A Competency-Based Guided-Learning Algorithm Applied on Adaptively Guiding E-Learning
ERIC Educational Resources Information Center
Hsu, Wei-Chih; Li, Cheng-Hsiu
2015-01-01
This paper presents a new algorithm called competency-based guided-learning algorithm (CBGLA), which can be applied on adaptively guiding e-learning. Computational process analysis and mathematical derivation of competency-based learning (CBL) were used to develop the CBGLA. The proposed algorithm could generate an effective adaptively guiding…
Adaptive learning algorithms for vibration energy harvesting
NASA Astrophysics Data System (ADS)
Ward, John K.; Behrens, Sam
2008-06-01
By scavenging energy from their local environment, portable electronic devices such as MEMS devices, mobile phones, radios and wireless sensors can achieve greater run times with potentially lower weight. Vibration energy harvesting is one such approach where energy from parasitic vibrations can be converted into electrical energy through the use of piezoelectric and electromagnetic transducers. Parasitic vibrations come from a range of sources such as human movement, wind, seismic forces and traffic. Existing approaches to vibration energy harvesting typically utilize a rectifier circuit, which is tuned to the resonant frequency of the harvesting structure and the dominant frequency of vibration. We have developed a novel approach to vibration energy harvesting, including adaptation to non-periodic vibrations so as to extract the maximum amount of vibration energy available. Experimental results of an experimental apparatus using an off-the-shelf transducer (i.e. speaker coil) show mechanical vibration to electrical energy conversion efficiencies of 27-34%.
NASA Astrophysics Data System (ADS)
Li, Xiaofeng; Xiang, Suying; Zhu, Pengfei; Wu, Min
2015-12-01
In order to avoid the inherent deficiencies of the traditional BP neural network, such as slow convergence speed, that easily leading to local minima, poor generalization ability and difficulty in determining the network structure, the dynamic self-adaptive learning algorithm of the BP neural network is put forward to improve the function of the BP neural network. The new algorithm combines the merit of principal component analysis, particle swarm optimization, correlation analysis and self-adaptive model, hence can effectively solve the problems of selecting structural parameters, initial connection weights and thresholds and learning rates of the BP neural network. This new algorithm not only reduces the human intervention, optimizes the topological structures of BP neural networks and improves the network generalization ability, but also accelerates the convergence speed of a network, avoids trapping into local minima, and enhances network adaptation ability and prediction ability. The dynamic self-adaptive learning algorithm of the BP neural network is used to forecast the total retail sale of consumer goods of Sichuan Province, China. Empirical results indicate that the new algorithm is superior to the traditional BP network algorithm in predicting accuracy and time consumption, which shows the feasibility and effectiveness of the new algorithm.
NASA Astrophysics Data System (ADS)
Zhu, Maohu; Jie, Nanfeng; Jiang, Tianzi
2014-03-01
A reliable and precise classification of schizophrenia is significant for its diagnosis and treatment of schizophrenia. Functional magnetic resonance imaging (fMRI) is a novel tool increasingly used in schizophrenia research. Recent advances in statistical learning theory have led to applying pattern classification algorithms to access the diagnostic value of functional brain networks, discovered from resting state fMRI data. The aim of this study was to propose an adaptive learning algorithm to distinguish schizophrenia patients from normal controls using resting-state functional language network. Furthermore, here the classification of schizophrenia was regarded as a sample selection problem where a sparse subset of samples was chosen from the labeled training set. Using these selected samples, which we call informative vectors, a classifier for the clinic diagnosis of schizophrenia was established. We experimentally demonstrated that the proposed algorithm incorporating resting-state functional language network achieved 83.6% leaveone- out accuracy on resting-state fMRI data of 27 schizophrenia patients and 28 normal controls. In contrast with KNearest- Neighbor (KNN), Support Vector Machine (SVM) and l1-norm, our method yielded better classification performance. Moreover, our results suggested that a dysfunction of resting-state functional language network plays an important role in the clinic diagnosis of schizophrenia.
NASA Astrophysics Data System (ADS)
Ma, Chao; Ouyang, Jihong; Chen, Hui-Ling; Ji, Jin-Chao
2016-04-01
In this paper, we propose a novel learning algorithm, named SABC-MKELM, based on a kernel extreme learning machine (KELM) method for single-hidden-layer feedforward networks. In SABC-MKELM, the combination of Gaussian kernels is used as the activate function of KELM instead of simple fixed kernel learning, where the related parameters of kernels and the weights of kernels can be optimised by a novel self-adaptive artificial bee colony (SABC) approach simultaneously. SABC-MKELM outperforms six other state-of-the-art approaches in general, as it could effectively determine solution updating strategies and suitable parameters to produce a flexible kernel function involved in SABC. Simulations have demonstrated that the proposed algorithm not only self-adaptively determines suitable parameters and solution updating strategies learning from the previous experiences, but also achieves better generalisation performances than several related methods, and the results show good stability of the proposed algorithm.
Zhang, Huaguang; Qin, Chunbin; Jiang, Bin; Luo, Yanhong
2014-12-01
The problem of H∞ state feedback control of affine nonlinear discrete-time systems with unknown dynamics is investigated in this paper. An online adaptive policy learning algorithm (APLA) based on adaptive dynamic programming (ADP) is proposed for learning in real-time the solution to the Hamilton-Jacobi-Isaacs (HJI) equation, which appears in the H∞ control problem. In the proposed algorithm, three neural networks (NNs) are utilized to find suitable approximations of the optimal value function and the saddle point feedback control and disturbance policies. Novel weight updating laws are given to tune the critic, actor, and disturbance NNs simultaneously by using data generated in real-time along the system trajectories. Considering NN approximation errors, we provide the stability analysis of the proposed algorithm with Lyapunov approach. Moreover, the need of the system input dynamics for the proposed algorithm is relaxed by using a NN identification scheme. Finally, simulation examples show the effectiveness of the proposed algorithm. PMID:25095274
NASA Astrophysics Data System (ADS)
Sheng-Hui, Rong; Hui-Xin, Zhou; Han-Lin, Qin; Rui, Lai; Kun, Qian
2016-05-01
Imaging non-uniformity of infrared focal plane array (IRFPA) behaves as fixed-pattern noise superimposed on the image, which affects the imaging quality of infrared system seriously. In scene-based non-uniformity correction methods, the drawbacks of ghosting artifacts and image blurring affect the sensitivity of the IRFPA imaging system seriously and decrease the image quality visibly. This paper proposes an improved neural network non-uniformity correction method with adaptive learning rate. On the one hand, using guided filter, the proposed algorithm decreases the effect of ghosting artifacts. On the other hand, due to the inappropriate learning rate is the main reason of image blurring, the proposed algorithm utilizes an adaptive learning rate with a temporal domain factor to eliminate the effect of image blurring. In short, the proposed algorithm combines the merits of the guided filter and the adaptive learning rate. Several real and simulated infrared image sequences are utilized to verify the performance of the proposed algorithm. The experiment results indicate that the proposed algorithm can not only reduce the non-uniformity with less ghosting artifacts but also overcome the problems of image blurring in static areas.
Zhang, Zhenyue; Wang, Jing; Zha, Hongyuan
2012-02-01
Manifold learning algorithms seek to find a low-dimensional parameterization of high-dimensional data. They heavily rely on the notion of what can be considered as local, how accurately the manifold can be approximated locally, and, last but not least, how the local structures can be patched together to produce the global parameterization. In this paper, we develop algorithms that address two key issues in manifold learning: 1) the adaptive selection of the local neighborhood sizes when imposing a connectivity structure on the given set of high-dimensional data points and 2) the adaptive bias reduction in the local low-dimensional embedding by accounting for the variations in the curvature of the manifold as well as its interplay with the sampling density of the data set. We demonstrate the effectiveness of our methods for improving the performance of manifold learning algorithms using both synthetic and real-world data sets. PMID:21670485
Adaptive learning of Multi-Sensor Integration techniques with genetic algorithms
Baker, J.E.
1994-06-01
This research focuses on automating the time-consuming process of developing and optimizing multi-sensor integration techniques. Our approach is currently based on adaptively learning how to exploit low-level image detail. Although this system is specifically designed to be both sensor and application domain independent, an empirical validation with actual multi-modal sensor data is presented.
ERIC Educational Resources Information Center
Limongelli, Carla; Sciarrone, Filippo; Temperini, Marco; Vaste, Giulia
2011-01-01
LS-Lab provides automatic support to comparison/evaluation of the Learning Object Sequences produced by different Curriculum Sequencing Algorithms. Through this framework a teacher can verify the correspondence between the behaviour of different sequencing algorithms and her pedagogical preferences. In fact the teacher can compare algorithms…
Optree: a learning-based adaptive watershed algorithm for neuron segmentation.
Uzunbaş, Mustafa Gökhan; Chen, Chao; Metaxas, Dimitris
2014-01-01
We present a new algorithm for automatic and interactive segmentation of neuron structures from electron microscopy (EM) images. Our method selects a collection of nodes from the watershed mergng tree as the proposed segmentation. This is achieved by building a onditional random field (CRF) whose underlying graph is the merging tree. The maximum a posteriori (MAP) prediction of the CRF is the output segmentation. Our algorithm outperforms state-of-the-art methods. Both the inference and the training are very efficient as the graph is tree-structured. Furthermore, we develop an interactive segmentation framework which selects uncertain regions for a user to proofread. The uncertainty is measured by the marginals of the graphical model. Based on user corrections, our framework modifies the merging tree and thus improves the segmentation globally. PMID:25333106
Self-adaptive parameters in genetic algorithms
NASA Astrophysics Data System (ADS)
Pellerin, Eric; Pigeon, Luc; Delisle, Sylvain
2004-04-01
Genetic algorithms are powerful search algorithms that can be applied to a wide range of problems. Generally, parameter setting is accomplished prior to running a Genetic Algorithm (GA) and this setting remains unchanged during execution. The problem of interest to us here is the self-adaptive parameters adjustment of a GA. In this research, we propose an approach in which the control of a genetic algorithm"s parameters can be encoded within the chromosome of each individual. The parameters" values are entirely dependent on the evolution mechanism and on the problem context. Our preliminary results show that a GA is able to learn and evaluate the quality of self-set parameters according to their degree of contribution to the resolution of the problem. These results are indicative of a promising approach to the development of GAs with self-adaptive parameter settings that do not require the user to pre-adjust parameters at the outset.
NASA Astrophysics Data System (ADS)
Hou, Zuoxun; Ma, Yitao; Zhu, Hongbo; Zheng, Nanning; Shibata, Tadashi
2013-04-01
A very large-scale integration (VLSI) recognition system equipped with an on-chip learning capability has been developed for real-time processing applications. This system can work in two functional modes of operation: adaptive K-means learning mode and recognition mode. In the adaptive K-means learning mode, the variance ratio criterion (VRC) has been employed to evaluate the quality of K-means classification results, and the evaluation algorithm has been implemented on the chip. As a result, it has become possible for the system to autonomously determine the optimum number of clusters (K). In the recognition mode, the nearest-neighbor search algorithm is very efficiently carried out by the fully parallel architecture employed in the chip. In both modes of operation, many hardware resources are shared and the functionality is flexibly altered by the system controller designed as a finite-state machine (FSM). The chip is implemented on Altera Cyclone II FPGA with 46K logic cells. Its operating clock is 25 MHz and the processing times for adaptive learning and recognition with 256 64-dimension feature vectors are about 0.42 ms and 4 µs, respectively. Both adaptive K-means learning and recognition functions have been verified by experiments using the image data from the COIL-100 (Columbia University Object Image Library) database.
Cubit Adaptive Meshing Algorithm Library
2004-09-01
CAMAL (Cubit adaptive meshing algorithm library) is a software component library for mesh generation. CAMAL 2.0 includes components for triangle, quad and tetrahedral meshing. A simple Application Programmers Interface (API) takes a discrete boundary definition and CAMAL computes a quality interior unstructured grid. The triangle and quad algorithms may also import a geometric definition of a surface on which to define the grid. CAMALs triangle meshing uses a 3D space advancing front method, the quadmore » meshing algorithm is based upon Sandias patented paving algorithm and the tetrahedral meshing algorithm employs the GHS3D-Tetmesh component developed by INRIA, France.« less
Adaptive protection algorithm and system
Hedrick, Paul [Pittsburgh, PA; Toms, Helen L [Irwin, PA; Miller, Roger M [Mars, PA
2009-04-28
An adaptive protection algorithm and system for protecting electrical distribution systems traces the flow of power through a distribution system, assigns a value (or rank) to each circuit breaker in the system and then determines the appropriate trip set points based on the assigned rank.
Genetic algorithms in adaptive fuzzy control
NASA Technical Reports Server (NTRS)
Karr, C. Lucas; Harper, Tony R.
1992-01-01
Researchers at the U.S. Bureau of Mines have developed adaptive process control systems in which genetic algorithms (GA's) are used to augment fuzzy logic controllers (FLC's). GA's are search algorithms that rapidly locate near-optimum solutions to a wide spectrum of problems by modeling the search procedures of natural genetics. FLC's are rule based systems that efficiently manipulate a problem environment by modeling the 'rule-of-thumb' strategy used in human decision making. Together, GA's and FLC's possess the capabilities necessary to produce powerful, efficient, and robust adaptive control systems. To perform efficiently, such control systems require a control element to manipulate the problem environment, an analysis element to recognize changes in the problem environment, and a learning element to adjust fuzzy membership functions in response to the changes in the problem environment. Details of an overall adaptive control system are discussed. A specific computer-simulated chemical system is used to demonstrate the ideas presented.
Adaptive color image watermarking algorithm
NASA Astrophysics Data System (ADS)
Feng, Gui; Lin, Qiwei
2008-03-01
As a major method for intellectual property right protecting, digital watermarking techniques have been widely studied and used. But due to the problems of data amount and color shifted, watermarking techniques on color image was not so widespread studied, although the color image is the principal part for multi-medium usages. Considering the characteristic of Human Visual System (HVS), an adaptive color image watermarking algorithm is proposed in this paper. In this algorithm, HSI color model was adopted both for host and watermark image, the DCT coefficient of intensity component (I) of the host color image was used for watermark date embedding, and while embedding watermark the amount of embedding bit was adaptively changed with the complex degree of the host image. As to the watermark image, preprocessing is applied first, in which the watermark image is decomposed by two layer wavelet transformations. At the same time, for enhancing anti-attack ability and security of the watermarking algorithm, the watermark image was scrambled. According to its significance, some watermark bits were selected and some watermark bits were deleted as to form the actual embedding data. The experimental results show that the proposed watermarking algorithm is robust to several common attacks, and has good perceptual quality at the same time.
Learning and Domain Adaptation
NASA Astrophysics Data System (ADS)
Mansour, Yishay
Domain adaptation is a fundamental learning problem where one wishes to use labeled data from one or several source domains to learn a hypothesis performing well on a different, yet related, domain for which no labeled data is available. This generalization across domains is a very significant challenge for many machine learning applications and arises in a variety of natural settings, including NLP tasks (document classification, sentiment analysis, etc.), speech recognition (speakers and noise or environment adaptation) and face recognition (different lighting conditions, different population composition).
Adaptive path planning: Algorithm and analysis
Chen, Pang C.
1993-03-01
Path planning has to be fast to support real-time robot programming. Unfortunately, current planning techniques are still too slow to be effective, as they often require several minutes, if not hours of computation. To alleviate this problem, we present a learning algorithm that uses past experience to enhance future performance. The algorithm relies on an existing path planner to provide solutions to difficult tasks. From these solutions, an evolving sparse network of useful subgoals is learned to support faster planning. The algorithm is suitable for both stationary and incrementally-changing environments. To analyze our algorithm, we use a previously developed stochastic model that quantifies experience utility. Using this model, we characterize the situations in which the adaptive planner is useful, and provide quantitative bounds to predict its behavior. The results are demonstrated with problems in manipulator planning. Our algorithm and analysis are sufficiently general that they may also be applied to task planning or other planning domains in which experience is useful.
Extended TA Algorithm for Adapting a Situation Ontology
NASA Astrophysics Data System (ADS)
Zweigle, Oliver; Häussermann, Kai; Käppeler, Uwe-Philipp; Levi, Paul
In this work we introduce an improved version of a learning algorithm for the automatic adaption of a situation ontology (TAA) [1] which extends the basic principle of the learning algorithm. The approach bases on the assumption of uncertain data and includes elements from the domain of Bayesian Networks and Machine Learning. It is embedded into the cluster of excellence Nexus at the University of Stuttgart which has the aim to build a distributed context aware system for sharing context data.
Synaptic dynamics: linear model and adaptation algorithm.
Yousefi, Ali; Dibazar, Alireza A; Berger, Theodore W
2014-08-01
In this research, temporal processing in brain neural circuitries is addressed by a dynamic model of synaptic connections in which the synapse model accounts for both pre- and post-synaptic processes determining its temporal dynamics and strength. Neurons, which are excited by the post-synaptic potentials of hundred of the synapses, build the computational engine capable of processing dynamic neural stimuli. Temporal dynamics in neural models with dynamic synapses will be analyzed, and learning algorithms for synaptic adaptation of neural networks with hundreds of synaptic connections are proposed. The paper starts by introducing a linear approximate model for the temporal dynamics of synaptic transmission. The proposed linear model substantially simplifies the analysis and training of spiking neural networks. Furthermore, it is capable of replicating the synaptic response of the non-linear facilitation-depression model with an accuracy better than 92.5%. In the second part of the paper, a supervised spike-in-spike-out learning rule for synaptic adaptation in dynamic synapse neural networks (DSNN) is proposed. The proposed learning rule is a biologically plausible process, and it is capable of simultaneously adjusting both pre- and post-synaptic components of individual synapses. The last section of the paper starts with presenting the rigorous analysis of the learning algorithm in a system identification task with hundreds of synaptic connections which confirms the learning algorithm's accuracy, repeatability and scalability. The DSNN is utilized to predict the spiking activity of cortical neurons and pattern recognition tasks. The DSNN model is demonstrated to be a generative model capable of producing different cortical neuron spiking patterns and CA1 Pyramidal neurons recordings. A single-layer DSNN classifier on a benchmark pattern recognition task outperforms a 2-Layer Neural Network and GMM classifiers while having fewer numbers of free parameters and
A Machine Learning Based Framework for Adaptive Mobile Learning
NASA Astrophysics Data System (ADS)
Al-Hmouz, Ahmed; Shen, Jun; Yan, Jun
Advances in wireless technology and handheld devices have created significant interest in mobile learning (m-learning) in recent years. Students nowadays are able to learn anywhere and at any time. Mobile learning environments must also cater for different user preferences and various devices with limited capability, where not all of the information is relevant and critical to each learning environment. To address this issue, this paper presents a framework that depicts the process of adapting learning content to satisfy individual learner characteristics by taking into consideration his/her learning style. We use a machine learning based algorithm for acquiring, representing, storing, reasoning and updating each learner acquired profile.
Cascade Error Projection: An Efficient Hardware Learning Algorithm
NASA Technical Reports Server (NTRS)
Duong, T. A.
1995-01-01
A new learning algorithm termed cascade error projection (CEP) is presented. CEP is an adaption of a constructive architecture from cascade correlation and the dynamical stepsize of A/D conversion from the cascade back propagation algorithm.
Parameter incremental learning algorithm for neural networks.
Wan, Sheng; Banta, Larry E
2006-11-01
In this paper, a novel stochastic (or online) training algorithm for neural networks, named parameter incremental learning (PIL) algorithm, is proposed and developed. The main idea of the PIL strategy is that the learning algorithm should not only adapt to the newly presented input-output training pattern by adjusting parameters, but also preserve the prior results. A general PIL algorithm for feedforward neural networks is accordingly presented as the first-order approximate solution to an optimization problem, where the performance index is the combination of proper measures of preservation and adaptation. The PIL algorithms for the multilayer perceptron (MLP) are subsequently derived. Numerical studies show that for all the three benchmark problems used in this paper the PIL algorithm for MLP is measurably superior to the standard online backpropagation (BP) algorithm and the stochastic diagonal Levenberg-Marquardt (SDLM) algorithm in terms of the convergence speed and accuracy. Other appealing features of the PIL algorithm are that it is computationally as simple as the BP algorithm, and as easy to use as the BP algorithm. It, therefore, can be applied, with better performance, to any situations where the standard online BP algorithm is applicable. PMID:17131658
Cascade Error Projection Learning Algorithm
NASA Technical Reports Server (NTRS)
Duong, T. A.; Stubberud, A. R.; Daud, T.
1995-01-01
A detailed mathematical analysis is presented for a new learning algorithm termed cascade error projection (CEP) and a general learning frame work. This frame work can be used to obtain the cascade correlation learning algorithm by choosing a particular set of parameters.
The Dropout Learning Algorithm
Baldi, Pierre; Sadowski, Peter
2014-01-01
Dropout is a recently introduced algorithm for training neural network by randomly dropping units during training to prevent their co-adaptation. A mathematical analysis of some of the static and dynamic properties of dropout is provided using Bernoulli gating variables, general enough to accommodate dropout on units or connections, and with variable rates. The framework allows a complete analysis of the ensemble averaging properties of dropout in linear networks, which is useful to understand the non-linear case. The ensemble averaging properties of dropout in non-linear logistic networks result from three fundamental equations: (1) the approximation of the expectations of logistic functions by normalized geometric means, for which bounds and estimates are derived; (2) the algebraic equality between normalized geometric means of logistic functions with the logistic of the means, which mathematically characterizes logistic functions; and (3) the linearity of the means with respect to sums, as well as products of independent variables. The results are also extended to other classes of transfer functions, including rectified linear functions. Approximation errors tend to cancel each other and do not accumulate. Dropout can also be connected to stochastic neurons and used to predict firing rates, and to backpropagation by viewing the backward propagation as ensemble averaging in a dropout linear network. Moreover, the convergence properties of dropout can be understood in terms of stochastic gradient descent. Finally, for the regularization properties of dropout, the expectation of the dropout gradient is the gradient of the corresponding approximation ensemble, regularized by an adaptive weight decay term with a propensity for self-consistent variance minimization and sparse representations. PMID:24771879
Natural gradient learning algorithms for RBF networks.
Zhao, Junsheng; Wei, Haikun; Zhang, Chi; Li, Weiling; Guo, Weili; Zhang, Kanjian
2015-02-01
Radial basis function (RBF) networks are one of the most widely used models for function approximation and classification. There are many strange behaviors in the learning process of RBF networks, such as slow learning speed and the existence of the plateaus. The natural gradient learning method can overcome these disadvantages effectively. It can accelerate the dynamics of learning and avoid plateaus. In this letter, we assume that the probability density function (pdf) of the input and the activation function are gaussian. First, we introduce natural gradient learning to the RBF networks and give the explicit forms of the Fisher information matrix and its inverse. Second, since it is difficult to calculate the Fisher information matrix and its inverse when the numbers of the hidden units and the dimensions of the input are large, we introduce the adaptive method to the natural gradient learning algorithms. Finally, we give an explicit form of the adaptive natural gradient learning algorithm and compare it to the conventional gradient descent method. Simulations show that the proposed adaptive natural gradient method, which can avoid the plateaus effectively, has a good performance when RBF networks are used for nonlinear functions approximation. PMID:25380332
QPSO-Based Adaptive DNA Computing Algorithm
Karakose, Mehmet; Cigdem, Ugur
2013-01-01
DNA (deoxyribonucleic acid) computing that is a new computation model based on DNA molecules for information storage has been increasingly used for optimization and data analysis in recent years. However, DNA computing algorithm has some limitations in terms of convergence speed, adaptability, and effectiveness. In this paper, a new approach for improvement of DNA computing is proposed. This new approach aims to perform DNA computing algorithm with adaptive parameters towards the desired goal using quantum-behaved particle swarm optimization (QPSO). Some contributions provided by the proposed QPSO based on adaptive DNA computing algorithm are as follows: (1) parameters of population size, crossover rate, maximum number of operations, enzyme and virus mutation rate, and fitness function of DNA computing algorithm are simultaneously tuned for adaptive process, (2) adaptive algorithm is performed using QPSO algorithm for goal-driven progress, faster operation, and flexibility in data, and (3) numerical realization of DNA computing algorithm with proposed approach is implemented in system identification. Two experiments with different systems were carried out to evaluate the performance of the proposed approach with comparative results. Experimental results obtained with Matlab and FPGA demonstrate ability to provide effective optimization, considerable convergence speed, and high accuracy according to DNA computing algorithm. PMID:23935409
An adaptive algorithm for modifying hyperellipsoidal decision surfaces
Kelly, P.M.; Hush, D.R.; White, J.M.
1992-05-01
The LVQ algorithm is a common method which allows a set of reference vectors for a distance classifier to adapt to a given training set. We have developed a similar learning algorithm, LVQ-MM, which manipulates hyperellipsoidal cluster boundaries as opposed to reference vectors. Regions of the input feature space are first enclosed by ellipsoidal decision boundaries, and then these boundaries are iteratively modified to reduce classification error. Results obtained by classifying the Iris data set are provided.
An adaptive algorithm for modifying hyperellipsoidal decision surfaces
Kelly, P.M.; Hush, D.R. . Dept. of Electrical and Computer Engineering); White, J.M. )
1992-01-01
The LVQ algorithm is a common method which allows a set of reference vectors for a distance classifier to adapt to a given training set. We have developed a similar learning algorithm, LVQ-MM, which manipulates hyperellipsoidal cluster boundaries as opposed to reference vectors. Regions of the input feature space are first enclosed by ellipsoidal decision boundaries, and then these boundaries are iteratively modified to reduce classification error. Results obtained by classifying the Iris data set are provided.
Adaptive sensor fusion using genetic algorithms
Fitzgerald, D.S.; Adams, D.G.
1994-08-01
Past attempts at sensor fusion have used some form of Boolean logic to combine the sensor information. As an alteniative, an adaptive ``fuzzy`` sensor fusion technique is described in this paper. This technique exploits the robust capabilities of fuzzy logic in the decision process as well as the optimization features of the genetic algorithm. This paper presents a brief background on fuzzy logic and genetic algorithms and how they are used in an online implementation of adaptive sensor fusion.
Optimal Pid Controller Design Using Adaptive Vurpso Algorithm
NASA Astrophysics Data System (ADS)
Zirkohi, Majid Moradi
2015-04-01
The purpose of this paper is to improve theVelocity Update Relaxation Particle Swarm Optimization algorithm (VURPSO). The improved algorithm is called Adaptive VURPSO (AVURPSO) algorithm. Then, an optimal design of a Proportional-Integral-Derivative (PID) controller is obtained using the AVURPSO algorithm. An adaptive momentum factor is used to regulate a trade-off between the global and the local exploration abilities in the proposed algorithm. This operation helps the system to reach the optimal solution quickly and saves the computation time. Comparisons on the optimal PID controller design confirm the superiority of AVURPSO algorithm to the optimization algorithms mentioned in this paper namely the VURPSO algorithm, the Ant Colony algorithm, and the conventional approach. Comparisons on the speed of convergence confirm that the proposed algorithm has a faster convergence in a less computation time to yield a global optimum value. The proposed AVURPSO can be used in the diverse areas of optimization problems such as industrial planning, resource allocation, scheduling, decision making, pattern recognition and machine learning. The proposed AVURPSO algorithm is efficiently used to design an optimal PID controller.
Constructive neural network learning algorithms
Parekh, R.; Yang, Jihoon; Honavar, V.
1996-12-31
Constructive Algorithms offer an approach for incremental construction of potentially minimal neural network architectures for pattern classification tasks. These algorithms obviate the need for an ad-hoc a-priori choice of the network topology. The constructive algorithm design involves alternately augmenting the existing network topology by adding one or more threshold logic units and training the newly added threshold neuron(s) using a stable variant of the perception learning algorithm (e.g., pocket algorithm, thermal perception, and barycentric correction procedure). Several constructive algorithms including tower, pyramid, tiling, upstart, and perception cascade have been proposed for 2-category pattern classification. These algorithms differ in terms of their topological and connectivity constraints as well as the training strategies used for individual neurons.
Ensemble algorithms in reinforcement learning.
Wiering, Marco A; van Hasselt, Hado
2008-08-01
This paper describes several ensemble methods that combine multiple different reinforcement learning (RL) algorithms in a single agent. The aim is to enhance learning speed and final performance by combining the chosen actions or action probabilities of different RL algorithms. We designed and implemented four different ensemble methods combining the following five different RL algorithms: Q-learning, Sarsa, actor-critic (AC), QV-learning, and AC learning automaton. The intuitively designed ensemble methods, namely, majority voting (MV), rank voting, Boltzmann multiplication (BM), and Boltzmann addition, combine the policies derived from the value functions of the different RL algorithms, in contrast to previous work where ensemble methods have been used in RL for representing and learning a single value function. We show experiments on five maze problems of varying complexity; the first problem is simple, but the other four maze tasks are of a dynamic or partially observable nature. The results indicate that the BM and MV ensembles significantly outperform the single RL algorithms. PMID:18632380
Adaptive link selection algorithms for distributed estimation
NASA Astrophysics Data System (ADS)
Xu, Songcen; de Lamare, Rodrigo C.; Poor, H. Vincent
2015-12-01
This paper presents adaptive link selection algorithms for distributed estimation and considers their application to wireless sensor networks and smart grids. In particular, exhaustive search-based least mean squares (LMS) / recursive least squares (RLS) link selection algorithms and sparsity-inspired LMS / RLS link selection algorithms that can exploit the topology of networks with poor-quality links are considered. The proposed link selection algorithms are then analyzed in terms of their stability, steady-state, and tracking performance and computational complexity. In comparison with the existing centralized or distributed estimation strategies, the key features of the proposed algorithms are as follows: (1) more accurate estimates and faster convergence speed can be obtained and (2) the network is equipped with the ability of link selection that can circumvent link failures and improve the estimation performance. The performance of the proposed algorithms for distributed estimation is illustrated via simulations in applications of wireless sensor networks and smart grids.
Adaptive Cuckoo Search Algorithm for Unconstrained Optimization
2014-01-01
Modification of the intensification and diversification approaches in the recently developed cuckoo search algorithm (CSA) is performed. The alteration involves the implementation of adaptive step size adjustment strategy, and thus enabling faster convergence to the global optimal solutions. The feasibility of the proposed algorithm is validated against benchmark optimization functions, where the obtained results demonstrate a marked improvement over the standard CSA, in all the cases. PMID:25298971
Adaptive cuckoo search algorithm for unconstrained optimization.
Ong, Pauline
2014-01-01
Modification of the intensification and diversification approaches in the recently developed cuckoo search algorithm (CSA) is performed. The alteration involves the implementation of adaptive step size adjustment strategy, and thus enabling faster convergence to the global optimal solutions. The feasibility of the proposed algorithm is validated against benchmark optimization functions, where the obtained results demonstrate a marked improvement over the standard CSA, in all the cases. PMID:25298971
Adaptive Learning and Risk Taking
ERIC Educational Resources Information Center
Denrell, Jerker
2007-01-01
Humans and animals learn from experience by reducing the probability of sampling alternatives with poor past outcomes. Using simulations, J. G. March (1996) illustrated how such adaptive sampling could lead to risk-averse as well as risk-seeking behavior. In this article, the author develops a formal theory of how adaptive sampling influences risk…
Organization of Distributed Adaptive Learning
ERIC Educational Resources Information Center
Vengerov, Alexander
2009-01-01
The growing sensitivity of various systems and parts of industry, society, and even everyday individual life leads to the increased volume of changes and needs for adaptation and learning. This creates a new situation where learning from being purely academic knowledge transfer procedure is becoming a ubiquitous always-on essential part of all…
Adaptive path planning: Algorithm and analysis
Chen, Pang C.
1995-03-01
To address the need for a fast path planner, we present a learning algorithm that improves path planning by using past experience to enhance future performance. The algorithm relies on an existing path planner to provide solutions difficult tasks. From these solutions, an evolving sparse work of useful robot configurations is learned to support faster planning. More generally, the algorithm provides a framework in which a slow but effective planner may be improved both cost-wise and capability-wise by a faster but less effective planner coupled with experience. We analyze algorithm by formalizing the concept of improvability and deriving conditions under which a planner can be improved within the framework. The analysis is based on two stochastic models, one pessimistic (on task complexity), the other randomized (on experience utility). Using these models, we derive quantitative bounds to predict the learning behavior. We use these estimation tools to characterize the situations in which the algorithm is useful and to provide bounds on the training time. In particular, we show how to predict the maximum achievable speedup. Additionally, our analysis techniques are elementary and should be useful for studying other types of probabilistic learning as well.
Adaptive process control using fuzzy logic and genetic algorithms
NASA Technical Reports Server (NTRS)
Karr, C. L.
1993-01-01
Researchers at the U.S. Bureau of Mines have developed adaptive process control systems in which genetic algorithms (GA's) are used to augment fuzzy logic controllers (FLC's). GA's are search algorithms that rapidly locate near-optimum solutions to a wide spectrum of problems by modeling the search procedures of natural genetics. FLC's are rule based systems that efficiently manipulate a problem environment by modeling the 'rule-of-thumb' strategy used in human decision making. Together, GA's and FLC's possess the capabilities necessary to produce powerful, efficient, and robust adaptive control systems. To perform efficiently, such control systems require a control element to manipulate the problem environment, and a learning element to adjust to the changes in the problem environment. Details of an overall adaptive control system are discussed. A specific laboratory acid-base pH system is used to demonstrate the ideas presented.
Adaptive Process Control with Fuzzy Logic and Genetic Algorithms
NASA Technical Reports Server (NTRS)
Karr, C. L.
1993-01-01
Researchers at the U.S. Bureau of Mines have developed adaptive process control systems in which genetic algorithms (GA's) are used to augment fuzzy logic controllers (FLC's). GA's are search algorithms that rapidly locate near-optimum solutions to a wide spectrum of problems by modeling the search procedures of natural genetics. FLC's are rule based systems that efficiently manipulate a problem environment by modeling the 'rule-of-thumb' strategy used in human decision-making. Together, GA's and FLC's possess the capabilities necessary to produce powerful, efficient, and robust adaptive control systems. To perform efficiently, such control systems require a control element to manipulate the problem environment, an analysis element to recognize changes in the problem environment, and a learning element to adjust to the changes in the problem environment. Details of an overall adaptive control system are discussed. A specific laboratory acid-base pH system is used to demonstrate the ideas presented.
Evaluating Knowledge Structure-Based Adaptive Testing Algorithms and System Development
ERIC Educational Resources Information Center
Wu, Huey-Min; Kuo, Bor-Chen; Yang, Jinn-Min
2012-01-01
In recent years, many computerized test systems have been developed for diagnosing students' learning profiles. Nevertheless, it remains a challenging issue to find an adaptive testing algorithm to both shorten testing time and precisely diagnose the knowledge status of students. In order to find a suitable algorithm, four adaptive testing…
The Kernel Adaptive Autoregressive-Moving-Average Algorithm.
Li, Kan; Príncipe, José C
2016-02-01
In this paper, we present a novel kernel adaptive recurrent filtering algorithm based on the autoregressive-moving-average (ARMA) model, which is trained with recurrent stochastic gradient descent in the reproducing kernel Hilbert spaces. This kernelized recurrent system, the kernel adaptive ARMA (KAARMA) algorithm, brings together the theories of adaptive signal processing and recurrent neural networks (RNNs), extending the current theory of kernel adaptive filtering (KAF) using the representer theorem to include feedback. Compared with classical feedforward KAF methods, the KAARMA algorithm provides general nonlinear solutions for complex dynamical systems in a state-space representation, with a deferred teacher signal, by propagating forward the hidden states. We demonstrate its capabilities to provide exact solutions with compact structures by solving a set of benchmark nondeterministic polynomial-complete problems involving grammatical inference. Simulation results show that the KAARMA algorithm outperforms equivalent input-space recurrent architectures using first- and second-order RNNs, demonstrating its potential as an effective learning solution for the identification and synthesis of deterministic finite automata. PMID:25935049
Cascade Error Projection: A New Learning Algorithm
NASA Technical Reports Server (NTRS)
Duong, T. A.; Stubberud, A. R.; Daud, T.; Thakoor, A. P.
1995-01-01
A new neural network architecture and a hardware implementable learning algorithm is proposed. The algorithm, called cascade error projection (CEP), handles lack of precision and circuit noise better than existing algorithms.
Adaptive and accelerated tracking-learning-detection
NASA Astrophysics Data System (ADS)
Guo, Pengyu; Li, Xin; Ding, Shaowen; Tian, Zunhua; Zhang, Xiaohu
2013-08-01
An improved online long-term visual tracking algorithm, named adaptive and accelerated TLD (AA-TLD) based on Tracking-Learning-Detection (TLD) which is a novel tracking framework has been introduced in this paper. The improvement focuses on two aspects, one is adaption, which makes the algorithm not dependent on the pre-defined scanning grids by online generating scale space, and the other is efficiency, which uses not only algorithm-level acceleration like scale prediction that employs auto-regression and moving average (ARMA) model to learn the object motion to lessen the detector's searching range and the fixed number of positive and negative samples that ensures a constant retrieving time, but also CPU and GPU parallel technology to achieve hardware acceleration. In addition, in order to obtain a better effect, some TLD's details are redesigned, which uses a weight including both normalized correlation coefficient and scale size to integrate results, and adjusts distance metric thresholds online. A contrastive experiment on success rate, center location error and execution time, is carried out to show a performance and efficiency upgrade over state-of-the-art TLD with partial TLD datasets and Shenzhou IX return capsule image sequences. The algorithm can be used in the field of video surveillance to meet the need of real-time video tracking.
An adaptive guidance algorithm for aerospace vehicles
NASA Astrophysics Data System (ADS)
Bradt, J. E.; Hardtla, J. W.; Cramer, E. J.
The specifications for proposed space transportation systems are placing more emphasis on developing reusable avionics subsystems which have the capability to respond to vehicle evolution and diverse missions while at the same time reducing the cost of ground support for mission planning, contingency response and verification and validation. An innovative approach to meeting these goals is to specify the guidance problem as a multi-point boundary value problen and solve that problem using modern control theory and nonlinear constrained optimization techniques. This approach has been implemented as Gamma Guidance (Hardtla, 1978) and has been successfully flown in the Inertial Upper Stage. The adaptive guidance algorithm described in this paper is a generalized formulation of Gamma Guidance. The basic equations are presented and then applied to four diverse aerospace vehicles to demonstrate the feasibility of using a reusable, explicit, adaptive guidance algorithm for diverse applications and vehicles.
A parallel adaptive mesh refinement algorithm
NASA Technical Reports Server (NTRS)
Quirk, James J.; Hanebutte, Ulf R.
1993-01-01
Over recent years, Adaptive Mesh Refinement (AMR) algorithms which dynamically match the local resolution of the computational grid to the numerical solution being sought have emerged as powerful tools for solving problems that contain disparate length and time scales. In particular, several workers have demonstrated the effectiveness of employing an adaptive, block-structured hierarchical grid system for simulations of complex shock wave phenomena. Unfortunately, from the parallel algorithm developer's viewpoint, this class of scheme is quite involved; these schemes cannot be distilled down to a small kernel upon which various parallelizing strategies may be tested. However, because of their block-structured nature such schemes are inherently parallel, so all is not lost. In this paper we describe the method by which Quirk's AMR algorithm has been parallelized. This method is built upon just a few simple message passing routines and so it may be implemented across a broad class of MIMD machines. Moreover, the method of parallelization is such that the original serial code is left virtually intact, and so we are left with just a single product to support. The importance of this fact should not be underestimated given the size and complexity of the original algorithm.
Turbo LMS algorithm: supercharger meets adaptive filter
NASA Astrophysics Data System (ADS)
Meyer-Baese, Uwe
2006-04-01
Adaptive digital filters (ADFs) are, in general, the most sophisticated and resource intensive components of modern digital signal processing (DSP) and communication systems. Improvements in performance or the complexity of ADFs can have a significant impact on the overall size, speed, and power properties of a complete system. The least mean square (LMS) algorithm is a popular algorithm for coefficient adaptation in ADF because it is robust, easy to implement, and a close approximation to the optimal Wiener-Hopf least mean square solution. The main weakness of the LMS algorithm is the slow convergence, especially for non Markov-1 colored noise input signals with high eigenvalue ratios (EVRs). Since its introduction in 1993, the turbo (supercharge) principle has been successfully applied in error correction decoding and has become very popular because it reaches the theoretical limits of communication capacity predicted 5 decades ago by Shannon. The turbo principle applied to LMS ADF is analogous to the turbo principle used for error correction decoders: First, an "interleaver" is used to minimize crosscorrelation, secondly, an iterative improvement which uses the same data set several times is implemented using the standard LMS algorithm. Results for 6 different interleaver schemes for EVR in the range 1-100 are presented.
Fully implicit adaptive mesh refinement MHD algorithm
NASA Astrophysics Data System (ADS)
Philip, Bobby
2005-10-01
In the macroscopic simulation of plasmas, the numerical modeler is faced with the challenge of dealing with multiple time and length scales. The former results in stiffness due to the presence of very fast waves. The latter requires one to resolve the localized features that the system develops. Traditional approaches based on explicit time integration techniques and fixed meshes are not suitable for this challenge, as such approaches prevent the modeler from using realistic plasma parameters to keep the computation feasible. We propose here a novel approach, based on implicit methods and structured adaptive mesh refinement (SAMR). Our emphasis is on both accuracy and scalability with the number of degrees of freedom. To our knowledge, a scalable, fully implicit AMR algorithm has not been accomplished before for MHD. As a proof-of-principle, we focus on the reduced resistive MHD model as a basic MHD model paradigm, which is truly multiscale. The approach taken here is to adapt mature physics-based technologyootnotetextL. Chac'on et al., J. Comput. Phys. 178 (1), 15- 36 (2002) to AMR grids, and employ AMR-aware multilevel techniques (such as fast adaptive composite --FAC-- algorithms) for scalability. We will demonstrate that the concept is indeed feasible, featuring optimal scalability under grid refinement. Results of fully-implicit, dynamically-adaptive AMR simulations will be presented on a variety of problems.
Interoperability in Personalized Adaptive Learning
ERIC Educational Resources Information Center
Aroyo, Lora; Dolog, Peter; Houben, Geert-Jan; Kravcik, Milos; Naeve, Ambjorn; Nilsson, Mikael; Wild, Fridolin
2006-01-01
Personalized adaptive learning requires semantic-based and context-aware systems to manage the Web knowledge efficiently as well as to achieve semantic interoperability between heterogeneous information resources and services. The technological and conceptual differences can be bridged either by means of standards or via approaches based on the…
Adaptive experiments with a multivariate Elo-type algorithm.
Doebler, Philipp; Alavash, Mohsen; Giessing, Carsten
2015-06-01
The present article introduces the multivariate Elo-type algorithm (META), which is inspired by the Elo rating system, a tool for the measurement of the performance of chess players. The META is intended for adaptive experiments with correlated traits. The relationship of the META to other existing procedures is explained, and useful variants and modifications are discussed. The META was investigated within three simulation studies. The gain in efficiency of the univariate Elo-type algorithm was compared to standard univariate procedures; the impact of using correlational information in the META was quantified; and the adaptability to learning and fatigue was investigated. Our results show that the META is a powerful tool to efficiently control task performance in a short time period and to assess correlated traits. The R code of the simulations, the implementation of the META in MATLAB, and an example of how to use the META in the context of neuroscience are provided in supplemental materials. PMID:24878597
Adaptively Ubiquitous Learning in Campus Math Path
ERIC Educational Resources Information Center
Shih, Shu-Chuan; Kuo, Bor-Chen; Liu, Yu-Lung
2012-01-01
The purposes of this study are to develop and evaluate the instructional model and learning system which integrate ubiquitous learning, computerized adaptive diagnostic testing system and campus math path learning. The researcher first creates a ubiquitous learning environment which is called "adaptive U-learning math path system". This system…
Adaptive sensor array algorithm for structural health monitoring of helmet
NASA Astrophysics Data System (ADS)
Zou, Xiaotian; Tian, Ye; Wu, Nan; Sun, Kai; Wang, Xingwei
2011-04-01
The adaptive neural network is a standard technique used in nonlinear system estimation and learning applications for dynamic models. In this paper, we introduced an adaptive sensor fusion algorithm for a helmet structure health monitoring system. The helmet structure health monitoring system is used to study the effects of ballistic/blast events on the helmet and human skull. Installed inside the helmet system, there is an optical fiber pressure sensors array. After implementing the adaptive estimation algorithm into helmet system, a dynamic model for the sensor array has been developed. The dynamic response characteristics of the sensor network are estimated from the pressure data by applying an adaptive control algorithm using artificial neural network. With the estimated parameters and position data from the dynamic model, the pressure distribution of the whole helmet can be calculated following the Bazier Surface interpolation method. The distribution pattern inside the helmet will be very helpful for improving helmet design to provide better protection to soldiers from head injuries.
Intelligent robots that adapt, learn, and predict
NASA Astrophysics Data System (ADS)
Hall, E. L.; Liao, X.; Ghaffari, M.; Alhaj Ali, S. M.
2005-10-01
The purpose of this paper is to describe the concept and architecture for an intelligent robot system that can adapt, learn and predict the future. This evolutionary approach to the design of intelligent robots is the result of several years of study on the design of intelligent machines that could adapt using computer vision or other sensory inputs, learn using artificial neural networks or genetic algorithms, exhibit semiotic closure with a creative controller and perceive present situations by interpretation of visual and voice commands. This information processing would then permit the robot to predict the future and plan its actions accordingly. In this paper we show that the capability to adapt, and learn naturally leads to the ability to predict the future state of the environment which is just another form of semiotic closure. That is, predicting a future state without knowledge of the future is similar to making a present action without knowledge of the present state. The theory will be illustrated by considering the situation of guiding a mobile robot through an unstructured environment for a rescue operation. The significance of this work is in providing a greater understanding of the applications of learning to mobile robots.
Perceptual learning in sensorimotor adaptation.
Darainy, Mohammad; Vahdat, Shahabeddin; Ostry, David J
2013-11-01
Motor learning often involves situations in which the somatosensory targets of movement are, at least initially, poorly defined, as for example, in learning to speak or learning the feel of a proper tennis serve. Under these conditions, motor skill acquisition presumably requires perceptual as well as motor learning. That is, it engages both the progressive shaping of sensory targets and associated changes in motor performance. In the present study, we test the idea that perceptual learning alters somatosensory function and in so doing produces changes to human motor performance and sensorimotor adaptation. Subjects in these experiments undergo perceptual training in which a robotic device passively moves the subject's arm on one of a set of fan-shaped trajectories. Subjects are required to indicate whether the robot moved the limb to the right or the left and feedback is provided. Over the course of training both the perceptual boundary and acuity are altered. The perceptual learning is observed to improve both the rate and extent of learning in a subsequent sensorimotor adaptation task and the benefits persist for at least 24 h. The improvement in the present studies varies systematically with changes in perceptual acuity and is obtained regardless of whether the perceptual boundary shift serves to systematically increase or decrease error on subsequent movements. The beneficial effects of perceptual training are found to be substantially dependent on reinforced decision-making in the sensory domain. Passive-movement training on its own is less able to alter subsequent learning in the motor system. Overall, this study suggests perceptual learning plays an integral role in motor learning. PMID:23966671
Perceptual learning in sensorimotor adaptation
Darainy, Mohammad; Vahdat, Shahabeddin
2013-01-01
Motor learning often involves situations in which the somatosensory targets of movement are, at least initially, poorly defined, as for example, in learning to speak or learning the feel of a proper tennis serve. Under these conditions, motor skill acquisition presumably requires perceptual as well as motor learning. That is, it engages both the progressive shaping of sensory targets and associated changes in motor performance. In the present study, we test the idea that perceptual learning alters somatosensory function and in so doing produces changes to human motor performance and sensorimotor adaptation. Subjects in these experiments undergo perceptual training in which a robotic device passively moves the subject's arm on one of a set of fan-shaped trajectories. Subjects are required to indicate whether the robot moved the limb to the right or the left and feedback is provided. Over the course of training both the perceptual boundary and acuity are altered. The perceptual learning is observed to improve both the rate and extent of learning in a subsequent sensorimotor adaptation task and the benefits persist for at least 24 h. The improvement in the present studies varies systematically with changes in perceptual acuity and is obtained regardless of whether the perceptual boundary shift serves to systematically increase or decrease error on subsequent movements. The beneficial effects of perceptual training are found to be substantially dependent on reinforced decision-making in the sensory domain. Passive-movement training on its own is less able to alter subsequent learning in the motor system. Overall, this study suggests perceptual learning plays an integral role in motor learning. PMID:23966671
A kernel adaptive algorithm for quaternion-valued inputs.
Paul, Thomas K; Ogunfunmi, Tokunbo
2015-10-01
The use of quaternion data can provide benefit in applications like robotics and image recognition, and particularly for performing transforms in 3-D space. Here, we describe a kernel adaptive algorithm for quaternions. A least mean square (LMS)-based method was used, resulting in the derivation of the quaternion kernel LMS (Quat-KLMS) algorithm. Deriving this algorithm required describing the idea of a quaternion reproducing kernel Hilbert space (RKHS), as well as kernel functions suitable with quaternions. A modified HR calculus for Hilbert spaces was used to find the gradient of cost functions defined on a quaternion RKHS. In addition, the use of widely linear (or augmented) filtering is proposed to improve performance. The benefit of the Quat-KLMS and widely linear forms in learning nonlinear transformations of quaternion data are illustrated with simulations. PMID:25594982
Adaptive Trajectory Prediction Algorithm for Climbing Flights
NASA Technical Reports Server (NTRS)
Schultz, Charles Alexander; Thipphavong, David P.; Erzberger, Heinz
2012-01-01
Aircraft climb trajectories are difficult to predict, and large errors in these predictions reduce the potential operational benefits of some advanced features for NextGen. The algorithm described in this paper improves climb trajectory prediction accuracy by adjusting trajectory predictions based on observed track data. It utilizes rate-of-climb and airspeed measurements derived from position data to dynamically adjust the aircraft weight modeled for trajectory predictions. In simulations with weight uncertainty, the algorithm is able to adapt to within 3 percent of the actual gross weight within two minutes of the initial adaptation. The root-mean-square of altitude errors for five-minute predictions was reduced by 73 percent. Conflict detection performance also improved, with a 15 percent reduction in missed alerts and a 10 percent reduction in false alerts. In a simulation with climb speed capture intent and weight uncertainty, the algorithm improved climb trajectory prediction accuracy by up to 30 percent and conflict detection performance, reducing missed and false alerts by up to 10 percent.
Adaptable, Personalised E-Learning Incorporating Learning Styles
ERIC Educational Resources Information Center
Peter, Sophie E.; Bacon, Elizabeth; Dastbaz, Mohammad
2010-01-01
Purpose: The purpose of this paper is to discuss how learning styles and theories are currently used within personalised adaptable e-learning adaptive systems. This paper then aims to describe the e-learning platform iLearn and how this platform is designed to incorporate learning styles as part of the personalisation offered by the system.…
The annealing robust backpropagation (ARBP) learning algorithm.
Chuang, C C; Su, S F; Hsiao, C C
2000-01-01
Multilayer feedforward neural networks are often referred to as universal approximators. Nevertheless, if the used training data are corrupted by large noise, such as outliers, traditional backpropagation learning schemes may not always come up with acceptable performance. Even though various robust learning algorithms have been proposed in the literature, those approaches still suffer from the initialization problem. In those robust learning algorithms, the so-called M-estimator is employed. For the M-estimation type of learning algorithms, the loss function is used to play the role in discriminating against outliers from the majority by degrading the effects of those outliers in learning. However, the loss function used in those algorithms may not correctly discriminate against those outliers. In this paper, the annealing robust backpropagation learning algorithm (ARBP) that adopts the annealing concept into the robust learning algorithms is proposed to deal with the problem of modeling under the existence of outliers. The proposed algorithm has been employed in various examples. Those results all demonstrated the superiority over other robust learning algorithms independent of outliers. In the paper, not only is the annealing concept adopted into the robust learning algorithms but also the annealing schedule k/t was found experimentally to achieve the best performance among other annealing schedules, where k is a constant and is the epoch number. PMID:18249835
Adaptive Numerical Algorithms in Space Weather Modeling
NASA Technical Reports Server (NTRS)
Toth, Gabor; vanderHolst, Bart; Sokolov, Igor V.; DeZeeuw, Darren; Gombosi, Tamas I.; Fang, Fang; Manchester, Ward B.; Meng, Xing; Nakib, Dalal; Powell, Kenneth G.; Stout, Quentin F.; Glocer, Alex; Ma, Ying-Juan; Opher, Merav
2010-01-01
Space weather describes the various processes in the Sun-Earth system that present danger to human health and technology. The goal of space weather forecasting is to provide an opportunity to mitigate these negative effects. Physics-based space weather modeling is characterized by disparate temporal and spatial scales as well as by different physics in different domains. A multi-physics system can be modeled by a software framework comprising of several components. Each component corresponds to a physics domain, and each component is represented by one or more numerical models. The publicly available Space Weather Modeling Framework (SWMF) can execute and couple together several components distributed over a parallel machine in a flexible and efficient manner. The framework also allows resolving disparate spatial and temporal scales with independent spatial and temporal discretizations in the various models. Several of the computationally most expensive domains of the framework are modeled by the Block-Adaptive Tree Solar wind Roe Upwind Scheme (BATS-R-US) code that can solve various forms of the magnetohydrodynamics (MHD) equations, including Hall, semi-relativistic, multi-species and multi-fluid MHD, anisotropic pressure, radiative transport and heat conduction. Modeling disparate scales within BATS-R-US is achieved by a block-adaptive mesh both in Cartesian and generalized coordinates. Most recently we have created a new core for BATS-R-US: the Block-Adaptive Tree Library (BATL) that provides a general toolkit for creating, load balancing and message passing in a 1, 2 or 3 dimensional block-adaptive grid. We describe the algorithms of BATL and demonstrate its efficiency and scaling properties for various problems. BATS-R-US uses several time-integration schemes to address multiple time-scales: explicit time stepping with fixed or local time steps, partially steady-state evolution, point-implicit, semi-implicit, explicit/implicit, and fully implicit numerical
Adaptive numerical algorithms in space weather modeling
NASA Astrophysics Data System (ADS)
Tóth, Gábor; van der Holst, Bart; Sokolov, Igor V.; De Zeeuw, Darren L.; Gombosi, Tamas I.; Fang, Fang; Manchester, Ward B.; Meng, Xing; Najib, Dalal; Powell, Kenneth G.; Stout, Quentin F.; Glocer, Alex; Ma, Ying-Juan; Opher, Merav
2012-02-01
Space weather describes the various processes in the Sun-Earth system that present danger to human health and technology. The goal of space weather forecasting is to provide an opportunity to mitigate these negative effects. Physics-based space weather modeling is characterized by disparate temporal and spatial scales as well as by different relevant physics in different domains. A multi-physics system can be modeled by a software framework comprising several components. Each component corresponds to a physics domain, and each component is represented by one or more numerical models. The publicly available Space Weather Modeling Framework (SWMF) can execute and couple together several components distributed over a parallel machine in a flexible and efficient manner. The framework also allows resolving disparate spatial and temporal scales with independent spatial and temporal discretizations in the various models. Several of the computationally most expensive domains of the framework are modeled by the Block-Adaptive Tree Solarwind Roe-type Upwind Scheme (BATS-R-US) code that can solve various forms of the magnetohydrodynamic (MHD) equations, including Hall, semi-relativistic, multi-species and multi-fluid MHD, anisotropic pressure, radiative transport and heat conduction. Modeling disparate scales within BATS-R-US is achieved by a block-adaptive mesh both in Cartesian and generalized coordinates. Most recently we have created a new core for BATS-R-US: the Block-Adaptive Tree Library (BATL) that provides a general toolkit for creating, load balancing and message passing in a 1, 2 or 3 dimensional block-adaptive grid. We describe the algorithms of BATL and demonstrate its efficiency and scaling properties for various problems. BATS-R-US uses several time-integration schemes to address multiple time-scales: explicit time stepping with fixed or local time steps, partially steady-state evolution, point-implicit, semi-implicit, explicit/implicit, and fully implicit
Pitch-Learning Algorithm For Speech Encoders
NASA Technical Reports Server (NTRS)
Bhaskar, B. R. Udaya
1988-01-01
Adaptive algorithm detects and corrects errors in sequence of estimates of pitch period of speech. Algorithm operates in conjunction with techniques used to estimate pitch period. Used in such parametric and hybrid speech coders as linear predictive coders and adaptive predictive coders.
Learning algorithm of environmental recognition in driving vehicle
Qiao, L.; Sato, M.; Takeda, H.
1995-06-01
We consider the problem of recognizing driving environments of a vehicle by using the information obtained from some sensors of the vehicle. Previously, we presented recognition algorithms based on a usual method of pattern matching by use of distance on a vector space and fuzzy reasoning. These algorithms can not be applied to meet the demands of nonstandard drivers and changes of vehicle properties, because the standard pattern or membership function for the pattern matching is always fixed. Then to cover such weakness we presented adaptive recognition algorithms with adaptive change of the standard pattern and membership function. In this work, we put forward a fuzzy supervisor in the learning process. Also we presented an algorithm into which a new learning method is introduced to improve the performance of the previous ones and to meet the above demands. 18 refs.
Dictionary Learning Algorithms for Sparse Representation
Kreutz-Delgado, Kenneth; Murray, Joseph F.; Rao, Bhaskar D.; Engan, Kjersti; Lee, Te-Won; Sejnowski, Terrence J.
