Science.gov

Sample records for adaptive locomotor behavior

  1. Studying the Neural Basis of Adaptive Locomotor Behavior in Insects

    PubMed Central

    Gruhn, Matthias; Rosenbaum, Philipp; Bollhagen, Hans-Peter; Bueschges, Ansgar

    2011-01-01

    Studying the neural basis of walking behavior, one often faces the problem that it is hard to separate the neuronally produced stepping output from those leg movements that result from passive forces and interactions with other legs through the common contact with the substrate. If we want to understand, which part of a given movement is produced by nervous system motor output, kinematic analysis of stepping movements, therefore, needs to be complemented with electrophysiological recordings of motor activity. The recording of neuronal or muscular activity in a behaving animal is often limited by the electrophysiological equipment which can constrain the animal in its ability to move with as many degrees of freedom as possible. This can either be avoided by using implantable electrodes and then having the animal move on a long tether (i.e. Clarac et al., 1987; Duch & Pflüger, 1995; Böhm et al., 1997; Gruhn & Rathmayer, 2002) or by transmitting the data using telemetric devices (Kutsch et al, 1993; Fischer et al., 1996; Tsuchida et al. 2004; Hama et al., 2007; Wang et al., 2008). Both of these elegant methods, which are successfully used in larger arthropods, often prove difficult to apply in smaller walking insects which either easily get entangled in the long tether or are hindered by the weight of the telemetric device and its batteries. In addition, in all these cases, it is still impossible to distinguish between the purely neuronal basis of locomotion and the effects exerted by mechanical coupling between the walking legs through the substrate. One solution for this problem is to conduct the experiments in a tethered animal that is free to walk in place and that is locally suspended, for example over a slippery surface, which effectively removes most ground contact mechanics. This has been used to study escape responses (Camhi and Nolen, 1981; Camhi and Levy, 1988), turning (Tryba and Ritzman, 2000a,b; Gruhn et al., 2009a), backward walking (Graham and

  2. Development of a Countermeasure to Enhance Postflight Locomotor Adaptability

    NASA Technical Reports Server (NTRS)

    Bloomberg, Jacob J.

    2006-01-01

    Astronauts returning from space flight experience locomotor dysfunction following their return to Earth. Our laboratory is currently developing a gait adaptability training program that is designed to facilitate recovery of locomotor function following a return to a gravitational environment. The training program exploits the ability of the sensorimotor system to generalize from exposure to multiple adaptive challenges during training so that the gait control system essentially learns to learn and therefore can reorganize more rapidly when faced with a novel adaptive challenge. We have previously confirmed that subjects participating in adaptive generalization training programs using a variety of visuomotor distortions can enhance their ability to adapt to a novel sensorimotor environment. Importantly, this increased adaptability was retained even one month after completion of the training period. Adaptive generalization has been observed in a variety of other tasks requiring sensorimotor transformations including manual control tasks and reaching (Bock et al., 2001, Seidler, 2003) and obstacle avoidance during walking (Lam and Dietz, 2004). Taken together, the evidence suggests that a training regimen exposing crewmembers to variation in locomotor conditions, with repeated transitions among states, may enhance their ability to learn how to reassemble appropriate locomotor patterns upon return from microgravity. We believe exposure to this type of training will extend crewmembers locomotor behavioral repertoires, facilitating the return of functional mobility after long duration space flight. Our proposed training protocol will compel subjects to develop new behavioral solutions under varying sensorimotor demands. Over time subjects will learn to create appropriate locomotor solution more rapidly enabling acquisition of mobility sooner after long-duration space flight. Our laboratory is currently developing adaptive generalization training procedures and the

  3. Quantitative Trait Loci for Locomotor Behavior in Drosophila melanogaster

    PubMed Central

    Jordan, Katherine W.; Morgan, Theodore J.; Mackay, Trudy F. C.

    2006-01-01

    Locomotion is an integral component of most animal behaviors and many human diseases and disorders are associated with locomotor deficits, but little is known about the genetic basis of natural variation in locomotor behavior. Locomotion is a complex trait, with variation attributable to the joint segregation of multiple interacting quantitative trait loci (QTL), with effects that are sensitive to the environment. We assessed variation in a component of locomotor behavior (locomotor reactivity) in a population of 98 recombinant inbred lines of Drosophila melanogaster and mapped four QTL affecting locomotor reactivity by linkage to polymorphic roo transposable element insertion sites. We used complementation tests of deficiencies to fine map these QTL to 12 chromosomal regions and complementation tests of mutations to identify 13 positional candidate genes affecting locomotor reactivity, including Dopa decarboxylase (Ddc), which catalyzes the final step in the synthesis of serotonin and dopamine. Linkage disequilibrium mapping in a population of 164 second chromosome substitution lines derived from a single natural population showed that polymorphisms at Ddc were associated with naturally occurring genetic variation in locomotor behavior. These data implicate variation in the synthesis of bioamines as a factor contributing to natural variation in locomotor reactivity. PMID:16783013

  4. Age-related forgetting in locomotor adaptation

    PubMed Central

    Malone, Laura A.; Bastian, Amy J.

    2016-01-01

    The healthy aging process affects the ability to learn and remember new facts and tasks. Prior work has shown that motor learning can be adversely affected by non-motor deficits, such as time. Here we investigated how age, and a dual task influence the learning and forgetting of a new walking pattern. We studied healthy younger (<30 yo) and older adults (>50 yo) as they alternated between 5-minute bouts of split-belt treadmill walking and resting. Older subjects learned a new walking pattern at the same rate as younger subjects, but forgot some of the new pattern during the rest breaks. We tested if forgetting was due to reliance on a cognitive strategy that was not fully engaged after rest breaks. When older subjects performed a dual cognitive task to reduce strategic control of split-belt walking, their adaptation rate slowed, but they still forgot much of the new pattern during the rest breaks. Our results demonstrate that the healthy aging process weakens motor memories during rest breaks and that this phenomenon cannot be explained solely by reliance on a conscious strategy in older adults. PMID:26589520

  5. Locomotor adaptation to a soleus EMG-controlled antagonistic exoskeleton.

    PubMed

    Gordon, Keith E; Kinnaird, Catherine R; Ferris, Daniel P

    2013-04-01

    Locomotor adaptation in humans is not well understood. To provide insight into the neural reorganization that occurs following a significant disruption to one's learned neuromuscular map relating a given motor command to its resulting muscular action, we tied the mechanical action of a robotic exoskeleton to the electromyography (EMG) profile of the soleus muscle during walking. The powered exoskeleton produced an ankle dorsiflexion torque proportional to soleus muscle recruitment thus limiting the soleus' plantar flexion torque capability. We hypothesized that neurologically intact subjects would alter muscle activation patterns in response to the antagonistic exoskeleton by decreasing soleus recruitment. Subjects practiced walking with the exoskeleton for two 30-min sessions. The initial response to the perturbation was to "fight" the resistive exoskeleton by increasing soleus activation. By the end of training, subjects had significantly reduced soleus recruitment resulting in a gait pattern with almost no ankle push-off. In addition, there was a trend for subjects to reduce gastrocnemius recruitment in proportion to the soleus even though only the soleus EMG was used to control the exoskeleton. The results from this study demonstrate the ability of the nervous system to recalibrate locomotor output in response to substantial changes in the mechanical output of the soleus muscle and associated sensory feedback. This study provides further evidence that the human locomotor system of intact individuals is highly flexible and able to adapt to achieve effective locomotion in response to a broad range of neuromuscular perturbations. PMID:23307949

  6. The ventromedial hypothalamus oxytocin induces locomotor behavior regulated by estrogen.

    PubMed

    Narita, Kazumi; Murata, Takuya; Matsuoka, Satoshi

    2016-10-01

    Our previous studies demonstrated that excitation of neurons in the rat ventromedial hypothalamus (VMH) induced locomotor activity. An oxytocin receptor (Oxtr) exists in the VMH and plays a role in regulating sexual behavior. However, the role of Oxtr in the VMH in locomotor activity is not clear. In this study we examined the roles of oxytocin in the VMH in running behavior, and also investigated the involvement of estrogen in this behavioral change. Microinjection of oxytocin into the VMH induced a dose-dependent increase in the running behavior in male rats. The oxytocin-induced running activity was inhibited by simultaneous injection of Oxtr-antagonist, (d(CH2)5(1), Try(Me)(2), Orn(8))-oxytocin. Oxytocin injection also induced running behavior in ovariectomized (OVX) female rats. Pretreatment of the OVX rats with estrogen augmented the oxytocin-induced running activity twofold, and increased the Oxtr mRNA in the VMH threefold. During the estrus cycle locomotor activity spontaneously increased in the dark period of proestrus. The Oxtr mRNA was up-regulated in the proestrus afternoon. Blockade of oxytocin neurotransmission by its antagonist before the onset of the dark period of proestrus decreased the following nocturnal locomotor activity. These findings demonstrate that Oxtr in the VMH is involved in the induction of running behavior and that estrogen facilitates this effect by means of Oxtr up-regulation, suggesting the involvement of oxytocin in the locomotor activity of proestrus female rats. PMID:27237044

  7. A locomotor adaptation including explicit knowledge and removal of postadaptation errors induces complete 24-hour retention.

    PubMed

    Hussain, Sara J; Hanson, Angela S; Tseng, Shih-Chiao; Morton, Susanne M

    2013-08-01

    Locomotor patterns are generally very consistent but also contain a high degree of adaptability. Motor adaptation is a short-term type of learning that utilizes this plasticity to alter locomotor behaviors quickly and transiently. In this study, we used a variation of an adaptation paradigm in order to test whether explicit information as well as the removal of the visual error signal after adaptation could improve retention of a newly learned walking pattern 24 h later. On two consecutive days of testing, participants walked on a treadmill while viewing a visual display that showed erroneous feedback of swing times for each leg. Participants were instructed to use this feedback to monitor and adjust swing times so they appeared symmetric within the display. This was achieved by producing a novel interlimb asymmetry between legs. For both legs, we measured adaptation magnitudes and rates and immediate and 24-h retention magnitudes. Participants showed similar adaptation on both days but a faster rate of readaptation on day 2. There was complete retention of adapted swing times on the increasing leg (i.e., no evidence of performance decay over 24 h). Overall, these findings suggest that the inclusion of explicit information and the removal of the visual error signal are effective in inducing full retention of adapted increases in swing time over a moderate (24 h) interval of time. PMID:23741038

  8. Effects of dopaminergic therapy on locomotor adaptation and adaptive learning in persons with Parkinson's disease

    PubMed Central

    Roemmich, Ryan T.; Hack, Nawaz; Akbar, Umer; Hass, Chris J.

    2014-01-01

    Persons with Parkinson’s disease (PD) are characterized by multifactorial gait deficits, though the factors which influence the abilities of persons with PD to adapt and store new gait patterns are unclear. The purpose of this study was to investigate the effects of dopaminergic therapy on the abilities of persons with PD to adapt and store gait parameters during split-belt treadmill (SBT) walking. Ten participants with idiopathic PD who were being treated with stable doses of orally-administered dopaminergic therapy participated. All participants performed two randomized testing sessions on separate days: once while optimally-medicated (ON meds) and once after 12-hour withdrawal from dopaminergic medication (OFF meds). During each session, locomotor adaptation was investigated as the participants walked on a SBT for ten minutes while the belts moved at a 2:1 speed ratio. We assessed locomotor adaptive learning by quantifying: 1) aftereffects during de-adaptation (once the belts returned to tied speeds immediately following SBT walking) and 2) savings during re-adaptation (as the participants repeated the same SBT walking task after washout of aftereffects following the initial SBT task). The withholding of dopaminergic medication diminished step length aftereffects significantly during de-adaptation. However, both locomotor adaptation and savings were unaffected by levodopa. These findings suggest that dopaminergic pathways influence aftereffect storage but do not influence locomotor adaptation or savings within a single session of SBT walking. It appears important that persons with PD should be optimally-medicated if walking on the SBT as gait rehabilitation. PMID:24698798

  9. Effects of dopaminergic therapy on locomotor adaptation and adaptive learning in persons with Parkinson's disease.

    PubMed

    Roemmich, Ryan T; Hack, Nawaz; Akbar, Umer; Hass, Chris J

    2014-07-15

    Persons with Parkinson's disease (PD) are characterized by multifactorial gait deficits, though the factors which influence the abilities of persons with PD to adapt and store new gait patterns are unclear. The purpose of this study was to investigate the effects of dopaminergic therapy on the abilities of persons with PD to adapt and store gait parameters during split-belt treadmill (SBT) walking. Ten participants with idiopathic PD who were being treated with stable doses of orally-administered dopaminergic therapy participated. All participants performed two randomized testing sessions on separate days: once while optimally-medicated (ON meds) and once after 12-h withdrawal from dopaminergic medication (OFF meds). During each session, locomotor adaptation was investigated as the participants walked on a SBT for 10 min while the belts moved at a 2:1 speed ratio. We assessed locomotor adaptive learning by quantifying: (1) aftereffects during de-adaptation (once the belts returned to tied speeds immediately following SBT walking) and (2) savings during re-adaptation (as the participants repeated the same SBT walking task after washout of aftereffects following the initial SBT task). The withholding of dopaminergic medication diminished step length aftereffects significantly during de-adaptation. However, both locomotor adaptation and savings were unaffected by levodopa. These findings suggest that dopaminergic pathways influence aftereffect storage but do not influence locomotor adaptation or savings within a single session of SBT walking. It appears important that persons with PD should be optimally-medicated if walking on the SBT as gait rehabilitation. PMID:24698798

  10. Optic flow improves adaptability of spatiotemporal characteristics during split-belt locomotor adaptation with tactile stimulation.

    PubMed

    Eikema, Diderik Jan A; Chien, Jung Hung; Stergiou, Nicholas; Myers, Sara A; Scott-Pandorf, Melissa M; Bloomberg, Jacob J; Mukherjee, Mukul

    2016-02-01

    Human locomotor adaptation requires feedback and feed-forward control processes to maintain an appropriate walking pattern. Adaptation may require the use of visual and proprioceptive input to decode altered movement dynamics and generate an appropriate response. After a person transfers from an extreme sensory environment and back, as astronauts do when they return from spaceflight, the prolonged period required for re-adaptation can pose a significant burden. In our previous paper, we showed that plantar tactile vibration during a split-belt adaptation task did not interfere with the treadmill adaptation however, larger overground transfer effects with a slower decay resulted. Such effects, in the absence of visual feedback (of motion) and perturbation of tactile feedback, are believed to be due to a higher proprioceptive gain because, in the absence of relevant external dynamic cues such as optic flow, reliance on body-based cues is enhanced during gait tasks through multisensory integration. In this study, we therefore investigated the effect of optic flow on tactile-stimulated split-belt adaptation as a paradigm to facilitate the sensorimotor adaptation process. Twenty healthy young adults, separated into two matched groups, participated in the study. All participants performed an overground walking trial followed by a split-belt treadmill adaptation protocol. The tactile group (TC) received vibratory plantar tactile stimulation only, whereas the virtual reality and tactile group (VRT) received an additional concurrent visual stimulation: a moving virtual corridor, inducing perceived self-motion. A post-treadmill overground trial was performed to determine adaptation transfer. Interlimb coordination of spatiotemporal and kinetic variables was quantified using symmetry indices and analyzed using repeated-measures ANOVA. Marked changes of step length characteristics were observed in both groups during split-belt adaptation. Stance and swing time symmetries were

  11. Locomotor behavior of fish hatched from embryos exposed to flight conditions

    NASA Technical Reports Server (NTRS)

    Kleerekoper, H.

    1978-01-01

    Embryos of Fundulus heteroclitus in various stages of development were exposed to space flight conditions aboard Apollo spacecraft and Cosmos satellites. The objective of the study was to ascertain whether fish hatched from these embryos displayed locomotor behavior different from that of control fish of the same age. An electronic monitoring technique was used to record behavior. Results indicate no change in locomotor behavior in fish on Apollo Spacecraft, but inexplicable significant changes were noted in fish aboard Cosmos Satellites.

  12. Locomotor behavior and long bone morphology in individual free-ranging chimpanzees.

    PubMed

    Carlson, Kristian J; Doran-Sheehy, Diane M; Hunt, Kevin D; Nishida, Toshisada; Yamanaka, Atsushi; Boesch, Christophe

    2006-04-01

    We combine structural limb data and behavioral data for free-ranging chimpanzees from Taï (Ivory Coast) and Mahale National Parks (Tanzania) to begin to consider the relationship between individual variation in locomotor activity and morphology. Femoral and humeral cross sections of ten individuals were acquired via computed tomography. Locomotor profiles of seven individuals were constructed from 3387 instantaneous time-point observations (87.4 hours). Within the limited number of suitable chimpanzees, individual variation in locomotor profiles displayed neither clear nor consistent trends with diaphyseal cross-sectional shapes. The percentages of specific locomotor modes did not relate well to diaphyseal shapes since neither infrequent nor frequent locomotor modes varied consistently with shapes. The percentage of arboreal locomotion, rather than estimated body mass, apparently had comparatively greater biological relevance to variation in diaphyseal shape. The mechanical consequences of locomotor modes on femoral and humeral diaphyseal shapes (e.g., orientation of bending strains) may overlap between naturalistic modes more than currently is recognized. Alternatively, diaphyseal shape may be unresponsive to mechanical demands of these specific locomotor modes. More data are needed in order to discern between these possibilities. Increasing the sample to include additional free-ranging chimpanzees, or primates in general, as well as devoting more attention to the mechanics of a greater variety of naturalistic locomotor modes would be fruitful to understanding the behavioral basis of diaphyseal shapes. PMID:16376413

  13. Conditioned Place Preference to Acetone Inhalation and the Effects on Locomotor Behavior and 18FDG Uptake

    SciTech Connect

    Pai, J.C.; Dewey, S.L.; Schiffer, W.; Lee, D.

    2006-01-01

    Acetone is a component in many inhalants that have been widely abused. While other solvents have addictive potential, such as toluene, it is unclear whether acetone alone contains addictive properties. The locomotor, relative glucose metabolism and abusive effects of acetone inhalation were studied in animals using the conditioned place preference (CPP) paradigm and [18F]2-fluorodeoxy-D-glucose (18FDG) imaging. The CPP apparatus contains two distinct conditioning chambers and a middle adaptation chamber, each lined with photocells to monitor locomotor activity. Adolescent Sprague-Dawley rats (n=16; 90-110 g) were paired with acetone in least preferred conditioning chamber, determined on the pretest day. The animals were exposed to a 10,000 ppm dose for an hour, alternating days with air. A CPP test was conducted after the 3rd, 6th and 12th pairing. In these same animals, the relative glucose metabolism effects were determined using positron emission tomography (PET) imaging with 18FDG. Following the 3rd pairing, there was a significant aversion to the acetone paired chamber (190.9 ± 13.7 sec and 241.7 ± 16.9 sec, acetone and air, respectively). After the 6th pairing, there was no significant preference observed with equal time spent in each chamber (222 ± 21 sec and 207 ± 20 sec, acetone and air-paired, respectively). A similar trend was observed after the 12th pairing (213 ± 21 sec and 221 ± 22 sec, acetone and air-paired, respectively). Locomotor analysis indicated a significant decrease (p<0.05) from air pairings to acetone pairings on the first and sixth pairings. The observed locomotor activity was characteristic of central nervous system (CNS) depressants, without showing clear abusive effects in this CPP model. In these studies, acetone vapors were not as reinforcing as other solvents, shown by overall lack of preference for the acetone paired side of the chamber. PET imaging indicated a regionally specific distribution of 18FDG uptake following

  14. Poststroke Hemiparesis Impairs the Rate but not Magnitude of Adaptation of Spatial and Temporal Locomotor Features

    PubMed Central

    Savin, Douglas N.; Tseng, Shih-Chiao; Whitall, Jill; Morton, Susanne M.

    2015-01-01

    Background Persons with stroke and hemiparesis walk with a characteristic pattern of spatial and temporal asymmetry that is resistant to most traditional interventions. It was recently shown in nondisabled persons that the degree of walking symmetry can be readily altered via locomotor adaptation. However, it is unclear whether stroke-related brain damage affects the ability to adapt spatial or temporal gait symmetry. Objective Determine whether locomotor adaptation to a novel swing phase perturbation is impaired in persons with chronic stroke and hemiparesis. Methods Participants with ischemic stroke (14) and nondisabled controls (12) walked on a treadmill before, during, and after adaptation to a unilateral perturbing weight that resisted forward leg movement. Leg kinematics were measured bilaterally, including step length and single-limb support (SLS) time symmetry, limb angle center of oscillation, and interlimb phasing, and magnitude of “initial” and “late” locomotor adaptation rates were determined. Results All participants had similar magnitudes of adaptation and similar initial adaptation rates both spatially and temporally. All 14 participants with stroke and baseline asymmetry temporarily walked with improved SLS time symmetry after adaptation. However, late adaptation rates poststroke were decreased (took more strides to achieve adaptation) compared with controls. Conclusions Mild to moderate hemiparesis does not interfere with the initial acquisition of novel symmetrical gait patterns in both the spatial and temporal domains, though it does disrupt the rate at which “late” adaptive changes are produced. Impairment of the late, slow phase of learning may be an important rehabilitation consideration in this patient population. PMID:22367915

  15. Woodlouse locomotor behavior in the assessment of clean and contaminated field sites

    SciTech Connect

    Bayley, M.; Baatrup, E.; Bjerregaard, P.

    1997-11-01

    Specimens of the woodlouse Oniscus asellus were collected at four clean field sites and from a recently closed iron foundry heavily contaminated with zinc, lead, chromium, and nickel. Each of the 30 woodlice per group was housed individually and acclimatized to laboratory conditions for 2 d on a humid plaster of paris substrate. Thereafter, the locomotor behavior of each animal was measured for 4 h employing automated computer-aided video tracking. Linear discriminant analysis of five locomotor parameters revealed average velocity and path length as the principle components separating the polluted site and control animals. Post hoc analysis of the discriminant variable for animals from all five sites showed that the animals from the polluted site where significantly hyperactive when compared to all controls. Further, control animals collected from sites separated by several hundred kilometers were remarkably similar in their locomotor behavior. This preliminary study highlights the potential utility of quantitative analysis of animal locomotor behavior in environmental monitoring.

  16. The Braincase and Endosseous Labyrinth of Plioplatecarpus peckensis (Mosasauridae, Plioplatecarpinae), With Functional Implications for Locomotor Behavior.

    PubMed

    Cuthbertson, Robin S; Maddin, Hillary C; Holmes, Robert B; Anderson, Jason S

    2015-09-01

    Adaptations of mosasaurs to the aquatic realm have been extensively studied from the perspective of modifications to the post-cranial skeleton. In recent years, imaging techniques such as computed tomography have permitted the acquisition of anatomical data from previously inaccessible sources. An exquisitely preserved specimen of the plioplatecarpine mosasaur Plioplatecarpus peckensis presents an opportunity to examine the detailed structure of the braincase, as well as the form of the otic capsule endocast. These data elaborate upon previous descriptions of the braincase of Plioplatecarpus, and provide a detailed, three dimensional reconstruction of the osseous labyrinth for the first time. The otic capsule endocasts reveal that the size of the labyrinth relative to head size is comparable to that of other squamates, suggesting that labyrinth size was not a factor in increasing sensitivity. However, all three semicircular canals are tall and strongly arced to a degree comparable to, and even exceeding, that observed in arboreal and aquatic lizards. Comparison of the sensitivity of the canals in each of the three major axes of rotation suggests Plioplatecarpus peckensis may have been most sensitive to movements in the pitch axis. Although early mosasaurs were probably anguilliform swimmers, most are thought to have been subcarangiform to thunniform locomotors with a near-rigid body form and likely decreased maneuverability. The data from the labyrinth presented here add a potential new dimension to this model of locomotion for further consideration, wherein changes in orientation, such as pitch, may have been more common locomotor behaviors than previously thought. PMID:26052684

  17. Plantar tactile perturbations enhance transfer of split-belt locomotor adaptation.

    PubMed

    Mukherjee, Mukul; Eikema, Diderik Jan A; Chien, Jung Hung; Myers, Sara A; Scott-Pandorf, Melissa; Bloomberg, Jacob J; Stergiou, Nicholas

    2015-10-01

    Patterns of human locomotion are highly adaptive and flexible and depend on the environmental context. Locomotor adaptation requires the use of multisensory information to perceive altered environmental dynamics and generate an appropriate movement pattern. In this study, we investigated the use of multisensory information during locomotor learning. Proprioceptive perturbations were induced by vibrating tactors, placed bilaterally over the plantar surfaces. Under these altered sensory conditions, participants were asked to perform a split-belt locomotor task representative of motor learning. Twenty healthy young participants were separated into two groups: no-tactors (NT) and tactors (TC). All participants performed an overground walking trial, followed by treadmill walking including 18 min of split-belt adaptation and an overground trial to determine transfer effects. Interlimb coordination was quantified by symmetry indices and analyzed using mixed repeated-measures ANOVAs. Both groups adapted to the locomotor task, indicated by significant reductions in gait symmetry during the split-belt task. No significant group differences in spatiotemporal and kinetic parameters were observed on the treadmill. However, significant group differences were observed overground. Step and swing time asymmetries learned on the split-belt treadmill were retained and decayed more slowly overground in the TC group whereas in NT, asymmetries were rapidly lost. These results suggest that tactile stimulation contributed to increased lower limb proprioceptive gain. High proprioceptive gain allows for more persistent overground after effects, at the cost of reduced adaptability. Such persistence may be utilized in populations displaying pathologic asymmetric gait by retraining a more symmetric pattern. PMID:26169104

  18. Optic Flow Dominates Visual Scene Polarity in Causing Adaptive Modification of Locomotor Trajectory

    NASA Technical Reports Server (NTRS)

    Nomura, Y.; Mulavara, A. P.; Richards, J. T.; Brady, R.; Bloomberg, Jacob J.

    2005-01-01

    Locomotion and posture are influenced and controlled by vestibular, visual and somatosensory information. Optic flow and scene polarity are two characteristics of a visual scene that have been identified as being critical in how they affect perceived body orientation and self-motion. The goal of this study was to determine the role of optic flow and visual scene polarity on adaptive modification in locomotor trajectory. Two computer-generated virtual reality scenes were shown to subjects during 20 minutes of treadmill walking. One scene was a highly polarized scene while the other was composed of objects displayed in a non-polarized fashion. Both virtual scenes depicted constant rate self-motion equivalent to walking counterclockwise around the perimeter of a room. Subjects performed Stepping Tests blindfolded before and after scene exposure to assess adaptive changes in locomotor trajectory. Subjects showed a significant difference in heading direction, between pre and post adaptation stepping tests, when exposed to either scene during treadmill walking. However, there was no significant difference in the subjects heading direction between the two visual scene polarity conditions. Therefore, it was inferred from these data that optic flow has a greater role than visual polarity in influencing adaptive locomotor function.

  19. Involvement of nigral oxytocin in locomotor activity: A behavioral, immunohistochemical and lesion study in male rats.

    PubMed

    Angioni, Laura; Cocco, Cristina; Ferri, Gian-Luca; Argiolas, Antonio; Melis, Maria Rosaria; Sanna, Fabrizio

    2016-07-01

    Oxytocin is involved in the control of different behaviors, from sexual behavior and food consumption to empathy, social and affective behaviors. An imbalance of central oxytocinergic neurotransmission has been also associated with different mental pathologies, from depression, anxiety and anorexia/bulimia to schizophrenia, autism and drug dependence. This study shows that oxytocin may also play a role in the control of locomotor activity. Accordingly, intraperitoneal oxytocin (0.5-2000μg/kg) reduced locomotor activity of adult male rats. This effect was abolished by d(CH2)5Tyr(Me)(2)-Orn(8)-vasotocin, an oxytocin receptor antagonist, given into the lateral ventricles at the dose of 2μg/rat, which was ineffective on locomotor activity. Oxytocin (50-200ng/site) also reduced and d(CH2)5Tyr(Me)(2)-Orn(8)-vasotocin (2μg/site) increased locomotor activity when injected bilaterally into the substantia nigra, a key area in the control of locomotor activity. Conversely, the destruction of nigral neurons bearing oxytocin receptors by the recently characterized neurotoxin oxytocin-saporin injected into the substantia nigra, increased basal locomotor activity. Since oxytocin-saporin injected into the substantia nigra caused a marked reduction of neurons immunoreactive for tyrosine hydroxylase (e.g., nigrostriatal dopaminergic neurons) and for vesicular glutamate transporters VGluT1, VGluT2 and VGluT3 (e.g., glutamatergic neurons), but not for glutamic acid decarboxylase (e.g., GABAergic neurons), together these findings suggest that oxytocin influences locomotor activity by acting on receptors localized presynaptically in nigral glutamatergic nerve terminals (which control the activity of nigral GABAergic efferent neurons projecting to brain stem nuclei controlling locomotor activity), rather than on receptors localized in the cell bodies/dendrites of nigrostriatal dopaminergic neurons. PMID:27189764

  20. Locomotor Adaptation Improves Balance Control, Multitasking Ability and Reduces the Metabolic Cost of Postural Instability

    NASA Technical Reports Server (NTRS)

    Bloomberg, J. J.; Peters, B. T.; Mulavara, A. P.; Brady, R. A.; Batson, C. D.; Miller, C. A.; Ploutz-Snyder, R. J.; Guined, J. R.; Buxton, R. E.; Cohen, H. S.

    2011-01-01

    During exploration-class missions, sensorimotor disturbances may lead to disruption in the ability to ambulate and perform functional tasks during the initial introduction to a novel gravitational environment following a landing on a planetary surface. The overall goal of our current project is to develop a sensorimotor adaptability training program to facilitate rapid adaptation to these environments. We have developed a unique training system comprised of a treadmill placed on a motion-base facing a virtual visual scene. It provides an unstable walking surface combined with incongruent visual flow designed to enhance sensorimotor adaptability. Greater metabolic cost incurred during balance instability means more physical work is required during adaptation to new environments possibly affecting crewmembers? ability to perform mission critical tasks during early surface operations on planetary expeditions. The goal of this study was to characterize adaptation to a discordant sensory challenge across a number of performance modalities including locomotor stability, multi-tasking ability and metabolic cost. METHODS: Subjects (n=15) walked (4.0 km/h) on a treadmill for an 8 -minute baseline walking period followed by 20-minutes of walking (4.0 km/h) with support surface motion (0.3 Hz, sinusoidal lateral motion, peak amplitude 25.4 cm) provided by the treadmill/motion-base system. Stride frequency and auditory reaction time were collected as measures of locomotor stability and multi-tasking ability, respectively. Metabolic data (VO2) were collected via a portable metabolic gas analysis system. RESULTS: At the onset of lateral support surface motion, subj ects walking on our treadmill showed an increase in stride frequency and auditory reaction time indicating initial balance and multi-tasking disturbances. During the 20-minute adaptation period, balance control and multi-tasking performance improved. Similarly, throughout the 20-minute adaptation period, VO2 gradually

  1. Locomotor control of limb force switches from minimal intervention principle in early adaptation to noise reduction in late adaptation

    PubMed Central

    Selgrade, Brian P.

