simulation and comparison between the state-of-the-art ASA and the proposed energy aware ASA (EASA) in terms of energy durability are carried out using in-field measured harvested energy (using both wind and solar sources) and power hungry sensors (ultrasonic wind sensor and gas sensors). The simulation results demonstrate that using ASA in combination with an energy aware function on the nodes can drastically increase the lifetime of a WSN node and enable self-sustainability. In fact, the proposed EASA in conjunction with energy harvesting capability can lead towards perpetual WSN operation and significantly outperform the state-of-the-art ASA.
Reconstruction of sparse-view X-ray computed tomography using adaptive iterative algorithms.
Liu, Li; Lin, Weikai; Jin, Mingwu
2015-01-01
In this paper, we propose two reconstruction algorithms for sparse-view X-ray computed tomography (CT). Treating the reconstruction problems as data fidelity constrained total variation (TV) minimization, both algorithms adapt the alternate two-stage strategy: projection onto convex sets (POCS) for data fidelity and non-negativity constraints and steepest descent for TV minimization. The novelty of this work is to determine iterative parameters automatically from data, thus avoiding tedious manual parameter tuning. In TV minimization, the step sizes of steepest descent are adaptively adjusted according to the difference from POCS update in either the projection domain or the image domain, while the step size of algebraic reconstruction technique (ART) in POCS is determined based on the data noise level. In addition, projection errors are used to compare with the error bound to decide whether to perform ART so as to reduce computational costs. The performance of the proposed methods is studied and evaluated using both simulated and physical phantom data. Our methods with automatic parameter tuning achieve similar, if not better, reconstruction performance compared to a representative two-stage algorithm.
Adaptive Inverse Hyperbolic Tangent Algorithm for Dynamic Contrast Adjustment in Displaying Scenes
NASA Astrophysics Data System (ADS)
Yu, Cheng-Yi; Ouyang, Yen-Chieh; Wang, Chuin-Mu; Chang, Chein-I.
2010-12-01
Contrast has a great influence on the quality of an image in human visual perception. A poorly illuminated environment can significantly affect the contrast ratio, producing an unexpected image. This paper proposes an Adaptive Inverse Hyperbolic Tangent (AIHT) algorithm to improve the display quality and contrast of a scene. Because digital cameras must maintain the shadow in a middle range of luminance that includes a main object such as a face, a gamma function is generally used for this purpose. However, this function has a severe weakness in that it decreases highlight contrast. To mitigate this problem, contrast enhancement algorithms have been designed to adjust contrast to tune human visual perception. The proposed AIHT determines the contrast levels of an original image as well as parameter space for different contrast types so that not only the original histogram shape features can be preserved, but also the contrast can be enhanced effectively. Experimental results show that the proposed algorithm is capable of enhancing the global contrast of the original image adaptively while extruding the details of objects simultaneously.
Hierarchically clustered adaptive quantization CMAC and its learning convergence.
Teddy, S D; Lai, E M K; Quek, C
2007-11-01
The cerebellar model articulation controller (CMAC) neural network (NN) is a well-established computational model of the human cerebellum. Nevertheless, there are two major drawbacks associated with the uniform quantization scheme of the CMAC network. They are the following: (1) a constant output resolution associated with the entire input space and (2) the generalization-accuracy dilemma. Moreover, the size of the CMAC network is an exponential function of the number of inputs. Depending on the characteristics of the training data, only a small percentage of the entire set of CMAC memory cells is utilized. Therefore, the efficient utilization of the CMAC memory is a crucial issue. One approach is to quantize the input space nonuniformly. For existing nonuniformly quantized CMAC systems, there is a tradeoff between memory efficiency and computational complexity. Inspired by the underlying organizational mechanism of the human brain, this paper presents a novel CMAC architecture named hierarchically clustered adaptive quantization CMAC (HCAQ-CMAC). HCAQ-CMAC employs hierarchical clustering for the nonuniform quantization of the input space to identify significant input segments and subsequently allocating more memory cells to these regions. The stability of the HCAQ-CMAC network is theoretically guaranteed by the proof of its learning convergence. The performance of the proposed network is subsequently benchmarked against the original CMAC network, as well as two other existing CMAC variants on two real-life applications, namely, automated control of car maneuver and modeling of the human blood glucose dynamics. The experimental results have demonstrated that the HCAQ-CMAC network offers an efficient memory allocation scheme and improves the generalization and accuracy of the network output to achieve better or comparable performances with smaller memory usages. Index Terms-Cerebellar model articulation controller (CMAC), hierarchical clustering, hierarchically
NASA Astrophysics Data System (ADS)
Zhu, Li; He, Yongxiang; Xue, Haidong; Chen, Leichen
Traditional genetic algorithms (GA) displays a disadvantage of early-constringency in dealing with scheduling problem. To improve the crossover operators and mutation operators self-adaptively, this paper proposes a self-adaptive GA at the target of multitask scheduling optimization under limited resources. The experiment results show that the proposed algorithm outperforms the traditional GA in evolutive ability to deal with complex task scheduling optimization.