2010-01-01
Algorithms for data-driven learning of domain-specific overcomplete dictionaries are developed to obtain maximum likelihood and maximum a posteriori dictionary estimates based on the use of Bayesian models with concave/Schur-concave (CSC) negative log priors. Such priors are appropriate for obtaining sparse representations of environmental signals within an appropriately chosen (environmentally matched) dictionary. The elements of the dictionary can be interpreted as concepts, features, or words capable of succinct expression of events encountered in the environment (the source of the measured signals). This is a generalization of vector quantization in that one is interested in a description involving a few dictionary entries (the proverbial “25 words or less”), but not necessarily as succinct as one entry. To learn an environmentally adapted dictionary capable of concise expression of signals generated by the environment, we develop algorithms that iterate between a representative set of sparse representations found by variants of FOCUSS and an update of the dictionary using these sparse representations. Experiments were performed using synthetic data and natural images. For complete dictionaries, we demonstrate that our algorithms have improved performance over other independent component analysis (ICA) methods, measured in terms of signal-to-noise ratios of separated sources. In the overcomplete case, we show that the true underlying dictionary and sparse sources can be accurately recovered. In tests with natural images, learned overcomplete dictionaries are shown to have higher coding efficiency than complete dictionaries; that is, images encoded with an over-complete dictionary have both higher compression (fewer bits per pixel) and higher accuracy (lower mean square error). PMID:12590811
Adaptive hybrid learning for neural networks.
Smithies, Rob; Salhi, Said; Queen, Nat
2004-01-01
A robust locally adaptive learning algorithm is developed via two enhancements of the Resilient Propagation (RPROP) method. Remaining drawbacks of the gradient-based approach are addressed by hybridization with gradient-independent Local Search. Finally, a global optimization method based on recursion of the hybrid is constructed, making use of tabu neighborhoods to accelerate the search for minima through diversification. Enhanced RPROP is shown to be faster and more accurate than the standard RPROP in solving classification tasks based on natural data sets taken from the UCI repository of machine learning databases. Furthermore, the use of Local Search is shown to improve Enhanced RPROP by solving the same classification tasks as part of the global optimization method. PMID:15006027
An Adaptive Path Planning Algorithm for Cooperating Unmanned Air Vehicles
Cunningham, C.T.; Roberts, R.S.
2000-09-12
An adaptive path planning algorithm is presented for cooperating Unmanned Air Vehicles (UAVs) that are used to deploy and operate land-based sensor networks. The algorithm employs a global cost function to generate paths for the UAVs, and adapts the paths to exceptions that might occur. Examples are provided of the paths and adaptation.
Adaptive path planning algorithm for cooperating unmanned air vehicles
Cunningham, C T; Roberts, R S
2001-02-08
An adaptive path planning algorithm is presented for cooperating Unmanned Air Vehicles (UAVs) that are used to deploy and operate land-based sensor networks. The algorithm employs a global cost function to generate paths for the UAVs, and adapts the paths to exceptions that might occur. Examples are provided of the paths and adaptation.
An adaptive replacement algorithm for paged-memory computer systems.
NASA Technical Reports Server (NTRS)
Thorington, J. M., Jr.; Irwin, J. D.
1972-01-01
A general class of adaptive replacement schemes for use in paged memories is developed. One such algorithm, called SIM, is simulated using a probability model that generates memory traces, and the results of the simulation of this adaptive scheme are compared with those obtained using the best nonlookahead algorithms. A technique for implementing this type of adaptive replacement algorithm with state of the art digital hardware is also presented.
Adaptive method of realizing natural gradient learning for multilayer perceptrons.
Amari, S; Park, H; Fukumizu, K
2000-06-01
The natural gradient learning method is known to have ideal performances for on-line training of multilayer perceptrons. It avoids plateaus, which give rise to slow convergence of the backpropagation method. It is Fisher efficient, whereas the conventional method is not. However, for implementing the method, it is necessary to calculate the Fisher information matrix and its inverse, which is practically very difficult. This article proposes an adaptive method of directly obtaining the inverse of the Fisher information matrix. It generalizes the adaptive Gauss-Newton algorithms and provides a solid theoretical justification of them. Simulations show that the proposed adaptive method works very well for realizing natural gradient learning. PMID:10935719
Adaptive Units of Learning and Educational Videogames
ERIC Educational Resources Information Center
Moreno-Ger, Pablo; Thomas, Pilar Sancho; Martinez-Ortiz, Ivan; Sierra, Jose Luis; Fernandez-Manjon, Baltasar
2007-01-01
In this paper, we propose three different ways of using IMS Learning Design to support online adaptive learning modules that include educational videogames. The first approach relies on IMS LD to support adaptation procedures where the educational games are considered as Learning Objects. These games can be included instead of traditional content…
Learning Intelligent Genetic Algorithms Using Japanese Nonograms
ERIC Educational Resources Information Center
Tsai, Jinn-Tsong; Chou, Ping-Yi; Fang, Jia-Cen
2012-01-01
An intelligent genetic algorithm (IGA) is proposed to solve Japanese nonograms and is used as a method in a university course to learn evolutionary algorithms. The IGA combines the global exploration capabilities of a canonical genetic algorithm (CGA) with effective condensed encoding, improved fitness function, and modified crossover and…
Adaptive Metric Learning for Saliency Detection.
Li, Shuang; Lu, Huchuan; Lin, Zhe; Shen, Xiaohui; Price, Brian
2015-11-01
In this paper, we propose a novel adaptive metric learning algorithm (AML) for visual saliency detection. A key observation is that the saliency of a superpixel can be estimated by the distance from the most certain foreground and background seeds. Instead of measuring distance on the Euclidean space, we present a learning method based on two complementary Mahalanobis distance metrics: 1) generic metric learning (GML) and 2) specific metric learning (SML). GML aims at the global distribution of the whole training set, while SML considers the specific structure of a single image. Considering that multiple similarity measures from different views may enhance the relevant information and alleviate the irrelevant one, we try to fuse the GML and SML together and experimentally find the combining result does work well. Different from the most existing methods which are directly based on low-level features, we devise a superpixelwise Fisher vector coding approach to better distinguish salient objects from the background. We also propose an accurate seeds selection mechanism and exploit contextual and multiscale information when constructing the final saliency map. Experimental results on various image sets show that the proposed AML performs favorably against the state-of-the-arts. PMID:26054067
An adaptive algorithm for motion compensated color image coding
NASA Technical Reports Server (NTRS)
Kwatra, Subhash C.; Whyte, Wayne A.; Lin, Chow-Ming
1987-01-01
This paper presents an adaptive algorithm for motion compensated color image coding. The algorithm can be used for video teleconferencing or broadcast signals. Activity segmentation is used to reduce the bit rate and a variable stage search is conducted to save computations. The adaptive algorithm is compared with the nonadaptive algorithm and it is shown that with approximately 60 percent savings in computing the motion vector and 33 percent additional compression, the performance of the adaptive algorithm is similar to the nonadaptive algorithm. The adaptive algorithm results also show improvement of up to 1 bit/pel over interframe DPCM coding with nonuniform quantization. The test pictures used for this study were recorded directly from broadcast video in color.
Adaptive Learning Systems: Beyond Teaching Machines
ERIC Educational Resources Information Center
Kara, Nuri; Sevim, Nese
2013-01-01
Since 1950s, teaching machines have changed a lot. Today, we have different ideas about how people learn, what instructor should do to help students during their learning process. We have adaptive learning technologies that can create much more student oriented learning environments. The purpose of this article is to present these changes and its…
Evolving Stochastic Learning Algorithm based on Tsallis entropic index
NASA Astrophysics Data System (ADS)
Anastasiadis, A. D.; Magoulas, G. D.
2006-03-01
In this paper, inspired from our previous algorithm, which was based on the theory of Tsallis statistical mechanics, we develop a new evolving stochastic learning algorithm for neural networks. The new algorithm combines deterministic and stochastic search steps by employing a different adaptive stepsize for each network weight, and applies a form of noise that is characterized by the nonextensive entropic index q, regulated by a weight decay term. The behavior of the learning algorithm can be made more stochastic or deterministic depending on the trade off between the temperature T and the q values. This is achieved by introducing a formula that defines a time-dependent relationship between these two important learning parameters. Our experimental study verifies that there are indeed improvements in the convergence speed of this new evolving stochastic learning algorithm, which makes learning faster than using the original Hybrid Learning Scheme (HLS). In addition, experiments are conducted to explore the influence of the entropic index q and temperature T on the convergence speed and stability of the proposed method.
Generation of attributes for learning algorithms
Hu, Yuh-Jyh; Kibler, D.
1996-12-31
Inductive algorithms rely strongly on their representational biases. Constructive induction can mitigate representational inadequacies. This paper introduces the notion of a relative gain measure and describes a new constructive induction algorithm (GALA) which is independent of the learning algorithm. Unlike most previous research on constructive induction, our methods are designed as preprocessing step before standard machine learning algorithms are applied. We present the results which demonstrate the effectiveness of GALA on artificial and real domains for several learners: C4.5, CN2, perceptron and backpropagation.
Adaptive learning based heartbeat classification.
Srinivas, M; Basil, Tony; Mohan, C Krishna
2015-01-01
Cardiovascular diseases (CVD) are a leading cause of unnecessary hospital admissions as well as fatalities placing an immense burden on the healthcare industry. A process to provide timely intervention can reduce the morbidity rate as well as control rising costs. Patients with cardiovascular diseases require quick intervention. Towards that end, automated detection of abnormal heartbeats captured by electronic cardiogram (ECG) signals is vital. While cardiologists can identify different heartbeat morphologies quite accurately among different patients, the manual evaluation is tedious and time consuming. In this chapter, we propose new features from the time and frequency domains and furthermore, feature normalization techniques to reduce inter-patient and intra-patient variations in heartbeat cycles. Our results using the adaptive learning based classifier emulate those reported in existing literature and in most cases deliver improved performance, while eliminating the need for labeling of signals by domain experts. PMID:26484555
Sensitivity-based adaptive learning rules for binary feedforward neural networks.
Zhong, Shuiming; Zeng, Xiaoqin; Wu, Shengli; Han, Lixin
2012-03-01
This paper proposes a set of adaptive learning rules for binary feedforward neural networks (BFNNs) by means of the sensitivity measure that is established to investigate the effect of a BFNN's weight variation on its output. The rules are based on three basic adaptive learning principles: the benefit principle, the minimal disturbance principle, and the burden-sharing principle. In order to follow the benefit principle and the minimal disturbance principle, a neuron selection rule and a weight adaptation rule are developed. Besides, a learning control rule is developed to follow the burden-sharing principle. The advantage of the rules is that they can effectively guide the BFNN's learning to conduct constructive adaptations and avoid destructive ones. With these rules, a sensitivity-based adaptive learning (SBALR) algorithm for BFNNs is presented. Experimental results on a number of benchmark data demonstrate that the SBALR algorithm has better learning performance than the Madaline rule II and backpropagation algorithms. PMID:24808553
Learning algorithms for feedforward networks based on finite samples
Rao, N.S.V.; Protopopescu, V.; Mann, R.C.; Oblow, E.M.; Iyengar, S.S.
1994-09-01
Two classes of convergent algorithms for learning continuous functions (and also regression functions) that are represented by feedforward networks, are discussed. The first class of algorithms, applicable to networks with unknown weights located only in the output layer, is obtained by utilizing the potential function methods of Aizerman et al. The second class, applicable to general feedforward networks, is obtained by utilizing the classical Robbins-Monro style stochastic approximation methods. Conditions relating the sample sizes to the error bounds are derived for both classes of algorithms using martingale-type inequalities. For concreteness, the discussion is presented in terms of neural networks, but the results are applicable to general feedforward networks, in particular to wavelet networks. The algorithms can be directly adapted to concept learning problems.
Adaptive mesh and algorithm refinement using direct simulation Monte Carlo
Garcia, A.L.; Bell, J.B.; Crutchfield, W.Y.; Alder, B.J.
1999-09-01
Adaptive mesh and algorithm refinement (AMAR) embeds a particle method within a continuum method at the finest level of an adaptive mesh refinement (AMR) hierarchy. The coupling between the particle region and the overlaying continuum grid is algorithmically equivalent to that between the fine and coarse levels of AMR. Direct simulation Monte Carlo (DSMC) is used as the particle algorithm embedded within a Godunov-type compressible Navier-Stokes solver. Several examples are presented and compared with purely continuum calculations.
An Adaptive Unified Differential Evolution Algorithm for Global Optimization
Qiang, Ji; Mitchell, Chad
2014-11-03
In this paper, we propose a new adaptive unified differential evolution algorithm for single-objective global optimization. Instead of the multiple mutation strate- gies proposed in conventional differential evolution algorithms, this algorithm employs a single equation unifying multiple strategies into one expression. It has the virtue of mathematical simplicity and also provides users the flexibility for broader exploration of the space of mutation operators. By making all control parameters in the proposed algorithm self-adaptively evolve during the process of optimization, it frees the application users from the burden of choosing appro- priate control parameters and also improves the performance of the algorithm. In numerical tests using thirteen basic unimodal and multimodal functions, the proposed adaptive unified algorithm shows promising performance in compari- son to several conventional differential evolution algorithms.
Automating parallel implementation of neural learning algorithms.
Rana, O F
2000-06-01
Neural learning algorithms generally involve a number of identical processing units, which are fully or partially connected, and involve an update function, such as a ramp, a sigmoid or a Gaussian function for instance. Some variations also exist, where units can be heterogeneous, or where an alternative update technique is employed, such as a pulse stream generator. Associated with connections are numerical values that must be adjusted using a learning rule, and and dictated by parameters that are learning rule specific, such as momentum, a learning rate, a temperature, amongst others. Usually, neural learning algorithms involve local updates, and a global interaction between units is often discouraged, except in instances where units are fully connected, or involve synchronous updates. In all of these instances, concurrency within a neural algorithm cannot be fully exploited without a suitable implementation strategy. A design scheme is described for translating a neural learning algorithm from inception to implementation on a parallel machine using PVM or MPI libraries, or onto programmable logic such as FPGAs. A designer must first describe the algorithm using a specialised Neural Language, from which a Petri net (PN) model is constructed automatically for verification, and building a performance model. The PN model can be used to study issues such as synchronisation points, resource sharing and concurrency within a learning rule. Specialised constructs are provided to enable a designer to express various aspects of a learning rule, such as the number and connectivity of neural nodes, the interconnection strategies, and information flows required by the learning algorithm. A scheduling and mapping strategy is then used to translate this PN model onto a multiprocessor template. We demonstrate our technique using a Kohonen and backpropagation learning rules, implemented on a loosely coupled workstation cluster, and a dedicated parallel machine, with PVM libraries
Adaptive DNA Computing Algorithm by Using PCR and Restriction Enzyme
NASA Astrophysics Data System (ADS)
Kon, Yuji; Yabe, Kaoru; Rajaee, Nordiana; Ono, Osamu
In this paper, we introduce an adaptive DNA computing algorithm by using polymerase chain reaction (PCR) and restriction enzyme. The adaptive algorithm is designed based on Adleman-Lipton paradigm[3] of DNA computing. In this work, however, unlike the Adleman- Lipton architecture a cutting operation has been introduced to the algorithm and the mechanism in which the molecules used by computation were feedback to the next cycle devised. Moreover, the amplification by PCR is performed in the molecule used by feedback and the difference concentration arisen in the base sequence can be used again. By this operation the molecules which serve as a solution candidate can be reduced down and the optimal solution is carried out in the shortest path problem. The validity of the proposed adaptive algorithm is considered with the logical simulation and finally we go on to propose applying adaptive algorithm to the chemical experiment which used the actual DNA molecules for solving an optimal network problem.
Zhang, Zhihua; Sheng, Zheng; Shi, Hanqing; Fan, Zhiqiang
2016-01-01
Using the RFC technique to estimate refractivity parameters is a complex nonlinear optimization problem. In this paper, an improved cuckoo search (CS) algorithm is proposed to deal with this problem. To enhance the performance of the CS algorithm, a parameter dynamic adaptive operation and crossover operation were integrated into the standard CS (DACS-CO). Rechenberg's 1/5 criteria combined with learning factor were used to control the parameter dynamic adaptive adjusting process. The crossover operation of genetic algorithm was utilized to guarantee the population diversity. The new hybrid algorithm has better local search ability and contributes to superior performance. To verify the ability of the DACS-CO algorithm to estimate atmospheric refractivity parameters, the simulation data and real radar clutter data are both implemented. The numerical experiments demonstrate that the DACS-CO algorithm can provide an effective method for near-real-time estimation of the atmospheric refractivity profile from radar clutter. PMID:27212938
Zhang, Zhihua; Sheng, Zheng; Shi, Hanqing; Fan, Zhiqiang
2016-01-01
Using the RFC technique to estimate refractivity parameters is a complex nonlinear optimization problem. In this paper, an improved cuckoo search (CS) algorithm is proposed to deal with this problem. To enhance the performance of the CS algorithm, a parameter dynamic adaptive operation and crossover operation were integrated into the standard CS (DACS-CO). Rechenberg's 1/5 criteria combined with learning factor were used to control the parameter dynamic adaptive adjusting process. The crossover operation of genetic algorithm was utilized to guarantee the population diversity. The new hybrid algorithm has better local search ability and contributes to superior performance. To verify the ability of the DACS-CO algorithm to estimate atmospheric refractivity parameters, the simulation data and real radar clutter data are both implemented. The numerical experiments demonstrate that the DACS-CO algorithm can provide an effective method for near-real-time estimation of the atmospheric refractivity profile from radar clutter. PMID:27212938
Integrating Learning Styles into Adaptive E-Learning System
ERIC Educational Resources Information Center
Truong, Huong May
2015-01-01
This paper provides an overview and update on my PhD research project which focuses on integrating learning styles into adaptive e-learning system. The project, firstly, aims to develop a system to classify students' learning styles through their online learning behaviour. This will be followed by a study on the complex relationship between…
Clustering algorithms do not learn, but they can be learned
NASA Astrophysics Data System (ADS)
Brun, Marcel; Dougherty, Edward R.
2005-08-01
Pattern classification theory involves an error criterion, optimal classifiers, and a theory of learning. For clustering, there has historically been little theory; in particular, there has generally (but not always) been no learning. The key point is that clustering has not been grounded on a probabilistic theory. Recently, a clustering theory has been developed in the context of random sets. This paper discusses learning within that context, in particular, k- nearest-neighbor learning of clustering algorithms.
Self-adaptive genetic algorithms with simulated binary crossover.
Deb, K; Beyer, H G
2001-01-01
Self-adaptation is an essential feature of natural evolution. However, in the context of function optimization, self-adaptation features of evolutionary search algorithms have been explored mainly with evolution strategy (ES) and evolutionary programming (EP). In this paper, we demonstrate the self-adaptive feature of real-parameter genetic algorithms (GAs) using a simulated binary crossover (SBX) operator and without any mutation operator. The connection between the working of self-adaptive ESs and real-parameter GAs with the SBX operator is also discussed. Thereafter, the self-adaptive behavior of real-parameter GAs is demonstrated on a number of test problems commonly used in the ES literature. The remarkable similarity in the working principle of real-parameter GAs and self-adaptive ESs shown in this study suggests the need for emphasizing further studies on self-adaptive GAs. PMID:11382356
LAHS: A novel harmony search algorithm based on learning automata
NASA Astrophysics Data System (ADS)
Enayatifar, Rasul; Yousefi, Moslem; Abdullah, Abdul Hanan; Darus, Amer Nordin
2013-12-01
This study presents a learning automata-based harmony search (LAHS) for unconstrained optimization of continuous problems. The harmony search (HS) algorithm performance strongly depends on the fine tuning of its parameters, including the harmony consideration rate (HMCR), pitch adjustment rate (PAR) and bandwidth (bw). Inspired by the spur-in-time responses in the musical improvisation process, learning capabilities are employed in the HS to select these parameters based on spontaneous reactions. An extensive numerical investigation is conducted on several well-known test functions, and the results are compared with the HS algorithm and its prominent variants, including the improved harmony search (IHS), global-best harmony search (GHS) and self-adaptive global-best harmony search (SGHS). The numerical results indicate that the LAHS is more efficient in finding optimum solutions and outperforms the existing HS algorithm variants.
Method and Algorithm of Using Ontologies in E-Learning Sessions
NASA Astrophysics Data System (ADS)
Deliyska, Boryana; Manoilov, Peter
2009-11-01
In the article a method and algorithm of using ontologies in e-learning sessions is proposed. The method assumes utilization of software agents and domain and application ontologies. Software agents search, extract and submit learning objects to the learners. Depending on range and level of education, domain ontology of learner and application ontologies of curriculum, syllabus and learning object plans are used. A database of learner model is designed. Under conditions of adaptive learner-oriented e-learning an algorithm of navigation through content learning objects is composed. The algorithm includes dynamic calculation of possible routes of knowledge acquiring.
Validation of Learning Effort Algorithm for Real-Time Non-Interfering Based Diagnostic Technique
ERIC Educational Resources Information Center
Hsu, Pi-Shan; Chang, Te-Jeng
2011-01-01
The objective of this research is to validate the algorithm of learning effort which is an indicator of a new real-time and non-interfering based diagnostic technique. IC3 Mentor, the adaptive e-learning platform fulfilling the requirements of intelligent tutor system, was applied to 165 university students. The learning records of the subjects…
Adaptive Learning Object Selection in Intelligent Learning Systems
ERIC Educational Resources Information Center
Karampiperis, Pythagoras; Sampson, Demetrios
2004-01-01
Adaptive learning object selection and sequencing is recognized as among the most interesting research questions in intelligent web-based education. In most intelligent learning systems that incorporate course sequencing techniques, learning object selection is based on a set of teaching rules according to the cognitive style or learning…
Initiative learning algorithm based on rough set
NASA Astrophysics Data System (ADS)
Wang, Guoyin; He, Xiao
2003-03-01
Rough set theory is emerging as a new tool for dealing with fuzzy and uncertain data. In this paper, a theory is developed to express, measure and process uncertain information and uncertain knowledge based on our result about the uncertainty measure of decision tables and decision rule systems. Based on Skowron"s propositional default rule generation algorithm, we develop an initiative learning model with rough set based initiative rule generation algorithm. Simulation results illustrate its efficiency.
An adaptive inverse kinematics algorithm for robot manipulators
NASA Technical Reports Server (NTRS)
Colbaugh, R.; Glass, K.; Seraji, H.
1990-01-01
An adaptive algorithm for solving the inverse kinematics problem for robot manipulators is presented. The algorithm is derived using model reference adaptive control (MRAC) theory and is computationally efficient for online applications. The scheme requires no a priori knowledge of the kinematics of the robot if Cartesian end-effector sensing is available, and it requires knowledge of only the forward kinematics if joint position sensing is used. Computer simulation results are given for the redundant seven-DOF robotics research arm, demonstrating that the proposed algorithm yields accurate joint angle trajectories for a given end-effector position/orientation trajectory.
On Learning Algorithms for Nash Equilibria
NASA Astrophysics Data System (ADS)
Daskalakis, Constantinos; Frongillo, Rafael; Papadimitriou, Christos H.; Pierrakos, George; Valiant, Gregory
Can learning algorithms find a Nash equilibrium? This is a natural question for several reasons. Learning algorithms resemble the behavior of players in many naturally arising games, and thus results on the convergence or non-convergence properties of such dynamics may inform our understanding of the applicability of Nash equilibria as a plausible solution concept in some settings. A second reason for asking this question is in the hope of being able to prove an impossibility result, not dependent on complexity assumptions, for computing Nash equilibria via a restricted class of reasonable algorithms. In this work, we begin to answer this question by considering the dynamics of the standard multiplicative weights update learning algorithms (which are known to converge to a Nash equilibrium for zero-sum games). We revisit a 3×3 game defined by Shapley [10] in the 1950s in order to establish that fictitious play does not converge in general games. For this simple game, we show via a potential function argument that in a variety of settings the multiplicative updates algorithm impressively fails to find the unique Nash equilibrium, in that the cumulative distributions of players produced by learning dynamics actually drift away from the equilibrium.
Managing and learning with multiple models: Objectives and optimization algorithms
Probert, William J. M.; Hauser, C.E.; McDonald-Madden, E.; Runge, M.C.; Baxter, P.W.J.; Possingham, H.P.
2011-01-01
The quality of environmental decisions should be gauged according to managers' objectives. Management objectives generally seek to maximize quantifiable measures of system benefit, for instance population growth rate. Reaching these goals often requires a certain degree of learning about the system. Learning can occur by using management action in combination with a monitoring system. Furthermore, actions can be chosen strategically to obtain specific kinds of information. Formal decision making tools can choose actions to favor such learning in two ways: implicitly via the optimization algorithm that is used when there is a management objective (for instance, when using adaptive management), or explicitly by quantifying knowledge and using it as the fundamental project objective, an approach new to conservation.This paper outlines three conservation project objectives - a pure management objective, a pure learning objective, and an objective that is a weighted mixture of these two. We use eight optimization algorithms to choose actions that meet project objectives and illustrate them in a simulated conservation project. The algorithms provide a taxonomy of decision making tools in conservation management when there is uncertainty surrounding competing models of system function. The algorithms build upon each other such that their differences are highlighted and practitioners may see where their decision making tools can be improved. ?? 2010 Elsevier Ltd.
Different Futures of Adaptive Collaborative Learning Support
ERIC Educational Resources Information Center
Rummel, Nikol; Walker, Erin; Aleven, Vincent
2016-01-01
In this position paper we contrast a Dystopian view of the future of adaptive collaborative learning support (ACLS) with a Utopian scenario that--due to better-designed technology, grounded in research--avoids the pitfalls of the Dystopian version and paints a positive picture of the practice of computer-supported collaborative learning 25 years…
Adaptive Educational Software by Applying Reinforcement Learning
ERIC Educational Resources Information Center
Bennane, Abdellah
2013-01-01
The introduction of the intelligence in teaching software is the object of this paper. In software elaboration process, one uses some learning techniques in order to adapt the teaching software to characteristics of student. Generally, one uses the artificial intelligence techniques like reinforcement learning, Bayesian network in order to adapt…
Animal social learning: associations and adaptations
Reader, Simon M.
2016-01-01
Social learning, learning from others, is a powerful process known to impact the success and survival of humans and non-human animals alike. Yet we understand little about the neurocognitive and other processes that underpin social learning. Social learning has often been assumed to involve specialized, derived cognitive processes that evolve and develop independently from other processes. However, this assumption is increasingly questioned, and evidence from a variety of organisms demonstrates that current, recent, and early life experience all predict the reliance on social information and thus can potentially explain variation in social learning as a result of experiential effects rather than evolved differences. General associative learning processes, rather than adaptive specializations, may underpin much social learning, as well as social learning strategies. Uncovering these distinctions is important to a variety of fields, for example by widening current views of the possible breadth and adaptive flexibility of social learning. Nonetheless, just like adaptationist evolutionary explanations, associationist explanations for social learning cannot be assumed, and empirical work is required to uncover the mechanisms involved and their impact on the efficacy of social learning. This work is being done, but more is needed. Current evidence suggests that much social learning may be based on ‘ordinary’ processes but with extraordinary consequences.
Adaptively resizing populations: Algorithm, analysis, and first results
NASA Technical Reports Server (NTRS)
Smith, Robert E.; Smuda, Ellen
1993-01-01
Deciding on an appropriate population size for a given Genetic Algorithm (GA) application can often be critical to the algorithm's success. Too small, and the GA can fall victim to sampling error, affecting the efficacy of its search. Too large, and the GA wastes computational resources. Although advice exists for sizing GA populations, much of this advice involves theoretical aspects that are not accessible to the novice user. An algorithm for adaptively resizing GA populations is suggested. This algorithm is based on recent theoretical developments that relate population size to schema fitness variance. The suggested algorithm is developed theoretically, and simulated with expected value equations. The algorithm is then tested on a problem where population sizing can mislead the GA. The work presented suggests that the population sizing algorithm may be a viable way to eliminate the population sizing decision from the application of GA's.
A Novel Hybrid Self-Adaptive Bat Algorithm
Fister, Iztok; Brest, Janez
2014-01-01
Nature-inspired algorithms attract many researchers worldwide for solving the hardest optimization problems. One of the newest members of this extensive family is the bat algorithm. To date, many variants of this algorithm have emerged for solving continuous as well as combinatorial problems. One of the more promising variants, a self-adaptive bat algorithm, has recently been proposed that enables a self-adaptation of its control parameters. In this paper, we have hybridized this algorithm using different DE strategies and applied these as a local search heuristics for improving the current best solution directing the swarm of a solution towards the better regions within a search space. The results of exhaustive experiments were promising and have encouraged us to invest more efforts into developing in this direction. PMID:25187904
An adaptive algorithm for low contrast infrared image enhancement
NASA Astrophysics Data System (ADS)
Liu, Sheng-dong; Peng, Cheng-yuan; Wang, Ming-jia; Wu, Zhi-guo; Liu, Jia-qi
2013-08-01
An adaptive infrared image enhancement algorithm for low contrast is proposed in this paper, to deal with the problem that conventional image enhancement algorithm is not able to effective identify the interesting region when dynamic range is large in image. This algorithm begin with the human visual perception characteristics, take account of the global adaptive image enhancement and local feature boost, not only the contrast of image is raised, but also the texture of picture is more distinct. Firstly, the global image dynamic range is adjusted from the overall, the dynamic range of original image and display grayscale form corresponding relationship, the gray scale of bright object is raised and the the gray scale of dark target is reduced at the same time, to improve the overall image contrast. Secondly, the corresponding filtering algorithm is used on the current point and its neighborhood pixels to extract image texture information, to adjust the brightness of the current point in order to enhance the local contrast of the image. The algorithm overcomes the default that the outline is easy to vague in traditional edge detection algorithm, and ensure the distinctness of texture detail in image enhancement. Lastly, we normalize the global luminance adjustment image and the local brightness adjustment image, to ensure a smooth transition of image details. A lot of experiments is made to compare the algorithm proposed in this paper with other convention image enhancement algorithm, and two groups of vague IR image are taken in experiment. Experiments show that: the contrast ratio of the picture is boosted after handled by histogram equalization algorithm, but the detail of the picture is not clear, the detail of the picture can be distinguished after handled by the Retinex algorithm. The image after deal with by self-adaptive enhancement algorithm proposed in this paper becomes clear in details, and the image contrast is markedly improved in compared with Retinex
An adaptive, lossless data compression algorithm and VLSI implementations
NASA Technical Reports Server (NTRS)
Venbrux, Jack; Zweigle, Greg; Gambles, Jody; Wiseman, Don; Miller, Warner H.; Yeh, Pen-Shu
1993-01-01
This paper first provides an overview of an adaptive, lossless, data compression algorithm originally devised by Rice in the early '70s. It then reports the development of a VLSI encoder/decoder chip set developed which implements this algorithm. A recent effort in making a space qualified version of the encoder is described along with several enhancements to the algorithm. The performance of the enhanced algorithm is compared with those from other currently available lossless compression techniques on multiple sets of test data. The results favor our implemented technique in many applications.
Adaptations to a Learning Resource
ERIC Educational Resources Information Center
Libbrecht, Paul
2015-01-01
Learning resources have been created to represent digital units of exchangeable materials that teachers and learners can pull from in order to support the learning processes. They resource themselves. Leveraging the web, one can often find these resources. But what characteristics do they need in order to be easily exchangeable? Although several…
Detection of Human Impacts by an Adaptive Energy-Based Anisotropic Algorithm
Prado-Velasco, Manuel; Ortiz Marín, Rafael; del Rio Cidoncha, Gloria
2013-01-01
Boosted by health consequences and the cost of falls in the elderly, this work develops and tests a novel algorithm and methodology to detect human impacts that will act as triggers of a two-layer fall monitor. The two main requirements demanded by socio-healthcare providers—unobtrusiveness and reliability—defined the objectives of the research. We have demonstrated that a very agile, adaptive, and energy-based anisotropic algorithm can provide 100% sensitivity and 78% specificity, in the task of detecting impacts under demanding laboratory conditions. The algorithm works together with an unsupervised real-time learning technique that addresses the adaptive capability, and this is also presented. The work demonstrates the robustness and reliability of our new algorithm, which will be the basis of a smart falling monitor. This is shown in this work to underline the relevance of the results. PMID:24157505
Adaptive image contrast enhancement algorithm for point-based rendering
NASA Astrophysics Data System (ADS)
Xu, Shaoping; Liu, Xiaoping P.
2015-03-01
Surgical simulation is a major application in computer graphics and virtual reality, and most of the existing work indicates that interactive real-time cutting simulation of soft tissue is a fundamental but challenging research problem in virtual surgery simulation systems. More specifically, it is difficult to achieve a fast enough graphic update rate (at least 30 Hz) on commodity PC hardware by utilizing traditional triangle-based rendering algorithms. In recent years, point-based rendering (PBR) has been shown to offer the potential to outperform the traditional triangle-based rendering in speed when it is applied to highly complex soft tissue cutting models. Nevertheless, the PBR algorithms are still limited in visual quality due to inherent contrast distortion. We propose an adaptive image contrast enhancement algorithm as a postprocessing module for PBR, providing high visual rendering quality as well as acceptable rendering efficiency. Our approach is based on a perceptible image quality technique with automatic parameter selection, resulting in a visual quality comparable to existing conventional PBR algorithms. Experimental results show that our adaptive image contrast enhancement algorithm produces encouraging results both visually and numerically compared to representative algorithms, and experiments conducted on the latest hardware demonstrate that the proposed PBR framework with the postprocessing module is superior to the conventional PBR algorithm and that the proposed contrast enhancement algorithm can be utilized in (or compatible with) various variants of the conventional PBR algorithm.
An Adaptive Hybrid Algorithm for Global Network Alignment.
Xie, Jiang; Xiang, Chaojuan; Ma, Jin; Tan, Jun; Wen, Tieqiao; Lei, Jinzhi; Nie, Qing
2016-01-01
It is challenging to obtain reliable and optimal mapping between networks for alignment algorithms when both nodal and topological structures are taken into consideration due to the underlying NP-hard problem. Here, we introduce an adaptive hybrid algorithm that combines the classical Hungarian algorithm and the Greedy algorithm (HGA) for the global alignment of biomolecular networks. With this hybrid algorithm, every pair of nodes with one in each network is first aligned based on node information (e.g., their sequence attributes) and then followed by an adaptive and convergent iteration procedure for aligning the topological connections in the networks. For four well-studied protein interaction networks, i.e., C.elegans, yeast, D.melanogaster, and human, applications of HGA lead to improved alignments in acceptable running time. The mapping between yeast and human PINs obtained by the new algorithm has the largest value of common gene ontology (GO) terms compared to those obtained by other existing algorithms, while it still has lower Mean normalized entropy (MNE) and good performances on several other measures. Overall, the adaptive HGA is effective and capable of providing good mappings between aligned networks in which the biological properties of both the nodes and the connections are important. PMID:27295633
Dynamic adaptive learning for decision-making supporting systems
NASA Astrophysics Data System (ADS)
He, Haibo; Cao, Yuan; Chen, Sheng; Desai, Sachi; Hohil, Myron E.
2008-03-01
This paper proposes a novel adaptive learning method for data mining in support of decision-making systems. Due to the inherent characteristics of information ambiguity/uncertainty, high dimensionality and noisy in many homeland security and defense applications, such as surveillances, monitoring, net-centric battlefield, and others, it is critical to develop autonomous learning methods to efficiently learn useful information from raw data to help the decision making process. The proposed method is based on a dynamic learning principle in the feature spaces. Generally speaking, conventional approaches of learning from high dimensional data sets include various feature extraction (principal component analysis, wavelet transform, and others) and feature selection (embedded approach, wrapper approach, filter approach, and others) methods. However, very limited understandings of adaptive learning from different feature spaces have been achieved. We propose an integrative approach that takes advantages of feature selection and hypothesis ensemble techniques to achieve our goal. Based on the training data distributions, a feature score function is used to provide a measurement of the importance of different features for learning purpose. Then multiple hypotheses are iteratively developed in different feature spaces according to their learning capabilities. Unlike the pre-set iteration steps in many of the existing ensemble learning approaches, such as adaptive boosting (AdaBoost) method, the iterative learning process will automatically stop when the intelligent system can not provide a better understanding than a random guess in that particular subset of feature spaces. Finally, a voting algorithm is used to combine all the decisions from different hypotheses to provide the final prediction results. Simulation analyses of the proposed method on classification of different US military aircraft databases show the effectiveness of this method.
Adaptive sensor tasking using genetic algorithms
NASA Astrophysics Data System (ADS)
Shea, Peter J.; Kirk, Joe; Welchons, Dave
2007-04-01
Today's battlefield environment contains a large number of sensors, and sensor types, onboard multiple platforms. The set of sensor types includes SAR, EO/IR, GMTI, AMTI, HSI, MSI, and video, and for each sensor type there may be multiple sensing modalities to select from. In an attempt to maximize sensor performance, today's sensors employ either static tasking approaches or require an operator to manually change sensor tasking operations. In a highly dynamic environment this leads to a situation whereby the sensors become less effective as the sensing environments deviates from the assumed conditions. Through a Phase I SBIR effort we developed a system architecture and a common tasking approach for solving the sensor tasking problem for a multiple sensor mix. As part of our sensor tasking effort we developed a genetic algorithm based task scheduling approach and demonstrated the ability to automatically task and schedule sensors in an end-to-end closed loop simulation. Our approach allows for multiple sensors as well as system and sensor constraints. This provides a solid foundation for our future efforts including incorporation of other sensor types. This paper will describe our approach for scheduling using genetic algorithms to solve the sensor tasking problem in the presence of resource constraints and required task linkage. We will conclude with a discussion of results for a sample problem and of the path forward.
Exploring Adaptability through Learning Layers and Learning Loops
ERIC Educational Resources Information Center
Lof, Annette
2010-01-01
Adaptability in social-ecological systems results from individual and collective action, and multi-level interactions. It can be understood in a dual sense as a system's ability to adapt to disturbance and change, and to navigate system transformation. Inherent in this conception, as found in resilience thinking, are the concepts of learning and…
Locally-adaptive and memetic evolutionary pattern search algorithms.
Hart, William E
2003-01-01
Recent convergence analyses of evolutionary pattern search algorithms (EPSAs) have shown that these methods have a weak stationary point convergence theory for a broad class of unconstrained and linearly constrained problems. This paper describes how the convergence theory for EPSAs can be adapted to allow each individual in a population to have its own mutation step length (similar to the design of evolutionary programing and evolution strategies algorithms). These are called locally-adaptive EPSAs (LA-EPSAs) since each individual's mutation step length is independently adapted in different local neighborhoods. The paper also describes a variety of standard formulations of evolutionary algorithms that can be used for LA-EPSAs. Further, it is shown how this convergence theory can be applied to memetic EPSAs, which use local search to refine points within each iteration. PMID:12804096
Adaptive-mesh algorithms for computational fluid dynamics
NASA Technical Reports Server (NTRS)
Powell, Kenneth G.; Roe, Philip L.; Quirk, James
1993-01-01
The basic goal of adaptive-mesh algorithms is to distribute computational resources wisely by increasing the resolution of 'important' regions of the flow and decreasing the resolution of regions that are less important. While this goal is one that is worthwhile, implementing schemes that have this degree of sophistication remains more of an art than a science. In this paper, the basic pieces of adaptive-mesh algorithms are described and some of the possible ways to implement them are discussed and compared. These basic pieces are the data structure to be used, the generation of an initial mesh, the criterion to be used to adapt the mesh to the solution, and the flow-solver algorithm on the resulting mesh. Each of these is discussed, with particular emphasis on methods suitable for the computation of compressible flows.
An adaptive learning control system for aircraft
NASA Technical Reports Server (NTRS)
Mekel, R.; Nachmias, S.
1976-01-01
A learning control system is developed which blends the gain scheduling and adaptive control into a single learning system that has the advantages of both. An important feature of the developed learning control system is its capability to adjust the gain schedule in a prescribed manner to account for changing aircraft operating characteristics. Furthermore, if tests performed by the criteria of the learning system preclude any possible change in the gain schedule, then the overall system becomes an ordinary gain scheduling system. Examples are discussed.
Adaptive Multigrid Algorithm for the Lattice Wilson-Dirac Operator
Babich, R.; Brower, R. C.; Rebbi, C.; Brannick, J.; Clark, M. A.; Manteuffel, T. A.; McCormick, S. F.; Osborn, J. C.
2010-11-12
We present an adaptive multigrid solver for application to the non-Hermitian Wilson-Dirac system of QCD. The key components leading to the success of our proposed algorithm are the use of an adaptive projection onto coarse grids that preserves the near null space of the system matrix together with a simplified form of the correction based on the so-called {gamma}{sub 5}-Hermitian symmetry of the Dirac operator. We demonstrate that the algorithm nearly eliminates critical slowing down in the chiral limit and that it has weak dependence on the lattice volume.
Adaptive multigrid algorithm for the lattice Wilson-Dirac operator.
Babich, R; Brannick, J; Brower, R C; Clark, M A; Manteuffel, T A; McCormick, S F; Osborn, J C; Rebbi, C
2010-11-12
We present an adaptive multigrid solver for application to the non-Hermitian Wilson-Dirac system of QCD. The key components leading to the success of our proposed algorithm are the use of an adaptive projection onto coarse grids that preserves the near null space of the system matrix together with a simplified form of the correction based on the so-called γ5-Hermitian symmetry of the Dirac operator. We demonstrate that the algorithm nearly eliminates critical slowing down in the chiral limit and that it has weak dependence on the lattice volume. PMID:21231217
Adaptive NUC algorithm for uncooled IRFPA based on neural networks
NASA Astrophysics Data System (ADS)
Liu, Ziji; Jiang, Yadong; Lv, Jian; Zhu, Hongbin
2010-10-01
With developments in uncooled infrared plane array (UFPA) technology, many new advanced uncooled infrared sensors are used in defensive weapons, scientific research, industry and commercial applications. A major difference in imaging techniques between infrared IRFPA imaging system and a visible CCD camera is that, IRFPA need nonuniformity correction and dead pixel compensation, we usually called it infrared image pre-processing. Two-point or multi-point correction algorithms based on calibration commonly used may correct the non-uniformity of IRFPAs, but they are limited by pixel linearity and instability. Therefore, adaptive non-uniformity correction techniques are developed. Two of these adaptive non-uniformity correction algorithms are mostly discussed, one is based on temporal high-pass filter, and another is based on neural network. In this paper, a new NUC algorithm based on improved neural networks is introduced, and involves the compare result between improved neural networks and other adaptive correction techniques. A lot of different will discussed in different angle, like correction effects, calculation efficiency, hardware implementation and so on. According to the result and discussion, it could be concluding that the adaptive algorithm offers improved performance compared to traditional calibration mode techniques. This new algorithm not only provides better sensitivity, but also increases the system dynamic range. As the sensor application expended, it will be very useful in future infrared imaging systems.
Brain aerobic glycolysis and motor adaptation learning
Shannon, Benjamin J.; Vaishnavi, Sanjeev Neil; Vlassenko, Andrei G.; Shimony, Joshua S.; Rutlin, Jerrel; Raichle, Marcus E.
2016-01-01
Ten percent to 15% of glucose used by the brain is metabolized nonoxidatively despite adequate tissue oxygenation, a process termed aerobic glycolysis (AG). Because of the known role of glycolysis in biosynthesis, we tested whether learning-induced synaptic plasticity would lead to regionally appropriate, learning-dependent changes in AG. Functional MRI (fMRI) before, during, and after performance of a visual–motor adaptation task demonstrated that left Brodmann area 44 (BA44) played a key role in adaptation, with learning-related changes to activity during the task and altered resting-state, functional connectivity after the task. PET scans before and after task performance indicated a sustained increase in AG in left BA 44 accompanied by decreased oxygen consumption. Intersubject variability in behavioral adaptation rate correlated strongly with changes in AG in this region, as well as functional connectivity, which is consistent with a role for AG in synaptic plasticity. PMID:27217563
Brain aerobic glycolysis and motor adaptation learning.
Shannon, Benjamin J; Vaishnavi, Sanjeev Neil; Vlassenko, Andrei G; Shimony, Joshua S; Rutlin, Jerrel; Raichle, Marcus E
2016-06-28
Ten percent to 15% of glucose used by the brain is metabolized nonoxidatively despite adequate tissue oxygenation, a process termed aerobic glycolysis (AG). Because of the known role of glycolysis in biosynthesis, we tested whether learning-induced synaptic plasticity would lead to regionally appropriate, learning-dependent changes in AG. Functional MRI (fMRI) before, during, and after performance of a visual-motor adaptation task demonstrated that left Brodmann area 44 (BA44) played a key role in adaptation, with learning-related changes to activity during the task and altered resting-state, functional connectivity after the task. PET scans before and after task performance indicated a sustained increase in AG in left BA 44 accompanied by decreased oxygen consumption. Intersubject variability in behavioral adaptation rate correlated strongly with changes in AG in this region, as well as functional connectivity, which is consistent with a role for AG in synaptic plasticity. PMID:27217563
Fast Adapting Ensemble: A New Algorithm for Mining Data Streams with Concept Drift
Ortíz Díaz, Agustín; Ramos-Jiménez, Gonzalo; Frías Blanco, Isvani; Caballero Mota, Yailé; Morales-Bueno, Rafael
2015-01-01
The treatment of large data streams in the presence of concept drifts is one of the main challenges in the field of data mining, particularly when the algorithms have to deal with concepts that disappear and then reappear. This paper presents a new algorithm, called Fast Adapting Ensemble (FAE), which adapts very quickly to both abrupt and gradual concept drifts, and has been specifically designed to deal with recurring concepts. FAE processes the learning examples in blocks of the same size, but it does not have to wait for the batch to be complete in order to adapt its base classification mechanism. FAE incorporates a drift detector to improve the handling of abrupt concept drifts and stores a set of inactive classifiers that represent old concepts, which are activated very quickly when these concepts reappear. We compare our new algorithm with various well-known learning algorithms, taking into account, common benchmark datasets. The experiments show promising results from the proposed algorithm (regarding accuracy and runtime), handling different types of concept drifts. PMID:25879051
Improve online boosting algorithm from self-learning cascade classifier
NASA Astrophysics Data System (ADS)
Luo, Dapeng; Sang, Nong; Huang, Rui; Tong, Xiaojun
2010-04-01
Online boosting algorithm has been used in many vision-related applications, such as object detection. However, in order to obtain good detection result, combining a large number of weak classifiers into a strong classifier is required. And those weak classifiers must be updated and improved online. So the training and detection speed will be reduced inevitably. This paper proposes a novel online boosting based learning method, called self-learning cascade classifier. Cascade decision strategy is integrated with the online boosting procedure. The resulting system contains enough number of weak classifiers while keeping computation cost low. The cascade structure is learned and updated online. And the structure complexity can be increased adaptively when detection task is more difficult. Moreover, most of new samples are labeled by tracking automatically. This can greatly reduce the effort by labeler. We present experimental results that demonstrate the efficient and high detection rate of the method.
Adapting Active Learning in Ethiopia
ERIC Educational Resources Information Center
Casale, Carolyn Frances
2010-01-01
Ethiopia is a developing country that has invested extensively in expanding its educational opportunities. In this expansion, there has been a drastic restructuring of its system of preparing teachers and teacher educators. Often, improving teacher quality is dependent on professional development that diversifies pedagogy (active learning). This…
Adaptive Cognitive-Based Selection of Learning Objects
ERIC Educational Resources Information Center
Karampiperis, Pythagoras; Lin, Taiyu; Sampson, Demetrios G.; Kinshuk
2006-01-01
Adaptive cognitive-based selection is recognized as among the most significant open issues in adaptive web-based learning systems. In order to adaptively select learning resources, the definition of adaptation rules according to the cognitive style or learning preferences of the learners is required. Although some efforts have been reported in…
Data-adaptive algorithms for calling alleles in repeat polymorphisms.
Stoughton, R; Bumgarner, R; Frederick, W J; McIndoe, R A
1997-01-01
Data-adaptive algorithms are presented for separating overlapping signatures of heterozygotic allele pairs in electrophoresis data. Application is demonstrated for human microsatellite CA-repeat polymorphisms in LiCor 4000 and ABI 373 data. The algorithms allow overlapping alleles to be called correctly in almost every case where a trained observer could do so, and provide a fast automated objective alternative to human reading of the gels. The algorithm also supplies an indication of confidence level which can be used to flag marginal cases for verification by eye, or as input to later stages of statistical analysis. PMID:9059812
An Experimental Method for the Active Learning of Greedy Algorithms
ERIC Educational Resources Information Center
Velazquez-Iturbide, J. Angel
2013-01-01
Greedy algorithms constitute an apparently simple algorithm design technique, but its learning goals are not simple to achieve.We present a didacticmethod aimed at promoting active learning of greedy algorithms. The method is focused on the concept of selection function, and is based on explicit learning goals. It mainly consists of an…
Adaptive clustering algorithm for community detection in complex networks.
Ye, Zhenqing; Hu, Songnian; Yu, Jun
2008-10-01
Community structure is common in various real-world networks; methods or algorithms for detecting such communities in complex networks have attracted great attention in recent years. We introduced a different adaptive clustering algorithm capable of extracting modules from complex networks with considerable accuracy and robustness. In this approach, each node in a network acts as an autonomous agent demonstrating flocking behavior where vertices always travel toward their preferable neighboring groups. An optimal modular structure can emerge from a collection of these active nodes during a self-organization process where vertices constantly regroup. In addition, we show that our algorithm appears advantageous over other competing methods (e.g., the Newman-fast algorithm) through intensive evaluation. The applications in three real-world networks demonstrate the superiority of our algorithm to find communities that are parallel with the appropriate organization in reality. PMID:18999501
Paradigms for Realizing Machine Learning Algorithms.
Agneeswaran, Vijay Srinivas; Tonpay, Pranay; Tiwary, Jayati
2013-12-01
The article explains the three generations of machine learning algorithms-with all three trying to operate on big data. The first generation tools are SAS, SPSS, etc., while second generation realizations include Mahout and RapidMiner (that work over Hadoop), and the third generation paradigms include Spark and GraphLab, among others. The essence of the article is that for a number of machine learning algorithms, it is important to look beyond the Hadoop's Map-Reduce paradigm in order to make them work on big data. A number of promising contenders have emerged in the third generation that can be exploited to realize deep analytics on big data. PMID:27447253
Adaptive Learning Resources Sequencing in Educational Hypermedia Systems
ERIC Educational Resources Information Center
Karampiperis, Pythagoras; Sampson, Demetrios
2005-01-01
Adaptive learning resources selection and sequencing is recognized as among the most interesting research questions in adaptive educational hypermedia systems (AEHS). In order to adaptively select and sequence learning resources in AEHS, the definition of adaptation rules contained in the Adaptation Model, is required. Although, some efforts have…
An Adaptive Tradeoff Algorithm for Multi-issue SLA Negotiation
NASA Astrophysics Data System (ADS)
Son, Seokho; Sim, Kwang Mong
Since participants in a Cloud may be independent bodies, mechanisms are necessary for resolving different preferences in leasing Cloud services. Whereas there are currently mechanisms that support service-level agreement negotiation, there is little or no negotiation support for concurrent price and timeslot for Cloud service reservations. For the concurrent price and timeslot negotiation, a tradeoff algorithm to generate and evaluate a proposal which consists of price and timeslot proposal is necessary. The contribution of this work is thus to design an adaptive tradeoff algorithm for multi-issue negotiation mechanism. The tradeoff algorithm referred to as "adaptive burst mode" is especially designed to increase negotiation speed and total utility and to reduce computational load by adaptively generating concurrent set of proposals. The empirical results obtained from simulations carried out using a testbed suggest that due to the concurrent price and timeslot negotiation mechanism with adaptive tradeoff algorithm: 1) both agents achieve the best performance in terms of negotiation speed and utility; 2) the number of evaluations of each proposal is comparatively lower than previous scheme (burst-N).
An Adaptive Immune Genetic Algorithm for Edge Detection
NASA Astrophysics Data System (ADS)
Li, Ying; Bai, Bendu; Zhang, Yanning
An adaptive immune genetic algorithm (AIGA) based on cost minimization technique method for edge detection is proposed. The proposed AIGA recommends the use of adaptive probabilities of crossover, mutation and immune operation, and a geometric annealing schedule in immune operator to realize the twin goals of maintaining diversity in the population and sustaining the fast convergence rate in solving the complex problems such as edge detection. Furthermore, AIGA can effectively exploit some prior knowledge and information of the local edge structure in the edge image to make vaccines, which results in much better local search ability of AIGA than that of the canonical genetic algorithm. Experimental results on gray-scale images show the proposed algorithm perform well in terms of quality of the final edge image, rate of convergence and robustness to noise.
Flight data processing with the F-8 adaptive algorithm
NASA Technical Reports Server (NTRS)
Hartmann, G.; Stein, G.; Petersen, K.
1977-01-01
An explicit adaptive control algorithm based on maximum likelihood estimation of parameters has been designed for NASA's DFBW F-8 aircraft. To avoid iterative calculations, the algorithm uses parallel channels of Kalman filters operating at fixed locations in parameter space. This algorithm has been implemented in NASA/DFRC's Remotely Augmented Vehicle (RAV) facility. Real-time sensor outputs (rate gyro, accelerometer and surface position) are telemetered to a ground computer which sends new gain values to an on-board system. Ground test data and flight records were used to establish design values of noise statistics and to verify the ground-based adaptive software. The software and its performance evaluation based on flight data are described
A new adaptive GMRES algorithm for achieving high accuracy
Sosonkina, M.; Watson, L.T.; Kapania, R.K.; Walker, H.F.
1996-12-31
GMRES(k) is widely used for solving nonsymmetric linear systems. However, it is inadequate either when it converges only for k close to the problem size or when numerical error in the modified Gram-Schmidt process used in the GMRES orthogonalization phase dramatically affects the algorithm performance. An adaptive version of GMRES (k) which tunes the restart value k based on criteria estimating the GMRES convergence rate for the given problem is proposed here. The essence of the adaptive GMRES strategy is to adapt the parameter k to the problem, similar in spirit to how a variable order ODE algorithm tunes the order k. With FORTRAN 90, which provides pointers and dynamic memory management, dealing with the variable storage requirements implied by varying k is not too difficult. The parameter k can be both increased and decreased-an increase-only strategy is described next followed by pseudocode.
Making Mistakes: Emotional Adaptation and Classroom Learning
ERIC Educational Resources Information Center
McCaslin, Mary; Vriesema, Christine C.; Burggraf, Susan
2016-01-01
Background: We studied how students in Grades 4-6 participate in and emotionally adapt to the give-and-take of learning in classrooms, particularly when making mistakes. Our approach is consistent with researchers who (a) include cognitive appraisals in the study of emotional experiences, (b) consider how personal concerns might mediate…
Adaptable Learning Assistant for Item Bank Management
ERIC Educational Resources Information Center
Nuntiyagul, Atorn; Naruedomkul, Kanlaya; Cercone, Nick; Wongsawang, Damras
2008-01-01
We present PKIP, an adaptable learning assistant tool for managing question items in item banks. PKIP is not only able to automatically assist educational users to categorize the question items into predefined categories by their contents but also to correctly retrieve the items by specifying the category and/or the difficulty level. PKIP adapts…
A new adaptive merging and growing algorithm for designing artificial neural networks.
Islam, Md Monirul; Sattar, Md Abdus; Amin, Md Faijul; Yao, Xin; Murase, Kazuyuki
2009-06-01
This paper presents a new algorithm, called adaptive merging and growing algorithm (AMGA), in designing artificial neural networks (ANNs). This algorithm merges and adds hidden neurons during the training process of ANNs. The merge operation introduced in AMGA is a kind of a mixed mode operation, which is equivalent to pruning two neurons and adding one neuron. Unlike most previous studies, AMGA puts emphasis on autonomous functioning in the design process of ANNs. This is the main reason why AMGA uses an adaptive not a predefined fixed strategy in designing ANNs. The adaptive strategy merges or adds hidden neurons based on the learning ability of hidden neurons or the training progress of ANNs. In order to reduce the amount of retraining after modifying ANN architectures, AMGA prunes hidden neurons by merging correlated hidden neurons and adds hidden neurons by splitting existing hidden neurons. The proposed AMGA has been tested on a number of benchmark problems in machine learning and ANNs, including breast cancer, Australian credit card assessment, and diabetes, gene, glass, heart, iris, and thyroid problems. The experimental results show that AMGA can design compact ANN architectures with good generalization ability compared to other algorithms. PMID:19203888
Adaptive Flocking of Robot Swarms: Algorithms and Properties
NASA Astrophysics Data System (ADS)
Lee, Geunho; Chong, Nak Young
This paper presents a distributed approach for adaptive flocking of swarms of mobile robots that enables to navigate autonomously in complex environments populated with obstacles. Based on the observation of the swimming behavior of a school of fish, we propose an integrated algorithm that allows a swarm of robots to navigate in a coordinated manner, split into multiple swarms, or merge with other swarms according to the environment conditions. We prove the convergence of the proposed algorithm using Lyapunov stability theory. We also verify the effectiveness of the algorithm through extensive simulations, where a swarm of robots repeats the process of splitting and merging while passing around multiple stationary and moving obstacles. The simulation results show that the proposed algorithm is scalable, and robust to variations in the sensing capability of individual robots.
An adaptive grid algorithm for one-dimensional nonlinear equations
NASA Technical Reports Server (NTRS)
Gutierrez, William E.; Hills, Richard G.
