Science.gov

Sample records for adaptive learning rate

  1. A single-rate context-dependent learning process underlies rapid adaptation to familiar object dynamics.

    PubMed

    Ingram, James N; Howard, Ian S; Flanagan, J Randall; Wolpert, Daniel M

    2011-09-01

    Motor learning has been extensively studied using dynamic (force-field) perturbations. These induce movement errors that result in adaptive changes to the motor commands. Several state-space models have been developed to explain how trial-by-trial errors drive the progressive adaptation observed in such studies. These models have been applied to adaptation involving novel dynamics, which typically occurs over tens to hundreds of trials, and which appears to be mediated by a dual-rate adaptation process. In contrast, when manipulating objects with familiar dynamics, subjects adapt rapidly within a few trials. Here, we apply state-space models to familiar dynamics, asking whether adaptation is mediated by a single-rate or dual-rate process. Previously, we reported a task in which subjects rotate an object with known dynamics. By presenting the object at different visual orientations, adaptation was shown to be context-specific, with limited generalization to novel orientations. Here we show that a multiple-context state-space model, with a generalization function tuned to visual object orientation, can reproduce the time-course of adaptation and de-adaptation as well as the observed context-dependent behavior. In contrast to the dual-rate process associated with novel dynamics, we show that a single-rate process mediates adaptation to familiar object dynamics. The model predicts that during exposure to the object across multiple orientations, there will be a degree of independence for adaptation and de-adaptation within each context, and that the states associated with all contexts will slowly de-adapt during exposure in one particular context. We confirm these predictions in two new experiments. Results of the current study thus highlight similarities and differences in the processes engaged during exposure to novel versus familiar dynamics. In both cases, adaptation is mediated by multiple context-specific representations. In the case of familiar object dynamics

  2. An adaptive learning rate for RBFNN using time-domain feedback analysis.

    PubMed

    Ali, Syed Saad Azhar; Moinuddin, Muhammad; Raza, Kamran; Adil, Syed Hasan

    2014-01-01

    Radial basis function neural networks are used in a variety of applications such as pattern recognition, nonlinear identification, control and time series prediction. In this paper, the learning algorithm of radial basis function neural networks is analyzed in a feedback structure. The robustness of the learning algorithm is discussed in the presence of uncertainties that might be due to noisy perturbations at the input or to modeling mismatch. An intelligent adaptation rule is developed for the learning rate of RBFNN which gives faster convergence via an estimate of error energy while giving guarantee to the l 2 stability governed by the upper bounding via small gain theorem. Simulation results are presented to support our theoretical development. PMID:24987745

  3. Adaptive high learning rate probabilistic disruption predictors from scratch for the next generation of tokamaks

    NASA Astrophysics Data System (ADS)

    Vega, J.; Murari, A.; Dormido-Canto, S.; Moreno, R.; Pereira, A.; Acero, A.; Contributors, JET-EFDA

    2014-12-01

    The development of accurate real-time disruption predictors is a pre-requisite to any mitigation action. Present theoretical models of disruptions do not reliably cope with the disruption issues. This article deals with data-driven predictors and a review of existing machine learning techniques, from both physics and engineering points of view, is provided. All these methods need large training datasets to develop successful predictors. However, ITER or DEMO cannot wait for hundreds of disruptions to have a reliable predictor. So far, the attempts to extrapolate predictors between different tokamaks have not shown satisfactory results. In addition, it is not clear how valid this approach can be between present devices and ITER/DEMO, due to the differences in their respective scales and possibly underlying physics. Therefore, this article analyses the requirements to create adaptive predictors from scratch to learn from the data of an individual machine from the beginning of operation. A particular algorithm based on probabilistic classifiers has been developed and it has been applied to the database of the three first ITER-like wall campaigns of JET (1036 non-disruptive and 201 disruptive discharges). The predictions start from the first disruption and only 12 re-trainings have been necessary as a consequence of missing 12 disruptions only. Almost 10 000 different predictors have been developed (they differ in their features) and after the chronological analysis of the 1237 discharges, the predictors recognize 94% of all disruptions with an average warning time (AWT) of 654 ms. This percentage corresponds to the sum of tardy detections (11%), valid alarms (76%) and premature alarms (7%). The false alarm rate is 4%. If only valid alarms are considered, the AWT is 244 ms and the standard deviation is 205 ms. The average probability interval about the reliability and accuracy of all the individual predictions is 0.811 ± 0.189.

  4. Guided filter and adaptive learning rate based non-uniformity correction algorithm for infrared focal plane array

    NASA Astrophysics Data System (ADS)

    Sheng-Hui, Rong; Hui-Xin, Zhou; Han-Lin, Qin; Rui, Lai; Kun, Qian

    2016-05-01

    Imaging non-uniformity of infrared focal plane array (IRFPA) behaves as fixed-pattern noise superimposed on the image, which affects the imaging quality of infrared system seriously. In scene-based non-uniformity correction methods, the drawbacks of ghosting artifacts and image blurring affect the sensitivity of the IRFPA imaging system seriously and decrease the image quality visibly. This paper proposes an improved neural network non-uniformity correction method with adaptive learning rate. On the one hand, using guided filter, the proposed algorithm decreases the effect of ghosting artifacts. On the other hand, due to the inappropriate learning rate is the main reason of image blurring, the proposed algorithm utilizes an adaptive learning rate with a temporal domain factor to eliminate the effect of image blurring. In short, the proposed algorithm combines the merits of the guided filter and the adaptive learning rate. Several real and simulated infrared image sequences are utilized to verify the performance of the proposed algorithm. The experiment results indicate that the proposed algorithm can not only reduce the non-uniformity with less ghosting artifacts but also overcome the problems of image blurring in static areas.

  5. Learning Rate Updating Methods Applied to Adaptive Fuzzy Equalizers for Broadband Power Line Communications

    NASA Astrophysics Data System (ADS)

    Ribeiro, Moisés V.

    2004-12-01

    This paper introduces adaptive fuzzy equalizers with variable step size for broadband power line (PL) communications. Based on delta-bar-delta and local Lipschitz estimation updating rules, feedforward, and decision feedback approaches, we propose singleton and nonsingleton fuzzy equalizers with variable step size to cope with the intersymbol interference (ISI) effects of PL channels and the hardness of the impulse noises generated by appliances and nonlinear loads connected to low-voltage power grids. The computed results show that the convergence rates of the proposed equalizers are higher than the ones attained by the traditional adaptive fuzzy equalizers introduced by J. M. Mendel and his students. Additionally, some interesting BER curves reveal that the proposed techniques are efficient for mitigating the above-mentioned impairments.

  6. Learning and Domain Adaptation

    NASA Astrophysics Data System (ADS)

    Mansour, Yishay

    Domain adaptation is a fundamental learning problem where one wishes to use labeled data from one or several source domains to learn a hypothesis performing well on a different, yet related, domain for which no labeled data is available. This generalization across domains is a very significant challenge for many machine learning applications and arises in a variety of natural settings, including NLP tasks (document classification, sentiment analysis, etc.), speech recognition (speakers and noise or environment adaptation) and face recognition (different lighting conditions, different population composition).

  7. Adaptive manifold learning.

    PubMed

    Zhang, Zhenyue; Wang, Jing; Zha, Hongyuan

    2012-02-01

    Manifold learning algorithms seek to find a low-dimensional parameterization of high-dimensional data. They heavily rely on the notion of what can be considered as local, how accurately the manifold can be approximated locally, and, last but not least, how the local structures can be patched together to produce the global parameterization. In this paper, we develop algorithms that address two key issues in manifold learning: 1) the adaptive selection of the local neighborhood sizes when imposing a connectivity structure on the given set of high-dimensional data points and 2) the adaptive bias reduction in the local low-dimensional embedding by accounting for the variations in the curvature of the manifold as well as its interplay with the sampling density of the data set. We demonstrate the effectiveness of our methods for improving the performance of manifold learning algorithms using both synthetic and real-world data sets. PMID:21670485

  8. Perceptual learning in sensorimotor adaptation.

    PubMed

    Darainy, Mohammad; Vahdat, Shahabeddin; Ostry, David J

    2013-11-01

    Motor learning often involves situations in which the somatosensory targets of movement are, at least initially, poorly defined, as for example, in learning to speak or learning the feel of a proper tennis serve. Under these conditions, motor skill acquisition presumably requires perceptual as well as motor learning. That is, it engages both the progressive shaping of sensory targets and associated changes in motor performance. In the present study, we test the idea that perceptual learning alters somatosensory function and in so doing produces changes to human motor performance and sensorimotor adaptation. Subjects in these experiments undergo perceptual training in which a robotic device passively moves the subject's arm on one of a set of fan-shaped trajectories. Subjects are required to indicate whether the robot moved the limb to the right or the left and feedback is provided. Over the course of training both the perceptual boundary and acuity are altered. The perceptual learning is observed to improve both the rate and extent of learning in a subsequent sensorimotor adaptation task and the benefits persist for at least 24 h. The improvement in the present studies varies systematically with changes in perceptual acuity and is obtained regardless of whether the perceptual boundary shift serves to systematically increase or decrease error on subsequent movements. The beneficial effects of perceptual training are found to be substantially dependent on reinforced decision-making in the sensory domain. Passive-movement training on its own is less able to alter subsequent learning in the motor system. Overall, this study suggests perceptual learning plays an integral role in motor learning. PMID:23966671

  9. Perceptual learning in sensorimotor adaptation

    PubMed Central

    Darainy, Mohammad; Vahdat, Shahabeddin

    2013-01-01

    Motor learning often involves situations in which the somatosensory targets of movement are, at least initially, poorly defined, as for example, in learning to speak or learning the feel of a proper tennis serve. Under these conditions, motor skill acquisition presumably requires perceptual as well as motor learning. That is, it engages both the progressive shaping of sensory targets and associated changes in motor performance. In the present study, we test the idea that perceptual learning alters somatosensory function and in so doing produces changes to human motor performance and sensorimotor adaptation. Subjects in these experiments undergo perceptual training in which a robotic device passively moves the subject's arm on one of a set of fan-shaped trajectories. Subjects are required to indicate whether the robot moved the limb to the right or the left and feedback is provided. Over the course of training both the perceptual boundary and acuity are altered. The perceptual learning is observed to improve both the rate and extent of learning in a subsequent sensorimotor adaptation task and the benefits persist for at least 24 h. The improvement in the present studies varies systematically with changes in perceptual acuity and is obtained regardless of whether the perceptual boundary shift serves to systematically increase or decrease error on subsequent movements. The beneficial effects of perceptual training are found to be substantially dependent on reinforced decision-making in the sensory domain. Passive-movement training on its own is less able to alter subsequent learning in the motor system. Overall, this study suggests perceptual learning plays an integral role in motor learning. PMID:23966671

  10. Mutation rates as adaptations.

    PubMed

    Maley, C

    1997-06-01

    In order to better understand life, it is helpful to look beyond the envelop of life as we know it. A simple model of coevolution was implemented with the addition of a gene for the mutation rate of the individual. This allowed the mutation rate itself to evolve in a lineage. The model shows that when the individuals interact in a sort of zero-sum game, the lineages maintain relatively high mutation rates. However, when individuals engage in interactions that have greater consequences for one individual in the interaction than the other, lineages tend to evolve relatively low mutation rates. This model suggests that one possible cause for differential mutation rates across genes may be the coevolutionary pressure of the various forms of interactions with other genes. PMID:9219670

  11. The Adaptive Behavior Rating Scale.

    ERIC Educational Resources Information Center

    Meyer, William J.

    A scale to identify important behaviors in preschool children was developed, and ratings were related to more traditional indices of development and academic readiness. Teacher interviews were used to identify 62 specific behaviors related to maximally adapted and maximally maladapted kindergarten children. These were incorporated into a…

  12. Adaptive Learning and Risk Taking

    ERIC Educational Resources Information Center

    Denrell, Jerker

    2007-01-01

    Humans and animals learn from experience by reducing the probability of sampling alternatives with poor past outcomes. Using simulations, J. G. March (1996) illustrated how such adaptive sampling could lead to risk-averse as well as risk-seeking behavior. In this article, the author develops a formal theory of how adaptive sampling influences risk…

  13. Organization of Distributed Adaptive Learning

    ERIC Educational Resources Information Center

    Vengerov, Alexander

    2009-01-01

    The growing sensitivity of various systems and parts of industry, society, and even everyday individual life leads to the increased volume of changes and needs for adaptation and learning. This creates a new situation where learning from being purely academic knowledge transfer procedure is becoming a ubiquitous always-on essential part of all…

  14. Adaptive learning based heartbeat classification.

    PubMed

    Srinivas, M; Basil, Tony; Mohan, C Krishna

    2015-01-01

    Cardiovascular diseases (CVD) are a leading cause of unnecessary hospital admissions as well as fatalities placing an immense burden on the healthcare industry. A process to provide timely intervention can reduce the morbidity rate as well as control rising costs. Patients with cardiovascular diseases require quick intervention. Towards that end, automated detection of abnormal heartbeats captured by electronic cardiogram (ECG) signals is vital. While cardiologists can identify different heartbeat morphologies quite accurately among different patients, the manual evaluation is tedious and time consuming. In this chapter, we propose new features from the time and frequency domains and furthermore, feature normalization techniques to reduce inter-patient and intra-patient variations in heartbeat cycles. Our results using the adaptive learning based classifier emulate those reported in existing literature and in most cases deliver improved performance, while eliminating the need for labeling of signals by domain experts. PMID:26484555

  15. Brain aerobic glycolysis and motor adaptation learning

    PubMed Central

    Shannon, Benjamin J.; Vaishnavi, Sanjeev Neil; Vlassenko, Andrei G.; Shimony, Joshua S.; Rutlin, Jerrel; Raichle, Marcus E.

    2016-01-01

    Ten percent to 15% of glucose used by the brain is metabolized nonoxidatively despite adequate tissue oxygenation, a process termed aerobic glycolysis (AG). Because of the known role of glycolysis in biosynthesis, we tested whether learning-induced synaptic plasticity would lead to regionally appropriate, learning-dependent changes in AG. Functional MRI (fMRI) before, during, and after performance of a visual–motor adaptation task demonstrated that left Brodmann area 44 (BA44) played a key role in adaptation, with learning-related changes to activity during the task and altered resting-state, functional connectivity after the task. PET scans before and after task performance indicated a sustained increase in AG in left BA 44 accompanied by decreased oxygen consumption. Intersubject variability in behavioral adaptation rate correlated strongly with changes in AG in this region, as well as functional connectivity, which is consistent with a role for AG in synaptic plasticity. PMID:27217563

  16. Brain aerobic glycolysis and motor adaptation learning.

    PubMed

    Shannon, Benjamin J; Vaishnavi, Sanjeev Neil; Vlassenko, Andrei G; Shimony, Joshua S; Rutlin, Jerrel; Raichle, Marcus E

    2016-06-28

    Ten percent to 15% of glucose used by the brain is metabolized nonoxidatively despite adequate tissue oxygenation, a process termed aerobic glycolysis (AG). Because of the known role of glycolysis in biosynthesis, we tested whether learning-induced synaptic plasticity would lead to regionally appropriate, learning-dependent changes in AG. Functional MRI (fMRI) before, during, and after performance of a visual-motor adaptation task demonstrated that left Brodmann area 44 (BA44) played a key role in adaptation, with learning-related changes to activity during the task and altered resting-state, functional connectivity after the task. PET scans before and after task performance indicated a sustained increase in AG in left BA 44 accompanied by decreased oxygen consumption. Intersubject variability in behavioral adaptation rate correlated strongly with changes in AG in this region, as well as functional connectivity, which is consistent with a role for AG in synaptic plasticity. PMID:27217563

  17. The Vocational Adaptation Rating Scales.

    PubMed

    Malgady, R G; Barcher, P R

    1982-01-01

    The Vocational Adaptation Rating Scales (VARS) were developed to provide a comprehensive assessment of maladaptive social behavior related to vocational success, but not directly measuring job performance of mentally retarded workers. Psychometric information derived from the VARS is useful for developing individualized educational plans (IEPs) for compliance with Public Law 94-142; for program, worker or curriculum evaluations; and for predicting placement of workers in vocational training. Research indicates that VARS scores are internally consistent, moderately correlated with other vocational measures, unbiased with respect to sex and age differences, and independent of IQ. Inter-rater reliability is acceptable, and VARS profiles are accurate predictors of level of sheltered workshop placement of mentally retarded workers, independent of IQ, sex and age. Unlike other instruments, the VARS offers a profile of social behavior in a vocational context. PMID:7168570

  18. Interoperability in Personalized Adaptive Learning

    ERIC Educational Resources Information Center

    Aroyo, Lora; Dolog, Peter; Houben, Geert-Jan; Kravcik, Milos; Naeve, Ambjorn; Nilsson, Mikael; Wild, Fridolin

    2006-01-01

    Personalized adaptive learning requires semantic-based and context-aware systems to manage the Web knowledge efficiently as well as to achieve semantic interoperability between heterogeneous information resources and services. The technological and conceptual differences can be bridged either by means of standards or via approaches based on the…

  19. Adaptively Ubiquitous Learning in Campus Math Path

    ERIC Educational Resources Information Center

    Shih, Shu-Chuan; Kuo, Bor-Chen; Liu, Yu-Lung

    2012-01-01

    The purposes of this study are to develop and evaluate the instructional model and learning system which integrate ubiquitous learning, computerized adaptive diagnostic testing system and campus math path learning. The researcher first creates a ubiquitous learning environment which is called "adaptive U-learning math path system". This system…

  20. Adaptable, Personalised E-Learning Incorporating Learning Styles

    ERIC Educational Resources Information Center

    Peter, Sophie E.; Bacon, Elizabeth; Dastbaz, Mohammad

    2010-01-01

    Purpose: The purpose of this paper is to discuss how learning styles and theories are currently used within personalised adaptable e-learning adaptive systems. This paper then aims to describe the e-learning platform iLearn and how this platform is designed to incorporate learning styles as part of the personalisation offered by the system.…

  1. Adaptive Units of Learning and Educational Videogames

    ERIC Educational Resources Information Center

    Moreno-Ger, Pablo; Thomas, Pilar Sancho; Martinez-Ortiz, Ivan; Sierra, Jose Luis; Fernandez-Manjon, Baltasar

    2007-01-01

    In this paper, we propose three different ways of using IMS Learning Design to support online adaptive learning modules that include educational videogames. The first approach relies on IMS LD to support adaptation procedures where the educational games are considered as Learning Objects. These games can be included instead of traditional content…

  2. Environmental Consistency Determines the Rate of Motor Adaptation

    PubMed Central

    Gonzalez Castro, L. Nicolas; Hadjiosif, Alkis M.; Hemphill, Matthew A.; Smith, Maurice A.

    2014-01-01

    Summary Background The motor system has the remarkable ability to not only learn, but also to learn how fast it should learn. However, the mechanisms behind this ability are not well understood. Previous studies have posited that the rate of adaptation in a given environment is determined by Bayesian sensorimotor integration based on the amount of variability in the state of the environment. However, experimental results have failed to support several predictions of this theory. Results We show that the rate at which the motor system adapts to changes in the environment is primarily determined not by the degree to which environment change occurs, but by the degree to which the changes that do occur persist from one movement to the next, i.e., the consistency of the environment. We demonstrate a striking double dissociation whereby feedback response strength is predicted by environmental variability rather than consistency, whereas adaptation rate is predicted by environmental consistency rather than variability. We proceed to elucidate the role of stimulus repetition in speeding up adaptation, finding that repetition can greatly potentiate the effect of consistency, although, unlike consistency, repetition alone does not increase adaptation rate. By leveraging this understanding, we demonstrate that the rate of motor adaptation can be modulated over a range of 20-fold. Conclusions Understanding the mechanisms that determine the rate of motor adaptation may lead to the principled design of improved procedures for motor training and rehabilitation. Regimens designed to control environmental consistency and repetition during training may yield faster, more robust motor learning. PMID:24794296

  3. Adaptive Learning Systems: Beyond Teaching Machines

    ERIC Educational Resources Information Center

    Kara, Nuri; Sevim, Nese

    2013-01-01

    Since 1950s, teaching machines have changed a lot. Today, we have different ideas about how people learn, what instructor should do to help students during their learning process. We have adaptive learning technologies that can create much more student oriented learning environments. The purpose of this article is to present these changes and its…

  4. Integrating Learning Styles into Adaptive E-Learning System

    ERIC Educational Resources Information Center

    Truong, Huong May

    2015-01-01

    This paper provides an overview and update on my PhD research project which focuses on integrating learning styles into adaptive e-learning system. The project, firstly, aims to develop a system to classify students' learning styles through their online learning behaviour. This will be followed by a study on the complex relationship between…

  5. A Machine Learning Based Framework for Adaptive Mobile Learning

    NASA Astrophysics Data System (ADS)

    Al-Hmouz, Ahmed; Shen, Jun; Yan, Jun

    Advances in wireless technology and handheld devices have created significant interest in mobile learning (m-learning) in recent years. Students nowadays are able to learn anywhere and at any time. Mobile learning environments must also cater for different user preferences and various devices with limited capability, where not all of the information is relevant and critical to each learning environment. To address this issue, this paper presents a framework that depicts the process of adapting learning content to satisfy individual learner characteristics by taking into consideration his/her learning style. We use a machine learning based algorithm for acquiring, representing, storing, reasoning and updating each learner acquired profile.

  6. Adaptive and accelerated tracking-learning-detection

    NASA Astrophysics Data System (ADS)

    Guo, Pengyu; Li, Xin; Ding, Shaowen; Tian, Zunhua; Zhang, Xiaohu

    2013-08-01

    An improved online long-term visual tracking algorithm, named adaptive and accelerated TLD (AA-TLD) based on Tracking-Learning-Detection (TLD) which is a novel tracking framework has been introduced in this paper. The improvement focuses on two aspects, one is adaption, which makes the algorithm not dependent on the pre-defined scanning grids by online generating scale space, and the other is efficiency, which uses not only algorithm-level acceleration like scale prediction that employs auto-regression and moving average (ARMA) model to learn the object motion to lessen the detector's searching range and the fixed number of positive and negative samples that ensures a constant retrieving time, but also CPU and GPU parallel technology to achieve hardware acceleration. In addition, in order to obtain a better effect, some TLD's details are redesigned, which uses a weight including both normalized correlation coefficient and scale size to integrate results, and adjusts distance metric thresholds online. A contrastive experiment on success rate, center location error and execution time, is carried out to show a performance and efficiency upgrade over state-of-the-art TLD with partial TLD datasets and Shenzhou IX return capsule image sequences. The algorithm can be used in the field of video surveillance to meet the need of real-time video tracking.

  7. Adaptive Learning Object Selection in Intelligent Learning Systems

    ERIC Educational Resources Information Center

    Karampiperis, Pythagoras; Sampson, Demetrios

    2004-01-01

    Adaptive learning object selection and sequencing is recognized as among the most interesting research questions in intelligent web-based education. In most intelligent learning systems that incorporate course sequencing techniques, learning object selection is based on a set of teaching rules according to the cognitive style or learning…

  8. A model for culturally adapting a learning system.

    PubMed

    Del Rosario, M L

    1975-12-01

    The Cross-Cultural Adaption Model (XCAM) is designed to help identify cultural values contained in the text, narration, or visual components of a learning instrument and enables the adapter to evaluate his adapted model so that he can modify or revise it, and allows him to assess the modified version by actually measuring the amount of cultural conflict still present in it. Such a model would permit world-wide adaption of learning materials in population regulation. A random sample of the target group is selected. The adapter develops a measurin g instrument, the cross-cultural adaption scale (XCA), a number of statements about the cultural affinity of the object evaluated. The pretest portion of the sample tests the clarity and understandability of the rating scale to be used for evaluating the instructional materials; the pilot group analyzes the original version of the instructional mater ials, determines the criteria for change, and analyzes the adapted version in terms of these criteria; the control group is administered the original version of the learning materials; and the experimental group is administered the adapted version. Finally, the responses obtained from the XRA rating scale and discussions of both the experimental and control groups are studied and group differences are ev aluated according to cultural conflicts met with each version. With this data, the preferred combination of elements is constructed. PMID:12307758

  9. Different Futures of Adaptive Collaborative Learning Support

    ERIC Educational Resources Information Center

    Rummel, Nikol; Walker, Erin; Aleven, Vincent

    2016-01-01

    In this position paper we contrast a Dystopian view of the future of adaptive collaborative learning support (ACLS) with a Utopian scenario that--due to better-designed technology, grounded in research--avoids the pitfalls of the Dystopian version and paints a positive picture of the practice of computer-supported collaborative learning 25 years…

  10. Adaptive Educational Software by Applying Reinforcement Learning

    ERIC Educational Resources Information Center

    Bennane, Abdellah

    2013-01-01

    The introduction of the intelligence in teaching software is the object of this paper. In software elaboration process, one uses some learning techniques in order to adapt the teaching software to characteristics of student. Generally, one uses the artificial intelligence techniques like reinforcement learning, Bayesian network in order to adapt…

  11. Animal social learning: associations and adaptations

    PubMed Central

    Reader, Simon M.

    2016-01-01

    Social learning, learning from others, is a powerful process known to impact the success and survival of humans and non-human animals alike. Yet we understand little about the neurocognitive and other processes that underpin social learning. Social learning has often been assumed to involve specialized, derived cognitive processes that evolve and develop independently from other processes. However, this assumption is increasingly questioned, and evidence from a variety of organisms demonstrates that current, recent, and early life experience all predict the reliance on social information and thus can potentially explain variation in social learning as a result of experiential effects rather than evolved differences. General associative learning processes, rather than adaptive specializations, may underpin much social learning, as well as social learning strategies. Uncovering these distinctions is important to a variety of fields, for example by widening current views of the possible breadth and adaptive flexibility of social learning. Nonetheless, just like adaptationist evolutionary explanations, associationist explanations for social learning cannot be assumed, and empirical work is required to uncover the mechanisms involved and their impact on the efficacy of social learning. This work is being done, but more is needed. Current evidence suggests that much social learning may be based on ‘ordinary’ processes but with extraordinary consequences.

  12. Adaptations to a Learning Resource

    ERIC Educational Resources Information Center

    Libbrecht, Paul

    2015-01-01

    Learning resources have been created to represent digital units of exchangeable materials that teachers and learners can pull from in order to support the learning processes. They resource themselves. Leveraging the web, one can often find these resources. But what characteristics do they need in order to be easily exchangeable? Although several…

  13. Adaptive coupling of inferior olive neurons in cerebellar learning.

    PubMed

    Tokuda, Isao T; Hoang, Huu; Schweighofer, Nicolas; Kawato, Mitsuo

    2013-11-01

    In the cerebellar learning hypothesis, inferior olive neurons are presumed to transmit high fidelity error signals, despite their low firing rates. The idea of chaotic resonance has been proposed to realize efficient error transmission by desynchronized spiking activities induced by moderate electrical coupling between inferior olive neurons. A recent study suggests that the coupling strength between inferior olive neurons can be adaptive and may decrease during the learning process. We show that such a decrease in coupling strength can be beneficial for motor learning, since efficient coupling strength depends upon the magnitude of the error signals. We introduce a scheme of adaptive coupling that enhances the learning of a neural controller for fast arm movements. Our numerical study supports the view that the controlling strategy of the coupling strength provides an additional degree of freedom to optimize the actual learning in the cerebellum. PMID:23337637

  14. Exploring Adaptability through Learning Layers and Learning Loops

    ERIC Educational Resources Information Center

    Lof, Annette

    2010-01-01

    Adaptability in social-ecological systems results from individual and collective action, and multi-level interactions. It can be understood in a dual sense as a system's ability to adapt to disturbance and change, and to navigate system transformation. Inherent in this conception, as found in resilience thinking, are the concepts of learning and…

  15. An adaptive learning control system for aircraft

    NASA Technical Reports Server (NTRS)

    Mekel, R.; Nachmias, S.

    1976-01-01

    A learning control system is developed which blends the gain scheduling and adaptive control into a single learning system that has the advantages of both. An important feature of the developed learning control system is its capability to adjust the gain schedule in a prescribed manner to account for changing aircraft operating characteristics. Furthermore, if tests performed by the criteria of the learning system preclude any possible change in the gain schedule, then the overall system becomes an ordinary gain scheduling system. Examples are discussed.

  16. Adaptive Prediction Error Coding in the Human Midbrain and Striatum Facilitates Behavioral Adaptation and Learning Efficiency.

    PubMed

    Diederen, Kelly M J; Spencer, Tom; Vestergaard, Martin D; Fletcher, Paul C; Schultz, Wolfram

    2016-06-01

    Effective error-driven learning benefits from scaling of prediction errors to reward variability. Such behavioral adaptation may be facilitated by neurons coding prediction errors relative to the standard deviation (SD) of reward distributions. To investigate this hypothesis, we required participants to predict the magnitude of upcoming reward drawn from distributions with different SDs. After each prediction, participants received a reward, yielding trial-by-trial prediction errors. In line with the notion of adaptive coding, BOLD response slopes in the Substantia Nigra/Ventral Tegmental Area (SN/VTA) and ventral striatum were steeper for prediction errors occurring in distributions with smaller SDs. SN/VTA adaptation was not instantaneous but developed across trials. Adaptive prediction error coding was paralleled by behavioral adaptation, as reflected by SD-dependent changes in learning rate. Crucially, increased SN/VTA and ventral striatal adaptation was related to improved task performance. These results suggest that adaptive coding facilitates behavioral adaptation and supports efficient learning. PMID:27181060

  17. Adapting Active Learning in Ethiopia

    ERIC Educational Resources Information Center

    Casale, Carolyn Frances

    2010-01-01

    Ethiopia is a developing country that has invested extensively in expanding its educational opportunities. In this expansion, there has been a drastic restructuring of its system of preparing teachers and teacher educators. Often, improving teacher quality is dependent on professional development that diversifies pedagogy (active learning). This…

  18. Adaptive Cognitive-Based Selection of Learning Objects

    ERIC Educational Resources Information Center

    Karampiperis, Pythagoras; Lin, Taiyu; Sampson, Demetrios G.; Kinshuk

    2006-01-01

    Adaptive cognitive-based selection is recognized as among the most significant open issues in adaptive web-based learning systems. In order to adaptively select learning resources, the definition of adaptation rules according to the cognitive style or learning preferences of the learners is required. Although some efforts have been reported in…

  19. Adaptive Learning Resources Sequencing in Educational Hypermedia Systems

    ERIC Educational Resources Information Center

    Karampiperis, Pythagoras; Sampson, Demetrios

    2005-01-01

    Adaptive learning resources selection and sequencing is recognized as among the most interesting research questions in adaptive educational hypermedia systems (AEHS). In order to adaptively select and sequence learning resources in AEHS, the definition of adaptation rules contained in the Adaptation Model, is required. Although, some efforts have…

  20. Making Mistakes: Emotional Adaptation and Classroom Learning

    ERIC Educational Resources Information Center

    McCaslin, Mary; Vriesema, Christine C.; Burggraf, Susan

    2016-01-01

    Background: We studied how students in Grades 4-6 participate in and emotionally adapt to the give-and-take of learning in classrooms, particularly when making mistakes. Our approach is consistent with researchers who (a) include cognitive appraisals in the study of emotional experiences, (b) consider how personal concerns might mediate…

  1. Adaptable Learning Assistant for Item Bank Management

    ERIC Educational Resources Information Center

    Nuntiyagul, Atorn; Naruedomkul, Kanlaya; Cercone, Nick; Wongsawang, Damras

    2008-01-01

    We present PKIP, an adaptable learning assistant tool for managing question items in item banks. PKIP is not only able to automatically assist educational users to categorize the question items into predefined categories by their contents but also to correctly retrieve the items by specifying the category and/or the difficulty level. PKIP adapts…

  2. Intelligent robots that adapt, learn, and predict

    NASA Astrophysics Data System (ADS)

    Hall, E. L.; Liao, X.; Ghaffari, M.; Alhaj Ali, S. M.

    2005-10-01

    The purpose of this paper is to describe the concept and architecture for an intelligent robot system that can adapt, learn and predict the future. This evolutionary approach to the design of intelligent robots is the result of several years of study on the design of intelligent machines that could adapt using computer vision or other sensory inputs, learn using artificial neural networks or genetic algorithms, exhibit semiotic closure with a creative controller and perceive present situations by interpretation of visual and voice commands. This information processing would then permit the robot to predict the future and plan its actions accordingly. In this paper we show that the capability to adapt, and learn naturally leads to the ability to predict the future state of the environment which is just another form of semiotic closure. That is, predicting a future state without knowledge of the future is similar to making a present action without knowledge of the present state. The theory will be illustrated by considering the situation of guiding a mobile robot through an unstructured environment for a rescue operation. The significance of this work is in providing a greater understanding of the applications of learning to mobile robots.

  3. Improving Adaptive Learning Technology through the Use of Response Times

    ERIC Educational Resources Information Center

    Mettler, Everett; Massey, Christine M.; Kellman, Philip J.

    2011-01-01

    Adaptive learning techniques have typically scheduled practice using learners' accuracy and item presentation history. We describe an adaptive learning system (Adaptive Response Time Based Sequencing--ARTS) that uses both accuracy and response time (RT) as direct inputs into sequencing. Response times are used to assess learning strength and…

  4. Adaptive functional systems: Learning with chaos

    NASA Astrophysics Data System (ADS)

    Komarov, M. A.; Osipov, G. V.; Burtsev, M. S.

    2010-12-01

    We propose a new model of adaptive behavior that combines a winnerless competition principle and chaos to learn new functional systems. The model consists of a complex network of nonlinear dynamical elements producing sequences of goal-directed actions. Each element describes dynamics and activity of the functional system which is supposed to be a distributed set of interacting physiological elements such as nerve or muscle that cooperates to obtain certain goal at the level of the whole organism. During "normal" behavior, the dynamics of the system follows heteroclinic channels, but in the novel situation chaotic search is activated and a new channel leading to the target state is gradually created simulating the process of learning. The model was tested in single and multigoal environments and had demonstrated a good potential for generation of new adaptations.

  5. Concept Based Approach for Adaptive Personalized Course Learning System

    ERIC Educational Resources Information Center

    Salahli, Mehmet Ali; Özdemir, Muzaffer; Yasar, Cumali

    2013-01-01

    One of the most important factors for improving the personalization aspects of learning systems is to enable adaptive properties to them. The aim of the adaptive personalized learning system is to offer the most appropriate learning path and learning materials to learners by taking into account their profiles. In this paper, a new approach to…

  6. MEAT: An Authoring Tool for Generating Adaptable Learning Resources

    ERIC Educational Resources Information Center

    Kuo, Yen-Hung; Huang, Yueh-Min

    2009-01-01

    Mobile learning (m-learning) is a new trend in the e-learning field. The learning services in m-learning environments are supported by fundamental functions, especially the content and assessment services, which need an authoring tool to rapidly generate adaptable learning resources. To fulfill the imperious demand, this study proposes an…

  7. Adaptive Multi-Rate Compression Effects on Vowel Analysis

    PubMed Central

    Ireland, David; Knuepffer, Christina; McBride, Simon J.

    2015-01-01

    Signal processing on digitally sampled vowel sounds for the detection of pathological voices has been firmly established. This work examines compression artifacts on vowel speech samples that have been compressed using the adaptive multi-rate codec at various bit-rates. Whereas previous work has used the sensitivity of machine learning algorithm to test for accuracy, this work examines the changes in the extracted speech features themselves and thus report new findings on the usefulness of a particular feature. We believe this work will have potential impact for future research on remote monitoring as the identification and exclusion of an ill-defined speech feature that has been hitherto used, will ultimately increase the robustness of the system. PMID:26347863

  8. Yet Another Adaptive Learning Management System Based on Felder and Silverman's Learning Styles and Mashup

    ERIC Educational Resources Information Center

    Chang, Yi-Hsing; Chen, Yen-Yi; Chen, Nian-Shing; Lu, You-Te; Fang, Rong-Jyue

    2016-01-01

    This study designs and implements an adaptive learning management system based on Felder and Silverman's Learning Style Model and the Mashup technology. In this system, Felder and Silverman's Learning Style model is used to assess students' learning styles, in order to provide adaptive learning to leverage learners' learning preferences.…

  9. Using Assistive Technology Adaptations To Include Students with Learning Disabilities in Cooperative Learning Activities.

    ERIC Educational Resources Information Center

    Bryant, Diane Pedrotty; Bryant, Brian R.

    1998-01-01

    Discusses a process for integrating technology adaptations for students with learning disabilities into cooperative-learning activities in terms of three components: (1) selecting adaptations; (2) monitoring use of adaptations during cooperative-learning activities; and (3) evaluating the adaptations' effectiveness. Barriers to and support systems…

  10. AH-Questionnaire: An Adaptive Hierarchical Questionnaire for Learning Styles

    ERIC Educational Resources Information Center

    Ortigosa, Alvaro; Paredes, Pedro; Rodriguez, Pilar

    2010-01-01

    One of the main concerns when providing learning style adaptation in Adaptive Educational Hypermedia Systems is the number of questions the students have to answer. Most of the times, adaptive material available will discriminate among a few categories for each learning style dimension. Consequently, it is only needed to take into account the…

  11. Adaptable Learning Pathway Generation with Ant Colony Optimization

    ERIC Educational Resources Information Center

    Wong, Lung-Hsiang; Looi, Chee-Kit

    2009-01-01

    One of the new major directions in research on web-based educational systems is the notion of adaptability: the educational system adapts itself to the learning profile, preferences and ability of the student. In this paper, we look into the issues of providing adaptability with respect to learning pathways. We explore the state of the art with…

  12. Critical Thinking, Developmental Learning, and Adaptive Flexibility in Organizational Leaders.

    ERIC Educational Resources Information Center

    Duchesne, Robert E., Jr.

    A study examined how developmental learning and adaptive flexibility relate to critical thinking though a survey of 119 organizational leaders (of 341) who had attended a 5-day Leadership Development Program. A questionnaire adapted from the Center for Creative Leadership's Job Challenge Profile measured developmental learning, the Adaptive Style…

  13. Adaptive hybrid learning for neural networks.

    PubMed

    Smithies, Rob; Salhi, Said; Queen, Nat

    2004-01-01

    A robust locally adaptive learning algorithm is developed via two enhancements of the Resilient Propagation (RPROP) method. Remaining drawbacks of the gradient-based approach are addressed by hybridization with gradient-independent Local Search. Finally, a global optimization method based on recursion of the hybrid is constructed, making use of tabu neighborhoods to accelerate the search for minima through diversification. Enhanced RPROP is shown to be faster and more accurate than the standard RPROP in solving classification tasks based on natural data sets taken from the UCI repository of machine learning databases. Furthermore, the use of Local Search is shown to improve Enhanced RPROP by solving the same classification tasks as part of the global optimization method. PMID:15006027

  14. Development of Adaptive Kanji Learning System for Mobile Phone

    ERIC Educational Resources Information Center

    Li, Mengmeng; Ogata, Hiroaki; Hou, Bin; Hashimoto, Satoshi; Liu, Yuqin; Uosaki, Noriko; Yano, Yoneo

    2010-01-01

    This paper describes an adaptive learning system based on mobile phone email to support the study of Japanese Kanji. In this study, the main emphasis is on using the adaptive learning to resolve one common problem of the mobile-based email or SMS language learning systems. To achieve this goal, the authors main efforts focus on three aspects:…

  15. How Language Supports Adaptive Teaching through a Responsive Learning Culture

    ERIC Educational Resources Information Center

    Johnston, Peter; Dozier, Cheryl; Smit, Julie

    2016-01-01

    For students to learn optimally, teachers must design classrooms that are responsive to the full range of student development. The teacher must be adaptive, but so must each student and the learning culture itself. In other words, adaptive teaching means constructing a responsive learning culture that accommodates and even capitalizes on diversity…

  16. Illusory Reversal of Causality between Touch and Vision has No Effect on Prism Adaptation Rate.

    PubMed

    Tanaka, Hirokazu; Homma, Kazuhiro; Imamizu, Hiroshi

    2012-01-01

    Learning, according to Oxford Dictionary, is "to gain knowledge or skill by studying, from experience, from being taught, etc." In order to learn from experience, the central nervous system has to decide what action leads to what consequence, and temporal perception plays a critical role in determining the causality between actions and consequences. In motor adaptation, causality between action and consequence is implicitly assumed so that a subject adapts to a new environment based on the consequence caused by her action. Adaptation to visual displacement induced by prisms is a prime example; the visual error signal associated with the motor output contributes to the recovery of accurate reaching, and a delayed feedback of visual error can decrease the adaptation rate. Subjective feeling of temporal order of action and consequence, however, can be modified or even reversed when her sense of simultaneity is manipulated with an artificially delayed feedback. Our previous study (Tanaka et al., 2011; Exp. Brain Res.) demonstrated that the rate of prism adaptation was unaffected when the subjective delay of visual feedback was shortened. This study asked whether subjects could adapt to prism adaptation and whether the rate of prism adaptation was affected when the subjective temporal order was illusory reversed. Adapting to additional 100 ms delay and its sudden removal caused a positive shift of point of simultaneity in a temporal order judgment experiment, indicating an illusory reversal of action and consequence. We found that, even in this case, the subjects were able to adapt to prism displacement with the learning rate that was statistically indistinguishable to that without temporal adaptation. This result provides further evidence to the dissociation between conscious temporal perception and motor adaptation. PMID:23248609

  17. Distributed reinforcement learning for adaptive and robust network intrusion response

    NASA Astrophysics Data System (ADS)

    Malialis, Kleanthis; Devlin, Sam; Kudenko, Daniel

    2015-07-01

    Distributed denial of service (DDoS) attacks constitute a rapidly evolving threat in the current Internet. Multiagent Router Throttling is a novel approach to defend against DDoS attacks where multiple reinforcement learning agents are installed on a set of routers and learn to rate-limit or throttle traffic towards a victim server. The focus of this paper is on online learning and scalability. We propose an approach that incorporates task decomposition, team rewards and a form of reward shaping called difference rewards. One of the novel characteristics of the proposed system is that it provides a decentralised coordinated response to the DDoS problem, thus being resilient to DDoS attacks themselves. The proposed system learns remarkably fast, thus being suitable for online learning. Furthermore, its scalability is successfully demonstrated in experiments involving 1000 learning agents. We compare our approach against a baseline and a popular state-of-the-art throttling technique from the network security literature and show that the proposed approach is more effective, adaptive to sophisticated attack rate dynamics and robust to agent failures.

  18. Adaptive Metric Learning for Saliency Detection.

    PubMed

    Li, Shuang; Lu, Huchuan; Lin, Zhe; Shen, Xiaohui; Price, Brian

    2015-11-01

    In this paper, we propose a novel adaptive metric learning algorithm (AML) for visual saliency detection. A key observation is that the saliency of a superpixel can be estimated by the distance from the most certain foreground and background seeds. Instead of measuring distance on the Euclidean space, we present a learning method based on two complementary Mahalanobis distance metrics: 1) generic metric learning (GML) and 2) specific metric learning (SML). GML aims at the global distribution of the whole training set, while SML considers the specific structure of a single image. Considering that multiple similarity measures from different views may enhance the relevant information and alleviate the irrelevant one, we try to fuse the GML and SML together and experimentally find the combining result does work well. Different from the most existing methods which are directly based on low-level features, we devise a superpixelwise Fisher vector coding approach to better distinguish salient objects from the background. We also propose an accurate seeds selection mechanism and exploit contextual and multiscale information when constructing the final saliency map. Experimental results on various image sets show that the proposed AML performs favorably against the state-of-the-arts. PMID:26054067

  19. Psychosocial and Adaptive Deficits Associated With Learning Disability Subtypes.

    PubMed

    Backenson, Erica M; Holland, Sara C; Kubas, Hanna A; Fitzer, Kim R; Wilcox, Gabrielle; Carmichael, Jessica A; Fraccaro, Rebecca L; Smith, Amanda D; Macoun, Sarah J; Harrison, Gina L; Hale, James B

    2015-01-01

    Children with specific learning disabilities (SLD) have deficits in the basic psychological processes that interfere with learning and academic achievement, and for some SLD subtypes, these deficits can also lead to emotional and/or behavior problems. This study examined psychosocial functioning in 123 students, aged 6 to 11, who underwent comprehensive evaluations for learning and/or behavior problems in two Pacific Northwest school districts. Using concordance-discordance model (C-DM) processing strengths and weaknesses SLD identification criteria, results revealed working memory SLD (n = 20), processing speed SLD (n = 30), executive SLD (n = 32), and no disability groups (n = 41). Of the SLD subtypes, repeated measures MANOVA results revealed the processing speed SLD subtype exhibited the greatest psychosocial and adaptive impairment according to teacher behavior ratings. Findings suggest processing speed deficits may be behind the cognitive and psychosocial disturbances found in what has been termed "nonverbal" SLD. Limitations, implications, and future research needs are addressed. PMID:24300589

  20. An Adaptive Scaffolding E-Learning System for Middle School Students' Physics Learning

    ERIC Educational Resources Information Center

    Chen, Ching-Huei

    2014-01-01

    This study presents a framework that utilizes cognitive and motivational aspects of learning to design an adaptive scaffolding e-learning system. It addresses scaffolding processes and conditions for designing adaptive scaffolds. The features and effectiveness of this adaptive scaffolding e-learning system are discussed and evaluated. An…

  1. The Binding of Learning to Action in Motor Adaptation

    PubMed Central

    Gonzalez Castro, Luis Nicolas; Monsen, Craig Bryant; Smith, Maurice A.

    2011-01-01

    In motor tasks, errors between planned and actual movements generally result in adaptive changes which reduce the occurrence of similar errors in the future. It has commonly been assumed that the motor adaptation arising from an error occurring on a particular movement is specifically associated with the motion that was planned. Here we show that this is not the case. Instead, we demonstrate the binding of the adaptation arising from an error on a particular trial to the motion experienced on that same trial. The formation of this association means that future movements planned to resemble the motion experienced on a given trial benefit maximally from the adaptation arising from it. This reflects the idea that actual rather than planned motions are assigned ‘credit’ for motor errors because, in a computational sense, the maximal adaptive response would be associated with the condition credited with the error. We studied this process by examining the patterns of generalization associated with motor adaptation to novel dynamic environments during reaching arm movements in humans. We found that these patterns consistently matched those predicted by adaptation associated with the actual rather than the planned motion, with maximal generalization observed where actual motions were clustered. We followed up these findings by showing that a novel training procedure designed to leverage this newfound understanding of the binding of learning to action, can improve adaptation rates by greater than 50%. Our results provide a mechanistic framework for understanding the effects of partial assistance and error augmentation during neurologic rehabilitation, and they suggest ways to optimize their use. PMID:21731476

  2. M-Learning: Implications in Learning Domain Specificities, Adaptive Learning, Feedback, Augmented Reality, and the Future of Online Learning

    ERIC Educational Resources Information Center

    Squires, David R.

    2014-01-01

    The aim of this paper is to examine the potential and effectiveness of m-learning in the field of Education and Learning domains. The purpose of this research is to illustrate how mobile technology can and is affecting novel change in instruction, from m-learning and the link to adaptive learning, to the uninitiated learner and capacities of…

  3. Hindsight bias, outcome knowledge and adaptive learning.

    PubMed

    Henriksen, K; Kaplan, H

    2003-12-01

    The ubiquitous nature of hindsight bias is a cause for concern for those engaged in investigations and retrospective analysis of medical error. Hindsight does not equal foresight. Investigations that are anchored to outcome knowledge run the risk of not capturing the complexities and uncertainties facing sharp end personnel and why their actions made sense at the time. Important lessons go unlearned if the exercise is simply to back track someone else's decision landmarks. Outcome knowledge can also bias our thinking on the quality of the processes that led to the outcome. This paper examines the influence of outcome knowledge in relation to reconstructive memory and legal testimony, ways for reducing the impact of outcome knowledge, and an adaptive learning framework that places hindsight bias in a broader context of rapid updating of knowledge. PMID:14645895

  4. How much do genetic covariances alter the rate of adaptation?

    PubMed Central

    Agrawal, Aneil F.; Stinchcombe, John R.

    2008-01-01

    Genetically correlated traits do not evolve independently, and the covariances between traits affect the rate at which a population adapts to a specified selection regime. To measure the impact of genetic covariances on the rate of adaptation, we compare the rate fitness increases given the observed G matrix to the expected rate if all the covariances in the G matrix are set to zero. Using data from the literature, we estimate the effect of genetic covariances in real populations. We find no net tendency for covariances to constrain the rate of adaptation, though the quality and heterogeneity of the data limit the certainty of this result. There are some examples in which covariances strongly constrain the rate of adaptation but these are balanced by counter examples in which covariances facilitate the rate of adaptation; in many cases, covariances have little or no effect. We also discuss how our metric can be used to identify traits or suites of traits whose genetic covariances to other traits have a particularly large impact on the rate of adaptation. PMID:19129097

  5. Adaptation of bit error rate by coding

    NASA Astrophysics Data System (ADS)

    Marguinaud, A.; Sorton, G.

    1984-07-01

    The use of coding in spacecraft wideband communication to reduce power transmission, save bandwith, and lower antenna specifications was studied. The feasibility of a coder decoder functioning at a bit rate of 10 Mb/sec with a raw bit error rate (BER) of 0.001 and an output BER of 0.000000001 is demonstrated. A single block code protection, and two coding levels protection are examined. A single level protection BCH code with 5 errors correction capacity, 16% redundancy, and interleaving depth 4 giving a coded block of 1020 bits is simple to implement, but has BER = 0.000000007. A single level BCH code with 7 errors correction capacity and 12% redundancy meets specifications, but is more difficult to implement. Two level protection with 9% BCH outer and 10% BCH inner codes, both levels with 3 errors correction capacity and 8% redundancy for a coded block of 7050 bits is the most complex, but offers performance advantages.

  6. Adaptive Device Context Based Mobile Learning Systems

    ERIC Educational Resources Information Center

    Pu, Haitao; Lin, Jinjiao; Song, Yanwei; Liu, Fasheng

    2011-01-01

    Mobile learning is e-learning delivered through mobile computing devices, which represents the next stage of computer-aided, multi-media based learning. Therefore, mobile learning is transforming the way of traditional education. However, as most current e-learning systems and their contents are not suitable for mobile devices, an approach for…

  7. The Influence of Learning Behaviour on Team Adaptability

    ERIC Educational Resources Information Center

    Murray, Peter A.; Millett, Bruce

    2011-01-01

    Multiple contexts shape team activities and how they learn, and group learning is a dynamic construct that reflects a repertoire of potential behaviour. The purpose of this developmental paper is to examine how better learning behaviours in semi-autonomous teams improves the level of team adaptability and performance. The discussion suggests that…

  8. An Adaptive E-Learning System Based on Students' Learning Styles: An Empirical Study

    ERIC Educational Resources Information Center

    Drissi, Samia; Amirat, Abdelkrim

    2016-01-01

    Personalized e-learning implementation is recognized as one of the most interesting research areas in the distance web-based education. Since the learning style of each learner is different one must fit e-learning with the different needs of learners. This paper presents an approach to integrate learning styles into adaptive e-learning hypermedia.…

  9. Engaging a moving target: Adapting to rates of climate change

    NASA Astrophysics Data System (ADS)

    Shayegh, S.; Caldeira, K.; Moreno-Cruz, J.

    2015-12-01

    Climate change is affecting the planet and its human and natural systems at an increasing rate. As temperatures continue to rise, the international community has increasingly been considering adaptation measures to prepare for future climate change. However, most discussion around adaptation strategies has focused on preparedness for some expected amount of climate change impacts, e.g. 2 meters sea level rise. In this study, we discuss adaptation to rates of change as an alternative conceptual framework for thinking about adaptation. Adaptation is not only about adapting to amounts of change, but the rate at which these changes occur is also critically important. We ground our discussion with an example of optimal coastal investment in the face of ongoing sea level rise. Sea level rise threatens coastal assets. Finite resources could be devoted to building infrastructure further inland or to building coastal defense systems. A possible policy response could be to create a "no-build" coastal buffer zone that anticipates a future higher sea level. We present a quantitative model that illustrates the interplay among various important factors (rate of sea level rise, discount rate, capital depreciation rate, attractiveness of coastal land, etc). For some cases, strategies that combine periodic defensive investments (e.g. dikes) with planned retreat can maximize welfare when adapting to rates of climate change. In other cases, planned retreat may be optimal. It is important to prepare for ongoing increasing amounts of climate change. Preparing for a fixed amount of climate change can lead to a suboptimal solution. Climate is likely to continue changing throughout this century and beyond. To reduce adverse climate impacts, ecosystems and human systems will need to continuously adapt to a moving target.

  10. A Competency-Based Guided-Learning Algorithm Applied on Adaptively Guiding E-Learning

    ERIC Educational Resources Information Center

    Hsu, Wei-Chih; Li, Cheng-Hsiu

    2015-01-01

    This paper presents a new algorithm called competency-based guided-learning algorithm (CBGLA), which can be applied on adaptively guiding e-learning. Computational process analysis and mathematical derivation of competency-based learning (CBL) were used to develop the CBGLA. The proposed algorithm could generate an effective adaptively guiding…

  11. Diminished neural adaptation during implicit learning in autism.

    PubMed

    Schipul, Sarah E; Just, Marcel Adam

    2016-01-15

    Neuroimaging studies have shown evidence of disrupted neural adaptation during learning in individuals with autism spectrum disorder (ASD) in several types of tasks, potentially stemming from frontal-posterior cortical underconnectivity (Schipul et al., 2012). The aim of the current study was to examine neural adaptations in an implicit learning task that entails participation of frontal and posterior regions. Sixteen high-functioning adults with ASD and sixteen neurotypical control participants were trained on and performed an implicit dot pattern prototype learning task in a functional magnetic resonance imaging (fMRI) session. During the preliminary exposure to the type of implicit prototype learning task later to be used in the scanner, the ASD participants took longer than the neurotypical group to learn the task, demonstrating altered implicit learning in ASD. After equating task structure learning, the two groups' brain activation differed during their learning of a new prototype in the subsequent scanning session. The main findings indicated that neural adaptations in a distributed task network were reduced in the ASD group, relative to the neurotypical group, and were related to ASD symptom severity. Functional connectivity was reduced and did not change as much during learning for the ASD group, and was related to ASD symptom severity. These findings suggest that individuals with ASD show altered neural adaptations during learning, as seen in both activation and functional connectivity measures. This finding suggests why many real-world implicit learning situations may pose special challenges for ASD. PMID:26484826

  12. A Model of Adaptive Language Learning

    ERIC Educational Resources Information Center

    Woodrow, Lindy J.

    2006-01-01

    This study applies theorizing from educational psychology and language learning to hypothesize a model of language learning that takes into account affect, motivation, and language learning strategies. The study employed a questionnaire to assess variables of motivation, self-efficacy, anxiety, and language learning strategies. The sample…

  13. Poststroke Hemiparesis Impairs the Rate but not Magnitude of Adaptation of Spatial and Temporal Locomotor Features

    PubMed Central

    Savin, Douglas N.; Tseng, Shih-Chiao; Whitall, Jill; Morton, Susanne M.