    2014-01-01

    During movement, errors are typically corrected only if they hinder performance. Preferential correction of task-relevant deviations is described by the minimal intervention principle but has not been demonstrated in the joints during locomotor adaptation. We studied hopping as a tractable model of locomotor adaptation of the joints within the context of a limb-force-specific task space. Subjects hopped while adapting to shifted visual feedback that induced them to increase peak ground reaction force (GRF). We hypothesized subjects would preferentially reduce task-relevant joint torque deviations over task-irrelevant deviations to increase peak GRF. We employed a modified uncontrolled manifold analysis to quantify task-relevant and task-irrelevant joint torque deviations for each individual hop cycle. As would be expected by the explicit goal of the task, peak GRF errors decreased in early adaptation before reaching steady state during late adaptation. Interestingly, during the early adaptation performance improvement phase, subjects reduced GRF errors by decreasing only the task-relevant joint torque deviations. In contrast, during the late adaption performance maintenance phase, all torque deviations decreased in unison regardless of task relevance. In deadaptation, when the shift in visual feedback was removed, all torque deviations decreased in unison, possibly because performance improvement was too rapid to detect changes in only the task-relevant dimension. We conclude that limb force adaptation in hopping switches from a minimal intervention strategy during performance improvement to a noise reduction strategy during performance maintenance, which may represent a general control strategy for locomotor adaptation of limb force in other bouncing gaits, such as running. PMID:25475343

  2. Locomotor stability and adaptation during perturbed walking across the adult female lifespan.

    PubMed

    McCrum, Christopher; Epro, Gaspar; Meijer, Kenneth; Zijlstra, Wiebren; Brüggemann, Gert-Peter; Karamanidis, Kiros

    2016-05-01

    The aim of this work was to examine locomotor stability and adaptation across the adult female lifespan during perturbed walking on the treadmill. 11 young, 11 middle and 14 older-aged female adults (mean and SD: 25.5(2.1), 50.6(6.4) and 69.0(4.7) years old respectively) walked on a treadmill. We applied a sustained perturbation to the swing phase of the right leg for 18 consecutive gait cycles, followed by a step with the resistance unexpectedly removed, via an ankle strap connected to a break-and-release system. The margin of stability (MoS) at foot touchdown was calculated as the difference between the anterior boundary of the base of support (BoS) and extrapolated center of mass. Older participants showed lower MoS adaptation magnitude in the early adaptation phase (steps 1-3) compared to the young and middle-aged groups. However, in the late adaptation phase (steps 16-18) there were no significant differences in adaptation magnitude between the three age groups. After removing the resistance, all three age groups showed similar aftereffects (i.e. increased BoS). The current results suggest that in old age, the ability to recalibrate locomotion to control stability is preserved, but the rate of adaptive improvement in locomotor stability is diminished. PMID:26970886

  3. Assessment of Postflight Locomotor Performance Utilizing a Test of Functional Mobility: Strategic and Adaptive Responses

    NASA Technical Reports Server (NTRS)

    Warren, L. E.; Mulavara, A. P.; Peters, B. T.; Cohen, H. S.; Richards, J. T.; Miller, C. A.; Brady, R.; Ruttley, T. M.; Bloomberg, J. J.

    2006-01-01

    Space flight induces adaptive modification in sensorimotor function, allowing crewmembers to operate in the unique microgravity environment. This adaptive state, however, is inappropriate for a terrestrial environment. During a re-adaptation period upon their return to Earth, crewmembers experience alterations in sensorimotor function, causing various disturbances in perception, spatial orientation, posture, gait, and eye-head coordination. Following long duration space flight, sensorimotor dysfunction would prevent or extend the time required to make an emergency egress from the vehicle; compromising crew safety and mission objectives. We are investigating two types of motor learning that may interact with each other and influence a crewmember's ability to re-adapt to Earth's gravity environment. In strategic learning, crewmembers make rapid modifications in their motor control strategy emphasizing error reduction. This type of learning may be critical during the first minutes and hours after landing. In adaptive learning, long-term plastic transformations occur, involving morphological changes and synaptic modification. In recent literature these two behavioral components have been associated with separate brain structures that control the execution of motor strategies: the strategic component was linked to the posterior parietal cortex and the adaptive component was linked to the cerebellum (Pisella, et al. 2004). The goal of this paper was to demonstrate the relative contributions of the strategic and adaptive components to the re-adaptation process in locomotor control after long duration space flight missions on the International Space Station (ISS). The Functional Mobility Test (FMT) was developed to assess crewmember s ability to ambulate postflight from an operational and functional perspective. Sixteen crewmembers were tested preflight (3 sessions) and postflight (days 1, 2, 4, 7, 25) following a long duration space flight (approx 6 months) on the ISS. We

  4. Assessment of Postflight Locomotor Performance Utilizing a Test of Functional Mobility: Strategic and Adaptive Responses

    NASA Technical Reports Server (NTRS)

    Warren, L. E.; Mulavara, A. P.; Peters, B. T.; Cohen, H. S.; Richards, J. T.; Miller, C. A.; Brady, R.; Ruttley, T. M.; Bloomberg, J. J.

    2006-01-01

    Space flight induces adaptive modification in sensorimotor function, allowing crewmembers to operate in the unique microgravity environment. This adaptive state, however, is inappropriate for a terrestrial environment. During a re-adaptation period upon their return to Earth, crewmembers experience alterations in sensorimotor function, causing various disturbances in perception, spatial orientation, posture, gait, and eye-head coordination. Following long duration space flight, sensorimotor dysfunction would prevent or extend the time required to make an emergency egress from the vehicle; compromising crew safety and mission objectives. We are investigating two types of motor learning that may interact with each other and influence a crewmember's ability to re-adapt to Earth's gravity environment. In strategic learning, crewmembers make rapid modifications in their motor control strategy emphasizing error reduction. This type of learning may be critical during the first minutes and hours after landing. In adaptive learning, long-term plastic transformations occur, involving morphological changes and synaptic modification. In recent literature these two behavioral components have been associated with separate brain structures that control the execution of motor strategies: the strategic component was linked to the posterior parietal cortex and the adaptive component was linked to the cerebellum (Pisella, et al. 2004). The goal of this paper was to demonstrate the relative contributions of the strategic and adaptive components to the re-adaptation process in locomotor control after long duration space flight missions on the International Space Station (ISS). The Functional Mobility Test (FMT) was developed to assess crewmember s ability to ambulate postflight from an operational and functional perspective. Sixteen crewmembers were tested preflight (3 sessions) and postflight (days 1, 2, 4, 7, 25) following a long duration space flight (approx 6 months) on the ISS. We

  5. Enhanced locomotor adaptation aftereffect in the “broken escalator” phenomenon using anodal tDCS

    PubMed Central

    Kaski, D.; Quadir, S.; Patel, M.; Yousif, N.

    2012-01-01

    The everyday experience of stepping onto a stationary escalator causes a stumble, despite our full awareness that the escalator is broken. In the laboratory, this “broken escalator” phenomenon is reproduced when subjects step onto an obviously stationary platform (AFTER trials) that was previously experienced as moving (MOVING trials) and attests to a process of motor adaptation. Given the critical role of M1 in upper limb motor adaptation and the potential for transcranial direct current stimulation (tDCS) to increase cortical excitability, we hypothesized that anodal tDCS over leg M1 and premotor cortices would increase the size and duration of the locomotor aftereffect. Thirty healthy volunteers received either sham or real tDCS (anodal bihemispheric tDCS; 2 mA for 15 min at rest) to induce excitatory effects over the primary motor and premotor cortex before walking onto the moving platform. The real tDCS group, compared with sham, displayed larger trunk sway and increased gait velocity in the first AFTER trial and a persistence of the trunk sway aftereffect into the second AFTER trial. We also used transcranial magnetic stimulation to probe changes in cortical leg excitability using different electrode montages and eyeblink conditioning, before and after tDCS, as well as simulating the current flow of tDCS on the human brain using a computational model of these different tDCS montages. Our data show that anodal tDCS induces excitability changes in lower limb motor cortex with resultant enhancement of locomotor adaptation aftereffects. These findings might encourage the use of tDCS over leg motor and premotor regions to improve locomotor control in patients with neurological gait disorders. PMID:22323638

  6. Oxidized trilinoleate and tridocosahexaenoate induce pica behavior and change locomotor activity.

    PubMed

    Kitamura, Fuki; Watanabe, Hiroyuki; Umeno, Aya; Yoshida, Yasukazu; Kurata, Kenji; Gotoh, Naohiro

    2013-01-01

    Pica behavior, a behavior that is characterized by eating a nonfood material such as kaolin and relates to the degree of discomfort in animals, and the variations of locomotor activity of rats after eating deteriorated fat and oil extracted from instant noodles were examined in our previous study. The result shows that oxidized fat and oil with at least 100 meq/kg in peroxide value (PV) increase pica behavior and decrease locomotor activity. In the present study, the same two behaviors were measured using autoxidized trilinoleate (tri-LA) and tridocosahexaenoate (tri-DHA) as a model of vegetable and fish oil, respectively, to compare fatty acid differences against the induction of two behaviors. The oxidized levels of tri-LA and tri-DHA were analyzed with PV and p-anisidine value (AnV), the method to analyze secondary oxidized products. The oxidation levels of respective triacylglycerol (TAG) samples were carefully adjusted to make them having almost the same PV and AnV. As the results, 600 or more meq/kg in PV of both TAGs significantly increased the consumption of kaolin pellets compared to the control group. Furthermore, 300 or more meq/kg in PV of tri-LA and 200 or more meq/kg in PV of tri-DHA demonstrated significant decrease in locomotor activity compared to control group. These results would indicate that the oxidized TAG having the same PV and/or AnV would induce the same type of pica behavior and locomotor activity. Furthermore, that the structure of oxidized products might not be important and the amount of hydroperoxide group and/or aldehyde group in deteriorated fats and oils might affect the pica behavior and locomotor activity were thought. PMID:23535307

  7. Generative rules of Drosophila locomotor behavior as a candidate homology across phyla.

    PubMed

    Gomez-Marin, Alex; Oron, Efrat; Gakamsky, Anna; Dan Valente; Benjamini, Yoav; Golani, Ilan

    2016-01-01

    The discovery of shared behavioral processes across phyla is a significant step in the establishment of a comparative study of behavior. We use immobility as an origin and reference for the measurement of fly locomotor behavior; speed, walking direction and trunk orientation as the degrees of freedom shaping this behavior; and cocaine as the parameter inducing progressive transitions in and out of immobility. We characterize and quantify the generative rules that shape Drosophila locomotor behavior, bringing about a gradual buildup of kinematic degrees of freedom during the transition from immobility to normal behavior, and the opposite narrowing down into immobility. Transitions into immobility unfold via sequential enhancement and then elimination of translation, curvature and finally rotation. Transitions out of immobility unfold by progressive addition of these degrees of freedom in the opposite order. The same generative rules have been found in vertebrate locomotor behavior in several contexts (pharmacological manipulations, ontogeny, social interactions) involving transitions in-and-out of immobility. Recent claims for deep homology between arthropod central complex and vertebrate basal ganglia provide an opportunity to examine whether the rules we report also share common descent. Our approach prompts the discovery of behavioral homologies, contributing to the elusive problem of behavioral evolution. PMID:27271799

  8. Generative rules of Drosophila locomotor behavior as a candidate homology across phyla

    PubMed Central

    Gomez-Marin, Alex; Oron, Efrat; Gakamsky, Anna; Dan Valente; Benjamini, Yoav; Golani, Ilan

    2016-01-01

    The discovery of shared behavioral processes across phyla is a significant step in the establishment of a comparative study of behavior. We use immobility as an origin and reference for the measurement of fly locomotor behavior; speed, walking direction and trunk orientation as the degrees of freedom shaping this behavior; and cocaine as the parameter inducing progressive transitions in and out of immobility. We characterize and quantify the generative rules that shape Drosophila locomotor behavior, bringing about a gradual buildup of kinematic degrees of freedom during the transition from immobility to normal behavior, and the opposite narrowing down into immobility. Transitions into immobility unfold via sequential enhancement and then elimination of translation, curvature and finally rotation. Transitions out of immobility unfold by progressive addition of these degrees of freedom in the opposite order. The same generative rules have been found in vertebrate locomotor behavior in several contexts (pharmacological manipulations, ontogeny, social interactions) involving transitions in-and-out of immobility. Recent claims for deep homology between arthropod central complex and vertebrate basal ganglia provide an opportunity to examine whether the rules we report also share common descent. Our approach prompts the discovery of behavioral homologies, contributing to the elusive problem of behavioral evolution. PMID:27271799

  9. Training Enhances Both Locomotor and Cognitive Adaptability to a Novel Sensory Environment

    NASA Technical Reports Server (NTRS)

    Bloomberg, J. J.; Peters, B. T.; Mulavara, A. P.; Brady, R. A.; Batson, C. D.; Ploutz-Snyder, R. J.; Cohen, H. S.

    2010-01-01

    During adaptation to novel gravitational environments, sensorimotor disturbances have the potential to disrupt the ability of astronauts to perform required mission tasks. The goal of this project is to develop a sensorimotor adaptability (SA) training program to facilitate rapid adaptation. We have developed a unique training system comprised of a treadmill placed on a motion-base facing a virtual visual scene that provides an unstable walking surface combined with incongruent visual flow designed to enhance sensorimotor adaptability. The goal of our present study was to determine if SA training improved both the locomotor and cognitive responses to a novel sensory environment and to quantify the extent to which training would be retained. Methods: Twenty subjects (10 training, 10 control) completed three, 30-minute training sessions during which they walked on the treadmill while receiving discordant support surface and visual input. Control subjects walked on the treadmill but did not receive any support surface or visual alterations. To determine the efficacy of training all subjects performed the Transfer Test upon completion of training. For this test, subjects were exposed to novel visual flow and support surface movement, not previously experienced during training. The Transfer Test was performed 20 minutes, 1 week, 1, 3 and 6 months after the final training session. Stride frequency, auditory reaction time, and heart rate data were collected as measures of postural stability, cognitive effort and anxiety, respectively. Results: Using mixed effects regression methods we determined that subjects who received SA training showed less alterations in stride frequency, auditory reaction time and heart rate compared to controls. Conclusion: Subjects who received SA training improved performance across a number of modalities including enhanced locomotor function, increased multi-tasking capability and reduced anxiety during adaptation to novel discordant sensory

  10. Effects of cocaine on locomotor activity and schedule-controlled behaviors of inbred rat strains.

    PubMed

    Witkin, J M; Goldberg, S R

    1990-10-01

    Effects of cocaine on several behaviors considered to be reflective of psychomotor stimulation were compared in F344/CR1BR and NBR/NIH inbred rat strains. Effects of cocaine on locomotor activity were compared with effects on either bar-press or nose-poke responses maintained under a multiple fixed-interval 3-min, timeout 1-min schedule of food presentation. In locomotor activity experiments, NBR rats were twice as active as F344 rats under baseline conditions and displayed dose-dependent increases in locomotion (5-20 mg/kg). Maximal increases in locomotor activity of F344 rats were only 200% compared to 1000% in NBR rats. In contrast to locomotor activity, no strain differences in the effects of cocaine were observed under the schedules of food delivery. Bar-pressing under the fixed-interval schedule was increased to a maximum of 150% of control in both rat strains. Nose-poke responding under the fixed-interval schedule was not significantly increased, but timeout rates were increased in both strains. These results suggest that NBR and F344 rats do not differ in general sensitivity to stimulant effects of cocaine but exhibit marked differences in responsivity to cocaine that are dependent upon the behavior studied. Further delineation of the behavioral specificity of strain differences in sensitivity to cocaine should help to identify neurobiological substrates underlying unique biologically determined responses to cocaine. PMID:2080195

  11. Reduced locomotor activity and exploratory behavior in CC chemokine receptor 4 deficient mice.

    PubMed

    Ambrée, Oliver; Klassen, Irene; Förster, Irmgard; Arolt, Volker; Scheu, Stefanie; Alferink, Judith

    2016-11-01

    Chemokines and their receptors are key regulators of immune cell trafficking and activation. Recent findings suggest that they may also play pathophysiological roles in psychiatric diseases like depression and anxiety disorders. The CC chemokine receptor 4 (CCR4) and its two ligands, CCL17 and CCL22, are functionally involved in neuroinflammation as well as anti-infectious and autoimmune responses. However, their influence on behavior remains unknown. Here we characterized the functional role of the CCR4-CCL17 chemokine-receptor axis in the modulation of anxiety-related behavior, locomotor activity, and object exploration and recognition. Additionally, we investigated social exploration of CCR4 and CCL17 knockout mice and wild type (WT) controls. CCR4 knockout (CCR4(-/-)) mice exhibited fewer anxiety-related behaviors in the elevated plus-maze, diminished locomotor activity, exploratory behavior, and social exploration, while their recognition memory was not affected. In contrast, CCL17 deficient mice did not show an altered behavior compared to WT mice regarding locomotor activity, anxiety-related behavior, social exploration, and object recognition memory. In the dark-light and object recognition tests, CCL17(-/-) mice even covered longer distances than WT mice. These data demonstrate a mechanistic or developmental role of CCR4 in the regulation of locomotor and exploratory behaviors, whereas the ligand CCL17 appears not to be involved in the behaviors measured here. Thus, either CCL17 and the alternative ligand CCL22 may be redundant, or CCL22 is the main activator of CCR4 in these processes. Taken together, these findings contribute to the growing evidence regarding the involvement of chemokines and their receptors in the regulation of behavior. PMID:27469058

  12. Using Tests Designed to Measure Individual Sensorimotor Subsystem Perfomance to Predict Locomotor Adaptability

    NASA Technical Reports Server (NTRS)

    Peters, B. T.; Caldwell, E. E.; Batson, C. D.; Guined, J. R.; DeDios, Y. E.; Stepanyan, V.; Gadd, N. E.; Szecsy, D. L.; Mulavara, A. P.; Seidler, R. D.; Bloomberg, J. J.

    2014-01-01

    Astronauts experience sensorimotor disturbances during the initial exposure to microgravity and during the readapation phase following a return to a gravitational environment. These alterations may lead to disruption in the ability to perform mission critical functions during and after these gravitational transitions. Astronauts show significant inter-subject variation in adaptive capability following gravitational transitions. The way each individual's brain synthesizes the available visual, vestibular and somatosensory information is likely the basis for much of the variation. Identifying the presence of biases in each person's use of information available from these sensorimotor subsystems and relating it to their ability to adapt to a novel locomotor task will allow us to customize a training program designed to enhance sensorimotor adaptability. Eight tests are being used to measure sensorimotor subsystem performance. Three of these use measures of body sway to characterize balance during varying sensorimotor challenges. The effect of vision is assessed by repeating conditions with eyes open and eyes closed. Standing on foam, or on a support surface that pitches to maintain a constant ankle angle provide somatosensory challenges. Information from the vestibular system is isolated when vision is removed and the support surface is compromised, and it is challenged when the tasks are done while the head is in motion. The integration and dominance of visual information is assessed in three additional tests. The Rod & Frame Test measures the degree to which a subject's perception of the visual vertical is affected by the orientation of a tilted frame in the periphery. Locomotor visual dependence is determined by assessing how much an oscillating virtual visual world affects a treadmill-walking subject. In the third of the visual manipulation tests, subjects walk an obstacle course while wearing up-down reversing prisms. The two remaining tests include direct

  13. An automated tracking system for Caenorhabditis elegans locomotor behavior and circadian studies application.

    PubMed

    Simonetta, Sergio H; Golombek, Diego A

    2007-04-15

    Automation of simple behavioral patterns, such as locomotor activity, is fundamental for pharmacological and genetic screening studies. Recently, circadian behaviors in locomotor activity and stress responses were reported in the nematode Caenorhabditis elegans, a well-known model in genetics and developmental studies. Here we present a new method for long-term recordings of C. elegans (as well as other similar-sized animals) locomotor activity based on an infrared microbeam scattering. Individual nematodes were cultured in a 96-well microtiter plate; we tested L15, CeMM and E. coli liquid cultures in long-term activity tracking experiments, and found CeMM to be the optimal medium. Treatment with 0.2% azide caused an immediate decrease in locomotor activity as recorded with our system. In addition to the validation of the method (including hardware and software details), we report its application in chronobiological studies. Circadian rhythms in animals entrained to light-dark and constant dark conditions (n=48 and 96 worms, respectively) at 16 degrees C, were analyzed by LS periodograms. We obtained a 24.2+/-0.44 h period (52% of significantly rhythmic animals) in LD, and a 23.1+/-0.40 h period (37.5% of significantly rhythmic animals) under DD. The system is automateable using microcontrollers, of low-cost construction and highly reproducible. PMID:17207862

  14. Locomotor Anatomy and Behavior of Patas Monkeys (Erythrocebus patas) with Comparison to Vervet Monkeys (Cercopithecus aethiops)

    PubMed Central

    Zihlman, Adrienne L.; Underwood, Carol E.

    2013-01-01

    Patas monkeys (Erythrocebus patas) living in African savanna woodlands and grassland habitats have a locomotor system that allows them to run fast, presumably to avoid predators. Long fore- and hindlimbs, long foot bones, short toes, and a digitigrade foot posture were proposed as anatomical correlates with speed. In addition to skeletal proportions, soft tissue and whole body proportions are important components of the locomotor system. To further distinguish patas anatomy from other Old World monkeys, a comparative study based on dissection of skin, muscle, and bone from complete individuals of patas and vervet monkeys (Cercopithecus aethiops) was undertaken. Analysis reveals that small adjustments in patas skeletal proportions, relative mass of limbs and tail, and specific muscle groups promote efficient sagittal limb motion. The ability to run fast is based on a locomotor system adapted for long distance walking. The patas' larger home range and longer daily range than those of vervets give them access to highly dispersed, nutritious foods, water, and sleeping trees. Furthermore, patas monkeys have physiological adaptations that enable them to tolerate and dissipate heat. These features all contribute to the distinct adaptation that is the patas monkeys' basis for survival in grassland and savanna woodland areas. PMID:24187623

  15. Density of muscle spindles in prosimian shoulder muscles reflects locomotor adaptation.

    PubMed

    Higurashi, Yasuo; Taniguchi, Yuki; Kumakura, Hiroo

    2006-01-01

    We examined the correlation between the density of muscle spindles in shoulder muscles and the locomotor mode in three species of prosimian primates: the slow loris (Nycticebus coucang), Garnett's galago (Otolemur garnettii), and the ring-tailed lemur (Lemur catta). The shoulder muscles (supraspinatus, infraspinatus, teres major, teres minor, and subscapularis) were embedded in celloidin and cut into transverse serial thin sections (40 microm); then, every tenth section was stained using the Azan staining technique. The relative muscle weights and the density of the muscle spindles were determined. The slow loris muscles were heavier and had sparser muscle spindles, as compared to Garnett's galago. These features suggest that the shoulder muscles of the slow loris are more adapted to generating propulsive force and stabilizing the shoulder joint during locomotion and play a less controlling role in forelimb movements. In contrast, Garnett's galago possessed smaller shoulder muscles with denser spindles that are suitable for the control of more rapid locomotor movements. The mean relative weight and the mean spindle density in the shoulder muscles of the ring-tailed lemur were between those of the other primates, suggesting that the spindle density is not simply a consequence of taxonomic status. PMID:17361082

  16. Quantification of locomotor activity in larval zebrafish: considerations for the design of high-throughput behavioral studies

    PubMed Central

    Ingebretson, Justin J.; Masino, Mark A.

    2013-01-01

    High-throughput behavioral studies using larval zebrafish often assess locomotor activity to determine the effects of experimental perturbations. However, the results reported by different groups are difficult to compare because there is not a standardized experimental paradigm or measure of locomotor activity. To address this, we investigated the effects that several factors, including the stage of larval development and the physical dimensions (depth and diameter) of the behavioral arena, have on the locomotor activity produced by larval zebrafish. We provide evidence for differences in locomotor activity between larvae at different stages and when recorded in wells of different depths, but not in wells of different diameters. We also show that the variability for most properties of locomotor activity is less for older than younger larvae, which is consistent with previous reports. Finally, we show that conflicting interpretations of activity level can occur when activity is assessed with a single measure of locomotor activity. Thus, we conclude that although a combination of factors should be considered when designing behavioral experiments, the use of older larvae in deep wells will reduce the variability of locomotor activity, and that multiple properties of locomotor activity should be measured to determine activity level. PMID:23772207

  17. The Interplay Between Strategic And Adaptive Control Mechanisms In Plastic Recalibration Of Locomotor Function

    NASA Technical Reports Server (NTRS)

    Richards, J. T.; Mulavara, A. P.; Bloomberg, J. J.

    2006-01-01

    We have previously shown that viewing simulated rotary self-motion during treadmill locomotion causes immediate strategic modifications (Richards et al. 2004) as well as an after effect reflecting adaptive modification of the control of position and trajectory during over-ground locomotion (Mulavara et al. 2005). The process of sensorimotor adaptation is comprised of both strategic and adaptive control mechanisms. Strategic control involves cognitive, on-line corrections to limb movements once one is aware of a sensory discordance. Over an extended period of exposure to the sensory discordance, new strategic sensorimotor coordination patterns are reinforced until they become more automatic, and therefore adaptive, in nature. The objective of this study was to investigate how strategic changes in trunk control during exposure to simulated rotary self-motion during treadmill walking influences adaptive modification of locomotor heading direction during over-ground stepping. Subjects (n = 10) walked on a motorized linear treadmill while viewing a wide field-of-view virtual scene for 24 minutes. The scene was static for the first 4 minutes and then, for the last 20 minutes, depicted constant rate self-motion equivalent to walking in a counter-clockwise, circular path around the perimeter of a room. Subjects performed five stepping trials both before and after the exposure period to assess after effects. Results from our previous study showed a significant change in heading direction (HD) during post-exposure step tests that was opposite the direction in which the scene rotated during the adaptation period. For the present study, we quantified strategic modifications in trunk movement control during scene exposure using normalized root mean square (R(sub p)) variation of the subject's 3D trunk positions and normalized sum of standard deviations (R(sub o)) variation of 3D trunk orientations during scene rotation relative to that during static scene presentation

  18. Increased Adaptation Rates and Reduction in Trial-by-Trial Variability in Subjects with Cerebral Palsy Following a Multi-session Locomotor Adaptation Training

    PubMed Central

    Mawase, Firas; Bar-Haim, Simona; Joubran, Katherin; Rubin, Lihi; Karniel, Amir; Shmuelof, Lior

    2016-01-01

    Cerebral Palsy (CP) results from an insult to the developing brain and is associated with deficits in locomotor and manual skills and in sensorimotor adaptation. We hypothesized that the poor sensorimotor adaptation in persons with CP is related to their high execution variability and does not reflect a general impairment in adaptation learning. We studied the interaction between performance variability and adaptation deficits using a multi-session locomotor adaptation design in persons with CP. Six adolescents with diplegic CP were exposed, during a period of 15 weeks, to a repeated split-belt treadmill perturbation spread over 30 sessions and were tested again 6 months after the end of training. Compared to age-matched healthy controls, subjects with CP showed poor adaptation and high execution variability in the first exposure to the perturbation. Following training they showed marked reduction in execution variability and an increase in learning rates. The reduction in variability and the improvement in adaptation were highly correlated in the CP group and were retained 6 months after training. Interestingly, despite reducing their variability in the washout phase, subjects with CP did not improve learning rates during washout phases that were introduced only four times during the experiment. Our results suggest that locomotor adaptation in subjects with CP is related to their execution variability. Nevertheless, while variability reduction is generalized to other locomotor contexts, the development of savings requires both reduction in execution variability and multiple exposures to the perturbation. PMID:27199721

  19. Functional analysis of the biceps femoris muscle during locomotor behavior in some primates.

    PubMed

    Kumakura, H

    1989-07-01

    In order to investigate a correlation between morphological variations of the biceps femoris muscle and its homologues in four primate species (Japanese macaque, spider monkey, white-handed gibbon, and chimpanzee) and each type of species-specific locomotor behavior, I carried out both morphological and functional analyses of these muscles. The description of the level of insertion reveals interspecific variation is in the level of crural attachment, especially in species with a bicipital biceps femoris muscle. Electromyograms (EMGs) were induced from both the long and short head of the biceps femoris muscle during four kinds of locomotor behavior (horizontal quadrupedal walking, climbing on an inclined pole, vertical climbing, and bipedal walking). In the case of the monoceptual ischiocruralis lateralis muscle of the Japanese macaque, EMGs were induced from both the one-joint femoral part and the two-joint crural part. Though during horizontal quadrupedal locomotion the crural part of the monocipital-type muscle functioned to maintain the knee joint angle, it functioned to gain propulsive force when the kinematic load became larger, as in vertical climbing and bipedal walking. On the other hand, the long heads of the biceps femoris muscles were active in propulsion regardless of the kinematic load. But in bipedal walking, the long head muscle also acted with the short head muscle to maintain the knee joint angle. These functional features of various biceps femoris muscles of primates correlated with their species-specific locomotor behavior. PMID:2504047

  20. miR-124 Regulates the Phase of Drosophila Circadian Locomotor Behavior

    PubMed Central

    Lamba, Pallavi; Guo, Peiyi

    2016-01-01

    Animals use circadian rhythms to anticipate daily environmental changes. Circadian clocks have a profound effect on behavior. In Drosophila, for example, brain pacemaker neurons dictate that flies are mostly active at dawn and dusk. miRNAs are small, regulatory RNAs (≈22 nt) that play important roles in posttranscriptional regulation. Here, we identify miR-124 as an important regulator of Drosophila circadian locomotor rhythms. Under constant darkness, flies lacking miR-124 (miR-124KO) have a dramatically advanced circadian behavior phase. However, whereas a phase defect is usually caused by a change in the period of the circadian pacemaker, this is not the case in miR-124KO flies. Moreover, the phase of the circadian pacemaker in the clock neurons that control rhythmic locomotion is not altered either. Therefore, miR-124 modulates the output of circadian clock neurons rather than controlling their molecular pacemaker. Circadian phase is also advanced under temperature cycles, but a light/dark cycle partially corrects the defects in miR-124KO flies. Indeed, miR-124KO shows a normal evening phase under the latter conditions, but morning behavioral activity is suppressed. In summary, miR-124 controls diurnal activity and determines the phase of circadian locomotor behavior without affecting circadian pacemaker function. It thus provides a potent entry point to elucidate the mechanisms by which the phase of circadian behavior is determined. SIGNIFICANCE STATEMENT In animals, molecular circadian clocks control the timing of behavioral activities to optimize them with the day/night cycle. This is critical for their fitness and survival. The mechanisms by which the phase of circadian behaviors is determined downstream of the molecular pacemakers are not yet well understood. Recent studies indicate that miRNAs are important regulators of circadian outputs. We found that miR-124 shapes diurnal behavioral activity and has a striking impact on the phase of circadian

  1. Adaptive evolution in locomotor performance: How selective pressures and functional relationships produce diversity.

    PubMed

    Scales, Jeffrey A; Butler, Marguerite A

    2016-01-01

    Despite the complexity of nature, most comparative studies of phenotypic evolution consider selective pressures in isolation. When competing pressures operate on the same system, it is commonly expected that trade-offs will occur that will limit the evolution of phenotypic diversity, however, it is possible that interactions among selective pressures may promote diversity instead. We explored the evolution of locomotor performance in lizards in relation to possible selective pressures using the Ornstein-Uhlenbeck process. Here, we show that a combination of selection based on foraging mode and predator escape is required to explain variation in performance phenotypes. Surprisingly, habitat use contributed little explanatory power. We find that it is possible to evolve very different abilities in performance which were previously thought to be tightly correlated, supporting a growing literature that explores the many-to-one mapping of morphological design. Although we generally find the expected trade-off between maximal exertion and speed, this relationship surprisingly disappears when species experience selection for both performance types. We conclude that functional integration need not limit adaptive potential, and that an integrative approach considering multiple major influences on a phenotype allows a more complete understanding of adaptation and the evolution of diversity. PMID:26614565

  2. Locomotor adaptation to a powered ankle-foot orthosis depends on control method

    PubMed Central

    Cain, Stephen M; Gordon, Keith E; Ferris, Daniel P

    2007-01-01

    Background We studied human locomotor adaptation to powered ankle-foot orthoses with the intent of identifying differences between two different orthosis control methods. The first orthosis control method used a footswitch to provide bang-bang control (a kinematic control) and the second orthosis control method used a proportional myoelectric signal from the soleus (a physiological control). Both controllers activated an artificial pneumatic muscle providing plantar flexion torque. Methods Subjects walked on a treadmill for two thirty-minute sessions spaced three days apart under either footswitch control (n = 6) or myoelectric control (n = 6). We recorded lower limb electromyography (EMG), joint kinematics, and orthosis kinetics. We compared stance phase EMG amplitudes, correlation of joint angle patterns, and mechanical work performed by the powered orthosis between the two controllers over time. Results During steady state at the end of the second session, subjects using proportional myoelectric control had much lower soleus and gastrocnemius activation than the subjects using footswitch control. The substantial decrease in triceps surae recruitment allowed the proportional myoelectric control subjects to walk with ankle kinematics close to normal and reduce negative work performed by the orthosis. The footswitch control subjects walked with substantially perturbed ankle kinematics and performed more negative work with the orthosis. Conclusion These results provide evidence that the choice of orthosis control method can greatly alter how humans adapt to powered orthosis assistance during walking. Specifically, proportional myoelectric control results in larger reductions in muscle activation and gait kinematics more similar to normal compared to footswitch control. PMID:18154649

  3. Comparative locomotor behavior of chimpanzees and bonobos: the influence of morphology on locomotion.

    PubMed

    Doran, D M

    1993-05-01

    Results from a 10 month study of adult male and female bonobos (Pan paniscus) in the Lomako Forest, Zaire, and those from a 7 month study of adult male and female chimpanzees in the Tai Forest, Ivory Coast (Pan troglodytes verus), were compared in order to determine whether there are species differences in locomotor behavior and substrate use and, if so, whether these differences support predictions made on the basis of interspecific morphological differences. Results indicate that bonobos are more arboreal than chimpanzees and that male bonobos are more suspensory than their chimpanzee counterpart. This would be predicted on the basis of male bonobo's longer and more narrow scapula. This particular finding is contrary to the prediction that the bonobo is a "scaled reduced version of a chimpanzee" with little or no positional behavior difference as had been suggested. This study provides the behavioral data necessary to untangle contradictory interpretations of the morphological differences between chimpanzees and bonobos, and raises a previously discussed (Fleagle: Size and Scaling in Primate Biology, pp. 1-19, 1985) but frequently overlooked point--that isometry in allometric studies does not necessarily equate with behavioral equivalence. Several researchers have demonstrated that bonobos and chimpanzees follow the same scaling trends for many features, and are in some sense functionally equivalent, since they manage to feed and reproduce. However, as reflected in their morphologies, they do so through different types and frequencies of locomotor behaviors. PMID:8512056

  4. A Hypothetical Perspective on the Relative Contributions of Strategic and Adaptive Control Mechanisms in Plastic Recalibration of Locomotor Heading Direction

    NASA Technical Reports Server (NTRS)

    Richards, J. T.; Mulavara, A. P.; Ruttley, T.; Peters, B. T.; Warren, L. E.; Bloomberg, J. J.