1990-01-01
Richards' equation, which models the flow of liquid through unsaturated porous media, is highly nonlinear and difficult to solve. Step gradients in the field variables require the use of fine grids and small time step sizes. The numerical instabilities caused by the nonlinearities often require the use of iterative methods such as Picard or Newton interation. These difficulties result in large CPU requirements in solving Richards equation. With this in mind, adaptive and multigrid methods are investigated for use with nonlinear equations such as Richards' equation. Attention is focused on one-dimensional transient problems. To investigate the use of multigrid and adaptive grid methods, a series of problems are studied. First, a multigrid program is developed and used to solve an ordinary differential equation, demonstrating the efficiency with which low and high frequency errors are smoothed out. The multigrid algorithm and an adaptive grid algorithm is used to solve one-dimensional transient partial differential equations, such as the diffusive and convective-diffusion equations. The performance of these programs are compared to that of the Gauss-Seidel and tridiagonal methods. The adaptive and multigrid schemes outperformed the Gauss-Seidel algorithm, but were not as fast as the tridiagonal method. The adaptive grid scheme solved the problems slightly faster than the multigrid method. To solve nonlinear problems, Picard iterations are introduced into the adaptive grid and tridiagonal methods. Burgers' equation is used as a test problem for the two algorithms. Both methods obtain solutions of comparable accuracy for similar time increments. For the Burgers' equation, the adaptive grid method finds the solution approximately three times faster than the tridiagonal method. Finally, both schemes are used to solve the water content formulation of the Richards' equation. For this problem, the adaptive grid method obtains a more accurate solution in fewer work units and
Estimating meme fitness in adaptive memetic algorithms for combinatorial problems.
Smith, J E
2012-01-01
Among the most promising and active research areas in heuristic optimisation is the field of adaptive memetic algorithms (AMAs). These gain much of their reported robustness by adapting the probability with which each of a set of local improvement operators is applied, according to an estimate of their current value to the search process. This paper addresses the issue of how the current value should be estimated. Assuming the estimate occurs over several applications of a meme, we consider whether the extreme or mean improvements should be used, and whether this aggregation should be global, or local to some part of the solution space. To investigate these issues, we use the well-established COMA framework that coevolves the specification of a population of memes (representing different local search algorithms) alongside a population of candidate solutions to the problem at hand. Two very different memetic algorithms are considered: the first using adaptive operator pursuit to adjust the probabilities of applying a fixed set of memes, and a second which applies genetic operators to dynamically adapt and create memes and their functional definitions. For the latter, especially on combinatorial problems, credit assignment mechanisms based on historical records, or on notions of landscape locality, will have limited application, and it is necessary to estimate the value of a meme via some form of sampling. The results on a set of binary encoded combinatorial problems show that both methods are very effective, and that for some problems it is necessary to use thousands of variables in order to tease apart the differences between different reward schemes. However, for both memetic algorithms, a significant pattern emerges that reward based on mean improvement is better than that based on extreme improvement. This contradicts recent findings from adapting the parameters of operators involved in global evolutionary search. The results also show that local reward schemes
TAO-robust backpropagation learning algorithm.
Pernía-Espinoza, Alpha V; Ordieres-Meré, Joaquín B; Martínez-de-Pisón, Francisco J; González-Marcos, Ana
2005-03-01
In several fields, as industrial modelling, multilayer feedforward neural networks are often used as universal function approximations. These supervised neural networks are commonly trained by a traditional backpropagation learning format, which minimises the mean squared error (mse) of the training data. However, in the presence of corrupted data (outliers) this training scheme may produce wrong models. We combine the benefits of the non-linear regression model tau-estimates [introduced by Tabatabai, M. A. Argyros, I. K. Robust Estimation and testing for general nonlinear regression models. Applied Mathematics and Computation. 58 (1993) 85-101] with the backpropagation algorithm to produce the TAO-robust learning algorithm, in order to deal with the problems of modelling with outliers. The cost function of this approach has a bounded influence function given by the weighted average of two psi functions, one corresponding to a very robust estimate and the other to a highly efficient estimate. The advantages of the proposed algorithm are studied with an example. PMID:15795116
NASA Astrophysics Data System (ADS)
Cheng, Sheng-Yi; Liu, Wen-Jin; Chen, Shan-Qiu; Dong, Li-Zhi; Yang, Ping; Xu, Bing
2015-08-01
Among all kinds of wavefront control algorithms in adaptive optics systems, the direct gradient wavefront control algorithm is the most widespread and common method. This control algorithm obtains the actuator voltages directly from wavefront slopes through pre-measuring the relational matrix between deformable mirror actuators and Hartmann wavefront sensor with perfect real-time characteristic and stability. However, with increasing the number of sub-apertures in wavefront sensor and deformable mirror actuators of adaptive optics systems, the matrix operation in direct gradient algorithm takes too much time, which becomes a major factor influencing control effect of adaptive optics systems. In this paper we apply an iterative wavefront control algorithm to high-resolution adaptive optics systems, in which the voltages of each actuator are obtained through iteration arithmetic, which gains great advantage in calculation and storage. For AO system with thousands of actuators, the computational complexity estimate is about O(n2) ˜ O(n3) in direct gradient wavefront control algorithm, while the computational complexity estimate in iterative wavefront control algorithm is about O(n) ˜ (O(n)3/2), in which n is the number of actuators of AO system. And the more the numbers of sub-apertures and deformable mirror actuators, the more significant advantage the iterative wavefront control algorithm exhibits. Project supported by the National Key Scientific and Research Equipment Development Project of China (Grant No. ZDYZ2013-2), the National Natural Science Foundation of China (Grant No. 11173008), and the Sichuan Provincial Outstanding Youth Academic Technology Leaders Program, China (Grant No. 2012JQ0012).
Efficient implementation of the adaptive scale pixel decomposition algorithm
NASA Astrophysics Data System (ADS)
Zhang, L.; Bhatnagar, S.; Rau, U.; Zhang, M.
2016-08-01
Context. Most popular algorithms in use to remove the effects of a telescope's point spread function (PSF) in radio astronomy are variants of the CLEAN algorithm. Most of these algorithms model the sky brightness using the delta-function basis, which results in undesired artefacts when used to image extended emission. The adaptive scale pixel decomposition (Asp-Clean) algorithm models the sky brightness on a scale-sensitive basis and thus gives a significantly better imaging performance when imaging fields that contain both resolved and unresolved emission. Aims: However, the runtime cost of Asp-Clean is higher than that of scale-insensitive algorithms. In this paper, we identify the most expensive step in the original Asp-Clean algorithm and present an efficient implementation of it, which significantly reduces the computational cost while keeping the imaging performance comparable to the original algorithm. The PSF sidelobe levels of modern wide-band telescopes are significantly reduced, allowing us to make approximations to reduce the computational cost, which in turn allows for the deconvolution of larger images on reasonable timescales. Methods: As in the original algorithm, scales in the image are estimated through function fitting. Here we introduce an analytical method to model extended emission, and a modified method for estimating the initial values used for the fitting procedure, which ultimately leads to a lower computational cost. Results: The new implementation was tested with simulated EVLA data and the imaging performance compared well with the original Asp-Clean algorithm. Tests show that the current algorithm can recover features at different scales with lower computational cost.
An adaptive mesh refinement algorithm for the discrete ordinates method
Jessee, J.P.; Fiveland, W.A.; Howell, L.H.; Colella, P.; Pember, R.B.
1996-03-01
The discrete ordinates form of the radiative transport equation (RTE) is spatially discretized and solved using an adaptive mesh refinement (AMR) algorithm. This technique permits the local grid refinement to minimize spatial discretization error of the RTE. An error estimator is applied to define regions for local grid refinement; overlapping refined grids are recursively placed in these regions; and the RTE is then solved over the entire domain. The procedure continues until the spatial discretization error has been reduced to a sufficient level. The following aspects of the algorithm are discussed: error estimation, grid generation, communication between refined levels, and solution sequencing. This initial formulation employs the step scheme, and is valid for absorbing and isotopically scattering media in two-dimensional enclosures. The utility of the algorithm is tested by comparing the convergence characteristics and accuracy to those of the standard single-grid algorithm for several benchmark cases. The AMR algorithm provides a reduction in memory requirements and maintains the convergence characteristics of the standard single-grid algorithm; however, the cases illustrate that efficiency gains of the AMR algorithm will not be fully realized until three-dimensional geometries are considered.
Fast frequency acquisition via adaptive least squares algorithm
NASA Technical Reports Server (NTRS)
Kumar, R.
1986-01-01
A new least squares algorithm is proposed and investigated for fast frequency and phase acquisition of sinusoids in the presence of noise. This algorithm is a special case of more general, adaptive parameter-estimation techniques. The advantages of the algorithms are their conceptual simplicity, flexibility and applicability to general situations. For example, the frequency to be acquired can be time varying, and the noise can be nonGaussian, nonstationary and colored. As the proposed algorithm can be made recursive in the number of observations, it is not necessary to have a priori knowledge of the received signal-to-noise ratio or to specify the measurement time. This would be required for batch processing techniques, such as the fast Fourier transform (FFT). The proposed algorithm improves the frequency estimate on a recursive basis as more and more observations are obtained. When the algorithm is applied in real time, it has the extra advantage that the observations need not be stored. The algorithm also yields a real time confidence measure as to the accuracy of the estimator.
PHURBAS: AN ADAPTIVE, LAGRANGIAN, MESHLESS, MAGNETOHYDRODYNAMICS CODE. I. ALGORITHM
Maron, Jason L.; McNally, Colin P.; Mac Low, Mordecai-Mark E-mail: cmcnally@amnh.org
2012-05-01
We present an algorithm for simulating the equations of ideal magnetohydrodynamics and other systems of differential equations on an unstructured set of points represented by sample particles. Local, third-order, least-squares, polynomial interpolations (Moving Least Squares interpolations) are calculated from the field values of neighboring particles to obtain field values and spatial derivatives at the particle position. Field values and particle positions are advanced in time with a second-order predictor-corrector scheme. The particles move with the fluid, so the time step is not limited by the Eulerian Courant-Friedrichs-Lewy condition. Full spatial adaptivity is implemented to ensure the particles fill the computational volume, which gives the algorithm substantial flexibility and power. A target resolution is specified for each point in space, with particles being added and deleted as needed to meet this target. Particle addition and deletion is based on a local void and clump detection algorithm. Dynamic artificial viscosity fields provide stability to the integration. The resulting algorithm provides a robust solution for modeling flows that require Lagrangian or adaptive discretizations to resolve. This paper derives and documents the Phurbas algorithm as implemented in Phurbas version 1.1. A following paper presents the implementation and test problem results.
Landsat ecosystem disturbance adaptive processing system (LEDAPS) algorithm description
Schmidt, Gail; Jenkerson, Calli; Masek, Jeffrey; Vermote, Eric; Gao, Feng
2013-01-01
The Landsat Ecosystem Disturbance Adaptive Processing System (LEDAPS) software was originally developed by the National Aeronautics and Space Administration–Goddard Space Flight Center and the University of Maryland to produce top-of-atmosphere reflectance from LandsatThematic Mapper and Enhanced Thematic Mapper Plus Level 1 digital numbers and to apply atmospheric corrections to generate a surface-reflectance product.The U.S. Geological Survey (USGS) has adopted the LEDAPS algorithm for producing the Landsat Surface Reflectance Climate Data Record.This report discusses the LEDAPS algorithm, which was implemented by the USGS.
Improving Adaptive Learning Technology through the Use of Response Times
ERIC Educational Resources Information Center
Mettler, Everett; Massey, Christine M.; Kellman, Philip J.
2011-01-01
Adaptive learning techniques have typically scheduled practice using learners' accuracy and item presentation history. We describe an adaptive learning system (Adaptive Response Time Based Sequencing--ARTS) that uses both accuracy and response time (RT) as direct inputs into sequencing. Response times are used to assess learning strength and…
SAR imaging via iterative adaptive approach and sparse Bayesian learning
NASA Astrophysics Data System (ADS)
Xue, Ming; Santiago, Enrique; Sedehi, Matteo; Tan, Xing; Li, Jian
2009-05-01
We consider sidelobe reduction and resolution enhancement in synthetic aperture radar (SAR) imaging via an iterative adaptive approach (IAA) and a sparse Bayesian learning (SBL) method. The nonparametric weighted least squares based IAA algorithm is a robust and user parameter-free adaptive approach originally proposed for array processing. We show that it can be used to form enhanced SAR images as well. SBL has been used as a sparse signal recovery algorithm for compressed sensing. It has been shown in the literature that SBL is easy to use and can recover sparse signals more accurately than the l 1 based optimization approaches, which require delicate choice of the user parameter. We consider using a modified expectation maximization (EM) based SBL algorithm, referred to as SBL-1, which is based on a three-stage hierarchical Bayesian model. SBL-1 is not only more accurate than benchmark SBL algorithms, but also converges faster. SBL-1 is used to further enhance the resolution of the SAR images formed by IAA. Both IAA and SBL-1 are shown to be effective, requiring only a limited number of iterations, and have no need for polar-to-Cartesian interpolation of the SAR collected data. This paper characterizes the achievable performance of these two approaches by processing the complex backscatter data from both a sparse case study and a backhoe vehicle in free space with different aperture sizes.
Learning algorithms for stack filter classifiers
Porter, Reid B; Hush, Don; Zimmer, Beate G
2009-01-01
Stack Filters define a large class of increasing filter that is used widely in image and signal processing. The motivations for using an increasing filter instead of an unconstrained filter have been described as: (1) fast and efficient implementation, (2) the relationship to mathematical morphology and (3) more precise estimation with finite sample data. This last motivation is related to methods developed in machine learning and the relationship was explored in an earlier paper. In this paper we investigate this relationship by applying Stack Filters directly to classification problems. This provides a new perspective on how monotonicity constraints can help control estimation and approximation errors, and also suggests several new learning algorithms for Boolean function classifiers when they are applied to real-valued inputs.
Adaptive functional systems: Learning with chaos
NASA Astrophysics Data System (ADS)
Komarov, M. A.; Osipov, G. V.; Burtsev, M. S.
2010-12-01
We propose a new model of adaptive behavior that combines a winnerless competition principle and chaos to learn new functional systems. The model consists of a complex network of nonlinear dynamical elements producing sequences of goal-directed actions. Each element describes dynamics and activity of the functional system which is supposed to be a distributed set of interacting physiological elements such as nerve or muscle that cooperates to obtain certain goal at the level of the whole organism. During "normal" behavior, the dynamics of the system follows heteroclinic channels, but in the novel situation chaotic search is activated and a new channel leading to the target state is gradually created simulating the process of learning. The model was tested in single and multigoal environments and had demonstrated a good potential for generation of new adaptations.
On some limitations of adaptive feedback measurement algorithm
NASA Astrophysics Data System (ADS)
Opalski, Leszek J.
2015-09-01
The brilliant idea of Adaptive Feedback Control Systems (AFCS) makes possible creation of highly efficient adaptive systems for estimation, identification and filtering of signals and physical processes. The research problem considered in this paper is: how performance of AFCS changes if some of the assumptions used to formulate iterative estimation algorithm are not fulfilled exactly. To limit the scope of research a particular implementation of the AFCS concept was considered, i.e. an adaptive feedback measurement system (AFMS). The iterative measurement algorithm used was derived under some idealized conditions, notably with perfect knowledge of the system model and Gaussian communication channels. The selected non-idealities of interest are non-zero mean value of noise processes and non-ideal calibration of transmission gain in the forward channel - because they are related to intrinsic non-idealities of analog building blocks, used for the AFMS implementation. The presented original analysis of the iterative measurement algorithm provides quantitative information on speed of convergence and limit behavior. The analysis should be useful for AFCS implementors in the measurement area - since the results are presented in terms of accuracy and precision of iterative measurement process.
Concept Based Approach for Adaptive Personalized Course Learning System
ERIC Educational Resources Information Center
Salahli, Mehmet Ali; Özdemir, Muzaffer; Yasar, Cumali
2013-01-01
One of the most important factors for improving the personalization aspects of learning systems is to enable adaptive properties to them. The aim of the adaptive personalized learning system is to offer the most appropriate learning path and learning materials to learners by taking into account their profiles. In this paper, a new approach to…
MEAT: An Authoring Tool for Generating Adaptable Learning Resources
ERIC Educational Resources Information Center
Kuo, Yen-Hung; Huang, Yueh-Min
2009-01-01
Mobile learning (m-learning) is a new trend in the e-learning field. The learning services in m-learning environments are supported by fundamental functions, especially the content and assessment services, which need an authoring tool to rapidly generate adaptable learning resources. To fulfill the imperious demand, this study proposes an…
DSP-based on-line NMR spectroscopy using an anti-Hebbian learning algorithm
Razazian, K.; Dieckman, S.L.; Raptis, A.C.; Bobis, J.P. |
1995-07-01
This paper describes a nuclear magnetic resonance (NMR) system that uses an adaptive algorithm to carry out real-time NMR spectroscopy. The system employs a digital signal processor (DSP) chip to regulate the transmitted and received signal together with spectral analysis of the received signal to determine free induction decay (FID). To implement such a signal-processing routine for detection of the desired signal, an adaptive line enhancer filter that uses an anti-Hebbian learning algorithm is applied to the FID spectra. The results indicate that the adaptive filter can be a reliable technique for on-line spectroscopy study.
Adaptive Load-Balancing Algorithms Using Symmetric Broadcast Networks
NASA Technical Reports Server (NTRS)
Das, Sajal K.; Biswas, Rupak; Chancellor, Marisa K. (Technical Monitor)
1997-01-01
In a distributed-computing environment, it is important to ensure that the processor workloads are adequately balanced. Among numerous load-balancing algorithms, a unique approach due to Dam and Prasad defines a symmetric broadcast network (SBN) that provides a robust communication pattern among the processors in a topology-independent manner. In this paper, we propose and analyze three novel SBN-based load-balancing algorithms, and implement them on an SP2. A thorough experimental study with Poisson-distributed synthetic loads demonstrates that these algorithms are very effective in balancing system load while minimizing processor idle time. They also compare favorably with several other existing load-balancing techniques. Additional experiments performed with real data demonstrate that the SBN approach is effective in adaptive computational science and engineering applications where dynamic load balancing is extremely crucial.
A local adaptive discretization algorithm for Smoothed Particle Hydrodynamics
NASA Astrophysics Data System (ADS)
Spreng, Fabian; Schnabel, Dirk; Mueller, Alexandra; Eberhard, Peter
2014-06-01
In this paper, an extension to the Smoothed Particle Hydrodynamics (SPH) method is proposed that allows for an adaptation of the discretization level of a simulated continuum at runtime. By combining a local adaptive refinement technique with a newly developed coarsening algorithm, one is able to improve the accuracy of the simulation results while reducing the required computational cost at the same time. For this purpose, the number of particles is, on the one hand, adaptively increased in critical areas of a simulation model. Typically, these are areas that show a relatively low particle density and high gradients in stress or temperature. On the other hand, the number of SPH particles is decreased for domains with a high particle density and low gradients. Besides a brief introduction to the basic principle of the SPH discretization method, the extensions to the original formulation providing such a local adaptive refinement and coarsening of the modeled structure are presented in this paper. After having introduced its theoretical background, the applicability of the enhanced formulation, as well as the benefit gained from the adaptive model discretization, is demonstrated in the context of four different simulation scenarios focusing on solid continua. While presenting the results found for these examples, several properties of the proposed adaptive technique are discussed, e.g. the conservation of momentum as well as the existing correlation between the chosen refinement and coarsening patterns and the observed quality of the results.
Adaptive Firefly Algorithm: Parameter Analysis and its Application
Shen, Hong-Bin
2014-01-01
As a nature-inspired search algorithm, firefly algorithm (FA) has several control parameters, which may have great effects on its performance. In this study, we investigate the parameter selection and adaptation strategies in a modified firefly algorithm — adaptive firefly algorithm (AdaFa). There are three strategies in AdaFa including (1) a distance-based light absorption coefficient; (2) a gray coefficient enhancing fireflies to share difference information from attractive ones efficiently; and (3) five different dynamic strategies for the randomization parameter. Promising selections of parameters in the strategies are analyzed to guarantee the efficient performance of AdaFa. AdaFa is validated over widely used benchmark functions, and the numerical experiments and statistical tests yield useful conclusions on the strategies and the parameter selections affecting the performance of AdaFa. When applied to the real-world problem — protein tertiary structure prediction, the results demonstrated improved variants can rebuild the tertiary structure with the average root mean square deviation less than 0.4Å and 1.5Å from the native constrains with noise free and 10% Gaussian white noise. PMID:25397812
Discrete-time minimal control synthesis adaptive algorithm
NASA Astrophysics Data System (ADS)
di Bernardo, M.; di Gennaro, F.; Olm, J. M.; Santini, S.
2010-12-01
This article proposes a discrete-time Minimal Control Synthesis (MCS) algorithm for a class of single-input single-output discrete-time systems written in controllable canonical form. As it happens with the continuous-time MCS strategy, the algorithm arises from the family of hyperstability-based discrete-time model reference adaptive controllers introduced in (Landau, Y. (1979), Adaptive Control: The Model Reference Approach, New York: Marcel Dekker, Inc.) and is able to ensure tracking of the states of a given reference model with minimal knowledge about the plant. The control design shows robustness to parameter uncertainties, slow parameter variation and matched disturbances. Furthermore, it is proved that the proposed discrete-time MCS algorithm can be used to control discretised continuous-time plants with the same performance features. Contrary to previous discrete-time implementations of the continuous-time MCS algorithm, here a formal proof of asymptotic stability is given for generic n-dimensional plants in controllable canonical form. The theoretical approach is validated by means of simulation results.
Adaptive firefly algorithm: parameter analysis and its application.
Cheung, Ngaam J; Ding, Xue-Ming; Shen, Hong-Bin
2014-01-01
As a nature-inspired search algorithm, firefly algorithm (FA) has several control parameters, which may have great effects on its performance. In this study, we investigate the parameter selection and adaptation strategies in a modified firefly algorithm - adaptive firefly algorithm (AdaFa). There are three strategies in AdaFa including (1) a distance-based light absorption coefficient; (2) a gray coefficient enhancing fireflies to share difference information from attractive ones efficiently; and (3) five different dynamic strategies for the randomization parameter. Promising selections of parameters in the strategies are analyzed to guarantee the efficient performance of AdaFa. AdaFa is validated over widely used benchmark functions, and the numerical experiments and statistical tests yield useful conclusions on the strategies and the parameter selections affecting the performance of AdaFa. When applied to the real-world problem - protein tertiary structure prediction, the results demonstrated improved variants can rebuild the tertiary structure with the average root mean square deviation less than 0.4Å and 1.5Å from the native constrains with noise free and 10% Gaussian white noise. PMID:25397812
Generalized pattern search algorithms with adaptive precision function evaluations
Polak, Elijah; Wetter, Michael
2003-05-14
In the literature on generalized pattern search algorithms, convergence to a stationary point of a once continuously differentiable cost function is established under the assumption that the cost function can be evaluated exactly. However, there is a large class of engineering problems where the numerical evaluation of the cost function involves the solution of systems of differential algebraic equations. Since the termination criteria of the numerical solvers often depend on the design parameters, computer code for solving these systems usually defines a numerical approximation to the cost function that is discontinuous with respect to the design parameters. Standard generalized pattern search algorithms have been applied heuristically to such problems, but no convergence properties have been stated. In this paper we extend a class of generalized pattern search algorithms to a form that uses adaptive precision approximations to the cost function. These numerical approximations need not define a continuous function. Our algorithms can be used for solving linearly constrained problems with cost functions that are at least locally Lipschitz continuous. Assuming that the cost function is smooth, we prove that our algorithms converge to a stationary point. Under the weaker assumption that the cost function is only locally Lipschitz continuous, we show that our algorithms converge to points at which the Clarke generalized directional derivatives are nonnegative in predefined directions. An important feature of our adaptive precision scheme is the use of coarse approximations in the early iterations, with the approximation precision controlled by a test. Such an approach leads to substantial time savings in minimizing computationally expensive functions.
An adaptive learning control system for aircraft
NASA Technical Reports Server (NTRS)
Mekel, R.; Nachmias, S.
1978-01-01
A learning control system and its utilization as a flight control system for F-8 Digital Fly-By-Wire (DFBW) research aircraft is studied. The system has the ability to adjust a gain schedule to account for changing plant characteristics and to improve its performance and the plant's performance in the course of its own operation. Three subsystems are detailed: (1) the information acquisition subsystem which identifies the plant's parameters at a given operating condition; (2) the learning algorithm subsystem which relates the identified parameters to predetermined analytical expressions describing the behavior of the parameters over a range of operating conditions; and (3) the memory and control process subsystem which consists of the collection of updated coefficients (memory) and the derived control laws. Simulation experiments indicate that the learning control system is effective in compensating for parameter variations caused by changes in flight conditions.
ERIC Educational Resources Information Center
Chang, Yi-Hsing; Chen, Yen-Yi; Chen, Nian-Shing; Lu, You-Te; Fang, Rong-Jyue
2016-01-01
This study designs and implements an adaptive learning management system based on Felder and Silverman's Learning Style Model and the Mashup technology. In this system, Felder and Silverman's Learning Style model is used to assess students' learning styles, in order to provide adaptive learning to leverage learners' learning preferences.…
NASA Technical Reports Server (NTRS)
Rogers, David
1991-01-01
G/SPLINES are a hybrid of Friedman's Multivariable Adaptive Regression Splines (MARS) algorithm with Holland's Genetic Algorithm. In this hybrid, the incremental search is replaced by a genetic search. The G/SPLINE algorithm exhibits performance comparable to that of the MARS algorithm, requires fewer least squares computations, and allows significantly larger problems to be considered.
Information Theory, Inference and Learning Algorithms
NASA Astrophysics Data System (ADS)
Mackay, David J. C.
2003-10-01
Information theory and inference, often taught separately, are here united in one entertaining textbook. These topics lie at the heart of many exciting areas of contemporary science and engineering - communication, signal processing, data mining, machine learning, pattern recognition, computational neuroscience, bioinformatics, and cryptography. This textbook introduces theory in tandem with applications. Information theory is taught alongside practical communication systems, such as arithmetic coding for data compression and sparse-graph codes for error-correction. A toolbox of inference techniques, including message-passing algorithms, Monte Carlo methods, and variational approximations, are developed alongside applications of these tools to clustering, convolutional codes, independent component analysis, and neural networks. The final part of the book describes the state of the art in error-correcting codes, including low-density parity-check codes, turbo codes, and digital fountain codes -- the twenty-first century standards for satellite communications, disk drives, and data broadcast. Richly illustrated, filled with worked examples and over 400 exercises, some with detailed solutions, David MacKay's groundbreaking book is ideal for self-learning and for undergraduate or graduate courses. Interludes on crosswords, evolution, and sex provide entertainment along the way. In sum, this is a textbook on information, communication, and coding for a new generation of students, and an unparalleled entry point into these subjects for professionals in areas as diverse as computational biology, financial engineering, and machine learning.
NASA Astrophysics Data System (ADS)
Li, Xiao-Dong; Lv, Mang-Mang; Ho, John K. L.
2016-07-01
In this article, two adaptive iterative learning control (ILC) algorithms are presented for nonlinear continuous systems with non-parametric uncertainties. Unlike general ILC techniques, the proposed adaptive ILC algorithms allow that both the initial error at each iteration and the reference trajectory are iteration-varying in the ILC process, and can achieve non-repetitive trajectory tracking beyond a small initial time interval. Compared to the neural network or fuzzy system-based adaptive ILC schemes and the classical ILC methods, in which the number of iterative variables is generally larger than or equal to the number of control inputs, the first adaptive ILC algorithm proposed in this paper uses just two iterative variables, while the second even uses a single iterative variable provided that some bound information on system dynamics is known. As a result, the memory space in real-time ILC implementations is greatly reduced.
ERIC Educational Resources Information Center
Bryant, Diane Pedrotty; Bryant, Brian R.
1998-01-01
Discusses a process for integrating technology adaptations for students with learning disabilities into cooperative-learning activities in terms of three components: (1) selecting adaptations; (2) monitoring use of adaptations during cooperative-learning activities; and (3) evaluating the adaptations' effectiveness. Barriers to and support systems…
A Biomimetic Adaptive Algorithm and Low-Power Architecture for Implantable Neural Decoders
Rapoport, Benjamin I.; Wattanapanitch, Woradorn; Penagos, Hector L.; Musallam, Sam; Andersen, Richard A.; Sarpeshkar, Rahul
2010-01-01
Algorithmically and energetically efficient computational architectures that operate in real time are essential for clinically useful neural prosthetic devices. Such devices decode raw neural data to obtain direct control signals for external devices. They can also perform data compression and vastly reduce the bandwidth and consequently power expended in wireless transmission of raw data from implantable brain-machine interfaces. We describe a biomimetic algorithm and micropower analog circuit architecture for decoding neural cell ensemble signals. The decoding algorithm implements a continuous-time artificial neural network, using a bank of adaptive linear filters with kernels that emulate synaptic dynamics. The filters transform neural signal inputs into control-parameter outputs, and can be tuned automatically in an on-line learning process. We provide experimental validation of our system using neural data from thalamic head-direction cells in an awake behaving rat. PMID:19964345
Analysis of adaptive algorithms for an integrated communication network
NASA Technical Reports Server (NTRS)
Reed, Daniel A.; Barr, Matthew; Chong-Kwon, Kim
1985-01-01
Techniques were examined that trade communication bandwidth for decreased transmission delays. When the network is lightly used, these schemes attempt to use additional network resources to decrease communication delays. As the network utilization rises, the schemes degrade gracefully, still providing service but with minimal use of the network. Because the schemes use a combination of circuit and packet switching, they should respond to variations in the types and amounts of network traffic. Also, a combination of circuit and packet switching to support the widely varying traffic demands imposed on an integrated network was investigated. The packet switched component is best suited to bursty traffic where some delays in delivery are acceptable. The circuit switched component is reserved for traffic that must meet real time constraints. Selected packet routing algorithms that might be used in an integrated network were simulated. An integrated traffic places widely varying workload demands on a network. Adaptive algorithms were identified, ones that respond to both the transient and evolutionary changes that arise in integrated networks. A new algorithm was developed, hybrid weighted routing, that adapts to workload changes.
Statistical behaviour of adaptive multilevel splitting algorithms in simple models
Rolland, Joran Simonnet, Eric
2015-02-15
Adaptive multilevel splitting algorithms have been introduced rather recently for estimating tail distributions in a fast and efficient way. In particular, they can be used for computing the so-called reactive trajectories corresponding to direct transitions from one metastable state to another. The algorithm is based on successive selection–mutation steps performed on the system in a controlled way. It has two intrinsic parameters, the number of particles/trajectories and the reaction coordinate used for discriminating good or bad trajectories. We investigate first the convergence in law of the algorithm as a function of the timestep for several simple stochastic models. Second, we consider the average duration of reactive trajectories for which no theoretical predictions exist. The most important aspect of this work concerns some systems with two degrees of freedom. They are studied in detail as a function of the reaction coordinate in the asymptotic regime where the number of trajectories goes to infinity. We show that during phase transitions, the statistics of the algorithm deviate significatively from known theoretical results when using non-optimal reaction coordinates. In this case, the variance of the algorithm is peaking at the transition and the convergence of the algorithm can be much slower than the usual expected central limit behaviour. The duration of trajectories is affected as well. Moreover, reactive trajectories do not correspond to the most probable ones. Such behaviour disappears when using the optimal reaction coordinate called committor as predicted by the theory. We finally investigate a three-state Markov chain which reproduces this phenomenon and show logarithmic convergence of the trajectory durations.
AH-Questionnaire: An Adaptive Hierarchical Questionnaire for Learning Styles
ERIC Educational Resources Information Center
Ortigosa, Alvaro; Paredes, Pedro; Rodriguez, Pilar
2010-01-01
One of the main concerns when providing learning style adaptation in Adaptive Educational Hypermedia Systems is the number of questions the students have to answer. Most of the times, adaptive material available will discriminate among a few categories for each learning style dimension. Consequently, it is only needed to take into account the…
Adaptable Learning Pathway Generation with Ant Colony Optimization
ERIC Educational Resources Information Center
Wong, Lung-Hsiang; Looi, Chee-Kit
2009-01-01
One of the new major directions in research on web-based educational systems is the notion of adaptability: the educational system adapts itself to the learning profile, preferences and ability of the student. In this paper, we look into the issues of providing adaptability with respect to learning pathways. We explore the state of the art with…
Critical Thinking, Developmental Learning, and Adaptive Flexibility in Organizational Leaders.
ERIC Educational Resources Information Center
Duchesne, Robert E., Jr.
A study examined how developmental learning and adaptive flexibility relate to critical thinking though a survey of 119 organizational leaders (of 341) who had attended a 5-day Leadership Development Program. A questionnaire adapted from the Center for Creative Leadership's Job Challenge Profile measured developmental learning, the Adaptive Style…
Adaptivity and smart algorithms for fluid-structure interaction
NASA Technical Reports Server (NTRS)
Oden, J. Tinsley
1990-01-01
This paper reviews new approaches in CFD which have the potential for significantly increasing current capabilities of modeling complex flow phenomena and of treating difficult problems in fluid-structure interaction. These approaches are based on the notions of adaptive methods and smart algorithms, which use instantaneous measures of the quality and other features of the numerical flowfields as a basis for making changes in the structure of the computational grid and of algorithms designed to function on the grid. The application of these new techniques to several problem classes are addressed, including problems with moving boundaries, fluid-structure interaction in high-speed turbine flows, flow in domains with receding boundaries, and related problems.
Characterization of atmospheric contaminant sources using adaptive evolutionary algorithms
NASA Astrophysics Data System (ADS)
Cervone, Guido; Franzese, Pasquale; Grajdeanu, Adrian
2010-10-01
The characteristics of an unknown source of emissions in the atmosphere are identified using an Adaptive Evolutionary Strategy (AES) methodology based on ground concentration measurements and a Gaussian plume model. The AES methodology selects an initial set of source characteristics including position, size, mass emission rate, and wind direction, from which a forward dispersion simulation is performed. The error between the simulated concentrations from the tentative source and the observed ground measurements is calculated. Then the AES algorithm prescribes the next tentative set of source characteristics. The iteration proceeds towards minimum error, corresponding to convergence towards the real source. The proposed methodology was used to identify the source characteristics of 12 releases from the Prairie Grass field experiment of dispersion, two for each atmospheric stability class, ranging from very unstable to stable atmosphere. The AES algorithm was found to have advantages over a simple canonical ES and a Monte Carlo (MC) method which were used as benchmarks.
Phoneme recognition with kernel learning algorithms
NASA Astrophysics Data System (ADS)
Namarvar, Hassan H.; Berger, Theodore W.
2004-10-01
An isolated phoneme recognition system is proposed using time-frequency domain analysis and support vector machines (SVMs). The TIMIT corpus which contains a total of 6300 sentences, ten sentences spoken by each of 630 speakers from eight major dialect regions of the United States, was used in this experiment. Provided time-aligned phonetic transcription was used to extract phonemes from speech samples. A 55-output classifier system was designed corresponding to 55 classes of phonemes and trained with the kernel learning algorithms. The training dataset was extracted from clean training samples. A portion of the database, i.e., 65338 samples of training dataset, was used to train the system. The performance of the system on the training dataset was 76.4%. The whole test dataset of the TIMIT corpus was used to test the generalization of the system. All samples, i.e., 55655 samples of the test dataset, were used to test the system. The performance of the system on the test dataset was 45.3%. This approach is currently under development to extend the algorithm for continuous phoneme recognition. [Work supported in part by grants from DARPA, NASA, and ONR.
Fully implicit adaptive mesh refinement algorithm for reduced MHD
NASA Astrophysics Data System (ADS)
Philip, Bobby; Pernice, Michael; Chacon, Luis
2006-10-01
In the macroscopic simulation of plasmas, the numerical modeler is faced with the challenge of dealing with multiple time and length scales. Traditional approaches based on explicit time integration techniques and fixed meshes are not suitable for this challenge, as such approaches prevent the modeler from using realistic plasma parameters to keep the computation feasible. We propose here a novel approach, based on implicit methods and structured adaptive mesh refinement (SAMR). Our emphasis is on both accuracy and scalability with the number of degrees of freedom. As a proof-of-principle, we focus on the reduced resistive MHD model as a basic MHD model paradigm, which is truly multiscale. The approach taken here is to adapt mature physics-based technology to AMR grids, and employ AMR-aware multilevel techniques (such as fast adaptive composite grid --FAC-- algorithms) for scalability. We demonstrate that the concept is indeed feasible, featuring near-optimal scalability under grid refinement. Results of fully-implicit, dynamically-adaptive AMR simulations in challenging dissipation regimes will be presented on a variety of problems that benefit from this capability, including tearing modes, the island coalescence instability, and the tilt mode instability. L. Chac'on et al., J. Comput. Phys. 178 (1), 15- 36 (2002) B. Philip, M. Pernice, and L. Chac'on, Lecture Notes in Computational Science and Engineering, accepted (2006)
Development of Adaptive Kanji Learning System for Mobile Phone
ERIC Educational Resources Information Center
Li, Mengmeng; Ogata, Hiroaki; Hou, Bin; Hashimoto, Satoshi; Liu, Yuqin; Uosaki, Noriko; Yano, Yoneo
2010-01-01
This paper describes an adaptive learning system based on mobile phone email to support the study of Japanese Kanji. In this study, the main emphasis is on using the adaptive learning to resolve one common problem of the mobile-based email or SMS language learning systems. To achieve this goal, the authors main efforts focus on three aspects:…
How Language Supports Adaptive Teaching through a Responsive Learning Culture
ERIC Educational Resources Information Center
Johnston, Peter; Dozier, Cheryl; Smit, Julie
2016-01-01
For students to learn optimally, teachers must design classrooms that are responsive to the full range of student development. The teacher must be adaptive, but so must each student and the learning culture itself. In other words, adaptive teaching means constructing a responsive learning culture that accommodates and even capitalizes on diversity…
Improved Adaptive-Reinforcement Learning Control for morphing unmanned air vehicles.
Valasek, John; Doebbler, James; Tandale, Monish D; Meade, Andrew J
2008-08-01
This paper presents an improved Adaptive-Reinforcement Learning Control methodology for the problem of unmanned air vehicle morphing control. The reinforcement learning morphing control function that learns the optimal shape change policy is integrated with an adaptive dynamic inversion control trajectory tracking function. An episodic unsupervised learning simulation using the Q-learning method is developed to replace an earlier and less accurate Actor-Critic algorithm. Sequential Function Approximation, a Galerkin-based scattered data approximation scheme, replaces a K-Nearest Neighbors (KNN) method and is used to generalize the learning from previously experienced quantized states and actions to the continuous state-action space, all of which may not have been experienced before. The improved method showed smaller errors and improved learning of the optimal shape compared to the KNN. PMID:18632393
NASA Astrophysics Data System (ADS)
Hoi, K. I.; Yuen, K. V.; Mok, K. M.
2013-09-01
Multilayer perceptron (MLP), normally trained by the offline backpropagation algorithm, could not adapt to the changing air quality system and subsequently underperforms. To improve this, the extended Kalman filter is adopted into the learning algorithm to build a time-varying multilayer perceptron (TVMLP) in this study. Application of the TVMLP to model the daily averaged concentration of the respirable suspended particulates with aerodynamic diameter of not more than 10 µm (PM10) in Macau shows statistically significant improvement on the performance indicators over the MLP counterpart. In addition, the adaptive learning algorithm could also address explicitly the uncertainty of the prediction so that confidence intervals can be provided. More importantly, the adaptiveness of the TVMLP gives prediction improvement on the region of higher particulate concentrations that the public concerns.
Path Planning Algorithms for the Adaptive Sensor Fleet
NASA Technical Reports Server (NTRS)
Stoneking, Eric; Hosler, Jeff
2005-01-01
The Adaptive Sensor Fleet (ASF) is a general purpose fleet management and planning system being developed by NASA in coordination with NOAA. The current mission of ASF is to provide the capability for autonomous cooperative survey and sampling of dynamic oceanographic phenomena such as current systems and algae blooms. Each ASF vessel is a software model that represents a real world platform that carries a variety of sensors. The OASIS platform will provide the first physical vessel, outfitted with the systems and payloads necessary to execute the oceanographic observations described in this paper. The ASF architecture is being designed for extensibility to accommodate heterogenous fleet elements, and is not limited to using the OASIS platform to acquire data. This paper describes the path planning algorithms developed for the acquisition phase of a typical ASF task. Given a polygonal target region to be surveyed, the region is subdivided according to the number of vessels in the fleet. The subdivision algorithm seeks a solution in which all subregions have equal area and minimum mean radius. Once the subregions are defined, a dynamic programming method is used to find a minimum-time path for each vessel from its initial position to its assigned region. This path plan includes the effects of water currents as well as avoidance of known obstacles. A fleet-level planning algorithm then shuffles the individual vessel assignments to find the overall solution which puts all vessels in their assigned regions in the minimum time. This shuffle algorithm may be described as a process of elimination on the sorted list of permutations of a cost matrix. All these path planning algorithms are facilitated by discretizing the region of interest onto a hexagonal tiling.
Computation of Transient Nonlinear Ship Waves Using AN Adaptive Algorithm
NASA Astrophysics Data System (ADS)
Çelebi, M. S.
2000-04-01
An indirect boundary integral method is used to solve transient nonlinear ship wave problems. A resulting mixed boundary value problem is solved at each time-step using a mixed Eulerian- Lagrangian time integration technique. Two dynamic node allocation techniques, which basically distribute nodes on an ever changing body surface, are presented. Both two-sided hyperbolic tangent and variational grid generation algorithms are developed and compared on station curves. A ship hull form is generated in parametric space using a B-spline surface representation. Two-sided hyperbolic tangent and variational adaptive curve grid-generation methods are then applied on the hull station curves to generate effective node placement. The numerical algorithm, in the first method, used two stretching parameters. In the second method, a conservative form of the parametric variational Euler-Lagrange equations is used the perform an adaptive gridding on each station. The resulting unsymmetrical influence coefficient matrix is solved using both a restarted version of GMRES based on the modified Gram-Schmidt procedure and a line Jacobi method based on LU decomposition. The convergence rates of both matrix iteration techniques are improved with specially devised preconditioners. Numerical examples of node placements on typical hull cross-sections using both techniques are discussed and fully nonlinear ship wave patterns and wave resistance computations are presented.
Gradient descent learning algorithm overview: a general dynamical systems perspective.
Baldi, P
1995-01-01
Gives a unified treatment of gradient descent learning algorithms for neural networks using a general framework of dynamical systems. This general approach organizes and simplifies all the known algorithms and results which have been originally derived for different problems (fixed point/trajectory learning), for different models (discrete/continuous), for different architectures (forward/recurrent), and using different techniques (backpropagation, variational calculus, adjoint methods, etc.). The general approach can also be applied to derive new algorithms. The author then briefly examines some of the complexity issues and limitations intrinsic to gradient descent learning. Throughout the paper, the author focuses on the problem of trajectory learning. PMID:18263297
Location-Aware Mobile Learning of Spatial Algorithms
ERIC Educational Resources Information Center
Karavirta, Ville
2013-01-01
Learning an algorithm--a systematic sequence of operations for solving a problem with given input--is often difficult for students due to the abstract nature of the algorithms and the data they process. To help students understand the behavior of algorithms, a subfield in computing education research has focused on algorithm…
NASA Technical Reports Server (NTRS)
Matthews, Bryan L.; Srivastava, Ashok N.
2010-01-01
Prior to the launch of STS-119 NASA had completed a study of an issue in the flow control valve (FCV) in the Main Propulsion System of the Space Shuttle using an adaptive learning method known as Virtual Sensors. Virtual Sensors are a class of algorithms that estimate the value of a time series given other potentially nonlinearly correlated sensor readings. In the case presented here, the Virtual Sensors algorithm is based on an ensemble learning approach and takes sensor readings and control signals as input to estimate the pressure in a subsystem of the Main Propulsion System. Our results indicate that this method can detect faults in the FCV at the time when they occur. We use the standard deviation of the predictions of the ensemble as a measure of uncertainty in the estimate. This uncertainty estimate was crucial to understanding the nature and magnitude of transient characteristics during startup of the engine. This paper overviews the Virtual Sensors algorithm and discusses results on a comprehensive set of Shuttle missions and also discusses the architecture necessary for deploying such algorithms in a real-time, closed-loop system or a human-in-the-loop monitoring system. These results were presented at a Flight Readiness Review of the Space Shuttle in early 2009.
Wavefront sensors and algorithms for adaptive optical systems
NASA Astrophysics Data System (ADS)
Lukin, V. P.; Botygina, N. N.; Emaleev, O. N.; Konyaev, P. A.
2010-07-01
The results of recent works related to techniques and algorithms for wave-front (WF) measurement using Shack-Hartmann sensors show their high efficiency in solution of very different problems of applied optics. The goal of this paper was to develop a sensitive Shack-Hartmann sensor with high precision WF measurement capability on the base of modern technology of optical elements making and new efficient methods and computational algorithms of WF reconstruction. The Shack-Hartmann sensors sensitive to small WF aberrations are used for adaptive optical systems, compensating the wave distortions caused by atmospheric turbulence. A high precision Shack-Hartmann WF sensor has been developed on the basis of a low-aperture off-axis diffraction lens array. The device is capable of measuring WF slopes at array sub-apertures of size 640×640 μm with an error not exceeding 4.80 arcsec (0.15 pixel), which corresponds to the standard deviation equal to 0.017λ at the reconstructed WF with wavelength λ . Also the modification of this sensor for adaptive system of solar telescope using extended scenes as tracking objects, such as sunspot, pores, solar granulation and limb, is presented. The software package developed for the proposed WF sensors includes three algorithms of local WF slopes estimation (modified centroids, normalized cross-correlation and fast Fourierdemodulation), as well as three methods of WF reconstruction (modal Zernike polynomials expansion, deformable mirror response functions expansion and phase unwrapping), that can be selected during operation with accordance to the application.
A novel adaptive multi-resolution combined watermarking algorithm
NASA Astrophysics Data System (ADS)
Feng, Gui; Lin, QiWei
2008-04-01
The rapid development of IT and WWW technique, causing person frequently confronts with various kinds of authorized identification problem, especially the copyright problem of digital products. The digital watermarking technique was emerged as one kind of solutions. The balance between robustness and imperceptibility is always the object sought by related researchers. In order to settle the problem of robustness and imperceptibility, a novel adaptive multi-resolution combined digital image watermarking algorithm was proposed in this paper. In the proposed algorithm, we first decompose the watermark into several sub-bands, and according to its significance to embed the sub-band to different DWT coefficient of the carrier image. While embedding, the HVS was considered. So under the precondition of keeping the quality of image, the larger capacity of watermark can be embedding. The experimental results have shown that the proposed algorithm has better performance in the aspects of robustness and security. And with the same visual quality, the technique has larger capacity. So the unification of robustness and imperceptibility was achieved.
NASA Astrophysics Data System (ADS)
Schneider, Martin; Kellermann, Walter
2016-01-01
Acoustic echo cancellation (AEC) is a well-known application of adaptive filters in communication acoustics. To implement AEC for multichannel reproduction systems, powerful adaptation algorithms like the generalized frequency-domain adaptive filtering (GFDAF) algorithm are required for satisfactory convergence behavior. In this paper, the GFDAF algorithm is rigorously derived as an approximation of the block recursive least-squares (RLS) algorithm. Thereby, the original formulation of the GFDAF algorithm is generalized while avoiding an error that has been in the original derivation. The presented algorithm formulation is applied to pruned transform-domain loudspeaker-enclosure-microphone models in a mathematically consistent manner. Such pruned models have recently been proposed to cope with the tremendous computational demands of massive multichannel AEC. Beyond its generalization, a regularization of the GFDAF is shown to have a close relation to the well-known block least-mean-squares algorithm.
Automated training for algorithms that learn from genomic data.
Cilingir, Gokcen; Broschat, Shira L
2015-01-01
Supervised machine learning algorithms are used by life scientists for a variety of objectives. Expert-curated public gene and protein databases are major resources for gathering data to train these algorithms. While these data resources are continuously updated, generally, these updates are not incorporated into published machine learning algorithms which thereby can become outdated soon after their introduction. In this paper, we propose a new model of operation for supervised machine learning algorithms that learn from genomic data. By defining these algorithms in a pipeline in which the training data gathering procedure and the learning process are automated, one can create a system that generates a classifier or predictor using information available from public resources. The proposed model is explained using three case studies on SignalP, MemLoci, and ApicoAP in which existing machine learning models are utilized in pipelines. Given that the vast majority of the procedures described for gathering training data can easily be automated, it is possible to transform valuable machine learning algorithms into self-evolving learners that benefit from the ever-changing data available for gene products and to develop new machine learning algorithms that are similarly capable. PMID:25695053
An Adaptive Scaffolding E-Learning System for Middle School Students' Physics Learning
ERIC Educational Resources Information Center
Chen, Ching-Huei
2014-01-01
This study presents a framework that utilizes cognitive and motivational aspects of learning to design an adaptive scaffolding e-learning system. It addresses scaffolding processes and conditions for designing adaptive scaffolds. The features and effectiveness of this adaptive scaffolding e-learning system are discussed and evaluated. An…
A New Modified Artificial Bee Colony Algorithm with Exponential Function Adaptive Steps
Mao, Wei; Li, Hao-ru
2016-01-01
As one of the most recent popular swarm intelligence techniques, artificial bee colony algorithm is poor at exploitation and has some defects such as slow search speed, poor population diversity, the stagnation in the working process, and being trapped into the local optimal solution. The purpose of this paper is to develop a new modified artificial bee colony algorithm in view of the initial population structure, subpopulation groups, step updating, and population elimination. Further, depending on opposition-based learning theory and the new modified algorithms, an improved S-type grouping method is proposed and the original way of roulette wheel selection is substituted through sensitivity-pheromone way. Then, an adaptive step with exponential functions is designed for replacing the original random step. Finally, based on the new test function versions CEC13, six benchmark functions with the dimensions D = 20 and D = 40 are chosen and applied in the experiments for analyzing and comparing the iteration speed and accuracy of the new modified algorithms. The experimental results show that the new modified algorithm has faster and more stable searching and can quickly increase poor population diversity and bring out the global optimal solutions. PMID:27293426
A New Modified Artificial Bee Colony Algorithm with Exponential Function Adaptive Steps.
Mao, Wei; Lan, Heng-You; Li, Hao-Ru
2016-01-01
As one of the most recent popular swarm intelligence techniques, artificial bee colony algorithm is poor at exploitation and has some defects such as slow search speed, poor population diversity, the stagnation in the working process, and being trapped into the local optimal solution. The purpose of this paper is to develop a new modified artificial bee colony algorithm in view of the initial population structure, subpopulation groups, step updating, and population elimination. Further, depending on opposition-based learning theory and the new modified algorithms, an improved S-type grouping method is proposed and the original way of roulette wheel selection is substituted through sensitivity-pheromone way. Then, an adaptive step with exponential functions is designed for replacing the original random step. Finally, based on the new test function versions CEC13, six benchmark functions with the dimensions D = 20 and D = 40 are chosen and applied in the experiments for analyzing and comparing the iteration speed and accuracy of the new modified algorithms. The experimental results show that the new modified algorithm has faster and more stable searching and can quickly increase poor population diversity and bring out the global optimal solutions. PMID:27293426
A Genetic Algorithm Approach to Recognise Students' Learning Styles
ERIC Educational Resources Information Center
Yannibelli, Virginia; Godoy, Daniela; Amandi, Analia
2006-01-01
Learning styles encapsulate the preferences of the students, regarding how they learn. By including information about the student learning style, computer-based educational systems are able to adapt a course according to the individual characteristics of the students. In accomplishing this goal, educational systems have been mostly based on the…
ERIC Educational Resources Information Center
Squires, David R.
2014-01-01
The aim of this paper is to examine the potential and effectiveness of m-learning in the field of Education and Learning domains. The purpose of this research is to illustrate how mobile technology can and is affecting novel change in instruction, from m-learning and the link to adaptive learning, to the uninitiated learner and capacities of…
Zhu, Feng; Aziz, H. M. Abdul; Qian, Xinwu; Ukkusuri, Satish V.
2015-01-31
Our study develops a novel reinforcement learning algorithm for the challenging coordinated signal control problem. Traffic signals are modeled as intelligent agents interacting with the stochastic traffic environment. The model is built on the framework of coordinated reinforcement learning. The Junction Tree Algorithm (JTA) based reinforcement learning is proposed to obtain an exact inference of the best joint actions for all the coordinated intersections. Moreover, the algorithm is implemented and tested with a network containing 18 signalized intersections in VISSIM. Finally, our results show that the JTA based algorithm outperforms independent learning (Q-learning), real-time adaptive learning, and fixed timing plans in terms of average delay, number of stops, and vehicular emissions at the network level.
Zhu, Feng; Aziz, H. M. Abdul; Qian, Xinwu; Ukkusuri, Satish V.
2015-01-31
Our study develops a novel reinforcement learning algorithm for the challenging coordinated signal control problem. Traffic signals are modeled as intelligent agents interacting with the stochastic traffic environment. The model is built on the framework of coordinated reinforcement learning. The Junction Tree Algorithm (JTA) based reinforcement learning is proposed to obtain an exact inference of the best joint actions for all the coordinated intersections. Moreover, the algorithm is implemented and tested with a network containing 18 signalized intersections in VISSIM. Finally, our results show that the JTA based algorithm outperforms independent learning (Q-learning), real-time adaptive learning, and fixed timing plansmore » in terms of average delay, number of stops, and vehicular emissions at the network level.« less
Hindsight bias, outcome knowledge and adaptive learning.
Henriksen, K; Kaplan, H
2003-12-01
The ubiquitous nature of hindsight bias is a cause for concern for those engaged in investigations and retrospective analysis of medical error. Hindsight does not equal foresight. Investigations that are anchored to outcome knowledge run the risk of not capturing the complexities and uncertainties facing sharp end personnel and why their actions made sense at the time. Important lessons go unlearned if the exercise is simply to back track someone else's decision landmarks. Outcome knowledge can also bias our thinking on the quality of the processes that led to the outcome. This paper examines the influence of outcome knowledge in relation to reconstructive memory and legal testimony, ways for reducing the impact of outcome knowledge, and an adaptive learning framework that places hindsight bias in a broader context of rapid updating of knowledge. PMID:14645895
Adaptive centroid-finding algorithm for freeform surface measurements.
Guo, Wenjiang; Zhao, Liping; Tong, Chin Shi; I-Ming, Chen; Joshi, Sunil Chandrakant
2013-04-01
Wavefront sensing systems measure the slope or curvature of a surface by calculating the centroid displacement of two focal spot images. Accurately finding the centroid of each focal spot determines the measurement results. This paper studied several widely used centroid-finding techniques and observed that thresholding is the most critical factor affecting the centroid-finding accuracy. Since the focal spot image of a freeform surface usually suffers from various types of image degradation, it is difficult and sometimes impossible to set a best threshold value for the whole image. We propose an adaptive centroid-finding algorithm to tackle this problem and have experimentally proven its effectiveness in measuring freeform surfaces. PMID:23545985
An adaptive genetic algorithm for crystal structure prediction
Wu, Shunqing; Ji, Min; Wang, Cai-Zhuang; Nguyen, Manh Cuong; Zhao, Xin; Umemoto, K.; Wentzcovitch, R. M.; Ho, Kai-Ming
2013-12-18
We present a genetic algorithm (GA) for structural search that combines the speed of structure exploration by classical potentials with the accuracy of density functional theory (DFT) calculations in an adaptive and iterative way. This strategy increases the efficiency of the DFT-based GA by several orders of magnitude. This gain allows a considerable increase in the size and complexity of systems that can be studied by first principles. The performance of the method is illustrated by successful structure identifications of complex binary and ternary intermetallic compounds with 36 and 54 atoms per cell, respectively. The discovery of a multi-TPa Mg-silicate phase with unit cell containing up to 56 atoms is also reported. Such a phase is likely to be an essential component of terrestrial exoplanetary mantles.
Algorithms and data structures for adaptive multigrid elliptic solvers
NASA Technical Reports Server (NTRS)
Vanrosendale, J.
1983-01-01
Adaptive refinement and the complicated data structures required to support it are discussed. These data structures must be carefully tuned, especially in three dimensions where the time and storage requirements of algorithms are crucial. Another major issue is grid generation. The options available seem to be curvilinear fitted grids, constructed on iterative graphics systems, and unfitted Cartesian grids, which can be constructed automatically. On several grounds, including storage requirements, the second option seems preferrable for the well behaved scalar elliptic problems considered here. A variety of techniques for treatment of boundary conditions on such grids are reviewed. A new approach, which may overcome some of the difficulties encountered with previous approaches, is also presented.
Self-adaptive closed constrained solution algorithms for nonlinear conduction
NASA Technical Reports Server (NTRS)
Padovan, J.; Tovichakchaikul, S.
1982-01-01
Self-adaptive solution algorithms are developed for nonlinear heat conduction problems encountered in analyzing materials for use in high temperature or cryogenic conditions. The nonlinear effects are noted to occur due to convection and radiation effects, as well as temperature-dependent properties of the materials. Incremental successive substitution (ISS) and Newton-Raphson (NR) procedures are treated as extrapolation schemes which have solution projections bounded by a hyperline with an externally applied thermal load vector arising from internal heat generation and boundary conditions. Closed constraints are formulated which improve the efficiency and stability of the procedures by employing closed ellipsoidal surfaces to control the size of successive iterations. Governing equations are defined for nonlinear finite element models, and comparisons are made of results using the the new method and the ISS and NR schemes for epoxy, PVC, and CuGe.
A neural learning classifier system with self-adaptive constructivism for mobile robot control.
Hurst, Jacob; Bull, Larry
2006-01-01
For artificial entities to achieve true autonomy and display complex lifelike behavior, they will need to exploit appropriate adaptable learning algorithms. In this context adaptability implies flexibility guided by the environment at any given time and an open-ended ability to learn appropriate behaviors. This article examines the use of constructivism-inspired mechanisms within a neural learning classifier system architecture that exploits parameter self-adaptation as an approach to realize such behavior. The system uses a rule structure in which each rule is represented by an artificial neural network. It is shown that appropriate internal rule complexity emerges during learning at a rate controlled by the learner and that the structure indicates underlying features of the task. Results are presented in simulated mazes before moving to a mobile robot platform. PMID:16859445
Application of an adaptive plan to the configuration of nonlinear image-processing algorithms
NASA Astrophysics Data System (ADS)
Chu, Chee-Hung H.
