Science.gov

Sample records for adaptive learning systems

  1. Integrating Learning Styles into Adaptive E-Learning System

    ERIC Educational Resources Information Center

    Truong, Huong May

    2015-01-01

    This paper provides an overview and update on my PhD research project which focuses on integrating learning styles into adaptive e-learning system. The project, firstly, aims to develop a system to classify students' learning styles through their online learning behaviour. This will be followed by a study on the complex relationship between…

  2. Learning and adaptation in fuzzy neural systems

    NASA Astrophysics Data System (ADS)

    Gupta, Madan M.

    1992-03-01

    In recent years, an increasing number of researchers have become involved in the subject of fuzzy neural networks in the hope of combining the reasoning strength of fuzzy logic and the learning and adaptation power of neural networks. This provides a more powerful tool for fuzzy information processing and for exploring the functioning of human brains. In this paper, an attempt has been made to establish some basic models for fuzzy neurons. First, several possible fuzzy neuron models are proposed. Second, synaptic and somatic learning and adaptation mechanisms are proposed. Finally, the possibility of applying nonfuzzy neural networks approaches to fuzzy systems is also described.

  3. Flexible Ubiquitous Learning Management System Adapted to Learning Context

    NASA Astrophysics Data System (ADS)

    Jeong, Ji-Seong; Kim, Mihye; Park, Chan; Yoo, Jae-Soo; Yoo, Kwan-Hee

    This paper proposes a u-learning management system (ULMS) appropriate to the ubiquitous learning environment, with emphasis on the significance of context awareness and adaptation in learning. The proposed system supports the basic functions of an e-learning management system and incorporates a number of tools and additional features to provide a more customized learning service. The proposed system automatically corresponds to various forms of user terminal without modifying the existing system. The functions, formats, and course learning activities of the system are dynamically and adaptively constructed at runtime according to user terminals, course types, pedagogical goals as well as student characteristics and learning context. A prototype for university use has been implemented to demonstrate and evaluate the proposed approach. We regard the proposed ULMS as an ideal u-learning system because it can not only lead students into continuous and mobile 'anytime, anywhere' learning using any kind of terminal, but can also foster enhanced self-directed learning through the establishment of an adaptive learning environment.

  4. Adaptive functional systems: Learning with chaos

    NASA Astrophysics Data System (ADS)

    Komarov, M. A.; Osipov, G. V.; Burtsev, M. S.

    2010-12-01

    We propose a new model of adaptive behavior that combines a winnerless competition principle and chaos to learn new functional systems. The model consists of a complex network of nonlinear dynamical elements producing sequences of goal-directed actions. Each element describes dynamics and activity of the functional system which is supposed to be a distributed set of interacting physiological elements such as nerve or muscle that cooperates to obtain certain goal at the level of the whole organism. During "normal" behavior, the dynamics of the system follows heteroclinic channels, but in the novel situation chaotic search is activated and a new channel leading to the target state is gradually created simulating the process of learning. The model was tested in single and multigoal environments and had demonstrated a good potential for generation of new adaptations.

  5. Adaptive Learning Resources Sequencing in Educational Hypermedia Systems

    ERIC Educational Resources Information Center

    Karampiperis, Pythagoras; Sampson, Demetrios

    2005-01-01

    Adaptive learning resources selection and sequencing is recognized as among the most interesting research questions in adaptive educational hypermedia systems (AEHS). In order to adaptively select and sequence learning resources in AEHS, the definition of adaptation rules contained in the Adaptation Model, is required. Although, some efforts have…

  6. Adaptive Learning Systems: Beyond Teaching Machines

    ERIC Educational Resources Information Center

    Kara, Nuri; Sevim, Nese

    2013-01-01

    Since 1950s, teaching machines have changed a lot. Today, we have different ideas about how people learn, what instructor should do to help students during their learning process. We have adaptive learning technologies that can create much more student oriented learning environments. The purpose of this article is to present these changes and its…

  7. Adaptive Device Context Based Mobile Learning Systems

    ERIC Educational Resources Information Center

    Pu, Haitao; Lin, Jinjiao; Song, Yanwei; Liu, Fasheng

    2011-01-01

    Mobile learning is e-learning delivered through mobile computing devices, which represents the next stage of computer-aided, multi-media based learning. Therefore, mobile learning is transforming the way of traditional education. However, as most current e-learning systems and their contents are not suitable for mobile devices, an approach for…

  8. Development of Adaptive Kanji Learning System for Mobile Phone

    ERIC Educational Resources Information Center

    Li, Mengmeng; Ogata, Hiroaki; Hou, Bin; Hashimoto, Satoshi; Liu, Yuqin; Uosaki, Noriko; Yano, Yoneo

    2010-01-01

    This paper describes an adaptive learning system based on mobile phone email to support the study of Japanese Kanji. In this study, the main emphasis is on using the adaptive learning to resolve one common problem of the mobile-based email or SMS language learning systems. To achieve this goal, the authors main efforts focus on three aspects:…

  9. Yet Another Adaptive Learning Management System Based on Felder and Silverman's Learning Styles and Mashup

    ERIC Educational Resources Information Center

    Chang, Yi-Hsing; Chen, Yen-Yi; Chen, Nian-Shing; Lu, You-Te; Fang, Rong-Jyue

    2016-01-01

    This study designs and implements an adaptive learning management system based on Felder and Silverman's Learning Style Model and the Mashup technology. In this system, Felder and Silverman's Learning Style model is used to assess students' learning styles, in order to provide adaptive learning to leverage learners' learning preferences.…

  10. The immune system, adaptation, and machine learning

    NASA Astrophysics Data System (ADS)

    Farmer, J. Doyne; Packard, Norman H.; Perelson, Alan S.

    1986-10-01

    The immune system is capable of learning, memory, and pattern recognition. By employing genetic operators on a time scale fast enough to observe experimentally, the immune system is able to recognize novel shapes without preprogramming. Here we describe a dynamical model for the immune system that is based on the network hypothesis of Jerne, and is simple enough to simulate on a computer. This model has a strong similarity to an approach to learning and artificial intelligence introduced by Holland, called the classifier system. We demonstrate that simple versions of the classifier system can be cast as a nonlinear dynamical system, and explore the analogy between the immune and classifier systems in detail. Through this comparison we hope to gain insight into the way they perform specific tasks, and to suggest new approaches that might be of value in learning systems.

  11. RASCAL: A Rudimentary Adaptive System for Computer-Aided Learning.

    ERIC Educational Resources Information Center

    Stewart, John Christopher

    Both the background of computer-assisted instruction (CAI) systems in general and the requirements of a computer-aided learning system which would be a reasonable assistant to a teacher are discussed. RASCAL (Rudimentary Adaptive System for Computer-Aided Learning) is a first attempt at defining a CAI system which would individualize the learning…

  12. An adaptive learning control system for aircraft

    NASA Technical Reports Server (NTRS)

    Mekel, R.; Nachmias, S.

    1978-01-01

    A learning control system and its utilization as a flight control system for F-8 Digital Fly-By-Wire (DFBW) research aircraft is studied. The system has the ability to adjust a gain schedule to account for changing plant characteristics and to improve its performance and the plant's performance in the course of its own operation. Three subsystems are detailed: (1) the information acquisition subsystem which identifies the plant's parameters at a given operating condition; (2) the learning algorithm subsystem which relates the identified parameters to predetermined analytical expressions describing the behavior of the parameters over a range of operating conditions; and (3) the memory and control process subsystem which consists of the collection of updated coefficients (memory) and the derived control laws. Simulation experiments indicate that the learning control system is effective in compensating for parameter variations caused by changes in flight conditions.

  13. Implementation of an Adaptive Learning System Using a Bayesian Network

    ERIC Educational Resources Information Center

    Yasuda, Keiji; Kawashima, Hiroyuki; Hata, Yoko; Kimura, Hiroaki

    2015-01-01

    An adaptive learning system is proposed that incorporates a Bayesian network to efficiently gauge learners' understanding at the course-unit level. Also, learners receive content that is adapted to their measured level of understanding. The system works on an iPad via the Edmodo platform. A field experiment using the system in an elementary school…

  14. An Adaptive Scaffolding E-Learning System for Middle School Students' Physics Learning

    ERIC Educational Resources Information Center

    Chen, Ching-Huei

    2014-01-01

    This study presents a framework that utilizes cognitive and motivational aspects of learning to design an adaptive scaffolding e-learning system. It addresses scaffolding processes and conditions for designing adaptive scaffolds. The features and effectiveness of this adaptive scaffolding e-learning system are discussed and evaluated. An…

  15. An Intelligent E-Learning System Based on Learner Profiling and Learning Resources Adaptation

    ERIC Educational Resources Information Center

    Tzouveli, Paraskevi; Mylonas, Phivos; Kollias, Stefanos

    2008-01-01

    Taking advantage of the continuously improving, web-based learning systems plays an important role for self-learning, especially in the case of working people. Nevertheless, learning systems do not generally adapt to learners' profiles. Learners have to spend a lot of time before reaching the learning goal that is compatible with their knowledge…

  16. A Learning Style Perspective to Investigate the Necessity of Developing Adaptive Learning Systems

    ERIC Educational Resources Information Center

    Hwang, Gwo-Jen; Sung, Han-Yu; Hung, Chun-Ming; Huang, Iwen

    2013-01-01

    Learning styles are considered to be one of the factors that need to be taken into account in developing adaptive learning systems. However, few studies have been conducted to investigate if students have the ability to choose the best-fit e-learning systems or content presentation styles for themselves in terms of learning style perspective. In…

  17. Introduction to project ALIAS: adaptive-learning image analysis system

    NASA Astrophysics Data System (ADS)

    Bock, Peter

    1992-03-01

    As an alternative to preprogrammed rule-based artificial intelligence, collective learning systems theory postulates a hierarchical network of cellular automata which acquire their knowledge through learning based on a series of trial-and-error interactions with an evaluating environment, much as humans do. The input to the hierarchical network is provided by a set of sensors which perceive the external world. Using both this perceived information and past experience (memory), the learning automata synthesize collections of trial responses, periodically modifying their memories based on internal evaluations or external evaluations from the environment. Based on collective learning systems theory, an adaptive transputer- based image-processing engine comprising a three-layer hierarchical network of 32 learning cells and 33 nonlearning cells has been applied to a difficult image processing task: the scale, phase, and translation-invariant detection of anomalous features in otherwise `normal' images. Known as adaptive learning image analysis system (ALIAS), this parallel-processing engine has been constructed and tested at the Research institute for Applied Knowledge Processing (FAW) in Ulm, Germany under the sponsorship of Robert Bosch GmbH. Results demonstrate excellent detection, discrimination, and localization of anomalies in binary images. Recent enhancements include the ability to process gray-scale images and the automatic supervised segmentation and classification of images. Current research is directed toward the processing of time-series data and the hierarchical extension of ALIAS from the sub-symbolic level to the higher levels of symbolic association.

  18. Adaptive Web-Assisted Learning System for Students with Specific Learning Disabilities: A Needs Analysis Study

    ERIC Educational Resources Information Center

    Polat, Elif; Adiguzel, Tufan; Akgun, Ozcan Erkan

    2012-01-01

    Because there is, currently, no education system for primary school students in grades 1-3 who have specific learning disabilities in Turkey and because such students do not receive sufficient support from face-to-face counseling, a needs analysis was conducted in order to prepare an adaptive, web-assisted learning system according to variables…

  19. Distributed adaptive simulation through standards-based integration of simulators and adaptive learning systems.

    PubMed

    Bergeron, Bryan; Cline, Andrew; Shipley, Jaime

    2012-01-01

    We have developed a distributed, standards-based architecture that enables simulation and simulator designers to leverage adaptive learning systems. Our approach, which incorporates an electronic competency record, open source LMS, and open source microcontroller hardware, is a low-cost, pragmatic option to integrating simulators with traditional courseware. PMID:22356955

  20. An adaptive learning control system for large flexible structures

    NASA Technical Reports Server (NTRS)

    Thau, F. E.

    1985-01-01

    The objective of the research has been to study the design of adaptive/learning control systems for the control of large flexible structures. In the first activity an adaptive/learning control methodology for flexible space structures was investigated. The approach was based on using a modal model of the flexible structure dynamics and an output-error identification scheme to identify modal parameters. In the second activity, a least-squares identification scheme was proposed for estimating both modal parameters and modal-to-actuator and modal-to-sensor shape functions. The technique was applied to experimental data obtained from the NASA Langley beam experiment. In the third activity, a separable nonlinear least-squares approach was developed for estimating the number of excited modes, shape functions, modal parameters, and modal amplitude and velocity time functions for a flexible structure. In the final research activity, a dual-adaptive control strategy was developed for regulating the modal dynamics and identifying modal parameters of a flexible structure. A min-max approach was used for finding an input to provide modal parameter identification while not exceeding reasonable bounds on modal displacement.

  1. Development of an Adaptive Learning System with Multiple Perspectives based on Students' Learning Styles and Cognitive Styles

    ERIC Educational Resources Information Center

    Yang, Tzu-Chi; Hwang, Gwo-Jen; Yang, Stephen Jen-Hwa

    2013-01-01

    In this study, an adaptive learning system is developed by taking multiple dimensions of personalized features into account. A personalized presentation module is proposed for developing adaptive learning systems based on the field dependent/independent cognitive style model and the eight dimensions of Felder-Silverman's learning style. An…

  2. The Study and Design of Adaptive Learning System Based on Fuzzy Set Theory

    NASA Astrophysics Data System (ADS)

    Jia, Bing; Zhong, Shaochun; Zheng, Tianyang; Liu, Zhiyong

    Adaptive learning is an effective way to improve the learning outcomes, that is, the selection of learning content and presentation should be adapted to each learner's learning context, learning levels and learning ability. Adaptive Learning System (ALS) can provide effective support for adaptive learning. This paper proposes a new ALS based on fuzzy set theory. It can effectively estimate the learner's knowledge level by test according to learner's target. Then take the factors of learner's cognitive ability and preference into consideration to achieve self-organization and push plan of knowledge. This paper focuses on the design and implementation of domain model and user model in ALS. Experiments confirmed that the system providing adaptive content can effectively help learners to memory the content and improve their comprehension.

  3. Management Strategies for Complex Adaptive Systems: Sensemaking, Learning, and Improvisation

    ERIC Educational Resources Information Center

    McDaniel, Reuben R., Jr.

    2007-01-01

    Misspecification of the nature of organizations may be a major reason for difficulty in achieving performance improvement. Organizations are often viewed as machine-like, but complexity science suggests that organizations should be viewed as complex adaptive systems. I identify the characteristics of complex adaptive systems and give examples of…

  4. Effectiveness of Adaptive Assessment versus Learner Control in a Multimedia Learning System

    ERIC Educational Resources Information Center

    Chen, Ching-Huei; Chang, Shu-Wei

    2015-01-01

    The purpose of this study was to explore the effectiveness of adaptive assessment versus learner control in a multimedia learning system designed to help secondary students learn science. Unlike other systems, this paper presents a workflow of adaptive assessment following instructional materials that better align with learners' cognitive…

  5. Contributions to Adaptive Educational Hypermedia Systems via On-Line Learning Style Estimation

    ERIC Educational Resources Information Center

    Botsios, Sotiris; Georgiou, Demetrius; Safouris, Nikolaos

    2008-01-01

    In order to establish an online diagnostic system for Learning Style Estimation that contributes to the adaptation of learning objects, we propose an easily applicable expert system founded on Bayesian Networks. The proposed system makes use of Learning Style theories and associated diagnostic techniques, simultaneously avoiding certain error…

  6. A service based adaptive U-learning system using UX.

    PubMed

    Jeong, Hwa-Young; Yi, Gangman

    2014-01-01

    In recent years, traditional development techniques for e-learning systems have been changing to become more convenient and efficient. One new technology in the development of application systems includes both cloud and ubiquitous computing. Cloud computing can support learning system processes by using services while ubiquitous computing can provide system operation and management via a high performance technical process and network. In the cloud computing environment, a learning service application can provide a business module or process to the user via the internet. This research focuses on providing the learning material and processes of courses by learning units using the services in a ubiquitous computing environment. And we also investigate functions that support users' tailored materials according to their learning style. That is, we analyzed the user's data and their characteristics in accordance with their user experience. We subsequently applied the learning process to fit on their learning performance and preferences. Finally, we demonstrate how the proposed system outperforms learning effects to learners better than existing techniques.

  7. A Service Based Adaptive U-Learning System Using UX

    PubMed Central

    Jeong, Hwa-Young

    2014-01-01

    In recent years, traditional development techniques for e-learning systems have been changing to become more convenient and efficient. One new technology in the development of application systems includes both cloud and ubiquitous computing. Cloud computing can support learning system processes by using services while ubiquitous computing can provide system operation and management via a high performance technical process and network. In the cloud computing environment, a learning service application can provide a business module or process to the user via the internet. This research focuses on providing the learning material and processes of courses by learning units using the services in a ubiquitous computing environment. And we also investigate functions that support users' tailored materials according to their learning style. That is, we analyzed the user's data and their characteristics in accordance with their user experience. We subsequently applied the learning process to fit on their learning performance and preferences. Finally, we demonstrate how the proposed system outperforms learning effects to learners better than existing techniques. PMID:25147832

  8. An Adaptive E-Learning System Based on Students' Learning Styles: An Empirical Study

    ERIC Educational Resources Information Center

    Drissi, Samia; Amirat, Abdelkrim

    2016-01-01

    Personalized e-learning implementation is recognized as one of the most interesting research areas in the distance web-based education. Since the learning style of each learner is different one must fit e-learning with the different needs of learners. This paper presents an approach to integrate learning styles into adaptive e-learning hypermedia.…

  9. Swarm Intelligence: New Techniques for Adaptive Systems to Provide Learning Support

    ERIC Educational Resources Information Center

    Wong, Lung-Hsiang; Looi, Chee-Kit

    2012-01-01

    The notion of a system adapting itself to provide support for learning has always been an important issue of research for technology-enabled learning. One approach to provide adaptivity is to use social navigation approaches and techniques which involve analysing data of what was previously selected by a cluster of users or what worked for…

  10. Learning Experiences Reuse Based on an Ontology Modeling to Improve Adaptation in E-Learning Systems

    ERIC Educational Resources Information Center

    Hadj M'tir, Riadh; Rumpler, Béatrice; Jeribi, Lobna; Ben Ghezala, Henda

    2014-01-01

    Current trends in e-Learning focus mainly on personalizing and adapting the learning environment and learning process. Although their increasingly number, theses researches often ignore the concepts of capitalization and reuse of learner experiences which can be exploited later by other learners. Thus, the major challenge of distance learning is…

  11. Reinforcement learning to adaptive control of nonlinear systems.

    PubMed

    Hwang, Kao-Shing; Tan, S W; Tsai, Min-Cheng

    2003-01-01

    Based on the feedback linearization theory, this paper presents how a reinforcement learning scheme that is adopted to construct artificial neural networks (ANNs) can linearize a nonlinear system effectively. The proposed reinforcement linearization learning system (RLLS) consists of two sub-systems: The evaluation predictor (EP) is a long-term policy selector, and the other is a short-term action selector composed of linearizing control (LC) and reinforce predictor (RP) elements. In addition, a reference model plays the role of the environment, which provides the reinforcement signal to the linearizing process. The RLLS thus receives reinforcement signals to accomplish the linearizing behavior to control a nonlinear system such that it can behave similarly to the reference model. Eventually, the RLLS performs identification and linearization concurrently. Simulation results demonstrate that the proposed learning scheme, which is applied to linearizing a pendulum system, provides better control reliability and robustness than conventional ANN schemes. Furthermore, a PI controller is used to control the linearized plant where the affine system behaves like a linear system.

  12. Designing an Adaptive Web-Based Learning System Based on Students' Cognitive Styles Identified Online

    ERIC Educational Resources Information Center

    Lo, Jia-Jiunn; Chan, Ya-Chen; Yeh, Shiou-Wen

    2012-01-01

    This study developed an adaptive web-based learning system focusing on students' cognitive styles. The system is composed of a student model and an adaptation model. It collected students' browsing behaviors to update the student model for unobtrusively identifying student cognitive styles through a multi-layer feed-forward neural network (MLFF).…

  13. ASLForm: an adaptive self learning medical form generating system.

    PubMed

    Zheng, Shuai; Wang, Fusheng; Lu, James J

    2013-01-01

    To facilitate the process of extracting information from narrative medical reports and transforming extracted data into standardized structured forms, we present an interactive, incrementally learning based information extraction system - ASLForm. ASLForm provides users a convenient interface that can be used as a simple data extraction and data entry system. It is unique, however, in its ability to transparently analyze and quickly learn, from users' interactions with a small number of reports, the desired values for the data fields. Additional user feedback (through acceptance decision or edits on the generated values) can incrementally refine the decision model in real-time, which further reduces users' interaction effort thereafter. The system eventually achieves high accuracy on data extraction with minimal effort from users. ASLForm requires no special configuration or training sets, and is not constrained to specific domains, thus it is easy to use and highly portable. Our experiments demonstrate the effectiveness of the system.

  14. Neuromorphic adaptive plastic scalable electronics: analog learning systems.

    PubMed

    Srinivasa, Narayan; Cruz-Albrecht, Jose

    2012-01-01

    Decades of research to build programmable intelligent machines have demonstrated limited utility in complex, real-world environments. Comparing their performance with biological systems, these machines are less efficient by a factor of 1 million1 billion in complex, real-world environments. The Systems of Neuromorphic Adaptive Plastic Scalable Electronics (SyNAPSE) program is a multifaceted Defense Advanced Research Projects Agency (DARPA) project that seeks to break the programmable machine paradigm and define a new path for creating useful, intelligent machines. Since real-world systems exhibit infinite combinatorial complexity, electronic neuromorphic machine technology would be preferable in a host of applications, but useful and practical implementations still do not exist. HRL Laboratories LLC has embarked on addressing these challenges, and, in this article, we provide an overview of our project and progress made thus far.

  15. A neural learning classifier system with self-adaptive constructivism for mobile robot control.

    PubMed

    Hurst, Jacob; Bull, Larry

    2006-01-01

    For artificial entities to achieve true autonomy and display complex lifelike behavior, they will need to exploit appropriate adaptable learning algorithms. In this context adaptability implies flexibility guided by the environment at any given time and an open-ended ability to learn appropriate behaviors. This article examines the use of constructivism-inspired mechanisms within a neural learning classifier system architecture that exploits parameter self-adaptation as an approach to realize such behavior. The system uses a rule structure in which each rule is represented by an artificial neural network. It is shown that appropriate internal rule complexity emerges during learning at a rate controlled by the learner and that the structure indicates underlying features of the task. Results are presented in simulated mazes before moving to a mobile robot platform.

  16. Adaptive and Intelligent Systems for Collaborative Learning Support: A Review of the Field

    ERIC Educational Resources Information Center

    Magnisalis, I.; Demetriadis, S.; Karakostas, A.

    2011-01-01

    This study critically reviews the recently published scientific literature on the design and impact of adaptive and intelligent systems for collaborative learning support (AICLS) systems. The focus is threefold: 1) analyze critical design issues of AICLS systems and organize them under a unifying classification scheme, 2) present research evidence…

  17. Adaptively Ubiquitous Learning in Campus Math Path

    ERIC Educational Resources Information Center

    Shih, Shu-Chuan; Kuo, Bor-Chen; Liu, Yu-Lung

    2012-01-01

    The purposes of this study are to develop and evaluate the instructional model and learning system which integrate ubiquitous learning, computerized adaptive diagnostic testing system and campus math path learning. The researcher first creates a ubiquitous learning environment which is called "adaptive U-learning math path system". This system…

  18. Strategies for adding adaptive learning mechanisms to rule-based diagnostic expert systems

    NASA Technical Reports Server (NTRS)

    Stclair, D. C.; Sabharwal, C. L.; Bond, W. E.; Hacke, Keith

    1988-01-01

    Rule-based diagnostic expert systems can be used to perform many of the diagnostic chores necessary in today's complex space systems. These expert systems typically take a set of symptoms as input and produce diagnostic advice as output. The primary objective of such expert systems is to provide accurate and comprehensive advice which can be used to help return the space system in question to nominal operation. The development and maintenance of diagnostic expert systems is time and labor intensive since the services of both knowledge engineer(s) and domain expert(s) are required. The use of adaptive learning mechanisms to increment evaluate and refine rules promises to reduce both time and labor costs associated with such systems. This paper describes the basic adaptive learning mechanisms of strengthening, weakening, generalization, discrimination, and discovery. Next basic strategies are discussed for adding these learning mechanisms to rule-based diagnostic expert systems. These strategies support the incremental evaluation and refinement of rules in the knowledge base by comparing the set of advice given by the expert system (A) with the correct diagnosis (C). Techniques are described for selecting those rules in the in the knowledge base which should participate in adaptive learning. The strategies presented may be used with a wide variety of learning algorithms. Further, these strategies are applicable to a large number of rule-based diagnostic expert systems. They may be used to provide either immediate or deferred updating of the knowledge base.

  19. Learning from adaptive neural dynamic surface control of strict-feedback systems.

    PubMed

    Wang, Min; Wang, Cong

    2015-06-01

    Learning plays an essential role in autonomous control systems. However, how to achieve learning in the nonstationary environment for nonlinear systems is a challenging problem. In this paper, we present learning method for a class of n th-order strict-feedback systems by adaptive dynamic surface control (DSC) technology, which achieves the human-like ability of learning by doing and doing with learned knowledge. To achieve the learning, this paper first proposes stable adaptive DSC with auxiliary first-order filters, which ensures the boundedness of all the signals in the closed-loop system and the convergence of tracking errors in a finite time. With the help of DSC, the derivative of the filter output variable is used as the neural network (NN) input instead of traditional intermediate variables. As a result, the proposed adaptive DSC method reduces greatly the dimension of NN inputs, especially for high-order systems. After the stable DSC design, we decompose the stable closed-loop system into a series of linear time-varying perturbed subsystems. Using a recursive design, the recurrent property of NN input variables is easily verified since the complexity is overcome using DSC. Subsequently, the partial persistent excitation condition of the radial basis function NN is satisfied. By combining a state transformation, accurate approximations of the closed-loop system dynamics are recursively achieved in a local region along recurrent orbits. Then, the learning control method using the learned knowledge is proposed to achieve the closed-loop stability and the improved control performance. Simulation studies are performed to demonstrate the proposed scheme can not only reuse the learned knowledge to achieve the better control performance with the faster tracking convergence rate and the smaller tracking error but also greatly alleviate the computational burden because of reducing the number and complexity of NN input variables.

  20. Adaptation Provisioning with Respect to Learning Styles in a Web-Based Educational System: An Experimental Study

    ERIC Educational Resources Information Center

    Popescu, E.

    2010-01-01

    Personalized instruction is seen as a desideratum of today's e-learning systems. The focus of this paper is on those platforms that use learning styles as personalization criterion called learning style-based adaptive educational systems. The paper presents an innovative approach based on an integrative set of learning preferences that alleviates…

  1. Promoting Contextual Vocabulary Learning through an Adaptive Computer-Assisted EFL Reading System

    ERIC Educational Resources Information Center

    Wang, Y.-H.

    2016-01-01

    The study developed an adaptive computer-assisted reading system and investigated its effect on promoting English as a foreign language learner-readers' contextual vocabulary learning performance. Seventy Taiwanese college students were assigned to two reading groups. Participants in the customised reading group read online English texts, each of…

  2. Adaptable, Personalised E-Learning Incorporating Learning Styles

    ERIC Educational Resources Information Center

    Peter, Sophie E.; Bacon, Elizabeth; Dastbaz, Mohammad

    2010-01-01

    Purpose: The purpose of this paper is to discuss how learning styles and theories are currently used within personalised adaptable e-learning adaptive systems. This paper then aims to describe the e-learning platform iLearn and how this platform is designed to incorporate learning styles as part of the personalisation offered by the system.…

  3. Designing a Semantic Bliki System to Support Different Types of Knowledge and Adaptive Learning

    ERIC Educational Resources Information Center

    Huang, Shiu-Li; Yang, Chia-Wei

    2009-01-01

    Though blogs and wikis have been used to support knowledge management and e-learning, existing blogs and wikis cannot support different types of knowledge and adaptive learning. A case in point, types of knowledge vary greatly in category and viewpoints. Additionally, adaptive learning is crucial to improving one's learning performance. This study…

  4. Organization of Distributed Adaptive Learning

    ERIC Educational Resources Information Center

    Vengerov, Alexander

    2009-01-01

    The growing sensitivity of various systems and parts of industry, society, and even everyday individual life leads to the increased volume of changes and needs for adaptation and learning. This creates a new situation where learning from being purely academic knowledge transfer procedure is becoming a ubiquitous always-on essential part of all…

  5. Distributed adaptive fuzzy iterative learning control of coordination problems for higher order multi-agent systems

    NASA Astrophysics Data System (ADS)

    Li, Jinsha; Li, Junmin

    2016-07-01

    In this paper, the adaptive fuzzy iterative learning control scheme is proposed for coordination problems of Mth order (M ≥ 2) distributed multi-agent systems. Every follower agent has a higher order integrator with unknown nonlinear dynamics and input disturbance. The dynamics of the leader are a higher order nonlinear systems and only available to a portion of the follower agents. With distributed initial state learning, the unified distributed protocols combined time-domain and iteration-domain adaptive laws guarantee that the follower agents track the leader uniformly on [0, T]. Then, the proposed algorithm extends to achieve the formation control. A numerical example and a multiple robotic system are provided to demonstrate the performance of the proposed approach.

  6. Direct adaptive iterative learning control of nonlinear systems using an output-recurrent fuzzy neural network.

    PubMed

    Wang, Ying-Chung; Chien, Chiang-Ju; Teng, Ching-Cheng

    2004-06-01

    In this paper, a direct adaptive iterative learning control (DAILC) based on a new output-recurrent fuzzy neural network (ORFNN) is presented for a class of repeatable nonlinear systems with unknown nonlinearities and variable initial resetting errors. In order to overcome the design difficulty due to initial state errors at the beginning of each iteration, a concept of time-varying boundary layer is employed to construct an error equation. The learning controller is then designed by using the given ORFNN to approximate an optimal equivalent controller. Some auxiliary control components are applied to eliminate approximation error and ensure learning convergence. Since the optimal ORFNN parameters for a best approximation are generally unavailable, an adaptive algorithm with projection mechanism is derived to update all the consequent, premise, and recurrent parameters during iteration processes. Only one network is required to design the ORFNN-based DAILC and the plant nonlinearities, especially the nonlinear input gain, are allowed to be totally unknown. Based on a Lyapunov-like analysis, we show that all adjustable parameters and internal signals remain bounded for all iterations. Furthermore, the norm of state tracking error vector will asymptotically converge to a tunable residual set as iteration goes to infinity. Finally, iterative learning control of two nonlinear systems, inverted pendulum system and Chua's chaotic circuit, are performed to verify the tracking performance of the proposed learning scheme.

  7. Learning from ISS-modular adaptive NN control of nonlinear strict-feedback systems.

    PubMed

    Wang, Cong; Wang, Min; Liu, Tengfei; Hill, David J

    2012-10-01

    This paper studies learning from adaptive neural control (ANC) for a class of nonlinear strict-feedback systems with unknown affine terms. To achieve the purpose of learning, a simple input-to-state stability (ISS) modular ANC method is first presented to ensure the boundedness of all the signals in the closed-loop system and the convergence of tracking errors in finite time. Subsequently, it is proven that learning with the proposed stable ISS-modular ANC can be achieved. The cascade structure and unknown affine terms of the considered systems make it very difficult to achieve learning using existing methods. To overcome these difficulties, the stable closed-loop system in the control process is decomposed into a series of linear time-varying (LTV) perturbed subsystems with the appropriate state transformation. Using a recursive design, the partial persistent excitation condition for the radial basis function neural network (NN) is established, which guarantees exponential stability of LTV perturbed subsystems. Consequently, accurate approximation of the closed-loop system dynamics is achieved in a local region along recurrent orbits of closed-loop signals, and learning is implemented during a closed-loop feedback control process. The learned knowledge is reused to achieve stability and an improved performance, thereby avoiding the tremendous repeated training process of NNs. Simulation studies are given to demonstrate the effectiveness of the proposed method.

  8. Learning and Domain Adaptation

    NASA Astrophysics Data System (ADS)

    Mansour, Yishay

    Domain adaptation is a fundamental learning problem where one wishes to use labeled data from one or several source domains to learn a hypothesis performing well on a different, yet related, domain for which no labeled data is available. This generalization across domains is a very significant challenge for many machine learning applications and arises in a variety of natural settings, including NLP tasks (document classification, sentiment analysis, etc.), speech recognition (speakers and noise or environment adaptation) and face recognition (different lighting conditions, different population composition).

  9. Anatomy of Student Models in Adaptive Learning Systems: A Systematic Literature Review of Individual Differences from 2001 to 2013

    ERIC Educational Resources Information Center

    Nakic, Jelena; Granic, Andrina; Glavinic, Vlado

    2015-01-01

    This study brings an evidence-based review of user individual characteristics employed as sources of adaptation in recent adaptive learning systems. Twenty-two user individual characteristics were explored in a systematically designed search procedure, while 17 of them were identified as sources of adaptation in final selection. The content…

  10. Adaptive decision systems with extended learning for deployment in partially exposed environments

    NASA Astrophysics Data System (ADS)

    Dasarathy, Belur V.

    1995-05-01

    The design and development of decision systems capable of adaptively learning in the operational environment is presented. Innovative adaptive learning concepts and methodologies are offered that are designed for enhancing the performance of decision systems, such as automatic target recognition systems, wherein robustness of performance is a significant issue. The fundamental concept underlying this design is that of learning in partially exposed environments, wherein, at the start, the system is not necessarily aware of all the pattern classes that may be encountered in the future phase of operations. The decision system is based on a variant to the widely popular nearest-neighbor concept. Several stages of sophistication of the system design are presented. The potential problem of increase in computational loads is addressed in detail by exploring the benefits of employing the recently proposed concept of minimal consistent set. The effectiveness of the system design is experimentally illustrated using two data sets, the now classical IRIS data and some real-world TV image data.

  11. A User-Centric Adaptive Learning System for E-Learning 2.0

    ERIC Educational Resources Information Center

    Huang, Shiu-Li; Shiu, Jung-Hung

    2012-01-01

    The success of Web 2.0 inspires e-learning to evolve into e-learning 2.0, which exploits collective intelligence to achieve user-centric learning. However, searching for suitable learning paths and content for achieving a learning goal is time consuming and troublesome on e-learning 2.0 platforms. Therefore, introducing formal learning in these…

  12. Modeling and Simulation of An Adaptive Neuro-Fuzzy Inference System (ANFIS) for Mobile Learning

    ERIC Educational Resources Information Center

    Al-Hmouz, A.; Shen, Jun; Al-Hmouz, R.; Yan, Jun

    2012-01-01

    With recent advances in mobile learning (m-learning), it is becoming possible for learning activities to occur everywhere. The learner model presented in our earlier work was partitioned into smaller elements in the form of learner profiles, which collectively represent the entire learning process. This paper presents an Adaptive Neuro-Fuzzy…

  13. Adaptive iterative learning control for a class of non-linearly parameterised systems with input saturations

    NASA Astrophysics Data System (ADS)

    Zhang, Ruikun; Hou, Zhongsheng; Ji, Honghai; Yin, Chenkun

    2016-04-01

    In this paper, an adaptive iterative learning control scheme is proposed for a class of non-linearly parameterised systems with unknown time-varying parameters and input saturations. By incorporating a saturation function, a new iterative learning control mechanism is presented which includes a feedback term and a parameter updating term. Through the use of parameter separation technique, the non-linear parameters are separated from the non-linear function and then a saturated difference updating law is designed in iteration domain by combining the unknown parametric term of the local Lipschitz continuous function and the unknown time-varying gain into an unknown time-varying function. The analysis of convergence is based on a time-weighted Lyapunov-Krasovskii-like composite energy function which consists of time-weighted input, state and parameter estimation information. The proposed learning control mechanism warrants a L2[0, T] convergence of the tracking error sequence along the iteration axis. Simulation results are provided to illustrate the effectiveness of the adaptive iterative learning control scheme.

  14. Interoperability in Personalized Adaptive Learning

    ERIC Educational Resources Information Center

    Aroyo, Lora; Dolog, Peter; Houben, Geert-Jan; Kravcik, Milos; Naeve, Ambjorn; Nilsson, Mikael; Wild, Fridolin

    2006-01-01

    Personalized adaptive learning requires semantic-based and context-aware systems to manage the Web knowledge efficiently as well as to achieve semantic interoperability between heterogeneous information resources and services. The technological and conceptual differences can be bridged either by means of standards or via approaches based on the…

  15. Implementation of an Automated Grading System with an Adaptive Learning Component to Affect Student Feedback and Response Time

    ERIC Educational Resources Information Center

    Matthews, Kevin; Janicki, Thomas; He, Ling; Patterson, Laurie

    2012-01-01

    This research focuses on the development and implementation of an adaptive learning and grading system with a goal to increase the effectiveness and quality of feedback to students. By utilizing various concepts from established learning theories, the goal of this research is to improve the quantity, quality, and speed of feedback as it pertains…

  16. Reinforcement learning for adaptive optimal control of unknown continuous-time nonlinear systems with input constraints

    NASA Astrophysics Data System (ADS)

    Yang, Xiong; Liu, Derong; Wang, Ding

    2014-03-01

    In this paper, an adaptive reinforcement learning-based solution is developed for the infinite-horizon optimal control problem of constrained-input continuous-time nonlinear systems in the presence of nonlinearities with unknown structures. Two different types of neural networks (NNs) are employed to approximate the Hamilton-Jacobi-Bellman equation. That is, an recurrent NN is constructed to identify the unknown dynamical system, and two feedforward NNs are used as the actor and the critic to approximate the optimal control and the optimal cost, respectively. Based on this framework, the action NN and the critic NN are tuned simultaneously, without the requirement for the knowledge of system drift dynamics. Moreover, by using Lyapunov's direct method, the weights of the action NN and the critic NN are guaranteed to be uniformly ultimately bounded, while keeping the closed-loop system stable. To demonstrate the effectiveness of the present approach, simulation results are illustrated.

  17. An Adaptive Navigation Support System for Conducting Context-Aware Ubiquitous Learning in Museums

    ERIC Educational Resources Information Center

    Chiou, Chuang-Kai; Tseng, Judy C. R.; Hwang, Gwo-Jen; Heller, Shelly

    2010-01-01

    In context-aware ubiquitous learning, students are guided to learn in the real world with personalized supports from the learning system. As the learning resources are realistic objects in the real world, certain physical constraints, such as the limitation of stream of people who visit the same learning object, the time for moving from one object…

  18. Automatic ultrasonic imaging system with adaptive-learning-network signal-processing techniques

    SciTech Connect

    O'Brien, L.J.; Aravanis, N.A.; Gouge, J.R. Jr.; Mucciardi, A.N.; Lemon, D.K.; Skorpik, J.R.

    1982-04-01

    A conventional pulse-echo imaging system has been modified to operate with a linear ultrasonic array and associated digital electronics to collect data from a series of defects fabricated in aircraft quality steel blocks. A thorough analysis of the defect responses recorded with this modified system has shown that considerable improvements over conventional imaging approaches can be obtained in the crucial areas of defect detection and characterization. A combination of advanced signal processing concepts with the Adaptive Learning Network (ALN) methodology forms the basis for these improvements. Use of established signal processing algorithms such as temporal and spatial beam-forming in concert with a sophisticated detector has provided a reliable defect detection scheme which can be implemented in a microprocessor-based system to operate in an automatic mode.

  19. Usability of clinical decision support system as a facilitator for learning the assistive technology adaptation process.

    PubMed

    Danial-Saad, Alexandra; Kuflik, Tsvi; Weiss, Patrice L Tamar; Schreuer, Naomi

    2016-01-01

    The aim of this study was to evaluate the usability of Ontology Supported Computerized Assistive Technology Recommender (OSCAR), a Clinical Decision Support System (CDSS) for the assistive technology adaptation process, its impact on learning the matching process, and to determine the relationship between its usability and learnability. Two groups of expert and novice clinicians (total, n = 26) took part in this study. Each group filled out system usability scale (SUS) to evaluate OSCAR's usability. The novice group completed a learning questionnaire to assess OSCAR's effect on their ability to learn the matching process. Both groups rated OSCAR's usability as "very good", (M [SUS] = 80.7, SD = 11.6, median = 83.7) by the novices, and (M [SUS] = 81.2, SD = 6.8, median = 81.2) by the experts. The Mann-Whitney results indicated that no significant differences were found between the expert and novice groups in terms of OSCAR's usability. A significant positive correlation existed between the usability of OSCAR and the ability to learn the adaptation process (rs = 0.46, p = 0.04). Usability is an important factor in the acceptance of a system. The successful application of user-centered design principles during the development of OSCAR may serve as a case study that models the significant elements to be considered, theoretically and practically in developing other systems. Implications for Rehabilitation Creating a CDSS with a focus on its usability is an important factor for its acceptance by its users. Successful usability outcomes can impact the learning process of the subject matter in general, and the AT prescription process in particular. The successful application of User-Centered Design principles during the development of OSCAR may serve as a case study that models the significant elements to be considered, theoretically and practically. The study emphasizes the importance of close collaboration between the developers and

  20. A Fuzzy Logic-Based Personalized Learning System for Supporting Adaptive English Learning

    ERIC Educational Resources Information Center

    Hsieh, Tung-Cheng; Wang, Tzone-I; Su, Chien-Yuan; Lee, Ming-Che

    2012-01-01

    As a nearly global language, English as a Foreign Language (EFL) programs are essential for people wishing to learn English. Researchers have noted that extensive reading is an effective way to improve a person's command of English. Choosing suitable articles in accordance with a learner's needs, interests and ability using an e-learning system…

  1. Perceptual learning in sensorimotor adaptation.

    PubMed

    Darainy, Mohammad; Vahdat, Shahabeddin; Ostry, David J

    2013-11-01

    Motor learning often involves situations in which the somatosensory targets of movement are, at least initially, poorly defined, as for example, in learning to speak or learning the feel of a proper tennis serve. Under these conditions, motor skill acquisition presumably requires perceptual as well as motor learning. That is, it engages both the progressive shaping of sensory targets and associated changes in motor performance. In the present study, we test the idea that perceptual learning alters somatosensory function and in so doing produces changes to human motor performance and sensorimotor adaptation. Subjects in these experiments undergo perceptual training in which a robotic device passively moves the subject's arm on one of a set of fan-shaped trajectories. Subjects are required to indicate whether the robot moved the limb to the right or the left and feedback is provided. Over the course of training both the perceptual boundary and acuity are altered. The perceptual learning is observed to improve both the rate and extent of learning in a subsequent sensorimotor adaptation task and the benefits persist for at least 24 h. The improvement in the present studies varies systematically with changes in perceptual acuity and is obtained regardless of whether the perceptual boundary shift serves to systematically increase or decrease error on subsequent movements. The beneficial effects of perceptual training are found to be substantially dependent on reinforced decision-making in the sensory domain. Passive-movement training on its own is less able to alter subsequent learning in the motor system. Overall, this study suggests perceptual learning plays an integral role in motor learning.

  2. Smart microscope: an adaptive optics learning system for aberration correction in multiphoton confocal microscopy.

    PubMed

    Albert, O; Sherman, L; Mourou, G; Norris, T B; Vdovin, G

    2000-01-01

    Off-axis aberrations in a beam-scanning multiphoton confocal microscope are corrected with a deformable mirror. The optimal mirror shape for each pixel is determined by a genetic learning algorithm, in which the second-harmonic or two-photon fluorescence signal from a reference sample is maximized. The speed of the convergence is improved by use of a Zernike polynomial basis for the deformable mirror shape. This adaptive optical correction scheme is implemented in an all-reflective system by use of extremely short (10-fs) optical pulses, and it is shown that the scanning area of an f:1 off-axis parabola can be increased by nine times with this technique. PMID:18059779

  3. Adaptive iterative learning control for nonlinearly parameterised systems with unknown time-varying delays and input saturations

    NASA Astrophysics Data System (ADS)

    Zhang, Ruikun; Hou, Zhongsheng; Chi, Ronghu; Ji, Honghai

    2015-06-01

    In this work, an adaptive iterative learning control (AILC) scheme is proposed to address a class of nonlinearly parameterised systems with both unknown time-varying delays and input saturations. By incorporating a saturation function, a novel iterative learning control mechanism is constructed with a feedback term in the time domain and a fully saturated adaptive learning term in the iteration domain, which is used to estimate the unknown time-varying system uncertainty. A new time-weighted Lyapunov-Krasovskii-like composite energy function (LKL-CEF) is designed for the convergence analysis where time-weighted inputs, states and estimates of system uncertainty are all considered. Despite the existence of time-varying parametric uncertainties, time-varying delays, input saturations and local Lipschitz nonlinearities, the learning convergence is guaranteed with rigorous mathematical analysis. Simulation results verify the correctness and effectiveness of the proposed method further.

  4. Revisiting the Blended Learning Literature: Using a Complex Adaptive Systems Framework

    ERIC Educational Resources Information Center

    Wang, Yuping; Han, Xibin; Yang, Juan

    2015-01-01

    This research has two aims: (1) to bridge a gap in blended learning research--the lack of a systems approach to the understanding of blended learning research and practice, and (2) to promote a more comprehensive understanding of what has been achieved and what needs to be achieved in blended learning research and practice. To achieve these aims,…

  5. Adaptive Cognitive-Based Selection of Learning Objects

    ERIC Educational Resources Information Center

    Karampiperis, Pythagoras; Lin, Taiyu; Sampson, Demetrios G.; Kinshuk

    2006-01-01

    Adaptive cognitive-based selection is recognized as among the most significant open issues in adaptive web-based learning systems. In order to adaptively select learning resources, the definition of adaptation rules according to the cognitive style or learning preferences of the learners is required. Although some efforts have been reported in…

  6. Exploring Adaptability through Learning Layers and Learning Loops

    ERIC Educational Resources Information Center

    Lof, Annette

    2010-01-01

    Adaptability in social-ecological systems results from individual and collective action, and multi-level interactions. It can be understood in a dual sense as a system's ability to adapt to disturbance and change, and to navigate system transformation. Inherent in this conception, as found in resilience thinking, are the concepts of learning and…

  7. A Knowledge-Structure-Based Adaptive Dynamic Assessment System for Calculus Learning

    ERIC Educational Resources Information Center

    Ting, M.-Y.; Kuo, B.-C.

    2016-01-01

    The purpose of this study was to investigate the effect of a calculus system that was designed using an adaptive dynamic assessment (DA) framework on performance in the "finding an area using an integral". In this study, adaptive testing and dynamic assessment were combined to provide different test items depending on students'…

  8. Using an adapted form of the picture exchange communication system to increase independent requesting in deafblind adults with learning disabilities.

    PubMed

    Bracken, Maeve; Rohrer, Nicole

    2014-02-01

    The current study assessed the effectiveness of an adapted form of the Picture Exchange Communication System (PECS) in increasing independent requesting in deafblind adults with learning disabilities. PECS cards were created to accommodate individual needs, including adaptations such as enlarging photographs and using swelled images which consisted of images created on raised line drawing paper. Training included up to Phase III of PECS and procedures ensuring generalizations across individuals and contexts were included. The effects of the intervention were evaluated using a multiple baseline design across participants. Results demonstrated an increase in independent requesting with each of the participants reaching mastery criterion. These results suggest that PECS, in combination with some minor adaptations, may be an effective communicative alternative for individuals who are deafblind and have learning impairments. PMID:24316491

  9. Online adaptive policy learning algorithm for H∞ state feedback control of unknown affine nonlinear discrete-time systems.

    PubMed

    Zhang, Huaguang; Qin, Chunbin; Jiang, Bin; Luo, Yanhong

    2014-12-01

    The problem of H∞ state feedback control of affine nonlinear discrete-time systems with unknown dynamics is investigated in this paper. An online adaptive policy learning algorithm (APLA) based on adaptive dynamic programming (ADP) is proposed for learning in real-time the solution to the Hamilton-Jacobi-Isaacs (HJI) equation, which appears in the H∞ control problem. In the proposed algorithm, three neural networks (NNs) are utilized to find suitable approximations of the optimal value function and the saddle point feedback control and disturbance policies. Novel weight updating laws are given to tune the critic, actor, and disturbance NNs simultaneously by using data generated in real-time along the system trajectories. Considering NN approximation errors, we provide the stability analysis of the proposed algorithm with Lyapunov approach. Moreover, the need of the system input dynamics for the proposed algorithm is relaxed by using a NN identification scheme. Finally, simulation examples show the effectiveness of the proposed algorithm. PMID:25095274

  10. Adaptive Learning and Risk Taking

    ERIC Educational Resources Information Center

    Denrell, Jerker

    2007-01-01

    Humans and animals learn from experience by reducing the probability of sampling alternatives with poor past outcomes. Using simulations, J. G. March (1996) illustrated how such adaptive sampling could lead to risk-averse as well as risk-seeking behavior. In this article, the author develops a formal theory of how adaptive sampling influences risk…

  11. Improving Adaptive Learning Technology through the Use of Response Times

    ERIC Educational Resources Information Center

    Mettler, Everett; Massey, Christine M.; Kellman, Philip J.

    2011-01-01

    Adaptive learning techniques have typically scheduled practice using learners' accuracy and item presentation history. We describe an adaptive learning system (Adaptive Response Time Based Sequencing--ARTS) that uses both accuracy and response time (RT) as direct inputs into sequencing. Response times are used to assess learning strength and…

  12. Enriching Adaptation in E-Learning Systems through a Situation-Aware Ontology Network

    ERIC Educational Resources Information Center

    Pernas, Ana Marilza; Diaz, Alicia; Motz, Regina; de Oliveira, Jose Palazzo Moreira

    2012-01-01

    Purpose: The broader adoption of the internet along with web-based systems has defined a new way of exchanging information. That advance added by the multiplication of mobile devices has required systems to be even more flexible and personalized. Maybe because of that, the traditional teaching-controlled learning style has given up space to a new…

  13. Clarifying the Empirical Connection of New Entrants' E-Learning Systems Use to Their Job Adaptation and Their Use Patterns under the Collective-Individual Training Environment

    ERIC Educational Resources Information Center

    Chen, Hsiu-Ju

    2012-01-01

    In recent years, with the development of e-learning, it is feasible for enterprises to adopt information systems to enhance organizations' human capital and knowledge renewal for competition. e-Learning systems designed for new entrants training aim to facilitate new entrants' job adaptation; however, the empirical link between their system use…

  14. Cogging effect minimization in PMSM position servo system using dual high-order periodic adaptive learning compensation.