    2006-01-01

    We have previously shown that viewing simulated rotary self-motion during treadmill locomotion causes adaptive modification of the control of position and trajectory during over-ground locomotion, which functionally reflects adaptive changes in the sensorimotor integration of visual, vestibular, and proprioceptive cues (Mulavara et al., 2005). The objective of this study was to investigate how strategic changes in torso control during exposure to simulated rotary self-motion during treadmill walking influences adaptive modification of locomotor heading direction during over-ground stepping.

  5. A behaviorally related developmental switch in nitrergic modulation of locomotor rhythmogenesis in larval Xenopus tadpoles.

    PubMed

    Currie, Stephen P; Combes, Denis; Scott, Nicholas W; Simmers, John; Sillar, Keith T

    2016-03-01

    Locomotor control requires functional flexibility to support an animal's full behavioral repertoire. This flexibility is partly endowed by neuromodulators, allowing neural networks to generate a range of motor output configurations. In hatchling Xenopus tadpoles, before the onset of free-swimming behavior, the gaseous modulator nitric oxide (NO) inhibits locomotor output, shortening swim episodes and decreasing swim cycle frequency. While populations of nitrergic neurons are already present in the tadpole's brain stem at hatching, neurons positive for the NO-synthetic enzyme, NO synthase, subsequently appear in the spinal cord, suggesting additional as yet unidentified roles for NO during larval development. Here, we first describe the expression of locomotor behavior during the animal's change from an early sessile to a later free-swimming lifestyle and then compare the effects of NO throughout tadpole development. We identify a discrete switch in nitrergic modulation from net inhibition to overall excitation, coincident with the transition to free-swimming locomotion. Additionally, we show in isolated brain stem-spinal cord preparations of older larvae that NO's excitatory effects are manifested as an increase in the probability of spontaneous swim episode occurrence, as found previously for the neurotransmitter dopamine, but that these effects are mediated within the brain stem. Moreover, while the effects of NO and dopamine are similar, the two modulators act in parallel rather than NO operating serially by modulating dopaminergic signaling. Finally, NO's activation of neurons in the brain stem also leads to the release of NO in the spinal cord that subsequently contributes to NO's facilitation of swimming. PMID:26763775

  6. A behaviorally related developmental switch in nitrergic modulation of locomotor rhythmogenesis in larval Xenopus tadpoles

    PubMed Central

    Currie, Stephen P.; Combes, Denis; Scott, Nicholas W.; Simmers, John

    2016-01-01

    Locomotor control requires functional flexibility to support an animal's full behavioral repertoire. This flexibility is partly endowed by neuromodulators, allowing neural networks to generate a range of motor output configurations. In hatchling Xenopus tadpoles, before the onset of free-swimming behavior, the gaseous modulator nitric oxide (NO) inhibits locomotor output, shortening swim episodes and decreasing swim cycle frequency. While populations of nitrergic neurons are already present in the tadpole's brain stem at hatching, neurons positive for the NO-synthetic enzyme, NO synthase, subsequently appear in the spinal cord, suggesting additional as yet unidentified roles for NO during larval development. Here, we first describe the expression of locomotor behavior during the animal's change from an early sessile to a later free-swimming lifestyle and then compare the effects of NO throughout tadpole development. We identify a discrete switch in nitrergic modulation from net inhibition to overall excitation, coincident with the transition to free-swimming locomotion. Additionally, we show in isolated brain stem-spinal cord preparations of older larvae that NO's excitatory effects are manifested as an increase in the probability of spontaneous swim episode occurrence, as found previously for the neurotransmitter dopamine, but that these effects are mediated within the brain stem. Moreover, while the effects of NO and dopamine are similar, the two modulators act in parallel rather than NO operating serially by modulating dopaminergic signaling. Finally, NO's activation of neurons in the brain stem also leads to the release of NO in the spinal cord that subsequently contributes to NO's facilitation of swimming. PMID:26763775

  7. Decreased aggressive and locomotor behaviors in Betta splendens after exposure to fluoxetine.

    PubMed

    Kohlert, Jess G; Mangan, Brian P; Kodra, Christine; Drako, Linsay; Long, Emily; Simpson, Holly

    2012-02-01

    The failure of sewage treatment plants to remove pharmaceuticals such as fluoxetine from waste water has become a concern given that these products are being detected in the surface waters of many countries of the world. The effects of fluoxetine in sub-lethal doses on the neural systems and behaviors of aquatic life are worthy of investigation. This study investigated the effects of sub-lethal amounts fluoxetine dissolved in water on the aggressive and locomotor behaviors of 44 male Betta splendens. Fish treated with 705 microg/l of fluoxetine and 350 microg/l of fluoxetine generally demonstrated significant decreases in locomotion and number of aggressive attacks compared to 0 microg/l of fluoxetine (controls) on Days 11 and 19 of drug exposure and persisted for at least 13 days after removal of fluoxetine. Consistent with decreases in the number of aggressive attacks, there was a significant increase in aggression-response time to a perceived intruder for treated males on Days 11 and 19 and persisted for 6 days following removal of fluoxetine. However, the differences in aggressive and locomotor behaviors seen in the fluoxetine-treated groups were indistinguishable from controls three weeks following drug removal. PMID:22489377

  8. Decomposition of abnormal free locomotor behavior in a rat model of Parkinson's disease

    PubMed Central

    Grieb, Benjamin; von Nicolai, Constantin; Engler, Gerhard; Sharott, Andrew; Papageorgiou, Ismini; Hamel, Wolfgang; Engel, Andreas K.; Moll, Christian K.

    2013-01-01

    Poverty of spontaneous movement, slowed execution and reduced amplitudes of movement (akinesia, brady- and hypokinesia) are cardinal motor manifestations of Parkinson's disease that can be modeled in experimental animals by brain lesions affecting midbrain dopaminergic neurons. Most behavioral investigations in experimental parkinsonism have employed short-term observation windows to assess motor impairments. We postulated that an analysis of longer-term free exploratory behavior could provide further insights into the complex fine structure of altered locomotor activity in parkinsonian animals. To this end, we video-monitored 23 h of free locomotor behavior and extracted several behavioral measures before and after the expression of a severe parkinsonian phenotype following bilateral 6-hydroxydopamine (6-OHDA) lesions of the rat dopaminergic substantia nigra. Unbiased stereological cell counting verified the degree of midbrain tyrosine hydroxylase positive cell loss in the substantia nigra and ventral tegmental area. In line with previous reports, overall covered distance and maximal motion speed of lesioned animals were found to be significantly reduced compared to controls. Before lesion surgery, exploratory rat behavior exhibited a bimodal distribution of maximal speed values obtained for single movement episodes, corresponding to a “first” and “second gear” of motion. 6-OHDA injections significantly reduced the incidence of second gear motion episodes and also resulted in an abnormal prolongation of these fast motion events. Likewise, the spatial spread of such episodes was increased in 6-OHDA rats. The increase in curvature of motion tracks was increased in both lesioned and control animals. We conclude that the discrimination of distinct modes of motion by statistical decomposition of longer-term spontaneous locomotion provides useful insights into the fine structure of fluctuating motor functions in a rat analog of Parkinson's disease. PMID:24348346

  9. Running behavior and its energy cost in mice selectively bred for high voluntary locomotor activity.

    PubMed

    Rezende, Enrico L; Gomes, Fernando R; Chappell, Mark A; Garland, Theodore

    2009-01-01

    Locomotion is central to behavior and intrinsic to many fitness-critical activities (e.g., migration, foraging), and it competes with other life-history components for energy. However, detailed analyses of how changes in locomotor activity and running behavior affect energy budgets are scarce. We quantified these effects in four replicate lines of house mice that have been selectively bred for high voluntary wheel running (S lines) and in their four nonselected control lines (C lines). We monitored wheel speeds and oxygen consumption for 24-48 h to determine daily energy expenditure (DEE), resting metabolic rate (RMR), locomotor costs, and running behavior (bout characteristics). Daily running distances increased roughly 50%-90% in S lines in response to selection. After we controlled for body mass effects, selection resulted in a 23% increase in DEE in males and a 6% increase in females. Total activity costs (DEE - RMR) accounted for 50%-60% of DEE in both S and C lines and were 29% higher in S males and 5% higher in S females compared with their C counterparts. Energetic costs of increased daily running distances differed between sexes because S females evolved higher running distances by running faster with little change in time spent running, while S males also spent 40% more time running than C males. This increase in time spent running impinged on high energy costs because the majority of running costs stemmed from "postural costs" (the difference between RMR and the zero-speed intercept of the speed vs. metabolic rate relationship). No statistical differences in these traits were detected between S and C females, suggesting that large changes in locomotor behavior do not necessarily effect overall energy budgets. Running behavior also differed between sexes: within S lines, males ran with more but shorter bouts than females. Our results indicate that selection effects on energy budgets can differ dramatically between sexes and that energetic constraints in S

  10. Serotonergic activation of locomotor behavior and posture in one-day old rats.

    PubMed

    Swann, Hillary E; Kempe, R Blaine; Van Orden, Ashley M; Brumley, Michele R

    2016-04-01

    The purpose of this study was to determine what dose of quipazine, a serotonergic agonist, facilitates air-stepping and induces postural control and patterns of locomotion in newborn rats. Subjects in both experiments were 1-day-old rat pups. In Experiment 1, pups were restrained and tested for air-stepping in a 35-min test session. Immediately following a 5-min baseline, pups were treated with quipazine (1.0, 3.0, or 10.0mg/kg) or saline (vehicle control), administered intraperitoneally in a 50μL injection. Bilateral alternating stepping occurred most frequently following treatment with 10.0mg/kg quipazine, however the percentage of alternating steps, interlimb phase, and step period were very similar between the 3.0 and 10.0mg/kg doses. For interlimb phase, the forelimbs and hindlimbs maintained a near perfect anti-phase pattern of coordination, with step period averaging about 1s. In Experiment 2, pups were treated with 3.0 or 10.0mg/kg quipazine or saline, and then were placed on a surface (open field, unrestrained). Both doses of quipazine resulted in developmentally advanced postural control and locomotor patterns, including head elevation, postural stances, pivoting, crawling, and a few instances of quadrupedal walking. The 3.0mg/kg dose of quipazine was the most effective at evoking sustained locomotion. Between the 2 experiments, behavior exhibited by the rat pup varied based on testing environment, emphasizing the role that environment and sensory cues exert over motor behavior. Overall, quipazine administered at a dose of 3.0mg/kg was highly effective at promoting alternating limb coordination and inducing locomotor activity in both testing environments. PMID:26795091

  11. Effect of clozapine on locomotor activity and anxiety-related behavior in the neonatal mice administered MK-801

    PubMed Central

    Pinar, Neslihan; Akillioglu, Kubra; Sefil, Fatih; Alp, Harun; Sagir, Mustafa; Acet, Ahmet

    2015-01-01

    Atypical antipsychotics have been used to treat fear and anxiety disturbance that are highly common in schizophrenic patients. It is suggested that disruptions of N-methyl-d-aspartate (NMDA)-mediated transmission of glutamate may underlie the pathophysiology of schizophrenia. The present study was conducted to analyze the effectiveness of clozapine on the anxiety-related behavior and locomotor function of the adult brain, which had previously undergone NMDA receptor blockade during a developmental period. In order to block the NMDA receptor, male mice were administered 0.25 mg/kg of MK-801 on days 7 to 10 postnatal. In adulthood, they were administered intraperitoneally 0.5 mg/kg of clozapine and tested with open-field and elevated plus maze test, to assess their emotional behavior and locomotor activity. In the group receiving MK-801 in the early developmental period the elevated plus maze test revealed a reduction in the anxiety-related behavior (p<0.05), while the open-field test indicated a decrease in locomotor activity (p<0.01). Despite these reductions, clozapine could not reverse the NMDA receptor blockade. Also, as an atypical antipsychotic agent, clozapine could not reverse impairment in the locomotor activity and anxiety-related behavior, induced by administration of the MK-801 in neonatal period. PMID:26295298

  12. Fostering Locomotor Behavior of Children with Developmental Disabilities: An Overview of Studies Using Treadmills and Walkers with Microswitches

    ERIC Educational Resources Information Center

    Lancioni, Giulio E.; Singh, Nirbhay N.; O'Reilly, Mark F.; Sigafoos, Jeff; Didden, Robert; Manfredi, Francesco; Putignano, Pietro; Stasolla, Fabrizio; Basili, Gabriella

    2009-01-01

    This paper provides an overview of studies using programs with treadmills or walkers with microswitches and contingent stimulation to foster locomotor behavior of children with developmental disabilities. Twenty-six studies were identified in the period 2000-2008 (i.e., the period in which research in this area has actually taken shape).…

  13. Gestational Toluene Exposure Effects on Spontaneous and Amphetamine-Induced Locomotor Behavior in Rats

    PubMed Central

    Mohammadi, Michael H.; Batis, Jeffery C.; Hannigan, John H.

    2007-01-01

    The abuse of volatile organic solvents (inhalants) continues to be a major health concern throughout the world. Toluene, which is found in many products such as glues and household cleaners, is among the most commonly abused organic solvents. The neurobehavioral teratogenic sequelae of solvent abuse (i.e., repeated, brief inhalation exposures to very high concentrations of solvents) have not been examined thoroughly. In a preclinical model of inhalant abuse, timed-pregnant Sprague-Dawley rats were exposed to 0, 8,000, or 12,000 parts per million (ppm) for 15 min twice daily from gestation day 8 (GD8) through GD20. In the first experiment, separate groups of offspring were observed individually in an open-field on postnatal day 22 (PN22), PN42 or PN63. In the second experiment, other offspring given identical prenatal toluene exposures were observed in an “open-field” following an acute i.p. injection of amphetamine (0, 0.56, 1.78 mg/kg) on PN28. Automated measurements of distance traveled and ambulatory time were recorded. Prenatal toluene exposure resulted in small alterations in spontaneous activity compared to non-exposed rats. Prenatal exposure to 12,000 ppm toluene resulted in significant hyposensitivity to the locomotor stimulatory effects of the amphetamine challenge in male but not female rats on PN28. The results demonstrate that prenatal exposure to abuse patterns of high concentrations of toluene through inhalation can alter spontaneous and amphetamine-induced locomotor behavior in rats. The expression of these effects also appears to depend upon the postnatal age of testing. These results imply that abuse of organic solvents during pregnancy in humans may also produce long-lasting effects on biobehavioral development. PMID:17112700

  14. Adaptive Behavior: A Conceptual Analysis.

    ERIC Educational Resources Information Center

    Schmidt, Mary W.; Salvia, John

    1984-01-01

    The paper presents a model that examines the domain of adaptive behavior in terms of components (including physical needs, care of the environment, vocation, and understanding social conventions), and levels of performance (such as timing and degree of adaptation). (Author/CL)

  15. The Adaptive Behavior Rating Scale.

    ERIC Educational Resources Information Center

    Meyer, William J.

    A scale to identify important behaviors in preschool children was developed, and ratings were related to more traditional indices of development and academic readiness. Teacher interviews were used to identify 62 specific behaviors related to maximally adapted and maximally maladapted kindergarten children. These were incorporated into a…

  16. Toxicity of organophosphates on morphology and locomotor behavior in brine shrimp, Artemia salina.

    PubMed

    Venkateswara Rao, J; Kavitha, P; Jakka, N M; Sridhar, V; Usman, P K

    2007-08-01

    The acute toxicity and hatching success of four organophosphorus insecticides--acephate (ACEP), chlorpyrifos (CPP), monocrotophos (MCP), and profenofos (PF)--was studied in a short-term bioassay using brine shrimp, Artemia salina. Fifty percent hatchability inhibition concentration and median lethal concentration (LC(50)) values were calculated after probit transformation of the resulting data. Among the insecticides tested, CPP is found to be the most toxic and also to inhibit hatching success of A. salina cysts in a concentration-dependent manner. In addition, the effect of these pesticides on locomotor behavior (swimming speed) and morphologic differences were studied in LC(50)-exposed nauplii after 24 hours. The in vivo effect of these insecticides on acetylcholinesterase (Enzyme commission number (EC 3.1.1.7) activity was also determined in LC(50)-exposed nauplii after 24 hours. Maximum percent decrease in their swimming speed and significant morphologic alterations were noticed in CPP-exposed brine shrimps. The order of toxicity was CPP > PF > MCP > ACEP in all the parameters studied. PMID:17549541

  17. Behavioral and Locomotor Measurements Using an Open Field Activity Monitoring System for Skeletal Muscle Diseases

    PubMed Central

    Tatem, Kathleen S.; Quinn, James L.; Phadke, Aditi; Yu, Qing; Gordish-Dressman, Heather; Nagaraju, Kanneboyina

    2014-01-01

    The open field activity monitoring system comprehensively assesses locomotor and behavioral activity levels of mice. It is a useful tool for assessing locomotive impairment in animal models of neuromuscular disease and efficacy of therapeutic drugs that may improve locomotion and/or muscle function. The open field activity measurement provides a different measure than muscle strength, which is commonly assessed by grip strength measurements. It can also show how drugs may affect other body systems as well when used with additional outcome measures. In addition, measures such as total distance traveled mirror the 6 min walk test, a clinical trial outcome measure. However, open field activity monitoring is also associated with significant challenges: Open field activity measurements vary according to animal strain, age, sex, and circadian rhythm. In addition, room temperature, humidity, lighting, noise, and even odor can affect assessment outcomes. Overall, this manuscript provides a well-tested and standardized open field activity SOP for preclinical trials in animal models of neuromuscular diseases. We provide a discussion of important considerations, typical results, data analysis, and detail the strengths and weaknesses of open field testing. In addition, we provide recommendations for optimal study design when using open field activity in a preclinical trial. PMID:25286313

  18. Locomotor behavior in mice following exposure to fission-neutron irradiation and trauma

    SciTech Connect

    Landauer, M.R.; Ledney, G.D.; Davis, H.D.

    1987-12-01

    Locomotor activity, body weights, and food and water consumption were monitored in female mice for 35 d following a sublethal wound (W), burn (B), exposure to 3 Gray fission-neutron radiation (R), or combination of these injuries: radiation-wound (RW) and radiation burn (RB). Activity in groups W and RW was depressed immediately after injury, with recovery to control levels after 5 and 14 d, respectively. Mice that received radiation alone showed a biphasic response with decrements in activity on days 0-4 and 9-11. Groups B and RB exhibited depressed activity levels that differed significantly from control levels until day 17. Food intake was reduced for about 6d in groups R, W, RW, and RB. Body weights decreased for 4 d in groups R, W, RW, and RB, but returned to control levels by the end of the experiment. Animals in group B did not show significant reduction in food intake or body weight. Water consumption was reduced for 5-6 d in groups R and RB and was increased in groups W, RW, and B. The data suggest that behavioral responses to fission-neutron radiation are exacerbated by tissue trauma.

  19. The effects of multiple obstacles on the locomotor behavior and performance of a terrestrial lizard.

    PubMed

    Parker, Seth E; McBrayer, Lance D

    2016-04-01

    Negotiation of variable terrain is important for many small terrestrial vertebrates. Variation in the running surface resulting from obstacles (woody debris, vegetation, rocks) can alter escape paths and running performance. The ability to navigate obstacles likely influences survivorship through predator evasion success and other key ecological tasks (finding mates, acquiring food). Earlier work established that running posture and sprint performance are altered when organisms face an obstacle, and yet studies involving multiple obstacles are limited. Indeed, some habitats are cluttered with obstacles, whereas others are not. For many species, obstacle density may be important in predator escape and/or colonization potential by conspecifics. This study examines how multiple obstacles influence running behavior and locomotor posture in lizards. We predict that an increasing number of obstacles will increase the frequency of pausing and decrease sprint velocity. Furthermore, bipedal running over multiple obstacles is predicted to maintain greater mean sprint velocity compared with quadrupedal running, thereby revealing a potential advantage of bipedalism. Lizards were filmed running through a racetrack with zero, one or two obstacles. Bipedal running posture over one obstacle was significantly faster than quadrupedal posture. Bipedal running trials contained fewer total strides than quadrupedal ones. But on addition of a second obstacle, the number of bipedal strides decreased. Increasing obstacle number led to slower and more intermittent locomotion. Bipedalism provided clear advantages for one obstacle, but was not associated with further benefits for an additional obstacle. Hence, bipedalism helps mitigate obstacle negotiation, but not when numerous obstacles are encountered in succession. PMID:26823099

  20. Behavioral and locomotor measurements using an open field activity monitoring system for skeletal muscle diseases.

    PubMed

    Tatem, Kathleen S; Quinn, James L; Phadke, Aditi; Yu, Qing; Gordish-Dressman, Heather; Nagaraju, Kanneboyina

    2014-01-01

    The open field activity monitoring system comprehensively assesses locomotor and behavioral activity levels of mice. It is a useful tool for assessing locomotive impairment in animal models of neuromuscular disease and efficacy of therapeutic drugs that may improve locomotion and/or muscle function. The open field activity measurement provides a different measure than muscle strength, which is commonly assessed by grip strength measurements. It can also show how drugs may affect other body systems as well when used with additional outcome measures. In addition, measures such as total distance traveled mirror the 6 min walk test, a clinical trial outcome measure. However, open field activity monitoring is also associated with significant challenges: Open field activity measurements vary according to animal strain, age, sex, and circadian rhythm. In addition, room temperature, humidity, lighting, noise, and even odor can affect assessment outcomes. Overall, this manuscript provides a well-tested and standardized open field activity SOP for preclinical trials in animal models of neuromuscular diseases. We provide a discussion of important considerations, typical results, data analysis, and detail the strengths and weaknesses of open field testing. In addition, we provide recommendations for optimal study design when using open field activity in a preclinical trial. PMID:25286313

  1. The Effects of 4-Methylethcathinone on Conditioned Place Preference, Locomotor Sensitization, and Anxiety-Like Behavior: A Comparison with Methamphetamine

    PubMed Central

    Xu, Peng; Qiu, Yi; Zhang, Yizhi; Βai, Yanping; Xu, Pengfei; Liu, Yuan; Kim, Jee Hyun

    2016-01-01

    Background: 4-Methylethcathinone is a drug that belongs to the second generation of synthetic cathinones, and recently it has been ranked among the most popular “legal highs”. Although it has similar in vitro neurochemical actions to other drugs such as cocaine, the behavioral effects of 4-methylethcathinone remain to be determined. Methods: The addictive potential and locomotor potentiation by 4-methylethcathinone were investigated in rats using the conditioned place preference and sensitization paradigm. Methamphetamine was used as a positive control. Because synthetic cathinones can have psychological effects, we also examined anxiety-like behavior using the elevated plus maze. Results: A conditioning dose of 10mg/kg 4-methylethcathinone was able to induce conditioned place preference and reinstatement (following 2 weeks of withdrawal). Acute or repeated injections of 4-methylethcathinone at 3 or 10mg/kg failed to alter locomotor activity. At 30mg/kg, however, acute 4-methylethcathinone increased locomotor activity compared with saline, while chronic 4-methylethcathinone induced a delayed and attenuated sensitization compared with methamphetamine. Additionally, repeated daily injections of 4-methylethcathinone (30mg/kg) reduced, whereas methamphetamine increased time spent by rats in the open arm of an elevated plus maze compared with saline injections. Interestingly, a 2-week withdrawal period following chronic injections of 4-methylethcathinone or methamphetamine increased time spent in the open arm in all rats. Conclusions: The rewarding properties of 4-methylethcathinone were found to be dissociated from its effects on locomotor activity. Additionally, chronic 4-methylethcathinone use may trigger abnormal anxious behaviors. These behavioral effects caused by 4-methylethcathinone appear to last even after a withdrawal period. PMID:26612552

  2. Functional anatomy of the limbs of erethizontidae (Rodentia, Caviomorpha): Indicators of locomotor behavior in Miocene porcupines.

    PubMed

    Candela, Adriana M; Picasso, Mariana B J

    2008-05-01

    Functional analysis of the limb bones of the erethizontid Steiromys duplicatus, one of the most abundant Miocene porcupines from Patagonia, provides evidence to infer their locomotor behavior. Remains of the giant Neosteiromys pattoni (Late Miocene of Northeast Argentina) are also analyzed. Osteological and myological features of extant porcupines were evaluated and used as a model to interpret the functional significance of Miocene species' limbs. Several features in erethizontids are compatible with the ability to climb: the low humeral tuberosities indicate a mobile gleno-humeral joint; the prominent and distally extended deltopectoral crest indicates a powerful pectoral muscle, which is particularly active when climbing; the humero-ulnar and humero-radial joints are indicative of pronation-supination movements; the well-developed lateral epicondylar ridge and the medially protruding entepicondyle are in agreement with an important development of the brachioradialis, supinator, flexor digitorum profundus, and pronator teres muscles, acting in climbing and grasping functions; the mechanical advantage of the biceps brachii would be emphasized because of its distal attachment on the bicipital tuberosity. As with extant porcupines, in Miocene species, the large femoral head would have permitted a broad range of abduction of the femur, and the medially protruding lesser trochanter would have emphasized the abduction and outward rotation of the femur by the action of the ilio-psoas complex. In S. duplicatus, the shape of the hip, knee, and cruro-astragalar, calcaneo-astragalar, and astragalo-navicular joints would have allowed lateral and rotational movements, although probably to a lesser degree than in extant porcupines. Foot features of S. duplicatus (e.g., great medial sesamoid bone, medial astragalar head, complete hallux) indicate that this species would have had grasping ability, but would not have achieved the high degree of specialization of Coendou

  3. Locomotor behavior across an environmental transition in the ropefish, Erpetoichthys calabaricus.

    PubMed

    Pace, Cinnamon M; Gibb, Alice C

    2011-02-15

    Many amphibious organisms undergo repeated aquatic to terrestrial transitions during their lifetime; limbless, elongate organisms that make such transitions must rely on axial-based locomotion in both habitats. How is the same anatomical structure employed to produce an effective behavior across such disparate habitats? Here, we examine an elongate amphibious fish, the ropefish (Erpetoichthys calabaricus), and ask: (1) how do locomotor movements change during the transition between aquatic and terrestrial environments and (2) do distantly related amphibious fishes demonstrate similar modes of terrestrial locomotion? Ropefish were examined moving in four experimental treatments (in which the water level was to lowered mimic the transition between environments) that varied from fully aquatic to fully terrestrial. Kinematic parameters (lateral excursion, wavelength, amplitude and frequency) were calculated for points along the midline of the body and compared across treatments. Terrestrial locomotion in the ropefish is characterized by long, slow, large-amplitude undulations down the length of the body; in contrast, aquatic locomotion is characterized by short-wavelength, small-amplitude, high-frequency undulations that gradually increase in an anterior to posterior direction. Experimental treatments with intermediate water levels were more similar to aquatic locomotion in that they demonstrated an anterior to posterior pattern of increasing lateral excursion and wave amplitude, but were more similar to terrestrial locomotion with regard to wavelength, which did not change in an anterior to posterior direction. Finally, the ropefish and another elongate amphibious fish, the eel, consistently exhibit movements characterized by 'path following' when moving on land, which suggests that elongate fishes exhibit functional convergence during terrestrial locomotion. PMID:21270300

  4. The dorsomedial shell of the nucleus accumbens facilitates cocaine-induced locomotor activity during the induction of behavioral sensitization.

    PubMed

    Todtenkopf, M S; Carreiras, T; Melloni, R H; Stellar, J R

    2002-04-01

    The mesolimbic dopamine system has been intensely studied as the neural circuit mediating the locomotor response to psychostimulants and behavioral sensitization. In particular, the dopaminergic innervation of the nucleus accumbens has been implicated as a site responsible for the manifestations of behavioral sensitization. Previous studies have demonstrated an augmented release of dopamine in the nucleus accumbens upon a systemic injection of a psychostimulant. In addition, alterations in the dopaminergic innervation patterns in this brain region have been demonstrated in animals that received repeated injections of cocaine. Furthermore, lesions of projection sites that have terminations in the nucleus accumbens have demonstrated alterations in psychostimulant induced locomotion, both acutely, as well as in sensitization paradigms. Since dopamine in the nucleus accumbens is believed to regulate several excitatory amino acid inputs, the present study examined the effects of a localized electrolytic lesion in the dorsomedial shell of the nucleus accumbens in order to better understand the functional role this brain region has in behavioral sensitization. All animals received bi-daily injections of 15 mg/kg i.p. cocaine. Only those demonstrating behavioral sensitization after a subsequent challenge dose were included in the analysis. Following acute exposure to cocaine, lesioned animals did not show any difference in their locomotor response when compared with sham controls. However, after repeated exposure to cocaine, sensitized animals demonstrated a significant attenuation in locomotor behavior when compared with sensitized sham controls. This decrease in horizontal locomotion persisted 2 days into withdrawal, yet dissipated in the sensitized animals that were challenged 2 weeks following their last injection. The data presented here demonstrate that the dorsomedial shell of the nucleus accumbens plays an important role in the initial stages of behavioral

  5. Locomotor Adaptation by Transtibial Amputees Walking With an Experimental Powered Prosthesis Under Continuous Myoelectric Control.