1990-07-01
The application of an adaptive plan to the design of a class of nonlinear digital image processing operators known as stack filters is presented in this paper. The adaptive plan is based on the mechanics found in genetics and natural selection. Such learning mechanisms have become known as genetic algorithms. A stack filter is characterized by the coefficients of its underlying positive Boolean function. This set of coefficients constitute a binary string, referred to as a chromosome in a genetic algorithm, that represents that particular filter configuration. A fitness value for each chromosome is computed based on the performance of the associated filter in specific tasks such as noise suppression. A population of chromosomes is maintained by the genetic algorithm, and new generations are formed by selecting mating pairs based on their fitness values. Genetic operators such as crossover or mutation are applied to the mating pairs to form offsprings. By exchanging some substrings of the two parent-chromosomes, the crossover operator can bring different blocks of genes that result in good performance together into one chromosome that yields the best performance. Empirical results show that this method is capable of configuring stack filters that are effective in impulsive noise suppression.
Design of infrasound-detection system via adaptive LMSTDE algorithm
NASA Technical Reports Server (NTRS)
Khalaf, C. S.; Stoughton, J. W.
1984-01-01
A proposed solution to an aviation safety problem is based on passive detection of turbulent weather phenomena through their infrasonic emission. This thesis describes a system design that is adequate for detection and bearing evaluation of infrasounds. An array of four sensors, with the appropriate hardware, is used for the detection part. Bearing evaluation is based on estimates of time delays between sensor outputs. The generalized cross correlation (GCC), as the conventional time-delay estimation (TDE) method, is first reviewed. An adaptive TDE approach, using the least mean square (LMS) algorithm, is then discussed. A comparison between the two techniques is made and the advantages of the adaptive approach are listed. The behavior of the GCC, as a Roth processor, is examined for the anticipated signals. It is shown that the Roth processor has the desired effect of sharpening the peak of the correlation function. It is also shown that the LMSTDE technique is an equivalent implementation of the Roth processor in the time domain. A LMSTDE lead-lag model, with a variable stability coefficient and a convergence criterion, is designed.
A wavelet packet adaptive filtering algorithm for enhancing manatee vocalizations.
Gur, M Berke; Niezrecki, Christopher
2011-04-01
Approximately a quarter of all West Indian manatee (Trichechus manatus latirostris) mortalities are attributed to collisions with watercraft. A boater warning system based on the passive acoustic detection of manatee vocalizations is one possible solution to reduce manatee-watercraft collisions. The success of such a warning system depends on effective enhancement of the vocalization signals in the presence of high levels of background noise, in particular, noise emitted from watercraft. Recent research has indicated that wavelet domain pre-processing of the noisy vocalizations is capable of significantly improving the detection ranges of passive acoustic vocalization detectors. In this paper, an adaptive denoising procedure, implemented on the wavelet packet transform coefficients obtained from the noisy vocalization signals, is investigated. The proposed denoising algorithm is shown to improve the manatee detection ranges by a factor ranging from two (minimum) to sixteen (maximum) compared to high-pass filtering alone, when evaluated using real manatee vocalization and background noise signals of varying signal-to-noise ratios (SNR). Furthermore, the proposed method is also shown to outperform a previously suggested feedback adaptive line enhancer (FALE) filter on average 3.4 dB in terms of noise suppression and 0.6 dB in terms of waveform preservation. PMID:21476661
Learning to play like a human: case injected genetic algorithms for strategic computer gaming
NASA Astrophysics Data System (ADS)
Louis, Sushil J.; Miles, Chris
2006-05-01
We use case injected genetic algorithms to learn how to competently play computer strategy games that involve long range planning across complex dynamics. Imperfect knowledge presented to players requires them adapt their strategies in order to anticipate opponent moves. We focus on the problem of acquiring knowledge learned from human players, in particular we learn general routing information from a human player in the context of a strike force planning game. By incorporating case injection into a genetic algorithm, we show methods for incorporating general knowledge elicited from human players into future plans. In effect allowing the GA to take important strategic elements from human play and merging those elements into its own strategic thinking. Results show that with an appropriate representation, case injection is effective at biasing the genetic algorithm toward producing plans that contain important strategic elements used by human players.
Geological Mapping Using Machine Learning Algorithms
NASA Astrophysics Data System (ADS)
Harvey, A. S.; Fotopoulos, G.
2016-06-01
Remotely sensed spectral imagery, geophysical (magnetic and gravity), and geodetic (elevation) data are useful in a variety of Earth science applications such as environmental monitoring and mineral exploration. Using these data with Machine Learning Algorithms (MLA), which are widely used in image analysis and statistical pattern recognition applications, may enhance preliminary geological mapping and interpretation. This approach contributes towards a rapid and objective means of geological mapping in contrast to conventional field expedition techniques. In this study, four supervised MLAs (naïve Bayes, k-nearest neighbour, random forest, and support vector machines) are compared in order to assess their performance for correctly identifying geological rocktypes in an area with complete ground validation information. Geological maps of the Sudbury region are used for calibration and validation. Percent of correct classifications was used as indicators of performance. Results show that random forest is the best approach. As expected, MLA performance improves with more calibration clusters, i.e. a more uniform distribution of calibration data over the study region. Performance is generally low, though geological trends that correspond to a ground validation map are visualized. Low performance may be the result of poor spectral images of bare rock which can be covered by vegetation or water. The distribution of calibration clusters and MLA input parameters affect the performance of the MLAs. Generally, performance improves with more uniform sampling, though this increases required computational effort and time. With the achievable performance levels in this study, the technique is useful in identifying regions of interest and identifying general rocktype trends. In particular, phase I geological site investigations will benefit from this approach and lead to the selection of sites for advanced surveys.
Particle Swarm Social Model for Group Social Learning in Adaptive Environment
Cui, Xiaohui; Potok, Thomas E; Treadwell, Jim N; Patton, Robert M; Pullum, Laura L
2008-01-01
This report presents a study of integrating particle swarm algorithm, social knowledge adaptation and multi-agent approaches for modeling the social learning of self-organized groups and their collective searching behavior in an adaptive environment. The objective of this research is to apply the particle swarm metaphor as a model of social learning for a dynamic environment. The research provides a platform for understanding and insights into knowledge discovery and strategic search in human self-organized social groups, such as insurgents or online communities.
On stochastic approximation algorithms for classes of PAC learning problems
Rao, N.S.V.; Uppuluri, V.R.R.; Oblow, E.M.
1994-03-01
The classical stochastic approximation methods are shown to yield algorithms to solve several formulations of the PAC learning problem defined on the domain [o,1]{sup d}. Under some assumptions on different ability of the probability measure functions, simple algorithms to solve some PAC learning problems are proposed based on networks of non-polynomial units (e.g. artificial neural networks). Conditions on the sizes of these samples required to ensure the error bounds are derived using martingale inequalities.
Adaptive Device Context Based Mobile Learning Systems
ERIC Educational Resources Information Center
Pu, Haitao; Lin, Jinjiao; Song, Yanwei; Liu, Fasheng
2011-01-01
Mobile learning is e-learning delivered through mobile computing devices, which represents the next stage of computer-aided, multi-media based learning. Therefore, mobile learning is transforming the way of traditional education. However, as most current e-learning systems and their contents are not suitable for mobile devices, an approach for…
The Influence of Learning Behaviour on Team Adaptability
ERIC Educational Resources Information Center
Murray, Peter A.; Millett, Bruce
2011-01-01
Multiple contexts shape team activities and how they learn, and group learning is a dynamic construct that reflects a repertoire of potential behaviour. The purpose of this developmental paper is to examine how better learning behaviours in semi-autonomous teams improves the level of team adaptability and performance. The discussion suggests that…
Adaptive Sampling Algorithms for Probabilistic Risk Assessment of Nuclear Simulations
Diego Mandelli; Dan Maljovec; Bei Wang; Valerio Pascucci; Peer-Timo Bremer
2013-09-01
Nuclear simulations are often computationally expensive, time-consuming, and high-dimensional with respect to the number of input parameters. Thus exploring the space of all possible simulation outcomes is infeasible using finite computing resources. During simulation-based probabilistic risk analysis, it is important to discover the relationship between a potentially large number of input parameters and the output of a simulation using as few simulation trials as possible. This is a typical context for performing adaptive sampling where a few observations are obtained from the simulation, a surrogate model is built to represent the simulation space, and new samples are selected based on the model constructed. The surrogate model is then updated based on the simulation results of the sampled points. In this way, we attempt to gain the most information possible with a small number of carefully selected sampled points, limiting the number of expensive trials needed to understand features of the simulation space. We analyze the specific use case of identifying the limit surface, i.e., the boundaries in the simulation space between system failure and system success. In this study, we explore several techniques for adaptively sampling the parameter space in order to reconstruct the limit surface. We focus on several adaptive sampling schemes. First, we seek to learn a global model of the entire simulation space using prediction models or neighborhood graphs and extract the limit surface as an iso-surface of the global model. Second, we estimate the limit surface by sampling in the neighborhood of the current estimate based on topological segmentations obtained locally. Our techniques draw inspirations from topological structure known as the Morse-Smale complex. We highlight the advantages and disadvantages of using a global prediction model versus local topological view of the simulation space, comparing several different strategies for adaptive sampling in both
NASA Astrophysics Data System (ADS)
Rao, R. V.; Savsani, V. J.; Balic, J.
2012-12-01
An efficient optimization algorithm called teaching-learning-based optimization (TLBO) is proposed in this article to solve continuous unconstrained and constrained optimization problems. The proposed method is based on the effect of the influence of a teacher on the output of learners in a class. The basic philosophy of the method is explained in detail. The algorithm is tested on 25 different unconstrained benchmark functions and 35 constrained benchmark functions with different characteristics. For the constrained benchmark functions, TLBO is tested with different constraint handling techniques such as superiority of feasible solutions, self-adaptive penalty, ɛ-constraint, stochastic ranking and ensemble of constraints. The performance of the TLBO algorithm is compared with that of other optimization algorithms and the results show the better performance of the proposed algorithm.
An Adaptive E-Learning System Based on Students' Learning Styles: An Empirical Study
ERIC Educational Resources Information Center
Drissi, Samia; Amirat, Abdelkrim
2016-01-01
Personalized e-learning implementation is recognized as one of the most interesting research areas in the distance web-based education. Since the learning style of each learner is different one must fit e-learning with the different needs of learners. This paper presents an approach to integrate learning styles into adaptive e-learning hypermedia.…
Ravindran, Sindhu; Jambek, Asral Bahari; Muthusamy, Hariharan; Neoh, Siew-Chin
2015-01-01
A novel clinical decision support system is proposed in this paper for evaluating the fetal well-being from the cardiotocogram (CTG) dataset through an Improved Adaptive Genetic Algorithm (IAGA) and Extreme Learning Machine (ELM). IAGA employs a new scaling technique (called sigma scaling) to avoid premature convergence and applies adaptive crossover and mutation techniques with masking concepts to enhance population diversity. Also, this search algorithm utilizes three different fitness functions (two single objective fitness functions and multi-objective fitness function) to assess its performance. The classification results unfold that promising classification accuracy of 94% is obtained with an optimal feature subset using IAGA. Also, the classification results are compared with those of other Feature Reduction techniques to substantiate its exhaustive search towards the global optimum. Besides, five other benchmark datasets are used to gauge the strength of the proposed IAGA algorithm. PMID:25793009
Jambek, Asral Bahari; Neoh, Siew-Chin
2015-01-01
A novel clinical decision support system is proposed in this paper for evaluating the fetal well-being from the cardiotocogram (CTG) dataset through an Improved Adaptive Genetic Algorithm (IAGA) and Extreme Learning Machine (ELM). IAGA employs a new scaling technique (called sigma scaling) to avoid premature convergence and applies adaptive crossover and mutation techniques with masking concepts to enhance population diversity. Also, this search algorithm utilizes three different fitness functions (two single objective fitness functions and multi-objective fitness function) to assess its performance. The classification results unfold that promising classification accuracy of 94% is obtained with an optimal feature subset using IAGA. Also, the classification results are compared with those of other Feature Reduction techniques to substantiate its exhaustive search towards the global optimum. Besides, five other benchmark datasets are used to gauge the strength of the proposed IAGA algorithm. PMID:25793009
Immune allied genetic algorithm for Bayesian network structure learning
NASA Astrophysics Data System (ADS)
Song, Qin; Lin, Feng; Sun, Wei; Chang, KC
2012-06-01
Bayesian network (BN) structure learning is a NP-hard problem. In this paper, we present an improved approach to enhance efficiency of BN structure learning. To avoid premature convergence in traditional single-group genetic algorithm (GA), we propose an immune allied genetic algorithm (IAGA) in which the multiple-population and allied strategy are introduced. Moreover, in the algorithm, we apply prior knowledge by injecting immune operator to individuals which can effectively prevent degeneration. To illustrate the effectiveness of the proposed technique, we present some experimental results.
Diminished neural adaptation during implicit learning in autism.
Schipul, Sarah E; Just, Marcel Adam
2016-01-15
Neuroimaging studies have shown evidence of disrupted neural adaptation during learning in individuals with autism spectrum disorder (ASD) in several types of tasks, potentially stemming from frontal-posterior cortical underconnectivity (Schipul et al., 2012). The aim of the current study was to examine neural adaptations in an implicit learning task that entails participation of frontal and posterior regions. Sixteen high-functioning adults with ASD and sixteen neurotypical control participants were trained on and performed an implicit dot pattern prototype learning task in a functional magnetic resonance imaging (fMRI) session. During the preliminary exposure to the type of implicit prototype learning task later to be used in the scanner, the ASD participants took longer than the neurotypical group to learn the task, demonstrating altered implicit learning in ASD. After equating task structure learning, the two groups' brain activation differed during their learning of a new prototype in the subsequent scanning session. The main findings indicated that neural adaptations in a distributed task network were reduced in the ASD group, relative to the neurotypical group, and were related to ASD symptom severity. Functional connectivity was reduced and did not change as much during learning for the ASD group, and was related to ASD symptom severity. These findings suggest that individuals with ASD show altered neural adaptations during learning, as seen in both activation and functional connectivity measures. This finding suggests why many real-world implicit learning situations may pose special challenges for ASD. PMID:26484826
Adaptable Particle-in-Cell Algorithms for Graphical Processing Units
NASA Astrophysics Data System (ADS)
Decyk, Viktor; Singh, Tajendra
2010-11-01
Emerging computer architectures consist of an increasing number of shared memory computing cores in a chip, often with vector (SIMD) co-processors. Future exascale high performance systems will consist of a hierarchy of such nodes, which will require different algorithms at different levels. Since no one knows exactly how the future will evolve, we have begun development of an adaptable Particle-in-Cell (PIC) code, whose parameters can match different hardware configurations. The data structures reflect three levels of parallelism, contiguous vectors and non-contiguous blocks of vectors, which can share memory, and groups of blocks which do not. Particles are kept ordered at each time step, and the size of a sorting cell is an adjustable parameter. We have implemented a simple 2D electrostatic skeleton code whose inner loop (containing 6 subroutines) runs entirely on the NVIDIA Tesla C1060. We obtained speedups of about 16-25 compared to a 2.66 GHz Intel i7 (Nehalem), depending on the plasma temperature, with an asymptotic limit of 40 for a frozen plasma. We expect speedups of about 70 for an 2D electromagnetic code and about 100 for a 3D electromagnetic code, which have higher computational intensities (more flops/memory access).
A Model of Adaptive Language Learning
ERIC Educational Resources Information Center
Woodrow, Lindy J.
2006-01-01
This study applies theorizing from educational psychology and language learning to hypothesize a model of language learning that takes into account affect, motivation, and language learning strategies. The study employed a questionnaire to assess variables of motivation, self-efficacy, anxiety, and language learning strategies. The sample…
Clustering of tethered satellite system simulation data by an adaptive neuro-fuzzy algorithm
NASA Technical Reports Server (NTRS)
Mitra, Sunanda; Pemmaraju, Surya
1992-01-01
Recent developments in neuro-fuzzy systems indicate that the concepts of adaptive pattern recognition, when used to identify appropriate control actions corresponding to clusters of patterns representing system states in dynamic nonlinear control systems, may result in innovative designs. A modular, unsupervised neural network architecture, in which fuzzy learning rules have been embedded is used for on-line identification of similar states. The architecture and control rules involved in Adaptive Fuzzy Leader Clustering (AFLC) allow this system to be incorporated in control systems for identification of system states corresponding to specific control actions. We have used this algorithm to cluster the simulation data of Tethered Satellite System (TSS) to estimate the range of delta voltages necessary to maintain the desired length rate of the tether. The AFLC algorithm is capable of on-line estimation of the appropriate control voltages from the corresponding length error and length rate error without a priori knowledge of their membership functions and familarity with the behavior of the Tethered Satellite System.
Robust facial expression recognition algorithm based on local metric learning
NASA Astrophysics Data System (ADS)
Jiang, Bin; Jia, Kebin
2016-01-01
In facial expression recognition tasks, different facial expressions are often confused with each other. Motivated by the fact that a learned metric can significantly improve the accuracy of classification, a facial expression recognition algorithm based on local metric learning is proposed. First, k-nearest neighbors of the given testing sample are determined from the total training data. Second, chunklets are selected from the k-nearest neighbors. Finally, the optimal transformation matrix is computed by maximizing the total variance between different chunklets and minimizing the total variance of instances in the same chunklet. The proposed algorithm can find the suitable distance metric for every testing sample and improve the performance on facial expression recognition. Furthermore, the proposed algorithm can be used for vector-based and matrix-based facial expression recognition. Experimental results demonstrate that the proposed algorithm could achieve higher recognition rates and be more robust than baseline algorithms on the JAFFE, CK, and RaFD databases.
Finite-sample based learning algorithms for feedforward networks
Rao, N.S.V.; Protopopescu, V.; Mann, R.C.; Oblow, E.M.; Iyengar, S.S.
1995-04-01
We discuss two classes of convergent algorithms for learning continuous functions (and also regression functions) that are represented by FeedForward Networks (FFN). The first class of algorithms, applicable to networks with unknown weights located only in the output layer, is obtained by utilizing the potential function methods of Aizerman et al. The second class, applicable to general feedforward networks, is obtained by utilizing the classical Robbins-Monro style stochastic approximation methods. Conditions relating the sample sizes to the error bounds are derived for both classes of algorithms using martingale-type inequalities. For concreteness, the discussion is presented in terms of neural networks, but the results are applicable to general feedforward networks, in particular to wavelet networks. The algorithms can also be directly applied to concept learning problems. A main distinguishing feature of the this work is that the sample sizes are based on explicit algorithms rather than information-based methods.
A fast and convergent stochastic MLP learning algorithm.
Sakurai, A
2001-12-01
We propose a stochastic learning algorithm for multilayer perceptrons of linear-threshold function units, which theoretically converges with probability one and experimentally exhibits 100% convergence rate and remarkable speed on parity and classification problems with typical generalization accuracy. For learning the n bit parity function with n hidden units, the algorithm converged on all the trials we tested (n=2 to 12) after 5.8 x 4.1(n) presentations for 0.23 x 4.0(n-6) seconds on a 533MHz Alpha 21164A chip on average, which is five to ten times faster than Levenberg-Marquardt algorithm with restarts. For a medium size classification problem known as Thyroid in UCI repository, the algorithm is faster in speed and comparative in generalization accuracy than the standard backpropagation and Levenberg-Marquardt algorithms. PMID:11852440
Fault-tolerant nonlinear adaptive flight control using sliding mode online learning.
Krüger, Thomas; Schnetter, Philipp; Placzek, Robin; Vörsmann, Peter
2012-08-01
An expanded nonlinear model inversion flight control strategy using sliding mode online learning for neural networks is presented. The proposed control strategy is implemented for a small unmanned aircraft system (UAS). This class of aircraft is very susceptible towards nonlinearities like atmospheric turbulence, model uncertainties and of course system failures. Therefore, these systems mark a sensible testbed to evaluate fault-tolerant, adaptive flight control strategies. Within this work the concept of feedback linearization is combined with feed forward neural networks to compensate for inversion errors and other nonlinear effects. Backpropagation-based adaption laws of the network weights are used for online training. Within these adaption laws the standard gradient descent backpropagation algorithm is augmented with the concept of sliding mode control (SMC). Implemented as a learning algorithm, this nonlinear control strategy treats the neural network as a controlled system and allows a stable, dynamic calculation of the learning rates. While considering the system's stability, this robust online learning method therefore offers a higher speed of convergence, especially in the presence of external disturbances. The SMC-based flight controller is tested and compared with the standard gradient descent backpropagation algorithm in the presence of system failures. PMID:22386784
Sheng, Zheng; Wang, Jun; Zhou, Shudao; Zhou, Bihua
2014-03-01
This paper introduces a novel hybrid optimization algorithm to establish the parameters of chaotic systems. In order to deal with the weaknesses of the traditional cuckoo search algorithm, the proposed adaptive cuckoo search with simulated annealing algorithm is presented, which incorporates the adaptive parameters adjusting operation and the simulated annealing operation in the cuckoo search algorithm. Normally, the parameters of the cuckoo search algorithm are kept constant that may result in decreasing the efficiency of the algorithm. For the purpose of balancing and enhancing the accuracy and convergence rate of the cuckoo search algorithm, the adaptive operation is presented to tune the parameters properly. Besides, the local search capability of cuckoo search algorithm is relatively weak that may decrease the quality of optimization. So the simulated annealing operation is merged into the cuckoo search algorithm to enhance the local search ability and improve the accuracy and reliability of the results. The functionality of the proposed hybrid algorithm is investigated through the Lorenz chaotic system under the noiseless and noise condition, respectively. The numerical results demonstrate that the method can estimate parameters efficiently and accurately in the noiseless and noise condition. Finally, the results are compared with the traditional cuckoo search algorithm, genetic algorithm, and particle swarm optimization algorithm. Simulation results demonstrate the effectiveness and superior performance of the proposed algorithm. PMID:24697395
Sheng, Zheng; Wang, Jun; Zhou, Bihua; Zhou, Shudao
2014-03-15
This paper introduces a novel hybrid optimization algorithm to establish the parameters of chaotic systems. In order to deal with the weaknesses of the traditional cuckoo search algorithm, the proposed adaptive cuckoo search with simulated annealing algorithm is presented, which incorporates the adaptive parameters adjusting operation and the simulated annealing operation in the cuckoo search algorithm. Normally, the parameters of the cuckoo search algorithm are kept constant that may result in decreasing the efficiency of the algorithm. For the purpose of balancing and enhancing the accuracy and convergence rate of the cuckoo search algorithm, the adaptive operation is presented to tune the parameters properly. Besides, the local search capability of cuckoo search algorithm is relatively weak that may decrease the quality of optimization. So the simulated annealing operation is merged into the cuckoo search algorithm to enhance the local search ability and improve the accuracy and reliability of the results. The functionality of the proposed hybrid algorithm is investigated through the Lorenz chaotic system under the noiseless and noise condition, respectively. The numerical results demonstrate that the method can estimate parameters efficiently and accurately in the noiseless and noise condition. Finally, the results are compared with the traditional cuckoo search algorithm, genetic algorithm, and particle swarm optimization algorithm. Simulation results demonstrate the effectiveness and superior performance of the proposed algorithm.
NASA Astrophysics Data System (ADS)
Sheng, Zheng; Wang, Jun; Zhou, Shudao; Zhou, Bihua
2014-03-01
This paper introduces a novel hybrid optimization algorithm to establish the parameters of chaotic systems. In order to deal with the weaknesses of the traditional cuckoo search algorithm, the proposed adaptive cuckoo search with simulated annealing algorithm is presented, which incorporates the adaptive parameters adjusting operation and the simulated annealing operation in the cuckoo search algorithm. Normally, the parameters of the cuckoo search algorithm are kept constant that may result in decreasing the efficiency of the algorithm. For the purpose of balancing and enhancing the accuracy and convergence rate of the cuckoo search algorithm, the adaptive operation is presented to tune the parameters properly. Besides, the local search capability of cuckoo search algorithm is relatively weak that may decrease the quality of optimization. So the simulated annealing operation is merged into the cuckoo search algorithm to enhance the local search ability and improve the accuracy and reliability of the results. The functionality of the proposed hybrid algorithm is investigated through the Lorenz chaotic system under the noiseless and noise condition, respectively. The numerical results demonstrate that the method can estimate parameters efficiently and accurately in the noiseless and noise condition. Finally, the results are compared with the traditional cuckoo search algorithm, genetic algorithm, and particle swarm optimization algorithm. Simulation results demonstrate the effectiveness and superior performance of the proposed algorithm.
Belyakov, A.A.; Mal`tsev, A.A.; Medvedev, S.Yu.
1995-04-01
A modified least squares algorithm, preventing the overflow of the discharge grid of weight coefficients of an adaptive transverse filter and guaranteeing stable system operation, is suggested for the tuning of an adaptive system of an actively quenched sound field. Experimental results are provided for an adaptive filter with a modified algorithm in a system of several harmonic components of an actively quenched sound field.
An Adaptive RFID Anti-Collision Algorithm Based on Dynamic Framed ALOHA
NASA Astrophysics Data System (ADS)
Lee, Chang Woo; Cho, Hyeonwoo; Kim, Sang Woo
The collision of ID signals from a large number of colocated passive RFID tags is a serious problem; to realize a practical RFID systems we need an effective anti-collision algorithm. This letter presents an adaptive algorithm to minimize the total time slots and the number of rounds required for identifying the tags within the RFID reader's interrogation zone. The proposed algorithm is based on the framed ALOHA protocol, and the frame size is adaptively updated each round. Simulation results show that our proposed algorithm is more efficient than the conventional algorithms based on the framed ALOHA.
Constructive neural-network learning algorithms for pattern classification.
Parekh, R; Yang, J; Honavar, V
2000-01-01
Constructive learning algorithms offer an attractive approach for the incremental construction of near-minimal neural-network architectures for pattern classification. They help overcome the need for ad hoc and often inappropriate choices of network topology in algorithms that search for suitable weights in a priori fixed network architectures. Several such algorithms are proposed in the literature and shown to converge to zero classification errors (under certain assumptions) on tasks that involve learning a binary to binary mapping (i.e., classification problems involving binary-valued input attributes and two output categories). We present two constructive learning algorithms MPyramid-real and MTiling-real that extend the pyramid and tiling algorithms, respectively, for learning real to M-ary mappings (i.e., classification problems involving real-valued input attributes and multiple output classes). We prove the convergence of these algorithms and empirically demonstrate their applicability to practical pattern classification problems. Additionally, we show how the incorporation of a local pruning step can eliminate several redundant neurons from MTiling-real networks. PMID:18249773
Zhang, Yan-jun; Liu, Wen-zhe; Fu, Xing-hu; Bi, Wei-hong
2015-10-01
According to the high precision extracting characteristics of scattering spectrum in Brillouin optical time domain reflection optical fiber sensing system, this paper proposes a new algorithm based on flies optimization algorithm with adaptive mutation and generalized regression neural network. The method takes advantages of the generalized regression neural network which has the ability of the approximation ability, learning speed and generalization of the model. Moreover, by using the strong search ability of flies optimization algorithm with adaptive mutation, it can enhance the learning ability of the neural network. Thus the fitting degree of Brillouin scattering spectrum and the extraction accuracy of frequency shift is improved. Model of actual Brillouin spectrum are constructed by Gaussian white noise on theoretical spectrum, whose center frequency is 11.213 GHz and the linewidths are 40-50, 30-60 and 20-70 MHz, respectively. Comparing the algorithm with the Levenberg-Marquardt fitting method based on finite element analysis, hybrid algorithm particle swarm optimization, Levenberg-Marquardt and the least square method, the maximum frequency shift error of the new algorithm is 0.4 MHz, the fitting degree is 0.991 2 and the root mean square error is 0.024 1. The simulation results show that the proposed algorithm has good fitting degree and minimum absolute error. Therefore, the algorithm can be used on distributed optical fiber sensing system based on Brillouin optical time domain reflection, which can improve the fitting of Brillouin scattering spectrum and the precision of frequency shift extraction effectively. PMID:26904844
An Adaptable Power System with Software Control Algorithm
NASA Technical Reports Server (NTRS)
Castell, Karen; Bay, Mike; Hernandez-Pellerano, Amri; Ha, Kong
1998-01-01
A low cost, flexible and modular spacecraft power system design was developed in response to a call for an architecture that could accommodate multiple missions in the small to medium load range. Three upcoming satellites will use this design, with one launch date in 1999 and two in the year 2000. The design consists of modular hardware that can be scaled up or down, without additional cost, to suit missions in the 200 to 600 Watt orbital average load range. The design will be applied to satellite orbits that are circular, polar elliptical and a libration point orbit. Mission unique adaptations are accomplished in software and firmware. In designing this advanced, adaptable power system, the major goals were reduction in weight volume and cost. This power system design represents reductions in weight of 78 percent, volume of 86 percent and cost of 65 percent from previous comparable systems. The efforts to miniaturize the electronics without sacrificing performance has created streamlined power electronics with control functions residing in the system microprocessor. The power system design can handle any battery size up to 50 Amp-hour and any battery technology. The three current implementations will use both nickel cadmium and nickel hydrogen batteries ranging in size from 21 to 50 Amp-hours. Multiple batteries can be used by adding another battery module. Any solar cell technology can be used and various array layouts can be incorporated with no change in Power System Electronics (PSE) hardware. Other features of the design are the standardized interfaces between cards and subsystems and immunity to radiation effects up to 30 krad Total Ionizing Dose (TID) and 35 Mev/cm(exp 2)-kg for Single Event Effects (SEE). The control algorithm for the power system resides in a radiation-hardened microprocessor. A table driven software design allows for flexibility in mission specific requirements. By storing critical power system constants in memory, modifying the system
Implementing a self-structuring data learning algorithm
NASA Astrophysics Data System (ADS)
Graham, James; Carson, Daniel; Ternovskiy, Igor
2016-05-01
In this paper, we elaborate on what we did to implement our self-structuring data learning algorithm. To recap, we are working to develop a data learning algorithm that will eventually be capable of goal driven pattern learning and extrapolation of more complex patterns from less complex ones. At this point we have developed a conceptual framework for the algorithm, but have yet to discuss our actual implementation and the consideration and shortcuts we needed to take to create said implementation. We will elaborate on our initial setup of the algorithm and the scenarios we used to test our early stage algorithm. While we want this to be a general algorithm, it is necessary to start with a simple scenario or two to provide a viable development and testing environment. To that end, our discussion will be geared toward what we include in our initial implementation and why, as well as what concerns we may have. In the future, we expect to be able to apply our algorithm to a more general approach, but to do so within a reasonable time, we needed to pick a place to start.
Any Two Learning Algorithms Are (Almost) Exactly Identical
NASA Technical Reports Server (NTRS)
Wolpert, David H.
2000-01-01
This paper shows that if one is provided with a loss function, it can be used in a natural way to specify a distance measure quantifying the similarity of any two supervised learning algorithms, even non-parametric algorithms. Intuitively, this measure gives the fraction of targets and training sets for which the expected performance of the two algorithms differs significantly. Bounds on the value of this distance are calculated for the case of binary outputs and 0-1 loss, indicating that any two learning algorithms are almost exactly identical for such scenarios. As an example, for any two algorithms A and B, even for small input spaces and training sets, for less than 2e(-50) of all targets will the difference between A's and B's generalization performance of exceed 1%. In particular, this is true if B is bagging applied to A, or boosting applied to A. These bounds can be viewed alternatively as telling us, for example, that the simple English phrase 'I expect that algorithm A will generalize from the training set with an accuracy of at least 75% on the rest of the target' conveys 20,000 bytes of information concerning the target. The paper ends by discussing some of the subtleties of extending the distance measure to give a full (non-parametric) differential geometry of the manifold of learning algorithms.
Adaptive Learning for ESL Based on Computation
ERIC Educational Resources Information Center
Wang, Ya-huei; Liao, Hung-Chang
2011-01-01
In the conventional English as a Second Language (ESL) class-based learning environment, teachers use a fixed learning sequence and content for all students without considering the diverse needs of each individual. There is a great deal of diversity within and between classes. Hence, if students' learning outcomes are to be maximised, it is…
Towards adaptation in e-learning 2.0
NASA Astrophysics Data System (ADS)
Cristea, Alexandra I.; Ghali, Fawaz
2011-04-01
This paper presents several essential steps from an overall study on shaping new ways of learning and teaching, by using the synergetic merger of three different fields: Web 2.0, e-learning and adaptation (in particular, personalisation to the learner). These novel teaching and learning ways-the latter focus of this paper-are reflected in and finally adding to various versions of the My Online Teacher 2.0 adaptive system. In particular, this paper focuses on a study of how to more effectively use and combine the recommendation of peers and content adaptation to enhance the learning outcome in e-learning systems based on Web 2.0. In order to better isolate and examine the effects of peer recommendation and adaptive content presentation, we designed experiments inspecting collaboration between individuals based on recommendation of peers who have greater knowledge, and compare this to adaptive content recommendation, as well as to "simple" learning in a system with a minimum of Web 2.0 support. Overall, the results of adding peer recommendation and adaptive content presentation were encouraging, and are further discussed in detail in this paper.
Learning Experiences Reuse Based on an Ontology Modeling to Improve Adaptation in E-Learning Systems
ERIC Educational Resources Information Center
Hadj M'tir, Riadh; Rumpler, Béatrice; Jeribi, Lobna; Ben Ghezala, Henda
2014-01-01
Current trends in e-Learning focus mainly on personalizing and adapting the learning environment and learning process. Although their increasingly number, theses researches often ignore the concepts of capitalization and reuse of learner experiences which can be exploited later by other learners. Thus, the major challenge of distance learning is…
A Learning Style Perspective to Investigate the Necessity of Developing Adaptive Learning Systems
ERIC Educational Resources Information Center
Hwang, Gwo-Jen; Sung, Han-Yu; Hung, Chun-Ming; Huang, Iwen
2013-01-01
Learning styles are considered to be one of the factors that need to be taken into account in developing adaptive learning systems. However, few studies have been conducted to investigate if students have the ability to choose the best-fit e-learning systems or content presentation styles for themselves in terms of learning style perspective. In…
An Intelligent E-Learning System Based on Learner Profiling and Learning Resources Adaptation
ERIC Educational Resources Information Center
Tzouveli, Paraskevi; Mylonas, Phivos; Kollias, Stefanos
2008-01-01
Taking advantage of the continuously improving, web-based learning systems plays an important role for self-learning, especially in the case of working people. Nevertheless, learning systems do not generally adapt to learners' profiles. Learners have to spend a lot of time before reaching the learning goal that is compatible with their knowledge…
Implementation of an Adaptive Learning System Using a Bayesian Network
ERIC Educational Resources Information Center
Yasuda, Keiji; Kawashima, Hiroyuki; Hata, Yoko; Kimura, Hiroaki
2015-01-01
An adaptive learning system is proposed that incorporates a Bayesian network to efficiently gauge learners' understanding at the course-unit level. Also, learners receive content that is adapted to their measured level of understanding. The system works on an iPad via the Edmodo platform. A field experiment using the system in an elementary school…
Enhancing Student Motivation and Learning within Adaptive Tutors
ERIC Educational Resources Information Center
Ostrow, Korinn S.
2015-01-01
My research is rooted in improving K-12 educational practice using motivational facets made possible through adaptive tutoring systems. In an attempt to isolate best practices within the science of learning, I conduct randomized controlled trials within ASSISTments, an online adaptive tutoring system that provides assistance and assessment to…
New Approach for IIR Adaptive Lattice Filter Structure Using Simultaneous Perturbation Algorithm
NASA Astrophysics Data System (ADS)
Martinez, Jorge Ivan Medina; Nakano, Kazushi; Higuchi, Kohji
Adaptive infinite impulse response (IIR), or recursive, filters are less attractive mainly because of the stability and the difficulties associated with their adaptive algorithms. Therefore, in this paper the adaptive IIR lattice filters are studied in order to devise algorithms that preserve the stability of the corresponding direct-form schemes. We analyze the local properties of stationary points, a transformation achieving this goal is suggested, which gives algorithms that can be efficiently implemented. Application to the Steiglitz-McBride (SM) and Simple Hyperstable Adaptive Recursive Filter (SHARF) algorithms is presented. Also a modified version of Simultaneous Perturbation Stochastic Approximation (SPSA) is presented in order to get the coefficients in a lattice form more efficiently and with a lower computational cost and complexity. The results are compared with previous lattice versions of these algorithms. These previous lattice versions may fail to preserve the stability of stationary points.
Estimating Position of Mobile Robots From Omnidirectional Vision Using an Adaptive Algorithm.
Li, Luyang; Liu, Yun-Hui; Wang, Kai; Fang, Mu
2015-08-01
This paper presents a novel and simple adaptive algorithm for estimating the position of a mobile robot with high accuracy in an unknown and unstructured environment by fusing images of an omnidirectional vision system with measurements of odometry and inertial sensors. Based on a new derivation where the omnidirectional projection can be linearly parameterized by the positions of the robot and natural feature points, we propose a novel adaptive algorithm, which is similar to the Slotine-Li algorithm in model-based adaptive control, to estimate the robot's position by using the tracked feature points in image sequence, the robot's velocity, and orientation angles measured by odometry and inertial sensors. It is proved that the adaptive algorithm leads to global exponential convergence of the position estimation errors to zero. Simulations and real-world experiments are performed to demonstrate the performance of the proposed algorithm. PMID:25265622
Optimization of circuits using a constructive learning algorithm
Beiu, V.
1997-05-01
The paper presents an application of a constructive learning algorithm to optimization of circuits. For a given Boolean function f. a fresh constructive learning algorithm builds circuits belonging to the smallest F{sub n,m} class of functions (n inputs and having m groups of ones in their truth table). The constructive proofs, which show how arbitrary Boolean functions can be implemented by this algorithm, are shortly enumerated An interesting aspect is that the algorithm can be used for generating both classical Boolean circuits and threshold gate circuits (i.e. analogue inputs and digital outputs), or a mixture of them, thus taking advantage of mixed analogue/digital technologies. One illustrative example is detailed The size and the area of the different circuits are compared (special cost functions can be used to closer estimate the area and the delay of VLSI implementations). Conclusions and further directions of research are ending the paper.
Gradient Learning Algorithms for Ontology Computing
Gao, Wei; Zhu, Linli
2014-01-01
The gradient learning model has been raising great attention in view of its promising perspectives for applications in statistics, data dimensionality reducing, and other specific fields. In this paper, we raise a new gradient learning model for ontology similarity measuring and ontology mapping in multidividing setting. The sample error in this setting is given by virtue of the hypothesis space and the trick of ontology dividing operator. Finally, two experiments presented on plant and humanoid robotics field verify the efficiency of the new computation model for ontology similarity measure and ontology mapping applications in multidividing setting. PMID:25530752
Adaptive E-Learning Environments: Research Dimensions and Technological Approaches
ERIC Educational Resources Information Center
Di Bitonto, Pierpaolo; Roselli, Teresa; Rossano, Veronica; Sinatra, Maria
2013-01-01
One of the most closely investigated topics in e-learning research has always been the effectiveness of adaptive learning environments. The technological evolutions that have dramatically changed the educational world in the last six decades have allowed ever more advanced and smarter solutions to be proposed. The focus of this paper is to depict…
Design of Adaptive Hypermedia Learning Systems: A Cognitive Style Approach
ERIC Educational Resources Information Center
Mampadi, Freddy; Chen, Sherry Y.; Ghinea, Gheorghita; Chen, Ming-Puu
2011-01-01
In the past decade, a number of adaptive hypermedia learning systems have been developed. However, most of these systems tailor presentation content and navigational support solely according to students' prior knowledge. On the other hand, previous research suggested that cognitive styles significantly affect student learning because they refer to…
RASCAL: A Rudimentary Adaptive System for Computer-Aided Learning.
ERIC Educational Resources Information Center
Stewart, John Christopher
Both the background of computer-assisted instruction (CAI) systems in general and the requirements of a computer-aided learning system which would be a reasonable assistant to a teacher are discussed. RASCAL (Rudimentary Adaptive System for Computer-Aided Learning) is a first attempt at defining a CAI system which would individualize the learning…
Combining Adaptive Hypermedia with Project and Case-Based Learning
ERIC Educational Resources Information Center
Papanikolaou, Kyparisia; Grigoriadou, Maria
2009-01-01
In this article we investigate the design of educational hypermedia based on constructivist learning theories. According to the principles of project and case-based learning we present the design rational of an Adaptive Educational Hypermedia system prototype named MyProject; learners working with MyProject undertake a project and the system…
Adapting Online Self-Regulated Learning Scale into Turkish
ERIC Educational Resources Information Center
Korkmaz, Ozgen; Kaya, Sinan
2012-01-01
The purpose of this study is to determine online self-regulated learning levels of students by adapting "Online Self-Regulated Learning Scale" designed by Barnard and his colleagues into Turkish. Present study, irrespective of being a scale analysis, is at the same time a qualitative research. It is executed via scan model. Study group of research…
TS: a test-split algorithm for inductive learning
NASA Astrophysics Data System (ADS)
Wu, Xindong
1993-09-01
This paper presents a new attribute-based learning algorithm, TS. Different from ID3, AQ11, and HCV in strategies, this algorithm operates in cycles of test and split. It uses those attribute values which occur only in positives but not in negatives to straightforwardly discriminate positives against negatives and chooses the attributes with least number of different values to split example sets. TS is natural, easy to implement, and low-order polynomial in time complexity.
Vectorizable algorithms for adaptive schemes for rapid analysis of SSME flows
NASA Technical Reports Server (NTRS)
Oden, J. Tinsley
1987-01-01
An initial study into vectorizable algorithms for use in adaptive schemes for various types of boundary value problems is described. The focus is on two key aspects of adaptive computational methods which are crucial in the use of such methods (for complex flow simulations such as those in the Space Shuttle Main Engine): the adaptive scheme itself and the applicability of element-by-element matrix computations in a vectorizable format for rapid calculations in adaptive mesh procedures.
ERIC Educational Resources Information Center
Cikrikci-Demirtash, R. Nukhet
2005-01-01
The study presented in this article was conducted to determine psychometric features of scales for Turkish students by adapting the Patterns of Adaptive Learning Scales (PALS) developed by Midgley and others (2000) to the Turkish language in order to measure personal and classroom goal orientations. The scales were developed to test…
NASA Astrophysics Data System (ADS)
Rehman, Muhammad Zubair; Nawi, Nazri Mohd.
Despite being widely used in the practical problems around the world, Gradient Descent Back-propagation algorithm comes with problems like slow convergence and convergence to local minima. Previous researchers have suggested certain modifications to improve the convergence in gradient Descent Back-propagation algorithm such as careful selection of input weights and biases, learning rate, momentum, network topology, activation function and value for 'gain' in the activation function. This research proposed an algorithm for improving the working performance of back-propagation algorithm which is 'Gradient Descent with Adaptive Momentum (GDAM)' by keeping the gain value fixed during all network trials. The performance of GDAM is compared with 'Gradient Descent with fixed Momentum (GDM)' and 'Gradient Descent Method with Adaptive Gain (GDM-AG)'. The learning rate is fixed to 0.4 and maximum epochs are set to 3000 while sigmoid activation function is used for the experimentation. The results show that GDAM is a better approach than previous methods with an accuracy ratio of 1.0 for classification problems like Wine Quality, Mushroom and Thyroid disease.
Learning Sorting Algorithms through Visualization Construction
ERIC Educational Resources Information Center
Cetin, Ibrahim; Andrews-Larson, Christine
2016-01-01
Recent increased interest in computational thinking poses an important question to researchers: What are the best ways to teach fundamental computing concepts to students? Visualization is suggested as one way of supporting student learning. This mixed-method study aimed to (i) examine the effect of instruction in which students constructed…
Adaptation to nocturnality - learning from avian genomes.
Le Duc, Diana; Schöneberg, Torsten
2016-07-01
The recent availability of multiple avian genomes has laid the foundation for a huge variety of comparative genomics analyses including scans for changes and signatures of selection that arose from adaptions to new ecological niches. Nocturnal adaptation in birds, unlike in mammals, is comparatively recent, a fact that makes birds good candidates for identifying early genetic changes that support adaptation to dim-light environments. In this review, we give examples of comparative genomics analyses that could shed light on mechanisms of adaptation to nocturnality. We present advantages and disadvantages of both "data-driven" and "hypothesis-driven" approaches that lead to the discovery of candidate genes and genetic changes promoting nocturnality. We anticipate that the accessibility of multiple genomes from the Genome 10K Project will allow a better understanding of evolutionary mechanisms and adaptation in general. PMID:27172298
Design and optimisation of a (FA)Q-learning-based HTTP adaptive streaming client
NASA Astrophysics Data System (ADS)
Claeys, Maxim; Latré, Steven; Famaey, Jeroen; Wu, Tingyao; Van Leekwijck, Werner; De Turck, Filip
2014-01-01
In recent years, HTTP (Hypertext Transfer Protocol) adaptive streaming (HAS) has become the de facto standard for adaptive video streaming services. A HAS video consists of multiple segments, encoded at multiple quality levels. State-of-the-art HAS clients employ deterministic heuristics to dynamically adapt the requested quality level based on the perceived network conditions. Current HAS client heuristics are, however, hardwired to fit specific network configurations, making them less flexible to fit a vast range of settings. In this article, a (frequency adjusted) Q-learning HAS client is proposed. In contrast to existing heuristics, the proposed HAS client dynamically learns the optimal behaviour corresponding to the current network environment in order to optimise the quality of experience. Furthermore, the client has been optimised both in terms of global performance and convergence speed. Thorough evaluations show that the proposed client can outperform deterministic algorithms by 11-18% in terms of mean opinion score in a wide range of network configurations.
An Adaptive Digital Image Watermarking Algorithm Based on Morphological Haar Wavelet Transform
NASA Astrophysics Data System (ADS)
Huang, Xiaosheng; Zhao, Sujuan
At present, much more of the wavelet-based digital watermarking algorithms are based on linear wavelet transform and fewer on non-linear wavelet transform. In this paper, we propose an adaptive digital image watermarking algorithm based on non-linear wavelet transform--Morphological Haar Wavelet Transform. In the algorithm, the original image and the watermark image are decomposed with multi-scale morphological wavelet transform respectively. Then the watermark information is adaptively embedded into the original image in different resolutions, combining the features of Human Visual System (HVS). The experimental results show that our method is more robust and effective than the ordinary wavelet transform algorithms.
Comparative study of adaptive-noise-cancellation algorithms for intrusion detection systems
Claassen, J.P.; Patterson, M.M.
1981-01-01
Some intrusion detection systems are susceptible to nonstationary noise resulting in frequent nuisance alarms and poor detection when the noise is present. Adaptive inverse filtering for single channel systems and adaptive noise cancellation for two channel systems have both demonstrated good potential in removing correlated noise components prior detection. For such noise susceptible systems the suitability of a noise reduction algorithm must be established in a trade-off study weighing algorithm complexity against performance. The performance characteristics of several distinct classes of algorithms are established through comparative computer studies using real signals. The relative merits of the different algorithms are discussed in the light of the nature of intruder and noise signals.
Motor sequence learning and motor adaptation in primary cervical dystonia.
Katschnig-Winter, Petra; Schwingenschuh, Petra; Davare, Marco; Sadnicka, Anna; Schmidt, Reinhold; Rothwell, John C; Bhatia, Kailash P; Edwards, Mark J
2014-06-01
Motor sequence learning and motor adaptation rely on overlapping circuits predominantly involving the basal ganglia and cerebellum. Given the importance of these brain regions to the pathophysiology of primary dystonia, and the previous finding of abnormal motor sequence learning in DYT1 gene carriers, we explored motor sequence learning and motor adaptation in patients with primary cervical dystonia. We recruited 12 patients with cervical dystonia and 11 healthy controls matched for age. Subjects used a joystick to move a cursor from a central starting point to radial targets as fast and accurately as possible. Using this device, we recorded baseline motor performance, motor sequence learning and a visuomotor adaptation task. Patients with cervical dystonia had a significantly higher peak velocity than controls. Baseline performance with random target presentation was otherwise normal. Patients and controls had similar levels of motor sequence learning and motor adaptation. Our patients had significantly higher peak velocity compared to controls, with similar movement times, implying a different performance strategy. The preservation of motor sequence learning in cervical dystonia patients contrasts with the previously observed deficit seen in patients with DYT1 gene mutations, supporting the hypothesis of differing pathophysiology in different forms of primary dystonia. Normal motor adaptation is an interesting finding. With our paradigm we did not find evidence that the previously documented cerebellar abnormalities in cervical dystonia have a behavioral correlate, and thus could be compensatory or reflect "contamination" rather than being directly pathological. PMID:24411324
An adaptive learning rate for RBFNN using time-domain feedback analysis.
Ali, Syed Saad Azhar; Moinuddin, Muhammad; Raza, Kamran; Adil, Syed Hasan
2014-01-01
Radial basis function neural networks are used in a variety of applications such as pattern recognition, nonlinear identification, control and time series prediction. In this paper, the learning algorithm of radial basis function neural networks is analyzed in a feedback structure. The robustness of the learning algorithm is discussed in the presence of uncertainties that might be due to noisy perturbations at the input or to modeling mismatch. An intelligent adaptation rule is developed for the learning rate of RBFNN which gives faster convergence via an estimate of error energy while giving guarantee to the l 2 stability governed by the upper bounding via small gain theorem. Simulation results are presented to support our theoretical development. PMID:24987745
Impedance learning for robotic contact tasks using natural actor-critic algorithm.
Kim, Byungchan; Park, Jooyoung; Park, Shinsuk; Kang, Sungchul
2010-04-01
Compared with their robotic counterparts, humans excel at various tasks by using their ability to adaptively modulate arm impedance parameters. This ability allows us to successfully perform contact tasks even in uncertain environments. This paper considers a learning strategy of motor skill for robotic contact tasks based on a human motor control theory and machine learning schemes. Our robot learning method employs impedance control based on the equilibrium point control theory and reinforcement learning to determine the impedance parameters for contact tasks. A recursive least-square filter-based episodic natural actor-critic algorithm is used to find the optimal impedance parameters. The effectiveness of the proposed method was tested through dynamic simulations of various contact tasks. The simulation results demonstrated that the proposed method optimizes the performance of the contact tasks in uncertain conditions of the environment. PMID:19696001
A model for culturally adapting a learning system.
Del Rosario, M L
1975-12-01
The Cross-Cultural Adaption Model (XCAM) is designed to help identify cultural values contained in the text, narration, or visual components of a learning instrument and enables the adapter to evaluate his adapted model so that he can modify or revise it, and allows him to assess the modified version by actually measuring the amount of cultural conflict still present in it. Such a model would permit world-wide adaption of learning materials in population regulation. A random sample of the target group is selected. The adapter develops a measurin g instrument, the cross-cultural adaption scale (XCA), a number of statements about the cultural affinity of the object evaluated. The pretest portion of the sample tests the clarity and understandability of the rating scale to be used for evaluating the instructional materials; the pilot group analyzes the original version of the instructional mater ials, determines the criteria for change, and analyzes the adapted version in terms of these criteria; the control group is administered the original version of the learning materials; and the experimental group is administered the adapted version. Finally, the responses obtained from the XRA rating scale and discussions of both the experimental and control groups are studied and group differences are ev aluated according to cultural conflicts met with each version. With this data, the preferred combination of elements is constructed. PMID:12307758
Continuous and embedded learning in autonomous vehicles: adapting to sensor failures
NASA Astrophysics Data System (ADS)
Schultz, Alan C.; Grefenstette, John J.
2000-07-01
This project describes an approach to creating autonomous systems that can continue to learn throughout their lives, that is, to be adaptive to changes in the environment and in their own capabilities. Evolutionary learning methods have been found to be useful in several areas in the development of autonomous vehicles. In our research, evolutionary algorithms are used to explore the alternative robot behaviors within a simulation model as a way of reducing the overall knowledge engineering effort. The learned behaviors are then tested in the actual robot and the results compared. Initial research demonstrated the ability to learn reasonable complex robot behaviors such as herding, and navigation and collision avoidance using this offline learning approach. In this work, the vehicle is always exploring different strategies via an internal simulation model; the simulation in term, is changing over time to better match the world. This model, which we call Continuous and Embedded Learning (also referred to as Anytime Learning), is a general approach to continuous learning in a changing environment. The agent's learning module continuously tests new strategies against a simulation model of the task environment, and dynamically updates the knowledge base used by the agent on the basis of the results. The execution module controls the agent's interaction with the environment, and includes a monitor that can dynamically modify the simulation model based on its observations of the environment. When a simulation model is modified, the learning process continues on the modified model. The learning system is assume to operate indefinitely, and the execution system uses the results of learning as they become available. Early experimental studies demonstrate a robot that can learn to adapt to failures in its sonar sensors.
Zou, Han; Lu, Xiaoxuan; Jiang, Hao; Xie, Lihua
2015-01-01
Nowadays, developing indoor positioning systems (IPSs) has become an attractive research topic due to the increasing demands on location-based service (LBS) in indoor environments. WiFi technology has been studied and explored to provide indoor positioning service for years in view of the wide deployment and availability of existing WiFi infrastructures in indoor environments. A large body of WiFi-based IPSs adopt fingerprinting approaches for localization. However, these IPSs suffer from two major problems: the intensive costs of manpower and time for offline site survey and the inflexibility to environmental dynamics. In this paper, we propose an indoor localization algorithm based on an online sequential extreme learning machine (OS-ELM) to address the above problems accordingly. The fast learning speed of OS-ELM can reduce the time and manpower costs for the offline site survey. Meanwhile, its online sequential learning ability enables the proposed localization algorithm to adapt in a timely manner to environmental dynamics. Experiments under specific environmental changes, such as variations of occupancy distribution and events of opening or closing of doors, are conducted to evaluate the performance of OS-ELM. The simulation and experimental results show that the proposed localization algorithm can provide higher localization accuracy than traditional approaches, due to its fast adaptation to various environmental dynamics. PMID:25599427
Zou, Han; Lu, Xiaoxuan; Jiang, Hao; Xie, Lihua
2015-01-01
Nowadays, developing indoor positioning systems (IPSs) has become an attractive research topic due to the increasing demands on location-based service (LBS) in indoor environments. WiFi technology has been studied and explored to provide indoor positioning service for years in view of the wide deployment and availability of existing WiFi infrastructures in indoor environments. A large body of WiFi-based IPSs adopt fingerprinting approaches for localization. However, these IPSs suffer from two major problems: the intensive costs of manpower and time for offline site survey and the inflexibility to environmental dynamics. In this paper, we propose an indoor localization algorithm based on an online sequential extreme learning machine (OS-ELM) to address the above problems accordingly. The fast learning speed of OS-ELM can reduce the time and manpower costs for the offline site survey. Meanwhile, its online sequential learning ability enables the proposed localization algorithm to adapt in a timely manner to environmental dynamics. Experiments under specific environmental changes, such as variations of occupancy distribution and events of opening or closing of doors, are conducted to evaluate the performance of OS-ELM. The simulation and experimental results show that the proposed localization algorithm can provide higher localization accuracy than traditional approaches, due to its fast adaptation to various environmental dynamics. PMID:25599427
Cascade Error Projection: A Learning Algorithm for Hardware Implementation
NASA Technical Reports Server (NTRS)
Duong, Tuan A.; Daud, Taher
1996-01-01
In this paper, we workout a detailed mathematical analysis for a new learning algorithm termed Cascade Error Projection (CEP) and a general learning frame work. This frame work can be used to obtain the cascade correlation learning algorithm by choosing a particular set of parameters. Furthermore, CEP learning algorithm is operated only on one layer, whereas the other set of weights can be calculated deterministically. In association with the dynamical stepsize change concept to convert the weight update from infinite space into a finite space, the relation between the current stepsize and the previous energy level is also given and the estimation procedure for optimal stepsize is used for validation of our proposed technique. The weight values of zero are used for starting the learning for every layer, and a single hidden unit is applied instead of using a pool of candidate hidden units similar to cascade correlation scheme. Therefore, simplicity in hardware implementation is also obtained. Furthermore, this analysis allows us to select from other methods (such as the conjugate gradient descent or the Newton's second order) one of which will be a good candidate for the learning technique. The choice of learning technique depends on the constraints of the problem (e.g., speed, performance, and hardware implementation); one technique may be more suitable than others. Moreover, for a discrete weight space, the theoretical analysis presents the capability of learning with limited weight quantization. Finally, 5- to 8-bit parity and chaotic time series prediction problems are investigated; the simulation results demonstrate that 4-bit or more weight quantization is sufficient for learning neural network using CEP. In addition, it is demonstrated that this technique is able to compensate for less bit weight resolution by incorporating additional hidden units. However, generation result may suffer somewhat with lower bit weight quantization.
Binocular self-calibration performed via adaptive genetic algorithm based on laser line imaging
NASA Astrophysics Data System (ADS)
Apolinar Muñoz Rodríguez, J.; Mejía Alanís, Francisco Carlos
2016-07-01
An accurate technique to perform binocular self-calibration by means of an adaptive genetic algorithm based on a laser line is presented. In this calibration, the genetic algorithm computes the vision parameters through simulated binary crossover (SBX). To carry it out, the genetic algorithm constructs an objective function from the binocular geometry of the laser line projection. Then, the SBX minimizes the objective function via chromosomes recombination. In this algorithm, the adaptive procedure determines the search space via line position to obtain the minimum convergence. Thus, the chromosomes of vision parameters provide the minimization. The approach of the proposed adaptive genetic algorithm is to calibrate and recalibrate the binocular setup without references and physical measurements. This procedure leads to improve the traditional genetic algorithms, which calibrate the vision parameters by means of references and an unknown search space. It is because the proposed adaptive algorithm avoids errors produced by the missing of references. Additionally, the three-dimensional vision is carried out based on the laser line position and vision parameters. The contribution of the proposed algorithm is corroborated by an evaluation of accuracy of binocular calibration, which is performed via traditional genetic algorithms.