    2015-01-01

    Background Persons with stroke and hemiparesis walk with a characteristic pattern of spatial and temporal asymmetry that is resistant to most traditional interventions. It was recently shown in nondisabled persons that the degree of walking symmetry can be readily altered via locomotor adaptation. However, it is unclear whether stroke-related brain damage affects the ability to adapt spatial or temporal gait symmetry. Objective Determine whether locomotor adaptation to a novel swing phase perturbation is impaired in persons with chronic stroke and hemiparesis. Methods Participants with ischemic stroke (14) and nondisabled controls (12) walked on a treadmill before, during, and after adaptation to a unilateral perturbing weight that resisted forward leg movement. Leg kinematics were measured bilaterally, including step length and single-limb support (SLS) time symmetry, limb angle center of oscillation, and interlimb phasing, and magnitude of “initial” and “late” locomotor adaptation rates were determined. Results All participants had similar magnitudes of adaptation and similar initial adaptation rates both spatially and temporally. All 14 participants with stroke and baseline asymmetry temporarily walked with improved SLS time symmetry after adaptation. However, late adaptation rates poststroke were decreased (took more strides to achieve adaptation) compared with controls. Conclusions Mild to moderate hemiparesis does not interfere with the initial acquisition of novel symmetrical gait patterns in both the spatial and temporal domains, though it does disrupt the rate at which “late” adaptive changes are produced. Impairment of the late, slow phase of learning may be an important rehabilitation consideration in this patient population. PMID:22367915

  14. How adaptation shapes spike rate oscillations in recurrent neuronal networks

    PubMed Central

    Augustin, Moritz; Ladenbauer, Josef; Obermayer, Klaus

    2012-01-01

    Neural mass signals from in-vivo recordings often show oscillations with frequencies ranging from <1 to 100 Hz. Fast rhythmic activity in the beta and gamma range can be generated by network-based mechanisms such as recurrent synaptic excitation-inhibition loops. Slower oscillations might instead depend on neuronal adaptation currents whose timescales range from tens of milliseconds to seconds. Here we investigate how the dynamics of such adaptation currents contribute to spike rate oscillations and resonance properties in recurrent networks of excitatory and inhibitory neurons. Based on a network of sparsely coupled spiking model neurons with two types of adaptation current and conductance-based synapses with heterogeneous strengths and delays we use a mean-field approach to analyze oscillatory network activity. For constant external input, we find that spike-triggered adaptation currents provide a mechanism to generate slow oscillations over a wide range of adaptation timescales as long as recurrent synaptic excitation is sufficiently strong. Faster rhythms occur when recurrent inhibition is slower than excitation and oscillation frequency increases with the strength of inhibition. Adaptation facilitates such network-based oscillations for fast synaptic inhibition and leads to decreased frequencies. For oscillatory external input, adaptation currents amplify a narrow band of frequencies and cause phase advances for low frequencies in addition to phase delays at higher frequencies. Our results therefore identify the different key roles of neuronal adaptation dynamics for rhythmogenesis and selective signal propagation in recurrent networks. PMID:23450654

  15. Adaptive Learning for ESL Based on Computation

    ERIC Educational Resources Information Center

    Wang, Ya-huei; Liao, Hung-Chang

    2011-01-01

    In the conventional English as a Second Language (ESL) class-based learning environment, teachers use a fixed learning sequence and content for all students without considering the diverse needs of each individual. There is a great deal of diversity within and between classes. Hence, if students' learning outcomes are to be maximised, it is…

  16. Towards adaptation in e-learning 2.0

    NASA Astrophysics Data System (ADS)

    Cristea, Alexandra I.; Ghali, Fawaz

    2011-04-01

    This paper presents several essential steps from an overall study on shaping new ways of learning and teaching, by using the synergetic merger of three different fields: Web 2.0, e-learning and adaptation (in particular, personalisation to the learner). These novel teaching and learning ways-the latter focus of this paper-are reflected in and finally adding to various versions of the My Online Teacher 2.0 adaptive system. In particular, this paper focuses on a study of how to more effectively use and combine the recommendation of peers and content adaptation to enhance the learning outcome in e-learning systems based on Web 2.0. In order to better isolate and examine the effects of peer recommendation and adaptive content presentation, we designed experiments inspecting collaboration between individuals based on recommendation of peers who have greater knowledge, and compare this to adaptive content recommendation, as well as to "simple" learning in a system with a minimum of Web 2.0 support. Overall, the results of adding peer recommendation and adaptive content presentation were encouraging, and are further discussed in detail in this paper.

  17. Learning Experiences Reuse Based on an Ontology Modeling to Improve Adaptation in E-Learning Systems

    ERIC Educational Resources Information Center

    Hadj M'tir, Riadh; Rumpler, Béatrice; Jeribi, Lobna; Ben Ghezala, Henda

    2014-01-01

    Current trends in e-Learning focus mainly on personalizing and adapting the learning environment and learning process. Although their increasingly number, theses researches often ignore the concepts of capitalization and reuse of learner experiences which can be exploited later by other learners. Thus, the major challenge of distance learning is…

  18. A Learning Style Perspective to Investigate the Necessity of Developing Adaptive Learning Systems

    ERIC Educational Resources Information Center

    Hwang, Gwo-Jen; Sung, Han-Yu; Hung, Chun-Ming; Huang, Iwen

    2013-01-01

    Learning styles are considered to be one of the factors that need to be taken into account in developing adaptive learning systems. However, few studies have been conducted to investigate if students have the ability to choose the best-fit e-learning systems or content presentation styles for themselves in terms of learning style perspective. In…

  19. An Intelligent E-Learning System Based on Learner Profiling and Learning Resources Adaptation

    ERIC Educational Resources Information Center

    Tzouveli, Paraskevi; Mylonas, Phivos; Kollias, Stefanos

    2008-01-01

    Taking advantage of the continuously improving, web-based learning systems plays an important role for self-learning, especially in the case of working people. Nevertheless, learning systems do not generally adapt to learners' profiles. Learners have to spend a lot of time before reaching the learning goal that is compatible with their knowledge…

  20. Implementation of an Adaptive Learning System Using a Bayesian Network

    ERIC Educational Resources Information Center

    Yasuda, Keiji; Kawashima, Hiroyuki; Hata, Yoko; Kimura, Hiroaki

    2015-01-01

    An adaptive learning system is proposed that incorporates a Bayesian network to efficiently gauge learners' understanding at the course-unit level. Also, learners receive content that is adapted to their measured level of understanding. The system works on an iPad via the Edmodo platform. A field experiment using the system in an elementary school…

  1. Enhancing Student Motivation and Learning within Adaptive Tutors

    ERIC Educational Resources Information Center

    Ostrow, Korinn S.

    2015-01-01

    My research is rooted in improving K-12 educational practice using motivational facets made possible through adaptive tutoring systems. In an attempt to isolate best practices within the science of learning, I conduct randomized controlled trials within ASSISTments, an online adaptive tutoring system that provides assistance and assessment to…

  2. Rate-Agnostic (Causal) Structure Learning

    PubMed Central

    Plis, Sergey; Danks, David; Freeman, Cynthia; Calhoun, Vince

    2016-01-01

    Causal structure learning from time series data is a major scientific challenge. Extant algorithms assume that measurements occur sufficiently quickly; more precisely, they assume approximately equal system and measurement timescales. In many domains, however, measurements occur at a significantly slower rate than the underlying system changes, but the size of the timescale mismatch is often unknown. This paper develops three causal structure learning algorithms, each of which discovers all dynamic causal graphs that explain the observed measurement data, perhaps given undersampling. That is, these algorithms all learn causal structure in a “rate-agnostic” manner: they do not assume any particular relation between the measurement and system timescales. We apply these algorithms to data from simulations to gain insight into the challenge of undersampling. PMID:27182188

  3. Adaptive E-Learning Environments: Research Dimensions and Technological Approaches

    ERIC Educational Resources Information Center

    Di Bitonto, Pierpaolo; Roselli, Teresa; Rossano, Veronica; Sinatra, Maria

    2013-01-01

    One of the most closely investigated topics in e-learning research has always been the effectiveness of adaptive learning environments. The technological evolutions that have dramatically changed the educational world in the last six decades have allowed ever more advanced and smarter solutions to be proposed. The focus of this paper is to depict…

  4. Design of Adaptive Hypermedia Learning Systems: A Cognitive Style Approach

    ERIC Educational Resources Information Center

    Mampadi, Freddy; Chen, Sherry Y.; Ghinea, Gheorghita; Chen, Ming-Puu

    2011-01-01

    In the past decade, a number of adaptive hypermedia learning systems have been developed. However, most of these systems tailor presentation content and navigational support solely according to students' prior knowledge. On the other hand, previous research suggested that cognitive styles significantly affect student learning because they refer to…

  5. RASCAL: A Rudimentary Adaptive System for Computer-Aided Learning.

    ERIC Educational Resources Information Center

    Stewart, John Christopher

    Both the background of computer-assisted instruction (CAI) systems in general and the requirements of a computer-aided learning system which would be a reasonable assistant to a teacher are discussed. RASCAL (Rudimentary Adaptive System for Computer-Aided Learning) is a first attempt at defining a CAI system which would individualize the learning…

  6. Combining Adaptive Hypermedia with Project and Case-Based Learning

    ERIC Educational Resources Information Center

    Papanikolaou, Kyparisia; Grigoriadou, Maria

    2009-01-01

    In this article we investigate the design of educational hypermedia based on constructivist learning theories. According to the principles of project and case-based learning we present the design rational of an Adaptive Educational Hypermedia system prototype named MyProject; learners working with MyProject undertake a project and the system…

  7. Adapting Online Self-Regulated Learning Scale into Turkish

    ERIC Educational Resources Information Center

    Korkmaz, Ozgen; Kaya, Sinan

    2012-01-01

    The purpose of this study is to determine online self-regulated learning levels of students by adapting "Online Self-Regulated Learning Scale" designed by Barnard and his colleagues into Turkish. Present study, irrespective of being a scale analysis, is at the same time a qualitative research. It is executed via scan model. Study group of research…

  8. Increased Adaptation Rates and Reduction in Trial-by-Trial Variability in Subjects with Cerebral Palsy Following a Multi-session Locomotor Adaptation Training

    PubMed Central

    Mawase, Firas; Bar-Haim, Simona; Joubran, Katherin; Rubin, Lihi; Karniel, Amir; Shmuelof, Lior

    2016-01-01

    Cerebral Palsy (CP) results from an insult to the developing brain and is associated with deficits in locomotor and manual skills and in sensorimotor adaptation. We hypothesized that the poor sensorimotor adaptation in persons with CP is related to their high execution variability and does not reflect a general impairment in adaptation learning. We studied the interaction between performance variability and adaptation deficits using a multi-session locomotor adaptation design in persons with CP. Six adolescents with diplegic CP were exposed, during a period of 15 weeks, to a repeated split-belt treadmill perturbation spread over 30 sessions and were tested again 6 months after the end of training. Compared to age-matched healthy controls, subjects with CP showed poor adaptation and high execution variability in the first exposure to the perturbation. Following training they showed marked reduction in execution variability and an increase in learning rates. The reduction in variability and the improvement in adaptation were highly correlated in the CP group and were retained 6 months after training. Interestingly, despite reducing their variability in the washout phase, subjects with CP did not improve learning rates during washout phases that were introduced only four times during the experiment. Our results suggest that locomotor adaptation in subjects with CP is related to their execution variability. Nevertheless, while variability reduction is generalized to other locomotor contexts, the development of savings requires both reduction in execution variability and multiple exposures to the perturbation. PMID:27199721

  9. Adaptation of the Patterns of Adaptive Learning Scales (PALS) to Turkish Students: Factorial Validity and Reliability

    ERIC Educational Resources Information Center

    Cikrikci-Demirtash, R. Nukhet

    2005-01-01

    The study presented in this article was conducted to determine psychometric features of scales for Turkish students by adapting the Patterns of Adaptive Learning Scales (PALS) developed by Midgley and others (2000) to the Turkish language in order to measure personal and classroom goal orientations. The scales were developed to test…

  10. Adaptive method of realizing natural gradient learning for multilayer perceptrons.

    PubMed

    Amari, S; Park, H; Fukumizu, K

    2000-06-01

    The natural gradient learning method is known to have ideal performances for on-line training of multilayer perceptrons. It avoids plateaus, which give rise to slow convergence of the backpropagation method. It is Fisher efficient, whereas the conventional method is not. However, for implementing the method, it is necessary to calculate the Fisher information matrix and its inverse, which is practically very difficult. This article proposes an adaptive method of directly obtaining the inverse of the Fisher information matrix. It generalizes the adaptive Gauss-Newton algorithms and provides a solid theoretical justification of them. Simulations show that the proposed adaptive method works very well for realizing natural gradient learning. PMID:10935719

  11. Adaptation to nocturnality - learning from avian genomes.

    PubMed

    Le Duc, Diana; Schöneberg, Torsten

    2016-07-01

    The recent availability of multiple avian genomes has laid the foundation for a huge variety of comparative genomics analyses including scans for changes and signatures of selection that arose from adaptions to new ecological niches. Nocturnal adaptation in birds, unlike in mammals, is comparatively recent, a fact that makes birds good candidates for identifying early genetic changes that support adaptation to dim-light environments. In this review, we give examples of comparative genomics analyses that could shed light on mechanisms of adaptation to nocturnality. We present advantages and disadvantages of both "data-driven" and "hypothesis-driven" approaches that lead to the discovery of candidate genes and genetic changes promoting nocturnality. We anticipate that the accessibility of multiple genomes from the Genome 10K Project will allow a better understanding of evolutionary mechanisms and adaptation in general. PMID:27172298

  12. A neural learning classifier system with self-adaptive constructivism for mobile robot control.

    PubMed

    Hurst, Jacob; Bull, Larry

    2006-01-01

    For artificial entities to achieve true autonomy and display complex lifelike behavior, they will need to exploit appropriate adaptable learning algorithms. In this context adaptability implies flexibility guided by the environment at any given time and an open-ended ability to learn appropriate behaviors. This article examines the use of constructivism-inspired mechanisms within a neural learning classifier system architecture that exploits parameter self-adaptation as an approach to realize such behavior. The system uses a rule structure in which each rule is represented by an artificial neural network. It is shown that appropriate internal rule complexity emerges during learning at a rate controlled by the learner and that the structure indicates underlying features of the task. Results are presented in simulated mazes before moving to a mobile robot platform. PMID:16859445

  13. Evolution of evolvability via adaptation of mutation rates.

    PubMed

    Bedau, Mark A; Packard, Norman H

    2003-05-01

    We examine a simple form of the evolution of evolvability-the evolution of mutation rates-in a simple model system. The system is composed of many agents moving, reproducing, and dying in a two-dimensional resource-limited world. We first examine various macroscopic quantities (three types of genetic diversity, a measure of population fitness, and a measure of evolutionary activity) as a function of fixed mutation rates. The results suggest that (i) mutation rate is a control parameter that governs a transition between two qualitatively different phases of evolution, an ordered phase characterized by punctuated equilibria of diversity, and a disordered phase of characterized by noisy fluctuations around an equilibrium diversity, and (ii) the ability of evolution to create adaptive structure is maximized when the mutation rate is just below the transition between these two phases of evolution. We hypothesize that this transition occurs when the demands for evolutionary memory and evolutionary novelty are typically balanced. We next allow the mutation rate itself to evolve, and we observe that evolving mutation rates adapt to values at this transition. Furthermore, the mutation rates adapt up (or down) as the evolutionary demands for novelty (or memory) increase, thus supporting the balance hypothesis. PMID:12689727

  14. Motor sequence learning and motor adaptation in primary cervical dystonia.

    PubMed

    Katschnig-Winter, Petra; Schwingenschuh, Petra; Davare, Marco; Sadnicka, Anna; Schmidt, Reinhold; Rothwell, John C; Bhatia, Kailash P; Edwards, Mark J

    2014-06-01

    Motor sequence learning and motor adaptation rely on overlapping circuits predominantly involving the basal ganglia and cerebellum. Given the importance of these brain regions to the pathophysiology of primary dystonia, and the previous finding of abnormal motor sequence learning in DYT1 gene carriers, we explored motor sequence learning and motor adaptation in patients with primary cervical dystonia. We recruited 12 patients with cervical dystonia and 11 healthy controls matched for age. Subjects used a joystick to move a cursor from a central starting point to radial targets as fast and accurately as possible. Using this device, we recorded baseline motor performance, motor sequence learning and a visuomotor adaptation task. Patients with cervical dystonia had a significantly higher peak velocity than controls. Baseline performance with random target presentation was otherwise normal. Patients and controls had similar levels of motor sequence learning and motor adaptation. Our patients had significantly higher peak velocity compared to controls, with similar movement times, implying a different performance strategy. The preservation of motor sequence learning in cervical dystonia patients contrasts with the previously observed deficit seen in patients with DYT1 gene mutations, supporting the hypothesis of differing pathophysiology in different forms of primary dystonia. Normal motor adaptation is an interesting finding. With our paradigm we did not find evidence that the previously documented cerebellar abnormalities in cervical dystonia have a behavioral correlate, and thus could be compensatory or reflect "contamination" rather than being directly pathological. PMID:24411324

  15. Individual Variability in Sensorimotor Network Functional Connectivity Correlates With the Rate of Early Visuomotor Adaptation

    NASA Technical Reports Server (NTRS)

    Cassady, K.; Ruitenberg, M.; Koppelmans, V.; DeDios, Y.; Gadd, N.; Wood, S.; Reuter-Lorenz, P.; Riascos, R.; Kofman, I.; Bloomberg, J.; Mulavara, A.; Seidler, R.

    2016-01-01

    Sensorimotor adaptation is a type of procedural motor learning that enables individuals to preserve accurate movements in the presence of external or internal perturbations. Adaptation learning can be divided into an early, more cognitively demanding stage, and a later, more automatic stage. In recent years, several investigations have identified significant associations between sensorimotor adaptation and brain structure and function. However, the question of whether individual variability in functional connectivity strength is predictive of sensorimotor adaptation performance has been largely unaddressed. In the present study, we investigate whether such variability in early sensorimotor adaptation is associated with individual differences in resting-state functional connectivity. We used resting state functional magnetic resonance imaging (rs-fMRI) to estimate functional connectivity strength using hypothesis-driven (seed-to-voxel) and hypothesis-free (voxel-to-voxel) approaches. For the hypothesis-driven analysis, we selected several regions of interest (ROIs) from sensorimotor and default mode networks of the brain. We then correlated these connectivity measures with the rate of early learning during a visuomotor adaptation task in 16 healthy participants. For this task, participants lay supine in the MRI scanner and moved an MRI-compatible dual axis joystick with their right hand to hit targets presented on a screen. Each movement was initiated from the central position on the display screen. Participants were instructed to move the cursor to the target as quickly as possible by moving the joystick, and to hold the cursor within the target until it disappeared. They were then instructed to release the joystick handle after target disappearance, allowing the cursor to re-center for the next trial. Performance was assessed by measuring direction error (DE), defined as the angle between the line from the start to the target position, and the line from the start

  16. Learning & retention in adaptive serious games.

    PubMed

    Bergeron, Bryan P

    2008-01-01

    Serious games are being actively explored as supplements to and, in some cases, replacement for traditional didactic lectures and computer-based instruction in venues ranging from medicine to the military. As part of an intelligent tutoring system (ITS) for nuclear event first responders, we designed and evaluated two serious games that were integrated with adaptive multimedia content. Results reveal that there was no decay in score six weeks following game-based training, which contrasts with results expected with traditional training. This study suggests that adaptive serious games may help integrate didactic content presented though conventional means. PMID:18391250

  17. Incorporating spike-rate adaptation into a rate code in mathematical and biological neurons.

    PubMed

    Ralston, Bridget N; Flagg, Lucas Q; Faggin, Eric; Birmingham, John T

    2016-06-01

    For a slowly varying stimulus, the simplest relationship between a neuron's input and output is a rate code, in which the spike rate is a unique function of the stimulus at that instant. In the case of spike-rate adaptation, there is no unique relationship between input and output, because the spike rate at any time depends both on the instantaneous stimulus and on prior spiking (the "history"). To improve the decoding of spike trains produced by neurons that show spike-rate adaptation, we developed a simple scheme that incorporates "history" into a rate code. We utilized this rate-history code successfully to decode spike trains produced by 1) mathematical models of a neuron in which the mechanism for adaptation (IAHP) is specified, and 2) the gastropyloric receptor (GPR2), a stretch-sensitive neuron in the stomatogastric nervous system of the crab Cancer borealis, that exhibits long-lasting adaptation of unknown origin. Moreover, when we modified the spike rate either mathematically in a model system or by applying neuromodulatory agents to the experimental system, we found that changes in the rate-history code could be related to the biophysical mechanisms responsible for altering the spiking. PMID:26888106

  18. Teacher Adaptation to Open Learning Spaces

    ERIC Educational Resources Information Center

    Alterator, Scott; Deed, Craig

    2013-01-01

    The "open classroom" emerged as a reaction against the industrial-era enclosed and authoritarian classroom. Although contemporary school architecture continues to incorporate and express ideas of openness, more research is needed about how teachers adapt to new and different built contexts. Our purpose is to identify teacher reaction to…

  19. Applying statistical process control to the adaptive rate control problem

    NASA Astrophysics Data System (ADS)

    Manohar, Nelson R.; Willebeek-LeMair, Marc H.; Prakash, Atul

    1997-12-01

    Due to the heterogeneity and shared resource nature of today's computer network environments, the end-to-end delivery of multimedia requires adaptive mechanisms to be effective. We present a framework for the adaptive streaming of heterogeneous media. We introduce the application of online statistical process control (SPC) to the problem of dynamic rate control. In SPC, the goal is to establish (and preserve) a state of statistical quality control (i.e., controlled variability around a target mean) over a process. We consider the end-to-end streaming of multimedia content over the internet as the process to be controlled. First, at each client, we measure process performance and apply statistical quality control (SQC) with respect to application-level requirements. Then, we guide an adaptive rate control (ARC) problem at the server based on the statistical significance of trends and departures on these measurements. We show this scheme facilitates handling of heterogeneous media. Last, because SPC is designed to monitor long-term process performance, we show that our online SPC scheme could be used to adapt to various degrees of long-term (network) variability (i.e., statistically significant process shifts as opposed to short-term random fluctuations). We develop several examples and analyze its statistical behavior and guarantees.

  20. Saccade Adaptation Abnormalities Implicate Dysfunction of Cerebellar-Dependent Learning Mechanisms in Autism Spectrum Disorders (ASD)

    PubMed Central

    Mosconi, Matthew W.; Luna, Beatriz; Kay-Stacey, Margaret; Nowinski, Caralynn V.; Rubin, Leah H.; Scudder, Charles; Minshew, Nancy; Sweeney, John A.

    2013-01-01

    The cerebellar vermis (lobules VI-VII) has been implicated in both postmortem and neuroimaging studies of autism spectrum disorders (ASD). This region maintains the consistent accuracy of saccadic eye movements and plays an especially important role in correcting systematic errors in saccade amplitudes such as those induced by adaptation paradigms. Saccade adaptation paradigms have not yet been used to study ASD. Fifty-six individuals with ASD and 53 age-matched healthy controls performed an intrasaccadic target displacement task known to elicit saccadic adaptation reflected in an amplitude reduction. The rate of amplitude reduction and the variability of saccade amplitude across 180 adaptation trials were examined. Individuals with ASD adapted slower than healthy controls, and demonstrated more variability of their saccade amplitudes across trials prior to, during and after adaptation. Thirty percent of individuals with ASD did not significantly adapt, whereas only 6% of healthy controls failed to adapt. Adaptation rate and amplitude variability impairments were related to performance on a traditional neuropsychological test of manual motor control. The profile of impaired adaptation and reduced consistency of saccade accuracy indicates reduced neural plasticity within learning circuits of the oculomotor vermis that impedes the fine-tuning of motor behavior in ASD. These data provide functional evidence of abnormality in the cerebellar vermis that converges with previous reports of cellular and gross anatomic dysmorphology of this brain region in ASD. PMID:23704934

  1. An adaptive learning control system for aircraft

    NASA Technical Reports Server (NTRS)

    Mekel, R.; Nachmias, S.

    1978-01-01

    A learning control system and its utilization as a flight control system for F-8 Digital Fly-By-Wire (DFBW) research aircraft is studied. The system has the ability to adjust a gain schedule to account for changing plant characteristics and to improve its performance and the plant's performance in the course of its own operation. Three subsystems are detailed: (1) the information acquisition subsystem which identifies the plant's parameters at a given operating condition; (2) the learning algorithm subsystem which relates the identified parameters to predetermined analytical expressions describing the behavior of the parameters over a range of operating conditions; and (3) the memory and control process subsystem which consists of the collection of updated coefficients (memory) and the derived control laws. Simulation experiments indicate that the learning control system is effective in compensating for parameter variations caused by changes in flight conditions.

  2. Complex ordering in spin networks: Critical role of adaptation rate for dynamically evolving interactions

    NASA Astrophysics Data System (ADS)

    Pathak, Anand; Sinha, Sitabhra

    2015-09-01

    Many complex systems can be represented as networks of dynamical elements whose states evolve in response to interactions with neighboring elements, noise and external stimuli. The collective behavior of such systems can exhibit remarkable ordering phenomena such as chimera order corresponding to coexistence of ordered and disordered regions. Often, the interactions in such systems can also evolve over time responding to changes in the dynamical states of the elements. Link adaptation inspired by Hebbian learning, the dominant paradigm for neuronal plasticity, has been earlier shown to result in structural balance by removing any initial frustration in a system that arises through conflicting interactions. Here we show that the rate of the adaptive dynamics for the interactions is crucial in deciding the emergence of different ordering behavior (including chimera) and frustration in networks of Ising spins. In particular, we observe that small changes in the link adaptation rate about a critical value result in the system exhibiting radically different energy landscapes, viz., smooth landscape corresponding to balanced systems seen for fast learning, and rugged landscapes corresponding to frustrated systems seen for slow learning.

  3. Auditory-Perceptual Learning Improves Speech Motor Adaptation in Children

    PubMed Central

    Shiller, Douglas M.; Rochon, Marie-Lyne

    2015-01-01

    Auditory feedback plays an important role in children’s speech development by providing the child with information about speech outcomes that is used to learn and fine-tune speech motor plans. The use of auditory feedback in speech motor learning has been extensively studied in adults by examining oral motor responses to manipulations of auditory feedback during speech production. Children are also capable of adapting speech motor patterns to perceived changes in auditory feedback, however it is not known whether their capacity for motor learning is limited by immature auditory-perceptual abilities. Here, the link between speech perceptual ability and the capacity for motor learning was explored in two groups of 5–7-year-old children who underwent a period of auditory perceptual training followed by tests of speech motor adaptation to altered auditory feedback. One group received perceptual training on a speech acoustic property relevant to the motor task while a control group received perceptual training on an irrelevant speech contrast. Learned perceptual improvements led to an enhancement in speech motor adaptation (proportional to the perceptual change) only for the experimental group. The results indicate that children’s ability to perceive relevant speech acoustic properties has a direct influence on their capacity for sensory-based speech motor adaptation. PMID:24842067

  4. Modelling Adaptive Learning Behaviours for Consensus Formation in Human Societies.

    PubMed

    Yu, Chao; Tan, Guozhen; Lv, Hongtao; Wang, Zhen; Meng, Jun; Hao, Jianye; Ren, Fenghui

    2016-01-01

    Learning is an important capability of humans and plays a vital role in human society for forming beliefs and opinions. In this paper, we investigate how learning affects the dynamics of opinion formation in social networks. A novel learning model is proposed, in which agents can dynamically adapt their learning behaviours in order to facilitate the formation of consensus among them, and thus establish a consistent social norm in the whole population more efficiently. In the model, agents adapt their opinions through trail-and-error interactions with others. By exploiting historical interaction experience, a guiding opinion, which is considered to be the most successful opinion in the neighbourhood, can be generated based on the principle of evolutionary game theory. Then, depending on the consistency between its own opinion and the guiding opinion, a focal agent can realize whether its opinion complies with the social norm (i.e., the majority opinion that has been adopted) in the population, and adapt its behaviours accordingly. The highlight of the model lies in that it captures the essential features of people's adaptive learning behaviours during the evolution and formation of opinions. Experimental results show that the proposed model can facilitate the formation of consensus among agents, and some critical factors such as size of opinion space and network topology can have significant influences on opinion dynamics. PMID:27282089

  5. Modelling Adaptive Learning Behaviours for Consensus Formation in Human Societies

    PubMed Central

    Yu, Chao; Tan, Guozhen; Lv, Hongtao; Wang, Zhen; Meng, Jun; Hao, Jianye; Ren, Fenghui

    2016-01-01

    Learning is an important capability of humans and plays a vital role in human society for forming beliefs and opinions. In this paper, we investigate how learning affects the dynamics of opinion formation in social networks. A novel learning model is proposed, in which agents can dynamically adapt their learning behaviours in order to facilitate the formation of consensus among them, and thus establish a consistent social norm in the whole population more efficiently. In the model, agents adapt their opinions through trail-and-error interactions with others. By exploiting historical interaction experience, a guiding opinion, which is considered to be the most successful opinion in the neighbourhood, can be generated based on the principle of evolutionary game theory. Then, depending on the consistency between its own opinion and the guiding opinion, a focal agent can realize whether its opinion complies with the social norm (i.e., the majority opinion that has been adopted) in the population, and adapt its behaviours accordingly. The highlight of the model lies in that it captures the essential features of people’s adaptive learning behaviours during the evolution and formation of opinions. Experimental results show that the proposed model can facilitate the formation of consensus among agents, and some critical factors such as size of opinion space and network topology can have significant influences on opinion dynamics. PMID:27282089

  6. Modelling Adaptive Learning Behaviours for Consensus Formation in Human Societies

    NASA Astrophysics Data System (ADS)

    Yu, Chao; Tan, Guozhen; Lv, Hongtao; Wang, Zhen; Meng, Jun; Hao, Jianye; Ren, Fenghui

    2016-06-01

    Learning is an important capability of humans and plays a vital role in human society for forming beliefs and opinions. In this paper, we investigate how learning affects the dynamics of opinion formation in social networks. A novel learning model is proposed, in which agents can dynamically adapt their learning behaviours in order to facilitate the formation of consensus among them, and thus establish a consistent social norm in the whole population more efficiently. In the model, agents adapt their opinions through trail-and-error interactions with others. By exploiting historical interaction experience, a guiding opinion, which is considered to be the most successful opinion in the neighbourhood, can be generated based on the principle of evolutionary game theory. Then, depending on the consistency between its own opinion and the guiding opinion, a focal agent can realize whether its opinion complies with the social norm (i.e., the majority opinion that has been adopted) in the population, and adapt its behaviours accordingly. The highlight of the model lies in that it captures the essential features of people’s adaptive learning behaviours during the evolution and formation of opinions. Experimental results show that the proposed model can facilitate the formation of consensus among agents, and some critical factors such as size of opinion space and network topology can have significant influences on opinion dynamics.

  7. Women, Subjectivities and Learning to Be Adaptable

    ERIC Educational Resources Information Center

    Cavanagh, Jillian

    2010-01-01

    Purpose: The purpose of this paper is to advance understandings of the subjectivities that influence auxiliary-level female employees' work and learning experiences in general legal practice. Moreover, the aim is to maximise the opportunities for these workers. Design/methodology/approach: A broader critical ethnographic study investigated…

  8. Professional Learning to Nurture Adaptive Teachers

    ERIC Educational Resources Information Center

    Lee, Kar-Tin

    2013-01-01

    This paper presents the findings of a study conducted in China to identify the potential benefits of incorporating robotics as an educational tool for 100 primary and 320 secondary school teachers of general technology. The Professional Learning Program was conducted from 2010-2013 in China. The major focus of the program was on the development…

  9. Dynamic adaptive learning for decision-making supporting systems

    NASA Astrophysics Data System (ADS)

    He, Haibo; Cao, Yuan; Chen, Sheng; Desai, Sachi; Hohil, Myron E.

    2008-03-01

    This paper proposes a novel adaptive learning method for data mining in support of decision-making systems. Due to the inherent characteristics of information ambiguity/uncertainty, high dimensionality and noisy in many homeland security and defense applications, such as surveillances, monitoring, net-centric battlefield, and others, it is critical to develop autonomous learning methods to efficiently learn useful information from raw data to help the decision making process. The proposed method is based on a dynamic learning principle in the feature spaces. Generally speaking, conventional approaches of learning from high dimensional data sets include various feature extraction (principal component analysis, wavelet transform, and others) and feature selection (embedded approach, wrapper approach, filter approach, and others) methods. However, very limited understandings of adaptive learning from different feature spaces have been achieved. We propose an integrative approach that takes advantages of feature selection and hypothesis ensemble techniques to achieve our goal. Based on the training data distributions, a feature score function is used to provide a measurement of the importance of different features for learning purpose. Then multiple hypotheses are iteratively developed in different feature spaces according to their learning capabilities. Unlike the pre-set iteration steps in many of the existing ensemble learning approaches, such as adaptive boosting (AdaBoost) method, the iterative learning process will automatically stop when the intelligent system can not provide a better understanding than a random guess in that particular subset of feature spaces. Finally, a voting algorithm is used to combine all the decisions from different hypotheses to provide the final prediction results. Simulation analyses of the proposed method on classification of different US military aircraft databases show the effectiveness of this method.

  10. Resident Ratings of Communication Skills Using the Kalamazoo Adapted Checklist

    PubMed Central

    Porcerelli, John H.; Brennan, Simone; Carty, Jennifer; Ziadni, Maisa; Markova, Tsveti

    2015-01-01

    Background The Kalamazoo Essential Elements Communication Checklist–Adapted (KEECC-A) is a well-regarded instrument for evaluating communication and interpersonal skills. To date, little research has been conducted that assesses the accuracy of resident self-ratings of their communication skills. Objective To assess whether residents can accurately self-rate communication skills, using the KEECC-A, during an objective structured clinical examination (OSCE). Methods A group of 104 residents from 8 specialties completed a multistation OSCE as part of an institutional communication skills curriculum conducted at a single institution. Standardized patients (SPs) and observers were trained in rating communication skills using the KEECC-A. Standardized patient ratings and resident self-ratings were completed immediately following each OSCE encounter, and trained observers rated archived videotapes of the encounters. Results Resident self-ratings and SP ratings using the KEECC-A were significantly correlated (r104 = 0.238, P = .02), as were resident self-ratings and observer ratings (r104 = 0.284, P = .004). The correlation between the SP ratings and observer (r104 = 0.378, P = .001) ratings were larger in magnitude, but not significantly different (P > .05) from resident/SP or resident/observer correlations. Conclusions The results suggest that residents, with a modicum of training using the KEECC-A, can accurately rate their own communication and interpersonal skills during an OSCE. Using trained observers to rate resident communication skills provides a unique opportunity for evaluating SP and resident self-ratings. Our findings also lend further support for the reliability and validity of the KEECC-A. PMID:26457156

  11. Beyond adaptive-critic creative learning for intelligent mobile robots

    NASA Astrophysics Data System (ADS)

    Liao, Xiaoqun; Cao, Ming; Hall, Ernest L.

    2001-10-01

    Intelligent industrial and mobile robots may be considered proven technology in structured environments. Teach programming and supervised learning methods permit solutions to a variety of applications. However, we believe that to extend the operation of these machines to more unstructured environments requires a new learning method. Both unsupervised learning and reinforcement learning are potential candidates for these new tasks. The adaptive critic method has been shown to provide useful approximations or even optimal control policies to non-linear systems. The purpose of this paper is to explore the use of new learning methods that goes beyond the adaptive critic method for unstructured environments. The adaptive critic is a form of reinforcement learning. A critic element provides only high level grading corrections to a cognition module that controls the action module. In the proposed system the critic's grades are modeled and forecasted, so that an anticipated set of sub-grades are available to the cognition model. The forecasting grades are interpolated and are available on the time scale needed by the action model. The success of the system is highly dependent on the accuracy of the forecasted grades and adaptability of the action module. Examples from the guidance of a mobile robot are provided to illustrate the method for simple line following and for the more complex navigation and control in an unstructured environment. The theory presented that is beyond the adaptive critic may be called creative theory. Creative theory is a form of learning that models the highest level of human learning - imagination. The application of the creative theory appears to not only be to mobile robots but also to many other forms of human endeavor such as educational learning and business forecasting. Reinforcement learning such as the adaptive critic may be applied to known problems to aid in the discovery of their solutions. The significance of creative theory is that it

  12. Delayed feedback during sensorimotor learning selectively disrupts adaptation but not strategy use.

    PubMed

    Brudner, Samuel N; Kethidi, Nikhit; Graeupner, Damaris; Ivry, Richard B; Taylor, Jordan A

    2016-03-01

    In sensorimotor adaptation tasks, feedback delays can cause significant reductions in the rate of learning. This constraint is puzzling given that many skilled behaviors have inherently long delays (e.g., hitting a golf ball). One difference in these task domains is that adaptation is primarily driven by error-based feedback, whereas skilled performance may also rely to a large extent on outcome-based feedback. This difference suggests that error- and outcome-based feedback may engage different learning processes, and these processes may be associated with different temporal constraints. We tested this hypothesis in a visuomotor adaptation task. Error feedback was indicated by the terminal position of a cursor, while outcome feedback was indicated by points. In separate groups of participants, the two feedback signals were presented immediately at the end of the movement, after a delay, or with just the error feedback delayed. Participants learned to counter the rotation in a similar manner regardless of feedback delay. However, the aftereffect, an indicator of implicit motor adaptation, was attenuated with delayed error feedback, consistent with the hypothesis that a different learning process supports performance under delay. We tested this by employing a task that dissociates the contribution of explicit strategies and implicit adaptation. We find that explicit aiming strategies contribute to the majority of the learning curve, regardless of delay; however, implicit learning, measured over the course of learning and by aftereffects, was significantly attenuated with delayed error-based feedback. These experiments offer new insight into the temporal constraints associated with different motor learning processes. PMID:26792878

  13. Learning about colonization when managing metapopulations under an adaptive management framework.

    PubMed

    Southwell, Darren M; Hauser, Cindy E; McCarthy, Michael A

    2016-01-01

    Adaptive management is a framework for resolving key uncertainties while managing complex ecological systems. Its use has been prominent in fisheries research and wildlife harvesting; however, its application to other areas of environmental management remains somewhat limited. Indeed, adaptive management has not been used to guide and inform metapopulation restoration, despite considerable uncertainty surrounding such actions. In this study, we determined how best to learn about the colonization rate when managing metapopulations under an adaptive management framework. We developed a mainland-island metapopulation model based on the threatened bay checkerspot butterfly (Euphydryas editha bayensis) and assessed three management approaches: adding new patches, adding area to existing patches, and doing nothing. Using stochastic dynamic programming, we found the optimal passive and active adaptive management strategies by monitoring colonization of vacant patches. Under a passive adaptive strategy, increasing patch area was best when the expected colonization rate was below a threshold; otherwise, adding new patches was optimal. Under an active adaptive strategy, it was best to add patches only when we were reasonably confident that the colonization rate was high. This research provides a framework for managing mainland-island metapopulations in the face of uncertainty while learning about the dynamics of these complex systems. PMID:27039525

  14. Overseas Students' Intercultural Adaptation as Intercultural Learning: A Transformative Framework

    ERIC Educational Resources Information Center

    Gill, Scherto

    2007-01-01

    In the context of increasing recruitment of overseas students by British higher education (HE) institutions, there has been a growing need to understand the process of students' intercultural adaptation and the approaches that can be adopted by British academic institutions in order to facilitate and support these students' learning experience in…

  15. Adaptive Knowledge Management of Project-Based Learning

    ERIC Educational Resources Information Center

    Tilchin, Oleg; Kittany, Mohamed

    2016-01-01

    The goal of an approach to Adaptive Knowledge Management (AKM) of project-based learning (PBL) is to intensify subject study through guiding, inducing, and facilitating development knowledge, accountability skills, and collaborative skills of students. Knowledge development is attained by knowledge acquisition, knowledge sharing, and knowledge…

  16. Managing Adaptive Challenges: Learning with Principals in Bermuda and Florida

    ERIC Educational Resources Information Center

    Drago-Severson, Eleanor; Maslin-Ostrowski, Patricia; Hoffman, Alexander M.; Barbaro, Justin

    2014-01-01

    We interviewed eight principals from Bermuda and Florida about how they identify and manage their most pressing challenges. Their challenges are composed of both adaptive and technical work, requiring leaders to learn to diagnose and manage them. Challenges focused on change and were traced to accountability contexts, yet accountability was not…

  17. Adaptivity and Autonomy Development in a Learning Personalization Process

    ERIC Educational Resources Information Center

    Verpoorten, D.

    2009-01-01

    Within the iClass (Integrated Project 507922) and Enhanced Learning Experience and Knowledge Transfer (ELEKTRA; Specific Targeted Research or Innovation Project 027986) European projects, the author was requested to harness his pedagogical knowledge to the production of educational adaptive systems. The article identifies and documents the…

  18. ELCAT: An E-Learning Content Adaptation Toolkit

    ERIC Educational Resources Information Center

    Clements, Iain; Xu, Zhijie

    2005-01-01

    Purpose: The purpose of this paper is to present an e-learning content adaptation toolkit--ELCAT--that helps to achieve the objectives of the KTP project No. 3509. Design/methodology/approach: The chosen methodology is absolutely practical. The tool was put into motion and results were observed as university and the collaborating company members…

  19. Mispronunciation Detection for Language Learning and Speech Recognition Adaptation

    ERIC Educational Resources Information Center

    Ge, Zhenhao

    2013-01-01

    The areas of "mispronunciation detection" (or "accent detection" more specifically) within the speech recognition community are receiving increased attention now. Two application areas, namely language learning and speech recognition adaptation, are largely driving this research interest and are the focal points of this work.…

  20. Adaptive Instruction and Second Language Learning: The Dilemma.

    ERIC Educational Resources Information Center

    Tumposky, Nancy

    Teachers continue to address the question of how to adapt instruction to recognize the existence of different learning styles yet provide quality education for all students. Traditionally, instructional models available to teachers and curriculum planners ranged along a continuum from lockstep to individualization. This definition has led to…

  1. Adaptive learning algorithms for vibration energy harvesting

    NASA Astrophysics Data System (ADS)

    Ward, John K.; Behrens, Sam

    2008-06-01

    By scavenging energy from their local environment, portable electronic devices such as MEMS devices, mobile phones, radios and wireless sensors can achieve greater run times with potentially lower weight. Vibration energy harvesting is one such approach where energy from parasitic vibrations can be converted into electrical energy through the use of piezoelectric and electromagnetic transducers. Parasitic vibrations come from a range of sources such as human movement, wind, seismic forces and traffic. Existing approaches to vibration energy harvesting typically utilize a rectifier circuit, which is tuned to the resonant frequency of the harvesting structure and the dominant frequency of vibration. We have developed a novel approach to vibration energy harvesting, including adaptation to non-periodic vibrations so as to extract the maximum amount of vibration energy available. Experimental results of an experimental apparatus using an off-the-shelf transducer (i.e. speaker coil) show mechanical vibration to electrical energy conversion efficiencies of 27-34%.

  2. Adaptation of abbreviated mathematics anxiety rating scale for engineering students

    NASA Astrophysics Data System (ADS)

    Nordin, Sayed Kushairi Sayed; Samat, Khairul Fadzli; Sultan, Al Amin Mohamed; Halim, Bushra Abdul; Ismail, Siti Fatimah; Mafazi, Nurul Wirdah

    2015-05-01

    Mathematics is an essential and fundamental tool used by engineers to analyse and solve problems in their field. Due to this, most engineering education programs involve a concentration of study in mathematics courses whereby engineering students have to take mathematics courses such as numerical methods, differential equations and calculus in the first two years and continue to do so until the completion of the sequence. However, the students struggled and had difficulties in learning courses that require mathematical abilities. Hence, this study presents the factors that caused mathematics anxiety among engineering students using Abbreviated Mathematics Anxiety Rating Scale (AMARS) through 95 students of Universiti Teknikal Malaysia Melaka (UTeM). From 25 items in AMARS, principal component analysis (PCA) suggested that there are four mathematics anxiety factors, namely experiences of learning mathematics, cognitive skills, mathematics evaluation anxiety and students' perception on mathematics. Minitab 16 software was used to analyse the nonparametric statistics. Kruskal-Wallis Test indicated that there is a significant difference in the experience of learning mathematics and mathematics evaluation anxiety among races. The Chi-Square Test of Independence revealed that the experience of learning mathematics, cognitive skills and mathematics evaluation anxiety depend on the results of their SPM additional mathematics. Based on this study, it is recommended to address the anxiety problems among engineering students at the early stage of studying in the university. Thus, lecturers should play their part by ensuring a positive classroom environment which encourages students to study mathematics without fear.

  3. Distributed adaptive simulation through standards-based integration of simulators and adaptive learning systems.

    PubMed

    Bergeron, Bryan; Cline, Andrew; Shipley, Jaime

    2012-01-01

    We have developed a distributed, standards-based architecture that enables simulation and simulator designers to leverage adaptive learning systems. Our approach, which incorporates an electronic competency record, open source LMS, and open source microcontroller hardware, is a low-cost, pragmatic option to integrating simulators with traditional courseware. PMID:22356955

  4. Adaptation to Low Temperature Exposure Increases Metabolic Rates Independently of Growth Rates.

    PubMed

    Williams, Caroline M; Szejner-Sigal, Andre; Morgan, Theodore J; Edison, Arthur S; Allison, David B; Hahn, Daniel A

    2016-07-01

    Metabolic cold adaptation is a pattern where ectotherms from cold, high-latitude, or -altitude habitats have higher metabolic rates than ectotherms from warmer habitats. When found, metabolic cold adaptation is often attributed to countergradient selection, wherein short, cool growing seasons select for a compensatory increase in growth rates and development times of ectotherms. Yet, ectotherms in high-latitude and -altitude environments face many challenges in addition to thermal and time constraints on lifecycles. In addition to short, cool growing seasons, high-latitude and - altitude environments are characterized by regular exposure to extreme low temperatures, which cause ectotherms to enter a transient state of immobility termed chill coma. The ability to resume activity quickly after chill coma increases with latitude and altitude in patterns consistent with local adaptation to cold conditions. We show that artificial selection for fast and slow chill coma recovery among lines of the fly Drosophila melanogaster also affects rates of respiratory metabolism. Cold-hardy fly lines, with fast recovery from chill coma, had higher respiratory metabolic rates than control lines, with cold-susceptible slow-recovering lines having the lowest metabolic rates. Fast chill coma recovery was also associated with higher respiratory metabolism in a set of lines derived from a natural population. Although their metabolic rates were higher than control lines, fast-recovering cold-hardy lines did not have faster growth rates or development times than control lines. This suggests that raised metabolic rates in high-latitude and -altitude species may be driven by adaptation to extreme low temperatures, illustrating the importance of moving "Beyond the Mean". PMID:27103615

  5. Selecting Learning Tasks: Effects of Adaptation and Shared Control on Learning Efficiency and Task Involvement

    ERIC Educational Resources Information Center

    Corbalan, Gemma; Kester, Liesbeth; van Merrienboer, Jeroen J. G.

    2008-01-01

    Complex skill acquisition by performing authentic learning tasks is constrained by limited working memory capacity [Baddeley, A. D. (1992). Working memory. "Science, 255", 556-559]. To prevent cognitive overload, task difficulty and support of each newly selected learning task can be adapted to the learner's competence level and perceived task…

  6. Peers as Resources for Learning: A Situated Learning Approach to Adapted Physical Activity in Rehabilitation

    ERIC Educational Resources Information Center

    Standal, Oyvind F.; Jespersen, Ejgil

    2008-01-01

    The purpose of this study was to investigate the learning that takes place when people with disabilities interact in a rehabilitation context. Data were generated through in-depth interviews and close observations in a 2 one-half week-long rehabilitation program, where the participants learned both wheelchair skills and adapted physical…

  7. Adaptive Web-Assisted Learning System for Students with Specific Learning Disabilities: A Needs Analysis Study

    ERIC Educational Resources Information Center

    Polat, Elif; Adiguzel, Tufan; Akgun, Ozcan Erkan

    2012-01-01

    Because there is, currently, no education system for primary school students in grades 1-3 who have specific learning disabilities in Turkey and because such students do not receive sufficient support from face-to-face counseling, a needs analysis was conducted in order to prepare an adaptive, web-assisted learning system according to variables…

  8. Learning, menopause, and the human adaptive complex.

    PubMed

    Kaplan, Hillard; Gurven, Michael; Winking, Jeffrey; Hooper, Paul L; Stieglitz, Jonathan

    2010-08-01

    This paper presents a new two-sex learning- and skills-based theory for the evolution of human menopause. The theory proposes that the role of knowledge, skill acquisition, and transfers in determining economic productivity and resource distribution is the distinctive feature of the traditional human ecology that is responsible for the evolution of menopause. The theory also proposes that male reproductive cessation and post-reproductive investment in descendants is a fundamental characteristic of humans living in traditional foraging and simple horticultural economies. We present evidence relevant to the theory. The data show that whereas reproductive decline is linked to increasing risks of mortality in chimpanzees, human reproductive senescence precedes somatic senescence. Moreover under traditional conditions, most human males undergo reproductive cessation at the same time as their wives. We then present evidence that after ceasing to reproduce, both men and women provide net economic transfers to children and grandchildren. Given this pattern of economic productivity, delays in menopause would produce net economic deficits within families. PMID:20738273

  9. Building Adaptive Game-Based Learning Resources: The Integration of IMS Learning Design and

    ERIC Educational Resources Information Center

    Burgos, Daniel; Moreno-Ger, Pablo; Sierra, Jose Luis; Fernandez-Manjon, Baltasar; Specht, Marcus; Koper, Rob

    2008-01-01

    IMS Learning Design (IMS-LD) is a specification to create units of learning (UoLs), which express a certain pedagogical model or strategy (e.g., adaptive learning with games). However, the authoring process of a UoL remains difficult because of the lack of high-level authoring tools for IMS-LD, even more so when the focus is on specific topics,…

  10. Adaptive source rate control for wireless video conferencing

    NASA Astrophysics Data System (ADS)

    Liu, Hang; El Zarki, Magda

    1997-12-01

    Hybrid ARQ schemes can yield much better throughput and reliability than static FEC schemes for the transmission of data over time-varying wireless channels. However these schemes result in higher delay. They adapt to the varying channel conditions by retransmitting erroneous packets, this results in variable effective data rates for current PCS networks because the channel bandwidth is constant. Hybrid ARQ schemes are currently being proposed as the error control schemes for real-time video transmission. The standardization process is on-going in ITU, MPEG-4 and wireless ATM forum. The important issue is how to ensure low delay while taking advantage of the high throughput and reliability that these schemes provide for. In this paper we propose an adaptive source rate control (ASRC) protocol which can work together with the hybrid ARQ error control schemes to achieve efficient transmission of real-time video with low delay and high reliability. The ASRC scheme adjusts the source rate based on the channel conditions, the transport buffer occupancy and the delay constraints. It optimizes the video quality by dynamically changing both the number of the forced update (intracoded) macroblocks and the quantization scale used in a frame. The number of the forced update macroblocks used in a frame is first adjusted according to the allocated source rate. This reduces the fluctuation of the quantization scale with the change in the channel conditions during encoding so that the uniformity of the video quality is improved. The simulation results show that the proposed ASRC protocol performs very well for both slow fading and fast fading channels.

  11. Learning to speciate: The biased learning of mate preferences promotes adaptive radiation.

    PubMed

    Gilman, R Tucker; Kozak, Genevieve M

    2015-11-01

    Bursts of rapid repeated speciation called adaptive radiations have generated much of Earth's biodiversity and fascinated biologists since Darwin, but we still do not know why some lineages radiate and others do not. Understanding what causes assortative mating to evolve rapidly and repeatedly in the same lineage is key to understanding adaptive radiation. Many species that have undergone adaptive radiations exhibit mate preference learning, where individuals acquire mate preferences by observing the phenotypes of other members of their populations. Mate preference learning can be biased if individuals also learn phenotypes to avoid in mates, and shift their preferences away from these avoided phenotypes. We used individual-based computational simulations to study whether biased and unbiased mate preference learning promotes ecological speciation and adaptive radiation. We found that ecological speciation can be rapid and repeated when mate preferences are biased, but is inhibited when mate preferences are learned without bias. Our results suggest that biased mate preference learning may play an important role in generating animal biodiversity through adaptive radiation. PMID:26459795

  12. Learners' Perceptions and Illusions of Adaptivity in Computer-Based Learning Environments

    ERIC Educational Resources Information Center

    Vandewaetere, Mieke; Vandercruysse, Sylke; Clarebout, Geraldine

    2012-01-01

    Research on computer-based adaptive learning environments has shown exemplary growth. Although the mechanisms of effective adaptive instruction are unraveled systematically, little is known about the relative effect of learners' perceptions of adaptivity in adaptive learning environments. As previous research has demonstrated that the learners'…

  13. Learning from adaptive neural dynamic surface control of strict-feedback systems.

    PubMed

    Wang, Min; Wang, Cong

    2015-06-01

    Learning plays an essential role in autonomous control systems. However, how to achieve learning in the nonstationary environment for nonlinear systems is a challenging problem. In this paper, we present learning method for a class of n th-order strict-feedback systems by adaptive dynamic surface control (DSC) technology, which achieves the human-like ability of learning by doing and doing with learned knowledge. To achieve the learning, this paper first proposes stable adaptive DSC with auxiliary first-order filters, which ensures the boundedness of all the signals in the closed-loop system and the convergence of tracking errors in a finite time. With the help of DSC, the derivative of the filter output variable is used as the neural network (NN) input instead of traditional intermediate variables. As a result, the proposed adaptive DSC method reduces greatly the dimension of NN inputs, especially for high-order systems. After the stable DSC design, we decompose the stable closed-loop system into a series of linear time-varying perturbed subsystems. Using a recursive design, the recurrent property of NN input variables is easily verified since the complexity is overcome using DSC. Subsequently, the partial persistent excitation condition of the radial basis function NN is satisfied. By combining a state transformation, accurate approximations of the closed-loop system dynamics are recursively achieved in a local region along recurrent orbits. Then, the learning control method using the learned knowledge is proposed to achieve the closed-loop stability and the improved control performance. Simulation studies are performed to demonstrate the proposed scheme can not only reuse the learned knowledge to achieve the better control performance with the faster tracking convergence rate and the smaller tracking error but also greatly alleviate the computational burden because of reducing the number and complexity of NN input variables. PMID:25069127

  14. Interacting Adaptive Processes with Different Timescales Underlie Short-Term Motor Learning

    PubMed Central

    Ghazizadeh, Ali; Shadmehr, Reza

    2006-01-01

    Multiple processes may contribute to motor skill acquisition, but it is thought that many of these processes require sleep or the passage of long periods of time ranging from several hours to many days or weeks. Here we demonstrate that within a timescale of minutes, two distinct fast-acting processes drive motor adaptation. One process responds weakly to error but retains information well, whereas the other responds strongly but has poor retention. This two-state learning system makes the surprising prediction of spontaneous recovery (or adaptation rebound) if error feedback is clamped at zero following an adaptation-extinction training episode. We used a novel paradigm to experimentally confirm this prediction in human motor learning of reaching, and we show that the interaction between the learning processes in this simple two-state system provides a unifying explanation for several different, apparently unrelated, phenomena in motor adaptation including savings, anterograde interference, spontaneous recovery, and rapid unlearning. Our results suggest that motor adaptation depends on at least two distinct neural systems that have different sensitivity to error and retain information at different rates. PMID:16700627

  15. Designing a Semantic Bliki System to Support Different Types of Knowledge and Adaptive Learning

    ERIC Educational Resources Information Center

    Huang, Shiu-Li; Yang, Chia-Wei

    2009-01-01

    Though blogs and wikis have been used to support knowledge management and e-learning, existing blogs and wikis cannot support different types of knowledge and adaptive learning. A case in point, types of knowledge vary greatly in category and viewpoints. Additionally, adaptive learning is crucial to improving one's learning performance. This study…

  16. Adaptation Criteria for the Personalised Delivery of Learning Materials: A Multi-Stage Empirical Investigation

    ERIC Educational Resources Information Center

    Thalmann, Stefan

    2014-01-01

    Personalised e-Learning represents a major step-change from the one-size-fits-all approach of traditional learning platforms to a more customised and interactive provision of learning materials. Adaptive learning can support the learning process by tailoring learning materials to individual needs. However, this requires the initial preparation of…

  17. Effects of dopaminergic therapy on locomotor adaptation and adaptive learning in persons with Parkinson's disease

    PubMed Central

    Roemmich, Ryan T.; Hack, Nawaz; Akbar, Umer; Hass, Chris J.