    PubMed

    Huang, Stephanie; Wensman, Jeffrey P; Ferris, Daniel P

    2016-05-01

    Lower limb amputees can use electrical activity from their residual muscles for myoelectric control of a powered prosthesis. The most common approach for myoelectric control is a finite state controller that identifies behavioral states and discrete changes in motor tasks. An alternative approach to state-based myoelectric control is continuous proportional myoelectric control where ongoing electrical activity has a proportional relationship to the prosthetic joint torque or power. To test the potential of continuous proportional myoelectric control for powered lower limb prostheses, we recruited five unilateral transtibial amputees to walk on a treadmill with an experimental powered prosthesis. Subjects walked using the powered prosthesis with and without visual feedback of their control signal in real time. Amputee subjects were able to adapt their residual muscle activation patterns to alter prosthetic ankle mechanics when we provided visual feedback of their myoelectric control signal in real time. During walking with visual feedback, subjects significantly increased their peak prosthetic ankle power ( p = 0.02, ANOVA) and positive work ( p = 0.02, ANOVA) during gait above their prescribed prosthesis values. However, without visual feedback, the subjects did not increase their peak ankle power during push off. These results show that amputee users were able to volitionally alter their prosthesis mechanics during walking, but only when given an explicit goal for their residual muscle motor commands. Future studies that examine the motor and learning capabilities of lower limb amputees using their residual muscles for continuous proportional myoelectric control are needed to determine the viability of integrating continuous high-level control with existing finite state prosthetic controllers. PMID:26057851

  6. Thinking About Walking: Effects of Conscious Correction Versus Distraction on Locomotor Adaptation

    PubMed Central

    Malone, Laura A.

    2010-01-01

    Control of the human walking pattern normally requires little thought, with conscious control used only in the face of a challenging environment or a perturbation. We have previously shown that people can adapt spatial and temporal aspects of walking to a sustained perturbation generated by a split-belt treadmill. Here we tested whether conscious correction of walking, versus distraction from it, modifies adaptation. Conscious correction of stepping may expedite the adaptive process and help to form a new walking pattern. However, because walking is normally an automatic process, it is possible that conscious effort could interfere with adaptation, whereas distraction might improve it by removing competing voluntary control. Three groups of subjects were studied: a control group was given no specific instructions, a conscious correction group was instructed how to step and given intermittent visual feedback of stepping during adaptation, and a distraction group performed a dual-task during adaptation. After adaptation, retention of aftereffects was assessed in all groups during normal treadmill walking without conscious effort, feedback, or distraction. We found that conscious correction speeds adaptation, whereas distraction slows it. Subjects trained with distraction retained aftereffects longest, suggesting that the training used during adaptation predicts the time course of deadaptation. An unexpected finding was that these manipulations affected the adaptation rate of spatial but not temporal elements of walking. Thus conscious processes can preferentially access the spatial walking pattern. It may be that spatial and temporal controls of locomotion are accessible through distinct neural circuits, with the former being most sensitive to conscious effort or distraction. PMID:20147417

  7. Behavior of adaptive digital erosions

    NASA Astrophysics Data System (ADS)

    Cuciurean-Zapan, Clara; Dougherty, Edward R.; Chen, Yidong

    1996-10-01

    Design of statistically optimal erosion-based filters is problematic due to the complexity of the search process. Specialized search techniques and constraints on optimality are used to mitigate the full search. Adaptation of structuring elements has also ben employed. The present paper looks at the behavior of an adaptive filter relative to the actual optimal filter for a single erosion in two models, signal-union-noise and dilation. It does so in the context of state transitions, where filter states are stacks that determine the structuring element upon thresholding.

  8. Dissociation between diurnal cycles in locomotor activity, feeding behavior and hepatic PERIOD2 expression in chronic alcohol-fed mice.

    PubMed

    Zhou, Peng; Werner, John H; Lee, Donghoon; Sheppard, Aaron D; Liangpunsakul, Suthat; Duffield, Giles E

    2015-06-01

    Chronic alcohol consumption contributes to fatty liver disease. Our studies revealed that the hepatic circadian clock is disturbed in alcohol-induced hepatic steatosis, and effects of chronic alcohol administration upon the clock itself may contribute to steatosis. We extended these findings to explore the effects of chronic alcohol treatment on daily feeding and locomotor activity patterns. Mice were chronically pair-fed ad libitum for 4 weeks using the Lieber-DeCarli liquid diet, with calorie-controlled liquid and standard chow diets as control groups. Locomotor activity, feeding activity, and real-time bioluminescence recording of PERIOD2::LUCIFERASE expression in tissue explants were measured. Mice on liquid control and chow diets exhibited normal profiles of locomotor activity, with a ratio of 22:78% day/night activity and a peak during early night. This pattern was dramatically altered in alcohol-fed mice, marked by a 49:51% ratio and the absence of a distinct peak. While chow-diet fed mice had a normal 24:76% ratio of feeding activity, with a peak in the early night, this pattern was dramatically altered in both liquid-diet groups: mice had a 43:57% ratio, and an absence of a distinct peak. Temporal differences were also observed between the two liquid-diet groups during late day. Cosinor analysis revealed a ∼4-h and ∼6-h shift in the alcohol-fed group feeding and locomotor activity rhythms, respectively. Analysis of hepatic PER2 expression revealed that the molecular clock in alcohol-fed and control liquid-diet mice was shifted by ∼11 h and ∼6 h, respectively. No differences were observed in suprachiasmatic nucleus explants, suggesting that changes in circadian phase in the liver were generated independently from the central clock. These results suggest that chronic alcohol consumption and a liquid diet can differentially modulate the daily rhythmicity of locomotor and feeding behaviors, aspects that might contribute to disturbances in the circadian

  9. Dissociation between diurnal cycles in locomotor activity, feeding behavior and hepatic PERIOD2 expression in chronic alcohol-fed mice

    PubMed Central

    Zhou, Peng; Werner, John H.; Lee, Donghoon; Sheppard, Aaron D.; Liangpunsakul, Suthat; Duffield, Giles E.

    2015-01-01

    Chronic alcohol consumption contributes to fatty liver disease. Our studies revealed that the hepatic circadian clock is disturbed in alcohol-induced hepatic steatosis, and effects of chronic alcohol administration upon the clock itself may contribute to steatosis. We extended these findings to explore the effects of chronic alcohol treatment on daily feeding and locomotor activity patterns. Mice were chronically pair-fed ad libitum for 4 weeks using the Lieber-DeCarli liquid diet, with calorie-controlled liquid and standard chow diets as control groups. Locomotor activity, feeding activity, and real-time bioluminescence recording of PERIOD2::LUCIFERASE expression in tissue explants were measured. Mice on liquid control and chow diets exhibited normal profiles of locomotor activity, with a ratio of 22:78% day/night activity and a peak during early night. This pattern was dramatically altered in alcohol-fed mice, marked by a 49:51% ratio and the absence of a distinct peak. While chow-diet fed mice had a normal 24:76% ratio of feeding activity, with a peak in the early night, this pattern was dramatically altered in both liquid-diet groups: mice had a 43:57% ratio, and an absence of a distinct peak. Temporal differences were also observed between the two liquid-diet groups during late day. Cosinor analysis revealed a ~4-h and ~6-h shift in the alcohol-fed group feeding and locomotor activity rhythms, respectively. Analysis of hepatic PER2 expression revealed that the molecular clock in alcohol-fed and control liquid-diet mice was shifted by ~11 h and ~6 h, respectively. No differences were observed in suprachiasmatic nucleus explants, suggesting that changes in circadian phase in the liver were generated independently from the central clock. These results suggest that chronic alcohol consumption and a liquid diet can differentially modulate the daily rhythmicity of locomotor and feeding behaviors, aspects that might contribute to disturbances in the circadian timing

  10. Speed-Dependent Modulation of the Locomotor Behavior in Adult Mice Reveals Attractor and Transitional Gaits

    PubMed Central

    Lemieux, Maxime; Josset, Nicolas; Roussel, Marie; Couraud, Sébastien; Bretzner, Frédéric

    2016-01-01

    Locomotion results from an interplay between biomechanical constraints of the muscles attached to the skeleton and the neuronal circuits controlling and coordinating muscle activities. Quadrupeds exhibit a wide range of locomotor gaits. Given our advances in the genetic identification of spinal and supraspinal circuits important to locomotion in the mouse, it is now important to get a better understanding of the full repertoire of gaits in the freely walking mouse. To assess this range, young adult C57BL/6J mice were trained to walk and run on a treadmill at different locomotor speeds. Instead of using the classical paradigm defining gaits according to their footfall pattern, we combined the inter-limb coupling and the duty cycle of the stance phase, thus identifying several types of gaits: lateral walk, trot, out-of-phase walk, rotary gallop, transverse gallop, hop, half-bound, and full-bound. Out-of-phase walk, trot, and full-bound were robust and appeared to function as attractor gaits (i.e., a state to which the network flows and stabilizes) at low, intermediate, and high speeds respectively. In contrast, lateral walk, hop, transverse gallop, rotary gallop, and half-bound were more transient and therefore considered transitional gaits (i.e., a labile state of the network from which it flows to the attractor state). Surprisingly, lateral walk was less frequently observed. Using graph analysis, we demonstrated that transitions between gaits were predictable, not random. In summary, the wild-type mouse exhibits a wider repertoire of locomotor gaits than expected. Future locomotor studies should benefit from this paradigm in assessing transgenic mice or wild-type mice with neurotraumatic injury or neurodegenerative disease affecting gait. PMID:26941592

  11. Gait speed influences aftereffect size following locomotor adaptation, but only in certain environments.

    PubMed

    Hamzey, Rami J; Kirk, Eileen M; Vasudevan, Erin V L

    2016-06-01

    Movements learned in one set of conditions may not generalize to other conditions. For example, practicing walking on a split-belt treadmill subsequently changes coordination between the legs during normal ("tied-belt") treadmill walking; however, there is limited generalization of these aftereffects to natural walking over the ground. We hypothesized that generalization of split-belt treadmill adaptation to over-ground walking would be improved by maintaining consistency in other task variables, specifically gait speed. This hypothesis was based on our previous finding that treadmill aftereffect size was sensitive to gait speed: Aftereffects were largest when tested on tied-belts running at the same speed as the slower belt during split-belt adaptation. In the present study, healthy adults were assigned to a "slow" or "fast" over-ground walking group. Both groups adapted to split-belts (0.7:1.4 m/s), and treadmill aftereffects were tested on tied-belts at the slow (0.7 m/s) and fast (1.4 m/s) speeds. All participants were subsequently transferred to the over-ground environment. The slow and fast groups walked over-ground at 0.7 and 1.4 m/s, respectively. As in previous work, we found that the size of aftereffects during treadmill walking was speed-dependent, with larger aftereffects occurring at 0.7 m/s compared with 1.4 m/s. However, over-ground walking aftereffects were less sensitive to changes in gait speed. We also found that aftereffects in spatial coordination generalized more to over-ground walking than aftereffects in temporal coordination across all speeds of walking. This suggests that different factors influence aftereffect size in different walking environments and for different measures of coordination. PMID:26790424

  12. Neonatal olfactory bulbectomy enhances locomotor activity, exploratory behavior and binding of NMDA receptors in pre-pubertal rats.

    PubMed

    Flores, G; Ibañez-Sandoval, O; Silva-Gómez, A B; Camacho-Abrego, I; Rodríguez-Moreno, A; Morales-Medina, J C

    2014-02-14

    In this study, we investigated the effect of neonatal olfactory bulbectomy (nOBX) on behavioral paradigms related to olfaction such as exploratory behavior, locomotor activity in a novel environment and social interaction. We also studied the effect of nOBX on the activity of the N-methyl-d-aspartate (NMDA) subtype of glutamate receptors during development. The behavioral effects of nOBX (postnatal day 7, PD7) were investigated in pre- (PD30) and post-pubertal (PD60) Wistar rats. NMDA receptor activity was measured with [(125)I]MK-801 in the brain regions associated with the olfactory circuitry. A significant increase in the novelty-induced locomotion was seen in the pre-pubertal nOBX rats. Although the locomotor effect was less marked than in pre-pubertal rats, the nOBX rats tested post-pubertally failed to habituate to the novel situation as quickly as the sham- and normal- controls. Pre-pubertally, the head-dipping behavior was enhanced in nOBX rats compared with sham-operated and normal controls, while normal exploratory behavior was observed between groups in adulthood. In contrast, social interaction was increased in post-pubertal animals that underwent nOBX. Both pre- and post-pubertal nOBX rats recovered olfaction. Interestingly, pre-pubertal rats showed a significant increase in the [(125)I]MK-801 binding in the piriform cortex, dorsal hippocampus, inner and outer layers of the frontal cortex and outer layer of the cingulate cortex. At post-pubertal age, no significant differences in [(125)I]MK-801 binding were observed between groups at any of the brain regions analyzed. These results suggest that nOBX produces pre-pubertal behavioral disturbances and NMDA receptor changes that are transitory with recovery of olfaction early in adulthood. PMID:24295633

  13. Bony labyrinth morphometry indicates locomotor adaptations in the squirrel-related clade (Rodentia, Mammalia).

    PubMed

    Pfaff, Cathrin; Martin, Thomas; Ruf, Irina

    2015-06-22

    The semicircular canals (SCs) of the inner ear detect angular acceleration and are located in the bony labyrinth of the petrosal bone. Based on high-resolution computed tomography, we created a size-independent database of the bony labyrinth of 50 mammalian species especially rodents of the squirrel-related clade comprising taxa with fossorial, arboreal and gliding adaptations. Our sampling also includes gliding marsupials, actively flying bats, the arboreal tree shrew and subterranean species. The morphometric anatomy of the SCs was correlated to the locomotion mode. Even if the phylogenetic signal cannot entirely be excluded, the main significance for functional morphological studies has been found in the diameter of the SCs, whereas the radius of curvature is of minor interest. Additionally, we found clear differences in the bias angle of the canals between subterranean and gliding taxa, but also between sciurids and glirids. The sensitivity of the inner ear correlates with the locomotion mode, with a higher sensitivity of the SCs in fossorial species than in flying taxa. We conclude that the inner ear of flying and gliding mammals is less sensitive due to the large information flow into this sense organ during locomotion. PMID:26019162

  14. Bony labyrinth morphometry indicates locomotor adaptations in the squirrel-related clade (Rodentia, Mammalia)

    PubMed Central

    Pfaff, Cathrin; Martin, Thomas; Ruf, Irina

    2015-01-01

    The semicircular canals (SCs) of the inner ear detect angular acceleration and are located in the bony labyrinth of the petrosal bone. Based on high-resolution computed tomography, we created a size-independent database of the bony labyrinth of 50 mammalian species especially rodents of the squirrel-related clade comprising taxa with fossorial, arboreal and gliding adaptations. Our sampling also includes gliding marsupials, actively flying bats, the arboreal tree shrew and subterranean species. The morphometric anatomy of the SCs was correlated to the locomotion mode. Even if the phylogenetic signal cannot entirely be excluded, the main significance for functional morphological studies has been found in the diameter of the SCs, whereas the radius of curvature is of minor interest. Additionally, we found clear differences in the bias angle of the canals between subterranean and gliding taxa, but also between sciurids and glirids. The sensitivity of the inner ear correlates with the locomotion mode, with a higher sensitivity of the SCs in fossorial species than in flying taxa. We conclude that the inner ear of flying and gliding mammals is less sensitive due to the large information flow into this sense organ during locomotion. PMID:26019162

  15. Locomotor, cardiocirculatory and metabolic adaptations to training in Andalusian and Anglo-Arabian horses.

    PubMed

    Muñoz, A; Santisteban, R; Rubio, M D; Agüera, E I; Escribano, B M; Castejón, F M

    1999-02-01

    The effects of two training programmes in 20 Andalusian and 12 Anglo-Arabian horses were evaluated by an increasing intensity work test at velocities of 4, 5, 6, 7 and 8 m sec(-1). Heart rate was monitored and blood samples were drawn at rest and after each velocity to analyse packed cell volume, haemoglobin concentration, plasma lactate and potassium levels. Furthermore, the programmes were video-taped and stride length, duration and frequency, stance (restraint and propulsion), swing phase durations and stride vertical component were measured. The training protocol of the Andalusian horses produced significant decreases in the cardiovascular, haematological and metabolic responses to exercise. Locomotory training adaptation consisted of an increased stride frequency and a reduced stride length and vertical stride component. The last variable was the limiting factor of stride length both before and after training in the Andalusian horses. A different training protocol for show-jumping competition in Anglo-Arabian horses failed to show significant differences in the studied parameters to the work test, although an increase in stride length at velocities of over 6 m sec(-1) was observed. Stride vertical component did not have an effect on the physiological response to exercise, either before or after training. PMID:10088708

  16. The estimated mechanical advantage of the prosimian ankle joint musculature, and implications for locomotor adaptation.

    PubMed

    Goto, Ryosuke; Kumakura, Hiroo

    2013-05-01

    In this study we compared the power arm lengths and mechanical advantages attributed to 12 lower leg muscles across three prosimian species. The origins and insertions of the lower leg muscles in Garnett's galago, the ring-tailed lemur, and the slow loris were quantified and correlated with positional behaviour. The ankle joint of the galago has a speed-oriented mechanical system, in contrast to that of the slow loris, which exhibits more power-oriented mechanics. The lemur ankle joint exhibited intermediate power arm lengths and an intermediate mechanical advantage relative to the other primates. This result suggests that the mechanical differences in the ankle between the galago and the lemur, taxa that exhibit similar locomotory repertoires, reflect a difference in the kinematics and kinetics of leaping (i.e. generalised vs. specialised leapers). In contrast to leaping primates, lorises have developed a more power-oriented mechanical system as a foot adaptation for positional behaviours such as bridging or cantilevering in their arboreal habitat. PMID:23489408

  17. Variable Maternal Stress in Rats Alters Locomotor Activity, Social Behavior, and Recognition Memory in the Adult Offspring

    PubMed Central

    Wilson, Christina A.; Terry, Alvin V.

    2013-01-01

    Rats repeatedly exposed to variable prenatal stress (PNS) exhibit behavioral signs that are similar to those manifested in several neuropsychiatric disorders such as deficits in attention and inhibitory control, and impairments in memory-related task performance. The purpose of the study described here was to conduct a comprehensive battery of tests to further characterize the behavioral phenotype of PNS rats as well as to evaluate the sensitivity of the model to therapeutic interventions (i.e., to compounds previously shown to have therapeutic potential in neuropsychiatric disorders). The results of this study indicated that PNS in rats is associated with: 1) increased locomotor activity and stereotypic behaviors, 2) elevated sensitivity to the psychostimulant amphetamine, 3) increased aggressive behaviors toward both adult and juvenile rats and 4) delay-dependent deficits in recognition memory. There was no evidence that PNS rats exhibited deficits in other areas of motor function/learning, sensorimotor gating, spatial learning and memory, social withdrawal, or anhedonia. In addition, the results revealed that the second generation antipsychotic risperidone attenuated amphetamine-related increases in locomotor activity in PNS rats; however, the effect was not sustained over time. Furthermore, deficits in recognition memory in PNS rats were attenuated by the norepinephrine reuptake inhibitor, atomoxetine, but not by the α7 nicotinic acetylcholine receptor partial agonist, GTS-21. This study supports the supposition that important phenomenological similarities exist between rats exposed to PNS and patients afflicted with neuropsychiatric disorders thus further establishing the face validity of the model for evaluating potential therapeutic interventions. PMID:23287801

  18. Locomotor exercise in weightlessness

    NASA Technical Reports Server (NTRS)

    Thornton, W.; Whitmore, H.

    1991-01-01

    The requirements for exercise in space by means of locomotion are established and addressed with prototype treadmills for use during long-duration spaceflight. The adaptation of the human body to microgravity is described in terms of 1-G locomotor biomechanics, the effects of reduced activity, and effective activity-replacement techniques. The treadmill is introduced as a complement to other techniques of force replacement with reference given to the angle required for exercise. A motor-driven unit is proposed that can operate at a variety of controlled speeds and equivalent grades. The treadmills permit locomotor exercise as required for long-duration space travel to sustain locomotor and cardiorespiratory capacity at a level consistent with postflight needs.

  19. Sheltering behavior and locomotor activity in 11 genetically diverse common inbred mouse strains using home-cage monitoring.

    PubMed

    Loos, Maarten; Koopmans, Bastijn; Aarts, Emmeke; Maroteaux, Gregoire; van der Sluis, Sophie; Verhage, Matthijs; Smit, August B

    2014-01-01

    Functional genetic analyses in mice rely on efficient and in-depth characterization of the behavioral spectrum. Automated home-cage observation can provide a systematic and efficient screening method to detect unexplored, novel behavioral phenotypes. Here, we analyzed high-throughput automated home-cage data using existing and novel concepts, to detect a plethora of genetic differences in spontaneous behavior in a panel of commonly used inbred strains (129S1/SvImJ, A/J, C3H/HeJ, C57BL/6J, BALB/cJ, DBA/2J, NOD/LtJ, FVB/NJ, WSB/EiJ, PWK/PhJ and CAST/EiJ). Continuous video-tracking observations of sheltering behavior and locomotor activity were segmented into distinguishable behavioral elements, and studied at different time scales, yielding a set of 115 behavioral parameters of which 105 showed highly significant strain differences. This set of 115 parameters was highly dimensional; principal component analysis identified 26 orthogonal components with eigenvalues above one. Especially novel parameters of sheltering behavior and parameters describing aspects of motion of the mouse in the home-cage showed high genetic effect sizes. Multi-day habituation curves and patterns of behavior surrounding dark/light phase transitions showed striking strain differences, albeit with lower genetic effect sizes. This spontaneous home-cage behavior study demonstrates high dimensionality, with a strong genetic contribution to specific sets of behavioral measures. Importantly, spontaneous home-cage behavior analysis detects genetic effects that cannot be studied in conventional behavioral tests, showing that the inclusion of a few days of undisturbed, labor extensive home-cage assessment may greatly aid gene function analyses and drug target discovery. PMID:25264768

  20. Sheltering Behavior and Locomotor Activity in 11 Genetically Diverse Common Inbred Mouse Strains Using Home-Cage Monitoring

    PubMed Central

    Aarts, Emmeke; Maroteaux, Gregoire; van der Sluis, Sophie

    2014-01-01

    Functional genetic analyses in mice rely on efficient and in-depth characterization of the behavioral spectrum. Automated home-cage observation can provide a systematic and efficient screening method to detect unexplored, novel behavioral phenotypes. Here, we analyzed high-throughput automated home-cage data using existing and novel concepts, to detect a plethora of genetic differences in spontaneous behavior in a panel of commonly used inbred strains (129S1/SvImJ, A/J, C3H/HeJ, C57BL/6J, BALB/cJ, DBA/2J, NOD/LtJ, FVB/NJ, WSB/EiJ, PWK/PhJ and CAST/EiJ). Continuous video-tracking observations of sheltering behavior and locomotor activity were segmented into distinguishable behavioral elements, and studied at different time scales, yielding a set of 115 behavioral parameters of which 105 showed highly significant strain differences. This set of 115 parameters was highly dimensional; principal component analysis identified 26 orthogonal components with eigenvalues above one. Especially novel parameters of sheltering behavior and parameters describing aspects of motion of the mouse in the home-cage showed high genetic effect sizes. Multi-day habituation curves and patterns of behavior surrounding dark/light phase transitions showed striking strain differences, albeit with lower genetic effect sizes. This spontaneous home-cage behavior study demonstrates high dimensionality, with a strong genetic contribution to specific sets of behavioral measures. Importantly, spontaneous home-cage behavior analysis detects genetic effects that cannot be studied in conventional behavioral tests, showing that the inclusion of a few days of undisturbed, labor extensive home-cage assessment may greatly aid gene function analyses and drug target discovery. PMID:25264768

  1. Adaptive capture of expert behavior

    SciTech Connect

    Jones, R.D.; Barrett, C.L.; Hand, U.; Gordon, R.C.

    1994-08-01

    The authors smoothed and captured a set of expert rules with adaptive networks. The motivation for doing this is discussed. (1) Smoothing leads to stabler control actions. (2) For some sets of rules, the evaluation of the rules can be sped up. This is important in large-scale simulations where many intelligent elements are present. (3) Variability of the intelligent elements can be achieved by adjusting the weights in an adaptive network. (4) After capture has occurred, the weights can be adjusted based on performance criteria. The authors thus have the capability of learning a new set of rules that lead to better performance. The set of rules the authors chose to capture were based on a set of threat determining rules for tank commanders. The approach in this paper: (1) They smoothed the rules. The rule set was converted into a simple set of arithmetic statements. Continuous, non-binary inputs, are now permitted. (2) An operational measure of capturability was developed. (3) They chose four candidate networks for the rule set capture: (a) multi-linear network, (b) adaptive partial least squares, (c) connectionist normalized local spline (CNLS) network, and (d) CNLS net with a PLS preprocessor. These networks were able to capture the rule set to within a few percent. For the simple tank rule set, the multi-linear network performed the best. When the rules were modified to include more nonlinear behavior, CNLS net performed better than the other three nets which made linear assumptions. (4) The networks were tested for robustness to input noise. Noise levels of plus or minus 10% had no real effect on the network performance. Noise levels in the plus or minus 30% range degraded performance by a factor of two. Some performance enhancement occurred when the networks were trained with noisy data. (5) The scaling of the evaluation time was calculated. (6) Human variation can be mimicked in all the networks by perturbing the weights.

  2. Sub-chronic exposure to noise affects locomotor activity and produces anxiogenic and depressive like behavior in rats.

    PubMed

    Naqvi, Fizza; Haider, Saida; Batool, Zehra; Perveen, Tahira; Haleem, Darakhshan J

    2012-01-01

    Noise is defined as a displeasing and unwanted sound. It is one of the most encountered stressor to which mankind is exposed. Frustration, poor reading, impaired hearing and difficulty in problem solving activities are the common consequences of noise stress. It has been reported to produce atrophy of dendrites and alterations in neurotransmitter levels. Long term exposure to inescapable noise stress induces exhaustion, defeat, annoyance followed by decreased muscle movement, social contacts and mood changes. The present study was aimed to investigate the detrimental effects of noise exposure on behavior of rats and its association with altered neurochemistry. Changes in neurotransmitter levels in different brain regions including hippocampus have been reported following noise exposure and these changes in neurotransmitters levels have also been associated with altered behavior. In the present study, locomotor activity in rats was assessed by open field test (OFT) while anxiety and depressive behavior was monitored by elevated plus maze (EPM) and tail suspension (TST) tests. The results showed that 15 days sub-chronic exposure to noise stress induced anxiety and depression like behavior in male rats. These behavioral deficits observed in the present study suggest that an altered brain serotonergic and dopaminergic activity may be involved in the various psychological disorders following exposure to noise stress. PMID:22580521

  3. Lumbar vertebral morphology of flying, gliding, and suspensory mammals: implications for the locomotor behavior of the subfossil lemurs Palaeopropithecus and Babakotia.

    PubMed

    Granatosky, Michael C; Miller, Charlotte E; Boyer, Doug M; Schmitt, Daniel

    2014-10-01

    Lumbar vertebral morphology has been used as an indicator of locomotor behavior in living and fossil mammals. Rigidity within the lumbar region is thought to be important for increasing overall axial rigidity during various forms of locomotion, including bridging between supports, inverted quadrupedalism, gliding, and flying. However, distinguishing between those behaviors using bony features has been challenging. This study used osteological characters of the lumbar vertebrae to attempt to develop fine-grade functional distinctions among different mammalian species in order to make more complete inferences about how the axial skeleton affects locomotor behavior in extant mammals. These same lumbar characters were measured in two extinct species for which locomotor behaviors are well known, the sloth lemurs (Palaeopropithecus and Babakotia radofilai), in order to further evaluate their locomotor behaviors. Results from a principal components analysis of seven measurements, determined to be functionally significant from previous studies, demonstrate that inverted quadrupeds in the sample are characterized by dorsoventrally short and cranio-caudally expanded spinous processes, dorsally oriented transverse processes, and mediolaterally short and dorsoventrally high vertebral bodies compared with mammals that are relatively pronograde, vertical clingers, or gliders. Antipronograde mammals, dermopterans, and chiropterans also exhibit these traits, but not to the same extent as the inverted quadrupeds. In accordance with previous studies, our data show that the sloth lemur B. radofilai groups closely with antipronograde mammals like lorises, while Palaeopropithecus groups with extant sloths. These findings suggest that Palaeopropithecus was engaged in inverted quadrupedalism at a high frequency, while B. radofilai may have engaged in a more diverse array of locomotor and positional behaviors. The osteological features used here reflect differences in lumbar mobility

  4. From Concept to Measurement in Adaptive Behavior.

    ERIC Educational Resources Information Center

    Leland, Henry

    The concept of adaptation is approached from several directions: (1) a discussion of the meanings of adaptation; (2) a functional socio-cultural set of considerations on which one can base measurement in adaptive behavior; and (3) a practical, applied conceptualization relative to the utilization of the obtained information and the reasons for…

  5. Adaptive Behavior Profiles of Students with Disabilities

    ERIC Educational Resources Information Center

    Ditterline, Jeffrey; Banner, Diane; Oakland, Thomas; Becton, Daniel

    2008-01-01

    Assessment of adaptive behavior traditionally has been associated with the identification of individuals with mental retardation. Information on adaptive behavior increasingly is being used for comprehensive assessment, treatment planning, intervention, and program evaluation for individuals with various disorders. Data from the normative samples…

  6. Modular diversification of the locomotor system in damselfishes (Pomacentridae).

    PubMed

    Aguilar-Medrano, Rosalía; Frédérich, Bruno; Barber, Paul H

    2016-05-01

    As fish move and interact with their aquatic environment by swimming, small morphological variations of the locomotor system can have profound implications on fitness. Damselfishes (Pomacentridae) have inhabited coral reef ecosystems for more than 50 million years. As such, habitat preferences and behavior could significantly constrain the morphology and evolvability of the locomotor system. To test this hypothesis, we used phylogenetic comparative methods on morphometric, ecological and behavioral data. While body elongation represented the primary source of variation in the locomotor system of damselfishes, results also showed a diverse suite of morphological combinations between extreme morphologies. Results show clear associations between behavior, habitat preferences, and morphology, suggesting ecological constraints on shape diversification of the locomotor system. In addition, results indicate that the three modules of the locomotor system are weakly correlated, resulting in versatile and independent characters. These results suggest that Pomacentridae is shape may result from the interaction between (1) integrated parts of morphological variation that maintain overall swimming ability and (2) relatively independent parts of the morphology that facilitate adaptation and diversification. J. Morphol. 277:603-614, 2016. © 2016 Wiley Periodicals, Inc. PMID:26919129

  7. Ontogeny of locomotion in rhesus macaques (Macaca mulatta): II. Postural and locomotor behavior and habitat use in a free-ranging colony.

    PubMed

    Wells, J P; Turnquist, J E

    2001-05-01

    This study quantifies changes in postural and locomotor behavior as well as habitat use across the life span of free-ranging rhesus macaques (Macaca mulatta) in the Cayo Santiago colony in Puerto Rico. It focuses on developmentally related changes from birth to adulthood, and complements an earlier study by Turnquist and Wells ([1994] J Hum Evol 26:487-499) on the early postnatal ontogeny of the musculoskeletal system of the same colony. A total of 6,551 locomotor and postural events was analyzed. Selection and use of substrate correlated well with age. The more sedentary adult and dependent infant select safe, wide, horizontal arboreal settings in contrast to the older Infant IIs and Juveniles, who are learning locomotor and postural skills through independent chase and play. Infant macaques, when independent, often employ a low center of gravity and widely abducted limbs in order to broaden their contact with the base of support. This study shows that the previously reported ontogenetic changes in morphology are closely paralleled by changes in postural and locomotor behavior, and these in turn are correlated to changes in habitat use, particularly during the formative years. PMID:11309753

  8. The Nicotine-Evoked Locomotor Response: A Behavioral Paradigm for Toxicity Screening in Zebrafish (Danio rerio) Embryos and Eleutheroembryos Exposed to Methylmercury

    PubMed Central

    Mora-Zamorano, Francisco X.; Svoboda, Kurt R.; Carvan, Michael J.