ERIC Educational Resources Information Center
Hsu, Pi-Shan
2012-01-01
This study aims to develop the core mechanism for realizing the development of personalized adaptive e-learning platform, which is based on the previous learning effort curve research and takes into account the learner characteristics of learning style and self-efficacy. 125 university students from Taiwan are classified into 16 groups according…
Learning without labeling: domain adaptation for ultrasound transducer localization.
Heimann, Tobias; Mountney, Peter; John, Matthias; Ionasec, Razvan
2013-01-01
The fusion of image data from trans-esophageal echography (TEE) and X-ray fluoroscopy is attracting increasing interest in minimally-invasive treatment of structural heart disease. In order to calculate the needed transform between both imaging systems, we employ a discriminative learning based approach to localize the TEE transducer in X-ray images. Instead of time-consuming manual labeling, we generate the required training data automatically from a single volumetric image of the transducer. In order to adapt this system to real X-ray data, we use unlabeled fluoroscopy images to estimate differences in feature space density and correct covariate shift by instance weighting. An evaluation on more than 1900 images reveals that our approach reduces detection failures by 95% compared to cross validation on the test set and improves the localization error from 1.5 to 0.8 mm. Due to the automatic generation of training data, the proposed system is highly flexible and can be adapted to any medical device with minimal efforts.
Learning without labeling: domain adaptation for ultrasound transducer localization.
Heimann, Tobias; Mountney, Peter; John, Matthias; Ionasec, Razvan
2013-01-01
The fusion of image data from trans-esophageal echography (TEE) and X-ray fluoroscopy is attracting increasing interest in minimally-invasive treatment of structural heart disease. In order to calculate the needed transform between both imaging systems, we employ a discriminative learning based approach to localize the TEE transducer in X-ray images. Instead of time-consuming manual labeling, we generate the required training data automatically from a single volumetric image of the transducer. In order to adapt this system to real X-ray data, we use unlabeled fluoroscopy images to estimate differences in feature space density and correct covariate shift by instance weighting. An evaluation on more than 1900 images reveals that our approach reduces detection failures by 95% compared to cross validation on the test set and improves the localization error from 1.5 to 0.8 mm. Due to the automatic generation of training data, the proposed system is highly flexible and can be adapted to any medical device with minimal efforts. PMID:24505743
New machine-learning algorithms for prediction of Parkinson's disease
NASA Astrophysics Data System (ADS)
Mandal, Indrajit; Sairam, N.
2014-03-01
This article presents an enhanced prediction accuracy of diagnosis of Parkinson's disease (PD) to prevent the delay and misdiagnosis of patients using the proposed robust inference system. New machine-learning methods are proposed and performance comparisons are based on specificity, sensitivity, accuracy and other measurable parameters. The robust methods of treating Parkinson's disease (PD) includes sparse multinomial logistic regression, rotation forest ensemble with support vector machines and principal components analysis, artificial neural networks, boosting methods. A new ensemble method comprising of the Bayesian network optimised by Tabu search algorithm as classifier and Haar wavelets as projection filter is used for relevant feature selection and ranking. The highest accuracy obtained by linear logistic regression and sparse multinomial logistic regression is 100% and sensitivity, specificity of 0.983 and 0.996, respectively. All the experiments are conducted over 95% and 99% confidence levels and establish the results with corrected t-tests. This work shows a high degree of advancement in software reliability and quality of the computer-aided diagnosis system and experimentally shows best results with supportive statistical inference.