    2014-01-01

    Persons with Parkinson’s disease (PD) are characterized by multifactorial gait deficits, though the factors which influence the abilities of persons with PD to adapt and store new gait patterns are unclear. The purpose of this study was to investigate the effects of dopaminergic therapy on the abilities of persons with PD to adapt and store gait parameters during split-belt treadmill (SBT) walking. Ten participants with idiopathic PD who were being treated with stable doses of orally-administered dopaminergic therapy participated. All participants performed two randomized testing sessions on separate days: once while optimally-medicated (ON meds) and once after 12-hour withdrawal from dopaminergic medication (OFF meds). During each session, locomotor adaptation was investigated as the participants walked on a SBT for ten minutes while the belts moved at a 2:1 speed ratio. We assessed locomotor adaptive learning by quantifying: 1) aftereffects during de-adaptation (once the belts returned to tied speeds immediately following SBT walking) and 2) savings during re-adaptation (as the participants repeated the same SBT walking task after washout of aftereffects following the initial SBT task). The withholding of dopaminergic medication diminished step length aftereffects significantly during de-adaptation. However, both locomotor adaptation and savings were unaffected by levodopa. These findings suggest that dopaminergic pathways influence aftereffect storage but do not influence locomotor adaptation or savings within a single session of SBT walking. It appears important that persons with PD should be optimally-medicated if walking on the SBT as gait rehabilitation. PMID:24698798

  18. Effects of dopaminergic therapy on locomotor adaptation and adaptive learning in persons with Parkinson's disease.

    PubMed

    Roemmich, Ryan T; Hack, Nawaz; Akbar, Umer; Hass, Chris J

    2014-07-15

    Persons with Parkinson's disease (PD) are characterized by multifactorial gait deficits, though the factors which influence the abilities of persons with PD to adapt and store new gait patterns are unclear. The purpose of this study was to investigate the effects of dopaminergic therapy on the abilities of persons with PD to adapt and store gait parameters during split-belt treadmill (SBT) walking. Ten participants with idiopathic PD who were being treated with stable doses of orally-administered dopaminergic therapy participated. All participants performed two randomized testing sessions on separate days: once while optimally-medicated (ON meds) and once after 12-h withdrawal from dopaminergic medication (OFF meds). During each session, locomotor adaptation was investigated as the participants walked on a SBT for 10 min while the belts moved at a 2:1 speed ratio. We assessed locomotor adaptive learning by quantifying: (1) aftereffects during de-adaptation (once the belts returned to tied speeds immediately following SBT walking) and (2) savings during re-adaptation (as the participants repeated the same SBT walking task after washout of aftereffects following the initial SBT task). The withholding of dopaminergic medication diminished step length aftereffects significantly during de-adaptation. However, both locomotor adaptation and savings were unaffected by levodopa. These findings suggest that dopaminergic pathways influence aftereffect storage but do not influence locomotor adaptation or savings within a single session of SBT walking. It appears important that persons with PD should be optimally-medicated if walking on the SBT as gait rehabilitation. PMID:24698798

  19. Supervised Learning in Adaptive DNA Strand Displacement Networks.

    PubMed

    Lakin, Matthew R; Stefanovic, Darko

    2016-08-19

    The development of engineered biochemical circuits that exhibit adaptive behavior is a key goal of synthetic biology and molecular computing. Such circuits could be used for long-term monitoring and control of biochemical systems, for instance, to prevent disease or to enable the development of artificial life. In this article, we present a framework for developing adaptive molecular circuits using buffered DNA strand displacement networks, which extend existing DNA strand displacement circuit architectures to enable straightforward storage and modification of behavioral parameters. As a proof of concept, we use this framework to design and simulate a DNA circuit for supervised learning of a class of linear functions by stochastic gradient descent. This work highlights the potential of buffered DNA strand displacement as a powerful circuit architecture for implementing adaptive molecular systems. PMID:27111037

  20. Accessibility and Adaptability of Learning Objects: Responding to Metadata, Learning Patterns and Profiles of Needs and Preferences

    ERIC Educational Resources Information Center

    Green, Steve; Jones, Ray; Pearson, Elaine; Gkatzidou, Stavroula

    2006-01-01

    The case for learning patterns as a design method for accessible and adaptable learning objects is explored. Patterns and templates for the design of learning objects can be derived from successful existing learning resources. These patterns can then be reused in the design of new learning objects. We argue that by attending to criteria for reuse…

  1. Different visuomotor processes maturation rates in children support dual visuomotor learning systems.

    PubMed

    Gómez-Moya, Rosinna; Díaz, Rosalinda; Fernandez-Ruiz, Juan

    2016-04-01

    Different processes are involved during visuomotor learning, including an error-based procedural and a strategy based cognitive mechanism. Our objective was to analyze if the changes in the adaptation or the aftereffect components of visuomotor learning measured across development, reflected different maturation rates of the aforementioned mechanisms. Ninety-five healthy children aged 4-12years and a group of young adults participated in a wedge prism and a dove prism throwing task, which laterally displace or horizontally reverse the visual field respectively. The results show that despite the age-related differences in motor control, all children groups adapted in the error-based wedge prisms condition. However, when removing the prism, small children showed a slower aftereffects extinction rate. On the strategy-based visual reversing task only the older children group reached adult-like levels. These results are consistent with the idea of different mechanisms with asynchronous maturation rates participating during visuomotor learning. PMID:26802974

  2. Development of an Adaptive Learning System with Multiple Perspectives based on Students' Learning Styles and Cognitive Styles

    ERIC Educational Resources Information Center

    Yang, Tzu-Chi; Hwang, Gwo-Jen; Yang, Stephen Jen-Hwa

    2013-01-01

    In this study, an adaptive learning system is developed by taking multiple dimensions of personalized features into account. A personalized presentation module is proposed for developing adaptive learning systems based on the field dependent/independent cognitive style model and the eight dimensions of Felder-Silverman's learning style. An…

  3. Performance & Emotion--A Study on Adaptive E-Learning Based on Visual/Verbal Learning Styles

    ERIC Educational Resources Information Center

    Beckmann, Jennifer; Bertel, Sven; Zander, Steffi

    2015-01-01

    Adaptive e-Learning systems are able to adjust to a user's learning needs, usually by user modeling or tracking progress. Such learner-adaptive behavior has rapidly become a hot topic for e-Learning, furthered in part by the recent rapid increase in the use of MOOCs (Massive Open Online Courses). A lack of general, individual, and situational data…

  4. Learning Speech Variability in Discriminative Acoustic Model Adaptation

    NASA Astrophysics Data System (ADS)

    Sato, Shoei; Oku, Takahiro; Homma, Shinichi; Kobayashi, Akio; Imai, Toru

    We present a new discriminative method of acoustic model adaptation that deals with a task-dependent speech variability. We have focused on differences of expressions or speaking styles between tasks and set the objective of this method as improving the recognition accuracy of indistinctly pronounced phrases dependent on a speaking style.The adaptation appends subword models for frequently observable variants of subwords in the task. To find the task-dependent variants, low-confidence words are statistically selected from words with higher frequency in the task's adaptation data by using their word lattices. HMM parameters of subword models dependent on the words are discriminatively trained by using linear transforms with a minimum phoneme error (MPE) criterion. For the MPE training, subword accuracy discriminating between the variants and the originals is also investigated. In speech recognition experiments, the proposed adaptation with the subword variants reduced the word error rate by 12.0% relative in a Japanese conversational broadcast task.

  5. Adaptation to altitude as a vehicle for experiential learning of physiology by university undergraduates.

    PubMed

    Weigle, David S; Buben, Amelia; Burke, Caitlin C; Carroll, Nels D; Cook, Brett M; Davis, Benjamin S; Dubowitz, Gerald; Fisher, Rian E; Freeman, Timothy C; Gibbons, Stephen M; Hansen, Hale A; Heys, Kimberly A; Hopkins, Brittany; Jordan, Brittany L; McElwain, Katherine L; Powell, Frank L; Reinhart, Katherine E; Robbins, Charles D; Summers, Cameron C; Walker, Jennifer D; Weber, Steven S; Weinheimer, Caroline J

    2007-09-01

    In this article, an experiential learning activity is described in which 19 university undergraduates made experimental observations on each other to explore physiological adaptations to high altitude. Following 2 wk of didactic sessions and baseline data collection at sea level, the group ascended to a research station at 12,500-ft elevation. Here, teams of three to four students measured the maximal rate of oxygen uptake, cognitive function, hand and foot volume changes, reticulocyte count and hematocrit, urinary pH and 24-h urine volume, athletic performance, and nocturnal blood oxygen saturation. Their data allowed the students to quantify the effect of altitude on the oxygen cascade and to demonstrate the following altitude-related changes: 1) impaired performance on selected cognitive function tests, 2) mild peripheral edema, 3) rapid reticulocytosis, 4) urinary alkalinization and diuresis, 5) impaired aerobic but not anaerobic exercise performance, 6) inverse relationship between blood oxygen saturation and resting heart rate, and 7) regular periodic nocturnal oxygen desaturation events accompanied by heart rate accelerations. The students learned and applied basic statistical techniques to analyze their data, and each team summarized its results in the format of a scientific paper. The students were uniformly enthusiastic about the use of self-directed experimentation to explore the physiology of altitude adaptation and felt that they learned more from this course format than a control group of students felt that they learned from a physiology course taught by the same instructor in the standard classroom/laboratory format. PMID:17848594

  6. Classifying work rate from heart rate measurements using an adaptive neuro-fuzzy inference system.

    PubMed

    Kolus, Ahmet; Imbeau, Daniel; Dubé, Philippe-Antoine; Dubeau, Denise

    2016-05-01

    In a new approach based on adaptive neuro-fuzzy inference systems (ANFIS), field heart rate (HR) measurements were used to classify work rate into four categories: very light, light, moderate, and heavy. Inter-participant variability (physiological and physical differences) was considered. Twenty-eight participants performed Meyer and Flenghi's step-test and a maximal treadmill test, during which heart rate and oxygen consumption (VO2) were measured. Results indicated that heart rate monitoring (HR, HRmax, and HRrest) and body weight are significant variables for classifying work rate. The ANFIS classifier showed superior sensitivity, specificity, and accuracy compared to current practice using established work rate categories based on percent heart rate reserve (%HRR). The ANFIS classifier showed an overall 29.6% difference in classification accuracy and a good balance between sensitivity (90.7%) and specificity (95.2%) on average. With its ease of implementation and variable measurement, the ANFIS classifier shows potential for widespread use by practitioners for work rate assessment. PMID:26851475

  7. Adaptive WTA with an analog VLSI neuromorphic learning chip.

    PubMed

    Häfliger, Philipp

    2007-03-01

    In this paper, we demonstrate how a particular spike-based learning rule (where exact temporal relations between input and output spikes of a spiking model neuron determine the changes of the synaptic weights) can be tuned to express rate-based classical Hebbian learning behavior (where the average input and output spike rates are sufficient to describe the synaptic changes). This shift in behavior is controlled by the input statistic and by a single time constant. The learning rule has been implemented in a neuromorphic very large scale integration (VLSI) chip as part of a neurally inspired spike signal image processing system. The latter is the result of the European Union research project Convolution AER Vision Architecture for Real-Time (CAVIAR). Since it is implemented as a spike-based learning rule (which is most convenient in the overall spike-based system), even if it is tuned to show rate behavior, no explicit long-term average signals are computed on the chip. We show the rule's rate-based Hebbian learning ability in a classification task in both simulation and chip experiment, first with artificial stimuli and then with sensor input from the CAVIAR system. PMID:17385639

  8. Establishing a Dynamic Self-Adaptation Learning Algorithm of the BP Neural Network and Its Applications

    NASA Astrophysics Data System (ADS)

    Li, Xiaofeng; Xiang, Suying; Zhu, Pengfei; Wu, Min

    2015-12-01

    In order to avoid the inherent deficiencies of the traditional BP neural network, such as slow convergence speed, that easily leading to local minima, poor generalization ability and difficulty in determining the network structure, the dynamic self-adaptive learning algorithm of the BP neural network is put forward to improve the function of the BP neural network. The new algorithm combines the merit of principal component analysis, particle swarm optimization, correlation analysis and self-adaptive model, hence can effectively solve the problems of selecting structural parameters, initial connection weights and thresholds and learning rates of the BP neural network. This new algorithm not only reduces the human intervention, optimizes the topological structures of BP neural networks and improves the network generalization ability, but also accelerates the convergence speed of a network, avoids trapping into local minima, and enhances network adaptation ability and prediction ability. The dynamic self-adaptive learning algorithm of the BP neural network is used to forecast the total retail sale of consumer goods of Sichuan Province, China. Empirical results indicate that the new algorithm is superior to the traditional BP network algorithm in predicting accuracy and time consumption, which shows the feasibility and effectiveness of the new algorithm.

  9. An adaptive learning control system for large flexible structures

    NASA Technical Reports Server (NTRS)

    Thau, F. E.

    1985-01-01

    The objective of the research has been to study the design of adaptive/learning control systems for the control of large flexible structures. In the first activity an adaptive/learning control methodology for flexible space structures was investigated. The approach was based on using a modal model of the flexible structure dynamics and an output-error identification scheme to identify modal parameters. In the second activity, a least-squares identification scheme was proposed for estimating both modal parameters and modal-to-actuator and modal-to-sensor shape functions. The technique was applied to experimental data obtained from the NASA Langley beam experiment. In the third activity, a separable nonlinear least-squares approach was developed for estimating the number of excited modes, shape functions, modal parameters, and modal amplitude and velocity time functions for a flexible structure. In the final research activity, a dual-adaptive control strategy was developed for regulating the modal dynamics and identifying modal parameters of a flexible structure. A min-max approach was used for finding an input to provide modal parameter identification while not exceeding reasonable bounds on modal displacement.

  10. Fault-tolerant nonlinear adaptive flight control using sliding mode online learning.

    PubMed

    Krüger, Thomas; Schnetter, Philipp; Placzek, Robin; Vörsmann, Peter

    2012-08-01

    An expanded nonlinear model inversion flight control strategy using sliding mode online learning for neural networks is presented. The proposed control strategy is implemented for a small unmanned aircraft system (UAS). This class of aircraft is very susceptible towards nonlinearities like atmospheric turbulence, model uncertainties and of course system failures. Therefore, these systems mark a sensible testbed to evaluate fault-tolerant, adaptive flight control strategies. Within this work the concept of feedback linearization is combined with feed forward neural networks to compensate for inversion errors and other nonlinear effects. Backpropagation-based adaption laws of the network weights are used for online training. Within these adaption laws the standard gradient descent backpropagation algorithm is augmented with the concept of sliding mode control (SMC). Implemented as a learning algorithm, this nonlinear control strategy treats the neural network as a controlled system and allows a stable, dynamic calculation of the learning rates. While considering the system's stability, this robust online learning method therefore offers a higher speed of convergence, especially in the presence of external disturbances. The SMC-based flight controller is tested and compared with the standard gradient descent backpropagation algorithm in the presence of system failures. PMID:22386784

  11. Efficient retrieval of landscape Hessian: forced optimal covariance adaptive learning.

    PubMed

    Shir, Ofer M; Roslund, Jonathan; Whitley, Darrell; Rabitz, Herschel

    2014-06-01

    Knowledge of the Hessian matrix at the landscape optimum of a controlled physical observable offers valuable information about the system robustness to control noise. The Hessian can also assist in physical landscape characterization, which is of particular interest in quantum system control experiments. The recently developed landscape theoretical analysis motivated the compilation of an automated method to learn the Hessian matrix about the global optimum without derivative measurements from noisy data. The current study introduces the forced optimal covariance adaptive learning (FOCAL) technique for this purpose. FOCAL relies on the covariance matrix adaptation evolution strategy (CMA-ES) that exploits covariance information amongst the control variables by means of principal component analysis. The FOCAL technique is designed to operate with experimental optimization, generally involving continuous high-dimensional search landscapes (≳30) with large Hessian condition numbers (≳10^{4}). This paper introduces the theoretical foundations of the inverse relationship between the covariance learned by the evolution strategy and the actual Hessian matrix of the landscape. FOCAL is presented and demonstrated to retrieve the Hessian matrix with high fidelity on both model landscapes and quantum control experiments, which are observed to possess nonseparable, nonquadratic search landscapes. The recovered Hessian forms were corroborated by physical knowledge of the systems. The implications of FOCAL extend beyond the investigated studies to potentially cover other physically motivated multivariate landscapes. PMID:25019911

  12. Towards Motivation-Based Adaptation of Difficulty in E-Learning Programs

    ERIC Educational Resources Information Center

    Endler, Anke; Rey, Gunter Daniel; Butz, Martin V.

    2012-01-01

    The objective of this study was to investigate if an e-learning environment may use measurements of the user's current motivation to adapt the level of task difficulty for more effective learning. In the reported study, motivation-based adaptation was applied randomly to collect a wide range of data for different adaptations in a variety of…

  13. Adaptation and Learning of Agents in Market Oriented Programming

    NASA Astrophysics Data System (ADS)

    Ishinishi, Masayuki; Namatame, Akira; Kita, Hajime

    Market Oriented Programming (MOP) proposed by Wellman is a decentralized control method using auction machanism inspired by the market economy. It is applied to many problems such as network and computation resource allocation. Conventional MOP models are formulated based on the concept of ‘competitive market’ of economics which assumes that the market consists of sufficiently many and small agents. However, in realistic applications of MOP, number of agents is limited and their interdependency is not negligible. In this paper, MOP for interdependent agents is discussed. An oligopoly market model for MOP is introduced, and adaptation process of interdependent agents and its stability are discussed. Further, it is also demonstrated that selfish learning of adaptation coefficiency by each agent achieves stability of market through computer simulation.

  14. Adaptive Sampling for Learning Gaussian Processes Using Mobile Sensor Networks

    PubMed Central

    Xu, Yunfei; Choi, Jongeun

    2011-01-01

    This paper presents a novel class of self-organizing sensing agents that adaptively learn an anisotropic, spatio-temporal Gaussian process using noisy measurements and move in order to improve the quality of the estimated covariance function. This approach is based on a class of anisotropic covariance functions of Gaussian processes introduced to model a broad range of spatio-temporal physical phenomena. The covariance function is assumed to be unknown a priori. Hence, it is estimated by the maximum a posteriori probability (MAP) estimator. The prediction of the field of interest is then obtained based on the MAP estimate of the covariance function. An optimal sampling strategy is proposed to minimize the information-theoretic cost function of the Fisher Information Matrix. Simulation results demonstrate the effectiveness and the adaptability of the proposed scheme. PMID:22163785

  15. Reducing Dropout Rates through Expanded Learning Opportunities. Issue Brief

    ERIC Educational Resources Information Center

    Harris, Laura; Princiotta, Daniel

    2009-01-01

    Expanded learning opportunities (ELOs), which include afterschool, summer learning, and extended day and extended year programs, can help states reduce dropout rates and increase graduation rates. Effective elementary, middle, and high school ELOs support academic rigor, boost student engagement, and provide students with supportive relationships.…

  16. Automatic learning rate adjustment for self-supervising autonomous robot control

    NASA Technical Reports Server (NTRS)

    Arras, Michael K.; Protzel, Peter W.; Palumbo, Daniel L.

    1992-01-01

    Described is an application in which an Artificial Neural Network (ANN) controls the positioning of a robot arm with five degrees of freedom by using visual feedback provided by two cameras. This application and the specific ANN model, local liner maps, are based on the work of Ritter, Martinetz, and Schulten. We extended their approach by generating a filtered, average positioning error from the continuous camera feedback and by coupling the learning rate to this error. When the network learns to position the arm, the positioning error decreases and so does the learning rate until the system stabilizes at a minimum error and learning rate. This abolishes the need for a predetermined cooling schedule. The automatic cooling procedure results in a closed loop control with no distinction between a learning phase and a production phase. If the positioning error suddenly starts to increase due to an internal failure such as a broken joint, or an environmental change such as a camera moving, the learning rate increases accordingly. Thus, learning is automatically activated and the network adapts to the new condition after which the error decreases again and learning is 'shut off'. The automatic cooling is therefore a prerequisite for the autonomy and the fault tolerance of the system.

  17. The Emotions of Socialization-Related Learning: Understanding Workplace Adaptation as a Learning Process.

    ERIC Educational Resources Information Center

    Reio, Thomas G., Jr.

    The influence of selected discrete emotions on socialization-related learning and perception of workplace adaptation was examined in an exploratory study. Data were collected from 233 service workers in 4 small and medium-sized companies in metropolitan Washington, D.C. The sample members' average age was 32.5 years, and the sample's racial makeup…

  18. The Influence of Student Characteristics on the Use of Adaptive E-Learning Material

    ERIC Educational Resources Information Center

    van Seters, J. R.; Ossevoort, M. A.; Tramper, J.; Goedhart, M. J.

    2012-01-01

    Adaptive e-learning materials can help teachers to educate heterogeneous student groups. This study provides empirical data about the way academic students differ in their learning when using adaptive e-learning materials. Ninety-four students participated in the study. We determined characteristics in a heterogeneous student group by collecting…

  19. Simulated apoptosis/neurogenesis regulates learning and memory capabilities of adaptive neural networks.

    PubMed

    Chambers, R Andrew; Potenza, Marc N; Hoffman, Ralph E; Miranker, Willard

    2004-04-01

    Characterization of neuronal death and neurogenesis in the adult brain of birds, humans, and other mammals raises the possibility that neuronal turnover represents a special form of neuroplasticity associated with stress responses, cognition, and the pathophysiology and treatment of psychiatric disorders. Multilayer neural network models capable of learning alphabetic character representations via incremental synaptic connection strength changes were used to assess additional learning and memory effects incurred by simulation of coordinated apoptotic and neurogenic events in the middle layer. Using a consistent incremental learning capability across all neurons and experimental conditions, increasing the number of middle layer neurons undergoing turnover increased network learning capacity for new information, and increased forgetting of old information. Simulations also showed that specific patterns of neural turnover based on individual neuronal connection characteristics, or the temporal-spatial pattern of neurons chosen for turnover during new learning impacts new learning performance. These simulations predict that apoptotic and neurogenic events could act together to produce specific learning and memory effects beyond those provided by ongoing mechanisms of connection plasticity in neuronal populations. Regulation of rates as well as patterns of neuronal turnover may serve an important function in tuning the informatic properties of plastic networks according to novel informational demands. Analogous regulation in the hippocampus may provide for adaptive cognitive and emotional responses to novel and stressful contexts, or operate suboptimally as a basis for psychiatric disorders. The implications of these elementary simulations for future biological and neural modeling research on apoptosis and neurogenesis are discussed. PMID:14702022

  20. Learning Adaptive Forecasting Models from Irregularly Sampled Multivariate Clinical Data

    PubMed Central

    Liu, Zitao; Hauskrecht, Milos

    2016-01-01

    Building accurate predictive models of clinical multivariate time series is crucial for understanding of the patient condition, the dynamics of a disease, and clinical decision making. A challenging aspect of this process is that the model should be flexible and adaptive to reflect well patient-specific temporal behaviors and this also in the case when the available patient-specific data are sparse and short span. To address this problem we propose and develop an adaptive two-stage forecasting approach for modeling multivariate, irregularly sampled clinical time series of varying lengths. The proposed model (1) learns the population trend from a collection of time series for past patients; (2) captures individual-specific short-term multivariate variability; and (3) adapts by automatically adjusting its predictions based on new observations. The proposed forecasting model is evaluated on a real-world clinical time series dataset. The results demonstrate the benefits of our approach on the prediction tasks for multivariate, irregularly sampled clinical time series, and show that it can outperform both the population based and patient-specific time series prediction models in terms of prediction accuracy. PMID:27525189

  1. Adapting online learning for Canada's Northern public health workforce

    PubMed Central

    Bell, Marnie; MacDougall, Karen

    2013-01-01

    Background Canada's North is a diverse, sparsely populated land, where inequalities and public health issues are evident, particularly for Aboriginal people. The Northern public health workforce is a unique mix of professional and paraprofessional workers. Few have formal public health education. From 2009 to 2012, the Public Health Agency of Canada (PHAC) collaborated with a Northern Advisory Group to develop and implement a strategy to strengthen public health capacity in Canada's 3 northern territories. Access to relevant, effective continuing education was identified as a key issue. Challenges include diverse educational and cultural backgrounds of public health workers, geographical isolation and variable technological infrastructure across the north. Methods PHAC's Skills Online program offers Internet-based continuing education modules for public health professionals. In partnership with the Northern Advisory Group, PHAC conducted 3 pilots between 2008 and 2012 to assess the appropriateness of the Skills Online program for Northern/Aboriginal public health workers. Module content and delivery modalities were adapted for the pilots. Adaptations included adding Inuit and Northern public health examples and using video and teleconference discussions to augment the online self-study component. Results Findings from the pilots were informative and similar to those from previous Skills Online pilots with learners in developing countries. Online learning is effective in bridging the geographical barriers in remote locations. Incorporating content on Northern and Aboriginal health issues facilitates engagement in learning. Employer support facilitates the recruitment and retention of learners in an online program. Facilitator assets included experience as a public health professional from the north, and flexibility to use modified approaches to support and measure knowledge acquisition and application, especially for First Nations, Inuit and Metis learners

  2. Workplace Learning: What's the Rate of Return?

    ERIC Educational Resources Information Center

    Hase, Stewart; Davis, Lester

    A 3-year research program on workplace learning was based on action research and involved the gradual implementation of "Work Activity Briefings" every 2 weeks or whenever a major task was to be undertaken at selected construction sites managed by an Australian mining and construction company. The briefings were regular meetings between all those…

  3. Learning of Action Through Adaptive Combination of Motor Primitives

    PubMed Central

    Thoroughman, Kurt A.; Shadmehr, Reza

    2008-01-01

    Understanding how the brain constructs movements remains a fundamental challenge in neuroscience. The brain may control complex movements through flexible combination of motor primitives1, where each primitive is an element of computation in the sensorimotor map that transforms desired limb trajectories into motor commands. Theoretical studies have shown that a system’s ability to learn actions depends on the shape of its primitives2. Using a time-series analysis of error patterns, here we find evidence that humans learn dynamics of reaching movements through flexible combination of primitives that have Gaussian-like tuning functions encoding hand velocity. The wide tuning of the inferred primitives predicts limitations on the brain’s ability to represent viscous dynamics. We find close agreement between the predicted limitations and subjects’ adaptation to novel force fields. The mathematical properties of the derived primitives resemble the tuning curves of Purkinje cells in the cerebellum. Activity of these cells may encode primitives that underlie learning of dynamics. PMID:11048720

  4. A Complex Adaptive Perspective on Learning within Innovation Projects

    ERIC Educational Resources Information Center

    Harkema, Saskia

    2003-01-01

    Innovation is the lifeblood of companies, while simultaneously being one of the most difficult and elusive processes to manage. Failure rates are high--varying between six out of ten to nine out of ten--while the need to innovate is high. Departing from a real-life case of a company, Sara Lee/Douwe Egberts, that has set learning within and from…

  5. Modeling and Simulation of An Adaptive Neuro-Fuzzy Inference System (ANFIS) for Mobile Learning

    ERIC Educational Resources Information Center

    Al-Hmouz, A.; Shen, Jun; Al-Hmouz, R.; Yan, Jun

    2012-01-01

    With recent advances in mobile learning (m-learning), it is becoming possible for learning activities to occur everywhere. The learner model presented in our earlier work was partitioned into smaller elements in the form of learner profiles, which collectively represent the entire learning process. This paper presents an Adaptive Neuro-Fuzzy…

  6. Breast image feature learning with adaptive deconvolutional networks

    NASA Astrophysics Data System (ADS)

    Jamieson, Andrew R.; Drukker, Karen; Giger, Maryellen L.

    2012-03-01

    Feature extraction is a critical component of medical image analysis. Many computer-aided diagnosis approaches employ hand-designed, heuristic lesion extracted features. An alternative approach is to learn features directly from images. In this preliminary study, we explored the use of Adaptive Deconvolutional Networks (ADN) for learning high-level features in diagnostic breast mass lesion images with potential application to computer-aided diagnosis (CADx) and content-based image retrieval (CBIR). ADNs (Zeiler, et. al., 2011), are recently-proposed unsupervised, generative hierarchical models that decompose images via convolution sparse coding and max pooling. We trained the ADNs to learn multiple layers of representation for two breast image data sets on two different modalities (739 full field digital mammography (FFDM) and 2393 ultrasound images). Feature map calculations were accelerated by use of GPUs. Following Zeiler et. al., we applied the Spatial Pyramid Matching (SPM) kernel (Lazebnik, et. al., 2006) on the inferred feature maps and combined this with a linear support vector machine (SVM) classifier for the task of binary classification between cancer and non-cancer breast mass lesions. Non-linear, local structure preserving dimension reduction, Elastic Embedding (Carreira-Perpiñán, 2010), was then used to visualize the SPM kernel output in 2D and qualitatively inspect image relationships learned. Performance was found to be competitive with current CADx schemes that use human-designed features, e.g., achieving a 0.632+ bootstrap AUC (by case) of 0.83 [0.78, 0.89] for an ultrasound image set (1125 cases).

  7. Sensitivity-based adaptive learning rules for binary feedforward neural networks.

    PubMed

    Zhong, Shuiming; Zeng, Xiaoqin; Wu, Shengli; Han, Lixin

    2012-03-01

    This paper proposes a set of adaptive learning rules for binary feedforward neural networks (BFNNs) by means of the sensitivity measure that is established to investigate the effect of a BFNN's weight variation on its output. The rules are based on three basic adaptive learning principles: the benefit principle, the minimal disturbance principle, and the burden-sharing principle. In order to follow the benefit principle and the minimal disturbance principle, a neuron selection rule and a weight adaptation rule are developed. Besides, a learning control rule is developed to follow the burden-sharing principle. The advantage of the rules is that they can effectively guide the BFNN's learning to conduct constructive adaptations and avoid destructive ones. With these rules, a sensitivity-based adaptive learning (SBALR) algorithm for BFNNs is presented. Experimental results on a number of benchmark data demonstrate that the SBALR algorithm has better learning performance than the Madaline rule II and backpropagation algorithms. PMID:24808553

  8. Adaptive categorization of ART networks in robot behavior learning using game-theoretic formulation.

    PubMed

    Fung, Wai-keung; Liu, Yun-hui

    2003-12-01

    Adaptive Resonance Theory (ART) networks are employed in robot behavior learning. Two of the difficulties in online robot behavior learning, namely, (1) exponential memory increases with time, (2) difficulty for operators to specify learning tasks accuracy and control learning attention before learning. In order to remedy the aforementioned difficulties, an adaptive categorization mechanism is introduced in ART networks for perceptual and action patterns categorization in this paper. A game-theoretic formulation of adaptive categorization for ART networks is proposed for vigilance parameter adaptation for category size control on the categories formed. The proposed vigilance parameter update rule can help improving categorization performance in the aspect of category number stability and solve the problem of selecting initial vigilance parameter prior to pattern categorization in traditional ART networks. Behavior learning using physical robot is conducted to demonstrate the effectiveness of the proposed adaptive categorization mechanism in ART networks. PMID:14622873

  9. Theoretical and Applied Implications of Precisely Measuring Learning Rates

    ERIC Educational Resources Information Center

    Skinner, Christopher H.

    2008-01-01

    Nist and Joseph (2008) have confirmed earlier research showing that adding and interspersing a large number of time-consuming learning trials targeting known items (e.g., incremental rehearsal (IR) or interspersal) retards student learning rates. In addition, their current study has confirmed earlier research that adding and interspersing known…

  10. Schema-based learning of adaptable and flexible prey- catching in anurans II. Learning after lesioning.

    PubMed

    Corbacho, Fernando; Nishikawa, Kiisa C; Weerasuriya, Ananda; Liaw, Jim-Shih; Arbib, Michael A

    2005-12-01

    The previous companion paper describes the initial (seed) schema architecture that gives rise to the observed prey-catching behavior. In this second paper in the series we describe the fundamental adaptive processes required during learning after lesioning. Following bilateral transections of the hypoglossal nerve, anurans lunge toward mealworms with no accompanying tongue or jaw movement. Nevertheless anurans with permanent hypoglossal transections eventually learn to catch their prey by first learning to open their mouth again and then lunging their body further and increasing their head angle. In this paper we present a new learning framework, called schema-based learning (SBL). SBL emphasizes the importance of the current existent structure (schemas), that defines a functioning system, for the incremental and autonomous construction of ever more complex structure to achieve ever more complex levels of functioning. We may rephrase this statement into the language of Schema Theory (Arbib 1992, for a comprehensive review) as the learning of new schemas based on the stock of current schemas. SBL emphasizes a fundamental principle of organization called coherence maximization, that deals with the maximization of congruence between the results of an interaction (external or internal) and the expectations generated for that interaction. A central hypothesis consists of the existence of a hierarchy of predictive internal models (predictive schemas) all over the control center-brain-of the agent. Hence, we will include predictive models in the perceptual, sensorimotor, and motor components of the autonomous agent architecture. We will then show that predictive models are fundamental for structural learning. In particular we will show how a system can learn a new structural component (augment the overall network topology) after being lesioned in order to recover (or even improve) its original functionality. Learning after lesioning is a special case of structural

  11. The Classroom Adaptation Scale: A Behavior Rating Scale Designed to Screen Primary Grade Children for School Adaptation Problems.

    ERIC Educational Resources Information Center

    Virbickis, Joseph A.

    After a brief historical review of the background and research, the paper focuses on development of a teacher-administered behavior rating scale to screen for school adaptation problems on a large scale basis using as Ss 15 primary grade teachers and their ratings of 315 primary grade children (ages 6-to-10 years) in their classes. A 16-item…

  12. Learning about stress: neural, endocrine and behavioral adaptations.

    PubMed

    McCarty, Richard

    2016-09-01

    In this review, nonassociative learning is advanced as an organizing principle to draw together findings from both sympathetic-adrenal medullary and hypothalamic-pituitary-adrenocortical (HPA) axis responses to chronic intermittent exposure to a variety of stressors. Studies of habituation, facilitation and sensitization of stress effector systems are reviewed and linked to an animal's prior experience with a given stressor, the intensity of the stressor and the appraisal by the animal of its ability to mobilize physiological systems to adapt to the stressor. Brain pathways that regulate physiological and behavioral responses to stress are discussed, especially in light of their regulation of nonassociative processes in chronic intermittent stress. These findings may have special relevance to various psychiatric diseases, including depression and post-traumatic stress disorder (PTSD). PMID:27294884

  13. Multiple Maximum Exposure Rates in Computerized Adaptive Testing

    ERIC Educational Resources Information Center

    Ramon Barrada, Juan; Veldkamp, Bernard P.; Olea, Julio

    2009-01-01

    Computerized adaptive testing is subject to security problems, as the item bank content remains operative over long periods and administration time is flexible for examinees. Spreading the content of a part of the item bank could lead to an overestimation of the examinees' trait level. The most common way of reducing this risk is to impose a…

  14. Hierarchically clustered adaptive quantization CMAC and its learning convergence.

    PubMed

    Teddy, S D; Lai, E M K; Quek, C

    2007-11-01

    The cerebellar model articulation controller (CMAC) neural network (NN) is a well-established computational model of the human cerebellum. Nevertheless, there are two major drawbacks associated with the uniform quantization scheme of the CMAC network. They are the following: (1) a constant output resolution associated with the entire input space and (2) the generalization-accuracy dilemma. Moreover, the size of the CMAC network is an exponential function of the number of inputs. Depending on the characteristics of the training data, only a small percentage of the entire set of CMAC memory cells is utilized. Therefore, the efficient utilization of the CMAC memory is a crucial issue. One approach is to quantize the input space nonuniformly. For existing nonuniformly quantized CMAC systems, there is a tradeoff between memory efficiency and computational complexity. Inspired by the underlying organizational mechanism of the human brain, this paper presents a novel CMAC architecture named hierarchically clustered adaptive quantization CMAC (HCAQ-CMAC). HCAQ-CMAC employs hierarchical clustering for the nonuniform quantization of the input space to identify significant input segments and subsequently allocating more memory cells to these regions. The stability of the HCAQ-CMAC network is theoretically guaranteed by the proof of its learning convergence. The performance of the proposed network is subsequently benchmarked against the original CMAC network, as well as two other existing CMAC variants on two real-life applications, namely, automated control of car maneuver and modeling of the human blood glucose dynamics. The experimental results have demonstrated that the HCAQ-CMAC network offers an efficient memory allocation scheme and improves the generalization and accuracy of the network output to achieve better or comparable performances with smaller memory usages. Index Terms-Cerebellar model articulation controller (CMAC), hierarchical clustering, hierarchically

  15. USING AN ADAPTER TO PERFORM THE CHALFANT-STYLE CONTAINMENT VESSEL PERIODIC MAINTENANCE LEAK RATE TEST

    SciTech Connect

    Loftin, B.; Abramczyk, G.; Trapp, D.

    2011-06-03

    Recently the Packaging Technology and Pressurized Systems (PT&PS) organization at the Savannah River National Laboratory was asked to develop an adapter for performing the leak-rate test of a Chalfant-style containment vessel. The PT&PS organization collaborated with designers at the Department of Energy's Pantex Plant to develop the adapter currently in use for performing the leak-rate testing on the containment vessels. This paper will give the history of leak-rate testing of the Chalfant-style containment vessels, discuss the design concept for the adapter, give an overview of the design, and will present results of the testing done using the adapter.

  16. SAR imaging via iterative adaptive approach and sparse Bayesian learning

    NASA Astrophysics Data System (ADS)

    Xue, Ming; Santiago, Enrique; Sedehi, Matteo; Tan, Xing; Li, Jian

    2009-05-01

    We consider sidelobe reduction and resolution enhancement in synthetic aperture radar (SAR) imaging via an iterative adaptive approach (IAA) and a sparse Bayesian learning (SBL) method. The nonparametric weighted least squares based IAA algorithm is a robust and user parameter-free adaptive approach originally proposed for array processing. We show that it can be used to form enhanced SAR images as well. SBL has been used as a sparse signal recovery algorithm for compressed sensing. It has been shown in the literature that SBL is easy to use and can recover sparse signals more accurately than the l 1 based optimization approaches, which require delicate choice of the user parameter. We consider using a modified expectation maximization (EM) based SBL algorithm, referred to as SBL-1, which is based on a three-stage hierarchical Bayesian model. SBL-1 is not only more accurate than benchmark SBL algorithms, but also converges faster. SBL-1 is used to further enhance the resolution of the SAR images formed by IAA. Both IAA and SBL-1 are shown to be effective, requiring only a limited number of iterations, and have no need for polar-to-Cartesian interpolation of the SAR collected data. This paper characterizes the achievable performance of these two approaches by processing the complex backscatter data from both a sparse case study and a backhoe vehicle in free space with different aperture sizes.

  17. Extreme learning machine and adaptive sparse representation for image classification.

    PubMed

    Cao, Jiuwen; Zhang, Kai; Luo, Minxia; Yin, Chun; Lai, Xiaoping

    2016-09-01

    Recent research has shown the speed advantage of extreme learning machine (ELM) and the accuracy advantage of sparse representation classification (SRC) in the area of image classification. Those two methods, however, have their respective drawbacks, e.g., in general, ELM is known to be less robust to noise while SRC is known to be time-consuming. Consequently, ELM and SRC complement each other in computational complexity and classification accuracy. In order to unify such mutual complementarity and thus further enhance the classification performance, we propose an efficient hybrid classifier to exploit the advantages of ELM and SRC in this paper. More precisely, the proposed classifier consists of two stages: first, an ELM network is trained by supervised learning. Second, a discriminative criterion about the reliability of the obtained ELM output is adopted to decide whether the query image can be correctly classified or not. If the output is reliable, the classification will be performed by ELM; otherwise the query image will be fed to SRC. Meanwhile, in the stage of SRC, a sub-dictionary that is adaptive to the query image instead of the entire dictionary is extracted via the ELM output. The computational burden of SRC thus can be reduced. Extensive experiments on handwritten digit classification, landmark recognition and face recognition demonstrate that the proposed hybrid classifier outperforms ELM and SRC in classification accuracy with outstanding computational efficiency. PMID:27389571

  18. Radiographic skills learning: procedure simulation using adaptive hypermedia.

    PubMed

    Costaridou, L; Panayiotakis, G; Pallikarakis, N; Proimos, B

    1996-10-01

    The design and development of a simulation tool supporting learning of radiographic skills is reported. This tool has by textual, graphical and iconic resources, organized according to a building-block, adaptive hypermedia approach, which is described and supported by an image base of radiographs. It offers interactive user-controlled simulation of radiographic imaging procedures. The development is based on a commercially available environment (Toolbook 3.0, Asymetrix Corporation). The core of the system is an attributed precedence (priority) graph, which represents a task outline (concept and resources structure), which is dynamically adjusted to selected procedures. The user interface imitates a conventional radiography system, i.e. operating console, tube, table, patient and cassette. System parameters, such as patient positioning, focus-to-patient distance, magnification, field dimensions, tube voltage and mAs are under user control. Their effects on image quality are presented, by means of an image base acquired under controlled exposure conditions. Innovative use of hypermedia, computer based learning and simulation principles and technology in the development of this tool resulted in an enhanced interactive environment providing radiographic parameter control and visualization of parameter effects on image quality. PMID:9038530

  19. Temporal learning and list-level proportion congruency: conflict adaptation or learning when to respond?

    PubMed

    Schmidt, James R

    2013-01-01

    The current report presents a temporal learning account as a potential alternative to the conflict adaptation account of list-level proportion congruent effects in the Stroop paradigm. Specifically, retrieval of information about response times on previous trials influences a participant's preparedness to respond at a similar time on following trials. First, an adaptation of the Parallel Episodic Processing (PEP) model is presented, and a list-level effect is produced with a temporal learning mechanism. Next, linear mixed effect model analyses show that temporal learning biases are present in list-level proportion congruent data. A non-conflict experiment is then presented in which a list-level effect is observed with a contrast, rather than congruency, manipulation. Analyses of the experimental and simulated data could not, however, provide a clear picture of whether temporal learning was the sole contributor to the list-level proportion congruent effect. These results do, however, demonstrate that caution is warranted when interpreting list-level proportion congruent effects. PMID:24312413

  20. Temporal Learning and List-Level Proportion Congruency: Conflict Adaptation or Learning When to Respond?

    PubMed Central

    Schmidt, James R.

    2013-01-01

    The current report presents a temporal learning account as a potential alternative to the conflict adaptation account of list-level proportion congruent effects in the Stroop paradigm. Specifically, retrieval of information about response times on previous trials influences a participant's preparedness to respond at a similar time on following trials. First, an adaptation of the Parallel Episodic Processing (PEP) model is presented, and a list-level effect is produced with a temporal learning mechanism. Next, linear mixed effect model analyses show that temporal learning biases are present in list-level proportion congruent data. A non-conflict experiment is then presented in which a list-level effect is observed with a contrast, rather than congruency, manipulation. Analyses of the experimental and simulated data could not, however, provide a clear picture of whether temporal learning was the sole contributor to the list-level proportion congruent effect. These results do, however, demonstrate that caution is warranted when interpreting list-level proportion congruent effects. PMID:24312413

  1. Exploring the Effects of Intercultural Learning on Cross-Cultural Adaptation in a Study Abroad Context

    ERIC Educational Resources Information Center

    Tsai, Yau

    2011-01-01

    This study targets Asian students studying abroad and explores the effects of intercultural learning on their cross-cultural adaptation by drawing upon a questionnaire survey. On the one hand, the results of this study find that under the influence of intercultural learning, students respond differently in their cross-cultural adaptation and no…

  2. Examining the Relationship between Learning Organization Characteristics and Change Adaptation, Innovation, and Organizational Performance

    ERIC Educational Resources Information Center

    Kontoghiorghes, Constantine; Awbre, Susan M.; Feurig, Pamela L.

    2005-01-01

    The main purpose of this exploratory study was to examine the relationship between certain learning organization characteristics and change adaptation, innovation, and bottom-line organizational performance. The following learning organization characteristics were found to be the strongest predictors of rapid change adaptation, quick product or…

  3. A Context-Aware Self-Adaptive Fractal Based Generalized Pedagogical Agent Framework for Mobile Learning

    ERIC Educational Resources Information Center

    Boulehouache, Soufiane; Maamri, Ramdane; Sahnoun, Zaidi

    2015-01-01

    The Pedagogical Agents (PAs) for Mobile Learning (m-learning) must be able not only to adapt the teaching to the learner knowledge level and profile but also to ensure the pedagogical efficiency within unpredictable changing runtime contexts. Therefore, to deal with this issue, this paper proposes a Context-aware Self-Adaptive Fractal Component…

  4. The Future of Adaptive Learning: Does the Crowd Hold the Key?

    ERIC Educational Resources Information Center

    Heffernan, Neil T.; Ostrow, Korinn S.; Kelly, Kim; Selent, Douglas; Van Inwegen, Eric G.; Xiong, Xiaolu; Williams, Joseph Jay

    2016-01-01

    Due to substantial scientific and practical progress, learning technologies can effectively adapt to the characteristics and needs of students. This article considers how learning technologies can adapt over time by crowdsourcing contributions from teachers and students--explanations, feedback, and other pedagogical interactions. Considering the…

  5. Swarm Intelligence: New Techniques for Adaptive Systems to Provide Learning Support

    ERIC Educational Resources Information Center

    Wong, Lung-Hsiang; Looi, Chee-Kit

    2012-01-01

    The notion of a system adapting itself to provide support for learning has always been an important issue of research for technology-enabled learning. One approach to provide adaptivity is to use social navigation approaches and techniques which involve analysing data of what was previously selected by a cluster of users or what worked for…

  6. Effectiveness of Adaptive Assessment versus Learner Control in a Multimedia Learning System

    ERIC Educational Resources Information Center

    Chen, Ching-Huei; Chang, Shu-Wei

    2015-01-01

    The purpose of this study was to explore the effectiveness of adaptive assessment versus learner control in a multimedia learning system designed to help secondary students learn science. Unlike other systems, this paper presents a workflow of adaptive assessment following instructional materials that better align with learners' cognitive…

  7. Independent Ratings of Institutions of Higher Learning

    ERIC Educational Resources Information Center

    Russian Education and Society, 2007

    2007-01-01

    The ReitOR Agency has for the first time posted its ratings of colleges and universities in the Volga Federal District of Russia based on criteria of public assessment, having designated institutions in the following priority areas of training: machine building, energy, communications and telecommunications, management and economics, and gas and…

  8. OPUS One: An Intelligent Adaptive Learning Environment Using Artificial Intelligence Support

    NASA Astrophysics Data System (ADS)

    Pedrazzoli, Attilio

    2010-06-01

    AI based Tutoring and Learning Path Adaptation are well known concepts in e-Learning scenarios today and increasingly applied in modern learning environments. In order to gain more flexibility and to enhance existing e-learning platforms, the OPUS One LMS Extension package will enable a generic Intelligent Tutored Adaptive Learning Environment, based on a holistic Multidimensional Instructional Design Model (PENTHA ID Model), allowing AI based tutoring and adaptation functionality to existing Web-based e-learning systems. Relying on "real time" adapted profiles, it allows content- / course authors to apply a dynamic course design, supporting tutored, collaborative sessions and activities, as suggested by modern pedagogy. The concept presented combines a personalized level of surveillance, learning activity- and learning path adaptation suggestions to ensure the students learning motivation and learning success. The OPUS One concept allows to implement an advanced tutoring approach combining "expert based" e-tutoring with the more "personal" human tutoring function. It supplies the "Human Tutor" with precise, extended course activity data and "adaptation" suggestions based on predefined subject matter rules. The concept architecture is modular allowing a personalized platform configuration.

  9. Second Graders Learn Animal Adaptations through Form and Function Analogy Object Boxes

    ERIC Educational Resources Information Center

    Rule, Audrey C.; Baldwin, Samantha; Schell, Robert

    2008-01-01

    This study examined the use of form and function analogy object boxes to teach second graders (n = 21) animal adaptations. The study used a pretest-posttest design to examine animal adaptation content learned through focused analogy activities as compared with reading and Internet searches for information about adaptations of animals followed by…

  10. Context-Adaptive Learning Designs by Using Semantic Web Services

    ERIC Educational Resources Information Center

    Dietze, Stefan; Gugliotta, Alessio; Domingue, John

    2007-01-01

    IMS Learning Design (IMS-LD) is a promising technology aimed at supporting learning processes. IMS-LD packages contain the learning process metadata as well as the learning resources. However, the allocation of resources--whether data or services--within the learning design is done manually at design-time on the basis of the subjective appraisals…

  11. Learning to Be a Community: Schools Need Adaptable Models to Create Successful Programs

    ERIC Educational Resources Information Center

    Ermeling, Bradley A.; Gallimore, Ronald

    2013-01-01

    Making schools learning places for teachers as well as students is a timeless and appealing vision. The growing number of professional learning communities is a hopeful sign that profound change is on the way. This is the challenge learning communities face: Schools and districts need implementation models flexible enough to adapt to local…

  12. Features: Real-Time Adaptive Feature and Document Learning for Web Search.

    ERIC Educational Resources Information Center

    Chen, Zhixiang; Meng, Xiannong; Fowler, Richard H.; Zhu, Binhai

    2001-01-01

    Describes Features, an intelligent Web search engine that is able to perform real-time adaptive feature (i.e., keyword) and document learning. Explains how Features learns from users' document relevance feedback and automatically extracts and suggests indexing keywords relevant to a search query, and learns from users' keyword relevance feedback…

  13. Pedagogy to Empower Chinese Learners to Adapt to Western Learning Circumstances: A Longitudinal Case-Study

    ERIC Educational Resources Information Center

    Saravanamuthu, Kala; Yap, Christine

    2014-01-01

    Deficit theorisations of Chinese Learners studying in western countries are criticised for dichotomising learning attributes into Surface- or Deep-learning approaches. Subsequent context-dependent, small culture studies of students transiting between cultures theorise learning as a dynamic journey of adapting to a range/continuum of learning…

  14. Constructive, Self-Regulated, Situated, and Collaborative Learning: An Approach for the Acquisition of Adaptive Competence

    ERIC Educational Resources Information Center

    de Corte, Erik

    2012-01-01

    In today's learning society, education must focus on fostering adaptive competence (AC) defined as the ability to apply knowledge and skills flexibly in different contexts. In this article, four major types of learning are discussed--constructive, self-regulated, situated, and collaborative--in relation to what students must learn in order to…

  15. A Framework for Adaptive Learning Design in a Web-Conferencing Environment

    ERIC Educational Resources Information Center

    Bower, Matt

    2016-01-01

    Many recent technologies provide the ability to dynamically adjust the interface depending on the emerging cognitive and collaborative needs of the learning episode. This means that educators can adaptively re-design the learning environment during the lesson, rather than purely relying on preemptive learning design thinking. Based on a…

  16. A Stochastic Approach for Automatic and Dynamic Modeling of Students' Learning Styles in Adaptive Educational Systems

    ERIC Educational Resources Information Center

    Dorça, Fabiano Azevedo; Lima, Luciano Vieira; Fernandes, Márcia Aparecida; Lopes, Carlos Roberto

    2012-01-01

    Considering learning and how to improve students' performances, an adaptive educational system must know how an individual learns best. In this context, this work presents an innovative approach for student modeling through probabilistic learning styles combination. Experiments have shown that our approach is able to automatically detect and…

  17. The Effects of Reflective Activities on Skill Adaptation in a Work-Related Instrumental Learning Setting

    ERIC Educational Resources Information Center

    Roessger, Kevin M.

    2014-01-01

    In work-related instrumental learning contexts, the role of reflective activities is unclear. Kolb's experiential learning theory and Mezirow's transformative learning theory predict skill adaptation as an outcome. This prediction was tested by manipulating reflective activities and assessing participants' response and error rates…

  18. Contributions to Adaptive Educational Hypermedia Systems via On-Line Learning Style Estimation

    ERIC Educational Resources Information Center

    Botsios, Sotiris; Georgiou, Demetrius; Safouris, Nikolaos

    2008-01-01

    In order to establish an online diagnostic system for Learning Style Estimation that contributes to the adaptation of learning objects, we propose an easily applicable expert system founded on Bayesian Networks. The proposed system makes use of Learning Style theories and associated diagnostic techniques, simultaneously avoiding certain error…

  19. [Optimalization of rate adaptation using Holter functions in DDD/R pacemakers].

    PubMed

    Novotný, T; Dvorák, R; Kozák, M; Vlasínová, J

    1998-06-01

    Introduction of the pacing rate adaptation according to the momentary metabolic needs added other programmable parametres which demand physician's attention during the initial postimplantation programmation and also in follow-up of pacemaker patients. The parametres setting is strictly individual with a need of feedback control. In some devices it is enabled by Holter functions as a part of pacemaker software. These methods were used to set the rate adaptive parametres in the group of 23 patients with implanted DDD/R pacemaker. The walking stress test was used. Model follow-up situations are presented in 3 case reports. Using Holter functions enables the physician to put patient's subjective complains in relation with actual heart rate--this is used to optimize the parametres of rate adaptation. The authors consider the Holter functions a necessary part of rate adaptive pacemaker software. PMID:9820057

  20. Temporal Coordination and Adaptation to Rate Change in Music Performance

    ERIC Educational Resources Information Center

    Loehr, Janeen D.; Large, Edward W.; Palmer, Caroline

    2011-01-01

    People often coordinate their actions with sequences that exhibit temporal variability and unfold at multiple periodicities. We compared oscillator- and timekeeper-based accounts of temporal coordination by examining musicians' coordination of rhythmic musical sequences with a metronome that gradually changed rate at the end of a musical phrase…

  1. Adaptation of autonomic heart rate regulation in astronauts after spaceflight

    PubMed Central

    Vandeput, Steven; Widjaja, Devy; Aubert, Andre E.; Van Huffel, Sabine

    2013-01-01

    Background Spaceflight causes changes in the cardiovascular control system. The aim of this study was to evaluate postflight recovery of linear and nonlinear neural markers of heart rate modulation, with a special focus on day-night variations. Material/Methods Twenty-four-hour Holter ECG recordings were obtained in 8 astronauts participating in space missions aboard the International Space Station (ISS). Data recording was performed 1 month before launch, and 5 and 30 days after return to Earth from short- and long-term flights. Cardiovascular control was inferred from linear and nonlinear heart rate variability (HRV) parameters, separately during 2-hour day and 2-hour night recordings. Results No remarkable differences were found in the postflight recovery between astronauts from short- and long-duration spaceflights. Five days after return to Earth, vagal modulation was significantly decreased compared to the preflight condition (day: p=0.001; night: p=0.019), while the sympathovagal balance was strongly increased, but only at night (p=0.017). A few nonlinear parameters were reduced early postflight compared to preflight values, but these were not always statistically significant. No significant differences remained after 30 days of postflight recovery. Conclusions Our results show that 5 days after return from both short- and long-duration space missions, neural mechanisms of heart rate regulation are still disturbed. After 1 month, autonomic control of heart rate recovered almost completely. PMID:23291736

  2. Heart Rate Variability During Early Adaptation to Space

    NASA Technical Reports Server (NTRS)

    Toscano, W. B.; Cowings, P. S.

    1994-01-01

    A recent report hypothesized that episodes of space motion sickness (SMS) were reliably associated with low frequency oscillations (less than 0.03 to less than 0.01 Hz) in heart rate variability. This paper archives a large data set for review of investigators in this field which may facilitate the evaluation of this hypothesis. Continuous recording of Electro-cardiography (ECG) and other measures were made for 6 to 12 hours per day (waking hours) of six Shuttle crewmembers for the first 3 mission days of two separate Shuttle flights. Spectral analyses of heart rate variability during approximately 200 hours of inflight is presented. In addition, nearly 200 hours of data collected on these same individuals during ground tests prior to the mission are presented. The Purpose of this Publication is to document the incidence of low frequency oscillations of heart rate in 4 people exposed to microgravity over a period of five days. In addition, this report contains spectral analyses of heart rate data collected on these same individuals during ground-based mission simulations. By archiving these data in this manner, it is our intention to make this information available to other investigators interested in studying this phenomena.