    2016-01-01

    This study is an adaptation of the nicotine-evoked locomotor response (NLR) assay, which was originally utilized for phenotype-based neurotoxicity screening in zebrafish embryos. Zebrafish embryos do not exhibit spontaneous swimming until roughly 4 days post-fertilization (dpf), however, a robust swimming response can be induced as early as 36 hours post-fertilization (hpf) by means of acute nicotine exposure (30–240μM). Here, the NLR was tested as a tool for early detection of locomotor phenotypes in 36, 48 and 72 hpf mutant zebrafish embryos of the non-touch-responsive maco strain; this assay successfully discriminated mutant embryos from their non-mutant siblings. Then, methylmercury (MeHg) was used as a proof-of-concept neurotoxicant to test the effectiveness of the NLR assay as a screening tool in toxicology. The locomotor effects of MeHg were evaluated in 6 dpf wild type eleutheroembryos exposed to waterborne MeHg (0, 0.01, 0.03 and 0.1μM). Afterwards, the NLR assay was tested in 48 hpf embryos subjected to the same MeHg exposure regimes. Embryos exposed to 0.01 and 0.03μM of MeHg exhibited significant increases in locomotion in both scenarios. These findings suggest that similar locomotor phenotypes observed in free swimming fish can be detected as early as 48 hpf, when locomotion is induced with nicotine. PMID:27123921

  9. Phthalates Induce Neurotoxicity Affecting Locomotor and Thermotactic Behaviors and AFD Neurons through Oxidative Stress in Caenorhabditis elegans

    PubMed Central

    Tseng, I-Ling; Yang, Ying-Fei; Yu, Chan-Wei; Li, Wen-Hsuan; Liao, Vivian Hsiu-Chuan

    2013-01-01

    Background Phthalate esters are ubiquitous environmental contaminants and numerous organisms are thus exposed to various levels of phthalates in their natural habitat. Considering the critical, but limited, research on human neurobehavioral outcomes in association with phthalates exposure, we used the nematode Caenorhabditis elegans as an in vivo model to evaluate phthalates-induced neurotoxicity and the possible associated mechanisms. Principal Findings Exposure to phthalates (DEHP, DBP, and DIBP) at the examined concentrations induced behavioral defects, including changes in body bending, head thrashing, reversal frequency, and thermotaxis in C. elegans. Moreover, phthalates (DEHP, DBP, and DIBP) exposure caused toxicity, affecting the relative sizes of cell body fluorescent puncta, and relative intensities of cell bodies in AFD neurons. The mRNA levels of the majority of the genes (TTX-1, TAX-2, TAX-4, and CEH-14) that are required for the differentiation and function of AFD neurons were decreased upon DEHP exposure. Furthermore, phthalates (DEHP, DBP, and DIBP) exposure at the examined concentrations produced elevated intracellular reactive oxygen species (ROS) in C. elegans. Finally, pretreatment with the antioxidant ascorbic acid significantly lowered the intracellular ROS level, ameliorated the locomotor and thermotactic behavior defects, and protected the damage of AFD neurons by DEHP exposure. Conclusions Our study suggests that oxidative stress plays a critical role in the phthalate esters-induced neurotoxic effects in C. elegans. PMID:24349328

  10. Manipulation of D2 receptors with quinpirole and sulpiride affects locomotor activity before spatial behavior of rats in an active place avoidance task.

    PubMed

    Stuchlik, Ales; Rehakova, Lenka; Rambousek, Lukas; Svoboda, Jan; Vales, Karel

    2007-06-01

    Dopamine-mediated neurotransmission is widely studied with respect to motivation, motor activity and cognitive processes. The aim of the present study was to evaluate the role of D2 receptors in the behavior of rats in the active allothetic place avoidance (AAPA) task. D2 receptor agonist quinpirole and antagonist sulpiride were administered intraperitoneally 20min prior to behavioral testing. Administration of quinpirole led to dose-dependent increase of locomotion; the spatial efficiency was spared across the dose range studied (0.05-1.0mg/kg). In contrast, sulpiride decreased locomotor activity at a dose not influencing spatial efficiency (60mg/kg); the highest dose of sulpiride (100mg/kg) caused a deficit in both locomotor and spatial behaviors. The results suggest a relatively lesser importance of D2 receptors for spatial efficiency in the AAPA task, with a predominant influence of D2 receptor ligands on motor activity. PMID:17360063

  11. Group size alters postures, and maintenance, oral, locomotor and social behaviors of veal calves

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this study was to evaluate the effect of group size on behavior of veal calves. Holstein-Friesian bull calves (n = 168; 44 ± 3 d of age), were randomly assigned to 1 of 3 treatments of group housing with 2, 4, or 8 calves per pen (1.82 m2 per calf for all groups). Behavior was obser...

  12. Adaptive Controller Effects on Pilot Behavior

    NASA Technical Reports Server (NTRS)

    Trujillo, Anna C.; Gregory, Irene M.; Hempley, Lucas E.

    2014-01-01

    Adaptive control provides robustness and resilience for highly uncertain, and potentially unpredictable, flight dynamics characteristic. Some of the recent flight experiences of pilot-in-the-loop with an adaptive controller have exhibited unpredicted interactions. In retrospect, this is not surprising once it is realized that there are now two adaptive controllers interacting, the software adaptive control system and the pilot. An experiment was conducted to categorize these interactions on the pilot with an adaptive controller during control surface failures. One of the objectives of this experiment was to determine how the adaptation time of the controller affects pilots. The pitch and roll errors, and stick input increased for increasing adaptation time and during the segment when the adaptive controller was adapting. Not surprisingly, altitude, cross track and angle deviations, and vertical velocity also increase during the failure and then slowly return to pre-failure levels. Subjects may change their behavior even as an adaptive controller is adapting with additional stick inputs. Therefore, the adaptive controller should adapt as fast as possible to minimize flight track errors. This will minimize undesirable interactions between the pilot and the adaptive controller and maintain maneuvering precision.

  13. Complex adaptive behavior and dexterous action

    PubMed Central

    Harrison, Steven J.; Stergiou, Nicholas

    2016-01-01

    Dexterous action, as conceptualized by Bernstein in his influential ecological analysis of human behavior, is revealed in the ability to flexibly generate behaviors that are adaptively tailored to the demands of the context in which they are embedded. Conceived as complex adaptive behavior, dexterity depends upon the qualities of robustness and degeneracy, and is supported by the functional complexity of the agent-environment system. Using Bernstein’s and Gibson’s ecological analyses of behavior situated in natural environments as conceptual touchstones, we consider the hypothesis that complex adaptive behavior capitalizes upon general principles of self-organization. Here, we outline a perspective in which the complex interactivity of nervous-system, body, and environment is revealed as an essential resource for adaptive behavior. From this perspective, we consider the implications for interpreting the functionality and dysfunctionality of human behavior. This paper demonstrates that, optimal variability, the topic of this special issue, is a logical consequence of interpreting the functionality of human behavior as complex adaptive behavior. PMID:26375932

  14. Selective toxicity of L-DOPA to dopamine transporter-expressing neurons and locomotor behavior in zebrafish larvae.

    PubMed

    Stednitz, Sarah J; Freshner, Briana; Shelton, Samantha; Shen, Tori; Black, Donovan; Gahtan, Ethan

    2015-01-01

    Dopamine signaling is conserved across all animal species and has been implicated in the disease process of many neurological disorders, including Parkinson's disease (PD). The primary neuropathology in PD involves the death of dopaminergic cells in the substantia nigra (SN), an anatomical region of the brain implicated in dopamine production and voluntary motor control. Increasing evidence suggests that the neurotransmitter dopamine may have a neurotoxic metabolic product (DOPAL) that selectively damages dopaminergic cells. This study was designed to test this theory of oxidative damage in an animal model of Parkinson's disease, using a transgenic strain of zebrafish with fluorescent labeling of cells that express the dopamine transporter. The pretectum and ventral diencephalon exhibited reductions in cell numbers due to L-DOPA treatment while reticulospinal neurons that do not express the DAT were unaffected, and this was partially rescued by monoamine oxidase inhibition. Consistent with the MPTP model of PD in zebrafish larvae, spontaneous locomotor behavior in L-DOPA treated animals was depressed following a 24-h recovery period, while visually-evoked startle response rates and latencies were unaffected. PMID:26546233

  15. Influences of octopamine and juvenile hormone on locomotor behavior and period gene expression in the honeybee, Apis mellifera.

    PubMed

    Bloch, Guy; Meshi, Avital

    2007-02-01

    Octopamine (OA) and juvenile hormone (JH) are implicated in the regulation of age-based division of labor in the honeybee, Apis mellifera. We tested the hypothesis that these two neuroendocrine signals influence task-associated plasticity in circadian and diurnal rhythms, and in brain expression of the clock gene period (per). Treatment with OA, OA antagonist (epinastine), or both, did not affect the age at onset of circadian rhythmicity or the free running period in constant darkness (DD). Young bees orally treated with OA in light-dark (LD) illumination regime for 6 days followed by DD showed reduced alpha (the period between the daily onset and offset of activity) during the first 4 days in LD and the first 4 days in DD. Oral treatment with OA, epinastine, or both, but not manipulations of JH levels, caused increased average daily levels and aberrant patterns of brain per mRNA oscillation in young bees. These results suggest that OA and JH do not influence the development or function of the central pacemaker but rather that OA influences the brain expression of a clock gene and characteristics of locomotor behavior that are not thought to be under direct control of the circadian pacemaker. PMID:17082965

  16. Strain-Specific Changes in Locomotor Behavior in Larval Zebrafish Elicited by Cholinergic Challenge

    EPA Science Inventory

    Some studies have compared the baseline behavior of different strains of larval zebrafish (Danio rerio), but there is sparse information on strain-specific responses to chemical challenges. The following study examines both the basal activity and response to a pharmacological cha...

  17. Astrocytic IL-6 mediates locomotor activity, exploration, anxiety, learning and social behavior.

    PubMed

    Erta, Maria; Giralt, Mercedes; Esposito, Flavia Lorena; Fernandez-Gayol, Olaya; Hidalgo, Juan

    2015-07-01

    Interleukin-6 (IL-6) is a major cytokine in the central nervous system, secreted by different brain cells and with roles in a number of physiological functions. We herewith confirm and expand the importance of astrocytic production of and response to IL-6 by using transgenic mice deficient in astrocytic IL-6 (Ast-IL-6 KO) or in its receptor (Ast-IL-6R KO) in full C57Bl/6 genetic background. A major prosurvival effect of astrocytic IL-6 at early ages was clearly demonstrated. Robust effects were also evident in the control of activity and anxiety in the hole-board and elevated plus-maze, and in spatial learning in the Morris water-maze. The results also suggest an inhibitory role of IL-6 in the mechanism controlling the consolidation of hippocampus-dependent spatial learning. Less robust effects of astrocytic IL-6 system were also observed in despair behavior in the tail suspension test, and social behavior in the dominance and resident-intruder tests. The behavioral phenotype was highly dependent on age and/or sex in some cases. The phenotype of Ast-IL-6R KO mice mimicked only partially that of Ast-IL-6KO mice, which indicates both a role of astrocytes in behavior and the participation of other cells besides astrocytes. No evidences of altered function of the hypothalamic-pituitary-adrenal axis were observed. These results demonstrate that astrocytic IL-6 (acting at least partially in astrocytes) regulates normal behavior in mice. PMID:26143620

  18. Differential contributions of dopamine D1, D2, and D3 receptors to MDMA-induced effects on locomotor behavior patterns in mice.

    PubMed

    Risbrough, Victoria B; Masten, Virginia L; Caldwell, Sorana; Paulus, Martin P; Low, Malcolm J; Geyer, Mark A

    2006-11-01

    MDMA or 'ecstasy' (3,4-methylenedioxymethamphetamine) is a commonly used psychoactive drug that has unusual and distinctive behavioral effects in both humans and animals. In rodents, MDMA administration produces a unique locomotor activity pattern, with high activity characterized by smooth locomotor paths and perseverative thigmotaxis. Although considerable evidence supports a major role for serotonin release in MDMA-induced locomotor activity, dopamine (DA) receptor antagonists have recently been shown to attenuate these effects. Here, we tested the hypothesis that DA D1, D2, and D3 receptors contribute to MDMA-induced alterations in locomotor activity and motor patterns. DA D1, D2, or D3 receptor knockout (KO) and wild-type (WT) mice received vehicle or (+/-)-MDMA and were tested for 60 min in the behavioral pattern monitor (BPM). D1 KO mice exhibited significant increases in MDMA-induced hyperactivity in the late testing phase as well as an overall increase in straight path movements. In contrast, D2 KO mice exhibited reductions in MDMA-induced hyperactivity in the late testing phase, and exhibited significantly less sensitivity to MDMA-induced perseverative thigmotaxis. At baseline, D2 KO mice also exhibited reduced activity and more circumscribed movements compared to WT mice. Female D3 KO mice showed a slight reduction in MDMA-induced hyperactivity. These results confirm differential modulatory roles for D1 and D2 and perhaps D3 receptors in MDMA-induced hyperactivity. More specifically, D1 receptor activation appears to modify the type of activity (linear vs circumscribed), whereas D2 receptor activation appears to contribute to the repetitive circling behavior produced by MDMA. PMID:16855533

  19. IMPORTANCE OF D1 AND D2 RECEPTORS IN THE DORSAL CAUDATE-PUTAMEN FOR THE LOCOMOTOR ACTIVITY AND STEREOTYPED BEHAVIORS OF PREWEANLING RATS

    PubMed Central

    CHARNTIKOV, S.; DER-GHAZARIAN, T.; HERBERT, M. S.; HORN, L. R.; WIDARMA, C. B.; GUTIERREZ, A.; VARELA, F. A.; MCDOUGALL, S. A.

    2011-01-01

    Dopaminergic compounds often affect the unlearned behaviors of preweanling and adult rats differently, although the brain regions underlying these age-dependent behavioral effects have not been specified. A candidate brain region is the dorsal caudate-putamen (CPu); thus, a goal of the present study was to determine whether D1 and D2 receptors in the dorsal CPu are capable of modulating the unlearned behaviors of preweanling rats. In Experiments 1 and 2, selective and nonselective dopamine agonists were bilaterally microinjected into the dorsal CPu on postnatal day (PD) 18 and both locomotor activity and stereotypy were measured. In Experiment 3, the functional coupling of D1 and D2 receptors was assessed by microinjecting the D1 agonist SKF-82958 and the D2/D3 agonist quinpirole either alone or in combination. In Experiments 4 and 5, quinpirole and the D1 receptor antagonist SCH-23390, or SKF-82958 and the D2 receptor antagonist raclopride, were co-administered into the dorsal CPu to further assess whether a functional D1 or D2 receptor system is necessary for the expression of quinpirole- or SKF-82958-induced behaviors. Results showed that selective stimulation of D1 or D2 receptors in the dorsal CPu increased both the locomotor activity and stereotypy of preweanling rats. Receptor coupling was evident on PD 18 because co-administration of a subthreshold dose of SKF-82958 and quinpirole produced more locomotor activity than either agonist alone. Lastly, the dopamine antagonist experiments showed that both D1 and D2 receptor systems must be functional for SKF-82958- or quinpirole-induced locomotor activity to be fully manifested. When the present data are compared to results from non-ontogenetic studies, it appears that pharmacological manipulation of D1 and D2 receptors in the dorsal CPu affects the behavior of preweanling and adult rats in a generally similar manner, although some important age-dependent differences are apparent. For example, D1 and/or D2

  20. Importance of D1 and D2 receptors in the dorsal caudate-putamen for the locomotor activity and stereotyped behaviors of preweanling rats.

    PubMed

    Charntikov, S; Der-Ghazarian, T; Herbert, M S; Horn, L R; Widarma, C B; Gutierrez, A; Varela, F A; McDougall, S A

    2011-06-01

    Dopaminergic compounds often affect the unlearned behaviors of preweanling and adult rats differently, although the brain regions underlying these age-dependent behavioral effects have not been specified. A candidate brain region is the dorsal caudate-putamen (CPu); thus, a goal of the present study was to determine whether D1 and D2 receptors in the dorsal CPu are capable of modulating the unlearned behaviors of preweanling rats. In Experiments 1 and 2, selective and nonselective dopamine agonists were bilaterally microinjected into the dorsal CPu on postnatal day (PD) 18 and both locomotor activity and stereotypy were measured. In Experiment 3, the functional coupling of D1 and D2 receptors was assessed by microinjecting the D1 agonist SKF-82958 and the D₂/D₃ agonist quinpirole either alone or in combination. In Experiments 4 and 5, quinpirole and the D1 receptor antagonist SCH-23390, or SKF-82958 and the D2 receptor antagonist raclopride, were co-administered into the dorsal CPu to further assess whether a functional D1 or D2 receptor system is necessary for the expression of quinpirole- or SKF-82958-induced behaviors. Results showed that selective stimulation of D1 or D2 receptors in the dorsal CPu increased both the locomotor activity and stereotypy of preweanling rats. Receptor coupling was evident on PD 18 because co-administration of a subthreshold dose of SKF-82958 and quinpirole produced more locomotor activity than either agonist alone. Lastly, the dopamine antagonist experiments showed that both D1 and D2 receptor systems must be functional for SKF-82958- or quinpirole-induced locomotor activity to be fully manifested. When the present data are compared to results from non-ontogenetic studies, it appears that pharmacological manipulation of D1 and D2 receptors in the dorsal CPu affects the behavior of preweanling and adult rats in a generally similar manner, although some important age-dependent differences are apparent. For example, D1 and/or D2

  1. Adaptive Behavior for Mobile Robots

    NASA Technical Reports Server (NTRS)

    Huntsberger, Terrance

    2009-01-01

    The term "System for Mobility and Access to Rough Terrain" (SMART) denotes a theoretical framework, a control architecture, and an algorithm that implements the framework and architecture, for enabling a land-mobile robot to adapt to changing conditions. SMART is intended to enable the robot to recognize adverse terrain conditions beyond its optimal operational envelope, and, in response, to intelligently reconfigure itself (e.g., adjust suspension heights or baseline distances between suspension points) or adapt its driving techniques (e.g., engage in a crabbing motion as a switchback technique for ascending steep terrain). Conceived for original application aboard Mars rovers and similar autonomous or semi-autonomous mobile robots used in exploration of remote planets, SMART could also be applied to autonomous terrestrial vehicles to be used for search, rescue, and/or exploration on rough terrain.

  2. Different strategies of exploration and phenotypic variability of the locomotor behavior in new environment: Comparative study of the laboratory opossum (Monodelphis domestica) and Wistar rat (Rattus norvegicus).

    PubMed

    Klejbor, Ilona; Turlejski, Krzysztof

    2012-01-01

    Spontaneous locomotor activity of opossums and Wistar rats during a two-hour session in the open field has been recorded, assessed and behavior of individuals of the two species compared. Afterwards, groups of highly active (HA) and low active (LA) opossums and rats were selected on the basis of the distance traveled in the test. Differences between the selected groups were evaluated. Opossums were generally more active, moving faster and covering longer distance. They spent more time in the central part of the open field and traveled across the center more times than rats, therefore they showed also a lower level of anxiety. These data confirm our previous results indicating that opossums preferentially use the risky exploration strategy while rats mainly rely on the defensive behavior. Opossums showed a higher variability of the volume of locomotor activity than rats. Comparison of the HA and LA groups of opossums and rats showed that in each species they differed on another principle: the level of anxiety in Wistar rats and level of locomotor activity in opossums. Therefore results of the open field test might measure different parameters in different species. PMID:23377274

  3. Modulation of locomotor activation by the rostromedial tegmental nucleus.

    PubMed

    Lavezzi, Heather N; Parsley, Kenneth P; Zahm, Daniel S

    2015-02-01

    The rostromedial tegmental nucleus (RMTg) is a strong inhibitor of dopamine neurons in the ventral tegmental area (VTA) reported to influence neurobiological and behavioral responses to reward omission, aversive and fear-eliciting stimuli, and certain drugs of abuse. Insofar as previous studies implicate ventral mesencephalic dopamine neurons as an essential component of locomotor activation, we hypothesized that the RMTg also should modulate locomotion activation. We observed that bilateral infusions into the RMTg of the gamma-aminobutyric acid A (GABAA) agonist, muscimol, indeed activate locomotion. Alternatively, bilateral RMTg infusions of the GABAA receptor antagonist, bicuculline, suppress robust activations of locomotion elicited in two distinct ways: (1) by disinhibitory stimulation of neurons in the lateral preoptic area and (2) by return of rats to an environment previously paired with amphetamine administration. The possibility that suppressive locomotor effects of RMTg bicuculline infusions were due to unintended spread of drug to the nearby VTA was falsified by a control experiment showing that bilateral infusions of bicuculline into the VTA produce activation rather than suppression of locomotion. These results objectively implicate the RMTg in the regulation of locomotor activation. The effect is important because much evidence reported in the literature suggests that locomotor activation can be an involuntary behavioral expression of expectation and/or want without which the willingness to execute adaptive behaviors is impaired. PMID:25164249

  4. Meek males and fighting females: sexually-dimorphic antipredator behavior and locomotor performance is explained by morphology in bark scorpions (Centruroides vittatus).

    PubMed

    Carlson, Bradley E; McGinley, Shannen; Rowe, Matthew P

    2014-01-01

    Sexual dimorphism can result from sexual or ecological selective pressures, but the importance of alternative reproductive roles and trait compensation in generating phenotypic differences between the sexes is poorly understood. We evaluated morphological and behavioral sexual dimorphism in striped bark scorpions (Centruroides vittatus). We propose that reproductive roles have driven sexually dimorphic body mass in this species which produces sex differences in locomotor performance. Poor locomotor performance in the females (due to the burden of being gravid) favors compensatory aggression as part of an alternative defensive strategy, while male morphology is coadapted to support a sprinting-based defensive strategy. We tested the effects of sex and morphology on stinging and sprinting performance and characterized overall differences between the sexes in aggressiveness towards simulated threats. Greater body mass was associated with higher sting rates and slower sprinting within sexes, which explained the greater aggression of females (the heavier sex) and, along with longer legs in males, the improved sprint performance in males. These findings suggest females are aggressive to compensate for locomotor costs of reproduction while males possess longer legs to enhance sprinting for predator evasion and mate finding. Sexual dimorphism in the metasoma ("tail") was unrelated to stinging and sprinting performance and may best be explained by sexual selection. PMID:24870611

  5. Meek Males and Fighting Females: Sexually-Dimorphic Antipredator Behavior and Locomotor Performance Is Explained by Morphology in Bark Scorpions (Centruroides vittatus)

    PubMed Central

    Carlson, Bradley E.; McGinley, Shannen; Rowe, Matthew P.

    2014-01-01

    Sexual dimorphism can result from sexual or ecological selective pressures, but the importance of alternative reproductive roles and trait compensation in generating phenotypic differences between the sexes is poorly understood. We evaluated morphological and behavioral sexual dimorphism in striped bark scorpions (Centruroides vittatus). We propose that reproductive roles have driven sexually dimorphic body mass in this species which produces sex differences in locomotor performance. Poor locomotor performance in the females (due to the burden of being gravid) favors compensatory aggression as part of an alternative defensive strategy, while male morphology is coadapted to support a sprinting-based defensive strategy. We tested the effects of sex and morphology on stinging and sprinting performance and characterized overall differences between the sexes in aggressiveness towards simulated threats. Greater body mass was associated with higher sting rates and slower sprinting within sexes, which explained the greater aggression of females (the heavier sex) and, along with longer legs in males, the improved sprint performance in males. These findings suggest females are aggressive to compensate for locomotor costs of reproduction while males possess longer legs to enhance sprinting for predator evasion and mate finding. Sexual dimorphism in the metasoma (“tail”) was unrelated to stinging and sprinting performance and may best be explained by sexual selection. PMID:24870611

  6. Increased dopaminergic innervation in the brain of conditional mutant mice overexpressing Otx2: effects on locomotor behavior and seizure susceptibility.

    PubMed

    Tripathi, P P; Di Giovannantonio, L G; Sanguinetti, E; Acampora, D; Allegra, M; Caleo, M; Wurst, W; Simeone, A; Bozzi, Y

    2014-03-01

    The homeobox-containing transcription factor Otx2 controls the identity, fate and proliferation of mesencephalic dopaminergic (mesDA) neurons. Transgenic mice, in which Otx2 was conditionally overexpressed by a Cre recombinase expressed under the transcriptional control of the Engrailed1 gene (En1(Cre/+); tOtx2(ov/+)), show an increased number of mesDA neurons during development. In adult mice, Otx2 is expressed in a subset of neurons in the ventral tegmental area (VTA) and its overexpression renders mesDA more resistant to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-HCl (MPTP) neurotoxin. Here we further investigated the neurological consequences of the increased number of mesDA neurons in En1(Cre/+); tOtx2(ov/+) adult mice. Immunohistochemistry for the active, glycosylated form of the dopamine transporter (glyco-Dat) showed that En1(Cre/+); tOtx2(ov/+) adult mice display an increased density of mesocortical DAergic fibers, as compared to control animals. Increased glyco-Dat staining was accompanied by a marked hypolocomotion in En1(Cre/+); tOtx2(ov/+) mice, as detected in the open field test. Since conditional knockout mice lacking Otx2 in mesDA precursors (En1(Cre/+); Otx2(floxv/flox) mice) show a marked resistance to kainic acid (KA)-induced seizures, we investigated the behavioral response to KA in En1(Cre/+); tOtx2(ov/+) and control mice. No difference was observed between mutant and control mice, but En1(Cre/+); tOtx2(ov/+) mice showed a markedly different c-fos mRNA induction profile in the cerebral cortex and hippocampus after KA seizures, as compared to controls. Accordingly, an increased density of parvalbumin (PV)-positive inhibitory interneurons was detected in the deep layers of the frontal cortex of naïve En1(Cre/+); tOtx2(ov/+) mice, as compared to controls. These data indicate that Otx2 overexpression results in increased DAergic innervation and PV cell density in the fronto-parietal cortex, with important consequences on spontaneous locomotor

  7. Effects of muscarinic M1 receptor blockade on cocaine-induced elevations of brain dopamine levels and locomotor behavior in rats.

    PubMed

    Tanda, Gianluigi; Ebbs, Aaron L; Kopajtic, Theresa A; Elias, Lyn M; Campbell, Bettye L; Newman, Amy H; Katz, Jonathan L

    2007-04-01

    Cholinergic muscarinic systems have been shown to influence dopaminergic function in the central nervous system. In addition, previous studies of benztropine analogs that inhibit dopamine uptake and show antagonism at muscarinic receptors show these drugs to be less effective than cocaine in producing its various prototypic effects such as locomotor stimulation. Because previous pharmacological studies on these topics have used nonselective M1 antagonists, we examined the interactions of preferential M1 muscarinic antagonists and cocaine. Dose-dependent increases in extracellular levels of dopamine in selected brain areas, the nucleus accumbens (NAc) shell and core, and the prefrontal cortex, were produced by cocaine but not by the preferential M1 antagonists telenzepine and trihexyphenidyl. When administered with cocaine, however, both M1 antagonists dose-dependently increased the effects of cocaine on dopamine in the NAc shell, and these effects were selective in that they were not obtained in the NAc core or in the prefrontal cortex. Telenzepine also increased locomotor activity, although the effect was small compared with that of cocaine. The locomotor stimulant effects of trihexyphenidyl, in contrast, approached those of cocaine. Telenzepine attenuated, whereas trihexyphenidyl enhanced the locomotor stimulant effects of cocaine, with neither drug facilitating cocaine-induced stereotypy. The present results indicate that preferential antagonist effects at muscarinic M1 receptors do not uniformly alter all of the effects of cocaine, nor do they explain the differences in effects of cocaine and benztropine analogs, and that the alterations in dopamine levels in the NAc shell do not predict the behavioral effects of the interactions with cocaine. PMID:17255465

  8. Central Regulation of Locomotor Behavior of Drosophila melanogaster Depends on a CASK Isoform Containing CaMK-Like and L27 Domains

    PubMed Central

    Slawson, Justin B.; Kuklin, Elena A.; Ejima, Aki; Mukherjee, Konark; Ostrovsky, Lilly; Griffith, Leslie C.

    2011-01-01

    Genetic causes for disturbances of locomotor behavior can be due to muscle, peripheral neuron, or central nervous system pathologies. The Drosophila melanogaster homolog of human CASK (also known as caki or camguk) is a molecular scaffold that has been postulated to have roles in both locomotion and plasticity. These conclusions are based on studies using overlapping deficiencies that largely eliminate the entire CASK locus, but contain additional chromosomal aberrations as well. More importantly, analysis of the sequenced Drosophila genome suggests the existence of multiple protein variants from the CASK locus, further complicating the interpretation of experiments using deficiency strains. In this study, we generated small deletions within the CASK gene that eliminate gene products containing the CaMK-like and L27 domains (CASK-β), but do not affect transcripts encoding the smaller forms (CASK-α), which are structurally homologous to vertebrate MPP1. These mutants have normal olfactory habituation, but exhibit a striking array of locomotor problems that includes both initiation and motor maintenance defects. Previous studies had suggested that presynaptic release defects at the neuromuscular junction in the multigene deficiency strain were the likely basis of its locomotor phenotype. The locomotor phenotype of the CASK-β mutant, however, cannot be rescued by expression of a CASK-β transgene in motor neurons. Expression in a subset of central neurons that does not include the ellipsoid body, a well-known pre-motor neuropil, provides complete rescue. Full-length CASK-β, while widely expressed in the nervous system, appears to have a unique role within central circuits that control motor output. PMID:21059886

  9. Neurophysiology of performance monitoring and adaptive behavior.

    PubMed

    Ullsperger, Markus; Danielmeier, Claudia; Jocham, Gerhard

    2014-01-01

    Successful goal-directed behavior requires not only correct action selection, planning, and execution but also the ability to flexibly adapt behavior when performance problems occur or the environment changes. A prerequisite for determining the necessity, type, and magnitude of adjustments is to continuously monitor the course and outcome of one's actions. Feedback-control loops correcting deviations from intended states constitute a basic functional principle of adaptation at all levels of the nervous system. Here, we review the neurophysiology of evaluating action course and outcome with respect to their valence, i.e., reward and punishment, and initiating short- and long-term adaptations, learning, and decisions. Based on studies in humans and other mammals, we outline the physiological principles of performance monitoring and subsequent cognitive, motivational, autonomic, and behavioral adaptation and link them to the underlying neuroanatomy, neurochemistry, psychological theories, and computational models. We provide an overview of invasive and noninvasive systemic measures, such as electrophysiological, neuroimaging, and lesion data. We describe how a wide network of brain areas encompassing frontal cortices, basal ganglia, thalamus, and monoaminergic brain stem nuclei detects and evaluates deviations of actual from predicted states indicating changed action costs or outcomes. This information is used to learn and update stimulus and action values, guide action selection, and recruit adaptive mechanisms that compensate errors and optimize goal achievement. PMID:24382883

  10. Adaptive human behavior in epidemiological models.

    PubMed

    Fenichel, Eli P; Castillo-Chavez, Carlos; Ceddia, M G; Chowell, Gerardo; Parra, Paula A Gonzalez; Hickling, Graham J; Holloway, Garth; Horan, Richard; Morin, Benjamin; Perrings, Charles; Springborn, Michael; Velazquez, Leticia; Villalobos, Cristina

    2011-04-12

    The science and management of infectious disease are entering a new stage. Increasingly public policy to manage epidemics focuses on motivating people, through social distancing policies, to alter their behavior to reduce contacts and reduce public disease risk. Person-to-person contacts drive human disease dynamics. People value such contacts and are willing to accept some disease risk to gain contact-related benefits. The cost-benefit trade-offs that shape contact behavior, and hence the course of epidemics, are often only implicitly incorporated in epidemiological models. This approach creates difficulty in parsing out the effects of adaptive behavior. We use an epidemiological-economic model of disease dynamics to explicitly model the trade-offs that drive person-to-person contact decisions. Results indicate that including adaptive human behavior significantly changes the predicted course of epidemics and that this inclusion has implications for parameter estimation and interpretation and for the development of social distancing policies. Acknowledging adaptive behavior requires a shift in thinking about epidemiological processes and parameters. PMID:21444809

  11. Adaptive human behavior in epidemiological models

    PubMed Central

    Fenichel, Eli P.; Castillo-Chavez, Carlos; Ceddia, M. G.; Chowell, Gerardo; Parra, Paula A. Gonzalez; Hickling, Graham J.; Holloway, Garth; Horan, Richard; Morin, Benjamin; Perrings, Charles; Springborn, Michael; Velazquez, Leticia; Villalobos, Cristina

    2011-01-01

    The science and management of infectious disease are entering a new stage. Increasingly public policy to manage epidemics focuses on motivating people, through social distancing policies, to alter their behavior to reduce contacts and reduce public disease risk. Person-to-person contacts drive human disease dynamics. People value such contacts and are willing to accept some disease risk to gain contact-related benefits. The cost–benefit trade-offs that shape contact behavior, and hence the course of epidemics, are often only implicitly incorporated in epidemiological models. This approach creates difficulty in parsing out the effects of adaptive behavior. We use an epidemiological–economic model of disease dynamics to explicitly model the trade-offs that drive person-to-person contact decisions. Results indicate that including adaptive human behavior significantly changes the predicted course of epidemics and that this inclusion has implications for parameter estimation and interpretation and for the development of social distancing policies. Acknowledging adaptive behavior requires a shift in thinking about epidemiological processes and parameters. PMID:21444809

  12. Qualification of spontaneous undirected locomotor behavior of fish for sublethal toxicity testing. Part 1. Variability of measurement parameters under general test conditions

    SciTech Connect

    Vogl, C.; Grillitsch, B.; Wytek, R.; Spieser, O.H.; Scholz, W.