A rank-based Prediction Algorithm of Learning User's Intention
NASA Astrophysics Data System (ADS)
Shen, Jie; Gao, Ying; Chen, Cang; Gong, HaiPing
Internet search has become an important part in people's daily life. People can find many types of information to meet different needs through search engines on the Internet. There are two issues for the current search engines: first, the users should predetermine the types of information they want and then change to the appropriate types of search engine interfaces. Second, most search engines can support multiple kinds of search functions, each function has its own separate search interface. While users need different types of information, they must switch between different interfaces. In practice, most queries are corresponding to various types of information results. These queries can search the relevant results in various search engines, such as query "Palace" contains the websites about the introduction of the National Palace Museum, blog, Wikipedia, some pictures and video information. This paper presents a new aggregative algorithm for all kinds of search results. It can filter and sort the search results by learning three aspects about the query words, search results and search history logs to achieve the purpose of detecting user's intention. Experiments demonstrate that this rank-based method for multi-types of search results is effective. It can meet the user's search needs well, enhance user's satisfaction, provide an effective and rational model for optimizing search engines and improve user's search experience.
Research on B Cell Algorithm for Learning to Rank Method Based on Parallel Strategy
Tian, Yuling; Zhang, Hongxian
2016-01-01
For the purposes of information retrieval, users must find highly relevant documents from within a system (and often a quite large one comprised of many individual documents) based on input query. Ranking the documents according to their relevance within the system to meet user needs is a challenging endeavor, and a hot research topic–there already exist several rank-learning methods based on machine learning techniques which can generate ranking functions automatically. This paper proposes a parallel B cell algorithm, RankBCA, for rank learning which utilizes a clonal selection mechanism based on biological immunity. The novel algorithm is compared with traditional rank-learning algorithms through experimentation and shown to outperform the others in respect to accuracy, learning time, and convergence rate; taken together, the experimental results show that the proposed algorithm indeed effectively and rapidly identifies optimal ranking functions. PMID:27487242
Research on B Cell Algorithm for Learning to Rank Method Based on Parallel Strategy.
Tian, Yuling; Zhang, Hongxian
2016-01-01
For the purposes of information retrieval, users must find highly relevant documents from within a system (and often a quite large one comprised of many individual documents) based on input query. Ranking the documents according to their relevance within the system to meet user needs is a challenging endeavor, and a hot research topic-there already exist several rank-learning methods based on machine learning techniques which can generate ranking functions automatically. This paper proposes a parallel B cell algorithm, RankBCA, for rank learning which utilizes a clonal selection mechanism based on biological immunity. The novel algorithm is compared with traditional rank-learning algorithms through experimentation and shown to outperform the others in respect to accuracy, learning time, and convergence rate; taken together, the experimental results show that the proposed algorithm indeed effectively and rapidly identifies optimal ranking functions. PMID:27487242
Research on B Cell Algorithm for Learning to Rank Method Based on Parallel Strategy.
Tian, Yuling; Zhang, Hongxian
2016-01-01
For the purposes of information retrieval, users must find highly relevant documents from within a system (and often a quite large one comprised of many individual documents) based on input query. Ranking the documents according to their relevance within the system to meet user needs is a challenging endeavor, and a hot research topic-there already exist several rank-learning methods based on machine learning techniques which can generate ranking functions automatically. This paper proposes a parallel B cell algorithm, RankBCA, for rank learning which utilizes a clonal selection mechanism based on biological immunity. The novel algorithm is compared with traditional rank-learning algorithms through experimentation and shown to outperform the others in respect to accuracy, learning time, and convergence rate; taken together, the experimental results show that the proposed algorithm indeed effectively and rapidly identifies optimal ranking functions.
Stanley, Nick; Glide-Hurst, Carri; Kim, Jinkoo; Adams, Jeffrey; Li, Shunshan; Wen, Ning; Chetty, Indrin J; Zhong, Hualiang
2013-11-04
The quality of adaptive treatment planning depends on the accuracy of its underlying deformable image registration (DIR). The purpose of this study is to evaluate the performance of two DIR algorithms, B-spline-based deformable multipass (DMP) and deformable demons (Demons), implemented in a commercial software package. Evaluations were conducted using both computational and physical deformable phantoms. Based on a finite element method (FEM), a total of 11 computational models were developed from a set of CT images acquired from four lung and one prostate cancer patients. FEM generated displacement vector fields (DVF) were used to construct the lung and prostate image phantoms. Based on a fast-Fourier transform technique, image noise power spectrum was incorporated into the prostate image phantoms to create simulated CBCT images. The FEM-DVF served as a gold standard for verification of the two registration algorithms performed on these phantoms. The registration algorithms were also evaluated at the homologous points quantified in the CT images of a physical lung phantom. The results indicated that the mean errors of the DMP algorithm were in the range of 1.0 ~ 3.1 mm for the computational phantoms and 1.9 mm for the physical lung phantom. For the computational prostate phantoms, the corresponding mean error was 1.0-1.9 mm in the prostate, 1.9-2.4mm in the rectum, and 1.8-2.1 mm over the entire patient body. Sinusoidal errors induced by B-spline interpolations were observed in all the displacement profiles of the DMP registrations. Regions of large displacements were observed to have more registration errors. Patient-specific FEM models have been developed to evaluate the DIR algorithms implemented in the commercial software package. It has been found that the accuracy of these algorithms is patient dependent and related to various factors including tissue deformation magnitudes and image intensity gradients across the regions of interest. This may suggest that
Extreme learning machine and adaptive sparse representation for image classification.