    PubMed

    Luo, Ying; Chen, Yangquan; Pi, Youguo

    2010-10-01

    Cogging effect which can be treated as a type of position-dependent periodic disturbance, is a serious disadvantage of the permanent magnetic synchronous motor (PMSM). In this paper, based on a simulation system model of PMSM position servo control, the cogging force, viscous friction, and applied load in the real PMSM control system are considered and presented. A dual high-order periodic adaptive learning compensation (DHO-PALC) method is proposed to minimize the cogging effect on the PMSM position and velocity servo system. In this DHO-PALC scheme, more than one previous periods stored information of both the composite tracking error and the estimate of the cogging force is used for the control law updating. Asymptotical stability proof with the proposed DHO-PALC scheme is presented. Simulation is implemented on the PMSM servo system model to illustrate the proposed method. When the constant speed reference is applied, the DHO-PALC can achieve a faster learning convergence speed than the first-order periodic adaptive learning compensation (FO-PALC). Moreover, when the designed reference signal changes periodically, the proposed DHO-PALC can obtain not only faster convergence speed, but also much smaller final error bound than the FO-PALC.

  15. Adaptable Learning Pathway Generation with Ant Colony Optimization

    ERIC Educational Resources Information Center

    Wong, Lung-Hsiang; Looi, Chee-Kit

    2009-01-01

    One of the new major directions in research on web-based educational systems is the notion of adaptability: the educational system adapts itself to the learning profile, preferences and ability of the student. In this paper, we look into the issues of providing adaptability with respect to learning pathways. We explore the state of the art with…

  16. Developing Adaptable Online Information Literacy Modules for a Learning Management System

    ERIC Educational Resources Information Center

    Mune, Christina; Goldman, Crystal; Higgins, Silke; Eby, Laurel; Chan, Emily K.; Crotty, Linda

    2015-01-01

    Higher education institutions increasingly utilize learning management systems (LMS) to teach courses and programs in hybrid or online-only formats. Providing information literacy instruction in these emerging digital environments poses challenges to librarians as the delivery of instruction requires familiarity with navigating an LMS and…

  17. An Object-Oriented Course Framework for Developing Adaptive Learning Systems

    ERIC Educational Resources Information Center

    Tseng, Shian-Shyong; Su, Jun-Ming; Hwang, Gwo-Jen; Hwang, Gwo-Haur; Tsai, Chin-Chung; Tsai, Chang-Jiun

    2008-01-01

    The popularity of web-based learning systems has encouraged researchers to pay attention to several new issues. One of the most important issues is the development of new techniques to provide personalized teaching materials. Although several frameworks or methods have been proposed, it remains a challenging issue to design an easy-to-realize…

  18. Adaptive learning and decision-making under uncertainty by metaplastic synapses guided by a surprise detection system

    PubMed Central

    Iigaya, Kiyohito

    2016-01-01

    Recent experiments have shown that animals and humans have a remarkable ability to adapt their learning rate according to the volatility of the environment. Yet the neural mechanism responsible for such adaptive learning has remained unclear. To fill this gap, we investigated a biophysically inspired, metaplastic synaptic model within the context of a well-studied decision-making network, in which synapses can change their rate of plasticity in addition to their efficacy according to a reward-based learning rule. We found that our model, which assumes that synaptic plasticity is guided by a novel surprise detection system, captures a wide range of key experimental findings and performs as well as a Bayes optimal model, with remarkably little parameter tuning. Our results further demonstrate the computational power of synaptic plasticity, and provide insights into the circuit-level computation which underlies adaptive decision-making. DOI: http://dx.doi.org/10.7554/eLife.18073.001 PMID:27504806

  19. Introducing Adaptivity Features to a Regular Learning Management System to Support Creation of Advanced eLessons

    ERIC Educational Resources Information Center

    Komlenov, Zivana; Budimac, Zoran; Ivanovic, Mirjana

    2010-01-01

    In order to improve the learning process for students with different pre-knowledge, personal characteristics and preferred learning styles, a certain degree of adaptability must be introduced to online courses. In learning environments that support such kind of functionalities students can explicitly choose different paths through course contents…

  20. Aircraft adaptive learning control

    NASA Technical Reports Server (NTRS)

    Lee, P. S. T.; Vanlandingham, H. F.

    1979-01-01

    The optimal control theory of stochastic linear systems is discussed in terms of the advantages of distributed-control systems, and the control of randomly-sampled systems. An optimal solution to longitudinal control is derived and applied to the F-8 DFBW aircraft. A randomly-sampled linear process model with additive process and noise is developed.

  1. AH-Questionnaire: An Adaptive Hierarchical Questionnaire for Learning Styles

    ERIC Educational Resources Information Center

    Ortigosa, Alvaro; Paredes, Pedro; Rodriguez, Pilar

    2010-01-01

    One of the main concerns when providing learning style adaptation in Adaptive Educational Hypermedia Systems is the number of questions the students have to answer. Most of the times, adaptive material available will discriminate among a few categories for each learning style dimension. Consequently, it is only needed to take into account the…

  2. Adaptive Batch Mode Active Learning.

    PubMed

    Chakraborty, Shayok; Balasubramanian, Vineeth; Panchanathan, Sethuraman

    2015-08-01

    Active learning techniques have gained popularity to reduce human effort in labeling data instances for inducing a classifier. When faced with large amounts of unlabeled data, such algorithms automatically identify the exemplar and representative instances to be selected for manual annotation. More recently, there have been attempts toward a batch mode form of active learning, where a batch of data points is simultaneously selected from an unlabeled set. Real-world applications require adaptive approaches for batch selection in active learning, depending on the complexity of the data stream in question. However, the existing work in this field has primarily focused on static or heuristic batch size selection. In this paper, we propose two novel optimization-based frameworks for adaptive batch mode active learning (BMAL), where the batch size as well as the selection criteria are combined in a single formulation. We exploit gradient-descent-based optimization strategies as well as properties of submodular functions to derive the adaptive BMAL algorithms. The solution procedures have the same computational complexity as existing state-of-the-art static BMAL techniques. Our empirical results on the widely used VidTIMIT and the mobile biometric (MOBIO) data sets portray the efficacy of the proposed frameworks and also certify the potential of these approaches in being used for real-world biometric recognition applications.

  3. Adaptable Web Modules to Stimulate Active Learning in Engineering Hydrology using Data and Model Simulations of Three Regional Hydrologic Systems

    NASA Astrophysics Data System (ADS)

    Habib, E. H.; Tarboton, D. G.; Lall, U.; Bodin, M.; Rahill-Marier, B.; Chimmula, S.; Meselhe, E. A.; Ali, A.; Williams, D.; Ma, Y.

    2013-12-01

    server-based system. Open source web technologies and community-based tools are used to facilitate wide dissemination and adaptation by diverse, independent institutions. The new hydrologic learning modules are based on recent developments in hydrologic modeling, data, and resources. The modules are embedded in three regional-scale ecosystems, Coastal Louisiana, Florida Everglades, and Utah Great Salt Lake Basin. These sites provide a wealth of hydrologic concepts and scenarios that can be used in most water resource and hydrology curricula. The study develops several learning modules based on the three hydro-systems covering subjects such as: water-budget analysis, effects of human and natural changes, climate-hydrology teleconnections, and water-resource management scenarios. The new developments include an instructional interface to give critical guidance and support to the learner and an instructor's guide containing adaptation and implementation procedures to assist instructors in adopting and integrating the material into courses and provide a consistent experience. The design of the new hydrologic education developments will be transferable to independent institutions and adaptable both instructionally and technically through a server system capable of supporting additional developments by the educational community.

  4. A Framework for Adaptive E-Learning Based on Distributed Re-Usable Learning Activities.

    ERIC Educational Resources Information Center

    Brusilovsky, Peter; Nijhavan, Hemanta

    This paper suggests that a way to the new generation of powerful E-learning systems starts on the crossroads of two emerging fields: courseware re-use and adaptive educational systems. The paper presents the KnowledgeTree, a framework for adaptive E-learning based on distributed re-usable learning activities currently under development. The goal…

  5. Beyond Beliefs: Teachers Adapting Problem-Based Learning to Preexisting Systems of Practice

    ERIC Educational Resources Information Center

    Pecore, John L.

    2013-01-01

    Problem-based learning (PBL) is a constructivist method of instruction aligned with the science educational reform movement to increase scientific literacy for all Americans. As such, PBL instruction is an increasingly popular topic for professional development workshops offered to teachers in secondary learning environments. This research…

  6. Adapting Online Education to Different Learning Styles.

    ERIC Educational Resources Information Center

    Muir, Diana J.

    The purpose of this research project was to determine if online learning could be adapted to individual learning styles and if this made a difference in the standardized testing scores of Internet students. An overview is provided of current learning theories, including the four stages of learning (exposure, guided learning, independent, mastery)…

  7. Adaptive Units of Learning and Educational Videogames

    ERIC Educational Resources Information Center

    Moreno-Ger, Pablo; Thomas, Pilar Sancho; Martinez-Ortiz, Ivan; Sierra, Jose Luis; Fernandez-Manjon, Baltasar

    2007-01-01

    In this paper, we propose three different ways of using IMS Learning Design to support online adaptive learning modules that include educational videogames. The first approach relies on IMS LD to support adaptation procedures where the educational games are considered as Learning Objects. These games can be included instead of traditional content…

  8. How to Represent Adaptation in e-Learning with IMS Learning Design

    ERIC Educational Resources Information Center

    Burgos, Daniel; Tattersall, Colin; Koper, Rob

    2007-01-01

    Adaptation in e-learning has been an important research topic for the last few decades in computer-based education. In adaptivity the behaviour of the user triggers some actions in the system that guides the learning process. In adaptability, the user makes changes and takes decisions. Progressing from computer-based training and adaptive…

  9. Real-Time Very Large-Scale Integration Recognition System with an On-Chip Adaptive K-Means Learning Algorithm

    NASA Astrophysics Data System (ADS)

    Hou, Zuoxun; Ma, Yitao; Zhu, Hongbo; Zheng, Nanning; Shibata, Tadashi

    2013-04-01

    A very large-scale integration (VLSI) recognition system equipped with an on-chip learning capability has been developed for real-time processing applications. This system can work in two functional modes of operation: adaptive K-means learning mode and recognition mode. In the adaptive K-means learning mode, the variance ratio criterion (VRC) has been employed to evaluate the quality of K-means classification results, and the evaluation algorithm has been implemented on the chip. As a result, it has become possible for the system to autonomously determine the optimum number of clusters (K). In the recognition mode, the nearest-neighbor search algorithm is very efficiently carried out by the fully parallel architecture employed in the chip. In both modes of operation, many hardware resources are shared and the functionality is flexibly altered by the system controller designed as a finite-state machine (FSM). The chip is implemented on Altera Cyclone II FPGA with 46K logic cells. Its operating clock is 25 MHz and the processing times for adaptive learning and recognition with 256 64-dimension feature vectors are about 0.42 ms and 4 µs, respectively. Both adaptive K-means learning and recognition functions have been verified by experiments using the image data from the COIL-100 (Columbia University Object Image Library) database.

  10. Adaptive and perceptual learning technologies in medical education and training.

    PubMed

    Kellman, Philip J

    2013-10-01

    Recent advances in the learning sciences offer remarkable potential to improve medical education and maximize the benefits of emerging medical technologies. This article describes 2 major innovation areas in the learning sciences that apply to simulation and other aspects of medical learning: Perceptual learning (PL) and adaptive learning technologies. PL technology offers, for the first time, systematic, computer-based methods for teaching pattern recognition, structural intuition, transfer, and fluency. Synergistic with PL are new adaptive learning technologies that optimize learning for each individual, embed objective assessment, and implement mastery criteria. The author describes the Adaptive Response-Time-based Sequencing (ARTS) system, which uses each learner's accuracy and speed in interactive learning to guide spacing, sequencing, and mastery. In recent efforts, these new technologies have been applied in medical learning contexts, including adaptive learning modules for initial medical diagnosis and perceptual/adaptive learning modules (PALMs) in dermatology, histology, and radiology. Results of all these efforts indicate the remarkable potential of perceptual and adaptive learning technologies, individually and in combination, to improve learning in a variety of medical domains.

  11. An SRWNN-based approach on developing a self-learning and self-evolving adaptive control system for motion platforms

    NASA Astrophysics Data System (ADS)

    Onur Ari, Evrim; Kocaoglan, Erol

    2016-02-01

    In this paper, a self-recurrent wavelet neural network (SRWNN)-based indirect adaptive control architecture is modified for performing speed control of a motion platform. The transient behaviour of the original learning algorithm has been improved by modifying the learning rate updates. The contribution of the proposed modification has been verified via both simulations and experiments. Moreover, the performance of the proposed architecture is compared with robust RST designs performed on a similar benchmark system, to show that via adaptive nonlinear control, it is possible to obtain a fast step response without degrading the robustness of a multi-body mechanical system. Finally, the architecture is further improved so as to possess structural learning for populating the SRWNNs automatically, rather than employing static network structures, and simulation results are provided to show the performance of the proposed structural learning algorithm.

  12. Intelligent robots that adapt, learn, and predict

    NASA Astrophysics Data System (ADS)

    Hall, E. L.; Liao, X.; Ghaffari, M.; Alhaj Ali, S. M.

    2005-10-01

    The purpose of this paper is to describe the concept and architecture for an intelligent robot system that can adapt, learn and predict the future. This evolutionary approach to the design of intelligent robots is the result of several years of study on the design of intelligent machines that could adapt using computer vision or other sensory inputs, learn using artificial neural networks or genetic algorithms, exhibit semiotic closure with a creative controller and perceive present situations by interpretation of visual and voice commands. This information processing would then permit the robot to predict the future and plan its actions accordingly. In this paper we show that the capability to adapt, and learn naturally leads to the ability to predict the future state of the environment which is just another form of semiotic closure. That is, predicting a future state without knowledge of the future is similar to making a present action without knowledge of the present state. The theory will be illustrated by considering the situation of guiding a mobile robot through an unstructured environment for a rescue operation. The significance of this work is in providing a greater understanding of the applications of learning to mobile robots.

  13. Exploring Possible Links between Professional Learning Communities and Complex Adaptive Systems

    ERIC Educational Resources Information Center

    Johnson, Eric

    2013-01-01

    Implementation of Professional Learning Communities (PLC), as described by DuFour (2006), has depended upon a balance between teacher buy-in and administrative fiat. The tension between the "bottom-up" character of the former and the "top-down" character of the latter presents a leadership challenge: meeting students' learning…

  14. Adapting Active Learning in Ethiopia

    ERIC Educational Resources Information Center

    Casale, Carolyn Frances

    2010-01-01

    Ethiopia is a developing country that has invested extensively in expanding its educational opportunities. In this expansion, there has been a drastic restructuring of its system of preparing teachers and teacher educators. Often, improving teacher quality is dependent on professional development that diversifies pedagogy (active learning). This…

  15. Verification of Adaptive Systems

    SciTech Connect

    Pullum, Laura L; Cui, Xiaohui; Vassev, Emil; Hinchey, Mike; Rouff, Christopher; Buskens, Richard

    2012-01-01

    Adaptive systems are critical for future space and other unmanned and intelligent systems. Verification of these systems is also critical for their use in systems with potential harm to human life or with large financial investments. Due to their nondeterministic nature and extremely large state space, current methods for verification of software systems are not adequate to provide a high level of assurance for them. The combination of stabilization science, high performance computing simulations, compositional verification and traditional verification techniques, plus operational monitors, provides a complete approach to verification and deployment of adaptive systems that has not been used before. This paper gives an overview of this approach.

  16. Visual Cues for an Adaptive Expert System.

    ERIC Educational Resources Information Center

    Miller, Helen B.

    NCR (National Cash Register) Corporation is pursuing opportunities to make their point of sale (POS) terminals easy to use and easy to learn. To approach the goal of making the technology invisible to the user, NCR has developed an adaptive expert prototype system for a department store POS operation. The structure for the adaptive system, the…

  17. Enhancing Student Motivation and Learning within Adaptive Tutors

    ERIC Educational Resources Information Center

    Ostrow, Korinn S.

    2015-01-01

    My research is rooted in improving K-12 educational practice using motivational facets made possible through adaptive tutoring systems. In an attempt to isolate best practices within the science of learning, I conduct randomized controlled trials within ASSISTments, an online adaptive tutoring system that provides assistance and assessment to…

  18. Adaptive versus Learner Control in a Multiple Intelligence Learning Environment

    ERIC Educational Resources Information Center

    Kelly, Declan

    2008-01-01

    Within the field of technology enhanced learning, adaptive educational systems offer an advanced form of learning environment that attempts to meet the needs of different students. Such systems capture and represent, for each student, various characteristics such as knowledge and traits in an individual learner model. Subsequently, using the…

  19. Approach for Using Learner Satisfaction to Evaluate the Learning Adaptation Policy

    ERIC Educational Resources Information Center

    Jeghal, Adil; Oughdir, Lahcen; Tairi, Hamid; Radouane, Abdelhay

    2016-01-01

    The learning adaptation is a very important phase in a learning situation in human learning environments. This paper presents the authors' approach used to evaluate the effectiveness of learning adaptive systems. This approach is based on the analysis of learner satisfaction notices collected by a questionnaire on a learning situation; to analyze…

  20. Integrating Adaptive Games in Student-Centered Virtual Learning Environments

    ERIC Educational Resources Information Center

    del Blanco, Angel; Torrente, Javier; Moreno-Ger, Pablo; Fernandez-Manjon, Baltasar

    2010-01-01

    The increasing adoption of e-Learning technology is facing new challenges, such as how to produce student-centered systems that can be adapted to each student's needs. In this context, educational video games are proposed as an ideal medium to facilitate adaptation and tracking of students' performance for assessment purposes, but integrating the…

  1. Combining Adaptive Hypermedia with Project and Case-Based Learning

    ERIC Educational Resources Information Center

    Papanikolaou, Kyparisia; Grigoriadou, Maria

    2009-01-01

    In this article we investigate the design of educational hypermedia based on constructivist learning theories. According to the principles of project and case-based learning we present the design rational of an Adaptive Educational Hypermedia system prototype named MyProject; learners working with MyProject undertake a project and the system…

  2. Adaptive Educational Software by Applying Reinforcement Learning

    ERIC Educational Resources Information Center

    Bennane, Abdellah

    2013-01-01

    The introduction of the intelligence in teaching software is the object of this paper. In software elaboration process, one uses some learning techniques in order to adapt the teaching software to characteristics of student. Generally, one uses the artificial intelligence techniques like reinforcement learning, Bayesian network in order to adapt…

  3. Different Futures of Adaptive Collaborative Learning Support

    ERIC Educational Resources Information Center

    Rummel, Nikol; Walker, Erin; Aleven, Vincent

    2016-01-01

    In this position paper we contrast a Dystopian view of the future of adaptive collaborative learning support (ACLS) with a Utopian scenario that--due to better-designed technology, grounded in research--avoids the pitfalls of the Dystopian version and paints a positive picture of the practice of computer-supported collaborative learning 25 years…

  4. Animal social learning: associations and adaptations.

    PubMed

    Reader, Simon M

    2016-01-01

    Social learning, learning from others, is a powerful process known to impact the success and survival of humans and non-human animals alike. Yet we understand little about the neurocognitive and other processes that underpin social learning. Social learning has often been assumed to involve specialized, derived cognitive processes that evolve and develop independently from other processes. However, this assumption is increasingly questioned, and evidence from a variety of organisms demonstrates that current, recent, and early life experience all predict the reliance on social information and thus can potentially explain variation in social learning as a result of experiential effects rather than evolved differences. General associative learning processes, rather than adaptive specializations, may underpin much social learning, as well as social learning strategies. Uncovering these distinctions is important to a variety of fields, for example by widening current views of the possible breadth and adaptive flexibility of social learning. Nonetheless, just like adaptationist evolutionary explanations, associationist explanations for social learning cannot be assumed, and empirical work is required to uncover the mechanisms involved and their impact on the efficacy of social learning. This work is being done, but more is needed. Current evidence suggests that much social learning may be based on 'ordinary' processes but with extraordinary consequences. PMID:27635227

  5. Animal social learning: associations and adaptations

    PubMed Central

    Reader, Simon M.

    2016-01-01

    Social learning, learning from others, is a powerful process known to impact the success and survival of humans and non-human animals alike. Yet we understand little about the neurocognitive and other processes that underpin social learning. Social learning has often been assumed to involve specialized, derived cognitive processes that evolve and develop independently from other processes. However, this assumption is increasingly questioned, and evidence from a variety of organisms demonstrates that current, recent, and early life experience all predict the reliance on social information and thus can potentially explain variation in social learning as a result of experiential effects rather than evolved differences. General associative learning processes, rather than adaptive specializations, may underpin much social learning, as well as social learning strategies. Uncovering these distinctions is important to a variety of fields, for example by widening current views of the possible breadth and adaptive flexibility of social learning. Nonetheless, just like adaptationist evolutionary explanations, associationist explanations for social learning cannot be assumed, and empirical work is required to uncover the mechanisms involved and their impact on the efficacy of social learning. This work is being done, but more is needed. Current evidence suggests that much social learning may be based on ‘ordinary’ processes but with extraordinary consequences. PMID:27635227

  6. Animal social learning: associations and adaptations

    PubMed Central

    Reader, Simon M.

    2016-01-01

    Social learning, learning from others, is a powerful process known to impact the success and survival of humans and non-human animals alike. Yet we understand little about the neurocognitive and other processes that underpin social learning. Social learning has often been assumed to involve specialized, derived cognitive processes that evolve and develop independently from other processes. However, this assumption is increasingly questioned, and evidence from a variety of organisms demonstrates that current, recent, and early life experience all predict the reliance on social information and thus can potentially explain variation in social learning as a result of experiential effects rather than evolved differences. General associative learning processes, rather than adaptive specializations, may underpin much social learning, as well as social learning strategies. Uncovering these distinctions is important to a variety of fields, for example by widening current views of the possible breadth and adaptive flexibility of social learning. Nonetheless, just like adaptationist evolutionary explanations, associationist explanations for social learning cannot be assumed, and empirical work is required to uncover the mechanisms involved and their impact on the efficacy of social learning. This work is being done, but more is needed. Current evidence suggests that much social learning may be based on ‘ordinary’ processes but with extraordinary consequences.

  7. Adaptations to a Learning Resource

    ERIC Educational Resources Information Center

    Libbrecht, Paul

    2015-01-01

    Learning resources have been created to represent digital units of exchangeable materials that teachers and learners can pull from in order to support the learning processes. They resource themselves. Leveraging the web, one can often find these resources. But what characteristics do they need in order to be easily exchangeable? Although several…

  8. Towards Adaptive Educational Assessments: Predicting Student Performance using Temporal Stability and Data Analytics in Learning Management Systems

    SciTech Connect

    Thakur, Gautam; Olama, Mohammed M; McNair, Wade; Sukumar, Sreenivas R

    2014-01-01

    Data-driven assessments and adaptive feedback are becoming a cornerstone research in educational data analytics and involve developing methods for exploring the unique types of data that come from the educational context. For example, predicting college student performance is crucial for both the students and educational institutions. It can support timely intervention to prevent students from failing a course, increasing efficacy of advising functions, and improving course completion rate. In this paper, we present our efforts in using data analytics that enable educationists to design novel data-driven assessment and feedback mechanisms. In order to achieve this objective, we investigate temporal stability of students grades and perform predictive analytics on academic data collected from 2009 through 2013 in one of the most commonly used learning management systems, called Moodle. First, we have identified the data features useful for assessments and predicting student outcomes such as students scores in homework assignments, quizzes, exams, in addition to their activities in discussion forums and their total Grade Point Average(GPA) at the same term they enrolled in the course. Second, time series models in both frequency and time domains are applied to characterize the progression as well as overall projections of the grades. In particular, the model analyzed the stability as well as fluctuation of grades among students during the collegiate years (from freshman to senior) and disciplines. Third, Logistic Regression and Neural Network predictive models are used to identify students as early as possible who are in danger of failing the course they are currently enrolled in. These models compute the likelihood of any given student failing (or passing) the current course. The time series analysis indicates that assessments and continuous feedback are critical for freshman and sophomores (even with easy courses) than for seniors, and those assessments may be

  9. Self-adaptive Vision System

    NASA Astrophysics Data System (ADS)

    Stipancic, Tomislav; Jerbic, Bojan

    Light conditions represent an important part of every vision application. This paper describes one active behavioral scheme of one particular active vision system. This behavioral scheme enables an active system to adapt to current environmental conditions by constantly validating the amount of the reflected light using luminance meter and dynamically changed significant vision parameters. The purpose of the experiment was to determine the connections between light conditions and inner vision parameters. As a part of the experiment, Response Surface Methodology (RSM) was used to predict values of vision parameters with respect to luminance input values. RSM was used to approximate an unknown function for which only few values were computed. The main output validation system parameter is called Match Score. Match Score indicates how well the found object matches the learned model. All obtained data are stored in the local database. By timely applying new parameters predicted by the RSM, the vision application works in a stabile and robust manner.

  10. Brain aerobic glycolysis and motor adaptation learning

    PubMed Central

    Shannon, Benjamin J.; Vaishnavi, Sanjeev Neil; Vlassenko, Andrei G.; Shimony, Joshua S.; Rutlin, Jerrel; Raichle, Marcus E.

    2016-01-01

    Ten percent to 15% of glucose used by the brain is metabolized nonoxidatively despite adequate tissue oxygenation, a process termed aerobic glycolysis (AG). Because of the known role of glycolysis in biosynthesis, we tested whether learning-induced synaptic plasticity would lead to regionally appropriate, learning-dependent changes in AG. Functional MRI (fMRI) before, during, and after performance of a visual–motor adaptation task demonstrated that left Brodmann area 44 (BA44) played a key role in adaptation, with learning-related changes to activity during the task and altered resting-state, functional connectivity after the task. PET scans before and after task performance indicated a sustained increase in AG in left BA 44 accompanied by decreased oxygen consumption. Intersubject variability in behavioral adaptation rate correlated strongly with changes in AG in this region, as well as functional connectivity, which is consistent with a role for AG in synaptic plasticity. PMID:27217563

  11. ACT-R Electronic Bookshelf: An Adaptive System To Support Learning ACT-R on the Web.

    ERIC Educational Resources Information Center

    Brusilovsky, Peter; Anderson, John

    This paper describes the electronic ACT-R Bookshelf, a system which supports learning ACT-R, a well-known theory in the field of cognitive psychology, over the World Wide Web. ACT-R Bookshelf is a collection of electronic books on various aspects of ACT-R. The primary role of ACT-R Bookshelf is to serve as a 24-hour information resource for…

  12. Performance & Emotion--A Study on Adaptive E-Learning Based on Visual/Verbal Learning Styles

    ERIC Educational Resources Information Center

    Beckmann, Jennifer; Bertel, Sven; Zander, Steffi

    2015-01-01

    Adaptive e-Learning systems are able to adjust to a user's learning needs, usually by user modeling or tracking progress. Such learner-adaptive behavior has rapidly become a hot topic for e-Learning, furthered in part by the recent rapid increase in the use of MOOCs (Massive Open Online Courses). A lack of general, individual, and situational data…

  13. Adapting Cooperative Learning in Tertiary ELT

    ERIC Educational Resources Information Center

    Ning, Huiping

    2011-01-01

    An updated guideline for tertiary ELT in China has shifted the emphasis to the development of learners' ability to communicate in English. Using group work and getting learners actively involved in the actual use of English are highlighted more than before. This article focuses on adapting cooperative learning methods for ELT with tertiary…

  14. Making Mistakes: Emotional Adaptation and Classroom Learning

    ERIC Educational Resources Information Center

    McCaslin, Mary; Vriesema, Christine C.; Burggraf, Susan

    2016-01-01

    Background: We studied how students in Grades 4-6 participate in and emotionally adapt to the give-and-take of learning in classrooms, particularly when making mistakes. Our approach is consistent with researchers who (a) include cognitive appraisals in the study of emotional experiences, (b) consider how personal concerns might mediate…

  15. Adaptable Learning Assistant for Item Bank Management

    ERIC Educational Resources Information Center

    Nuntiyagul, Atorn; Naruedomkul, Kanlaya; Cercone, Nick; Wongsawang, Damras

    2008-01-01

    We present PKIP, an adaptable learning assistant tool for managing question items in item banks. PKIP is not only able to automatically assist educational users to categorize the question items into predefined categories by their contents but also to correctly retrieve the items by specifying the category and/or the difficulty level. PKIP adapts…

  16. Online Adaptation and Over-Trial Learning in Macaque Visuomotor Control

    PubMed Central

    Braun, Daniel A.; Aertsen, Ad; Paz, Rony; Vaadia, Eilon; Rotter, Stefan; Mehring, Carsten

    2011-01-01

    When faced with unpredictable environments, the human motor system has been shown to develop optimized adaptation strategies that allow for online adaptation during the control process. Such online adaptation is to be contrasted to slower over-trial learning that corresponds to a trial-by-trial update of the movement plan. Here we investigate the interplay of both processes, i.e., online adaptation and over-trial learning, in a visuomotor experiment performed by macaques. We show that simple non-adaptive control schemes fail to perform in this task, but that a previously suggested adaptive optimal feedback control model can explain the observed behavior. We also show that over-trial learning as seen in learning and aftereffect curves can be explained by learning in a radial basis function network. Our results suggest that both the process of over-trial learning and the process of online adaptation are crucial to understand visuomotor learning. PMID:21720526

  17. Towards an Adaptive Multimedia Learning Environment: Enhancing the Student Experience.

    ERIC Educational Resources Information Center

    Kurzel, Frank; Slay, Jill; Rath, Michelle; Chau, Yenha

    This paper describes the development of an adaptive multimedia learning environment that utilizes multimedia presentation techniques in its interface while still providing Internet connectivity for management and delivery purposes. The system supports the WWW as its addressing space but uses the local client areas to store media items expensive in…

  18. Adaptive Learning in Psychology: Wayfinding in the Digital Age

    ERIC Educational Resources Information Center

    Dziuban, Charles D.; Moskal, Patsy D.; Cassisi, Jeffrey; Fawcett, Alexis

    2016-01-01

    This paper presents the results of a pilot study investigating the use of the Realizeit adaptive learning platform to deliver a fully online General Psychology course across two semesters. Through mutual cooperation, UCF and vendor (CCKF) researchers examined students' affective, behavioral, and cognitive reactions to the system. Student survey…

  19. Adaptive Decision Aiding in Computer-Assisted Instruction: Adaptive Computerized Training System (ACTS).

    ERIC Educational Resources Information Center

    Hopf-Weichel, Rosemarie; And Others

    This report describes results of the first year of a three-year program to develop and evaluate a new Adaptive Computerized Training System (ACTS) for electronics maintenance training. (ACTS incorporates an adaptive computer program that learns the student's diagnostic and decision value structure, compares it to that of an expert, and adapts the…

  20. Beyond adaptive-critic creative learning for intelligent mobile robots

    NASA Astrophysics Data System (ADS)

    Liao, Xiaoqun; Cao, Ming; Hall, Ernest L.

    2001-10-01

    Intelligent industrial and mobile robots may be considered proven technology in structured environments. Teach programming and supervised learning methods permit solutions to a variety of applications. However, we believe that to extend the operation of these machines to more unstructured environments requires a new learning method. Both unsupervised learning and reinforcement learning are potential candidates for these new tasks. The adaptive critic method has been shown to provide useful approximations or even optimal control policies to non-linear systems. The purpose of this paper is to explore the use of new learning methods that goes beyond the adaptive critic method for unstructured environments. The adaptive critic is a form of reinforcement learning. A critic element provides only high level grading corrections to a cognition module that controls the action module. In the proposed system the critic's grades are modeled and forecasted, so that an anticipated set of sub-grades are available to the cognition model. The forecasting grades are interpolated and are available on the time scale needed by the action model. The success of the system is highly dependent on the accuracy of the forecasted grades and adaptability of the action module. Examples from the guidance of a mobile robot are provided to illustrate the method for simple line following and for the more complex navigation and control in an unstructured environment. The theory presented that is beyond the adaptive critic may be called creative theory. Creative theory is a form of learning that models the highest level of human learning - imagination. The application of the creative theory appears to not only be to mobile robots but also to many other forms of human endeavor such as educational learning and business forecasting. Reinforcement learning such as the adaptive critic may be applied to known problems to aid in the discovery of their solutions. The significance of creative theory is that it

  1. Genetic adaptive system for image understanding and learning research. Phase 1. Final technical report, 1 February-1 August 1989

    SciTech Connect

    Douthat, D.Z.; Ross, K.W.

    1989-08-01

    This report documents the efforts and results of initial phase research on machine learning directed at application for real-time machine vision and automatic target recognition. The particular paradigm pursued is based on genetic algorithms and classifiers modeled on the summation of Mendelian genetic recombination, Darwinian selection, and ecological notions of competition. This machine-learning approach is strongly supported by sound statistical theory. A second thread of research was the development of massively parallel computing hardware based on the Geometric/Arithmetic Parallel Processor (GAPP). This machine has a large number of processors, each one bit wide with a full Arithmetic/Logic Unit (full adder) and with local memory per processor. The basic research hypothesis of the subject effort has been that GAPP contained sufficient hardware capability to provide a substrate for a Classifier and Genetic Algorithm system. The goal has been demonstrated by constructing and running the necessary software on the GAPP, its controller and its host. The resulting fusion of software and hardware is called a Genetic Algorithm/Classifier Engine (GACE) in the same sense as a LISP engine or a data base engine. The resulting quantum jump in performance should open doors both to application and to more interesting and relevant research.

  2. MEAT: An Authoring Tool for Generating Adaptable Learning Resources

    ERIC Educational Resources Information Center

    Kuo, Yen-Hung; Huang, Yueh-Min

    2009-01-01

    Mobile learning (m-learning) is a new trend in the e-learning field. The learning services in m-learning environments are supported by fundamental functions, especially the content and assessment services, which need an authoring tool to rapidly generate adaptable learning resources. To fulfill the imperious demand, this study proposes an…

  3. Guiding Students to the Right Questions: Adaptive Navigation Support in an E-Learning System for Java Programming

    ERIC Educational Resources Information Center

    Hsiao, I.-H.; Sosnovsky, S.; Brusilovsky, P.

    2010-01-01

    Rapid growth of the volume of interactive questions available to the students of modern E-Learning courses placed the problem of personalized guidance on the agenda of E-Learning researchers. Without proper guidance, students frequently select too simple or too complicated problems and ended either bored or discouraged. This paper explores a…

  4. Developing an Agent-Based Adaptive System for Scaffolding Self-Regulated Inquiry Learning in History Education

    ERIC Educational Resources Information Center

    Poitras, Eric G.; Lajoie, Susanne P.

    2014-01-01

    This article presents a methodology for modelling the development of self-regulated learning skills in the context of computer-based learning environments using a combination of tracing techniques. The user-modelling techniques combine statistical and computational approaches to assess skill acquisition, practice, and refinement with the…

  5. Comparison of adaptive neuro-fuzzy inference system (ANFIS) and Gaussian processes for machine learning (GPML) algorithms for the prediction of skin temperature in lower limb prostheses.

    PubMed

    Mathur, Neha; Glesk, Ivan; Buis, Arjan

    2016-10-01

    Monitoring of the interface temperature at skin level in lower-limb prosthesis is notoriously complicated. This is due to the flexible nature of the interface liners used impeding the required consistent positioning of the temperature sensors during donning and doffing. Predicting the in-socket residual limb temperature by monitoring the temperature between socket and liner rather than skin and liner could be an important step in alleviating complaints on increased temperature and perspiration in prosthetic sockets. In this work, we propose to implement an adaptive neuro fuzzy inference strategy (ANFIS) to predict the in-socket residual limb temperature. ANFIS belongs to the family of fused neuro fuzzy system in which the fuzzy system is incorporated in a framework which is adaptive in nature. The proposed method is compared to our earlier work using Gaussian processes for machine learning. By comparing the predicted and actual data, results indicate that both the modeling techniques have comparable performance metrics and can be efficiently used for non-invasive temperature monitoring. PMID:27452775

  6. Using Assistive Technology Adaptations To Include Students with Learning Disabilities in Cooperative Learning Activities.

    ERIC Educational Resources Information Center

    Bryant, Diane Pedrotty; Bryant, Brian R.

    1998-01-01

    Discusses a process for integrating technology adaptations for students with learning disabilities into cooperative-learning activities in terms of three components: (1) selecting adaptations; (2) monitoring use of adaptations during cooperative-learning activities; and (3) evaluating the adaptations' effectiveness. Barriers to and support systems…

  7. Intelligent Web-Based Learning System with Personalized Learning Path Guidance

    ERIC Educational Resources Information Center

    Chen, C. M.

    2008-01-01

    Personalized curriculum sequencing is an important research issue for web-based learning systems because no fixed learning paths will be appropriate for all learners. Therefore, many researchers focused on developing e-learning systems with personalized learning mechanisms to assist on-line web-based learning and adaptively provide learning paths…

  8. Critical Thinking, Developmental Learning, and Adaptive Flexibility in Organizational Leaders.

    ERIC Educational Resources Information Center

    Duchesne, Robert E., Jr.

    A study examined how developmental learning and adaptive flexibility relate to critical thinking though a survey of 119 organizational leaders (of 341) who had attended a 5-day Leadership Development Program. A questionnaire adapted from the Center for Creative Leadership's Job Challenge Profile measured developmental learning, the Adaptive Style…

  9. Adaptive protection algorithm and system

    DOEpatents

    Hedrick, Paul [Pittsburgh, PA; Toms, Helen L [Irwin, PA; Miller, Roger M [Mars, PA

    2009-04-28

    An adaptive protection algorithm and system for protecting electrical distribution systems traces the flow of power through a distribution system, assigns a value (or rank) to each circuit breaker in the system and then determines the appropriate trip set points based on the assigned rank.

  10. How Language Supports Adaptive Teaching through a Responsive Learning Culture

    ERIC Educational Resources Information Center

    Johnston, Peter; Dozier, Cheryl; Smit, Julie

    2016-01-01

    For students to learn optimally, teachers must design classrooms that are responsive to the full range of student development. The teacher must be adaptive, but so must each student and the learning culture itself. In other words, adaptive teaching means constructing a responsive learning culture that accommodates and even capitalizes on diversity…

  11. Definition and Analysis of a System for the Automated Comparison of Curriculum Sequencing Algorithms in Adaptive Distance Learning

    ERIC Educational Resources Information Center

    Limongelli, Carla; Sciarrone, Filippo; Temperini, Marco; Vaste, Giulia

    2011-01-01

    LS-Lab provides automatic support to comparison/evaluation of the Learning Object Sequences produced by different Curriculum Sequencing Algorithms. Through this framework a teacher can verify the correspondence between the behaviour of different sequencing algorithms and her pedagogical preferences. In fact the teacher can compare algorithms…

  12. Learning & retention in adaptive serious games.

    PubMed

    Bergeron, Bryan P

    2008-01-01

    Serious games are being actively explored as supplements to and, in some cases, replacement for traditional didactic lectures and computer-based instruction in venues ranging from medicine to the military. As part of an intelligent tutoring system (ITS) for nuclear event first responders, we designed and evaluated two serious games that were integrated with adaptive multimedia content. Results reveal that there was no decay in score six weeks following game-based training, which contrasts with results expected with traditional training. This study suggests that adaptive serious games may help integrate didactic content presented though conventional means.

  13. Adaptive Politics, Social Learning, and Military Institutions.

    ERIC Educational Resources Information Center

    Bobrow, Davis B.

    Rates and forms of change in post-industrial societies will increasingly test the viability of democratic political systems. Social learning must become faster and more powerful as the deadline on political demands becomes shorter and the complexity and variety of demands become greater. The military can play an almost uniquely helpful role in…

  14. Adaptive ophthalmologic system

    DOEpatents

    Olivier, Scot S.; Thompson, Charles A.; Bauman, Brian J.; Jones, Steve M.; Gavel, Don T.; Awwal, Abdul A.; Eisenbies, Stephen K.; Haney, Steven J.

    2007-03-27

    A system for improving vision that can diagnose monochromatic aberrations within a subject's eyes, apply the wavefront correction, and then enable the patient to view the results of the correction. The system utilizes a laser for producing a beam of light; a corrector; a wavefront sensor; a testing unit; an optic device for directing the beam of light to the corrector, to the retina, from the retina to the wavefront sensor, and to the testing unit; and a computer operatively connected to the wavefront sensor and the corrector.

  15. Adaptive fuzzy system for 3-D vision

    NASA Technical Reports Server (NTRS)

    Mitra, Sunanda

    1993-01-01

    An adaptive fuzzy system using the concept of the Adaptive Resonance Theory (ART) type neural network architecture and incorporating fuzzy c-means (FCM) system equations for reclassification of cluster centers was developed. The Adaptive Fuzzy Leader Clustering (AFLC) architecture is a hybrid neural-fuzzy system which learns on-line in a stable and efficient manner. The system uses a control structure similar to that found in the Adaptive Resonance Theory (ART-1) network to identify the cluster centers initially. The initial classification of an input takes place in a two stage process; a simple competitive stage and a distance metric comparison stage. The cluster prototypes are then incrementally updated by relocating the centroid positions from Fuzzy c-Means (FCM) system equations for the centroids and the membership values. The operational characteristics of AFLC and the critical parameters involved in its operation are discussed. The performance of the AFLC algorithm is presented through application of the algorithm to the Anderson Iris data, and laser-luminescent fingerprint image data. The AFLC algorithm successfully classifies features extracted from real data, discrete or continuous, indicating the potential strength of this new clustering algorithm in analyzing complex data sets. The hybrid neuro-fuzzy AFLC algorithm will enhance analysis of a number of difficult recognition and control problems involved with Tethered Satellite Systems and on-orbit space shuttle attitude controller.

  16. Distributed reinforcement learning for adaptive and robust network intrusion response

    NASA Astrophysics Data System (ADS)

    Malialis, Kleanthis; Devlin, Sam; Kudenko, Daniel

    2015-07-01

    Distributed denial of service (DDoS) attacks constitute a rapidly evolving threat in the current Internet. Multiagent Router Throttling is a novel approach to defend against DDoS attacks where multiple reinforcement learning agents are installed on a set of routers and learn to rate-limit or throttle traffic towards a victim server. The focus of this paper is on online learning and scalability. We propose an approach that incorporates task decomposition, team rewards and a form of reward shaping called difference rewards. One of the novel characteristics of the proposed system is that it provides a decentralised coordinated response to the DDoS problem, thus being resilient to DDoS attacks themselves. The proposed system learns remarkably fast, thus being suitable for online learning. Furthermore, its scalability is successfully demonstrated in experiments involving 1000 learning agents. We compare our approach against a baseline and a popular state-of-the-art throttling technique from the network security literature and show that the proposed approach is more effective, adaptive to sophisticated attack rate dynamics and robust to agent failures.

  17. M-Learning: Implications in Learning Domain Specificities, Adaptive Learning, Feedback, Augmented Reality, and the Future of Online Learning

    ERIC Educational Resources Information Center

    Squires, David R.

    2014-01-01

    The aim of this paper is to examine the potential and effectiveness of m-learning in the field of Education and Learning domains. The purpose of this research is to illustrate how mobile technology can and is affecting novel change in instruction, from m-learning and the link to adaptive learning, to the uninitiated learner and capacities of…

  18. Adaptive model training system and method

    DOEpatents

    Bickford, Randall L; Palnitkar, Rahul M

    2014-11-18

    An adaptive model training system and method for filtering asset operating data values acquired from a monitored asset for selectively choosing asset operating data values that meet at least one predefined criterion of good data quality while rejecting asset operating data values that fail to meet at least the one predefined criterion of good data quality; and recalibrating a previously trained or calibrated model having a learned scope of normal operation of the asset by utilizing the asset operating data values that meet at least the one predefined criterion of good data quality for adjusting the learned scope of normal operation of the asset for defining a recalibrated model having the adjusted learned scope of normal operation of the asset.

  19. Adaptive model training system and method

    DOEpatents

    Bickford, Randall L; Palnitkar, Rahul M; Lee, Vo

    2014-04-15

    An adaptive model training system and method for filtering asset operating data values acquired from a monitored asset for selectively choosing asset operating data values that meet at least one predefined criterion of good data quality while rejecting asset operating data values that fail to meet at least the one predefined criterion of good data quality; and recalibrating a previously trained or calibrated model having a learned scope of normal operation of the asset by utilizing the asset operating data values that meet at least the one predefined criterion of good data quality for adjusting the learned scope of normal operation of the asset for defining a recalibrated model having the adjusted learned scope of normal operation of the asset.

  20. Nanosatellite Launch Adapter System (NLAS)

    NASA Technical Reports Server (NTRS)

    Yost, Bruce D.; Hines, John W.; Agasid, Elwood F.; Buckley, Steven J.

    2010-01-01

    The utility of small spacecraft based on the University cubesat standard is becoming evident as more and more agencies and organizations are launching or planning to include nanosatellites in their mission portfolios. Cubesats are typically launched as secondary spacecraft in enclosed, containerized deployers such as the CalPoly Poly Picosat Orbital Deployer (P-POD) system. The P-POD allows for ease of integration and significantly reduces the risk exposure to the primary spacecraft and mission. NASA/ARC and the Operationally Responsive Space office are collaborating to develop a Nanosatellite Launch Adapter System (NLAS), which can accommodate multiple cubesat or cubesat-derived spacecraft on a single launch vehicle. NLAS is composed of the adapter structure, P-POD or similar spacecraft dispensers, and a sequencer/deployer system. This paper describes the NLAS system and it s future capabilities, and also provides status on the system s development and potential first use in space.

  1. Indirect learning control for nonlinear dynamical systems

    NASA Technical Reports Server (NTRS)

    Ryu, Yeong Soon; Longman, Richard W.

    1993-01-01

    In a previous paper, learning control algorithms were developed based on adaptive control ideas for linear time variant systems. The learning control methods were shown to have certain advantages over their adaptive control counterparts, such as the ability to produce zero tracking error in time varying systems, and the ability to eliminate repetitive disturbances. In recent years, certain adaptive control algorithms have been developed for multi-body dynamic systems such as robots, with global guaranteed convergence to zero tracking error for the nonlinear system euations. In this paper we study the relationship between such adaptive control methods designed for this specific class of nonlinear systems, and the learning control problem for such systems, seeking to converge to zero tracking error in following a specific command repeatedly, starting from the same initial conditions each time. The extension of these methods from the adaptive control problem to the learning control problem is seen to be trivial. The advantages and disadvantages of using learning control based on such adaptive control concepts for nonlinear systems, and the use of other currently available learning control algorithms are discussed.

  2. Architecture for Adaptive Intelligent Systems

    NASA Technical Reports Server (NTRS)

    Hayes-Roth, Barbara

    1993-01-01

    We identify a class of niches to be occupied by 'adaptive intelligent systems (AISs)'. In contrast with niches occupied by typical AI agents, AIS niches present situations that vary dynamically along several key dimensions: different combinations of required tasks, different configurations of available resources, contextual conditions ranging from benign to stressful, and different performance criteria. We present a small class hierarchy of AIS niches that exhibit these dimensions of variability and describe a particular AIS niche, ICU (intensive care unit) patient monitoring, which we use for illustration throughout the paper. We have designed and implemented an agent architecture that supports all of different kinds of adaptation by exploiting a single underlying theoretical concept: An agent dynamically constructs explicit control plans to guide its choices among situation-triggered behaviors. We illustrate the architecture and its support for adaptation with examples from Guardian, an experimental agent for ICU monitoring.

  3. The Limits to Adaptation; A Systems Approach

    EPA Science Inventory

    The Limits to Adaptation: A Systems Approach. The ability to adapt to climate change is delineated by capacity thresholds, after which climate damages begin to overwhelm the adaptation response. Such thresholds depend upon physical properties (natural processes and engineering...

  4. The Influence of Learning Behaviour on Team Adaptability

    ERIC Educational Resources Information Center

    Murray, Peter A.; Millett, Bruce

    2011-01-01

    Multiple contexts shape team activities and how they learn, and group learning is a dynamic construct that reflects a repertoire of potential behaviour. The purpose of this developmental paper is to examine how better learning behaviours in semi-autonomous teams improves the level of team adaptability and performance. The discussion suggests that…

  5. Rule-based mechanisms of learning for intelligent adaptive flight control

    NASA Technical Reports Server (NTRS)

    Handelman, David A.; Stengel, Robert F.

    1990-01-01

    How certain aspects of human learning can be used to characterize learning in intelligent adaptive control systems is investigated. Reflexive and declarative memory and learning are described. It is shown that model-based systems-theoretic adaptive control methods exhibit attributes of reflexive learning, whereas the problem-solving capabilities of knowledge-based systems of artificial intelligence are naturally suited for implementing declarative learning. Issues related to learning in knowledge-based control systems are addressed, with particular attention given to rule-based systems. A mechanism for real-time rule-based knowledge acquisition is suggested, and utilization of this mechanism within the context of failure diagnosis for fault-tolerant flight control is demonstrated.

  6. A Competency-Based Guided-Learning Algorithm Applied on Adaptively Guiding E-Learning

    ERIC Educational Resources Information Center

    Hsu, Wei-Chih; Li, Cheng-Hsiu

    2015-01-01

    This paper presents a new algorithm called competency-based guided-learning algorithm (CBGLA), which can be applied on adaptively guiding e-learning. Computational process analysis and mathematical derivation of competency-based learning (CBL) were used to develop the CBGLA. The proposed algorithm could generate an effective adaptively guiding…

  7. Diminished neural adaptation during implicit learning in autism.

    PubMed

    Schipul, Sarah E; Just, Marcel Adam

    2016-01-15

    Neuroimaging studies have shown evidence of disrupted neural adaptation during learning in individuals with autism spectrum disorder (ASD) in several types of tasks, potentially stemming from frontal-posterior cortical underconnectivity (Schipul et al., 2012). The aim of the current study was to examine neural adaptations in an implicit learning task that entails participation of frontal and posterior regions. Sixteen high-functioning adults with ASD and sixteen neurotypical control participants were trained on and performed an implicit dot pattern prototype learning task in a functional magnetic resonance imaging (fMRI) session. During the preliminary exposure to the type of implicit prototype learning task later to be used in the scanner, the ASD participants took longer than the neurotypical group to learn the task, demonstrating altered implicit learning in ASD. After equating task structure learning, the two groups' brain activation differed during their learning of a new prototype in the subsequent scanning session. The main findings indicated that neural adaptations in a distributed task network were reduced in the ASD group, relative to the neurotypical group, and were related to ASD symptom severity. Functional connectivity was reduced and did not change as much during learning for the ASD group, and was related to ASD symptom severity. These findings suggest that individuals with ASD show altered neural adaptations during learning, as seen in both activation and functional connectivity measures. This finding suggests why many real-world implicit learning situations may pose special challenges for ASD.