A novel algorithm for real-time adaptive signal detection and identification
Sleefe, G.E.; Ladd, M.D.; Gallegos, D.E.; Sicking, C.W.; Erteza, I.A.
1998-04-01
This paper describes a novel digital signal processing algorithm for adaptively detecting and identifying signals buried in noise. The algorithm continually computes and updates the long-term statistics and spectral characteristics of the background noise. Using this noise model, a set of adaptive thresholds and matched digital filters are implemented to enhance and detect signals that are buried in the noise. The algorithm furthermore automatically suppresses coherent noise sources and adapts to time-varying signal conditions. Signal detection is performed in both the time-domain and the frequency-domain, thereby permitting the detection of both broad-band transients and narrow-band signals. The detection algorithm also provides for the computation of important signal features such as amplitude, timing, and phase information. Signal identification is achieved through a combination of frequency-domain template matching and spectral peak picking. The algorithm described herein is well suited for real-time implementation on digital signal processing hardware. This paper presents the theory of the adaptive algorithm, provides an algorithmic block diagram, and demonstrate its implementation and performance with real-world data. The computational efficiency of the algorithm is demonstrated through benchmarks on specific DSP hardware. The applications for this algorithm, which range from vibration analysis to real-time image processing, are also discussed.
Adaptive Image Denoising by Mixture Adaptation.
Luo, Enming; Chan, Stanley H; Nguyen, Truong Q
2016-10-01
We propose an adaptive learning procedure to learn patch-based image priors for image denoising. The new algorithm, called the expectation-maximization (EM) adaptation, takes a generic prior learned from a generic external database and adapts it to the noisy image to generate a specific prior. Different from existing methods that combine internal and external statistics in ad hoc ways, the proposed algorithm is rigorously derived from a Bayesian hyper-prior perspective. There are two contributions of this paper. First, we provide full derivation of the EM adaptation algorithm and demonstrate methods to improve the computational complexity. Second, in the absence of the latent clean image, we show how EM adaptation can be modified based on pre-filtering. The experimental results show that the proposed adaptation algorithm yields consistently better denoising results than the one without adaptation and is superior to several state-of-the-art algorithms. PMID:27416593
Adaptive coupling of inferior olive neurons in cerebellar learning.
Tokuda, Isao T; Hoang, Huu; Schweighofer, Nicolas; Kawato, Mitsuo
2013-11-01
In the cerebellar learning hypothesis, inferior olive neurons are presumed to transmit high fidelity error signals, despite their low firing rates. The idea of chaotic resonance has been proposed to realize efficient error transmission by desynchronized spiking activities induced by moderate electrical coupling between inferior olive neurons. A recent study suggests that the coupling strength between inferior olive neurons can be adaptive and may decrease during the learning process. We show that such a decrease in coupling strength can be beneficial for motor learning, since efficient coupling strength depends upon the magnitude of the error signals. We introduce a scheme of adaptive coupling that enhances the learning of a neural controller for fast arm movements. Our numerical study supports the view that the controlling strategy of the coupling strength provides an additional degree of freedom to optimize the actual learning in the cerebellum. PMID:23337637
Diederen, Kelly M J; Spencer, Tom; Vestergaard, Martin D; Fletcher, Paul C; Schultz, Wolfram
2016-06-01
Effective error-driven learning benefits from scaling of prediction errors to reward variability. Such behavioral adaptation may be facilitated by neurons coding prediction errors relative to the standard deviation (SD) of reward distributions. To investigate this hypothesis, we required participants to predict the magnitude of upcoming reward drawn from distributions with different SDs. After each prediction, participants received a reward, yielding trial-by-trial prediction errors. In line with the notion of adaptive coding, BOLD response slopes in the Substantia Nigra/Ventral Tegmental Area (SN/VTA) and ventral striatum were steeper for prediction errors occurring in distributions with smaller SDs. SN/VTA adaptation was not instantaneous but developed across trials. Adaptive prediction error coding was paralleled by behavioral adaptation, as reflected by SD-dependent changes in learning rate. Crucially, increased SN/VTA and ventral striatal adaptation was related to improved task performance. These results suggest that adaptive coding facilitates behavioral adaptation and supports efficient learning. PMID:27181060
Robot navigation algorithms using learned spatial graphs
Iyengar, S.S.; Jorgensen, C.C.; Rao, S.V.N.; Weisbin, C.R.
1985-01-01
Finding optimal paths for robot navigation in known terrain has been studied for some time but, in many important situations, a robot would be required to navigate in completely new or partially explored terrain. We propose a method of robot navigation which requires no pre-learned model, makes maximal use of available information, records and synthesizes information from multiple journeys, and contains concepts of learning that allow for continuous transition from local to global path optimality. The model of the terrain consists of a spatial graph and a Voronoi diagram. Using acquired sensor data, polygonal boundaries containing perceived obstacles shrink to approximate the actual obstacles' surfaces, free space for transit is correspondingly enlarged, and additional nodes and edges are recorded based on path intersections and stop points. Navigation planning is gradually accelerated with experience since improved global map information minimizes the need for further sensor data acquisition. Our method currently assumes obstacle locations are unchanging, navigation can be successfully conducted using two-dimensional projections, and sensor information is precise.
Convergence of reinforcement learning algorithms and acceleration of learning
NASA Astrophysics Data System (ADS)
Potapov, A.; Ali, M. K.
2003-02-01
The techniques of reinforcement learning have been gaining increasing popularity recently. However, the question of their convergence rate is still open. We consider the problem of choosing the learning steps αn, and their relation with discount γ and exploration degree ɛ. Appropriate choices of these parameters may drastically influence the convergence rate of the techniques. From analytical examples, we conjecture optimal values of αn and then use numerical examples to verify our conjectures.
Adaptive Load-Balancing Algorithms using Symmetric Broadcast Networks
NASA Technical Reports Server (NTRS)
Das, Sajal K.; Harvey, Daniel J.; Biswas, Rupak; Biegel, Bryan A. (Technical Monitor)
2002-01-01
In a distributed computing environment, it is important to ensure that the processor workloads are adequately balanced, Among numerous load-balancing algorithms, a unique approach due to Das and Prasad defines a symmetric broadcast network (SBN) that provides a robust communication pattern among the processors in a topology-independent manner. In this paper, we propose and analyze three efficient SBN-based dynamic load-balancing algorithms, and implement them on an SGI Origin2000. A thorough experimental study with Poisson distributed synthetic loads demonstrates that our algorithms are effective in balancing system load. By optimizing completion time and idle time, the proposed algorithms are shown to compare favorably with several existing approaches.
Design and analysis of closed-loop decoder adaptation algorithms for brain-machine interfaces.
Dangi, Siddharth; Orsborn, Amy L; Moorman, Helene G; Carmena, Jose M
2013-07-01
Closed-loop decoder adaptation (CLDA) is an emerging paradigm for achieving rapid performance improvements in online brain-machine interface (BMI) operation. Designing an effective CLDA algorithm requires making multiple important decisions, including choosing the timescale of adaptation, selecting which decoder parameters to adapt, crafting the corresponding update rules, and designing CLDA parameters. These design choices, combined with the specific settings of CLDA parameters, will directly affect the algorithm's ability to make decoder parameters converge to values that optimize performance. In this article, we present a general framework for the design and analysis of CLDA algorithms and support our results with experimental data of two monkeys performing a BMI task. First, we analyze and compare existing CLDA algorithms to highlight the importance of four critical design elements: the adaptation timescale, selective parameter adaptation, smooth decoder updates, and intuitive CLDA parameters. Second, we introduce mathematical convergence analysis using measures such as mean-squared error and KL divergence as a useful paradigm for evaluating the convergence properties of a prototype CLDA algorithm before experimental testing. By applying these measures to an existing CLDA algorithm, we demonstrate that our convergence analysis is an effective analytical tool that can ultimately inform and improve the design of CLDA algorithms. PMID:23607558
Learning & retention in adaptive serious games.
Bergeron, Bryan P
2008-01-01
Serious games are being actively explored as supplements to and, in some cases, replacement for traditional didactic lectures and computer-based instruction in venues ranging from medicine to the military. As part of an intelligent tutoring system (ITS) for nuclear event first responders, we designed and evaluated two serious games that were integrated with adaptive multimedia content. Results reveal that there was no decay in score six weeks following game-based training, which contrasts with results expected with traditional training. This study suggests that adaptive serious games may help integrate didactic content presented though conventional means. PMID:18391250
NASA Astrophysics Data System (ADS)
Leihong, Zhang; Dong, Liang; Bei, Li; Yi, Kang; Zilan, Pan; Dawei, Zhang; Xiuhua, Ma
2016-04-01
In order to improve the reconstruction accuracy and reduce the workload, the algorithm of compressive sensing based on the iterative threshold is combined with the method of adaptive selection of the training sample, and a new algorithm of adaptive compressive sensing is put forward. The three kinds of training sample are used to reconstruct the spectral reflectance of the testing sample based on the compressive sensing algorithm and adaptive compressive sensing algorithm, and the color difference and error are compared. The experiment results show that spectral reconstruction precision based on the adaptive compressive sensing algorithm is better than that based on the algorithm of compressive sensing.
Learning sorting algorithms through visualization construction
NASA Astrophysics Data System (ADS)
Cetin, Ibrahim; Andrews-Larson, Christine
2016-01-01
Recent increased interest in computational thinking poses an important question to researchers: What are the best ways to teach fundamental computing concepts to students? Visualization is suggested as one way of supporting student learning. This mixed-method study aimed to (i) examine the effect of instruction in which students constructed visualizations on students' programming achievement and students' attitudes toward computer programming, and (ii) explore how this kind of instruction supports students' learning according to their self-reported experiences in the course. The study was conducted with 58 pre-service teachers who were enrolled in their second programming class. They expect to teach information technology and computing-related courses at the primary and secondary levels. An embedded experimental model was utilized as a research design. Students in the experimental group were given instruction that required students to construct visualizations related to sorting, whereas students in the control group viewed pre-made visualizations. After the instructional intervention, eight students from each group were selected for semi-structured interviews. The results showed that the intervention based on visualization construction resulted in significantly better acquisition of sorting concepts. However, there was no significant difference between the groups with respect to students' attitudes toward computer programming. Qualitative data analysis indicated that students in the experimental group constructed necessary abstractions through their engagement in visualization construction activities. The authors of this study argue that the students' active engagement in the visualization construction activities explains only one side of students' success. The other side can be explained through the instructional approach, constructionism in this case, used to design instruction. The conclusions and implications of this study can be used by researchers and
A hybrid adaptive routing algorithm for event-driven wireless sensor networks.
Figueiredo, Carlos M S; Nakamura, Eduardo F; Loureiro, Antonio A F
2009-01-01
Routing is a basic function in wireless sensor networks (WSNs). For these networks, routing algorithms depend on the characteristics of the applications and, consequently, there is no self-contained algorithm suitable for every case. In some scenarios, the network behavior (traffic load) may vary a lot, such as an event-driven application, favoring different algorithms at different instants. This work presents a hybrid and adaptive algorithm for routing in WSNs, called Multi-MAF, that adapts its behavior autonomously in response to the variation of network conditions. In particular, the proposed algorithm applies both reactive and proactive strategies for routing infrastructure creation, and uses an event-detection estimation model to change between the strategies and save energy. To show the advantages of the proposed approach, it is evaluated through simulations. Comparisons with independent reactive and proactive algorithms show improvements on energy consumption. PMID:22423207
SIMULATION OF DISPERSION OF A POWER PLANT PLUME USING AN ADAPTIVE GRID ALGORITHM
A new dynamic adaptive grid algorithm has been developed for use in air quality modeling. This algorithm uses a higher order numerical scheme?the piecewise parabolic method (PPM)?for computing advective solution fields; a weight function capable of promoting grid node clustering ...
Research of adaptive threshold edge detection algorithm based on statistics canny operator
NASA Astrophysics Data System (ADS)
Xu, Jian; Wang, Huaisuo; Huang, Hua
2015-12-01
The traditional Canny operator cannot get the optimal threshold in different scene, on this foundation, an improved Canny edge detection algorithm based on adaptive threshold is proposed. The result of the experiment pictures indicate that the improved algorithm can get responsible threshold, and has the better accuracy and precision in the edge detection.
Crane, N K; Parsons, I D; Hjelmstad, K D
2002-03-21
Adaptive mesh refinement selectively subdivides the elements of a coarse user supplied mesh to produce a fine mesh with reduced discretization error. Effective use of adaptive mesh refinement coupled with an a posteriori error estimator can produce a mesh that solves a problem to a given discretization error using far fewer elements than uniform refinement. A geometric multigrid solver uses increasingly finer discretizations of the same geometry to produce a very fast and numerically scalable solution to a set of linear equations. Adaptive mesh refinement is a natural method for creating the different meshes required by the multigrid solver. This paper describes the implementation of a scalable adaptive multigrid method on a distributed memory parallel computer. Results are presented that demonstrate the parallel performance of the methodology by solving a linear elastic rocket fuel deformation problem on an SGI Origin 3000. Two challenges must be met when implementing adaptive multigrid algorithms on massively parallel computing platforms. First, although the fine mesh for which the solution is desired may be large and scaled to the number of processors, the multigrid algorithm must also operate on much smaller fixed-size data sets on the coarse levels. Second, the mesh must be repartitioned as it is adapted to maintain good load balancing. In an adaptive multigrid algorithm, separate mesh levels may require separate partitioning, further complicating the load balance problem. This paper shows that, when the proper optimizations are made, parallel adaptive multigrid algorithms perform well on machines with several hundreds of processors.
NASA Technical Reports Server (NTRS)
Boussalis, Dhemetrios; Wang, Shyh J.
1992-01-01
This paper presents a method for utilizing artificial neural networks for direct adaptive control of dynamic systems with poorly known dynamics. The neural network weights (controller gains) are adapted in real time using state measurements and a random search optimization algorithm. The results are demonstrated via simulation using two highly nonlinear systems.
Teacher Adaptation to Open Learning Spaces
ERIC Educational Resources Information Center
Alterator, Scott; Deed, Craig
2013-01-01
The "open classroom" emerged as a reaction against the industrial-era enclosed and authoritarian classroom. Although contemporary school architecture continues to incorporate and express ideas of openness, more research is needed about how teachers adapt to new and different built contexts. Our purpose is to identify teacher reaction to…
Adaptive algorithm for cloud cover estimation from all-sky images over the sea
NASA Astrophysics Data System (ADS)
Krinitskiy, M. A.; Sinitsyn, A. V.
2016-05-01
A new algorithm for cloud cover estimation has been formulated and developed based on the synthetic control index, called the grayness rate index, and an additional algorithm step of adaptive filtering of the Mie scattering contribution. A setup for automated cloud cover estimation has been designed, assembled, and tested under field conditions. The results shows a significant advantage of the new algorithm over currently commonly used procedures.
ERIC Educational Resources Information Center
Chen, Hsinchun
1995-01-01
Presents an overview of artificial-intelligence-based inductive learning techniques and their use in information science research. Three methods are discussed: the connectionist Hopfield network; the symbolic ID3/ID5R; evolution-based genetic algorithms. The knowledge representations and algorithms of these methods are examined in the context of…
Improving GPU-accelerated adaptive IDW interpolation algorithm using fast kNN search.
Mei, Gang; Xu, Nengxiong; Xu, Liangliang
2016-01-01
This paper presents an efficient parallel Adaptive Inverse Distance Weighting (AIDW) interpolation algorithm on modern Graphics Processing Unit (GPU). The presented algorithm is an improvement of our previous GPU-accelerated AIDW algorithm by adopting fast k-nearest neighbors (kNN) search. In AIDW, it needs to find several nearest neighboring data points for each interpolated point to adaptively determine the power parameter; and then the desired prediction value of the interpolated point is obtained by weighted interpolating using the power parameter. In this work, we develop a fast kNN search approach based on the space-partitioning data structure, even grid, to improve the previous GPU-accelerated AIDW algorithm. The improved algorithm is composed of the stages of kNN search and weighted interpolating. To evaluate the performance of the improved algorithm, we perform five groups of experimental tests. The experimental results indicate: (1) the improved algorithm can achieve a speedup of up to 1017 over the corresponding serial algorithm; (2) the improved algorithm is at least two times faster than our previous GPU-accelerated AIDW algorithm; and (3) the utilization of fast kNN search can significantly improve the computational efficiency of the entire GPU-accelerated AIDW algorithm. PMID:27610308
Mean-shift tracking algorithm based on adaptive fusion of multi-feature
NASA Astrophysics Data System (ADS)
Yang, Kai; Xiao, Yanghui; Wang, Ende; Feng, Junhui
2015-10-01
The classic mean-shift tracking algorithm has achieved success in the field of computer vision because of its speediness and efficiency. However, classic mean-shift tracking algorithm would fail to track in some complicated conditions such as some parts of the target are occluded, little color difference between the target and background exists, or sudden change of illumination and so on. In order to solve the problems, an improved algorithm is proposed based on the mean-shift tracking algorithm and adaptive fusion of features. Color, edges and corners of the target are used to describe the target in the feature space, and a method for measuring the discrimination of various features is presented to make feature selection adaptive. Then the improved mean-shift tracking algorithm is introduced based on the fusion of various features. For the purpose of solving the problem that mean-shift tracking algorithm with the single color feature is vulnerable to sudden change of illumination, we eliminate the effects by the fusion of affine illumination model and color feature space which ensures the correctness and stability of target tracking in that condition. Using a group of videos to test the proposed algorithm, the results show that the tracking correctness and stability of this algorithm are better than the mean-shift tracking algorithm with single feature space. Furthermore the proposed algorithm is more robust than the classic algorithm in the conditions of occlusion, target similar with background or illumination change.
Strategies for adding adaptive learning mechanisms to rule-based diagnostic expert systems
NASA Technical Reports Server (NTRS)
Stclair, D. C.; Sabharwal, C. L.; Bond, W. E.; Hacke, Keith
1988-01-01
Rule-based diagnostic expert systems can be used to perform many of the diagnostic chores necessary in today's complex space systems. These expert systems typically take a set of symptoms as input and produce diagnostic advice as output. The primary objective of such expert systems is to provide accurate and comprehensive advice which can be used to help return the space system in question to nominal operation. The development and maintenance of diagnostic expert systems is time and labor intensive since the services of both knowledge engineer(s) and domain expert(s) are required. The use of adaptive learning mechanisms to increment evaluate and refine rules promises to reduce both time and labor costs associated with such systems. This paper describes the basic adaptive learning mechanisms of strengthening, weakening, generalization, discrimination, and discovery. Next basic strategies are discussed for adding these learning mechanisms to rule-based diagnostic expert systems. These strategies support the incremental evaluation and refinement of rules in the knowledge base by comparing the set of advice given by the expert system (A) with the correct diagnosis (C). Techniques are described for selecting those rules in the in the knowledge base which should participate in adaptive learning. The strategies presented may be used with a wide variety of learning algorithms. Further, these strategies are applicable to a large number of rule-based diagnostic expert systems. They may be used to provide either immediate or deferred updating of the knowledge base.
Bornholdt, S.; Graudenz, D.
1993-07-01
A learning algorithm based on genetic algorithms for asymmetric neural networks with an arbitrary structure is presented. It is suited for the learning of temporal patterns and leads to stable neural networks with feedback.
Stochastic Leader Gravitational Search Algorithm for Enhanced Adaptive Beamforming Technique
Darzi, Soodabeh; Islam, Mohammad Tariqul; Tiong, Sieh Kiong; Kibria, Salehin; Singh, Mandeep
2015-01-01
In this paper, stochastic leader gravitational search algorithm (SL-GSA) based on randomized k is proposed. Standard GSA (SGSA) utilizes the best agents without any randomization, thus it is more prone to converge at suboptimal results. Initially, the new approach randomly choses k agents from the set of all agents to improve the global search ability. Gradually, the set of agents is reduced by eliminating the agents with the poorest performances to allow rapid convergence. The performance of the SL-GSA was analyzed for six well-known benchmark functions, and the results are compared with SGSA and some of its variants. Furthermore, the SL-GSA is applied to minimum variance distortionless response (MVDR) beamforming technique to ensure compatibility with real world optimization problems. The proposed algorithm demonstrates superior convergence rate and quality of solution for both real world problems and benchmark functions compared to original algorithm and other recent variants of SGSA. PMID:26552032
Stochastic Leader Gravitational Search Algorithm for Enhanced Adaptive Beamforming Technique.
Darzi, Soodabeh; Islam, Mohammad Tariqul; Tiong, Sieh Kiong; Kibria, Salehin; Singh, Mandeep
2015-01-01
In this paper, stochastic leader gravitational search algorithm (SL-GSA) based on randomized k is proposed. Standard GSA (SGSA) utilizes the best agents without any randomization, thus it is more prone to converge at suboptimal results. Initially, the new approach randomly choses k agents from the set of all agents to improve the global search ability. Gradually, the set of agents is reduced by eliminating the agents with the poorest performances to allow rapid convergence. The performance of the SL-GSA was analyzed for six well-known benchmark functions, and the results are compared with SGSA and some of its variants. Furthermore, the SL-GSA is applied to minimum variance distortionless response (MVDR) beamforming technique to ensure compatibility with real world optimization problems. The proposed algorithm demonstrates superior convergence rate and quality of solution for both real world problems and benchmark functions compared to original algorithm and other recent variants of SGSA. PMID:26552032
An Adaptive Data Collection Algorithm Based on a Bayesian Compressed Sensing Framework
Liu, Zhi; Zhang, Mengmeng; Cui, Jian
2014-01-01
For Wireless Sensor Networks, energy efficiency is always a key consideration in system design. Compressed sensing is a new theory which has promising prospects in WSNs. However, how to construct a sparse projection matrix is a problem. In this paper, based on a Bayesian compressed sensing framework, a new adaptive algorithm which can integrate routing and data collection is proposed. By introducing new target node selection metrics, embedding the routing structure and maximizing the differential entropy for each collection round, an adaptive projection vector is constructed. Simulations show that compared to reference algorithms, the proposed algorithm can decrease computation complexity and improve energy efficiency. PMID:24818659
Bauer, Robert; Gharabaghi, Alireza
2015-01-01
Restorative brain-computer interfaces (BCI) are increasingly used to provide feedback of neuronal states in a bid to normalize pathological brain activity and achieve behavioral gains. However, patients and healthy subjects alike often show a large variability, or even inability, of brain self-regulation for BCI control, known as BCI illiteracy. Although current co-adaptive algorithms are powerful for assistive BCIs, their inherent class switching clashes with the operant conditioning goal of restorative BCIs. Moreover, due to the treatment rationale, the classifier of restorative BCIs usually has a constrained feature space, thus limiting the possibility of classifier adaptation. In this context, we applied a Bayesian model of neurofeedback and reinforcement learning for different threshold selection strategies to study the impact of threshold adaptation of a linear classifier on optimizing restorative BCIs. For each feedback iteration, we first determined the thresholds that result in minimal action entropy and maximal instructional efficiency. We then used the resulting vector for the simulation of continuous threshold adaptation. We could thus show that threshold adaptation can improve reinforcement learning, particularly in cases of BCI illiteracy. Finally, on the basis of information-theory, we provided an explanation for the achieved benefits of adaptive threshold setting. PMID:25729347
Bauer, Robert; Gharabaghi, Alireza
2015-01-01
Restorative brain-computer interfaces (BCI) are increasingly used to provide feedback of neuronal states in a bid to normalize pathological brain activity and achieve behavioral gains. However, patients and healthy subjects alike often show a large variability, or even inability, of brain self-regulation for BCI control, known as BCI illiteracy. Although current co-adaptive algorithms are powerful for assistive BCIs, their inherent class switching clashes with the operant conditioning goal of restorative BCIs. Moreover, due to the treatment rationale, the classifier of restorative BCIs usually has a constrained feature space, thus limiting the possibility of classifier adaptation. In this context, we applied a Bayesian model of neurofeedback and reinforcement learning for different threshold selection strategies to study the impact of threshold adaptation of a linear classifier on optimizing restorative BCIs. For each feedback iteration, we first determined the thresholds that result in minimal action entropy and maximal instructional efficiency. We then used the resulting vector for the simulation of continuous threshold adaptation. We could thus show that threshold adaptation can improve reinforcement learning, particularly in cases of BCI illiteracy. Finally, on the basis of information-theory, we provided an explanation for the achieved benefits of adaptive threshold setting. PMID:25729347
Auditory-Perceptual Learning Improves Speech Motor Adaptation in Children
Shiller, Douglas M.; Rochon, Marie-Lyne
2015-01-01
Auditory feedback plays an important role in children’s speech development by providing the child with information about speech outcomes that is used to learn and fine-tune speech motor plans. The use of auditory feedback in speech motor learning has been extensively studied in adults by examining oral motor responses to manipulations of auditory feedback during speech production. Children are also capable of adapting speech motor patterns to perceived changes in auditory feedback, however it is not known whether their capacity for motor learning is limited by immature auditory-perceptual abilities. Here, the link between speech perceptual ability and the capacity for motor learning was explored in two groups of 5–7-year-old children who underwent a period of auditory perceptual training followed by tests of speech motor adaptation to altered auditory feedback. One group received perceptual training on a speech acoustic property relevant to the motor task while a control group received perceptual training on an irrelevant speech contrast. Learned perceptual improvements led to an enhancement in speech motor adaptation (proportional to the perceptual change) only for the experimental group. The results indicate that children’s ability to perceive relevant speech acoustic properties has a direct influence on their capacity for sensory-based speech motor adaptation. PMID:24842067
Modelling Adaptive Learning Behaviours for Consensus Formation in Human Societies.
Yu, Chao; Tan, Guozhen; Lv, Hongtao; Wang, Zhen; Meng, Jun; Hao, Jianye; Ren, Fenghui
2016-01-01
Learning is an important capability of humans and plays a vital role in human society for forming beliefs and opinions. In this paper, we investigate how learning affects the dynamics of opinion formation in social networks. A novel learning model is proposed, in which agents can dynamically adapt their learning behaviours in order to facilitate the formation of consensus among them, and thus establish a consistent social norm in the whole population more efficiently. In the model, agents adapt their opinions through trail-and-error interactions with others. By exploiting historical interaction experience, a guiding opinion, which is considered to be the most successful opinion in the neighbourhood, can be generated based on the principle of evolutionary game theory. Then, depending on the consistency between its own opinion and the guiding opinion, a focal agent can realize whether its opinion complies with the social norm (i.e., the majority opinion that has been adopted) in the population, and adapt its behaviours accordingly. The highlight of the model lies in that it captures the essential features of people's adaptive learning behaviours during the evolution and formation of opinions. Experimental results show that the proposed model can facilitate the formation of consensus among agents, and some critical factors such as size of opinion space and network topology can have significant influences on opinion dynamics. PMID:27282089
Modelling Adaptive Learning Behaviours for Consensus Formation in Human Societies
Yu, Chao; Tan, Guozhen; Lv, Hongtao; Wang, Zhen; Meng, Jun; Hao, Jianye; Ren, Fenghui
2016-01-01
Learning is an important capability of humans and plays a vital role in human society for forming beliefs and opinions. In this paper, we investigate how learning affects the dynamics of opinion formation in social networks. A novel learning model is proposed, in which agents can dynamically adapt their learning behaviours in order to facilitate the formation of consensus among them, and thus establish a consistent social norm in the whole population more efficiently. In the model, agents adapt their opinions through trail-and-error interactions with others. By exploiting historical interaction experience, a guiding opinion, which is considered to be the most successful opinion in the neighbourhood, can be generated based on the principle of evolutionary game theory. Then, depending on the consistency between its own opinion and the guiding opinion, a focal agent can realize whether its opinion complies with the social norm (i.e., the majority opinion that has been adopted) in the population, and adapt its behaviours accordingly. The highlight of the model lies in that it captures the essential features of people’s adaptive learning behaviours during the evolution and formation of opinions. Experimental results show that the proposed model can facilitate the formation of consensus among agents, and some critical factors such as size of opinion space and network topology can have significant influences on opinion dynamics. PMID:27282089
Modelling Adaptive Learning Behaviours for Consensus Formation in Human Societies
NASA Astrophysics Data System (ADS)
Yu, Chao; Tan, Guozhen; Lv, Hongtao; Wang, Zhen; Meng, Jun; Hao, Jianye; Ren, Fenghui
2016-06-01
Learning is an important capability of humans and plays a vital role in human society for forming beliefs and opinions. In this paper, we investigate how learning affects the dynamics of opinion formation in social networks. A novel learning model is proposed, in which agents can dynamically adapt their learning behaviours in order to facilitate the formation of consensus among them, and thus establish a consistent social norm in the whole population more efficiently. In the model, agents adapt their opinions through trail-and-error interactions with others. By exploiting historical interaction experience, a guiding opinion, which is considered to be the most successful opinion in the neighbourhood, can be generated based on the principle of evolutionary game theory. Then, depending on the consistency between its own opinion and the guiding opinion, a focal agent can realize whether its opinion complies with the social norm (i.e., the majority opinion that has been adopted) in the population, and adapt its behaviours accordingly. The highlight of the model lies in that it captures the essential features of people’s adaptive learning behaviours during the evolution and formation of opinions. Experimental results show that the proposed model can facilitate the formation of consensus among agents, and some critical factors such as size of opinion space and network topology can have significant influences on opinion dynamics.
Women, Subjectivities and Learning to Be Adaptable
ERIC Educational Resources Information Center
Cavanagh, Jillian
2010-01-01
Purpose: The purpose of this paper is to advance understandings of the subjectivities that influence auxiliary-level female employees' work and learning experiences in general legal practice. Moreover, the aim is to maximise the opportunities for these workers. Design/methodology/approach: A broader critical ethnographic study investigated…
Professional Learning to Nurture Adaptive Teachers
ERIC Educational Resources Information Center
Lee, Kar-Tin
2013-01-01
This paper presents the findings of a study conducted in China to identify the potential benefits of incorporating robotics as an educational tool for 100 primary and 320 secondary school teachers of general technology. The Professional Learning Program was conducted from 2010-2013 in China. The major focus of the program was on the development…
Beyond adaptive-critic creative learning for intelligent mobile robots
NASA Astrophysics Data System (ADS)
Liao, Xiaoqun; Cao, Ming; Hall, Ernest L.
2001-10-01
Intelligent industrial and mobile robots may be considered proven technology in structured environments. Teach programming and supervised learning methods permit solutions to a variety of applications. However, we believe that to extend the operation of these machines to more unstructured environments requires a new learning method. Both unsupervised learning and reinforcement learning are potential candidates for these new tasks. The adaptive critic method has been shown to provide useful approximations or even optimal control policies to non-linear systems. The purpose of this paper is to explore the use of new learning methods that goes beyond the adaptive critic method for unstructured environments. The adaptive critic is a form of reinforcement learning. A critic element provides only high level grading corrections to a cognition module that controls the action module. In the proposed system the critic's grades are modeled and forecasted, so that an anticipated set of sub-grades are available to the cognition model. The forecasting grades are interpolated and are available on the time scale needed by the action model. The success of the system is highly dependent on the accuracy of the forecasted grades and adaptability of the action module. Examples from the guidance of a mobile robot are provided to illustrate the method for simple line following and for the more complex navigation and control in an unstructured environment. The theory presented that is beyond the adaptive critic may be called creative theory. Creative theory is a form of learning that models the highest level of human learning - imagination. The application of the creative theory appears to not only be to mobile robots but also to many other forms of human endeavor such as educational learning and business forecasting. Reinforcement learning such as the adaptive critic may be applied to known problems to aid in the discovery of their solutions. The significance of creative theory is that it
NASA Technical Reports Server (NTRS)
Whitmore, S. A.
1985-01-01
The dynamics model and data sources used to perform air-data reconstruction are discussed, as well as the Kalman filter. The need for adaptive determination of the noise statistics of the process is indicated. The filter innovations are presented as a means of developing the adaptive criterion, which is based on the true mean and covariance of the filter innovations. A method for the numerical approximation of the mean and covariance of the filter innovations is presented. The algorithm as developed is applied to air-data reconstruction for the space shuttle, and data obtained from the third landing are presented. To verify the performance of the adaptive algorithm, the reconstruction is also performed using a constant covariance Kalman filter. The results of the reconstructions are compared, and the adaptive algorithm exhibits better performance.
NASA Technical Reports Server (NTRS)
Whitmore, S. A.
1985-01-01
The dynamics model and data sources used to perform air-data reconstruction are discussed, as well as the Kalman filter. The need for adaptive determination of the noise statistics of the process is indicated. The filter innovations are presented as a means of developing the adaptive criterion, which is based on the true mean and covariance of the filter innovations. A method for the numerical approximation of the mean and covariance of the filter innovations is presented. The algorithm as developed is applied to air-data reconstruction for the Space Shuttle, and data obtained from the third landing are presented. To verify the performance of the adaptive algorithm, the reconstruction is also performed using a constant covariance Kalman filter. The results of the reconstructions are compared, and the adaptive algorithm exhibits better performance.
Genetic algorithms for adaptive real-time control in space systems
NASA Technical Reports Server (NTRS)
Vanderzijp, J.; Choudry, A.
1988-01-01
Genetic Algorithms that are used for learning as one way to control the combinational explosion associated with the generation of new rules are discussed. The Genetic Algorithm approach tends to work best when it can be applied to a domain independent knowledge representation. Applications to real time control in space systems are discussed.
Personalized tuning of a reinforcement learning control algorithm for glucose regulation.
Daskalaki, Elena; Diem, Peter; Mougiakakou, Stavroula G
2013-01-01
Artificial pancreas is in the forefront of research towards the automatic insulin infusion for patients with type 1 diabetes. Due to the high inter- and intra-variability of the diabetic population, the need for personalized approaches has been raised. This study presents an adaptive, patient-specific control strategy for glucose regulation based on reinforcement learning and more specifically on the Actor-Critic (AC) learning approach. The control algorithm provides daily updates of the basal rate and insulin-to-carbohydrate (IC) ratio in order to optimize glucose regulation. A method for the automatic and personalized initialization of the control algorithm is designed based on the estimation of the transfer entropy (TE) between insulin and glucose signals. The algorithm has been evaluated in silico in adults, adolescents and children for 10 days. Three scenarios of initialization to i) zero values, ii) random values and iii) TE-based values have been comparatively assessed. The results have shown that when the TE-based initialization is used, the algorithm achieves faster learning with 98%, 90% and 73% in the A+B zones of the Control Variability Grid Analysis for adults, adolescents and children respectively after five days compared to 95%, 78%, 41% for random initialization and 93%, 88%, 41% for zero initial values. Furthermore, in the case of children, the daily Low Blood Glucose Index reduces much faster when the TE-based tuning is applied. The results imply that automatic and personalized tuning based on TE reduces the learning period and improves the overall performance of the AC algorithm. PMID:24110480
Lewis, P.S.
1988-10-01
Least squares techniques are widely used in adaptive signal processing. While algorithms based on least squares are robust and offer rapid convergence properties, they also tend to be complex and computationally intensive. To enable the use of least squares techniques in real-time applications, it is necessary to develop adaptive algorithms that are efficient and numerically stable, and can be readily implemented in hardware. The first part of this work presents a uniform development of general recursive least squares (RLS) algorithms, and multichannel least squares lattice (LSL) algorithms. RLS algorithms are developed for both direct estimators, in which a desired signal is present, and for mixed estimators, in which no desired signal is available, but the signal-to-data cross-correlation is known. In the second part of this work, new and more flexible techniques of mapping algorithms to array architectures are presented. These techniques, based on the synthesis and manipulation of locally recursive algorithms (LRAs), have evolved from existing data dependence graph-based approaches, but offer the increased flexibility needed to deal with the structural complexities of the RLS and LSL algorithms. Using these techniques, various array architectures are developed for each of the RLS and LSL algorithms and the associated space/time tradeoffs presented. In the final part of this work, the application of these algorithms is demonstrated by their employment in the enhancement of single-trial auditory evoked responses in magnetoencephalography. 118 refs., 49 figs., 36 tabs.
NASA Astrophysics Data System (ADS)
Li, Jinsha; Li, Junmin
2016-07-01
In this paper, the adaptive fuzzy iterative learning control scheme is proposed for coordination problems of Mth order (M ≥ 2) distributed multi-agent systems. Every follower agent has a higher order integrator with unknown nonlinear dynamics and input disturbance. The dynamics of the leader are a higher order nonlinear systems and only available to a portion of the follower agents. With distributed initial state learning, the unified distributed protocols combined time-domain and iteration-domain adaptive laws guarantee that the follower agents track the leader uniformly on [0, T]. Then, the proposed algorithm extends to achieve the formation control. A numerical example and a multiple robotic system are provided to demonstrate the performance of the proposed approach.
Adaptive inpainting algorithm based on DCT induced wavelet regularization.
Li, Yan-Ran; Shen, Lixin; Suter, Bruce W
2013-02-01
In this paper, we propose an image inpainting optimization model whose objective function is a smoothed l(1) norm of the weighted nondecimated discrete cosine transform (DCT) coefficients of the underlying image. By identifying the objective function of the proposed model as a sum of a differentiable term and a nondifferentiable term, we present a basic algorithm inspired by Beck and Teboulle's recent work on the model. Based on this basic algorithm, we propose an automatic way to determine the weights involved in the model and update them in each iteration. The DCT as an orthogonal transform is used in various applications. We view the rows of a DCT matrix as the filters associated with a multiresolution analysis. Nondecimated wavelet transforms with these filters are explored in order to analyze the images to be inpainted. Our numerical experiments verify that under the proposed framework, the filters from a DCT matrix demonstrate promise for the task of image inpainting. PMID:23060331
A framework for porting the NeuroBayes machine learning algorithm to FPGAs
NASA Astrophysics Data System (ADS)
Baehr, S.; Sander, O.; Heck, M.; Feindt, M.; Becker, J.
2016-01-01
The NeuroBayes machine learning algorithm is deployed for online data reduction at the pixel detector of Belle II. In order to test, characterize and easily adapt its implementation on FPGAs, a framework was developed. Within the framework an HDL model, written in python using MyHDL, is used for fast exploration of possible configurations. Under usage of input data from physics simulations figures of merit like throughput, accuracy and resource demand of the implementation are evaluated in a fast and flexible way. Functional validation is supported by usage of unit tests and HDL simulation for chosen configurations.
Overseas Students' Intercultural Adaptation as Intercultural Learning: A Transformative Framework
ERIC Educational Resources Information Center
Gill, Scherto
2007-01-01
In the context of increasing recruitment of overseas students by British higher education (HE) institutions, there has been a growing need to understand the process of students' intercultural adaptation and the approaches that can be adopted by British academic institutions in order to facilitate and support these students' learning experience in…
Adaptive Knowledge Management of Project-Based Learning
ERIC Educational Resources Information Center
Tilchin, Oleg; Kittany, Mohamed
2016-01-01
The goal of an approach to Adaptive Knowledge Management (AKM) of project-based learning (PBL) is to intensify subject study through guiding, inducing, and facilitating development knowledge, accountability skills, and collaborative skills of students. Knowledge development is attained by knowledge acquisition, knowledge sharing, and knowledge…
Managing Adaptive Challenges: Learning with Principals in Bermuda and Florida
ERIC Educational Resources Information Center
Drago-Severson, Eleanor; Maslin-Ostrowski, Patricia; Hoffman, Alexander M.; Barbaro, Justin
2014-01-01
We interviewed eight principals from Bermuda and Florida about how they identify and manage their most pressing challenges. Their challenges are composed of both adaptive and technical work, requiring leaders to learn to diagnose and manage them. Challenges focused on change and were traced to accountability contexts, yet accountability was not…
Adaptivity and Autonomy Development in a Learning Personalization Process
ERIC Educational Resources Information Center
Verpoorten, D.
2009-01-01
Within the iClass (Integrated Project 507922) and Enhanced Learning Experience and Knowledge Transfer (ELEKTRA; Specific Targeted Research or Innovation Project 027986) European projects, the author was requested to harness his pedagogical knowledge to the production of educational adaptive systems. The article identifies and documents the…
ELCAT: An E-Learning Content Adaptation Toolkit
ERIC Educational Resources Information Center
Clements, Iain; Xu, Zhijie
2005-01-01
Purpose: The purpose of this paper is to present an e-learning content adaptation toolkit--ELCAT--that helps to achieve the objectives of the KTP project No. 3509. Design/methodology/approach: The chosen methodology is absolutely practical. The tool was put into motion and results were observed as university and the collaborating company members…
Mispronunciation Detection for Language Learning and Speech Recognition Adaptation
ERIC Educational Resources Information Center
Ge, Zhenhao
2013-01-01
The areas of "mispronunciation detection" (or "accent detection" more specifically) within the speech recognition community are receiving increased attention now. Two application areas, namely language learning and speech recognition adaptation, are largely driving this research interest and are the focal points of this work.…
Adaptive Instruction and Second Language Learning: The Dilemma.
ERIC Educational Resources Information Center
Tumposky, Nancy
Teachers continue to address the question of how to adapt instruction to recognize the existence of different learning styles yet provide quality education for all students. Traditionally, instructional models available to teachers and curriculum planners ranged along a continuum from lockstep to individualization. This definition has led to…
Simple randomized algorithms for online learning with kernels.
He, Wenwu; Kwok, James T
2014-12-01
In online learning with kernels, it is vital to control the size (budget) of the support set because of the curse of kernelization. In this paper, we propose two simple and effective stochastic strategies for controlling the budget. Both algorithms have an expected regret that is sublinear in the horizon. Experimental results on a number of benchmark data sets demonstrate encouraging performance in terms of both efficacy and efficiency. PMID:25108150
Simulation of Biochemical Pathway Adaptability Using Evolutionary Algorithms
Bosl, W J
2005-01-26
The systems approach to genomics seeks quantitative and predictive descriptions of cells and organisms. However, both the theoretical and experimental methods necessary for such studies still need to be developed. We are far from understanding even the simplest collective behavior of biomolecules, cells or organisms. A key aspect to all biological problems, including environmental microbiology, evolution of infectious diseases, and the adaptation of cancer cells is the evolvability of genomes. This is particularly important for Genomes to Life missions, which tend to focus on the prospect of engineering microorganisms to achieve desired goals in environmental remediation and climate change mitigation, and energy production. All of these will require quantitative tools for understanding the evolvability of organisms. Laboratory biodefense goals will need quantitative tools for predicting complicated host-pathogen interactions and finding counter-measures. In this project, we seek to develop methods to simulate how external and internal signals cause the genetic apparatus to adapt and organize to produce complex biochemical systems to achieve survival. This project is specifically directed toward building a computational methodology for simulating the adaptability of genomes. This project investigated the feasibility of using a novel quantitative approach to studying the adaptability of genomes and biochemical pathways. This effort was intended to be the preliminary part of a larger, long-term effort between key leaders in computational and systems biology at Harvard University and LLNL, with Dr. Bosl as the lead PI. Scientific goals for the long-term project include the development and testing of new hypotheses to explain the observed adaptability of yeast biochemical pathways when the myosin-II gene is deleted and the development of a novel data-driven evolutionary computation as a way to connect exploratory computational simulation with hypothesis
A Case-Study for Life-Long Learning and Adaptation in Cooperative Robot Teams
Parker, L.E.
1999-09-19
While considerable progress has been made in recent years toward the development of multi-robot teams, much work remains to be done before these teams are used widely in real-world applications. Two particular needs toward this end are the development of mechanisms that enable robot teams to generate cooperative behaviors on their own, and the development of techniques that allow these teams to autonomously adapt their behavior over time as the environment or the robot team changes. This paper proposes the use of the Cooperative Multi-Robot Observation of Multiple Moving Targets (CMOMMT) application as a rich domain for studying the issues of multi-robot learning and adaptation. After discussing the need for learning and adaptation in multi-robot teams, this paper describes the CMOMMT application and its relevance to multi-robot learning. We discuss the results of the previously- developed, hand-generated algorithm for CMOMMT and the potential for learning that was discovered from the hand-generated approach. We then describe the early work that has been done (by us and others) to generate multi- robot learning techniques for the CMOMMT application, as well as our ongoing research to develop approaches that give performance as good, or better, than the hand-generated approach. The ultimate goal of this research is to develop techniques for multi-robot learning and adaptation in the CMOMMT application domain that will generalize to cooperative robot applications in other domains, thus making the practical use of multi-robot teams in a wide variety of real-world applications much closer to reality.
Recursive least-squares learning algorithms for neural networks
Lewis, P.S. ); Hwang, Jenq-Neng . Dept. of Electrical Engineering)
1990-01-01
This paper presents the development of a pair of recursive least squares (RLS) algorithms for online training of multilayer perceptrons, which are a class of feedforward artificial neural networks. These algorithms incorporate second order information about the training error surface in order to achieve faster learning rates than are possible using first order gradient descent algorithms such as the generalized delta rule. A least squares formulation is derived from a linearization of the training error function. Individual training pattern errors are linearized about the network parameters that were in effect when the pattern was presented. This permits the recursive solution of the least squares approximation, either via conventional RLS recursions or by recursive QR decomposition-based techniques. The computational complexity of the update is in the order of (N{sup 2}), where N is the number of network parameters. This is due to the estimation of the N {times} N inverse Hessian matrix. Less computationally intensive approximations of the RLS algorithms can be easily derived by using only block diagonal elements of this matrix, thereby partitioning the learning into independent sets. A simulation example is presented in which a neural network is trained to approximate a two dimensional Gaussian bump. In this example, RLS training required an order of magnitude fewer iterations on average (527) than did training with the generalized delta rule (6331). 14 refs., 3 figs.
Optimization in Quaternion Dynamic Systems: Gradient, Hessian, and Learning Algorithms.
Xu, Dongpo; Xia, Yili; Mandic, Danilo P
2016-02-01
The optimization of real scalar functions of quaternion variables, such as the mean square error or array output power, underpins many practical applications. Solutions typically require the calculation of the gradient and Hessian. However, real functions of quaternion variables are essentially nonanalytic, which are prohibitive to the development of quaternion-valued learning systems. To address this issue, we propose new definitions of quaternion gradient and Hessian, based on the novel generalized Hamilton-real (GHR) calculus, thus making a possible efficient derivation of general optimization algorithms directly in the quaternion field, rather than using the isomorphism with the real domain, as is current practice. In addition, unlike the existing quaternion gradients, the GHR calculus allows for the product and chain rule, and for a one-to-one correspondence of the novel quaternion gradient and Hessian with their real counterparts. Properties of the quaternion gradient and Hessian relevant to numerical applications are also introduced, opening a new avenue of research in quaternion optimization and greatly simplified the derivations of learning algorithms. The proposed GHR calculus is shown to yield the same generic algorithm forms as the corresponding real- and complex-valued algorithms. Advantages of the proposed framework are illuminated over illustrative simulations in quaternion signal processing and neural networks. PMID:26087504
On-line learning algorithms for locally recurrent neural networks.
Campolucci, P; Uncini, A; Piazza, F; Rao, B D
1999-01-01
This paper focuses on on-line learning procedures for locally recurrent neural networks with emphasis on multilayer perceptron (MLP) with infinite impulse response (IIR) synapses and its variations which include generalized output and activation feedback multilayer networks (MLN's). We propose a new gradient-based procedure called recursive backpropagation (RBP) whose on-line version, causal recursive backpropagation (CRBP), presents some advantages with respect to the other on-line training methods. The new CRBP algorithm includes as particular cases backpropagation (BP), temporal backpropagation (TBP), backpropagation for sequences (BPS), Back-Tsoi algorithm among others, thereby providing a unifying view on gradient calculation techniques for recurrent networks with local feedback. The only learning method that has been proposed for locally recurrent networks with no architectural restriction is the one by Back and Tsoi. The proposed algorithm has better stability and higher speed of convergence with respect to the Back-Tsoi algorithm, which is supported by the theoretical development and confirmed by simulations. The computational complexity of the CRBP is comparable with that of the Back-Tsoi algorithm, e.g., less that a factor of 1.5 for usual architectures and parameter settings. The superior performance of the new algorithm, however, easily justifies this small increase in computational burden. In addition, the general paradigms of truncated BPTT and RTRL are applied to networks with local feedback and compared with the new CRBP method. The simulations show that CRBP exhibits similar performances and the detailed analysis of complexity reveals that CRBP is much simpler and easier to implement, e.g., CRBP is local in space and in time while RTRL is not local in space. PMID:18252525
NASA Astrophysics Data System (ADS)
Lee, Hui Jung; Choi, Dong-Yoon; Song, Byung Cheol
2015-11-01
This paper proposes a learning-based superresolution algorithm using text characteristics for text images. The proposed algorithm consists of a learning stage and an inference stage. In the learning stage, a sufficient number of low-resolution (LR) to high-resolution (HR) block pairs are first extracted from various LR-HR image pairs that are composed of texts. Then, we classify those block pairs into 512 clusters and, for each cluster, calculate the optimal two-dimensional (2-D) finite impulse response (FIR) filter to synthesize a high-quality HR block from an LR block and store the block-adaptive 2-D FIR filters in a dictionary with their associated index. In the inference stage, we find the best-matched candidate to each input LR block from the dictionary and synthesize the HR block using the optimal 2-D FIR filter. Finally, an HR image is produced via proper postprocessing. Experimental results show that the proposed algorithm provides superior visual quality to images from previous works and outperforms previous processes in terms of computational complexity.
Premaladha, J; Ravichandran, K S
2016-04-01
Dermoscopy is a technique used to capture the images of skin, and these images are useful to analyze the different types of skin diseases. Malignant melanoma is a kind of skin cancer whose severity even leads to death. Earlier detection of melanoma prevents death and the clinicians can treat the patients to increase the chances of survival. Only few machine learning algorithms are developed to detect the melanoma using its features. This paper proposes a Computer Aided Diagnosis (CAD) system which equips efficient algorithms to classify and predict the melanoma. Enhancement of the images are done using Contrast Limited Adaptive Histogram Equalization technique (CLAHE) and median filter. A new segmentation algorithm called Normalized Otsu's Segmentation (NOS) is implemented to segment the affected skin lesion from the normal skin, which overcomes the problem of variable illumination. Fifteen features are derived and extracted from the segmented images are fed into the proposed classification techniques like Deep Learning based Neural Networks and Hybrid Adaboost-Support Vector Machine (SVM) algorithms. The proposed system is tested and validated with nearly 992 images (malignant & benign lesions) and it provides a high classification accuracy of 93 %. The proposed CAD system can assist the dermatologists to confirm the decision of the diagnosis and to avoid excisional biopsies. PMID:26872778
Jawarneh, Sana; Abdullah, Salwani
2015-01-01
This paper presents a bee colony optimisation (BCO) algorithm to tackle the vehicle routing problem with time window (VRPTW). The VRPTW involves recovering an ideal set of routes for a fleet of vehicles serving a defined number of customers. The BCO algorithm is a population-based algorithm that mimics the social communication patterns of honeybees in solving problems. The performance of the BCO algorithm is dependent on its parameters, so the online (self-adaptive) parameter tuning strategy is used to improve its effectiveness and robustness. Compared with the basic BCO, the adaptive BCO performs better. Diversification is crucial to the performance of the population-based algorithm, but the initial population in the BCO algorithm is generated using a greedy heuristic, which has insufficient diversification. Therefore the ways in which the sequential insertion heuristic (SIH) for the initial population drives the population toward improved solutions are examined. Experimental comparisons indicate that the proposed adaptive BCO-SIH algorithm works well across all instances and is able to obtain 11 best results in comparison with the best-known results in the literature when tested on Solomon’s 56 VRPTW 100 customer instances. Also, a statistical test shows that there is a significant difference between the results. PMID:26132158
The No-Prop algorithm: a new learning algorithm for multilayer neural networks.
Widrow, Bernard; Greenblatt, Aaron; Kim, Youngsik; Park, Dookun
2013-01-01
A new learning algorithm for multilayer neural networks that we have named No-Propagation (No-Prop) is hereby introduced. With this algorithm, the weights of the hidden-layer neurons are set and fixed with random values. Only the weights of the output-layer neurons are trained, using steepest descent to minimize mean square error, with the LMS algorithm of Widrow and Hoff. The purpose of introducing nonlinearity with the hidden layers is examined from the point of view of Least Mean Square Error Capacity (LMS Capacity), which is defined as the maximum number of distinct patterns that can be trained into the network with zero error. This is shown to be equal to the number of weights of each of the output-layer neurons. The No-Prop algorithm and the Back-Prop algorithm are compared. Our experience with No-Prop is limited, but from the several examples presented here, it seems that the performance regarding training and generalization of both algorithms is essentially the same when the number of training patterns is less than or equal to LMS Capacity. When the number of training patterns exceeds Capacity, Back-Prop is generally the better performer. But equivalent performance can be obtained with No-Prop by increasing the network Capacity by increasing the number of neurons in the hidden layer that drives the output layer. The No-Prop algorithm is much simpler and easier to implement than Back-Prop. Also, it converges much faster. It is too early to definitively say where to use one or the other of these algorithms. This is still a work in progress. PMID:23140797
Bergeron, Bryan; Cline, Andrew; Shipley, Jaime
2012-01-01
We have developed a distributed, standards-based architecture that enables simulation and simulator designers to leverage adaptive learning systems. Our approach, which incorporates an electronic competency record, open source LMS, and open source microcontroller hardware, is a low-cost, pragmatic option to integrating simulators with traditional courseware. PMID:22356955
Sparse kernel learning with LASSO and Bayesian inference algorithm.
Gao, Junbin; Kwan, Paul W; Shi, Daming
2010-03-01
Kernelized LASSO (Least Absolute Selection and Shrinkage Operator) has been investigated in two separate recent papers [Gao, J., Antolovich, M., & Kwan, P. H. (2008). L1 LASSO and its Bayesian inference. In W. Wobcke, & M. Zhang (Eds.), Lecture notes in computer science: Vol. 5360 (pp. 318-324); Wang, G., Yeung, D. Y., & Lochovsky, F. (2007). The kernel path in kernelized LASSO. In International conference on artificial intelligence and statistics (pp. 580-587). San Juan, Puerto Rico: MIT Press]. This paper is concerned with learning kernels under the LASSO formulation via adopting a generative Bayesian learning and inference approach. A new robust learning algorithm is proposed which produces a sparse kernel model with the capability of learning regularized parameters and kernel hyperparameters. A comparison with state-of-the-art methods for constructing sparse regression models such as the relevance vector machine (RVM) and the local regularization assisted orthogonal least squares regression (LROLS) is given. The new algorithm is also demonstrated to possess considerable computational advantages. PMID:19604671
Neuromorphic implementations of neurobiological learning algorithms for spiking neural networks.
Walter, Florian; Röhrbein, Florian; Knoll, Alois
2015-12-01
The application of biologically inspired methods in design and control has a long tradition in robotics. Unlike previous approaches in this direction, the emerging field of neurorobotics not only mimics biological mechanisms at a relatively high level of abstraction but employs highly realistic simulations of actual biological nervous systems. Even today, carrying out these simulations efficiently at appropriate timescales is challenging. Neuromorphic chip designs specially tailored to this task therefore offer an interesting perspective for neurorobotics. Unlike Von Neumann CPUs, these chips cannot be simply programmed with a standard programming language. Like real brains, their functionality is determined by the structure of neural connectivity and synaptic efficacies. Enabling higher cognitive functions for neurorobotics consequently requires the application of neurobiological learning algorithms to adjust synaptic weights in a biologically plausible way. In this paper, we therefore investigate how to program neuromorphic chips by means of learning. First, we provide an overview over selected neuromorphic chip designs and analyze them in terms of neural computation, communication systems and software infrastructure. On the theoretical side, we review neurobiological learning techniques. Based on this overview, we then examine on-die implementations of these learning algorithms on the considered neuromorphic chips. A final discussion puts the findings of this work into context and highlights how neuromorphic hardware can potentially advance the field of autonomous robot systems. The paper thus gives an in-depth overview of neuromorphic implementations of basic mechanisms of synaptic plasticity which are required to realize advanced cognitive capabilities with spiking neural networks. PMID:26422422
Adaptive optics image deconvolution based on a modified Richardson-Lucy algorithm
NASA Astrophysics Data System (ADS)
Chen, Bo; Geng, Ze-xun; Yan, Xiao-dong; Yang, Yang; Sui, Xue-lian; Zhao, Zhen-lei
2007-12-01
Adaptive optical (AO) system provides a real-time compensation for atmospheric turbulence. However, the correction is often only partial, and a deconvolution is required for reaching the diffraction limit. The Richardson-Lucy (R-L) Algorithm is the technique most widely used for AO image deconvolution, but Standard R-L Algorithm (SRLA) is often puzzled by speckling phenomenon, wraparound artifact and noise problem. A Modified R-L Algorithm (MRLA) for AO image deconvolution is presented. This novel algorithm applies Magain's correct sampling approach and incorporating noise statistics to Standard R-L Algorithm. The alternant iterative method is applied to estimate PSF and object in the novel algorithm. Comparing experiments for indoor data and AO image are done with SRLA and the MRLA in this paper. Experimental results show that this novel MRLA outperforms the SRLA.
A geometry-based adaptive unstructured grid generation algorithm for complex geological media
NASA Astrophysics Data System (ADS)
Bahrainian, Seyed Saied; Dezfuli, Alireza Daneh
2014-07-01
In this paper a novel unstructured grid generation algorithm is presented that considers the effect of geological features and well locations in grid resolution. The proposed grid generation algorithm presents a strategy for definition and construction of an initial grid based on the geological model, geometry adaptation of geological features, and grid resolution control. The algorithm is applied to seismotectonic map of the Masjed-i-Soleiman reservoir. Comparison of grid results with the “Triangle” program shows a more suitable permeability contrast. Immiscible two-phase flow solutions are presented for a fractured porous media test case using different grid resolutions. Adapted grid on the fracture geometry gave identical results with that of a fine grid. The adapted grid employed 88.2% less CPU time when compared to the solutions obtained by the fine grid.