Cao, Jiuwen; Zhang, Kai; Luo, Minxia; Yin, Chun; Lai, Xiaoping
2016-09-01
Recent research has shown the speed advantage of extreme learning machine (ELM) and the accuracy advantage of sparse representation classification (SRC) in the area of image classification. Those two methods, however, have their respective drawbacks, e.g., in general, ELM is known to be less robust to noise while SRC is known to be time-consuming. Consequently, ELM and SRC complement each other in computational complexity and classification accuracy. In order to unify such mutual complementarity and thus further enhance the classification performance, we propose an efficient hybrid classifier to exploit the advantages of ELM and SRC in this paper. More precisely, the proposed classifier consists of two stages: first, an ELM network is trained by supervised learning. Second, a discriminative criterion about the reliability of the obtained ELM output is adopted to decide whether the query image can be correctly classified or not. If the output is reliable, the classification will be performed by ELM; otherwise the query image will be fed to SRC. Meanwhile, in the stage of SRC, a sub-dictionary that is adaptive to the query image instead of the entire dictionary is extracted via the ELM output. The computational burden of SRC thus can be reduced. Extensive experiments on handwritten digit classification, landmark recognition and face recognition demonstrate that the proposed hybrid classifier outperforms ELM and SRC in classification accuracy with outstanding computational efficiency.
Extreme learning machine and adaptive sparse representation for image classification.
Cao, Jiuwen; Zhang, Kai; Luo, Minxia; Yin, Chun; Lai, Xiaoping
2016-09-01
Recent research has shown the speed advantage of extreme learning machine (ELM) and the accuracy advantage of sparse representation classification (SRC) in the area of image classification. Those two methods, however, have their respective drawbacks, e.g., in general, ELM is known to be less robust to noise while SRC is known to be time-consuming. Consequently, ELM and SRC complement each other in computational complexity and classification accuracy. In order to unify such mutual complementarity and thus further enhance the classification performance, we propose an efficient hybrid classifier to exploit the advantages of ELM and SRC in this paper. More precisely, the proposed classifier consists of two stages: first, an ELM network is trained by supervised learning. Second, a discriminative criterion about the reliability of the obtained ELM output is adopted to decide whether the query image can be correctly classified or not. If the output is reliable, the classification will be performed by ELM; otherwise the query image will be fed to SRC. Meanwhile, in the stage of SRC, a sub-dictionary that is adaptive to the query image instead of the entire dictionary is extracted via the ELM output. The computational burden of SRC thus can be reduced. Extensive experiments on handwritten digit classification, landmark recognition and face recognition demonstrate that the proposed hybrid classifier outperforms ELM and SRC in classification accuracy with outstanding computational efficiency. PMID:27389571
Radiographic skills learning: procedure simulation using adaptive hypermedia.
Costaridou, L; Panayiotakis, G; Pallikarakis, N; Proimos, B
1996-10-01
The design and development of a simulation tool supporting learning of radiographic skills is reported. This tool has by textual, graphical and iconic resources, organized according to a building-block, adaptive hypermedia approach, which is described and supported by an image base of radiographs. It offers interactive user-controlled simulation of radiographic imaging procedures. The development is based on a commercially available environment (Toolbook 3.0, Asymetrix Corporation). The core of the system is an attributed precedence (priority) graph, which represents a task outline (concept and resources structure), which is dynamically adjusted to selected procedures. The user interface imitates a conventional radiography system, i.e. operating console, tube, table, patient and cassette. System parameters, such as patient positioning, focus-to-patient distance, magnification, field dimensions, tube voltage and mAs are under user control. Their effects on image quality are presented, by means of an image base acquired under controlled exposure conditions. Innovative use of hypermedia, computer based learning and simulation principles and technology in the development of this tool resulted in an enhanced interactive environment providing radiographic parameter control and visualization of parameter effects on image quality. PMID:9038530
An adaptive multi-level simulation algorithm for stochastic biological systems
Lester, C. Giles, M. B.; Baker, R. E.; Yates, C. A.