  3. Natural selection fails to optimize mutation rates for long-term adaptation on rugged fitness landscapes.

    PubMed

    Clune, Jeff; Misevic, Dusan; Ofria, Charles; Lenski, Richard E; Elena, Santiago F; Sanjuán, Rafael

    2008-01-01

    The rate of mutation is central to evolution. Mutations are required for adaptation, yet most mutations with phenotypic effects are deleterious. As a consequence, the mutation rate that maximizes adaptation will be some intermediate value. Here, we used digital organisms to investigate the ability of natural selection to adjust and optimize mutation rates. We assessed the optimal mutation rate by empirically determining what mutation rate produced the highest rate of adaptation. Then, we allowed mutation rates to evolve, and we evaluated the proximity to the optimum. Although we chose conditions favorable for mutation rate optimization, the evolved rates were invariably far below the optimum across a wide range of experimental parameter settings. We hypothesized that the reason that mutation rates evolved to be suboptimal was the ruggedness of fitness landscapes. To test this hypothesis, we created a simplified landscape without any fitness valleys and found that, in such conditions, populations evolved near-optimal mutation rates. In contrast, when fitness valleys were added to this simple landscape, the ability of evolving populations to find the optimal mutation rate was lost. We conclude that rugged fitness landscapes can prevent the evolution of mutation rates that are optimal for long-term adaptation. This finding has important implications for applied evolutionary research in both biological and computational realms. PMID:18818724

  4. Natural Selection Fails to Optimize Mutation Rates for Long-Term Adaptation on Rugged Fitness Landscapes

    PubMed Central

    Clune, Jeff; Misevic, Dusan; Ofria, Charles; Lenski, Richard E.; Elena, Santiago F.; Sanjuán, Rafael

    2008-01-01

    The rate of mutation is central to evolution. Mutations are required for adaptation, yet most mutations with phenotypic effects are deleterious. As a consequence, the mutation rate that maximizes adaptation will be some intermediate value. Here, we used digital organisms to investigate the ability of natural selection to adjust and optimize mutation rates. We assessed the optimal mutation rate by empirically determining what mutation rate produced the highest rate of adaptation. Then, we allowed mutation rates to evolve, and we evaluated the proximity to the optimum. Although we chose conditions favorable for mutation rate optimization, the evolved rates were invariably far below the optimum across a wide range of experimental parameter settings. We hypothesized that the reason that mutation rates evolved to be suboptimal was the ruggedness of fitness landscapes. To test this hypothesis, we created a simplified landscape without any fitness valleys and found that, in such conditions, populations evolved near-optimal mutation rates. In contrast, when fitness valleys were added to this simple landscape, the ability of evolving populations to find the optimal mutation rate was lost. We conclude that rugged fitness landscapes can prevent the evolution of mutation rates that are optimal for long-term adaptation. This finding has important implications for applied evolutionary research in both biological and computational realms. PMID:18818724

  5. Using Adaptive Learning Technologies to Personalize Instruction to Student Interests: The Impact of Relevant Contexts on Performance and Learning Outcomes

    ERIC Educational Resources Information Center

    Walkington, Candace A.

    2013-01-01

    Adaptive learning technologies are emerging in educational settings as a means to customize instruction to learners' background, experiences, and prior knowledge. Here, a technology-based personalization intervention within an intelligent tutoring system (ITS) for secondary mathematics was used to adapt instruction to students' personal interests.…

  6. High Rate of Recent Transposable Element–Induced Adaptation in Drosophila melanogaster

    PubMed Central

    González, Josefa; Lenkov, Kapa; Lipatov, Mikhail; Macpherson, J. Michael; Petrov, Dmitri A

    2008-01-01

    Although transposable elements (TEs) are known to be potent sources of mutation, their contribution to the generation of recent adaptive changes has never been systematically assessed. In this work, we conduct a genome-wide screen for adaptive TE insertions in Drosophila melanogaster that have taken place during or after the spread of this species out of Africa. We determine population frequencies of 902 of the 1,572 TEs in Release 3 of the D. melanogaster genome and identify a set of 13 putatively adaptive TEs. These 13 TEs increased in population frequency sharply after the spread out of Africa. We argue that many of these TEs are in fact adaptive by demonstrating that the regions flanking five of these TEs display signatures of partial selective sweeps. Furthermore, we show that eight out of the 13 putatively adaptive elements show population frequency heterogeneity consistent with these elements playing a role in adaptation to temperate climates. We conclude that TEs have contributed considerably to recent adaptive evolution (one TE-induced adaptation every 200–1,250 y). The majority of these adaptive insertions are likely to be involved in regulatory changes. Our results also suggest that TE-induced adaptations arise more often from standing variants than from new mutations. Such a high rate of TE-induced adaptation is inconsistent with the number of fixed TEs in the D. melanogaster genome, and we discuss possible explanations for this discrepancy. PMID:18942889

  7. Cases on Technological Adaptability and Transnational Learning: Issues and Challenges

    ERIC Educational Resources Information Center

    Mukerji, Siran, Ed.; Tripathi, Purnendu, Ed.

    2010-01-01

    Technology holds the key for bridging the gap between access to quality education and the need for enhanced learning experiences. This book contains case studies on divergent themes of personalized learning environments, inclusive learning for social change, innovative learning and assessment techniques, technology and international partnership…

  8. Design Framework for an Adaptive MOOC Enhanced by Blended Learning: Supplementary Training and Personalized Learning for Teacher Professional Development

    ERIC Educational Resources Information Center

    Gynther, Karsten

    2016-01-01

    The research project has developed a design framework for an adaptive MOOC that complements the MOOC format with blended learning. The design framework consists of a design model and a series of learning design principles which can be used to design in-service courses for teacher professional development. The framework has been evaluated by…

  9. Adapting the Speed of Reproduction of Audio Content and Using Text Reinforcement for Maximizing the Learning Outcome though Mobile Phones

    ERIC Educational Resources Information Center

    Munoz-Organero, M.; Munoz-Merino, P. J.; Kloos, Carlos Delgado

    2011-01-01

    The use of technology in learning environments should be targeted at improving the learning outcome of the process. Several technology enhanced techniques can be used for maximizing the learning gain of particular students when having access to learning resources. One of them is content adaptation. Adapting content is especially important when…

  10. Enabling an Integrated Rate-temporal Learning Scheme on Memristor

    NASA Astrophysics Data System (ADS)

    He, Wei; Huang, Kejie; Ning, Ning; Ramanathan, Kiruthika; Li, Guoqi; Jiang, Yu; Sze, Jiayin; Shi, Luping; Zhao, Rong; Pei, Jing

    2014-04-01

    Learning scheme is the key to the utilization of spike-based computation and the emulation of neural/synaptic behaviors toward realization of cognition. The biological observations reveal an integrated spike time- and spike rate-dependent plasticity as a function of presynaptic firing frequency. However, this integrated rate-temporal learning scheme has not been realized on any nano devices. In this paper, such scheme is successfully demonstrated on a memristor. Great robustness against the spiking rate fluctuation is achieved by waveform engineering with the aid of good analog properties exhibited by the iron oxide-based memristor. The spike-time-dependence plasticity (STDP) occurs at moderate presynaptic firing frequencies and spike-rate-dependence plasticity (SRDP) dominates other regions. This demonstration provides a novel approach in neural coding implementation, which facilitates the development of bio-inspired computing systems.

  11. Enabling an Integrated Rate-temporal Learning Scheme on Memristor

    PubMed Central

    He, Wei; Huang, Kejie; Ning, Ning; Ramanathan, Kiruthika; Li, Guoqi; Jiang, Yu; Sze, JiaYin; Shi, Luping; Zhao, Rong; Pei, Jing

    2014-01-01

    Learning scheme is the key to the utilization of spike-based computation and the emulation of neural/synaptic behaviors toward realization of cognition. The biological observations reveal an integrated spike time- and spike rate-dependent plasticity as a function of presynaptic firing frequency. However, this integrated rate-temporal learning scheme has not been realized on any nano devices. In this paper, such scheme is successfully demonstrated on a memristor. Great robustness against the spiking rate fluctuation is achieved by waveform engineering with the aid of good analog properties exhibited by the iron oxide-based memristor. The spike-time-dependence plasticity (STDP) occurs at moderate presynaptic firing frequencies and spike-rate-dependence plasticity (SRDP) dominates other regions. This demonstration provides a novel approach in neural coding implementation, which facilitates the development of bio-inspired computing systems. PMID:24755608

  12. Statistical Profiles of Highly-Rated Learning Objects

    ERIC Educational Resources Information Center

    Cechinel, Cristian; Sanchez-Alonso, Salvador; Garcia-Barriocanal, Elena

    2011-01-01

    The continuously growth of learning resources available in on-line repositories has raised the concern for the development of automated methods for quality assessment. The current existence of on-line evaluations in such repositories has opened the possibility of searching for statistical profiles of highly-rated resources that can be used as…

  13. Improved Adaptive-Reinforcement Learning Control for morphing unmanned air vehicles.

    PubMed

    Valasek, John; Doebbler, James; Tandale, Monish D; Meade, Andrew J

    2008-08-01

    This paper presents an improved Adaptive-Reinforcement Learning Control methodology for the problem of unmanned air vehicle morphing control. The reinforcement learning morphing control function that learns the optimal shape change policy is integrated with an adaptive dynamic inversion control trajectory tracking function. An episodic unsupervised learning simulation using the Q-learning method is developed to replace an earlier and less accurate Actor-Critic algorithm. Sequential Function Approximation, a Galerkin-based scattered data approximation scheme, replaces a K-Nearest Neighbors (KNN) method and is used to generalize the learning from previously experienced quantized states and actions to the continuous state-action space, all of which may not have been experienced before. The improved method showed smaller errors and improved learning of the optimal shape compared to the KNN. PMID:18632393

  14. Modeling of Rate-Dependent Hysteresis Using a GPO-Based Adaptive Filter.

    PubMed

    Zhang, Zhen; Ma, Yaopeng

    2016-01-01

    A novel generalized play operator-based (GPO-based) nonlinear adaptive filter is proposed to model rate-dependent hysteresis nonlinearity for smart actuators. In the proposed filter, the input signal vector consists of the output of a tapped delay line. GPOs with various thresholds are used to construct a nonlinear network and connected with the input signals. The output signal of the filter is composed of a linear combination of signals from the output of GPOs. The least-mean-square (LMS) algorithm is used to adjust the weights of the nonlinear filter. The modeling results of four adaptive filter methods are compared: GPO-based adaptive filter, Volterra filter, backlash filter and linear adaptive filter. Moreover, a phenomenological operator-based model, the rate-dependent generalized Prandtl-Ishlinskii (RDGPI) model, is compared to the proposed adaptive filter. The various rate-dependent modeling methods are applied to model the rate-dependent hysteresis of a giant magnetostrictive actuator (GMA). It is shown from the modeling results that the GPO-based adaptive filter can describe the rate-dependent hysteresis nonlinear of the GMA more accurately and effectively. PMID:26861349

  15. Modeling of Rate-Dependent Hysteresis Using a GPO-Based Adaptive Filter

    PubMed Central

    Zhang, Zhen; Ma, Yaopeng

    2016-01-01

    A novel generalized play operator-based (GPO-based) nonlinear adaptive filter is proposed to model rate-dependent hysteresis nonlinearity for smart actuators. In the proposed filter, the input signal vector consists of the output of a tapped delay line. GPOs with various thresholds are used to construct a nonlinear network and connected with the input signals. The output signal of the filter is composed of a linear combination of signals from the output of GPOs. The least-mean-square (LMS) algorithm is used to adjust the weights of the nonlinear filter. The modeling results of four adaptive filter methods are compared: GPO-based adaptive filter, Volterra filter, backlash filter and linear adaptive filter. Moreover, a phenomenological operator-based model, the rate-dependent generalized Prandtl-Ishlinskii (RDGPI) model, is compared to the proposed adaptive filter. The various rate-dependent modeling methods are applied to model the rate-dependent hysteresis of a giant magnetostrictive actuator (GMA). It is shown from the modeling results that the GPO-based adaptive filter can describe the rate-dependent hysteresis nonlinear of the GMA more accurately and effectively. PMID:26861349

  16. Firing rate dynamics in the hippocampus induced by trajectory learning.

    PubMed

    Ji, Daoyun; Wilson, Matthew A

    2008-04-30

    The hippocampus is essential for spatial navigation, which may involve sequential learning. However, how the hippocampus encodes new sequences in familiar environments is unknown. To study the impact of novel spatial sequences on the activity of hippocampal neurons, we monitored hippocampal ensembles while rats learned to switch from two familiar trajectories to a new one in a familiar environment. Here, we show that this novel spatial experience induces two types of changes in firing rates, but not locations of hippocampal place cells. First, place-cell firing rates on the two familiar trajectories start to change before the actual behavioral switch to the new trajectory. Second, repeated exposure on the new trajectory is associated with an increased dependence of place-cell firing rates on immediate past locations. The result suggests that sequence encoding in the hippocampus may involve integration of information about the recent past into current state. PMID:18448645

  17. Adaptive Learning and Reduced Cognitive Uncertainty in a Financial Organization

    ERIC Educational Resources Information Center

    Antonsen, Yngve; Thunberg, Odd Arne; Tiller, Tom

    2010-01-01

    Purpose: This paper analyses and discusses the "learning activities" that comprise obligatory learning at work by employees each month. The management strategy is to use these learning activities to spread knowledge, exchange experience and implement new skills within the organisation. The purpose of this paper is to answer the question: to what…

  18. Implementing Service-Learning in Undergraduate Adapted Physical Education

    ERIC Educational Resources Information Center

    Bishop, Jason; Driver, Simon

    2007-01-01

    Service-learning (SL) integrates academic learning with relevant community service in an educational setting. Many fields of study, including kinesiology, have incorporated SL into their course curriculums. Research indicates that SL has many benefits to students, including exposure to a different learning approach, opportunities to apply…

  19. Social Networks-Based Adaptive Pairing Strategy for Cooperative Learning

    ERIC Educational Resources Information Center

    Chuang, Po-Jen; Chiang, Ming-Chao; Yang, Chu-Sing; Tsai, Chun-Wei

    2012-01-01

    In this paper, we propose a grouping strategy to enhance the learning and testing results of students, called Pairing Strategy (PS). The proposed method stems from the need of interactivity and the desire of cooperation in cooperative learning. Based on the social networks of students, PS provides members of the groups to learn from or mimic…

  20. Stimulating the cerebellum affects visuomotor adaptation but not intermanual transfer of learning

    PubMed Central

    Block, Hannah; Celnik, Pablo

    2013-01-01

    When systematic movement errors occur, the brain responds with a systematic change in motor behavior. This type of adaptive motor learning can transfer intermanually; adaptation of movements of the right hand in response to training with a perturbed visual signal (visuomotor adaptation) may carry over to the left hand. While visuomotor adaptation has been studied extensively, it is unclear whether the cerebellum, a structure involved in adaptation, is important for intermanual transfer as well. We addressed this question with three experiments in which subjects reached with their right hands as a 30° visuomotor rotation was introduced. Subjects received anodal or sham transcranial direct current stimulation (tDCS) on the trained (Experiment 1) or untrained (Experiment 2) hemisphere of the cerebellum, or, for comparison, motor cortex (M1). After the training period, subjects reached with their left hand, without visual feedback, to assess intermanual transfer of learning aftereffects. Stimulation of the right cerebellum caused faster adaptation, but none of the stimulation sites affected transfer. To ascertain whether cerebellar stimulation would increase transfer if subjects learned faster as well as a larger amount, in Experiment 3 anodal and sham cerebellar groups experienced a shortened training block such that the anodal group learned more than sham. Despite the difference in adaptation magnitude, transfer was similar across these groups, although smaller than in Experiment 1. Our results suggest that intermanual transfer of visuomotor learning does not depend on cerebellar activity, and that the number of movements performed at plateau is an important predictor of transfer. PMID:23625383

  1. Recovery Act: Energy Efficiency of Data Networks through Rate Adaptation (EEDNRA) - Final Technical Report

    SciTech Connect

    Matthew Andrews; Spyridon Antonakopoulos; Steve Fortune; Andrea Francini; Lisa Zhang

    2011-07-12

    This Concept Definition Study focused on developing a scientific understanding of methods to reduce energy consumption in data networks using rate adaptation. Rate adaptation is a collection of techniques that reduce energy consumption when traffic is light, and only require full energy when traffic is at full provisioned capacity. Rate adaptation is a very promising technique for saving energy: modern data networks are typically operated at average rates well below capacity, but network equipment has not yet been designed to incorporate rate adaptation. The Study concerns packet-switching equipment, routers and switches; such equipment forms the backbone of the modern Internet. The focus of the study is on algorithms and protocols that can be implemented in software or firmware to exploit hardware power-control mechanisms. Hardware power-control mechanisms are widely used in the computer industry, and are beginning to be available for networking equipment as well. Network equipment has different performance requirements than computer equipment because of the very fast rate of packet arrival; hence novel power-control algorithms are required for networking. This study resulted in five published papers, one internal report, and two patent applications, documented below. The specific technical accomplishments are the following: • A model for the power consumption of switching equipment used in service-provider telecommunication networks as a function of operating state, and measured power-consumption values for typical current equipment. • An algorithm for use in a router that adapts packet processing rate and hence power consumption to traffic load while maintaining performance guarantees on delay and throughput. • An algorithm that performs network-wide traffic routing with the objective of minimizing energy consumption, assuming that routers have less-than-ideal rate adaptivity. • An estimate of the potential energy savings in service-provider networks

  2. ActiveTutor: Towards More Adaptive Features in an E-Learning Framework

    ERIC Educational Resources Information Center

    Fournier, Jean-Pierre; Sansonnet, Jean-Paul

    2008-01-01

    Purpose: This paper aims to sketch the emerging notion of auto-adaptive software when applied to e-learning software. Design/methodology/approach: The study and the implementation of the auto-adaptive architecture are based on the operational framework "ActiveTutor" that is used for teaching the topic of computer science programming in first-grade…

  3. Learning Motivation and Adaptive Video Caption Filtering for EFL Learners Using Handheld Devices

    ERIC Educational Resources Information Center

    Hsu, Ching-Kun

    2015-01-01

    The aim of this study was to provide adaptive assistance to improve the listening comprehension of eleventh grade students. This study developed a video-based language learning system for handheld devices, using three levels of caption filtering adapted to student needs. Elementary level captioning excluded 220 English sight words (see Section 1…

  4. The older person has a stroke: Learning to adapt using the Feldenkrais® Method.

    PubMed

    Jackson-Wyatt, O

    1995-01-01

    The older person with a stroke requires adapted therapeutic interventions to take into account normal age-related changes. The Feldenkrais® Method presents a model for learning to promote adaptability that addresses key functional changes seen with normal aging. Clinical examples related to specific functional tasks are discussed to highlight major treatment modifications and neuromuscular, psychological, emotional, and sensory considerations. PMID:27619899

  5. An Open IMS-Based User Modelling Approach for Developing Adaptive Learning Management Systems

    ERIC Educational Resources Information Center

    Boticario, Jesus G.; Santos, Olga C.

    2007-01-01

    Adaptive LMS have not yet reached the eLearning marketplace due to methodological, technological and management open issues. At aDeNu group, we have been working on two key challenges for the last five years in related research projects. Firstly, develop the general framework and a running architecture to support the adaptive life cycle (i.e.,…

  6. Higher-Order Thinking Development through Adaptive Problem-Based Learning

    ERIC Educational Resources Information Center

    Raiyn, Jamal; Tilchin, Oleg

    2015-01-01

    In this paper we propose an approach to organizing Adaptive Problem-Based Learning (PBL) leading to the development of Higher-Order Thinking (HOT) skills and collaborative skills in students. Adaptability of PBL is expressed by changes in fixed instructor assessments caused by the dynamics of developing HOT skills needed for problem solving,…

  7. Designing an Adaptive Web-Based Learning System Based on Students' Cognitive Styles Identified Online

    ERIC Educational Resources Information Center

    Lo, Jia-Jiunn; Chan, Ya-Chen; Yeh, Shiou-Wen

    2012-01-01

    This study developed an adaptive web-based learning system focusing on students' cognitive styles. The system is composed of a student model and an adaptation model. It collected students' browsing behaviors to update the student model for unobtrusively identifying student cognitive styles through a multi-layer feed-forward neural network (MLFF).…

  8. Learning to push and learning to move: the adaptive control of contact forces

    PubMed Central

    Casadio, Maura; Pressman, Assaf; Mussa-Ivaldi, Ferdinando A.

    2015-01-01

    To be successful at manipulating objects one needs to apply simultaneously well controlled movements and contact forces. We present a computational theory of how the brain may successfully generate a vast spectrum of interactive behaviors by combining two independent processes. One process is competent to control movements in free space and the other is competent to control contact forces against rigid constraints. Free space and rigid constraints are singularities at the boundaries of a continuum of mechanical impedance. Within this continuum, forces and motions occur in “compatible pairs” connected by the equations of Newtonian dynamics. The force applied to an object determines its motion. Conversely, inverse dynamics determine a unique force trajectory from a movement trajectory. In this perspective, we describe motor learning as a process leading to the discovery of compatible force/motion pairs. The learned compatible pairs constitute a local representation of the environment's mechanics. Experiments on force field adaptation have already provided us with evidence that the brain is able to predict and compensate the forces encountered when one is attempting to generate a motion. Here, we tested the theory in the dual case, i.e., when one attempts at applying a desired contact force against a simulated rigid surface. If the surface becomes unexpectedly compliant, the contact point moves as a function of the applied force and this causes the applied force to deviate from its desired value. We found that, through repeated attempts at generating the desired contact force, subjects discovered the unique compatible hand motion. When, after learning, the rigid contact was unexpectedly restored, subjects displayed after effects of learning, consistent with the concurrent operation of a motion control system and a force control system. Together, theory and experiment support a new and broader view of modularity in the coordinated control of forces and motions

  9. Learning to push and learning to move: the adaptive control of contact forces.

    PubMed

    Casadio, Maura; Pressman, Assaf; Mussa-Ivaldi, Ferdinando A

    2015-01-01

    To be successful at manipulating objects one needs to apply simultaneously well controlled movements and contact forces. We present a computational theory of how the brain may successfully generate a vast spectrum of interactive behaviors by combining two independent processes. One process is competent to control movements in free space and the other is competent to control contact forces against rigid constraints. Free space and rigid constraints are singularities at the boundaries of a continuum of mechanical impedance. Within this continuum, forces and motions occur in "compatible pairs" connected by the equations of Newtonian dynamics. The force applied to an object determines its motion. Conversely, inverse dynamics determine a unique force trajectory from a movement trajectory. In this perspective, we describe motor learning as a process leading to the discovery of compatible force/motion pairs. The learned compatible pairs constitute a local representation of the environment's mechanics. Experiments on force field adaptation have already provided us with evidence that the brain is able to predict and compensate the forces encountered when one is attempting to generate a motion. Here, we tested the theory in the dual case, i.e., when one attempts at applying a desired contact force against a simulated rigid surface. If the surface becomes unexpectedly compliant, the contact point moves as a function of the applied force and this causes the applied force to deviate from its desired value. We found that, through repeated attempts at generating the desired contact force, subjects discovered the unique compatible hand motion. When, after learning, the rigid contact was unexpectedly restored, subjects displayed after effects of learning, consistent with the concurrent operation of a motion control system and a force control system. Together, theory and experiment support a new and broader view of modularity in the coordinated control of forces and motions. PMID

  10. Adaptive Semantic and Social Web-based learning and assessment environment for the STEM

    NASA Astrophysics Data System (ADS)

    Babaie, Hassan; Atchison, Chris; Sunderraman, Rajshekhar

    2014-05-01

    We are building a cloud- and Semantic Web-based personalized, adaptive learning environment for the STEM fields that integrates and leverages Social Web technologies to allow instructors and authors of learning material to collaborate in semi-automatic development and update of their common domain and task ontologies and building their learning resources. The semi-automatic ontology learning and development minimize issues related to the design and maintenance of domain ontologies by knowledge engineers who do not have any knowledge of the domain. The social web component of the personal adaptive system will allow individual and group learners to interact with each other and discuss their own learning experience and understanding of course material, and resolve issues related to their class assignments. The adaptive system will be capable of representing key knowledge concepts in different ways and difficulty levels based on learners' differences, and lead to different understanding of the same STEM content by different learners. It will adapt specific pedagogical strategies to individual learners based on their characteristics, cognition, and preferences, allow authors to assemble remotely accessed learning material into courses, and provide facilities for instructors to assess (in real time) the perception of students of course material, monitor their progress in the learning process, and generate timely feedback based on their understanding or misconceptions. The system applies a set of ontologies that structure the learning process, with multiple user friendly Web interfaces. These include the learning ontology (models learning objects, educational resources, and learning goal); context ontology (supports adaptive strategy by detecting student situation), domain ontology (structures concepts and context), learner ontology (models student profile, preferences, and behavior), task ontologies, technological ontology (defines devices and places that surround the

  11. Academic Accountability and University Adaptation: The Architecture of an Academic Learning Organization.

    ERIC Educational Resources Information Center

    Dill, David D.

    1999-01-01

    Discussses various adaptations in organizational structure and governance of academic learning institutions, using case studies of universities that are attempting to improve the quality of teaching and the learning process. Identifies five characteristics typical of such organizations: (1) a culture of evidence; (2) improved coordination of…

  12. A Standard-Based Model for Adaptive E-Learning Platform for Mauritian Academic Institutions

    ERIC Educational Resources Information Center

    Kanaksabee, P.; Odit, M. P.; Ramdoyal, A.

    2011-01-01

    The key aim of this paper is to introduce a standard-based model for adaptive e-learning platform for Mauritian academic institutions and to investigate the conditions and tools required to implement this model. The main forces of the system are that it allows collaborative learning, communication among user, and reduce considerable paper work.…

  13. Educational Multimedia Profiling Recommendations for Device-Aware Adaptive Mobile Learning

    ERIC Educational Resources Information Center

    Moldovan, Arghir-Nicolae; Ghergulescu, Ioana; Muntean, Cristina Hava

    2014-01-01

    Mobile learning is seeing a fast adoption with the increasing availability and affordability of mobile devices such as smartphones and tablets. As the creation and consumption of educational multimedia content on mobile devices is also increasing fast, educators and mobile learning providers are faced with the challenge to adapt multimedia type…

  14. Creatively Adapting Mastery Learning and Outcome-Based Education to the Social Work Classroom.

    ERIC Educational Resources Information Center

    Aviles, Christopher B.

    This workshop was presented on outcome-based education and described how the instructional method called mastery learning compliments it and can be adapted for social work education. Although outcome-based education involves creating clearly outlined expected student outcomes, by itself it is not an instructional method. Mastery learning is a…

  15. An Online Adaptive Learning Environment for Critical-Thinking-Infused English Literacy Instruction

    ERIC Educational Resources Information Center

    Yang, Ya-Ting Carolyn; Gamble, Jeffrey Hugh; Hung, Yu-Wan; Lin, Tzu-Yun

    2014-01-01

    Critical thinking (CT) and English literacy are two essential 21st century competencies that are a priority for teaching and learning in an increasingly digital learning environment. Taking advantage of innovations in educational technology, this study empirically investigates the effectiveness of CT-infused adaptive English literacy instruction…

  16. Ontology-Based Multimedia Authoring Tool for Adaptive E-Learning

    ERIC Educational Resources Information Center

    Deng, Lawrence Y.; Keh, Huan-Chao; Liu, Yi-Jen

    2010-01-01

    More video streaming technologies supporting distance learning systems are becoming popular among distributed network environments. In this paper, the authors develop a multimedia authoring tool for adaptive e-learning by using characterization of extended media streaming technologies. The distributed approach is based on an ontology-based model.…

  17. The Effect of Adaptive Confidence Strategies in Computer-Assisted Instruction on Learning and Learner Confidence

    ERIC Educational Resources Information Center

    Warren, Richard Daniel

    2012-01-01

    The purpose of this research was to investigate the effects of including adaptive confidence strategies in instructionally sound computer-assisted instruction (CAI) on learning and learner confidence. Seventy-one general educational development (GED) learners recruited from various GED learning centers at community colleges in the southeast United…

  18. Adaptation of the Students' Motivation towards Science Learning (SMTSL) Questionnaire in the Greek Language

    ERIC Educational Resources Information Center

    Dermitzaki, Irini; Stavroussi, Panayiota; Vavougios, Denis; Kotsis, Konstantinos T.

    2013-01-01

    The present study aimed at adapting in the Greek language the Students' Motivation Towards Science Learning (SMTSL) questionnaire developed by Tuan, Chin, and Shieh ("INT J SCI EDUC" 27(6): 639-654, 2005a) into a different cultural context, a different age group, that is, in university students and with a focus on physics learning.…

  19. Perceived Control and Adaptive Coping: Programs for Adolescent Students Who Have Learning Disabilities

    ERIC Educational Resources Information Center

    Firth, Nola; Frydenberg, Erica; Greaves, Daryl

    2008-01-01

    This study explored the effect of a coping program and a teacher feedback intervention on perceived control and adaptive coping for 98 adolescent students who had specific learning disabilities. The coping program was modified to build personal control and to address the needs of students who have specific learning disabilities. The teacher…

  20. Towards Increased Relevance: Context-Adapted Models of the Learning Organization

    ERIC Educational Resources Information Center

    Örtenblad, Anders

    2015-01-01

    Purpose: The purposes of this paper are to take a closer look at the relevance of the idea of the learning organization for organizations in different generalized organizational contexts; to open up for the existence of multiple, context-adapted models of the learning organization; and to suggest a number of such models.…

  1. Adaptive Human Scaffolding Facilitates Adolescents' Self-Regulated Learning with Hypermedia

    ERIC Educational Resources Information Center

    Azevedo, Roger; Cromley, Jennifer G.; Winters, Fielding I.; Moos, Daniel C.; Greene, Jeffrey A.

    2005-01-01

    This study examines the effectiveness of three scaffolding conditions on adolescents' learning about the circulatory system with a hypermedia learning environment. One hundred and eleven adolescents (n = 111) were randomly assigned to one of three scaffolding conditions (adaptive scaffolding (AS), fixed scaffolding (FS), or no scaffolding (NS))…

  2. A User-Centric Adaptive Learning System for E-Learning 2.0

    ERIC Educational Resources Information Center

    Huang, Shiu-Li; Shiu, Jung-Hung

    2012-01-01

    The success of Web 2.0 inspires e-learning to evolve into e-learning 2.0, which exploits collective intelligence to achieve user-centric learning. However, searching for suitable learning paths and content for achieving a learning goal is time consuming and troublesome on e-learning 2.0 platforms. Therefore, introducing formal learning in these…

  3. Long-Term Retention Explained by a Model of Short-Term Learning in the Adaptive Control of Reaching

    PubMed Central

    Joiner, Wilsaan M.; Smith, Maurice A.

    2008-01-01

    Extensive theoretical, psychophysical, and neurobiological work has focused on the mechanisms by which short-term learning develops into long-term memory. Better understanding of these mechanisms may lead to the ability to improve the efficiency of training procedures. A key phenomenon in the formation of long-term memory is the effect of over learning on retention—discovered by Ebbinghaus in 1885: when the initial training period in a task is prolonged even beyond what is necessary for good immediate recall, long-term retention improves. Although this over learning effect has received considerable attention as a phenomenon in psychology research, the mechanisms governing this process are not well understood, and the ability to predict the benefit conveyed by varying degrees of over learning does not yet exist. Here we studied the relationship between the duration of an initial training period and the amount of retention 24 h later for the adaptation of human reaching arm movements to a novel force environment. We show that in this motor adaptation task, the amount of long-term retention is predicted not by the overall performance level achieved during the training period but rather by the level of a specific component process in a multi-rate model of short-term memory formation. These findings indicate that while multiple learning processes determine the ability to learn a motor adaptation, only one provides a gateway to long-term memory formation. Understanding the dynamics of this key learning process may allow for the rational design of training and rehabilitation paradigms that maximize the long-term benefit of each session. PMID:18784273

  4. Rule-based mechanisms of learning for intelligent adaptive flight control

    NASA Technical Reports Server (NTRS)

    Handelman, David A.; Stengel, Robert F.

    1990-01-01

    How certain aspects of human learning can be used to characterize learning in intelligent adaptive control systems is investigated. Reflexive and declarative memory and learning are described. It is shown that model-based systems-theoretic adaptive control methods exhibit attributes of reflexive learning, whereas the problem-solving capabilities of knowledge-based systems of artificial intelligence are naturally suited for implementing declarative learning. Issues related to learning in knowledge-based control systems are addressed, with particular attention given to rule-based systems. A mechanism for real-time rule-based knowledge acquisition is suggested, and utilization of this mechanism within the context of failure diagnosis for fault-tolerant flight control is demonstrated.

  5. International Students' Culture Learning and Cultural Adaptation in China

    ERIC Educational Resources Information Center

    An, Ran; Chiang, Shiao-Yun

    2015-01-01

    This article examines international students' cultural adaptation at a major national university in China. A survey was designed to measure international students' adaptation to the Chinese sociocultural and educational environments in terms of five dimensions: (1) cultural empathy, (2) open-mindedness, (3) emotional stability, (4) social…

  6. Management Strategies for Complex Adaptive Systems: Sensemaking, Learning, and Improvisation

    ERIC Educational Resources Information Center

    McDaniel, Reuben R., Jr.

    2007-01-01

    Misspecification of the nature of organizations may be a major reason for difficulty in achieving performance improvement. Organizations are often viewed as machine-like, but complexity science suggests that organizations should be viewed as complex adaptive systems. I identify the characteristics of complex adaptive systems and give examples of…

  7. Innovations in Lifelong Learning: Capitalising on ADAPT. CEDEFOP Panorama Series.

    ERIC Educational Resources Information Center

    Janssens, Jos

    A community initiative (called ADAPT) was intended to help the workforce in European Union countries to adapt to industrial change and prepare for the information society, as well as to promote growth, employment, and the competitiveness of companies in the countries. Between 1995 and 1999, 4,000 projects were funded to transform the ways in which…

  8. The effect of retinal image error update rate on human vestibulo-ocular reflex gain adaptation.

    PubMed

    Fadaee, Shannon B; Migliaccio, Americo A

    2016-04-01

    The primary function of the angular vestibulo-ocular reflex (VOR) is to stabilise images on the retina during head movements. Retinal image movement is the likely feedback signal that drives VOR modification/adaptation for different viewing contexts. However, it is not clear whether a retinal image position or velocity error is used primarily as the feedback signal. Recent studies examining this signal are limited because they used near viewing to modify the VOR. However, it is not known whether near viewing drives VOR adaptation or is a pre-programmed contextual cue that modifies the VOR. Our study is based on analysis of the VOR evoked by horizontal head impulses during an established adaptation task. Fourteen human subjects underwent incremental unilateral VOR adaptation training and were tested using the scleral search coil technique over three separate sessions. The update rate of the laser target position (source of the retinal image error signal) used to drive VOR adaptation was different for each session [50 (once every 20 ms), 20 and 15/35 Hz]. Our results show unilateral VOR adaptation occurred at 50 and 20 Hz for both the active (23.0 ± 9.6 and 11.9 ± 9.1% increase on adapting side, respectively) and passive VOR (13.5 ± 14.9, 10.4 ± 12.2%). At 15 Hz, unilateral adaptation no longer occurred in the subject group for both the active and passive VOR, whereas individually, 4/9 subjects tested at 15 Hz had significant adaptation. Our findings suggest that 1-2 retinal image position error signals every 100 ms (i.e. target position update rate 15-20 Hz) are sufficient to drive VOR adaptation. PMID:26715411

  9. Adaptive learning and decision-making under uncertainty by metaplastic synapses guided by a surprise detection system

    PubMed Central

    Iigaya, Kiyohito

    2016-01-01

    Recent experiments have shown that animals and humans have a remarkable ability to adapt their learning rate according to the volatility of the environment. Yet the neural mechanism responsible for such adaptive learning has remained unclear. To fill this gap, we investigated a biophysically inspired, metaplastic synaptic model within the context of a well-studied decision-making network, in which synapses can change their rate of plasticity in addition to their efficacy according to a reward-based learning rule. We found that our model, which assumes that synaptic plasticity is guided by a novel surprise detection system, captures a wide range of key experimental findings and performs as well as a Bayes optimal model, with remarkably little parameter tuning. Our results further demonstrate the computational power of synaptic plasticity, and provide insights into the circuit-level computation which underlies adaptive decision-making. DOI: http://dx.doi.org/10.7554/eLife.18073.001 PMID:27504806

  10. Degree of learning, interpolated tests, and rate of forgetting.

    PubMed

    Rose, R J

    1992-11-01

    The purpose of the two experiments reported here was to observe the effects of degree of learning, interpolated tests, and retention interval, primarily on the rate of forgetting of a list of words, and secondarily on hypermnesia for those words. In the first experiment, all the subjects had one study trial on a list of 20 common words, followed by two tests of recall. Half of the subjects had further study and test trials until they had learned the words to a criterion of three correct consecutive recalls. Two days later, half of the subjects under each learning condition returned for four retention tests, and 16 days later, all the subjects returned for four tests. Experiment 2 was similar, except that all the subjects had at least three study trials followed by four recall tests on Day 1, intermediate tests were given 2 or 7 days later, and they all had final tests 14 days later. The results showed that rate of forgetting was attenuated by an additional intermediate set of tests but not by criterion learning. Hypermnesia was generally found over the tests that were given after a retention interval of 2 or more days. The best predictor of the amount of hypermnesia over a set of tests was the difference between overall cumulative recall and net recall on the first test of the set. PMID:1435265

  11. Visual discrimination learning in dwarf goats and associated changes in heart rate and heart rate variability.

    PubMed

    Langbein, Jan; Nürnberg, G; Manteuffel, G

    2004-09-30

    We studied visual discrimination learning in a group of Nigerian dwarf goats using a computer-based learning device which was integrated in the animals' home pen. We conducted three consecutive learning tasks (T1, T2 and T3), each of which lasted for 13 days. In each task, a different set of four visual stimuli was presented on a computer screen in a four-choice design. Predefined sequences of stimulus combinations were presented in a pseudorandom order. Animals were rewarded with drinking water when they chose the positive stimulus by pressing a button next to it. Noninvasive measurements of goats' heartbeat intervals were carried out on the first and the last 2 days of each learning task. We analysed heart rate (HR) and heart rate variability (HRV) of resting animals to study sustained physiological effects related to general learning challenge rather than acute excitement during an actual learning session. The number of trials to reach the learning criterion was 1000 in T1, when visual stimuli were presented to the goats for the first time, but decreased to 210 in T2 and 240 in T3, respectively. A stable plateau of correct choices between 70% and 80% was reached on Day 10 in T1, on Day 8 in T2 and on Day 6 in T3. We found a significant influence of the task and of the interaction between task and day on learning success. Whereas HR increased throughout T1, this relationship was inverted in T2 and T3, indicating different effects on the HR depending on how familiar goats were with the learning task. We found a significant influence of the task and the interaction between task and time within the task on HRV parameters, indicating changes of vagal activity at the heart. The results suggest that changes in HR related to learning were predominantly caused by a withdrawal of vagal activity at the heart. With regard to nonlinear processes in heartbeat regulation, increased deterministic shares of HRV indicated that the animals did not really relax until the end of T3

  12. A service based adaptive U-learning system using UX.

    PubMed

    Jeong, Hwa-Young; Yi, Gangman

    2014-01-01

    In recent years, traditional development techniques for e-learning systems have been changing to become more convenient and efficient. One new technology in the development of application systems includes both cloud and ubiquitous computing. Cloud computing can support learning system processes by using services while ubiquitous computing can provide system operation and management via a high performance technical process and network. In the cloud computing environment, a learning service application can provide a business module or process to the user via the internet. This research focuses on providing the learning material and processes of courses by learning units using the services in a ubiquitous computing environment. And we also investigate functions that support users' tailored materials according to their learning style. That is, we analyzed the user's data and their characteristics in accordance with their user experience. We subsequently applied the learning process to fit on their learning performance and preferences. Finally, we demonstrate how the proposed system outperforms learning effects to learners better than existing techniques. PMID:25147832

  13. A Service Based Adaptive U-Learning System Using UX

    PubMed Central

    Jeong, Hwa-Young

    2014-01-01

    In recent years, traditional development techniques for e-learning systems have been changing to become more convenient and efficient. One new technology in the development of application systems includes both cloud and ubiquitous computing. Cloud computing can support learning system processes by using services while ubiquitous computing can provide system operation and management via a high performance technical process and network. In the cloud computing environment, a learning service application can provide a business module or process to the user via the internet. This research focuses on providing the learning material and processes of courses by learning units using the services in a ubiquitous computing environment. And we also investigate functions that support users' tailored materials according to their learning style. That is, we analyzed the user's data and their characteristics in accordance with their user experience. We subsequently applied the learning process to fit on their learning performance and preferences. Finally, we demonstrate how the proposed system outperforms learning effects to learners better than existing techniques. PMID:25147832

  14. Adaptation of hidden Markov models for recognizing speech of reduced frame rate.

    PubMed

    Lee, Lee-Min; Jean, Fu-Rong

    2013-12-01

    The frame rate of the observation sequence in distributed speech recognition applications may be reduced to suit a resource-limited front-end device. In order to use models trained using full-frame-rate data in the recognition of reduced frame-rate (RFR) data, we propose a method for adapting the transition probabilities of hidden Markov models (HMMs) to match the frame rate of the observation. Experiments on the recognition of clean and noisy connected digits are conducted to evaluate the proposed method. Experimental results show that the proposed method can effectively compensate for the frame-rate mismatch between the training and the test data. Using our adapted model to recognize the RFR speech data, one can significantly reduce the computation time and achieve the same level of accuracy as that of a method, which restores the frame rate using data interpolation. PMID:23757520

  15. Usability of clinical decision support system as a facilitator for learning the assistive technology adaptation process.

    PubMed

    Danial-Saad, Alexandra; Kuflik, Tsvi; Weiss, Patrice L Tamar; Schreuer, Naomi

    2016-01-01

    The aim of this study was to evaluate the usability of Ontology Supported Computerized Assistive Technology Recommender (OSCAR), a Clinical Decision Support System (CDSS) for the assistive technology adaptation process, its impact on learning the matching process, and to determine the relationship between its usability and learnability. Two groups of expert and novice clinicians (total, n = 26) took part in this study. Each group filled out system usability scale (SUS) to evaluate OSCAR's usability. The novice group completed a learning questionnaire to assess OSCAR's effect on their ability to learn the matching process. Both groups rated OSCAR's usability as "very good", (M [SUS] = 80.7, SD = 11.6, median = 83.7) by the novices, and (M [SUS] = 81.2, SD = 6.8, median = 81.2) by the experts. The Mann-Whitney results indicated that no significant differences were found between the expert and novice groups in terms of OSCAR's usability. A significant positive correlation existed between the usability of OSCAR and the ability to learn the adaptation process (rs = 0.46, p = 0.04). Usability is an important factor in the acceptance of a system. The successful application of user-centered design principles during the development of OSCAR may serve as a case study that models the significant elements to be considered, theoretically and practically in developing other systems. Implications for Rehabilitation Creating a CDSS with a focus on its usability is an important factor for its acceptance by its users. Successful usability outcomes can impact the learning process of the subject matter in general, and the AT prescription process in particular. The successful application of User-Centered Design principles during the development of OSCAR may serve as a case study that models the significant elements to be considered, theoretically and practically. The study emphasizes the importance of close collaboration between the developers and

  16. Adaptative Peer to Peer Data Sharing for Technology Enhanced Learning

    NASA Astrophysics Data System (ADS)

    Angelaccio, Michele; Buttarazzi, Berta

    Starting from the hypothesis that P2P Data Sharing in a direct teaching scenario (e.g.: a classroom lesson) may lead to relevant benefits, this paper explores the features of EduSHARE a Collaborative Learning System useful for Enhanced Learning Process.

  17. Assessing Online Learning and Teaching: Adapting the Minute Paper

    ERIC Educational Resources Information Center

    Vonderwell, Selma

    2004-01-01

    Online learning is impacting current university practices and policies and quickly changing the fabric of higher education (Rowley, Lujan, & Dolence, 1998). Effective assessment techniques can improve an instructor's understanding of student needs and provide a learner-centered classroom. Understanding and evaluating student learning becomes…

  18. Psychosocial and Adaptive Deficits Associated with Learning Disability Subtypes

    ERIC Educational Resources Information Center

    Backenson, Erica M.; Holland, Sara C.; Kubas, Hanna A.; Fitzer, Kim R.; Wilcox, Gabrielle; Carmichael, Jessica A.; Fraccaro, Rebecca L.; Smith, Amanda D.; Macoun, Sarah J.; Harrison, Gina L.; Hale, James B.

    2015-01-01

    Children with specific learning disabilities (SLD) have deficits in the basic psychological processes that interfere with learning and academic achievement, and for some SLD subtypes, these deficits can also lead to emotional and/or behavior problems. This study examined psychosocial functioning in 123 students, aged 6 to 11, who underwent…

  19. Lessons Learned from the Everglades Collaborative Adaptive Management Program

    EPA Science Inventory

    Recent technical papers explore whether adaptive management (AM) is useful for environmental management and restoration efforts and discuss the many challenges to overcome for successful implementation, especially for large-scale restoration programs (McLain and Lee 1996; Levine ...

  20. Costs and Benefits of High Mutation Rates: Adaptive Evolution of Bacteria in the Mouse Gut

    NASA Astrophysics Data System (ADS)

    Giraud, Antoine; Matic, Ivan; Tenaillon, Olivier; Clara, Antonio; Radman, Miroslav; Fons, Michel; Taddei, François

    2001-03-01

    We have shown that bacterial mutation rates change during the experimental colonization of the mouse gut. A high mutation rate was initially beneficial because it allowed faster adaptation, but this benefit disappeared once adaptation was achieved. Mutator bacteria accumulated mutations that, although neutral in the mouse gut, are often deleterious in secondary environments. Consistently, the competitiveness of mutator bacteria is reduced during transmission to and re-colonization of similar hosts. The short-term advantages and long-term disadvantages of mutator bacteria could account for their frequency in nature.

  1. Evaluation of Neural Response Telemetry (NRT™) with focus on long-term rate adaptation over a wide range of stimulation rates.

    PubMed

    Huarte, Alicia; Ramos, Angel; Morera, Constantino; Garcia-Ibáñez, Luis; Battmer, Rolf; Dillier, Norbert; Wesarg, Thomas; Müller-Deile, Joachim; Hey, Mattias; Offeciers, Erwin; von Wallenberg, Ernst; Coudert, Chrystelle; Killian, Matthijs

    2014-05-01

    Custom Sound EP™ (CSEP) is an advanced flexible software tool dedicated to recording of electrically evoked compound action potentials (ECAPs) in Nucleus® recipients using Neural Response Telemetry™ (NRT™). European multi-centre studies of the Freedom™ cochlear implant system confirmed that CSEP offers tools to effectively record ECAP thresholds, amplitude growth functions, recovery functions, spread of excitation functions, and rate adaptation functions and an automated algorithm (AutoNRT™) to measure threshold profiles. This paper reports on rate adaptation measurements. Rate adaptation of ECAP amplitudes can successfully be measured up to rates of 495 pulses per second (pps) by repeating conventional ECAP measurements and over a wide range of rates up to 8000 pps using the masked response extraction technique. Rate adaptation did not show a predictable relationship with speech perception and coding strategy channel rate preference. The masked response extraction method offers opportunities to study long-term rate adaptation with well-defined and controlled stimulation paradigms. PMID:24559068

  2. Auditory Cortical Plasticity in Learning to Discriminate Modulation Rate

    PubMed Central

    van Wassenhove, Virginie; Nagarajan, Srikantan S.

    2014-01-01

    The discrimination of temporal information in acoustic inputs is a crucial aspect of auditory perception, yet very few studies have focused on auditory perceptual learning of timing properties and associated plasticity in adult auditory cortex. Here, we trained participants on a temporal discrimination task. The main task used a base stimulus (four tones separated by intervals of 200 ms) that had to be distinguished from a target stimulus (four tones with intervals down to ~180 ms). We show that participants’ auditory temporal sensitivity improves with a short amount of training (3 d, 1 h/d). Learning to discriminate temporal modulation rates was accompanied by a systematic amplitude increase of the early auditory evoked responses to trained stimuli, as measured by magnetoencephalography. Additionally, learning and auditory cortex plasticity partially generalized to interval discrimination but not to frequency discrimination. Auditory cortex plasticity associated with short-term perceptual learning was manifested as an enhancement of auditory cortical responses to trained acoustic features only in the trained task. Plasticity was also manifested as induced non-phase–locked high gamma-band power increases in inferior frontal cortex during performance in the trained task. Functional plasticity in auditory cortex is here interpreted as the product of bottom-up and top-down modulations. PMID:17344404

  3. Rate-adaptive modulation and coding for optical fiber transmission systems

    NASA Astrophysics Data System (ADS)

    Gho, Gwang-Hyun; Kahn, Joseph M.

    2011-01-01

    Rate-adaptive optical transmission techniques adjust information bit rate based on transmission distance and other factors affecting signal quality. These techniques enable increased bit rates over shorter links, while enabling transmission over longer links when regeneration is not available. They are likely to become more important with increasing network traffic and a continuing evolution toward optically switched mesh networks, which make signal quality more variable. We propose a rate-adaptive scheme using variable-rate forward error correction (FEC) codes and variable constellations with a fixed symbol rate, quantifying how achievable bit rates vary with distance. The scheme uses serially concatenated Reed-Solomon codes and an inner repetition code to vary the code rate, combined with singlecarrier polarization-multiplexed M-ary quadrature amplitude modulation (PM-M-QAM) with variable M and digital coherent detection. A rate adaptation algorithm uses the signal-to-noise ratio (SNR) or the FEC decoder input bit-error ratio (BER) estimated by a receiver to determine the FEC code rate and constellation size that maximizes the information bit rate while satisfying a target FEC decoder output BER and an SNR margin, yielding a peak rate of 200 Gbit/s in a nominal 50-GHz channel bandwidth. We simulate single-channel transmission through a long-haul fiber system incorporating numerous optical switches, evaluating the impact of fiber nonlinearity and bandwidth narrowing. With zero SNR margin, we achieve bit rates of 200/100/50 Gbit/s over distances of 650/2000/3000 km. Compared to an ideal coding scheme, the proposed scheme exhibits a performance gap ranging from about 6.4 dB at 650 km to 7.5 dB at 5000 km.

  4. On the nature of cultural transmission networks: evidence from Fijian villages for adaptive learning biases.

    PubMed

    Henrich, Joseph; Broesch, James

    2011-04-12

    Unlike other animals, humans are heavily dependent on cumulative bodies of culturally learned information. Selective processes operating on this socially learned information can produce complex, functionally integrated, behavioural repertoires-cultural adaptations. To understand such non-genetic adaptations, evolutionary theorists propose that (i) natural selection has favoured the emergence of psychological biases for learning from those individuals most likely to possess adaptive information, and (ii) when these psychological learning biases operate in populations, over generations, they can generate cultural adaptations. Many laboratory experiments now provide evidence for these psychological biases. Here, we bridge from the laboratory to the field by examining if and how these biases emerge in a small-scale society. Data from three cultural domains-fishing, growing yams and using medicinal plants-show that Fijian villagers (ages 10 and up) are biased to learn from others perceived as more successful/knowledgeable, both within and across domains (prestige effects). We also find biases for sex and age, as well as proximity effects. These selective and centralized oblique transmission networks set up the conditions for adaptive cultural evolution. PMID:21357236

  5. Adapted Lethality: What We Can Learn from Guinea Pig-Adapted Ebola Virus Infection Model

    PubMed Central

    Cheresiz, S. V.; Semenova, E. A.; Chepurnov, A. A.

    2016-01-01

    Establishment of small animal models of Ebola virus (EBOV) infection is important both for the study of genetic determinants involved in the complex pathology of EBOV disease and for the preliminary screening of antivirals, production of therapeutic heterologic immunoglobulins, and experimental vaccine development. Since the wild-type EBOV is avirulent in rodents, the adaptation series of passages in these animals are required for the virulence/lethality to emerge in these models. Here, we provide an overview of our several adaptation series in guinea pigs, which resulted in the establishment of guinea pig-adapted EBOV (GPA-EBOV) variants different in their characteristics, while uniformly lethal for the infected animals, and compare the virologic, genetic, pathomorphologic, and immunologic findings with those obtained in the adaptation experiments of the other research groups. PMID:26989413

  6. Adapted Lethality: What We Can Learn from Guinea Pig-Adapted Ebola Virus Infection Model.

    PubMed

    Cheresiz, S V; Semenova, E A; Chepurnov, A A

    2016-01-01

    Establishment of small animal models of Ebola virus (EBOV) infection is important both for the study of genetic determinants involved in the complex pathology of EBOV disease and for the preliminary screening of antivirals, production of therapeutic heterologic immunoglobulins, and experimental vaccine development. Since the wild-type EBOV is avirulent in rodents, the adaptation series of passages in these animals are required for the virulence/lethality to emerge in these models. Here, we provide an overview of our several adaptation series in guinea pigs, which resulted in the establishment of guinea pig-adapted EBOV (GPA-EBOV) variants different in their characteristics, while uniformly lethal for the infected animals, and compare the virologic, genetic, pathomorphologic, and immunologic findings with those obtained in the adaptation experiments of the other research groups. PMID:26989413

  7. Vocal learning in elephants: neural bases and adaptive context.

    PubMed

    Stoeger, Angela S; Manger, Paul

    2014-10-01

    In the last decade clear evidence has accumulated that elephants are capable of vocal production learning. Examples of vocal imitation are documented in African (Loxodonta africana) and Asian (Elephas maximus) elephants, but little is known about the function of vocal learning within the natural communication systems of either species. We are also just starting to identify the neural basis of elephant vocalizations. The African elephant diencephalon and brainstem possess specializations related to aspects of neural information processing in the motor system (affecting the timing and learning of trunk movements) and the auditory and vocalization system. Comparative interdisciplinary (from behavioral to neuroanatomical) studies are strongly warranted to increase our understanding of both vocal learning and vocal behavior in elephants. PMID:25062469

  8. Vocal learning in elephants: neural bases and adaptive context

    PubMed Central

    Stoeger, Angela S; Manger, Paul

    2014-01-01

    In the last decade clear evidence has accumulated that elephants are capable of vocal production learning. Examples of vocal imitation are documented in African (Loxodonta africana) and Asian (Elephas maximus) elephants, but little is known about the function of vocal learning within the natural communication systems of either species. We are also just starting to identify the neural basis of elephant vocalizations. The African elephant diencephalon and brainstem possess specializations related to aspects of neural information processing in the motor system (affecting the timing and learning of trunk movements) and the auditory and vocalization system. Comparative interdisciplinary (from behavioral to neuroanatomical) studies are strongly warranted to increase our understanding of both vocal learning and vocal behavior in elephants. PMID:25062469

  9. Cold adaptation increases rates of nutrient flow and metabolic plasticity during cold exposure in Drosophila melanogaster.