    1999-12-01

    An automated, personal computer-based video-processing, object-recognition, and object-tracing system was used to record and analyze undirected spontaneous locomotor behavior of small groups of undisturbed zebra fish (Brachydanio rerio) in laboratory tanks. The primary data provided by the monitoring system were the individually assigned, time-stamped coordinates of the fish in two-dimensional projection. Secondary parameters (position, velocity of movement in the horizontal and the vertical direction, and temporal intraindividual and interindividual association) were calculated. The computed parameters offered a multidimensional description of spontaneous undirected swimming behavior of the fish and proved to be largely independent of water temperature, length, weight, and sex ratio of the zebra fish within the standardized range, but varied significantly with the feeding regime, time of day, number of fish per tank, and batch. Statistical characteristics of the behavioral parameters confirmed them as being appropriate for parametric statistical analyses.

  13. Contrarian behavior in a complex adaptive system

    NASA Astrophysics Data System (ADS)

    Liang, Y.; An, K. N.; Yang, G.; Huang, J. P.

    2013-01-01

    Contrarian behavior is a kind of self-organization in complex adaptive systems (CASs). Here we report the existence of a transition point in a model resource-allocation CAS with contrarian behavior by using human experiments, computer simulations, and theoretical analysis. The resource ratio and system predictability serve as the tuning parameter and order parameter, respectively. The transition point helps to reveal the positive or negative role of contrarian behavior. This finding is in contrast to the common belief that contrarian behavior always has a positive role in resource allocation, say, stabilizing resource allocation by shrinking the redundancy or the lack of resources. It is further shown that resource allocation can be optimized at the transition point by adding an appropriate size of contrarians. This work is also expected to be of value to some other fields ranging from management and social science to ecology and evolution.

  14. Locomotor diversification in new world monkeys: running, climbing, or clawing along evolutionary branches.

    PubMed

    Youlatos, Dionisios; Meldrum, Jeff

    2011-12-01

    Modern platyrrhines exhibit a remarkable diversity of locomotor and postural adaptations, which evolved along multiple trajectories since the initial immigration to the island continent of South America. We trace this diversification by reviewing the available paleontological and neontological data for postcranial morphology and ecological adaptation. Fossil platyrrhines are notably diverse, from the Oligocene Branisella, to the varied Patagonian early Miocene quadurpedal-leaping and quadrupedal-climbing fossils of disputed affinities, on through the rich middle Miocene Colombian quadurpedal-leaping forms. More recent taxa exhibit even more derived positional patterns, from the largest suspensory atelids in Pleistocene Brazil, to the remarkable Antillean radiation with suspensory forms and also semiterrestrial species, with postcranial morphology convergent on some Old World monkeys. Field studies of positional behavior of modern platyrrhines set the framework for a spectrum of locomotor adaptations. Central within this spectrum is a cluster of medium-sized species with generalized locomotion (quadrupedal-leaping). At opposite poles lie the more derived conditions: large-bodied species exhibiting locomotor specializations for climbing-suspension; small-bodied species exhibiting adaptations for claw climbing and leaping. This behavior-based spectrum of locomotor diversification is similarly evident in a morphology-based pattern, that is, that produced by the shape of the talus. The implications of the record of platyrrhine postcranial evolution for the competing hypotheses of platyrrhine phylogenetic patterns, the "long lineage hypothesis" and the "stem platyrrhine hypothesis," are considered. PMID:22042747

  15. Adaptive Behavior of Children and Adolescents with Visual Impairments

    ERIC Educational Resources Information Center

    Papadopoulos, Konstantinos; Metsiou, Katerina; Agaliotis, Ioannis

    2011-01-01

    The present study explored the total adaptive behavior of children and adolescents with visual impairments, as well as their adaptive behavior in each of the domains of Communication, Daily Living Skills, and Socialization. Moreover, the predictors of the performance and developmental delay in adaptive behavior were investigated. Instrumentation…

  16. The effects of radio-frequency lesions of the nucleus accumbens on d-amphetamine-induced locomotor and rearing behavior in rats.

    PubMed

    Kehne, J H; Sant, W W; Sorenson, C A

    1981-01-01

    A large body of evidence supports the conclusion that mesolimbic dopaminergic neurons, particularly those that innervate the nucleus accumbens (n. ACC), are important for the expression of amphetamine-stimulated locomotor behavior (ASLB). However, a contradictory report (Wirtshafter et al. 1978), stating that bilateral lesions of the n. ACC fail to block ASLB, was based on a general measure of activity that did not distinguish between locomotion and rearing. In the present study, observer ratings of videotaped responses were used to determine the separate effects of 2.0 mg/kg d-amphetamine (d-AMP) on locomotion and rearing in rats with either sham or radio-frequency lesions of the n. ACC. The n.ACC lesions blocked the locomotor stimulation, but not the increased rearing that follows d-AMP administration. These results support the general conclusion that dopaminergic terminals in the n. ACC are important for the expression of ASLB, and further suggest that d-AMP-stimulated locomotion and rearing are mediated through different neural substrates. PMID:6803281

  17. Rats classified as low or high cocaine locomotor responders: A unique model involving striatal dopamine transporters that predicts cocaine addiction-like behaviors

    PubMed Central

    Yamamoto, Dorothy J.; Nelson, Anna M.; Mandt, Bruce H.; Larson, Gaynor A.; Rorabaugh, Jacki M.; Ng, Christopher M.C.; Barcomb, Kelsey M.; Richards, Toni L.; Allen, Richard M.; Zahniser, Nancy R.

    2013-01-01

    Individual differences are a hallmark of drug addiction. Here, we describe a rat model based on differential initial responsiveness to low dose cocaine. Despite similar brain cocaine levels, individual outbred Sprague-Dawley rats exhibit markedly different magnitudes of acute cocaine-induced locomotor activity and, thereby, can be classified as low or high cocaine responders (LCRs or HCRs). LCRs and HCRs differ in drug-induced, but not novelty-associated, hyperactivity. LCRs have higher basal numbers of striatal dopamine transporters (DATs) than HCRs and exhibit marginal cocaine inhibition of in vivo DAT activity and cocaine-induced increases in extracellular DA. Importantly, lower initial cocaine response predicts greater locomotor sensitization, conditioned place preference and greater motivation to self-administer cocaine following low dose acquisition. Further, outbred Long-Evans rats classified as LCRs, versus HCRs, are more sensitive to cocaine’s discriminative stimulus effects. Overall, results to date with the LCR/HCR model underscore the contribution of striatal DATs to individual differences in initial cocaine responsiveness and the value of assessing the influence of initial drug response on subsequent expression of addiction-like behaviors. PMID:23850581

  18. Rats classified as low or high cocaine locomotor responders: a unique model involving striatal dopamine transporters that predicts cocaine addiction-like behaviors.

    PubMed

    Yamamoto, Dorothy J; Nelson, Anna M; Mandt, Bruce H; Larson, Gaynor A; Rorabaugh, Jacki M; Ng, Christopher M C; Barcomb, Kelsey M; Richards, Toni L; Allen, Richard M; Zahniser, Nancy R

    2013-09-01

    Individual differences are a hallmark of drug addiction. Here, we describe a rat model based on differential initial responsiveness to low dose cocaine. Despite similar brain cocaine levels, individual outbred Sprague-Dawley rats exhibit markedly different magnitudes of acute cocaine-induced locomotor activity and, thereby, can be classified as low or high cocaine responders (LCRs or HCRs). LCRs and HCRs differ in drug-induced, but not novelty-associated, hyperactivity. LCRs have higher basal numbers of striatal dopamine transporters (DATs) than HCRs and exhibit marginal cocaine inhibition of in vivo DAT activity and cocaine-induced increases in extracellular DA. Importantly, lower initial cocaine response predicts greater locomotor sensitization, conditioned place preference and greater motivation to self-administer cocaine following low dose acquisition. Further, outbred Long-Evans rats classified as LCRs, versus HCRs, are more sensitive to cocaine's discriminative stimulus effects. Overall, results to date with the LCR/HCR model underscore the contribution of striatal DATs to individual differences in initial cocaine responsiveness and the value of assessing the influence of initial drug response on subsequent expression of addiction-like behaviors. PMID:23850581

  19. Adaptive Behavior Evaluation Scale: School Version Technical Manual. Revised.

    ERIC Educational Resources Information Center

    McCarney, Stephen B.

    This test manual provides information on the Adaptive Behavior Education Scale-Revised (ABES-R), a 25-minute behavior scale designed to evaluate adaptive skills in students with behavioral, learning, and intellectual disabilities, including educationally relevant behavior which may be identified as contributing to more appropriate diagnosis,…

  20. Adaptive Behavior Evaluation Scale: Home Version Technical Manual. Revised.

    ERIC Educational Resources Information Center

    McCarney, Stephen B.

    This test manual provides information on the Adaptive Behavior Education Scale-Home Version (ABES), a 25-minute behavior scale designed to evaluate adaptive skills in students with behavioral, learning, and intellectual disabilities, including educationally relevant behavior which may be identified as contributing to more appropriate diagnosis,…

  1. Development of a Countermeasure to Mitigate Postflight Locomotor Dysfunction

    NASA Technical Reports Server (NTRS)

    Bloomberg, J. J.; Mulavara, A. P.; Peters, B. T.; Cohen, H. S.; Richards, J. T.; Miller, C. A.; Brady, R.; Warren, L. E.; Ruttley, T. M.

    2006-01-01

    generalization training program using a variety of visuomotor distortions and throwing as the dependent measure can learn to enhance their ability to adapt to a novel sensorimotor environment (Roller et al., 2001). Importantly, this increased adaptability was retained even one month after completion of the training period. Adaptive generalization has been observed in a variety of other tasks requiring sensorimotor transformations including manual control tasks and reaching (Bock et al., 2001, Seidler, 2003) and obstacle avoidance during walking (Lam and Dietz, 2004). Taken together, the evidence suggests that a training regimen exposing crewmembers to variation in locomotor conditions, with repeated transitions among states, may enhance their ability to learn how to reassemble appropriate locomotor patterns upon return from microgravity. We believe exposure to this type of training will extend crewmembers locomotor behavioral repertoires, facilitating the return of functional mobility after long duration space flight. In other words, our proposed training protocol will compel subjects to develop new behavioral solutions under varying sensorimotor demands. Over time subjects will learn to create appropriate locomotor solution more rapidly enabling acquisition of mobility sooner after long-duration space flight. A gait adaptability training program can be superimposed on nominal treadmill exercise activities thus ensuring that no additional crew time is required to perform this type of training regimen and that it can be implemented with current in-flight exercise systems available on the International Space Station.

  2. Adaptive Behavior and Problem Behavior in Young Children with Williams Syndrome

    ERIC Educational Resources Information Center

    Hahn, Laura J.; Fidler, Deborah J.; Hepburn, Susan L.

    2014-01-01

    The present study compares the adaptive behavior profile of 18 young children with Williams syndrome (WS) and a developmentally matched group of 19 children with developmental disabilities and examines the relationship between adaptive behavior and problem behaviors in WS. Parents completed the Vineland Adaptive Behavioral Scales--Interview…

  3. Anomalous human behavior detection: an adaptive approach

    NASA Astrophysics Data System (ADS)

    van Leeuwen, Coen; Halma, Arvid; Schutte, Klamer

    2013-05-01

    Detection of anomalies (outliers or abnormal instances) is an important element in a range of applications such as fault, fraud, suspicious behavior detection and knowledge discovery. In this article we propose a new method for anomaly detection and performed tested its ability to detect anomalous behavior in videos from DARPA's Mind's Eye program, containing a variety of human activities. In this semi-unsupervised task a set of normal instances is provided for training, after which unknown abnormal behavior has to be detected in a test set. The features extracted from the video data have high dimensionality, are sparse and inhomogeneously distributed in the feature space making it a challenging task. Given these characteristics a distance-based method is preferred, but choosing a threshold to classify instances as (ab)normal is non-trivial. Our novel aproach, the Adaptive Outlier Distance (AOD) is able to detect outliers in these conditions based on local distance ratios. The underlying assumption is that the local maximum distance between labeled examples is a good indicator of the variation in that neighborhood, and therefore a local threshold will result in more robust outlier detection. We compare our method to existing state-of-art methods such as the Local Outlier Factor (LOF) and the Local Distance-based Outlier Factor (LDOF). The results of the experiments show that our novel approach improves the quality of the anomaly detection.

  4. Effects of captivity and body condition on plasma corticosterone, locomotor behavior, and plasma metabolites in curve-billed thrashers.

    PubMed

    Fokidis, H Bobby; Hurley, Laura; Rogowski, Christopher; Sweazea, Karen; Deviche, Pierre

    2011-01-01

    The acute stress response involves the secretion of catabolic glucocorticoids, such as corticosterone (CORT) in birds, that mobilize intrinsic energy stores primarily through a gluconeogenic pathway involving fat breakdown, thus linking body condition and stress. We measured changes in CORT and gluconeogenic metabolites (triglycerides, free glycerols, glucose) during handling stress in curve-billed thrashers Toxostoma curvirostre from two habitats (urban vs. desert) that may differ in food abundance in the wild, in captivity, and in response to both food restriction and subsequent recovery. Urban thrashers were heavier and secreted more CORT than desert birds in the field, but differences did not persist in captivity. Decreased access to food resulted in decreased body mass and a diminished ability to elevate plasma CORT in response to handling stress. However, the opposite effect was observed as these birds recovered from food restriction. Plasma levels of glucose and triglycerides did not change with stress. Food restriction also increased locomotor activity, which likely further exacerbated energy loss. These observations suggest that body condition and stress differences between urban and desert birds may be related to differences in their relative energetic states, possibly due to food availability. Body condition may affect the extent to which an individual can elevate CORT and use free glycerol as energy during acute stress. PMID:22030852

  5. Adaptive Behavior in Children with Fragile X Syndrome.

    ERIC Educational Resources Information Center

    Hatton, Deborah D.; Wheeler, Anne C.; Skinner, Martie L.; Bailey, Donald B.; Sullivan, Kelly M.; Roberts, Jane E.; Mirrett, Penny; Clark, Renee D.

    2003-01-01

    Adaptive behavior was measured over time in 70 children, ages 1 to 12 years, with fragile X syndrome. With a mean of 4.4 assessments per child, adaptive behavior skills increased steadily and gradually over time. Children with less autistic behavior and higher percentages of the fragile X mental retardation gene protein showed better performance…

  6. Cross-National Assessment of Adaptive Behavior in Three Countries

    ERIC Educational Resources Information Center

    Oakland, Thomas; Iliescu, Dragos; Chen, Hsin-Yi; Chen, Juliet Honglei

    2013-01-01

    Measures of adaptive behaviors provide an important tool in the repertoire of clinical and school/educational psychologists. Measures that assess adaptive behaviors typically have been built in Western cultures and developed in light of behaviors common to them. Nevertheless, these measures are used elsewhere despite a paucity of data that examine…

  7. Daily rhythms of core temperature and locomotor activity indicate different adaptive strategies to cold exposure in adult and aged mouse lemurs acclimated to a summer-like photoperiod.

    PubMed

    Terrien, Jeremy; Zizzari, Philippe; Epelbaum, Jacques; Perret, Martine; Aujard, Fabienne

    2009-07-01

    Daily variations in core temperature (Tc) within the normothermic range imply thermoregulatory processes that are essential for optimal function and survival. Higher susceptibility towards cold exposure in older animals suggests that these processes are disturbed with age. In the mouse lemur, a long-day breeder, we tested whether aging affected circadian rhythmicity of Tc, locomotor activity (LA), and energy balance under long-day conditions when exposed to cold. Adult (N = 7) and aged (N = 5) mouse lemurs acclimated to LD14/10 were exposed to 10-day periods at 25 and 12 degrees C. Tc and LA rhythms were recorded by telemetry, and caloric intake (CI), body mass changes, and plasma IGF-1 were measured. During exposure to 25 degrees C, both adult and aged mouse lemurs exhibited strong daily variations in Tc. Aged animals exhibited lower levels of nocturnal LA and nocturnal and diurnal Tc levels in comparison to adults. Body mass and IGF-1 levels remained unchanged with aging. Under cold exposure, torpor bout occurrence was never observed whatever the age category. Adult and aged mouse lemurs maintained their Tc in the normothermic range and a positive energy balance. All animals exhibited increase in CI and decrease in IGF-1 in response to cold. The decrease in IGF-1 was delayed in aged mouse lemurs compared to adults. Moreover, both adult and aged animals responded to cold exposure by increasing their diurnal LA compared to those under Ta = 25 degrees C. However, aged animals exhibited a strong decrease in nocturnal LA and Tc, whereas cold effects were only slight in adults. The temporal organization and amplitude of the daily phase of low Tc were particularly well preserved under cold exposure in both age groups. Sexually active mouse lemurs exposed to cold thus seemed to prevent torpor exhibition and temporal disorganization of daily rhythms of Tc, even during aging. However, although energy balance was not impaired with age in mouse lemurs after cold exposure

  8. Locomotor stereotypy produced by dexbenzetimide and scopolamine is reduced by SKF 83566, not sulpiride.

    PubMed

    Fritts, M E; Mueller, K; Morris, L

    1998-07-01

    Like amphetamine, scopolamine produces locomotor stereotypy (repetitive routes of locomotion) in an open field. To determine whether locomotor stereotypy is a common behavioral effect of anticholingeric agents, several doses of the anticholinergic dexbenzetimide were tested for the ability to produce locomotor stereotypy; like scopolamine, dexbenzetimide produced locomotor stereotypy. To investigate a possible role of dopamine in anticholinergic-induced locomotor stereotypy, we tested the ability of the dopamine D1 antagonist SKF 83566 and the D2 antagonist sulpiride to block the locomotor stereotypy induced by scopolamine as well as dexbenzetimide. SKF 83566 blocked scopolamine- and dexbenzetimide-induced locomotor stereotypy; sulpiride did not reduce dexbenzetimide-induced locomotor stereotypy, but enhanced scopolamine-induced locomotor stereotypy. Hyperlocomotion was reduced by both dopamine antagonists. Results are interpreted in support of the notion that dopamine is the likely candidate mediating locomotor stereotypy. PMID:9678647

  9. Assessment of long-range correlation in animal behavior time series: The temporal pattern of locomotor activity of Japanese quail (Coturnix coturnix) and mosquito larva (Culex quinquefasciatus)

    NASA Astrophysics Data System (ADS)

    Kembro, Jackelyn M.; Flesia, Ana Georgina; Gleiser, Raquel M.; Perillo, María A.; Marin, Raul H.

    2013-12-01

    Detrended Fluctuation Analysis (DFA) is a method that has been frequently used to determine the presence of long-range correlations in human and animal behaviors. However, according to previous authors using statistical model systems, in order to correctly use DFA different aspects should be taken into account such as: (1) the establishment by hypothesis testing of the absence of short term correlation, (2) an accurate estimation of a straight line in the log-log plot of the fluctuation function, (3) the elimination of artificial crossovers in the fluctuation function, and (4) the length of the time series. Taking into consideration these factors, herein we evaluated the presence of long-range correlation in the temporal pattern of locomotor activity of Japanese quail (Coturnix coturnix) and mosquito larva (Culex quinquefasciatus). In our study, modeling the data with the general autoregressive integrated moving average (ARFIMA) model, we rejected the hypothesis of short-range correlations (d=0) in all cases. We also observed that DFA was able to distinguish between the artificial crossover observed in the temporal pattern of locomotion of Japanese quail and the crossovers in the correlation behavior observed in mosquito larvae locomotion. Although the test duration can slightly influence the parameter estimation, no qualitative differences were observed between different test durations.

  10. Communicating to Farmers about Skin Cancer: The Behavior Adaptation Model.

    ERIC Educational Resources Information Center

    Parrott, Roxanne; Monahan, Jennifer; Ainsworth, Stuart; Steiner, Carol

    1998-01-01

    States health campaign messages designed to encourage behavior adaptation have greater likelihood of success than campaigns promoting avoidance of at-risk behaviors that cannot be avoided. Tests a model of health risk behavior using four different behaviors in a communication campaign aimed at reducing farmers' risk for skin cancer--questions…

  11. Assessing Minority Students: The Role of Adaptive Behavior Scales.

    ERIC Educational Resources Information Center

    Cervantes, Hermes; Baca, Leonard M.

    1979-01-01

    Adaptive behavior scales can be very helpful in the overall assessment of minority children. In some states they are mandatory. Their weaknesses, particularly with the AAMD Adaptive Behavior Scale, are sampling bias and appropriateness in the areas of culture, language, and socioeconomic status. (Author)

  12. Sex differences in anxiety-like behavior and locomotor activity following prenatal and postnatal methamphetamine exposure in adult rats.

    PubMed

    Hrubá, L; Schutová, B; Šlamberová, R

    2012-01-18

    The aim of the present study was to investigate the impact of prenatal and postnatal methamphetamine (MA) exposure on behavior and anxiety in adult male and female rats. Mothers were daily exposed to injection of MA (5 mg/kg) or saline (S): prior to impregnation and throughout gestation and lactation periods. On postnatal day 1, pups were cross-fostered so that each mother raised 6 saline-exposed pups and 6 MA-exposed pups. Based on the prenatal and postnatal exposure 4 experimental groups (S/S, S/MA, MA/S, MA/MA) were tested in the Open field (OF) and in the Elevated plus maze (EPM) in adulthood. Locomotion, exploration, immobility and comforting behavior were evaluated in the OF, while anxiety was assessed in the EPM. While prenatal MA exposure did not affect behavior and anxiety in adulthood, postnatal MA exposure (i.e. MA administration to lactating mothers) induced long-term changes. Specifically, adult female rats in diestrus and adult males postnatally exposed to MA via breast milk (S/MA and MA/MA) had decreased locomotion and exploratory behavior in the OF and showed increased anxiety-like behavior in the EPM when compared to female rats in diestrus or males postnatally exposed to saline (S/S and MA/S). In adult females in proestrus, postnatal exposure to MA affected only exploratory behavior in the OF when compared to rats in proestrus postnatally exposed to saline. Thus, the present study shows that postnatal exposure to MA via breast milk impairs behavior in unfamiliar environment and anxiety-like behavior of adult male and female rats more than prenatal MA exposure. PMID:21884713

  13. Development and Standardization of the Diagnostic Adaptive Behavior Scale: Application of Item Response Theory to the Assessment of Adaptive Behavior

    ERIC Educational Resources Information Center

    Tassé, Marc J.; Schalock, Robert L.; Thissen, David; Balboni, Giulia; Bersani, Henry, Jr.; Borthwick-Duffy, Sharon A.; Spreat, Scott; Widaman, Keith F.; Zhang, Dalun; Navas, Patricia

    2016-01-01

    The Diagnostic Adaptive Behavior Scale (DABS) was developed using item response theory (IRT) methods and was constructed to provide the most precise and valid adaptive behavior information at or near the cutoff point of making a decision regarding a diagnosis of intellectual disability. The DABS initial item pool consisted of 260 items. Using IRT…

  14. Short- and long-lasting behavioral and neurochemical adaptations: relationship with patterns of cocaine administration and expectation of drug effects in rats.

    PubMed

    Puig, S; Noble, F; Benturquia, N

    2012-01-01

    Cocaine dependence is a significant public health problem, characterized by periods of abstinence. Chronic exposure to drugs of abuse induces important modifications on neuronal systems, including the dopaminergic system. The pattern of administration is an important factor that should be taken into consideration to study the neuroadaptations. We compared the effects of intermittent (once daily) and binge (three times a day) cocaine treatments for 1 (WD1) and 14 (WD14) days after the last cocaine injection on spontaneous locomotor activity and dopamine (DA) levels in the nucleus accumbens (Nac). The intermittent treatment led to a spontaneous increase in DA (WD1/WD14), and in locomotor activity (WD1) at the exact hour which rats were habituated to receive a cocaine injection. These results underline that taking into consideration the hours of the day at which the experiments are performed is crucial. We also investigated these behavioral and neurochemical adaptations in response to an acute cocaine challenge on WD1 and WD14. We observed that only the binge treatment led to sensitization of locomotor effects of cocaine, associated to a DA release sensitization in the Nac, whereas the intermittent treatment did not. We demonstrate that two different patterns of administration induced distinct behavioral and neurochemical consequences. We unambiguously demonstrated that the intermittent treatment induced drug expectation associated with higher basal DA level in the Nac when measured at the time of chronic cocaine injection and that the binge treatment led to behavioral and sensitization effects of cocaine. PMID:23092979

  15. Parents' Reports on the Child Adaptive Behavior Inventory Predict 4-Year-Olds' Playground Behavior.

    ERIC Educational Resources Information Center

    McHale, James P.; Neugebauer, Alyson

    1998-01-01

    Examined the effectiveness of parental reports of their preschool children's social adaptation outside the home as an indicator of children's behavior. Parent responses on the Child Adaptive Behavior Inventory, which assesses both competencies and difficulties with adaptation, were compared to evaluations by trained observers. Parents were found…

  16. Low dose exposure to Bisphenol A alters development of gonadotropin-releasing hormone 3 neurons and larval locomotor behavior in Japanese Medaka.

    PubMed

    Inagaki, T; Smith, N; Lee, E K; Ramakrishnan, S

    2016-01-01

    Accumulating evidence indicates that chronic low dose exposure to Bisphenol A (BPA), an endocrine disruptor, may disrupt normal brain development and behavior mediated by the gonadotropin-releasing hormone (GnRH) pathways. While it is known that GnRH neurons in the hypothalamus regulate reproductive physiology and behavior, functional roles of extra-hypothalamic GnRH neurons remain unclear. Furthermore, little is known whether BPA interacts with extra-hypothalamic GnRH3 neural systems in vulnerable developing brains. Here we examined the impact of low dose BPA exposure on the developing GnRH3 neural system, eye and brain growth, and locomotor activity in transgenic medaka embryos and larvae with GnRH3 neurons tagged with GFP. Fertilized eggs were collected daily and embryos/larvae were chronically exposed to 200ng/ml of BPA, starting at 1 day post fertilization (dpf). BPA significantly increased fluorescence intensity of the GnRH3-GFP neural population in the terminal nerve (TN) of the forebrain at 3dpf, but decreased the intensity at 5dpf, compared with controls. BPA advanced eye pigmentation without affecting eye and brain size development, and accelerated times to hatch. Following chronic BPA exposure, 20dpf larvae showed suppression of locomotion, both in distance covered and speed of movement (47% and 43% reduction, respectively). BPA-induced hypoactivity was accompanied by decreased cell body sizes of individual TN-GnRH3 neurons (14% smaller than those of controls), but not of non-GnRH3 neurons. These novel data demonstrate complex neurobehavioral effects of BPA on the development of extra-hypothalamic GnRH3 neurons in teleost fish. PMID:26687398

  17. Bimodal Respiratory-Locomotor Neurons in the Neonatal Rat Spinal Cord.

    PubMed

    Le Gal, Jean-Patrick; Juvin, Laurent; Cardoit, Laura; Morin, Didier

    2016-01-20

    Neural networks that can generate rhythmic motor output in the absence of sensory feedback, commonly called central pattern generators (CPGs), are involved in many vital functions such as locomotion or respiration. In certain circumstances, these neural networks must interact to produce coordinated motor behavior adapted to environmental constraints and to satisfy the basic needs of an organism. In this context, we recently reported the existence of an ascending excitatory influence from lumbar locomotor CPG circuitry to the medullary respiratory networks that is able to depolarize neurons of the parafacial respiratory group during fictive locomotion and to subsequently induce an increased respiratory rhythmicity (Le Gal et al., 2014b). Here, using an isolated in vitro brainstem-spinal cord preparation from neonatal rat in which the respiratory and the locomotor networks remain intact, we show that during fictive locomotion induced either pharmacologically or by sacrocaudal afferent stimulation, the activity of both thoracolumbar expiratory motoneurons and interneurons is rhythmically modulated with the locomotor activity. Completely absent in spinal inspiratory cells, this rhythmic pattern is highly correlated with the hindlimb ipsilateral flexor activities. Furthermore, silencing brainstem neural circuits by pharmacological manipulation revealed that this locomotor-related drive to expiratory motoneurons is solely dependent on propriospinal pathways. Together these data provide the first evidence in the newborn rat spinal cord for the existence of bimodal respiratory-locomotor motoneurons and interneurons onto which both central efferent expiratory and locomotor drives converge, presumably facilitating the coordination between the rhythmogenic networks responsible for two different motor functions. Significance statement: In freely moving animals, distant regions of the brain and spinal cord controlling distinct motor acts must interact to produce the best

  18. The 'GALS' locomotor screen.

    PubMed Central

    Doherty, M; Dacre, J; Dieppe, P; Snaith, M

    1992-01-01

    The locomotor system is complex and difficult to examine. A selective clinical process to detect important locomotor abnormalities and functional disability could prove valuable. A screen based on a tested 'minimal' history and examination system is described, together with a simple method of recording. The screen is fast and easy to perform. As well as providing a useful introduction to examination of the locomotor system, the screen includes objective observation of functional movements relevant to activities of daily living. Its inclusion in the undergraduate clerking repertoire could improve junior doctors' awareness and recognition of rheumatic disease and general disability. It could also provide a valuable screening test for use in general practice. Images PMID:1444632

  19. High maternal intake of polyunsaturated fatty acids during pregnancy in mice alters offsprings' aggressive behavior, immobility in the swim test, locomotor activity and brain protein kinase C activity.