2015-01-14
Discrete-state, continuous-time Markov models are widely used in the modeling of biochemical reaction networks. Their complexity often precludes analytic solution, and we rely on stochastic simulation algorithms (SSA) to estimate system statistics. The Gillespie algorithm is exact, but computationally costly as it simulates every single reaction. As such, approximate stochastic simulation algorithms such as the tau-leap algorithm are often used. Potentially computationally more efficient, the system statistics generated suffer from significant bias unless tau is relatively small, in which case the computational time can be comparable to that of the Gillespie algorithm. The multi-level method [Anderson and Higham, “Multi-level Monte Carlo for continuous time Markov chains, with applications in biochemical kinetics,” SIAM Multiscale Model. Simul. 10(1), 146–179 (2012)] tackles this problem. A base estimator is computed using many (cheap) sample paths at low accuracy. The bias inherent in this estimator is then reduced using a number of corrections. Each correction term is estimated using a collection of paired sample paths where one path of each pair is generated at a higher accuracy compared to the other (and so more expensive). By sharing random variables between these paired paths, the variance of each correction estimator can be reduced. This renders the multi-level method very efficient as only a relatively small number of paired paths are required to calculate each correction term. In the original multi-level method, each sample path is simulated using the tau-leap algorithm with a fixed value of τ. This approach can result in poor performance when the reaction activity of a system changes substantially over the timescale of interest. By introducing a novel adaptive time-stepping approach where τ is chosen according to the stochastic behaviour of each sample path, we extend the applicability of the multi-level method to such cases. We demonstrate the
Adaptation of a Fast Optimal Interpolation Algorithm to the Mapping of Oceangraphic Data
NASA Technical Reports Server (NTRS)
Menemenlis, Dimitris; Fieguth, Paul; Wunsch, Carl; Willsky, Alan
1997-01-01
A fast, recently developed, multiscale optimal interpolation algorithm has been adapted to the mapping of hydrographic and other oceanographic data. This algorithm produces solution and error estimates which are consistent with those obtained from exact least squares methods, but at a small fraction of the computational cost. Problems whose solution would be completely impractical using exact least squares, that is, problems with tens or hundreds of thousands of measurements and estimation grid points, can easily be solved on a small workstation using the multiscale algorithm. In contrast to methods previously proposed for solving large least squares problems, our approach provides estimation error statistics while permitting long-range correlations, using all measurements, and permitting arbitrary measurement locations. The multiscale algorithm itself, published elsewhere, is not the focus of this paper. However, the algorithm requires statistical models having a very particular multiscale structure; it is the development of a class of multiscale statistical models, appropriate for oceanographic mapping problems, with which we concern ourselves in this paper. The approach is illustrated by mapping temperature in the northeastern Pacific. The number of hydrographic stations is kept deliberately small to show that multiscale and exact least squares results are comparable. A portion of the data were not used in the analysis; these data serve to test the multiscale estimates. A major advantage of the present approach is the ability to repeat the estimation procedure a large number of times for sensitivity studies, parameter estimation, and model testing. We have made available by anonymous Ftp a set of MATLAB-callable routines which implement the multiscale algorithm and the statistical models developed in this paper.
An adaptive multi-level simulation algorithm for stochastic biological systems
NASA Astrophysics Data System (ADS)
Lester, C.; Yates, C. A.; Giles, M. B.; Baker, R. E.