Inference algorithms and learning theory for Bayesian sparse factor analysis
NASA Astrophysics Data System (ADS)
Rattray, Magnus; Stegle, Oliver; Sharp, Kevin; Winn, John
2009-12-01
Bayesian sparse factor analysis has many applications; for example, it has been applied to the problem of inferring a sparse regulatory network from gene expression data. We describe a number of inference algorithms for Bayesian sparse factor analysis using a slab and spike mixture prior. These include well-established Markov chain Monte Carlo (MCMC) and variational Bayes (VB) algorithms as well as a novel hybrid of VB and Expectation Propagation (EP). For the case of a single latent factor we derive a theory for learning performance using the replica method. We compare the MCMC and VB/EP algorithm results with simulated data to the theoretical prediction. The results for MCMC agree closely with the theory as expected. Results for VB/EP are slightly sub-optimal but show that the new algorithm is effective for sparse inference. In large-scale problems MCMC is infeasible due to computational limitations and the VB/EP algorithm then provides a very useful computationally efficient alternative.
ERIC Educational Resources Information Center
Corbalan, Gemma; Kester, Liesbeth; van Merrienboer, Jeroen J. G.
2008-01-01
Complex skill acquisition by performing authentic learning tasks is constrained by limited working memory capacity [Baddeley, A. D. (1992). Working memory. "Science, 255", 556-559]. To prevent cognitive overload, task difficulty and support of each newly selected learning task can be adapted to the learner's competence level and perceived task…
ERIC Educational Resources Information Center
Standal, Oyvind F.; Jespersen, Ejgil
2008-01-01
The purpose of this study was to investigate the learning that takes place when people with disabilities interact in a rehabilitation context. Data were generated through in-depth interviews and close observations in a 2 one-half week-long rehabilitation program, where the participants learned both wheelchair skills and adapted physical…
ERIC Educational Resources Information Center
Polat, Elif; Adiguzel, Tufan; Akgun, Ozcan Erkan
2012-01-01
Because there is, currently, no education system for primary school students in grades 1-3 who have specific learning disabilities in Turkey and because such students do not receive sufficient support from face-to-face counseling, a needs analysis was conducted in order to prepare an adaptive, web-assisted learning system according to variables…
SSD-Optimized Workload Placement with Adaptive Learning and Classification in HPC Environments
Wan, Lipeng; Lu, Zheng; Cao, Qing; Wang, Feiyi; Oral, H Sarp; Settlemyer, Bradley W
2014-01-01
In recent years, non-volatile memory devices such as SSD drives have emerged as a viable storage solution due to their increasing capacity and decreasing cost. Due to the unique capability and capacity requirements in large scale HPC (High Performance Computing) storage environment, a hybrid config- uration (SSD and HDD) may represent one of the most available and balanced solutions considering the cost and performance. Under this setting, effective data placement as well as movement with controlled overhead become a pressing challenge. In this paper, we propose an integrated object placement and movement framework and adaptive learning algorithms to address these issues. Specifically, we present a method that shuffle data objects across storage tiers to optimize the data access performance. The method also integrates an adaptive learning algorithm where real- time classification is employed to predict the popularity of data object accesses, so that they can be placed on, or migrate between SSD or HDD drives in the most efficient manner. We discuss preliminary results based on this approach using a simulator we developed to show that the proposed methods can dynamically adapt storage placements and access pattern as workloads evolve to achieve the best system level performance such as throughput.
Adaptive control and noise suppression by a variable-gain gradient algorithm
NASA Technical Reports Server (NTRS)
Merhav, S. J.; Mehta, R. S.
1987-01-01
An adaptive control system based on normalized LMS filters is investigated. The finite impulse response of the nonparametric controller is adaptively estimated using a given reference model. Specifically, the following issues are addressed: The stability of the closed loop system is analyzed and heuristically established. Next, the adaptation process is studied for piecewise constant plant parameters. It is shown that by introducing a variable-gain in the gradient algorithm, a substantial reduction in the LMS adaptation rate can be achieved. Finally, process noise at the plant output generally causes a biased estimate of the controller. By introducing a noise suppression scheme, this bias can be substantially reduced and the response of the adapted system becomes very close to that of the reference model. Extensive computer simulations validate these and demonstrate assertions that the system can rapidly adapt to random jumps in plant parameters.
Performance study of LMS based adaptive algorithms for unknown system identification
Javed, Shazia; Ahmad, Noor Atinah
2014-07-10
Adaptive filtering techniques have gained much popularity in the modeling of unknown system identification problem. These techniques can be classified as either iterative or direct. Iterative techniques include stochastic descent method and its improved versions in affine space. In this paper we present a comparative study of the least mean square (LMS) algorithm and some improved versions of LMS, more precisely the normalized LMS (NLMS), LMS-Newton, transform domain LMS (TDLMS) and affine projection algorithm (APA). The performance evaluation of these algorithms is carried out using adaptive system identification (ASI) model with random input signals, in which the unknown (measured) signal is assumed to be contaminated by output noise. Simulation results are recorded to compare the performance in terms of convergence speed, robustness, misalignment, and their sensitivity to the spectral properties of input signals. Main objective of this comparative study is to observe the effects of fast convergence rate of improved versions of LMS algorithms on their robustness and misalignment.
Performance study of LMS based adaptive algorithms for unknown system identification
NASA Astrophysics Data System (ADS)
Javed, Shazia; Ahmad, Noor Atinah
2014-07-01
Adaptive filtering techniques have gained much popularity in the modeling of unknown system identification problem. These techniques can be classified as either iterative or direct. Iterative techniques include stochastic descent method and its improved versions in affine space. In this paper we present a comparative study of the least mean square (LMS) algorithm and some improved versions of LMS, more precisely the normalized LMS (NLMS), LMS-Newton, transform domain LMS (TDLMS) and affine projection algorithm (APA). The performance evaluation of these algorithms is carried out using adaptive system identification (ASI) model with random input signals, in which the unknown (measured) signal is assumed to be contaminated by output noise. Simulation results are recorded to compare the performance in terms of convergence speed, robustness, misalignment, and their sensitivity to the spectral properties of input signals. Main objective of this comparative study is to observe the effects of fast convergence rate of improved versions of LMS algorithms on their robustness and misalignment.
The parallelization of an advancing-front, all-quadrilateral meshing algorithm for adaptive analysis
Lober, R.R.; Tautges, T.J.; Cairncross, R.A.
1995-11-01
The ability to perform effective adaptive analysis has become a critical issue in the area of physical simulation. Of the multiple technologies required to realize a parallel adaptive analysis capability, automatic mesh generation is an enabling technology, filling a critical need in the appropriate discretization of a problem domain. The paving algorithm`s unique ability to generate a function-following quadrilateral grid is a substantial advantage in Sandia`s pursuit of a modified h-method adaptive capability. This characteristic combined with a strong transitioning ability allow the paving algorithm to place elements where an error function indicates more mesh resolution is needed. Although the original paving algorithm is highly serial, a two stage approach has been designed to parallelize the algorithm but also retain the nice qualities of the serial algorithm. The authors approach also allows the subdomain decomposition used by the meshing code to be shared with the finite element physics code, eliminating the need for data transfer across the processors between the analysis and remeshing steps. In addition, the meshed subdomains are adjusted with a dynamic load balancer to improve the original decomposition and maintain load efficiency each time the mesh has been regenerated. This initial parallel implementation assumes an approach of restarting the physics problem from time zero at each interaction, with a refined mesh adapting to the previous iterations objective function. The remeshing tools are being developed to enable real time remeshing and geometry regeneration. Progress on the redesign of the paving algorithm for parallel operation is discussed including extensions allowing adaptive control and geometry regeneration.
Learning, menopause, and the human adaptive complex.
Kaplan, Hillard; Gurven, Michael; Winking, Jeffrey; Hooper, Paul L; Stieglitz, Jonathan
2010-08-01
This paper presents a new two-sex learning- and skills-based theory for the evolution of human menopause. The theory proposes that the role of knowledge, skill acquisition, and transfers in determining economic productivity and resource distribution is the distinctive feature of the traditional human ecology that is responsible for the evolution of menopause. The theory also proposes that male reproductive cessation and post-reproductive investment in descendants is a fundamental characteristic of humans living in traditional foraging and simple horticultural economies. We present evidence relevant to the theory. The data show that whereas reproductive decline is linked to increasing risks of mortality in chimpanzees, human reproductive senescence precedes somatic senescence. Moreover under traditional conditions, most human males undergo reproductive cessation at the same time as their wives. We then present evidence that after ceasing to reproduce, both men and women provide net economic transfers to children and grandchildren. Given this pattern of economic productivity, delays in menopause would produce net economic deficits within families. PMID:20738273
A novel pseudoderivative-based mutation operator for real-coded adaptive genetic algorithms
Kanwal, Maxinder S; Ramesh, Avinash S; Huang, Lauren A
2013-01-01
Recent development of large databases, especially those in genetics and proteomics, is pushing the development of novel computational algorithms that implement rapid and accurate search strategies. One successful approach has been to use artificial intelligence and methods, including pattern recognition (e.g. neural networks) and optimization techniques (e.g. genetic algorithms). The focus of this paper is on optimizing the design of genetic algorithms by using an adaptive mutation rate that is derived from comparing the fitness values of successive generations. We propose a novel pseudoderivative-based mutation rate operator designed to allow a genetic algorithm to escape local optima and successfully continue to the global optimum. Once proven successful, this algorithm can be implemented to solve real problems in neurology and bioinformatics. As a first step towards this goal, we tested our algorithm on two 3-dimensional surfaces with multiple local optima, but only one global optimum, as well as on the N-queens problem, an applied problem in which the function that maps the curve is implicit. For all tests, the adaptive mutation rate allowed the genetic algorithm to find the global optimal solution, performing significantly better than other search methods, including genetic algorithms that implement fixed mutation rates. PMID:24627784
Large spatial, temporal, and algorithmic adaptivity for implicit nonlinear finite element analysis
Engelmann, B.E.; Whirley, R.G.
1992-07-30
The development of effective solution strategies to solve the global nonlinear equations which arise in implicit finite element analysis has been the subject of much research in recent years. Robust algorithms are needed to handle the complex nonlinearities that arise in many implicit finite element applications such as metalforming process simulation. The authors experience indicates that robustness can best be achieved through adaptive solution strategies. In the course of their research, this adaptivity and flexibility has been refined into a production tool through the development of a solution control language called ISLAND. This paper discusses aspects of adaptive solution strategies including iterative procedures to solve the global equations and remeshing techniques to extend the domain of Lagrangian methods. Examples using the newly developed ISLAND language are presented to illustrate the advantages of embedding temporal, algorithmic, and spatial adaptivity in a modem implicit nonlinear finite element analysis code.
Ye, Cang; Yung, N C; Wang, Danwei
2003-01-01
Fuzzy logic systems are promising for efficient obstacle avoidance. However, it is difficult to maintain the correctness, consistency, and completeness of a fuzzy rule base constructed and tuned by a human expert. A reinforcement learning method is capable of learning the fuzzy rules automatically. However, it incurs a heavy learning phase and may result in an insufficiently learned rule base due to the curse of dimensionality. In this paper, we propose a neural fuzzy system with mixed coarse learning and fine learning phases. In the first phase, a supervised learning method is used to determine the membership functions for input and output variables simultaneously. After sufficient training, fine learning is applied which employs reinforcement learning algorithm to fine-tune the membership functions for output variables. For sufficient learning, a new learning method using a modification of Sutton and Barto's model is proposed to strengthen the exploration. Through this two-step tuning approach, the mobile robot is able to perform collision-free navigation. To deal with the difficulty of acquiring a large amount of training data with high consistency for supervised learning, we develop a virtual environment (VE) simulator, which is able to provide desktop virtual environment (DVE) and immersive virtual environment (IVE) visualization. Through operating a mobile robot in the virtual environment (DVE/IVE) by a skilled human operator, training data are readily obtained and used to train the neural fuzzy system. PMID:18238153
Building Adaptive Game-Based Learning Resources: The Integration of IMS Learning Design and
ERIC Educational Resources Information Center
Burgos, Daniel; Moreno-Ger, Pablo; Sierra, Jose Luis; Fernandez-Manjon, Baltasar; Specht, Marcus; Koper, Rob
2008-01-01
IMS Learning Design (IMS-LD) is a specification to create units of learning (UoLs), which express a certain pedagogical model or strategy (e.g., adaptive learning with games). However, the authoring process of a UoL remains difficult because of the lack of high-level authoring tools for IMS-LD, even more so when the focus is on specific topics,…
NASA Technical Reports Server (NTRS)
Ianculescu, G. D.; Klop, J. J.
1992-01-01
Classical and adaptive control algorithms for the solar array pointing system of the Space Station Freedom are designed using a continuous rigid body model of the solar array gimbal assembly containing both linear and nonlinear dynamics due to various friction components. The robustness of the design solution is examined by performing a series of sensitivity analysis studies. Adaptive control strategies are examined in order to compensate for the unfavorable effect of static nonlinearities, such as dead-zone uncertainties.
Learning to speciate: The biased learning of mate preferences promotes adaptive radiation.
Gilman, R Tucker; Kozak, Genevieve M
2015-11-01
Bursts of rapid repeated speciation called adaptive radiations have generated much of Earth's biodiversity and fascinated biologists since Darwin, but we still do not know why some lineages radiate and others do not. Understanding what causes assortative mating to evolve rapidly and repeatedly in the same lineage is key to understanding adaptive radiation. Many species that have undergone adaptive radiations exhibit mate preference learning, where individuals acquire mate preferences by observing the phenotypes of other members of their populations. Mate preference learning can be biased if individuals also learn phenotypes to avoid in mates, and shift their preferences away from these avoided phenotypes. We used individual-based computational simulations to study whether biased and unbiased mate preference learning promotes ecological speciation and adaptive radiation. We found that ecological speciation can be rapid and repeated when mate preferences are biased, but is inhibited when mate preferences are learned without bias. Our results suggest that biased mate preference learning may play an important role in generating animal biodiversity through adaptive radiation. PMID:26459795
Tang, Xiao-yan; Gao, Kun; Ni, Guo-qiang; Zhu, Zhen-yu; Cheng, Hao-bo
2013-09-01
An improved N-FINDR endmember extraction algorithm by combining manifold learning and spatial information is presented under nonlinear mixing assumptions. Firstly, adaptive local tangent space alignment is adapted to seek potential intrinsic low-dimensional structures of hyperspectral high-diemensional data and reduce original data into a low-dimensional space. Secondly, spatial preprocessing is used by enhancing each pixel vector in spatially homogeneous areas, according to the continuity of spatial distribution of the materials. Finally, endmembers are extracted by looking for the largest simplex volume. The proposed method can increase the precision of endmember extraction by solving the nonlinearity of hyperspectral data and taking advantage of spatial information. Experimental results on simulated and real hyperspectral data demonstrate that the proposed approach outperformed the geodesic simplex volume maximization (GSVM), vertex component analysis (VCA) and spatial preprocessing N-FINDR method (SPPNFINDR). PMID:24369664
An Adaptive Weighting Algorithm for Interpolating the Soil Potassium Content.
Liu, Wei; Du, Peijun; Zhao, Zhuowen; Zhang, Lianpeng
2016-01-01
The concept of spatial interpolation is important in the soil sciences. However, the use of a single global interpolation model is often limited by certain conditions (e.g., terrain complexity), which leads to distorted interpolation results. Here we present a method of adaptive weighting combined environmental variables for soil properties interpolation (AW-SP) to improve accuracy. Using various environmental variables, AW-SP was used to interpolate soil potassium content in Qinghai Lake Basin. To evaluate AW-SP performance, we compared it with that of inverse distance weighting (IDW), ordinary kriging, and OK combined with different environmental variables. The experimental results showed that the methods combined with environmental variables did not always improve prediction accuracy even if there was a strong correlation between the soil properties and environmental variables. However, compared with IDW, OK, and OK combined with different environmental variables, AW-SP is more stable and has lower mean absolute and root mean square errors. Furthermore, the AW-SP maps provided improved details of soil potassium content and provided clearer boundaries to its spatial distribution. In conclusion, AW-SP can not only reduce prediction errors, it also accounts for the distribution and contributions of environmental variables, making the spatial interpolation of soil potassium content more reasonable. PMID:27051998
An Adaptive Weighting Algorithm for Interpolating the Soil Potassium Content
Liu, Wei; Du, Peijun; Zhao, Zhuowen; Zhang, Lianpeng
2016-01-01
The concept of spatial interpolation is important in the soil sciences. However, the use of a single global interpolation model is often limited by certain conditions (e.g., terrain complexity), which leads to distorted interpolation results. Here we present a method of adaptive weighting combined environmental variables for soil properties interpolation (AW-SP) to improve accuracy. Using various environmental variables, AW-SP was used to interpolate soil potassium content in Qinghai Lake Basin. To evaluate AW-SP performance, we compared it with that of inverse distance weighting (IDW), ordinary kriging, and OK combined with different environmental variables. The experimental results showed that the methods combined with environmental variables did not always improve prediction accuracy even if there was a strong correlation between the soil properties and environmental variables. However, compared with IDW, OK, and OK combined with different environmental variables, AW-SP is more stable and has lower mean absolute and root mean square errors. Furthermore, the AW-SP maps provided improved details of soil potassium content and provided clearer boundaries to its spatial distribution. In conclusion, AW-SP can not only reduce prediction errors, it also accounts for the distribution and contributions of environmental variables, making the spatial interpolation of soil potassium content more reasonable. PMID:27051998
An Adaptive Weighting Algorithm for Interpolating the Soil Potassium Content
NASA Astrophysics Data System (ADS)
Liu, Wei; Du, Peijun; Zhao, Zhuowen; Zhang, Lianpeng
2016-04-01
The concept of spatial interpolation is important in the soil sciences. However, the use of a single global interpolation model is often limited by certain conditions (e.g., terrain complexity), which leads to distorted interpolation results. Here we present a method of adaptive weighting combined environmental variables for soil properties interpolation (AW-SP) to improve accuracy. Using various environmental variables, AW-SP was used to interpolate soil potassium content in Qinghai Lake Basin. To evaluate AW-SP performance, we compared it with that of inverse distance weighting (IDW), ordinary kriging, and OK combined with different environmental variables. The experimental results showed that the methods combined with environmental variables did not always improve prediction accuracy even if there was a strong correlation between the soil properties and environmental variables. However, compared with IDW, OK, and OK combined with different environmental variables, AW-SP is more stable and has lower mean absolute and root mean square errors. Furthermore, the AW-SP maps provided improved details of soil potassium content and provided clearer boundaries to its spatial distribution. In conclusion, AW-SP can not only reduce prediction errors, it also accounts for the distribution and contributions of environmental variables, making the spatial interpolation of soil potassium content more reasonable.
Adaptive motion artifact reducing algorithm for wrist photoplethysmography application
NASA Astrophysics Data System (ADS)
Zhao, Jingwei; Wang, Guijin; Shi, Chenbo
2016-04-01
Photoplethysmography (PPG) technology is widely used in wearable heart pulse rate monitoring. It might reveal the potential risks of heart condition and cardiopulmonary function by detecting the cardiac rhythms in physical exercise. However the quality of wrist photoelectric signal is very sensitive to motion artifact since the thicker tissues and the fewer amount of capillaries. Therefore, motion artifact is the major factor that impede the heart rate measurement in the high intensity exercising. One accelerometer and three channels of light with different wavelengths are used in this research to analyze the coupled form of motion artifact. A novel approach is proposed to separate the pulse signal from motion artifact by exploiting their mixing ratio in different optical paths. There are four major steps of our method: preprocessing, motion artifact estimation, adaptive filtering and heart rate calculation. Five healthy young men are participated in the experiment. The speeder in the treadmill is configured as 12km/h, and all subjects would run for 3-10 minutes by swinging the arms naturally. The final result is compared with chest strap. The average of mean square error (MSE) is less than 3 beats per minute (BPM/min). Proposed method performed well in intense physical exercise and shows the great robustness to individuals with different running style and posture.
Learners' Perceptions and Illusions of Adaptivity in Computer-Based Learning Environments
ERIC Educational Resources Information Center
Vandewaetere, Mieke; Vandercruysse, Sylke; Clarebout, Geraldine
2012-01-01
Research on computer-based adaptive learning environments has shown exemplary growth. Although the mechanisms of effective adaptive instruction are unraveled systematically, little is known about the relative effect of learners' perceptions of adaptivity in adaptive learning environments. As previous research has demonstrated that the learners'…
NASA Technical Reports Server (NTRS)
Troudet, Terry; Merrill, Walter C.
1989-01-01
The ability of feed-forward neural net architectures to learn continuous-valued mappings in the presence of noise is demonstrated in relation to parameter identification and real-time adaptive control applications. Factors and parameters influencing the learning performance of such nets in the presence of noise are identified. Their effects are discussed through a computer simulation of the Back-Error-Propagation algorithm by taking the example of the cart-pole system controlled by a nonlinear control law. Adequate sampling of the state space is found to be essential for canceling the effect of the statistical fluctuations and allowing learning to take place.
Evaluation of an adaptive filtering algorithm for CT cardiac imaging with EKG modulated tube current
NASA Astrophysics Data System (ADS)
Li, Jianying; Hsieh, Jiang; Mohr, Kelly; Okerlund, Darin
2005-04-01
We have developed an adaptive filtering algorithm for cardiac CT scans with EKG-modulated tube current to optimize resolution and noise for different cardiac phases and to provide safety net for cases where end-systole phase is used for coronary imaging. This algorithm has been evaluated using patient cardiac CT scans where lower tube currents are used for the systolic phases. In this paper, we present the evaluation results. The results demonstrated that with the use of the proposed algorithm, we could improve image quality for all cardiac phases, while providing greater noise and streak artifact reduction for systole phases where lower CT dose were used.
Modified fast frequency acquisition via adaptive least squares algorithm
NASA Technical Reports Server (NTRS)
Kumar, Rajendra (Inventor)
1992-01-01
A method and the associated apparatus for estimating the amplitude, frequency, and phase of a signal of interest are presented. The method comprises the following steps: (1) inputting the signal of interest; (2) generating a reference signal with adjustable amplitude, frequency and phase at an output thereof; (3) mixing the signal of interest with the reference signal and a signal 90 deg out of phase with the reference signal to provide a pair of quadrature sample signals comprising respectively a difference between the signal of interest and the reference signal and a difference between the signal of interest and the signal 90 deg out of phase with the reference signal; (4) using the pair of quadrature sample signals to compute estimates of the amplitude, frequency, and phase of an error signal comprising the difference between the signal of interest and the reference signal employing a least squares estimation; (5) adjusting the amplitude, frequency, and phase of the reference signal from the numerically controlled oscillator in a manner which drives the error signal towards zero; and (6) outputting the estimates of the amplitude, frequency, and phase of the error signal in combination with the reference signal to produce a best estimate of the amplitude, frequency, and phase of the signal of interest. The preferred method includes the step of providing the error signal as a real time confidence measure as to the accuracy of the estimates wherein the closer the error signal is to zero, the higher the probability that the estimates are accurate. A matrix in the estimation algorithm provides an estimate of the variance of the estimation error.
STAR adaptation of QR algorithm. [program for solving over-determined systems of linear equations
NASA Technical Reports Server (NTRS)
Shah, S. N.
1981-01-01
The QR algorithm used on a serial computer and executed on the Control Data Corporation 6000 Computer was adapted to execute efficiently on the Control Data STAR-100 computer. How the scalar program was adapted for the STAR-100 and why these adaptations yielded an efficient STAR program is described. Program listings of the old scalar version and the vectorized SL/1 version are presented in the appendices. Execution times for the two versions applied to the same system of linear equations, are compared.
An adaptive algorithm for removing the blocking artifacts in block-transform coded images
NASA Astrophysics Data System (ADS)
Yang, Jingzhong; Ma, Zheng
2005-11-01
JPEG and MPEG compression standards adopt the macro block encoding approach, but this method can lead to annoying blocking effects-the artificial rectangular discontinuities in the decoded images. Many powerful postprocessing algorithms have been developed to remove the blocking effects. However, all but the simplest algorithms can be too complex for real-time applications, such as video decoding. We propose an adaptive and easy-to-implement algorithm that can removes the artificial discontinuities. This algorithm contains two steps, firstly, to perform a fast linear smoothing of the block edge's pixel by average value replacement strategy, the next one, by comparing the variance that is derived from the difference of the processed image with a reasonable threshold, to determine whether the first step should stop or not. Experiments have proved that this algorithm can quickly remove the artificial discontinuities without destroying the key information of the decoded images, it is robust to different images and transform strategy.
An adaptive ant colony system algorithm for continuous-space optimization problems.
Li, Yan-jun; Wu, Tie-jun
2003-01-01
Ant colony algorithms comprise a novel category of evolutionary computation methods for optimization problems, especially for sequencing-type combinatorial optimization problems. An adaptive ant colony algorithm is proposed in this paper to tackle continuous-space optimization problems, using a new objective-function-based heuristic pheromone assignment approach for pheromone update to filtrate solution candidates. Global optimal solutions can be reached more rapidly by self-adjusting the path searching behaviors of the ants according to objective values. The performance of the proposed algorithm is compared with a basic ant colony algorithm and a Square Quadratic Programming approach in solving two benchmark problems with multiple extremes. The results indicated that the efficiency and reliability of the proposed algorithm were greatly improved. PMID:12656341
Riemannian mean and space-time adaptive processing using projection and inversion algorithms
NASA Astrophysics Data System (ADS)
Balaji, Bhashyam; Barbaresco, Frédéric
2013-05-01
The estimation of the covariance matrix from real data is required in the application of space-time adaptive processing (STAP) to an airborne ground moving target indication (GMTI) radar. A natural approach to estimation of the covariance matrix that is based on the information geometry has been proposed. In this paper, the output of the Riemannian mean is used in inversion and projection algorithms. It is found that the projection class of algorithms can yield very significant gains, even when the gains due to inversion-based algorithms are marginal over standard algorithms. The performance of the projection class of algorithms does not appear to be overly sensitive to the projected subspace dimension.
Artificial Bee Colony Algorithm Based on Information Learning.
Gao, Wei-Feng; Huang, Ling-Ling; Liu, San-Yang; Dai, Cai
2015-12-01
Inspired by the fact that the division of labor and cooperation play extremely important roles in the human history development, this paper develops a novel artificial bee colony algorithm based on information learning (ILABC, for short). In ILABC, at each generation, the whole population is divided into several subpopulations by the clustering partition and the size of subpopulation is dynamically adjusted based on the last search experience, which results in a clear division of labor. Furthermore, the two search mechanisms are designed to facilitate the exchange of information in each subpopulation and between different subpopulations, respectively, which acts as the cooperation. Finally, the comparison results on a number of benchmark functions demonstrate that the proposed method performs competitively and effectively when compared to the selected state-of-the-art algorithms. PMID:25594992
Designing a Semantic Bliki System to Support Different Types of Knowledge and Adaptive Learning
ERIC Educational Resources Information Center
Huang, Shiu-Li; Yang, Chia-Wei
2009-01-01
Though blogs and wikis have been used to support knowledge management and e-learning, existing blogs and wikis cannot support different types of knowledge and adaptive learning. A case in point, types of knowledge vary greatly in category and viewpoints. Additionally, adaptive learning is crucial to improving one's learning performance. This study…
Alavandar, Srinivasan; Nigam, M J
2009-10-01
Control of an industrial robot includes nonlinearities, uncertainties and external perturbations that should be considered in the design of control laws. In this paper, some new hybrid adaptive neuro-fuzzy control algorithms (ANFIS) have been proposed for manipulator control with uncertainties. These hybrid controllers consist of adaptive neuro-fuzzy controllers and conventional controllers. The outputs of these controllers are applied to produce the final actuation signal based on current position and velocity errors. Numerical simulation using the dynamic model of six DOF puma robot arm with uncertainties shows the effectiveness of the approach in trajectory tracking problems. Performance indices of RMS error, maximum error are used for comparison. It is observed that the hybrid adaptive neuro-fuzzy controllers perform better than only conventional/adaptive controllers and in particular hybrid controller structure consisting of adaptive neuro-fuzzy controller and critically damped inverse dynamics controller. PMID:19523623
ERIC Educational Resources Information Center
Thalmann, Stefan
2014-01-01
Personalised e-Learning represents a major step-change from the one-size-fits-all approach of traditional learning platforms to a more customised and interactive provision of learning materials. Adaptive learning can support the learning process by tailoring learning materials to individual needs. However, this requires the initial preparation of…
MODIS Science Algorithms and Data Systems Lessons Learned
NASA Technical Reports Server (NTRS)
Wolfe, Robert E.; Ridgway, Bill L.; Patt, Fred S.; Masuoka, Edward J.
2009-01-01
For almost 10 years, standard global products from NASA's Earth Observing System s (EOS) two Moderate Resolution Imaging Spectroradiometer (MODIS) sensors are being used world-wide for earth science research and applications. This paper discusses the lessons learned in developing the science algorithms and the data systems needed to produce these high quality data products for the earth sciences community. Strong science team leadership and communication, an evolvable and scalable data system, and central coordination of QA and validation activities enabled the data system to grow by two orders of magnitude from the initial at-launch system to the current system able to reprocess data from both the Terra and Aqua missions in less than a year. Many of the lessons learned from MODIS are already being applied to follow-on missions.
Roemmich, Ryan T.; Hack, Nawaz; Akbar, Umer; Hass, Chris J.
2014-01-01
Persons with Parkinson’s disease (PD) are characterized by multifactorial gait deficits, though the factors which influence the abilities of persons with PD to adapt and store new gait patterns are unclear. The purpose of this study was to investigate the effects of dopaminergic therapy on the abilities of persons with PD to adapt and store gait parameters during split-belt treadmill (SBT) walking. Ten participants with idiopathic PD who were being treated with stable doses of orally-administered dopaminergic therapy participated. All participants performed two randomized testing sessions on separate days: once while optimally-medicated (ON meds) and once after 12-hour withdrawal from dopaminergic medication (OFF meds). During each session, locomotor adaptation was investigated as the participants walked on a SBT for ten minutes while the belts moved at a 2:1 speed ratio. We assessed locomotor adaptive learning by quantifying: 1) aftereffects during de-adaptation (once the belts returned to tied speeds immediately following SBT walking) and 2) savings during re-adaptation (as the participants repeated the same SBT walking task after washout of aftereffects following the initial SBT task). The withholding of dopaminergic medication diminished step length aftereffects significantly during de-adaptation. However, both locomotor adaptation and savings were unaffected by levodopa. These findings suggest that dopaminergic pathways influence aftereffect storage but do not influence locomotor adaptation or savings within a single session of SBT walking. It appears important that persons with PD should be optimally-medicated if walking on the SBT as gait rehabilitation. PMID:24698798
Roemmich, Ryan T; Hack, Nawaz; Akbar, Umer; Hass, Chris J
2014-07-15
Persons with Parkinson's disease (PD) are characterized by multifactorial gait deficits, though the factors which influence the abilities of persons with PD to adapt and store new gait patterns are unclear. The purpose of this study was to investigate the effects of dopaminergic therapy on the abilities of persons with PD to adapt and store gait parameters during split-belt treadmill (SBT) walking. Ten participants with idiopathic PD who were being treated with stable doses of orally-administered dopaminergic therapy participated. All participants performed two randomized testing sessions on separate days: once while optimally-medicated (ON meds) and once after 12-h withdrawal from dopaminergic medication (OFF meds). During each session, locomotor adaptation was investigated as the participants walked on a SBT for 10 min while the belts moved at a 2:1 speed ratio. We assessed locomotor adaptive learning by quantifying: (1) aftereffects during de-adaptation (once the belts returned to tied speeds immediately following SBT walking) and (2) savings during re-adaptation (as the participants repeated the same SBT walking task after washout of aftereffects following the initial SBT task). The withholding of dopaminergic medication diminished step length aftereffects significantly during de-adaptation. However, both locomotor adaptation and savings were unaffected by levodopa. These findings suggest that dopaminergic pathways influence aftereffect storage but do not influence locomotor adaptation or savings within a single session of SBT walking. It appears important that persons with PD should be optimally-medicated if walking on the SBT as gait rehabilitation. PMID:24698798
Huang, X N; Ren, H P
2016-01-01
Robust adaptation is a critical ability of gene regulatory network (GRN) to survive in a fluctuating environment, which represents the system responding to an input stimulus rapidly and then returning to its pre-stimulus steady state timely. In this paper, the GRN is modeled using the Michaelis-Menten rate equations, which are highly nonlinear differential equations containing 12 undetermined parameters. The robust adaption is quantitatively described by two conflicting indices. To identify the parameter sets in order to confer the GRNs with robust adaptation is a multi-variable, multi-objective, and multi-peak optimization problem, which is difficult to acquire satisfactory solutions especially high-quality solutions. A new best-neighbor particle swarm optimization algorithm is proposed to implement this task. The proposed algorithm employs a Latin hypercube sampling method to generate the initial population. The particle crossover operation and elitist preservation strategy are also used in the proposed algorithm. The simulation results revealed that the proposed algorithm could identify multiple solutions in one time running. Moreover, it demonstrated a superior performance as compared to the previous methods in the sense of detecting more high-quality solutions within an acceptable time. The proposed methodology, owing to its universality and simplicity, is useful for providing the guidance to design GRN with superior robust adaptation. PMID:27323043
Supervised Learning in Adaptive DNA Strand Displacement Networks.
Lakin, Matthew R; Stefanovic, Darko
2016-08-19
The development of engineered biochemical circuits that exhibit adaptive behavior is a key goal of synthetic biology and molecular computing. Such circuits could be used for long-term monitoring and control of biochemical systems, for instance, to prevent disease or to enable the development of artificial life. In this article, we present a framework for developing adaptive molecular circuits using buffered DNA strand displacement networks, which extend existing DNA strand displacement circuit architectures to enable straightforward storage and modification of behavioral parameters. As a proof of concept, we use this framework to design and simulate a DNA circuit for supervised learning of a class of linear functions by stochastic gradient descent. This work highlights the potential of buffered DNA strand displacement as a powerful circuit architecture for implementing adaptive molecular systems. PMID:27111037
The design of a parallel adaptive paving all-quadrilateral meshing algorithm
Tautges, T.J.; Lober, R.R.; Vaughan, C.
1995-08-01
Adaptive finite element analysis demands a great deal of computational resources, and as such is most appropriately solved in a massively parallel computer environment. This analysis will require other parallel algorithms before it can fully utilize MP computers, one of which is parallel adaptive meshing. A version of the paving algorithm is being designed which operates in parallel but which also retains the robustness and other desirable features present in the serial algorithm. Adaptive paving in a production mode is demonstrated using a Babuska-Rheinboldt error estimator on a classic linearly elastic plate problem. The design of the parallel paving algorithm is described, and is based on the decomposition of a surface into {open_quotes}virtual{close_quotes} surfaces. The topology of the virtual surface boundaries is defined using mesh entities (mesh nodes and edges) so as to allow movement of these boundaries with smoothing and other operations. This arrangement allows the use of the standard paving algorithm on subdomain interiors, after the negotiation of the boundary mesh.
Longest jobs first algorithm in solving job shop scheduling using adaptive genetic algorithm (GA)
NASA Astrophysics Data System (ADS)
Alizadeh Sahzabi, Vahid; Karimi, Iman; Alizadeh Sahzabi, Navid; Mamaani Barnaghi, Peiman
2011-12-01
In this paper, genetic algorithm was used to solve job shop scheduling problems. One example discussed in JSSP (Job Shop Scheduling Problem) and I described how we can solve such these problems by genetic algorithm. The goal in JSSP is to gain the shortest process time. Furthermore I proposed a method to obtain best performance on performing all jobs in shortest time. The method mainly, is according to Genetic algorithm (GA) and crossing over between parents always follows the rule which the longest process is at the first in the job queue. In the other word chromosomes is suggested to sorts based on the longest processes to shortest i.e. "longest job first" says firstly look which machine contains most processing time during its performing all its jobs and that is the bottleneck. Secondly, start sort those jobs which are belonging to that specific machine descending. Based on the achieved results," longest jobs first" is the optimized status in job shop scheduling problems. In our results the accuracy would grow up to 94.7% for total processing time and the method improved 4% the accuracy of performing all jobs in the presented example.
Longest jobs first algorithm in solving job shop scheduling using adaptive genetic algorithm (GA)
NASA Astrophysics Data System (ADS)
Alizadeh Sahzabi, Vahid; Karimi, Iman; Alizadeh Sahzabi, Navid; Mamaani Barnaghi, Peiman
2012-01-01
In this paper, genetic algorithm was used to solve job shop scheduling problems. One example discussed in JSSP (Job Shop Scheduling Problem) and I described how we can solve such these problems by genetic algorithm. The goal in JSSP is to gain the shortest process time. Furthermore I proposed a method to obtain best performance on performing all jobs in shortest time. The method mainly, is according to Genetic algorithm (GA) and crossing over between parents always follows the rule which the longest process is at the first in the job queue. In the other word chromosomes is suggested to sorts based on the longest processes to shortest i.e. "longest job first" says firstly look which machine contains most processing time during its performing all its jobs and that is the bottleneck. Secondly, start sort those jobs which are belonging to that specific machine descending. Based on the achieved results," longest jobs first" is the optimized status in job shop scheduling problems. In our results the accuracy would grow up to 94.7% for total processing time and the method improved 4% the accuracy of performing all jobs in the presented example.
The Binding of Learning to Action in Motor Adaptation
Gonzalez Castro, Luis Nicolas; Monsen, Craig Bryant; Smith, Maurice A.
2011-01-01
In motor tasks, errors between planned and actual movements generally result in adaptive changes which reduce the occurrence of similar errors in the future. It has commonly been assumed that the motor adaptation arising from an error occurring on a particular movement is specifically associated with the motion that was planned. Here we show that this is not the case. Instead, we demonstrate the binding of the adaptation arising from an error on a particular trial to the motion experienced on that same trial. The formation of this association means that future movements planned to resemble the motion experienced on a given trial benefit maximally from the adaptation arising from it. This reflects the idea that actual rather than planned motions are assigned ‘credit’ for motor errors because, in a computational sense, the maximal adaptive response would be associated with the condition credited with the error. We studied this process by examining the patterns of generalization associated with motor adaptation to novel dynamic environments during reaching arm movements in humans. We found that these patterns consistently matched those predicted by adaptation associated with the actual rather than the planned motion, with maximal generalization observed where actual motions were clustered. We followed up these findings by showing that a novel training procedure designed to leverage this newfound understanding of the binding of learning to action, can improve adaptation rates by greater than 50%. Our results provide a mechanistic framework for understanding the effects of partial assistance and error augmentation during neurologic rehabilitation, and they suggest ways to optimize their use. PMID:21731476
Jirayucharoensak, Suwicha; Pan-Ngum, Setha; Israsena, Pasin
2014-01-01
Automatic emotion recognition is one of the most challenging tasks. To detect emotion from nonstationary EEG signals, a sophisticated learning algorithm that can represent high-level abstraction is required. This study proposes the utilization of a deep learning network (DLN) to discover unknown feature correlation between input signals that is crucial for the learning task. The DLN is implemented with a stacked autoencoder (SAE) using hierarchical feature learning approach. Input features of the network are power spectral densities of 32-channel EEG signals from 32 subjects. To alleviate overfitting problem, principal component analysis (PCA) is applied to extract the most important components of initial input features. Furthermore, covariate shift adaptation of the principal components is implemented to minimize the nonstationary effect of EEG signals. Experimental results show that the DLN is capable of classifying three different levels of valence and arousal with accuracy of 49.52% and 46.03%, respectively. Principal component based covariate shift adaptation enhances the respective classification accuracy by 5.55% and 6.53%. Moreover, DLN provides better performance compared to SVM and naive Bayes classifiers. PMID:25258728
Jirayucharoensak, Suwicha; Pan-Ngum, Setha; Israsena, Pasin
2014-01-01
Automatic emotion recognition is one of the most challenging tasks. To detect emotion from nonstationary EEG signals, a sophisticated learning algorithm that can represent high-level abstraction is required. This study proposes the utilization of a deep learning network (DLN) to discover unknown feature correlation between input signals that is crucial for the learning task. The DLN is implemented with a stacked autoencoder (SAE) using hierarchical feature learning approach. Input features of the network are power spectral densities of 32-channel EEG signals from 32 subjects. To alleviate overfitting problem, principal component analysis (PCA) is applied to extract the most important components of initial input features. Furthermore, covariate shift adaptation of the principal components is implemented to minimize the nonstationary effect of EEG signals. Experimental results show that the DLN is capable of classifying three different levels of valence and arousal with accuracy of 49.52% and 46.03%, respectively. Principal component based covariate shift adaptation enhances the respective classification accuracy by 5.55% and 6.53%. Moreover, DLN provides better performance compared to SVM and naive Bayes classifiers. PMID:25258728
ERIC Educational Resources Information Center
Green, Steve; Jones, Ray; Pearson, Elaine; Gkatzidou, Stavroula
2006-01-01
The case for learning patterns as a design method for accessible and adaptable learning objects is explored. Patterns and templates for the design of learning objects can be derived from successful existing learning resources. These patterns can then be reused in the design of new learning objects. We argue that by attending to criteria for reuse…
Adaptive switching detection algorithm for iterative-MIMO systems to enable power savings
NASA Astrophysics Data System (ADS)
Tadza, N.; Laurenson, D.; Thompson, J. S.
2014-11-01
This paper attempts to tackle one of the challenges faced in soft input soft output Multiple Input Multiple Output (MIMO) detection systems, which is to achieve optimal error rate performance with minimal power consumption. This is realized by proposing a new algorithm design that comprises multiple thresholds within the detector that, in real time, specify the receiver behavior according to the current channel in both slow and fast fading conditions, giving it adaptivity. This adaptivity enables energy savings within the system since the receiver chooses whether to accept or to reject the transmission, according to the success rate of detecting thresholds. The thresholds are calculated using the mutual information of the instantaneous channel conditions between the transmitting and receiving antennas of iterative-MIMO systems. In addition, the power saving technique, Dynamic Voltage and Frequency Scaling, helps to reduce the circuit power demands of the adaptive algorithm. This adaptivity has the potential to save up to 30% of the total energy when it is implemented on Xilinx®Virtex-5 simulation hardware. Results indicate the benefits of having this "intelligence" in the adaptive algorithm due to the promising performance-complexity tradeoff parameters in both software and hardware codesign simulation.
Adaptive sparse signal processing of on-orbit lightning data using learned dictionaries
NASA Astrophysics Data System (ADS)
Moody, Daniela I.; Smith, David A.; Hamlin, Timothy D.; Light, Tess E.; Suszcynsky, David M.
2013-05-01
For the past two decades, there has been an ongoing research effort at Los Alamos National Laboratory to learn more about the Earth's radiofrequency (RF) background utilizing satellite-based RF observations of terrestrial lightning. The Fast On-orbit Recording of Transient Events (FORTE) satellite provided a rich RF lighting database, comprising of five years of data recorded from its two RF payloads. While some classification work has been done previously on the FORTE RF database, application of modern pattern recognition techniques may advance lightning research in the scientific community and potentially improve on-orbit processing and event discrimination capabilities for future satellite payloads. We now develop and implement new event classification capability on the FORTE database using state-of-the-art adaptive signal processing combined with compressive sensing and machine learning techniques. The focus of our work is improved feature extraction using sparse representations in learned dictionaries. Conventional localized data representations for RF transients using analytical dictionaries, such as a short-time Fourier basis or wavelets, can be suitable for analyzing some types of signals, but not others. Instead, we learn RF dictionaries directly from data, without relying on analytical constraints or additional knowledge about the signal characteristics, using several established machine learning algorithms. Sparse classification features are extracted via matching pursuit search over the learned dictionaries, and used in conjunction with a statistical classifier to distinguish between lightning types. We present preliminary results of our work and discuss classification scenarios and future development.
NASA Astrophysics Data System (ADS)
Irondi, Iheanyi; Wang, Qi; Grecos, Christos
2016-04-01
Adaptive video streaming using HTTP has become popular in recent years for commercial video delivery. The recent MPEG-DASH standard allows interoperability and adaptability between servers and clients from different vendors. The delivery of the MPD (Media Presentation Description) files in DASH and the DASH client behaviours are beyond the scope of the DASH standard. However, the different adaptation algorithms employed by the clients do affect the overall performance of the system and users' QoE (Quality of Experience), hence the need for research in this field. Moreover, standard DASH delivery is based on fixed segments of the video. However, there is no standard segment duration for DASH where various fixed segment durations have been employed by different commercial solutions and researchers with their own individual merits. Most recently, the use of variable segment duration in DASH has emerged but only a few preliminary studies without practical implementation exist. In addition, such a technique requires a DASH client to be aware of segment duration variations, and this requirement and the corresponding implications on the DASH system design have not been investigated. This paper proposes a segment-duration-aware bandwidth estimation and next-segment selection adaptation strategy for DASH. Firstly, an MPD file extension scheme to support variable segment duration is proposed and implemented in a realistic hardware testbed. The scheme is tested on a DASH client, and the tests and analysis have led to an insight on the time to download next segment and the buffer behaviour when fetching and switching between segments of different playback durations. Issues like sustained buffering when switching between segments of different durations and slow response to changing network conditions are highlighted and investigated. An enhanced adaptation algorithm is then proposed to accurately estimate the bandwidth and precisely determine the time to download the next
A High Fuel Consumption Efficiency Management Scheme for PHEVs Using an Adaptive Genetic Algorithm
Lee, Wah Ching; Tsang, Kim Fung; Chi, Hao Ran; Hung, Faan Hei; Wu, Chung Kit; Chui, Kwok Tai; Lau, Wing Hong; Leung, Yat Wah
2015-01-01
A high fuel efficiency management scheme for plug-in hybrid electric vehicles (PHEVs) has been developed. In order to achieve fuel consumption reduction, an adaptive genetic algorithm scheme has been designed to adaptively manage the energy resource usage. The objective function of the genetic algorithm is implemented by designing a fuzzy logic controller which closely monitors and resembles the driving conditions and environment of PHEVs, thus trading off between petrol versus electricity for optimal driving efficiency. Comparison between calculated results and publicized data shows that the achieved efficiency of the fuzzified genetic algorithm is better by 10% than existing schemes. The developed scheme, if fully adopted, would help reduce over 600 tons of CO2 emissions worldwide every day. PMID:25587974
A high fuel consumption efficiency management scheme for PHEVs using an adaptive genetic algorithm.
Lee, Wah Ching; Tsang, Kim Fung; Chi, Hao Ran; Hung, Faan Hei; Wu, Chung Kit; Chui, Kwok Tai; Lau, Wing Hong; Leung, Yat Wah
2015-01-01
A high fuel efficiency management scheme for plug-in hybrid electric vehicles (PHEVs) has been developed. In order to achieve fuel consumption reduction, an adaptive genetic algorithm scheme has been designed to adaptively manage the energy resource usage. The objective function of the genetic algorithm is implemented by designing a fuzzy logic controller which closely monitors and resembles the driving conditions and environment of PHEVs, thus trading off between petrol versus electricity for optimal driving efficiency. Comparison between calculated results and publicized data shows that the achieved efficiency of the fuzzified genetic algorithm is better by 10% than existing schemes. The developed scheme, if fully adopted, would help reduce over 600 tons of CO2 emissions worldwide every day. PMID:25587974
Knowledge-Aided Multichannel Adaptive SAR/GMTI Processing: Algorithm and Experimental Results
NASA Astrophysics Data System (ADS)
Wu, Di; Zhu, Daiyin; Zhu, Zhaoda
2010-12-01
The multichannel synthetic aperture radar ground moving target indication (SAR/GMTI) technique is a simplified implementation of space-time adaptive processing (STAP), which has been proved to be feasible in the past decades. However, its detection performance will be degraded in heterogeneous environments due to the rapidly varying clutter characteristics. Knowledge-aided (KA) STAP provides an effective way to deal with the nonstationary problem in real-world clutter environment. Based on the KA STAP methods, this paper proposes a KA algorithm for adaptive SAR/GMTI processing in heterogeneous environments. It reduces sample support by its fast convergence properties and shows robust to non-stationary clutter distribution relative to the traditional adaptive SAR/GMTI scheme. Experimental clutter suppression results are employed to verify the virtue of this algorithm.
A self-adaptive genetic algorithm to estimate JA model parameters considering minor loops
NASA Astrophysics Data System (ADS)
Lu, Hai-liang; Wen, Xi-shan; Lan, Lei; An, Yun-zhu; Li, Xiao-ping
2015-01-01
A self-adaptive genetic algorithm for estimating Jiles-Atherton (JA) magnetic hysteresis model parameters is presented. The fitness function is established based on the distances between equidistant key points of normalized hysteresis loops. Linearity function and logarithm function are both adopted to code the five parameters of JA model. Roulette wheel selection is used and the selection pressure is adjusted adaptively by deducting a proportional which depends on current generation common value. The Crossover operator is established by combining arithmetic crossover and multipoint crossover. Nonuniform mutation is improved by adjusting the mutation ratio adaptively. The algorithm is used to estimate the parameters of one kind of silicon-steel sheet's hysteresis loops, and the results are in good agreement with published data.
Distributed reinforcement learning for adaptive and robust network intrusion response
NASA Astrophysics Data System (ADS)
Malialis, Kleanthis; Devlin, Sam; Kudenko, Daniel
2015-07-01
Distributed denial of service (DDoS) attacks constitute a rapidly evolving threat in the current Internet. Multiagent Router Throttling is a novel approach to defend against DDoS attacks where multiple reinforcement learning agents are installed on a set of routers and learn to rate-limit or throttle traffic towards a victim server. The focus of this paper is on online learning and scalability. We propose an approach that incorporates task decomposition, team rewards and a form of reward shaping called difference rewards. One of the novel characteristics of the proposed system is that it provides a decentralised coordinated response to the DDoS problem, thus being resilient to DDoS attacks themselves. The proposed system learns remarkably fast, thus being suitable for online learning. Furthermore, its scalability is successfully demonstrated in experiments involving 1000 learning agents. We compare our approach against a baseline and a popular state-of-the-art throttling technique from the network security literature and show that the proposed approach is more effective, adaptive to sophisticated attack rate dynamics and robust to agent failures.
Psychosocial and Adaptive Deficits Associated With Learning Disability Subtypes.
Backenson, Erica M; Holland, Sara C; Kubas, Hanna A; Fitzer, Kim R; Wilcox, Gabrielle; Carmichael, Jessica A; Fraccaro, Rebecca L; Smith, Amanda D; Macoun, Sarah J; Harrison, Gina L; Hale, James B
2015-01-01
Children with specific learning disabilities (SLD) have deficits in the basic psychological processes that interfere with learning and academic achievement, and for some SLD subtypes, these deficits can also lead to emotional and/or behavior problems. This study examined psychosocial functioning in 123 students, aged 6 to 11, who underwent comprehensive evaluations for learning and/or behavior problems in two Pacific Northwest school districts. Using concordance-discordance model (C-DM) processing strengths and weaknesses SLD identification criteria, results revealed working memory SLD (n = 20), processing speed SLD (n = 30), executive SLD (n = 32), and no disability groups (n = 41). Of the SLD subtypes, repeated measures MANOVA results revealed the processing speed SLD subtype exhibited the greatest psychosocial and adaptive impairment according to teacher behavior ratings. Findings suggest processing speed deficits may be behind the cognitive and psychosocial disturbances found in what has been termed "nonverbal" SLD. Limitations, implications, and future research needs are addressed. PMID:24300589
ERIC Educational Resources Information Center
Yang, Tzu-Chi; Hwang, Gwo-Jen; Yang, Stephen Jen-Hwa
2013-01-01
In this study, an adaptive learning system is developed by taking multiple dimensions of personalized features into account. A personalized presentation module is proposed for developing adaptive learning systems based on the field dependent/independent cognitive style model and the eight dimensions of Felder-Silverman's learning style. An…
Performance & Emotion--A Study on Adaptive E-Learning Based on Visual/Verbal Learning Styles
ERIC Educational Resources Information Center
Beckmann, Jennifer; Bertel, Sven; Zander, Steffi
2015-01-01
Adaptive e-Learning systems are able to adjust to a user's learning needs, usually by user modeling or tracking progress. Such learner-adaptive behavior has rapidly become a hot topic for e-Learning, furthered in part by the recent rapid increase in the use of MOOCs (Massive Open Online Courses). A lack of general, individual, and situational data…
Shan, Hai; Yasuda, Toshiyuki; Ohkura, Kazuhiro
2015-06-01
The artificial bee colony (ABC) algorithm is one of popular swarm intelligence algorithms that inspired by the foraging behavior of honeybee colonies. To improve the convergence ability, search speed of finding the best solution and control the balance between exploration and exploitation using this approach, we propose a self adaptive hybrid enhanced ABC algorithm in this paper. To evaluate the performance of standard ABC, best-so-far ABC (BsfABC), incremental ABC (IABC), and the proposed ABC algorithms, we implemented numerical optimization problems based on the IEEE Congress on Evolutionary Computation (CEC) 2014 test suite. Our experimental results show the comparative performance of standard ABC, BsfABC, IABC, and the proposed ABC algorithms. According to the results, we conclude that the proposed ABC algorithm is competitive to those state-of-the-art modified ABC algorithms such as BsfABC and IABC algorithms based on the benchmark problems defined by CEC 2014 test suite with dimension sizes of 10, 30, and 50, respectively. PMID:25982071
Massively parallel algorithms for real-time wavefront control of a dense adaptive optics system
Fijany, A.; Milman, M.; Redding, D.
1994-12-31
In this paper massively parallel algorithms and architectures for real-time wavefront control of a dense adaptive optic system (SELENE) are presented. The authors have already shown that the computation of a near optimal control algorithm for SELENE can be reduced to the solution of a discrete Poisson equation on a regular domain. Although, this represents an optimal computation, due the large size of the system and the high sampling rate requirement, the implementation of this control algorithm poses a computationally challenging problem since it demands a sustained computational throughput of the order of 10 GFlops. They develop a novel algorithm, designated as Fast Invariant Imbedding algorithm, which offers a massive degree of parallelism with simple communication and synchronization requirements. Due to these features, this algorithm is significantly more efficient than other Fast Poisson Solvers for implementation on massively parallel architectures. The authors also discuss two massively parallel, algorithmically specialized, architectures for low-cost and optimal implementation of the Fast Invariant Imbedding algorithm.
NASA Astrophysics Data System (ADS)
Hegde, Veena; Deekshit, Ravishankar; Satyanarayana, P. S.
2011-12-01
The electrocardiogram (ECG) is widely used for diagnosis of heart diseases. Good quality of ECG is utilized by physicians for interpretation and identification of physiological and pathological phenomena. However, in real situations, ECG recordings are often corrupted by artifacts or noise. Noise severely limits the utility of the recorded ECG and thus needs to be removed, for better clinical evaluation. In the present paper a new noise cancellation technique is proposed for removal of random noise like muscle artifact from ECG signal. A transform domain robust variable step size Griffiths' LMS algorithm (TVGLMS) is proposed for noise cancellation. For the TVGLMS, the robust variable step size has been achieved by using the Griffiths' gradient which uses cross-correlation between the desired signal contaminated with observation or random noise and the input. The algorithm is discrete cosine transform (DCT) based and uses symmetric property of the signal to represent the signal in frequency domain with lesser number of frequency coefficients when compared to that of discrete Fourier transform (DFT). The algorithm is implemented for adaptive line enhancer (ALE) filter which extracts the ECG signal in a noisy environment using LMS filter adaptation. The proposed algorithm is found to have better convergence error/misadjustment when compared to that of ordinary transform domain LMS (TLMS) algorithm, both in the presence of white/colored observation noise. The reduction in convergence error achieved by the new algorithm with desired signal decomposition is found to be lower than that obtained without decomposition. The experimental results indicate that the proposed method is better than traditional adaptive filter using LMS algorithm in the aspects of retaining geometrical characteristics of ECG signal.
Protein sequence classification with improved extreme learning machine algorithms.
Cao, Jiuwen; Xiong, Lianglin
2014-01-01
Precisely classifying a protein sequence from a large biological protein sequences database plays an important role for developing competitive pharmacological products. Comparing the unseen sequence with all the identified protein sequences and returning the category index with the highest similarity scored protein, conventional methods are usually time-consuming. Therefore, it is urgent and necessary to build an efficient protein sequence classification system. In this paper, we study the performance of protein sequence classification using SLFNs. The recent efficient extreme learning machine (ELM) and its invariants are utilized as the training algorithms. The optimal pruned ELM is first employed for protein sequence classification in this paper. To further enhance the performance, the ensemble based SLFNs structure is constructed where multiple SLFNs with the same number of hidden nodes and the same activation function are used as ensembles. For each ensemble, the same training algorithm is adopted. The final category index is derived using the majority voting method. Two approaches, namely, the basic ELM and the OP-ELM, are adopted for the ensemble based SLFNs. The performance is analyzed and compared with several existing methods using datasets obtained from the Protein Information Resource center. The experimental results show the priority of the proposed algorithms. PMID:24795876
Liu, Derong; Li, Hongliang; Wang, Ding
2015-06-01
In this paper, we establish error bounds of adaptive dynamic programming algorithms for solving undiscounted infinite-horizon optimal control problems of discrete-time deterministic nonlinear systems. We consider approximation errors in the update equations of both value function and control policy. We utilize a new assumption instead of the contraction assumption in discounted optimal control problems. We establish the error bounds for approximate value iteration based on a new error condition. Furthermore, we also establish the error bounds for approximate policy iteration and approximate optimistic policy iteration algorithms. It is shown that the iterative approximate value function can converge to a finite neighborhood of the optimal value function under some conditions. To implement the developed algorithms, critic and action neural networks are used to approximate the value function and control policy, respectively. Finally, a simulation example is given to demonstrate the effectiveness of the developed algorithms. PMID:25751878
Self-adaptive predictor-corrector algorithm for static nonlinear structural analysis
NASA Technical Reports Server (NTRS)
Padovan, J.