  8. A Model of Adaptive Language Learning

    ERIC Educational Resources Information Center

    Woodrow, Lindy J.

    2006-01-01

    This study applies theorizing from educational psychology and language learning to hypothesize a model of language learning that takes into account affect, motivation, and language learning strategies. The study employed a questionnaire to assess variables of motivation, self-efficacy, anxiety, and language learning strategies. The sample…

  9. Evolutionary perspectives on learning: conceptual and methodological issues in the study of adaptive specializations.

    PubMed

    Krause, Mark A

    2015-07-01

    Inquiry into evolutionary adaptations has flourished since the modern synthesis of evolutionary biology. Comparative methods, genetic techniques, and various experimental and modeling approaches are used to test adaptive hypotheses. In psychology, the concept of adaptation is broadly applied and is central to comparative psychology and cognition. The concept of an adaptive specialization of learning is a proposed account for exceptions to general learning processes, as seen in studies of Pavlovian conditioning of taste aversions, sexual responses, and fear. The evidence generally consists of selective associations forming between biologically relevant conditioned and unconditioned stimuli, with conditioned responses differing in magnitude, persistence, or other measures relative to non-biologically relevant stimuli. Selective associations for biologically relevant stimuli may suggest adaptive specializations of learning, but do not necessarily confirm adaptive hypotheses as conceived of in evolutionary biology. Exceptions to general learning processes do not necessarily default to an adaptive specialization explanation, even if experimental results "make biological sense". This paper examines the degree to which hypotheses of adaptive specializations of learning in sexual and fear response systems have been tested using methodologies developed in evolutionary biology (e.g., comparative methods, quantitative and molecular genetics, survival experiments). A broader aim is to offer perspectives from evolutionary biology for testing adaptive hypotheses in psychological science.

  10. Certification Considerations for Adaptive Systems

    NASA Technical Reports Server (NTRS)

    Bhattacharyya, Siddhartha; Cofer, Darren; Musliner, David J.; Mueller, Joseph; Engstrom, Eric

    2015-01-01

    Advanced capabilities planned for the next generation of aircraft, including those that will operate within the Next Generation Air Transportation System (NextGen), will necessarily include complex new algorithms and non-traditional software elements. These aircraft will likely incorporate adaptive control algorithms that will provide enhanced safety, autonomy, and robustness during adverse conditions. Unmanned aircraft will operate alongside manned aircraft in the National Airspace (NAS), with intelligent software performing the high-level decision-making functions normally performed by human pilots. Even human-piloted aircraft will necessarily include more autonomy. However, there are serious barriers to the deployment of new capabilities, especially for those based upon software including adaptive control (AC) and artificial intelligence (AI) algorithms. Current civil aviation certification processes are based on the idea that the correct behavior of a system must be completely specified and verified prior to operation. This report by Rockwell Collins and SIFT documents our comprehensive study of the state of the art in intelligent and adaptive algorithms for the civil aviation domain, categorizing the approaches used and identifying gaps and challenges associated with certification of each approach.

  11. Adaptive Intrusion Data System (AIDS)

    SciTech Connect

    Corlis, N. E.

    1980-05-01

    The adaptive intrusion data system (AIDS) was developed to collect data from intrusion alarm sensors as part of an evaluation system to improve sensor performance. AIDS is a unique data system which uses computer controlled data systems, video cameras and recorders, analog-to-digital conversion, environmental sensors, and digital recorders to collect sensor data. The data can be viewed either manually or with a special computerized data-reduction system which adds new data to a data base stored on a magnetic disc recorder. This report provides a synoptic account of the AIDS as it presently exists. Modifications to the purchased subsystems are described, and references are made to publications which describe the Sandia-designed subsystems.

  12. Learning Motivation and Adaptive Video Caption Filtering for EFL Learners Using Handheld Devices

    ERIC Educational Resources Information Center

    Hsu, Ching-Kun

    2015-01-01

    The aim of this study was to provide adaptive assistance to improve the listening comprehension of eleventh grade students. This study developed a video-based language learning system for handheld devices, using three levels of caption filtering adapted to student needs. Elementary level captioning excluded 220 English sight words (see Section 1…

  13. The Profiling System/Using Psychological Type and Learning Style To Provide Adaptations for Teaching Methodology in the Regular and Special Education Classroom.

    ERIC Educational Resources Information Center

    Waters, Gisele A.; Lasage, Ed.

    The purpose of the Profiling System is to provide diagnostic and instructional resources to regular and special education teachers. The Profiling System is based on research and literature in psychological type and learning style. It combines the literature in these areas with academic and perceptual assessment instruments to screen for learning…

  14. Schema-based learning of adaptable and flexible prey- catching in anurans II. Learning after lesioning.

    PubMed

    Corbacho, Fernando; Nishikawa, Kiisa C; Weerasuriya, Ananda; Liaw, Jim-Shih; Arbib, Michael A

    2005-12-01

    The previous companion paper describes the initial (seed) schema architecture that gives rise to the observed prey-catching behavior. In this second paper in the series we describe the fundamental adaptive processes required during learning after lesioning. Following bilateral transections of the hypoglossal nerve, anurans lunge toward mealworms with no accompanying tongue or jaw movement. Nevertheless anurans with permanent hypoglossal transections eventually learn to catch their prey by first learning to open their mouth again and then lunging their body further and increasing their head angle. In this paper we present a new learning framework, called schema-based learning (SBL). SBL emphasizes the importance of the current existent structure (schemas), that defines a functioning system, for the incremental and autonomous construction of ever more complex structure to achieve ever more complex levels of functioning. We may rephrase this statement into the language of Schema Theory (Arbib 1992, for a comprehensive review) as the learning of new schemas based on the stock of current schemas. SBL emphasizes a fundamental principle of organization called coherence maximization, that deals with the maximization of congruence between the results of an interaction (external or internal) and the expectations generated for that interaction. A central hypothesis consists of the existence of a hierarchy of predictive internal models (predictive schemas) all over the control center-brain-of the agent. Hence, we will include predictive models in the perceptual, sensorimotor, and motor components of the autonomous agent architecture. We will then show that predictive models are fundamental for structural learning. In particular we will show how a system can learn a new structural component (augment the overall network topology) after being lesioned in order to recover (or even improve) its original functionality. Learning after lesioning is a special case of structural

  15. A Standard-Based Model for Adaptive E-Learning Platform for Mauritian Academic Institutions

    ERIC Educational Resources Information Center

    Kanaksabee, P.; Odit, M. P.; Ramdoyal, A.

    2011-01-01

    The key aim of this paper is to introduce a standard-based model for adaptive e-learning platform for Mauritian academic institutions and to investigate the conditions and tools required to implement this model. The main forces of the system are that it allows collaborative learning, communication among user, and reduce considerable paper work.…

  16. Ontology-Based Multimedia Authoring Tool for Adaptive E-Learning

    ERIC Educational Resources Information Center

    Deng, Lawrence Y.; Keh, Huan-Chao; Liu, Yi-Jen

    2010-01-01

    More video streaming technologies supporting distance learning systems are becoming popular among distributed network environments. In this paper, the authors develop a multimedia authoring tool for adaptive e-learning by using characterization of extended media streaming technologies. The distributed approach is based on an ontology-based model.…

  17. Adaptive Human Scaffolding Facilitates Adolescents' Self-Regulated Learning with Hypermedia

    ERIC Educational Resources Information Center

    Azevedo, Roger; Cromley, Jennifer G.; Winters, Fielding I.; Moos, Daniel C.; Greene, Jeffrey A.

    2005-01-01

    This study examines the effectiveness of three scaffolding conditions on adolescents' learning about the circulatory system with a hypermedia learning environment. One hundred and eleven adolescents (n = 111) were randomly assigned to one of three scaffolding conditions (adaptive scaffolding (AS), fixed scaffolding (FS), or no scaffolding (NS))…

  18. Adaptive Resonance Theory: how a brain learns to consciously attend, learn, and recognize a changing world.

    PubMed

    Grossberg, Stephen

    2013-01-01

    Adaptive Resonance Theory, or ART, is a cognitive and neural theory of how the brain autonomously learns to categorize, recognize, and predict objects and events in a changing world. This article reviews classical and recent developments of ART, and provides a synthesis of concepts, principles, mechanisms, architectures, and the interdisciplinary data bases that they have helped to explain and predict. The review illustrates that ART is currently the most highly developed cognitive and neural theory available, with the broadest explanatory and predictive range. Central to ART's predictive power is its ability to carry out fast, incremental, and stable unsupervised and supervised learning in response to a changing world. ART specifies mechanistic links between processes of consciousness, learning, expectation, attention, resonance, and synchrony during both unsupervised and supervised learning. ART provides functional and mechanistic explanations of such diverse topics as laminar cortical circuitry; invariant object and scenic gist learning and recognition; prototype, surface, and boundary attention; gamma and beta oscillations; learning of entorhinal grid cells and hippocampal place cells; computation of homologous spatial and temporal mechanisms in the entorhinal-hippocampal system; vigilance breakdowns during autism and medial temporal amnesia; cognitive-emotional interactions that focus attention on valued objects in an adaptively timed way; item-order-rank working memories and learned list chunks for the planning and control of sequences of linguistic, spatial, and motor information; conscious speech percepts that are influenced by future context; auditory streaming in noise during source segregation; and speaker normalization. Brain regions that are functionally described include visual and auditory neocortex; specific and nonspecific thalamic nuclei; inferotemporal, parietal, prefrontal, entorhinal, hippocampal, parahippocampal, perirhinal, and motor cortices

  19. Adaptive management of social-ecological systems: the path forward

    USGS Publications Warehouse

    Allen, Craig R.

    2015-01-01

    Adaptive management remains at the forefront of environmental management nearly 40 years after its original conception, largely because we have yet to develop other methodologies that offer the same promise. Despite the criticisms of adaptive management and the numerous failed attempts to implement it, adaptive management has yet to be replaced with a better alternative. The concept persists because it is simple, allows action despite uncertainty, and fosters learning. Moving forward, adaptive management of social-ecological systems provides policymakers, managers and scientists a powerful tool for managing for resilience in the face of uncertainty.

  20. The ERIS adaptive optics system

    NASA Astrophysics Data System (ADS)

    Marchetti, Enrico; Fedrigo, Enrico; Le Louarn, Miska; Madec, Pierre-Yves; Soenke, Christian; Brast, Roland; Conzelmann, Ralf; Delabre, Bernard; Duchateau, Michel; Frank, Christoph; Klein, Barbara; Amico, Paola; Hubin, Norbert; Esposito, Simone; Antichi, Jacopo; Carbonaro, Luca; Puglisi, Alfio; Quirós-Pacheco, Fernando; Riccardi, Armando; Xompero, Marco

    2014-07-01

    The Enhanced Resolution Imager and Spectrograph (ERIS) is the new Adaptive Optics based instrument for ESO's VLT aiming at replacing NACO and SINFONI to form a single compact facility with AO fed imaging and integral field unit spectroscopic scientific channels. ERIS completes the instrument suite at the VLT adaptive telescope. In particular it is equipped with a versatile AO system that delivers up to 95% Strehl correction in K band for science observations up to 5 micron It comprises high order NGS and LGS correction enabling the observation from exoplanets to distant galaxies with a large sky coverage thanks to the coupling of the LGS WFS with the high sensitivity of its visible WFS and the capability to observe in dust embedded environment thanks to its IR low order WFS. ERIS will be installed at the Cassegrain focus of the VLT unit hosting the Adaptive Optics Facility (AOF). The wavefront correction is provided by the AOF deformable secondary mirror while the Laser Guide Star is provided by one of the four launch units of the 4 Laser Guide Star Facility for the AOF. The overall layout of the ERIS AO system is extremely compact and highly optimized: the SPIFFI spectrograph is fed directly by the Cassegrain focus and both the NIX's (IR imager) and SPIFFI's entrance windows work as visible/infrared dichroics. In this paper we describe the concept of the ERIS AO system in detail, starting from the requirements and going through the estimated performance, the opto-mechanical design and the Real-Time Computer design.

  1. Adaptive Behaviour Assessment System: Indigenous Australian Adaptation Model (ABAS: IAAM)

    ERIC Educational Resources Information Center

    du Plessis, Santie

    2015-01-01

    The study objectives were to develop, trial and evaluate a cross-cultural adaptation of the Adaptive Behavior Assessment System-Second Edition Teacher Form (ABAS-II TF) ages 5-21 for use with Indigenous Australian students ages 5-14. This study introduced a multiphase mixed-method design with semi-structured and informal interviews, school…

  2. Adaptive strategies for cumulative cultural learning.

    PubMed

    Ehn, Micael; Laland, Kevin

    2012-05-21

    The demographic and ecological success of our species is frequently attributed to our capacity for cumulative culture. However, it is not yet known how humans combine social and asocial learning to generate effective strategies for learning in a cumulative cultural context. Here we explore how cumulative culture influences the relative merits of various pure and conditional learning strategies, including pure asocial and social learning, critical social learning, conditional social learning and individual refiner strategies. We replicate the Rogers' paradox in the cumulative setting. However, our analysis suggests that strategies that resolved Rogers' paradox in a non-cumulative setting may not necessarily evolve in a cumulative setting, thus different strategies will optimize cumulative and non-cumulative cultural learning.

  3. Adaptable state based control system

    NASA Technical Reports Server (NTRS)

    Rasmussen, Robert D. (Inventor); Dvorak, Daniel L. (Inventor); Gostelow, Kim P. (Inventor); Starbird, Thomas W. (Inventor); Gat, Erann (Inventor); Chien, Steve Ankuo (Inventor); Keller, Robert M. (Inventor)

    2004-01-01

    An autonomous controller, comprised of a state knowledge manager, a control executor, hardware proxies and a statistical estimator collaborates with a goal elaborator, with which it shares common models of the behavior of the system and the controller. The elaborator uses the common models to generate from temporally indeterminate sets of goals, executable goals to be executed by the controller. The controller may be updated to operate in a different system or environment than that for which it was originally designed by the replacement of shared statistical models and by the instantiation of a new set of state variable objects derived from a state variable class. The adaptation of the controller does not require substantial modification of the goal elaborator for its application to the new system or environment.

  4. A Novel Approach for Enhancing Lifelong Learning Systems by Using Hybrid Recommender System

    ERIC Educational Resources Information Center

    Kardan, Ahmad A.; Speily, Omid R. B.; Modaberi, Somayyeh

    2011-01-01

    The majority of current web-based learning systems are closed learning environments where courses and learning materials are fixed, and the only dynamic aspect is the organization of the material that can be adapted to allow a relatively individualized learning environment. In this paper, we propose an evolving web-based learning system which can…

  5. Adaptive E-Learning Environments: Research Dimensions and Technological Approaches

    ERIC Educational Resources Information Center

    Di Bitonto, Pierpaolo; Roselli, Teresa; Rossano, Veronica; Sinatra, Maria

    2013-01-01

    One of the most closely investigated topics in e-learning research has always been the effectiveness of adaptive learning environments. The technological evolutions that have dramatically changed the educational world in the last six decades have allowed ever more advanced and smarter solutions to be proposed. The focus of this paper is to depict…

  6. Adaptive optics point spread function reconstruction: lessons learned from on-sky experiment on Altair/Gemini and pathway for future systems

    NASA Astrophysics Data System (ADS)

    Jolissaint, Laurent; Christou, Julian; Wizinowich, Peter; Tolstoy, Eline

    2010-07-01

    We present the results of an on-sky point spread function reconstruction (PSF-R) experiment for the Gemini North telescope adaptive optics system, Altair, in the simplest mode, bright on-axis natural guise star. We demonstrate that our PSF-R method does work for system performance diagnostic but suffers from hidden telescope and system aberrations that are not accounted for in the model, making the reconstruction unsuccessful for Altair, for now. We discuss the probable origin of the discrepancy. In the last section, we propose alternative PSF-R methods for future multiple natural and laser guide stars systems.

  7. Adaptation of the Patterns of Adaptive Learning Scales (PALS) to Turkish Students: Factorial Validity and Reliability

    ERIC Educational Resources Information Center

    Cikrikci-Demirtash, R. Nukhet

    2005-01-01

    The study presented in this article was conducted to determine psychometric features of scales for Turkish students by adapting the Patterns of Adaptive Learning Scales (PALS) developed by Midgley and others (2000) to the Turkish language in order to measure personal and classroom goal orientations. The scales were developed to test…

  8. Adaptive Semantic and Social Web-based learning and assessment environment for the STEM

    NASA Astrophysics Data System (ADS)

    Babaie, Hassan; Atchison, Chris; Sunderraman, Rajshekhar

    2014-05-01

    We are building a cloud- and Semantic Web-based personalized, adaptive learning environment for the STEM fields that integrates and leverages Social Web technologies to allow instructors and authors of learning material to collaborate in semi-automatic development and update of their common domain and task ontologies and building their learning resources. The semi-automatic ontology learning and development minimize issues related to the design and maintenance of domain ontologies by knowledge engineers who do not have any knowledge of the domain. The social web component of the personal adaptive system will allow individual and group learners to interact with each other and discuss their own learning experience and understanding of course material, and resolve issues related to their class assignments. The adaptive system will be capable of representing key knowledge concepts in different ways and difficulty levels based on learners' differences, and lead to different understanding of the same STEM content by different learners. It will adapt specific pedagogical strategies to individual learners based on their characteristics, cognition, and preferences, allow authors to assemble remotely accessed learning material into courses, and provide facilities for instructors to assess (in real time) the perception of students of course material, monitor their progress in the learning process, and generate timely feedback based on their understanding or misconceptions. The system applies a set of ontologies that structure the learning process, with multiple user friendly Web interfaces. These include the learning ontology (models learning objects, educational resources, and learning goal); context ontology (supports adaptive strategy by detecting student situation), domain ontology (structures concepts and context), learner ontology (models student profile, preferences, and behavior), task ontologies, technological ontology (defines devices and places that surround the

  9. Electricity Market Complex Adaptive System

    2004-10-14

    EMCAS is a model developed for the simulation and analysis of electricity markets. As power markets are relatively new and still continue to evolve, there is a growing need for advanced modeling approaches that simulate the behavior of electricity markets over time and how market participants may act and react to the changing economic, financial, and regulatory environments in which they operate. A new and rather promising approach applied in the EMCAS software is tomore » model the electricity market as a complex adaptive system using an agent-based modeling and simulation scheme. With its unique combination of various novel approaches, the Agent Based Modeling System (ABMS) provides the ability to capture and investigate the complex interactions between the physical infrastructures (generation, transmission, and distribution) and the economic behavior of market participants that are a trademark of the newly emerging markets.« less

  10. Learning about stress: neural, endocrine and behavioral adaptations.

    PubMed

    McCarty, Richard

    2016-09-01

    In this review, nonassociative learning is advanced as an organizing principle to draw together findings from both sympathetic-adrenal medullary and hypothalamic-pituitary-adrenocortical (HPA) axis responses to chronic intermittent exposure to a variety of stressors. Studies of habituation, facilitation and sensitization of stress effector systems are reviewed and linked to an animal's prior experience with a given stressor, the intensity of the stressor and the appraisal by the animal of its ability to mobilize physiological systems to adapt to the stressor. Brain pathways that regulate physiological and behavioral responses to stress are discussed, especially in light of their regulation of nonassociative processes in chronic intermittent stress. These findings may have special relevance to various psychiatric diseases, including depression and post-traumatic stress disorder (PTSD). PMID:27294884

  11. Learning about stress: neural, endocrine and behavioral adaptations.

    PubMed

    McCarty, Richard

    2016-09-01

    In this review, nonassociative learning is advanced as an organizing principle to draw together findings from both sympathetic-adrenal medullary and hypothalamic-pituitary-adrenocortical (HPA) axis responses to chronic intermittent exposure to a variety of stressors. Studies of habituation, facilitation and sensitization of stress effector systems are reviewed and linked to an animal's prior experience with a given stressor, the intensity of the stressor and the appraisal by the animal of its ability to mobilize physiological systems to adapt to the stressor. Brain pathways that regulate physiological and behavioral responses to stress are discussed, especially in light of their regulation of nonassociative processes in chronic intermittent stress. These findings may have special relevance to various psychiatric diseases, including depression and post-traumatic stress disorder (PTSD).

  12. Motor sequence learning and motor adaptation in primary cervical dystonia.

    PubMed

    Katschnig-Winter, Petra; Schwingenschuh, Petra; Davare, Marco; Sadnicka, Anna; Schmidt, Reinhold; Rothwell, John C; Bhatia, Kailash P; Edwards, Mark J

    2014-06-01

    Motor sequence learning and motor adaptation rely on overlapping circuits predominantly involving the basal ganglia and cerebellum. Given the importance of these brain regions to the pathophysiology of primary dystonia, and the previous finding of abnormal motor sequence learning in DYT1 gene carriers, we explored motor sequence learning and motor adaptation in patients with primary cervical dystonia. We recruited 12 patients with cervical dystonia and 11 healthy controls matched for age. Subjects used a joystick to move a cursor from a central starting point to radial targets as fast and accurately as possible. Using this device, we recorded baseline motor performance, motor sequence learning and a visuomotor adaptation task. Patients with cervical dystonia had a significantly higher peak velocity than controls. Baseline performance with random target presentation was otherwise normal. Patients and controls had similar levels of motor sequence learning and motor adaptation. Our patients had significantly higher peak velocity compared to controls, with similar movement times, implying a different performance strategy. The preservation of motor sequence learning in cervical dystonia patients contrasts with the previously observed deficit seen in patients with DYT1 gene mutations, supporting the hypothesis of differing pathophysiology in different forms of primary dystonia. Normal motor adaptation is an interesting finding. With our paradigm we did not find evidence that the previously documented cerebellar abnormalities in cervical dystonia have a behavioral correlate, and thus could be compensatory or reflect "contamination" rather than being directly pathological.

  13. Learning without labeling: domain adaptation for ultrasound transducer localization.

    PubMed

    Heimann, Tobias; Mountney, Peter; John, Matthias; Ionasec, Razvan

    2013-01-01

    The fusion of image data from trans-esophageal echography (TEE) and X-ray fluoroscopy is attracting increasing interest in minimally-invasive treatment of structural heart disease. In order to calculate the needed transform between both imaging systems, we employ a discriminative learning based approach to localize the TEE transducer in X-ray images. Instead of time-consuming manual labeling, we generate the required training data automatically from a single volumetric image of the transducer. In order to adapt this system to real X-ray data, we use unlabeled fluoroscopy images to estimate differences in feature space density and correct covariate shift by instance weighting. An evaluation on more than 1900 images reveals that our approach reduces detection failures by 95% compared to cross validation on the test set and improves the localization error from 1.5 to 0.8 mm. Due to the automatic generation of training data, the proposed system is highly flexible and can be adapted to any medical device with minimal efforts.

  14. Learning without labeling: domain adaptation for ultrasound transducer localization.

    PubMed

    Heimann, Tobias; Mountney, Peter; John, Matthias; Ionasec, Razvan

    2013-01-01

    The fusion of image data from trans-esophageal echography (TEE) and X-ray fluoroscopy is attracting increasing interest in minimally-invasive treatment of structural heart disease. In order to calculate the needed transform between both imaging systems, we employ a discriminative learning based approach to localize the TEE transducer in X-ray images. Instead of time-consuming manual labeling, we generate the required training data automatically from a single volumetric image of the transducer. In order to adapt this system to real X-ray data, we use unlabeled fluoroscopy images to estimate differences in feature space density and correct covariate shift by instance weighting. An evaluation on more than 1900 images reveals that our approach reduces detection failures by 95% compared to cross validation on the test set and improves the localization error from 1.5 to 0.8 mm. Due to the automatic generation of training data, the proposed system is highly flexible and can be adapted to any medical device with minimal efforts. PMID:24505743

  15. Adaptive Modeling of the International Space Station Electrical Power System

    NASA Technical Reports Server (NTRS)

    Thomas, Justin Ray

    2007-01-01

    Software simulations provide NASA engineers the ability to experiment with spacecraft systems in a computer-imitated environment. Engineers currently develop software models that encapsulate spacecraft system behavior. These models can be inaccurate due to invalid assumptions, erroneous operation, or system evolution. Increasing accuracy requires manual calibration and domain-specific knowledge. This thesis presents a method for automatically learning system models without any assumptions regarding system behavior. Data stream mining techniques are applied to learn models for critical portions of the International Space Station (ISS) Electrical Power System (EPS). We also explore a knowledge fusion approach that uses traditional engineered EPS models to supplement the learned models. We observed that these engineered EPS models provide useful background knowledge to reduce predictive error spikes when confronted with making predictions in situations that are quite different from the training scenarios used when learning the model. Evaluations using ISS sensor data and existing EPS models demonstrate the success of the adaptive approach. Our experimental results show that adaptive modeling provides reductions in model error anywhere from 80% to 96% over these existing models. Final discussions include impending use of adaptive modeling technology for ISS mission operations and the need for adaptive modeling in future NASA lunar and Martian exploration.

  16. Radiographic skills learning: procedure simulation using adaptive hypermedia.

    PubMed

    Costaridou, L; Panayiotakis, G; Pallikarakis, N; Proimos, B

    1996-10-01

    The design and development of a simulation tool supporting learning of radiographic skills is reported. This tool has by textual, graphical and iconic resources, organized according to a building-block, adaptive hypermedia approach, which is described and supported by an image base of radiographs. It offers interactive user-controlled simulation of radiographic imaging procedures. The development is based on a commercially available environment (Toolbook 3.0, Asymetrix Corporation). The core of the system is an attributed precedence (priority) graph, which represents a task outline (concept and resources structure), which is dynamically adjusted to selected procedures. The user interface imitates a conventional radiography system, i.e. operating console, tube, table, patient and cassette. System parameters, such as patient positioning, focus-to-patient distance, magnification, field dimensions, tube voltage and mAs are under user control. Their effects on image quality are presented, by means of an image base acquired under controlled exposure conditions. Innovative use of hypermedia, computer based learning and simulation principles and technology in the development of this tool resulted in an enhanced interactive environment providing radiographic parameter control and visualization of parameter effects on image quality. PMID:9038530

  17. Evolutionary and adaptive learning in complex markets: a brief summary

    NASA Astrophysics Data System (ADS)

    Hommes, Cars H.

    2007-06-01

    We briefly review some work on expectations and learning in complex markets, using the familiar demand-supply cobweb model. We discuss and combine two different approaches on learning. According to the adaptive learning approach, agents behave as econometricians using time series observations to form expectations, and update the parameters as more observations become available. This approach has become popular in macro. The second approach has an evolutionary flavor and is sometimes referred to as reinforcement learning. Agents employ different forecasting strategies and evaluate these strategies based upon a fitness measure, e.g. past realized profits. In this framework, boundedly rational agents switch between different, but fixed behavioral rules. This approach has become popular in finance. We combine evolutionary and adaptive learning to model complex markets and discuss whether this theory can match empirical facts and forecasting behavior in laboratory experiments with human subjects.

  18. Adaptive cyber-attack modeling system

    NASA Astrophysics Data System (ADS)

    Gonsalves, Paul G.; Dougherty, Edward T.

    2006-05-01

    The pervasiveness of software and networked information systems is evident across a broad spectrum of business and government sectors. Such reliance provides an ample opportunity not only for the nefarious exploits of lone wolf computer hackers, but for more systematic software attacks from organized entities. Much effort and focus has been placed on preventing and ameliorating network and OS attacks, a concomitant emphasis is required to address protection of mission critical software. Typical software protection technique and methodology evaluation and verification and validation (V&V) involves the use of a team of subject matter experts (SMEs) to mimic potential attackers or hackers. This manpower intensive, time-consuming, and potentially cost-prohibitive approach is not amenable to performing the necessary multiple non-subjective analyses required to support quantifying software protection levels. To facilitate the evaluation and V&V of software protection solutions, we have designed and developed a prototype adaptive cyber attack modeling system. Our approach integrates an off-line mechanism for rapid construction of Bayesian belief network (BN) attack models with an on-line model instantiation, adaptation and knowledge acquisition scheme. Off-line model construction is supported via a knowledge elicitation approach for identifying key domain requirements and a process for translating these requirements into a library of BN-based cyber-attack models. On-line attack modeling and knowledge acquisition is supported via BN evidence propagation and model parameter learning.

  19. Lessons from Adaptive Level One Accelerator (ALOA) System Implementation

    NASA Technical Reports Server (NTRS)

    Patel, Umesh D.; Brambora, Clifford; Ghuman, Parminder; Day, John H. (Technical Monitor)

    2001-01-01

    The Adaptive Level One Accelerator (ALOA) system was developed as part of the Earth Science Data and Information System (ESDIS) project. The reconfigurable computing technologies were investigated for Level 1 satellite telemetry data processing to achieve computing acceleration and cost reduction for the next-generation Level 1 data processing systems. The MODIS instrument calibration algorithm was implemented using reconfigurable a computer. The system development process and the lessons learned throughout the design cycle are summarized in this paper.

  20. Teacher Adaptation to Open Learning Spaces

    ERIC Educational Resources Information Center

    Alterator, Scott; Deed, Craig

    2013-01-01

    The "open classroom" emerged as a reaction against the industrial-era enclosed and authoritarian classroom. Although contemporary school architecture continues to incorporate and express ideas of openness, more research is needed about how teachers adapt to new and different built contexts. Our purpose is to identify teacher reaction to…

  1. Professional Learning to Nurture Adaptive Teachers

    ERIC Educational Resources Information Center

    Lee, Kar-Tin

    2013-01-01

    This paper presents the findings of a study conducted in China to identify the potential benefits of incorporating robotics as an educational tool for 100 primary and 320 secondary school teachers of general technology. The Professional Learning Program was conducted from 2010-2013 in China. The major focus of the program was on the development…

  2. Women, Subjectivities and Learning to Be Adaptable

    ERIC Educational Resources Information Center

    Cavanagh, Jillian

    2010-01-01

    Purpose: The purpose of this paper is to advance understandings of the subjectivities that influence auxiliary-level female employees' work and learning experiences in general legal practice. Moreover, the aim is to maximise the opportunities for these workers. Design/methodology/approach: A broader critical ethnographic study investigated…

  3. Auditory-Perceptual Learning Improves Speech Motor Adaptation in Children

    PubMed Central

    Shiller, Douglas M.; Rochon, Marie-Lyne

    2015-01-01

    Auditory feedback plays an important role in children’s speech development by providing the child with information about speech outcomes that is used to learn and fine-tune speech motor plans. The use of auditory feedback in speech motor learning has been extensively studied in adults by examining oral motor responses to manipulations of auditory feedback during speech production. Children are also capable of adapting speech motor patterns to perceived changes in auditory feedback, however it is not known whether their capacity for motor learning is limited by immature auditory-perceptual abilities. Here, the link between speech perceptual ability and the capacity for motor learning was explored in two groups of 5–7-year-old children who underwent a period of auditory perceptual training followed by tests of speech motor adaptation to altered auditory feedback. One group received perceptual training on a speech acoustic property relevant to the motor task while a control group received perceptual training on an irrelevant speech contrast. Learned perceptual improvements led to an enhancement in speech motor adaptation (proportional to the perceptual change) only for the experimental group. The results indicate that children’s ability to perceive relevant speech acoustic properties has a direct influence on their capacity for sensory-based speech motor adaptation. PMID:24842067

  4. Modelling Adaptive Learning Behaviours for Consensus Formation in Human Societies.

    PubMed

    Yu, Chao; Tan, Guozhen; Lv, Hongtao; Wang, Zhen; Meng, Jun; Hao, Jianye; Ren, Fenghui

    2016-01-01

    Learning is an important capability of humans and plays a vital role in human society for forming beliefs and opinions. In this paper, we investigate how learning affects the dynamics of opinion formation in social networks. A novel learning model is proposed, in which agents can dynamically adapt their learning behaviours in order to facilitate the formation of consensus among them, and thus establish a consistent social norm in the whole population more efficiently. In the model, agents adapt their opinions through trail-and-error interactions with others. By exploiting historical interaction experience, a guiding opinion, which is considered to be the most successful opinion in the neighbourhood, can be generated based on the principle of evolutionary game theory. Then, depending on the consistency between its own opinion and the guiding opinion, a focal agent can realize whether its opinion complies with the social norm (i.e., the majority opinion that has been adopted) in the population, and adapt its behaviours accordingly. The highlight of the model lies in that it captures the essential features of people's adaptive learning behaviours during the evolution and formation of opinions. Experimental results show that the proposed model can facilitate the formation of consensus among agents, and some critical factors such as size of opinion space and network topology can have significant influences on opinion dynamics. PMID:27282089

  5. Auditory-perceptual learning improves speech motor adaptation in children.

    PubMed

    Shiller, Douglas M; Rochon, Marie-Lyne

    2014-08-01

    Auditory feedback plays an important role in children's speech development by providing the child with information about speech outcomes that is used to learn and fine-tune speech motor plans. The use of auditory feedback in speech motor learning has been extensively studied in adults by examining oral motor responses to manipulations of auditory feedback during speech production. Children are also capable of adapting speech motor patterns to perceived changes in auditory feedback; however, it is not known whether their capacity for motor learning is limited by immature auditory-perceptual abilities. Here, the link between speech perceptual ability and the capacity for motor learning was explored in two groups of 5- to 7-year-old children who underwent a period of auditory perceptual training followed by tests of speech motor adaptation to altered auditory feedback. One group received perceptual training on a speech acoustic property relevant to the motor task while a control group received perceptual training on an irrelevant speech contrast. Learned perceptual improvements led to an enhancement in speech motor adaptation (proportional to the perceptual change) only for the experimental group. The results indicate that children's ability to perceive relevant speech acoustic properties has a direct influence on their capacity for sensory-based speech motor adaptation.

  6. Modelling Adaptive Learning Behaviours for Consensus Formation in Human Societies

    PubMed Central

    Yu, Chao; Tan, Guozhen; Lv, Hongtao; Wang, Zhen; Meng, Jun; Hao, Jianye; Ren, Fenghui

    2016-01-01

    Learning is an important capability of humans and plays a vital role in human society for forming beliefs and opinions. In this paper, we investigate how learning affects the dynamics of opinion formation in social networks. A novel learning model is proposed, in which agents can dynamically adapt their learning behaviours in order to facilitate the formation of consensus among them, and thus establish a consistent social norm in the whole population more efficiently. In the model, agents adapt their opinions through trail-and-error interactions with others. By exploiting historical interaction experience, a guiding opinion, which is considered to be the most successful opinion in the neighbourhood, can be generated based on the principle of evolutionary game theory. Then, depending on the consistency between its own opinion and the guiding opinion, a focal agent can realize whether its opinion complies with the social norm (i.e., the majority opinion that has been adopted) in the population, and adapt its behaviours accordingly. The highlight of the model lies in that it captures the essential features of people’s adaptive learning behaviours during the evolution and formation of opinions. Experimental results show that the proposed model can facilitate the formation of consensus among agents, and some critical factors such as size of opinion space and network topology can have significant influences on opinion dynamics. PMID:27282089

  7. Modelling Adaptive Learning Behaviours for Consensus Formation in Human Societies

    NASA Astrophysics Data System (ADS)

    Yu, Chao; Tan, Guozhen; Lv, Hongtao; Wang, Zhen; Meng, Jun; Hao, Jianye; Ren, Fenghui

    2016-06-01

    Learning is an important capability of humans and plays a vital role in human society for forming beliefs and opinions. In this paper, we investigate how learning affects the dynamics of opinion formation in social networks. A novel learning model is proposed, in which agents can dynamically adapt their learning behaviours in order to facilitate the formation of consensus among them, and thus establish a consistent social norm in the whole population more efficiently. In the model, agents adapt their opinions through trail-and-error interactions with others. By exploiting historical interaction experience, a guiding opinion, which is considered to be the most successful opinion in the neighbourhood, can be generated based on the principle of evolutionary game theory. Then, depending on the consistency between its own opinion and the guiding opinion, a focal agent can realize whether its opinion complies with the social norm (i.e., the majority opinion that has been adopted) in the population, and adapt its behaviours accordingly. The highlight of the model lies in that it captures the essential features of people’s adaptive learning behaviours during the evolution and formation of opinions. Experimental results show that the proposed model can facilitate the formation of consensus among agents, and some critical factors such as size of opinion space and network topology can have significant influences on opinion dynamics.

  8. Generalized perceptual learning in the absence of sensory adaptation.

    PubMed

    Harris, Hila; Gliksberg, Michael; Sagi, Dov

    2012-10-01

    Repeated performance of visual tasks leads to long-lasting increased sensitivity to the trained stimulus, a phenomenon termed perceptual learning. A ubiquitous property of visual learning is specificity: performance improvement obtained during training applies only for the trained stimulus features, which are thought to be encoded in sensory brain regions [1-3]. However, recent results show performance decrements with an increasing number of trials within a training session [4, 5]. This selective sensitivity reduction is thought to arise due to sensory adaptation [5, 6]. Here we show, using the standard texture discrimination task [7], that location specificity is a consequence of sensory adaptation; that is, it results from selective reduced sensitivity due to repeated stimulation. Observers practiced the texture task with the target presented at a fixed location within a background texture. To remove adaptation, we added task-irrelevant ("dummy") trials with the texture oriented 45° relative to the target's orientation, known to counteract adaptation [8]. The results indicate location specificity with the standard paradigm, but complete generalization to a new location when adaptation is removed. We suggest that adaptation interferes with invariant pattern-discrimination learning by inducing network-dependent changes in local visual representations.

  9. Hierarchically clustered adaptive quantization CMAC and its learning convergence.

    PubMed

    Teddy, S D; Lai, E M K; Quek, C

    2007-11-01

    The cerebellar model articulation controller (CMAC) neural network (NN) is a well-established computational model of the human cerebellum. Nevertheless, there are two major drawbacks associated with the uniform quantization scheme of the CMAC network. They are the following: (1) a constant output resolution associated with the entire input space and (2) the generalization-accuracy dilemma. Moreover, the size of the CMAC network is an exponential function of the number of inputs. Depending on the characteristics of the training data, only a small percentage of the entire set of CMAC memory cells is utilized. Therefore, the efficient utilization of the CMAC memory is a crucial issue. One approach is to quantize the input space nonuniformly. For existing nonuniformly quantized CMAC systems, there is a tradeoff between memory efficiency and computational complexity. Inspired by the underlying organizational mechanism of the human brain, this paper presents a novel CMAC architecture named hierarchically clustered adaptive quantization CMAC (HCAQ-CMAC). HCAQ-CMAC employs hierarchical clustering for the nonuniform quantization of the input space to identify significant input segments and subsequently allocating more memory cells to these regions. The stability of the HCAQ-CMAC network is theoretically guaranteed by the proof of its learning convergence. The performance of the proposed network is subsequently benchmarked against the original CMAC network, as well as two other existing CMAC variants on two real-life applications, namely, automated control of car maneuver and modeling of the human blood glucose dynamics. The experimental results have demonstrated that the HCAQ-CMAC network offers an efficient memory allocation scheme and improves the generalization and accuracy of the network output to achieve better or comparable performances with smaller memory usages. Index Terms-Cerebellar model articulation controller (CMAC), hierarchical clustering, hierarchically

  10. Potentiating mGluR5 function with a positive allosteric modulator enhances adaptive learning.

    PubMed

    Xu, Jian; Zhu, Yongling; Kraniotis, Stephen; He, Qionger; Marshall, John J; Nomura, Toshihiro; Stauffer, Shaun R; Lindsley, Craig W; Conn, P Jeffrey; Contractor, Anis

    2013-08-01

    Metabotropic glutamate receptor 5 (mGluR5) plays important roles in modulating neural activity and plasticity and has been associated with several neuropathological disorders. Previous work has shown that genetic ablation or pharmacological inhibition of mGluR5 disrupts fear extinction and spatial reversal learning, suggesting that mGluR5 signaling is required for different forms of adaptive learning. Here, we tested whether ADX47273, a selective positive allosteric modulator (PAM) of mGluR5, can enhance adaptive learning in mice. We found that systemic administration of the ADX47273 enhanced reversal learning in the Morris Water Maze, an adaptive task. In addition, we found that ADX47273 had no effect on single-session and multi-session extinction, but administration of ADX47273 after a single retrieval trial enhanced subsequent fear extinction learning. Together these results demonstrate a role for mGluR5 signaling in adaptive learning, and suggest that mGluR5 PAMs represent a viable strategy for treatment of maladaptive learning and for improving behavioral flexibility.

  11. Potentiating mGluR5 function with a positive allosteric modulator enhances adaptive learning

    PubMed Central

    Xu, Jian; Zhu, Yongling; Kraniotis, Stephen; He, Qionger; Marshall, John J.; Nomura, Toshihiro; Stauffer, Shaun R.; Lindsley, Craig W.; Conn, P. Jeffrey; Contractor, Anis

    2013-01-01

    Metabotropic glutamate receptor 5 (mGluR5) plays important roles in modulating neural activity and plasticity and has been associated with several neuropathological disorders. Previous work has shown that genetic ablation or pharmacological inhibition of mGluR5 disrupts fear extinction and spatial reversal learning, suggesting that mGluR5 signaling is required for different forms of adaptive learning. Here, we tested whether ADX47273, a selective positive allosteric modulator (PAM) of mGluR5, can enhance adaptive learning in mice. We found that systemic administration of the ADX47273 enhanced reversal learning in the Morris Water Maze, an adaptive task. In addition, we found that ADX47273 had no effect on single-session and multi-session extinction, but administration of ADX47273 after a single retrieval trial enhanced subsequent fear extinction learning. Together these results demonstrate a role for mGluR5 signaling in adaptive learning, and suggest that mGluR5 PAMs represent a viable strategy for treatment of maladaptive learning and for improving behavioral flexibility. PMID:23869026

  12. Modeling Power Systems as Complex Adaptive Systems

    SciTech Connect

    Chassin, David P.; Malard, Joel M.; Posse, Christian; Gangopadhyaya, Asim; Lu, Ning; Katipamula, Srinivas; Mallow, J V.

    2004-12-30

    Physical analogs have shown considerable promise for understanding the behavior of complex adaptive systems, including macroeconomics, biological systems, social networks, and electric power markets. Many of today's most challenging technical and policy questions can be reduced to a distributed economic control problem. Indeed, economically based control of large-scale systems is founded on the conjecture that the price-based regulation (e.g., auctions, markets) results in an optimal allocation of resources and emergent optimal system control. This report explores the state-of-the-art physical analogs for understanding the behavior of some econophysical systems and deriving stable and robust control strategies for using them. We review and discuss applications of some analytic methods based on a thermodynamic metaphor, according to which the interplay between system entropy and conservation laws gives rise to intuitive and governing global properties of complex systems that cannot be otherwise understood. We apply these methods to the question of how power markets can be expected to behave under a variety of conditions.

  13. Development of the Novel e-Learning System, "SPES NOVA" (Scalable Personality-Adapted Education System with Networking of Views and Activities)

    ERIC Educational Resources Information Center

    Takeuchi, Ken; Murakami, Manabu; Kato, Atsushi; Akiyama, Ryuichi; Honda, Hirotaka; Nozawa, Hajime; Sato, Ki-ichiro

    2009-01-01

    The Faculty of Industrial Science and Technology at Tokyo University of Science developed a two-campus system to produce well-trained engineers possessing both technical and humanistic traits. In their first year of study, students reside in dormitories in the natural setting of the Oshamambe campus located in Hokkaido, Japan. The education…

  14. Managing Adaptive Challenges: Learning with Principals in Bermuda and Florida

    ERIC Educational Resources Information Center

    Drago-Severson, Eleanor; Maslin-Ostrowski, Patricia; Hoffman, Alexander M.; Barbaro, Justin

    2014-01-01

    We interviewed eight principals from Bermuda and Florida about how they identify and manage their most pressing challenges. Their challenges are composed of both adaptive and technical work, requiring leaders to learn to diagnose and manage them. Challenges focused on change and were traced to accountability contexts, yet accountability was not…

  15. Adaptive Knowledge Management of Project-Based Learning

    ERIC Educational Resources Information Center

    Tilchin, Oleg; Kittany, Mohamed

    2016-01-01

    The goal of an approach to Adaptive Knowledge Management (AKM) of project-based learning (PBL) is to intensify subject study through guiding, inducing, and facilitating development knowledge, accountability skills, and collaborative skills of students. Knowledge development is attained by knowledge acquisition, knowledge sharing, and knowledge…

  16. Mispronunciation Detection for Language Learning and Speech Recognition Adaptation

    ERIC Educational Resources Information Center

    Ge, Zhenhao

    2013-01-01

    The areas of "mispronunciation detection" (or "accent detection" more specifically) within the speech recognition community are receiving increased attention now. Two application areas, namely language learning and speech recognition adaptation, are largely driving this research interest and are the focal points of this work.…

  17. Amygdala-prefrontal interactions in (mal)adaptive learning.

    PubMed

    Likhtik, Ekaterina; Paz, Rony

    2015-03-01

    The study of neurobiological mechanisms underlying anxiety disorders has been shaped by learning models that frame anxiety as maladaptive learning. Pavlovian conditioning and extinction are particularly influential in defining learning stages that can account for symptoms of anxiety disorders. Recently, dynamic and task related communication between the basolateral complex of the amygdala (BLA) and the medial prefrontal cortex (mPFC) has emerged as a crucial aspect of successful evaluation of threat and safety. Ongoing patterns of neural signaling within the mPFC-BLA circuit during encoding, expression and extinction of adaptive learning are reviewed. The mechanisms whereby deficient mPFC-BLA interactions can lead to generalized fear and anxiety are discussed in learned and innate anxiety. Findings with cross-species validity are emphasized.

  18. Introducing and adapting a novel method for investigating learning experiences in clinical learning environments.

    PubMed

    Lachmann, Hanna; Ponzer, Sari; Johansson, Unn-Britt; Karlgren, Klas

    2012-09-01

    The Contextual Activity Sampling System (CASS) is a novel methodology designed for collecting data of on-going learning experiences through frequent sampling by using mobile phones. This paper describes how it for the first time has been introduced to clinical learning environments. The purposes of this study were to cross-culturally adapt the CASS tool and questionnaire for use in clinical learning environments, investigate whether the methodology is suitable for collecting data and how it is experienced by students. A study was carried out with 51 students who reported about their activities and experiences five times a day during a 2-week course on an interprofessional training ward. Interviews were conducted after the course. The study showed that CASS provided a range of detailed and interesting qualitative and quantitative data, which we would not have been able to collect using traditional methods such as post-course questionnaires or interviews. Moreover, the participants reported that CASS worked well, was easy to use, helped them structure their days and reflect on their learning activities. This methodology proved to be a fruitful way of collecting information about experiences, which could be useful for not only researchers but also students, teachers and course designers.

  19. Effects of dopaminergic therapy on locomotor adaptation and adaptive learning in persons with Parkinson's disease.

    PubMed

    Roemmich, Ryan T; Hack, Nawaz; Akbar, Umer; Hass, Chris J

    2014-07-15

    Persons with Parkinson's disease (PD) are characterized by multifactorial gait deficits, though the factors which influence the abilities of persons with PD to adapt and store new gait patterns are unclear. The purpose of this study was to investigate the effects of dopaminergic therapy on the abilities of persons with PD to adapt and store gait parameters during split-belt treadmill (SBT) walking. Ten participants with idiopathic PD who were being treated with stable doses of orally-administered dopaminergic therapy participated. All participants performed two randomized testing sessions on separate days: once while optimally-medicated (ON meds) and once after 12-h withdrawal from dopaminergic medication (OFF meds). During each session, locomotor adaptation was investigated as the participants walked on a SBT for 10 min while the belts moved at a 2:1 speed ratio. We assessed locomotor adaptive learning by quantifying: (1) aftereffects during de-adaptation (once the belts returned to tied speeds immediately following SBT walking) and (2) savings during re-adaptation (as the participants repeated the same SBT walking task after washout of aftereffects following the initial SBT task). The withholding of dopaminergic medication diminished step length aftereffects significantly during de-adaptation. However, both locomotor adaptation and savings were unaffected by levodopa. These findings suggest that dopaminergic pathways influence aftereffect storage but do not influence locomotor adaptation or savings within a single session of SBT walking. It appears important that persons with PD should be optimally-medicated if walking on the SBT as gait rehabilitation.

  20. SYSTEMS APPROACH TO LEARNING.

    ERIC Educational Resources Information Center

    WIENS, JACOB H.

    TO PERMIT COMPARATIVE ANALYSIS FOR PURPOSES OF EDUCATIONAL PLANNING AT SAN MATEO, FIVE INSTITUTIONS WITH SYSTEMS PROGRAMS ARE EVALUATED ON THE BASIS OF TRIP NOTES. OAKLAND COMMUNITY COLLEGE HAS BEEN COMPLETELY ORGANIZED AROUND THE VOLUNTARY WORK-STUDY LABORATORY APPROACH TO LEARNING. ORAL ROBERTS UNIVERSITY, OKLAHOMA CHRISTIAN COLLEGE, HENRY FORD…

  1. An Approach to V&V of Embedded Adaptive Systems

    NASA Technical Reports Server (NTRS)

    Liu, Yan; Yerramalla, Sampath; Fuller, Edgar; Cukic, Bojan; Gururajan, Srikaruth

    2004-01-01

    Rigorous Verification and Validation (V&V) techniques are essential for high assurance systems. Lately, the performance of some of these systems is enhanced by embedded adaptive components in order to cope with environmental changes. Although the ability of adapting is appealing, it actually poses a problem in terms of V&V. Since uncertainties induced by environmental changes have a significant impact on system behavior, the applicability of conventional V&V techniques is limited. In safety-critical applications such as flight control system, the mechanisms of change must be observed, diagnosed, accommodated and well understood prior to deployment. In this paper, we propose a non-conventional V&V approach suitable for online adaptive systems. We apply our approach to an intelligent flight control system that employs a particular type of Neural Networks (NN) as the adaptive learning paradigm. Presented methodology consists of a novelty detection technique and online stability monitoring tools. The novelty detection technique is based on Support Vector Data Description that detects novel (abnormal) data patterns. The Online Stability Monitoring tools based on Lyapunov's Stability Theory detect unstable learning behavior in neural networks. Cases studies based on a high fidelity simulator of NASA's Intelligent Flight Control System demonstrate a successful application of the presented V&V methodology. ,

  2. Selecting Learning Tasks: Effects of Adaptation and Shared Control on Learning Efficiency and Task Involvement

    ERIC Educational Resources Information Center

    Corbalan, Gemma; Kester, Liesbeth; van Merrienboer, Jeroen J. G.