    PubMed

    Raygada, M; Cho, E; Hilakivi-Clarke, L

    1998-12-01

    Populations in Western countries consume an excess of polyunsaturated fatty acids (PUFA), even during pregnancy. Since (n-6) PUFA is critical for brain development, we studied whether a high maternal consumption of this fatty acid alters offsprings' affective-like behaviors and (n-6) PUFA-induced protein kinase C (PKC) activity in the brain. Three different strains of pregnant mice were fed isocaloric diets containing either 16% (control) or 43% (high) energy derived from fat high in (n-6) PUFA (corn oil: Balb/c and CD-1 mice, or soybean oil: C3H mice) throughout gestation. From birth onward dams and offspring were fed a nonpurified diet containing 12% energy from a variety of fats. Two- to 12-month-old female and male offspring of dams exposed to a high (n-6) PUFA diet during pregnancy were significantly more active in an open field, more aggressive in the resident-intruder test and spent less time immobile in the swim test than offspring of dams exposed to a control (n-6) PUFA diet. Significantly greater PKC activity in the hypothalamus and moderately less PKC activity in the whole brain (P = 0.10) were seen in the 2-month-old female and male high (n-6) PUFA offspring compared to controls. Our findings indicate that in utero exposure to a high (n-6) PUFA diet subsequently increases locomotor activity and aggression, and reduces immobility in the swim test. The mechanism mediating these effects may be linked to an increased PKC activity in the hypothalamus. PMID:9868200

  20. Adaptations in medial prefrontal cortex function associated with amphetamine-induced behavioral sensitization

    PubMed Central

    Gulley, Joshua M.; Stanis, Jessica J.

    2010-01-01

    Neuroadaptations in the prefrontal cortex (PFC) are hypothesized to play an important role in the behavioral changes associated with repeated psychostimulant exposure, but there are few published studies that measure neuronal activity during the development and expression of sensitization. To address this, we recorded single neuron activity in the medial PFC (mPFC) of male rats that were exposed for five days to saline or amphetamine (AMPH; 1.0 mg/kg, i.p.) and then given saline or AMPH challenges following a three-day withdrawal. We found that rats exposed to AMPH developed locomotor sensitization to the drug that emerged on the fifth treatment session and became statistically significant at AMPH challenge. This was associated with no change in baseline (i.e., pre-injection) activity of mPFC neurons across the treatment or challenge sessions. Following the first AMPH injection, mPFC neurons responded primarily with reductions in firing, with the overall pattern and magnitude of responses remaining largely similar following repeated treatment. The exception was in the minority of cells that respond to AMPH with increases in firing rate. In this population, the magnitude of excitations peaked during the fifth AMPH exposure and was still relatively elevated at the AMPH challenge. Furthermore, these units increased firing during a saline challenge that was given to assess associative conditioning. These results suggest that AMPH-induced adaptations in mPFC function are not as apparent as AMPH-induced adaptations in behavior. When mPFC adaptations do occur, they appear limited to the population of neurons that increase their firing in response to AMPH. PMID:20035836

  1. Neuronal control of locomotor handedness in Drosophila

    PubMed Central

    Buchanan, Sean M.; Kain, Jamey S.; de Bivort, Benjamin L.

    2015-01-01

    Genetically identical individuals display variability in their physiology, morphology, and behaviors, even when reared in essentially identical environments, but there is little mechanistic understanding of the basis of such variation. Here, we investigated whether Drosophila melanogaster displays individual-to-individual variation in locomotor behaviors. We developed a new high-throughout platform capable of measuring the exploratory behavior of hundreds of individual flies simultaneously. With this approach, we find that, during exploratory walking, individual flies exhibit significant bias in their left vs. right locomotor choices, with some flies being strongly left biased or right biased. This idiosyncrasy was present in all genotypes examined, including wild-derived populations and inbred isogenic laboratory strains. The biases of individual flies persist for their lifetime and are nonheritable: i.e., mating two left-biased individuals does not yield left-biased progeny. This locomotor handedness is uncorrelated with other asymmetries, such as the handedness of gut twisting, leg-length asymmetry, and wing-folding preference. Using transgenics and mutants, we find that the magnitude of locomotor handedness is under the control of columnar neurons within the central complex, a brain region implicated in motor planning and execution. When these neurons are silenced, exploratory laterality increases, with more extreme leftiness and rightiness. This observation intriguingly implies that the brain may be able to dynamically regulate behavioral individuality. PMID:25953337

  2. Neuronal control of locomotor handedness in Drosophila.

    PubMed

    Buchanan, Sean M; Kain, Jamey S; de Bivort, Benjamin L

    2015-05-26

    Genetically identical individuals display variability in their physiology, morphology, and behaviors, even when reared in essentially identical environments, but there is little mechanistic understanding of the basis of such variation. Here, we investigated whether Drosophila melanogaster displays individual-to-individual variation in locomotor behaviors. We developed a new high-throughout platform capable of measuring the exploratory behavior of hundreds of individual flies simultaneously. With this approach, we find that, during exploratory walking, individual flies exhibit significant bias in their left vs. right locomotor choices, with some flies being strongly left biased or right biased. This idiosyncrasy was present in all genotypes examined, including wild-derived populations and inbred isogenic laboratory strains. The biases of individual flies persist for their lifetime and are nonheritable: i.e., mating two left-biased individuals does not yield left-biased progeny. This locomotor handedness is uncorrelated with other asymmetries, such as the handedness of gut twisting, leg-length asymmetry, and wing-folding preference. Using transgenics and mutants, we find that the magnitude of locomotor handedness is under the control of columnar neurons within the central complex, a brain region implicated in motor planning and execution. When these neurons are silenced, exploratory laterality increases, with more extreme leftiness and rightiness. This observation intriguingly implies that the brain may be able to dynamically regulate behavioral individuality. PMID:25953337

  3. Synchronization to light and mealtime of the circadian rhythms of self-feeding behavior and locomotor activity of white shrimps (Litopenaeus vannamei).

    PubMed

    Santos, Aline Dos Anjos; López-Olmeda, José Fernando; Sánchez-Vázquez, Francisco Javier; Fortes-Silva, Rodrigo

    2016-09-01

    The role of light and feeding cycles in synchronizing self-feeding and locomotor activity rhythms was studied in white shrimps using a new self-feeding system activated by photocell trigger. In experiment 1, shrimps maintained under a 12:12h light/dark (LD) photoperiod were allowed to self-feed using feeders connected to a photoelectric cell, while locomotor activity was recorded with a second photocell. On day 30, animals were subjected to constant darkness (DD) for 12days to check the existence of endogenous circadian rhythms. In the experiment 2, shrimps were exposed to both a 12:12h LD photoperiod and a fixed meal schedule in the middle of the dark period (MD, 01:00h). On day 20, shrimps were exposed to DD conditions and the same fixed feeding. On day 30, they were maintained under DD and fasted for 7days. The results revealed that under LD, shrimps showed a clear nocturnal feeding pattern and locomotor activity (81.9% and 67.7% of total daily food-demands and locomotor activity, respectively, at nighttime). Both feeding and locomotor rhythms were endogenously driven and persisted under DD with an average period length (τ) close to 24h (circadian) (τ=24.18±0.13 and 23.87±0.14h for locomotor and feeding, respectively). Moreover, Shrimp showed a daily food intake under LD condition (1.1±0.2gday(-1) in the night phase vs. 0.2±0.1gday(-1) in the light phase). Our findings might be relevant for some important shrimp aquaculture aspects, such as developing suitable feeding management on shrimp farms. PMID:27155052

  4. Panel V: Adaptive Health Behaviors Among Ethnic Minorities

    PubMed Central

    Bagley, Shirley P.; Angel, Ronald; Dilworth-Anderson, Peggye; Liu, William; Schinke, Steven

    2006-01-01

    Race, ethnicity, and cultural attitudes and practices are among the variables that influence health behaviors, including adaptive health behaviors. The following discussions highlight the important role of social conditions in shaping health behaviors and the central role of family in promoting health across the Asian, Hispanic, Native American, and African American ethnic groups. Factors that may lead to health-damaging behaviors are also discussed. The need for additional research that identifies correlations among physiological, social, and behavioral factors and health behaviors, as well as underlying mechanisms, is called for. PMID:8654341

  5. Prefrontal executive function and adaptive behavior in complex environments.

    PubMed

    Koechlin, Etienne

    2016-04-01

    The prefrontal cortex (PFC) subserves higher cognitive abilities such as planning, reasoning and creativity. Here we review recent findings from both empirical and theoretical studies providing new insights about these cognitive abilities and their neural underpinnings in the PFC as overcoming key adaptive limitations in reinforcement learning. We outline a unified theoretical framework describing the PFC function as implementing an algorithmic solution approximating statistically optimal, but computationally intractable, adaptive processes. The resulting PFC functional architecture combines learning, planning, reasoning and creativity processes for balancing exploitation and exploration behaviors and optimizing behavioral adaptations in uncertain, variable and open-ended environments. PMID:26687618

  6. Adapting Behavioral Interventions for Social Media Delivery

    PubMed Central

    Waring, Molly E; May, Christine N; Ding, Eric Y; Kunz, Werner H; Hayes, Rashelle; Oleski, Jessica L

    2016-01-01

    Patients are increasingly using online social networks (ie, social media) to connect with other patients and health care professionals—a trend called peer-to-peer health care. Because online social networks provide a means for health care professionals to communicate with patients, and for patients to communicate with each other, an opportunity exists to use social media as a modality to deliver behavioral interventions. Social media-delivered behavioral interventions have the potential to reduce the expense of behavioral interventions by eliminating visits, as well as increase our access to patients by becoming embedded in their social media feeds. Trials of online social network-delivered behavioral interventions have shown promise, but much is unknown about intervention development and methodology. In this paper, we discuss the process by which investigators can translate behavioral interventions for social media delivery. We present a model that describes the steps and decision points in this process, including the necessary training and reporting requirements. We also discuss issues pertinent to social media-delivered interventions, including cost, scalability, and privacy. Finally, we identify areas of research that are needed to optimize this emerging behavioral intervention modality. PMID:26825969

  7. Adapting Behavioral Interventions for Social Media Delivery.

    PubMed

    Pagoto, Sherry; Waring, Molly E; May, Christine N; Ding, Eric Y; Kunz, Werner H; Hayes, Rashelle; Oleski, Jessica L

    2016-01-01

    Patients are increasingly using online social networks (ie, social media) to connect with other patients and health care professionals--a trend called peer-to-peer health care. Because online social networks provide a means for health care professionals to communicate with patients, and for patients to communicate with each other, an opportunity exists to use social media as a modality to deliver behavioral interventions. Social media-delivered behavioral interventions have the potential to reduce the expense of behavioral interventions by eliminating visits, as well as increase our access to patients by becoming embedded in their social media feeds. Trials of online social network-delivered behavioral interventions have shown promise, but much is unknown about intervention development and methodology. In this paper, we discuss the process by which investigators can translate behavioral interventions for social media delivery. We present a model that describes the steps and decision points in this process, including the necessary training and reporting requirements. We also discuss issues pertinent to social media-delivered interventions, including cost, scalability, and privacy. Finally, we identify areas of research that are needed to optimize this emerging behavioral intervention modality. PMID:26825969

  8. Cultural Adaptations of Behavioral Health Interventions: A Progress Report

    ERIC Educational Resources Information Center

    Barrera, Manuel, Jr.; Castro, Felipe G.; Strycker, Lisa A.; Toobert, Deborah J.

    2013-01-01

    Objective: To reduce health disparities, behavioral health interventions must reach subcultural groups and demonstrate effectiveness in improving their health behaviors and outcomes. One approach to developing such health interventions is to culturally adapt original evidence-based interventions. The goals of the article are to (a) describe…

  9. Developmental exposure to a complex PAH mixture causes persistent behavioral effects in naive Fundulus heteroclitus (killifish) but not in a population of PAH-adapted killifish.

    PubMed

    Brown, D R; Bailey, J M; Oliveri, A N; Levin, E D; Di Giulio, R T

    2016-01-01

    Acute exposures to some individual polycyclic aromatic hydrocarbons (PAHs) and complex PAH mixtures are known to cause cardiac malformations and edema in the developing fish embryo. However, the heart is not the only organ impacted by developmental PAH exposure. The developing brain is also affected, resulting in lasting behavioral dysfunction. While acute exposures to some PAHs are teratogenically lethal in fish, little is known about the later life consequences of early life, lower dose subteratogenic PAH exposures. We sought to determine and characterize the long-term behavioral consequences of subteratogenic developmental PAH mixture exposure in both naive killifish and PAH-adapted killifish using sediment pore water derived from the Atlantic Wood Industries Superfund Site. Killifish offspring were embryonically treated with two low-level PAH mixture dilutions of Elizabeth River sediment extract (ERSE) (TPAH 5.04 μg/L and 50.4 μg/L) at 24h post fertilization. Following exposure, killifish were raised to larval, juvenile, and adult life stages and subjected to a series of behavioral tests including: a locomotor activity test (4 days post-hatch), a sensorimotor response tap/habituation test (3 months post hatch), and a novel tank diving and exploration test (3months post hatch). Killifish were also monitored for survival at 1, 2, and 5 months over 5-month rearing period. Developmental PAH exposure caused short-term as well as persistent behavioral impairments in naive killifish. In contrast, the PAH-adapted killifish did not show behavioral alterations following PAH exposure. PAH mixture exposure caused increased mortality in reference killifish over time; yet, the PAH-adapted killifish, while demonstrating long-term rearing mortality, had no significant changes in mortality associated with ERSE exposure. This study demonstrated that early embryonic exposure to PAH-contaminated sediment pore water caused long-term locomotor and behavioral alterations in

  10. Adaptive and maladaptive behavior of idiots savants.

    PubMed

    Duckett, J

    1977-11-01

    A comparison was made of 25 institutionalized idiots savants and a control group of institutionalized retarded persons matched for age, sex, IQ, and length of institutionalization. As a group, idiots savants were found to be somewhat more disturbed and disturbing than their peers, although they did not show extreme emotional disturbance nor reflect a clear behavioral profile. PMID:930969

  11. Mouse Behavior: Conjectures about Adaptations for Survival.

    ERIC Educational Resources Information Center

    Rop, Charles

    2001-01-01

    Presents an experiment on mouse behavior in which students learn to observe, pay attention to details, record field notes, and ask questions about their observations. Uses a white mouse to eliminate the risk of disease that a wild rodent might carry. Lists materials, set up, and procedure. (YDS)

  12. Adaptive Prediction Error Coding in the Human Midbrain and Striatum Facilitates Behavioral Adaptation and Learning Efficiency.

    PubMed

    Diederen, Kelly M J; Spencer, Tom; Vestergaard, Martin D; Fletcher, Paul C; Schultz, Wolfram

    2016-06-01

    Effective error-driven learning benefits from scaling of prediction errors to reward variability. Such behavioral adaptation may be facilitated by neurons coding prediction errors relative to the standard deviation (SD) of reward distributions. To investigate this hypothesis, we required participants to predict the magnitude of upcoming reward drawn from distributions with different SDs. After each prediction, participants received a reward, yielding trial-by-trial prediction errors. In line with the notion of adaptive coding, BOLD response slopes in the Substantia Nigra/Ventral Tegmental Area (SN/VTA) and ventral striatum were steeper for prediction errors occurring in distributions with smaller SDs. SN/VTA adaptation was not instantaneous but developed across trials. Adaptive prediction error coding was paralleled by behavioral adaptation, as reflected by SD-dependent changes in learning rate. Crucially, increased SN/VTA and ventral striatal adaptation was related to improved task performance. These results suggest that adaptive coding facilitates behavioral adaptation and supports efficient learning. PMID:27181060

  13. Driver's adaptive glance behavior to in-vehicle information systems.

    PubMed

    Peng, Yiyun; Boyle, Linda Ng

    2015-12-01

    The purpose of this study was to examine the adaptive behavior of drivers as they engage with in-vehicle devices over time and in varying driving situations. Behavioral adaptation has been shown to occur among drivers after prolonged use of in-vehicle devices, but few studies have examined drivers' risk levels across different driving demands. A multi-day simulator study was conducted with 28 young drivers (under 30 years old) as they engaged in different text entry and reading tasks while driving in two different traffic conditions. Cluster analysis was used to categorize drivers based on their risk levels and random coefficient models were used to assess changes in drivers' eye glance behavior. Glance duration significantly increased over time while drivers were performing text entry tasks but not for text reading tasks. High-risk drivers had longer maximum eyes-off-road when performing long text entry tasks compared to low-risk drivers, and this difference increased over time. The traffic condition also had a significant impact on drivers' glance behavior. This study suggests that drivers may exhibit negative behavioral adaptation as they become more comfortable with using in-vehicle technologies over time. Results of this paper may provide guidance for the design of in-vehicle devices that adapt based on the context of the situation. It also demonstrates that random coefficient models can be used to obtain better estimations of driver behavior when there are large individual differences. PMID:26406538

  14. Linking Individual and Collective Behavior in Adaptive Social Networks

    NASA Astrophysics Data System (ADS)

    Pinheiro, Flávio L.; Santos, Francisco C.; Pacheco, Jorge M.

    2016-03-01

    Adaptive social structures are known to promote the evolution of cooperation. However, up to now the characterization of the collective, population-wide dynamics resulting from the self-organization of individual strategies on a coevolving, adaptive network has remained unfeasible. Here we establish a (reversible) link between individual (micro)behavior and collective (macro)behavior for coevolutionary processes. We demonstrate that an adaptive network transforms a two-person social dilemma locally faced by individuals into a collective dynamics that resembles that associated with an N -person coordination game, whose characterization depends sensitively on the relative time scales between the entangled behavioral and network evolutions. In particular, we show that the faster the relative rate of adaptation of the network, the smaller the critical fraction of cooperators required for cooperation to prevail, thus establishing a direct link between network adaptation and the evolution of cooperation. The framework developed here is general and may be readily applied to other dynamical processes occurring on adaptive networks, notably, the spreading of contagious diseases or the diffusion of innovations.

  15. Cultural Adaptations of Behavioral Health Interventions: A Progress Report

    PubMed Central

    Barrera, Manuel

    2014-01-01

    Objective To reduce health disparities, behavioral health interventions must reach subcultural groups and demonstrate effectiveness in improving their health behaviors and outcomes. One approach to developing such health interventions is to culturally adapt original evidence-based interventions. The goals of the paper are to (a) describe consensus on the stages involved in developing cultural adaptations, (b) identify common elements in cultural adaptations, (c) examine evidence on the effectiveness of culturally enhanced interventions for various health conditions, and (d) pose questions for future research. Method Influential literature from the past decade was examined to identify points of consensus. Results There is agreement that cultural adaptation can be organized into five stages: information gathering, preliminary design, preliminary testing, refinement, and final trial. With few exceptions, reviews of several health conditions (e.g., AIDS, asthma, diabetes) concluded that culturally enhanced interventions are more effective in improving health outcomes than usual care or other control conditions. Conclusion Progress has been made in establishing methods for conducting cultural adaptations and providing evidence of their effectiveness. Future research should include evaluations of cultural adaptations developed in stages, tests to determine the effectiveness of cultural adaptations relative to the original versions, and studies that advance our understanding of cultural constructs’ contributions to intervention engagement and efficacy. PMID:22289132

  16. Static aeroelastic behavior of an adaptive laminated piezoelectric composite wing

    NASA Technical Reports Server (NTRS)

    Weisshaar, T. A.; Ehlers, S. M.

    1990-01-01

    The effect of using an adaptive material to modify the static aeroelastic behavior of a uniform wing is examined. The wing structure is idealized as a laminated sandwich structure with piezoelectric layers in the upper and lower skins. A feedback system that senses the wing root loads applies a constant electric field to the piezoelectric actuator. Modification of pure torsional deformaton behavior and pure bending deformation are investigated, as is the case of an anisotropic composite swept wing. The use of piezoelectric actuators to create an adaptive structure is found to alter static aeroelastic behavior in that the proper choice of the feedback gain can increase or decrease the aeroelastic divergence speed. This concept also may be used to actively change the lift effectiveness of a wing. The ability to modify static aeroelastic behavior is limited by physical limitations of the piezoelectric material and the manner in which it is integrated into the parent structure.

  17. Endogenous Nuclear RNAi Mediates Behavioral Adaptation to Odor

    PubMed Central

    Juang, Bi-Tzen; Gu, Chen; Starnes, Linda; Palladino, Francesca; Goga, Andrei; Kennedy, Scott; L'Etoile, Noelle D.

    2014-01-01

    Summary Most eukaryotic cells express small regulatory RNAs. The purpose of one class, the somatic endogenous siRNAs (endo-siRNAs) remains unclear. Here we show the endo-siRNA pathway promotes odor adaptation in C. elegans AWC olfactory neurons. In adaptation, the nuclear Argonaute NRDE-3, which acts in AWC, is loaded with siRNAs targeting odr-1, a gene who's down regulation is required for adaptation. Concomitant with increased odr-1 siRNA in AWC, we observe increased binding of the HP1 homolog HPL-2 at the odr-1 locus in AWC and reduced odr-1 mRNA in adapted animals. Phosphorylation of HPL-2, an in vitro substrate of the EGL-4 kinase that promotes adaption, is necessary and sufficient for behavioral adaptation. Thus, environmental stimulation amplifies an endo-siRNA negative feedback loop to dynamically repress cognate gene expression and shape behavior. This class of siRNA may act broadly as a rheostat allowing prolonged stimulation to dampen gene expression and promote cellular memory formation. PMID:23993094

  18. Adaptive Behavior in Toddlers under Two with Autism Spectrum Disorders

    ERIC Educational Resources Information Center

    Paul, Rhea; Loomis, Rebecca; Chawarska, Katarzyna

    2014-01-01

    The Vineland Adaptive Behavior Scale was administered to 54 children diagnosed with autism spectrum disorder (ASD) before age 2, and a matching group of 18 toddlers with developmental delay (DD). The group with ASD was more impaired on all scales of the Vineland than DD peers. When 18 ASD/DD pairs very closely matched on age, verbal and nonverbal…

  19. Adaptations for Rural Behavior Disordered Pupils in the Mainstream.

    ERIC Educational Resources Information Center

    Wood, Judy W.; And Others

    1988-01-01

    Discusses instructional modifications to increase the academic success of rural behavior-disordered students in regular classes. Describes adaptations of teaching mode, media use, presentation of academic content, textbook content and organization, and test construction and administration. Contains 10 references. (SV)

  20. The Adaptive Behavior Scale: A Study of Criterion Validity.

    ERIC Educational Resources Information Center

    Spreat, Scott

    1980-01-01

    The validity of the Adaptive Behavior Scale (ABS) for placement purposes was estimated using as Ss 95 formerly institutionalized retarded persons, 97 institutional residents referred for discharge, and 178 institutional residents. Results suggest that knowledge of an individual's ABS scores would enable a test user to make valid estimates of group…

  1. Amyotrophic Lateral Sclerosis: An Introduction to Psychosocial and Behavioral Adaptations.

    ERIC Educational Resources Information Center

    Hoffman, R. Leigh; Decker, Thomas W.

    1993-01-01

    Defines amyotrophic lateral sclerosis (ALS) as motor-neuron disease that is terminal. Discusses symptoms associated with ALS and identifies treatment options. Reviews psychological and behavioral adaptations in regard to ALS clients, their families, and professionals who work with them. Discusses support groups as method of reducing stress for ALS…

  2. Sensory Processing Subtypes in Autism: Association with Adaptive Behavior

    ERIC Educational Resources Information Center

    Lane, Alison E.; Young, Robyn L.; Baker, Amy E. Z.; Angley, Manya T.

    2010-01-01

    Children with autism are frequently observed to experience difficulties in sensory processing. This study examined specific patterns of sensory processing in 54 children with autistic disorder and their association with adaptive behavior. Model-based cluster analysis revealed three distinct sensory processing subtypes in autism. These subtypes…

  3. Adaptive female-mimicking behavior in a scorpionfly.

    PubMed

    Thornhill, R

    1979-07-27

    This study provides a clear example of female-mimicking behavior by males in insects and evaluates quantitatively the adaptive significance of this behavior, which is poorly understood in many other organisms. Males of Hylobittacus apicalis provide females with a prey arthropod during copulation. Some males mimic female behavior when interacting with males that have captured nuptial prey, resulting in males stealing prey which they will use for copulation. Males that pirate prey copulate more frequently and probably incur fewer predation-related risks. PMID:17790854

  4. Reliability and Validity of the Vietnamese Vineland Adaptive Behavior Scales with Preschool-Age Children

    ERIC Educational Resources Information Center

    Goldberg, Michael R.; Dill, Charles A.; Shin, Jin Y.; Nhan, Nguyen Viet

    2009-01-01

    This study was conducted to examine an adaptation of the Vineland Adaptive Behavior Scale (VABS) [Sparrow, S. S., Balla, D. A., & Cicchetti, D. V. (1984). "The Vineland Adaptive Behavior Scales." Circle Pines, MN: America Guidance Service; Sparrow, S. S., Balla, D. A., & Cicchetti, D. V. (2005). "Vineland Adaptive Behavior Scales Second Edition…

  5. Information theory of adaptation in neurons, behavior, and mood

    PubMed Central

    Sharpee, Tatyana O.; Calhoun, Adam J.; Chalasani, Sreekanth H.

    2014-01-01

    The ability to make accurate predictions of future stimuli and consequences of one’s actions are crucial for the survival and appropriate decision-making. These predictions are constantly being made at different levels of the nervous system. This is evidenced by adaptation to stimulus parameters in sensory coding, and in learning of an up-to-date model of the environment at the behavioral level. This review will discuss recent findings that actions of neurons and animals are selected based on detailed stimulus history in such a way as to maximize information for achieving the task at hand. Information maximization dictates not only how sensory coding should adapt to various statistical aspects of stimuli, but also that reward function should adapt to match the predictive information from past to future. PMID:24709600

  6. Biologically-inspired adaptive obstacle negotiation behavior of hexapod robots.

    PubMed

    Goldschmidt, Dennis; Wörgötter, Florentin; Manoonpong, Poramate

    2014-01-01

    Neurobiological studies have shown that insects are able to adapt leg movements and posture for obstacle negotiation in changing environments. Moreover, the distance to an obstacle where an insect begins to climb is found to be a major parameter for successful obstacle negotiation. Inspired by these findings, we present an adaptive neural control mechanism for obstacle negotiation behavior in hexapod robots. It combines locomotion control, backbone joint control, local leg reflexes, and neural learning. While the first three components generate locomotion including walking and climbing, the neural learning mechanism allows the robot to adapt its behavior for obstacle negotiation with respect to changing conditions, e.g., variable obstacle heights and different walking gaits. By successfully learning the association of an early, predictive signal (conditioned stimulus, CS) and a late, reflex signal (unconditioned stimulus, UCS), both provided by ultrasonic sensors at the front of the robot, the robot can autonomously find an appropriate distance from an obstacle to initiate climbing. The adaptive neural control was developed and tested first on a physical robot simulation, and was then successfully transferred to a real hexapod robot, called AMOS II. The results show that the robot can efficiently negotiate obstacles with a height up to 85% of the robot's leg length in simulation and 75% in a real environment. PMID:24523694

  7. Biologically-inspired adaptive obstacle negotiation behavior of hexapod robots

    PubMed Central

    Goldschmidt, Dennis; Wörgötter, Florentin; Manoonpong, Poramate

    2014-01-01

    Neurobiological studies have shown that insects are able to adapt leg movements and posture for obstacle negotiation in changing environments. Moreover, the distance to an obstacle where an insect begins to climb is found to be a major parameter for successful obstacle negotiation. Inspired by these findings, we present an adaptive neural control mechanism for obstacle negotiation behavior in hexapod robots. It combines locomotion control, backbone joint control, local leg reflexes, and neural learning. While the first three components generate locomotion including walking and climbing, the neural learning mechanism allows the robot to adapt its behavior for obstacle negotiation with respect to changing conditions, e.g., variable obstacle heights and different walking gaits. By successfully learning the association of an early, predictive signal (conditioned stimulus, CS) and a late, reflex signal (unconditioned stimulus, UCS), both provided by ultrasonic sensors at the front of the robot, the robot can autonomously find an appropriate distance from an obstacle to initiate climbing. The adaptive neural control was developed and tested first on a physical robot simulation, and was then successfully transferred to a real hexapod robot, called AMOS II. The results show that the robot can efficiently negotiate obstacles with a height up to 85% of the robot's leg length in simulation and 75% in a real environment. PMID:24523694

  8. Behavioral training promotes multiple adaptive processes following acute hearing loss

    PubMed Central

    Keating, Peter; Rosenior-Patten, Onayomi; Dahmen, Johannes C; Bell, Olivia; King, Andrew J

    2016-01-01

    The brain possesses a remarkable capacity to compensate for changes in inputs resulting from a range of sensory impairments. Developmental studies of sound localization have shown that adaptation to asymmetric hearing loss can be achieved either by reinterpreting altered spatial cues or by relying more on those cues that remain intact. Adaptation to monaural deprivation in adulthood is also possible, but appears to lack such flexibility. Here we show, however, that appropriate behavioral training enables monaurally-deprived adult humans to exploit both of these adaptive processes. Moreover, cortical recordings in ferrets reared with asymmetric hearing loss suggest that these forms of plasticity have distinct neural substrates. An ability to adapt to asymmetric hearing loss using multiple adaptive processes is therefore shared by different species and may persist throughout the lifespan. This highlights the fundamental flexibility of neural systems, and may also point toward novel therapeutic strategies for treating sensory disorders. DOI: http://dx.doi.org/10.7554/eLife.12264.001 PMID:27008181

  9. Adaptive and Maladaptive Behavior in Children with Smith-Magenis Syndrome

    ERIC Educational Resources Information Center

    Martin, Staci C.; Wolters, Pamela L.; Smith, Ann C. M.