1981-01-01
A multiphase selfadaptive predictor corrector type algorithm was developed. This algorithm enables the solution of highly nonlinear structural responses including kinematic, kinetic and material effects as well as pro/post buckling behavior. The strategy involves three main phases: (1) the use of a warpable hyperelliptic constraint surface which serves to upperbound dependent iterate excursions during successive incremental Newton Ramphson (INR) type iterations; (20 uses an energy constraint to scale the generation of successive iterates so as to maintain the appropriate form of local convergence behavior; (3) the use of quality of convergence checks which enable various self adaptive modifications of the algorithmic structure when necessary. The restructuring is achieved by tightening various conditioning parameters as well as switch to different algorithmic levels to improve the convergence process. The capabilities of the procedure to handle various types of static nonlinear structural behavior are illustrated.
The algorithm analysis on non-uniformity correction based on LMS adaptive filtering
NASA Astrophysics Data System (ADS)
Zhan, Dongjun; Wang, Qun; Wang, Chensheng; Chen, Huawang
2010-11-01
The traditional least mean square (LMS) algorithm has the performance of good adaptivity to noise, but there are several disadvantages in the traditional LMS algorithm, such as the defect in desired value of pending pixels, undetermined original coefficients, which result in slow convergence speed and long convergence period. Method to solve the desired value of pending pixel has improved based on these problems, also, the correction gain and offset coefficients worked out by the method of two-point temperature non-uniformity correction (NUC) as the original coefficients, which has improved the convergence speed. The simulation with real infrared images has proved that the new LMS algorithm has the advantages of better correction effect. Finally, the algorithm is implemented on the hardware structure of FPGA+DSP.
A Constrained Genetic Algorithm with Adaptively Defined Fitness Function in MRS Quantification
NASA Astrophysics Data System (ADS)
Papakostas, G. A.; Karras, D. A.; Mertzios, B. G.; Graveron-Demilly, D.; van Ormondt, D.
MRS Signal quantification is a rather involved procedure and has attracted the interest of the medical engineering community, regarding the development of computationally efficient methodologies. Significant contributions based on Computational Intelligence tools, such as Neural Networks (NNs), demonstrated a good performance but not without drawbacks already discussed by the authors. On the other hand preliminary application of Genetic Algorithms (GA) has already been reported in the literature by the authors regarding the peak detection problem encountered in MRS quantification using the Voigt line shape model. This paper investigates a novel constrained genetic algorithm involving a generic and adaptively defined fitness function which extends the simple genetic algorithm methodology in case of noisy signals. The applicability of this new algorithm is scrutinized through experimentation in artificial MRS signals interleaved with noise, regarding its signal fitting capabilities. Although extensive experiments with real world MRS signals are necessary, the herein shown performance illustrates the method's potential to be established as a generic MRS metabolites quantification procedure.
Analysis of Pollution Patterns Using Unsupervised Machine Learning Algorithms
NASA Astrophysics Data System (ADS)
Kanevski, M.; Timonin, V.; Pozdnoukhov, A.; Maignan, M.
2009-04-01
The research presents an application of Machine Learning Algorithms, mainly unsupervised learning techniques like self-organising Kohonen maps (SOM), to study spatial patterns of multivariate environmental spatial data. SOM are well-known neural networks widely used for high-dimensional data analysis, modelling (clustering and classification), and visualization. Self-organising maps belong to the unsupervised machine learning algorithms providing solutions to clustering, classification or density modelling problems using unlabeled data. SOM are efficiently used for the dimensionality reduction and for the visualisation of high-dimensional data (projection into a two-dimensional space). Unlabeled data are points/vectors in a high-dimensional feature space that have some attributes (or coordinates) but have no target values, neither continuous (as in a regression problem) nor discrete labels (as in the case of classification problem). The main task of SOM is to "group" or to "range" in some manner these input vectors and to try to catch regularities (to find patterns) in data by preserving topological structure and by using some well defined similarity measures. A generic methodology presented in this study consists of detailed spatial exploratory data analysis using statistical and geostatistical tools, analysis and modelling of spatial (cross)-correlations anisotropic structures, and application of SOM as a nonlinear modelling and visualisation tool. The case study considers multivariate data of sediments contamination by heavy metals (eight spatially distributes pollutants) in Geneva Lake. The most important modelling task is formulated as a problem of revealing structures or coherent clusters in this multivariate data set that would shed some light on the underlying phenomena of the contamination. Three major clusters, clearly spatially separated, were detected and explained by using the SOM technique.
An adaptive metamodel-based global optimization algorithm for black-box type problems
NASA Astrophysics Data System (ADS)
Jie, Haoxiang; Wu, Yizhong; Ding, Jianwan
2015-11-01
In this article, an adaptive metamodel-based global optimization (AMGO) algorithm is presented to solve unconstrained black-box problems. In the AMGO algorithm, a type of hybrid model composed of kriging and augmented radial basis function (RBF) is used as the surrogate model. The weight factors of hybrid model are adaptively selected in the optimization process. To balance the local and global search, a sub-optimization problem is constructed during each iteration to determine the new iterative points. As numerical experiments, six standard two-dimensional test functions are selected to show the distributions of iterative points. The AMGO algorithm is also tested on seven well-known benchmark optimization problems and contrasted with three representative metamodel-based optimization methods: efficient global optimization (EGO), GutmannRBF and hybrid and adaptive metamodel (HAM). The test results demonstrate the efficiency and robustness of the proposed method. The AMGO algorithm is finally applied to the structural design of the import and export chamber of a cycloid gear pump, achieving satisfactory results.
A parallel second-order adaptive mesh algorithm for incompressible flow in porous media.
Pau, George S H; Almgren, Ann S; Bell, John B; Lijewski, Michael J
2009-11-28
In this paper, we present a second-order accurate adaptive algorithm for solving multi-phase, incompressible flow in porous media. We assume a multi-phase form of Darcy's law with relative permeabilities given as a function of the phase saturation. The remaining equations express conservation of mass for the fluid constituents. In this setting, the total velocity, defined to be the sum of the phase velocities, is divergence free. The basic integration method is based on a total-velocity splitting approach in which we solve a second-order elliptic pressure equation to obtain a total velocity. This total velocity is then used to recast component conservation equations as nonlinear hyperbolic equations. Our approach to adaptive refinement uses a nested hierarchy of logically rectangular grids with simultaneous refinement of the grids in both space and time. The integration algorithm on the grid hierarchy is a recursive procedure in which coarse grids are advanced in time, fine grids are advanced multiple steps to reach the same time as the coarse grids and the data at different levels are then synchronized. The single-grid algorithm is described briefly, but the emphasis here is on the time-stepping procedure for the adaptive hierarchy. Numerical examples are presented to demonstrate the algorithm's accuracy and convergence properties and to illustrate the behaviour of the method. PMID:19840985
A Parallel Second-Order Adaptive Mesh Algorithm for Incompressible Flow in Porous Media
Pau, George Shu Heng; Almgren, Ann S.; Bell, John B.; Lijewski, Michael J.
2008-04-01
In this paper we present a second-order accurate adaptive algorithm for solving multiphase, incompressible flows in porous media. We assume a multiphase form of Darcy's law with relative permeabilities given as a function of the phase saturation. The remaining equations express conservation of mass for the fluid constituents. In this setting the total velocity, defined to be the sum of the phase velocities, is divergence-free. The basic integration method is based on a total-velocity splitting approach in which we solve a second-order elliptic pressure equation to obtain a total velocity. This total velocity is then used to recast component conservation equations as nonlinear hyperbolic equations. Our approach to adaptive refinement uses a nested hierarchy of logically rectangular grids with simultaneous refinement of the grids in both space and time. The integration algorithm on the grid hierarchy is a recursive procedure in which coarse grids are advanced in time, fine grids areadvanced multiple steps to reach the same time as the coarse grids and the data atdifferent levels are then synchronized. The single grid algorithm is described briefly,but the emphasis here is on the time-stepping procedure for the adaptive hierarchy. Numerical examples are presented to demonstrate the algorithm's accuracy and convergence properties and to illustrate the behavior of the method.
A structured multi-block solution-adaptive mesh algorithm with mesh quality assessment
NASA Technical Reports Server (NTRS)
Ingram, Clint L.; Laflin, Kelly R.; Mcrae, D. Scott
1995-01-01
The dynamic solution adaptive grid algorithm, DSAGA3D, is extended to automatically adapt 2-D structured multi-block grids, including adaption of the block boundaries. The extension is general, requiring only input data concerning block structure, connectivity, and boundary conditions. Imbedded grid singular points are permitted, but must be prevented from moving in space. Solutions for workshop cases 1 and 2 are obtained on multi-block grids and illustrate both increased resolution of and alignment with the solution. A mesh quality assessment criteria is proposed to determine how well a given mesh resolves and aligns with the solution obtained upon it. The criteria is used to evaluate the grid quality for solutions of workshop case 6 obtained on both static and dynamically adapted grids. The results indicate that this criteria shows promise as a means of evaluating resolution.
An adaptive learning control system for large flexible structures
NASA Technical Reports Server (NTRS)
Thau, F. E.
1985-01-01
The objective of the research has been to study the design of adaptive/learning control systems for the control of large flexible structures. In the first activity an adaptive/learning control methodology for flexible space structures was investigated. The approach was based on using a modal model of the flexible structure dynamics and an output-error identification scheme to identify modal parameters. In the second activity, a least-squares identification scheme was proposed for estimating both modal parameters and modal-to-actuator and modal-to-sensor shape functions. The technique was applied to experimental data obtained from the NASA Langley beam experiment. In the third activity, a separable nonlinear least-squares approach was developed for estimating the number of excited modes, shape functions, modal parameters, and modal amplitude and velocity time functions for a flexible structure. In the final research activity, a dual-adaptive control strategy was developed for regulating the modal dynamics and identifying modal parameters of a flexible structure. A min-max approach was used for finding an input to provide modal parameter identification while not exceeding reasonable bounds on modal displacement.
Efficient retrieval of landscape Hessian: forced optimal covariance adaptive learning.
Shir, Ofer M; Roslund, Jonathan; Whitley, Darrell; Rabitz, Herschel
2014-06-01
Knowledge of the Hessian matrix at the landscape optimum of a controlled physical observable offers valuable information about the system robustness to control noise. The Hessian can also assist in physical landscape characterization, which is of particular interest in quantum system control experiments. The recently developed landscape theoretical analysis motivated the compilation of an automated method to learn the Hessian matrix about the global optimum without derivative measurements from noisy data. The current study introduces the forced optimal covariance adaptive learning (FOCAL) technique for this purpose. FOCAL relies on the covariance matrix adaptation evolution strategy (CMA-ES) that exploits covariance information amongst the control variables by means of principal component analysis. The FOCAL technique is designed to operate with experimental optimization, generally involving continuous high-dimensional search landscapes (≳30) with large Hessian condition numbers (≳10^{4}). This paper introduces the theoretical foundations of the inverse relationship between the covariance learned by the evolution strategy and the actual Hessian matrix of the landscape. FOCAL is presented and demonstrated to retrieve the Hessian matrix with high fidelity on both model landscapes and quantum control experiments, which are observed to possess nonseparable, nonquadratic search landscapes. The recovered Hessian forms were corroborated by physical knowledge of the systems. The implications of FOCAL extend beyond the investigated studies to potentially cover other physically motivated multivariate landscapes. PMID:25019911
Dependence of Adaptive Cross-correlation Algorithm Performance on the Extended Scene Image Quality
NASA Technical Reports Server (NTRS)
Sidick, Erkin
2008-01-01
Recently, we reported an adaptive cross-correlation (ACC) algorithm to estimate with high accuracy the shift as large as several pixels between two extended-scene sub-images captured by a Shack-Hartmann wavefront sensor. It determines the positions of all extended-scene image cells relative to a reference cell in the same frame using an FFT-based iterative image-shifting algorithm. It works with both point-source spot images as well as extended scene images. We have demonstrated previously based on some measured images that the ACC algorithm can determine image shifts with as high an accuracy as 0.01 pixel for shifts as large 3 pixels, and yield similar results for both point source spot images and extended scene images. The shift estimate accuracy of the ACC algorithm depends on illumination level, background, and scene content in addition to the amount of the shift between two image cells. In this paper we investigate how the performance of the ACC algorithm depends on the quality and the frequency content of extended scene images captured by a Shack-Hatmann camera. We also compare the performance of the ACC algorithm with those of several other approaches, and introduce a failsafe criterion for the ACC algorithm-based extended scene Shack-Hatmann sensors.
Dependence of adaptive cross-correlation algorithm performance on the extended scene image quality
NASA Astrophysics Data System (ADS)
Sidick, Erkin
2008-08-01
Recently, we reported an adaptive cross-correlation (ACC) algorithm to estimate with high accuracy the shift as large as several pixels between two extended-scene sub-images captured by a Shack-Hartmann wavefront sensor. It determines the positions of all extended-scene image cells relative to a reference cell in the same frame using an FFT-based iterative image-shifting algorithm. It works with both point-source spot images as well as extended scene images. We have demonstrated previously based on some measured images that the ACC algorithm can determine image shifts with as high an accuracy as 0.01 pixel for shifts as large 3 pixels, and yield similar results for both point source spot images and extended scene images. The shift estimate accuracy of the ACC algorithm depends on illumination level, background, and scene content in addition to the amount of the shift between two image cells. In this paper we investigate how the performance of the ACC algorithm depends on the quality and the frequency content of extended scene images captured by a Shack-Hatmann camera. We also compare the performance of the ACC algorithm with those of several other approaches, and introduce a failsafe criterion for the ACC algorithm-based extended scene Shack-Hatmann sensors.
Lober, R.R.; Tautges, T.J.; Vaughan, C.T.
1997-03-01
Paving is an automated mesh generation algorithm which produces all-quadrilateral elements. It can additionally generate these elements in varying sizes such that the resulting mesh adapts to a function distribution, such as an error function. While powerful, conventional paving is a very serial algorithm in its operation. Parallel paving is the extension of serial paving into parallel environments to perform the same meshing functions as conventional paving only on distributed, discretized models. This extension allows large, adaptive, parallel finite element simulations to take advantage of paving`s meshing capabilities for h-remap remeshing. A significantly modified version of the CUBIT mesh generation code has been developed to host the parallel paving algorithm and demonstrate its capabilities on both two dimensional and three dimensional surface geometries and compare the resulting parallel produced meshes to conventionally paved meshes for mesh quality and algorithm performance. Sandia`s {open_quotes}tiling{close_quotes} dynamic load balancing code has also been extended to work with the paving algorithm to retain parallel efficiency as subdomains undergo iterative mesh refinement.
Adaptive vector quantization of MR images using online k-means algorithm
NASA Astrophysics Data System (ADS)
Shademan, Azad; Zia, Mohammad A.
2001-12-01
The k-means algorithm is widely used to design image codecs using vector quantization (VQ). In this paper, we focus on an adaptive approach to implement a VQ technique using the online version of k-means algorithm, in which the size of the codebook is adapted continuously to the statistical behavior of the image. Based on the statistical analysis of the feature space, a set of thresholds are designed such that those codewords corresponding to the low-density clusters would be removed from the codebook and hence, resulting in a higher bit-rate efficiency. Applications of this approach would be in telemedicine, where sequences of highly correlated medical images, e.g. consecutive brain slices, are transmitted over a low bit-rate channel. We have applied this algorithm on magnetic resonance (MR) images and the simulation results on a sample sequence are given. The proposed method has been compared to the standard k-means algorithm in terms of PSNR, MSE, and elapsed time to complete the algorithm.
Low Complex Forward Adaptive Loss Compression Algorithm and Its Application in Speech Coding
NASA Astrophysics Data System (ADS)
Nikolić, Jelena; Perić, Zoran; Antić, Dragan; Jovanović, Aleksandra; Denić, Dragan
2011-01-01
This paper proposes a low complex forward adaptive loss compression algorithm that works on the frame by frame basis. Particularly, the algorithm we propose performs frame by frame analysis of the input speech signal, estimates and quantizes the gain within the frames in order to enable the quantization by the forward adaptive piecewise linear optimal compandor. In comparison to the solution designed according to the G.711 standard, our algorithm provides not only higher level of the average signal to quantization noise ratio, but also performs a reduction of the PCM bit rate for about 1 bits/sample. Moreover, the algorithm we propose completely satisfies the G.712 standard, since it provides overreaching the curve defined by the G.712 standard in the whole of variance range. Accordingly, we can reasonably believe that our algorithm will find its practical implementation in the high quality coding of signals, represented with less than 8 bits/sample, which as well as speech signals follow Laplacian distribution and have the time varying variances.
NASA Astrophysics Data System (ADS)
Naser, Mohamed A.; Patterson, Michael S.; Wong, John W.
2014-04-01
A reconstruction algorithm for diffuse optical tomography based on diffusion theory and finite element method is described. The algorithm reconstructs the optical properties in a permissible domain or region-of-interest to reduce the number of unknowns. The algorithm can be used to reconstruct optical properties for a segmented object (where a CT-scan or MRI is available) or a non-segmented object. For the latter, an adaptive segmentation algorithm merges contiguous regions with similar optical properties thereby reducing the number of unknowns. In calculating the Jacobian matrix the algorithm uses an efficient direct method so the required time is comparable to that needed for a single forward calculation. The reconstructed optical properties using segmented, non-segmented, and adaptively segmented 3D mouse anatomy (MOBY) are used to perform bioluminescence tomography (BLT) for two simulated internal sources. The BLT results suggest that the accuracy of reconstruction of total source power obtained without the segmentation provided by an auxiliary imaging method such as x-ray CT is comparable to that obtained when using perfect segmentation.
An Adaptive Evolutionary Algorithm for Traveling Salesman Problem with Precedence Constraints
Sung, Jinmo; Jeong, Bongju
2014-01-01
Traveling sales man problem with precedence constraints is one of the most notorious problems in terms of the efficiency of its solution approach, even though it has very wide range of industrial applications. We propose a new evolutionary algorithm to efficiently obtain good solutions by improving the search process. Our genetic operators guarantee the feasibility of solutions over the generations of population, which significantly improves the computational efficiency even when it is combined with our flexible adaptive searching strategy. The efficiency of the algorithm is investigated by computational experiments. PMID:24701158
Mustapha, Ibrahim; Mohd Ali, Borhanuddin; Rasid, Mohd Fadlee A; Sali, Aduwati; Mohamad, Hafizal
2015-01-01
It is well-known that clustering partitions network into logical groups of nodes in order to achieve energy efficiency and to enhance dynamic channel access in cognitive radio through cooperative sensing. While the topic of energy efficiency has been well investigated in conventional wireless sensor networks, the latter has not been extensively explored. In this paper, we propose a reinforcement learning-based spectrum-aware clustering algorithm that allows a member node to learn the energy and cooperative sensing costs for neighboring clusters to achieve an optimal solution. Each member node selects an optimal cluster that satisfies pairwise constraints, minimizes network energy consumption and enhances channel sensing performance through an exploration technique. We first model the network energy consumption and then determine the optimal number of clusters for the network. The problem of selecting an optimal cluster is formulated as a Markov Decision Process (MDP) in the algorithm and the obtained simulation results show convergence, learning and adaptability of the algorithm to dynamic environment towards achieving an optimal solution. Performance comparisons of our algorithm with the Groupwise Spectrum Aware (GWSA)-based algorithm in terms of Sum of Square Error (SSE), complexity, network energy consumption and probability of detection indicate improved performance from the proposed approach. The results further reveal that an energy savings of 9% and a significant Primary User (PU) detection improvement can be achieved with the proposed approach. PMID:26287191
Mustapha, Ibrahim; Ali, Borhanuddin Mohd; Rasid, Mohd Fadlee A.; Sali, Aduwati; Mohamad, Hafizal
2015-01-01
It is well-known that clustering partitions network into logical groups of nodes in order to achieve energy efficiency and to enhance dynamic channel access in cognitive radio through cooperative sensing. While the topic of energy efficiency has been well investigated in conventional wireless sensor networks, the latter has not been extensively explored. In this paper, we propose a reinforcement learning-based spectrum-aware clustering algorithm that allows a member node to learn the energy and cooperative sensing costs for neighboring clusters to achieve an optimal solution. Each member node selects an optimal cluster that satisfies pairwise constraints, minimizes network energy consumption and enhances channel sensing performance through an exploration technique. We first model the network energy consumption and then determine the optimal number of clusters for the network. The problem of selecting an optimal cluster is formulated as a Markov Decision Process (MDP) in the algorithm and the obtained simulation results show convergence, learning and adaptability of the algorithm to dynamic environment towards achieving an optimal solution. Performance comparisons of our algorithm with the Groupwise Spectrum Aware (GWSA)-based algorithm in terms of Sum of Square Error (SSE), complexity, network energy consumption and probability of detection indicate improved performance from the proposed approach. The results further reveal that an energy savings of 9% and a significant Primary User (PU) detection improvement can be achieved with the proposed approach. PMID:26287191
Algorithme d'adaptation du filtre de Kalman aux variations soudaines de bruit
NASA Astrophysics Data System (ADS)
Canciu, Vintila
This research targets the case of Kalman filtering as applied to linear time-invariant systems having unknown process noise covariance and measurement noise covariance matrices and addresses the problem represented by the incomplete a priori knowledge of these two filter initialization parameters. The goal of this research is to determine in realtime both the process covariance matrix and the noise covariance matrix in the context of adaptive Kalman filtering. The resultant filter, called evolutionary adaptive Kalman filter, is able to adapt to sudden noise variations and constitutes a hybrid solution for adaptive Kalman filtering based on metaheuristic algorithms. MATLAB/Simulink simulation using several processes and covariance matrices plus comparison with other filters was selected as validation method. The Cramer-Rae Lower Bound (CRLB) was used as performance criterion. The thesis begins with a description of the problem under consideration (the design of a Kalman filter that is able to adapt to sudden noise variations) followed by a typical application (INS-GPS integrated navigation system) and by a statistical analysis of publications related to adaptive Kalman filtering. Next, the thesis presents the current architectures of the adaptive Kalman filtering: the innovation adaptive estimator (IAE) and the multiple model adaptive estimator (MMAE). It briefly presents their formulation, their behavior, and the limit of their performances. The thesis continues with the architectural synthesis of the evolutionary adaptive Kalman filter. The steps involved in the solution of the problem under consideration is also presented: an analysis of Kalman filtering and sub-optimal filtering methods, a comparison of current adaptive Kalman and sub-optimal filtering methods, the emergence of evolutionary adaptive Kalman filter as an enrichment of sub-optimal filtering with the help of biological-inspired computational intelligence methods, and the step-by-step architectural
Xue, Y.; Liu, S.; Hu, Y.; Yang, J.; Chen, Q.
2007-01-01
To improve the accuracy in prediction, Genetic Algorithm based Adaptive Neural Network Ensemble (GA-ANNE) is presented. Intersections are allowed between different training sets based on the fuzzy clustering analysis, which ensures the diversity as well as the accuracy of individual Neural Networks (NNs). Moreover, to improve the accuracy of the adaptive weights of individual NNs, GA is used to optimize the cluster centers. Empirical results in predicting carbon flux of Duke Forest reveal that GA-ANNE can predict the carbon flux more accurately than Radial Basis Function Neural Network (RBFNN), Bagging NN ensemble, and ANNE. ?? 2007 IEEE.
Anisotropic optical flow algorithm based on self-adaptive cellular neural network
NASA Astrophysics Data System (ADS)
Zhang, Congxuan; Chen, Zhen; Li, Ming; Sun, Kaiqiong
2013-01-01
An anisotropic optical flow estimation method based on self-adaptive cellular neural networks (CNN) is proposed. First, a novel optical flow energy function which contains a robust data term and an anisotropic smoothing term is projected. Next, the CNN model which has the self-adaptive feedback operator and threshold is presented according to the Euler-Lagrange partial differential equations of the proposed optical flow energy function. Finally, the elaborate evaluation experiments indicate the significant effects of the various proposed strategies for optical flow estimation, and the comparison results with the other methods show that the proposed algorithm has better performance in computing accuracy and efficiency.
Towards Motivation-Based Adaptation of Difficulty in E-Learning Programs
ERIC Educational Resources Information Center
Endler, Anke; Rey, Gunter Daniel; Butz, Martin V.
2012-01-01
The objective of this study was to investigate if an e-learning environment may use measurements of the user's current motivation to adapt the level of task difficulty for more effective learning. In the reported study, motivation-based adaptation was applied randomly to collect a wide range of data for different adaptations in a variety of…
Adaptation and Learning of Agents in Market Oriented Programming
NASA Astrophysics Data System (ADS)
Ishinishi, Masayuki; Namatame, Akira; Kita, Hajime
Market Oriented Programming (MOP) proposed by Wellman is a decentralized control method using auction machanism inspired by the market economy. It is applied to many problems such as network and computation resource allocation. Conventional MOP models are formulated based on the concept of ‘competitive market’ of economics which assumes that the market consists of sufficiently many and small agents. However, in realistic applications of MOP, number of agents is limited and their interdependency is not negligible. In this paper, MOP for interdependent agents is discussed. An oligopoly market model for MOP is introduced, and adaptation process of interdependent agents and its stability are discussed. Further, it is also demonstrated that selfish learning of adaptation coefficiency by each agent achieves stability of market through computer simulation.
Adaptive Sampling for Learning Gaussian Processes Using Mobile Sensor Networks
Xu, Yunfei; Choi, Jongeun
2011-01-01
This paper presents a novel class of self-organizing sensing agents that adaptively learn an anisotropic, spatio-temporal Gaussian process using noisy measurements and move in order to improve the quality of the estimated covariance function. This approach is based on a class of anisotropic covariance functions of Gaussian processes introduced to model a broad range of spatio-temporal physical phenomena. The covariance function is assumed to be unknown a priori. Hence, it is estimated by the maximum a posteriori probability (MAP) estimator. The prediction of the field of interest is then obtained based on the MAP estimate of the covariance function. An optimal sampling strategy is proposed to minimize the information-theoretic cost function of the Fisher Information Matrix. Simulation results demonstrate the effectiveness and the adaptability of the proposed scheme. PMID:22163785
ERIC Educational Resources Information Center
Reio, Thomas G., Jr.
The influence of selected discrete emotions on socialization-related learning and perception of workplace adaptation was examined in an exploratory study. Data were collected from 233 service workers in 4 small and medium-sized companies in metropolitan Washington, D.C. The sample members' average age was 32.5 years, and the sample's racial makeup…
The Influence of Student Characteristics on the Use of Adaptive E-Learning Material
ERIC Educational Resources Information Center
van Seters, J. R.; Ossevoort, M. A.; Tramper, J.; Goedhart, M. J.
2012-01-01
Adaptive e-learning materials can help teachers to educate heterogeneous student groups. This study provides empirical data about the way academic students differ in their learning when using adaptive e-learning materials. Ninety-four students participated in the study. We determined characteristics in a heterogeneous student group by collecting…
A robust face recognition algorithm under varying illumination using adaptive retina modeling
NASA Astrophysics Data System (ADS)
Cheong, Yuen Kiat; Yap, Vooi Voon; Nisar, Humaira
2013-10-01
Variation in illumination has a drastic effect on the appearance of a face image. This may hinder the automatic face recognition process. This paper presents a novel approach for face recognition under varying lighting conditions. The proposed algorithm uses adaptive retina modeling based illumination normalization. In the proposed approach, retina modeling is employed along with histogram remapping following normal distribution. Retina modeling is an approach that combines two adaptive nonlinear equations and a difference of Gaussians filter. Two databases: extended Yale B database and CMU PIE database are used to verify the proposed algorithm. For face recognition Gabor Kernel Fisher Analysis method is used. Experimental results show that the recognition rate for the face images with different illumination conditions has improved by the proposed approach. Average recognition rate for Extended Yale B database is 99.16%. Whereas, the recognition rate for CMU-PIE database is 99.64%.
A Study on Adapting the Zoom FFT Algorithm to Automotive Millimetre Wave Radar
NASA Astrophysics Data System (ADS)
Kuroda, Hiroshi; Takano, Kazuaki
The millimetre wave radar has been developed for automotive application such as ACC (Adaptive Cruise Control) and CWS (Collision Warning System). The radar uses MMIC (Monolithic Microwave Integrated Circuits) devices for transmitting and receiving 76 GHz millimetre wave signals. The radar is FSK (Frequency Shift Keying) monopulse type. The radar transmits 2 frequencies in time-duplex manner, and measures distance and relative speed of targets. The monopulse feature detects the azimuth angle of targets without a scanning mechanism. The Zoom FFT (Fast Fourier Transform) algorithm, which analyses frequency domain precisely, has adapted to the radar for discriminating multiple stationary targets. The Zoom FFT algorithm is evaluated in test truck. The evaluation results show good performance on discriminating two stationary vehicles in host lane and adjacent lane.
Adjoint-Based Algorithms for Adaptation and Design Optimizations on Unstructured Grids
NASA Technical Reports Server (NTRS)
Nielsen, Eric J.
2006-01-01
Schemes based on discrete adjoint algorithms present several exciting opportunities for significantly advancing the current state of the art in computational fluid dynamics. Such methods provide an extremely efficient means for obtaining discretely consistent sensitivity information for hundreds of design variables, opening the door to rigorous, automated design optimization of complex aerospace configuration using the Navier-Stokes equation. Moreover, the discrete adjoint formulation provides a mathematically rigorous foundation for mesh adaptation and systematic reduction of spatial discretization error. Error estimates are also an inherent by-product of an adjoint-based approach, valuable information that is virtually non-existent in today's large-scale CFD simulations. An overview of the adjoint-based algorithm work at NASA Langley Research Center is presented, with examples demonstrating the potential impact on complex computational problems related to design optimization as well as mesh adaptation.
A modified Richardson-Lucy algorithm for single image with adaptive reference maps
NASA Astrophysics Data System (ADS)
Cui, Guangmang; Feng, Huajun; Xu, Zhihai; Li, Qi; Chen, Yueting
2014-06-01
In this paper, we propose a modified non-blind Richardson-Lucy algorithm using adaptive reference maps as local constraint to reduce noise and ringing artifacts effectively. The deconvolution process can be divided into two stages. In the first deblurring stage, the reference map is estimated from the blurred image and an intermediate deblurred result is obtained. And then the adaptive reference map is updated according to both the blurred image and the deblurred result of the first stage to produce a more accurate edge description, which is very helpful to suppress the ringing around edges. Gaussian image prior is adopted as the regularization to improve the standard Richardson-Lucy algorithm. Experimental results show that the presented approach could suppress the negative ringing artifacts effectively as well as preserve the edge information, even if the blurred image contains rich textures.
Zarepisheh, Masoud; Li, Nan; Long, Troy; Romeijn, H. Edwin; Tian, Zhen; Jia, Xun; Jiang, Steve B.
2014-06-15
Purpose: To develop a novel algorithm that incorporates prior treatment knowledge into intensity modulated radiation therapy optimization to facilitate automatic treatment planning and adaptive radiotherapy (ART) replanning. Methods: The algorithm automatically creates a treatment plan guided by the DVH curves of a reference plan that contains information on the clinician-approved dose-volume trade-offs among different targets/organs and among different portions of a DVH curve for an organ. In ART, the reference plan is the initial plan for the same patient, while for automatic treatment planning the reference plan is selected from a library of clinically approved and delivered plans of previously treated patients with similar medical conditions and geometry. The proposed algorithm employs a voxel-based optimization model and navigates the large voxel-based Pareto surface. The voxel weights are iteratively adjusted to approach a plan that is similar to the reference plan in terms of the DVHs. If the reference plan is feasible but not Pareto optimal, the algorithm generates a Pareto optimal plan with the DVHs better than the reference ones. If the reference plan is too restricting for the new geometry, the algorithm generates a Pareto plan with DVHs close to the reference ones. In both cases, the new plans have similar DVH trade-offs as the reference plans. Results: The algorithm was tested using three patient cases and found to be able to automatically adjust the voxel-weighting factors in order to generate a Pareto plan with similar DVH trade-offs as the reference plan. The algorithm has also been implemented on a GPU for high efficiency. Conclusions: A novel prior-knowledge-based optimization algorithm has been developed that automatically adjust the voxel weights and generate a clinical optimal plan at high efficiency. It is found that the new algorithm can significantly improve the plan quality and planning efficiency in ART replanning and automatic treatment
A stochastic learning algorithm for layered neural networks
Bartlett, E.B.; Uhrig, R.E.
1992-12-31
The random optimization method typically uses a Gaussian probability density function (PDF) to generate a random search vector. In this paper the random search technique is applied to the neural network training problem and is modified to dynamically seek out the optimal probability density function (OPDF) from which to select the search vector. The dynamic OPDF search process, combined with an auto-adaptive stratified sampling technique and a dynamic node architecture (DNA) learning scheme, completes the modifications of the basic method. The DNA technique determines the appropriate number of hidden nodes needed for a given training problem. By using DNA, researchers do not have to set the neural network architectures before training is initiated. The approach is applied to networks of generalized, fully interconnected, continuous perceptions. Computer simulation results are given.
A stochastic learning algorithm for layered neural networks
Bartlett, E.B. . Dept. of Mechanical Engineering); Uhrig, R.E. . Dept. of Nuclear Engineering)
1992-01-01
The random optimization method typically uses a Gaussian probability density function (PDF) to generate a random search vector. In this paper the random search technique is applied to the neural network training problem and is modified to dynamically seek out the optimal probability density function (OPDF) from which to select the search vector. The dynamic OPDF search process, combined with an auto-adaptive stratified sampling technique and a dynamic node architecture (DNA) learning scheme, completes the modifications of the basic method. The DNA technique determines the appropriate number of hidden nodes needed for a given training problem. By using DNA, researchers do not have to set the neural network architectures before training is initiated. The approach is applied to networks of generalized, fully interconnected, continuous perceptions. Computer simulation results are given.
An Adaptive Displacement Estimation Algorithm for Improved Reconstruction of Thermal Strain
Ding, Xuan; Dutta, Debaditya; Mahmoud, Ahmed M.; Tillman, Bryan; Leers, Steven A.; Kim, Kang
2014-01-01
Thermal strain imaging (TSI) can be used to differentiate between lipid and water-based tissues in atherosclerotic arteries. However, detecting small lipid pools in vivo requires accurate and robust displacement estimation over a wide range of displacement magnitudes. Phase-shift estimators such as Loupas’ estimator and time-shift estimators like normalized cross-correlation (NXcorr) are commonly used to track tissue displacements. However, Loupas’ estimator is limited by phase-wrapping and NXcorr performs poorly when the signal-to-noise ratio (SNR) is low. In this paper, we present an adaptive displacement estimation algorithm that combines both Loupas’ estimator and NXcorr. We evaluated this algorithm using computer simulations and an ex-vivo human tissue sample. Using 1-D simulation studies, we showed that when the displacement magnitude induced by thermal strain was >λ/8 and the electronic system SNR was >25.5 dB, the NXcorr displacement estimate was less biased than the estimate found using Loupas’ estimator. On the other hand, when the displacement magnitude was ≤λ/4 and the electronic system SNR was ≤25.5 dB, Loupas’ estimator had less variance than NXcorr. We used these findings to design an adaptive displacement estimation algorithm. Computer simulations of TSI using Field II showed that the adaptive displacement estimator was less biased than either Loupas’ estimator or NXcorr. Strain reconstructed from the adaptive displacement estimates improved the strain SNR by 43.7–350% and the spatial accuracy by 1.2–23.0% (p < 0.001). An ex-vivo human tissue study provided results that were comparable to computer simulations. The results of this study showed that a novel displacement estimation algorithm, which combines two different displacement estimators, yielded improved displacement estimation and results in improved strain reconstruction. PMID:25585398
The Teaching and Learning of Algorithms in School Mathematics. 1998 Yearbook.
ERIC Educational Resources Information Center
Morrow, Lorna J., Ed.; Kenney, Margaret J., Ed.
This 1998 yearbook aims to stimulate and answer questions that all educators of mathematics need to consider to adapt school mathematics for the 21st century. The papers included in this book cover a wide variety of topics, including student-invented algorithms, the assessment of such algorithms, algorithms from history and other cultures, ways…
Sung, Wen-Tsai; Lin, Jia-Syun
2013-01-01
This work aims to develop a smart LED lighting system, which is remotely controlled by Android apps via handheld devices, e.g., smartphones, tablets, and so forth. The status of energy use is reflected by readings displayed on a handheld device, and it is treated as a criterion in the lighting mode design of a system. A multimeter, a wireless light dimmer, an IR learning remote module, etc. are connected to a server by means of RS 232/485 and a human computer interface on a touch screen. The wireless data communication is designed to operate in compliance with the ZigBee standard, and signal processing on sensed data is made through a self adaptive weighted data fusion algorithm. A low variation in data fusion together with a high stability is experimentally demonstrated in this work. The wireless light dimmer as well as the IR learning remote module can be instructed directly by command given on the human computer interface, and the reading on a multimeter can be displayed thereon via the server. This proposed smart LED lighting system can be remotely controlled and self learning mode can be enabled by a single handheld device via WiFi transmission. Hence, this proposal is validated as an approach to power monitoring for home appliances, and is demonstrated as a digital home network in consideration of energy efficiency.
Modeling the Swift BAT Trigger Algorithm with Machine Learning
NASA Astrophysics Data System (ADS)
Graff, Philip B.; Lien, Amy Y.; Baker, John G.; Sakamoto, Takanori
2016-02-01
To draw inferences about gamma-ray burst (GRB) source populations based on Swift observations, it is essential to understand the detection efficiency of the Swift burst alert telescope (BAT). This study considers the problem of modeling the Swift/BAT triggering algorithm for long GRBs, a computationally expensive procedure, and models it using machine learning algorithms. A large sample of simulated GRBs from Lien et al. is used to train various models: random forests, boosted decision trees (with AdaBoost), support vector machines, and artificial neural networks. The best models have accuracies of ≳97% (≲3% error), which is a significant improvement on a cut in GRB flux, which has an accuracy of 89.6% (10.4% error). These models are then used to measure the detection efficiency of Swift as a function of redshift z, which is used to perform Bayesian parameter estimation on the GRB rate distribution. We find a local GRB rate density of {n}0∼ {0.48}-0.23+0.41 {{{Gpc}}}-3 {{{yr}}}-1 with power-law indices of {n}1∼ {1.7}-0.5+0.6 and {n}2∼ -{5.9}-0.1+5.7 for GRBs above and below a break point of {z}1∼ {6.8}-3.2+2.8. This methodology is able to improve upon earlier studies by more accurately modeling Swift detection and using this for fully Bayesian model fitting.
Experiments on Supervised Learning Algorithms for Text Categorization
NASA Technical Reports Server (NTRS)
Namburu, Setu Madhavi; Tu, Haiying; Luo, Jianhui; Pattipati, Krishna R.
2005-01-01
Modern information society is facing the challenge of handling massive volume of online documents, news, intelligence reports, and so on. How to use the information accurately and in a timely manner becomes a major concern in many areas. While the general information may also include images and voice, we focus on the categorization of text data in this paper. We provide a brief overview of the information processing flow for text categorization, and discuss two supervised learning algorithms, viz., support vector machines (SVM) and partial least squares (PLS), which have been successfully applied in other domains, e.g., fault diagnosis [9]. While SVM has been well explored for binary classification and was reported as an efficient algorithm for text categorization, PLS has not yet been applied to text categorization. Our experiments are conducted on three data sets: Reuter's- 21578 dataset about corporate mergers and data acquisitions (ACQ), WebKB and the 20-Newsgroups. Results show that the performance of PLS is comparable to SVM in text categorization. A major drawback of SVM for multi-class categorization is that it requires a voting scheme based on the results of pair-wise classification. PLS does not have this drawback and could be a better candidate for multi-class text categorization.
MODIS Aerosol Optical Depth Bias Adjustment Using Machine Learning Algorithms
NASA Astrophysics Data System (ADS)
Albayrak, A.; Wei, J. C.; Petrenko, M.; Lary, D. J.; Leptoukh, G. G.
2011-12-01
Over the past decade, global aerosol observations have been conducted by space-borne sensors, airborne instruments, and ground-base network measurements. Unfortunately, quite often we encounter the differences of aerosol measurements by different well-calibrated instruments, even with a careful collocation in time and space. The differences might be rather substantial, and need to be better understood and accounted for when merging data from many sensors. The possible causes for these differences come from instrumental bias, different satellite viewing geometries, calibration issues, dynamically changing atmospheric and the surface conditions, and other "regressors", resulting in random and systematic errors in the final aerosol products. In this study, we will concentrate on the subject of removing biases and the systematic errors from MODIS (both Terra and Aqua) aerosol product, using Machine Learning algorithms. While we are assessing our regressors in our system when comparing global aerosol products, the Aerosol Robotic Network of sun-photometers (AERONET) will be used as a baseline for evaluating the MODIS aerosol products (Dark Target for land and ocean, and Deep Blue retrieval algorithms). The results of bias adjustment for MODIS Terra and Aqua are planned to be incorporated into the AeroStat Giovanni as part of the NASA ACCESS funded AeroStat project.
A novel adaptive, real-time algorithm to detect gait events from wearable sensors.
Chia Bejarano, Noelia; Ambrosini, Emilia; Pedrocchi, Alessandra; Ferrigno, Giancarlo; Monticone, Marco; Ferrante, Simona
2015-05-01
A real-time, adaptive algorithm based on two inertial and magnetic sensors placed on the shanks was developed for gait-event detection. For each leg, the algorithm detected the Initial Contact (IC), as the minimum of the flexion/extension angle, and the End Contact (EC) and the Mid-Swing (MS), as minimum and maximum of the angular velocity, respectively. The algorithm consisted of calibration, real-time detection, and step-by-step update. Data collected from 22 healthy subjects (21 to 85 years) walking at three self-selected speeds were used to validate the algorithm against the GaitRite system. Comparable levels of accuracy and significantly lower detection delays were achieved with respect to other published methods. The algorithm robustness was tested on ten healthy subjects performing sudden speed changes and on ten stroke subjects (43 to 89 years). For healthy subjects, F1-scores of 1 and mean detection delays lower than 14 ms were obtained. For stroke subjects, F1-scores of 0.998 and 0.944 were obtained for IC and EC, respectively, with mean detection delays always below 31 ms. The algorithm accurately detected gait events in real time from a heterogeneous dataset of gait patterns and paves the way for the design of closed-loop controllers for customized gait trainings and/or assistive devices. PMID:25069118
An adaptive importance sampling algorithm for Bayesian inversion with multimodal distributions
Li, Weixuan; Lin, Guang
2015-08-01
Parametric uncertainties are encountered in the simulations of many physical systems, and may be reduced by an inverse modeling procedure that calibrates the simulation results to observations on the real system being simulated. Following Bayes' rule, a general approach for inverse modeling problems is to sample from the posterior distribution of the uncertain model parameters given the observations. However, the large number of repetitive forward simulations required in the sampling process could pose a prohibitive computational burden. This difficulty is particularly challenging when the posterior is multimodal. We present in this paper an adaptive importance sampling algorithm to tackle these challenges. Two essential ingredients of the algorithm are: 1) a Gaussian mixture (GM) model adaptively constructed as the proposal distribution to approximate the possibly multimodal target posterior, and 2) a mixture of polynomial chaos (PC) expansions, built according to the GM proposal, as a surrogate model to alleviate the computational burden caused by computational-demanding forward model evaluations. In three illustrative examples, the proposed adaptive importance sampling algorithm demonstrates its capabilities of automatically finding a GM proposal with an appropriate number of modes for the specific problem under study, and obtaining a sample accurately and efficiently representing the posterior with limited number of forward simulations.
Adaptive time stepping algorithm for Lagrangian transport models: Theory and idealised test cases
NASA Astrophysics Data System (ADS)
Shah, Syed Hyder Ali Muttaqi; Heemink, Arnold Willem; Gräwe, Ulf; Deleersnijder, Eric
2013-08-01
Random walk simulations have an excellent potential in marine and oceanic modelling. This is essentially due to their relative simplicity and their ability to represent advective transport without being plagued by the deficiencies of the Eulerian methods. The physical and mathematical foundations of random walk modelling of turbulent diffusion have become solid over the years. Random walk models rest on the theory of stochastic differential equations. Unfortunately, the latter and the related numerical aspects have not attracted much attention in the oceanic modelling community. The main goal of this paper is to help bridge the gap by developing an efficient adaptive time stepping algorithm for random walk models. Its performance is examined on two idealised test cases of turbulent dispersion; (i) pycnocline crossing and (ii) non-flat isopycnal diffusion, which are inspired by shallow-sea dynamics and large-scale ocean transport processes, respectively. The numerical results of the adaptive time stepping algorithm are compared with the fixed-time increment Milstein scheme, showing that the adaptive time stepping algorithm for Lagrangian random walk models is more efficient than its fixed step-size counterpart without any loss in accuracy.
An adaptive importance sampling algorithm for Bayesian inversion with multimodal distributions
Li, Weixuan; Lin, Guang
2015-03-21
Parametric uncertainties are encountered in the simulations of many physical systems, and may be reduced by an inverse modeling procedure that calibrates the simulation results to observations on the real system being simulated. Following Bayes’ rule, a general approach for inverse modeling problems is to sample from the posterior distribution of the uncertain model parameters given the observations. However, the large number of repetitive forward simulations required in the sampling process could pose a prohibitive computational burden. This difficulty is particularly challenging when the posterior is multimodal. We present in this paper an adaptive importance sampling algorithm to tackle these challenges. Two essential ingredients of the algorithm are: 1) a Gaussian mixture (GM) model adaptively constructed as the proposal distribution to approximate the possibly multimodal target posterior, and 2) a mixture of polynomial chaos (PC) expansions, built according to the GM proposal, as a surrogate model to alleviate the computational burden caused by computational-demanding forward model evaluations. In three illustrative examples, the proposed adaptive importance sampling algorithm demonstrates its capabilities of automatically finding a GM proposal with an appropriate number of modes for the specific problem under study, and obtaining a sample accurately and efficiently representing the posterior with limited number of forward simulations.
Ye, Zhiwei; Wang, Mingwei; Hu, Zhengbing; Liu, Wei
2015-01-01
Image enhancement is an important procedure of image processing and analysis. This paper presents a new technique using a modified measure and blending of cuckoo search and particle swarm optimization (CS-PSO) for low contrast images to enhance image adaptively. In this way, contrast enhancement is obtained by global transformation of the input intensities; it employs incomplete Beta function as the transformation function and a novel criterion for measuring image quality considering three factors which are threshold, entropy value, and gray-level probability density of the image. The enhancement process is a nonlinear optimization problem with several constraints. CS-PSO is utilized to maximize the objective fitness criterion in order to enhance the contrast and detail in an image by adapting the parameters of a novel extension to a local enhancement technique. The performance of the proposed method has been compared with other existing techniques such as linear contrast stretching, histogram equalization, and evolutionary computing based image enhancement methods like backtracking search algorithm, differential search algorithm, genetic algorithm, and particle swarm optimization in terms of processing time and image quality. Experimental results demonstrate that the proposed method is robust and adaptive and exhibits the better performance than other methods involved in the paper. PMID:25784928
An adaptive importance sampling algorithm for Bayesian inversion with multimodal distributions
Li, Weixuan; Lin, Guang
2015-03-21
Parametric uncertainties are encountered in the simulations of many physical systems, and may be reduced by an inverse modeling procedure that calibrates the simulation results to observations on the real system being simulated. Following Bayes’ rule, a general approach for inverse modeling problems is to sample from the posterior distribution of the uncertain model parameters given the observations. However, the large number of repetitive forward simulations required in the sampling process could pose a prohibitive computational burden. This difficulty is particularly challenging when the posterior is multimodal. We present in this paper an adaptive importance sampling algorithm to tackle thesemore » challenges. Two essential ingredients of the algorithm are: 1) a Gaussian mixture (GM) model adaptively constructed as the proposal distribution to approximate the possibly multimodal target posterior, and 2) a mixture of polynomial chaos (PC) expansions, built according to the GM proposal, as a surrogate model to alleviate the computational burden caused by computational-demanding forward model evaluations. In three illustrative examples, the proposed adaptive importance sampling algorithm demonstrates its capabilities of automatically finding a GM proposal with an appropriate number of modes for the specific problem under study, and obtaining a sample accurately and efficiently representing the posterior with limited number of forward simulations.« less
Ye, Zhiwei; Wang, Mingwei; Hu, Zhengbing; Liu, Wei
2015-01-01
Image enhancement is an important procedure of image processing and analysis. This paper presents a new technique using a modified measure and blending of cuckoo search and particle swarm optimization (CS-PSO) for low contrast images to enhance image adaptively. In this way, contrast enhancement is obtained by global transformation of the input intensities; it employs incomplete Beta function as the transformation function and a novel criterion for measuring image quality considering three factors which are threshold, entropy value, and gray-level probability density of the image. The enhancement process is a nonlinear optimization problem with several constraints. CS-PSO is utilized to maximize the objective fitness criterion in order to enhance the contrast and detail in an image by adapting the parameters of a novel extension to a local enhancement technique. The performance of the proposed method has been compared with other existing techniques such as linear contrast stretching, histogram equalization, and evolutionary computing based image enhancement methods like backtracking search algorithm, differential search algorithm, genetic algorithm, and particle swarm optimization in terms of processing time and image quality. Experimental results demonstrate that the proposed method is robust and adaptive and exhibits the better performance than other methods involved in the paper. PMID:25784928
Overlay improvements using a real time machine learning algorithm
NASA Astrophysics Data System (ADS)
Schmitt-Weaver, Emil; Kubis, Michael; Henke, Wolfgang; Slotboom, Daan; Hoogenboom, Tom; Mulkens, Jan; Coogans, Martyn; ten Berge, Peter; Verkleij, Dick; van de Mast, Frank
2014-04-01
While semiconductor manufacturing is moving towards the 14nm node using immersion lithography, the overlay requirements are tightened to below 5nm. Next to improvements in the immersion scanner platform, enhancements in the overlay optimization and process control are needed to enable these low overlay numbers. Whereas conventional overlay control methods address wafer and lot variation autonomously with wafer pre exposure alignment metrology and post exposure overlay metrology, we see a need to reduce these variations by correlating more of the TWINSCAN system's sensor data directly to the post exposure YieldStar metrology in time. In this paper we will present the results of a study on applying a real time control algorithm based on machine learning technology. Machine learning methods use context and TWINSCAN system sensor data paired with post exposure YieldStar metrology to recognize generic behavior and train the control system to anticipate on this generic behavior. Specific for this study, the data concerns immersion scanner context, sensor data and on-wafer measured overlay data. By making the link between the scanner data and the wafer data we are able to establish a real time relationship. The result is an inline controller that accounts for small changes in scanner hardware performance in time while picking up subtle lot to lot and wafer to wafer deviations introduced by wafer processing.
Effective and efficient optics inspection approach using machine learning algorithms
Abdulla, G; Kegelmeyer, L; Liao, Z; Carr, W
2010-11-02
The Final Optics Damage Inspection (FODI) system automatically acquires and utilizes the Optics Inspection (OI) system to analyze images of the final optics at the National Ignition Facility (NIF). During each inspection cycle up to 1000 images acquired by FODI are examined by OI to identify and track damage sites on the optics. The process of tracking growing damage sites on the surface of an optic can be made more effective by identifying and removing signals associated with debris or reflections. The manual process to filter these false sites is daunting and time consuming. In this paper we discuss the use of machine learning tools and data mining techniques to help with this task. We describe the process to prepare a data set that can be used for training and identifying hardware reflections in the image data. In order to collect training data, the images are first automatically acquired and analyzed with existing software and then relevant features such as spatial, physical and luminosity measures are extracted for each site. A subset of these sites is 'truthed' or manually assigned a class to create training data. A supervised classification algorithm is used to test if the features can predict the class membership of new sites. A suite of self-configuring machine learning tools called 'Avatar Tools' is applied to classify all sites. To verify, we used 10-fold cross correlation and found the accuracy was above 99%. This substantially reduces the number of false alarms that would otherwise be sent for more extensive investigation.
Effective and efficient optics inspection approach using machine learning algorithms
NASA Astrophysics Data System (ADS)
Abdulla, Ghaleb M.; Kegelmeyer, Laura Mascio; Liao, Zhi M.; Carr, Wren
2010-11-01
The Final Optics Damage Inspection (FODI) system automatically acquires and utilizes the Optics Inspection (OI) system to analyze images of the final optics at the National Ignition Facility (NIF). During each inspection cycle up to 1000 images acquired by FODI are examined by OI to identify and track damage sites on the optics. The process of tracking growing damage sites on the surface of an optic can be made more effective by identifying and removing signals associated with debris or reflections. The manual process to filter these false sites is daunting and time consuming. In this paper we discuss the use of machine learning tools and data mining techniques to help with this task. We describe the process to prepare a data set that can be used for training and identifying hardware reflections in the image data. In order to collect training data, the images are first automatically acquired and analyzed with existing software and then relevant features such as spatial, physical and luminosity measures are extracted for each site. A subset of these sites is "truthed" or manually assigned a class to create training data. A supervised classification algorithm is used to test if the features can predict the class membership of new sites. A suite of self-configuring machine learning tools called "Avatar Tools" is applied to classify all sites. To verify, we used 10-fold cross correlation and found the accuracy was above 99%. This substantially reduces the number of false alarms that would otherwise be sent for more extensive investigation.
A self-adaptive parameter optimization algorithm in a real-time parallel image processing system.
Li, Ge; Zhang, Xuehe; Zhao, Jie; Zhang, Hongli; Ye, Jianwei; Zhang, Weizhe
2013-01-01
Aiming at the stalemate that precision, speed, robustness, and other parameters constrain each other in the parallel processed vision servo system, this paper proposed an adaptive load capacity balance strategy on the servo parameters optimization algorithm (ALBPO) to improve the computing precision and to achieve high detection ratio while not reducing the servo circle. We use load capacity functions (LC) to estimate the load for each processor and then make continuous self-adaptation towards a balanced status based on the fluctuated LC results; meanwhile, we pick up a proper set of target detection and location parameters according to the results of LC. Compared with current load balance algorithm, the algorithm proposed in this paper is proceeded under an unknown informed status about the maximum load and the current load of the processors, which means it has great extensibility. Simulation results showed that the ALBPO algorithm has great merits on load balance performance, realizing the optimization of QoS for each processor, fulfilling the balance requirements of servo circle, precision, and robustness of the parallel processed vision servo system. PMID:24174920
NASA Astrophysics Data System (ADS)
Shams Esfand Abadi, Mohammad; AbbasZadeh Arani, Seyed Ali Asghar
2011-12-01
This paper extends the recently introduced variable step-size (VSS) approach to the family of adaptive filter algorithms. This method uses prior knowledge of the channel impulse response statistic. Accordingly, optimal step-size vector is obtained by minimizing the mean-square deviation (MSD). The presented algorithms are the VSS affine projection algorithm (VSS-APA), the VSS selective partial update NLMS (VSS-SPU-NLMS), the VSS-SPU-APA, and the VSS selective regressor APA (VSS-SR-APA). In VSS-SPU adaptive algorithms the filter coefficients are partially updated which reduce the computational complexity. In VSS-SR-APA, the optimal selection of input regressors is performed during the adaptation. The presented algorithms have good convergence speed, low steady state mean square error (MSE), and low computational complexity features. We demonstrate the good performance of the proposed algorithms through several simulations in system identification scenario.
An adaptive algorithm for simulation of stochastic reaction-diffusion processes
Ferm, Lars Hellander, Andreas Loetstedt, Per
2010-01-20
We propose an adaptive hybrid method suitable for stochastic simulation of diffusion dominated reaction-diffusion processes. For such systems, simulation of the diffusion requires the predominant part of the computing time. In order to reduce the computational work, the diffusion in parts of the domain is treated macroscopically, in other parts with the tau-leap method and in the remaining parts with Gillespie's stochastic simulation algorithm (SSA) as implemented in the next subvolume method (NSM). The chemical reactions are handled by SSA everywhere in the computational domain. A trajectory of the process is advanced in time by an operator splitting technique and the timesteps are chosen adaptively. The spatial adaptation is based on estimates of the errors in the tau-leap method and the macroscopic diffusion. The accuracy and efficiency of the method are demonstrated in examples from molecular biology where the domain is discretized by unstructured meshes.