2015-01-01
Discrete-state, continuous-time Markov models are widely used in the modeling of biochemical reaction networks. Their complexity often precludes analytic solution, and we rely on stochastic simulation algorithms (SSA) to estimate system statistics. The Gillespie algorithm is exact, but computationally costly as it simulates every single reaction. As such, approximate stochastic simulation algorithms such as the tau-leap algorithm are often used. Potentially computationally more efficient, the system statistics generated suffer from significant bias unless tau is relatively small, in which case the computational time can be comparable to that of the Gillespie algorithm. The multi-level method [Anderson and Higham, "Multi-level Monte Carlo for continuous time Markov chains, with applications in biochemical kinetics," SIAM Multiscale Model. Simul. 10(1), 146-179 (2012)] tackles this problem. A base estimator is computed using many (cheap) sample paths at low accuracy. The bias inherent in this estimator is then reduced using a number of corrections. Each correction term is estimated using a collection of paired sample paths where one path of each pair is generated at a higher accuracy compared to the other (and so more expensive). By sharing random variables between these paired paths, the variance of each correction estimator can be reduced. This renders the multi-level method very efficient as only a relatively small number of paired paths are required to calculate each correction term. In the original multi-level method, each sample path is simulated using the tau-leap algorithm with a fixed value of τ. This approach can result in poor performance when the reaction activity of a system changes substantially over the timescale of interest. By introducing a novel adaptive time-stepping approach where τ is chosen according to the stochastic behaviour of each sample path, we extend the applicability of the multi-level method to such cases. We demonstrate the
Rainfall Estimation over the Nile Basin using an Adapted Version of the SCaMPR Algorithm
NASA Astrophysics Data System (ADS)
Habib, E. H.; Kuligowski, R. J.; Elshamy, M. E.; Ali, M. A.; Haile, A.; Amin, D.; Eldin, A.
2011-12-01
Management of Egypt's Aswan High Dam is critical not only for flood control on the Nile but also for ensuring adequate water supplies for most of Egypt since rainfall is scarce over the vast majority of its land area. However, reservoir inflow is driven by rainfall over Sudan, Ethiopia, Uganda, and several other countries from which routine rain gauge data are sparse. Satellite-derived estimates of rainfall offer a much more detailed and timely set of data to form a basis for decisions on the operation of the dam. A single-channel infrared algorithm is currently in operational use at the Egyptian Nile Forecast Center (NFC). This study reports on the adaptation of a multi-spectral, multi-instrument satellite rainfall estimation algorithm (Self-Calibrating Multivariate Precipitation Retrieval, SCaMPR) for operational application over the Nile Basin. The algorithm uses a set of rainfall predictors from multi-spectral Infrared cloud top observations and self-calibrates them to a set of predictands from Microwave (MW) rain rate estimates. For application over the Nile Basin, the SCaMPR algorithm uses multiple satellite IR channels recently available to NFC from the Spinning Enhanced Visible and Infrared Imager (SEVIRI). Microwave rain rates are acquired from multiple sources such as SSM/I, SSMIS, AMSU, AMSR-E, and TMI. The algorithm has two main steps: rain/no-rain separation using discriminant analysis, and rain rate estimation using stepwise linear regression. We test two modes of algorithm calibration: real-time calibration with continuous updates of coefficients with newly coming MW rain rates, and calibration using static coefficients that are derived from IR-MW data from past observations. We also compare the SCaMPR algorithm to other global-scale satellite rainfall algorithms (e.g., 'Tropical Rainfall Measuring Mission (TRMM) and other sources' (TRMM-3B42) product, and the National Oceanographic and Atmospheric Administration Climate Prediction Center (NOAA
RZA-NLMF algorithm-based adaptive sparse sensing for realizing compressive sensing
NASA Astrophysics Data System (ADS)
Gui, Guan; Xu, Li; Adachi, Fumiyuki
2014-12-01
Nonlinear sparse sensing (NSS) techniques have been adopted for realizing compressive sensing in many applications such as radar imaging. Unlike the NSS, in this paper, we propose an adaptive sparse sensing (ASS) approach using the reweighted zero-attracting normalized least mean fourth (RZA-NLMF) algorithm which depends on several given parameters, i.e., reweighted factor, regularization parameter, and initial step size. First, based on the independent assumption, Cramer-Rao lower bound (CRLB) is derived as for the performance comparisons. In addition, reweighted factor selection method is proposed for achieving robust estimation performance. Finally, to verify the algorithm, Monte Carlo-based computer simulations are given to show that the ASS achieves much better mean square error (MSE) performance than the NSS.
A parallel dynamic load balancing algorithm for 3-D adaptive unstructured grids
NASA Technical Reports Server (NTRS)
Vidwans, A.; Kallinderis, Y.; Venkatakrishnan, V.
1993-01-01
Adaptive local grid refinement and coarsening results in unequal distribution of workload among the processors of a parallel system. A novel method for balancing the load in cases of dynamically changing tetrahedral grids is developed. The approach employs local exchange of cells among processors in order to redistribute the load equally. An important part of the load balancing algorithm is the method employed by a processor to determine which cells within its subdomain are to be exchanged. Two such methods are presented and compared. The strategy for load balancing is based on the Divide-and-Conquer approach which leads to an efficient parallel algorithm. This method is implemented on a distributed-memory MIMD system.