    PubMed

    Williams, Caroline M; McCue, Marshall D; Sunny, Nishanth E; Szejner-Sigal, Andre; Morgan, Theodore J; Allison, David B; Hahn, Daniel A

    2016-09-14

    Metabolic flexibility is an important component of adaptation to stressful environments, including thermal stress and latitudinal adaptation. A long history of population genetic studies suggest that selection on core metabolic enzymes may shape life histories by altering metabolic flux. However, the direct relationship between selection on thermal stress hardiness and metabolic flux has not previously been tested. We investigated flexibility of nutrient catabolism during cold stress in Drosophila melanogaster artificially selected for fast or slow recovery from chill coma (i.e. cold-hardy or -susceptible), specifically testing the hypothesis that stress adaptation increases metabolic turnover. Using (13)C-labelled glucose, we first showed that cold-hardy flies more rapidly incorporate ingested carbon into amino acids and newly synthesized glucose, permitting rapid synthesis of proline, a compound shown elsewhere to improve survival of cold stress. Second, using glucose and leucine tracers we showed that cold-hardy flies had higher oxidation rates than cold-susceptible flies before cold exposure, similar oxidation rates during cold exposure, and returned to higher oxidation rates during recovery. Additionally, cold-hardy flies transferred compounds among body pools more rapidly during cold exposure and recovery. Increased metabolic turnover may allow cold-adapted flies to better prepare for, resist and repair/tolerate cold damage. This work illustrates for the first time differences in nutrient fluxes associated with cold adaptation, suggesting that metabolic costs associated with cold hardiness could invoke resource-based trade-offs that shape life histories. PMID:27605506

  10. Re-examining selective adaptation: Fatiguing feature detectors, or distributional learning?

    PubMed

    Kleinschmidt, Dave F; Jaeger, T Florian

    2016-06-01

    When a listener hears many good examples of a /b/ in a row, they are less likely to classify other sounds on, e.g., a /b/-to-/d/ continuum as /b/. This phenomenon is known as selective adaptation and is a well-studied property of speech perception. Traditionally, selective adaptation is seen as a mechanistic property of the speech perception system, and attributed to fatigue in acoustic-phonetic feature detectors. However, recent developments in our understanding of non-linguistic sensory adaptation and higher-level adaptive plasticity in speech perception and language comprehension suggest that it is time to re-visit the phenomenon of selective adaptation. We argue that selective adaptation is better thought of as a computational property of the speech perception system. Drawing on a common thread in recent work on both non-linguistic sensory adaptation and plasticity in language comprehension, we furthermore propose that selective adaptation can be seen as a consequence of distributional learning across multiple levels of representation. This proposal opens up new questions for research on selective adaptation itself, and also suggests that selective adaptation can be an important bridge between work on adaptation in low-level sensory systems and the complicated plasticity of the adult language comprehension system. PMID:26438255

  11. Fast adaptation of the internal model of gravity for manual interceptions: evidence for event-dependent learning.

    PubMed

    Zago, Myrka; Bosco, Gianfranco; Maffei, Vincenzo; Iosa, Marco; Ivanenko, Yuri P; Lacquaniti, Francesco

    2005-02-01

    We studied how subjects learn to deal with two conflicting sensory environments as a function of the probability of each environment and the temporal distance between repeated events. Subjects were asked to intercept a visual target moving downward on a screen with randomized laws of motion. We compared five protocols that differed in the probability of constant speed (0g) targets and accelerated (1g) targets. Probability ranged from 9 to 100%, and the time interval between consecutive repetitions of the same target ranged from about 1 to 20 min. We found that subjects systematically timed their responses consistent with the assumption of gravity effects, for both 1 and 0g trials. With training, subjects rapidly adapted to 0g targets by shifting the time of motor activation. Surprisingly, the adaptation rate was independent of both the probability of 0g targets and their temporal distance. Very few 0g trials sporadically interspersed as catch trials during immersive practice with 1g trials were sufficient for learning and consolidation in long-term memory, as verified by retesting after 24 h. We argue that the memory store for adapted states of the internal gravity model is triggered by individual events and can be sustained for prolonged periods of time separating sporadic repetitions. This form of event-related learning could depend on multiple-stage memory, with exponential rise and decay in the initial stages followed by a sample-and-hold module. PMID:15456796

  12. Adaptive data rate control TDMA systems as a rain attenuation compensation technique

    NASA Technical Reports Server (NTRS)

    Sato, Masaki; Wakana, Hiromitsu; Takahashi, Takashi; Takeuchi, Makoto; Yamamoto, Minoru

    1993-01-01

    Rainfall attenuation has a severe effect on signal strength and impairs communication links for future mobile and personal satellite communications using Ka-band and millimeter wave frequencies. As rain attenuation compensation techniques, several methods such as uplink power control, site diversity, and adaptive control of data rate or forward error correction have been proposed. In this paper, we propose a TDMA system that can compensate rain attenuation by adaptive control of transmission rates. To evaluate the performance of this TDMA terminal, we carried out three types of experiments: experiments using a Japanese CS-3 satellite with Ka-band transponders, in house IF loop-back experiments, and computer simulations. Experimental results show that this TDMA system has advantages over the conventional constant-rate TDMA systems, as resource sharing technique, in both bit error rate and total TDMA burst lengths required for transmitting given information.

  13. Applied Comparative Effectiveness Researchers Must Measure Learning Rates: A Commentary on Efficiency Articles

    ERIC Educational Resources Information Center

    Skinner, Christopher H.

    2010-01-01

    Almost all academic skills deficits can be conceptualized as learning rate problems as students are not failing to learn, but not learning rapidly enough. Thus, when selecting among various possible remedial procedures, educators need an evidence base that indicates which procedure results in the greatest increases in learning rates. Previous…

  14. Copy-number changes in evolution: rates, fitness effects and adaptive significance

    PubMed Central

    Katju, Vaishali; Bergthorsson, Ulfar

    2013-01-01

    Gene copy-number differences due to gene duplications and deletions are rampant in natural populations and play a crucial role in the evolution of genome complexity. Per-locus analyses of gene duplication rates in the pre-genomic era revealed that gene duplication rates are much higher than the per nucleotide substitution rate. Analyses of gene duplication and deletion rates in mutation accumulation lines of model organisms have revealed that these high rates of copy-number mutations occur at a genome-wide scale. Furthermore, comparisons of the spontaneous duplication and deletion rates to copy-number polymorphism data and bioinformatic-based estimates of duplication rates from sequenced genomes suggest that the vast majority of gene duplications are detrimental and removed by natural selection. The rate at which new gene copies appear in populations greatly influences their evolutionary dynamics and standing gene copy-number variation in populations. The opportunity for mutations that result in the maintenance of duplicate copies, either through neofunctionalization or subfunctionalization, also depends on the equilibrium frequency of additional gene copies in the population, and hence on the spontaneous gene duplication (and loss) rate. The duplication rate may therefore have profound effects on the role of adaptation in the evolution of duplicated genes as well as important consequences for the evolutionary potential of organisms. We further discuss the broad ramifications of this standing gene copy-number variation on fitness and adaptive potential from a population-genetic and genome-wide perspective. PMID:24368910

  15. Adaptive learning can result in a failure to profit from good conditions: implications for understanding depression

    PubMed Central

    Trimmer, Pete C.; Higginson, Andrew D.; Fawcett, Tim W.; McNamara, John M.; Houston, Alasdair I.

    2015-01-01

    Background and objectives: Depression is a major medical problem diagnosed in an increasing proportion of people and for which commonly prescribed psychoactive drugs are frequently ineffective. Development of treatment options may be facilitated by an evolutionary perspective; several adaptive reasons for proneness to depression have been proposed. A common feature of many explanations is that depressive behaviour is a way to avoid costly effort where benefits are small and/or unlikely. However, this viewpoint fails to explain why low mood persists when the situation improves. We investigate whether a behavioural rule that is adapted to a stochastically changing world can cause inactivity which appears similar to the effect of depression, in that it persists after the situation has improved. Methodology: We develop an adaptive learning model in which an individual has repeated choices of whether to invest costly effort that may result in a net benefit. Investing effort also provides information about the current conditions and rates of change of the conditions. Results: An individual following the optimal behavioural strategy may sometimes remain inactive when conditions are favourable (i.e. when it would be better to invest effort) when it is poorly informed about the current environmental state. Initially benign conditions can predispose an individual to inactivity after a relatively brief period of negative experiences. Conclusions and implications: Our approach suggests that the antecedent factors causing depressed behaviour could go much further back in an individual s history than is currently appreciated. The insights from our approach have implications for the ongoing debate about best treatment options for patients with depressive symptoms. PMID:25916884

  16. Validity of the Vocational Adaptation Rating Scale: Prediction of Mentally Retarded Workers' Placement in Sheltered Workshops.

    ERIC Educational Resources Information Center

    Malgady, Robert G.; And Others

    1980-01-01

    The validity of the Vocational Adaptation Rating Scale (VARS) for predicting placement of 125 mentally retarded workers in sheltered workshop settings was investigated. Results indicated low to moderate significant partial correlations with concurrent placement and one year follow-up placement (controlling IQ, age, and sex). (Author)

  17. The Relationship between Early Learning Rates and Treatment Outcome for Children with Autism Receiving Intensive Home-Based Applied Behavior Analysis

    ERIC Educational Resources Information Center

    Weiss, Mary Jane; Delmolino, Lara

    2006-01-01

    The present study suggests that initial learning rates of young children with autism receiving early, intensive, home-based behavioral intervention are moderately correlated with outcome variables after four years of treatment. 20 children with autism who had Childhood Autism Rating Scale scores between 37.5 and 58 and Vineland Adaptive Behavior…

  18. Qualitative adaptive reward learning with success failure maps: applied to humanoid robot walking.

    PubMed

    Nassour, John; Hugel, Vincent; Ben Ouezdou, Fethi; Cheng, Gordon

    2013-01-01

    In the human brain, rewards are encoded in a flexible and adaptive way after each novel stimulus. Neurons of the orbitofrontal cortex are the key reward structure of the brain. Neurobiological studies show that the anterior cingulate cortex of the brain is primarily responsible for avoiding repeated mistakes. According to vigilance threshold, which denotes the tolerance to risks, we can differentiate between a learning mechanism that takes risks and one that averts risks. The tolerance to risk plays an important role in such a learning mechanism. Results have shown the differences in learning capacity between risk-taking and risk-avert behaviors. These neurological properties provide promising inspirations for robot learning based on rewards. In this paper, we propose a learning mechanism that is able to learn from negative and positive feedback with reward coding adaptively. It is composed of two phases: evaluation and decision making. In the evaluation phase, we use a Kohonen self-organizing map technique to represent success and failure. Decision making is based on an early warning mechanism that enables avoiding repeating past mistakes. The behavior to risk is modulated in order to gain experiences for success and for failure. Success map is learned with adaptive reward that qualifies the learned task in order to optimize the efficiency. Our approach is presented with an implementation on the NAO humanoid robot, controlled by a bioinspired neural controller based on a central pattern generator. The learning system adapts the oscillation frequency and the motor neuron gain in pitch and roll in order to walk on flat and sloped terrain, and to switch between them. PMID:24808209

  19. Profiling Students' Adaptation Styles in Web-based Learning.

    ERIC Educational Resources Information Center

    Lee, Myung-Geun

    2001-01-01

    Discussion of Web-based instruction (WBI) focuses on a study of Korean universities that analyzed learners' adaptation styles and characteristics by retrospectively assessing the perceptions of various aspects of WBI. Considers computer literacy, interaction with instructor and students, difficulty of contents, and learners' perception of academic…

  20. Collaborative Learning with Multi-Touch Technology: Developing Adaptive Expertise

    ERIC Educational Resources Information Center

    Mercier, Emma M.; Higgins, Steven E.

    2013-01-01

    Developing fluency and flexibility in mathematics is a key goal of upper primary schooling, however, while fluency can be developed with practice, designing activities that support the development of flexibility is more difficult. Drawing on concepts of adaptive expertise, we developed a task for a multi-touch classroom, NumberNet, that aimed to…

  1. Adaptive memory: animacy effects persist in paired-associate learning.

    PubMed

    VanArsdall, Joshua E; Nairne, James S; Pandeirada, Josefa N S; Cogdill, Mindi

    2015-01-01

    Recent evidence suggests that animate stimuli are remembered better than matched inanimate stimuli. Two experiments tested whether this animacy effect persists in paired-associate learning of foreign words. Experiment 1 randomly paired Swahili words with matched animate and inanimate English words. Participants were told simply to learn the English "translations" for a later test. Replicating earlier findings using free recall, a strong animacy advantage was found in this cued-recall task. Concerned that the effect might be due to enhanced accessibility of the individual responses (e.g., animates represent a more accessible category), Experiment 2 selected animate and inanimate English words from two more constrained categories (four-legged animals and furniture). Once again, an advantage was found for pairs using animate targets. These results argue against organisational accounts of the animacy effect and potentially have implications for foreign language vocabulary learning. PMID:24813366

  2. An application of adaptive learning to malfunction recovery

    NASA Technical Reports Server (NTRS)

    Cruz, R. E.

    1986-01-01

    A self-organizing controller is developed for a simplified two-dimensional aircraft model. The Controller learns how to pilot the aircraft through a navigational mission without exceeding pre-established position and velocity limits. The controller pilots the aircraft by activating one of eight directional actuators at all times. By continually monitoring the aircraft's position and velocity with respect to the mission, the controller progressively modifies its decision rules to improve the aircraft's performance. When the controller has learned how to pilot the aircraft, two actuators fail permanently. Despite this malfunction, the controller regains proficiency at its original task. The experimental results reported show the controller's capabilities for self-organizing control, learning, and malfunction recovery.

  3. Learning and adaptation in the management of waterfowl harvests

    USGS Publications Warehouse

    Johnson, Fred A.

    2011-01-01

    A formal framework for the adaptive management of waterfowl harvests was adopted by the U.S. Fish and Wildlife Service in 1995. The process admits competing models of waterfowl population dynamics and harvest impacts, and relies on model averaging to compute optimal strategies for regulating harvest. Model weights, reflecting the relative ability of the alternative models to predict changes in population size, are used in the model averaging and are updated each year based on a comparison of model predictions and observations of population size. Since its inception the adaptive harvest program has focused principally on mallards (Anas platyrhynchos), which constitute a large portion of the U.S. waterfowl harvest. Four competing models, derived from a combination of two survival and two reproductive hypotheses, were originally assigned equal weights. In the last year of available information (2007), model weights favored the weakly density-dependent reproductive hypothesis over the strongly density-dependent one, and the additive mortality hypothesis over the compensatory one. The change in model weights led to a more conservative harvesting policy than what was in effect in the early years of the program. Adaptive harvest management has been successful in many ways, but nonetheless has exposed the difficulties in defining management objectives, in predicting and regulating harvests, and in coping with the tradeoffs inherent in managing multiple waterfowl stocks exposed to a common harvest. The key challenge now facing managers is whether adaptive harvest management as an institution can be sufficiently adaptive, and whether the knowledge and experience gained from the process can be reflected in higher-level policy decisions.

  4. Continuous and embedded learning in autonomous vehicles: adapting to sensor failures

    NASA Astrophysics Data System (ADS)

    Schultz, Alan C.; Grefenstette, John J.

    2000-07-01

    This project describes an approach to creating autonomous systems that can continue to learn throughout their lives, that is, to be adaptive to changes in the environment and in their own capabilities. Evolutionary learning methods have been found to be useful in several areas in the development of autonomous vehicles. In our research, evolutionary algorithms are used to explore the alternative robot behaviors within a simulation model as a way of reducing the overall knowledge engineering effort. The learned behaviors are then tested in the actual robot and the results compared. Initial research demonstrated the ability to learn reasonable complex robot behaviors such as herding, and navigation and collision avoidance using this offline learning approach. In this work, the vehicle is always exploring different strategies via an internal simulation model; the simulation in term, is changing over time to better match the world. This model, which we call Continuous and Embedded Learning (also referred to as Anytime Learning), is a general approach to continuous learning in a changing environment. The agent's learning module continuously tests new strategies against a simulation model of the task environment, and dynamically updates the knowledge base used by the agent on the basis of the results. The execution module controls the agent's interaction with the environment, and includes a monitor that can dynamically modify the simulation model based on its observations of the environment. When a simulation model is modified, the learning process continues on the modified model. The learning system is assume to operate indefinitely, and the execution system uses the results of learning as they become available. Early experimental studies demonstrate a robot that can learn to adapt to failures in its sonar sensors.

  5. Comparing the Effects of Unknown-Known Ratios on Word Reading Learning versus Learning Rates

    ERIC Educational Resources Information Center

    Joseph, Laurice M.; Nist, Lindsay M.

    2006-01-01

    An extension of G. L. Cates et al. (2003) investigation was conducted to determine if students' cumulative learning rates would be superior for words read under a traditional drill and practice condition (as they were for spelling in the previous study) than under interspersal conditions of varying ratios of unknown to known words. Participants…

  6. Racing to learn: statistical inference and learning in a single spiking neuron with adaptive kernels

    PubMed Central

    Afshar, Saeed; George, Libin; Tapson, Jonathan; van Schaik, André; Hamilton, Tara J.

    2014-01-01

    This paper describes the Synapto-dendritic Kernel Adapting Neuron (SKAN), a simple spiking neuron model that performs statistical inference and unsupervised learning of spatiotemporal spike patterns. SKAN is the first proposed neuron model to investigate the effects of dynamic synapto-dendritic kernels and demonstrate their computational power even at the single neuron scale. The rule-set defining the neuron is simple: there are no complex mathematical operations such as normalization, exponentiation or even multiplication. The functionalities of SKAN emerge from the real-time interaction of simple additive and binary processes. Like a biological neuron, SKAN is robust to signal and parameter noise, and can utilize both in its operations. At the network scale neurons are locked in a race with each other with the fastest neuron to spike effectively “hiding” its learnt pattern from its neighbors. The robustness to noise, high speed, and simple building blocks not only make SKAN an interesting neuron model in computational neuroscience, but also make it ideal for implementation in digital and analog neuromorphic systems which is demonstrated through an implementation in a Field Programmable Gate Array (FPGA). Matlab, Python, and Verilog implementations of SKAN are available at: http://www.uws.edu.au/bioelectronics_neuroscience/bens/reproducible_research. PMID:25505378

  7. Adaptation Provisioning with Respect to Learning Styles in a Web-Based Educational System: An Experimental Study

    ERIC Educational Resources Information Center

    Popescu, E.

    2010-01-01

    Personalized instruction is seen as a desideratum of today's e-learning systems. The focus of this paper is on those platforms that use learning styles as personalization criterion called learning style-based adaptive educational systems. The paper presents an innovative approach based on an integrative set of learning preferences that alleviates…

  8. Testing Theories of Transfer Using Error Rate Learning Curves.

    PubMed

    Koedinger, Kenneth R; Yudelson, Michael V; Pavlik, Philip I

    2016-07-01

    We analyze naturally occurring datasets from student use of educational technologies to explore a long-standing question of the scope of transfer of learning. We contrast a faculty theory of broad transfer with a component theory of more constrained transfer. To test these theories, we develop statistical models of them. These models use latent variables to represent mental functions that are changed while learning to cause a reduction in error rates for new tasks. Strong versions of these models provide a common explanation for the variance in task difficulty and transfer. Weak versions decouple difficulty and transfer explanations by describing task difficulty with parameters for each unique task. We evaluate these models in terms of both their prediction accuracy on held-out data and their power in explaining task difficulty and learning transfer. In comparisons across eight datasets, we find that the component models provide both better predictions and better explanations than the faculty models. Weak model variations tend to improve generalization across students, but hurt generalization across items and make a sacrifice to explanatory power. More generally, the approach could be used to identify malleable components of cognitive functions, such as spatial reasoning or executive functions. PMID:27230694

  9. Becoming a Coach in Developmental Adaptive Sailing: A Lifelong Learning Perspective

    PubMed Central

    Duarte, Tiago; Culver, Diane M.

    2014-01-01

    Life-story methodology and innovative methods were used to explore the process of becoming a developmental adaptive sailing coach. Jarvis's (2009) lifelong learning theory framed the thematic analysis. The findings revealed that the coach, Jenny, was exposed from a young age to collaborative environments. Social interactions with others such as mentors, colleagues, and athletes made major contributions to her coaching knowledge. As Jenny was exposed to a mixture of challenges and learning situations, she advanced from recreational para-swimming instructor to developmental adaptive sailing coach. The conclusions inform future research in disability sport coaching, coach education, and applied sport psychology. PMID:25210408

  10. Particle Swarm Social Model for Group Social Learning in Adaptive Environment

    SciTech Connect

    Cui, Xiaohui; Potok, Thomas E; Treadwell, Jim N; Patton, Robert M; Pullum, Laura L

    2008-01-01

    This report presents a study of integrating particle swarm algorithm, social knowledge adaptation and multi-agent approaches for modeling the social learning of self-organized groups and their collective searching behavior in an adaptive environment. The objective of this research is to apply the particle swarm metaphor as a model of social learning for a dynamic environment. The research provides a platform for understanding and insights into knowledge discovery and strategic search in human self-organized social groups, such as insurgents or online communities.

  11. Becoming a Coach in Developmental Adaptive Sailing: A Lifelong Learning Perspective.

    PubMed

    Duarte, Tiago; Culver, Diane M

    2014-10-01

    Life-story methodology and innovative methods were used to explore the process of becoming a developmental adaptive sailing coach. Jarvis's (2009) lifelong learning theory framed the thematic analysis. The findings revealed that the coach, Jenny, was exposed from a young age to collaborative environments. Social interactions with others such as mentors, colleagues, and athletes made major contributions to her coaching knowledge. As Jenny was exposed to a mixture of challenges and learning situations, she advanced from recreational para-swimming instructor to developmental adaptive sailing coach. The conclusions inform future research in disability sport coaching, coach education, and applied sport psychology. PMID:25210408

  12. Modeling the behavioral substrates of associate learning and memory - Adaptive neural models

    NASA Technical Reports Server (NTRS)

    Lee, Chuen-Chien

    1991-01-01

    Three adaptive single-neuron models based on neural analogies of behavior modification episodes are proposed, which attempt to bridge the gap between psychology and neurophysiology. The proposed models capture the predictive nature of Pavlovian conditioning, which is essential to the theory of adaptive/learning systems. The models learn to anticipate the occurrence of a conditioned response before the presence of a reinforcing stimulus when training is complete. Furthermore, each model can find the most nonredundant and earliest predictor of reinforcement. The behavior of the models accounts for several aspects of basic animal learning phenomena in Pavlovian conditioning beyond previous related models. Computer simulations show how well the models fit empirical data from various animal learning paradigms.

  13. Surprise and opportunity for learning in Grand Canyon: the Glen Canyon Dam Adaptive Management Program

    USGS Publications Warehouse

    Melis, Theodore S.; Walters, Carl; Korman, Josh

    2015-01-01

    With a focus on resources of the Colorado River ecosystem below Glen Canyon Dam, the Glen Canyon Dam Adaptive Management Program has included a variety of experimental policy tests, ranging from manipulation of water releases from the dam to removal of non-native fish within Grand Canyon National Park. None of these field-scale experiments has yet produced unambiguous results in terms of management prescriptions. But there has been adaptive learning, mostly from unanticipated or surprising resource responses relative to predictions from ecosystem modeling. Surprise learning opportunities may often be viewed with dismay by some stakeholders who might not be clear about the purpose of science and modeling in adaptive management. However, the experimental results from the Glen Canyon Dam program actually represent scientific successes in terms of revealing new opportunities for developing better river management policies. A new long-term experimental management planning process for Glen Canyon Dam operations, started in 2011 by the U.S. Department of the Interior, provides an opportunity to refocus management objectives, identify and evaluate key uncertainties about the influence of dam releases, and refine monitoring for learning over the next several decades. Adaptive learning since 1995 is critical input to this long-term planning effort. Embracing uncertainty and surprise outcomes revealed by monitoring and ecosystem modeling will likely continue the advancement of resource objectives below the dam, and may also promote efficient learning in other complex programs.

  14. Adaptive and Agile Interactive Learning Environments on the WWW.

    ERIC Educational Resources Information Center

    Giroux, Sylvain; Hotte, Richard; Dao, Kim

    This paper presents a framework for producing learning environments (LEs) on the World Wide Web that improves productivity and quality at a reduced cost for both designers and learners. The resulting LEs are germane to fractals. Changes in scale are likened to levels in LEs; each level expresses a given viewpoint on knowledge. Self-similarity…

  15. A Mutually Adaptive Learning Paradigm (MALP) for Hmong Students

    ERIC Educational Resources Information Center

    Marshall, Helaine W.

    1998-01-01

    Numerous studies (Goldstein, 1985; Rumbaut and Ima, 1988; Walker, 1989; Trueba, Jacobs, and Kirton, 1990 and Walker-Moffat, 1995) have found that the Hmong have extreme difficulties adjusting to the American educational system as compared with other language minority groups. Underlying this difficulty is a fundamental conflict between learning in…

  16. Adaptive Animation of Human Motion for E-Learning Applications

    ERIC Educational Resources Information Center

    Li, Frederick W. B.; Lau, Rynson W. H.; Komura, Taku; Wang, Meng; Siu, Becky

    2007-01-01

    Human motion animation has been one of the major research topics in the field of computer graphics for decades. Techniques developed in this area help present human motions in various applications. This is crucial for enhancing the realism as well as promoting the user interest in the applications. To carry this merit to e-learning applications,…

  17. Adapting to Change: What Motivates Manitoban Schools to Learn

    ERIC Educational Resources Information Center

    Lam, Y. L. Jack

    2004-01-01

    This study assesses the relative importance of environmental, intraorganizational, and contextual factors that explain the process and outcomes of organizational learning in six Manitoba schools. Based on the data provided by 265 teaching staff and their principals, the present findings verified that transformational leadership, supportive school…

  18. OAEditor--A Framework for Editing Adaptive Learning Objects

    ERIC Educational Resources Information Center

    Pereira, Joao Carlos Rodrigues; Cabral, Lucidio dos Anjos Formiga; Oiveira, Ronei dos Santos; Bezerra, Lucimar Leandro; de Melo, Nisston Moraes Tavares

    2012-01-01

    Distance Learning supported by the WEB is a reality which is growing fast and, like any technological or empirical innovation, it reveals positive and negative aspects. An important aspect is in relation to the monitoring of the activities done by the students since an accurate online assessment of the knowledge acquired is an open and, therefore,…

  19. Multimodal and Adaptive Learning Management: An Iterative Design

    ERIC Educational Resources Information Center

    Squires, David R.; Orey, Michael A.

    2015-01-01

    The purpose of this study is to measure the outcome of a comprehensive learning management system implemented at a Spinal Cord Injury (SCI) hospital in the Southeast United States. Specifically this SCI hospital has been experiencing an evident volume of patients returning seeking more information about the nature of their injuries. Recognizing…

  20. Primary Motor Cortex Involvement in Initial Learning during Visuomotor Adaptation

    ERIC Educational Resources Information Center

    Riek, Stephan; Hinder, Mark R.; Carson, Richard G.

    2012-01-01

    Human motor behaviour is continually modified on the basis of errors between desired and actual movement outcomes. It is emerging that the role played by the primary motor cortex (M1) in this process is contingent upon a variety of factors, including the nature of the task being performed, and the stage of learning. Here we used repetitive TMS to…

  1. Daytime sleep has no effect on the time course of motor sequence and visuomotor adaptation learning.

    PubMed

    Backhaus, Winifried; Braaß, Hanna; Renné, Thomas; Krüger, Christian; Gerloff, Christian; Hummel, Friedhelm C

    2016-05-01

    Sleep has previously been claimed to be essential for the continued learning processes of declarative information as well as procedural learning. This study was conducted to examine the importance of sleep, especially the effects of midday naps, on motor sequence and visuomotor adaptation learning. Thirty-five (27 females) healthy, young adults aged between 18 and 30years of age participated in the current study. Addressing potential differences in explicit sequence and motor adaptation learning participants were asked to learn both, a nine-element explicit sequence and a motor adaptation task, in a crossover fashion on two consecutive days. Both tasks were performed with their non-dominant left hand. Prior to learning, each participant was randomized to one of three interventions; (1) power nap: 10-20min sleep, (2) long nap: 50-80min sleep or (3) a 45-min wake-condition. Performance of the motor learning task took place prior to and after a midday rest period, as well as after a night of sleep. Both sleep conditions were dominated by Stage N2 sleep with embedded sleep spindles, which have been described to be associated with enhancement of motor performance. Significant performance changes were observed in both tasks across all interventions (sleep and wake) confirming that learning took place. In the present setup, the magnitude of motor learning was not sleep-dependent in young adults - no differences between the intervention groups (short nap, long nap, no nap) could be found. The effect of the following night of sleep was not influenced by the previous midday rest or sleep period. This finding may be related to the selectiveness of the human brain enhancing especially memory being thought of as important in the future. Previous findings on motor learning enhancing effects of sleep, especially of daytime sleep, are challenged. PMID:27021017

  2. Screening for learning disabilities with teacher rating scales.

    PubMed

    Salvesen, K A; Undheim, J O

    1994-01-01

    The purpose of the study was to investigate the use of teacher assessments in screening for learning disabilities. In a longitudinal study, 603 children were rated by their teachers in the second grade (age 8 to 9 years), and the ratings were correlated with examinations of reading, spelling, and intelligence in the third grade. The third-grade tests for reading, spelling, and intelligence classified children into groups with low achievement and dyslexia, and these two groups were compared with normally achieving children. The accuracy of teacher assessments, measured with correlation analysis, ROC curves, and kappa indices, showed that teachers were quite accurate in their judgment of low achievement, but somewhat less efficient in their judgment of specific reading difficulties. PMID:8133189

  3. Effects of Adaptation Rate and Noise Suppression on the Intelligibility of Compressed-Envelope Based Speech

    PubMed Central

    Lai, Ying-Hui; Tsao, Yu; Chen, Fei

    2015-01-01

    Temporal envelope is the primary acoustic cue used in most cochlear implant (CI) speech processors to elicit speech perception for patients fitted with CI devices. Envelope compression narrows down envelope dynamic range and accordingly degrades speech understanding abilities of CI users, especially under challenging listening conditions (e.g., in noise). A new adaptive envelope compression (AEC) strategy was proposed recently, which in contrast to the traditional static envelope compression, is effective at enhancing the modulation depth of envelope waveform by making best use of its dynamic range and thus improving the intelligibility of envelope-based speech. The present study further explored the effect of adaptation rate in envelope compression on the intelligibility of compressed-envelope based speech. Moreover, since noise reduction is another essential unit in modern CI systems, the compatibility of AEC and noise reduction was also investigated. In this study, listening experiments were carried out by presenting vocoded sentences to normal hearing listeners for recognition. Experimental results demonstrated that the adaptation rate in envelope compression had a notable effect on the speech intelligibility performance of the AEC strategy. By specifying a suitable adaptation rate, speech intelligibility could be enhanced significantly in noise compared to when using static envelope compression. Moreover, results confirmed that the AEC strategy was suitable for combining with noise reduction to improve the intelligibility of envelope-based speech in noise. PMID:26196508

  4. Evolution at a high imposed mutation rate: adaptation obscures the load in phage T7.

    PubMed

    Springman, R; Keller, T; Molineux, I J; Bull, J J

    2010-01-01

    Evolution at high mutation rates is expected to reduce population fitness deterministically by the accumulation of deleterious mutations. A high enough rate should even cause extinction (lethal mutagenesis), a principle motivating the clinical use of mutagenic drugs to treat viral infections. The impact of a high mutation rate on long-term viral fitness was tested here. A large population of the DNA bacteriophage T7 was grown with a mutagen, producing a genomic rate of 4 nonlethal mutations per generation, two to three orders of magnitude above the baseline rate. Fitness-viral growth rate in the mutagenic environment-was predicted to decline substantially; after 200 generations, fitness had increased, rejecting the model. A high mutation load was nonetheless evident from (i) many low- to moderate-frequency mutations in the population (averaging 245 per genome) and (ii) an 80% drop in average burst size. Twenty-eight mutations reached high frequency and were thus presumably adaptive, clustered mostly in DNA metabolism genes, chiefly DNA polymerase. Yet blocking DNA polymerase evolution failed to yield a fitness decrease after 100 generations. Although mutagenic drugs have caused viral extinction in vitro under some conditions, this study is the first to match theory and fitness evolution at a high mutation rate. Failure of the theory challenges the quantitative basis of lethal mutagenesis and highlights the potential for adaptive evolution at high mutation rates. PMID:19858285

  5. High speed and adaptable error correction for megabit/s rate quantum key distribution

    PubMed Central

    Dixon, A. R.; Sato, H.

    2014-01-01

    Quantum Key Distribution is moving from its theoretical foundation of unconditional security to rapidly approaching real world installations. A significant part of this move is the orders of magnitude increases in the rate at which secure key bits are distributed. However, these advances have mostly been confined to the physical hardware stage of QKD, with software post-processing often being unable to support the high raw bit rates. In a complete implementation this leads to a bottleneck limiting the final secure key rate of the system unnecessarily. Here we report details of equally high rate error correction which is further adaptable to maximise the secure key rate under a range of different operating conditions. The error correction is implemented both in CPU and GPU using a bi-directional LDPC approach and can provide 90–94% of the ideal secure key rate over all fibre distances from 0–80 km. PMID:25450416

  6. High speed and adaptable error correction for megabit/s rate quantum key distribution

    NASA Astrophysics Data System (ADS)

    Dixon, A. R.; Sato, H.

    2014-12-01

    Quantum Key Distribution is moving from its theoretical foundation of unconditional security to rapidly approaching real world installations. A significant part of this move is the orders of magnitude increases in the rate at which secure key bits are distributed. However, these advances have mostly been confined to the physical hardware stage of QKD, with software post-processing often being unable to support the high raw bit rates. In a complete implementation this leads to a bottleneck limiting the final secure key rate of the system unnecessarily. Here we report details of equally high rate error correction which is further adaptable to maximise the secure key rate under a range of different operating conditions. The error correction is implemented both in CPU and GPU using a bi-directional LDPC approach and can provide 90-94% of the ideal secure key rate over all fibre distances from 0-80 km.

  7. An adaptive online learning approach for Support Vector Regression: Online-SVR-FID

    NASA Astrophysics Data System (ADS)

    Liu, Jie; Zio, Enrico

    2016-08-01

    Support Vector Regression (SVR) is a popular supervised data-driven approach for building empirical models from available data. Like all data-driven methods, under non-stationary environmental and operational conditions it needs to be provided with adaptive learning capabilities, which might become computationally burdensome with large datasets cumulating dynamically. In this paper, a cost-efficient online adaptive learning approach is proposed for SVR by combining Feature Vector Selection (FVS) and Incremental and Decremental Learning. The proposed approach adaptively modifies the model only when different pattern drifts are detected according to proposed criteria. Two tolerance parameters are introduced in the approach to control the computational complexity, reduce the influence of the intrinsic noise in the data and avoid the overfitting problem of SVR. Comparisons of the prediction results is made with other online learning approaches e.g. NORMA, SOGA, KRLS, Incremental Learning, on several artificial datasets and a real case study concerning time series prediction based on data recorded on a component of a nuclear power generation system. The performance indicators MSE and MARE computed on the test dataset demonstrate the efficiency of the proposed online learning method.

  8. [Problem based learning (PBL)--possible adaptation in psychiatry (debate)].

    PubMed

    Adamowski, Tomasz; Frydecka, Dorota; Kiejna, Andrzej

    2007-01-01

    Teaching psychiatry concerns mainly education of students studying medicine and clinical psychology, but it also concerns professional training the people specializing in psychiatry and in other fields of medicine. Since the requirements that medical professionals are obliged to meet are ever higher, it is essential to provide highest possible quality of teaching and to do so to use the best possible teaching models. One of the modern educational models is Problem Based Learning (PBL). Barrows' and Dreyfus' research as well as development of andragogy had major impact on the introduction of this model of teaching. There are favourable experiences of using PBL in teaching psychiatry reported, especially in the field of psychosomatics. Problem Based Learning gradually becomes a part of modern curricula in Western Europe. For this reason it is worth keeping in mind PBL's principles and knowingly apply them into practice, all the more the reported educational effects of using this method are very promising. PMID:17598426

  9. An SRWNN-based approach on developing a self-learning and self-evolving adaptive control system for motion platforms

    NASA Astrophysics Data System (ADS)

    Onur Ari, Evrim; Kocaoglan, Erol

    2016-02-01

    In this paper, a self-recurrent wavelet neural network (SRWNN)-based indirect adaptive control architecture is modified for performing speed control of a motion platform. The transient behaviour of the original learning algorithm has been improved by modifying the learning rate updates. The contribution of the proposed modification has been verified via both simulations and experiments. Moreover, the performance of the proposed architecture is compared with robust RST designs performed on a similar benchmark system, to show that via adaptive nonlinear control, it is possible to obtain a fast step response without degrading the robustness of a multi-body mechanical system. Finally, the architecture is further improved so as to possess structural learning for populating the SRWNNs automatically, rather than employing static network structures, and simulation results are provided to show the performance of the proposed structural learning algorithm.

  10. Reorganization of Finger Coordination Patterns During Adaptation to Rotation and Scaling of a Newly Learned Sensorimotor Transformation

    PubMed Central

    Liu, Xiaolin; Mosier, Kristine M.; Mussa-Ivaldi, Ferdinando A.; Casadio, Maura

    2011-01-01

    We examined how people organize redundant kinematic control variables (finger joint configurations) while learning to make goal-directed movements of a virtual object (a cursor) within a low-dimensional task space (a computer screen). Subjects participated in three experiments performed on separate days. Learning progressed rapidly on day 1, resulting in reduced target capture error and increased cursor trajectory linearity. On days 2 and 3, one group of subjects adapted to a rotation of the nominal map, imposed either stepwise or randomly over trials. Another group experienced a scaling distortion. We report two findings. First, adaptation rates and memory-dependent motor command updating depended on distortion type. Stepwise application and removal of the rotation induced a marked increase in finger motion variability but scaling did not, suggesting that the rotation initiated a more exhaustive search through the space of viable finger motions to resolve the target capture task than did scaling. Indeed, subjects formed new coordination patterns in compensating the rotation but relied on patterns established during baseline practice to compensate the scaling. These findings support the idea that the brain compensates direction and extent errors separately and in computationally distinct ways, but are inconsistent with the idea that once a task is learned, command updating is limited to those degrees of freedom contributing to performance (thereby minimizing energetic or similar costs of control). Second, we report that subjects who learned a scaling while moving to just one target generalized more narrowly across directions than those who learned a rotation. This contrasts with results from whole-arm reaching studies, where a learned scaling generalizes more broadly across direction than rotation. Based on inverse- and forward-dynamics analyses of reaching with the arm, we propose the difference in results derives from extensive exposure in reaching with familiar

  11. Training adaptation and heart rate variability in elite endurance athletes: opening the door to effective monitoring.

    PubMed

    Plews, Daniel J; Laursen, Paul B; Stanley, Jamie; Kilding, Andrew E; Buchheit, Martin

    2013-09-01

    The measurement of heart rate variability (HRV) is often considered a convenient non-invasive assessment tool for monitoring individual adaptation to training. Decreases and increases in vagal-derived indices of HRV have been suggested to indicate negative and positive adaptations, respectively, to endurance training regimens. However, much of the research in this area has involved recreational and well-trained athletes, with the small number of studies conducted in elite athletes revealing equivocal outcomes. For example, in elite athletes, studies have revealed both increases and decreases in HRV to be associated with negative adaptation. Additionally, signs of positive adaptation, such as increases in cardiorespiratory fitness, have been observed with atypical concomitant decreases in HRV. As such, practical ways by which HRV can be used to monitor training status in elites are yet to be established. This article addresses the current literature that has assessed changes in HRV in response to training loads and the likely positive and negative adaptations shown. We reveal limitations with respect to how the measurement of HRV has been interpreted to assess positive and negative adaptation to endurance training regimens and subsequent physical performance. We offer solutions to some of the methodological issues associated with using HRV as a day-to-day monitoring tool. These include the use of appropriate averaging techniques, and the use of specific HRV indices to overcome the issue of HRV saturation in elite athletes (i.e., reductions in HRV despite decreases in resting heart rate). Finally, we provide examples in Olympic and World Champion athletes showing how these indices can be practically applied to assess training status and readiness to perform in the period leading up to a pinnacle event. The paper reveals how longitudinal HRV monitoring in elites is required to understand their unique individual HRV fingerprint. For the first time, we demonstrate how

  12. Use of Adapted Bicycles on the Learning of Conventional Cycling by Children with Mental Retardation

    ERIC Educational Resources Information Center

    Burt, Tammy L.; Porretta, David L.; Klein, Richard E.

    2007-01-01

    This study investigated the use of adapted bicycles on the acquisition, maintenance, and generalization of conventional cycling by seven children with mild mental retardation. Feedback was used in addition to the adapted bicycles and consisted of pedal rate, head position, and steering participation. A multiple probe design was used. Participants…

  13. Cerebellar contributions to visuomotor adaptation and motor sequence learning: an ALE meta-analysis

    PubMed Central

    Bernard, Jessica A.; Seidler, Rachael D.

    2013-01-01

    Cerebellar contributions to motor learning are well-documented. For example, under some conditions, patients with cerebellar damage are impaired at visuomotor adaptation and at acquiring new action sequences. Moreover, cerebellar activation has been observed in functional MRI (fMRI) investigations of various motor learning tasks. The early phases of motor learning are cognitively demanding, relying on processes such as working memory, which have been linked to the cerebellum as well. Here, we investigated cerebellar contributions to motor learning using activation likelihood estimation (ALE) meta-analysis. This allowed us to determine, across studies and tasks, whether or not the location of cerebellar activation is constant across differing motor learning tasks, and whether or not cerebellar activation in early learning overlaps with that observed for working memory. We found that different regions of the anterior cerebellum are engaged for implicit and explicit sequence learning and visuomotor adaptation, providing additional evidence for the modularity of cerebellar function. Furthermore, we found that lobule VI of the cerebellum, which has been implicated in working memory, is activated during the early stages of explicit motor sequence learning. This provides evidence for a potential role for the cerebellum in the cognitive processing associated with motor learning. However, though lobule VI was activated across both early explicit sequence learning and working memory studies, there was no spatial overlap between these two regions. Together, our results support the idea of modularity in the formation of internal representations of new motor tasks in the cerebellum, and highlight the cognitive processing relied upon during the early phases of motor skill learning. PMID:23403800

  14. Strategies for Adapting WebQuests for Students with Learning Disabilities

    ERIC Educational Resources Information Center

    Skylar, Ashley A.; Higgins, Kyle; Boone, Randall

    2007-01-01

    WebQuests are gaining popularity as teachers explore using the Internet for guided learning activities. A WebQuest involves students working on a task that is broken down into clearly defined steps. Students often work in groups to actively conduct the research. This article suggests a variety of methods for adapting WebQuests for students with…

  15. Psychological and Pedagogical Support for Students' Adaptation to Learning Activity in High Science School

    ERIC Educational Resources Information Center

    Zeleeva, Vera P.; Bykova, Svetlana S.; Varbanova, Silvia

    2016-01-01

    The relevance of the study is due to the importance of psychological and pedagogical support for students in university that would prevent difficulties in learning activities and increase adaptive capacity through the development of relevant personal traits. Therefore, this article is aimed at solving the problem of arranging psychological and…

  16. Promoting Contextual Vocabulary Learning through an Adaptive Computer-Assisted EFL Reading System

    ERIC Educational Resources Information Center

    Wang, Y.-H.

    2016-01-01

    The study developed an adaptive computer-assisted reading system and investigated its effect on promoting English as a foreign language learner-readers' contextual vocabulary learning performance. Seventy Taiwanese college students were assigned to two reading groups. Participants in the customised reading group read online English texts, each of…

  17. Group-Work in the Design of Complex Adaptive Learning Strategies

    ERIC Educational Resources Information Center

    Mavroudi, Anna; Hadzilacos, Thanasis

    2013-01-01

    This paper presents a case study where twelve graduate students undertook the demanding role of the adaptive e-course developer and worked collaboratively on an authentic and complex design task in the context of open and distance tertiary education. The students had to work in groups in order to conceptualise and design a learning scenario for…

  18. The Adaptation of Chinese International Students to Online Flexible Learning: Two Case Studies

    ERIC Educational Resources Information Center

    Chen, Rainbow Tsai-Hung; Bennett, Sue; Maton, Karl

    2008-01-01

    The cross-cultural experiences of Chinese international students in Western countries have been subject to intensive research, but only a very small number of studies have considered how these students adapt to learning in an online flexible delivery environment. Guided by Berry's acculturation framework (1980, 2005), the investigation discussed…

  19. Using Weblog in Learning English and Encouraging Adaptation among International Students in Perlis

    ERIC Educational Resources Information Center

    Suryani, Ina; Hizwari, Shafiq; Islam, Md. Aminul; Desa, Hazry

    2012-01-01

    This study looks at the correlation of the English learning which is by using weblog and the adaptation for international students at Universiti Malaysia Perlis. The study was conducted on the first batch of International students. There were 37 students from three countries with the majority from China followed by Indonesia and Sudan. The…

  20. Assessment of Social Competence, Adaptive Behaviors, and Approaches to Learning with Young Children. Working Paper Series.

    ERIC Educational Resources Information Center

    Meisels, Samuel J.; Atkins-Burnett, Sally; Nicholson, Julie

    Prepared in support of the Early Childhood Longitudinal Study (ECLS), which will examine children's early school experiences beginning with kindergarten, this working paper focuses on research regarding the measurement of young children's social competence, adaptive behavior, and approaches to learning. The paper reviews the key variables and…

  1. Adaptation and Analysis of Motivated Strategies for Learning Questionnaire in the Chinese Setting

    ERIC Educational Resources Information Center

    Lee, John Chi-kin; Yin, Hongbiao; Zhang, Zhonghua

    2010-01-01

    This article reports the adaptation and analysis of Pintrich's Motivated Strategies for Learning Questionnaire (MSLQ) in Hong Kong. First, this study examined the psychometric qualities of the existing Chinese version of MSLQ (MSLQ-CV). Based on this examination, this study developed a revised Chinese version of MSLQ (MSLQ-RCV) for junior…

  2. The Adaptation of the Teaching-Learning Conceptions Questionnaire and Its Relationships with Epistemological Beliefs

    ERIC Educational Resources Information Center

    Aypay, Ayse

    2011-01-01

    The primary purpose of this study was to adapt the Teaching-learning Approaches Questionnaire. The working group of the study consisted of 341 student-teachers. The results indicated that the factor structure is partially consistent with the model. Cronbach reliability coefficient for the whole instrument was 0.71, while sub-scale reliabilities…

  3. Use of Adaptive Study Material in Education in E-Learning Environment

    ERIC Educational Resources Information Center

    Kostolányová, Katerina; Šarmanová, Jana

    2014-01-01

    Personalised education is a topical matter today and the impact of ICT on education has been covered extensively. The adaptation of education to various types of student is an issue of a vast number of papers presented at diverse conferences. The topic incorporates the fields of information technologies and eLearning, but in no small part also the…

  4. Adaptations for Culturally and Linguistically Diverse Families of English Language Learning Students with Autisim Spectrum Disorders

    ERIC Educational Resources Information Center

    Mitchell, Deborah J.

    2012-01-01

    The purpose of this qualitative, grounded theory study was to describe adaptations for culturally and linguistically diverse families of English language learning students with autism spectrum disorders. Each family's parent was interviewed three separate times to gather information to understand the needs and experiences regarding their…

  5. Lessons Learned in Designing and Implementing a Computer-Adaptive Test for English

    ERIC Educational Resources Information Center

    Burston, Jack; Neophytou, Maro

    2014-01-01

    This paper describes the lessons learned in designing and implementing a computer-adaptive test (CAT) for English. The early identification of students with weak L2 English proficiency is of critical importance in university settings that have compulsory English language course graduation requirements. The most efficient means of diagnosing the L2…

  6. On the Impact of Adaptive Test Question Selection for Learning Efficiency

    ERIC Educational Resources Information Center

    Barla, Michal; Bielikova, Maria; Ezzeddinne, Anna Bou; Kramar, Tomas; Simko, Marian; Vozar, Oto

    2010-01-01

    In this paper we present a method for adaptive selection of test questions according to the individual needs of students within a web-based educational system. It functions as a combination of three particular methods. The first method is based on the course structure and focuses on the selection of the most appropriate topic for learning. The…

  7. Teaching-Learning Patterns of Expert and Novice Adapted Physical Educators

    ERIC Educational Resources Information Center

    Everhart, Brett; Everhart, Kim; McHugh, Heather; Newman, Chelsea Dimon; Hershey, Kacie; Lorenzi, David

    2013-01-01

    This study was intended to provide a description of teaching and learning patterns seen in the lessons taught by experts and novices in Adapted Physical Education. Two experts who had won previous state teaching awards and served in leadership positions in state associations were filmed and their lessons were analyzed first to develop a systematic…

  8. Japanese English Education and Learning: A History of Adapting Foreign Cultures

    ERIC Educational Resources Information Center

    Shimizu, Minoru

    2010-01-01

    This essay is a history that relates the Japanese tradition of accepting and adapting aspects of foreign culture, especially as it applies to the learning of foreign languages. In particular, the essay describes the history of English education in Japan by investigating its developments after the Meiji era. The author addresses the issues from the…

  9. Adaptive learning of Multi-Sensor Integration techniques with genetic algorithms

    SciTech Connect

    Baker, J.E.

    1994-06-01

    This research focuses on automating the time-consuming process of developing and optimizing multi-sensor integration techniques. Our approach is currently based on adaptively learning how to exploit low-level image detail. Although this system is specifically designed to be both sensor and application domain independent, an empirical validation with actual multi-modal sensor data is presented.

  10. Adaptation to Altitude as a Vehicle for Experiential Learning of Physiology by University Undergraduates

    ERIC Educational Resources Information Center

    Weigle, David S.; Buben, Amelia; Burke, Caitlin C.; Carroll, Nels D.; Cook, Brett M.; Davis, Benjamin S.; Dubowitz, Gerald; Fisher, Rian E.; Freeman, Timothy C.; Gibbons, Stephen M.; Hansen, Hale A.; Heys, Kimberly A.; Hopkins, Brittany; Jordan, Brittany L.; McElwain, Katherine L.; Powell, Frank L.; Reinhart, Katherine E.; Robbins, Charles D.; Summers, Cameron C.; Walker, Jennifer D.; Weber, Steven S.; Weinheimer, Caroline J.

    2007-01-01

    In this article, an experiential learning activity is described in which 19 university undergraduates made experimental observations on each other to explore physiological adaptations to high altitude. Following 2 wk of didactic sessions and baseline data collection at sea level, the group ascended to a research station at 12,500-ft elevation.…

  11. Effects of a Culturally Adapted Social-Emotional Learning Intervention Program on Students' Mental Health

    ERIC Educational Resources Information Center

    Cramer, Kristine M.; Castro-Olivo, Sara

    2016-01-01

    Student self-reports of resiliency and social-emotional internalizing problems were examined to determine intervention effects of a culturally adapted social and emotional learning (SEL) program. Data were analyzed from 20 culturally and linguistically diverse high school students who participated in a school-based 12-lesson SEL intervention and…

  12. Bridging Scientific Reasoning and Conceptual Change through Adaptive Web-Based Learning

    ERIC Educational Resources Information Center

    She, Hsiao-Ching; Liao, Ya-Wen

    2010-01-01

    This study reports an adaptive digital learning project, Scientific Concept Construction and Reconstruction (SCCR), and examines its effects on 108 8th grade students' scientific reasoning and conceptual change through mixed methods. A one-group pre-, post-, and retention quasi-experimental design was used in the study. All students received tests…

  13. Adaptive and Intelligent Systems for Collaborative Learning Support: A Review of the Field

    ERIC Educational Resources Information Center

    Magnisalis, I.; Demetriadis, S.; Karakostas, A.

    2011-01-01

    This study critically reviews the recently published scientific literature on the design and impact of adaptive and intelligent systems for collaborative learning support (AICLS) systems. The focus is threefold: 1) analyze critical design issues of AICLS systems and organize them under a unifying classification scheme, 2) present research evidence…

  14. Does Adaptive Scaffolding Facilitate Students' Ability to Regulate their Learning with Hypermedia?

    ERIC Educational Resources Information Center

    Azevedo, Roger; Cromley, Jennifer G.; Seibert, Diane

    2004-01-01

    Is adaptive scaffolding effective in facilitating students' ability to regulate their learning of complex science topics with hypermedia? We examined the role of different scaffolding instructional interventions in facilitating students' shift to more sophisticated mental models as indicated by both performance and process data. Undergraduate…

  15. Autonomous beating rate adaptation in human stem cell-derived cardiomyocytes.

    PubMed

    Eng, George; Lee, Benjamin W; Protas, Lev; Gagliardi, Mark; Brown, Kristy; Kass, Robert S; Keller, Gordon; Robinson, Richard B; Vunjak-Novakovic, Gordana

    2016-01-01

    The therapeutic success of human stem cell-derived cardiomyocytes critically depends on their ability to respond to and integrate with the surrounding electromechanical environment. Currently, the immaturity of human cardiomyocytes derived from stem cells limits their utility for regenerative medicine and biological research. We hypothesize that biomimetic electrical signals regulate the intrinsic beating properties of cardiomyocytes. Here we show that electrical conditioning of human stem cell-derived cardiomyocytes in three-dimensional culture promotes cardiomyocyte maturation, alters their automaticity and enhances connexin expression. Cardiomyocytes adapt their autonomous beating rate to the frequency at which they were stimulated, an effect mediated by the emergence of a rapidly depolarizing cell population, and the expression of hERG. This rate-adaptive behaviour is long lasting and transferable to the surrounding cardiomyocytes. Thus, electrical conditioning may be used to promote cardiomyocyte maturation and establish their automaticity, with implications for cell-based reduction of arrhythmia during heart regeneration. PMID:26785135

  16. Autonomous beating rate adaptation in human stem cell-derived cardiomyocytes

    PubMed Central

    Eng, George; Lee, Benjamin W.; Protas, Lev; Gagliardi, Mark; Brown, Kristy; Kass, Robert S.; Keller, Gordon; Robinson, Richard B.; Vunjak-Novakovic, Gordana

    2016-01-01

    The therapeutic success of human stem cell-derived cardiomyocytes critically depends on their ability to respond to and integrate with the surrounding electromechanical environment. Currently, the immaturity of human cardiomyocytes derived from stem cells limits their utility for regenerative medicine and biological research. We hypothesize that biomimetic electrical signals regulate the intrinsic beating properties of cardiomyocytes. Here we show that electrical conditioning of human stem cell-derived cardiomyocytes in three-dimensional culture promotes cardiomyocyte maturation, alters their automaticity and enhances connexin expression. Cardiomyocytes adapt their autonomous beating rate to the frequency at which they were stimulated, an effect mediated by the emergence of a rapidly depolarizing cell population, and the expression of hERG. This rate-adaptive behaviour is long lasting and transferable to the surrounding cardiomyocytes. Thus, electrical conditioning may be used to promote cardiomyocyte maturation and establish their automaticity, with implications for cell-based reduction of arrhythmia during heart regeneration. PMID:26785135

  17. Spaceborne multiview image compression based on adaptive disparity compensation with rate-distortion optimization

    NASA Astrophysics Data System (ADS)

    Li, Shigao; Su, Kehua; Jia, Liming

    2016-01-01

    Disparity compensation (DC) and transform coding are incorporated into a hybrid coding to reduce the code-rate of multiview images. However, occlusion and inaccurate disparity estimations (DE) impair the performance of DC, especially in spaceborne images. This paper proposes an adaptive disparity-compensation scheme for the compression of spaceborne multiview images, including stereo image pairs and three-line-scanner images. DC with adaptive loop filter is used to remove redundancy between reference images and target images and a wavelet-based coding method is used to encode reference images and residue images. In occlusion regions, the DC efficiency may be poor because no interview correlation exists. A rate-distortion optimization method is thus designed to select the best prediction mode for local regions. Experimental results show that the proposed scheme can provide significant coding gain compared with some other similar coding schemes, and the time complexity is also competitive.

  18. Taking Aim at the Cognitive Side of Learning in Sensorimotor Adaptation Tasks.

    PubMed

    McDougle, Samuel D; Ivry, Richard B; Taylor, Jordan A

    2016-07-01

    Sensorimotor adaptation tasks have been used to characterize processes responsible for calibrating the mapping between desired outcomes and motor commands. Research has focused on how this form of error-based learning takes place in an implicit and automatic manner. However, recent work has revealed the operation of multiple learning processes, even in this simple form of learning. This review focuses on the contribution of cognitive strategies and heuristics to sensorimotor learning, and how these processes enable humans to rapidly explore and evaluate novel solutions to enable flexible, goal-oriented behavior. This new work points to limitations in current computational models, and how these must be updated to describe the conjoint impact of multiple processes in sensorimotor learning. PMID:27261056

  19. Design and optimisation of a (FA)Q-learning-based HTTP adaptive streaming client

    NASA Astrophysics Data System (ADS)

    Claeys, Maxim; Latré, Steven; Famaey, Jeroen; Wu, Tingyao; Van Leekwijck, Werner; De Turck, Filip

    2014-01-01

    In recent years, HTTP (Hypertext Transfer Protocol) adaptive streaming (HAS) has become the de facto standard for adaptive video streaming services. A HAS video consists of multiple segments, encoded at multiple quality levels. State-of-the-art HAS clients employ deterministic heuristics to dynamically adapt the requested quality level based on the perceived network conditions. Current HAS client heuristics are, however, hardwired to fit specific network configurations, making them less flexible to fit a vast range of settings. In this article, a (frequency adjusted) Q-learning HAS client is proposed. In contrast to existing heuristics, the proposed HAS client dynamically learns the optimal behaviour corresponding to the current network environment in order to optimise the quality of experience. Furthermore, the client has been optimised both in terms of global performance and convergence speed. Thorough evaluations show that the proposed client can outperform deterministic algorithms by 11-18% in terms of mean opinion score in a wide range of network configurations.