    2008-01-01

    Complex skill acquisition by performing authentic learning tasks is constrained by limited working memory capacity [Baddeley, A. D. (1992). Working memory. "Science, 255", 556-559]. To prevent cognitive overload, task difficulty and support of each newly selected learning task can be adapted to the learner's competence level and perceived task…

  3. Peers as Resources for Learning: A Situated Learning Approach to Adapted Physical Activity in Rehabilitation

    ERIC Educational Resources Information Center

    Standal, Oyvind F.; Jespersen, Ejgil

    2008-01-01

    The purpose of this study was to investigate the learning that takes place when people with disabilities interact in a rehabilitation context. Data were generated through in-depth interviews and close observations in a 2 one-half week-long rehabilitation program, where the participants learned both wheelchair skills and adapted physical…

  4. Learning from adaptive neural network output feedback control of a unicycle-type mobile robot.

    PubMed

    Zeng, Wei; Wang, Qinghui; Liu, Fenglin; Wang, Ying

    2016-03-01

    This paper studies learning from adaptive neural network (NN) output feedback control of nonholonomic unicycle-type mobile robots. The major difficulties are caused by the unknown robot system dynamics and the unmeasurable states. To overcome these difficulties, a new adaptive control scheme is proposed including designing a new adaptive NN output feedback controller and two high-gain observers. It is shown that the stability of the closed-loop robot system and the convergence of tracking errors are guaranteed. The unknown robot system dynamics can be approximated by radial basis function NNs. When repeating same or similar control tasks, the learned knowledge can be recalled and reused to achieve guaranteed stability and better control performance, thereby avoiding the tremendous repeated training process of NNs. PMID:26830003

  5. Learning from adaptive neural network output feedback control of a unicycle-type mobile robot.

    PubMed

    Zeng, Wei; Wang, Qinghui; Liu, Fenglin; Wang, Ying

    2016-03-01

    This paper studies learning from adaptive neural network (NN) output feedback control of nonholonomic unicycle-type mobile robots. The major difficulties are caused by the unknown robot system dynamics and the unmeasurable states. To overcome these difficulties, a new adaptive control scheme is proposed including designing a new adaptive NN output feedback controller and two high-gain observers. It is shown that the stability of the closed-loop robot system and the convergence of tracking errors are guaranteed. The unknown robot system dynamics can be approximated by radial basis function NNs. When repeating same or similar control tasks, the learned knowledge can be recalled and reused to achieve guaranteed stability and better control performance, thereby avoiding the tremendous repeated training process of NNs.

  6. Adaptation for a Changing Environment: Developing Learning and Teaching with Information and Communication Technologies

    ERIC Educational Resources Information Center

    Kirkwood, Adrian; Price, Linda

    2006-01-01

    This article examines the relationship between the use of information and communication technologies (ICT) and learning and teaching, particularly in distance education contexts. We argue that environmental changes (societal, educational, and technological) make it necessary to adapt systems and practices that are no longer appropriate. The need…

  7. On the Use of Adaptive Instructional Images Based on the Sequential-Global Dimension of the Felder-Silverman Learning Style Theory

    ERIC Educational Resources Information Center

    Filippidis, Stavros K.; Tsoukalas, Ioannis A.

    2009-01-01

    An adaptive educational system that uses adaptive presentation is presented. In this system fragments of different images present the same content and the system can choose the one most relevant to the user based on the sequential-global dimension of Felder-Silverman's learning style theory. In order to retrieve the learning style of each student…

  8. Building Adaptive Game-Based Learning Resources: The Integration of IMS Learning Design and

    ERIC Educational Resources Information Center

    Burgos, Daniel; Moreno-Ger, Pablo; Sierra, Jose Luis; Fernandez-Manjon, Baltasar; Specht, Marcus; Koper, Rob

    2008-01-01

    IMS Learning Design (IMS-LD) is a specification to create units of learning (UoLs), which express a certain pedagogical model or strategy (e.g., adaptive learning with games). However, the authoring process of a UoL remains difficult because of the lack of high-level authoring tools for IMS-LD, even more so when the focus is on specific topics,…

  9. Modeling the behavioral substrates of associate learning and memory - Adaptive neural models

    NASA Technical Reports Server (NTRS)

    Lee, Chuen-Chien

    1991-01-01

    Three adaptive single-neuron models based on neural analogies of behavior modification episodes are proposed, which attempt to bridge the gap between psychology and neurophysiology. The proposed models capture the predictive nature of Pavlovian conditioning, which is essential to the theory of adaptive/learning systems. The models learn to anticipate the occurrence of a conditioned response before the presence of a reinforcing stimulus when training is complete. Furthermore, each model can find the most nonredundant and earliest predictor of reinforcement. The behavior of the models accounts for several aspects of basic animal learning phenomena in Pavlovian conditioning beyond previous related models. Computer simulations show how well the models fit empirical data from various animal learning paradigms.

  10. Learning to speciate: The biased learning of mate preferences promotes adaptive radiation

    PubMed Central

    Gilman, R. Tucker; Kozak, Genevieve M.

    2015-01-01

    Bursts of rapid repeated speciation called adaptive radiations have generated much of Earth's biodiversity and fascinated biologists since Darwin, but we still do not know why some lineages radiate and others do not. Understanding what causes assortative mating to evolve rapidly and repeatedly in the same lineage is key to understanding adaptive radiation. Many species that have undergone adaptive radiations exhibit mate preference learning, where individuals acquire mate preferences by observing the phenotypes of other members of their populations. Mate preference learning can be biased if individuals also learn phenotypes to avoid in mates, and shift their preferences away from these avoided phenotypes. We used individual‐based computational simulations to study whether biased and unbiased mate preference learning promotes ecological speciation and adaptive radiation. We found that ecological speciation can be rapid and repeated when mate preferences are biased, but is inhibited when mate preferences are learned without bias. Our results suggest that biased mate preference learning may play an important role in generating animal biodiversity through adaptive radiation. PMID:26459795

  11. Learning to speciate: The biased learning of mate preferences promotes adaptive radiation.

    PubMed

    Gilman, R Tucker; Kozak, Genevieve M

    2015-11-01

    Bursts of rapid repeated speciation called adaptive radiations have generated much of Earth's biodiversity and fascinated biologists since Darwin, but we still do not know why some lineages radiate and others do not. Understanding what causes assortative mating to evolve rapidly and repeatedly in the same lineage is key to understanding adaptive radiation. Many species that have undergone adaptive radiations exhibit mate preference learning, where individuals acquire mate preferences by observing the phenotypes of other members of their populations. Mate preference learning can be biased if individuals also learn phenotypes to avoid in mates, and shift their preferences away from these avoided phenotypes. We used individual-based computational simulations to study whether biased and unbiased mate preference learning promotes ecological speciation and adaptive radiation. We found that ecological speciation can be rapid and repeated when mate preferences are biased, but is inhibited when mate preferences are learned without bias. Our results suggest that biased mate preference learning may play an important role in generating animal biodiversity through adaptive radiation.

  12. Qualitative adaptive reward learning with success failure maps: applied to humanoid robot walking.

    PubMed

    Nassour, John; Hugel, Vincent; Ben Ouezdou, Fethi; Cheng, Gordon

    2013-01-01

    In the human brain, rewards are encoded in a flexible and adaptive way after each novel stimulus. Neurons of the orbitofrontal cortex are the key reward structure of the brain. Neurobiological studies show that the anterior cingulate cortex of the brain is primarily responsible for avoiding repeated mistakes. According to vigilance threshold, which denotes the tolerance to risks, we can differentiate between a learning mechanism that takes risks and one that averts risks. The tolerance to risk plays an important role in such a learning mechanism. Results have shown the differences in learning capacity between risk-taking and risk-avert behaviors. These neurological properties provide promising inspirations for robot learning based on rewards. In this paper, we propose a learning mechanism that is able to learn from negative and positive feedback with reward coding adaptively. It is composed of two phases: evaluation and decision making. In the evaluation phase, we use a Kohonen self-organizing map technique to represent success and failure. Decision making is based on an early warning mechanism that enables avoiding repeating past mistakes. The behavior to risk is modulated in order to gain experiences for success and for failure. Success map is learned with adaptive reward that qualifies the learned task in order to optimize the efficiency. Our approach is presented with an implementation on the NAO humanoid robot, controlled by a bioinspired neural controller based on a central pattern generator. The learning system adapts the oscillation frequency and the motor neuron gain in pitch and roll in order to walk on flat and sloped terrain, and to switch between them.

  13. Adaptive distance metric learning for diffusion tensor image segmentation.

    PubMed

    Kong, Youyong; Wang, Defeng; Shi, Lin; Hui, Steve C N; Chu, Winnie C W

    2014-01-01

    High quality segmentation of diffusion tensor images (DTI) is of key interest in biomedical research and clinical application. In previous studies, most efforts have been made to construct predefined metrics for different DTI segmentation tasks. These methods require adequate prior knowledge and tuning parameters. To overcome these disadvantages, we proposed to automatically learn an adaptive distance metric by a graph based semi-supervised learning model for DTI segmentation. An original discriminative distance vector was first formulated by combining both geometry and orientation distances derived from diffusion tensors. The kernel metric over the original distance and labels of all voxels were then simultaneously optimized in a graph based semi-supervised learning approach. Finally, the optimization task was efficiently solved with an iterative gradient descent method to achieve the optimal solution. With our approach, an adaptive distance metric could be available for each specific segmentation task. Experiments on synthetic and real brain DTI datasets were performed to demonstrate the effectiveness and robustness of the proposed distance metric learning approach. The performance of our approach was compared with three classical metrics in the graph based semi-supervised learning framework.

  14. Adaptive Distance Metric Learning for Diffusion Tensor Image Segmentation

    PubMed Central

    Kong, Youyong; Wang, Defeng; Shi, Lin; Hui, Steve C. N.; Chu, Winnie C. W.

    2014-01-01

    High quality segmentation of diffusion tensor images (DTI) is of key interest in biomedical research and clinical application. In previous studies, most efforts have been made to construct predefined metrics for different DTI segmentation tasks. These methods require adequate prior knowledge and tuning parameters. To overcome these disadvantages, we proposed to automatically learn an adaptive distance metric by a graph based semi-supervised learning model for DTI segmentation. An original discriminative distance vector was first formulated by combining both geometry and orientation distances derived from diffusion tensors. The kernel metric over the original distance and labels of all voxels were then simultaneously optimized in a graph based semi-supervised learning approach. Finally, the optimization task was efficiently solved with an iterative gradient descent method to achieve the optimal solution. With our approach, an adaptive distance metric could be available for each specific segmentation task. Experiments on synthetic and real brain DTI datasets were performed to demonstrate the effectiveness and robustness of the proposed distance metric learning approach. The performance of our approach was compared with three classical metrics in the graph based semi-supervised learning framework. PMID:24651858

  15. Efficient QoS provisioning for adaptive multimedia in mobile communication networks by reinforcement learning

    NASA Astrophysics Data System (ADS)

    Yu, Fei; Wong, Vincent W. S.; Leung, Victor C.

    2003-12-01

    The scarcity and large fluctuations of link bandwidth in wireless networks have motivated the development of adaptive multimedia services in mobile communication networks, where it is possible to increase or decrease the bandwidth of individual ongoing flows. This paper studies the issues of quality of service (QoS) provisioning in such systems. In particular, call admission control and bandwidth adaptation are formulated as a constrained Markov decision problem. The rapid growth in the number of states and the difficulty in estimating state transition probabilities in practical systems make it very difficult to employ classical methods to find the optimal policy. We present a novel approach that uses a form of reinforcement learning known as Q-learning to solve QoS provisioning for wireless adaptive multimedia. Q-learning does not require the explicit state transition model to solve the Markov decision problem; therefore more general and realistic assumptions can be applied to the underlying system model for this approach than in previous schemes. Moreover, the proposed scheme can efficiently handle the large state space and action set of the wireless adaptive multimedia QoS provisioning problem. Handoff dropping probability and average allocated bandwidth are considered as QoS constraints in our model and can be guaranteed simultaneously. Simulation results demonstrate the effectiveness of the proposed scheme in adaptive multimedia mobile communication networks.

  16. An adaptive brain actuated system for augmenting rehabilitation

    PubMed Central

    Roset, Scott A.; Gant, Katie; Prasad, Abhishek; Sanchez, Justin C.

    2014-01-01

    For people living with paralysis, restoration of hand function remains the top priority because it leads to independence and improvement in quality of life. In approaches to restore hand and arm function, a goal is to better engage voluntary control and counteract maladaptive brain reorganization that results from non-use. Standard rehabilitation augmented with developments from the study of brain-computer interfaces could provide a combined therapy approach for motor cortex rehabilitation and to alleviate motor impairments. In this paper, an adaptive brain-computer interface system intended for application to control a functional electrical stimulation (FES) device is developed as an experimental test bed for augmenting rehabilitation with a brain-computer interface. The system's performance is improved throughout rehabilitation by passive user feedback and reinforcement learning. By continuously adapting to the user's brain activity, similar adaptive systems could be used to support clinical brain-computer interface neurorehabilitation over multiple days. PMID:25565945

  17. Fault-tolerant nonlinear adaptive flight control using sliding mode online learning.

    PubMed

    Krüger, Thomas; Schnetter, Philipp; Placzek, Robin; Vörsmann, Peter

    2012-08-01

    An expanded nonlinear model inversion flight control strategy using sliding mode online learning for neural networks is presented. The proposed control strategy is implemented for a small unmanned aircraft system (UAS). This class of aircraft is very susceptible towards nonlinearities like atmospheric turbulence, model uncertainties and of course system failures. Therefore, these systems mark a sensible testbed to evaluate fault-tolerant, adaptive flight control strategies. Within this work the concept of feedback linearization is combined with feed forward neural networks to compensate for inversion errors and other nonlinear effects. Backpropagation-based adaption laws of the network weights are used for online training. Within these adaption laws the standard gradient descent backpropagation algorithm is augmented with the concept of sliding mode control (SMC). Implemented as a learning algorithm, this nonlinear control strategy treats the neural network as a controlled system and allows a stable, dynamic calculation of the learning rates. While considering the system's stability, this robust online learning method therefore offers a higher speed of convergence, especially in the presence of external disturbances. The SMC-based flight controller is tested and compared with the standard gradient descent backpropagation algorithm in the presence of system failures.

  18. Adaptation in CRISPR-Cas Systems.

    PubMed

    Sternberg, Samuel H; Richter, Hagen; Charpentier, Emmanuelle; Qimron, Udi

    2016-03-17

    Clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated (Cas) proteins constitute an adaptive immune system in prokaryotes. The system preserves memories of prior infections by integrating short segments of foreign DNA, termed spacers, into the CRISPR array in a process termed adaptation. During the past 3 years, significant progress has been made on the genetic requirements and molecular mechanisms of adaptation. Here we review these recent advances, with a focus on the experimental approaches that have been developed, the insights they generated, and a proposed mechanism for self- versus non-self-discrimination during the process of spacer selection. We further describe the regulation of adaptation and the protein players involved in this fascinating process that allows bacteria and archaea to harbor adaptive immunity.

  19. Learners' Perceptions and Illusions of Adaptivity in Computer-Based Learning Environments

    ERIC Educational Resources Information Center

    Vandewaetere, Mieke; Vandercruysse, Sylke; Clarebout, Geraldine

    2012-01-01

    Research on computer-based adaptive learning environments has shown exemplary growth. Although the mechanisms of effective adaptive instruction are unraveled systematically, little is known about the relative effect of learners' perceptions of adaptivity in adaptive learning environments. As previous research has demonstrated that the learners'…

  20. Auto-adaptive robot-aided therapy using machine learning techniques.

    PubMed

    Badesa, Francisco J; Morales, Ricardo; Garcia-Aracil, Nicolas; Sabater, J M; Casals, Alicia; Zollo, Loredana

    2014-09-01

    This paper presents an application of a classification method to adaptively and dynamically modify the therapy and real-time displays of a virtual reality system in accordance with the specific state of each patient using his/her physiological reactions. First, a theoretical background about several machine learning techniques for classification is presented. Then, nine machine learning techniques are compared in order to select the best candidate in terms of accuracy. Finally, first experimental results are presented to show that the therapy can be modulated in function of the patient state using machine learning classification techniques.

  1. Learning to push and learning to move: the adaptive control of contact forces

    PubMed Central

    Casadio, Maura; Pressman, Assaf; Mussa-Ivaldi, Ferdinando A.

    2015-01-01

    To be successful at manipulating objects one needs to apply simultaneously well controlled movements and contact forces. We present a computational theory of how the brain may successfully generate a vast spectrum of interactive behaviors by combining two independent processes. One process is competent to control movements in free space and the other is competent to control contact forces against rigid constraints. Free space and rigid constraints are singularities at the boundaries of a continuum of mechanical impedance. Within this continuum, forces and motions occur in “compatible pairs” connected by the equations of Newtonian dynamics. The force applied to an object determines its motion. Conversely, inverse dynamics determine a unique force trajectory from a movement trajectory. In this perspective, we describe motor learning as a process leading to the discovery of compatible force/motion pairs. The learned compatible pairs constitute a local representation of the environment's mechanics. Experiments on force field adaptation have already provided us with evidence that the brain is able to predict and compensate the forces encountered when one is attempting to generate a motion. Here, we tested the theory in the dual case, i.e., when one attempts at applying a desired contact force against a simulated rigid surface. If the surface becomes unexpectedly compliant, the contact point moves as a function of the applied force and this causes the applied force to deviate from its desired value. We found that, through repeated attempts at generating the desired contact force, subjects discovered the unique compatible hand motion. When, after learning, the rigid contact was unexpectedly restored, subjects displayed after effects of learning, consistent with the concurrent operation of a motion control system and a force control system. Together, theory and experiment support a new and broader view of modularity in the coordinated control of forces and motions

  2. Learning to push and learning to move: the adaptive control of contact forces.

    PubMed

    Casadio, Maura; Pressman, Assaf; Mussa-Ivaldi, Ferdinando A

    2015-01-01

    To be successful at manipulating objects one needs to apply simultaneously well controlled movements and contact forces. We present a computational theory of how the brain may successfully generate a vast spectrum of interactive behaviors by combining two independent processes. One process is competent to control movements in free space and the other is competent to control contact forces against rigid constraints. Free space and rigid constraints are singularities at the boundaries of a continuum of mechanical impedance. Within this continuum, forces and motions occur in "compatible pairs" connected by the equations of Newtonian dynamics. The force applied to an object determines its motion. Conversely, inverse dynamics determine a unique force trajectory from a movement trajectory. In this perspective, we describe motor learning as a process leading to the discovery of compatible force/motion pairs. The learned compatible pairs constitute a local representation of the environment's mechanics. Experiments on force field adaptation have already provided us with evidence that the brain is able to predict and compensate the forces encountered when one is attempting to generate a motion. Here, we tested the theory in the dual case, i.e., when one attempts at applying a desired contact force against a simulated rigid surface. If the surface becomes unexpectedly compliant, the contact point moves as a function of the applied force and this causes the applied force to deviate from its desired value. We found that, through repeated attempts at generating the desired contact force, subjects discovered the unique compatible hand motion. When, after learning, the rigid contact was unexpectedly restored, subjects displayed after effects of learning, consistent with the concurrent operation of a motion control system and a force control system. Together, theory and experiment support a new and broader view of modularity in the coordinated control of forces and motions. PMID

  3. Quantifying generalization from trial-by-trial behavior of adaptive systems that learn with basis functions: theory and experiments in human motor control.

    PubMed

    Donchin, Opher; Francis, Joseph T; Shadmehr, Reza

    2003-10-01

    During reaching movements, the brain's internal models map desired limb motion into predicted forces. When the forces in the task change, these models adapt. Adaptation is guided by generalization: errors in one movement influence prediction in other types of movement. If the mapping is accomplished with population coding, combining basis elements that encode different regions of movement space, then generalization can reveal the encoding of the basis elements. We present a theory that relates encoding to generalization using trial-by-trial changes in behavior during adaptation. We consider adaptation during reaching movements in various velocity-dependent force fields and quantify how errors generalize across direction. We find that the measurement of error is critical to the theory. A typical assumption in motor control is that error is the difference between a current trajectory and a desired trajectory (DJ) that does not change during adaptation. Under this assumption, in all force fields that we examined, including one in which force randomly changes from trial to trial, we found a bimodal generalization pattern, perhaps reflecting basis elements that encode direction bimodally. If the DJ was allowed to vary, bimodality was reduced or eliminated, but the generalization function accounted for nearly twice as much variance. We suggest, therefore, that basis elements representing the internal model of dynamics are sensitive to limb velocity with bimodal tuning; however, it is also possible that during adaptation the error metric itself adapts, which affects the implied shape of the basis elements.

  4. Adaptation and learning of molecular networks as a description of cancer development at the systems-level: potential use in anti-cancer therapies.

    PubMed

    Gyurkó, Dávid M; Veres, Dániel V; Módos, Dezső; Lenti, Katalin; Korcsmáros, Tamás; Csermely, Peter

    2013-08-01

    There is a widening recognition that cancer cells are products of complex developmental processes. Carcinogenesis and metastasis formation are increasingly described as systems-level, network phenomena. Here we propose that malignant transformation is a two-phase process, where an initial increase of system plasticity is followed by a decrease of plasticity at late stages of carcinogenesis as a model of cellular learning. We describe the hallmarks of increased system plasticity of early, tumor initiating cells, such as increased noise, entropy, conformational and phenotypic plasticity, physical deformability, cell heterogeneity and network rearrangements. Finally, we argue that the large structural changes of molecular networks during cancer development necessitate a rather different targeting strategy in early and late phase of carcinogenesis. Plastic networks of early phase cancer development need a central hit, while rigid networks of late stage primary tumors or established metastases should be attacked by the network influence strategy, such as by edgetic, multi-target, or allo-network drugs. Cancer stem cells need special diagnosis and targeting, since their dormant and rapidly proliferating forms may have more rigid, or more plastic networks, respectively. The extremely high ability of cancer stem cells to change the rigidity/plasticity of their networks may be their key hallmark. The application of early stage-optimized anti-cancer drugs to late-stage patients may be a reason of many failures in anti-cancer therapies. Our hypotheses presented here underlie the need for patient-specific multi-target therapies applying the correct ratio of central hits and network influences - in an optimized sequence.

  5. Adaptive comanagement for building resilience in social-ecological systems.

    PubMed

    Olsson, Per; Folke, Carl; Berkes, Fikret

    2004-07-01

    Ecosystems are complex adaptive systems that require flexible governance with the ability to respond to environmental feedback. We present, through examples from Sweden and Canada, the development of adaptive comanagement systems, showing how local groups self-organize, learn, and actively adapt to and shape change with social networks that connect institutions and organizations across levels and scales and that facilitate information flows. The development took place through a sequence of responses to environmental events that widened the scope of local management from a particular issue or resource to a broad set of issues related to ecosystem processes across scales and from individual actors, to group of actors to multiple-actor processes. The results suggest that the institutional and organizational landscapes should be approached as carefully as the ecological in order to clarify features that contribute to the resilience of social-ecological systems. These include the following: vision, leadership, and trust; enabling legislation that creates social space for ecosystem management; funds for responding to environmental change and for remedial action; capacity for monitoring and responding to environmental feedback; information flow through social networks; the combination of various sources of information and knowledge; and sense-making and arenas of collaborative learning for ecosystem management. We propose that the self-organizing process of adaptive comanagement development, facilitated by rules and incentives of higher levels, has the potential to expand desirable stability domains of a region and make social-ecological systems more robust to change. PMID:15383875

  6. Adaptivity in Game-Based Learning: A New Perspective on Story

    NASA Astrophysics Data System (ADS)

    Berger, Florian; Müller, Wolfgang

    Game-based learning as a novel form of e-learning still has issues in fundamental questions, the lack of a general model for adaptivity being one of them. Since adaptive techniques in traditional e-learning applications bear close similarity to certain interactive storytelling approaches, we propose a new notion of story as the joining element of arbitraty learning paths.

  7. Adaptation Criteria for the Personalised Delivery of Learning Materials: A Multi-Stage Empirical Investigation

    ERIC Educational Resources Information Center

    Thalmann, Stefan

    2014-01-01

    Personalised e-Learning represents a major step-change from the one-size-fits-all approach of traditional learning platforms to a more customised and interactive provision of learning materials. Adaptive learning can support the learning process by tailoring learning materials to individual needs. However, this requires the initial preparation of…

  8. An adaptive online learning approach for Support Vector Regression: Online-SVR-FID

    NASA Astrophysics Data System (ADS)

    Liu, Jie; Zio, Enrico

    2016-08-01

    Support Vector Regression (SVR) is a popular supervised data-driven approach for building empirical models from available data. Like all data-driven methods, under non-stationary environmental and operational conditions it needs to be provided with adaptive learning capabilities, which might become computationally burdensome with large datasets cumulating dynamically. In this paper, a cost-efficient online adaptive learning approach is proposed for SVR by combining Feature Vector Selection (FVS) and Incremental and Decremental Learning. The proposed approach adaptively modifies the model only when different pattern drifts are detected according to proposed criteria. Two tolerance parameters are introduced in the approach to control the computational complexity, reduce the influence of the intrinsic noise in the data and avoid the overfitting problem of SVR. Comparisons of the prediction results is made with other online learning approaches e.g. NORMA, SOGA, KRLS, Incremental Learning, on several artificial datasets and a real case study concerning time series prediction based on data recorded on a component of a nuclear power generation system. The performance indicators MSE and MARE computed on the test dataset demonstrate the efficiency of the proposed online learning method.

  9. Adaptative Peer to Peer Data Sharing for Technology Enhanced Learning

    NASA Astrophysics Data System (ADS)

    Angelaccio, Michele; Buttarazzi, Berta

    Starting from the hypothesis that P2P Data Sharing in a direct teaching scenario (e.g.: a classroom lesson) may lead to relevant benefits, this paper explores the features of EduSHARE a Collaborative Learning System useful for Enhanced Learning Process.

  10. Accessibility and Adaptability of Learning Objects: Responding to Metadata, Learning Patterns and Profiles of Needs and Preferences

    ERIC Educational Resources Information Center

    Green, Steve; Jones, Ray; Pearson, Elaine; Gkatzidou, Stavroula

    2006-01-01

    The case for learning patterns as a design method for accessible and adaptable learning objects is explored. Patterns and templates for the design of learning objects can be derived from successful existing learning resources. These patterns can then be reused in the design of new learning objects. We argue that by attending to criteria for reuse…

  11. An adaptive online learning framework for practical breast cancer diagnosis

    NASA Astrophysics Data System (ADS)

    Chu, Tianshu; Wang, Jie; Chen, Jiayu

    2016-03-01

    This paper presents an adaptive online learning (OL) framework for supporting clinical breast cancer (BC) diagnosis. Unlike traditional data mining, which trains a particular model from a fixed set of medical data, our framework offers robust OL models that can be updated adaptively according to new data sequences and newly discovered features. As a result, our framework can naturally learn to perform BC diagnosis using experts' opinions on sequential patient cases with cumulative clinical measurements. The framework integrates both supervised learning (SL) models for BC risk assessment and reinforcement learning (RL) models for decision-making of clinical measurements. In other words, online SL and RL interact with one another, and under a doctor's supervision, push the patient's diagnosis further. Furthermore, our framework can quickly update relevant model parameters based on current diagnosis information during the training process. Additionally, it can build flexible fitted models by integrating different model structures and plugging in the corresponding parameters during the prediction (or decision-making) process. Even when the feature space is extended, it can initialize the corresponding parameters and extend the existing model structure without loss of the cumulative knowledge. We evaluate the OL framework on real datasets from BCSC and WBC, and demonstrate that our SL models achieve accurate BC risk assessment from sequential data and incremental features. We also verify that the well-trained RL models provide promising measurement suggestions.

  12. Systems in Teaching and Learning.

    ERIC Educational Resources Information Center

    Filbeck, Robert

    Systems in teaching and learning are discussed in depth to aid in relating educational theories to the art of teaching. Chapter 1, on individualization of instruction, discusses research in the learning process. Chapter 2, on systems and the systems approach, reviews the meaning of "system," systems analysis and synthesis, and the use of a systems…

  13. Adaptive Dialogue Systems for Assistive Living Environments

    ERIC Educational Resources Information Center

    Papangelis, Alexandros

    2013-01-01

    Adaptive Dialogue Systems (ADS) are intelligent systems, able to interact with users via multiple modalities, such as speech, gestures, facial expressions and others. Such systems are able to make conversation with their users, usually on a specific, narrow topic. Assistive Living Environments are environments where the users are by definition not…

  14. Small scale adaptive optics experiment systems engineering

    NASA Technical Reports Server (NTRS)

    Boykin, William H.

    1993-01-01

    Assessment of the current technology relating to the laser power beaming system which in full scale is called the Beam Transmission Optical System (BTOS). Evaluation of system integration efforts are being conducted by the various government agencies and industry. Concepts are being developed for prototypes of adaptive optics for a BTOS.

  15. Adaptive, full-spectrum solar energy system

    DOEpatents

    Muhs, Jeffrey D.; Earl, Dennis D.

    2003-08-05

    An adaptive full spectrum solar energy system having at least one hybrid solar concentrator, at least one hybrid luminaire, at least one hybrid photobioreactor, and a light distribution system operably connected to each hybrid solar concentrator, each hybrid luminaire, and each hybrid photobioreactor. A lighting control system operates each component.

  16. Learning Resources for Community Education: Design Notes on Delivery Systems.

    ERIC Educational Resources Information Center

    Bhola, H. S.

    A comprehensive and adaptable system of organizational arrangements is proposed in this document that will enable educational planners in Latin American countries to develop and deliver learning resources for community education and community action programs. A three-tier system of learning resources centers for community education is described.…

  17. Learning about colonization when managing metapopulations under an adaptive management framework.

    PubMed

    Southwell, Darren M; Hauser, Cindy E; McCarthy, Michael A

    2016-01-01

    Adaptive management is a framework for resolving key uncertainties while managing complex ecological systems. Its use has been prominent in fisheries research and wildlife harvesting; however, its application to other areas of environmental management remains somewhat limited. Indeed, adaptive management has not been used to guide and inform metapopulation restoration, despite considerable uncertainty surrounding such actions. In this study, we determined how best to learn about the colonization rate when managing metapopulations under an adaptive management framework. We developed a mainland-island metapopulation model based on the threatened bay checkerspot butterfly (Euphydryas editha bayensis) and assessed three management approaches: adding new patches, adding area to existing patches, and doing nothing. Using stochastic dynamic programming, we found the optimal passive and active adaptive management strategies by monitoring colonization of vacant patches. Under a passive adaptive strategy, increasing patch area was best when the expected colonization rate was below a threshold; otherwise, adding new patches was optimal. Under an active adaptive strategy, it was best to add patches only when we were reasonably confident that the colonization rate was high. This research provides a framework for managing mainland-island metapopulations in the face of uncertainty while learning about the dynamics of these complex systems. PMID:27039525

  18. A Multimedia Adaptive Tutoring System for Mathematics That Addresses Cognition, Metacognition and Affect

    ERIC Educational Resources Information Center

    Arroyo, Ivon; Woolf, Beverly Park; Burelson, Winslow; Muldner, Kasia; Rai, Dovan; Tai, Minghui

    2014-01-01

    This article describes research results based on multiple years of experimentation and real-world experience with an adaptive tutoring system named Wayang Outpost. The system represents a novel adaptive learning technology that has shown successful outcomes with thousands of students, and provided teachers with valuable information about…

  19. The Design and the Formative Evaluation of an Adaptive Educational System Based on Cognitive Styles

    ERIC Educational Resources Information Center

    Triantafillou, Evangelos; Pomportsis, Andreas; Demetriadis, Stavros

    2003-01-01

    Adaptive Hypermedia Systems (AHS) can be developed to accommodate a variety of individual differences, including learning style and cognitive style. The current research is an attempt to examine some of the critical variables, which may be important in the design of an Adaptive Educational System (AES) based on student's cognitive style. Moreover,…

  20. Efficient Evaluation System for Learning Management Systems

    ERIC Educational Resources Information Center

    Cavus, Nadire

    2009-01-01

    A learning management system (LMS) provides the platform for web-based learning environment by enabling the management, delivery, tracking of learning, testing, communication, registration process and scheduling. There are many LMS systems on the market that can be obtained for free or through payment. It has now become an important task to choose…

  1. A meta-learning system based on genetic algorithms

    NASA Astrophysics Data System (ADS)

    Pellerin, Eric; Pigeon, Luc; Delisle, Sylvain

    2004-04-01

    The design of an efficient machine learning process through self-adaptation is a great challenge. The goal of meta-learning is to build a self-adaptive learning system that is constantly adapting to its specific (and dynamic) environment. To that end, the meta-learning mechanism must improve its bias dynamically by updating the current learning strategy in accordance with its available experiences or meta-knowledge. We suggest using genetic algorithms as the basis of an adaptive system. In this work, we propose a meta-learning system based on a combination of the a priori and a posteriori concepts. A priori refers to input information and knowledge available at the beginning in order to built and evolve one or more sets of parameters by exploiting the context of the system"s information. The self-learning component is based on genetic algorithms and neural Darwinism. A posteriori refers to the implicit knowledge discovered by estimation of the future states of parameters and is also applied to the finding of optimal parameters values. The in-progress research presented here suggests a framework for the discovery of knowledge that can support human experts in their intelligence information assessment tasks. The conclusion presents avenues for further research in genetic algorithms and their capability to learn to learn.

  2. Guiding climate change adaptation within vulnerable natural resource management systems.

    PubMed

    Bardsley, Douglas K; Sweeney, Susan M

    2010-05-01

    Climate change has the potential to compromise the sustainability of natural resources in Mediterranean climatic systems, such that short-term reactive responses will increasingly be insufficient to ensure effective management. There is a simultaneous need for both the clear articulation of the vulnerabilities of specific management systems to climate risk, and the development of appropriate short- and long-term strategic planning responses that anticipate environmental change or allow for sustainable adaptive management in response to trends in resource condition. Governments are developing climate change adaptation policy frameworks, but without the recognition of the importance of responding strategically, regional stakeholders will struggle to manage future climate risk. In a partnership between the South Australian Government, the Adelaide and Mt Lofty Ranges Natural Resource Management Board and the regional community, a range of available research approaches to support regional climate change adaptation decision-making, were applied and critically examined, including: scenario modelling; applied and participatory Geographical Information Systems modelling; environmental risk analysis; and participatory action learning. As managers apply ideas for adaptation within their own biophysical and socio-cultural contexts, there would be both successes and failures, but a learning orientation to societal change will enable improvements over time. A base-line target for regional responses to climate change is the ownership of the issue by stakeholders, which leads to an acceptance that effective actions to adapt are now both possible and vitally important. Beyond such baseline knowledge, the research suggests that there is a range of tools from the social and physical sciences available to guide adaptation decision-making.

  3. Guiding Climate Change Adaptation Within Vulnerable Natural Resource Management Systems

    NASA Astrophysics Data System (ADS)

    Bardsley, Douglas K.; Sweeney, Susan M.

    2010-05-01

    Climate change has the potential to compromise the sustainability of natural resources in Mediterranean climatic systems, such that short-term reactive responses will increasingly be insufficient to ensure effective management. There is a simultaneous need for both the clear articulation of the vulnerabilities of specific management systems to climate risk, and the development of appropriate short- and long-term strategic planning responses that anticipate environmental change or allow for sustainable adaptive management in response to trends in resource condition. Governments are developing climate change adaptation policy frameworks, but without the recognition of the importance of responding strategically, regional stakeholders will struggle to manage future climate risk. In a partnership between the South Australian Government, the Adelaide and Mt Lofty Ranges Natural Resource Management Board and the regional community, a range of available research approaches to support regional climate change adaptation decision-making, were applied and critically examined, including: scenario modelling; applied and participatory Geographical Information Systems modelling; environmental risk analysis; and participatory action learning. As managers apply ideas for adaptation within their own biophysical and socio-cultural contexts, there would be both successes and failures, but a learning orientation to societal change will enable improvements over time. A base-line target for regional responses to climate change is the ownership of the issue by stakeholders, which leads to an acceptance that effective actions to adapt are now both possible and vitally important. Beyond such baseline knowledge, the research suggests that there is a range of tools from the social and physical sciences available to guide adaptation decision-making.

  4. Complexity Thinking in PE: Game-Centred Approaches, Games as Complex Adaptive Systems, and Ecological Values

    ERIC Educational Resources Information Center

    Storey, Brian; Butler, Joy

    2013-01-01

    Background: This article draws on the literature relating to game-centred approaches (GCAs), such as Teaching Games for Understanding, and dynamical systems views of motor learning to demonstrate a convergence of ideas around games as complex adaptive learning systems. This convergence is organized under the title "complexity thinking"…

  5. Adaptive Control for Microgravity Vibration Isolation System

    NASA Technical Reports Server (NTRS)

    Yang, Bong-Jun; Calise, Anthony J.; Craig, James I.; Whorton, Mark S.

    2005-01-01

    Most active vibration isolation systems that try to a provide quiescent acceleration environment for space science experiments have utilized linear design methods. In this paper, we address adaptive control augmentation of an existing classical controller that employs a high-gain acceleration feedback together with a low-gain position feedback to center the isolated platform. The control design feature includes parametric and dynamic uncertainties because the hardware of the isolation system is built as a payload-level isolator, and the acceleration Sensor exhibits a significant bias. A neural network is incorporated to adaptively compensate for the system uncertainties, and a high-pass filter is introduced to mitigate the effect of the measurement bias. Simulations show that the adaptive control improves the performance of the existing acceleration controller and keep the level of the isolated platform deviation to that of the existing control system.

  6. Vocal learning in elephants: neural bases and adaptive context.

    PubMed

    Stoeger, Angela S; Manger, Paul

    2014-10-01

    In the last decade clear evidence has accumulated that elephants are capable of vocal production learning. Examples of vocal imitation are documented in African (Loxodonta africana) and Asian (Elephas maximus) elephants, but little is known about the function of vocal learning within the natural communication systems of either species. We are also just starting to identify the neural basis of elephant vocalizations. The African elephant diencephalon and brainstem possess specializations related to aspects of neural information processing in the motor system (affecting the timing and learning of trunk movements) and the auditory and vocalization system. Comparative interdisciplinary (from behavioral to neuroanatomical) studies are strongly warranted to increase our understanding of both vocal learning and vocal behavior in elephants.

  7. Vocal learning in elephants: neural bases and adaptive context

    PubMed Central

    Stoeger, Angela S; Manger, Paul

    2014-01-01

    In the last decade clear evidence has accumulated that elephants are capable of vocal production learning. Examples of vocal imitation are documented in African (Loxodonta africana) and Asian (Elephas maximus) elephants, but little is known about the function of vocal learning within the natural communication systems of either species. We are also just starting to identify the neural basis of elephant vocalizations. The African elephant diencephalon and brainstem possess specializations related to aspects of neural information processing in the motor system (affecting the timing and learning of trunk movements) and the auditory and vocalization system. Comparative interdisciplinary (from behavioral to neuroanatomical) studies are strongly warranted to increase our understanding of both vocal learning and vocal behavior in elephants. PMID:25062469

  8. Vocal learning in elephants: neural bases and adaptive context.

    PubMed

    Stoeger, Angela S; Manger, Paul

    2014-10-01

    In the last decade clear evidence has accumulated that elephants are capable of vocal production learning. Examples of vocal imitation are documented in African (Loxodonta africana) and Asian (Elephas maximus) elephants, but little is known about the function of vocal learning within the natural communication systems of either species. We are also just starting to identify the neural basis of elephant vocalizations. The African elephant diencephalon and brainstem possess specializations related to aspects of neural information processing in the motor system (affecting the timing and learning of trunk movements) and the auditory and vocalization system. Comparative interdisciplinary (from behavioral to neuroanatomical) studies are strongly warranted to increase our understanding of both vocal learning and vocal behavior in elephants. PMID:25062469

  9. Adapted to explore: reinforcement learning in Autistic Spectrum Conditions.

    PubMed

    Yechiam, Eldad; Arshavsky, Olga; Shamay-Tsoory, Simone G; Yaniv, Shoshana; Aharon, Judith

    2010-03-01

    Recent studies have recorded a tendency of individuals with Autism Spectrum Conditions (ASC) to continually change their choices in repeated choice tasks. In the current study we examine if this finding implies that ASC individuals have a cognitive style that facilitates exploration and discovery. Six decision tasks were administered to adolescents with ASC and matched controls. Significant differences in shifting between choice options appeared in the Iowa Gambling task (Bechara, Damasio, Damasio, & Anderson, 1994). A formal cognitive modeling analysis demonstrated that for about half of the ASC participants the adaptation process did not conform to the standard reinforcement learning model. These individuals were only coarsely affected by choice-outcomes, and were more influenced by the exploratory value of choices, being attracted to previously un-explored alternatives. An examination of the five simpler decision tasks where the advantageous option was easier to determine showed no evidence of this pattern, suggesting that the shifting choice pattern is not an uncontrollable tendency independent of task outcomes. These findings suggest that ASC individuals have a unique adaptive learning style, which may be beneficial is some learning environment but maladaptive in others, particularly in social contexts. PMID:19913345

  10. Classification of multiple sclerosis lesions using adaptive dictionary learning.

    PubMed

    Deshpande, Hrishikesh; Maurel, Pierre; Barillot, Christian

    2015-12-01

    This paper presents a sparse representation and an adaptive dictionary learning based method for automated classification of multiple sclerosis (MS) lesions in magnetic resonance (MR) images. Manual delineation of MS lesions is a time-consuming task, requiring neuroradiology experts to analyze huge volume of MR data. This, in addition to the high intra- and inter-observer variability necessitates the requirement of automated MS lesion classification methods. Among many image representation models and classification methods that can be used for such purpose, we investigate the use of sparse modeling. In the recent years, sparse representation has evolved as a tool in modeling data using a few basis elements of an over-complete dictionary and has found applications in many image processing tasks including classification. We propose a supervised classification approach by learning dictionaries specific to the lesions and individual healthy brain tissues, which include white matter (WM), gray matter (GM) and cerebrospinal fluid (CSF). The size of the dictionaries learned for each class plays a major role in data representation but it is an even more crucial element in the case of competitive classification. Our approach adapts the size of the dictionary for each class, depending on the complexity of the underlying data. The algorithm is validated using 52 multi-sequence MR images acquired from 13 MS patients. The results demonstrate the effectiveness of our approach in MS lesion classification.

  11. Classification of multiple sclerosis lesions using adaptive dictionary learning.

    PubMed

    Deshpande, Hrishikesh; Maurel, Pierre; Barillot, Christian

    2015-12-01

    This paper presents a sparse representation and an adaptive dictionary learning based method for automated classification of multiple sclerosis (MS) lesions in magnetic resonance (MR) images. Manual delineation of MS lesions is a time-consuming task, requiring neuroradiology experts to analyze huge volume of MR data. This, in addition to the high intra- and inter-observer variability necessitates the requirement of automated MS lesion classification methods. Among many image representation models and classification methods that can be used for such purpose, we investigate the use of sparse modeling. In the recent years, sparse representation has evolved as a tool in modeling data using a few basis elements of an over-complete dictionary and has found applications in many image processing tasks including classification. We propose a supervised classification approach by learning dictionaries specific to the lesions and individual healthy brain tissues, which include white matter (WM), gray matter (GM) and cerebrospinal fluid (CSF). The size of the dictionaries learned for each class plays a major role in data representation but it is an even more crucial element in the case of competitive classification. Our approach adapts the size of the dictionary for each class, depending on the complexity of the underlying data. The algorithm is validated using 52 multi-sequence MR images acquired from 13 MS patients. The results demonstrate the effectiveness of our approach in MS lesion classification. PMID:26055435

  12. Adaptive Fuzzy Systems in Computational Intelligence

    NASA Technical Reports Server (NTRS)

    Berenji, Hamid R.

    1996-01-01

    In recent years, the interest in computational intelligence techniques, which currently includes neural networks, fuzzy systems, and evolutionary programming, has grown significantly and a number of their applications have been developed in the government and industry. In future, an essential element in these systems will be fuzzy systems that can learn from experience by using neural network in refining their performances. The GARIC architecture, introduced earlier, is an example of a fuzzy reinforcement learning system which has been applied in several control domains such as cart-pole balancing, simulation of to Space Shuttle orbital operations, and tether control. A number of examples from GARIC's applications in these domains will be demonstrated.

  13. EduTutor: An Intelligent Tutor System for a Learning Management System

    ERIC Educational Resources Information Center

    Rodrigues, Joel J. P. C.; Joao, Pedro F. N.; Vaidya, Binod

    2010-01-01

    Intelligent tutoring systems are any computer systems encompassing interactive applications with some intelligence that support and facilitate the teaching-learning process. The intelligence of these systems is the ability to adapt to each student throughout his/her learning process. This paper presents an intelligent tutoring system, called…

  14. Adaptive control with an expert system based supervisory level. Thesis

    NASA Technical Reports Server (NTRS)

    Sullivan, Gerald A.

    1991-01-01

    Adaptive control is presently one of the methods available which may be used to control plants with poorly modelled dynamics or time varying dynamics. Although many variations of adaptive controllers exist, a common characteristic of all adaptive control schemes, is that input/output measurements from the plant are used to adjust a control law in an on-line fashion. Ideally the adjustment mechanism of the adaptive controller is able to learn enough about the dynamics of the plant from input/output measurements to effectively control the plant. In practice, problems such as measurement noise, controller saturation, and incorrect model order, to name a few, may prevent proper adjustment of the controller and poor performance or instability result. In this work we set out to avoid the inadequacies of procedurally implemented safety nets, by introducing a two level control scheme in which an expert system based 'supervisor' at the upper level provides all the safety net functions for an adaptive controller at the lower level. The expert system is based on a shell called IPEX, (Interactive Process EXpert), that we developed specifically for the diagnosis and treatment of dynamic systems. Some of the more important functions that the IPEX system provides are: (1) temporal reasoning; (2) planning of diagnostic activities; and (3) interactive diagnosis. Also, because knowledge and control logic are separate, the incorporation of new diagnostic and treatment knowledge is relatively simple. We note that the flexibility available in the system to express diagnostic and treatment knowledge, allows much greater functionality than could ever be reasonably expected from procedural implementations of safety nets. The remainder of this chapter is divided into three sections. In section 1.1 we give a detailed review of the literature in the area of supervisory systems for adaptive controllers. In particular, we describe the evolution of safety nets from simple ad hoc techniques, up

  15. Adaptation in the auditory system: an overview

    PubMed Central

    Pérez-González, David; Malmierca, Manuel S.

    2014-01-01

    The early stages of the auditory system need to preserve the timing information of sounds in order to extract the basic features of acoustic stimuli. At the same time, different processes of neuronal adaptation occur at several levels to further process the auditory information. For instance, auditory nerve fiber responses already experience adaptation of their firing rates, a type of response that can be found in many other auditory nuclei and may be useful for emphasizing the onset of the stimuli. However, it is at higher levels in the auditory hierarchy where more sophisticated types of neuronal processing take place. For example, stimulus-specific adaptation, where neurons show adaptation to frequent, repetitive stimuli, but maintain their responsiveness to stimuli with different physical characteristics, thus representing a distinct kind of processing that may play a role in change and deviance detection. In the auditory cortex, adaptation takes more elaborate forms, and contributes to the processing of complex sequences, auditory scene analysis and attention. Here we review the multiple types of adaptation that occur in the auditory system, which are part of the pool of resources that the neurons employ to process the auditory scene, and are critical to a proper understanding of the neuronal mechanisms that govern auditory perception. PMID:24600361

  16. Adaptive Sampling for Learning Gaussian Processes Using Mobile Sensor Networks

    PubMed Central

    Xu, Yunfei; Choi, Jongeun

    2011-01-01

    This paper presents a novel class of self-organizing sensing agents that adaptively learn an anisotropic, spatio-temporal Gaussian process using noisy measurements and move in order to improve the quality of the estimated covariance function. This approach is based on a class of anisotropic covariance functions of Gaussian processes introduced to model a broad range of spatio-temporal physical phenomena. The covariance function is assumed to be unknown a priori. Hence, it is estimated by the maximum a posteriori probability (MAP) estimator. The prediction of the field of interest is then obtained based on the MAP estimate of the covariance function. An optimal sampling strategy is proposed to minimize the information-theoretic cost function of the Fisher Information Matrix. Simulation results demonstrate the effectiveness and the adaptability of the proposed scheme. PMID:22163785

  17. Improving Voluntary Environmental Management Programs: Facilitating Learning and Adaptation

    NASA Astrophysics Data System (ADS)

    Genskow, Kenneth D.; Wood, Danielle M.

    2011-05-01

    Environmental planners and managers face unique challenges understanding and documenting the effectiveness of programs that rely on voluntary actions by private landowners. Programs, such as those aimed at reducing nonpoint source pollution or improving habitat, intend to reach those goals by persuading landowners to adopt behaviors and management practices consistent with environmental restoration and protection. Our purpose with this paper is to identify barriers for improving voluntary environmental management programs and ways to overcome them. We first draw upon insights regarding data, learning, and adaptation from the adaptive management and performance management literatures, describing three key issues: overcoming information constraints, structural limitations, and organizational culture. Although these lessons are applicable to a variety of voluntary environmental management programs, we then present the issues in the context of on-going research for nonpoint source water quality pollution. We end the discussion by highlighting important elements for advancing voluntary program efforts.

  18. Towards Motivation-Based Adaptation of Difficulty in E-Learning Programs

    ERIC Educational Resources Information Center

    Endler, Anke; Rey, Gunter Daniel; Butz, Martin V.

    2012-01-01

    The objective of this study was to investigate if an e-learning environment may use measurements of the user's current motivation to adapt the level of task difficulty for more effective learning. In the reported study, motivation-based adaptation was applied randomly to collect a wide range of data for different adaptations in a variety of…

  19. Evolving Systems and Adaptive Key Component Control

    NASA Technical Reports Server (NTRS)

    Frost, Susan A.; Balas, Mark J.

    2009-01-01

    We propose a new framework called Evolving Systems to describe the self-assembly, or autonomous assembly, of actively controlled dynamical subsystems into an Evolved System with a higher purpose. An introduction to Evolving Systems and exploration of the essential topics of the control and stability properties of Evolving Systems is provided. This chapter defines a framework for Evolving Systems, develops theory and control solutions for fundamental characteristics of Evolving Systems, and provides illustrative examples of Evolving Systems and their control with adaptive key component controllers.

  20. The Emotions of Socialization-Related Learning: Understanding Workplace Adaptation as a Learning Process.

    ERIC Educational Resources Information Center

    Reio, Thomas G., Jr.