Nonclercq, Antoine; Foulon, Martine; Verheulpen, Denis; De Cock, Cathy; Buzatu, Marga; Mathys, Pierre; Van Bogaert, Patrick
2012-09-30
Visual quantification of interictal epileptiform activity is time consuming and requires a high level of expert's vigilance. This is especially true for overnight recordings of patient suffering from epileptic encephalopathy with continuous spike and waves during slow-wave sleep (CSWS) as they can show tens of thousands of spikes. Automatic spike detection would be attractive for this condition, but available algorithms have methodological limitations related to variation in spike morphology both between patients and within a single recording. We propose a fully automated method of interictal spike detection that adapts to interpatient and intrapatient variation in spike morphology. The algorithm works in five steps. (1) Spikes are detected using parameters suitable for highly sensitive detection. (2) Detected spikes are separated into clusters. (3) The number of clusters is automatically adjusted. (4) Centroids are used as templates for more specific spike detections, therefore adapting to the types of spike morphology. (5) Detected spikes are summed. The algorithm was evaluated on EEG samples from 20 children suffering from epilepsy with CSWS. When compared to the manual scoring of 3 EEG experts (3 records), the algorithm demonstrated similar performance since sensitivity and selectivity were 0.3% higher and 0.4% lower, respectively. The algorithm showed little difference compared to the manual scoring of another expert for the spike-and-wave index evaluation in 17 additional records (the mean absolute difference was 3.8%). This algorithm is therefore efficient for the count of interictal spikes and determination of a spike-and-wave index. PMID:22850558
Environmental Monitoring Networks Optimization Using Advanced Active Learning Algorithms
NASA Astrophysics Data System (ADS)
Kanevski, Mikhail; Volpi, Michele; Copa, Loris
2010-05-01
The problem of environmental monitoring networks optimization (MNO) belongs to one of the basic and fundamental tasks in spatio-temporal data collection, analysis, and modeling. There are several approaches to this problem, which can be considered as a design or redesign of monitoring network by applying some optimization criteria. The most developed and widespread methods are based on geostatistics (family of kriging models, conditional stochastic simulations). In geostatistics the variance is mainly used as an optimization criterion which has some advantages and drawbacks. In the present research we study an application of advanced techniques following from the statistical learning theory (SLT) - support vector machines (SVM) and the optimization of monitoring networks when dealing with a classification problem (data are discrete values/classes: hydrogeological units, soil types, pollution decision levels, etc.) is considered. SVM is a universal nonlinear modeling tool for classification problems in high dimensional spaces. The SVM solution is maximizing the decision boundary between classes and has a good generalization property for noisy data. The sparse solution of SVM is based on support vectors - data which contribute to the solution with nonzero weights. Fundamentally the MNO for classification problems can be considered as a task of selecting new measurement points which increase the quality of spatial classification and reduce the testing error (error on new independent measurements). In SLT this is a typical problem of active learning - a selection of the new unlabelled points which efficiently reduce the testing error. A classical approach (margin sampling) to active learning is to sample the points closest to the classification boundary. This solution is suboptimal when points (or generally the dataset) are redundant for the same class. In the present research we propose and study two new advanced methods of active learning adapted to the solution of
Learning Adaptive Forecasting Models from Irregularly Sampled Multivariate Clinical Data
Liu, Zitao; Hauskrecht, Milos
2016-01-01
Building accurate predictive models of clinical multivariate time series is crucial for understanding of the patient condition, the dynamics of a disease, and clinical decision making. A challenging aspect of this process is that the model should be flexible and adaptive to reflect well patient-specific temporal behaviors and this also in the case when the available patient-specific data are sparse and short span. To address this problem we propose and develop an adaptive two-stage forecasting approach for modeling multivariate, irregularly sampled clinical time series of varying lengths. The proposed model (1) learns the population trend from a collection of time series for past patients; (2) captures individual-specific short-term multivariate variability; and (3) adapts by automatically adjusting its predictions based on new observations. The proposed forecasting model is evaluated on a real-world clinical time series dataset. The results demonstrate the benefits of our approach on the prediction tasks for multivariate, irregularly sampled clinical time series, and show that it can outperform both the population based and patient-specific time series prediction models in terms of prediction accuracy. PMID:27525189
Adapting online learning for Canada's Northern public health workforce
Bell, Marnie; MacDougall, Karen
2013-01-01
Background Canada's North is a diverse, sparsely populated land, where inequalities and public health issues are evident, particularly for Aboriginal people. The Northern public health workforce is a unique mix of professional and paraprofessional workers. Few have formal public health education. From 2009 to 2012, the Public Health Agency of Canada (PHAC) collaborated with a Northern Advisory Group to develop and implement a strategy to strengthen public health capacity in Canada's 3 northern territories. Access to relevant, effective continuing education was identified as a key issue. Challenges include diverse educational and cultural backgrounds of public health workers, geographical isolation and variable technological infrastructure across the north. Methods PHAC's Skills Online program offers Internet-based continuing education modules for public health professionals. In partnership with the Northern Advisory Group, PHAC conducted 3 pilots between 2008 and 2012 to assess the appropriateness of the Skills Online program for Northern/Aboriginal public health workers. Module content and delivery modalities were adapted for the pilots. Adaptations included adding Inuit and Northern public health examples and using video and teleconference discussions to augment the online self-study component. Results Findings from the pilots were informative and similar to those from previous Skills Online pilots with learners in developing countries. Online learning is effective in bridging the geographical barriers in remote locations. Incorporating content on Northern and Aboriginal health issues facilitates engagement in learning. Employer support facilitates the recruitment and retention of learners in an online program. Facilitator assets included experience as a public health professional from the north, and flexibility to use modified approaches to support and measure knowledge acquisition and application, especially for First Nations, Inuit and Metis learners
Learning Cue Phrase Patterns from Radiology Reports Using a Genetic Algorithm
Patton, Robert M; Beckerman, Barbara G; Potok, Thomas E
2009-01-01
Various computer-assisted technologies have been developed to assist radiologists in detecting cancer; however, the algorithms still lack high degrees of sensitivity and specificity, and must undergo machine learning against a training set with known pathologies in order to further refine the algorithms with higher validity of truth. This work describes an approach to learning cue phrase patterns in radiology reports that utilizes a genetic algorithm (GA) as the learning method. The approach described here successfully learned cue phrase patterns for two distinct classes of radiology reports. These patterns can then be used as a basis for automatically categorizing, clustering, or retrieving relevant data for the user.
Learning of Action Through Adaptive Combination of Motor Primitives
Thoroughman, Kurt A.; Shadmehr, Reza
2008-01-01
Understanding how the brain constructs movements remains a fundamental challenge in neuroscience. The brain may control complex movements through flexible combination of motor primitives1, where each primitive is an element of computation in the sensorimotor map that transforms desired limb trajectories into motor commands. Theoretical studies have shown that a system’s ability to learn actions depends on the shape of its primitives2. Using a time-series analysis of error patterns, here we find evidence that humans learn dynamics of reaching movements through flexible combination of primitives that have Gaussian-like tuning functions encoding hand velocity. The wide tuning of the inferred primitives predicts limitations on the brain’s ability to represent viscous dynamics. We find close agreement between the predicted limitations and subjects’ adaptation to novel force fields. The mathematical properties of the derived primitives resemble the tuning curves of Purkinje cells in the cerebellum. Activity of these cells may encode primitives that underlie learning of dynamics. PMID:11048720
Forsström, J
1992-01-01
The ID3 algorithm for inductive learning was tested using preclassified material for patients suspected to have a thyroid illness. Classification followed a rule-based expert system for the diagnosis of thyroid function. Thus, the knowledge to be learned was limited to the rules existing in the knowledge base of that expert system. The learning capability of the ID3 algorithm was tested with an unselected learning material (with some inherent missing data) and with a selected learning material (no missing data). The selected learning material was a subgroup which formed a part of the unselected learning material. When the number of learning cases was increased, the accuracy of the program improved. When the learning material was large enough, an increase in the learning material did not improve the results further. A better learning result was achieved with the selected learning material not including missing data as compared to unselected learning material. With this material we demonstrate a weakness in the ID3 algorithm: it can not find available information from good example cases if we add poor examples to the data. PMID:1551737
NASA Astrophysics Data System (ADS)
Onur Ari, Evrim; Kocaoglan, Erol
2016-02-01
In this paper, a self-recurrent wavelet neural network (SRWNN)-based indirect adaptive control architecture is modified for performing speed control of a motion platform. The transient behaviour of the original learning algorithm has been improved by modifying the learning rate updates. The contribution of the proposed modification has been verified via both simulations and experiments. Moreover, the performance of the proposed architecture is compared with robust RST designs performed on a similar benchmark system, to show that via adaptive nonlinear control, it is possible to obtain a fast step response without degrading the robustness of a multi-body mechanical system. Finally, the architecture is further improved so as to possess structural learning for populating the SRWNNs automatically, rather than employing static network structures, and simulation results are provided to show the performance of the proposed structural learning algorithm.
Noll, Douglas C.; Fessler, Jeffrey A.
2014-01-01
Sparsity-promoting regularization is useful for combining compressed sensing assumptions with parallel MRI for reducing scan time while preserving image quality. Variable splitting algorithms are the current state-of-the-art algorithms for SENSE-type MR image reconstruction with sparsity-promoting regularization. These methods are very general and have been observed to work with almost any regularizer; however, the tuning of associated convergence parameters is a commonly-cited hindrance in their adoption. Conversely, majorize-minimize algorithms based on a single Lipschitz constant have been observed to be slow in shift-variant applications such as SENSE-type MR image reconstruction since the associated Lipschitz constants are loose bounds for the shift-variant behavior. This paper bridges the gap between the Lipschitz constant and the shift-variant aspects of SENSE-type MR imaging by introducing majorizing matrices in the range of the regularizer matrix. The proposed majorize-minimize methods (called BARISTA) converge faster than state-of-the-art variable splitting algorithms when combined with momentum acceleration and adaptive momentum restarting. Furthermore, the tuning parameters associated with the proposed methods are unitless convergence tolerances that are easier to choose than the constraint penalty parameters required by variable splitting algorithms. PMID:25330484
Viejo, Guillaume; Khamassi, Mehdi; Brovelli, Andrea; Girard, Benoît
2015-01-01
Current learning theory provides a comprehensive description of how humans and other animals learn, and places behavioral flexibility and automaticity at heart of adaptive behaviors. However, the computations supporting the interactions between goal-directed and habitual decision-making systems are still poorly understood. Previous functional magnetic resonance imaging (fMRI) results suggest that the brain hosts complementary computations that may differentially support goal-directed and habitual processes in the form of a dynamical interplay rather than a serial recruitment of strategies. To better elucidate the computations underlying flexible behavior, we develop a dual-system computational model that can predict both performance (i.e., participants' choices) and modulations in reaction times during learning of a stimulus-response association task. The habitual system is modeled with a simple Q-Learning algorithm (QL). For the goal-directed system, we propose a new Bayesian Working Memory (BWM) model that searches for information in the history of previous trials in order to minimize Shannon entropy. We propose a model for QL and BWM coordination such that the expensive memory manipulation is under control of, among others, the level of convergence of the habitual learning. We test the ability of QL or BWM alone to explain human behavior, and compare them with the performance of model combinations, to highlight the need for such combinations to explain behavior. Two of the tested combination models are derived from the literature, and the latter being our new proposal. In conclusion, all subjects were better explained by model combinations, and the majority of them are explained by our new coordination proposal. PMID:26379518
Viejo, Guillaume; Khamassi, Mehdi; Brovelli, Andrea; Girard, Benoît
2015-01-01
Current learning theory provides a comprehensive description of how humans and other animals learn, and places behavioral flexibility and automaticity at heart of adaptive behaviors. However, the computations supporting the interactions between goal-directed and habitual decision-making systems are still poorly understood. Previous functional magnetic resonance imaging (fMRI) results suggest that the brain hosts complementary computations that may differentially support goal-directed and habitual processes in the form of a dynamical interplay rather than a serial recruitment of strategies. To better elucidate the computations underlying flexible behavior, we develop a dual-system computational model that can predict both performance (i.e., participants' choices) and modulations in reaction times during learning of a stimulus–response association task. The habitual system is modeled with a simple Q-Learning algorithm (QL). For the goal-directed system, we propose a new Bayesian Working Memory (BWM) model that searches for information in the history of previous trials in order to minimize Shannon entropy. We propose a model for QL and BWM coordination such that the expensive memory manipulation is under control of, among others, the level of convergence of the habitual learning. We test the ability of QL or BWM alone to explain human behavior, and compare them with the performance of model combinations, to highlight the need for such combinations to explain behavior. Two of the tested combination models are derived from the literature, and the latter being our new proposal. In conclusion, all subjects were better explained by model combinations, and the majority of them are explained by our new coordination proposal. PMID:26379518
NASA Astrophysics Data System (ADS)
Huang, Yin; Chen, Jianhua; Xiong, Shaojun
2009-07-01
Mobile-Learning (M-learning) makes many learners get the advantages of both traditional learning and E-learning. Currently, Web-based Mobile-Learning Systems have created many new ways and defined new relationships between educators and learners. Association rule mining is one of the most important fields in data mining and knowledge discovery in databases. Rules explosion is a serious problem which causes great concerns, as conventional mining algorithms often produce too many rules for decision makers to digest. Since Web-based Mobile-Learning System collects vast amounts of student profile data, data mining and knowledge discovery techniques can be applied to find interesting relationships between attributes of learners, assessments, the solution strategies adopted by learners and so on. Therefore ,this paper focus on a new data-mining algorithm, combined with the advantages of genetic algorithm and simulated annealing algorithm , called ARGSA(Association rules based on an improved Genetic Simulated Annealing Algorithm), to mine the association rules. This paper first takes advantage of the Parallel Genetic Algorithm and Simulated Algorithm designed specifically for discovering association rules. Moreover, the analysis and experiment are also made to show the proposed method is superior to the Apriori algorithm in this Mobile-Learning system.
Modeling and Simulation of An Adaptive Neuro-Fuzzy Inference System (ANFIS) for Mobile Learning
ERIC Educational Resources Information Center
Al-Hmouz, A.; Shen, Jun; Al-Hmouz, R.; Yan, Jun
2012-01-01
With recent advances in mobile learning (m-learning), it is becoming possible for learning activities to occur everywhere. The learner model presented in our earlier work was partitioned into smaller elements in the form of learner profiles, which collectively represent the entire learning process. This paper presents an Adaptive Neuro-Fuzzy…
Optimization algorithm in adaptive PMD compensation in 10Gb/s optical communication system
NASA Astrophysics Data System (ADS)
Diao, Cao; Li, Tangjun; Wang, Muguang; Gong, Xiangfeng
2005-02-01
In this paper, the optimization algorithms are introduced in adaptive PMD compensation in 10Gb/s optical communication system. The PMD monitoring technique based on degree of polarization (DOP) is adopted. DOP can be a good indicator of PMD with monotonically deceasing of DOP as differential group delay (DGD) increasing. In order to use DOP as PMD monitoring feedback signal, it is required to emulate the state of DGD in the transmission circuitry. A PMD emulator is designed. A polarization controller (PC) is used in fiber multiplexer to adjust the polarization state of optical signal, and at the output of the fiber multiplexer a polarizer is used. After the feedback signal reach the control computer, the optimization program run to search the global optimization spot and through the PC to control the PMD. Several popular modern nonlinear optimization algorithms (Tabu Search, Simulated Annealing, Genetic Algorithm, Artificial Neural Networks, Ant Colony Optimization etc.) are discussed and the comparisons among them are made to choose the best optimization algorithm. Every algorithm has its advantage and disadvantage, but in this circs the Genetic Algorithm (GA) may be the best. It eliminates the worsen spots constantly and lets them have no chance to enter the circulation. So it has the quicker convergence velocity and less time. The PMD can be compensated in very few steps by using this algorithm. As a result, the maximum compensation ability of the one-stage PMD and two-stage PMD can be made in very short time, and the dynamic compensation time is no more than 10ms.
Modeling the Swift BAT Trigger Algorithm with Machine Learning
NASA Technical Reports Server (NTRS)
Graff, Philip B.; Lien, Amy Y.; Baker, John G.; Sakamoto, Takanori
2015-01-01
To draw inferences about gamma-ray burst (GRB) source populations based on Swift observations, it is essential to understand the detection efficiency of the Swift burst alert telescope (BAT). This study considers the problem of modeling the Swift BAT triggering algorithm for long GRBs, a computationally expensive procedure, and models it using machine learning algorithms. A large sample of simulated GRBs from Lien et al. (2014) is used to train various models: random forests, boosted decision trees (with AdaBoost), support vector machines, and artificial neural networks. The best models have accuracies of approximately greater than 97% (approximately less than 3% error), which is a significant improvement on a cut in GRB flux which has an accuracy of 89:6% (10:4% error). These models are then used to measure the detection efficiency of Swift as a function of redshift z, which is used to perform Bayesian parameter estimation on the GRB rate distribution. We find a local GRB rate density of eta(sub 0) approximately 0.48(+0.41/-0.23) Gpc(exp -3) yr(exp -1) with power-law indices of eta(sub 1) approximately 1.7(+0.6/-0.5) and eta(sub 2) approximately -5.9(+5.7/-0.1) for GRBs above and below a break point of z(sub 1) approximately 6.8(+2.8/-3.2). This methodology is able to improve upon earlier studies by more accurately modeling Swift detection and using this for fully Bayesian model fitting. The code used in this is analysis is publicly available online.
Convergence of a discretized self-adaptive evolutionary algorithm on multi-dimensional problems.
Hart, William Eugene; DeLaurentis, John Morse
2003-08-01
We consider the convergence properties of a non-elitist self-adaptive evolutionary strategy (ES) on multi-dimensional problems. In particular, we apply our recent convergence theory for a discretized (1,{lambda})-ES to design a related (1,{lambda})-ES that converges on a class of seperable, unimodal multi-dimensional problems. The distinguishing feature of self-adaptive evolutionary algorithms (EAs) is that the control parameters (like mutation step lengths) are evolved by the evolutionary algorithm. Thus the control parameters are adapted in an implicit manner that relies on the evolutionary dynamics to ensure that more effective control parameters are propagated during the search. Self-adaptation is a central feature of EAs like evolutionary stategies (ES) and evolutionary programming (EP), which are applied to continuous design spaces. Rudolph summarizes theoretical results concerning self-adaptive EAs and notes that the theoretical underpinnings for these methods are essentially unexplored. In particular, convergence theories that ensure convergence to a limit point on continuous spaces have only been developed by Rudolph, Hart, DeLaurentis and Ferguson, and Auger et al. In this paper, we illustrate how our analysis of a (1,{lambda})-ES for one-dimensional unimodal functions can be used to ensure convergence of a related ES on multidimensional functions. This (1,{lambda})-ES randomly selects a search dimension in each iteration, along which points generated. For a general class of separable functions, our analysis shows that the ES searches along each dimension independently, and thus this ES converges to the (global) minimum.
Breast image feature learning with adaptive deconvolutional networks
NASA Astrophysics Data System (ADS)
Jamieson, Andrew R.; Drukker, Karen; Giger, Maryellen L.
2012-03-01
Feature extraction is a critical component of medical image analysis. Many computer-aided diagnosis approaches employ hand-designed, heuristic lesion extracted features. An alternative approach is to learn features directly from images. In this preliminary study, we explored the use of Adaptive Deconvolutional Networks (ADN) for learning high-level features in diagnostic breast mass lesion images with potential application to computer-aided diagnosis (CADx) and content-based image retrieval (CBIR). ADNs (Zeiler, et. al., 2011), are recently-proposed unsupervised, generative hierarchical models that decompose images via convolution sparse coding and max pooling. We trained the ADNs to learn multiple layers of representation for two breast image data sets on two different modalities (739 full field digital mammography (FFDM) and 2393 ultrasound images). Feature map calculations were accelerated by use of GPUs. Following Zeiler et. al., we applied the Spatial Pyramid Matching (SPM) kernel (Lazebnik, et. al., 2006) on the inferred feature maps and combined this with a linear support vector machine (SVM) classifier for the task of binary classification between cancer and non-cancer breast mass lesions. Non-linear, local structure preserving dimension reduction, Elastic Embedding (Carreira-Perpiñán, 2010), was then used to visualize the SPM kernel output in 2D and qualitatively inspect image relationships learned. Performance was found to be competitive with current CADx schemes that use human-designed features, e.g., achieving a 0.632+ bootstrap AUC (by case) of 0.83 [0.78, 0.89] for an ultrasound image set (1125 cases).
Adaptive sparse signal processing of on-orbit lightning data using learned dictionaries
NASA Astrophysics Data System (ADS)
Moody, D. I.; Hamlin, T.; Light, T. E.; Loveland, R. C.; Smith, D. A.; Suszcynsky, D. M.
2012-12-01
For the past two decades, there has been an ongoing research effort at Los Alamos National Laboratory (LANL) to learn more about the Earth's radiofrequency (RF) background utilizing satellite-based RF observations of terrestrial lightning. Arguably the richest satellite lightning database ever recorded is that from the Fast On-orbit Recording of Transient Events (FORTE) satellite, which returned at least five years of data from its two RF payloads after launch in 1997. While some classification work has been done previously on the LANL FORTE RF database, application of modern pattern recognition techniques may further lightning research in the scientific community and potentially improve on-orbit processing and event discrimination capabilities for future satellite payloads. We now develop and implement new event classification capability on the FORTE database using state-of-the-art adaptive signal processing combined with compressive sensing and machine learning techniques. The focus of our work is improved feature extraction using sparse representations in learned dictionaries. Extracting classification features from RF signals typically relies on knowledge of the application domain in order to find feature vectors unique to a signal class and robust against background noise. Conventional localized data representations for RF transients using analytical dictionaries, such as a short-time Fourier basis or wavelets, can be suitable for analyzing some types of signals, but not others. Instead, we learn RF dictionaries directly from data, without relying on analytical constraints or additional knowledge about the signal characteristics, using several established machine learning algorithms. Sparse classification features are extracted via matching pursuit search over the learned dictionaries, and used in conjunction with a statistical classifier to distinguish between lightning types. We present preliminary results of our work and discuss classification performance
Adaptive categorization of ART networks in robot behavior learning using game-theoretic formulation.
Fung, Wai-keung; Liu, Yun-hui
2003-12-01
Adaptive Resonance Theory (ART) networks are employed in robot behavior learning. Two of the difficulties in online robot behavior learning, namely, (1) exponential memory increases with time, (2) difficulty for operators to specify learning tasks accuracy and control learning attention before learning. In order to remedy the aforementioned difficulties, an adaptive categorization mechanism is introduced in ART networks for perceptual and action patterns categorization in this paper. A game-theoretic formulation of adaptive categorization for ART networks is proposed for vigilance parameter adaptation for category size control on the categories formed. The proposed vigilance parameter update rule can help improving categorization performance in the aspect of category number stability and solve the problem of selecting initial vigilance parameter prior to pattern categorization in traditional ART networks. Behavior learning using physical robot is conducted to demonstrate the effectiveness of the proposed adaptive categorization mechanism in ART networks. PMID:14622873
A comparison of two adaptive algorithms for the control of active engine mounts
NASA Astrophysics Data System (ADS)
Hillis, A. J.; Harrison, A. J. L.; Stoten, D. P.
2005-08-01
This paper describes work conducted in order to control automotive active engine mounts, consisting of a conventional passive mount and an internal electromagnetic actuator. Active engine mounts seek to cancel the oscillatory forces generated by the rotation of out-of-balance masses within the engine. The actuator generates a force dependent on a control signal from an algorithm implemented with a real-time DSP. The filtered-x least-mean-square (FXLMS) adaptive filter is used as a benchmark for comparison with a new implementation of the error-driven minimal controller synthesis (Er-MCSI) adaptive controller. Both algorithms are applied to an active mount fitted to a saloon car equipped with a four-cylinder turbo-diesel engine, and have no a priori knowledge of the system dynamics. The steady-state and transient performance of the two algorithms are compared and the relative merits of the two approaches are discussed. The Er-MCSI strategy offers significant computational advantages as it requires no cancellation path modelling. The Er-MCSI controller is found to perform in a fashion similar to the FXLMS filter—typically reducing chassis vibration by 50-90% under normal driving conditions.
Adaptive Inverse Hyperbolic Tangent Algorithm for Dynamic Contrast Adjustment in Displaying Scenes
NASA Astrophysics Data System (ADS)
Yu, Cheng-Yi; Ouyang, Yen-Chieh; Wang, Chuin-Mu; Chang, Chein-I.
2010-12-01
Contrast has a great influence on the quality of an image in human visual perception. A poorly illuminated environment can significantly affect the contrast ratio, producing an unexpected image. This paper proposes an Adaptive Inverse Hyperbolic Tangent (AIHT) algorithm to improve the display quality and contrast of a scene. Because digital cameras must maintain the shadow in a middle range of luminance that includes a main object such as a face, a gamma function is generally used for this purpose. However, this function has a severe weakness in that it decreases highlight contrast. To mitigate this problem, contrast enhancement algorithms have been designed to adjust contrast to tune human visual perception. The proposed AIHT determines the contrast levels of an original image as well as parameter space for different contrast types so that not only the original histogram shape features can be preserved, but also the contrast can be enhanced effectively. Experimental results show that the proposed algorithm is capable of enhancing the global contrast of the original image adaptively while extruding the details of objects simultaneously.
Corbacho, Fernando; Nishikawa, Kiisa C; Weerasuriya, Ananda; Liaw, Jim-Shih; Arbib, Michael A
2005-12-01
The previous companion paper describes the initial (seed) schema architecture that gives rise to the observed prey-catching behavior. In this second paper in the series we describe the fundamental adaptive processes required during learning after lesioning. Following bilateral transections of the hypoglossal nerve, anurans lunge toward mealworms with no accompanying tongue or jaw movement. Nevertheless anurans with permanent hypoglossal transections eventually learn to catch their prey by first learning to open their mouth again and then lunging their body further and increasing their head angle. In this paper we present a new learning framework, called schema-based learning (SBL). SBL emphasizes the importance of the current existent structure (schemas), that defines a functioning system, for the incremental and autonomous construction of ever more complex structure to achieve ever more complex levels of functioning. We may rephrase this statement into the language of Schema Theory (Arbib 1992, for a comprehensive review) as the learning of new schemas based on the stock of current schemas. SBL emphasizes a fundamental principle of organization called coherence maximization, that deals with the maximization of congruence between the results of an interaction (external or internal) and the expectations generated for that interaction. A central hypothesis consists of the existence of a hierarchy of predictive internal models (predictive schemas) all over the control center-brain-of the agent. Hence, we will include predictive models in the perceptual, sensorimotor, and motor components of the autonomous agent architecture. We will then show that predictive models are fundamental for structural learning. In particular we will show how a system can learn a new structural component (augment the overall network topology) after being lesioned in order to recover (or even improve) its original functionality. Learning after lesioning is a special case of structural
NASA Astrophysics Data System (ADS)
Singh, R.; Verma, H. K.
2013-12-01
This paper presents a teaching-learning-based optimization (TLBO) algorithm to solve parameter identification problems in the designing of digital infinite impulse response (IIR) filter. TLBO based filter modelling is applied to calculate the parameters of unknown plant in simulations. Unlike other heuristic search algorithms, TLBO algorithm is an algorithm-specific parameter-less algorithm. In this paper big bang-big crunch (BB-BC) optimization and PSO algorithms are also applied to filter design for comparison. Unknown filter parameters are considered as a vector to be optimized by these algorithms. MATLAB programming is used for implementation of proposed algorithms. Experimental results show that the TLBO is more accurate to estimate the filter parameters than the BB-BC optimization algorithm and has faster convergence rate when compared to PSO algorithm. TLBO is used where accuracy is more essential than the convergence speed.
NASA Astrophysics Data System (ADS)
Zhu, Li; He, Yongxiang; Xue, Haidong; Chen, Leichen
Traditional genetic algorithms (GA) displays a disadvantage of early-constringency in dealing with scheduling problem. To improve the crossover operators and mutation operators self-adaptively, this paper proposes a self-adaptive GA at the target of multitask scheduling optimization under limited resources. The experiment results show that the proposed algorithm outperforms the traditional GA in evolutive ability to deal with complex task scheduling optimization.
Design of Learning Model of Logic and Algorithms Based on APOS Theory
ERIC Educational Resources Information Center
Hartati, Sulis Janu
2014-01-01
This research questions were "how do the characteristics of learning model of logic & algorithm according to APOS theory" and "whether or not these learning model can improve students learning outcomes". This research was conducted by exploration, and quantitative approach. Exploration used in constructing theory about the…
Albert, O; Sherman, L; Mourou, G; Norris, T B; Vdovin, G
2000-01-01
Off-axis aberrations in a beam-scanning multiphoton confocal microscope are corrected with a deformable mirror. The optimal mirror shape for each pixel is determined by a genetic learning algorithm, in which the second-harmonic or two-photon fluorescence signal from a reference sample is maximized. The speed of the convergence is improved by use of a Zernike polynomial basis for the deformable mirror shape. This adaptive optical correction scheme is implemented in an all-reflective system by use of extremely short (10-fs) optical pulses, and it is shown that the scanning area of an f:1 off-axis parabola can be increased by nine times with this technique. PMID:18059779
Automatic ultrasonic imaging system with adaptive-learning-network signal-processing techniques
O'Brien, L.J.; Aravanis, N.A.; Gouge, J.R. Jr.; Mucciardi, A.N.; Lemon, D.K.; Skorpik, J.R.
1982-04-01
A conventional pulse-echo imaging system has been modified to operate with a linear ultrasonic array and associated digital electronics to collect data from a series of defects fabricated in aircraft quality steel blocks. A thorough analysis of the defect responses recorded with this modified system has shown that considerable improvements over conventional imaging approaches can be obtained in the crucial areas of defect detection and characterization. A combination of advanced signal processing concepts with the Adaptive Learning Network (ALN) methodology forms the basis for these improvements. Use of established signal processing algorithms such as temporal and spatial beam-forming in concert with a sophisticated detector has provided a reliable defect detection scheme which can be implemented in a microprocessor-based system to operate in an automatic mode.
Learning about stress: neural, endocrine and behavioral adaptations.
McCarty, Richard
2016-09-01
In this review, nonassociative learning is advanced as an organizing principle to draw together findings from both sympathetic-adrenal medullary and hypothalamic-pituitary-adrenocortical (HPA) axis responses to chronic intermittent exposure to a variety of stressors. Studies of habituation, facilitation and sensitization of stress effector systems are reviewed and linked to an animal's prior experience with a given stressor, the intensity of the stressor and the appraisal by the animal of its ability to mobilize physiological systems to adapt to the stressor. Brain pathways that regulate physiological and behavioral responses to stress are discussed, especially in light of their regulation of nonassociative processes in chronic intermittent stress. These findings may have special relevance to various psychiatric diseases, including depression and post-traumatic stress disorder (PTSD). PMID:27294884
Hierarchically clustered adaptive quantization CMAC and its learning convergence.
Teddy, S D; Lai, E M K; Quek, C
2007-11-01
The cerebellar model articulation controller (CMAC) neural network (NN) is a well-established computational model of the human cerebellum. Nevertheless, there are two major drawbacks associated with the uniform quantization scheme of the CMAC network. They are the following: (1) a constant output resolution associated with the entire input space and (2) the generalization-accuracy dilemma. Moreover, the size of the CMAC network is an exponential function of the number of inputs. Depending on the characteristics of the training data, only a small percentage of the entire set of CMAC memory cells is utilized. Therefore, the efficient utilization of the CMAC memory is a crucial issue. One approach is to quantize the input space nonuniformly. For existing nonuniformly quantized CMAC systems, there is a tradeoff between memory efficiency and computational complexity. Inspired by the underlying organizational mechanism of the human brain, this paper presents a novel CMAC architecture named hierarchically clustered adaptive quantization CMAC (HCAQ-CMAC). HCAQ-CMAC employs hierarchical clustering for the nonuniform quantization of the input space to identify significant input segments and subsequently allocating more memory cells to these regions. The stability of the HCAQ-CMAC network is theoretically guaranteed by the proof of its learning convergence. The performance of the proposed network is subsequently benchmarked against the original CMAC network, as well as two other existing CMAC variants on two real-life applications, namely, automated control of car maneuver and modeling of the human blood glucose dynamics. The experimental results have demonstrated that the HCAQ-CMAC network offers an efficient memory allocation scheme and improves the generalization and accuracy of the network output to achieve better or comparable performances with smaller memory usages. Index Terms-Cerebellar model articulation controller (CMAC), hierarchical clustering, hierarchically
New machine-learning algorithms for prediction of Parkinson's disease
NASA Astrophysics Data System (ADS)
Mandal, Indrajit; Sairam, N.
2014-03-01
This article presents an enhanced prediction accuracy of diagnosis of Parkinson's disease (PD) to prevent the delay and misdiagnosis of patients using the proposed robust inference system. New machine-learning methods are proposed and performance comparisons are based on specificity, sensitivity, accuracy and other measurable parameters. The robust methods of treating Parkinson's disease (PD) includes sparse multinomial logistic regression, rotation forest ensemble with support vector machines and principal components analysis, artificial neural networks, boosting methods. A new ensemble method comprising of the Bayesian network optimised by Tabu search algorithm as classifier and Haar wavelets as projection filter is used for relevant feature selection and ranking. The highest accuracy obtained by linear logistic regression and sparse multinomial logistic regression is 100% and sensitivity, specificity of 0.983 and 0.996, respectively. All the experiments are conducted over 95% and 99% confidence levels and establish the results with corrected t-tests. This work shows a high degree of advancement in software reliability and quality of the computer-aided diagnosis system and experimentally shows best results with supportive statistical inference.
A rank-based Prediction Algorithm of Learning User's Intention
NASA Astrophysics Data System (ADS)
Shen, Jie; Gao, Ying; Chen, Cang; Gong, HaiPing
Internet search has become an important part in people's daily life. People can find many types of information to meet different needs through search engines on the Internet. There are two issues for the current search engines: first, the users should predetermine the types of information they want and then change to the appropriate types of search engine interfaces. Second, most search engines can support multiple kinds of search functions, each function has its own separate search interface. While users need different types of information, they must switch between different interfaces. In practice, most queries are corresponding to various types of information results. These queries can search the relevant results in various search engines, such as query "Palace" contains the websites about the introduction of the National Palace Museum, blog, Wikipedia, some pictures and video information. This paper presents a new aggregative algorithm for all kinds of search results. It can filter and sort the search results by learning three aspects about the query words, search results and search history logs to achieve the purpose of detecting user's intention. Experiments demonstrate that this rank-based method for multi-types of search results is effective. It can meet the user's search needs well, enhance user's satisfaction, provide an effective and rational model for optimizing search engines and improve user's search experience.
NASA Astrophysics Data System (ADS)
Perlovsky, Leonid I.; Webb, Virgil H.; Bradley, Scott R.; Hansen, Christopher A.
1998-07-01
An advanced detection and tracking system is being developed for the U.S. Navy's Relocatable Over-the-Horizon Radar (ROTHR) to provide improved tracking performance against small aircraft typically used in drug-smuggling activities. The development is based on the Maximum Likelihood Adaptive Neural System (MLANS), a model-based neural network that combines advantages of neural network and model-based algorithmic approaches. The objective of the MLANS tracker development effort is to address user requirements for increased detection and tracking capability in clutter and improved track position, heading, and speed accuracy. The MLANS tracker is expected to outperform other approaches to detection and tracking for the following reasons. It incorporates adaptive internal models of target return signals, target tracks and maneuvers, and clutter signals, which leads to concurrent clutter suppression, detection, and tracking (track-before-detect). It is not combinatorial and thus does not require any thresholding or peak picking and can track in low signal-to-noise conditions. It incorporates superresolution spectrum estimation techniques exceeding the performance of conventional maximum likelihood and maximum entropy methods. The unique spectrum estimation method is based on the Einsteinian interpretation of the ROTHR received energy spectrum as a probability density of signal frequency. The MLANS neural architecture and learning mechanism are founded on spectrum models and maximization of the "Einsteinian" likelihood, allowing knowledge of the physical behavior of both targets and clutter to be injected into the tracker algorithms. The paper describes the addressed requirements and expected improvements, theoretical foundations, engineering methodology, and results of the development effort to date.
Hydrological modeling using a dynamic neuro-fuzzy system with on-line and local learning algorithm
NASA Astrophysics Data System (ADS)
Hong, Yoon-Seok Timothy; White, Paul A.
2009-01-01
This paper introduces the dynamic neuro-fuzzy local modeling system (DNFLMS) that is based on a dynamic Takagi-Sugeno (TS) type fuzzy inference system with on-line and local learning algorithm for complex dynamic hydrological modeling tasks. Our DNFLMS is aimed to implement a fast training speed with the capability of on-line simulation where model adaptation occurs at the arrival of each new item of hydrological data. The DNFLMS applies an on-line, one-pass, training procedure to create and update fuzzy local models dynamically. The extended Kalman filtering algorithm is then implemented to optimize the parameters of the consequence part of each fuzzy model during the training phase. Local generalization in the DNFLMS is employed to optimize the parameters of each fuzzy model separately, region-by-region, using subsets of training data rather than all training data. The proposed DNFLMS is applied to develop a model to forecast the flow of Waikoropupu Springs, located in the Takaka Valley, South Island, New Zealand, and the influence of the operation of the 32 Megawatt Cobb hydropower station on spring flow. It is demonstrated that the proposed DNFLMS is superior in terms of model complexity and computational efficiency when compared with models that adopt global generalization such as a multi-layer perceptron (MLP) trained with the back propagation learning algorithm and the well-known adaptive neural-fuzzy system (ANFIS).
An adaptive multi-level simulation algorithm for stochastic biological systems
NASA Astrophysics Data System (ADS)
Lester, C.; Yates, C. A.; Giles, M. B.; Baker, R. E.
2015-01-01
Discrete-state, continuous-time Markov models are widely used in the modeling of biochemical reaction networks. Their complexity often precludes analytic solution, and we rely on stochastic simulation algorithms (SSA) to estimate system statistics. The Gillespie algorithm is exact, but computationally costly as it simulates every single reaction. As such, approximate stochastic simulation algorithms such as the tau-leap algorithm are often used. Potentially computationally more efficient, the system statistics generated suffer from significant bias unless tau is relatively small, in which case the computational time can be comparable to that of the Gillespie algorithm. The multi-level method [Anderson and Higham, "Multi-level Monte Carlo for continuous time Markov chains, with applications in biochemical kinetics," SIAM Multiscale Model. Simul. 10(1), 146-179 (2012)] tackles this problem. A base estimator is computed using many (cheap) sample paths at low accuracy. The bias inherent in this estimator is then reduced using a number of corrections. Each correction term is estimated using a collection of paired sample paths where one path of each pair is generated at a higher accuracy compared to the other (and so more expensive). By sharing random variables between these paired paths, the variance of each correction estimator can be reduced. This renders the multi-level method very efficient as only a relatively small number of paired paths are required to calculate each correction term. In the original multi-level method, each sample path is simulated using the tau-leap algorithm with a fixed value of τ. This approach can result in poor performance when the reaction activity of a system changes substantially over the timescale of interest. By introducing a novel adaptive time-stepping approach where τ is chosen according to the stochastic behaviour of each sample path, we extend the applicability of the multi-level method to such cases. We demonstrate the
An adaptive multi-level simulation algorithm for stochastic biological systems
Lester, C. Giles, M. B.; Baker, R. E.; Yates, C. A.
2015-01-14
Discrete-state, continuous-time Markov models are widely used in the modeling of biochemical reaction networks. Their complexity often precludes analytic solution, and we rely on stochastic simulation algorithms (SSA) to estimate system statistics. The Gillespie algorithm is exact, but computationally costly as it simulates every single reaction. As such, approximate stochastic simulation algorithms such as the tau-leap algorithm are often used. Potentially computationally more efficient, the system statistics generated suffer from significant bias unless tau is relatively small, in which case the computational time can be comparable to that of the Gillespie algorithm. The multi-level method [Anderson and Higham, “Multi-level Monte Carlo for continuous time Markov chains, with applications in biochemical kinetics,” SIAM Multiscale Model. Simul. 10(1), 146–179 (2012)] tackles this problem. A base estimator is computed using many (cheap) sample paths at low accuracy. The bias inherent in this estimator is then reduced using a number of corrections. Each correction term is estimated using a collection of paired sample paths where one path of each pair is generated at a higher accuracy compared to the other (and so more expensive). By sharing random variables between these paired paths, the variance of each correction estimator can be reduced. This renders the multi-level method very efficient as only a relatively small number of paired paths are required to calculate each correction term. In the original multi-level method, each sample path is simulated using the tau-leap algorithm with a fixed value of τ. This approach can result in poor performance when the reaction activity of a system changes substantially over the timescale of interest. By introducing a novel adaptive time-stepping approach where τ is chosen according to the stochastic behaviour of each sample path, we extend the applicability of the multi-level method to such cases. We demonstrate the
Adaptation of a Fast Optimal Interpolation Algorithm to the Mapping of Oceangraphic Data
NASA Technical Reports Server (NTRS)
Menemenlis, Dimitris; Fieguth, Paul; Wunsch, Carl; Willsky, Alan
1997-01-01
A fast, recently developed, multiscale optimal interpolation algorithm has been adapted to the mapping of hydrographic and other oceanographic data. This algorithm produces solution and error estimates which are consistent with those obtained from exact least squares methods, but at a small fraction of the computational cost. Problems whose solution would be completely impractical using exact least squares, that is, problems with tens or hundreds of thousands of measurements and estimation grid points, can easily be solved on a small workstation using the multiscale algorithm. In contrast to methods previously proposed for solving large least squares problems, our approach provides estimation error statistics while permitting long-range correlations, using all measurements, and permitting arbitrary measurement locations. The multiscale algorithm itself, published elsewhere, is not the focus of this paper. However, the algorithm requires statistical models having a very particular multiscale structure; it is the development of a class of multiscale statistical models, appropriate for oceanographic mapping problems, with which we concern ourselves in this paper. The approach is illustrated by mapping temperature in the northeastern Pacific. The number of hydrographic stations is kept deliberately small to show that multiscale and exact least squares results are comparable. A portion of the data were not used in the analysis; these data serve to test the multiscale estimates. A major advantage of the present approach is the ability to repeat the estimation procedure a large number of times for sensitivity studies, parameter estimation, and model testing. We have made available by anonymous Ftp a set of MATLAB-callable routines which implement the multiscale algorithm and the statistical models developed in this paper.
Research on B Cell Algorithm for Learning to Rank Method Based on Parallel Strategy.
Tian, Yuling; Zhang, Hongxian
2016-01-01
For the purposes of information retrieval, users must find highly relevant documents from within a system (and often a quite large one comprised of many individual documents) based on input query. Ranking the documents according to their relevance within the system to meet user needs is a challenging endeavor, and a hot research topic-there already exist several rank-learning methods based on machine learning techniques which can generate ranking functions automatically. This paper proposes a parallel B cell algorithm, RankBCA, for rank learning which utilizes a clonal selection mechanism based on biological immunity. The novel algorithm is compared with traditional rank-learning algorithms through experimentation and shown to outperform the others in respect to accuracy, learning time, and convergence rate; taken together, the experimental results show that the proposed algorithm indeed effectively and rapidly identifies optimal ranking functions. PMID:27487242
Research on B Cell Algorithm for Learning to Rank Method Based on Parallel Strategy
Tian, Yuling; Zhang, Hongxian
2016-01-01
For the purposes of information retrieval, users must find highly relevant documents from within a system (and often a quite large one comprised of many individual documents) based on input query. Ranking the documents according to their relevance within the system to meet user needs is a challenging endeavor, and a hot research topic–there already exist several rank-learning methods based on machine learning techniques which can generate ranking functions automatically. This paper proposes a parallel B cell algorithm, RankBCA, for rank learning which utilizes a clonal selection mechanism based on biological immunity. The novel algorithm is compared with traditional rank-learning algorithms through experimentation and shown to outperform the others in respect to accuracy, learning time, and convergence rate; taken together, the experimental results show that the proposed algorithm indeed effectively and rapidly identifies optimal ranking functions. PMID:27487242
Zou, Weiyao; Burns, Stephen A.
2012-01-01
A Lagrange multiplier-based damped least-squares control algorithm for woofer-tweeter (W-T) dual deformable-mirror (DM) adaptive optics (AO) is tested with a breadboard system. We show that the algorithm can complementarily command the two DMs to correct wavefront aberrations within a single optimization process: the woofer DM correcting the high-stroke, low-order aberrations, and the tweeter DM correcting the low-stroke, high-order aberrations. The optimal damping factor for a DM is found to be the median of the eigenvalue spectrum of the influence matrix of that DM. Wavefront control accuracy is maximized with the optimized control parameters. For the breadboard system, the residual wavefront error can be controlled to the precision of 0.03 μm in root mean square. The W-T dual-DM AO has applications in both ophthalmology and astronomy. PMID:22441462
RZA-NLMF algorithm-based adaptive sparse sensing for realizing compressive sensing
NASA Astrophysics Data System (ADS)
Gui, Guan; Xu, Li; Adachi, Fumiyuki
2014-12-01
Nonlinear sparse sensing (NSS) techniques have been adopted for realizing compressive sensing in many applications such as radar imaging. Unlike the NSS, in this paper, we propose an adaptive sparse sensing (ASS) approach using the reweighted zero-attracting normalized least mean fourth (RZA-NLMF) algorithm which depends on several given parameters, i.e., reweighted factor, regularization parameter, and initial step size. First, based on the independent assumption, Cramer-Rao lower bound (CRLB) is derived as for the performance comparisons. In addition, reweighted factor selection method is proposed for achieving robust estimation performance. Finally, to verify the algorithm, Monte Carlo-based computer simulations are given to show that the ASS achieves much better mean square error (MSE) performance than the NSS.
A parallel dynamic load balancing algorithm for 3-D adaptive unstructured grids
NASA Technical Reports Server (NTRS)
Vidwans, A.; Kallinderis, Y.; Venkatakrishnan, V.
1993-01-01
Adaptive local grid refinement and coarsening results in unequal distribution of workload among the processors of a parallel system. A novel method for balancing the load in cases of dynamically changing tetrahedral grids is developed. The approach employs local exchange of cells among processors in order to redistribute the load equally. An important part of the load balancing algorithm is the method employed by a processor to determine which cells within its subdomain are to be exchanged. Two such methods are presented and compared. The strategy for load balancing is based on the Divide-and-Conquer approach which leads to an efficient parallel algorithm. This method is implemented on a distributed-memory MIMD system.
Comparison of Control Algorithms for a MEMS-based Adaptive Optics Scanning Laser Ophthalmoscope
Li, Kaccie Y.; Mishra, Sandipan; Tiruveedhula, Pavan; Roorda, Austin
2010-01-01
We compared four algorithms for controlling a MEMS deformable mirror of an adaptive optics (AO) scanning laser ophthalmoscope. Interferometer measurements of the static nonlinear response of the deformable mirror were used to form an equivalent linear model of the AO system so that the classic integrator plus wavefront reconstructor type controller can be implemented. The algorithms differ only in the design of the wavefront reconstructor. The comparisons were made for two eyes (two individuals) via a series of imaging sessions. All four controllers performed similarly according to estimated residual wavefront error not reflecting the actual image quality observed. A metric based on mean image intensity did consistently reflect the qualitative observations of retinal image quality. Based on this metric, the controller most effective for suppressing the least significant modes of the deformable mirror performed the best. PMID:20454552
Rainfall Estimation over the Nile Basin using an Adapted Version of the SCaMPR Algorithm
NASA Astrophysics Data System (ADS)
Habib, E. H.; Kuligowski, R. J.; Elshamy, M. E.; Ali, M. A.; Haile, A.; Amin, D.; Eldin, A.
2011-12-01
Management of Egypt's Aswan High Dam is critical not only for flood control on the Nile but also for ensuring adequate water supplies for most of Egypt since rainfall is scarce over the vast majority of its land area. However, reservoir inflow is driven by rainfall over Sudan, Ethiopia, Uganda, and several other countries from which routine rain gauge data are sparse. Satellite-derived estimates of rainfall offer a much more detailed and timely set of data to form a basis for decisions on the operation of the dam. A single-channel infrared algorithm is currently in operational use at the Egyptian Nile Forecast Center (NFC). This study reports on the adaptation of a multi-spectral, multi-instrument satellite rainfall estimation algorithm (Self-Calibrating Multivariate Precipitation Retrieval, SCaMPR) for operational application over the Nile Basin. The algorithm uses a set of rainfall predictors from multi-spectral Infrared cloud top observations and self-calibrates them to a set of predictands from Microwave (MW) rain rate estimates. For application over the Nile Basin, the SCaMPR algorithm uses multiple satellite IR channels recently available to NFC from the Spinning Enhanced Visible and Infrared Imager (SEVIRI). Microwave rain rates are acquired from multiple sources such as SSM/I, SSMIS, AMSU, AMSR-E, and TMI. The algorithm has two main steps: rain/no-rain separation using discriminant analysis, and rain rate estimation using stepwise linear regression. We test two modes of algorithm calibration: real-time calibration with continuous updates of coefficients with newly coming MW rain rates, and calibration using static coefficients that are derived from IR-MW data from past observations. We also compare the SCaMPR algorithm to other global-scale satellite rainfall algorithms (e.g., 'Tropical Rainfall Measuring Mission (TRMM) and other sources' (TRMM-3B42) product, and the National Oceanographic and Atmospheric Administration Climate Prediction Center (NOAA
NASA Astrophysics Data System (ADS)
Nakariyakul, Songyot; Casasent, David
2006-10-01
Detection of skin tumors on chicken carcasses is considered. A chicken skin tumor consists of an ulcerous lesion region surrounded by a region of thickened-skin. We use a new adaptive branch-and-bound (ABB) feature selection algorithm to choose only a few useful wavebands from hyperspectral data for use in a real-time multispectral camera. The ABB algorithm selects an optimal feature subset and is shown to be much faster than any other versions of the branch and bound algorithm. We found that the spectral responses of the lesion and the thickened-skin regions of tumors are considerably different; thus we train our feature selection algorithm to separately detect the lesion regions and thickened-skin regions of tumors. We then fuse the two HS detection results of lesion and thickened-skin regions to reduce false alarms. Initial results on six hyperspectral cubes show that our method gives an excellent tumor detection rate and a low false alarm rate.
An Adaptive Reputation-Based Algorithm for Grid Virtual Organization Formation
NASA Astrophysics Data System (ADS)
Cui, Yongrui; Li, Mingchu; Ren, Yizhi; Sakurai, Kouichi
A novel adaptive reputation-based virtual organization formation is proposed. It restrains the bad performers effectively based on the consideration of the global experience of the evaluator and evaluates the direct trust relation between two grid nodes accurately by consulting the previous trust value rationally. It also consults and improves the reputation evaluation process in PathTrust model by taking account of the inter-organizational trust relationship and combines it with direct and recommended trust in a weighted way, which makes the algorithm more robust against collusion attacks. Additionally, the proposed algorithm considers the perspective of the VO creator and takes required VO services as one of the most important fine-grained evaluation criterion, which makes the algorithm more suitable for constructing VOs in grid environments that include autonomous organizations. Simulation results show that our algorithm restrains the bad performers and resists against fake transaction attacks and badmouth attacks effectively. It provides a clear advantage in the design of a VO infrastructure.
Metabolic flux estimation--a self-adaptive evolutionary algorithm with singular value decomposition.
Yang, Jing; Wongsa, Sarawan; Kadirkamanathan, Visakan; Billings, Stephen A; Wright, Phillip C
2007-01-01
Metabolic flux analysis is important for metabolic system regulation and intracellular pathway identification. A popular approach for intracellular flux estimation involves using 13C tracer experiments to label states that can be measured by nuclear magnetic resonance spectrometry or gas chromatography mass spectrometry. However, the bilinear balance equations derived from 13C tracer experiments and the noisy measurements require a nonlinear optimization approach to obtain the optimal solution. In this paper, the flux quantification problem is formulated as an error-minimization problem with equality and inequality constraints through the 13C balance and stoichiometric equations. The stoichiometric constraints are transformed to a null space by singular value decomposition. Self-adaptive evolutionary algorithms are then introduced for flux quantification. The performance of the evolutionary algorithm is compared with ordinary least squares estimation by the simulation of the central pentose phosphate pathway. The proposed algorithm is also applied to the central metabolism of Corynebacterium glutamicum under lysine-producing conditions. A comparison between the results from the proposed algorithm and data from the literature is given. The complexity of a metabolic system with bidirectional reactions is also investigated by analyzing the fluctuations in the flux estimates when available measurements are varied. PMID:17277420
NASA Technical Reports Server (NTRS)
Blissit, J. A.
1986-01-01
Using analysis results from the post trajectory optimization program, an adaptive guidance algorithm is developed to compensate for density, aerodynamic and thrust perturbations during an atmospheric orbital plane change maneuver. The maneuver offers increased mission flexibility along with potential fuel savings for future reentry vehicles. Although designed to guide a proposed NASA Entry Research Vehicle, the algorithm is sufficiently generic for a range of future entry vehicles. The plane change analysis provides insight suggesting a straight-forward algorithm based on an optimized nominal command profile. Bank angle, angle of attack, and engine thrust level, ignition and cutoff times are modulated to adjust the vehicle's trajectory to achieve the desired end-conditions. A performance evaluation of the scheme demonstrates a capability to guide to within 0.05 degrees of the desired plane change and five nautical miles of the desired apogee altitude while maintaining heating constraints. The algorithm is tested under off-nominal conditions of + or -30% density biases, two density profile models, + or -15% aerodynamic uncertainty, and a 33% thrust loss and for various combinations of these conditions.
A baseline correction algorithm for Raman spectroscopy by adaptive knots B-spline
NASA Astrophysics Data System (ADS)
Wang, Xin; Fan, Xian-guang; Xu, Ying-jie; Wang, Xiu-fen; He, Hao; Zuo, Yong
2015-11-01
The Raman spectroscopy technique is a powerful and non-invasive technique for molecular fingerprint detection which has been widely used in many areas, such as food safety, drug safety, and environmental testing. But Raman signals can be easily corrupted by a fluorescent background, therefore we presented a baseline correction algorithm to suppress the fluorescent background in this paper. In this algorithm, the background of the Raman signal was suppressed by fitting a curve called a baseline using a cyclic approximation method. Instead of the traditional polynomial fitting, we used the B-spline as the fitting algorithm due to its advantages of low-order and smoothness, which can avoid under-fitting and over-fitting effectively. In addition, we also presented an automatic adaptive knot generation method to replace traditional uniform knots. This algorithm can obtain the desired performance for most Raman spectra with varying baselines without any user input or preprocessing step. In the simulation, three kinds of fluorescent background lines were introduced to test the effectiveness of the proposed method. We showed that two real Raman spectra (parathion-methyl and colza oil) can be detected and their baselines were also corrected by the proposed method.
Despeckling algorithm on ultrasonic image using adaptive block-based singular value decomposition
NASA Astrophysics Data System (ADS)
Sae-Bae, Napa; Udomhunsakul, Somkait
2008-03-01
Speckle noise reduction is an important technique to enhance the quality of ultrasonic image. In this paper, a despeckling algorithm based on an adaptive block-based singular value decomposition filtering (BSVD) applied on ultrasonic images is presented. Instead of applying BSVD directly to ultrasonic image, we propose to apply BSVD on the noisy edge image version obtained from the difference between the logarithmic transformations of the original image and blur image version of its. The recovered image is performed by combining the speckle noise-free edge image with blur image version of its. Finally, exponential transformation is applied in order to get the reconstructed image. To evaluate our algorithm compared with well-know algorithms such as Lee filter, Kuan filter, Homomorphic Wiener filter, median filter and wavelet soft thresholding, four image quality measurements, which are Mean Square Error (MSE), Signal to MSE (S/MSE), Edge preservation (β), and Correlation measurement (ρ), are used. From the results, it clearly shows that the proposed algorithm outperforms other methods in terms of quantitative and subjective assessments.
Chen, Ying-ping; Chen, Chao-Hong
2010-01-01
An adaptive discretization method, called split-on-demand (SoD), enables estimation of distribution algorithms (EDAs) for discrete variables to solve continuous optimization problems. SoD randomly splits a continuous interval if the number of search points within the interval exceeds a threshold, which is decreased at every iteration. After the split operation, the nonempty intervals are assigned integer codes, and the search points are discretized accordingly. As an example of using SoD with EDAs, the integration of SoD and the extended compact genetic algorithm (ECGA) is presented and numerically examined. In this integration, we adopt a local search mechanism as an optional component of our back end optimization engine. As a result, the proposed framework can be considered as a memetic algorithm, and SoD can potentially be applied to other memetic algorithms. The numerical experiments consist of two parts: (1) a set of benchmark functions on which ECGA with SoD and ECGA with two well-known discretization methods: the fixed-height histogram (FHH) and the fixed-width histogram (FWH) are compared; (2) a real-world application, the economic dispatch problem, on which ECGA with SoD is compared to other methods. The experimental results indicate that SoD is a better discretization method to work with ECGA. Moreover, ECGA with SoD works quite well on the economic dispatch problem and delivers solutions better than the best known results obtained by other methods in existence. PMID:20210600
NASA Astrophysics Data System (ADS)
Fujii, Kensaku; Aoki, Ryo; Muneyasu, Mitsuji
This paper proposes an adaptive algorithm for identifying unknown systems containing nonlinear amplitude characteristics. Usually, the nonlinearity is so small as to be negligible. However, in low cost systems, such as acoustic echo canceller using a small loudspeaker, the nonlinearity deteriorates the performance of the identification. Several methods preventing the deterioration, polynomial or Volterra series approximations, have been hence proposed and studied. However, the conventional methods require high processing cost. In this paper, we propose a method approximating the nonlinear characteristics with a piecewise linear curve and show using computer simulations that the performance can be extremely improved. The proposed method can also reduce the processing cost to only about twice that of the linear adaptive filter system.
Ordering and finding the best of K > 2 supervised learning algorithms.
Yildiz, Olcay Taner; Alpaydin, Ethem
2006-03-01
Given a data set and a number of supervised learning algorithms, we would like to find the algorithm with the smallest expected error. Existing pairwise tests allow a comparison of two algorithms only; range tests and ANOVA check whether multiple algorithms have the same expected error and cannot be used for finding the smallest. We propose a methodology, the MultiTest algorithm, whereby we order supervised learning algorithms taking into account 1) the result of pairwise statistical tests on expected error (what the data tells us), and 2) our prior preferences, e.g., due to complexity. We define the problem in graph-theoretic terms and propose an algorithm to find the "best" learning algorithm in terms of these two criteria, or in the more general case, order learning algorithms in terms of their "goodness." Simulation results using five classification algorithms on 30 data sets indicate the utility of the method. Our proposed method can be generalized to regression and other loss functions by using a suitable pairwise test. PMID:16526425