  20. Learning from adaptive neural network output feedback control of a unicycle-type mobile robot.

    PubMed

    Zeng, Wei; Wang, Qinghui; Liu, Fenglin; Wang, Ying

    2016-03-01

    This paper studies learning from adaptive neural network (NN) output feedback control of nonholonomic unicycle-type mobile robots. The major difficulties are caused by the unknown robot system dynamics and the unmeasurable states. To overcome these difficulties, a new adaptive control scheme is proposed including designing a new adaptive NN output feedback controller and two high-gain observers. It is shown that the stability of the closed-loop robot system and the convergence of tracking errors are guaranteed. The unknown robot system dynamics can be approximated by radial basis function NNs. When repeating same or similar control tasks, the learned knowledge can be recalled and reused to achieve guaranteed stability and better control performance, thereby avoiding the tremendous repeated training process of NNs. PMID:26830003

  1. Improvement of the multilayer perceptron for air quality modelling through an adaptive learning scheme

    NASA Astrophysics Data System (ADS)

    Hoi, K. I.; Yuen, K. V.; Mok, K. M.

    2013-09-01

    Multilayer perceptron (MLP), normally trained by the offline backpropagation algorithm, could not adapt to the changing air quality system and subsequently underperforms. To improve this, the extended Kalman filter is adopted into the learning algorithm to build a time-varying multilayer perceptron (TVMLP) in this study. Application of the TVMLP to model the daily averaged concentration of the respirable suspended particulates with aerodynamic diameter of not more than 10 µm (PM10) in Macau shows statistically significant improvement on the performance indicators over the MLP counterpart. In addition, the adaptive learning algorithm could also address explicitly the uncertainty of the prediction so that confidence intervals can be provided. More importantly, the adaptiveness of the TVMLP gives prediction improvement on the region of higher particulate concentrations that the public concerns.

  2. Strategies for adding adaptive learning mechanisms to rule-based diagnostic expert systems

    NASA Technical Reports Server (NTRS)

    Stclair, D. C.; Sabharwal, C. L.; Bond, W. E.; Hacke, Keith

    1988-01-01

    Rule-based diagnostic expert systems can be used to perform many of the diagnostic chores necessary in today's complex space systems. These expert systems typically take a set of symptoms as input and produce diagnostic advice as output. The primary objective of such expert systems is to provide accurate and comprehensive advice which can be used to help return the space system in question to nominal operation. The development and maintenance of diagnostic expert systems is time and labor intensive since the services of both knowledge engineer(s) and domain expert(s) are required. The use of adaptive learning mechanisms to increment evaluate and refine rules promises to reduce both time and labor costs associated with such systems. This paper describes the basic adaptive learning mechanisms of strengthening, weakening, generalization, discrimination, and discovery. Next basic strategies are discussed for adding these learning mechanisms to rule-based diagnostic expert systems. These strategies support the incremental evaluation and refinement of rules in the knowledge base by comparing the set of advice given by the expert system (A) with the correct diagnosis (C). Techniques are described for selecting those rules in the in the knowledge base which should participate in adaptive learning. The strategies presented may be used with a wide variety of learning algorithms. Further, these strategies are applicable to a large number of rule-based diagnostic expert systems. They may be used to provide either immediate or deferred updating of the knowledge base.

  3. Neuromorphic adaptive plastic scalable electronics: analog learning systems.

    PubMed

    Srinivasa, Narayan; Cruz-Albrecht, Jose

    2012-01-01

    Decades of research to build programmable intelligent machines have demonstrated limited utility in complex, real-world environments. Comparing their performance with biological systems, these machines are less efficient by a factor of 1 million1 billion in complex, real-world environments. The Systems of Neuromorphic Adaptive Plastic Scalable Electronics (SyNAPSE) program is a multifaceted Defense Advanced Research Projects Agency (DARPA) project that seeks to break the programmable machine paradigm and define a new path for creating useful, intelligent machines. Since real-world systems exhibit infinite combinatorial complexity, electronic neuromorphic machine technology would be preferable in a host of applications, but useful and practical implementations still do not exist. HRL Laboratories LLC has embarked on addressing these challenges, and, in this article, we provide an overview of our project and progress made thus far. PMID:22344953

  4. Adaptation to climate change: changes in farmland use and stocking rate in the U.S.

    USGS Publications Warehouse

    Mu, Jianhong E.; McCarl, Bruce A.; Wein, Anne M.

    2013-01-01

    This paper examines possible adaptations to climate change in terms of pasture and crop land use and stocking rate in the United States (U.S.). Using Agricultural Census and climate data in a statistical model, we find that as temperature and precipitation increases agricultural commodity producers respond by reducing crop land and increasing pasture land. In addition, cattle stocking rate decreases as the summer Temperature-humidity Index (THI) increases and summer precipitation decreases. Using the statistical model with climate data from four General Circulation Models (GCMs), we project that land use shifts from cropping to grazing and the stocking rate declines, and these adaptations are more pronounced in the central and the southeast regions of the U.S. Controlling for other farm production variables, crop land decreases by 6 % and pasture land increases by 33 % from the baseline. Correspondingly, the associated economic impact due to adaptation is around -14 and 29 million dollars to crop producers and pasture producers by the end of this century, respectively. The national and regional results have implications for farm programs and subsidy policies.

  5. Molecular and Metabolic Adaptations of Lactococcus lactis at Near-Zero Growth Rates

    PubMed Central

    Ercan, Onur; Wels, Michiel; Smid, Eddy J.

    2014-01-01

    This paper describes the molecular and metabolic adaptations of Lactococcus lactis during the transition from a growing to a near-zero growth state by using carbon-limited retentostat cultivation. Transcriptomic analyses revealed that metabolic patterns shifted between lactic- and mixed-acid fermentations during retentostat cultivation, which appeared to be controlled at the level of transcription of the corresponding pyruvate dissipation-encoding genes. During retentostat cultivation, cells continued to consume several amino acids but also produced specific amino acids, which may derive from the conversion of glycolytic intermediates. We identify a novel motif containing CTGTCAG in the upstream regions of several genes related to amino acid conversion, which we propose to be the target site for CodY in L. lactis KF147. Finally, under extremely low carbon availability, carbon catabolite repression was progressively relieved and alternative catabolic functions were found to be highly expressed, which was confirmed by enhanced initial acidification rates on various sugars in cells obtained from near-zero-growth cultures. The present integrated transcriptome and metabolite (amino acids and previously reported fermentation end products) study provides molecular understanding of the adaptation of L. lactis to conditions supporting low growth rates and expands our earlier analysis of the quantitative physiology of this bacterium at near-zero growth rates toward gene regulation patterns involved in zero-growth adaptation. PMID:25344239

  6. E-Learning Library with Local Indexing and Adaptive Navigation Support for Web-Based Learning

    ERIC Educational Resources Information Center

    Hasegawa, Shinobu; Kashihara, Akihiro; Toyoda, Jun'ichi

    2003-01-01

    Learning with existing web-based resources has become popular and important, for example, in cases where there are diverse learning resources dealing with the same learning topic. However, many resources do not have a clear description of their characteristics, which makes it difficult for learners to select appropriate resources. This article…

  7. Reinforcement learning for adaptive threshold control of restorative brain-computer interfaces: a Bayesian simulation.

    PubMed

    Bauer, Robert; Gharabaghi, Alireza

    2015-01-01

    Restorative brain-computer interfaces (BCI) are increasingly used to provide feedback of neuronal states in a bid to normalize pathological brain activity and achieve behavioral gains. However, patients and healthy subjects alike often show a large variability, or even inability, of brain self-regulation for BCI control, known as BCI illiteracy. Although current co-adaptive algorithms are powerful for assistive BCIs, their inherent class switching clashes with the operant conditioning goal of restorative BCIs. Moreover, due to the treatment rationale, the classifier of restorative BCIs usually has a constrained feature space, thus limiting the possibility of classifier adaptation. In this context, we applied a Bayesian model of neurofeedback and reinforcement learning for different threshold selection strategies to study the impact of threshold adaptation of a linear classifier on optimizing restorative BCIs. For each feedback iteration, we first determined the thresholds that result in minimal action entropy and maximal instructional efficiency. We then used the resulting vector for the simulation of continuous threshold adaptation. We could thus show that threshold adaptation can improve reinforcement learning, particularly in cases of BCI illiteracy. Finally, on the basis of information-theory, we provided an explanation for the achieved benefits of adaptive threshold setting. PMID:25729347

  8. Reinforcement learning for adaptive threshold control of restorative brain-computer interfaces: a Bayesian simulation

    PubMed Central

    Bauer, Robert; Gharabaghi, Alireza

    2015-01-01

    Restorative brain-computer interfaces (BCI) are increasingly used to provide feedback of neuronal states in a bid to normalize pathological brain activity and achieve behavioral gains. However, patients and healthy subjects alike often show a large variability, or even inability, of brain self-regulation for BCI control, known as BCI illiteracy. Although current co-adaptive algorithms are powerful for assistive BCIs, their inherent class switching clashes with the operant conditioning goal of restorative BCIs. Moreover, due to the treatment rationale, the classifier of restorative BCIs usually has a constrained feature space, thus limiting the possibility of classifier adaptation. In this context, we applied a Bayesian model of neurofeedback and reinforcement learning for different threshold selection strategies to study the impact of threshold adaptation of a linear classifier on optimizing restorative BCIs. For each feedback iteration, we first determined the thresholds that result in minimal action entropy and maximal instructional efficiency. We then used the resulting vector for the simulation of continuous threshold adaptation. We could thus show that threshold adaptation can improve reinforcement learning, particularly in cases of BCI illiteracy. Finally, on the basis of information-theory, we provided an explanation for the achieved benefits of adaptive threshold setting. PMID:25729347

  9. Anatomy of Student Models in Adaptive Learning Systems: A Systematic Literature Review of Individual Differences from 2001 to 2013

    ERIC Educational Resources Information Center

    Nakic, Jelena; Granic, Andrina; Glavinic, Vlado

    2015-01-01

    This study brings an evidence-based review of user individual characteristics employed as sources of adaptation in recent adaptive learning systems. Twenty-two user individual characteristics were explored in a systematically designed search procedure, while 17 of them were identified as sources of adaptation in final selection. The content…

  10. Does Visuomotor Adaptation Proceed in Stages? An Examination of the Learning Model by Chein and Schneider (2012).

    PubMed

    Simon, Anja; Bock, Otmar

    2015-01-01

    A new 3-stage model based on neuroimaging evidence is proposed by Chein and Schneider (2012). Each stage is associated with different brain regions, and draws on cognitive abilities: the first stage on creativity, the second on selective attention, and the third on automatic processing. The purpose of the present study was to scrutinize the validity of this model for 1 popular learning paradigm, visuomotor adaptation. Participants completed tests for creativity, selective attention and automated processing before attending in a pointing task with adaptation to a 60° rotation of visual feedback. To examine the relationship between cognitive abilities and motor learning at different times of practice, associations between cognitive and adaptation scores were calculated repeatedly throughout adaptation. The authors found no benefit of high creativity for adaptive performance. High levels of selective attention were positively associated with early adaptation, but hardly with late adaptation and de-adaptation. High levels of automated execution were beneficial for late adaptation, but hardly for early and de-adaptation. From this we conclude that Chein and Schneider's first learning stage is difficult to confirm by research on visuomotor adaptation, and that the other 2 learning stages rather relate to workaround strategies than to actual adaptive recalibration. PMID:25826096

  11. A Case-Study for Life-Long Learning and Adaptation in Cooperative Robot Teams

    SciTech Connect

    Parker, L.E.

    1999-09-19

    While considerable progress has been made in recent years toward the development of multi-robot teams, much work remains to be done before these teams are used widely in real-world applications. Two particular needs toward this end are the development of mechanisms that enable robot teams to generate cooperative behaviors on their own, and the development of techniques that allow these teams to autonomously adapt their behavior over time as the environment or the robot team changes. This paper proposes the use of the Cooperative Multi-Robot Observation of Multiple Moving Targets (CMOMMT) application as a rich domain for studying the issues of multi-robot learning and adaptation. After discussing the need for learning and adaptation in multi-robot teams, this paper describes the CMOMMT application and its relevance to multi-robot learning. We discuss the results of the previously- developed, hand-generated algorithm for CMOMMT and the potential for learning that was discovered from the hand-generated approach. We then describe the early work that has been done (by us and others) to generate multi- robot learning techniques for the CMOMMT application, as well as our ongoing research to develop approaches that give performance as good, or better, than the hand-generated approach. The ultimate goal of this research is to develop techniques for multi-robot learning and adaptation in the CMOMMT application domain that will generalize to cooperative robot applications in other domains, thus making the practical use of multi-robot teams in a wide variety of real-world applications much closer to reality.

  12. MRSA model of learning and adaptation: a qualitative study among the general public

    PubMed Central

    2012-01-01

    Background More people in the US now die from Methicillin Resistant Staphylococcus aureus (MRSA) infections than from HIV/AIDS. Often acquired in healthcare facilities or during healthcare procedures, the extremely high incidence of MRSA infections and the dangerously low levels of literacy regarding antibiotic resistance in the general public are on a collision course. Traditional medical approaches to infection control and the conventional attitude healthcare practitioners adopt toward public education are no longer adequate to avoid this collision. This study helps us understand how people acquire and process new information and then adapt behaviours based on learning. Methods Using constructivist theory, semi-structured face-to-face and phone interviews were conducted to gather pertinent data. This allowed participants to tell their stories so their experiences could deepen our understanding of this crucial health issue. Interview transcripts were analysed using grounded theory and sensitizing concepts. Results Our findings were classified into two main categories, each of which in turn included three subthemes. First, in the category of Learning, we identified how individuals used their Experiences with MRSA, to answer the questions: What was learned? and, How did learning occur? The second category, Adaptation gave us insights into Self-reliance, Reliance on others, and Reflections on the MRSA journey. Conclusions This study underscores the critical importance of educational programs for patients, and improved continuing education for healthcare providers. Five specific results of this study can reduce the vacuum that currently exists between the knowledge and information available to healthcare professionals, and how that information is conveyed to the public. These points include: 1) a common model of MRSA learning and adaptation; 2) the self-directed nature of adult learning; 3) the focus on general MRSA information, care and prevention, and antibiotic

  13. Studying citizen science through adaptive management and learning feedbacks as mechanisms for improving conservation.

    PubMed

    Jordan, Rebecca; Gray, Steven; Sorensen, Amanda; Newman, Greg; Mellor, David; Newman, Greg; Hmelo-Silver, Cindy; LaDeau, Shannon; Biehler, Dawn; Crall, Alycia

    2016-06-01

    Citizen science has generated a growing interest among scientists and community groups, and citizen science programs have been created specifically for conservation. We examined collaborative science, a highly interactive form of citizen science, which we developed within a theoretically informed framework. In this essay, we focused on 2 aspects of our framework: social learning and adaptive management. Social learning, in contrast to individual-based learning, stresses collaborative and generative insight making and is well-suited for adaptive management. Adaptive-management integrates feedback loops that are informed by what is learned and is guided by iterative decision making. Participants engaged in citizen science are able to add to what they are learning through primary data collection, which can result in the real-time information that is often necessary for conservation. Our work is particularly timely because research publications consistently report a lack of established frameworks and evaluation plans to address the extent of conservation outcomes in citizen science. To illustrate how our framework supports conservation through citizen science, we examined how 2 programs enacted our collaborative science framework. Further, we inspected preliminary conservation outcomes of our case-study programs. These programs, despite their recent implementation, are demonstrating promise with regard to positive conservation outcomes. To date, they are independently earning funds to support research, earning buy-in from local partners to engage in experimentation, and, in the absence of leading scientists, are collecting data to test ideas. We argue that this success is due to citizen scientists being organized around local issues and engaging in iterative, collaborative, and adaptive learning. PMID:26585836

  14. Predicting demographically sustainable rates of adaptation: can great tit breeding time keep pace with climate change?

    PubMed Central

    Gienapp, Phillip; Lof, Marjolein; Reed, Thomas E.; McNamara, John; Verhulst, Simon; Visser, Marcel E.

    2013-01-01

    Populations need to adapt to sustained climate change, which requires micro-evolutionary change in the long term. A key question is how the rate of this micro-evolutionary change compares with the rate of environmental change, given that theoretically there is a ‘critical rate of environmental change’ beyond which increased maladaptation leads to population extinction. Here, we parametrize two closely related models to predict this critical rate using data from a long-term study of great tits (Parus major). We used stochastic dynamic programming to predict changes in optimal breeding time under three different climate scenarios. Using these results we parametrized two theoretical models to predict critical rates. Results from both models agreed qualitatively in that even ‘mild’ rates of climate change would be close to these critical rates with respect to great tit breeding time, while for scenarios close to the upper limit of IPCC climate projections the calculated critical rates would be clearly exceeded with possible consequences for population persistence. We therefore tentatively conclude that micro-evolution, together with plasticity, would rescue only the population from mild rates of climate change, although the models make many simplifying assumptions that remain to be tested. PMID:23209174

  15. Colonisation rate and adaptive foraging control the emergence of trophic cascades.

    PubMed

    Fahimipour, Ashkaan K; Anderson, Kurt E

    2015-08-01

    Ecological communities are assembled and sustained by colonisation. At the same time, predators make foraging decisions based on the local availabilities of potential resources, which reflects colonisation. We combined field and laboratory experiments with mathematical models to demonstrate that a feedback between these two processes determines emergent patterns in community structure. Namely, our results show that prey colonisation rate determines the strength of trophic cascades - a feature of virtually all ecosystems - by prompting behavioural shifts in adaptively foraging omnivorous fish predators. Communities experiencing higher colonisation rates were characterised by higher invertebrate prey and lower producer biomasses. Consequently, fish functioned as predators when colonisation rate was high, but as herbivores when colonisation rate was low. Human land use is changing habitat connectivity worldwide. A deeper quantitative understanding of how spatial processes modify individual behaviour, and how this scales to the community level, will be required to predict ecosystem responses to these changes. PMID:26096758

  16. Hyperspectral imaging-based credit card verifier structure with adaptive learning.

    PubMed

    Sumriddetchkajorn, Sarun; Intaravanne, Yuttana

    2008-12-10

    We propose and experimentally demonstrate a hyperspectral imaging-based optical structure for verifying a credit card. Our key idea comes from the fact that the fine detail of the embossed hologram stamped on the credit card is hard to duplicate, and therefore its key color features can be used for distinguishing between the real and counterfeit ones. As the embossed hologram is a diffractive optical element, we shine a number of broadband light sources one at a time, each at a different incident angle, on the embossed hologram of the credit card in such a way that different color spectra per incident angle beam are diffracted and separated in space. In this way, the center of mass of the histogram on each color plane is investigated by using a feed-forward backpropagation neural-network configuration. Our experimental demonstration using two off-the-shelf broadband white light emitting diodes, one digital camera, and a three-layer neural network can effectively identify 38 genuine and 109 counterfeit credit cards with false rejection rates of 5.26% and 0.92%, respectively. Key features include low cost, simplicity, no moving parts, no need of an additional decoding key, and adaptive learning. PMID:19079468

  17. Adaptive Grid Based Localized Learning for Multidimensional Data

    ERIC Educational Resources Information Center

    Saini, Sheetal

    2012-01-01

    Rapid advances in data-rich domains of science, technology, and business has amplified the computational challenges of "Big Data" synthesis necessary to slow the widening gap between the rate at which the data is being collected and analyzed for knowledge. This has led to the renewed need for efficient and accurate algorithms, framework,…

  18. A Three-Tier Profiling Framework for Adaptive e-Learning

    NASA Astrophysics Data System (ADS)

    Li, Frederick W. B.; Lau, Rynson W. H.; Dharmendran, Parthiban

    Existing methods support adaptive e-learning mainly by setting student characteristics in a student profile, and use it as a filter to extract suitable learning content from a dedicated structure of course materials. If simple student characteristics, such as prior knowledge and learning preference, are considered, it may be straightforward for an instructor to set up the student profiles. However, if complicated student characteristics, such as learning styles, interaction styles and content styles, and other factors that affect the students’ interests on the course materials are involved, it may become too difficult for an instructor to design a suitable course structure matching all these criteria. It is also complicated for system implementation as many rules need to be set up. In this paper, we propose a three-tier profiling framework in conjunction with a concept space structure and a set of concept filters to address the above problems. The framework offers a unified way to model and handle a variety of student learning needs and the different factors that affect course material relevance. The framework is extensible in nature and can form the foundation for the future development of adaptive e-learning systems.

  19. Towards Individualized Online Learning: The Design and Development of an Adaptive Web Based Learning Environment

    ERIC Educational Resources Information Center

    Inan, Fethi A.; Flores, Raymond; Ari, Fatih; Arslan-Ari, Ismahan

    2011-01-01

    The purpose of this study was to document the design and development of an adaptive system which individualizes instruction such as content, interfaces, instructional strategies, and resources dependent on two factors, namely student motivation and prior knowledge levels. Combining adaptive hypermedia methods with strategies proposed by…

  20. Introducing Adaptivity Features to a Regular Learning Management System to Support Creation of Advanced eLessons

    ERIC Educational Resources Information Center

    Komlenov, Zivana; Budimac, Zoran; Ivanovic, Mirjana

    2010-01-01

    In order to improve the learning process for students with different pre-knowledge, personal characteristics and preferred learning styles, a certain degree of adaptability must be introduced to online courses. In learning environments that support such kind of functionalities students can explicitly choose different paths through course contents…

  1. Investigating the Impact of Formal Reflective Activities on Skill Adaptation in a Work-Related Instrumental Learning Setting

    ERIC Educational Resources Information Center

    Roessger, Kevin M.

    2013-01-01

    In work-related, instrumental learning contexts the role of reflective activities is unclear. Kolb's (1985) experiential learning theory and Mezirow's transformative learning theory (2000) predict skill-adaptation as a possible outcome. This prediction was experimentally explored by manipulating reflective activities and assessing participants'…

  2. Catch trials in force field learning influence adaptation and consolidation of human motor memory

    PubMed Central

    Stockinger, Christian; Focke, Anne; Stein, Thorsten

    2014-01-01

    Force field studies are a common tool to investigate motor adaptation and consolidation. Thereby, subjects usually adapt their reaching movements to force field perturbations induced by a robotic device. In this context, so-called catch trials, in which the disturbing forces are randomly turned off, are commonly used to detect after-effects of motor adaptation. However, catch trials also produce sudden large motor errors that might influence the motor adaptation and the consolidation process. Yet, the detailed influence of catch trials is far from clear. Thus, the aim of this study was to investigate the influence of catch trials on motor adaptation and consolidation in force field experiments. Therefore, 105 subjects adapted their reaching movements to robot-generated force fields. The test groups adapted their reaching movements to a force field A followed by learning a second interfering force field B before retest of A (ABA). The control groups were not exposed to force field B (AA). To examine the influence of diverse catch trial ratios, subjects received catch trials during force field adaptation with a probability of either 0, 10, 20, 30, or 40%, depending on the group. First, the results on motor adaptation revealed significant differences between the diverse catch trial ratio groups. With increasing amount of catch trials, the subjects' motor performance decreased and subjects' ability to accurately predict the force field—and therefore internal model formation—was impaired. Second, our results revealed that adapting with catch trials can influence the following consolidation process as indicated by a partial reduction to interference. Here, the optimal catch trial ratio was 30%. However, detection of consolidation seems to be biased by the applied measure of performance. PMID:24795598

  3. Data rate management and real time operation: recursive adaptive frame integration of limited data

    NASA Astrophysics Data System (ADS)

    Rafailov, Michael K.

    2006-08-01

    Recursive Limited Frame Integration was proposed as a way to improve frame integration performance and mitigate issues related to high data rate needed to support conventional frame integration. The technique uses two thresholds -one tuned for optimum probability of detection, the other to manage required false alarm rate, and places integration process between those thresholds. This configuration allows a non-linear integration process that, along with Signal-to-Noise Ratio (SNR) gain, provides system designers more capability where cost, weight, or power considerations limit system data rate, processing, or memory capability. However, Recursive Frame Integration Limited may have performance issues when single-frame SNR is really low. Recursive Adaptive Limited Frame Integration was proposed as a means to improve limited integration performance with really low single-frame SNR. It combines the benefits of nonlinear recursive limited frame integration and adaptive thresholds with a kind of conventional frame integration. Adding the third threshold may help in managing real time operations. In the paper the Recursive Frame Integration is presented in form of multiple parallel recursive integration. Such an approach can help not only in data rate management but in mitigation of low single frame SNR issue for Recursive Integration as well as in real time operations with frame integration.

  4. Spike timing precision changes with spike rate adaptation in the owl's auditory space map.

    PubMed

    Keller, Clifford H; Takahashi, Terry T

    2015-10-01

    Spike rate adaptation (SRA) is a continuing change of responsiveness to ongoing stimuli, which is ubiquitous across species and levels of sensory systems. Under SRA, auditory responses to constant stimuli change over time, relaxing toward a long-term rate often over multiple timescales. With more variable stimuli, SRA causes the dependence of spike rate on sound pressure level to shift toward the mean level of recent stimulus history. A model based on subtractive adaptation (Benda J, Hennig RM. J Comput Neurosci 24: 113-136, 2008) shows that changes in spike rate and level dependence are mechanistically linked. Space-specific neurons in the barn owl's midbrain, when recorded under ketamine-diazepam anesthesia, showed these classical characteristics of SRA, while at the same time exhibiting changes in spike timing precision. Abrupt level increases of sinusoidally amplitude-modulated (SAM) noise initially led to spiking at higher rates with lower temporal precision. Spike rate and precision relaxed toward their long-term values with a time course similar to SRA, results that were also replicated by the subtractive model. Stimuli whose amplitude modulations (AMs) were not synchronous across carrier frequency evoked spikes in response to stimulus envelopes of a particular shape, characterized by the spectrotemporal receptive field (STRF). Again, abrupt stimulus level changes initially disrupted the temporal precision of spiking, which then relaxed along with SRA. We suggest that shifts in latency associated with stimulus level changes may differ between carrier frequency bands and underlie decreased spike precision. Thus SRA is manifest not simply as a change in spike rate but also as a change in the temporal precision of spiking. PMID:26269555

  5. Adaptation.

    PubMed

    Broom, Donald M

    2006-01-01

    The term adaptation is used in biology in three different ways. It may refer to changes which occur at the cell and organ level, or at the individual level, or at the level of gene action and evolutionary processes. Adaptation by cells, especially nerve cells helps in: communication within the body, the distinguishing of stimuli, the avoidance of overload and the conservation of energy. The time course and complexity of these mechanisms varies. Adaptive characters of organisms, including adaptive behaviours, increase fitness so this adaptation is evolutionary. The major part of this paper concerns adaptation by individuals and its relationships to welfare. In complex animals, feed forward control is widely used. Individuals predict problems and adapt by acting before the environmental effect is substantial. Much of adaptation involves brain control and animals have a set of needs, located in the brain and acting largely via motivational mechanisms, to regulate life. Needs may be for resources but are also for actions and stimuli which are part of the mechanism which has evolved to obtain the resources. Hence pigs do not just need food but need to be able to carry out actions like rooting in earth or manipulating materials which are part of foraging behaviour. The welfare of an individual is its state as regards its attempts to cope with its environment. This state includes various adaptive mechanisms including feelings and those which cope with disease. The part of welfare which is concerned with coping with pathology is health. Disease, which implies some significant effect of pathology, always results in poor welfare. Welfare varies over a range from very good, when adaptation is effective and there are feelings of pleasure or contentment, to very poor. A key point concerning the concept of individual adaptation in relation to welfare is that welfare may be good or poor while adaptation is occurring. Some adaptation is very easy and energetically cheap and

  6. Energy Detection Based Estimation of Channel Occupancy Rate with Adaptive Noise Estimation

    NASA Astrophysics Data System (ADS)

    Lehtomäki, Janne J.; Vuohtoniemi, Risto; Umebayashi, Kenta; Mäkelä, Juha-Pekka

    Recently, there has been growing interest in opportunistically utilizing the 2.4GHz ISM-band. Numerous spectrum occupancy measurements covering the ISM-band have been performed to analyze the spectrum usage. However, in these campaigns the verification of the correctness of the obtained occupancy values for the highly dynamic ISM-band has not been presented. In this paper, we propose and verify channel occupancy rate (COR) estimation utilizing energy detection mechanism with a novel adaptive energy detection threshold setting method. The results are compared with the true reference COR values. Several different types of verification measurements showed that our setup can estimate the COR values of 802.11 traffic well, with negligible overestimation. The results from real-time real-life measurements also confirm that the proposed adaptive threshold setting method enables accurate thresholds even in the situations where multiple interferers are present in the received signal.

  7. Application of simple adaptive control to rate gyroscope stable platform system

    NASA Astrophysics Data System (ADS)

    Hu, Yonghao; Song, Xueping; Li, Bangjun; Shi, Liping

    2013-09-01

    For a class of nonlinear systems with dynamic uncertainties, adaptive stabilization problem is considered in the rate gyroscope of stable platform system. Since the uncertainties are inevitable in the practical model of systems, the robust property of the systems in the presence of parametric uncertainties is important to be considered, such as modeling error, external disturbances, etc. Due to the strong nonlinearity and coupling characteristic of systems, it is difficult to obtain the precise model, and the nonlinearity cannot be cancelled exactly so that the controller performs badly. Adaptive control (AC) can adapt to parameter variations, but it is not applicable to the transition phase. A way to optimize the overall disturbances rejection performance of the AC system in the presence of unknown external disturbances existing in the stable platform system is provided in this paper. According to the construction of stable platform system based on gyroscope stabilized platform, the coordinate systems related to stable platform system are defined, and its mathematical model of stabilized platform is build up. Using the SIMULINK of MATLAB, the model is applied to the computer simulation of the stable platform system with good results. The author designed the control law of velocity-loop respective with the method of continuous correcting net and the AC. The simulation results show that the designed adaptive control law can satisfy the required criterion, it proves that the design method is feasible. In order to compare the above two method efficiently, the author gives the seeker system step response, square wave response especially. Adaptive control law is confirmed to give better tracking performance compared with correcting net control, and a control precision comparable to seeker system and higher robustness to parameter change, despite the simple controller. The research results ensure a wider application of simple AC in real mechanical systems.

  8. Climate and Adaptive Management: What Are We Learning While We're Doing?

    NASA Astrophysics Data System (ADS)

    Pulwarty, R.; Melis, T.; Shurts, J.; Jain, S.

    2005-12-01

    Learning is of strategic importance in the decades-long process of adapting to climatic change and variability and in accumulating lessons from past and current practices. Even when physical effects can be established with fair confidence there usually exist large uncertainties about biological and ecological effects and even greater uncertainties with respect to social consequences. Much work and experience has shown that long-term environmental problems can seldom be dealt with by single discrete actions or policies but respond only to continuing, sustained efforts at learning, supported by steady public attention and visibility. In many cases, the complications of recorded changes in the spatial and temporal distribution of rainfall, temperature soil moisture, runoff, frequency and magnitudes of droughts and floods have not been explicitly included in response planning. The idea of "adaptive management" has been widely advocated as a bridge between science and policy with a specific focus on ecosystems. We discuss this idea in the context of climatic and other uncertainties but ground the discussion in the implementation of actual adaptive management programs. Adaptive management has three key tenets (1) Policies are experiments that should be designed to produce usable lessons; (2) It should operate on scales compatible with natural processes, recognizing social and economic viability within functioning ecosystems; and: (3) Is realized through effective partnerships among private, local, state, tribal and federal interests. In a watershed setting this can mean balancing hydropower production, habitat management, conservation, endangered species recovery, and cultural resources in order to experiment, learn, incorporate learning, and adapt. Each of these carries its sources of uncertainty. The primary focus is on the experience of the Columbia and Colorado River Basins, the longest running explicit efforts at adaptive management. Experience will also be drawn

  9. An adaptive Kalman filter technique for context-aware heart rate monitoring.

    PubMed

    Xu, Min; Goldfain, Albert; Dellostritto, Jim; Iyengar, Satish

    2012-01-01

    Traditional physiological monitoring systems convert a person's vital sign waveforms, such as heart rate, respiration rate and blood pressure, into meaningful information by comparing the instant reading with a preset threshold or a baseline without considering the contextual information of the person. It would be beneficial to incorporate the contextual data such as activity status of the person to the physiological data in order to obtain a more accurate representation of a person's physiological status. In this paper, we proposed an algorithm based on adaptive Kalman filter that describes the heart rate response with respect to different activity levels. It is towards our final goal of intelligent detection of any abnormality in the person's vital signs. Experimental results are provided to demonstrate the feasibility of the algorithm. PMID:23367423

  10. Adaptive learning in a compartmental model of visual cortex—how feedback enables stable category learning and refinement

    PubMed Central

    Layher, Georg; Schrodt, Fabian; Butz, Martin V.; Neumann, Heiko

    2014-01-01

    The categorization of real world objects is often reflected in the similarity of their visual appearances. Such categories of objects do not necessarily form disjunct sets of objects, neither semantically nor visually. The relationship between categories can often be described in terms of a hierarchical structure. For instance, tigers and leopards build two separate mammalian categories, both of which are subcategories of the category Felidae. In the last decades, the unsupervised learning of categories of visual input stimuli has been addressed by numerous approaches in machine learning as well as in computational neuroscience. However, the question of what kind of mechanisms might be involved in the process of subcategory learning, or category refinement, remains a topic of active investigation. We propose a recurrent computational network architecture for the unsupervised learning of categorial and subcategorial visual input representations. During learning, the connection strengths of bottom-up weights from input to higher-level category representations are adapted according to the input activity distribution. In a similar manner, top-down weights learn to encode the characteristics of a specific stimulus category. Feedforward and feedback learning in combination realize an associative memory mechanism, enabling the selective top-down propagation of a category's feedback weight distribution. We suggest that the difference between the expected input encoded in the projective field of a category node and the current input pattern controls the amplification of feedforward-driven representations. Large enough differences trigger the recruitment of new representational resources and the establishment of additional (sub-) category representations. We demonstrate the temporal evolution of such learning and show how the proposed combination of an associative memory with a modulatory feedback integration successfully establishes category and subcategory representations

  11. A Fuzzy Logic-Based Personalized Learning System for Supporting Adaptive English Learning

    ERIC Educational Resources Information Center

    Hsieh, Tung-Cheng; Wang, Tzone-I; Su, Chien-Yuan; Lee, Ming-Che

    2012-01-01

    As a nearly global language, English as a Foreign Language (EFL) programs are essential for people wishing to learn English. Researchers have noted that extensive reading is an effective way to improve a person's command of English. Choosing suitable articles in accordance with a learner's needs, interests and ability using an e-learning system…

  12. Generic Service Integration in Adaptive Learning Experiences Using IMS Learning Design

    ERIC Educational Resources Information Center

    de-la-Fuente-Valentin, Luis; Pardo, Abelardo; Kloos, Carlos Delgado

    2011-01-01

    IMS Learning Design is a specification to capture the orchestration taking place in a learning scenario. This paper presents an extension called Generic Service Integration. This paradigm allows a bidirectional communication between the course engine in charge of the orchestration and conventional Web 2.0 tools. This communication allows the…

  13. Integrating dynamic stopping, transfer learning and language models in an adaptive zero-training ERP speller

    NASA Astrophysics Data System (ADS)

    Kindermans, Pieter-Jan; Tangermann, Michael; Müller, Klaus-Robert; Schrauwen, Benjamin

    2014-06-01

    Objective. Most BCIs have to undergo a calibration session in which data is recorded to train decoders with machine learning. Only recently zero-training methods have become a subject of study. This work proposes a probabilistic framework for BCI applications which exploit event-related potentials (ERPs). For the example of a visual P300 speller we show how the framework harvests the structure suitable to solve the decoding task by (a) transfer learning, (b) unsupervised adaptation, (c) language model and (d) dynamic stopping. Approach. A simulation study compares the proposed probabilistic zero framework (using transfer learning and task structure) to a state-of-the-art supervised model on n = 22 subjects. The individual influence of the involved components (a)-(d) are investigated. Main results. Without any need for a calibration session, the probabilistic zero-training framework with inter-subject transfer learning shows excellent performance—competitive to a state-of-the-art supervised method using calibration. Its decoding quality is carried mainly by the effect of transfer learning in combination with continuous unsupervised adaptation. Significance. A high-performing zero-training BCI is within reach for one of the most popular BCI paradigms: ERP spelling. Recording calibration data for a supervised BCI would require valuable time which is lost for spelling. The time spent on calibration would allow a novel user to spell 29 symbols with our unsupervised approach. It could be of use for various clinical and non-clinical ERP-applications of BCI.

  14. Evolution of cooperation facilitated by reinforcement learning with adaptive aspiration levels.

    PubMed

    Tanabe, Shoma; Masuda, Naoki

    2012-01-21

    Repeated interaction between individuals is the main mechanism for maintaining cooperation in social dilemma situations. Variants of tit-for-tat (repeating the previous action of the opponent) and the win-stay lose-shift strategy are known as strong competitors in iterated social dilemma games. On the other hand, real repeated interaction generally allows plasticity (i.e., learning) of individuals based on the experience of the past. Although plasticity is relevant to various biological phenomena, its role in repeated social dilemma games is relatively unexplored. In particular, if experience-based learning plays a key role in promotion and maintenance of cooperation, learners should evolve in the contest with nonlearners under selection pressure. By modeling players using a simple reinforcement learning model, we numerically show that learning enables the evolution of cooperation. We also show that numerically estimated adaptive dynamics appositely predict the outcome of evolutionary simulations. The analysis of the adaptive dynamics enables us to capture the obtained results as an affirmative example of the Baldwin effect, where learning accelerates the evolution to optimality. PMID:22037063

  15. Generalization patterns for reach adaptation and proprioceptive recalibration differ after visuomotor learning.

    PubMed

    Cressman, Erin K; Henriques, Denise Y P

    2015-07-01

    Visuomotor learning results in changes in both motor and sensory systems (Cressman EK, Henriques DY. J Neurophysiol 102: 3505-3518, 2009), such that reaches are adapted and sense of felt hand position recalibrated after reaching with altered visual feedback of the hand. Moreover, visuomotor learning has been shown to generalize such that reach adaptation achieved at a trained target location can influence reaches to novel target directions (Krakauer JW, Pine ZM, Ghilardi MF, Ghez C. J Neurosci 20: 8916-8924, 2000). We looked to determine whether proprioceptive recalibration also generalizes to novel locations. Moreover, we looked to establish the relationship between reach adaptation and changes in sense of felt hand position by determining whether proprioceptive recalibration generalizes to novel targets in a similar manner as reach adaptation. On training trials, subjects reached to a single target with aligned or misaligned cursor-hand feedback, in which the cursor was either rotated or scaled in extent relative to hand movement. After reach training, subjects reached to the training target and novel targets (including targets from a second start position) without visual feedback to assess generalization of reach adaptation. Subjects then performed a proprioceptive estimation task, in which they indicated the position of their hand relative to visual reference markers placed at similar locations as the trained and novel reach targets. Results indicated that shifts in hand position generalized across novel locations, independent of reach adaptation. Thus these distinct sensory and motor generalization patterns suggest that reach adaptation and proprioceptive recalibration arise from independent error signals and that changes in one system cannot guide adjustments in the other. PMID:25972587

  16. Low bit rates image compression via adaptive block downsampling and super resolution

    NASA Astrophysics Data System (ADS)

    Chen, Honggang; He, Xiaohai; Ma, Minglang; Qing, Linbo; Teng, Qizhi

    2016-01-01

    A low bit rates image compression framework based on adaptive block downsampling and super resolution (SR) was presented. At the encoder side, the downsampling mode and quantization mode of each 16×16 macroblock are determined adaptively using the ratio distortion optimization method, then the downsampled macroblocks are compressed by the standard JPEG. At the decoder side, the sparse representation-based SR algorithm is applied to recover full resolution macroblocks from decoded blocks. The experimental results show that the proposed framework outperforms the standard JPEG and the state-of-the-art downsampling-based compression methods in terms of both subjective and objective comparisons. Specifically, the peak signal-to-noise ratio gain of the proposed framework over JPEG reaches up to 2 to 4 dB at low bit rates, and the critical bit rate to JPEG is raised to about 2.3 bits per pixel. Moreover, the proposed framework can be extended to other block-based compression schemes.

  17. Adaptive learning via selectionism and Bayesianism, Part II: the sequential case.

    PubMed

    Zhang, Jun

    2009-04-01

    Animals increase or decrease their future tendency of emitting an action based on whether performing such action has, in the past, resulted in positive or negative reinforcement. An analysis in the companion paper [Zhang, J. (2009). Adaptive learning via selectionism and Bayesianism. Part I: Connection between the two. Neural Networks, 22(3), 220-228] of such selectionist style of learning reveals a resemblance between its ensemble-level dynamics governing the change of action probability and Bayesian learning where evidence (in this case, reward) is distributively applied to all action alternatives. Here, this equivalence is further explored in solving the temporal credit-assignment problem during the learning of an action sequence ("operant chain"). Naturally emerging are the notion of secondary (conditioned) reinforcement predicting the average reward associated with a stimulus, and the notion of actor-critic architecture involving concurrent learning of both action probability and reward prediction. While both are consistent with solutions provided by contemporary reinforcement learning theory (Sutton & Barto, 1998) for optimizing sequential decision-making under stationary Markov environments, we investigate the effect of action learning on reward prediction when both are carried out concurrently in any on-line scheme. PMID:19395235

  18. Adaptive data rate SSMA system for personal and mobile satellite communications

    NASA Technical Reports Server (NTRS)

    Ikegami, Tetsushi; Takahashi, Takashi; Arakaki, Yoshiya; Wakana, Hiromitsu

    1995-01-01

    An adaptive data rate SSMA (spread spectrum multiple access) system is proposed for mobile and personal multimedia satellite communications without the aid of system control earth stations. This system has a constant occupied bandwidth and has variable data rates and processing gains to mitigate communication link impairments such as fading, rain attenuation and interference as well as to handle variable data rate on demand. Proof of concept hardware for 6MHz bandwidth transponder is developed, that uses offset-QPSK (quadrature phase shift keying) and MSK (minimum shift keying) for direct sequence spread spectrum modulation and handle data rates of 4k to 64kbps. The RS422 data interface, low rate voice and H.261 video codecs are installed. The receiver is designed with coherent matched filter technique to achieve fast code acquisition, AFC (automatic frequency control) and coherent detection with minimum hardware losses in a single matched filter circuit. This receiver structure facilitates variable data rate on demand during a call. This paper shows the outline of the proposed system and the performance of the prototype equipment.

  19. Vocal learning beyond imitation: mechanisms of adaptive vocal development in songbirds and human infants

    PubMed Central

    Tchernichovski, Ofer; Marcus, Gary

    2014-01-01

    Studies of vocal learning in songbirds typically focus on the acquisition of sensory templates for song imitation and on the consequent process of matching song production to templates. However, functional vocal development also requires the capacity to adaptively diverge from sensory templates, and to flexibly assemble vocal units. Examples of adaptive divergence include the corrective imitation of abnormal songs, and the decreased tendency to copy overabundant syllables. Such frequency-dependent effects might mirror tradeoffs between the assimilation of group identity (culture) while establishing individual and flexibly expressive songs. Intriguingly, although the requirements for vocal plasticity vary across songbirds, and more so between birdsong and language, the capacity to flexibly assemble vocal sounds develops in a similar, stepwise manner across species. Therefore, universal features of vocal learning go well beyond the capacity to imitate. PMID:25005823

  20. Machine-Learning Based Co-adaptive Calibration: A Perspective to Fight BCI Illiteracy

    NASA Astrophysics Data System (ADS)

    Vidaurre, Carmen; Sannelli, Claudia; Müller, Klaus-Robert; Blankertz, Benjamin

    "BCI illiteracy" is one of the biggest problems and challenges in BCI research. It means that BCI control cannot be achieved by a non-negligible number of subjects (estimated 20% to 25%). There are two main causes for BCI illiteracy in BCI users: either no SMR idle rhythm is observed over motor areas, or this idle rhythm is not attenuated during motor imagery, resulting in a classification performance lower than 70% (criterion level) already for offline calibration data. In a previous work of the same authors, the concept of machine learning based co-adaptive calibration was introduced. This new type of calibration provided substantially improved performance for a variety of users. Here, we use a similar approach and investigate to what extent co-adapting learning enables substantial BCI control for completely novice users and those who suffered from BCI illiteracy before.

  1. Distributed adaptive fuzzy iterative learning control of coordination problems for higher order multi-agent systems

    NASA Astrophysics Data System (ADS)

    Li, Jinsha; Li, Junmin

    2016-07-01

    In this paper, the adaptive fuzzy iterative learning control scheme is proposed for coordination problems of Mth order (M ≥ 2) distributed multi-agent systems. Every follower agent has a higher order integrator with unknown nonlinear dynamics and input disturbance. The dynamics of the leader are a higher order nonlinear systems and only available to a portion of the follower agents. With distributed initial state learning, the unified distributed protocols combined time-domain and iteration-domain adaptive laws guarantee that the follower agents track the leader uniformly on [0, T]. Then, the proposed algorithm extends to achieve the formation control. A numerical example and a multiple robotic system are provided to demonstrate the performance of the proposed approach.

  2. Dynamical consequences of adaptation of the growth rates in a system of three competing populations

    NASA Astrophysics Data System (ADS)

    Dimitrova, Zlatinka I.; Vitanov, Nikolay K.

    2001-09-01

    We investigate the nonlinear dynamics of a system of populations competing for the same limited resource for the case where each of the populations adapts its growth rate to the total number of individuals in all populations. We consider regions of parameter space where chaotic motion of the Shilnikov kind exists and present results for two characteristic values of the growth ratio adaptation factor r*: r* = -0.15 and 5. Negative r* can lead to vanishing of regions of chaotic motion and to a stabilization of a fixed point of the studied model system of differential equations. Positive r* lead to changes of the shape of the bifurcation diagrams in comparison with the bifurcation diagrams for the case without adaptation. For the case r* = 5 we observe transition to chaos by period-doubling bifurcations, windows of periodic motion between the regions of chaotic motion and a region of transient chaos after the last window of periodic motion. The Lyapunov dimension for the chaotic attractors is close to two and the Lyapunov spectrum has a structure which allows a topological analysis of the attractors of the investigated system.

  3. Linguistic Adaptation of the Clinical Dementia Rating Scale for a Spanish-Speaking Population

    PubMed Central

    Oquendo-Jiménez, Ilia; Mena, Rafaela; Antoun, Mikhail D.; Wojna, Valerie

    2012-01-01

    Background Alzheimer's disease (AD) is the most common form of dementia worldwide. In Hispanic populations there are few validated tests for the accurate identification and diagnosis of AD. The Clinical Dementia Rating (CDR) scale is an internationally recognized questionnaire used to stage dementia. This study's objective was to develop a linguistic adaptation of the CDR for the Puerto Rican population. Methods The linguistic adaptation consisted of the evaluation of each CDR question (item) and the questionnaire's instructions, for similarities in meaning (semantic equivalence), relevance of content (content equivalence), and appropriateness of the questionnaire's format and measuring technique (technical equivalence). A focus group methodology was used to assess cultural relevance, clarity, and suitability of the measuring technique in the Argentinean version of the CDR for use in a Puerto Rican population. Results A total of 27 semantic equivalence changes were recommended in four categories: higher than 6th grade level of reading, meaning, common use, and word preference. Four content equivalence changes were identified, all focused on improving the applicability of the test questions to the general population's concept of street addresses and common dietary choices. There were no recommendations for changes in the assessment of technical equivalence. Conclusions We developed a linguistically adapted CDR instrument for the Puerto Rican population, preserving the semantic, content, and technical equivalences of the original version. Further studies are needed to validate the CDR instrument with the staging of Alzheimer's disease in the Puerto Rican population. PMID:20496524

  4. The effects of physiological adaptations to calorie restriction on global cell proliferation rates.

    PubMed

    Bruss, Matthew D; Thompson, Airlia C S; Aggarwal, Ishita; Khambatta, Cyrus F; Hellerstein, Marc K

    2011-04-01

    Calorie restriction (CR) reduces the rate of cell proliferation in mitotic tissues. It has been suggested that this reduction in cell proliferation may mediate CR-induced increases in longevity. However, the mechanisms that lead to CR-induced reductions in cell proliferation rates remain unclear. To evaluate the CR-induced physiological adaptations that may mediate reductions in cell proliferation rates, we altered housing temperature and access to voluntary running wheels to determine the effects of food intake, energy expenditure, percent body fat, and body weight on proliferation rates of keratinocytes, liver cells, mammary epithelial cells, and splenic T-cells in C57BL/6 mice. We found that ∼20% CR led to a reduction in cell proliferation rates in all cell types. However, lower cell proliferation rates were not observed with reductions in 1) food intake and energy expenditure in female mice housed at 27°C, 2) percent body fat in female mice provided running wheels, or 3) body weight in male mice provided running wheels compared with ad libitum-fed controls. In contrast, reductions in insulin-like growth factor I were associated with decreased cell proliferation rates. Taken together, these data suggest that CR-induced reductions in food intake, energy expenditure, percent body fat, and body weight do not account for the reductions in global cell proliferation rates observed in CR. In addition, these data are consistent with the hypothesis that reduced cell proliferation rates could be useful as a biomarker of interventions that increase longevity. PMID:21285400

  5. A planning quality evaluation tool for prostate adaptive IMRT based on machine learning

    SciTech Connect

    Zhu Xiaofeng; Ge Yaorong; Li Taoran; Thongphiew, Danthai; Yin Fangfang; Wu, Q Jackie

    2011-02-15

    Purpose: To ensure plan quality for adaptive IMRT of the prostate, we developed a quantitative evaluation tool using a machine learning approach. This tool generates dose volume histograms (DVHs) of organs-at-risk (OARs) based on prior plans as a reference, to be compared with the adaptive plan derived from fluence map deformation. Methods: Under the same configuration using seven-field 15 MV photon beams, DVHs of OARs (bladder and rectum) were estimated based on anatomical information of the patient and a model learned from a database of high quality prior plans. In this study, the anatomical information was characterized by the organ volumes and distance-to-target histogram (DTH). The database consists of 198 high quality prostate plans and was validated with 14 cases outside the training pool. Principal component analysis (PCA) was applied to DVHs and DTHs to quantify their salient features. Then, support vector regression (SVR) was implemented to establish the correlation between the features of the DVH and the anatomical information. Results: DVH/DTH curves could be characterized sufficiently just using only two or three truncated principal components, thus, patient anatomical information was quantified with reduced numbers of variables. The evaluation of the model using the test data set demonstrated its accuracy {approx}80% in prediction and effectiveness in improving ART planning quality. Conclusions: An adaptive IMRT plan quality evaluation tool based on machine learning has been developed, which estimates OAR sparing and provides reference in evaluating ART.

  6. Enhancing learning, innovation, adaptation, and sustainability in health care organizations: the ELIAS performance management framework.

    PubMed

    Persaud, D David

    2014-01-01

    The development of sustainable health care organizations that provide high-quality accessible care is a topic of intense interest. This article provides a practical performance management framework that can be utilized to develop sustainable health care organizations. It is a cyclical 5-step process that is premised on accountability, performance management, and learning practices that are the foundation for a continuous process of measurement, disconfirmation, contextualization, implementation, and routinization This results in the enhancement of learning, innovation, adaptation, and sustainability (ELIAS). Important considerations such as recognizing that health care organizations are complex adaptive systems and the presence of a dynamic learning culture are necessary contextual factors that maximize the effectiveness of the proposed framework. Importantly, the ELIAS framework utilizes data that are already being collected by health care organizations for accountability, improvement, evaluation, and strategic purposes. Therefore, the benefit of the framework, when used as outlined, would be to enhance the chances of health care organizations achieving the goals of ongoing adaptation and sustainability, by design, rather than by chance. PMID:25068873

  7. Saccade Adaptation as a Model of Flexible and General Motor Learning

    PubMed Central

    Herman, James P.; Blangero, Annabelle; Madelain, Laurent; Khan, Afsheen; Harwood, Mark R.

    2013-01-01

    The rapid point-to-point movements of the eyes called saccades are the most commonly made movement by humans, yet differ from nearly every other type of motor output in that they are completed too quickly to be adjusted during their execution by visual feedback. Saccadic accuracy remains quite high over a lifetime despite inevitable changes to the physical structures controlling the eyes, indicating that the oculomotor system actively monitors and adjusts motor commands to achieve consistent behavioural production. Indeed, it seems that beyond the ability to compensate for slow, age-related bodily changes, saccades can be modified following traumatic injury or pathology that affects their production, or in response to more short-term systematic alterations to post-saccadic visual feedback in a laboratory setting. These forms of plasticity rely on the visual detection of accuracy errors by a unified set of mechanisms that support the process known as saccade adaptation. Saccade adaptation has been mostly studied as a phenomenon in its own right, outside of motor learning in general. Here, we highlight the commonalities between eye and arm movement adaptation by reviewing the literature across these fields wherever there are compelling overlapping theories or data. Recent exciting findings are challenging previous interpretations of the underlying mechanism of saccade adaptation with the incorporation of concepts including prediction, reinforcement and contextual learning. We review the emerging ideas and evidence with particular emphasis on the important contributions made by Josh Wallman in this sphere over the past 15 years. PMID:23597598

  8. Conditions and limitations on learning in the adaptive management of mallard harvests

    USGS Publications Warehouse

    Johnson, F.A.; Kendall, W.L.; Dubovsky, J.A.

    2002-01-01

    In 1995, the United States Fish and Wildlife Service adopted a protocol for the adaptive management of waterfowl hunting regulations (AHM) to help reduce uncertainty about the magnitude of sustainable harvests. To date, the AHM process has focused principally on the midcontinent population of mallards (Anas platyrhynchos), whose dynamics are described by 4 alternative models. Collectively, these models express uncertainty (or disagreement) about whether harvest is an additive or a compensatory form of mortality and whether the reproductive process is weakly or strongly density-dependent. Each model is associated with a probability or 'weight,' which describes its relative ability to predict changes in population size. These Bayesian probabilities are updated annually using a comparison of population size predicted under each model with that observed by a monitoring program. The current AHM process is passively adaptive, in the sense that there is no a priori consideration of how harvest decisions might affect discrimination among models. We contrast this approach with an actively adaptive approach, in which harvest decisions are used in part to produce the learning needed to increase long-term management performance. Our investigation suggests that the passive approach is expected to perform nearly as well as an optimal actively adaptive approach, particularly considering the nature of the model set, management objectives and constraints, and current regulatory alternatives. We offer some comments about the nature of the biological hypotheses being tested and describe some of the inherent limitations on learning in the AHM process.