    The influence of selected discrete emotions on socialization-related learning and perception of workplace adaptation was examined in an exploratory study. Data were collected from 233 service workers in 4 small and medium-sized companies in metropolitan Washington, D.C. The sample members' average age was 32.5 years, and the sample's racial makeup…

  1. Robust adaptive dynamic programming and feedback stabilization of nonlinear systems.

    PubMed

    Jiang, Yu; Jiang, Zhong-Ping

    2014-05-01

    This paper studies the robust optimal control design for a class of uncertain nonlinear systems from a perspective of robust adaptive dynamic programming (RADP). The objective is to fill up a gap in the past literature of adaptive dynamic programming (ADP) where dynamic uncertainties or unmodeled dynamics are not addressed. A key strategy is to integrate tools from modern nonlinear control theory, such as the robust redesign and the backstepping techniques as well as the nonlinear small-gain theorem, with the theory of ADP. The proposed RADP methodology can be viewed as an extension of ADP to uncertain nonlinear systems. Practical learning algorithms are developed in this paper, and have been applied to the controller design problems for a jet engine and a one-machine power system. PMID:24808035

  2. Efficient Authoring of SCORM Courseware Adapted to User Learning Style: The Case of ProPer SAT

    NASA Astrophysics Data System (ADS)

    Kazanidis, Ioannis; Satratzemi, Maya

    Online courses are the most popular way to deliver knowledge for distance learning. New researches attempt to personalize the educational process with the use of the Adaptive Educational Hypermedia Systems. Moreover, due to the significant amount of time, money and effort devoted to creating online courses, developers strive to incorporate standards, such as SCORM, for the reusability, interoperability and durability of the educational content. However, it is a difficult task for teachers without programming knowledge to design and author adaptive courses. This work presents ProPer SAT, an authoring tool implemented for quick and easy SCORM courseware construction which can also be adapted to specific user learning styles.

  3. The Influence of Student Characteristics on the Use of Adaptive E-Learning Material

    ERIC Educational Resources Information Center

    van Seters, J. R.; Ossevoort, M. A.; Tramper, J.; Goedhart, M. J.

    2012-01-01

    Adaptive e-learning materials can help teachers to educate heterogeneous student groups. This study provides empirical data about the way academic students differ in their learning when using adaptive e-learning materials. Ninety-four students participated in the study. We determined characteristics in a heterogeneous student group by collecting…

  4. [CRISPR adaptive immunity systems of procaryotes].

    PubMed

    2012-01-01

    CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) is a newly identified prokaryotic immunity system against foreign genetic elements. In contrast to other cellular defense mechanisms (e.g. restriction-modification) CRISPR-mediated immunity is adaptive and can be programmed to protect cells against a particular bacteriophage or conjugative plasmid. In this review we describe general principles of CRISPR systems action and summarize known details of CRISPR systems from different microorganisms.

  5. Robust adaptive control of HVDC systems

    SciTech Connect

    Reeve, J.; Sultan, M. )

    1994-07-01

    The transient performance of an HVDC power system is highly dependent on the parameters of the current/voltage regulators of the converter controls. In order to better accommodate changes in system structure or dc operating conditions, this paper introduces a new adaptive control strategy. The advantages of automatic tuning for continuous fine tuning are combined with predetermined gain scheduling in order to achieve robustness for large disturbances. Examples are provided for a digitally simulated back-to-back dc system.

  6. Final Report - Regulatory Considerations for Adaptive Systems

    NASA Technical Reports Server (NTRS)

    Wilkinson, Chris; Lynch, Jonathan; Bharadwaj, Raj

    2013-01-01

    This report documents the findings of a preliminary research study into new approaches to the software design assurance of adaptive systems. We suggest a methodology to overcome the software validation and verification difficulties posed by the underlying assumption of non-adaptive software in the requirementsbased- testing verification methods in RTCA/DO-178B and C. An analysis of the relevant RTCA/DO-178B and C objectives is presented showing the reasons for the difficulties that arise in showing satisfaction of the objectives and suggested additional means by which they could be satisfied. We suggest that the software design assurance problem for adaptive systems is principally one of developing correct and complete high level requirements and system level constraints that define the necessary system functional and safety properties to assure the safe use of adaptive systems. We show how analytical techniques such as model based design, mathematical modeling and formal or formal-like methods can be used to both validate the high level functional and safety requirements, establish necessary constraints and provide the verification evidence for the satisfaction of requirements and constraints that supplements conventional testing. Finally the report identifies the follow-on research topics needed to implement this methodology.

  7. A Conversational Intelligent Tutoring System to Automatically Predict Learning Styles

    ERIC Educational Resources Information Center

    Latham, Annabel; Crockett, Keeley; McLean, David; Edmonds, Bruce

    2012-01-01

    This paper proposes a generic methodology and architecture for developing a novel conversational intelligent tutoring system (CITS) called Oscar that leads a tutoring conversation and dynamically predicts and adapts to a student's learning style. Oscar aims to mimic a human tutor by implicitly modelling the learning style during tutoring, and…

  8. Evaluating Knowledge Structure-Based Adaptive Testing Algorithms and System Development

    ERIC Educational Resources Information Center

    Wu, Huey-Min; Kuo, Bor-Chen; Yang, Jinn-Min

    2012-01-01

    In recent years, many computerized test systems have been developed for diagnosing students' learning profiles. Nevertheless, it remains a challenging issue to find an adaptive testing algorithm to both shorten testing time and precisely diagnose the knowledge status of students. In order to find a suitable algorithm, four adaptive testing…

  9. Adaptive control system for gas producing wells

    SciTech Connect

    Fedor, Pashchenko; Sergey, Gulyaev; Alexander, Pashchenko

    2015-03-10

    Optimal adaptive automatic control system for gas producing wells cluster is proposed intended for solving the problem of stabilization of the output gas pressure in the cluster at conditions of changing gas flow rate and changing parameters of the wells themselves, providing the maximum high resource of hardware elements of automation.

  10. Petascale IO Using The Adaptable IO System

    SciTech Connect

    Lofstead, J.; Klasky, Scott A; Abbasi, H.

    2009-01-01

    ADIOS, the adaptable IO system, has demonstrated excellent scalability to 29,000 cores. With the introduction of the XT5 upgrades to Jaguar, new optimizations are required to successfully reach 140,000+ cores. This paper explains the techniques employed and shows the performance levels attained.

  11. Adaptive output feedback control of flexible systems

    NASA Astrophysics Data System (ADS)

    Yang, Bong-Jun

    Neural network-based adaptive output feedback approaches that augment a linear control design are described in this thesis, and emphasis is placed on their real-time implementation with flexible systems. Two different control architectures that are robust to parametric uncertainties and unmodelled dynamics are presented. The unmodelled effects can consist of minimum phase internal dynamics of the system together with external disturbance process. Within this context, adaptive compensation for external disturbances is addressed. In the first approach, internal model-following control, adaptive elements are designed using feedback inversion. The effect of an actuator limit is treated using control hedging, and the effect of other actuation nonlinearities, such as dead zone and backlash, is mitigated by a disturbance observer-based control design. The effectiveness of the approach is illustrated through simulation and experimental testing with a three-disk torsional system, which is subjected to control voltage limit and stiction. While the internal model-following control is limited to minimum phase systems, the second approach, external model-following control, does not involve feedback linearization and can be applied to non-minimum phase systems. The unstable zero dynamics are assumed to have been modelled in the design of the existing linear controller. The laboratory tests for this method include a three-disk torsional pendulum, an inverted pendulum, and a flexible-base robot manipulator. The external model-following control architecture is further extended in three ways. The first extension is an approach for control of multivariable nonlinear systems. The second extension is a decentralized adaptive control approach for large-scale interconnected systems. The third extension is to make use of an adaptive observer to augment a linear observer-based controller. In this extension, augmenting terms for the adaptive observer can be used to achieve adaptation in

  12. Learning Adaptive Forecasting Models from Irregularly Sampled Multivariate Clinical Data

    PubMed Central

    Liu, Zitao; Hauskrecht, Milos

    2016-01-01

    Building accurate predictive models of clinical multivariate time series is crucial for understanding of the patient condition, the dynamics of a disease, and clinical decision making. A challenging aspect of this process is that the model should be flexible and adaptive to reflect well patient-specific temporal behaviors and this also in the case when the available patient-specific data are sparse and short span. To address this problem we propose and develop an adaptive two-stage forecasting approach for modeling multivariate, irregularly sampled clinical time series of varying lengths. The proposed model (1) learns the population trend from a collection of time series for past patients; (2) captures individual-specific short-term multivariate variability; and (3) adapts by automatically adjusting its predictions based on new observations. The proposed forecasting model is evaluated on a real-world clinical time series dataset. The results demonstrate the benefits of our approach on the prediction tasks for multivariate, irregularly sampled clinical time series, and show that it can outperform both the population based and patient-specific time series prediction models in terms of prediction accuracy. PMID:27525189

  13. Adaptive control design for hysteretic smart systems

    NASA Astrophysics Data System (ADS)

    McMahan, Jerry A.; Smith, Ralph C.

    2011-04-01

    Ferroelectric and ferromagnetic actuators are being considered for a range of industrial, aerospace, aeronautic and biomedical applications due to their unique transduction capabilities. However, they also exhibit hysteretic and nonlinear behavior that must be accommodated in models and control designs. If uncompensated, these effects can yield reduced system performance and, in the worst case, can produce unpredictable behavior of the control system. In this paper, we address the development of adaptive control designs for hysteretic systems. We review an MRAC-like adaptive control algorithm used to track a reference trajectory while computing online estimates for certain model parameters. This method is incorporated in a composite control algorithm to improve the tracking capabilities of the system. Issues arising in the implementation of these algorithms are addressed, and a numerical example is presented, comparing the results of each method.

  14. Generalization patterns for reach adaptation and proprioceptive recalibration differ after visuomotor learning.

    PubMed

    Cressman, Erin K; Henriques, Denise Y P

    2015-07-01

    Visuomotor learning results in changes in both motor and sensory systems (Cressman EK, Henriques DY. J Neurophysiol 102: 3505-3518, 2009), such that reaches are adapted and sense of felt hand position recalibrated after reaching with altered visual feedback of the hand. Moreover, visuomotor learning has been shown to generalize such that reach adaptation achieved at a trained target location can influence reaches to novel target directions (Krakauer JW, Pine ZM, Ghilardi MF, Ghez C. J Neurosci 20: 8916-8924, 2000). We looked to determine whether proprioceptive recalibration also generalizes to novel locations. Moreover, we looked to establish the relationship between reach adaptation and changes in sense of felt hand position by determining whether proprioceptive recalibration generalizes to novel targets in a similar manner as reach adaptation. On training trials, subjects reached to a single target with aligned or misaligned cursor-hand feedback, in which the cursor was either rotated or scaled in extent relative to hand movement. After reach training, subjects reached to the training target and novel targets (including targets from a second start position) without visual feedback to assess generalization of reach adaptation. Subjects then performed a proprioceptive estimation task, in which they indicated the position of their hand relative to visual reference markers placed at similar locations as the trained and novel reach targets. Results indicated that shifts in hand position generalized across novel locations, independent of reach adaptation. Thus these distinct sensory and motor generalization patterns suggest that reach adaptation and proprioceptive recalibration arise from independent error signals and that changes in one system cannot guide adjustments in the other.

  15. Adaptive WTA with an analog VLSI neuromorphic learning chip.

    PubMed

    Häfliger, Philipp

    2007-03-01

    In this paper, we demonstrate how a particular spike-based learning rule (where exact temporal relations between input and output spikes of a spiking model neuron determine the changes of the synaptic weights) can be tuned to express rate-based classical Hebbian learning behavior (where the average input and output spike rates are sufficient to describe the synaptic changes). This shift in behavior is controlled by the input statistic and by a single time constant. The learning rule has been implemented in a neuromorphic very large scale integration (VLSI) chip as part of a neurally inspired spike signal image processing system. The latter is the result of the European Union research project Convolution AER Vision Architecture for Real-Time (CAVIAR). Since it is implemented as a spike-based learning rule (which is most convenient in the overall spike-based system), even if it is tuned to show rate behavior, no explicit long-term average signals are computed on the chip. We show the rule's rate-based Hebbian learning ability in a classification task in both simulation and chip experiment, first with artificial stimuli and then with sensor input from the CAVIAR system. PMID:17385639

  16. Adaptive neuro-fuzzy and expert systems for power quality analysis and prediction of abnormal operation

    NASA Astrophysics Data System (ADS)

    Ibrahim, Wael Refaat Anis

    The present research involves the development of several fuzzy expert systems for power quality analysis and diagnosis. Intelligent systems for the prediction of abnormal system operation were also developed. The performance of all intelligent modules developed was either enhanced or completely produced through adaptive fuzzy learning techniques. Neuro-fuzzy learning is the main adaptive technique utilized. The work presents a novel approach to the interpretation of power quality from the perspective of the continuous operation of a single system. The research includes an extensive literature review pertaining to the applications of intelligent systems to power quality analysis. Basic definitions and signature events related to power quality are introduced. In addition, detailed discussions of various artificial intelligence paradigms as well as wavelet theory are included. A fuzzy-based intelligent system capable of identifying normal from abnormal operation for a given system was developed. Adaptive neuro-fuzzy learning was applied to enhance its performance. A group of fuzzy expert systems that could perform full operational diagnosis were also developed successfully. The developed systems were applied to the operational diagnosis of 3-phase induction motors and rectifier bridges. A novel approach for learning power quality waveforms and trends was developed. The technique, which is adaptive neuro fuzzy-based, learned, compressed, and stored the waveform data. The new technique was successfully tested using a wide variety of power quality signature waveforms, and using real site data. The trend-learning technique was incorporated into a fuzzy expert system that was designed to predict abnormal operation of a monitored system. The intelligent system learns and stores, in compressed format, trends leading to abnormal operation. The system then compares incoming data to the retained trends continuously. If the incoming data matches any of the learned trends, an

  17. Adaptable Transponder for Multiple Telemetry Systems

    NASA Technical Reports Server (NTRS)

    Sims, William Herbert, III (Inventor); Varnavas, Kosta A. (Inventor)

    2014-01-01

    The present invention is a stackable telemetry circuit board for use in telemetry systems for satellites and other purposes. The present invention incorporates previously-qualified interchangeable circuit boards, or "decks," that perform functions such as power, signal receiving and transmission, and processing. Each deck is adapted to serve a range of telemetry applications. This provides flexibility in the construction of the stackable telemetry circuit board and significantly reduces the cost and time necessary to develop a telemetry system.

  18. An adaptive P300-based control system

    NASA Astrophysics Data System (ADS)

    Jin, Jing; Allison, Brendan Z.; Sellers, Eric W.; Brunner, Clemens; Horki, Petar; Wang, Xingyu; Neuper, Christa

    2011-06-01

    An adaptive P300 brain-computer interface (BCI) using a 12 × 7 matrix explored new paradigms to improve bit rate and accuracy. During online use, the system adaptively selects the number of flashes to average. Five different flash patterns were tested. The 19-flash paradigm represents the typical row/column presentation (i.e. 12 columns and 7 rows). The 9- and 14-flash A and B paradigms present all items of the 12 × 7 matrix three times using either 9 or 14 flashes (instead of 19), decreasing the amount of time to present stimuli. Compared to 9-flash A, 9-flash B decreased the likelihood that neighboring items would flash when the target was not flashing, thereby reducing the interference from items adjacent to targets. 14-flash A also reduced the adjacent item interference and 14-flash B additionally eliminated successive (double) flashes of the same item. Results showed that the accuracy and bit rate of the adaptive system were higher than those of the non-adaptive system. In addition, 9- and 14-flash B produced significantly higher performance than their respective A conditions. The results also show the trend that the 14-flash B paradigm was better than the 19-flash pattern for naive users.

  19. Learning to Control Advanced Life Support Systems

    NASA Technical Reports Server (NTRS)

    Subramanian, Devika

    2004-01-01

    Advanced life support systems have many interacting processes and limited resources. Controlling and optimizing advanced life support systems presents unique challenges. In particular, advanced life support systems are nonlinear coupled dynamical systems and it is difficult for humans to take all interactions into account to design an effective control strategy. In this project. we developed several reinforcement learning controllers that actively explore the space of possible control strategies, guided by rewards from a user specified long term objective function. We evaluated these controllers using a discrete event simulation of an advanced life support system. This simulation, called BioSim, designed by Nasa scientists David Kortenkamp and Scott Bell has multiple, interacting life support modules including crew, food production, air revitalization, water recovery, solid waste incineration and power. They are implemented in a consumer/producer relationship in which certain modules produce resources that are consumed by other modules. Stores hold resources between modules. Control of this simulation is via adjusting flows of resources between modules and into/out of stores. We developed adaptive algorithms that control the flow of resources in BioSim. Our learning algorithms discovered several ingenious strategies for maximizing mission length by controlling the air and water recycling systems as well as crop planting schedules. By exploiting non-linearities in the overall system dynamics, the learned controllers easily out- performed controllers written by human experts. In sum, we accomplished three goals. We (1) developed foundations for learning models of coupled dynamical systems by active exploration of the state space, (2) developed and tested algorithms that learn to efficiently control air and water recycling processes as well as crop scheduling in Biosim, and (3) developed an understanding of the role machine learning in designing control systems for

  20. Peers as resources for learning: a situated learning approach to adapted physical activity in rehabilitation.

    PubMed

    Standal, Øyvind F; Jespersen, Ejgil

    2008-07-01

    The purpose of this study was to investigate the learning that takes place when people with disabilities interact in a rehabilitation context. Data were generated through in-depth interviews and close observations in a 2 (1/2) week-long rehabilitation program, where the participants learned both wheelchair skills and adapted physical activities. The findings from the qualitative data analysis are discussed in the context of situated learning (Lave & Wenger, 1991; Wenger, 1998). The results indicate that peer learning extends beyond skills and techniques, to include ways for the participants to make sense of their situations as wheelchair users. Also, it was found that the community of practice established between the participants represented a critical corrective to instructions provided by rehabilitation professionals.

  1. Multidimensional Learner Model In Intelligent Learning System

    NASA Astrophysics Data System (ADS)

    Deliyska, B.; Rozeva, A.

    2009-11-01

    The learner model in an intelligent learning system (ILS) has to ensure the personalization (individualization) and the adaptability of e-learning in an online learner-centered environment. ILS is a distributed e-learning system whose modules can be independent and located in different nodes (servers) on the Web. This kind of e-learning is achieved through the resources of the Semantic Web and is designed and developed around a course, group of courses or specialty. An essential part of ILS is learner model database which contains structured data about learner profile and temporal status in the learning process of one or more courses. In the paper a learner model position in ILS is considered and a relational database is designed from learner's domain ontology. Multidimensional modeling agent for the source database is designed and resultant learner data cube is presented. Agent's modules are proposed with corresponding algorithms and procedures. Multidimensional (OLAP) analysis guidelines on the resultant learner module for designing dynamic learning strategy have been highlighted.

  2. Integrated Learning Management Systems

    ERIC Educational Resources Information Center

    Clark, Sharon; Cossarin, Mary; Doxsee, Harry; Schwartz, Linda

    2004-01-01

    Four integrated learning management packages were reviewed: "CentraOne", "IntraLearn", "Lyceum", and "Silicon Chalk". These products provide different combinations of synchronous and asynchronous tools. The current report examines the products in relation to their specific value for distance educators and students.

  3. Learning about System Renewal

    ERIC Educational Resources Information Center

    Levin, Ben; Fullan, Michael

    2008-01-01

    Our focus in this article is on the lessons learned about effective change from international experience with large-scale reform over the last 20 years. The central lesson now evident is that sustained improvement in student outcomes requires a sustained effort to change teaching and learning practices in thousands and thousands of classrooms, and…

  4. Multimodal and Adaptive Learning Management: An Iterative Design

    ERIC Educational Resources Information Center

    Squires, David R.; Orey, Michael A.

    2015-01-01

    The purpose of this study is to measure the outcome of a comprehensive learning management system implemented at a Spinal Cord Injury (SCI) hospital in the Southeast United States. Specifically this SCI hospital has been experiencing an evident volume of patients returning seeking more information about the nature of their injuries. Recognizing…

  5. Breast image feature learning with adaptive deconvolutional networks

    NASA Astrophysics Data System (ADS)

    Jamieson, Andrew R.; Drukker, Karen; Giger, Maryellen L.

    2012-03-01

    Feature extraction is a critical component of medical image analysis. Many computer-aided diagnosis approaches employ hand-designed, heuristic lesion extracted features. An alternative approach is to learn features directly from images. In this preliminary study, we explored the use of Adaptive Deconvolutional Networks (ADN) for learning high-level features in diagnostic breast mass lesion images with potential application to computer-aided diagnosis (CADx) and content-based image retrieval (CBIR). ADNs (Zeiler, et. al., 2011), are recently-proposed unsupervised, generative hierarchical models that decompose images via convolution sparse coding and max pooling. We trained the ADNs to learn multiple layers of representation for two breast image data sets on two different modalities (739 full field digital mammography (FFDM) and 2393 ultrasound images). Feature map calculations were accelerated by use of GPUs. Following Zeiler et. al., we applied the Spatial Pyramid Matching (SPM) kernel (Lazebnik, et. al., 2006) on the inferred feature maps and combined this with a linear support vector machine (SVM) classifier for the task of binary classification between cancer and non-cancer breast mass lesions. Non-linear, local structure preserving dimension reduction, Elastic Embedding (Carreira-Perpiñán, 2010), was then used to visualize the SPM kernel output in 2D and qualitatively inspect image relationships learned. Performance was found to be competitive with current CADx schemes that use human-designed features, e.g., achieving a 0.632+ bootstrap AUC (by case) of 0.83 [0.78, 0.89] for an ultrasound image set (1125 cases).

  6. Adaptive learning via selectionism and Bayesianism, Part I: connection between the two.

    PubMed

    Zhang, Jun

    2009-04-01

    According to the selection-by-consequence characterization of operant learning, individual animals/species increase or decrease their future probability of action choices based on the consequence (i.e., reward or punishment) of the currently selected action (the so-called "Law of Effect"). Under Bayesianism, on the other hand, evidence is evaluated based on likelihood functions so that action probability is modified from a priori to a posteriori according to the Bayes formula. Viewed as hypothesis testing, a selectionist framework attributes evidence exclusively to the selected, focal hypothesis, whereas a Bayesian framework distributes across all hypotheses the support from a piece of evidence. Here, an intimate connection between the two theoretical frameworks is revealed. Specifically, it is proven that when individuals modify their action choices based on the selectionist's Law of Effect, the learning population, on the ensemble level, evolves according to a Bayesian-like dynamics. The learning equation of the linear operator model [Bush, R. R., & Mosteller, F. (1955). Stochastic models for learning, New York: John Wiley and Sons], under ensemble averaging, yields the class of predictive reinforcement learning models (e.g., [Busemeyer, J. R., & Myung, I. J. (1992). An adaptive approach to human decision making: Learning theory, decision theory, and human performance. Journal of Experimental Psychology: General, 121, 177-194; Montague, P. R., Dayan, P., & Sejnowski, T. J. (1996). A framework for mesencephalic dopamine systems based on predictive Hebbian learning. Journal of Neuroscience, 16, 1936-1947]).

  7. Adaptive learning via selectionism and Bayesianism, Part I: connection between the two.

    PubMed

    Zhang, Jun

    2009-04-01

    According to the selection-by-consequence characterization of operant learning, individual animals/species increase or decrease their future probability of action choices based on the consequence (i.e., reward or punishment) of the currently selected action (the so-called "Law of Effect"). Under Bayesianism, on the other hand, evidence is evaluated based on likelihood functions so that action probability is modified from a priori to a posteriori according to the Bayes formula. Viewed as hypothesis testing, a selectionist framework attributes evidence exclusively to the selected, focal hypothesis, whereas a Bayesian framework distributes across all hypotheses the support from a piece of evidence. Here, an intimate connection between the two theoretical frameworks is revealed. Specifically, it is proven that when individuals modify their action choices based on the selectionist's Law of Effect, the learning population, on the ensemble level, evolves according to a Bayesian-like dynamics. The learning equation of the linear operator model [Bush, R. R., & Mosteller, F. (1955). Stochastic models for learning, New York: John Wiley and Sons], under ensemble averaging, yields the class of predictive reinforcement learning models (e.g., [Busemeyer, J. R., & Myung, I. J. (1992). An adaptive approach to human decision making: Learning theory, decision theory, and human performance. Journal of Experimental Psychology: General, 121, 177-194; Montague, P. R., Dayan, P., & Sejnowski, T. J. (1996). A framework for mesencephalic dopamine systems based on predictive Hebbian learning. Journal of Neuroscience, 16, 1936-1947]). PMID:19386469

  8. Adaptive Embedded Digital System for Plasma Diagnostics

    NASA Astrophysics Data System (ADS)

    González, Angel; Rodríguez, Othoniel; Mangual, Osvaldo; Ponce, Eduardo; Vélez, Xavier

    2014-05-01

    An Adaptive Embedded Digital System to perform plasma diagnostics using electrostatic probes was developed at the Plasma Engineering Laboratory at Polytechnic University of Puerto Rico. The system will replace the existing instrumentation at the Laboratory, using reconfigurable hardware to minimize the equipment and software needed to perform diagnostics. The adaptability of the design resides on the possibility of replacing the computational algorithm on the fly, allowing to use the same hardware for different probes. The system was prototyped using Very High Speed Integrated Circuits Hardware Description Language (VHDL) into an Field Programmable Gate Array (FPGA) board. The design of the Embedded Digital System includes a Zero Phase Digital Filter, a Derivative Unit, and a Computational Unit designed using the VHDL-2008 Support Library. The prototype is able to compute the Plasma Electron Temperature and Density from a Single Langmuir probe. The system was tested using real data previously acquired from a single Langmuir probe. The plasma parameters obtained from the embedded system were compared with results computed using matlab yielding excellent matching. The new embedded system operates on 4096 samples versus 500 on the previous system, and completes its computations in 26 milliseconds compared with about 15 seconds on the previous system.

  9. Patterns of Learning Related to Adapting to Change: A Study of Four Health Care Occupations in the United States.

    ERIC Educational Resources Information Center

    Paprock, Kenneth E.

    The necessity to adjust to changing circumstances constitutes a motivating force for learning. Implementation of the legislative change in Medicare reimbursement in the United States requires change on the part of the health care system and adaptation by the individuals within that system. Two studies examined ways health care professionals in the…

  10. Racing to learn: statistical inference and learning in a single spiking neuron with adaptive kernels.

    PubMed

    Afshar, Saeed; George, Libin; Tapson, Jonathan; van Schaik, André; Hamilton, Tara J

    2014-01-01

    This paper describes the Synapto-dendritic Kernel Adapting Neuron (SKAN), a simple spiking neuron model that performs statistical inference and unsupervised learning of spatiotemporal spike patterns. SKAN is the first proposed neuron model to investigate the effects of dynamic synapto-dendritic kernels and demonstrate their computational power even at the single neuron scale. The rule-set defining the neuron is simple: there are no complex mathematical operations such as normalization, exponentiation or even multiplication. The functionalities of SKAN emerge from the real-time interaction of simple additive and binary processes. Like a biological neuron, SKAN is robust to signal and parameter noise, and can utilize both in its operations. At the network scale neurons are locked in a race with each other with the fastest neuron to spike effectively "hiding" its learnt pattern from its neighbors. The robustness to noise, high speed, and simple building blocks not only make SKAN an interesting neuron model in computational neuroscience, but also make it ideal for implementation in digital and analog neuromorphic systems which is demonstrated through an implementation in a Field Programmable Gate Array (FPGA). Matlab, Python, and Verilog implementations of SKAN are available at: http://www.uws.edu.au/bioelectronics_neuroscience/bens/reproducible_research.

  11. Racing to learn: statistical inference and learning in a single spiking neuron with adaptive kernels

    PubMed Central

    Afshar, Saeed; George, Libin; Tapson, Jonathan; van Schaik, André; Hamilton, Tara J.

    2014-01-01

    This paper describes the Synapto-dendritic Kernel Adapting Neuron (SKAN), a simple spiking neuron model that performs statistical inference and unsupervised learning of spatiotemporal spike patterns. SKAN is the first proposed neuron model to investigate the effects of dynamic synapto-dendritic kernels and demonstrate their computational power even at the single neuron scale. The rule-set defining the neuron is simple: there are no complex mathematical operations such as normalization, exponentiation or even multiplication. The functionalities of SKAN emerge from the real-time interaction of simple additive and binary processes. Like a biological neuron, SKAN is robust to signal and parameter noise, and can utilize both in its operations. At the network scale neurons are locked in a race with each other with the fastest neuron to spike effectively “hiding” its learnt pattern from its neighbors. The robustness to noise, high speed, and simple building blocks not only make SKAN an interesting neuron model in computational neuroscience, but also make it ideal for implementation in digital and analog neuromorphic systems which is demonstrated through an implementation in a Field Programmable Gate Array (FPGA). Matlab, Python, and Verilog implementations of SKAN are available at: http://www.uws.edu.au/bioelectronics_neuroscience/bens/reproducible_research. PMID:25505378

  12. Racing to learn: statistical inference and learning in a single spiking neuron with adaptive kernels.

    PubMed

    Afshar, Saeed; George, Libin; Tapson, Jonathan; van Schaik, André; Hamilton, Tara J

    2014-01-01

    This paper describes the Synapto-dendritic Kernel Adapting Neuron (SKAN), a simple spiking neuron model that performs statistical inference and unsupervised learning of spatiotemporal spike patterns. SKAN is the first proposed neuron model to investigate the effects of dynamic synapto-dendritic kernels and demonstrate their computational power even at the single neuron scale. The rule-set defining the neuron is simple: there are no complex mathematical operations such as normalization, exponentiation or even multiplication. The functionalities of SKAN emerge from the real-time interaction of simple additive and binary processes. Like a biological neuron, SKAN is robust to signal and parameter noise, and can utilize both in its operations. At the network scale neurons are locked in a race with each other with the fastest neuron to spike effectively "hiding" its learnt pattern from its neighbors. The robustness to noise, high speed, and simple building blocks not only make SKAN an interesting neuron model in computational neuroscience, but also make it ideal for implementation in digital and analog neuromorphic systems which is demonstrated through an implementation in a Field Programmable Gate Array (FPGA). Matlab, Python, and Verilog implementations of SKAN are available at: http://www.uws.edu.au/bioelectronics_neuroscience/bens/reproducible_research. PMID:25505378

  13. Adaptation Patterns as a Conceptual Tool for Designing the Adaptive Operation of CSCL Systems

    ERIC Educational Resources Information Center

    Karakostas, Anastasios; Demetriadis, Stavros

    2011-01-01

    While adaptive collaboration support has become the focus of increasingly intense research efforts in the CSCL domain, scarce, however, remain the research-based evidence on pedagogically useful ideas on what and how to adapt during the collaborative learning activity. Based principally on two studies, this work presents a compilation of…

  14. Arizona Learning Systems Business Plan.

    ERIC Educational Resources Information Center

    Arizona State Board of Directors for Community Colleges, Phoenix.

    This paper describes Arizona Learning Systems (ALS), an alliance of Arizona community colleges developed in response to a state legislative appropriation for technology assisted learning. The appointed task force was to address the needed telecommunications connectivity between community college districts, and among community college districts,…

  15. Learning Information Systems: Theoretical Foundations.

    ERIC Educational Resources Information Center

    Paul, Terrance D.

    This paper uses the conceptual framework of cybernetics to understand why learning information systems such as the "Accelerated Reader" work so successfully, and to examine how this simple yet incisive concept can be used to accelerate learning at every level and in all disciplines. The first section, "Basic Concepts," discusses the cybernetic…

  16. Adaptive Optics Imaging of Solar System Objects

    NASA Technical Reports Server (NTRS)

    Roddier, Francois; Owen, Toby

    1997-01-01

    Most solar system objects have never been observed at wavelengths longer than the R band with an angular resolution better than 1 sec. The Hubble Space Telescope itself has only recently been equipped to observe in the infrared. However, because of its small diameter, the angular resolution is lower than that one can now achieved from the ground with adaptive optics, and time allocated to planetary science is limited. We have been using adaptive optics (AO) on a 4-m class telescope to obtain 0.1 sec resolution images solar system objects at far red and near infrared wavelengths (0.7-2.5 micron) which best discriminate their spectral signatures. Our efforts has been put into areas of research for which high angular resolution is essential, such as the mapping of Titan and of large asteroids, the dynamics and composition of Neptune stratospheric clouds, the infrared photometry of Pluto, Charon, and close satellites previously undetected from the ground.

  17. Adaptive Optics Imaging of Solar System Objects

    NASA Technical Reports Server (NTRS)

    Roddier, Francois; Owen, Toby

    1999-01-01

    Most solar system objects have never been observed at wavelengths longer than the R band with an angular resolution better than 1". The Hubble Space Telescope itself has only recently been equipped to observe in the infrared. However, because of its small diameter, the angular resolution is lower than that one can now achieved from the ground with adaptive optics, and time allocated to planetary science is limited. We have successfully used adaptive optics on a 4-m class telescope to obtain 0.1" resolution images of solar system objects in the far red and near infrared (0.7-2.5 microns), aE wavelengths which best discl"lmlnate their spectral signatures. Our efforts have been put into areas of research for which high angular resolution is essential.

  18. A Multi-Agent System Approach for Distance Learning Architecture

    ERIC Educational Resources Information Center

    Turgay, Safiye

    2005-01-01

    The goal of this study is to suggest the agent systems by intelligence and adaptability properties in distance learning environment. The suggested system has flexible, agile, intelligence and cooperation features. System components are teachers, students (learners), and resources. Inter component relations are modeled and reviewed by using the…

  19. Learner Characteristic Based Learning Effort Curve Mode: The Core Mechanism on Developing Personalized Adaptive E-Learning Platform

    ERIC Educational Resources Information Center

    Hsu, Pi-Shan

    2012-01-01

    This study aims to develop the core mechanism for realizing the development of personalized adaptive e-learning platform, which is based on the previous learning effort curve research and takes into account the learner characteristics of learning style and self-efficacy. 125 university students from Taiwan are classified into 16 groups according…

  20. Enhancing learning, innovation, adaptation, and sustainability in health care organizations: the ELIAS performance management framework.

    PubMed

    Persaud, D David

    2014-01-01

    The development of sustainable health care organizations that provide high-quality accessible care is a topic of intense interest. This article provides a practical performance management framework that can be utilized to develop sustainable health care organizations. It is a cyclical 5-step process that is premised on accountability, performance management, and learning practices that are the foundation for a continuous process of measurement, disconfirmation, contextualization, implementation, and routinization This results in the enhancement of learning, innovation, adaptation, and sustainability (ELIAS). Important considerations such as recognizing that health care organizations are complex adaptive systems and the presence of a dynamic learning culture are necessary contextual factors that maximize the effectiveness of the proposed framework. Importantly, the ELIAS framework utilizes data that are already being collected by health care organizations for accountability, improvement, evaluation, and strategic purposes. Therefore, the benefit of the framework, when used as outlined, would be to enhance the chances of health care organizations achieving the goals of ongoing adaptation and sustainability, by design, rather than by chance.

  1. Adaptable radiation monitoring system and method

    DOEpatents

    Archer, Daniel E.; Beauchamp, Brock R.; Mauger, G. Joseph; Nelson, Karl E.; Mercer, Michael B.; Pletcher, David C.; Riot, Vincent J.; Schek, James L.; Knapp, David A.

    2006-06-20

    A portable radioactive-material detection system capable of detecting radioactive sources moving at high speeds. The system has at least one radiation detector capable of detecting gamma-radiation and coupled to an MCA capable of collecting spectral data in very small time bins of less than about 150 msec. A computer processor is connected to the MCA for determining from the spectral data if a triggering event has occurred. Spectral data is stored on a data storage device, and a power source supplies power to the detection system. Various configurations of the detection system may be adaptably arranged for various radiation detection scenarios. In a preferred embodiment, the computer processor operates as a server which receives spectral data from other networked detection systems, and communicates the collected data to a central data reporting system.

  2. Extreme learning machine and adaptive sparse representation for image classification.

    PubMed

    Cao, Jiuwen; Zhang, Kai; Luo, Minxia; Yin, Chun; Lai, Xiaoping

    2016-09-01

    Recent research has shown the speed advantage of extreme learning machine (ELM) and the accuracy advantage of sparse representation classification (SRC) in the area of image classification. Those two methods, however, have their respective drawbacks, e.g., in general, ELM is known to be less robust to noise while SRC is known to be time-consuming. Consequently, ELM and SRC complement each other in computational complexity and classification accuracy. In order to unify such mutual complementarity and thus further enhance the classification performance, we propose an efficient hybrid classifier to exploit the advantages of ELM and SRC in this paper. More precisely, the proposed classifier consists of two stages: first, an ELM network is trained by supervised learning. Second, a discriminative criterion about the reliability of the obtained ELM output is adopted to decide whether the query image can be correctly classified or not. If the output is reliable, the classification will be performed by ELM; otherwise the query image will be fed to SRC. Meanwhile, in the stage of SRC, a sub-dictionary that is adaptive to the query image instead of the entire dictionary is extracted via the ELM output. The computational burden of SRC thus can be reduced. Extensive experiments on handwritten digit classification, landmark recognition and face recognition demonstrate that the proposed hybrid classifier outperforms ELM and SRC in classification accuracy with outstanding computational efficiency.

  3. Extreme learning machine and adaptive sparse representation for image classification.

    PubMed

    Cao, Jiuwen; Zhang, Kai; Luo, Minxia; Yin, Chun; Lai, Xiaoping

    2016-09-01

    Recent research has shown the speed advantage of extreme learning machine (ELM) and the accuracy advantage of sparse representation classification (SRC) in the area of image classification. Those two methods, however, have their respective drawbacks, e.g., in general, ELM is known to be less robust to noise while SRC is known to be time-consuming. Consequently, ELM and SRC complement each other in computational complexity and classification accuracy. In order to unify such mutual complementarity and thus further enhance the classification performance, we propose an efficient hybrid classifier to exploit the advantages of ELM and SRC in this paper. More precisely, the proposed classifier consists of two stages: first, an ELM network is trained by supervised learning. Second, a discriminative criterion about the reliability of the obtained ELM output is adopted to decide whether the query image can be correctly classified or not. If the output is reliable, the classification will be performed by ELM; otherwise the query image will be fed to SRC. Meanwhile, in the stage of SRC, a sub-dictionary that is adaptive to the query image instead of the entire dictionary is extracted via the ELM output. The computational burden of SRC thus can be reduced. Extensive experiments on handwritten digit classification, landmark recognition and face recognition demonstrate that the proposed hybrid classifier outperforms ELM and SRC in classification accuracy with outstanding computational efficiency. PMID:27389571

  4. Saccade Adaptation as a Model of Flexible and General Motor Learning

    PubMed Central

    Herman, James P.; Blangero, Annabelle; Madelain, Laurent; Khan, Afsheen; Harwood, Mark R.

    2013-01-01

    The rapid point-to-point movements of the eyes called saccades are the most commonly made movement by humans, yet differ from nearly every other type of motor output in that they are completed too quickly to be adjusted during their execution by visual feedback. Saccadic accuracy remains quite high over a lifetime despite inevitable changes to the physical structures controlling the eyes, indicating that the oculomotor system actively monitors and adjusts motor commands to achieve consistent behavioural production. Indeed, it seems that beyond the ability to compensate for slow, age-related bodily changes, saccades can be modified following traumatic injury or pathology that affects their production, or in response to more short-term systematic alterations to post-saccadic visual feedback in a laboratory setting. These forms of plasticity rely on the visual detection of accuracy errors by a unified set of mechanisms that support the process known as saccade adaptation. Saccade adaptation has been mostly studied as a phenomenon in its own right, outside of motor learning in general. Here, we highlight the commonalities between eye and arm movement adaptation by reviewing the literature across these fields wherever there are compelling overlapping theories or data. Recent exciting findings are challenging previous interpretations of the underlying mechanism of saccade adaptation with the incorporation of concepts including prediction, reinforcement and contextual learning. We review the emerging ideas and evidence with particular emphasis on the important contributions made by Josh Wallman in this sphere over the past 15 years. PMID:23597598

  5. Gaia as a complex adaptive system.

    PubMed

    Lenton, Timothy M; van Oijen, Marcel

    2002-05-29

    We define the Gaia system of life and its environment on Earth, review the status of the Gaia theory, introduce potentially relevant concepts from complexity theory, then try to apply them to Gaia. We consider whether Gaia is a complex adaptive system (CAS) in terms of its behaviour and suggest that the system is self-organizing but does not reside in a critical state. Gaia has supported abundant life for most of the last 3.8 Gyr. Large perturbations have occasionally suppressed life but the system has always recovered without losing the capacity for large-scale free energy capture and recycling of essential elements. To illustrate how complexity theory can help us understand the emergence of planetary-scale order, we present a simple cellular automata (CA) model of the imaginary planet Daisyworld. This exhibits emergent self-regulation as a consequence of feedback coupling between life and its environment. Local spatial interaction, which was absent from the original model, can destabilize the system by generating bifurcation regimes. Variation and natural selection tend to remove this instability. With mutation in the model system, it exhibits self-organizing adaptive behaviour in its response to forcing. We close by suggesting how artificial life ('Alife') techniques may enable more comprehensive feasibility tests of Gaia. PMID:12079529

  6. Gaia as a complex adaptive system.

    PubMed

    Lenton, Timothy M; van Oijen, Marcel

    2002-05-29

    We define the Gaia system of life and its environment on Earth, review the status of the Gaia theory, introduce potentially relevant concepts from complexity theory, then try to apply them to Gaia. We consider whether Gaia is a complex adaptive system (CAS) in terms of its behaviour and suggest that the system is self-organizing but does not reside in a critical state. Gaia has supported abundant life for most of the last 3.8 Gyr. Large perturbations have occasionally suppressed life but the system has always recovered without losing the capacity for large-scale free energy capture and recycling of essential elements. To illustrate how complexity theory can help us understand the emergence of planetary-scale order, we present a simple cellular automata (CA) model of the imaginary planet Daisyworld. This exhibits emergent self-regulation as a consequence of feedback coupling between life and its environment. Local spatial interaction, which was absent from the original model, can destabilize the system by generating bifurcation regimes. Variation and natural selection tend to remove this instability. With mutation in the model system, it exhibits self-organizing adaptive behaviour in its response to forcing. We close by suggesting how artificial life ('Alife') techniques may enable more comprehensive feasibility tests of Gaia.

  7. Gaia as a complex adaptive system.

    PubMed Central

    Lenton, Timothy M; van Oijen, Marcel

    2002-01-01

    We define the Gaia system of life and its environment on Earth, review the status of the Gaia theory, introduce potentially relevant concepts from complexity theory, then try to apply them to Gaia. We consider whether Gaia is a complex adaptive system (CAS) in terms of its behaviour and suggest that the system is self-organizing but does not reside in a critical state. Gaia has supported abundant life for most of the last 3.8 Gyr. Large perturbations have occasionally suppressed life but the system has always recovered without losing the capacity for large-scale free energy capture and recycling of essential elements. To illustrate how complexity theory can help us understand the emergence of planetary-scale order, we present a simple cellular automata (CA) model of the imaginary planet Daisyworld. This exhibits emergent self-regulation as a consequence of feedback coupling between life and its environment. Local spatial interaction, which was absent from the original model, can destabilize the system by generating bifurcation regimes. Variation and natural selection tend to remove this instability. With mutation in the model system, it exhibits self-organizing adaptive behaviour in its response to forcing. We close by suggesting how artificial life ('Alife') techniques may enable more comprehensive feasibility tests of Gaia. PMID:12079529

  8. Systems integration of innate and adaptive immunity.

    PubMed

    Zak, Daniel E; Aderem, Alan

    2015-09-29

    The pathogens causing AIDS, malaria, and tuberculosis have proven too complex to be overcome by classical approaches to vaccination. The complexities of human immunology and pathogen-induced modulation of the immune system mandate new approaches to vaccine discovery and design. A new field, systems vaccinology, weds holistic analysis of innate and adaptive immunity within a quantitative framework to enable rational design of new vaccines that elicit tailored protective immune responses. A key step in the approach is to discover relationships between the earliest innate inflammatory responses to vaccination and the subsequent vaccine-induced adaptive immune responses and efficacy. Analysis of these responses in clinical studies is complicated by the inaccessibility of relevant tissue compartments (such as the lymph node), necessitating reliance upon peripheral blood responses as surrogates. Blood transcriptomes, although indirect to vaccine mechanisms, have proven very informative in systems vaccinology studies. The approach is most powerful when innate and adaptive immune responses are integrated with vaccine efficacy, which is possible for malaria with the advent of a robust human challenge model. This is more difficult for AIDS and tuberculosis, given that human challenge models are lacking and efficacy observed in clinical trials has been low or highly variable. This challenge can be met by appropriate clinical trial design for partially efficacious vaccines and by analysis of natural infection cohorts. Ultimately, systems vaccinology is an iterative approach in which mechanistic hypotheses-derived from analysis of clinical studies-are evaluated in model systems, and then used to guide the development of new vaccine strategies. In this review, we will illustrate the above facets of the systems vaccinology approach with case studies.

  9. Applying Web Usage Mining for Personalizing Hyperlinks in Web-Based Adaptive Educational Systems

    ERIC Educational Resources Information Center

    Romero, Cristobal; Ventura, Sebastian; Zafra, Amelia; de Bra, Paul

    2009-01-01

    Nowadays, the application of Web mining techniques in e-learning and Web-based adaptive educational systems is increasing exponentially. In this paper, we propose an advanced architecture for a personalization system to facilitate Web mining. A specific Web mining tool is developed and a recommender engine is integrated into the AHA! system in…

  10. Examining the Relationship between Learning Organization Characteristics and Change Adaptation, Innovation, and Organizational Performance

    ERIC Educational Resources Information Center

    Kontoghiorghes, Constantine; Awbre, Susan M.; Feurig, Pamela L.

    2005-01-01

    The main purpose of this exploratory study was to examine the relationship between certain learning organization characteristics and change adaptation, innovation, and bottom-line organizational performance. The following learning organization characteristics were found to be the strongest predictors of rapid change adaptation, quick product or…

  11. The Future of Adaptive Learning: Does the Crowd Hold the Key?

    ERIC Educational Resources Information Center

    Heffernan, Neil T.; Ostrow, Korinn S.; Kelly, Kim; Selent, Douglas; Van Inwegen, Eric G.; Xiong, Xiaolu; Williams, Joseph Jay

    2016-01-01

    Due to substantial scientific and practical progress, learning technologies can effectively adapt to the characteristics and needs of students. This article considers how learning technologies can adapt over time by crowdsourcing contributions from teachers and students--explanations, feedback, and other pedagogical interactions. Considering the…

  12. A Context-Aware Self-Adaptive Fractal Based Generalized Pedagogical Agent Framework for Mobile Learning

    ERIC Educational Resources Information Center

    Boulehouache, Soufiane; Maamri, Ramdane; Sahnoun, Zaidi

    2015-01-01

    The Pedagogical Agents (PAs) for Mobile Learning (m-learning) must be able not only to adapt the teaching to the learner knowledge level and profile but also to ensure the pedagogical efficiency within unpredictable changing runtime contexts. Therefore, to deal with this issue, this paper proposes a Context-aware Self-Adaptive Fractal Component…

  13. The Effects of Rapid Assessments and Adaptive Restudy Prompts in Multimedia Learning

    ERIC Educational Resources Information Center

    Renkl, Alexander; Skuballa, Irene T.; Schwonke, Rolf; Harr, Nora; Leber, Jasmin

    2015-01-01

    We investigated the effects of rapid assessment tasks and different adaptive restudy prompts in multimedia learning. The adaptivity was based on rapid assessment tasks that were interspersed throughout a multimedia learning environment. In Experiment 1 (N = 52 university students), we analyzed to which extent rapid assessment tasks were reactive…

  14. Exploring the Effects of Intercultural Learning on Cross-Cultural Adaptation in a Study Abroad Context

    ERIC Educational Resources Information Center

    Tsai, Yau

    2011-01-01

    This study targets Asian students studying abroad and explores the effects of intercultural learning on their cross-cultural adaptation by drawing upon a questionnaire survey. On the one hand, the results of this study find that under the influence of intercultural learning, students respond differently in their cross-cultural adaptation and no…

  15. An Adaptive Approach to Managing Knowledge Development in a Project-Based Learning Environment

    ERIC Educational Resources Information Center

    Tilchin, Oleg; Kittany, Mohamed

    2016-01-01

    In this paper we propose an adaptive approach to managing the development of students' knowledge in the comprehensive project-based learning (PBL) environment. Subject study is realized by two-stage PBL. It shapes adaptive knowledge management (KM) process and promotes the correct balance between personalized and collaborative learning. The…

  16. Complex Adaptive Systems of Systems (CASOS) engineering environment.

    SciTech Connect

    Detry, Richard Joseph; Linebarger, John Michael; Finley, Patrick D.; Maffitt, S. Louise; Glass, Robert John, Jr.; Beyeler, Walter Eugene; Ames, Arlo Leroy

    2012-02-01

    Complex Adaptive Systems of Systems, or CASoS, are vastly complex physical-socio-technical systems which we must understand to design a secure future for the nation. The Phoenix initiative implements CASoS Engineering principles combining the bottom up Complex Systems and Complex Adaptive Systems view with the top down Systems Engineering and System-of-Systems view. CASoS Engineering theory and practice must be conducted together to develop a discipline that is grounded in reality, extends our understanding of how CASoS behave and allows us to better control the outcomes. The pull of applications (real world problems) is critical to this effort, as is the articulation of a CASoS Engineering Framework that grounds an engineering approach in the theory of complex adaptive systems of systems. Successful application of the CASoS Engineering Framework requires modeling, simulation and analysis (MS and A) capabilities and the cultivation of a CASoS Engineering Community of Practice through knowledge sharing and facilitation. The CASoS Engineering Environment, itself a complex adaptive system of systems, constitutes the two platforms that provide these capabilities.

  17. LABRADOR: a learning autonomous behavior-based robot for adaptive detection and object retrieval

    NASA Astrophysics Data System (ADS)

    Yamauchi, Brian; Moseley, Mark; Brookshire, Jonathan

    2013-01-01

    As part of the TARDEC-funded CANINE (Cooperative Autonomous Navigation in a Networked Environment) Program, iRobot developed LABRADOR (Learning Autonomous Behavior-based Robot for Adaptive Detection and Object Retrieval). LABRADOR was based on the rugged, man-portable, iRobot PackBot unmanned ground vehicle (UGV) equipped with an explosives ordnance disposal (EOD) manipulator arm and a custom gripper. For LABRADOR, we developed a vision-based object learning and recognition system that combined a TLD (track-learn-detect) filter based on object shape features with a color-histogram-based object detector. Our vision system was able to learn in real-time to recognize objects presented to the robot. We also implemented a waypoint navigation system based on fused GPS, IMU (inertial measurement unit), and odometry data. We used this navigation capability to implement autonomous behaviors capable of searching a specified area using a variety of robust coverage strategies - including outward spiral, random bounce, random waypoint, and perimeter following behaviors. While the full system was not integrated in time to compete in the CANINE competition event, we developed useful perception, navigation, and behavior capabilities that may be applied to future autonomous robot systems.

  18. Social networks as embedded complex adaptive systems.

    PubMed

    Benham-Hutchins, Marge; Clancy, Thomas R

    2010-09-01

    As systems evolve over time, their natural tendency is to become increasingly more complex. Studies in the field of complex systems have generated new perspectives on management in social organizations such as hospitals. Much of this research appears as a natural extension of the cross-disciplinary field of systems theory. This is the 15th in a series of articles applying complex systems science to the traditional management concepts of planning, organizing, directing, coordinating, and controlling. In this article, the authors discuss healthcare social networks as a hierarchy of embedded complex adaptive systems. The authors further examine the use of social network analysis tools as a means to understand complex communication patterns and reduce medical errors.

  19. DKIST Adaptive Optics System: Simulation Results

    NASA Astrophysics Data System (ADS)

    Marino, Jose; Schmidt, Dirk

    2016-05-01

    The 4 m class Daniel K. Inouye Solar Telescope (DKIST), currently under construction, will be equipped with an ultra high order solar adaptive optics (AO) system. The requirements and capabilities of such a solar AO system are beyond those of any other solar AO system currently in operation. We must rely on solar AO simulations to estimate and quantify its performance.We present performance estimation results of the DKIST AO system obtained with a new solar AO simulation tool. This simulation tool is a flexible and fast end-to-end solar AO simulator which produces accurate solar AO simulations while taking advantage of current multi-core computer technology. It relies on full imaging simulations of the extended field Shack-Hartmann wavefront sensor (WFS), which directly includes important secondary effects such as field dependent distortions and varying contrast of the WFS sub-aperture images.

  20. Second Graders Learn Animal Adaptations through Form and Function Analogy Object Boxes

    ERIC Educational Resources Information Center

    Rule, Audrey C.; Baldwin, Samantha; Schell, Robert

    2008-01-01

    This study examined the use of form and function analogy object boxes to teach second graders (n = 21) animal adaptations. The study used a pretest-posttest design to examine animal adaptation content learned through focused analogy activities as compared with reading and Internet searches for information about adaptations of animals followed by…

  1. Adaptable data management for systems biology investigations

    PubMed Central

    Boyle, John; Rovira, Hector; Cavnor, Chris; Burdick, David; Killcoyne, Sarah; Shmulevich, Ilya

    2009-01-01

    Background Within research each experiment is different, the focus changes and the data is generated from a continually evolving barrage of technologies. There is a continual introduction of new techniques whose usage ranges from in-house protocols through to high-throughput instrumentation. To support these requirements data management systems are needed that can be rapidly built and readily adapted for new usage. Results The adaptable data management system discussed is designed to support the seamless mining and analysis of biological experiment data that is commonly used in systems biology (e.g. ChIP-chip, gene expression, proteomics, imaging, flow cytometry). We use different content graphs to represent different views upon the data. These views are designed for different roles: equipment specific views are used to gather instrumentation information; data processing oriented views are provided to enable the rapid development of analysis applications; and research project specific views are used to organize information for individual research experiments. This management system allows for both the rapid introduction of new types of information and the evolution of the knowledge it represents. Conclusion Data management is an important aspect of any research enterprise. It is the foundation on which most applications are built, and must be easily extended to serve new functionality for new scientific areas. We have found that adopting a three-tier architecture for data management, built around distributed standardized content repositories, allows us to rapidly develop new applications to support a diverse user community. PMID:19265554

  2. Embedding Knowledge Management into Business Logic of E-learning Platform for Obtaining Adaptivity

    NASA Astrophysics Data System (ADS)

    Burdescu, Dumitru Dan; Mihaescu, Marian Cristian; Logofatu, Bogdan

    Obtaining adaptivity is one of the main concerns in current e-Learning development. This chapter proposes a methodology for obtaining adaptivity by embedding knowledge management into the business logic of the e-Learning platform. Naïve Bayes classifier is used as machine learning algorithm for obtaining the resources that need to be further accessed by learners. The analysis is accomplished on a discipline that is well structured according to a concept map.

  3. Modeling choice and reaction time during arbitrary visuomotor learning through the coordination of adaptive working memory and reinforcement learning.

    PubMed

    Viejo, Guillaume; Khamassi, Mehdi; Brovelli, Andrea; Girard, Benoît

    2015-01-01

    Current learning theory provides a comprehensive description of how humans and other animals learn, and places behavioral flexibility and automaticity at heart of adaptive behaviors. However, the computations supporting the interactions between goal-directed and habitual decision-making systems are still poorly understood. Previous functional magnetic resonance imaging (fMRI) results suggest that the brain hosts complementary computations that may differentially support goal-directed and habitual processes in the form of a dynamical interplay rather than a serial recruitment of strategies. To better elucidate the computations underlying flexible behavior, we develop a dual-system computational model that can predict both performance (i.e., participants' choices) and modulations in reaction times during learning of a stimulus-response association task. The habitual system is modeled with a simple Q-Learning algorithm (QL). For the goal-directed system, we propose a new Bayesian Working Memory (BWM) model that searches for information in the history of previous trials in order to minimize Shannon entropy. We propose a model for QL and BWM coordination such that the expensive memory manipulation is under control of, among others, the level of convergence of the habitual learning. We test the ability of QL or BWM alone to explain human behavior, and compare them with the performance of model combinations, to highlight the need for such combinations to explain behavior. Two of the tested combination models are derived from the literature, and the latter being our new proposal. In conclusion, all subjects were better explained by model combinations, and the majority of them are explained by our new coordination proposal. PMID:26379518

  4. Modeling choice and reaction time during arbitrary visuomotor learning through the coordination of adaptive working memory and reinforcement learning.

    PubMed

    Viejo, Guillaume; Khamassi, Mehdi; Brovelli, Andrea; Girard, Benoît

    2015-01-01

    Current learning theory provides a comprehensive description of how humans and other animals learn, and places behavioral flexibility and automaticity at heart of adaptive behaviors. However, the computations supporting the interactions between goal-directed and habitual decision-making systems are still poorly understood. Previous functional magnetic resonance imaging (fMRI) results suggest that the brain hosts complementary computations that may differentially support goal-directed and habitual processes in the form of a dynamical interplay rather than a serial recruitment of strategies. To better elucidate the computations underlying flexible behavior, we develop a dual-system computational model that can predict both performance (i.e., participants' choices) and modulations in reaction times during learning of a stimulus-response association task. The habitual system is modeled with a simple Q-Learning algorithm (QL). For the goal-directed system, we propose a new Bayesian Working Memory (BWM) model that searches for information in the history of previous trials in order to minimize Shannon entropy. We propose a model for QL and BWM coordination such that the expensive memory manipulation is under control of, among others, the level of convergence of the habitual learning. We test the ability of QL or BWM alone to explain human behavior, and compare them with the performance of model combinations, to highlight the need for such combinations to explain behavior. Two of the tested combination models are derived from the literature, and the latter being our new proposal. In conclusion, all subjects were better explained by model combinations, and the majority of them are explained by our new coordination proposal.

  5. Modeling choice and reaction time during arbitrary visuomotor learning through the coordination of adaptive working memory and reinforcement learning

    PubMed Central

    Viejo, Guillaume; Khamassi, Mehdi; Brovelli, Andrea; Girard, Benoît

    2015-01-01

    Current learning theory provides a comprehensive description of how humans and other animals learn, and places behavioral flexibility and automaticity at heart of adaptive behaviors. However, the computations supporting the interactions between goal-directed and habitual decision-making systems are still poorly understood. Previous functional magnetic resonance imaging (fMRI) results suggest that the brain hosts complementary computations that may differentially support goal-directed and habitual processes in the form of a dynamical interplay rather than a serial recruitment of strategies. To better elucidate the computations underlying flexible behavior, we develop a dual-system computational model that can predict both performance (i.e., participants' choices) and modulations in reaction times during learning of a stimulus–response association task. The habitual system is modeled with a simple Q-Learning algorithm (QL). For the goal-directed system, we propose a new Bayesian Working Memory (BWM) model that searches for information in the history of previous trials in order to minimize Shannon entropy. We propose a model for QL and BWM coordination such that the expensive memory manipulation is under control of, among others, the level of convergence of the habitual learning. We test the ability of QL or BWM alone to explain human behavior, and compare them with the performance of model combinations, to highlight the need for such combinations to explain behavior. Two of the tested combination models are derived from the literature, and the latter being our new proposal. In conclusion, all subjects were better explained by model combinations, and the majority of them are explained by our new coordination proposal. PMID:26379518

  6. Feature Space Mapping as a universal adaptive system

    NASA Astrophysics Data System (ADS)

    Duch, Włodzisław; Diercksen, Geerd H. F.

    1995-06-01

    The most popular realizations of adaptive systems are based on the neural network type of algorithms, in particular feedforward multilayered perceptrons trained by backpropagation of error procedures. In this paper an alternative approach based on multidimensional separable localized functions centered at the data clusters is proposed. In comparison with the neural networks that use delocalized transfer functions this approach allows for full control of the basins of attractors of all stationary points. Slow learning procedures are replaced by the explicit construction of the landscape function followed by the optimization of adjustable parameters using gradient techniques or genetic algorithms. Retrieving information does not require searches in multidimensional subspaces but it is factorized into a series of one-dimensional searches. Feature Space Mapping is applicable to learning not only from facts but also from general laws and may be treated as a fuzzy expert system (neurofuzzy system). The number of nodes (fuzzy rules) is growing as the network creates new nodes for novel data but the search time is sublinear in the number of rules or data clusters stored. Such a system may work as a universal classificator, approximator and reasoning system. Examples of applications for the identification of spectra (classification), intelligent databases (association) and for the analysis of simple electrical circuits (expert system type) are given.

  7. Application of learning management system (LMS) to the learning of land evaluation

    NASA Astrophysics Data System (ADS)

    Gascó, G.; Guerrero, F.; Gallardo, J.; Gascó, J. M.; Saa, A.

    2010-05-01

    The adaptation of the Universities to European Higher Education Area (EHEA) is producing changes in the learning system. One of the new learning system is the use of Moodle which is an Open Source Course Management System (CMS), also known as a Learning Management System (LMS) or a Virtual Learning Environment (VLE). It has become very popular among educators around the world as a tool for creating online dynamic web sites for their students. Professors of Soil Science Department of Universidad Politécnica de Madrid are introducing the use of moodle combined with the portfolio development in the learning of the subject of Land Evaluation. The objective of this subject is the application of the land capability system to the land evaluation of an specific area. The aim of this work is to evaluate the influence of the application of LMS in the teaching of Land Evaluation at University level.

  8. Adaptive stimulus optimization for sensory systems neuroscience.

    PubMed

    DiMattina, Christopher; Zhang, Kechen

    2013-01-01

    In this paper, we review several lines of recent work aimed at developing practical methods for adaptive on-line stimulus generation for sensory neurophysiology. We consider various experimental paradigms where on-line stimulus optimization is utilized, including the classical optimal stimulus paradigm where the goal of experiments is to identify a stimulus which maximizes neural responses, the iso-response paradigm which finds sets of stimuli giving rise to constant responses, and the system identification paradigm where the experimental goal is to estimate and possibly compare sensory processing models. We discuss various theoretical and practical aspects of adaptive firing rate optimization, including optimization with stimulus space constraints, firing rate adaptation, and possible network constraints on the optimal stimulus. We consider the problem of system identification, and show how accurate estimation of non-linear models can be highly dependent on the stimulus set used to probe the network. We suggest that optimizing stimuli for accurate model estimation may make it possible to successfully identify non-linear models which are otherwise intractable, and summarize several recent studies of this type. Finally, we present a two-stage stimulus design procedure which combines the dual goals of model estimation and model comparison and may be especially useful for system identification experiments where the appropriate model is unknown beforehand. We propose that fast, on-line stimulus optimization enabled by increasing computer power can make it practical to move sensory neuroscience away from a descriptive paradigm and toward a new paradigm of real-time model estimation and comparison.

  9. Adaptive stimulus optimization for sensory systems neuroscience

    PubMed Central

    DiMattina, Christopher; Zhang, Kechen

    2013-01-01

    In this paper, we review several lines of recent work aimed at developing practical methods for adaptive on-line stimulus generation for sensory neurophysiology. We consider various experimental paradigms where on-line stimulus optimization is utilized, including the classical optimal stimulus paradigm where the goal of experiments is to identify a stimulus which maximizes neural responses, the iso-response paradigm which finds sets of stimuli giving rise to constant responses, and the system identification paradigm where the experimental goal is to estimate and possibly compare sensory processing models. We discuss various theoretical and practical aspects of adaptive firing rate optimization, including optimization with stimulus space constraints, firing rate adaptation, and possible network constraints on the optimal stimulus. We consider the problem of system identification, and show how accurate estimation of non-linear models can be highly dependent on the stimulus set used to probe the network. We suggest that optimizing stimuli for accurate model estimation may make it possible to successfully identify non-linear models which are otherwise intractable, and summarize several recent studies of this type. Finally, we present a two-stage stimulus design procedure which combines the dual goals of model estimation and model comparison and may be especially useful for system identification experiments where the appropriate model is unknown beforehand. We propose that fast, on-line stimulus optimization enabled by increasing computer power can make it practical to move sensory neuroscience away from a descriptive paradigm and toward a new paradigm of real-time model estimation and comparison. PMID:23761737

  10. Context-Adaptive Learning Designs by Using Semantic Web Services

    ERIC Educational Resources Information Center

    Dietze, Stefan; Gugliotta, Alessio; Domingue, John

    2007-01-01

    IMS Learning Design (IMS-LD) is a promising technology aimed at supporting learning processes. IMS-LD packages contain the learning process metadata as well as the learning resources. However, the allocation of resources--whether data or services--within the learning design is done manually at design-time on the basis of the subjective appraisals…

  11. Adaptive PVDF piezoelectric deformable mirror system.

    PubMed

    Sato, T; Ishida, H; Ikeda, O

    1980-05-01

    An adaptive mirror system whose surface deforms smoothly according to the desired curve has been made of polyvinylidene fluoride (PVDF) piezoelectric film and laminar glass plate. One surface of the glass plate was evaporated with silver, and this side was used as the mirror surface. A PVDF film, whose shape was determined by the deformation curve, was pasted tightly on the other surface. The mirror deforms smoothly along this curve with the application of a single voltage to the film. Holographic filter and feedback were lso considered to improve the static and dynamic characteristics. Typically, deformation along ax(2)+bx(3) was obtained. PMID:20221054

  12. An Architecture for Web-Based E-Learning Promoting Re-Usable Adaptive Educational E-Content.

    ERIC Educational Resources Information Center

    Sampson, Demetrios; Karagiannidis, Charalampos; Cardinali, Fabrizio

    2002-01-01

    Addresses the issue of reusability in personalized Web-based learning environments, focusing on the work of the European IST Project KOD (Knowledge on Demand), including the definition of an architecture and the implementation of a system that promotes re-usable adaptive educational e-content. (Author/LRW)

  13. Providing Adaptation and Guidance for Design Learning by Problem Solving: The Design Planning Approach in DomoSim-TPC Environment

    ERIC Educational Resources Information Center

    Redondo, Miguel A.; Bravo, Crescencio; Ortega, Manuel; Verdejo, M. Felisa

    2007-01-01

    Experimental learning environments based on simulation usually require monitoring and adaptation to the actions the users carry out. Some systems provide this functionality, but they do so in a way which is static or cannot be applied to problem solving tasks. In response to this problem, we propose a method based on the use of intermediate…

  14. Constructive, Self-Regulated, Situated, and Collaborative Learning: An Approach for the Acquisition of Adaptive Competence

    ERIC Educational Resources Information Center

    de Corte, Erik

    2012-01-01

    In today's learning society, education must focus on fostering adaptive competence (AC) defined as the ability to apply knowledge and skills flexibly in different contexts. In this article, four major types of learning are discussed--constructive, self-regulated, situated, and collaborative--in relation to what students must learn in order to…

  15. Pedagogy to Empower Chinese Learners to Adapt to Western Learning Circumstances: A Longitudinal Case-Study

    ERIC Educational Resources Information Center

    Saravanamuthu, Kala; Yap, Christine

    2014-01-01

    Deficit theorisations of Chinese Learners studying in western countries are criticised for dichotomising learning attributes into Surface- or Deep-learning approaches. Subsequent context-dependent, small culture studies of students transiting between cultures theorise learning as a dynamic journey of adapting to a range/continuum of learning…

  16. Features: Real-Time Adaptive Feature and Document Learning for Web Search.

    ERIC Educational Resources Information Center

    Chen, Zhixiang; Meng, Xiannong; Fowler, Richard H.; Zhu, Binhai

    2001-01-01

    Describes Features, an intelligent Web search engine that is able to perform real-time adaptive feature (i.e., keyword) and document learning. Explains how Features learns from users' document relevance feedback and automatically extracts and suggests indexing keywords relevant to a search query, and learns from users' keyword relevance feedback…

  17. A Framework for Adaptive Learning Design in a Web-Conferencing Environment

    ERIC Educational Resources Information Center

    Bower, Matt

    2016-01-01

    Many recent technologies provide the ability to dynamically adjust the interface depending on the emerging cognitive and collaborative needs of the learning episode. This means that educators can adaptively re-design the learning environment during the lesson, rather than purely relying on preemptive learning design thinking. Based on a…

  18. Learning to Be a Community: Schools Need Adaptable Models to Create Successful Programs

    ERIC Educational Resources Information Center

    Ermeling, Bradley A.; Gallimore, Ronald

    2013-01-01

    Making schools learning places for teachers as well as students is a timeless and appealing vision. The growing number of professional learning communities is a hopeful sign that profound change is on the way. This is the challenge learning communities face: Schools and districts need implementation models flexible enough to adapt to local…

  19. The Effects of Reflective Activities on Skill Adaptation in a Work-Related Instrumental Learning Setting

    ERIC Educational Resources Information Center

    Roessger, Kevin M.

    2014-01-01

    In work-related instrumental learning contexts, the role of reflective activities is unclear. Kolb's experiential learning theory and Mezirow's transformative learning theory predict skill adaptation as an outcome. This prediction was tested by manipulating reflective activities and assessing participants' response and error rates…

  20. An Adaptive Testing System for Supporting Versatile Educational Assessment

    ERIC Educational Resources Information Center

    Huang, Yueh-Min; Lin, Yen-Ting; Cheng, Shu-Chen

    2009-01-01

    With the rapid growth of computer and mobile technology, it is a challenge to integrate computer based test (CBT) with mobile learning (m-learning) especially for formative assessment and self-assessment. In terms of self-assessment, computer adaptive test (CAT) is a proper way to enable students to evaluate themselves. In CAT, students are…

  1. Interoperability Gap Challenges for Learning Object Repositories & Learning Management Systems

    ERIC Educational Resources Information Center

    Mason, Robert T.

    2011-01-01

    An interoperability gap exists between Learning Management Systems (LMSs) and Learning Object Repositories (LORs). Learning Objects (LOs) and the associated Learning Object Metadata (LOM) that is stored within LORs adhere to a variety of LOM standards. A common LOM standard found in LORs is the Sharable Content Object Reference Model (SCORM)…

  2. Learning fuzzy logic control system

    NASA Technical Reports Server (NTRS)

    Lung, Leung Kam

    1994-01-01

    The performance of the Learning Fuzzy Logic Control System (LFLCS), developed in this thesis, has been evaluated. The Learning Fuzzy Logic Controller (LFLC) learns to control the motor by learning the set of teaching values that are generated by a classical PI controller. It is assumed that the classical PI controller is tuned to minimize the error of a position control system of the D.C. motor. The Learning Fuzzy Logic Controller developed in this thesis is a multi-input single-output network. Training of the Learning Fuzzy Logic Controller is implemented off-line. Upon completion of the training process (using Supervised Learning, and Unsupervised Learning), the LFLC replaces the classical PI controller. In this thesis, a closed loop position control system of a D.C. motor using the LFLC is implemented. The primary focus is on the learning capabilities of the Learning Fuzzy Logic Controller. The learning includes symbolic representation of the Input Linguistic Nodes set and Output Linguistic Notes set. In addition, we investigate the knowledge-based representation for the network. As part of the design process, we implement a digital computer simulation of the LFLCS. The computer simulation program is written in 'C' computer language, and it is implemented in DOS platform. The LFLCS, designed in this thesis, has been developed on a IBM compatible 486-DX2 66 computer. First, the performance of the Learning Fuzzy Logic Controller is evaluated by comparing the angular shaft position of the D.C. motor controlled by a conventional PI controller and that controlled by the LFLC. Second, the symbolic representation of the LFLC and the knowledge-based representation for the network are investigated by observing the parameters of the Fuzzy Logic membership functions and the links at each layer of the LFLC. While there are some limitations of application with this approach, the result of the simulation shows that the LFLC is able to control the angular shaft position of the

  3. Adapting to test structure: letting testing teach what to learn.

    PubMed

    Garcia-Marques, Leonel; Nunes, Ludmila D; Marques, Pedro; Carneiro, Paula; Weinstein, Yana

    2015-01-01

    We propose that we encode and store information as a function of the particular ways we have used similar information in the past. More specifically, we contend that the experience of retrieval can serve as a powerful cue to the most effective ways to encode similar information in comparable future learning episodes. To explore these ideas, we did two studies in which all participants went through study-test cycles of single category lists while we manipulated the nature of the recognition tests. The recognition tests either included only same-category lures or only different-category lures. The experience of repeated testing leads participants to avoid conceptual-based strategies but only when conceptual knowledge was poorly diagnostic for recognition (i.e., in the same-category lures condition). In a second study with a similar manipulation, we showed that repeated testing with lures from the same category as study items improved performance in a final recall surprise test compared to conditions in which different-category lures were used. Such a difference is akin to the one obtained when encoding instructions focus on distinctive item features compared to cases in which the focus is on relational processing. We suggest that testing requirements lead to adaptive changes at encoding.

  4. Adaptable formations utilizing heterogeneous unmanned systems

    NASA Astrophysics Data System (ADS)

    Barnes, Laura E.; Garcia, Richard; Fields, MaryAnne; Valavanis, Kimon

    2009-05-01

    This paper addresses the problem of controlling and coordinating heterogeneous unmanned systems required to move as a group while maintaining formation. We propose a strategy to coordinate groups of unmanned ground vehicles (UGVs) with one or more unmanned aerial vehicles (UAVs). UAVs can be utilized in one of two ways: (1) as alpha robots to guide the UGVs; and (2) as beta robots to surround the UGVs and adapt accordingly. In the first approach, the UAV guides a swarm of UGVs controlling their overall formation. In the second approach, the UGVs guide the UAVs controlling their formation. The unmanned systems are brought into a formation utilizing artificial potential fields generated from normal and sigmoid functions. These functions control the overall swarm geometry. Nonlinear limiting functions are defined to provide tighter swarm control by modifying and adjusting a set of control variables forcing the swarm to behave according to set constraints. Formations derived are subsets of elliptical curves but can be generalized to any curvilinear shape. Both approaches are demonstrated in simulation and experimentally. To demonstrate the second approach in simulation, a swarm of forty UAVs is utilized in a convoy protection mission. As a convoy of UGVs travels, UAVs dynamically and intelligently adapt their formation in order to protect the convoy of vehicles as it moves. Experimental results are presented to demonstrate the approach using a fully autonomous group of three UGVs and a single UAV helicopter for coordination.

  5. Adaptive Neuron Model: An architecture for the rapid learning of nonlinear topological transformations

    NASA Technical Reports Server (NTRS)

    Tawel, Raoul (Inventor)

    1994-01-01

    A method for the rapid learning of nonlinear mappings and topological transformations using a dynamically reconfigurable artificial neural network is presented. This fully-recurrent Adaptive Neuron Model (ANM) network was applied to the highly degenerate inverse kinematics problem in robotics, and its performance evaluation is bench-marked. Once trained, the resulting neuromorphic architecture was implemented in custom analog neural network hardware and the parameters capturing the functional transformation downloaded onto the system. This neuroprocessor, capable of 10(exp 9) ops/sec, was interfaced directly to a three degree of freedom Heathkit robotic manipulator. Calculation of the hardware feed-forward pass for this mapping was benchmarked at approximately 10 microsec.

  6. Am I Extravert or Introvert? Considering the Personality Effect toward e-Learning System

    ERIC Educational Resources Information Center

    Al-Dujaily, Amal; Kim, Jieun; Ryu, Hokyoung

    2013-01-01

    A concern of computer-based learning system design is how to accommodate learners' individual differences during learning activities. Previous research suggests that adaptive e-learning systems can effectively address such individual differences and, consequently, they enable more directed tutoring via computer-assisted instruction. In this…

  7. Neuromodulatory adaptive combination of correlation-based learning in cerebellum and reward-based learning in basal ganglia for goal-directed behavior control.

    PubMed

    Dasgupta, Sakyasingha; Wörgötter, Florentin; Manoonpong, Poramate

    2014-01-01

    Goal-directed decision making in biological systems is broadly based on associations between conditional and unconditional stimuli. This can be further classified as classical conditioning (correlation-based learning) and operant conditioning (reward-based learning). A number of computational and experimental studies have well established the role of the basal ganglia in reward-based learning, where as the cerebellum plays an important role in developing specific conditioned responses. Although viewed as distinct learning systems, recent animal experiments point toward their complementary role in behavioral learning, and also show the existence of substantial two-way communication between these two brain structures. Based on this notion of co-operative learning, in this paper we hypothesize that the basal ganglia and cerebellar learning systems work in parallel and interact with each other. We envision that such an interaction is influenced by reward modulated heterosynaptic plasticity (RMHP) rule at the thalamus, guiding the overall goal directed behavior. Using a recurrent neural network actor-critic model of the basal ganglia and a feed-forward correlation-based learning model of the cerebellum, we demonstrate that the RMHP rule can effectively balance the outcomes of the two learning systems. This is tested using simulated environments of increasing complexity with a four-wheeled robot in a foraging task in both static and dynamic configurations. Although modeled with a simplified level of biological abstraction, we clearly demonstrate that such a RMHP induced combinatorial learning mechanism, leads to stabler and faster learning of goal-directed behaviors, in comparison to the individual systems. Thus, in this paper we provide a computational model for adaptive combination of the basal ganglia and cerebellum learning systems by way of neuromodulated plasticity for goal-directed decision making in biological and bio-mimetic organisms. PMID:25389391

  8. Neuromodulatory adaptive combination of correlation-based learning in cerebellum and reward-based learning in basal ganglia for goal-directed behavior control

    PubMed Central

    Dasgupta, Sakyasingha; Wörgötter, Florentin; Manoonpong, Poramate

    2014-01-01

    Goal-directed decision making in biological systems is broadly based on associations between conditional and unconditional stimuli. This can be further classified as classical conditioning (correlation-based learning) and operant conditioning (reward-based learning). A number of computational and experimental studies have well established the role of the basal ganglia in reward-based learning, where as the cerebellum plays an important role in developing specific conditioned responses. Although viewed as distinct learning systems, recent animal experiments point toward their complementary role in behavioral learning, and also show the existence of substantial two-way communication between these two brain structures. Based on this notion of co-operative learning, in this paper we hypothesize that the basal ganglia and cerebellar learning systems work in parallel and interact with each other. We envision that such an interaction is influenced by reward modulated heterosynaptic plasticity (RMHP) rule at the thalamus, guiding the overall goal directed behavior. Using a recurrent neural network actor-critic model of the basal ganglia and a feed-forward correlation-based learning model of the cerebellum, we demonstrate that the RMHP rule can effectively balance the outcomes of the two learning systems. This is tested using simulated environments of increasing complexity with a four-wheeled robot in a foraging task in both static and dynamic configurations. Although modeled with a simplified level of biological abstraction, we clearly demonstrate that such a RMHP induced combinatorial learning mechanism, leads to stabler and faster learning of goal-directed behaviors, in comparison to the individual systems. Thus, in this paper we provide a computational model for adaptive combination of the basal ganglia and cerebellum learning systems by way of neuromodulated plasticity for goal-directed decision making in biological and bio-mimetic organisms. PMID:25389391

  9. Neuromodulatory adaptive combination of correlation-based learning in cerebellum and reward-based learning in basal ganglia for goal-directed behavior control.

    PubMed

    Dasgupta, Sakyasingha; Wörgötter, Florentin; Manoonpong, Poramate

    2014-01-01

    Goal-directed decision making in biological systems is broadly based on associations between conditional and unconditional stimuli. This can be further classified as classical conditioning (correlation-based learning) and operant conditioning (reward-based learning). A number of computational and experimental studies have well established the role of the basal ganglia in reward-based learning, where as the cerebellum plays an important role in developing specific conditioned responses. Although viewed as distinct learning systems, recent animal experiments point toward their complementary role in behavioral learning, and also show the existence of substantial two-way communication between these two brain structures. Based on this notion of co-operative learning, in this paper we hypothesize that the basal ganglia and cerebellar learning systems work in parallel and interact with each other. We envision that such an interaction is influenced by reward modulated heterosynaptic plasticity (RMHP) rule at the thalamus, guiding the overall goal directed behavior. Using a recurrent neural network actor-critic model of the basal ganglia and a feed-forward correlation-based learning model of the cerebellum, we demonstrate that the RMHP rule can effectively balance the outcomes of the two learning systems. This is tested using simulated environments of increasing complexity with a four-wheeled robot in a foraging task in both static and dynamic configurations. Although modeled with a simplified level of biological abstraction, we clearly demonstrate that such a RMHP induced combinatorial learning mechanism, leads to stabler and faster learning of goal-directed behaviors, in comparison to the individual systems. Thus, in this paper we provide a computational model for adaptive combination of the basal ganglia and cerebellum learning systems by way of neuromodulated plasticity for goal-directed decision making in biological and bio-mimetic organisms.

  10. SSD-Optimized Workload Placement with Adaptive Learning and Classification in HPC Environments

    SciTech Connect

    Wan, Lipeng; Lu, Zheng; Cao, Qing; Wang, Feiyi; Oral, H Sarp; Settlemyer, Bradley W

    2014-01-01

    In recent years, non-volatile memory devices such as SSD drives have emerged as a viable storage solution due to their increasing capacity and decreasing cost. Due to the unique capability and capacity requirements in large scale HPC (High Performance Computing) storage environment, a hybrid config- uration (SSD and HDD) may represent one of the most available and balanced solutions considering the cost and performance. Under this setting, effective data placement as well as movement with controlled overhead become a pressing challenge. In this paper, we propose an integrated object placement and movement framework and adaptive learning algorithms to address these issues. Specifically, we present a method that shuffle data objects across storage tiers to optimize the data access performance. The method also integrates an adaptive learning algorithm where real- time classification is employed to predict the popularity of data object accesses, so that they can be placed on, or migrate between SSD or HDD drives in the most efficient manner. We discuss preliminary results based on this approach using a simulator we developed to show that the proposed methods can dynamically adapt storage placements and access pattern as workloads evolve to achieve the best system level performance such as throughput.

  11. Learning in Artificial Neural Systems

    NASA Technical Reports Server (NTRS)

    Matheus, Christopher J.; Hohensee, William E.

    1987-01-01

    This paper presents an overview and analysis of learning in Artificial Neural Systems (ANS's). It begins with a general introduction to neural networks and connectionist approaches to information processing. The basis for learning in ANS's is then described, and compared with classical Machine learning. While similar in some ways, ANS learning deviates from tradition in its dependence on the modification of individual weights to bring about changes in a knowledge representation distributed across connections in a network. This unique form of learning is analyzed from two aspects: the selection of an appropriate network architecture for representing the problem, and the choice of a suitable learning rule capable of reproducing the desired function within the given network. The various network architectures are classified, and then identified with explicit restrictions on the types of functions they are capable of representing. The learning rules, i.e., algorithms that specify how the network weights are modified, are similarly taxonomized, and where possible, the limitations inherent to specific classes of rules are outlined.

  12. Contrarian behavior in a complex adaptive system

    NASA Astrophysics Data System (ADS)

    Liang, Y.; An, K. N.; Yang, G.; Huang, J. P.

    2013-01-01

    Contrarian behavior is a kind of self-organization in complex adaptive systems (CASs). Here we report the existence of a transition point in a model resource-allocation CAS with contrarian behavior by using human experiments, computer simulations, and theoretical analysis. The resource ratio and system predictability serve as the tuning parameter and order parameter, respectively. The transition point helps to reveal the positive or negative role of contrarian behavior. This finding is in contrast to the common belief that contrarian behavior always has a positive role in resource allocation, say, stabilizing resource allocation by shrinking the redundancy or the lack of resources. It is further shown that resource allocation can be optimized at the transition point by adding an appropriate size of contrarians. This work is also expected to be of value to some other fields ranging from management and social science to ecology and evolution.

  13. Landsat Ecosystem Disturbance Adaptive Processing System (LEDAPS)

    NASA Technical Reports Server (NTRS)

    Masek, Jeffrey G.

    2006-01-01

    The Landsat Ecosystem Disturbance Adaptive Processing System (LEDAPS) project is creating a record of forest disturbance and regrowth for North America from the Landsat satellite record, in support of the carbon modeling activities. LEDAPS relies on the decadal Landsat GeoCover data set supplemented by dense image time series for selected locations. Imagery is first atmospherically corrected to surface reflectance, and then change detection algorithms are used to extract disturbance area, type, and frequency. Reuse of the MODIS Land processing system (MODAPS) architecture allows rapid throughput of over 2200 MSS, TM, and ETM+ scenes. Initial ("Beta") surface reflectance products are currently available for testing, and initial continental disturbance products will be available by the middle of 2006.

  14. Adapting classical Systems Engineering to Department of Energy (DOE) needs

    SciTech Connect

    1996-07-01

    Rather than discuss Systems Engineering (SE) as applied by aerospace contractors to military programs, this document provides an adapted model well suited for use by DOE and represents 18 months of applying SE principles to the challenges faced by INEL. The real-life examples are drawn from INEL`s ongoing effort to integrate activities across the entire spectrum of within its Environmental Management program. Since the traditional SE process, with its initial focus on requirements identification and analysis, must be modified to provide tangible results in the short term, the adapted SE model starts with the external driver of ``reducing costs without increasing risks`` and performs an initial integration effort to identify high-potential, cost-saving opportunities. Elements from traditional alternatives development and analysis stages are used; then the adapted model cycles back to include more traditional requirements analysis activities. These cycles continue in an iterative manner, adding rigor and detail at each successive iteration, throughout the life-cycle of a program or project. Detailed lessons learned are included.

  15. Application of Adaptive Decision Aiding Systems to Computer-Assisted Instruction. Final Report, January-December 1974.

    ERIC Educational Resources Information Center

    May, Donald M.; And Others

    The minicomputer-based Computerized Diagnostic and Decision Training (CDDT) system described combines the principles of artificial intelligence, decision theory, and adaptive computer assisted instruction for training in electronic troubleshooting. The system incorporates an adaptive computer program which learns the student's diagnostic and…

  16. Adaptation of Conceptions of Learning Science Questionnaire into Turkish and Science Teacher Candidates' Conceptions of Learning Science

    ERIC Educational Resources Information Center

    Bahçivan, Eralp; Kapucu, Serkan

    2014-01-01

    The purposes of this study were to (1) adapt an instrument "The Conceptions of Learning Science (COLS) questionnaire" into Turkish, and (2) to determine Turkish science teacher candidates' COLS. Adapting the instrument four steps were followed. Firstly, COLS questionnaire was translated into Turkish. Secondly, COLS questionnaire was…

  17. Systemic Cold Stress Adaptation of Chlamydomonas reinhardtii*

    PubMed Central

    Valledor, Luis; Furuhashi, Takeshi; Hanak, Anne-Mette; Weckwerth, Wolfram

    2013-01-01

    Chlamydomonas reinhardtii is one of the most important model organisms nowadays phylogenetically situated between higher plants and animals (Merchant et al. 2007). Stress adaptation of this unicellular model algae is in the focus because of its relevance to biomass and biofuel production. Here, we have studied cold stress adaptation of C. reinhardtii hitherto not described for this algae whereas intensively studied in higher plants. Toward this goal, high throughput mass spectrometry was employed to integrate proteome, metabolome, physiological and cell-morphological changes during a time-course from 0 to 120 h. These data were complemented with RT-qPCR for target genes involved in central metabolism, signaling, and lipid biosynthesis. Using this approach dynamics in central metabolism were linked to cold-stress dependent sugar and autophagy pathways as well as novel genes in C. reinhardtii such as CKIN1, CKIN2 and a hitherto functionally not annotated protein named CKIN3. Cold stress affected extensively the physiology and the organization of the cell. Gluconeogenesis and starch biosynthesis pathways are activated leading to a pronounced starch and sugar accumulation. Quantitative lipid profiles indicate a sharp decrease in the lipophilic fraction and an increase in polyunsaturated fatty acids suggesting this as a mechanism of maintaining membrane fluidity. The proteome is completely remodeled during cold stress: specific candidates of the ribosome and the spliceosome indicate altered biosynthesis and degradation of proteins important for adaptation to low temperatures. Specific proteasome degradation may be mediated by the observed cold-specific changes in the ubiquitinylation system. Sparse partial least squares regression analysis was applied for protein correlation network analysis using proteins as predictors and Fv/Fm, FW, total lipids, and starch as responses. We applied also Granger causality analysis and revealed correlations between proteins and

  18. Neuromorphic learning of continuous-valued mappings in the presence of noise: Application to real-time adaptive control

    NASA Technical Reports Server (NTRS)

    Troudet, Terry; Merrill, Walter C.

    1989-01-01

    The ability of feed-forward neural net architectures to learn continuous-valued mappings in the presence of noise is demonstrated in relation to parameter identification and real-time adaptive control applications. Factors and parameters influencing the learning performance of such nets in the presence of noise are identified. Their effects are discussed through a computer simulation of the Back-Error-Propagation algorithm by taking the example of the cart-pole system controlled by a nonlinear control law. Adequate sampling of the state space is found to be essential for canceling the effect of the statistical fluctuations and allowing learning to take place.

  19. Cases on Technological Adaptability and Transnational Learning: Issues and Challenges

    ERIC Educational Resources Information Center

    Mukerji, Siran, Ed.; Tripathi, Purnendu, Ed.

    2010-01-01

    Technology holds the key for bridging the gap between access to quality education and the need for enhanced learning experiences. This book contains case studies on divergent themes of personalized learning environments, inclusive learning for social change, innovative learning and assessment techniques, technology and international partnership…

  20. Self-adaptive iris image acquisition system

    NASA Astrophysics Data System (ADS)

    Dong, Wenbo; Sun, Zhenan; Tan, Tieniu; Qiu, Xianchao

    2008-03-01

    Iris image acquisition is the fundamental step of the iris recognition, but capturing high-resolution iris images in real-time is very difficult. The most common systems have small capture volume and demand users to fully cooperate with machines, which has become the bottleneck of iris recognition's application. In this paper, we aim at building an active iris image acquiring system which is self-adaptive to users. Two low resolution cameras are co-located in a pan-tilt-unit (PTU), for face and iris image acquisition respectively. Once the face camera detects face region in real-time video, the system controls the PTU to move towards the eye region and automatically zooms, until the iris camera captures an clear iris image for recognition. Compared with other similar works, our contribution is that we use low-resolution cameras, which can transmit image data much faster and are much cheaper than the high-resolution cameras. In the system, we use Haar-like cascaded feature to detect faces and eyes, linear transformation to predict the iris camera's position, and simple heuristic PTU control method to track eyes. A prototype device has been established, and experiments show that our system can automatically capture high-quality iris image in the range of 0.6m×0.4m×0.4m in average 3 to 5 seconds.

  1. The Limits to Adaptation: A Systems Approach

    EPA Science Inventory

    The ability to adapt to climate change is delineated by capacity thresholds, after which climate damages begin to overwhelm the adaptation response. Such thresholds depend upon physical properties (natural processes and engineering parameters), resource constraints (expressed th...

  2. Flipping Adapters for Space Launch System

    NASA Video Gallery

    The structural test article adapter is flipped at Marshall testing facility Building 4705. The turnover is an important step in finishing the machining work on the adapter, which will undergo tests...

  3. Adaptive Performance Seeking Control Using Fuzzy Model Reference Learning Control and Positive Gradient Control

    NASA Technical Reports Server (NTRS)

    Kopasakis, George

    1997-01-01

    Performance Seeking Control attempts to find the operating condition that will generate optimal performance and control the plant at that operating condition. In this paper a nonlinear multivariable Adaptive Performance Seeking Control (APSC) methodology will be developed and it will be demonstrated on a nonlinear system. The APSC is comprised of the Positive Gradient Control (PGC) and the Fuzzy Model Reference Learning Control (FMRLC). The PGC computes the positive gradients of the desired performance function with respect to the control inputs in order to drive the plant set points to the operating point that will produce optimal performance. The PGC approach will be derived in this paper. The feedback control of the plant is performed by the FMRLC. For the FMRLC, the conventional fuzzy model reference learning control methodology is utilized, with guidelines generated here for the effective tuning of the FMRLC controller.

  4. Intercellular Communication in the Adaptive Immune System

    NASA Astrophysics Data System (ADS)

    Chakraborty, Arup

    2004-03-01

    Higher organisms, like humans, have an adaptive immune system that can respond to pathogens that have not been encountered before. T lymphocytes (T cells) are the orchestrators of the adaptive immune response. They interact with cells, called antigen presenting cells (APC), that display molecular signatures of pathogens. Recently, video microscopy experiments have revealed that when T cells detect antigen on APC surfaces, a spatially patterned supramolecular assembly of different types of molecules forms in the junction between cell membranes. This recognition motif is implicated in information transfer between APC and T cells, and so, is labeled the immunological synapse. The observation of synapse formation sparked two broad questions: How does the synapse form? Why does the synapse form? I will describe progress made in answering these fundamental questions in biology by synergistic use of statistical mechanical theory/computation, chemical engineering principles, and genetic and biochemical experiments. The talk will also touch upon mechanisms that may underlie the extreme sensitivity with which T cells discriminate between self and non-self.

  5. Design Framework for an Adaptive MOOC Enhanced by Blended Learning: Supplementary Training and Personalized Learning for Teacher Professional Development

    ERIC Educational Resources Information Center

    Gynther, Karsten

    2016-01-01

    The research project has developed a design framework for an adaptive MOOC that complements the MOOC format with blended learning. The design framework consists of a design model and a series of learning design principles which can be used to design in-service courses for teacher professional development. The framework has been evaluated by…

  6. Learning Systems in Post-Statutory Education

    ERIC Educational Resources Information Center

    Catherall, Paul

    2008-01-01

    This article examines the broad scope of systemised learning (e-learning) in post-statutory education. Issues for discussion include the origins and forms of learning systems, including technical and educational concepts and approaches, such as distributed and collaborative learning. The VLE (Virtual Learning Environment) is defined as the…

  7. Contextualizing Learning Scenarios According to Different Learning Management Systems

    ERIC Educational Resources Information Center

    Drira, R.; Laroussi, M.; Le Pallec, X.; Warin, B.

    2012-01-01

    In this paper, we first demonstrate that an instructional design process of Technology Enhanced Learning (TEL) systems based on a Model Driven Approach (MDA) addresses the limits of Learning Technology Standards (LTS), such as SCORM and IMS-LD. Although these standards ensure the interoperability of TEL systems across different Learning Management…

  8. Adapting the Speed of Reproduction of Audio Content and Using Text Reinforcement for Maximizing the Learning Outcome though Mobile Phones

    ERIC Educational Resources Information Center

    Munoz-Organero, M.; Munoz-Merino, P. J.; Kloos, Carlos Delgado

    2011-01-01

    The use of technology in learning environments should be targeted at improving the learning outcome of the process. Several technology enhanced techniques can be used for maximizing the learning gain of particular students when having access to learning resources. One of them is content adaptation. Adapting content is especially important when…

  9. Impact of learning adaptability and time management disposition on study engagement among Chinese baccalaureate nursing students.

    PubMed

    Liu, Jing-Ying; Liu, Yan-Hui; Yang, Ji-Peng

    2014-01-01

    The aim of this study was to explore the relationships among study engagement, learning adaptability, and time management disposition in a sample of Chinese baccalaureate nursing students. A convenient sample of 467 baccalaureate nursing students was surveyed in two universities in Tianjin, China. Students completed a questionnaire that included their demographic information, Chinese Utrecht Work Engagement Scale-Student Questionnaire, Learning Adaptability Scale, and Adolescence Time Management Disposition Scale. One-way analysis of variance tests were used to assess the relationship between certain characteristics of baccalaureate nursing students. Pearson correlation was performed to test the correlation among study engagement, learning adaptability, and time management disposition. Hierarchical linear regression analyses were performed to explore the mediating role of time management disposition. The results revealed that study engagement (F = 7.20, P < .01) and learning adaptability (F = 4.41, P < .01) differed across grade groups. Learning adaptability (r = 0.382, P < .01) and time management disposition (r = 0.741, P < .01) were positively related with study engagement. Time management disposition had a partially mediating effect on the relationship between study engagement and learning adaptability. The findings implicate that educators should not only promote interventions to increase engagement of baccalaureate nursing students but also focus on development, investment in adaptability, and time management.

  10. Intelligent Optical Systems Using Adaptive Optics

    NASA Technical Reports Server (NTRS)

    Clark, Natalie

    2012-01-01

    Until recently, the phrase adaptive optics generally conjured images of large deformable mirrors being integrated into telescopes to compensate for atmospheric turbulence. However, the development of smaller, cheaper devices has sparked interest for other aerospace and commercial applications. Variable focal length lenses, liquid crystal spatial light modulators, tunable filters, phase compensators, polarization compensation, and deformable mirrors are becoming increasingly useful for other imaging applications including guidance navigation and control (GNC), coronagraphs, foveated imaging, situational awareness, autonomous rendezvous and docking, non-mechanical zoom, phase diversity, and enhanced multi-spectral imaging. The active components presented here allow flexibility in the optical design, increasing performance. In addition, the intelligent optical systems presented offer advantages in size and weight and radiation tolerance.

  11. Adaptive delta modulation systems for video encoding

    NASA Technical Reports Server (NTRS)

    Lei, T.-L. R.; Scheinberg, N.; Schilling, D. L.

    1977-01-01

    This paper describes several adaptive delta modulators designed to encode video signals. One- and two-dimensional ADM algorithms are discussed and compared. Results are shown for bit rates of 2 bits/pixel, 1 bit/pixel and 0.5 bits/pixel. Pictures showing the difference between the encoded-decoded pictures and the original pictures are presented. Results are also presented to illustrate the effect of channel errors on the reconstructed picture. A two-dimensional ADM using interframe encoding is also presented. This system operates at the rate of 2 bits/pixel and produces excellent quality pictures when there is little motion. We also describe and illustrate the effect of large amounts of motion on the reconstructed picture.

  12. Identifying Students' Characteristic Learning Behaviors in an Intelligent Tutoring System Fostering Self-Regulated Learning

    ERIC Educational Resources Information Center

    Bouchet, Francois; Azevedo, Roger; Kinnebrew, John S.; Biswas, Gautam

    2012-01-01

    Identification of student learning behaviors, especially those that characterize or distinguish students, can yield important insights for the design of adaptation and feedback mechanisms in Intelligent Tutoring Systems (ITS). In this paper, we analyze trace data to identify distinguishing patterns of behavior in a study of 51 college students…

  13. Simulating Astronomical Adaptive Optics Systems Using Yao

    NASA Astrophysics Data System (ADS)

    Rigaut, François; Van Dam, Marcos

    2013-12-01

    Adaptive Optics systems are at the heart of the coming Extremely Large Telescopes generation. Given the importance, complexity and required advances of these systems, being able to simulate them faithfully is key to their success, and thus to the success of the ELTs. The type of systems envisioned to be built for the ELTs cover most of the AO breeds, from NGS AO to multiple guide star Ground Layer, Laser Tomography and Multi-Conjugate AO systems, with typically a few thousand actuators. This represents a large step up from the current generation of AO systems, and accordingly a challenge for existing AO simulation packages. This is especially true as, in the past years, computer power has not been following Moore's law in its most common understanding; CPU clocks are hovering at about 3GHz. Although the use of super computers is a possible solution to run these simulations, being able to use smaller machines has obvious advantages: cost, access, environmental issues. By using optimised code in an already proven AO simulation platform, we were able to run complex ELT AO simulations on very modest machines, including laptops. The platform is YAO. In this paper, we describe YAO, its architecture, its capabilities, the ELT-specific challenges and optimisations, and finally its performance. As an example, execution speed ranges from 5 iterations per second for a 6 LGS 60x60 subapertures Shack-Hartmann Wavefront sensor Laser Tomography AO system (including full physical image formation and detector characteristics) up to over 30 iterations/s for a single NGS AO system.

  14. Improved Adaptive-Reinforcement Learning Control for morphing unmanned air vehicles.

    PubMed

    Valasek, John; Doebbler, James; Tandale, Monish D; Meade, Andrew J

    2008-08-01

    This paper presents an improved Adaptive-Reinforcement Learning Control methodology for the problem of unmanned air vehicle morphing control. The reinforcement learning morphing control function that learns the optimal shape change policy is integrated with an adaptive dynamic inversion control trajectory tracking function. An episodic unsupervised learning simulation using the Q-learning method is developed to replace an earlier and less accurate Actor-Critic algorithm. Sequential Function Approximation, a Galerkin-based scattered data approximation scheme, replaces a K-Nearest Neighbors (KNN) method and is used to generalize the learning from previously experienced quantized states and actions to the continuous state-action space, all of which may not have been experienced before. The improved method showed smaller errors and improved learning of the optimal shape compared to the KNN. PMID:18632393

  15. Improved Adaptive-Reinforcement Learning Control for morphing unmanned air vehicles.

    PubMed

    Valasek, John; Doebbler, James; Tandale, Monish D; Meade, Andrew J

    2008-08-01

    This paper presents an improved Adaptive-Reinforcement Learning Control methodology for the problem of unmanned air vehicle morphing control. The reinforcement learning morphing control function that learns the optimal shape change policy is integrated with an adaptive dynamic inversion control trajectory tracking function. An episodic unsupervised learning simulation using the Q-learning method is developed to replace an earlier and less accurate Actor-Critic algorithm. Sequential Function Approximation, a Galerkin-based scattered data approximation scheme, replaces a K-Nearest Neighbors (KNN) method and is used to generalize the learning from previously experienced quantized states and actions to the continuous state-action space, all of which may not have been experienced before. The improved method showed smaller errors and improved learning of the optimal shape compared to the KNN.