  9. Adapting the Structural Family Systems Rating to Assess the Patterns of Interaction in Families of Dementia Caregivers

    ERIC Educational Resources Information Center

    Mitrani, Victoria B.; Feaster, Daniel J.; McCabe, Brian E.; Czaja, Sara J.; Szapocznik, Jose

    2005-01-01

    Purpose: This study adapted the Structural Family Systems Ratings (SFSR), an observational measure of family interactions, for dementia caregivers. This article presents the development of the SFSR-Dementia Caregiver adaptation (SFSR-DC) and examines relationships between specific family-interaction patterns and caregiver distress. Design and…

  10. A Rate Function Approach to Computerized Adaptive Testing for Cognitive Diagnosis.

    PubMed

    Liu, Jingchen; Ying, Zhiliang; Zhang, Stephanie

    2015-06-01

    Computerized adaptive testing (CAT) is a sequential experiment design scheme that tailors the selection of experiments to each subject. Such a scheme measures subjects' attributes (unknown parameters) more accurately than the regular prefixed design. In this paper, we consider CAT for diagnostic classification models, for which attribute estimation corresponds to a classification problem. After a review of existing methods, we propose an alternative criterion based on the asymptotic decay rate of the misclassification probabilities. The new criterion is then developed into new CAT algorithms, which are shown to achieve the asymptotically optimal misclassification rate. Simulation studies are conducted to compare the new approach with existing methods, demonstrating its effectiveness, even for moderate length tests. PMID:24327068

  11. Performance of the JPEG Estimated Spectrum Adaptive Postfilter (JPEG-ESAP) for Low Bit Rates

    NASA Technical Reports Server (NTRS)

    Linares, Irving (Inventor)

    2016-01-01

    Frequency-based, pixel-adaptive filtering using the JPEG-ESAP algorithm for low bit rate JPEG formatted color images may allow for more compressed images while maintaining equivalent quality at a smaller file size or bitrate. For RGB, an image is decomposed into three color bands--red, green, and blue. The JPEG-ESAP algorithm is then applied to each band (e.g., once for red, once for green, and once for blue) and the output of each application of the algorithm is rebuilt as a single color image. The ESAP algorithm may be repeatedly applied to MPEG-2 video frames to reduce their bit rate by a factor of 2 or 3, while maintaining equivalent video quality, both perceptually, and objectively, as recorded in the computed PSNR values.

  12. EEG-Based Emotion Recognition Using Deep Learning Network with Principal Component Based Covariate Shift Adaptation

    PubMed Central

    Jirayucharoensak, Suwicha; Pan-Ngum, Setha; Israsena, Pasin

    2014-01-01

    Automatic emotion recognition is one of the most challenging tasks. To detect emotion from nonstationary EEG signals, a sophisticated learning algorithm that can represent high-level abstraction is required. This study proposes the utilization of a deep learning network (DLN) to discover unknown feature correlation between input signals that is crucial for the learning task. The DLN is implemented with a stacked autoencoder (SAE) using hierarchical feature learning approach. Input features of the network are power spectral densities of 32-channel EEG signals from 32 subjects. To alleviate overfitting problem, principal component analysis (PCA) is applied to extract the most important components of initial input features. Furthermore, covariate shift adaptation of the principal components is implemented to minimize the nonstationary effect of EEG signals. Experimental results show that the DLN is capable of classifying three different levels of valence and arousal with accuracy of 49.52% and 46.03%, respectively. Principal component based covariate shift adaptation enhances the respective classification accuracy by 5.55% and 6.53%. Moreover, DLN provides better performance compared to SVM and naive Bayes classifiers. PMID:25258728

  13. Congruency sequence effects and previous response times: conflict adaptation or temporal learning?

    PubMed

    Schmidt, James R; Weissman, Daniel H

    2016-07-01

    In the present study, we followed up on a recent report of two experiments in which the congruency sequence effect-the reduction of the congruency effect after incongruent relative to congruent trials in Stroop-like tasks-was observed without feature repetition or contingency learning confounds. Specifically, we further scrutinized these data to determine the plausibility of a temporal learning account as an alternative to the popular conflict adaptation account. To this end, we employed a linear mixed effects model to investigate the role of previous response time in producing the congruency sequence effect, because previous response time is thought to influence temporal learning. Interestingly, slower previous response times were associated with a reduced current-trial congruency effect, but only when the previous trial was congruent. An adapted version of the parallel episodic processing (PEP) model was able to fit these data if it was additionally assumed that attention "wanders" during different parts of the experiment (e.g., due to fatigue or other factors). Consistent with this assumption, the magnitude of the congruency effect was correlated across small blocks of trials. These findings demonstrate that a temporal learning mechanism provides a plausible account of the congruency sequence effect. PMID:26093801

  14. Adaptive iterative learning control for a class of non-linearly parameterised systems with input saturations

    NASA Astrophysics Data System (ADS)

    Zhang, Ruikun; Hou, Zhongsheng; Ji, Honghai; Yin, Chenkun

    2016-04-01

    In this paper, an adaptive iterative learning control scheme is proposed for a class of non-linearly parameterised systems with unknown time-varying parameters and input saturations. By incorporating a saturation function, a new iterative learning control mechanism is presented which includes a feedback term and a parameter updating term. Through the use of parameter separation technique, the non-linear parameters are separated from the non-linear function and then a saturated difference updating law is designed in iteration domain by combining the unknown parametric term of the local Lipschitz continuous function and the unknown time-varying gain into an unknown time-varying function. The analysis of convergence is based on a time-weighted Lyapunov-Krasovskii-like composite energy function which consists of time-weighted input, state and parameter estimation information. The proposed learning control mechanism warrants a L2[0, T] convergence of the tracking error sequence along the iteration axis. Simulation results are provided to illustrate the effectiveness of the adaptive iterative learning control scheme.

  15. EEG-based emotion recognition using deep learning network with principal component based covariate shift adaptation.

    PubMed

    Jirayucharoensak, Suwicha; Pan-Ngum, Setha; Israsena, Pasin

    2014-01-01

    Automatic emotion recognition is one of the most challenging tasks. To detect emotion from nonstationary EEG signals, a sophisticated learning algorithm that can represent high-level abstraction is required. This study proposes the utilization of a deep learning network (DLN) to discover unknown feature correlation between input signals that is crucial for the learning task. The DLN is implemented with a stacked autoencoder (SAE) using hierarchical feature learning approach. Input features of the network are power spectral densities of 32-channel EEG signals from 32 subjects. To alleviate overfitting problem, principal component analysis (PCA) is applied to extract the most important components of initial input features. Furthermore, covariate shift adaptation of the principal components is implemented to minimize the nonstationary effect of EEG signals. Experimental results show that the DLN is capable of classifying three different levels of valence and arousal with accuracy of 49.52% and 46.03%, respectively. Principal component based covariate shift adaptation enhances the respective classification accuracy by 5.55% and 6.53%. Moreover, DLN provides better performance compared to SVM and naive Bayes classifiers. PMID:25258728

  16. Adaptive sparse signal processing of on-orbit lightning data using learned dictionaries

    NASA Astrophysics Data System (ADS)

    Moody, Daniela I.; Smith, David A.; Hamlin, Timothy D.; Light, Tess E.; Suszcynsky, David M.

    2013-05-01

    For the past two decades, there has been an ongoing research effort at Los Alamos National Laboratory to learn more about the Earth's radiofrequency (RF) background utilizing satellite-based RF observations of terrestrial lightning. The Fast On-orbit Recording of Transient Events (FORTE) satellite provided a rich RF lighting database, comprising of five years of data recorded from its two RF payloads. While some classification work has been done previously on the FORTE RF database, application of modern pattern recognition techniques may advance lightning research in the scientific community and potentially improve on-orbit processing and event discrimination capabilities for future satellite payloads. We now develop and implement new event classification capability on the FORTE database using state-of-the-art adaptive signal processing combined with compressive sensing and machine learning techniques. The focus of our work is improved feature extraction using sparse representations in learned dictionaries. Conventional localized data representations for RF transients using analytical dictionaries, such as a short-time Fourier basis or wavelets, can be suitable for analyzing some types of signals, but not others. Instead, we learn RF dictionaries directly from data, without relying on analytical constraints or additional knowledge about the signal characteristics, using several established machine learning algorithms. Sparse classification features are extracted via matching pursuit search over the learned dictionaries, and used in conjunction with a statistical classifier to distinguish between lightning types. We present preliminary results of our work and discuss classification scenarios and future development.

  17. Adoption, adaptation, and abandonment: Appropriation of science education professional development learning

    NASA Astrophysics Data System (ADS)

    Longhurst, Max L.

    Understanding factors that impact teacher utilization of learning from professional development is critical in order maximize the educational and financial investment in teacher professional learning. This study used a multicase mixed quantitative and qualitative methodology to investigate the factors that influence teacher adoption, adaption, or abandonment of learning from science teacher professional development. The theoretical framework of activity theory was identified as a useful way to investigate the phenomenon of teacher appropriation of pedagogical practices from professional development. This framework has the capacity to account for a multitude of elements in the context of a learning experience. In this study educational appropriation is understood through a continuum of how an educator acquires and implements both practical and conceptual aspects of learning from professional development within localized context. The variability associated with instructional changes made from professional development drives this inquiry to search for better understandings of the appropriation of pedagogical practices. Purposeful sampling was used to identify two participants from a group of eighth-grade science teachers engaged in professional development designed to investigate how cyber-enabled technologies might enhance instruction and learning in integrated science classrooms. The data from this investigation add to the literature of appropriation of instructional practices by connecting eight factors that influence conceptual and practical tools with the development of ownership of pedagogical practices in the appropriation hierarchy. Recommendations are shared with professional development developers, providers, and participants in anticipation that future science teaching experiences might be informed by findings from this study.

  18. Learning rate and temperament in a high predation risk environment

    USGS Publications Warehouse

    DePasquale, C.; Wagner, Tyler; Archard, G.A.; Ferguson, B.; Braithwaite, V.A.

    2014-01-01

    Living in challenging environments can influence the behavior of animals in a number of ways. For instance, populations of prey fish that experience frequent, nonlethal interactions with predators have a high proportion of individuals that express greater reaction to risk and increased activity and exploration—collectively known as temperament traits. Temperament traits are often correlated, such that individuals that are risk-prone also tend to be active and explore more. Spatial learning, which requires the integration of many sensory cues, has also been shown to vary in fish exposed to different levels of predation threat. Fish from areas of low predation risk learn to solve spatial tasks faster than fish from high predation areas. However, it is not yet known whether simpler forms of learning, such as learning associations between two events, are similarly influenced. Simple forms of associative learning are likely to be affected by temperament because a willingness to approach and explore novel situations could provide animals with a learning advantage. However, it is possible that routine-forming and inflexible traits associated with risk-prone and increased exploratory behavior may act in the opposite way and make risk-prone individuals poorer at learning associations. To investigate this, we measured temperament in Panamanian bishop fish (Brachyrhaphis episcopi) sampled from a site known to contain many predators. The B. episcopi were then tested with an associative learning task. Within this population, fish that explored more were faster at learning a cue that predicted access to food, indicating a link between temperament and basic learning abilities.

  19. Fast adaptive OFDM-PON over single fiber loopback transmission using dynamic rate adaptation-based algorithm for channel performance improvement

    NASA Astrophysics Data System (ADS)

    Kartiwa, Iwa; Jung, Sang-Min; Hong, Moon-Ki; Han, Sang-Kook

    2014-03-01

    In this paper, we propose a novel fast adaptive approach that was applied to an OFDM-PON 20-km single fiber loopback transmission system to improve channel performance in term of stabilized BER below 2 × 10-3 and higher throughput beyond 10 Gb/s. The upstream transmission is performed through light source-seeded modulation using 1-GHz RSOA at the ONU. Experimental results indicated that the dynamic rate adaptation algorithm based on greedy Levin-Campello could be an effective solution to mitigate channel instability and data rate degradation caused by the Rayleigh back scattering effect and inefficient resource subcarrier allocation.

  20. Neurobehavioral factors associated with referral for learning problems in a community sample: evidence for an adaptational model for learning disorders.

    PubMed

    Waber, Deborah P; Weiler, Michael D; Forbes, Peter W; Bernstein, Jane H; Bellinger, David C; Rappaport, Leonard

    2003-01-01

    We evaluated community general education (CGE; n = 178), community special education (CSE; n = 30) and hospital-referred (HR, n = 145) children (ages 7-6 to 11-11) prospectively over a 2-year period. During this period, 17 CGE children were referred for evaluation (community referred; CR). Prior to referral, CR children performed more poorly than community-nonreferred (CNR) children on cognitive ability, academic achievement, attention problems, and information processing. CR group performance was equivalent to that of CSE and HR groups, but HR children showed poorer academic achievement. Referred children performed more poorly on all measures than nonreferred, whether they met formal diagnostic criteria for a learning disorder or not. Learning disorders may be better conceptualized as a context-dependent problem of functional adaptation than as a disability analogous to physical disabilities, raising questions about the validity of using psychometric test scores as the criterion for identification. PMID:15497490

  1. Adapt

    NASA Astrophysics Data System (ADS)

    Bargatze, L. F.

    2015-12-01

    Active Data Archive Product Tracking (ADAPT) is a collection of software routines that permits one to generate XML metadata files to describe and register data products in support of the NASA Heliophysics Virtual Observatory VxO effort. ADAPT is also a philosophy. The ADAPT concept is to use any and all available metadata associated with scientific data to produce XML metadata descriptions in a consistent, uniform, and organized fashion to provide blanket access to the full complement of data stored on a targeted data server. In this poster, we present an application of ADAPT to describe all of the data products that are stored by using the Common Data File (CDF) format served out by the CDAWEB and SPDF data servers hosted at the NASA Goddard Space Flight Center. These data servers are the primary repositories for NASA Heliophysics data. For this purpose, the ADAPT routines have been used to generate data resource descriptions by using an XML schema named Space Physics Archive, Search, and Extract (SPASE). SPASE is the designated standard for documenting Heliophysics data products, as adopted by the Heliophysics Data and Model Consortium. The set of SPASE XML resource descriptions produced by ADAPT includes high-level descriptions of numerical data products, display data products, or catalogs and also includes low-level "Granule" descriptions. A SPASE Granule is effectively a universal access metadata resource; a Granule associates an individual data file (e.g. a CDF file) with a "parent" high-level data resource description, assigns a resource identifier to the file, and lists the corresponding assess URL(s). The CDAWEB and SPDF file systems were queried to provide the input required by the ADAPT software to create an initial set of SPASE metadata resource descriptions. Then, the CDAWEB and SPDF data repositories were queried subsequently on a nightly basis and the CDF file lists were checked for any changes such as the occurrence of new, modified, or deleted

  2. Adaptive response in embryogenesis: V. Existence of two efficient dose-rate ranges for 0.3 Gy of priming irradiation to adapt mouse fetuses.

    PubMed

    Wang, Bing; Ohyama, Harumi; Shang, Yi; Tanaka, Kaoru; Aizawa, Shiro; Yukawa, Osami; Hayata, Isamu

    2004-03-01

    The adaptive response is an important phenomenon in radiobiology. A study of the conditions essential for the induction of an adaptive response is of critical importance to understanding the novel biological defense mechanisms against the hazardous effects of radiation. In our previous studies, the specific dose and timing of radiation for induction of an adaptive response were studied in ICR mouse fetuses. We found that exposure of the fetuses on embryonic day 11 to a priming dose of 0.3 Gy significantly suppressed prenatal death and malformation induced by a challenging dose of radiation on embryonic day 12. Since a significant dose-rate effect has been observed in a variety of radiobiological phenomena, the effect of dose rate on the effectiveness of induction of an adaptive response by a priming dose of 0.3 Gy administered to fetuses on embryonic day 11 was investigated over the range from 0.06 to 5.0 Gy/min. The occurrence of apoptosis in limb buds, incidences of prenatal death and digital defects, and postnatal mortality induced by a challenging dose of 3.5 Gy given at 1.8 Gy/min to the fetuses on embryonic day 12 were the biological end points examined. Unexpectedly, effective induction of an adaptive response was observed within two dose-rate ranges for the same dose of priming radiation, from 0.18 to 0.98 Gy/ min and from 3.5 to 4.6 Gy/min, for reduction of the detrimental effect induced by a challenging dose of 3.5 Gy. In contrast, when the priming irradiation was delivered at a dose rate outside these two ranges, no protective effect was observed, and at some dose rates elevation of detrimental effects was observed. In general, neither a normal nor a reverse dose- rate effect was found in the dose-rate range tested. These results clearly indicated that the dose rate at which the priming irradiation was delivered played a crucial role in the induction of an adaptive response. This paper provides the first evidence for the existence of two dose-rate ranges

  3. In Vivo Human Left-to-Right Ventricular Differences in Rate Adaptation Transiently Increase Pro-Arrhythmic Risk following Rate Acceleration

    PubMed Central

    Bueno-Orovio, Alfonso; Hanson, Ben M.; Gill, Jaswinder S.; Taggart, Peter; Rodriguez, Blanca

    2012-01-01

    Left-to-right ventricular (LV/RV) differences in repolarization have been implicated in lethal arrhythmias in animal models. Our goal is to quantify LV/RV differences in action potential duration (APD) and APD rate adaptation and their contribution to arrhythmogenic substrates in the in vivo human heart using combined in vivo and in silico studies. Electrograms were acquired from 10 LV and 10 RV endocardial sites in 15 patients with normal ventricles. APD and APD adaptation were measured during an increase in heart rate. Analysis of in vivo electrograms revealed longer APD in LV than RV (207.8±21.5 vs 196.7±20.1 ms; P<0.05), and slower APD adaptation in LV than RV (time constant τs = 47.0±14.3 vs 35.6±6.5 s; P<0.05). Following rate acceleration, LV/RV APD dispersion experienced an increase of up to 91% in 12 patients, showing a strong correlation (r2 = 0.90) with both initial dispersion and LV/RV difference in slow adaptation. Pro-arrhythmic implications of measured LV/RV functional differences were studied using in silico simulations. Results show that LV/RV APD and APD adaptation heterogeneities promote unidirectional block following rate acceleration, albeit being insufficient for establishment of reentry in normal hearts. However, in the presence of an ischemic region at the LV/RV junction, LV/RV heterogeneity in APD and APD rate adaptation promotes reentrant activity and its degeneration into fibrillatory activity. Our results suggest that LV/RV heterogeneities in APD adaptation cause a transient increase in APD dispersion in the human ventricles following rate acceleration, which promotes unidirectional block and wave-break at the LV/RV junction, and may potentiate the arrhythmogenic substrate, particularly in patients with ischemic heart disease. PMID:23284948

  4. Enhancing Collaborative Learning through Dynamic Forms of Support: The Impact of an Adaptive Domain-Specific Support Strategy

    ERIC Educational Resources Information Center

    Karakostas, A.; Demetriadis, S.

    2011-01-01

    Research on computer-supported collaborative learning (CSCL) has strongly emphasized the value of providing student support of either fixed (e.g. collaboration scripts) or dynamic form (e.g. adaptive supportive interventions). Currently, however, there is not sufficient evidence corroborating the potential of adaptive support methods to improve…

  5. Despeckling of medical ultrasound images using data and rate adaptive lossy compression.

    PubMed

    Gupta, Nikhil; Swamy, M N S; Plotkin, Eugene

    2005-06-01

    A novel technique for despeckling the medical ultrasound images using lossy compression is presented. The logarithm of the input image is first transformed to the multiscale wavelet domain. It is then shown that the subband coefficients of the log-transformed ultrasound image can be successfully modeled using the generalized Laplacian distribution. Based on this modeling, a simple adaptation of the zero-zone and reconstruction levels of the uniform threshold quantizer is proposed in order to achieve simultaneous despeckling and quantization. This adaptation is based on: (1) an estimate of the corrupting speckle noise level in the image; (2) the estimated statistics of the noise-free subband coefficients; and (3) the required compression rate. The Laplacian distribution is considered as a special case of the generalized Laplacian distribution and its efficacy is demonstrated for the problem under consideration. Context-based classification is also applied to the noisy coefficients to enhance the performance of the subband coder. Simulation results using a contrast detail phantom image and several real ultrasound images are presented. To validate the performance of the proposed scheme, comparison with two two-stage schemes, wherein the speckled image is first filtered and then compressed using the state-of-the-art JPEG2000 encoder, is presented. Experimental results show that the proposed scheme works better, both in terms of the signal to noise ratio and the visual quality. PMID:15957598

  6. Self-adaptive trust based ABR protocol for MANETs using Q-learning.

    PubMed

    Kumar, Anitha Vijaya; Jeyapal, Akilandeswari

    2014-01-01

    Mobile ad hoc networks (MANETs) are a collection of mobile nodes with a dynamic topology. MANETs work under scalable conditions for many applications and pose different security challenges. Due to the nomadic nature of nodes, detecting misbehaviour is a complex problem. Nodes also share routing information among the neighbours in order to find the route to the destination. This requires nodes to trust each other. Thus we can state that trust is a key concept in secure routing mechanisms. A number of cryptographic protection techniques based on trust have been proposed. Q-learning is a recently used technique, to achieve adaptive trust in MANETs. In comparison to other machine learning computational intelligence techniques, Q-learning achieves optimal results. Our work focuses on computing a score using Q-learning to weigh the trust of a particular node over associativity based routing (ABR) protocol. Thus secure and stable route is calculated as a weighted average of the trust value of the nodes in the route and associativity ticks ensure the stability of the route. Simulation results show that Q-learning based trust ABR protocol improves packet delivery ratio by 27% and reduces the route selection time by 40% over ABR protocol without trust calculation. PMID:25254243

  7. Self-Adaptive Trust Based ABR Protocol for MANETs Using Q-Learning

    PubMed Central

    Jeyapal, Akilandeswari

    2014-01-01

    Mobile ad hoc networks (MANETs) are a collection of mobile nodes with a dynamic topology. MANETs work under scalable conditions for many applications and pose different security challenges. Due to the nomadic nature of nodes, detecting misbehaviour is a complex problem. Nodes also share routing information among the neighbours in order to find the route to the destination. This requires nodes to trust each other. Thus we can state that trust is a key concept in secure routing mechanisms. A number of cryptographic protection techniques based on trust have been proposed. Q-learning is a recently used technique, to achieve adaptive trust in MANETs. In comparison to other machine learning computational intelligence techniques, Q-learning achieves optimal results. Our work focuses on computing a score using Q-learning to weigh the trust of a particular node over associativity based routing (ABR) protocol. Thus secure and stable route is calculated as a weighted average of the trust value of the nodes in the route and associativity ticks ensure the stability of the route. Simulation results show that Q-learning based trust ABR protocol improves packet delivery ratio by 27% and reduces the route selection time by 40% over ABR protocol without trust calculation. PMID:25254243

  8. The local enhancement conundrum: in search of the adaptive value of a social learning mechanism.

    PubMed

    Arbilly, Michal; Laland, Kevin N

    2014-02-01

    Social learning mechanisms are widely thought to vary in their degree of complexity as well as in their prevalence in the natural world. While learning the properties of a stimulus that generalize to similar stimuli at other locations (stimulus enhancement) prima facie appears more useful to an animal than learning about a specific stimulus at a specific location (local enhancement), empirical evidence suggests that the latter is much more widespread in nature. Simulating populations engaged in a producer-scrounger game, we sought to deploy mathematical models to identify the adaptive benefits of reliance on local enhancement and/or stimulus enhancement, and the alternative conditions favoring their evolution. Surprisingly, we found that while stimulus enhancement readily evolves, local enhancement is advantageous only under highly restricted conditions: when generalization of information was made unreliable or when error in social learning was high. Our results generate a conundrum over how seemingly conflicting empirical and theoretical findings can be reconciled. Perhaps the prevalence of local enhancement in nature is due to stimulus enhancement costs independent of the learning task itself (e.g. predation risk), perhaps natural habitats are often characterized by unreliable yet highly rewarding payoffs, or perhaps local enhancement occurs less frequently, and stimulus enhancement more frequently, than widely believed. PMID:24044984

  9. SSD-Optimized Workload Placement with Adaptive Learning and Classification in HPC Environments

    SciTech Connect

    Wan, Lipeng; Lu, Zheng; Cao, Qing; Wang, Feiyi; Oral, H Sarp; Settlemyer, Bradley W

    2014-01-01

    In recent years, non-volatile memory devices such as SSD drives have emerged as a viable storage solution due to their increasing capacity and decreasing cost. Due to the unique capability and capacity requirements in large scale HPC (High Performance Computing) storage environment, a hybrid config- uration (SSD and HDD) may represent one of the most available and balanced solutions considering the cost and performance. Under this setting, effective data placement as well as movement with controlled overhead become a pressing challenge. In this paper, we propose an integrated object placement and movement framework and adaptive learning algorithms to address these issues. Specifically, we present a method that shuffle data objects across storage tiers to optimize the data access performance. The method also integrates an adaptive learning algorithm where real- time classification is employed to predict the popularity of data object accesses, so that they can be placed on, or migrate between SSD or HDD drives in the most efficient manner. We discuss preliminary results based on this approach using a simulator we developed to show that the proposed methods can dynamically adapt storage placements and access pattern as workloads evolve to achieve the best system level performance such as throughput.

  10. What do students with learning disabilities think when their general education teachers make adaptations?

    PubMed

    Vaughn, S; Schumm, J S; Kouzekanani, K

    1993-10-01

    The purpose of this study was to investigate the perceptions of mainstreamed students with learning disabilities (LD) regarding adaptations (e.g., altering tests, homework, assignments, instruction) made by general education teachers. Furthermore, their responses were compared with those of low achieving (LA) and average/high achieving (A/HA) classmates. One hundred seventy-nine students participated in this study: 60 mainstreamed students with LD, 59 low achieving students, and 60 average/high achieving students. Students were selected from 60 teachers' classrooms (20 elementary, 20 middle school, and 20 high school). Results from the elementary level indicate that students with LD differ from their LA and A/HA classmates in that the former indicate a stronger preference for opportunities to work in groups with different students, and prefer the teacher to make adaptations when they have difficulty learning. High school and middle school students from both the LA and A/HA groups, but not the LD group, preferred the teacher who made no adaptations in homework and textbooks. Discussion focuses on the role of students' perceptions in teacher decision making. PMID:8245700

  11. Implementation of an Automated Grading System with an Adaptive Learning Component to Affect Student Feedback and Response Time

    ERIC Educational Resources Information Center

    Matthews, Kevin; Janicki, Thomas; He, Ling; Patterson, Laurie

    2012-01-01

    This research focuses on the development and implementation of an adaptive learning and grading system with a goal to increase the effectiveness and quality of feedback to students. By utilizing various concepts from established learning theories, the goal of this research is to improve the quantity, quality, and speed of feedback as it pertains…

  12. Developing the Learning Physical Science Curriculum: Adapting a Small Enrollment, Laboratory and Discussion Based Physical Science Course for Large Enrollments

    ERIC Educational Resources Information Center

    Goldberg, Fred; Price, Edward; Robinson, Stephen; Boyd-Harlow, Danielle; McKean, Michael

    2012-01-01

    We report on the adaptation of the small enrollment, lab and discussion based physical science course, "Physical Science and Everyday Thinking" (PSET), for a large-enrollment, lecture-style setting. Like PSET, the new "Learning Physical Science" (LEPS) curriculum was designed around specific principles based on research on learning to meet the…

  13. The Link between Age, Career Goals, and Adaptive Development for Work-Related Learning among Local Government Employees

    ERIC Educational Resources Information Center

    Tones, Megan; Pillay, Hitendra; Kelly, Kathy

    2011-01-01

    More recently, lifespan development psychology models of adaptive development have been applied to the workforce to investigate ageing worker and lifespan issues. The current study uses the Learning and Development Survey (LDS) to investigate employee selection and engagement of learning and development goals and opportunities and constraints for…

  14. Adaptability and Replicability of Web-Facilitated, Hybrid, and Online Learning in an Undergraduate Exercise Psychology Course

    ERIC Educational Resources Information Center

    Xin, Huaibo; Kempland, Monica; Blankson, Faustina H.

    2015-01-01

    The study aims to examine the effectiveness of web-facilitated, hybrid, and online learning modalities among undergraduate students in a public institution so as to determine the adaptability and replicability of these three learning modalities. This is a quasi-experimental study. A total of 103 undergraduate exercise science majors participated…

  15. Inquiry in Action for Leadership in Turbulent Times: Exploring the Connections Between Transformative Learning and Adaptive Leadership

    ERIC Educational Resources Information Center

    Nicolaides, Aliki; McCallum, David C.

    2013-01-01

    This article discusses the theory and practices associated with a methodology for leadership capacity development that utilizes Collaborative Developmental Action Inquiry to support adults in understanding the connections between transformative learning and adaptive leadership. Discussion is focused on transformative learning, ways of knowing, or…

  16. Functional adaptation in long bones: establishing in vivo values for surface remodeling rate coefficients.

    PubMed

    Cowin, S C; Hart, R T; Balser, J R; Kohn, D H

    1985-01-01

    In this paper we describe a computational means, based on beam theory, for application of the theory of adaptive elasticity to examples of real bone geometries. The results of the animal experiments were taken from the literature, and each documented the temporal evolution of a change in bone shape after a significant change in the mechanical loading environment of the bone. For each of these studies, we establish preliminary estimates of the in vivo values of the surface remodeling rate coefficients--the key parameters in the theory of surface remodeling. Our preliminary parameter estimates are established by comparison of published animal experimental results with surface remodeling theory predictions generated by the computational method. PMID:4077864

  17. Adaptive optics for high data rate satellite to ground laser link

    NASA Astrophysics Data System (ADS)

    Védrenne, N.; Conan, J.-M.; Petit, C.; Michau, V.

    2016-03-01

    To match the increasing need for high data rate between high altitude platforms and ground free space optics links are investigated. Part of the growing interest is motivated by the possibility to reap the benefits of the technological maturity of the fibered components. This requires the injection of the received wave into a single mode fiber. To reduce injection losses on the ground terminal the use of adaptive optics (AO) is investigated. The AO system must work for a wide variety of turbulence conditions: by daytime and nighttime, at potentially very low elevations for LEO satellites, with localizations of optical ground stations that could be unfavorable regarding atmospheric turbulence. Contrary to astronomy where the quantity optimized is the average Strehl ratio, for free space communications statistical and temporal characteristics of the injection losses must be taken into account. The consequences of a partial correction are investigated here by numerical simulation for both GEO and LEO to ground links.

  18. Adaptive Changes in Basal Metabolic Rate in Humans in Different Eco-Geographical Areas.

    PubMed

    Maximov, Arkady L; Belkin, Victor Sh; Kalichman, Leonid; Kobyliansky, Eugene D

    2015-12-01

    Our aim was to establish whether the human basal metabolic rate (BMR) shifts towards the reduction of vital functions as an adaptation response to extreme environmental conditions. Data was collected in arid and Extreme North zones. The arid zone samples included Bedouins living in the Sinai Peninsula in Egypt, Turkmen students, the Pedagogical University of Chardzhou, Turkmenistan born Russians and Russian soldiers. Soldiers were divided into 3 groups according to the length of their tour of duty in the area: 1st group: up to six months, 2nd group: up to 2 years and the 3rd group: 3-5 years. The Extreme North samples comprised Chukchi natives, 1st generation Russian immigrants born in the area and 3 groups of soldiers comparable to the soldiers from Turkmenistan. BMR values of the new recruits had the highest values of total and relative BMR (1769 ± 16 and 28.3 ± 0.6, correspondingly). The total and relative BMR tended to decrease within a longer adaptation period. The BMR values of officers who served >3 years in Turkmenistan were very similar to the Turkmenistan born Russians (1730 ± 14 vs. 1726 ± 18 and 26.5 ± 0.6 vs. 27.3 ± 0.7, correspondingly). Similarly, in Chukotka, the highest relative BMR was found in the new recruits, serving up to 6 months (28.1 ± 0.7) and was significantly (p < 0.05) lower in the Russians serving in Chukotka over 1.5 years (27.1 ± 0.3). The BMR was virtually similar in Russian officers serving > 3 years, compared to the middle-aged Chukchi or Chukotka-born Russians (25.8 ± 0.5 vs. 25.6 ± 0.5 and 25.5 ± 0.6, correspondingly). The BMR parameters demonstrated a stronger association with body weight than with age. In extreme environmental conditions, migrant populations showed a decrease in BMR, thus reducing its vital functions. The BMR reduction effect with the adequate adaptive transformation is likely to be the key strategy for developing programs to facilitate human and animal adaptation to extreme factors. This process is

  19. Adaptive decision systems with extended learning for deployment in partially exposed environments

    NASA Astrophysics Data System (ADS)

    Dasarathy, Belur V.

    1995-05-01

    The design and development of decision systems capable of adaptively learning in the operational environment is presented. Innovative adaptive learning concepts and methodologies are offered that are designed for enhancing the performance of decision systems, such as automatic target recognition systems, wherein robustness of performance is a significant issue. The fundamental concept underlying this design is that of learning in partially exposed environments, wherein, at the start, the system is not necessarily aware of all the pattern classes that may be encountered in the future phase of operations. The decision system is based on a variant to the widely popular nearest-neighbor concept. Several stages of sophistication of the system design are presented. The potential problem of increase in computational loads is addressed in detail by exploring the benefits of employing the recently proposed concept of minimal consistent set. The effectiveness of the system design is experimentally illustrated using two data sets, the now classical IRIS data and some real-world TV image data.

  20. Adaptive critic learning techniques for engine torque and air-fuel ratio control.

    PubMed

    Liu, Derong; Javaherian, Hossein; Kovalenko, Olesia; Huang, Ting

    2008-08-01

    A new approach for engine calibration and control is proposed. In this paper, we present our research results on the implementation of adaptive critic designs for self-learning control of automotive engines. A class of adaptive critic designs that can be classified as (model-free) action-dependent heuristic dynamic programming is used in this research project. The goals of the present learning control design for automotive engines include improved performance, reduced emissions, and maintained optimum performance under various operating conditions. Using the data from a test vehicle with a V8 engine, we developed a neural network model of the engine and neural network controllers based on the idea of approximate dynamic programming to achieve optimal control. We have developed and simulated self-learning neural network controllers for both engine torque (TRQ) and exhaust air-fuel ratio (AFR) control. The goal of TRQ control and AFR control is to track the commanded values. For both control problems, excellent neural network controller transient performance has been achieved. PMID:18632389

  1. Modeling choice and reaction time during arbitrary visuomotor learning through the coordination of adaptive working memory and reinforcement learning.

    PubMed

    Viejo, Guillaume; Khamassi, Mehdi; Brovelli, Andrea; Girard, Benoît

    2015-01-01

    Current learning theory provides a comprehensive description of how humans and other animals learn, and places behavioral flexibility and automaticity at heart of adaptive behaviors. However, the computations supporting the interactions between goal-directed and habitual decision-making systems are still poorly understood. Previous functional magnetic resonance imaging (fMRI) results suggest that the brain hosts complementary computations that may differentially support goal-directed and habitual processes in the form of a dynamical interplay rather than a serial recruitment of strategies. To better elucidate the computations underlying flexible behavior, we develop a dual-system computational model that can predict both performance (i.e., participants' choices) and modulations in reaction times during learning of a stimulus-response association task. The habitual system is modeled with a simple Q-Learning algorithm (QL). For the goal-directed system, we propose a new Bayesian Working Memory (BWM) model that searches for information in the history of previous trials in order to minimize Shannon entropy. We propose a model for QL and BWM coordination such that the expensive memory manipulation is under control of, among others, the level of convergence of the habitual learning. We test the ability of QL or BWM alone to explain human behavior, and compare them with the performance of model combinations, to highlight the need for such combinations to explain behavior. Two of the tested combination models are derived from the literature, and the latter being our new proposal. In conclusion, all subjects were better explained by model combinations, and the majority of them are explained by our new coordination proposal. PMID:26379518

  2. Modeling choice and reaction time during arbitrary visuomotor learning through the coordination of adaptive working memory and reinforcement learning

    PubMed Central

    Viejo, Guillaume; Khamassi, Mehdi; Brovelli, Andrea; Girard, Benoît

    2015-01-01

    Current learning theory provides a comprehensive description of how humans and other animals learn, and places behavioral flexibility and automaticity at heart of adaptive behaviors. However, the computations supporting the interactions between goal-directed and habitual decision-making systems are still poorly understood. Previous functional magnetic resonance imaging (fMRI) results suggest that the brain hosts complementary computations that may differentially support goal-directed and habitual processes in the form of a dynamical interplay rather than a serial recruitment of strategies. To better elucidate the computations underlying flexible behavior, we develop a dual-system computational model that can predict both performance (i.e., participants' choices) and modulations in reaction times during learning of a stimulus–response association task. The habitual system is modeled with a simple Q-Learning algorithm (QL). For the goal-directed system, we propose a new Bayesian Working Memory (BWM) model that searches for information in the history of previous trials in order to minimize Shannon entropy. We propose a model for QL and BWM coordination such that the expensive memory manipulation is under control of, among others, the level of convergence of the habitual learning. We test the ability of QL or BWM alone to explain human behavior, and compare them with the performance of model combinations, to highlight the need for such combinations to explain behavior. Two of the tested combination models are derived from the literature, and the latter being our new proposal. In conclusion, all subjects were better explained by model combinations, and the majority of them are explained by our new coordination proposal. PMID:26379518

  3. Efficient Authoring of SCORM Courseware Adapted to User Learning Style: The Case of ProPer SAT

    NASA Astrophysics Data System (ADS)

    Kazanidis, Ioannis; Satratzemi, Maya

    Online courses are the most popular way to deliver knowledge for distance learning. New researches attempt to personalize the educational process with the use of the Adaptive Educational Hypermedia Systems. Moreover, due to the significant amount of time, money and effort devoted to creating online courses, developers strive to incorporate standards, such as SCORM, for the reusability, interoperability and durability of the educational content. However, it is a difficult task for teachers without programming knowledge to design and author adaptive courses. This work presents ProPer SAT, an authoring tool implemented for quick and easy SCORM courseware construction which can also be adapted to specific user learning styles.

  4. Adaptive evolution by recombination is not associated with increased mutation rates in Maize streak virus

    PubMed Central

    2012-01-01

    Background Single-stranded (ss) DNA viruses in the family Geminiviridae are proving to be very useful in real-time evolution studies. The high mutation rate of geminiviruses and other ssDNA viruses is somewhat mysterious in that their DNA genomes are replicated in host nuclei by high fidelity host polymerases. Although strand specific mutation biases observed in virus species from the geminivirus genus Mastrevirus indicate that the high mutation rates in viruses in this genus may be due to mutational processes that operate specifically on ssDNA, it is currently unknown whether viruses from other genera display similar strand specific mutation biases. Also, geminivirus genomes frequently recombine with one another and an alternative cause of their high mutation rates could be that the recombination process is either directly mutagenic or produces a selective environment in which the survival of mutants is favoured. To investigate whether there is an association between recombination and increased basal mutation rates or increased degrees of selection favoring the survival of mutations, we compared the mutation dynamics of the MSV-MatA and MSV-VW field isolates of Maize streak virus (MSV; Mastrevirus), with both a laboratory constructed MSV recombinant, and MSV recombinants closely resembling MSV-MatA. To determine whether strand specific mutation biases are a general characteristic of geminivirus evolution we compared mutation spectra arising during these MSV experiments with those arising during similar experiments involving the geminivirus Tomato yellow leaf curl virus (Begomovirus genus). Results Although both the genomic distribution of mutations and the occurrence of various convergent mutations at specific genomic sites indicated that either mutation hotspots or selection for adaptive mutations might elevate observed mutation rates in MSV, we found no association between recombination and mutation rates. Importantly, when comparing the mutation spectra of MSV

  5. Water governance: learning by developing adaptive capacity to incorporate climate variability and change.

    PubMed

    Kashyap, A

    2004-01-01

    There is increasing evidence that global climate variability and change is affecting the quality and availability of water supplies. Integrated water resources development, use, and management strategies, represent an effective approach to achieve sustainable development of water resources in a changing environment with competing demands. It is also a key to achieving the Millennium Development Goals. It is critical that integrated water management strategies must incorporate the impacts of climate variability and change to reduce vulnerability of the poor, strengthen sustainable livelihoods and support national sustainable development. UNDP's strategy focuses on developing adaptation in the water governance sector as an entry point within the framework of poverty reduction and national sustainable development. This strategy aims to strengthen the capacity of governments and civil society organizations to have access to early warning systems, ability to assess the impact of climate variability and change on integrated water resources management, and developing adaptation intervention through hands-on learning by undertaking pilot activities. PMID:15195430

  6. Lessons learned from studying the functional impact of adaptive seating interventions for children with cerebral palsy.

    PubMed

    Ryan, Stephen E

    2016-03-01

    Little empirical evidence exists about the effectiveness of assistive technology interventions for children with cerebral palsy (CP) to inform clinical practice. This article reviews what we know about the functional impact of adaptive seating interventions - a common assistive technology type recommended for children with CP. A contemporary assistive technology outcomes framework is considered as a way to model the temporality and measure the effects of seating interventions and moderating cofactors. Three research studies are profiled to illustrate different research methods, measurement approaches, and follow-up periods to learn about adaptive seating outcomes. Recommendations for future research include the adoption of common measurement indicators, consideration of quality assessment criteria, and the use of varied methodologies to generate new knowledge about functional outcomes. It is suggested that the proposed strategies will lead to new understandings, clinical applications, and ultimately improvements in the everyday lives of children with CP and their families. PMID:27027612

  7. Adapting CEF-Descriptors for Rating Purposes: Validation by a Combined Rater Training and Scale Revision Approach

    ERIC Educational Resources Information Center

    Harsch, Claudia; Martin, Guido

    2012-01-01

    We explore how a local rating scale can be based on the Common European Framework CEF-proficiency scales. As part of the scale validation (Alderson, 1991; Lumley, 2002), we examine which adaptations are needed to turn CEF-proficiency descriptors into a rating scale for a local context, and to establish a practicable method to revise the initial…

  8. Interest Level in 2-Year-Olds with Autism Spectrum Disorder Predicts Rate of Verbal, Nonverbal, and Adaptive Skill Acquisition

    ERIC Educational Resources Information Center

    Klintwall, Lars; Macari, Suzanne; Eikeseth, Svein; Chawarska, Katarzyna

    2015-01-01

    Recent studies have suggested that skill acquisition rates for children with autism spectrum disorders receiving early interventions can be predicted by child motivation. We examined whether level of interest during an Autism Diagnostic Observation Schedule assessment at 2?years predicts subsequent rates of verbal, nonverbal, and adaptive skill…

  9. Collaborative Education in Climate Change Sciences and Adaptation through Interactive Learning

    NASA Astrophysics Data System (ADS)

    Ozbay, G.; Sriharan, S.; Fan, C.

    2014-12-01

    As a result of several funded climate change education grants, collaboration between VSU, DSU, and MSU, was established to provide the innovative and cohesive education and research opportunities to underrepresented groups in the climate related sciences. Prior to offering climate change and adaptation related topics to the students, faculty members of the three collaborating institutions participated at a number of faculty training and preparation workshops for teaching climate change sciences (i.e. AMS Diversity Project Workshop, NCAR Faculty-Student Team on Climate Change, NASA-NICE Program). In order to enhance the teaching and student learning on various issues in the Environmental Sciences Programs, Climatology, Climate Change Sciences and Adaptation or related courses were developed at Delaware State University and its partner institutions (Virginia State University and Morgan State University). These courses were prepared to deliver information on physical basis for the earth's climate system and current climate change instruction modules by AMS and historic climate information (NOAA Climate Services, U.S. and World Weather Data, NCAR and NASA Climate Models). By using Global Seminar as a Model, faculty members worked in teams to engage students in videoconferencing on climate change through Contemporary Global Studies and climate courses including Climate Change and Adaptation Science, Sustainable Agriculture, Introduction to Environmental Sciences, Climatology, and Ecology and Adaptation courses. All climate change courses have extensive hands-on practices and research integrated into the student learning experiences. Some of these students have presented their classroom projects during Earth Day, Student Climate Change Symposium, Undergraduate Summer Symposium, and other national conferences.

  10. Adaptive Neuron Model: An architecture for the rapid learning of nonlinear topological transformations

    NASA Technical Reports Server (NTRS)

    Tawel, Raoul (Inventor)

    1994-01-01

    A method for the rapid learning of nonlinear mappings and topological transformations using a dynamically reconfigurable artificial neural network is presented. This fully-recurrent Adaptive Neuron Model (ANM) network was applied to the highly degenerate inverse kinematics problem in robotics, and its performance evaluation is bench-marked. Once trained, the resulting neuromorphic architecture was implemented in custom analog neural network hardware and the parameters capturing the functional transformation downloaded onto the system. This neuroprocessor, capable of 10(exp 9) ops/sec, was interfaced directly to a three degree of freedom Heathkit robotic manipulator. Calculation of the hardware feed-forward pass for this mapping was benchmarked at approximately 10 microsec.

  11. Assessing Faculty Bias in Rating Embedded Assurance of Learning Assignments

    ERIC Educational Resources Information Center

    Kim, Dong-gook; Helms, Marilyn M.

    2016-01-01

    Assurance of learning (AoL) processes for continuous improvement and accreditation require business schools to assess program goals. Findings from the process can lead to changes in course design or curriculum. Often AoL assignments are embedded into existing courses and assessed at regular intervals. Faculty members may evaluate an assignment in…

  12. Adaptive Performance Seeking Control Using Fuzzy Model Reference Learning Control and Positive Gradient Control

    NASA Technical Reports Server (NTRS)

    Kopasakis, George

    1997-01-01

    Performance Seeking Control attempts to find the operating condition that will generate optimal performance and control the plant at that operating condition. In this paper a nonlinear multivariable Adaptive Performance Seeking Control (APSC) methodology will be developed and it will be demonstrated on a nonlinear system. The APSC is comprised of the Positive Gradient Control (PGC) and the Fuzzy Model Reference Learning Control (FMRLC). The PGC computes the positive gradients of the desired performance function with respect to the control inputs in order to drive the plant set points to the operating point that will produce optimal performance. The PGC approach will be derived in this paper. The feedback control of the plant is performed by the FMRLC. For the FMRLC, the conventional fuzzy model reference learning control methodology is utilized, with guidelines generated here for the effective tuning of the FMRLC controller.

  13. Development and Evaluation of an E-Learning Course for Deaf and Hard of Hearing Based on the Advanced Adapted Pedagogical Index Method

    ERIC Educational Resources Information Center

    Debevc, Matjaž; Stjepanovic, Zoran; Holzinger, Andreas

    2014-01-01

    Web-based and adapted e-learning materials provide alternative methods of learning to those used in a traditional classroom. Within the study described in this article, deaf and hard of hearing people used an adaptive e-learning environment to improve their computer literacy. This environment included streaming video with sign language interpreter…

  14. Gait in ducks (Anas platyrhynchos) and chickens (Gallus gallus) - similarities in adaptation to high growth rate.

    PubMed

    Duggan, B M; Hocking, P M; Clements, D N

    2016-01-01

    Genetic selection for increased growth rate and muscle mass in broiler chickens has been accompanied by mobility issues and poor gait. There are concerns that the Pekin duck, which is on a similar selection trajectory (for production traits) to the broiler chicken, may encounter gait problems in the future. In order to understand how gait has been altered by selection, the walking ability of divergent lines of high- and low-growth chickens and ducks was objectively measured using a pressure platform, which recorded various components of their gait. In both species, lines which had been selected for large breast muscle mass moved at a slower velocity and with a greater step width than their lighter conspecifics. These high-growth lines also spent more time supported by two feet in order to improve balance when compared with their lighter, low-growth conspecifics. We demonstrate that chicken and duck lines which have been subjected to intense selection for high growth rates and meat yields have adapted their gait in similar ways. A greater understanding of which components of gait have been altered in selected lines with impaired walking ability may lead to more effective breeding strategies to improve gait in poultry. PMID:27387535

  15. Adaptation of Lactococcus lactis to high growth temperature leads to a dramatic increase in acidification rate

    PubMed Central

    Chen, Jun; Shen, Jing; Ingvar Hellgren, Lars; Ruhdal Jensen, Peter; Solem, Christian

    2015-01-01

    Lactococcus lactis is essential for most cheese making, and this mesophilic bacterium has its growth optimum around 30 °C. We have, through adaptive evolution, isolated a mutant TM29 that grows well up to 39 °C, and continuous growth at 40 °C is possible if pre-incubated at a slightly lower temperature. At the maximal permissive temperature for the wild-type, 38 °C, TM29 grows 33% faster and has a 12% higher specific lactate production rate than its parent MG1363, which results in fast lactate accumulation. Genome sequencing was used to reveal the mutations accumulated, most of which were shown to affect thermal tolerance. Of the mutations with more pronounced effects, two affected expression of single proteins (chaperone; riboflavin transporter), two had pleiotropic effects (RNA polymerase) which changed the gene expression profile, and one resulted in a change in the coding sequence of CDP-diglyceride synthase. A large deletion containing 10 genes was also found to affect thermal tolerance significantly. With this study we demonstrate a simple approach to obtain non-GMO derivatives of the important L. lactis that possess properties desirable by the industry, e.g. thermal robustness and increased rate of acidification. The mutations we have identified provide a genetic basis for further investigation of thermal tolerance. PMID:26388459

  16. Adaptation of Lactococcus lactis to high growth temperature leads to a dramatic increase in acidification rate.

    PubMed

    Chen, Jun; Shen, Jing; Ingvar Hellgren, Lars; Ruhdal Jensen, Peter; Solem, Christian

    2015-01-01

    Lactococcus lactis is essential for most cheese making, and this mesophilic bacterium has its growth optimum around 30 °C. We have, through adaptive evolution, isolated a mutant TM29 that grows well up to 39 °C, and continuous growth at 40 °C is possible if pre-incubated at a slightly lower temperature. At the maximal permissive temperature for the wild-type, 38 °C, TM29 grows 33% faster and has a 12% higher specific lactate production rate than its parent MG1363, which results in fast lactate accumulation. Genome sequencing was used to reveal the mutations accumulated, most of which were shown to affect thermal tolerance. Of the mutations with more pronounced effects, two affected expression of single proteins (chaperone; riboflavin transporter), two had pleiotropic effects (RNA polymerase) which changed the gene expression profile, and one resulted in a change in the coding sequence of CDP-diglyceride synthase. A large deletion containing 10 genes was also found to affect thermal tolerance significantly. With this study we demonstrate a simple approach to obtain non-GMO derivatives of the important L. lactis that possess properties desirable by the industry, e.g. thermal robustness and increased rate of acidification. The mutations we have identified provide a genetic basis for further investigation of thermal tolerance. PMID:26388459

  17. Estimating oxygen consumption from heart rate using adaptive neuro-fuzzy inference system and analytical approaches.

    PubMed

    Kolus, Ahmet; Dubé, Philippe-Antoine; Imbeau, Daniel; Labib, Richard; Dubeau, Denise

    2014-11-01

    In new approaches based on adaptive neuro-fuzzy systems (ANFIS) and analytical method, heart rate (HR) measurements were used to estimate oxygen consumption (VO2). Thirty-five participants performed Meyer and Flenghi's step-test (eight of which performed regeneration release work), during which heart rate and oxygen consumption were measured. Two individualized models and a General ANFIS model that does not require individual calibration were developed. Results indicated the superior precision achieved with individualized ANFIS modelling (RMSE = 1.0 and 2.8 ml/kg min in laboratory and field, respectively). The analytical model outperformed the traditional linear calibration and Flex-HR methods with field data. The General ANFIS model's estimates of VO2 were not significantly different from actual field VO2 measurements (RMSE = 3.5 ml/kg min). With its ease of use and low implementation cost, the General ANFIS model shows potential to replace any of the traditional individualized methods for VO2 estimation from HR data collected in the field. PMID:24793823

  18. Rate Adaptive Based Resource Allocation with Proportional Fairness Constraints in OFDMA Systems

    PubMed Central

    Yin, Zhendong; Zhuang, Shufeng; Wu, Zhilu; Ma, Bo

    2015-01-01

    Orthogonal frequency division multiple access (OFDMA), which is widely used in the wireless sensor networks, allows different users to obtain different subcarriers according to their subchannel gains. Therefore, how to assign subcarriers and power to different users to achieve a high system sum rate is an important research area in OFDMA systems. In this paper, the focus of study is on the rate adaptive (RA) based resource allocation with proportional fairness constraints. Since the resource allocation is a NP-hard and non-convex optimization problem, a new efficient resource allocation algorithm ACO-SPA is proposed, which combines ant colony optimization (ACO) and suboptimal power allocation (SPA). To reduce the computational complexity, the optimization problem of resource allocation in OFDMA systems is separated into two steps. For the first one, the ant colony optimization algorithm is performed to solve the subcarrier allocation. Then, the suboptimal power allocation algorithm is developed with strict proportional fairness, and the algorithm is based on the principle that the sums of power and the reciprocal of channel-to-noise ratio for each user in different subchannels are equal. To support it, plenty of simulation results are presented. In contrast with root-finding and linear methods, the proposed method provides better performance in solving the proportional resource allocation problem in OFDMA systems. PMID:26426016

  19. Rate Adaptive Based Resource Allocation with Proportional Fairness Constraints in OFDMA Systems.

    PubMed

    Yin, Zhendong; Zhuang, Shufeng; Wu, Zhilu; Ma, Bo

    2015-01-01

    Orthogonal frequency division multiple access (OFDMA), which is widely used in the wireless sensor networks, allows different users to obtain different subcarriers according to their subchannel gains. Therefore, how to assign subcarriers and power to different users to achieve a high system sum rate is an important research area in OFDMA systems. In this paper, the focus of study is on the rate adaptive (RA) based resource allocation with proportional fairness constraints. Since the resource allocation is a NP-hard and non-convex optimization problem, a new efficient resource allocation algorithm ACO-SPA is proposed, which combines ant colony optimization (ACO) and suboptimal power allocation (SPA). To reduce the computational complexity, the optimization problem of resource allocation in OFDMA systems is separated into two steps. For the first one, the ant colony optimization algorithm is performed to solve the subcarrier allocation. Then, the suboptimal power allocation algorithm is developed with strict proportional fairness, and the algorithm is based on the principle that the sums of power and the reciprocal of channel-to-noise ratio for each user in different subchannels are equal. To support it, plenty of simulation results are presented. In contrast with root-finding and linear methods, the proposed method provides better performance in solving the proportional resource allocation problem in OFDMA systems. PMID:26426016

  20. Adaptive, Fast Walking in a Biped Robot under Neuronal Control and Learning

    PubMed Central

    Kulvicius, Tomas; Porr, Bernd; Wörgötter, Florentin

    2007-01-01

    Human walking is a dynamic, partly self-stabilizing process relying on the interaction of the biomechanical design with its neuronal control. The coordination of this process is a very difficult problem, and it has been suggested that it involves a hierarchy of levels, where the lower ones, e.g., interactions between muscles and the spinal cord, are largely autonomous, and where higher level control (e.g., cortical) arises only pointwise, as needed. This requires an architecture of several nested, sensori–motor loops where the walking process provides feedback signals to the walker's sensory systems, which can be used to coordinate its movements. To complicate the situation, at a maximal walking speed of more than four leg-lengths per second, the cycle period available to coordinate all these loops is rather short. In this study we present a planar biped robot, which uses the design principle of nested loops to combine the self-stabilizing properties of its biomechanical design with several levels of neuronal control. Specifically, we show how to adapt control by including online learning mechanisms based on simulated synaptic plasticity. This robot can walk with a high speed (>3.0 leg length/s), self-adapting to minor disturbances, and reacting in a robust way to abruptly induced gait changes. At the same time, it can learn walking on different terrains, requiring only few learning experiences. This study shows that the tight coupling of physical with neuronal control, guided by sensory feedback from the walking pattern itself, combined with synaptic learning may be a way forward to better understand and solve coordination problems in other complex motor tasks. PMID:17630828

  1. Adaptive sparse signal processing of on-orbit lightning data using learned dictionaries

    NASA Astrophysics Data System (ADS)

    Moody, D. I.; Hamlin, T.; Light, T. E.; Loveland, R. C.; Smith, D. A.; Suszcynsky, D. M.