  16. Important ingredients for health adaptive information systems.

    PubMed

    Senathirajah, Yalini; Bakken, Suzanne

    2011-01-01

    Healthcare information systems frequently do not truly meet clinician needs, due to the complexity, variability, and rapid change in medical contexts. Recently the internet world has been transformed by approaches commonly termed 'Web 2.0'. This paper proposes a Web 2.0 model for a healthcare adaptive architecture. The vision includes creating modular, user-composable systems which aim to make all necessary information from multiple internal and external sources available via a platform, for the user to use, arrange, recombine, author, and share at will, using rich interfaces where advisable. Clinicians can create a set of 'widgets' and 'views' which can transform data, reflect their domain knowledge and cater to their needs, using simple drag and drop interfaces without the intervention of programmers. We have built an example system, MedWISE, embodying the user-facing parts of the model. This approach to HIS is expected to have several advantages, including greater suitability to user needs (reflecting clinician rather than programmer concepts and priorities), incorporation of multiple information sources, agile reconfiguration to meet emerging situations and new treatment deployment, capture of user domain expertise and tacit knowledge, efficiencies due to workflow and human-computer interaction improvements, and greater user acceptance.

  17. Collaborative Education in Climate Change Sciences and Adaptation through Interactive Learning

    NASA Astrophysics Data System (ADS)

    Ozbay, G.; Sriharan, S.; Fan, C.

    2014-12-01

    As a result of several funded climate change education grants, collaboration between VSU, DSU, and MSU, was established to provide the innovative and cohesive education and research opportunities to underrepresented groups in the climate related sciences. Prior to offering climate change and adaptation related topics to the students, faculty members of the three collaborating institutions participated at a number of faculty training and preparation workshops for teaching climate change sciences (i.e. AMS Diversity Project Workshop, NCAR Faculty-Student Team on Climate Change, NASA-NICE Program). In order to enhance the teaching and student learning on various issues in the Environmental Sciences Programs, Climatology, Climate Change Sciences and Adaptation or related courses were developed at Delaware State University and its partner institutions (Virginia State University and Morgan State University). These courses were prepared to deliver information on physical basis for the earth's climate system and current climate change instruction modules by AMS and historic climate information (NOAA Climate Services, U.S. and World Weather Data, NCAR and NASA Climate Models). By using Global Seminar as a Model, faculty members worked in teams to engage students in videoconferencing on climate change through Contemporary Global Studies and climate courses including Climate Change and Adaptation Science, Sustainable Agriculture, Introduction to Environmental Sciences, Climatology, and Ecology and Adaptation courses. All climate change courses have extensive hands-on practices and research integrated into the student learning experiences. Some of these students have presented their classroom projects during Earth Day, Student Climate Change Symposium, Undergraduate Summer Symposium, and other national conferences.

  18. Seizure prediction using adaptive neuro-fuzzy inference system.

    PubMed

    Rabbi, Ahmed F; Azinfar, Leila; Fazel-Rezai, Reza

    2013-01-01

    In this study, we present a neuro-fuzzy approach of seizure prediction from invasive Electroencephalogram (EEG) by applying adaptive neuro-fuzzy inference system (ANFIS). Three nonlinear seizure predictive features were extracted from a patient's data obtained from the European Epilepsy Database, one of the most comprehensive EEG database for epilepsy research. A total of 36 hours of recordings including 7 seizures was used for analysis. The nonlinear features used in this study were similarity index, phase synchronization, and nonlinear interdependence. We designed an ANFIS classifier constructed based on these features as input. Fuzzy if-then rules were generated by the ANFIS classifier using the complex relationship of feature space provided during training. The membership function optimization was conducted based on a hybrid learning algorithm. The proposed method achieved highest sensitivity of 80% with false prediction rate as low as 0.46 per hour. PMID:24110134

  19. System safety management lessons learned

    SciTech Connect

    Piatt, J.A.

    1989-05-01

    The Assistant Secretary of the Army for Research, Development and Acquisition directed the Army Safety Center to provide an audit of the causes of accidents and safety of use restrictions on recently fielded systems by tracking residual hazards back through the acquisition process. The objective was to develop ''lessons learned'' that could be applied to the acquisition process to minimize mishaps in fielded systems. System safety management lessons learned are defined as Army practices or policies, derived from past successes and failures, that are expected to be effective in eliminating or reducing specific systemic causes of residual hazards. They are broadly applicable and supportive of the Army structure and acquisition objectives. 29 refs., 7 figs.

  20. Adaptive properties of differential learning rates for positive and negative outcomes.

    PubMed

    Cazé, Romain D; van der Meer, Matthijs A A

    2013-12-01

    The concept of the reward prediction error-the difference between reward obtained and reward predicted-continues to be a focal point for much theoretical and experimental work in psychology, cognitive science, and neuroscience. Models that rely on reward prediction errors typically assume a single learning rate for positive and negative prediction errors. However, behavioral data indicate that better-than-expected and worse-than-expected outcomes often do not have symmetric impacts on learning and decision-making. Furthermore, distinct circuits within cortico-striatal loops appear to support learning from positive and negative prediction errors, respectively. Such differential learning rates would be expected to lead to biased reward predictions and therefore suboptimal choice performance. Contrary to this intuition, we show that on static "bandit" choice tasks, differential learning rates can be adaptive. This occurs because asymmetric learning enables a better separation of learned reward probabilities. We show analytically how the optimal learning rate asymmetry depends on the reward distribution and implement a biologically plausible algorithm that adapts the balance of positive and negative learning rates from experience. These results suggest specific adaptive advantages for separate, differential learning rates in simple reinforcement learning settings and provide a novel, normative perspective on the interpretation of associated neural data.

  1. Adaptive Learning and Reduced Cognitive Uncertainty in a Financial Organization

    ERIC Educational Resources Information Center

    Antonsen, Yngve; Thunberg, Odd Arne; Tiller, Tom

    2010-01-01

    Purpose: This paper analyses and discusses the "learning activities" that comprise obligatory learning at work by employees each month. The management strategy is to use these learning activities to spread knowledge, exchange experience and implement new skills within the organisation. The purpose of this paper is to answer the question: to what…

  2. Lost in Translation: Adapting a Face-to-Face Course Into an Online Learning Experience.

    PubMed

    Kenzig, Melissa J

    2015-09-01

    Online education has grown dramatically over the past decade. Instructors who teach face-to-face courses are being called on to adapt their courses to the online environment. Many instructors do not have sufficient training to be able to effectively move courses to an online format. This commentary discusses the growth of online learning, common challenges faced by instructors adapting courses from face-to-face to online, and best practices for translating face-to-face courses into online learning opportunities.

  3. Lessons Learned and Flight Results from the F15 Intelligent Flight Control System Project

    NASA Technical Reports Server (NTRS)

    Bosworth, John

    2006-01-01

    A viewgraph presentation on the lessons learned and flight results from the F15 Intelligent Flight Control System (IFCS) project is shown. The topics include: 1) F-15 IFCS Project Goals; 2) Motivation; 3) IFCS Approach; 4) NASA F-15 #837 Aircraft Description; 5) Flight Envelope; 6) Limited Authority System; 7) NN Floating Limiter; 8) Flight Experiment; 9) Adaptation Goals; 10) Handling Qualities Performance Metric; 11) Project Phases; 12) Indirect Adaptive Control Architecture; 13) Indirect Adaptive Experience and Lessons Learned; 14) Gen II Direct Adaptive Control Architecture; 15) Current Status; 16) Effect of Canard Multiplier; 17) Simulated Canard Failure Stab Open Loop; 18) Canard Multiplier Effect Closed Loop Freq. Resp.; 19) Simulated Canard Failure Stab Open Loop with Adaptation; 20) Canard Multiplier Effect Closed Loop with Adaptation; 21) Gen 2 NN Wts from Simulation; 22) Direct Adaptive Experience and Lessons Learned; and 23) Conclusions

  4. An integrated architecture of adaptive neural network control for dynamic systems

    SciTech Connect

    Ke, Liu; Tokar, R.; Mcvey, B.

    1994-07-01

    In this study, an integrated neural network control architecture for nonlinear dynamic systems is presented. Most of the recent emphasis in the neural network control field has no error feedback as the control input which rises the adaptation problem. The integrated architecture in this paper combines feed forward control and error feedback adaptive control using neural networks. The paper reveals the different internal functionality of these two kinds of neural network controllers for certain input styles, e.g., state feedback and error feedback. Feed forward neural network controllers with state feedback establish fixed control mappings which can not adapt when model uncertainties present. With error feedbacks, neural network controllers learn the slopes or the gains respecting to the error feedbacks, which are error driven adaptive control systems. The results demonstrate that the two kinds of control scheme can be combined to realize their individual advantages. Testing with disturbances added to the plant shows good tracking and adaptation.

  5. Recent developments in learning control and system identification for robots and structures

    NASA Technical Reports Server (NTRS)

    Phan, M.; Juang, J.-N.; Longman, R. W.

    1990-01-01

    This paper reviews recent results in learning control and learning system identification, with particular emphasis on discrete-time formulation, and their relation to adaptive theory. Related continuous-time results are also discussed. Among the topics presented are proportional, derivative, and integral learning controllers, time-domain formulation of discrete learning algorithms. Newly developed techniques are described including the concept of the repetition domain, and the repetition domain formulation of learning control by linear feedback, model reference learning control, indirect learning control with parameter estimation, as well as related basic concepts, recursive and non-recursive methods for learning identification.

  6. Adaptive fuzzy switched swing-up and sliding control for the double-pendulum-and-cart system.

    PubMed

    Tao, Chin Wang; Taur, Jinshiuh; Chang, J H; Su, Shun-Feng

    2010-02-01

    In this paper, an adaptive fuzzy switched swing-up and sliding controller (AFSSSC) is proposed for the swing-up and position controls of a double-pendulum-and-cart system. The proposed AFSSSC consists of a fuzzy switching controller (FSC), an adaptive fuzzy swing-up controller (FSUC), and an adaptive hybrid fuzzy sliding controller (HFSC). To simplify the design of the adaptive HFSC, the double-pendulum-and-cart system is reformulated as a double-pendulum and a cart subsystem with matched time-varying uncertainties. In addition, an adaptive mechanism is provided to learn the parameters of the output fuzzy sets for the adaptive HFSC. The FSC is designed to smoothly switch between the adaptive FSUC and the adaptive HFSC. Moreover, the sliding mode and the stability of the fuzzy sliding control systems are guaranteed. Simulation results are included to illustrate the effectiveness of the proposed AFSSSC. PMID:19661002

  7. Adaptive, Fast Walking in a Biped Robot under Neuronal Control and Learning

    PubMed Central

    Kulvicius, Tomas; Porr, Bernd; Wörgötter, Florentin

    2007-01-01

    Human walking is a dynamic, partly self-stabilizing process relying on the interaction of the biomechanical design with its neuronal control. The coordination of this process is a very difficult problem, and it has been suggested that it involves a hierarchy of levels, where the lower ones, e.g., interactions between muscles and the spinal cord, are largely autonomous, and where higher level control (e.g., cortical) arises only pointwise, as needed. This requires an architecture of several nested, sensori–motor loops where the walking process provides feedback signals to the walker's sensory systems, which can be used to coordinate its movements. To complicate the situation, at a maximal walking speed of more than four leg-lengths per second, the cycle period available to coordinate all these loops is rather short. In this study we present a planar biped robot, which uses the design principle of nested loops to combine the self-stabilizing properties of its biomechanical design with several levels of neuronal control. Specifically, we show how to adapt control by including online learning mechanisms based on simulated synaptic plasticity. This robot can walk with a high speed (>3.0 leg length/s), self-adapting to minor disturbances, and reacting in a robust way to abruptly induced gait changes. At the same time, it can learn walking on different terrains, requiring only few learning experiences. This study shows that the tight coupling of physical with neuronal control, guided by sensory feedback from the walking pattern itself, combined with synaptic learning may be a way forward to better understand and solve coordination problems in other complex motor tasks. PMID:17630828

  8. Disgust as an adaptive system for disease avoidance behaviour

    PubMed Central

    Curtis, Valerie; de Barra, Mícheál; Aunger, Robert

    2011-01-01

    Disgust is an evolved psychological system for protecting organisms from infection through disease avoidant behaviour. This ‘behavioural immune system’, present in a diverse array of species, exhibits universal features that orchestrate hygienic behaviour in response to cues of risk of contact with pathogens. However, disgust is also a dynamic adaptive system. Individuals show variation in pathogen avoidance associated with psychological traits like having a neurotic personality, as well as a consequence of being in certain physiological states such as pregnancy or infancy. Three specialized learning mechanisms modify the disgust response: the Garcia effect, evaluative conditioning and the law of contagion. Hygiene behaviour is influenced at the group level through social learning heuristics such as ‘copy the frequent’. Finally, group hygiene is extended symbolically to cultural rules about purity and pollution, which create social separations and are enforced as manners. Cooperative hygiene endeavours such as sanitation also reduce pathogen prevalence. Our model allows us to integrate perspectives from psychology, ecology and cultural evolution with those of epidemiology and anthropology. Understanding the nature of disease avoidance psychology at all levels of human organization can inform the design of programmes to improve public health. PMID:21199843

  9. Stimulating the cerebellum affects visuomotor adaptation but not intermanual transfer of learning

    PubMed Central

    Block, Hannah; Celnik, Pablo

    2013-01-01

    When systematic movement errors occur, the brain responds with a systematic change in motor behavior. This type of adaptive motor learning can transfer intermanually; adaptation of movements of the right hand in response to training with a perturbed visual signal (visuomotor adaptation) may carry over to the left hand. While visuomotor adaptation has been studied extensively, it is unclear whether the cerebellum, a structure involved in adaptation, is important for intermanual transfer as well. We addressed this question with three experiments in which subjects reached with their right hands as a 30° visuomotor rotation was introduced. Subjects received anodal or sham transcranial direct current stimulation (tDCS) on the trained (Experiment 1) or untrained (Experiment 2) hemisphere of the cerebellum, or, for comparison, motor cortex (M1). After the training period, subjects reached with their left hand, without visual feedback, to assess intermanual transfer of learning aftereffects. Stimulation of the right cerebellum caused faster adaptation, but none of the stimulation sites affected transfer. To ascertain whether cerebellar stimulation would increase transfer if subjects learned faster as well as a larger amount, in Experiment 3 anodal and sham cerebellar groups experienced a shortened training block such that the anodal group learned more than sham. Despite the difference in adaptation magnitude, transfer was similar across these groups, although smaller than in Experiment 1. Our results suggest that intermanual transfer of visuomotor learning does not depend on cerebellar activity, and that the number of movements performed at plateau is an important predictor of transfer. PMID:23625383

  10. Perceptual Learning of Time-Compressed Speech: More than Rapid Adaptation

    PubMed Central

    Banai, Karen; Lavner, Yizhar

    2012-01-01

    Background Time-compressed speech, a form of rapidly presented speech, is harder to comprehend than natural speech, especially for non-native speakers. Although it is possible to adapt to time-compressed speech after a brief exposure, it is not known whether additional perceptual learning occurs with further practice. Here, we ask whether multiday training on time-compressed speech yields more learning than that observed during the initial adaptation phase and whether the pattern of generalization following successful learning is different than that observed with initial adaptation only. Methodology/Principal Findings Two groups of non-native Hebrew speakers were tested on five different conditions of time-compressed speech identification in two assessments conducted 10–14 days apart. Between those assessments, one group of listeners received five practice sessions on one of the time-compressed conditions. Between the two assessments, trained listeners improved significantly more than untrained listeners on the trained condition. Furthermore, the trained group generalized its learning to two untrained conditions in which different talkers presented the trained speech materials. In addition, when the performance of the non-native speakers was compared to that of a group of naïve native Hebrew speakers, performance of the trained group was equivalent to that of the native speakers on all conditions on which learning occurred, whereas performance of the untrained non-native listeners was substantially poorer. Conclusions/Significance Multiday training on time-compressed speech results in significantly more perceptual learning than brief adaptation. Compared to previous studies of adaptation, the training induced learning is more stimulus specific. Taken together, the perceptual learning of time-compressed speech appears to progress from an initial, rapid adaptation phase to a subsequent prolonged and more stimulus specific phase. These findings are consistent with

  11. Global adaptive stabilisation for nonlinear systems with unknown control directions and input disturbance

    NASA Astrophysics Data System (ADS)

    Man, Yongchao; Liu, Yungang

    2016-05-01

    This paper addresses the global adaptive stabilisation via switching and learning strategies for a class of uncertain nonlinear systems. Remarkably, the systems in question simultaneously have unknown control directions, unknown input disturbance and unknown growth rate, which makes the problem in question challenging to solve and essentially different from those in the existing literature. To solve the problem, an adaptive scheme via switching and learning is proposed by skilfully integrating the techniques of backstepping design, adaptive learning and adaptive switching. One key point in the design scheme is the introduction of the learning mechanism, in order to compensate the unknown input disturbance, and the other one is the design of the switching mechanism, through tuning the design parameters online to deal with the unknown control directions, unknown bound and period of input disturbance and unknown growth rate. The designed controller guarantees that all the signals of the resulting closed-loop systems are bounded, and furthermore, the closed-loop system states globally converge to zero.

  12. Higher-Order Thinking Development through Adaptive Problem-Based Learning

    ERIC Educational Resources Information Center

    Raiyn, Jamal; Tilchin, Oleg

    2015-01-01

    In this paper we propose an approach to organizing Adaptive Problem-Based Learning (PBL) leading to the development of Higher-Order Thinking (HOT) skills and collaborative skills in students. Adaptability of PBL is expressed by changes in fixed instructor assessments caused by the dynamics of developing HOT skills needed for problem solving,…

  13. ActiveTutor: Towards More Adaptive Features in an E-Learning Framework

    ERIC Educational Resources Information Center

    Fournier, Jean-Pierre; Sansonnet, Jean-Paul

    2008-01-01

    Purpose: This paper aims to sketch the emerging notion of auto-adaptive software when applied to e-learning software. Design/methodology/approach: The study and the implementation of the auto-adaptive architecture are based on the operational framework "ActiveTutor" that is used for teaching the topic of computer science programming in first-grade…

  14. The older person has a stroke: Learning to adapt using the Feldenkrais® Method.

    PubMed

    Jackson-Wyatt, O

    1995-01-01

    The older person with a stroke requires adapted therapeutic interventions to take into account normal age-related changes. The Feldenkrais® Method presents a model for learning to promote adaptability that addresses key functional changes seen with normal aging. Clinical examples related to specific functional tasks are discussed to highlight major treatment modifications and neuromuscular, psychological, emotional, and sensory considerations. PMID:27619899

  15. Adaptive fuzzy switched control design for uncertain nonholonomic systems with input nonsmooth constraint

    NASA Astrophysics Data System (ADS)

    Li, Yongming; Tong, Shaocheng

    2016-10-01

    In this paper, a fuzzy adaptive switched control approach is proposed for a class of uncertain nonholonomic chained systems with input nonsmooth constraint. In the control design, an auxiliary dynamic system is designed to address the input nonsmooth constraint, and an adaptive switched control strategy is constructed to overcome the uncontrollability problem associated with x0(t0) = 0. By using fuzzy logic systems to tackle unknown nonlinear functions, a fuzzy adaptive control approach is explored based on the adaptive backstepping technique. By constructing the combination approximation technique and using Young's inequality scaling technique, the number of the online learning parameters is reduced to n and the 'explosion of complexity' problem is avoid. It is proved that the proposed method can guarantee that all variables of the closed-loop system converge to a small neighbourhood of zero. Two simulation examples are provided to illustrate the effectiveness of the proposed control approach.

  16. International Students' Culture Learning and Cultural Adaptation in China

    ERIC Educational Resources Information Center

    An, Ran; Chiang, Shiao-Yun

    2015-01-01

    This article examines international students' cultural adaptation at a major national university in China. A survey was designed to measure international students' adaptation to the Chinese sociocultural and educational environments in terms of five dimensions: (1) cultural empathy, (2) open-mindedness, (3) emotional stability, (4) social…

  17. Academic Accountability and University Adaptation: The Architecture of an Academic Learning Organization.

    ERIC Educational Resources Information Center

    Dill, David D.

    1999-01-01

    Discussses various adaptations in organizational structure and governance of academic learning institutions, using case studies of universities that are attempting to improve the quality of teaching and the learning process. Identifies five characteristics typical of such organizations: (1) a culture of evidence; (2) improved coordination of…

  18. Impact of Nursing Learning Environments on Adaptive Competency Development in Baccalaureate Nursing Students.

    ERIC Educational Resources Information Center

    Laschinger, Heather K. Spence

    1992-01-01

    Kolb's experiential learning theory was used as a framework to study 179 generic baccalaureate students' perceptions of the different types of learning environments and adaptive competencies. Clinical experience and preceptorships contributed more to competency development than did nursing or nonnursing classes. (JOW)

  19. Educational Multimedia Profiling Recommendations for Device-Aware Adaptive Mobile Learning

    ERIC Educational Resources Information Center

    Moldovan, Arghir-Nicolae; Ghergulescu, Ioana; Muntean, Cristina Hava

    2014-01-01

    Mobile learning is seeing a fast adoption with the increasing availability and affordability of mobile devices such as smartphones and tablets. As the creation and consumption of educational multimedia content on mobile devices is also increasing fast, educators and mobile learning providers are faced with the challenge to adapt multimedia type…

  20. Partner Knowledge Awareness in Knowledge Communication: Learning by Adapting to the Partner

    ERIC Educational Resources Information Center

    Dehler Zufferey, Jessica; Bodemer, Daniel; Buder, Jurgen; Hesse, Friedrich W.

    2011-01-01

    Awareness of the knowledge of learning partners is not always sufficiently available in collaborative learning scenarios. To compensate, the authors propose to provide collaborators with partner knowledge awareness by means of a visualization tool. Partner knowledge awareness can be used to adapt messages toward the partner. This study…

  1. An Online Adaptive Learning Environment for Critical-Thinking-Infused English Literacy Instruction

    ERIC Educational Resources Information Center

    Yang, Ya-Ting Carolyn; Gamble, Jeffrey Hugh; Hung, Yu-Wan; Lin, Tzu-Yun

    2014-01-01

    Critical thinking (CT) and English literacy are two essential 21st century competencies that are a priority for teaching and learning in an increasingly digital learning environment. Taking advantage of innovations in educational technology, this study empirically investigates the effectiveness of CT-infused adaptive English literacy instruction…

  2. Towards Increased Relevance: Context-Adapted Models of the Learning Organization

    ERIC Educational Resources Information Center

    Örtenblad, Anders

    2015-01-01

    Purpose: The purposes of this paper are to take a closer look at the relevance of the idea of the learning organization for organizations in different generalized organizational contexts; to open up for the existence of multiple, context-adapted models of the learning organization; and to suggest a number of such models.…

  3. Perceived Control and Adaptive Coping: Programs for Adolescent Students Who Have Learning Disabilities

    ERIC Educational Resources Information Center

    Firth, Nola; Frydenberg, Erica; Greaves, Daryl

    2008-01-01

    This study explored the effect of a coping program and a teacher feedback intervention on perceived control and adaptive coping for 98 adolescent students who had specific learning disabilities. The coping program was modified to build personal control and to address the needs of students who have specific learning disabilities. The teacher…

  4. The Effect of Adaptive Confidence Strategies in Computer-Assisted Instruction on Learning and Learner Confidence

    ERIC Educational Resources Information Center

    Warren, Richard Daniel

    2012-01-01

    The purpose of this research was to investigate the effects of including adaptive confidence strategies in instructionally sound computer-assisted instruction (CAI) on learning and learner confidence. Seventy-one general educational development (GED) learners recruited from various GED learning centers at community colleges in the southeast United…

  5. Adaptation of the Students' Motivation towards Science Learning (SMTSL) Questionnaire in the Greek Language

    ERIC Educational Resources Information Center

    Dermitzaki, Irini; Stavroussi, Panayiota; Vavougios, Denis; Kotsis, Konstantinos T.

    2013-01-01

    The present study aimed at adapting in the Greek language the Students' Motivation Towards Science Learning (SMTSL) questionnaire developed by Tuan, Chin, and Shieh ("INT J SCI EDUC" 27(6): 639-654, 2005a) into a different cultural context, a different age group, that is, in university students and with a focus on physics learning.…

  6. Isoplanatism in a multiconjugate adaptive optics system.

    PubMed

    Tokovinin, A; Le Louarn, M; Sarazin, M

    2000-10-01

    Turbulence correction in a large field of view by use of an adaptive optics imaging system with several deformable mirrors (DM's) conjugated to various heights is considered. The residual phase variance is computed for an optimized linear algorithm in which a correction of each turbulent layer is achieved by applying a combination of suitably smoothed and scaled input phase screens to all DM's. Finite turbulence outer scale and finite spatial resolution of the DM's are taken into account. A general expression for the isoplanatic angle thetaM of a system with M mirrors is derived in the limiting case of infinitely large apertures and Kolmogorov turbulence. Like Fried's isoplanatic angle theta0,thetaM is a function only of the turbulence vertical profile, is scalable with wavelength, and is independent of the telescope diameter. Use of angle thetaM permits the gain in the field of view due to the increased number of DM's to be quantified and their optimal conjugate heights to be found. Calculations with real turbulence profiles show that with three DM's a gain of 7-10x is possible, giving the typical and best isoplanatic field-of-view radii of 16 and 30 arcseconds, respectively, at lambda = 0.5 microm. It is shown that in the actual systems the isoplanatic field will be somewhat larger than thetaM owing to the combined effects of finite aperture diameter, finite outer scale, and optimized wave-front spatial filtering. However, this additional gain is not dramatic; it is less than 1.5x for large-aperture telescopes. PMID:11028530

  7. Isoplanatism in a multiconjugate adaptive optics system.

    PubMed

    Tokovinin, A; Le Louarn, M; Sarazin, M

    2000-10-01

    Turbulence correction in a large field of view by use of an adaptive optics imaging system with several deformable mirrors (DM's) conjugated to various heights is considered. The residual phase variance is computed for an optimized linear algorithm in which a correction of each turbulent layer is achieved by applying a combination of suitably smoothed and scaled input phase screens to all DM's. Finite turbulence outer scale and finite spatial resolution of the DM's are taken into account. A general expression for the isoplanatic angle thetaM of a system with M mirrors is derived in the limiting case of infinitely large apertures and Kolmogorov turbulence. Like Fried's isoplanatic angle theta0,thetaM is a function only of the turbulence vertical profile, is scalable with wavelength, and is independent of the telescope diameter. Use of angle thetaM permits the gain in the field of view due to the increased number of DM's to be quantified and their optimal conjugate heights to be found. Calculations with real turbulence profiles show that with three DM's a gain of 7-10x is possible, giving the typical and best isoplanatic field-of-view radii of 16 and 30 arcseconds, respectively, at lambda = 0.5 microm. It is shown that in the actual systems the isoplanatic field will be somewhat larger than thetaM owing to the combined effects of finite aperture diameter, finite outer scale, and optimized wave-front spatial filtering. However, this additional gain is not dramatic; it is less than 1.5x for large-aperture telescopes.

  8. Valuation of design adaptability in aerospace systems

    NASA Astrophysics Data System (ADS)

    Fernandez Martin, Ismael

    As more information is brought into early stages of the design, more pressure is put on engineers to produce a reliable, high quality, and financially sustainable product. Unfortunately, requirements established at the beginning of a new project by customers, and the environment that surrounds them, continue to change in some unpredictable ways. The risk of designing a system that may become obsolete during early stages of production is currently tackled by the use of robust design simulation, a method that allows to simultaneously explore a plethora of design alternatives and requirements with the intention of accounting for uncertain factors in the future. Whereas this design technique has proven to be quite an improvement in design methods, under certain conditions, it fails to account for the change of uncertainty over time and the intrinsic value embedded in the system when certain design features are activated. This thesis introduces the concepts of adaptability and real options to manage risk foreseen in the face of uncertainty at early design stages. The method described herein allows decision-makers to foresee the financial impact of their decisions at the design level, as well as the final exposure to risk. In this thesis, cash flow models, traditionally used to obtain the forecast of a project's value over the years, were replaced with surrogate models that are capable of showing fluctuations on value every few days. This allowed a better implementation of real options valuation, optimization, and strategy selection. Through the option analysis model, an optimization exercise allows the user to obtain the best implementation strategy in the face of uncertainty as well as the overall value of the design feature. Here implementation strategy refers to the decision to include a new design feature in the system, after the design has been finalized, but before the end of its production life. The ability to do this in a cost efficient manner after the system

  9. A Joyful Classroom Learning System with Robot Learning Companion for Children to Learn Mathematics Multiplication

    ERIC Educational Resources Information Center

    Wei, Chun-Wang; Hung, I-Chun; Lee, Ling; Chen, Nian-Shing

    2011-01-01

    This research demonstrates the design of a Joyful Classroom Learning System (JCLS) with flexible, mobile and joyful features. The theoretical foundations of this research include the experiential learning theory, constructivist learning theory and joyful learning. The developed JCLS consists of the robot learning companion (RLC), sensing input…

  10. Adapt

    NASA Astrophysics Data System (ADS)

    Bargatze, L. F.

    2015-12-01

    Active Data Archive Product Tracking (ADAPT) is a collection of software routines that permits one to generate XML metadata files to describe and register data products in support of the NASA Heliophysics Virtual Observatory VxO effort. ADAPT is also a philosophy. The ADAPT concept is to use any and all available metadata associated with scientific data to produce XML metadata descriptions in a consistent, uniform, and organized fashion to provide blanket access to the full complement of data stored on a targeted data server. In this poster, we present an application of ADAPT to describe all of the data products that are stored by using the Common Data File (CDF) format served out by the CDAWEB and SPDF data servers hosted at the NASA Goddard Space Flight Center. These data servers are the primary repositories for NASA Heliophysics data. For this purpose, the ADAPT routines have been used to generate data resource descriptions by using an XML schema named Space Physics Archive, Search, and Extract (SPASE). SPASE is the designated standard for documenting Heliophysics data products, as adopted by the Heliophysics Data and Model Consortium. The set of SPASE XML resource descriptions produced by ADAPT includes high-level descriptions of numerical data products, display data products, or catalogs and also includes low-level "Granule" descriptions. A SPASE Granule is effectively a universal access metadata resource; a Granule associates an individual data file (e.g. a CDF file) with a "parent" high-level data resource description, assigns a resource identifier to the file, and lists the corresponding assess URL(s). The CDAWEB and SPDF file systems were queried to provide the input required by the ADAPT software to create an initial set of SPASE metadata resource descriptions. Then, the CDAWEB and SPDF data repositories were queried subsequently on a nightly basis and the CDF file lists were checked for any changes such as the occurrence of new, modified, or deleted

  11. Network and adaptive system of systems modeling and analysis.

    SciTech Connect

    Lawton, Craig R.; Campbell, James E. Dr.; Anderson, Dennis James; Eddy, John P.

    2007-05-01

    This report documents the results of an LDRD program entitled ''Network and Adaptive System of Systems Modeling and Analysis'' that was conducted during FY 2005 and FY 2006. The purpose of this study was to determine and implement ways to incorporate network communications modeling into existing System of Systems (SoS) modeling capabilities. Current SoS modeling, particularly for the Future Combat Systems (FCS) program, is conducted under the assumption that communication between the various systems is always possible and occurs instantaneously. A more realistic representation of these communications allows for better, more accurate simulation results. The current approach to meeting this objective has been to use existing capabilities to model network hardware reliability and adding capabilities to use that information to model the impact on the sustainment supply chain and operational availability.

  12. Guided filter and adaptive learning rate based non-uniformity correction algorithm for infrared focal plane array

    NASA Astrophysics Data System (ADS)

    Sheng-Hui, Rong; Hui-Xin, Zhou; Han-Lin, Qin; Rui, Lai; Kun, Qian

    2016-05-01

    Imaging non-uniformity of infrared focal plane array (IRFPA) behaves as fixed-pattern noise superimposed on the image, which affects the imaging quality of infrared system seriously. In scene-based non-uniformity correction methods, the drawbacks of ghosting artifacts and image blurring affect the sensitivity of the IRFPA imaging system seriously and decrease the image quality visibly. This paper proposes an improved neural network non-uniformity correction method with adaptive learning rate. On the one hand, using guided filter, the proposed algorithm decreases the effect of ghosting artifacts. On the other hand, due to the inappropriate learning rate is the main reason of image blurring, the proposed algorithm utilizes an adaptive learning rate with a temporal domain factor to eliminate the effect of image blurring. In short, the proposed algorithm combines the merits of the guided filter and the adaptive learning rate. Several real and simulated infrared image sequences are utilized to verify the performance of the proposed algorithm. The experiment results indicate that the proposed algorithm can not only reduce the non-uniformity with less ghosting artifacts but also overcome the problems of image blurring in static areas.

  13. Central nervous system adaptation to exercise training

    NASA Astrophysics Data System (ADS)

    Kaminski, Lois Anne

    Exercise training causes physiological changes in skeletal muscle that results in enhanced performance in humans and animals. Despite numerous studies on exercise effects on skeletal muscle, relatively little is known about adaptive changes in the central nervous system. This study investigated whether spinal pathways that mediate locomotor activity undergo functional adaptation after 28 days of exercise training. Ventral horn spinal cord expression of calcitonin gene-related peptide (CGRP), a trophic factor at the neuromuscular junction, choline acetyltransferase (Chat), the synthetic enzyme for acetylcholine, vesicular acetylcholine transporter (Vacht), a transporter of ACh into synaptic vesicles and calcineurin (CaN), a protein phosphatase that phosphorylates ion channels and exocytosis machinery were measured to determine if changes in expression occurred in response to physical activity. Expression of these proteins was determined by western blot and immunohistochemistry (IHC). Comparisons between sedentary controls and animals that underwent either endurance training or resistance training were made. Control rats received no exercise other than normal cage activity. Endurance-trained rats were exercised 6 days/wk at 31m/min on a treadmill (8% incline) for 100 minutes. Resistance-trained rats supported their weight plus an additional load (70--80% body weight) on a 60° incline (3 x 3 min, 5 days/wk). CGRP expression was measured by radioimmunoassay (RIA). CGRP expression in the spinal dorsal and ventral horn of exercise-trained animals was not significantly different than controls. Chat expression measured by Western blot and IHC was not significantly different between runners and controls but expression in resistance-trained animals assayed by IHC was significantly less than controls and runners. Vacht and CaN immunoreactivity in motor neurons of endurance-trained rats was significantly elevated relative to control and resistance-trained animals. Ventral

  14. A new approach for designing self-organizing systems and application to adaptive control

    NASA Technical Reports Server (NTRS)

    Ramamoorthy, P. A.; Zhang, Shi; Lin, Yueqing; Huang, Song

    1993-01-01

    There is tremendous interest in the design of intelligent machines capable of autonomous learning and skillful performance under complex environments. A major task in designing such systems is to make the system plastic and adaptive when presented with new and useful information and stable in response to irrelevant events. A great body of knowledge, based on neuro-physiological concepts, has evolved as a possible solution to this problem. Adaptive resonance theory (ART) is a classical example under this category. The system dynamics of an ART network is described by a set of differential equations with nonlinear functions. An approach for designing self-organizing networks characterized by nonlinear differential equations is proposed.

  15. Adapting Cognitive Walkthrough to Support Game Based Learning Design

    ERIC Educational Resources Information Center

    Farrell, David; Moffat, David C.

    2014-01-01

    For any given Game Based Learning (GBL) project to be successful, the player must learn something. Designers may base their work on pedagogical research, but actual game design is still largely driven by intuition. People are famously poor at unsupported methodical thinking and relying so much on instinct is an obvious weak point in GBL design…

  16. Psychosocial and Adaptive Deficits Associated with Learning Disability Subtypes

    ERIC Educational Resources Information Center

    Backenson, Erica M.; Holland, Sara C.; Kubas, Hanna A.; Fitzer, Kim R.; Wilcox, Gabrielle; Carmichael, Jessica A.; Fraccaro, Rebecca L.; Smith, Amanda D.; Macoun, Sarah J.; Harrison, Gina L.; Hale, James B.

    2015-01-01

    Children with specific learning disabilities (SLD) have deficits in the basic psychological processes that interfere with learning and academic achievement, and for some SLD subtypes, these deficits can also lead to emotional and/or behavior problems. This study examined psychosocial functioning in 123 students, aged 6 to 11, who underwent…

  17. Do learning rates adapt to the distribution of rewards?

    PubMed

    Gershman, Samuel J

    2015-10-01

    Studies of reinforcement learning have shown that humans learn differently in response to positive and negative reward prediction errors, a phenomenon that can be captured computationally by positing asymmetric learning rates. This asymmetry, motivated by neurobiological and cognitive considerations, has been invoked to explain learning differences across the lifespan as well as a range of psychiatric disorders. Recent theoretical work, motivated by normative considerations, has hypothesized that the learning rate asymmetry should be modulated by the distribution of rewards across the available options. In particular, the learning rate for negative prediction errors should be higher than the learning rate for positive prediction errors when the average reward rate is high, and this relationship should reverse when the reward rate is low. We tested this hypothesis in a series of experiments. Contrary to the theoretical predictions, we found that the asymmetry was largely insensitive to the average reward rate; instead, the dominant pattern was a higher learning rate for negative than for positive prediction errors, possibly reflecting risk aversion.

  18. Aircraft as adaptive nonlinear system which must be in the adaptational maximum zone for safety

    SciTech Connect

    Ignative, M.; Simatos, N.; Sivasundaram, S.

    1994-12-31

    Safety is a main problem in aircraft. We are considering this problem from the point of view related to existence of the adaptational maximum in complex developing systems. Safety space of aircraft parameters are determined. This space is transformed to different regimes of flight, when one engine malfunctions etc., are considered. Also it is shown that maximum safety is in adaptational maximum zone.

  19. A framework for constructing adaptive and reconfigurable systems

    SciTech Connect

    Poirot, Pierre-Etienne; Nogiec, Jerzy; Ren, Shangping; /IIT, Chicago

    2007-05-01

    This paper presents a software approach to augmenting existing real-time systems with self-adaptation capabilities. In this approach, based on the control loop paradigm commonly used in industrial control, self-adaptation is decomposed into observing system events, inferring necessary changes based on a system's functional model, and activating appropriate adaptation procedures. The solution adopts an architectural decomposition that emphasizes independence and separation of concerns. It encapsulates observation, modeling and correction into separate modules to allow for easier customization of the adaptive behavior and flexibility in selecting implementation technologies.

  20. CRISPR adaptation in Escherichia coli subtypeI-E system.

    PubMed

    Kiro, Ruth; Goren, Moran G; Yosef, Ido; Qimron, Udi

    2013-12-01

    The CRISPRs (clustered regularly interspaced short palindromic repeats) and their associated Cas (CRISPR-associated) proteins are a prokaryotic adaptive defence system against foreign nucleic acids. The CRISPR array comprises short repeats flanking short segments, called 'spacers', which are derived from foreign nucleic acids. The process of spacer insertion into the CRISPR array is termed 'adaptation'. Adaptation allows the system to rapidly evolve against emerging threats. In the present article, we review the most recent studies on the adaptation process, and focus primarily on the subtype I-E CRISPR-Cas system of Escherichia coli.

  1. Lessons Learned from the Everglades Collaborative Adaptive Management Program

    EPA Science Inventory

    Recent technical papers explore whether adaptive management (AM) is useful for environmental management and restoration efforts and discuss the many challenges to overcome for successful implementation, especially for large-scale restoration programs (McLain and Lee 1996; Levine ...

  2. Seeing is believing: effects of visual contextual cues on learning and transfer of locomotor adaptation.

    PubMed

    Torres-Oviedo, Gelsy; Bastian, Amy J

    2010-12-15

    Devices such as robots or treadmills are often used to drive motor learning because they can create novel physical environments. However, the learning (i.e., adaptation) acquired on these devices only partially generalizes to natural movements. What determines the specificity of motor learning, and can this be reliably made more general? Here we investigated the effect of visual cues on the specificity of split-belt walking adaptation. We systematically removed vision to eliminate the visual-proprioceptive mismatch that is a salient cue specific to treadmills: vision indicates that we are not moving while leg proprioception indicates that we are. We evaluated the adaptation of temporal and spatial features of gait (i.e., timing and location of foot landing), their transfer to walking over ground, and washout of adaptation when subjects returned to the treadmill. Removing vision during both training (i.e., on the treadmill) and testing (i.e., over ground) strongly improved the transfer of treadmill adaptation to natural walking. Removing vision only during training increased transfer of temporal adaptation, whereas removing vision only during testing increased the transfer of spatial adaptation. This dissociation reveals differences in adaptive mechanisms for temporal and spatial features of walking. Finally training without vision increased the amount that was learned and was linked to the variability in the behavior during adaptation. In conclusion, contextual cues can be manipulated to modulate the magnitude, transfer, and washout of device-induced learning in humans. These results bring us closer to our ultimate goal of developing rehabilitation strategies that improve movements beyond the clinical setting.

  3. Nonequilibrium Enhances Adaptation Efficiency of Stochastic Biochemical Systems

    PubMed Central

    Jia, Chen; Qian, Minping

    2016-01-01

    Adaptation is a crucial biological function possessed by many sensory systems. Early work has shown that some influential equilibrium models can achieve accurate adaptation. However, recent studies indicate that there are close relationships between adaptation and nonequilibrium. In this paper, we provide an explanation of these two seemingly contradictory results based on Markov models with relatively simple networks. We show that as the nonequilibrium driving becomes stronger, the system under consideration will undergo a phase transition along a fixed direction: from non-adaptation to simple adaptation then to oscillatory adaptation, while the transition in the opposite direction is forbidden. This indicates that although adaptation may be observed in equilibrium systems, it tends to occur in systems far away from equilibrium. In addition, we find that nonequilibrium will improve the performance of adaptation by enhancing the adaptation efficiency. All these results provide a deeper insight into the connection between adaptation and nonequilibrium. Finally, we use a more complicated network model of bacterial chemotaxis to validate the main results of this paper. PMID:27195482

  4. Sinusoidal error perturbation reveals multiple coordinate systems for sensorymotor adaptation.

    PubMed

    Hudson, Todd E; Landy, Michael S

    2016-02-01

    A coordinate system is composed of an encoding, defining the dimensions of the space, and an origin. We examine the coordinate encoding used to update motor plans during sensory-motor adaptation to center-out reaches. Adaptation is induced using a novel paradigm in which feedback of reach endpoints is perturbed following a sinewave pattern over trials; the perturbed dimensions of the feedback were the axes of a Cartesian coordinate system in one session and a polar coordinate system in another session. For center-out reaches to randomly chosen target locations, reach errors observed at one target will require different corrections at other targets within Cartesian- and polar-coded systems. The sinewave adaptation technique allowed us to simultaneously adapt both dimensions of each coordinate system (x-y, or reach gain and angle), and identify the contributions of each perturbed dimension by adapting each at a distinct temporal frequency. The efficiency of this technique further allowed us to employ perturbations that were a fraction the size normally used, which avoids confounding automatic adaptive processes with deliberate adjustments made in response to obvious experimental manipulations. Subjects independently corrected errors in each coordinate in both sessions, suggesting that the nervous system encodes both a Cartesian- and polar-coordinate-based internal representation for motor adaptation. The gains and phase lags of the adaptive responses are not readily explained by current theories of sensory-motor adaptation.

  5. Reinforcement learning by Hebbian synapses with adaptive thresholds.

    PubMed

    Pennartz, C M

    1997-11-01

    A central problem in learning theory is how the vertebrate brain processes reinforcing stimuli in order to master complex sensorimotor tasks. This problem belongs to the domain of supervised learning, in which errors in the response of a neural network serve as the basis for modification of synaptic connectivity in the network and thereby train it on a computational task. The model presented here shows how a reinforcing feedback can modify synapses in a neuronal network according to the principles of Hebbian learning. The reinforcing feedback steers synapses towards long-term potentiation or depression by critically influencing the rise in postsynaptic calcium, in accordance with findings on synaptic plasticity in mammalian brain. An important feature of the model is the dependence of modification thresholds on the previous history of reinforcing feedback processed by the network. The learning algorithm trained networks successfully on a task in which a population vector in the motor output was required to match a sensory stimulus vector presented shortly before. In another task, networks were trained to compute coordinate transformations by combining different visual inputs. The model continued to behave well when simplified units were replaced by single-compartment neurons equipped with several conductances and operating in continuous time. This novel form of reinforcement learning incorporates essential properties of Hebbian synaptic plasticity and thereby shows that supervised learning can be accomplished by a learning rule similar to those used in physiologically plausible models of unsupervised learning. The model can be crudely correlated to the anatomy and electrophysiology of the amygdala, prefrontal and cingulate cortex and has predictive implications for further experiments on synaptic plasticity and learning processes mediated by these areas.

  6. Restricted Complexity Framework for Nonlinear Adaptive Control in Complex Systems

    NASA Astrophysics Data System (ADS)

    Williams, Rube B.

    2004-02-01

    Control law adaptation that includes implicit or explicit adaptive state estimation, can be a fundamental underpinning for the success of intelligent control in complex systems, particularly during subsystem failures, where vital system states and parameters can be impractical or impossible to measure directly. A practical algorithm is proposed for adaptive state filtering and control in nonlinear dynamic systems when the state equations are unknown or are too complex to model analytically. The state equations and inverse plant model are approximated by using neural networks. A framework for a neural network based nonlinear dynamic inversion control law is proposed, as an extrapolation of prior developed restricted complexity methodology used to formulate the adaptive state filter. Examples of adaptive filter performance are presented for an SSME simulation with high pressure turbine failure to support extrapolations to adaptive control problems.

  7. Restricted Complexity Framework for Nonlinear Adaptive Control in Complex Systems

    SciTech Connect

    Williams, Rube B.

    2004-02-04

    Control law adaptation that includes implicit or explicit adaptive state estimation, can be a fundamental underpinning for the success of intelligent control in complex systems, particularly during subsystem failures, where vital system states and parameters can be impractical or impossible to measure directly. A practical algorithm is proposed for adaptive state filtering and control in nonlinear dynamic systems when the state equations are unknown or are too complex to model analytically. The state equations and inverse plant model are approximated by using neural networks. A framework for a neural network based nonlinear dynamic inversion control law is proposed, as an extrapolation of prior developed restricted complexity methodology used to formulate the adaptive state filter. Examples of adaptive filter performance are presented for an SSME simulation with high pressure turbine failure to support extrapolations to adaptive control problems.

  8. Adaptive Hypermedia Educational System Based on XML Technologies.

    ERIC Educational Resources Information Center

    Baek, Yeongtae; Wang, Changjong; Lee, Sehoon

    This paper proposes an adaptive hypermedia educational system using XML technologies, such as XML, XSL, XSLT, and XLink. Adaptive systems are capable of altering the presentation of the content of the hypermedia on the basis of a dynamic understanding of the individual user. The user profile can be collected in a user model, while the knowledge…

  9. A Knowledge-Based Approach to Describe and Adapt Learning Objects

    ERIC Educational Resources Information Center

    Bouzeghoub, Amel; Defude, Bruno; Duitama, John Freddy; Lecocq, Claire

    2006-01-01

    Our claim is that semantic metadata are required to allow a real reusing and assembling of learning objects. Our system is based on three models used to describe the domain, learners, and learning objects. The learning object model is inspired from knowledge representation proposals. A learning object can be reused directly or can be combined with…

  10. Automated Detection of Microaneurysms Using Scale-Adapted Blob Analysis and Semi-Supervised Learning

    SciTech Connect

    Adal, Kedir M.; Sidebe, Desire; Ali, Sharib; Chaum, Edward; Karnowski, Thomas Paul; Meriaudeau, Fabrice

    2014-01-07

    Despite several attempts, automated detection of microaneurysm (MA) from digital fundus images still remains to be an open issue. This is due to the subtle nature of MAs against the surrounding tissues. In this paper, the microaneurysm detection problem is modeled as finding interest regions or blobs from an image and an automatic local-scale selection technique is presented. Several scale-adapted region descriptors are then introduced to characterize these blob regions. A semi-supervised based learning approach, which requires few manually annotated learning examples, is also proposed to train a classifier to detect true MAs. The developed system is built using only few manually labeled and a large number of unlabeled retinal color fundus images. The performance of the overall system is evaluated on Retinopathy Online Challenge (ROC) competition database. A competition performance measure (CPM) of 0.364 shows the competitiveness of the proposed system against state-of-the art techniques as well as the applicability of the proposed features to analyze fundus images.

  11. Multimedia Learning Systems Based on IEEE Learning Object Metadata (LOM).

    ERIC Educational Resources Information Center

    Holzinger, Andreas; Kleinberger, Thomas; Muller, Paul

    One of the "hottest" topics in recent information systems and computer science is metadata. Learning Object Metadata (LOM) appears to be a very powerful mechanism for representing metadata, because of the great variety of LOM Objects. This is on of the reasons why the LOM standard is repeatedly cited in projects in the field of eLearning Systems.…

  12. Adapted Lethality: What We Can Learn from Guinea Pig-Adapted Ebola Virus Infection Model

    PubMed Central

    Cheresiz, S. V.; Semenova, E. A.; Chepurnov, A. A.

    2016-01-01

    Establishment of small animal models of Ebola virus (EBOV) infection is important both for the study of genetic determinants involved in the complex pathology of EBOV disease and for the preliminary screening of antivirals, production of therapeutic heterologic immunoglobulins, and experimental vaccine development. Since the wild-type EBOV is avirulent in rodents, the adaptation series of passages in these animals are required for the virulence/lethality to emerge in these models. Here, we provide an overview of our several adaptation series in guinea pigs, which resulted in the establishment of guinea pig-adapted EBOV (GPA-EBOV) variants different in their characteristics, while uniformly lethal for the infected animals, and compare the virologic, genetic, pathomorphologic, and immunologic findings with those obtained in the adaptation experiments of the other research groups. PMID:26989413

  13. Making adaptable systems work for mission operations: A case study

    NASA Technical Reports Server (NTRS)

    Holder, Barbara E.; Levesque, Michael E.

    1993-01-01

    The Advanced Multimission Operations System (AMMOS) at NASA's Jet Propulsion Laboratory is based on a highly adaptable multimission ground data system (MGDS) for mission operations. The goal for MGDS is to support current flight project science and engineering personnel and to meet the demands of future missions while reducing associated operations and software development costs. MGDS has become a powerful and flexible mission operations system by using a network of heterogeneous workstations, emerging open system standards, and selecting an adaptable tools-based architecture. Challenges in developing adaptable systems for mission operations and the benefits of this approach are described.