    2012-12-01

    For the past two decades, there has been an ongoing research effort at Los Alamos National Laboratory (LANL) to learn more about the Earth's radiofrequency (RF) background utilizing satellite-based RF observations of terrestrial lightning. Arguably the richest satellite lightning database ever recorded is that from the Fast On-orbit Recording of Transient Events (FORTE) satellite, which returned at least five years of data from its two RF payloads after launch in 1997. While some classification work has been done previously on the LANL FORTE RF database, application of modern pattern recognition techniques may further lightning research in the scientific community and potentially improve on-orbit processing and event discrimination capabilities for future satellite payloads. We now develop and implement new event classification capability on the FORTE database using state-of-the-art adaptive signal processing combined with compressive sensing and machine learning techniques. The focus of our work is improved feature extraction using sparse representations in learned dictionaries. Extracting classification features from RF signals typically relies on knowledge of the application domain in order to find feature vectors unique to a signal class and robust against background noise. Conventional localized data representations for RF transients using analytical dictionaries, such as a short-time Fourier basis or wavelets, can be suitable for analyzing some types of signals, but not others. Instead, we learn RF dictionaries directly from data, without relying on analytical constraints or additional knowledge about the signal characteristics, using several established machine learning algorithms. Sparse classification features are extracted via matching pursuit search over the learned dictionaries, and used in conjunction with a statistical classifier to distinguish between lightning types. We present preliminary results of our work and discuss classification performance

  2. LABRADOR: a learning autonomous behavior-based robot for adaptive detection and object retrieval

    NASA Astrophysics Data System (ADS)

    Yamauchi, Brian; Moseley, Mark; Brookshire, Jonathan

    2013-01-01

    As part of the TARDEC-funded CANINE (Cooperative Autonomous Navigation in a Networked Environment) Program, iRobot developed LABRADOR (Learning Autonomous Behavior-based Robot for Adaptive Detection and Object Retrieval). LABRADOR was based on the rugged, man-portable, iRobot PackBot unmanned ground vehicle (UGV) equipped with an explosives ordnance disposal (EOD) manipulator arm and a custom gripper. For LABRADOR, we developed a vision-based object learning and recognition system that combined a TLD (track-learn-detect) filter based on object shape features with a color-histogram-based object detector. Our vision system was able to learn in real-time to recognize objects presented to the robot. We also implemented a waypoint navigation system based on fused GPS, IMU (inertial measurement unit), and odometry data. We used this navigation capability to implement autonomous behaviors capable of searching a specified area using a variety of robust coverage strategies - including outward spiral, random bounce, random waypoint, and perimeter following behaviors. While the full system was not integrated in time to compete in the CANINE competition event, we developed useful perception, navigation, and behavior capabilities that may be applied to future autonomous robot systems.

  3. An associative model of adaptive inference for learning word-referent mappings.

    PubMed

    Kachergis, George; Yu, Chen; Shiffrin, Richard M

    2012-04-01

    People can learn word-referent pairs over a short series of individually ambiguous situations containing multiple words and referents (Yu & Smith, 2007, Cognition 106: 1558-1568). Cross-situational statistical learning relies on the repeated co-occurrence of words with their intended referents, but simple co-occurrence counts cannot explain the findings. Mutual exclusivity (ME: an assumption of one-to-one mappings) can reduce ambiguity by leveraging prior experience to restrict the number of word-referent pairings considered but can also block learning of non-one-to-one mappings. The present study first trained learners on one-to-one mappings with varying numbers of repetitions. In late training, a new set of word-referent pairs were introduced alongside pretrained pairs; each pretrained pair consistently appeared with a new pair. Results indicate that (1) learners quickly infer new pairs in late training on the basis of their knowledge of pretrained pairs, exhibiting ME; and (2) learners also adaptively relax the ME bias and learn two-to-two mappings involving both pretrained and new words and objects. We present an associative model that accounts for both results using competing familiarity and uncertainty biases. PMID:22215466

  4. An Adaptive Resonance Theory account of the implicit learning of orthographic word forms.

    PubMed

    Glotin, H; Warnier, P; Dandurand, F; Dufau, S; Lété, B; Touzet, C; Ziegler, J C; Grainger, J

    2010-01-01

    An Adaptive Resonance Theory (ART) network was trained to identify unique orthographic word forms. Each word input to the model was represented as an unordered set of ordered letter pairs (open bigrams) that implement a flexible prelexical orthographic code. The network learned to map this prelexical orthographic code onto unique word representations (orthographic word forms). The network was trained on a realistic corpus of reading textbooks used in French primary schools. The amount of training was strictly identical to children's exposure to reading material from grade 1 to grade 5. Network performance was examined at each grade level. Adjustment of the learning and vigilance parameters of the network allowed us to reproduce the developmental growth of word identification performance seen in children. The network exhibited a word frequency effect and was found to be sensitive to the order of presentation of word inputs, particularly with low frequency words. These words were better learned with a randomized presentation order compared with the order of presentation in the school books. These results open up interesting perspectives for the application of ART networks in the study of the dynamics of learning to read. PMID:19903528

  5. Enhanced low-rank representation via sparse manifold adaption for semi-supervised learning.

    PubMed

    Peng, Yong; Lu, Bao-Liang; Wang, Suhang

    2015-05-01

    Constructing an informative and discriminative graph plays an important role in various pattern recognition tasks such as clustering and classification. Among the existing graph-based learning models, low-rank representation (LRR) is a very competitive one, which has been extensively employed in spectral clustering and semi-supervised learning (SSL). In SSL, the graph is composed of both labeled and unlabeled samples, where the edge weights are calculated based on the LRR coefficients. However, most of existing LRR related approaches fail to consider the geometrical structure of data, which has been shown beneficial for discriminative tasks. In this paper, we propose an enhanced LRR via sparse manifold adaption, termed manifold low-rank representation (MLRR), to learn low-rank data representation. MLRR can explicitly take the data local manifold structure into consideration, which can be identified by the geometric sparsity idea; specifically, the local tangent space of each data point was sought by solving a sparse representation objective. Therefore, the graph to depict the relationship of data points can be built once the manifold information is obtained. We incorporate a regularizer into LRR to make the learned coefficients preserve the geometric constraints revealed in the data space. As a result, MLRR combines both the global information emphasized by low-rank property and the local information emphasized by the identified manifold structure. Extensive experimental results on semi-supervised classification tasks demonstrate that MLRR is an excellent method in comparison with several state-of-the-art graph construction approaches. PMID:25634552

  6. Habituation of visual adaptation

    PubMed Central

    Dong, Xue; Gao, Yi; Lv, Lili; Bao, Min

    2016-01-01

    Our sensory system adjusts its function driven by both shorter-term (e.g. adaptation) and longer-term (e.g. learning) experiences. Most past adaptation literature focuses on short-term adaptation. Only recently researchers have begun to investigate how adaptation changes over a span of days. This question is important, since in real life many environmental changes stretch over multiple days or longer. However, the answer to the question remains largely unclear. Here we addressed this issue by tracking perceptual bias (also known as aftereffect) induced by motion or contrast adaptation across multiple daily adaptation sessions. Aftereffects were measured every day after adaptation, which corresponded to the degree of adaptation on each day. For passively viewed adapters, repeated adaptation attenuated aftereffects. Once adapters were presented with an attentional task, aftereffects could either reduce for easy tasks, or initially show an increase followed by a later decrease for demanding tasks. Quantitative analysis of the decay rates in contrast adaptation showed that repeated exposure of the adapter appeared to be equivalent to adaptation to a weaker stimulus. These results suggest that both attention and a non-attentional habituation-like mechanism jointly determine how adaptation develops across multiple daily sessions. PMID:26739917

  7. Habituation of visual adaptation.

    PubMed

    Dong, Xue; Gao, Yi; Lv, Lili; Bao, Min

    2016-01-01

    Our sensory system adjusts its function driven by both shorter-term (e.g. adaptation) and longer-term (e.g. learning) experiences. Most past adaptation literature focuses on short-term adaptation. Only recently researchers have begun to investigate how adaptation changes over a span of days. This question is important, since in real life many environmental changes stretch over multiple days or longer. However, the answer to the question remains largely unclear. Here we addressed this issue by tracking perceptual bias (also known as aftereffect) induced by motion or contrast adaptation across multiple daily adaptation sessions. Aftereffects were measured every day after adaptation, which corresponded to the degree of adaptation on each day. For passively viewed adapters, repeated adaptation attenuated aftereffects. Once adapters were presented with an attentional task, aftereffects could either reduce for easy tasks, or initially show an increase followed by a later decrease for demanding tasks. Quantitative analysis of the decay rates in contrast adaptation showed that repeated exposure of the adapter appeared to be equivalent to adaptation to a weaker stimulus. These results suggest that both attention and a non-attentional habituation-like mechanism jointly determine how adaptation develops across multiple daily sessions. PMID:26739917

  8. Discriminant Validity of the Windward Rating Scale: Screening for Learning Disabilities.

    ERIC Educational Resources Information Center

    Hamada, Roger S.; Tomikawa, Sandra

    1986-01-01

    The Windward Rating Scale (WRS), a locally-developed teacher rating scale of student behavior, was evaluated for potential use as a screening measure. Pre-certification ratings of 720 learning disabled students and non-special education students in grades K-6 were analyzed. Psychometric properties and diagnostic efficiency of the WRS were…

  9. New Treatments for Autism: Effects of a Gluten-Free Diet on Rate of Learning.

    ERIC Educational Resources Information Center

    Grace, Jennifer B.; Velez, Denise M.; Chambliss, Catherine

    This study assessed the effects of a gluten-free diet over one year on learning patterns in three autistic children (ages 5 to 8) participating in an applied behavioral analysis program. Rates of learning for five behavioral targets 3 months, 6 months, 9 months, and 12 months after the start of the diet were compared using a within-subjects…

  10. Characteristics and Activities of Teachers on Distance Learning Programs That Affect Their Ratings

    ERIC Educational Resources Information Center

    Stanišic Stojic, Svetlana M.; Dobrijevic, Gordana; Stanišic, Nemanja; Stanic, Nenad

    2014-01-01

    This paper presents an analysis of teachers' ratings on distance learning undergraduate study programs: 7,156 students enrolled in traditional and 528 students enrolled in distance learning studies took part in the evaluation questionnaire, assessing 71 teachers. The data were collected from the Moodle platform and from the Singidunum…

  11. Effects of Learning Experience on Forgetting Rates of Item and Associative Memories

    ERIC Educational Resources Information Center

    Yang, Jiongjiong; Zhan, Lexia; Wang, Yingying; Du, Xiaoya; Zhou, Wenxi; Ning, Xueling; Sun, Qing; Moscovitch, Morris

    2016-01-01

    Are associative memories forgotten more quickly than item memories, and does the level of original learning differentially influence forgetting rates? In this study, we addressed these questions by having participants learn single words and word pairs once (Experiment 1), three times (Experiment 2), and six times (Experiment 3) in a massed…

  12. Reliability of the Motor Learning Strategy Rating Instrument for Children and Youth with Acquired Brain Injury

    ERIC Educational Resources Information Center

    Kamath, Trishna; Pfeifer, Megan; Banerjee-Guenette, Priyanka; Hunter, Theresa; Ito, Julia; Salbach, Nancy M.; Wright, Virginia; Levac, Danielle

    2012-01-01

    Purpose: To evaluate reliability and feasibility of the Motor Learning Strategy Rating Instrument (MLSRI) in children with acquired brain injury (ABI). The MLSRI quantifies the extent to which motor learning strategies (MLS) are used within physiotherapy (PT) interventions. Methods: PT sessions conducted by ABI team physiotherapists with a…

  13. Neuromorphic learning of continuous-valued mappings from noise-corrupted data. Application to real-time adaptive control

    NASA Technical Reports Server (NTRS)

    Troudet, Terry; Merrill, Walter C.

    1990-01-01

    The ability of feed-forward neural network architectures to learn continuous valued mappings in the presence of noise was demonstrated in relation to parameter identification and real-time adaptive control applications. An error function was introduced to help optimize parameter values such as number of training iterations, observation time, sampling rate, and scaling of the control signal. The learning performance depended essentially on the degree of embodiment of the control law in the training data set and on the degree of uniformity of the probability distribution function of the data that are presented to the net during sequence. When a control law was corrupted by noise, the fluctuations of the training data biased the probability distribution function of the training data sequence. Only if the noise contamination is minimized and the degree of embodiment of the control law is maximized, can a neural net develop a good representation of the mapping and be used as a neurocontroller. A multilayer net was trained with back-error-propagation to control a cart-pole system for linear and nonlinear control laws in the presence of data processing noise and measurement noise. The neurocontroller exhibited noise-filtering properties and was found to operate more smoothly than the teacher in the presence of measurement noise.

  14. The cultural niche: Why social learning is essential for human adaptation

    PubMed Central

    Boyd, Robert; Richerson, Peter J.; Henrich, Joseph

    2011-01-01

    In the last 60,000 y humans have expanded across the globe and now occupy a wider range than any other terrestrial species. Our ability to successfully adapt to such a diverse range of habitats is often explained in terms of our cognitive ability. Humans have relatively bigger brains and more computing power than other animals, and this allows us to figure out how to live in a wide range of environments. Here we argue that humans may be smarter than other creatures, but none of us is nearly smart enough to acquire all of the information necessary to survive in any single habitat. In even the simplest foraging societies, people depend on a vast array of tools, detailed bodies of local knowledge, and complex social arrangements and often do not understand why these tools, beliefs, and behaviors are adaptive. We owe our success to our uniquely developed ability to learn from others. This capacity enables humans to gradually accumulate information across generations and develop well-adapted tools, beliefs, and practices that are too complex for any single individual to invent during their lifetime. PMID:21690340

  15. Dolphin genome provides evidence for adaptive evolution of nervous system genes and a molecular rate slowdown

    PubMed Central

    McGowen, Michael R.; Grossman, Lawrence I.; Wildman, Derek E.

    2012-01-01

    Cetaceans (dolphins and whales) have undergone a radical transformation from the original mammalian bodyplan. In addition, some cetaceans have evolved large brains and complex cognitive capacities. We compared approximately 10 000 protein-coding genes culled from the bottlenose dolphin genome with nine other genomes to reveal molecular correlates of the remarkable phenotypic features of these aquatic mammals. Evolutionary analyses demonstrated that the overall synonymous substitution rate in dolphins has slowed compared with other studied mammals, and is within the range of primates and elephants. We also discovered 228 genes potentially under positive selection (dN/dS > 1) in the dolphin lineage. Twenty-seven of these genes are associated with the nervous system, including those related to human intellectual disabilities, synaptic plasticity and sleep. In addition, genes expressed in the mitochondrion have a significantly higher mean dN/dS ratio in the dolphin lineage than others examined, indicating evolution in energy metabolism. We encountered selection in other genes potentially related to cetacean adaptations such as glucose and lipid metabolism, dermal and lung development, and the cardiovascular system. This study underlines the parallel molecular trajectory of cetaceans with other mammalian groups possessing large brains. PMID:22740643

  16. Motor learning and cross-limb transfer rely upon distinct neural adaptation processes.

    PubMed

    Stöckel, Tino; Carroll, Timothy J; Summers, Jeffery J; Hinder, Mark R

    2016-08-01

    Performance benefits conferred in the untrained limb after unilateral motor practice are termed cross-limb transfer. Although the effect is robust, the neural mechanisms remain incompletely understood. In this study we used noninvasive brain stimulation to reveal that the neural adaptations that mediate motor learning in the trained limb are distinct from those that underlie cross-limb transfer to the opposite limb. Thirty-six participants practiced a ballistic motor task with their right index finger (150 trials), followed by intermittent theta-burst stimulation (iTBS) applied to the trained (contralateral) primary motor cortex (cM1 group), the untrained (ipsilateral) M1 (iM1 group), or the vertex (sham group). After stimulation, another 150 training trials were undertaken. Motor performance and corticospinal excitability were assessed before motor training, pre- and post-iTBS, and after the second training bout. For all groups, training significantly increased performance and excitability of the trained hand, and performance, but not excitability, of the untrained hand, indicating transfer at the level of task performance. The typical facilitatory effect of iTBS on MEPs was reversed for cM1, suggesting homeostatic metaplasticity, and prior performance gains in the trained hand were degraded, suggesting that iTBS interfered with learning. In stark contrast, iM1 iTBS facilitated both performance and excitability for the untrained hand. Importantly, the effects of cM1 and iM1 iTBS on behavior were exclusive to the hand contralateral to stimulation, suggesting that adaptations within the untrained M1 contribute to cross-limb transfer. However, the neural processes that mediate learning in the trained hemisphere vs. transfer in the untrained hemisphere appear distinct. PMID:27169508

  17. Image classification with densely sampled image windows and generalized adaptive multiple kernel learning.

    PubMed

    Yan, Shengye; Xu, Xinxing; Xu, Dong; Lin, Stephen; Li, Xuelong

    2015-03-01

    We present a framework for image classification that extends beyond the window sampling of fixed spatial pyramids and is supported by a new learning algorithm. Based on the observation that fixed spatial pyramids sample a rather limited subset of the possible image windows, we propose a method that accounts for a comprehensive set of windows densely sampled over location, size, and aspect ratio. A concise high-level image feature is derived to effectively deal with this large set of windows, and this higher level of abstraction offers both efficient handling of the dense samples and reduced sensitivity to misalignment. In addition to dense window sampling, we introduce generalized adaptive l(p)-norm multiple kernel learning (GA-MKL) to learn a robust classifier based on multiple base kernels constructed from the new image features and multiple sets of prelearned classifiers from other classes. With GA-MKL, multiple levels of image features are effectively fused, and information is shared among different classifiers. Extensive evaluation on benchmark datasets for object recognition (Caltech256 and Caltech101) and scene recognition (15Scenes) demonstrate that the proposed method outperforms the state-of-the-art under a broad range of settings. PMID:24968365

  18. Multilevel learning in the adaptive management of waterfowl harvests: 20 years and counting

    USGS Publications Warehouse

    Johnson, Fred A.; Boomer, G. Scott; Williams, Byron K.; Nichols, James D.; Case, David J.

    2015-01-01

    In 1995, the U.S. Fish and Wildlife Service implemented an adaptive harvest management program (AHM) for the sport harvest of midcontinent mallards (Anas platyrhynchos). The program has been successful in reducing long-standing contentiousness in the regulatory process, while integrating science and policy in a coherent, rigorous, and transparent fashion. After 20 years, much has been learned about the relationship among waterfowl populations, their environment, and hunting regulations, with each increment of learning contributing to better management decisions. At the same time, however, much has been changing in the social, institutional, and environmental arenas that provide context for the AHM process. Declines in hunter numbers, competition from more pressing conservation issues, and global-change processes are increasingly challenging waterfowl managers to faithfully reflect the needs and desires of stakeholders, to account for an increasing number of institutional constraints, and to (probabilistically) predict the consequences of regulatory policy in a changing environment. We review the lessons learned from the AHM process so far, and describe emerging challenges and ways in which they may be addressed. We conclude that the practice of AHM has greatly increased an awareness of the roles of social values, trade-offs, and attitudes toward risk in regulatory decision-making. Nevertheless, going forward the waterfowl management community will need to focus not only on the relationships among habitat, harvest, and waterfowl populations, but on the ways in which society values waterfowl and how those values can change over time. 

  19. Adaptation and Evaluation of Online Self-learning Modules to Teach Critical Appraisal and Evidence-Based Practice in Nursing: An International Collaboration.

    PubMed

    Gagnon, Johanne; Gagnon, Marie-Pierre; Buteau, Rose-Anne; Azizah, Ginette Mbourou; Jetté, Sylvie; Lampron, Amélie; Simonyan, David; Asua, José; Reviriego, Eva

    2015-07-01

    Healthcare professionals need to update their knowledge and acquire skills to continually inform their practice based on scientific evidence. This study was designed to evaluate online self-learning modules on critical appraisal skills to promote the use of research in clinical practice among nurses from Quebec (Canada) and the Basque Country (Spain). The teaching material was developed in Quebec and adapted to the Basque Country as part of an international collaboration project. A prospective pre-post study was conducted with 36 nurses from Quebec and 47 from the Basque Country. Assessment comprised the administration of questionnaires before and after the course in order to explore the main intervention outcomes: knowledge acquisition and self-learning readiness. Satisfaction was also measured at the end of the course. Two of the three research hypotheses were confirmed: (1) participants significantly improved their overall knowledge score after the educational intervention; and (2) they were, in general, satisfied with the course, giving it a rating of seven out of 10. Participants also reported a greater readiness for self-directed learning after the course, but this result was not significant in Quebec. The study provides unique knowledge on the cultural adaptation of online self-learning modules for teaching nurses about critical appraisal skills and evidence-based practice. PMID:25978538

  20. A novel kernel extreme learning machine algorithm based on self-adaptive artificial bee colony optimisation strategy

    NASA Astrophysics Data System (ADS)

    Ma, Chao; Ouyang, Jihong; Chen, Hui-Ling; Ji, Jin-Chao

    2016-04-01

    In this paper, we propose a novel learning algorithm, named SABC-MKELM, based on a kernel extreme learning machine (KELM) method for single-hidden-layer feedforward networks. In SABC-MKELM, the combination of Gaussian kernels is used as the activate function of KELM instead of simple fixed kernel learning, where the related parameters of kernels and the weights of kernels can be optimised by a novel self-adaptive artificial bee colony (SABC) approach simultaneously. SABC-MKELM outperforms six other state-of-the-art approaches in general, as it could effectively determine solution updating strategies and suitable parameters to produce a flexible kernel function involved in SABC. Simulations have demonstrated that the proposed algorithm not only self-adaptively determines suitable parameters and solution updating strategies learning from the previous experiences, but also achieves better generalisation performances than several related methods, and the results show good stability of the proposed algorithm.

  1. Interest level in 2-year-olds with autism spectrum disorder predicts rate of verbal, nonverbal, and adaptive skill acquisition.

    PubMed

    Klintwall, Lars; Macari, Suzanne; Eikeseth, Svein; Chawarska, Katarzyna

    2015-11-01

    Recent studies have suggested that skill acquisition rates for children with autism spectrum disorders receiving early interventions can be predicted by child motivation. We examined whether level of interest during an Autism Diagnostic Observation Schedule assessment at 2 years predicts subsequent rates of verbal, nonverbal, and adaptive skill acquisition to the age of 3 years. A total of 70 toddlers with autism spectrum disorder, mean age of 21.9 months, were scored using Interest Level Scoring for Autism, quantifying toddlers' interest in toys, social routines, and activities that could serve as reinforcers in an intervention. Adaptive level and mental age were measured concurrently (Time 1) and again after a mean of 16.3 months of treatment (Time 2). Interest Level Scoring for Autism score, Autism Diagnostic Observation Schedule score, adaptive age equivalent, verbal and nonverbal mental age, and intensity of intervention were entered into regression models to predict rates of skill acquisition. Interest level at Time 1 predicted subsequent acquisition rate of adaptive skills (R(2) = 0.36) and verbal mental age (R(2) = 0.30), above and beyond the effects of Time 1 verbal and nonverbal mental ages and Autism Diagnostic Observation Schedule scores. Interest level at Time 1 also contributed (R(2) = 0.30), with treatment intensity, to variance in development of nonverbal mental age. PMID:25398893

  2. The Adaptation of the Mathematics Anxiety Rating Scale-Elementary Form into Turkish, Language Validity, and Preliminary Psychometric Investigation

    ERIC Educational Resources Information Center

    Baloglu, Mustafa; Balgalmis, Esra

    2010-01-01

    The purpose of the present study was to adapt the Mathematics Anxiety Rating Scale- Elementary Form (MARS-E, Suinn, 1988) into Turkish by first doing the translation of its items and then the preliminary psychometric investigation of the Turkish form. The study included four different samples: 30 bilingual language experts, 50 Turkish language…

  3. The Parent Version of the Preschool Social Skills Rating System: Psychometric Analysis and Adaptation with a German Preschool Sample

    ERIC Educational Resources Information Center

    Hess, Markus; Scheithauer, Herbert; Kleiber, Dieter; Wille, Nora; Erhart, Michael; Ravens-Sieberer, Ulrike

    2014-01-01

    The Social Skills Rating System (SSRS) developed by Gresham and Elliott (1990) is a multirater, norm-referenced instrument measuring social skills and adaptive behavior in preschool children. The aims of the present study were (a) to test the factorial structure of the Parent Form of the SSRS for the first time with a German preschool sample (391…

  4. Base-Rate Neglect as a Function of Base Rates in Probabilistic Contingency Learning

    ERIC Educational Resources Information Center

    Kutzner, Florian; Freytag, Peter; Vogel, Tobias; Fiedler, Klaus

    2008-01-01

    When humans predict criterion events based on probabilistic predictors, they often lend excessive weight to the predictor and insufficient weight to the base rate of the criterion event. In an operant analysis, using a matching-to-sample paradigm, Goodie and Fantino (1996) showed that humans exhibit base-rate neglect when predictors are associated…

  5. MO-G-17A-05: PET Image Deblurring Using Adaptive Dictionary Learning

    SciTech Connect

    Valiollahzadeh, S; Clark, J; Mawlawi, O

    2014-06-15

    Purpose: The aim of this work is to deblur PET images while suppressing Poisson noise effects using adaptive dictionary learning (DL) techniques. Methods: The model that relates a blurred and noisy PET image to the desired image is described as a linear transform y=Hm+n where m is the desired image, H is a blur kernel, n is Poisson noise and y is the blurred image. The approach we follow to recover m involves the sparse representation of y over a learned dictionary, since the image has lots of repeated patterns, edges, textures and smooth regions. The recovery is based on an optimization of a cost function having four major terms: adaptive dictionary learning term, sparsity term, regularization term, and MLEM Poisson noise estimation term. The optimization is solved by a variable splitting method that introduces additional variables. We simulated a 128×128 Hoffman brain PET image (baseline) with varying kernel types and sizes (Gaussian 9×9, σ=5.4mm; Uniform 5×5, σ=2.9mm) with additive Poisson noise (Blurred). Image recovery was performed once when the kernel type was included in the model optimization and once with the model blinded to kernel type. The recovered image was compared to the baseline as well as another recovery algorithm PIDSPLIT+ (Setzer et. al.) by calculating PSNR (Peak SNR) and normalized average differences in pixel intensities (NADPI) of line profiles across the images. Results: For known kernel types, the PSNR of the Gaussian (Uniform) was 28.73 (25.1) and 25.18 (23.4) for DL and PIDSPLIT+ respectively. For blinded deblurring the PSNRs were 25.32 and 22.86 for DL and PIDSPLIT+ respectively. NADPI between baseline and DL, and baseline and blurred for the Gaussian kernel was 2.5 and 10.8 respectively. Conclusion: PET image deblurring using dictionary learning seems to be a good approach to restore image resolution in presence of Poisson noise. GE Health Care.

  6. Adaptive Management

    EPA Science Inventory

    Adaptive management is an approach to natural resource management that emphasizes learning through management where knowledge is incomplete, and when, despite inherent uncertainty, managers and policymakers must act. Unlike a traditional trial and error approach, adaptive managem...

  7. Smart microscope: an adaptive optics learning system for aberration correction in multiphoton confocal microscopy.

    PubMed

    Albert, O; Sherman, L; Mourou, G; Norris, T B; Vdovin, G

    2000-01-01

    Off-axis aberrations in a beam-scanning multiphoton confocal microscope are corrected with a deformable mirror. The optimal mirror shape for each pixel is determined by a genetic learning algorithm, in which the second-harmonic or two-photon fluorescence signal from a reference sample is maximized. The speed of the convergence is improved by use of a Zernike polynomial basis for the deformable mirror shape. This adaptive optical correction scheme is implemented in an all-reflective system by use of extremely short (10-fs) optical pulses, and it is shown that the scanning area of an f:1 off-axis parabola can be increased by nine times with this technique. PMID:18059779

  8. Reinforcement learning for adaptive optimal control of unknown continuous-time nonlinear systems with input constraints

    NASA Astrophysics Data System (ADS)

    Yang, Xiong; Liu, Derong; Wang, Ding

    2014-03-01

    In this paper, an adaptive reinforcement learning-based solution is developed for the infinite-horizon optimal control problem of constrained-input continuous-time nonlinear systems in the presence of nonlinearities with unknown structures. Two different types of neural networks (NNs) are employed to approximate the Hamilton-Jacobi-Bellman equation. That is, an recurrent NN is constructed to identify the unknown dynamical system, and two feedforward NNs are used as the actor and the critic to approximate the optimal control and the optimal cost, respectively. Based on this framework, the action NN and the critic NN are tuned simultaneously, without the requirement for the knowledge of system drift dynamics. Moreover, by using Lyapunov's direct method, the weights of the action NN and the critic NN are guaranteed to be uniformly ultimately bounded, while keeping the closed-loop system stable. To demonstrate the effectiveness of the present approach, simulation results are illustrated.

  9. What we learned from the Dust Bowl: lessons in science, policy, and adaptation.

    PubMed

    McLeman, Robert A; Dupre, Juliette; Berrang Ford, Lea; Ford, James; Gajewski, Konrad; Marchildon, Gregory

    2014-01-01

    This article provides a review and synthesis of scholarly knowledge of Depression-era droughts on the North American Great Plains, a time and place known colloquially as the Dust Bowl era or the Dirty Thirties. Recent events, including the 2008 financial crisis, severe droughts in the US corn belt, and the release of a popular documentary film, have spawned a resurgence in public interest in the Dust Bowl. Events of the Dust Bowl era have also proven in recent years to be of considerable interest to scholars researching phenomena related to global environmental change, including atmospheric circulation, drought modeling, land management, institutional behavior, adaptation processes, and human migration. In this review, we draw out common themes in terms of not only what natural and social scientists have learned about the Dust Bowl era itself, but also how insights gained from the study of that period are helping to enhance our understanding of climate-human relations more generally. PMID:24829518

  10. Moving Past Curricula and Strategies: Language and the Development of Adaptive Pedagogy for Immersive Learning Environments

    NASA Astrophysics Data System (ADS)

    Hand, Brian; Cavagnetto, Andy; Chen, Ying-Chih; Park, Soonhye

    2016-04-01

    Given current concerns internationally about student performance in science and the need to shift how science is being learnt in schools, as a community, we need to shift how we approach the issue of learning and teaching in science. In the future, we are going to have to close the gap between how students construct and engage with knowledge in a media-rich environment, and how school classroom environments engage them. This is going to require a shift to immersive environments where attention is paid to the knowledge bases and resources students bring into the classroom. Teachers will have to adopt adaptive pedagogical approaches that are framed around a more nuanced understanding of epistemological orientation, language and the nature of prosocial environments.

  11. The change probability effect: incidental learning, adaptability, and shared visual working memory resources.

    PubMed

    van Lamsweerde, Amanda E; Beck, Melissa R

    2011-12-01

    Statistical properties in the visual environment can be used to improve performance on visual working memory (VWM) tasks. The current study examined the ability to incidentally learn that a change is more likely to occur to a particular feature dimension (shape, color, or location) and use this information to improve change detection performance for that dimension (the change probability effect). Participants completed a change detection task in which one change type was more probable than others. Change probability effects were found for color and shape changes, but not location changes, and intentional strategies did not improve the effect. Furthermore, the change probability effect developed and adapted to new probability information quickly. Finally, in some conditions, an improvement in change detection performance for a probable change led to an impairment in change detection for improbable changes. PMID:21963330

  12. Automatic ultrasonic imaging system with adaptive-learning-network signal-processing techniques

    SciTech Connect

    O'Brien, L.J.; Aravanis, N.A.; Gouge, J.R. Jr.; Mucciardi, A.N.; Lemon, D.K.; Skorpik, J.R.

    1982-04-01

    A conventional pulse-echo imaging system has been modified to operate with a linear ultrasonic array and associated digital electronics to collect data from a series of defects fabricated in aircraft quality steel blocks. A thorough analysis of the defect responses recorded with this modified system has shown that considerable improvements over conventional imaging approaches can be obtained in the crucial areas of defect detection and characterization. A combination of advanced signal processing concepts with the Adaptive Learning Network (ALN) methodology forms the basis for these improvements. Use of established signal processing algorithms such as temporal and spatial beam-forming in concert with a sophisticated detector has provided a reliable defect detection scheme which can be implemented in a microprocessor-based system to operate in an automatic mode.

  13. Moving Past Curricula and Strategies: Language and the Development of Adaptive Pedagogy for Immersive Learning Environments

    NASA Astrophysics Data System (ADS)

    Hand, Brian; Cavagnetto, Andy; Chen, Ying-Chih; Park, Soonhye

    2016-01-01

    Given current concerns internationally about student performance in science and the need to shift how science is being learnt in schools, as a community, we need to shift how we approach the issue of learning and teaching in science. In the future, we are going to have to close the gap between how students construct and engage with knowledge in a media-rich environment, and how school classroom environments engage them. This is going to require a shift to immersive environments where attention is paid to the knowledge bases and resources students bring into the classroom. Teachers will have to adopt adaptive pedagogical approaches that are framed around a more nuanced understanding of epistemological orientation, language and the nature of prosocial environments.

  14. Discriminant Validity of a Teacher-Developed Rating Scale for Specific Learning Disabilities.

    ERIC Educational Resources Information Center

    Hamada, Roger S.; Tomikawa, Sandra

    Local teachers and other school personnel in Hawaii expressed a need for operational guidelines to use in deciding whether or not to refer students for diagnostic evaluations for specific learning disabilities (SLD). This project was designed to evaluate whether the Windward Rating Scale (WRS), a locally-developed teacher rating scale of student…

  15. Inferring learning rules from distributions of firing rates in cortical neurons.

    PubMed

    Lim, Sukbin; McKee, Jillian L; Woloszyn, Luke; Amit, Yali; Freedman, David J; Sheinberg, David L; Brunel, Nicolas

    2015-12-01

    Information about external stimuli is thought to be stored in cortical circuits through experience-dependent modifications of synaptic connectivity. These modifications of network connectivity should lead to changes in neuronal activity as a particular stimulus is repeatedly encountered. Here we ask what plasticity rules are consistent with the differences in the statistics of the visual response to novel and familiar stimuli in inferior temporal cortex, an area underlying visual object recognition. We introduce a method that allows one to infer the dependence of the presumptive learning rule on postsynaptic firing rate, and we show that the inferred learning rule exhibits depression for low postsynaptic rates and potentiation for high rates. The threshold separating depression from potentiation is strongly correlated with both mean and s.d. of the firing rate distribution. Finally, we show that network models implementing a rule extracted from data show stable learning dynamics and lead to sparser representations of stimuli. PMID:26523643

  16. Universal approximation of extreme learning machine with adaptive growth of hidden nodes.

    PubMed

    Zhang, Rui; Lan, Yuan; Huang, Guang-Bin; Xu, Zong-Ben

    2012-02-01

    Extreme learning machines (ELMs) have been proposed for generalized single-hidden-layer feedforward networks which need not be neuron-like and perform well in both regression and classification applications. In this brief, we propose an ELM with adaptive growth of hidden nodes (AG-ELM), which provides a new approach for the automated design of networks. Different from other incremental ELMs (I-ELMs) whose existing hidden nodes are frozen when the new hidden nodes are added one by one, in AG-ELM the number of hidden nodes is determined in an adaptive way in the sense that the existing networks may be replaced by newly generated networks which have fewer hidden nodes and better generalization performance. We then prove that such an AG-ELM using Lebesgue p-integrable hidden activation functions can approximate any Lebesgue p-integrable function on a compact input set. Simulation results demonstrate and verify that this new approach can achieve a more compact network architecture than the I-ELM. PMID:24808516

  17. Adaptive neural network/expert system that learns fault diagnosis for different structures

    NASA Astrophysics Data System (ADS)

    Simon, Solomon H.

    1992-08-01

    Corporations need better real-time monitoring and control systems to improve productivity by watching quality and increasing production flexibility. The innovative technology to achieve this goal is evolving in the form artificial intelligence and neural networks applied to sensor processing, fusion, and interpretation. By using these advanced Al techniques, we can leverage existing systems and add value to conventional techniques. Neural networks and knowledge-based expert systems can be combined into intelligent sensor systems which provide real-time monitoring, control, evaluation, and fault diagnosis for production systems. Neural network-based intelligent sensor systems are more reliable because they can provide continuous, non-destructive monitoring and inspection. Use of neural networks can result in sensor fusion and the ability to model highly, non-linear systems. Improved models can provide a foundation for more accurate performance parameters and predictions. We discuss a research software/hardware prototype which integrates neural networks, expert systems, and sensor technologies and which can adapt across a variety of structures to perform fault diagnosis. The flexibility and adaptability of the prototype in learning two structures is presented. Potential applications are discussed.

  18. Bio-inspired adaptive feedback error learning architecture for motor control.

    PubMed

    Tolu, Silvia; Vanegas, Mauricio; Luque, Niceto R; Garrido, Jesús A; Ros, Eduardo

    2012-10-01

    This study proposes an adaptive control architecture based on an accurate regression method called Locally Weighted Projection Regression (LWPR) and on a bio-inspired module, such as a cerebellar-like engine. This hybrid architecture takes full advantage of the machine learning module (LWPR kernel) to abstract an optimized representation of the sensorimotor space while the cerebellar component integrates this to generate corrective terms in the framework of a control task. Furthermore, we illustrate how the use of a simple adaptive error feedback term allows to use the proposed architecture even in the absence of an accurate analytic reference model. The presented approach achieves an accurate control with low gain corrective terms (for compliant control schemes). We evaluate the contribution of the different components of the proposed scheme comparing the obtained performance with alternative approaches. Then, we show that the presented architecture can be used for accurate manipulation of different objects when their physical properties are not directly known by the controller. We evaluate how the scheme scales for simulated plants of high Degrees of Freedom (7-DOFs). PMID:22907270

  19. Neuromorphic learning of continuous-valued mappings in the presence of noise: Application to real-time adaptive control

    NASA Technical Reports Server (NTRS)

    Troudet, Terry; Merrill, Walter C.

    1989-01-01

    The ability of feed-forward neural net architectures to learn continuous-valued mappings in the presence of noise is demonstrated in relation to parameter identification and real-time adaptive control applications. Factors and parameters influencing the learning performance of such nets in the presence of noise are identified. Their effects are discussed through a computer simulation of the Back-Error-Propagation algorithm by taking the example of the cart-pole system controlled by a nonlinear control law. Adequate sampling of the state space is found to be essential for canceling the effect of the statistical fluctuations and allowing learning to take place.

  20. Learning from experience: Event-related potential correlates of reward processing, neural adaptation, and behavioral choice

    PubMed Central

    Walsh, Matthew M.; Anderson, John R.

    2012-01-01

    To behave adaptively, we must learn from the consequences of our actions. Studies using event-related potentials (ERPs) have been informative with respect to the question of how such learning occurs. These studies have revealed a frontocentral negativity termed the feedback-related negativity (FRN) that appears after negative feedback. According to one prominent theory, the FRN tracks the difference between the values of actual and expected outcomes, or reward prediction errors. As such, the FRN provides a tool for studying reward valuation and decision making. We begin this review by examining the neural significance of the FRN. We then examine its functional significance. To understand the cognitive processes that occur when the FRN is generated, we explore variables that influence its appearance and amplitude. Specifically, we evaluate four hypotheses: (1) the FRN encodes a quantitative reward prediction error; (2) the FRN is evoked by outcomes and by stimuli that predict outcomes; (3) the FRN and behavior change with experience; and (4) the system that produces the FRN is maximally engaged by volitional actions. PMID:22683741

  1. Automatic classification of schizophrenia using resting-state functional language network via an adaptive learning algorithm

    NASA Astrophysics Data System (ADS)

    Zhu, Maohu; Jie, Nanfeng; Jiang, Tianzi

    2014-03-01

    A reliable and precise classification of schizophrenia is significant for its diagnosis and treatment of schizophrenia. Functional magnetic resonance imaging (fMRI) is a novel tool increasingly used in schizophrenia research. Recent advances in statistical learning theory have led to applying pattern classification algorithms to access the diagnostic value of functional brain networks, discovered from resting state fMRI data. The aim of this study was to propose an adaptive learning algorithm to distinguish schizophrenia patients from normal controls using resting-state functional language network. Furthermore, here the classification of schizophrenia was regarded as a sample selection problem where a sparse subset of samples was chosen from the labeled training set. Using these selected samples, which we call informative vectors, a classifier for the clinic diagnosis of schizophrenia was established. We experimentally demonstrated that the proposed algorithm incorporating resting-state functional language network achieved 83.6% leaveone- out accuracy on resting-state fMRI data of 27 schizophrenia patients and 28 normal controls. In contrast with KNearest- Neighbor (KNN), Support Vector Machine (SVM) and l1-norm, our method yielded better classification performance. Moreover, our results suggested that a dysfunction of resting-state functional language network plays an important role in the clinic diagnosis of schizophrenia.

  2. Automated Detection of Microaneurysms Using Scale-Adapted Blob Analysis and Semi-Supervised Learning

    SciTech Connect

    Adal, Kedir M.; Sidebe, Desire; Ali, Sharib; Chaum, Edward; Karnowski, Thomas Paul; Meriaudeau, Fabrice

    2014-01-07

    Despite several attempts, automated detection of microaneurysm (MA) from digital fundus images still remains to be an open issue. This is due to the subtle nature of MAs against the surrounding tissues. In this paper, the microaneurysm detection problem is modeled as finding interest regions or blobs from an image and an automatic local-scale selection technique is presented. Several scale-adapted region descriptors are then introduced to characterize these blob regions. A semi-supervised based learning approach, which requires few manually annotated learning examples, is also proposed to train a classifier to detect true MAs. The developed system is built using only few manually labeled and a large number of unlabeled retinal color fundus images. The performance of the overall system is evaluated on Retinopathy Online Challenge (ROC) competition database. A competition performance measure (CPM) of 0.364 shows the competitiveness of the proposed system against state-of-the art techniques as well as the applicability of the proposed features to analyze fundus images.

  3. On the Use of Adaptive Instructional Images Based on the Sequential-Global Dimension of the Felder-Silverman Learning Style Theory

    ERIC Educational Resources Information Center

    Filippidis, Stavros K.; Tsoukalas, Ioannis A.

    2009-01-01

    An adaptive educational system that uses adaptive presentation is presented. In this system fragments of different images present the same content and the system can choose the one most relevant to the user based on the sequential-global dimension of Felder-Silverman's learning style theory. In order to retrieve the learning style of each student…

  4. Regulation of Emotions in Socially Challenging Learning Situations: An Instrument to Measure the Adaptive and Social Nature of the Regulation Process

    ERIC Educational Resources Information Center

    Jarvenoja, Hanna; Volet, Simone; Jarvela, Sanna

    2013-01-01

    Self-regulated learning (SRL) research has conventionally relied on measures, which treat SRL as an aptitude. To study self-regulation and motivation in learning contexts as an ongoing adaptive process, situation-specific methods are needed in addition to static measures. This article presents an "Adaptive Instrument for Regulation of Emotions"…

  5. Seamless Integration of Desktop and Mobile Learning Experience through an Ontology-Based Adaptation Engine: Report of a Pilot-Project

    ERIC Educational Resources Information Center

    Mercurio, Marco; Torre, Ilaria; Torsani, Simone

    2014-01-01

    The paper describes a module within the distance language learning environment of the Language Centre at the Genoa University which adapts, through an ontology, learning activities to the device in use. Adaptation means not simply resizing a page but also the ability to transform the nature of a task so that it fits the device with the smallest…

  6. Attention Cueing and Activity Equally Reduce False Alarm Rate in Visual-Auditory Associative Learning through Improving Memory.

    PubMed

    Nikouei Mahani, Mohammad-Ali; Haghgoo, Hojjat Allah; Azizi, Solmaz; Nili Ahmadabadi, Majid

    2016-01-01

    In our daily life, we continually exploit already learned multisensory associations and form new ones when facing novel situations. Improving our associative learning results in higher cognitive capabilities. We experimentally and computationally studied the learning performance of healthy subjects in a visual-auditory sensory associative learning task across active learning, attention cueing learning, and passive learning modes. According to our results, the learning mode had no significant effect on learning association of congruent pairs. In addition, subjects' performance in learning congruent samples was not correlated with their vigilance score. Nevertheless, vigilance score was significantly correlated with the learning performance of the non-congruent pairs. Moreover, in the last block of the passive learning mode, subjects significantly made more mistakes in taking non-congruent pairs as associated and consciously reported lower confidence. These results indicate that attention and activity equally enhanced visual-auditory associative learning for non-congruent pairs, while false alarm rate in the passive learning mode did not decrease after the second block. We investigated the cause of higher false alarm rate in the passive learning mode by using a computational model, composed of a reinforcement learning module and a memory-decay module. The results suggest that the higher rate of memory decay is the source of making more mistakes and reporting lower confidence in non-congruent pairs in the passive learning mode. PMID:27314235

  7. Attention Cueing and Activity Equally Reduce False Alarm Rate in Visual-Auditory Associative Learning through Improving Memory

    PubMed Central

    Haghgoo, Hojjat Allah; Azizi, Solmaz; Nili Ahmadabadi, Majid

    2016-01-01

    In our daily life, we continually exploit already learned multisensory associations and form new ones when facing novel situations. Improving our associative learning results in higher cognitive capabilities. We experimentally and computationally studied the learning performance of healthy subjects in a visual-auditory sensory associative learning task across active learning, attention cueing learning, and passive learning modes. According to our results, the learning mode had no significant effect on learning association of congruent pairs. In addition, subjects’ performance in learning congruent samples was not correlated with their vigilance score. Nevertheless, vigilance score was significantly correlated with the learning performance of the non-congruent pairs. Moreover, in the last block of the passive learning mode, subjects significantly made more mistakes in taking non-congruent pairs as associated and consciously reported lower confidence. These results indicate that attention and activity equally enhanced visual-auditory associative learning for non-congruent pairs, while false alarm rate in the passive learning mode did not decrease after the second block. We investigated the cause of higher false alarm rate in the passive learning mode by using a computational model, composed of a reinforcement learning module and a memory-decay module. The results suggest that the higher rate of memory decay is the source of making more mistakes and reporting lower confidence in non-congruent pairs in the passive learning mode. PMID:27314235

  8. Pretraining Cortical Thickness Predicts Subsequent Perceptual Learning Rate in a Visual Search Task.

    PubMed

    Frank, Sebastian M; Reavis, Eric A; Greenlee, Mark W; Tse, Peter U

    2016-03-01

    We report that preexisting individual differences in the cortical thickness of brain areas involved in a perceptual learning task predict the subsequent perceptual learning rate. Participants trained in a motion-discrimination task involving visual search for a "V"-shaped target motion trajectory among inverted "V"-shaped distractor trajectories. Motion-sensitive area MT+ (V5) was functionally identified as critical to the task: after 3 weeks of training, activity increased in MT+ during task performance, as measured by functional magnetic resonance imaging. We computed the cortical thickness of MT+ from anatomical magnetic resonance imaging volumes collected before training started, and found that it significantly predicted subsequent perceptual learning rates in the visual search task. Participants with thicker neocortex in MT+ before training learned faster than those with thinner neocortex in that area. A similar association between cortical thickness and training success was also found in posterior parietal cortex (PPC). PMID:25576537

  9. Providing Adaptation and Guidance for Design Learning by Problem Solving: The Design Planning Approach in DomoSim-TPC Environment

    ERIC Educational Resources Information Center

    Redondo, Miguel A.; Bravo, Crescencio; Ortega, Manuel; Verdejo, M. Felisa

    2007-01-01

    Experimental learning environments based on simulation usually require monitoring and adaptation to the actions the users carry out. Some systems provide this functionality, but they do so in a way which is static or cannot be applied to problem solving tasks. In response to this problem, we propose a method based on the use of intermediate…

  10. Discriminating Children with Autism from Children with Learning Difficulties with an Adaptation of the Short Sensory Profile

    ERIC Educational Resources Information Center

    O'Brien, Justin; Tsermentseli, Stella; Cummins, Omar; Happe, Francesca; Heaton, Pamela; Spencer, Janine

    2009-01-01

    In this article, we examine the extent to which children with autism and children with learning difficulties can be discriminated from their responses to different patterns of sensory stimuli. Using an adapted version of the Short Sensory Profile (SSP), sensory processing was compared in 34 children with autism to 33 children with typical…

  11. Effects of Adaptive Training on Working Memory and Academic Achievement of Children with Learning Disabilities: A School-Based Study

    ERIC Educational Resources Information Center

    Cunningham, Rhonda Phillips

    2013-01-01

    Research has suggested many children with learning disabilities (LD) have deficits in working memory (WM) that hinder their academic achievement. Cogmed RM, a computerized intervention, uses adaptive training over 25 sessions and has shown efficacy in improving WM in children with attention deficit hyperactivity disorder (ADHD) and a variety of…

  12. When Goal Orientations Collide: Effects of Learning and Performance Orientation on Team Adaptability in Response to Workload Imbalance

    ERIC Educational Resources Information Center

    Porter, Christopher O. L. H.; Webb, Justin W.; Gogus, Celile Itir

    2010-01-01

    The authors draw on resource allocation theory (Kanfer & Ackerman, 1989) to develop hypotheses regarding the conditions under which collective learning and performance orientation have interactive effects and the nature of those effects on teams' ability to adapt to a sudden and dramatic change in workload. Consistent with the theory, results…

  13. Guiding Learners through Technology-Based Instruction: The Effects of Adaptive Guidance Design and Individual Differences on Learning over Time

    ERIC Educational Resources Information Center

    Kanar, Adam M.; Bell, Bradford S.

    2013-01-01

    Adaptive guidance is an instructional intervention that helps learners to make use of the control inherent in technology-based instruction. The present research investigated the interactive effects of guidance design (i.e., framing of guidance information) and individual differences (i.e., pretraining motivation and ability) on learning basic and…

  14. A Model of Successful Adaptation to Online Learning for College-Bound Native American High School Students

    ERIC Educational Resources Information Center

    Kaler, Collier Butler

    2012-01-01

    Purpose: The purpose of this paper is to examine the conditions for Native American high school students that result in successful adaptation to an online learning environment. Design/methodology/approach: In total, eight Native American students attending high schools located on Montana Indian reservations, and one urban city, were interviewed.…

  15. Theta synchronization between medial prefrontal cortex and cerebellum is associated with adaptive performance of associative learning behavior

    PubMed Central

    Chen, Hao; Wang, Yi-jie; Yang, Li; Sui, Jian-feng; Hu, Zhi-an; Hu, Bo

    2016-01-01

    Associative learning is thought to require coordinated activities among distributed brain regions. For example, to direct behavior appropriately, the medial prefrontal cortex (mPFC) must encode and maintain sensory information and then interact with the cerebellum during trace eyeblink conditioning (TEBC), a commonly-used associative learning model. However, the mechanisms by which these two distant areas interact remain elusive. By simultaneously recording local field potential (LFP) signals from the mPFC and the cerebellum in guinea pigs undergoing TEBC, we found that theta-frequency (5.0–12.0 Hz) oscillations in the mPFC and the cerebellum became strongly synchronized following presentation of auditory conditioned stimulus. Intriguingly, the conditioned eyeblink response (CR) with adaptive timing occurred preferentially in the trials where mPFC-cerebellum theta coherence was stronger. Moreover, both the mPFC-cerebellum theta coherence and the adaptive CR performance were impaired after the disruption of endogenous orexins in the cerebellum. Finally, association of the mPFC -cerebellum theta coherence with adaptive CR performance was time-limited occurring in the early stage of associative learning. These findings suggest that the mPFC and the cerebellum may act together to contribute to the adaptive performance of associative learning behavior by means of theta synchronization. PMID:26879632

  16. Promoting Social-Emotional Learning in Adolescent Latino ELLs: A Study of the Culturally Adapted "Strong Teens" Program

    ERIC Educational Resources Information Center

    Castro-Olivo, Sara M.

    2014-01-01

    The current study evaluated the effects of the culturally adapted "Jóvenes Fuertes" ("Strong Teens") Social-Emotional Learning (SEL) program on the social-emotional outcomes of Latino English language learners (ELLs). A quasi-experimental design with random assignment by classrooms was used to assess the intervention's…

  17. Interactive prostate segmentation using atlas-guided semi-supervised learning and adaptive feature selection

    SciTech Connect

    Park, Sang Hyun; Gao, Yaozong; Shi, Yinghuan; Shen, Dinggang

    2014-11-01

    Purpose: Accurate prostate segmentation is necessary for maximizing the effectiveness of radiation therapy of prostate cancer. However, manual segmentation from 3D CT images is very time-consuming and often causes large intra- and interobserver variations across clinicians. Many segmentation methods have been proposed to automate this labor-intensive process, but tedious manual editing is still required due to the limited performance. In this paper, the authors propose a new interactive segmentation method that can (1) flexibly generate the editing result with a few scribbles or dots provided by a clinician, (2) fast deliver intermediate results to the clinician, and (3) sequentially correct the segmentations from any type of automatic or interactive segmentation methods. Methods: The authors formulate the editing problem as a semisupervised learning problem which can utilize a priori knowledge of training data and also the valuable information from user interactions. Specifically, from a region of interest near the given user interactions, the appropriate training labels, which are well matched with the user interactions, can be locally searched from a training set. With voting from the selected training labels, both confident prostate and background voxels, as well as unconfident voxels can be estimated. To reflect informative relationship between voxels, location-adaptive features are selected from the confident voxels by using regression forest and Fisher separation criterion. Then, the manifold configuration computed in the derived feature space is enforced into the semisupervised learning algorithm. The labels of unconfident voxels are then predicted by regularizing semisupervised learning algorithm. Results: The proposed interactive segmentation method was applied to correct automatic segmentation results of 30 challenging CT images. The correction was conducted three times with different user interactions performed at different time periods, in order to

  18. Multi-input square iterative learning control with input rate limits and bounds.

    PubMed

    Driessen, B J; Sadegh, N

    2002-01-01

    We present a simple modification of the iterative learning control algorithm of Arimoto et al. (1984) for the case where the inputs are bounded and time-rate-limited. The Jacobian error condition for monotonicity of input-error, rather than output-error, norms, is specified, the latter being insufficient to assure convergence, as proved herein. To the best of our knowledge, these facts have not been previously pointed out in the iterative learning control literature. We present a new proof that the modified controller produces monotonically decreasing input error norms, with a norm that covers the entire time interval of a learning trial. PMID:18238150

  19. Learning-rate-dependent clustering and self-development in a network of coupled phase oscillators

    NASA Astrophysics Data System (ADS)

    Niyogi, Ritwik K.; English, L. Q.

    2009-12-01

    We investigate the role of the learning rate in a Kuramoto Model of coupled phase oscillators in which the coupling coefficients dynamically vary according to a Hebbian learning rule. According to the Hebbian theory, a synapse between two neurons is strengthened if they are simultaneously coactive. Two stable synchronized clusters in antiphase emerge when the learning rate is larger than a critical value. In such a fast learning scenario, the network eventually constructs itself into an all-to-all coupled structure, regardless of initial conditions in connectivity. In contrast, when learning is slower than this critical value, only a single synchronized cluster can develop. Extending our analysis, we explore whether self-development of neuronal networks can be achieved through an interaction between spontaneous neural synchronization and Hebbian learning. We find that self-development of such neural systems is impossible if learning is too slow. Finally, we demonstrate that similar to the acquisition and consolidation of long-term memory, this network is capable of generating and remembering stable patterns.

  20. FPGA-based rate-adaptive LDPC-coded modulation for the next generation of optical communication systems.

    PubMed

    Zou, Ding; Djordjevic, Ivan B

    2016-09-01

    In this paper, we propose a rate-adaptive FEC scheme based on LDPC codes together with its software reconfigurable unified FPGA architecture. By FPGA emulation, we demonstrate that the proposed class of rate-adaptive LDPC codes based on shortening with an overhead from 25% to 42.9% provides a coding gain ranging from 13.08 dB to 14.28 dB at a post-FEC BER of 10-15 for BPSK transmission. In addition, the proposed rate-adaptive LDPC coding combined with higher-order modulations have been demonstrated including QPSK, 8-QAM, 16-QAM, 32-QAM, and 64-QAM, which covers a wide range of signal-to-noise ratios. Furthermore, we apply the unequal error protection by employing different LDPC codes on different bits in 16-QAM and 64-QAM, which results in additional 0.5dB gain compared to conventional LDPC coded modulation with the same code rate of corresponding LDPC code. PMID:27607718