  14. Learning in a Simple Motor System

    ERIC Educational Resources Information Center

    Broussard, Dianne M.; Kassardjian, Charles D.

    2004-01-01

    Motor learning is a very basic, essential form of learning that appears to share common mechanisms across different motor systems. We evaluate and compare a few conceptual models for learning in a relatively simple neural system, the vestibulo-ocular reflex (VOR) of vertebrates. We also compare the different animal models that have been used to…

  15. Calibrated Methodology for Assessing Adaptation Costs for Urban Drainage Systems

    EPA Science Inventory

    Changes in precipitation patterns associated with climate change may pose significant challenges for storm water management systems across much of the U.S. In particular, adapting these systems to more intense rainfall events will require significant investment. The assessment ...

  16. Adaptive control of nonlinear systems with actuator failures and uncertainties

    NASA Astrophysics Data System (ADS)

    Tang, Xidong

    2005-11-01

    Actuator failures have damaging effect on the performance of control systems, leading to undesired system behavior or even instability. Actuator failures are unknown in terms of failure time instants, failure patterns, and failure parameters. For system safety and reliability, the compensation of actuator failures is of both theoretical and practical significance. This dissertation is to further the study of adaptive designs for actuator failure compensation to nonlinear systems. In this dissertation a theoretical framework for adaptive control of nonlinear systems with actuator failures and system uncertainties is established. The contributions are the development of new adaptive nonlinear control schemes to handle unknown actuator failures for convergent tracking performance, the specification of conditions as a guideline for applications and system designs, and the extension of the adaptive nonlinear control theory. In the dissertation, adaptive actuator failure compensation is studied for several classes of nonlinear systems. In particular, adaptive state feedback schemes are developed for feedback linearizable systems and parametric strict-feedback systems. Adaptive output feedback schemes are deigned for output-feedback systems and a class of systems with unknown state-dependent nonlinearities. Furthermore, adaptive designs are addressed for MIMO systems with actuator failures, based on two grouping techniques: fixed grouping and virtual grouping. Theoretical issues such as controller structures, actuation schemes, zero dynamics, observation, grouping conditions, closed-loop stability, and tracking performance are extensively investigated. For each scheme, design conditions are clarified, and detailed stability and performance analysis is presented. A variety of applications including a wing-rock model, twin otter aircraft, hypersonic aircraft, and cooperative multiple manipulators are addressed with simulation results showing the effectiveness of the

  17. Adaptive neural control for a class of perturbed strict-feedback nonlinear time-delay systems.

    PubMed

    Wang, Min; Chen, Bing; Shi, Peng

    2008-06-01

    This paper proposes a novel adaptive neural control scheme for a class of perturbed strict-feedback nonlinear time-delay systems with unknown virtual control coefficients. Based on the radial basis function neural network online approximation capability, an adaptive neural controller is presented by combining the backstepping approach and Lyapunov-Krasovskii functionals. The proposed controller guarantees the semiglobal boundedness of all the signals in the closed-loop system and contains minimal learning parameters. Finally, three simulation examples are given to demonstrate the effectiveness and applicability of the proposed scheme.

  18. Control Systems with Normalized and Covariance Adaptation by Optimal Control Modification

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan T. (Inventor); Burken, John J. (Inventor); Hanson, Curtis E. (Inventor)

    2016-01-01

    Disclosed is a novel adaptive control method and system called optimal control modification with normalization and covariance adjustment. The invention addresses specifically to current challenges with adaptive control in these areas: 1) persistent excitation, 2) complex nonlinear input-output mapping, 3) large inputs and persistent learning, and 4) the lack of stability analysis tools for certification. The invention has been subject to many simulations and flight testing. The results substantiate the effectiveness of the invention and demonstrate the technical feasibility for use in modern aircraft flight control systems.

  19. Engineering Lessons Learned and Systems Engineering Applications

    NASA Technical Reports Server (NTRS)

    Gill, Paul S.; Garcia, Danny; Vaughan, William W.

    2005-01-01

    Systems Engineering is fundamental to good engineering, which in turn depends on the integration and application of engineering lessons learned. Thus, good Systems Engineering also depends on systems engineering lessons learned from within the aerospace industry being documented and applied. About ten percent of the engineering lessons learned documented in the NASA Lessons Learned Information System are directly related to Systems Engineering. A key issue associated with lessons learned datasets is the communication and incorporation of this information into engineering processes. As part of the NASA Technical Standards Program activities, engineering lessons learned datasets have been identified from a number of sources. These are being searched and screened for those having a relation to Technical Standards. This paper will address some of these Systems Engineering Lessons Learned and how they are being related to Technical Standards within the NASA Technical Standards Program, including linking to the Agency's Interactive Engineering Discipline Training Courses and the life cycle for a flight vehicle development program.

  20. Delayed feedback during sensorimotor learning selectively disrupts adaptation but not strategy use.

    PubMed

    Brudner, Samuel N; Kethidi, Nikhit; Graeupner, Damaris; Ivry, Richard B; Taylor, Jordan A

    2016-03-01

    In sensorimotor adaptation tasks, feedback delays can cause significant reductions in the rate of learning. This constraint is puzzling given that many skilled behaviors have inherently long delays (e.g., hitting a golf ball). One difference in these task domains is that adaptation is primarily driven by error-based feedback, whereas skilled performance may also rely to a large extent on outcome-based feedback. This difference suggests that error- and outcome-based feedback may engage different learning processes, and these processes may be associated with different temporal constraints. We tested this hypothesis in a visuomotor adaptation task. Error feedback was indicated by the terminal position of a cursor, while outcome feedback was indicated by points. In separate groups of participants, the two feedback signals were presented immediately at the end of the movement, after a delay, or with just the error feedback delayed. Participants learned to counter the rotation in a similar manner regardless of feedback delay. However, the aftereffect, an indicator of implicit motor adaptation, was attenuated with delayed error feedback, consistent with the hypothesis that a different learning process supports performance under delay. We tested this by employing a task that dissociates the contribution of explicit strategies and implicit adaptation. We find that explicit aiming strategies contribute to the majority of the learning curve, regardless of delay; however, implicit learning, measured over the course of learning and by aftereffects, was significantly attenuated with delayed error-based feedback. These experiments offer new insight into the temporal constraints associated with different motor learning processes. PMID:26792878

  1. Adaptive Shape Kernel-Based Mean Shift Tracker in Robot Vision System.

    PubMed

    Liu, Chunmei; Wang, Yirui; Gao, Shangce

    2016-01-01

    This paper proposes an adaptive shape kernel-based mean shift tracker using a single static camera for the robot vision system. The question that we address in this paper is how to construct such a kernel shape that is adaptive to the object shape. We perform nonlinear manifold learning technique to obtain the low-dimensional shape space which is trained by training data with the same view as the tracking video. The proposed kernel searches the shape in the low-dimensional shape space obtained by nonlinear manifold learning technique and constructs the adaptive kernel shape in the high-dimensional shape space. It can improve mean shift tracker performance to track object position and object contour and avoid the background clutter. In the experimental part, we take the walking human as example to validate that our method is accurate and robust to track human position and describe human contour. PMID:27379165

  2. Adaptive Shape Kernel-Based Mean Shift Tracker in Robot Vision System

    PubMed Central

    2016-01-01

    This paper proposes an adaptive shape kernel-based mean shift tracker using a single static camera for the robot vision system. The question that we address in this paper is how to construct such a kernel shape that is adaptive to the object shape. We perform nonlinear manifold learning technique to obtain the low-dimensional shape space which is trained by training data with the same view as the tracking video. The proposed kernel searches the shape in the low-dimensional shape space obtained by nonlinear manifold learning technique and constructs the adaptive kernel shape in the high-dimensional shape space. It can improve mean shift tracker performance to track object position and object contour and avoid the background clutter. In the experimental part, we take the walking human as example to validate that our method is accurate and robust to track human position and describe human contour. PMID:27379165

  3. Course Ontology-Based User's Knowledge Requirement Acquisition from Behaviors within E-Learning Systems

    ERIC Educational Resources Information Center

    Zeng, Qingtian; Zhao, Zhongying; Liang, Yongquan

    2009-01-01

    User's knowledge requirement acquisition and analysis are very important for a personalized or user-adaptive learning system. Two approaches to capture user's knowledge requirement about course content within an e-learning system are proposed and implemented in this paper. The first approach is based on the historical data accumulated by an…

  4. Dynamic Lesson Planning in EFL Reading Classes through a New e-Learning System

    ERIC Educational Resources Information Center

    Okada, Takeshi; Sakamoto, Yasunobu

    2015-01-01

    This paper illustrates how lesson plans, teaching styles and assessment can be dynamically adapted on a real-time basis during an English as a Foreign Language (EFL) reading classroom session by using a new e-learning system named iBELLEs (interactive Blended English Language Learning Enhancement system). iBELLEs plays a crucial role in filling…

  5. Adaptive Computerized Instruction.

    ERIC Educational Resources Information Center

    Ray, Roger D.; And Others

    1995-01-01

    Describes an artificially intelligent multimedia computerized instruction system capable of developing a conceptual image of what a student is learning while the student is learning it. It focuses on principles of learning and adaptive behavioral control systems theory upon which the system is designed and demonstrates multiple user modes.…

  6. Brain plasticity related to the consolidation of motor sequence learning and motor adaptation.

    PubMed

    Debas, Karen; Carrier, Julie; Orban, Pierre; Barakat, Marc; Lungu, Ovidiu; Vandewalle, Gilles; Hadj Tahar, Abdallah; Bellec, Pierre; Karni, Avi; Ungerleider, Leslie G; Benali, Habib; Doyon, Julien

    2010-10-12

    This study aimed to investigate, through functional MRI (fMRI), the neuronal substrates associated with the consolidation process of two motor skills: motor sequence learning (MSL) and motor adaptation (MA). Four groups of young healthy individuals were assigned to either (i) a night/sleep condition, in which they were scanned while practicing a finger sequence learning task or an eight-target adaptation pointing task in the evening (test) and were scanned again 12 h later in the morning (retest) or (ii) a day/awake condition, in which they were scanned on the MSL or the MA tasks in the morning and were rescanned 12 h later in the evening. As expected and consistent with the behavioral results, the functional data revealed increased test-retest changes of activity in the striatum for the night/sleep group compared with the day/awake group in the MSL task. By contrast, the results of the MA task did not show any difference in test-retest activity between the night/sleep and day/awake groups. When the two MA task groups were combined, however, increased test-retest activity was found in lobule VI of the cerebellar cortex. Together, these findings highlight the presence of both functional and structural dissociations reflecting the off-line consolidation processes of MSL and MA. They suggest that MSL consolidation is sleep dependent and reflected by a differential increase of neural activity within the corticostriatal system, whereas MA consolidation necessitates either a period of daytime or sleep and is associated with increased neuronal activity within the corticocerebellar system.

  7. A Guide to Computer Adaptive Testing Systems

    ERIC Educational Resources Information Center

    Davey, Tim

    2011-01-01

    Some brand names are used generically to describe an entire class of products that perform the same function. "Kleenex," "Xerox," "Thermos," and "Band-Aid" are good examples. The term "computerized adaptive testing" (CAT) is similar in that it is often applied uniformly across a diverse family of testing methods. Although the various members of…

  8. Hormesis and adaptive cellular control systems

    EPA Science Inventory

    Hormetic dose response occurs for many endpoints associated with exposures of biological organisms to environmental stressors. Cell-based U- or inverted U-shaped responses may derive from common processes involved in activation of adaptive responses required to protect cells from...

  9. Profiling Students' Adaptation Styles in Web-based Learning.

    ERIC Educational Resources Information Center

    Lee, Myung-Geun

    2001-01-01

    Discussion of Web-based instruction (WBI) focuses on a study of Korean universities that analyzed learners' adaptation styles and characteristics by retrospectively assessing the perceptions of various aspects of WBI. Considers computer literacy, interaction with instructor and students, difficulty of contents, and learners' perception of academic…

  10. Collaborative Learning with Multi-Touch Technology: Developing Adaptive Expertise

    ERIC Educational Resources Information Center

    Mercier, Emma M.; Higgins, Steven E.

    2013-01-01

    Developing fluency and flexibility in mathematics is a key goal of upper primary schooling, however, while fluency can be developed with practice, designing activities that support the development of flexibility is more difficult. Drawing on concepts of adaptive expertise, we developed a task for a multi-touch classroom, NumberNet, that aimed to…

  11. Children's Ability to Learn Evolutionary Explanations for Biological Adaptation

    ERIC Educational Resources Information Center

    Shtulman, Andrew; Neal, Cara; Lindquist, Gabrielle

    2016-01-01

    Research Findings: Evolution by natural selection is often relegated to the high school curriculum on the assumption that younger students cannot grasp its complexity. We sought to test that assumption by teaching children ages 4-12 (n = 96) a selection-based explanation for biological adaptation and comparing their success to that of adults…

  12. Adaptive memory: animacy effects persist in paired-associate learning.

    PubMed

    VanArsdall, Joshua E; Nairne, James S; Pandeirada, Josefa N S; Cogdill, Mindi

    2015-01-01

    Recent evidence suggests that animate stimuli are remembered better than matched inanimate stimuli. Two experiments tested whether this animacy effect persists in paired-associate learning of foreign words. Experiment 1 randomly paired Swahili words with matched animate and inanimate English words. Participants were told simply to learn the English "translations" for a later test. Replicating earlier findings using free recall, a strong animacy advantage was found in this cued-recall task. Concerned that the effect might be due to enhanced accessibility of the individual responses (e.g., animates represent a more accessible category), Experiment 2 selected animate and inanimate English words from two more constrained categories (four-legged animals and furniture). Once again, an advantage was found for pairs using animate targets. These results argue against organisational accounts of the animacy effect and potentially have implications for foreign language vocabulary learning. PMID:24813366

  13. Adaptive memory: animacy effects persist in paired-associate learning.

    PubMed

    VanArsdall, Joshua E; Nairne, James S; Pandeirada, Josefa N S; Cogdill, Mindi

    2015-01-01

    Recent evidence suggests that animate stimuli are remembered better than matched inanimate stimuli. Two experiments tested whether this animacy effect persists in paired-associate learning of foreign words. Experiment 1 randomly paired Swahili words with matched animate and inanimate English words. Participants were told simply to learn the English "translations" for a later test. Replicating earlier findings using free recall, a strong animacy advantage was found in this cued-recall task. Concerned that the effect might be due to enhanced accessibility of the individual responses (e.g., animates represent a more accessible category), Experiment 2 selected animate and inanimate English words from two more constrained categories (four-legged animals and furniture). Once again, an advantage was found for pairs using animate targets. These results argue against organisational accounts of the animacy effect and potentially have implications for foreign language vocabulary learning.

  14. An application of adaptive learning to malfunction recovery

    NASA Technical Reports Server (NTRS)

    Cruz, R. E.

    1986-01-01

    A self-organizing controller is developed for a simplified two-dimensional aircraft model. The Controller learns how to pilot the aircraft through a navigational mission without exceeding pre-established position and velocity limits. The controller pilots the aircraft by activating one of eight directional actuators at all times. By continually monitoring the aircraft's position and velocity with respect to the mission, the controller progressively modifies its decision rules to improve the aircraft's performance. When the controller has learned how to pilot the aircraft, two actuators fail permanently. Despite this malfunction, the controller regains proficiency at its original task. The experimental results reported show the controller's capabilities for self-organizing control, learning, and malfunction recovery.

  15. Patterns in Authoring of Adaptive Educational Hypermedia: A Taxonomy of Learning Styles

    ERIC Educational Resources Information Center

    Brown, Elizabeth; Cristea, Alexandra; Stewart, Craig; Brailsford, Tim

    2005-01-01

    This paper describes the use of adaptation patterns in the task of formulating standards for adaptive educational hypermedia (AEH) systems that is currently under investigation by the EU ADAPT project. Within this project, design dimensions for high granularity patterns have been established. In this paper we focus on detailing lower granularity…

  16. Learning and adaptation in the management of waterfowl harvests

    USGS Publications Warehouse

    Johnson, Fred A.

    2011-01-01

    A formal framework for the adaptive management of waterfowl harvests was adopted by the U.S. Fish and Wildlife Service in 1995. The process admits competing models of waterfowl population dynamics and harvest impacts, and relies on model averaging to compute optimal strategies for regulating harvest. Model weights, reflecting the relative ability of the alternative models to predict changes in population size, are used in the model averaging and are updated each year based on a comparison of model predictions and observations of population size. Since its inception the adaptive harvest program has focused principally on mallards (Anas platyrhynchos), which constitute a large portion of the U.S. waterfowl harvest. Four competing models, derived from a combination of two survival and two reproductive hypotheses, were originally assigned equal weights. In the last year of available information (2007), model weights favored the weakly density-dependent reproductive hypothesis over the strongly density-dependent one, and the additive mortality hypothesis over the compensatory one. The change in model weights led to a more conservative harvesting policy than what was in effect in the early years of the program. Adaptive harvest management has been successful in many ways, but nonetheless has exposed the difficulties in defining management objectives, in predicting and regulating harvests, and in coping with the tradeoffs inherent in managing multiple waterfowl stocks exposed to a common harvest. The key challenge now facing managers is whether adaptive harvest management as an institution can be sufficiently adaptive, and whether the knowledge and experience gained from the process can be reflected in higher-level policy decisions.

  17. Adaptive, Distributed Control of Constrained Multi-Agent Systems

    NASA Technical Reports Server (NTRS)

    Bieniawski, Stefan; Wolpert, David H.

    2004-01-01

    Product Distribution (PO) theory was recently developed as a broad framework for analyzing and optimizing distributed systems. Here we demonstrate its use for adaptive distributed control of Multi-Agent Systems (MASS), i.e., for distributed stochastic optimization using MAS s. First we review one motivation of PD theory, as the information-theoretic extension of conventional full-rationality game theory to the case of bounded rational agents. In this extension the equilibrium of the game is the optimizer of a Lagrangian of the (Probability dist&&on on the joint state of the agents. When the game in question is a team game with constraints, that equilibrium optimizes the expected value of the team game utility, subject to those constraints. One common way to find that equilibrium is to have each agent run a Reinforcement Learning (E) algorithm. PD theory reveals this to be a particular type of search algorithm for minimizing the Lagrangian. Typically that algorithm i s quite inefficient. A more principled alternative is to use a variant of Newton's method to minimize the Lagrangian. Here we compare this alternative to RL-based search in three sets of computer experiments. These are the N Queen s problem and bin-packing problem from the optimization literature, and the Bar problem from the distributed RL literature. Our results confirm that the PD-theory-based approach outperforms the RL-based scheme in all three domains.

  18. Systems and Methods for Derivative-Free Adaptive Control

    NASA Technical Reports Server (NTRS)

    Yucelen, Tansel (Inventor); Kim, Kilsoo (Inventor); Calise, Anthony J. (Inventor)

    2015-01-01

    An adaptive control system is disclosed. The control system can control uncertain dynamic systems. The control system can employ one or more derivative-free adaptive control architectures. The control system can further employ one or more derivative-free weight update laws. The derivative-free weight update laws can comprise a time-varying estimate of an ideal vector of weights. The control system of the present invention can therefore quickly stabilize systems that undergo sudden changes in dynamics, caused by, for example, sudden changes in weight. Embodiments of the present invention can also provide a less complex control system than existing adaptive control systems. The control system can control aircraft and other dynamic systems, such as, for example, those with non-minimum phase dynamics.

  19. A Structure-Adaptive Hybrid RBF-BP Classifier with an Optimized Learning Strategy

    PubMed Central

    Wen, Hui; Xie, Weixin; Pei, Jihong

    2016-01-01

    This paper presents a structure-adaptive hybrid RBF-BP (SAHRBF-BP) classifier with an optimized learning strategy. SAHRBF-BP is composed of a structure-adaptive RBF network and a BP network of cascade, where the number of RBF hidden nodes is adjusted adaptively according to the distribution of sample space, the adaptive RBF network is used for nonlinear kernel mapping and the BP network is used for nonlinear classification. The optimized learning strategy is as follows: firstly, a potential function is introduced into training sample space to adaptively determine the number of initial RBF hidden nodes and node parameters, and a form of heterogeneous samples repulsive force is designed to further optimize each generated RBF hidden node parameters, the optimized structure-adaptive RBF network is used for adaptively nonlinear mapping the sample space; then, according to the number of adaptively generated RBF hidden nodes, the number of subsequent BP input nodes can be determined, and the overall SAHRBF-BP classifier is built up; finally, different training sample sets are used to train the BP network parameters in SAHRBF-BP. Compared with other algorithms applied to different data sets, experiments show the superiority of SAHRBF-BP. Especially on most low dimensional and large number of data sets, the classification performance of SAHRBF-BP outperforms other training SLFNs algorithms. PMID:27792737

  20. Sparing of Descending Axons Rescues Interneuron Plasticity in the Lumbar Cord to Allow Adaptive Learning After Thoracic Spinal Cord Injury.

    PubMed

    Hansen, Christopher N; Faw, Timothy D; White, Susan; Buford, John A; Grau, James W; Basso, D Michele

    2016-01-01

    This study evaluated the role of spared axons on structural and behavioral neuroplasticity in the lumbar enlargement after a thoracic spinal cord injury (SCI). Previous work has demonstrated that recovery in the presence of spared axons after an incomplete lesion increases behavioral output after a subsequent complete spinal cord transection (TX). This suggests that spared axons direct adaptive changes in below-level neuronal networks of the lumbar cord. In response to spared fibers, we postulate that lumbar neuron networks support behavioral gains by preventing aberrant plasticity. As such, the present study measured histological and functional changes in the isolated lumbar cord after complete TX or incomplete contusion (SCI). To measure functional plasticity in the lumbar cord, we used an established instrumental learning paradigm (ILP). In this paradigm, neural circuits within isolated lumbar segments demonstrate learning by an increase in flexion duration that reduces exposure to a noxious leg shock. We employed this model using a proof-of-principle design to evaluate the role of sparing on lumbar learning and plasticity early (7 days) or late (42 days) after midthoracic SCI in a rodent model. Early after SCI or TX at 7 days, spinal learning was unattainable regardless of whether the animal recovered with or without axonal substrate. Failed learning occurred alongside measures of cell soma atrophy and aberrant dendritic spine expression within interneuron populations responsible for sensorimotor integration and learning. Alternatively, exposure of the lumbar cord to a small amount of spared axons for 6 weeks produced near-normal learning late after SCI. This coincided with greater cell soma volume and fewer aberrant dendritic spines on interneurons. Thus, an opportunity to influence activity-based learning in locomotor networks depends on spared axons limiting maladaptive plasticity. Together, this work identifies a time dependent interaction between spared

  1. Sparing of Descending Axons Rescues Interneuron Plasticity in the Lumbar Cord to Allow Adaptive Learning After Thoracic Spinal Cord Injury

    PubMed Central

    Hansen, Christopher N.; Faw, Timothy D.; White, Susan; Buford, John A.; Grau, James W.; Basso, D. Michele

    2016-01-01

    This study evaluated the role of spared axons on structural and behavioral neuroplasticity in the lumbar enlargement after a thoracic spinal cord injury (SCI). Previous work has demonstrated that recovery in the presence of spared axons after an incomplete lesion increases behavioral output after a subsequent complete spinal cord transection (TX). This suggests that spared axons direct adaptive changes in below-level neuronal networks of the lumbar cord. In response to spared fibers, we postulate that lumbar neuron networks support behavioral gains by preventing aberrant plasticity. As such, the present study measured histological and functional changes in the isolated lumbar cord after complete TX or incomplete contusion (SCI). To measure functional plasticity in the lumbar cord, we used an established instrumental learning paradigm (ILP). In this paradigm, neural circuits within isolated lumbar segments demonstrate learning by an increase in flexion duration that reduces exposure to a noxious leg shock. We employed this model using a proof-of-principle design to evaluate the role of sparing on lumbar learning and plasticity early (7 days) or late (42 days) after midthoracic SCI in a rodent model. Early after SCI or TX at 7 days, spinal learning was unattainable regardless of whether the animal recovered with or without axonal substrate. Failed learning occurred alongside measures of cell soma atrophy and aberrant dendritic spine expression within interneuron populations responsible for sensorimotor integration and learning. Alternatively, exposure of the lumbar cord to a small amount of spared axons for 6 weeks produced near-normal learning late after SCI. This coincided with greater cell soma volume and fewer aberrant dendritic spines on interneurons. Thus, an opportunity to influence activity-based learning in locomotor networks depends on spared axons limiting maladaptive plasticity. Together, this work identifies a time dependent interaction between spared

  2. Identification of nonlinear optical systems using adaptive kernel methods

    NASA Astrophysics Data System (ADS)

    Wang, Xiaodong; Zhang, Changjiang; Zhang, Haoran; Feng, Genliang; Xu, Xiuling

    2005-12-01

    An identification approach of nonlinear optical dynamic systems, based on adaptive kernel methods which are modified version of least squares support vector machine (LS-SVM), is presented in order to obtain the reference dynamic model for solving real time applications such as adaptive signal processing of the optical systems. The feasibility of this approach is demonstrated with the computer simulation through identifying a Bragg acoustic-optical bistable system. Unlike artificial neural networks, the adaptive kernel methods possess prominent advantages: over fitting is unlikely to occur by employing structural risk minimization criterion, the global optimal solution can be uniquely obtained owing to that its training is performed through the solution of a set of linear equations. Also, the adaptive kernel methods are still effective for the nonlinear optical systems with a variation of the system parameter. This method is robust with respect to noise, and it constitutes another powerful tool for the identification of nonlinear optical systems.

  3. OAEditor--A Framework for Editing Adaptive Learning Objects

    ERIC Educational Resources Information Center

    Pereira, Joao Carlos Rodrigues; Cabral, Lucidio dos Anjos Formiga; Oiveira, Ronei dos Santos; Bezerra, Lucimar Leandro; de Melo, Nisston Moraes Tavares

    2012-01-01

    Distance Learning supported by the WEB is a reality which is growing fast and, like any technological or empirical innovation, it reveals positive and negative aspects. An important aspect is in relation to the monitoring of the activities done by the students since an accurate online assessment of the knowledge acquired is an open and, therefore,…

  4. Primary Motor Cortex Involvement in Initial Learning during Visuomotor Adaptation

    ERIC Educational Resources Information Center

    Riek, Stephan; Hinder, Mark R.; Carson, Richard G.

    2012-01-01

    Human motor behaviour is continually modified on the basis of errors between desired and actual movement outcomes. It is emerging that the role played by the primary motor cortex (M1) in this process is contingent upon a variety of factors, including the nature of the task being performed, and the stage of learning. Here we used repetitive TMS to…

  5. Adapting to Change: What Motivates Manitoban Schools to Learn

    ERIC Educational Resources Information Center

    Lam, Y. L. Jack

    2004-01-01

    This study assesses the relative importance of environmental, intraorganizational, and contextual factors that explain the process and outcomes of organizational learning in six Manitoba schools. Based on the data provided by 265 teaching staff and their principals, the present findings verified that transformational leadership, supportive school…

  6. Cooperative Learning and Adaptive Instruction in a Mathematics Curriculum.

    ERIC Educational Resources Information Center

    Terwel, Jan; And Others

    1994-01-01

    Maintains that current research suggests that heterogeneous grouping is preferable. Reports on a study of a new mathematics curriculum using 600 students in 6 Dutch schools. Finds that students in heterogeneous classes taught with cooperative-learning techniques achieved more than students in traditional ability-grouped classrooms. (CFR)

  7. Adaptive Animation of Human Motion for E-Learning Applications

    ERIC Educational Resources Information Center

    Li, Frederick W. B.; Lau, Rynson W. H.; Komura, Taku; Wang, Meng; Siu, Becky

    2007-01-01

    Human motion animation has been one of the major research topics in the field of computer graphics for decades. Techniques developed in this area help present human motions in various applications. This is crucial for enhancing the realism as well as promoting the user interest in the applications. To carry this merit to e-learning applications,…

  8. Becoming a Coach in Developmental Adaptive Sailing: A Lifelong Learning Perspective

    PubMed Central

    Duarte, Tiago; Culver, Diane M.

    2014-01-01

    Life-story methodology and innovative methods were used to explore the process of becoming a developmental adaptive sailing coach. Jarvis's (2009) lifelong learning theory framed the thematic analysis. The findings revealed that the coach, Jenny, was exposed from a young age to collaborative environments. Social interactions with others such as mentors, colleagues, and athletes made major contributions to her coaching knowledge. As Jenny was exposed to a mixture of challenges and learning situations, she advanced from recreational para-swimming instructor to developmental adaptive sailing coach. The conclusions inform future research in disability sport coaching, coach education, and applied sport psychology. PMID:25210408

  9. Becoming a Coach in Developmental Adaptive Sailing: A Lifelong Learning Perspective.

    PubMed

    Duarte, Tiago; Culver, Diane M

    2014-10-01

    Life-story methodology and innovative methods were used to explore the process of becoming a developmental adaptive sailing coach. Jarvis's (2009) lifelong learning theory framed the thematic analysis. The findings revealed that the coach, Jenny, was exposed from a young age to collaborative environments. Social interactions with others such as mentors, colleagues, and athletes made major contributions to her coaching knowledge. As Jenny was exposed to a mixture of challenges and learning situations, she advanced from recreational para-swimming instructor to developmental adaptive sailing coach. The conclusions inform future research in disability sport coaching, coach education, and applied sport psychology.

  10. Becoming a Coach in Developmental Adaptive Sailing: A Lifelong Learning Perspective.

    PubMed

    Duarte, Tiago; Culver, Diane M

    2014-10-01

    Life-story methodology and innovative methods were used to explore the process of becoming a developmental adaptive sailing coach. Jarvis's (2009) lifelong learning theory framed the thematic analysis. The findings revealed that the coach, Jenny, was exposed from a young age to collaborative environments. Social interactions with others such as mentors, colleagues, and athletes made major contributions to her coaching knowledge. As Jenny was exposed to a mixture of challenges and learning situations, she advanced from recreational para-swimming instructor to developmental adaptive sailing coach. The conclusions inform future research in disability sport coaching, coach education, and applied sport psychology. PMID:25210408

  11. Particle Swarm Social Model for Group Social Learning in Adaptive Environment

    SciTech Connect

    Cui, Xiaohui; Potok, Thomas E; Treadwell, Jim N; Patton, Robert M; Pullum, Laura L

    2008-01-01

    This report presents a study of integrating particle swarm algorithm, social knowledge adaptation and multi-agent approaches for modeling the social learning of self-organized groups and their collective searching behavior in an adaptive environment. The objective of this research is to apply the particle swarm metaphor as a model of social learning for a dynamic environment. The research provides a platform for understanding and insights into knowledge discovery and strategic search in human self-organized social groups, such as insurgents or online communities.

  12. Surprise and opportunity for learning in Grand Canyon: the Glen Canyon Dam Adaptive Management Program

    USGS Publications Warehouse

    Melis, Theodore S.; Walters, Carl; Korman, Josh

    2015-01-01

    With a focus on resources of the Colorado River ecosystem below Glen Canyon Dam, the Glen Canyon Dam Adaptive Management Program has included a variety of experimental policy tests, ranging from manipulation of water releases from the dam to removal of non-native fish within Grand Canyon National Park. None of these field-scale experiments has yet produced unambiguous results in terms of management prescriptions. But there has been adaptive learning, mostly from unanticipated or surprising resource responses relative to predictions from ecosystem modeling. Surprise learning opportunities may often be viewed with dismay by some stakeholders who might not be clear about the purpose of science and modeling in adaptive management. However, the experimental results from the Glen Canyon Dam program actually represent scientific successes in terms of revealing new opportunities for developing better river management policies. A new long-term experimental management planning process for Glen Canyon Dam operations, started in 2011 by the U.S. Department of the Interior, provides an opportunity to refocus management objectives, identify and evaluate key uncertainties about the influence of dam releases, and refine monitoring for learning over the next several decades. Adaptive learning since 1995 is critical input to this long-term planning effort. Embracing uncertainty and surprise outcomes revealed by monitoring and ecosystem modeling will likely continue the advancement of resource objectives below the dam, and may also promote efficient learning in other complex programs.

  13. Daytime sleep has no effect on the time course of motor sequence and visuomotor adaptation learning.

    PubMed

    Backhaus, Winifried; Braaß, Hanna; Renné, Thomas; Krüger, Christian; Gerloff, Christian; Hummel, Friedhelm C

    2016-05-01

    Sleep has previously been claimed to be essential for the continued learning processes of declarative information as well as procedural learning. This study was conducted to examine the importance of sleep, especially the effects of midday naps, on motor sequence and visuomotor adaptation learning. Thirty-five (27 females) healthy, young adults aged between 18 and 30years of age participated in the current study. Addressing potential differences in explicit sequence and motor adaptation learning participants were asked to learn both, a nine-element explicit sequence and a motor adaptation task, in a crossover fashion on two consecutive days. Both tasks were performed with their non-dominant left hand. Prior to learning, each participant was randomized to one of three interventions; (1) power nap: 10-20min sleep, (2) long nap: 50-80min sleep or (3) a 45-min wake-condition. Performance of the motor learning task took place prior to and after a midday rest period, as well as after a night of sleep. Both sleep conditions were dominated by Stage N2 sleep with embedded sleep spindles, which have been described to be associated with enhancement of motor performance. Significant performance changes were observed in both tasks across all interventions (sleep and wake) confirming that learning took place. In the present setup, the magnitude of motor learning was not sleep-dependent in young adults - no differences between the intervention groups (short nap, long nap, no nap) could be found. The effect of the following night of sleep was not influenced by the previous midday rest or sleep period. This finding may be related to the selectiveness of the human brain enhancing especially memory being thought of as important in the future. Previous findings on motor learning enhancing effects of sleep, especially of daytime sleep, are challenged.

  14. Web-Based Evaluation System for Learning Management Systems

    ERIC Educational Resources Information Center

    Momani, Alaa

    2010-01-01

    E-learning systems have become an issue in recent years. A learning management system (LMS) is an electronic environment helps the educational society to communicate, exchange information, manage, and schedule the learning process. This study has provided a web-based evaluation system that may help the users to choose the convenient system…

  15. Adaptive control applied to Space Station attitude control system

    NASA Technical Reports Server (NTRS)

    Lam, Quang M.; Chipman, Richard; Hu, Tsay-Hsin G.; Holmes, Eric B.; Sunkel, John

    1992-01-01

    This paper presents an adaptive control approach to enhance the performance of current attitude control system used by the Space Station Freedom. The proposed control law was developed based on the direct adaptive control or model reference adaptive control scheme. Performance comparisons, subject to inertia variation, of the adaptive controller and the fixed-gain linear quadratic regulator currently implemented for the Space Station are conducted. Both the fixed-gain and the adaptive gain controllers are able to maintain the Station stability for inertia variations of up to 35 percent. However, when a 50 percent inertia variation is applied to the Station, only the adaptive controller is able to maintain the Station attitude.

  16. The Learning System. Volume 5, Number 1

    ERIC Educational Resources Information Center

    von Frank, Valerie, Ed.

    2009-01-01

    "The Learning System" is an eight-page newsletter published eight times a year. Designed for superintendents and central office staff with professional learning responsibilities. This issue includes: (1) Superintendent Stays on Course with Personal Learning Plan (Valerie von Frank); (2) District Leadership: Permit, Don't Proscribe, to Build…

  17. The Learning System. Volume 4, Number 7

    ERIC Educational Resources Information Center

    von Frank, Valerie, Ed.

    2009-01-01

    "The Learning System" is a newsletter designed for superintendents and central office staff with professional learning responsibilities. This issue includes: (1) District Pulls Together in Pursuit of Excellence: Creating Collaboration Systemwide Requires Commitment (Valerie von Frank); (2) Scheduling Time for Teacher Learning Is Key for Both…

  18. Expert Students in Social Learning Management Systems

    ERIC Educational Resources Information Center

    Avogadro, Paolo; Calegari, Silvia; Dominoni, Matteo Alessandro

    2016-01-01

    Purpose: A social learning management system (social LMS) is a tool which favors social interactions and allows scholastic institutions to supervise and guide the learning process. The inclusion of the social feature to a "normal" LMS leads to the creation of educational social networks (EduSN), where the students interact and learn. The…

  19. Prism Adaptation and Aftereffect: Specifying the Properties of a Procedural Memory System

    PubMed Central

    Fernández-Ruiz, Juan; Díaz, Rosalinda

    1999-01-01

    Prism adaptation, a form of procedural learning, is a phenomenon in which the motor system adapts to new visuospatial coordinates imposed by prisms that displace the visual field. Once the prisms are withdrawn, the degree and strength of the adaptation can be measured by the spatial deviation of the motor actions in the direction opposite to the visual displacement imposed by the prisms, a phenomenon known as aftereffect. This study was designed to define the variables that affect the acquisition and retention of the aftereffect. Subjects were required to throw balls to a target in front of them before, during, and after lateral displacement of the visual field with prismatic spectacles. The diopters of the prisms and the number of throws were varied among different groups of subjects. The results show that the adaptation process is dependent on the number of interactions between the visual and motor system, and not on the time spent wearing the prisms. The results also show that the magnitude of the aftereffect is highly correlated with the magnitude of the adaptation, regardless of the diopters of the prisms or the number of throws. Finally, the results suggest that persistence of the aftereffect depends on the number of throws after the adaptation is complete. On the basis of these results, we propose that the system underlying this kind of learning stores at least two different parameters, the contents (measured as the magnitude of displacement) and the persistence (measured as the number of throws to return to the baseline) of the learned information. PMID:10355523

  20. Adaptive hybrid intelligent control for uncertain nonlinear dynamical systems.

    PubMed

    Wang, Chi-Hsu; Lin, Tsung-Chih; Lee, Tsu-Tian; Liu, Han-Leih

    2002-01-01

    A new hybrid direct/indirect adaptive fuzzy neural network (FNN) controller with a state observer and supervisory controller for a class of uncertain nonlinear dynamic systems is developed in this paper. The hybrid adaptive FNN controller, the free parameters of which can be tuned on-line by an observer-based output feedback control law and adaptive law, is a combination of direct and indirect adaptive FNN controllers. A weighting factor, which can be adjusted by the tradeoff between plant knowledge and control knowledge, is adopted to sum together the control efforts from indirect adaptive FNN controller and direct adaptive FNN controller. Furthermore, a supervisory controller is appended into the FNN controller to force the state to be within the constraint set. Therefore, if the FNN controller cannot maintain the stability, the supervisory controller starts working to guarantee stability. On the other hand, if the FNN controller works well, the supervisory controller will be deactivated. The overall adaptive scheme guarantees the global stability of the resulting closed-loop system in the sense that all signals involved are uniformly bounded. Two nonlinear systems, namely, inverted pendulum system and Chua's (1989) chaotic circuit, are fully illustrated to track sinusoidal signals. The resulting hybrid direct/indirect FNN control systems show better performances, i.e., tracking error and control effort can be made smaller and it is more flexible during the design process.

  1. Learning from experience: event-related potential correlates of reward processing, neural adaptation, and behavioral choice.

    PubMed

    Walsh, Matthew M; Anderson, John R

    2012-09-01

    To behave adaptively, we must learn from the consequences of our actions. Studies using event-related potentials (ERPs) have been informative with respect to the question of how such learning occurs. These studies have revealed a frontocentral negativity termed the feedback-related negativity (FRN) that appears after negative feedback. According to one prominent theory, the FRN tracks the difference between the values of actual and expected outcomes, or reward prediction errors. As such, the FRN provides a tool for studying reward valuation and decision making. We begin this review by examining the neural significance of the FRN. We then examine its functional significance. To understand the cognitive processes that occur when the FRN is generated, we explore variables that influence its appearance and amplitude. Specifically, we evaluate four hypotheses: (1) the FRN encodes a quantitative reward prediction error; (2) the FRN is evoked by outcomes and by stimuli that predict outcomes; (3) the FRN and behavior change with experience; and (4) the system that produces the FRN is maximally engaged by volitional actions.

  2. Systems Thinking, Lean Production and Action Learning

    ERIC Educational Resources Information Center

    Seddon, John; Caulkin, Simon

    2007-01-01

    Systems thinking underpins "lean" management and is best understood through action-learning as the ideas are counter-intuitive. The Toyota Production System is just that--a system; the failure to appreciate that starting-place and the advocacy of "tools" leads many to fail to grasp what is, without doubt, a significant opportunity for learning and…

  3. The AdaptiV Approach to Verification of Adaptive Systems

    SciTech Connect

    Rouff, Christopher; Buskens, Richard; Pullum, Laura L; Cui, Xiaohui; Hinchey, Mike

    2012-01-01

    Adaptive systems are critical for future space and other unmanned and intelligent systems. Verification of these systems is also critical for their use in systems with potential harm to human life or with large financial investments. Due to their nondeterministic nature and extremely large state space, current methods for verification of software systems are not adequate to provide a high level of assurance. The combination of stabilization science, high performance computing simulations, compositional verification and traditional verification techniques, plus operational monitors, provides a complete approach to verification and deployment of adaptive systems that has not been used before. This paper gives an overview of this approach.

  4. Computerized Adaptive Testing System Design: Preliminary Design Considerations.

    ERIC Educational Resources Information Center

    Croll, Paul R.

    A functional design model for a computerized adaptive testing (CAT) system was developed and presented through a series of hierarchy plus input-process-output (HIPO) diagrams. System functions were translated into system structure: specifically, into 34 software components. Implementation of the design in a physical system was addressed through…

  5. Learning and the Instructional System

    ERIC Educational Resources Information Center

    Kozma, Robert B.

    1977-01-01

    Faculty members can use information about six components of the learning situation to increase student learning. The nature, function, and interrelationships of the following elements are described: instructor, content, medium, student, evaluation, environment, and implementation. (Editor/LBH)

  6. Computational issue in the analysis of adaptive control systems

    NASA Technical Reports Server (NTRS)

    Kosut, Robert L.

    1989-01-01

    Adaptive systems under slow parameter adaption can be analyzed by the method of averaging. This provides a means to assess stability (and instability) properties of most adaptive systems, either continuous-time or (more importantly for practice) discrete-time, as well as providing an estimate of the region of attraction. Although the method of averaging is conceptually straightforward, even simple examples are well beyond hand calculations. Specific software tools are proposed which can provide the basis for user-friendly environment to perform the necessary computations involved in the averaging analysis.

  7. Adaptive Mesh Refinement and Adaptive Time Integration for Electrical Wave Propagation on the Purkinje System.

    PubMed

    Ying, Wenjun; Henriquez, Craig S

    2015-01-01

    A both space and time adaptive algorithm is presented for simulating electrical wave propagation in the Purkinje system of the heart. The equations governing the distribution of electric potential over the system are solved in time with the method of lines. At each timestep, by an operator splitting technique, the space-dependent but linear diffusion part and the nonlinear but space-independent reactions part in the partial differential equations are integrated separately with implicit schemes, which have better stability and allow larger timesteps than explicit ones. The linear diffusion equation on each edge of the system is spatially discretized with the continuous piecewise linear finite element method. The adaptive algorithm can automatically recognize when and where the electrical wave starts to leave or enter the computational domain due to external current/voltage stimulation, self-excitation, or local change of membrane properties. Numerical examples demonstrating efficiency and accuracy of the adaptive algorithm are presented.

  8. Adaptive Mesh Refinement and Adaptive Time Integration for Electrical Wave Propagation on the Purkinje System

    PubMed Central

    Ying, Wenjun; Henriquez, Craig S.

    2015-01-01

    A both space and time adaptive algorithm is presented for simulating electrical wave propagation in the Purkinje system of the heart. The equations governing the distribution of electric potential over the system are solved in time with the method of lines. At each timestep, by an operator splitting technique, the space-dependent but linear diffusion part and the nonlinear but space-independent reactions part in the partial differential equations are integrated separately with implicit schemes, which have better stability and allow larger timesteps than explicit ones. The linear diffusion equation on each edge of the system is spatially discretized with the continuous piecewise linear finite element method. The adaptive algorithm can automatically recognize when and where the electrical wave starts to leave or enter the computational domain due to external current/voltage stimulation, self-excitation, or local change of membrane properties. Numerical examples demonstrating efficiency and accuracy of the adaptive algorithm are presented. PMID:26581455

  9. Design of an adaptive neural network based power system stabilizer.

    PubMed

    Liu, Wenxin; Venayagamoorthy, Ganesh K; Wunsch, Donald C

    2003-01-01

    Power system stabilizers (PSS) are used to generate supplementary control signals for the excitation system in order to damp the low frequency power system oscillations. To overcome the drawbacks of conventional PSS (CPSS), numerous techniques have been proposed in the literature. Based on the analysis of existing techniques, this paper presents an indirect adaptive neural network based power system stabilizer (IDNC) design. The proposed IDNC consists of a neuro-controller, which is used to generate a supplementary control signal to the excitation system, and a neuro-identifier, which is used to model the dynamics of the power system and to adapt the neuro-controller parameters. The proposed method has the features of a simple structure, adaptivity and fast response. The proposed IDNC is evaluated on a single machine infinite bus power system under different operating conditions and disturbances to demonstrate its effectiveness and robustness. PMID:12850048

  10. Group-Work in the Design of Complex Adaptive Learning Strategies

    ERIC Educational Resources Information Center

    Mavroudi, Anna; Hadzilacos, Thanasis

    2013-01-01

    This paper presents a case study where twelve graduate students undertook the demanding role of the adaptive e-course developer and worked collaboratively on an authentic and complex design task in the context of open and distance tertiary education. The students had to work in groups in order to conceptualise and design a learning scenario for…

  11. Using Weblog in Learning English and Encouraging Adaptation among International Students in Perlis

    ERIC Educational Resources Information Center

    Suryani, Ina; Hizwari, Shafiq; Islam, Md. Aminul; Desa, Hazry

    2012-01-01

    This study looks at the correlation of the English learning which is by using weblog and the adaptation for international students at Universiti Malaysia Perlis. The study was conducted on the first batch of International students. There were 37 students from three countries with the majority from China followed by Indonesia and Sudan. The…

  12. Lessons Learned in Designing and Implementing a Computer-Adaptive Test for English

    ERIC Educational Resources Information Center

    Burston, Jack; Neophytou, Maro

    2014-01-01

    This paper describes the lessons learned in designing and implementing a computer-adaptive test (CAT) for English. The early identification of students with weak L2 English proficiency is of critical importance in university settings that have compulsory English language course graduation requirements. The most efficient means of diagnosing the L2…

  13. Use of Adaptive Study Material in Education in E-Learning Environment

    ERIC Educational Resources Information Center

    Kostolányová, Katerina; Šarmanová, Jana

    2014-01-01

    Personalised education is a topical matter today and the impact of ICT on education has been covered extensively. The adaptation of education to various types of student is an issue of a vast number of papers presented at diverse conferences. The topic incorporates the fields of information technologies and eLearning, but in no small part also the…

  14. Bridging Scientific Reasoning and Conceptual Change through Adaptive Web-Based Learning

    ERIC Educational Resources Information Center

    She, Hsiao-Ching; Liao, Ya-Wen

    2010-01-01

    This study reports an adaptive digital learning project, Scientific Concept Construction and Reconstruction (SCCR), and examines its effects on 108 8th grade students' scientific reasoning and conceptual change through mixed methods. A one-group pre-, post-, and retention quasi-experimental design was used in the study. All students received tests…

  15. The Adaptation of Chinese International Students to Online Flexible Learning: Two Case Studies

    ERIC Educational Resources Information Center

    Chen, Rainbow Tsai-Hung; Bennett, Sue; Maton, Karl

    2008-01-01

    The cross-cultural experiences of Chinese international students in Western countries have been subject to intensive research, but only a very small number of studies have considered how these students adapt to learning in an online flexible delivery environment. Guided by Berry's acculturation framework (1980, 2005), the investigation discussed…

  16. Adaptation to Altitude as a Vehicle for Experiential Learning of Physiology by University Undergraduates

    ERIC Educational Resources Information Center

    Weigle, David S.; Buben, Amelia; Burke, Caitlin C.; Carroll, Nels D.; Cook, Brett M.; Davis, Benjamin S.; Dubowitz, Gerald; Fisher, Rian E.; Freeman, Timothy C.; Gibbons, Stephen M.; Hansen, Hale A.; Heys, Kimberly A.; Hopkins, Brittany; Jordan, Brittany L.; McElwain, Katherine L.; Powell, Frank L.; Reinhart, Katherine E.; Robbins, Charles D.; Summers, Cameron C.; Walker, Jennifer D.; Weber, Steven S.; Weinheimer, Caroline J.

    2007-01-01

    In this article, an experiential learning activity is described in which 19 university undergraduates made experimental observations on each other to explore physiological adaptations to high altitude. Following 2 wk of didactic sessions and baseline data collection at sea level, the group ascended to a research station at 12,500-ft elevation.…

  17. Psychological and Pedagogical Support for Students' Adaptation to Learning Activity in High Science School

    ERIC Educational Resources Information Center

    Zeleeva, Vera P.; Bykova, Svetlana S.; Varbanova, Silvia

    2016-01-01

    The relevance of the study is due to the importance of psychological and pedagogical support for students in university that would prevent difficulties in learning activities and increase adaptive capacity through the development of relevant personal traits. Therefore, this article is aimed at solving the problem of arranging psychological and…

  18. Adaptation and Analysis of Motivated Strategies for Learning Questionnaire in the Chinese Setting

    ERIC Educational Resources Information Center

    Lee, John Chi-kin; Yin, Hongbiao; Zhang, Zhonghua

    2010-01-01

    This article reports the adaptation and analysis of Pintrich's Motivated Strategies for Learning Questionnaire (MSLQ) in Hong Kong. First, this study examined the psychometric qualities of the existing Chinese version of MSLQ (MSLQ-CV). Based on this examination, this study developed a revised Chinese version of MSLQ (MSLQ-RCV) for junior…

  19. Adaptations for Culturally and Linguistically Diverse Families of English Language Learning Students with Autisim Spectrum Disorders

    ERIC Educational Resources Information Center

    Mitchell, Deborah J.

    2012-01-01

    The purpose of this qualitative, grounded theory study was to describe adaptations for culturally and linguistically diverse families of English language learning students with autism spectrum disorders. Each family's parent was interviewed three separate times to gather information to understand the needs and experiences regarding their…

  20. Methods of Adapting Digital Content for the Learning Process via Mobile Devices

    ERIC Educational Resources Information Center

    Lopez, J. L. Gimenez; Royo, T. Magal; Laborda, Jesus Garcia; Calvo, F. Garde

    2009-01-01

    This article analyses different methods of adapting digital content for its delivery via mobile devices taking into account two aspects which are a fundamental part of the learning process; on the one hand, functionality of the contents, and on the other, the actual controlled navigation requirements that the learner needs in order to acquire high…