    2006-01-01

    Children with Smith-Magenis Syndrome (SMS) exhibit deficits in adaptive behavior but systematic studies using objective measures are lacking. This descriptive study assessed adaptive functioning in 19 children with SMS using the Vineland Adaptive Behavior Scales (VABS). Maladaptive behavior was examined through parent questionnaires and the…

  10. Vineland Adaptive Behavior Profiles in Children with Autism and Moderate to Severe Developmental Delay.

    ERIC Educational Resources Information Center

    Fenton, Gemma; D'Ardia, Caterina; Valente, Donatella; Vecchio, Ilaria del; Fabrizi, Anna; Bernabei, Paola

    2003-01-01

    A study examined adaptive behavior profiles in children (ages 21-108 months) with moderate to severe developmental delay and autism (n=23) and without autism (n=27). The Vineland Adaptive Behavior Scales was administered, and contrary to initial predictions, the sample presented fairly homogeneous adaptive behavior profiles. (Contains references.)…

  11. Adaptive Behavior of Primary School Students with Visual Impairments: The Impact of Educational Settings

    ERIC Educational Resources Information Center

    Metsiou, Katerina; Papadopoulos, Konstantinos; Agaliotis, Ioannis

    2011-01-01

    This study explored the adaptive behavior of primary school students with visual impairments, as well as the impact of educational setting on their adaptive behavior. Instrumentation included an informal questionnaire and the Vineland Adaptive Behavior Scales. Participants were 36 primary school students with visual impairments. The educational…

  12. The emerging roles of melanopsin in behavioral adaptation to light

    PubMed Central

    Hatori, Megumi; Panda, Satchidananda

    2010-01-01

    Adaptation of behavior and physiology to changes in the ambient light level is of critical importance to life. These adaptations include light modulation of neuroendocrine function and temporal alignment of physiology and behavior to the day:night cycle by the circadian clock. These non-image forming (NIF) responses can function independent of rod and cone photoreceptors but depend on ocular light reception, suggesting the participation of novel photoreceptors in the eye. The discovery of melanopsin in intrinsically photosensitive retinal ganglion cells (ipRGCs) and genetic proof for its important role in major NIF responses have offered an exciting entry point to comprehend how mammals adapt to the light environment. Here, we review the recent advances in our understanding of the emerging roles of melanopsin and of ipRGCs. These findings now offer new avenues to understand the role of ambient light in sleep, alertness, dependent physiologies and potential pharmacological intervention as well as lifestyle modifications to improve the quality of life. PMID:20810319

  13. Development vs. behavior: a role for neural adaptation in evolution?

    PubMed

    Ghysen, Alain; Dambly-Chaudière, Christine

    2016-01-01

    We examine the evolution of sensory organ patterning in the lateral line system of fish. Based on recent studies of how this system develops in zebrafish, and on comparative analyses between zebrafish and tuna, we argue that the evolution of lateral line patterns is mostly determined by variations in the underlying developmental processes, independent of any selective pressure. Yet the development of major developmental innovations is so directly linked to their exploitation that it is hard not to think of them as selected for, i.e., adaptive. We propose that adaptation resides mostly in how the nervous system adjusts to new morphologies to make them functional, i.e., that species are neurally adapted to whatever morphology is provided to them by their own developmental program. We show that recent data on behavioral differences between cave forms (blind) and surface forms (eyed) of the mexican fish Astyanax fasciatus support this view, and we propose that this species might provide a unique opportunity to assess the nature of adaptation and of selection in animal evolution. PMID:27389980

  14. Rotation, locomotor activity and individual differences in voluntary ethanol consumption.

    PubMed

    Nielsen, D M; Crosley, K J; Keller, R W; Glick, S D; Carlson, J N

    1999-03-27

    Spontaneous turning behavior and locomotor activity were evaluated for their ability to predict differences in the voluntary consumption of ethanol in male Long-Evans rats. Animals were assessed for their preferred direction of turning behavior and for high vs. low levels of spontaneous locomotor activity, as determined during nocturnal testing in a rotometer. Subsequently, preference for a 10% ethanol solution vs. water was determined in a 24-h two-bottle home-cage free-choice paradigm. Rats exhibiting a right-turning preference consumed more ethanol than rats showing a left-turning preference. While locomotor activity alone did not predict differences in drinking, turning and locomotor activity together predicted differences in ethanol consumption. Low-activity right-turning rats consumed more ethanol than all the other groups of rats. Previous studies from this laboratory have shown that individual differences in turning behavior are accompanied by different asymmetries in dopamine (DA) function in the medial prefrontal cortex (mPFC). Individual differences in locomotor activity are associated with differences in nucleus accumbens (NAS) DA function. The present data suggest that variations in mPFC DA asymmetry and NAS DA function may underlie differences in the voluntary consumption of ethanol. PMID:10095014

  15. Industry Cluster's Adaptive Co-competition Behavior Modeling Inspired by Swarm Intelligence

    NASA Astrophysics Data System (ADS)

    Xiang, Wei; Ye, Feifan

    Adaptation helps the individual enterprise to adjust its behavior to uncertainties in environment and hence determines a healthy growth of both the individuals and the whole industry cluster as well. This paper is focused on the study on co-competition adaptation behavior of industry cluster, which is inspired by swarm intelligence mechanisms. By referencing to ant cooperative transportation and ant foraging behavior and their related swarm intelligence approaches, the cooperative adaptation and competitive adaptation behavior are studied and relevant models are proposed. Those adaptive co-competition behaviors model can be integrated to the multi-agent system of industry cluster to make the industry cluster model more realistic.

  16. Adaptive Vocal Behavior Drives Perception by Echolocation in Bats

    PubMed Central

    Moss, Cynthia F.; Chiu, Chen; Surlykke, Annemarie

    2011-01-01

    Echolocation operates through adaptive sensorimotor systems that collectively enable the bat to localize and track sonar objects as it flies. The features of sonar signals used by a bat to probe its surroundings determine the information available to its acoustic imaging system. In turn, the bat’s perception of a complex scene guides its active adjustments in the features of subsequent sonar vocalizations. Here, we propose that the bat’s active vocal-motor behaviors play directly into its representation of a dynamic auditory scene. PMID:21705213

  17. Chaotic Patterns in Lotka-Volterra Systems with Behavioral Adaptation

    NASA Astrophysics Data System (ADS)

    Lacitignola, D.; Tebaldi, C.

    2006-03-01

    We study the properties of a n2-dimensional Lotka-Volterra system describing competition among species with behaviorally adaptive abilities, in which one species is made ecologically differentiated with respect to the others by carrying capacity and intrinsic growth rate. The case in which one species has a carrying capacity higher than the others is considered here. Stability of equilibria and time-dependent regimes have been investigated in the case of four species: an interesting example of chaotic window and period-adding sequences is presented and discussed.

  18. Determination of the Spontaneous Locomotor Activity in Drosophila melanogaster

    PubMed Central

    Woods, Jared K.; Kowalski, Suzanne; Rogina, Blanka

    2014-01-01

    Drosophila melanogaster has been used as an excellent model organism to study environmental and genetic manipulations that affect behavior. One such behavior is spontaneous locomotor activity. Here we describe our protocol that utilizes Drosophila population monitors and a tracking system that allows continuous monitoring of the spontaneous locomotor activity of flies for several days at a time. This method is simple, reliable, and objective and can be used to examine the effects of aging, sex, changes in caloric content of food, addition of drugs, or genetic manipulations that mimic human diseases. PMID:24747955

  19. Determination of the spontaneous locomotor activity in Drosophila melanogaster.

    PubMed

    Woods, Jared K; Kowalski, Suzanne; Rogina, Blanka

    2014-01-01

    Drosophila melanogaster has been used as an excellent model organism to study environmental and genetic manipulations that affect behavior. One such behavior is spontaneous locomotor activity. Here we describe our protocol that utilizes Drosophila population monitors and a tracking system that allows continuous monitoring of the spontaneous locomotor activity of flies for several days at a time. This method is simple, reliable, and objective and can be used to examine the effects of aging, sex, changes in caloric content of food, addition of drugs, or genetic manipulations that mimic human diseases. PMID:24747955

  20. Using Behavioral Questionnaires to Identify Adaptive Deficits in Elementary School Children.

    ERIC Educational Resources Information Center

    Pearson, Deborah A.; Lachar, David

    1994-01-01

    Obtained responses to Child Behavior Checklist (CBCL) and revised Personality Inventory for Children (PIC-R) for 88 elementary-age boys. Used CBCL and PIC-R scales to predict three domain scales and Adaptive Behavior Composite from Vineland Adaptive Behavior Scales. Results suggest that behavioral questionnaires can be used to efficiently identify…

  1. Locomotor hypoactivity and motor disturbances--behavioral effects induced by intracerebellar microinjections of dopaminergic DA-D2/D3 receptor agonists.

    PubMed

    Kolasiewicz, W; Maj, J

    2001-01-01

    In the light of recent findings, DA-D3 dopamine receptors with an unclear physiological function are present in the cerebellar cortex. Our preliminary results seem to indicate that bilateral injection of 7-OH-DPAT, a DA-D2/D3 receptor agonist (1 and 10 microg/0.5 microl), to lobule 9/10 of rat cerebellar cortex reduces spontaneous locomotor activity (hypolocomotor effects) and induces balance and motor coordination disturbances, respectively. Similar effects can be observed in the case of analogous microinjection of the DA-D3/D2 agonist pramipexole. In earlier studies, peripheral (ip) injection of nafadotride (0.6 mg/kg), a D3 receptor antagonist, neither affected per se spontaneous motor activity, nor modified the above described effects of 7-OH-DPAT. Participation of cerebellar DA-D3 and DA-D2 receptors in hypolocomotor effects, as well as putative participation of other receptors in the generation of motor disturbances, has been discussed. PMID:11990070

  2. Behavior of an adaptive bio-inspired spider web

    NASA Astrophysics Data System (ADS)

    Zheng, Lingyue; Behrooz, Majid; Huie, Andrew; Hartman, Alex; Gordaninejad, Faramarz

    2015-03-01

    The goal of this study is to demonstrate the feasibility of an artificial adaptive spider web with comparable behavior to a real spider web. First, the natural frequency and energy absorption ability of a passive web is studied. Next, a control system that consists of stepper motors, load cells and an Arduino, is constructed to mimic a spider's ability to control the tension of radial strings in the web. The energy related characteristics in the artificial spider web is examined while the pre-tension of the radial strings are varied. Various mechanical properties of a damaged spider web are adjusted to study their effect on the behavior of the web. It is demonstrated that the pre-tension and stiffness of the web's radial strings can significantly affect the natural frequency and the total energy of the full and damaged webs.

  3. Longitudinal Examination of Adaptive Behavior in Autism Spectrum Disorders: Influence of Executive Function.

    PubMed

    Pugliese, Cara E; Anthony, Laura Gutermuth; Strang, John F; Dudley, Katerina; Wallace, Gregory L; Naiman, Daniel Q; Kenworthy, Lauren

    2016-02-01

    This study characterizes longitudinal change in adaptive behavior in 64 children and adolescents with autism spectrum disorder (ASD) without intellectual disability evaluated on multiple occasions, and examines whether prior estimate of executive function (EF) problems predicts future adaptive behavior scores. Compared to standardized estimates for their developmental stage, adaptive behavior in most participants was impaired and did not improve over time. Prior EF predicted later adaptive behavior in daily living skills and socialization domains after controlling for age and IQ. Self-monitoring behaviors robustly predicted later adaptive behavior in all domains (d = 0.60-0.94). Results support targeting treatment of adaptive skills in ASD, as well as the importance of assessing for EF problems that may contribute to adaptive behavior difficulties. PMID:26349921

  4. The Pupillary Orienting Response Predicts Adaptive Behavioral Adjustment after Errors

    PubMed Central

    Murphy, Peter R.; van Moort, Marianne L.; Nieuwenhuis, Sander

    2016-01-01

    Reaction time (RT) is commonly observed to slow down after an error. This post-error slowing (PES) has been thought to arise from the strategic adoption of a more cautious response mode following deployment of cognitive control. Recently, an alternative account has suggested that PES results from interference due to an error-evoked orienting response. We investigated whether error-related orienting may in fact be a pre-cursor to adaptive post-error behavioral adjustment when the orienting response resolves before subsequent trial onset. We measured pupil dilation, a prototypical measure of autonomic orienting, during performance of a choice RT task with long inter-stimulus intervals, and found that the trial-by-trial magnitude of the error-evoked pupil response positively predicted both PES magnitude and the likelihood that the following response would be correct. These combined findings suggest that the magnitude of the error-related orienting response predicts an adaptive change of response strategy following errors, and thereby promote a reconciliation of the orienting and adaptive control accounts of PES. PMID:27010472

  5. Personality traits, future time perspective and adaptive behavior in adolescence.

    PubMed

    Gomes Carvalho, Renato Gil; Novo, Rosa Ferreira

    2015-01-01

    Several studies provide evidence of the importance of future time perspective (FTP) for individual success. However, little research addresses the relationship between FTP and personality traits, particularly if FTP can mediate their influence on behavior. In this study we analyze the mediating of FTP in the influence of personality traits on the way adolescents live their life at school. Sample consisted in 351 students, aged from 14 to 18 years-old, at different schooling levels. Instruments were the Portuguese version of the MMPI-A, particularly the PSY-5 dimensions (Aggressiveness, Psychoticism, Disconstraint, Neuroticism, Introversion), a FTP questionnaire, and a survey on school life, involving several indicators of achievement, social integration, and overall satisfaction. With the exception of Neuroticism, the results show significant mediation effects (p < .001) of FTP on most relationships between PSY-5 dimensions and school life variables. Concerning Disconstraint, FTP mediated its influence on overall satisfaction (β = -.125) and school achievement (β = -.106). In the case of Introversion, significant mediation effects occurred for interpersonal difficulties (β = .099) and participation in extracurricular activities (β = -.085). FTP was also a mediator of Psychoticism influence in overall satisfaction (β = -.094), interpersonal difficulties (β = .057), and behavior problems (β = .037). Finally, FTP mediated the influence of Aggressiveness on overall satisfaction (β = -.061), interpersonal difficulties (β = .040), achievement (β = -.052), and behavior problems (β = .023). Results are discussed considering the importance of FTP in the impact of some personality structural characteristics in students' school adaptation. PMID:25907852

  6. Modelling the locomotor energetics of extinct hominids.

    PubMed

    Kramer, P A

    1999-10-01

    Bipedality is the defining characteristic of Hominidae and, as such, an understanding of the adaptive significance and functional implications of bipedality is imperative to any study of human evolution. Hominid bipedality is, presumably, a solution to some problem for the early hominids, one that has much to do with energy expenditure. Until recently, however, little attention could be focused on the quantifiable energetic aspects of bipedality as a unique locomotor form within Primates because of the inability to measure empirically the energy expenditure of non-modern hominids. A recently published method provides a way of circumventing the empirical measurement dilemma by calculating energy expenditure directly from anatomical variables and movement profiles. Although the origins of bipedality remain clouded, two discernible forms of locomotor anatomy are present in the hominid fossil record: the australopithecine and modern configurations. The australopithecine form is best represented by AL 288-1, a partial skeleton of Australopithecus afarensis, and is characterized as having short legs and a wide pelvis. The modern form is represented by modern humans and has long legs and a narrow pelvis. Human walking is optimized to take advantage of the changing levels of potential and kinetic energy that occur as the body and limbs move through the stride cycle. Although this optimization minimizes energy expenditure, some energy is required to maintain motion. I quantify this energy by developing a dynamic model that uses kinematic equations to determine energy expenditure. By representing both configurations with such a model, I can compare their rates of energy expenditure. I find that the australopithecine configuration uses less energy than that of a modern human. Despite arguments presented in the anthropological literature, the shortness of the legs of AL 288-1 provides no evidence that she was burdened with a compromised or transitional locomotor anatomy

  7. Learning about stress: neural, endocrine and behavioral adaptations.

    PubMed

    McCarty, Richard

    2016-09-01

    In this review, nonassociative learning is advanced as an organizing principle to draw together findings from both sympathetic-adrenal medullary and hypothalamic-pituitary-adrenocortical (HPA) axis responses to chronic intermittent exposure to a variety of stressors. Studies of habituation, facilitation and sensitization of stress effector systems are reviewed and linked to an animal's prior experience with a given stressor, the intensity of the stressor and the appraisal by the animal of its ability to mobilize physiological systems to adapt to the stressor. Brain pathways that regulate physiological and behavioral responses to stress are discussed, especially in light of their regulation of nonassociative processes in chronic intermittent stress. These findings may have special relevance to various psychiatric diseases, including depression and post-traumatic stress disorder (PTSD). PMID:27294884

  8. [Adaptive behaviors to HIV risk of transmission in different populations].

    PubMed

    Grémy, I

    2005-05-01

    Since the beginning of the HIV epidemic in France, surveys aimed at better understanding risk perceptions of HIV infection and preventive sexual behaviors have been implemented in the general population, and in populations such as IVDU and homosexual men, more concerned by risks of HIV transmission. The objective of this article is to describe these surveys, to present their main results and to assess what has been the overall impact of prevention campaigns on the adoption of preventive sexual behaviors in these populations. The results show that very early after the beginning of the AIDS epidemic, both general and homosexual populations have adopted preventive sexual behaviors, mainly increasing condom use and implementing other preventive strategies. However, with the introduction of HAART in 1996, a slackening of these preventive behaviors is noted. The use of condom is less frequent, especially in the youngest generations of both general and homosexual populations. On the opposite, among IVDU, the use of sterile syringes increased dramatically as soon as over-the-counter sales of syringes was authorized in 1987, as well as the adoption of ways other than intravenous to take drugs. Both have contributed to almost stop the HIV epidemic in this specific group. The results of these surveys show that the benefits of prevention campaigns are different between populations and are reversible. It is necessary to renew the messages, campaigns and programs of prevention with the renewal of generations. It is also necessary to adapt these messages to the new scientific data, and to the evolution of social and individual representations of the disease. PMID:15878250

  9. Coordination Pattern Adaptability: Energy Cost of Degenerate Behaviors

    PubMed Central

    Seifert, Ludovic; Komar, John; Crettenand, Florent; Millet, Grégoire

    2014-01-01

    This study investigated behavioral adaptability, which could be defined as a blend between stability and flexibility of the limbs movement and their inter-limb coordination, when individuals received informational constraints. Seven expert breaststroke swimmers performed three 200-m in breaststroke at constant submaximal intensity. Each trial was performed randomly in a different coordination pattern: ‘freely-chosen’, ‘maximal glide’ and ‘minimal glide’. Two underwater and four aerial cameras enabled 3D movement analysis in order to assess elbow and knee angles, elbow-knee pair coordination, intra-cyclic velocity variations of the center of mass, stroke rate and stroke length and inter-limb coordination. The energy cost of locomotion was calculated from gas exchanges and blood lactate concentration. The results showed significantly higher glide, intra-cyclic velocity variations and energy cost under ‘maximal glide’ compared to ‘freely-chosen’ instructional conditions, as well as higher reorganization of limb movement and inter-limb coordination (p<0.05). In the ‘minimal glide’ condition, the swimmers did not show significantly shorter glide and lower energy cost, but they exhibited significantly lower deceleration of the center of mass, as well as modified limb movement and inter-limb coordination (p<0.05). These results highlight that a variety of structural adaptations can functionally satisfy the task-goal. PMID:25255016

  10. Active Gaze, Visual Look-Ahead, and Locomotor Control

    ERIC Educational Resources Information Center

    Wilkie, Richard M.; Wann, John P.; Allison, Robert S.

    2008-01-01

    The authors examined observers steering through a series of obstacles to determine the role of active gaze in shaping locomotor trajectories. Participants sat on a bicycle trainer integrated with a large field-of-view simulator and steered through a series of slalom gates. Steering behavior was determined by examining the passing distance through…

  11. The Glenwood Assessment of Behavior of the Mentally Retarded: A Well-Factored Scale of Adaptive Behavior.

    ERIC Educational Resources Information Center

    Larsen, Gary Y.

    The paper describes the reasons for developing a new instrument to measure adaptive behavior of mentally retarded residents at Glenwood State Hospital-School and recounts the processes involved in constructing the new scale. Among complaints about the American Association on Mental Deficiency Adaptive Behavior Scale (ABS) are its inappropriateness…

  12. Quaternary naltrexone reverses radiogenic and morphine-induced locomotor hyperactivity

    SciTech Connect

    Mickley, G.A.; Stevens, K.E.; Galbraith, J.A.; White, G.A.; Gibbs, G.L.

    1984-04-01

    The present study attempted to determine the relative role of the peripheral and central nervous system in the production of morphine-induced or radiation-induced locomotor hyperactivity of the mouse. Toward this end, we used a quaternary derivative of an opiate antagonist (naltrexone methobromide), which presumably does not cross the blood-brain barrier. Quaternary naltrexone was used to challenge the stereotypic locomotor response observed in these mice after either an i.p. injection of morphine or exposure to 1500 rads /sup 60/Co. The quaternary derivative of naltrexone reversed the locomotor hyperactivity normally observed in the C57BL/6J mouse after an injection of morphine. It also significantly attenuated radiation-induced locomotion. The data reported here support the hypothesis of endorphin involvement in radiation-induced and radiogenic behaviors. However, these conclusions are contingent upon further research which more fully evaluates naltrexone methobromide's capacity to cross the blood-brain barrier.

  13. Effects of Sodium Butyrate on Methamphetamine-Sensitized Locomotor Activity

    PubMed Central

    Harkness, John H.; Hitzemann, Robert J.; Edmunds, Stephanie; Phillips, Tamara J.

    2012-01-01

    Neuroadaptations associated with behavioral sensitization induced by repeated exposure to methamphetamine (MA) appear to be involved in compulsive drug pursuit and use. Increased histone acetylation, an epigenetic effect resulting in altered gene expression, may promote sensitized responses to psychostimulants. The role of histone acetylation in the expression and acquisition of MA-induced locomotor sensitization was examined by measuring the effect of histone deacetylase inhibition by sodium butyrate (NaB). For the effect on expression, vehicle or NaB (630 mg/kg, intraperitoneally) was administered 30 min prior to MA challenge in mice treated repeatedly with MA (10 days of 2 mg/kg MA) or saline (10 days), and then locomotor response to MA challenge was measured. NaB treatment increased the locomotor response to MA in both acutely MA treated and sensitized animals. For acquisition, NaB was administered 30 min prior to each MA exposure (10 days of 1 or 2 mg/kg), but not prior to the MA challenge test. Treatment with NaB during the sensitization acquisition period significantly increased locomotor activation by MA in sensitized mice only. NaB alone did not significantly alter locomotor activity. Acute NaB or MA, but not the combination, appeared to increase striatal acetylation at histone H4. Repeated treatment with MA, but not NaB or MA plus NaB, increased striatal acetylation at histone H3. Although increased histone acetylation may alter the expression of genes involved in acute locomotor response to MA and in the acquisition of MA-induced sensitization, results for acetylation at H3 and H4 showed little correspondence with behavior. PMID:23137698

  14. Chronic methylphenidate alters locomotor activity and dopamine transporters differently from cocaine.

    PubMed

    Izenwasser, S; Coy, A E; Ladenheim, B; Loeloff, R J; Cadet, J L; French, D

    1999-06-01

    Continuous infusion of cocaine produces partial behavioral tolerance to its locomotor activating effects, while daily injections produce sensitization. Methylphenidate binds with a similar affinity to cocaine at the dopamine transporter, but has a much lower affinity for the serotonin transporter than does cocaine. This study was done to compare the effects of chronic methylphenidate with chronic cocaine. The pattern of locomotor activity over a 7 day treatment period was significantly different from cocaine. Methylphenidate elevated activity on each day, compared to saline, yet neither tolerance to a continuous infusion of the drug, nor sensitization to repeated daily injections was produced. We have previously shown that neither of these treatments with cocaine produces significant alterations in dopamine transporter density 1 day after the end of treatment. In contrast, methylphenidate injections significantly decreased dopamine transporters in rostral caudate putamen, with no change in nucleus accumbens. Continuous infusion of methylphenidate had no effect on dopamine transporters in either brain region. These findings provide further evidence that different classes of dopamine uptake inhibitors may interact with the dopamine transporter in qualitatively different manners. Furthermore, it is possible that the inhibition of serotonin uptake by cocaine may contribute to the adaptations in behavioral activity that are seen during chronic treatment. PMID:10414438

  15. Development of a spinal locomotor rheostat.

    PubMed

    Zhang, Hong-Yan; Issberner, Jon; Sillar, Keith T

    2011-07-12

    Locomotion in immature animals is often inflexible, but gradually acquires versatility to enable animals to maneuver efficiently through their environment. Locomotor activity in adults is produced by complex spinal cord networks that develop from simpler precursors. How does complexity and plasticity emerge during development to bestow flexibility upon motor behavior? And how does this complexity map onto the peripheral innervation fields of motorneurons during development? We show in postembryonic Xenopus laevis frog tadpoles that swim motorneurons initially form a homogenous pool discharging single action potential per swim cycle and innervating most of the dorsoventral extent of the swimming muscles. However, during early larval life, in the prelude to a free-swimming existence, the innervation fields of motorneurons become restricted to a more limited sector of each muscle block, with individual motorneurons reaching predominantly ventral, medial, or dorsal regions. Larval motorneurons then can also discharge multiple action potentials in each cycle of swimming and differentiate in terms of their firing reliability during swimming into relatively high-, medium-, or low-probability members. Many motorneurons fall silent during swimming but can be recruited with increasing locomotor frequency and intensity. Each region of the myotome is served by motorneurons spanning the full range of firing probabilities. This unfolding developmental plan, which occurs in the absence of movement, probably equips the organism with the neuronal substrate to bend, pitch, roll, and accelerate during swimming in ways that will be important for survival during the period of free-swimming larval life that ensues. PMID:21709216

  16. VideoHacking: Automated Tracking and Quantification of Locomotor Behavior with Open Source Software and Off-the-Shelf Video Equipment

    PubMed Central

    Conklin, Emily E.; Lee, Kathyann L.; Schlabach, Sadie A.; Woods, Ian G.

    2015-01-01

    Differences in nervous system function can result in differences in behavioral output. Measurements of animal locomotion enable the quantification of these differences. Automated tracking of animal movement is less labor-intensive and bias-prone than direct observation, and allows for simultaneous analysis of multiple animals, high spatial and temporal resolution, and data collection over extended periods of time. Here, we present a new video-tracking system built on Python-based software that is free, open source, and cross-platform, and that can analyze video input from widely available video capture devices such as smartphone cameras and webcams. We validated this software through four tests on a variety of animal species, including larval and adult zebrafish (Danio rerio), Siberian dwarf hamsters (Phodopus sungorus), and wild birds. These tests highlight the capacity of our software for long-term data acquisition, parallel analysis of multiple animals, and application to animal species of different sizes and movement patterns. We applied the software to an analysis of the effects of ethanol on thigmotaxis (wall-hugging) behavior on adult zebrafish, and found that acute ethanol treatment decreased thigmotaxis behaviors without affecting overall amounts of motion. The open source nature of our software enables flexibility, customization, and scalability in behavioral analyses. Moreover, our system presents a free alternative to commercial video-tracking systems and is thus broadly applicable to a wide variety of educational settings and research programs. PMID:26240518

  17. VideoHacking: Automated Tracking and Quantification of Locomotor Behavior with Open Source Software and Off-the-Shelf Video Equipment.

    PubMed

    Conklin, Emily E; Lee, Kathyann L; Schlabach, Sadie A; Woods, Ian G

    2015-01-01

    Differences in nervous system function can result in differences in behavioral output. Measurements of animal locomotion enable the quantification of these differences. Automated tracking of animal movement is less labor-intensive and bias-prone than direct observation, and allows for simultaneous analysis of multiple animals, high spatial and temporal resolution, and data collection over extended periods of time. Here, we present a new video-tracking system built on Python-based software that is free, open source, and cross-platform, and that can analyze video input from widely available video capture devices such as smartphone cameras and webcams. We validated this software through four tests on a variety of animal species, including larval and adult zebrafish (Danio rerio), Siberian dwarf hamsters (Phodopus sungorus), and wild birds. These tests highlight the capacity of our software for long-term data acquisition, parallel analysis of multiple animals, and application to animal species of different sizes and movement patterns. We applied the software to an analysis of the effects of ethanol on thigmotaxis (wall-hugging) behavior on adult zebrafish, and found that acute ethanol treatment decreased thigmotaxis behaviors without affecting overall amounts of motion. The open source nature of our software enables flexibility, customization, and scalability in behavioral analyses. Moreover, our system presents a free alternative to commercial video-tracking systems and is thus broadly applicable to a wide variety of educational settings and research programs. PMID:26240518

  18. Predictive Measures of Locomotor Performance on an Unstable Walking Surface

    NASA Technical Reports Server (NTRS)

    Bloomberg, J. J.; Peters, B. T.; Mulavara, A. P.; Caldwell, E. E.; Batson, C. D.; De Dios, Y. E.; Gadd, N. E.; Goel, R.; Wood, S. J.; Cohen, H. S.; Oddsson, L. I.; Seidler, R. D.

    2016-01-01

    Locomotion requires integration of visual, vestibular, and somatosensory information to produce the appropriate motor output to control movement. The degree to which these sensory inputs are weighted and reorganized in discordant sensory environments varies by individual and may be predictive of the ability to adapt to novel environments. The goals of this project are to: 1) develop a set of predictive measures capable of identifying individual differences in sensorimotor adaptability, and 2) use this information to inform the design of training countermeasures designed to enhance the ability of astronauts to adapt to gravitational transitions improving balance and locomotor performance after a Mars landing and enhancing egress capability after a landing on Earth.

  19. Behavior and Adaptive Functioning in Adolescents with Down Syndrome: Specifying Targets for Intervention

    ERIC Educational Resources Information Center

    Jacola, Lisa M.; Hickey, Francis; Howe, Steven R.; Esbensen, Anna; Shear, Paula K.

    2014-01-01

    Adolescents with Down syndrome can demonstrate increased behavior problems as compared with typical peers. Few studies have explored whether behavior impacts adaptive functioning. Caregiver report from the Behavioral Assessment System for Children, 2nd Edition (BASC-2; Reynolds & Kamphaus, 2004) and the Child Behavioral Checklist (CBCL;…

  20. Longitudinal Examination of Adaptive Behavior in Autism Spectrum Disorders: Influence of Executive Function

    ERIC Educational Resources Information Center

    Pugliese, Cara E.; Anthony, Laura Gutermuth; Strang, John F.; Dudley, Katerina; Wallace, Gregory L.; Naiman, Daniel Q.; Kenworthy, Lauren

    2016-01-01

    This study characterizes longitudinal change in adaptive behavior in 64 children and adolescents with autism spectrum disorder (ASD) without intellectual disability evaluated on multiple occasions, and examines whether prior estimate of executive function (EF) problems predicts future adaptive behavior scores. Compared to standardized estimates…

  1. Adaptive Skills, Behavior Problems, and Parenting Stress in Mothers of Boys with Fragile X Syndrome

    ERIC Educational Resources Information Center

    Sarimski, Klaus

    2010-01-01

    The relationship of temperament, atypical behaviors, and adaptive behavior of young boys with Fragile X syndrome on mothers' parenting stress was analyzed. Twenty-six boys with Fragile X syndrome (30-88 months of age) participated. The overall development of the participants was significantly delayed with a specific profile of adaptive behaviors…

  2. Maladaptive Behaviors Related to Adaptive Decline in Aging Adults with Mental Retardation.

    ERIC Educational Resources Information Center

    Urv, Tiina K.; Zigman, Warren B.; Silverman, Wayne

    2003-01-01

    Changes in patterns of maladaptive behavior related to age-associated adaptive declines were investigated in 529 adults with mental retardation (ages 30 to 84), 202 with Down syndrome. Certain maladaptive behaviors were related to the onset of adaptive declines, (e.g., lack of boundaries). Findings suggest similarities in the course of…

  3. Profiles and Development of Adaptive Behavior in Children with Down Syndrome

    ERIC Educational Resources Information Center

    Dykens, Elisabeth; Hodapp, Robert; Evans, David

    2006-01-01

    The profiles and developmental trajectories of adaptive behavior were cross-sectionally examined in 80 children with Down syndrome ages 1 to 11.5 years using the Vineland Adaptive Behavior Scales. Profile findings indicated a significant weakness in communication relative to daily living and socialization skills. Within communication itself,…

  4. Psychopathological Manifestations of Children with Intellectual Disabilities According to Their Cognitive and Adaptive Behavior Profile

    ERIC Educational Resources Information Center

    Tremblay, Karine N.; Richer, Louis; Lachance, Lise; Cote, Alain

    2010-01-01

    Children with intellectual disabilities show deficits in cognitive abilities and adaptive behavior which increase the risk of psychopathological disorders. This exploratory study aims at delineating profiles of children based on their cognitive functioning and adaptive behaviors, and to compare them on psychopathological manifestations. A…

  5. Adaptive Behavior among Adults with Intellectual Disabilities and Its Relationship to Community Independence

    ERIC Educational Resources Information Center

    Woolf, Steve; Woolf, Christine Merman; Oakland, Thomas

    2010-01-01

    This study examined relationships between general adaptive behavior and the degree of community independence displayed by 272 adults with intellectual disabilities. Specifically, the Adaptive Behavior Assessment System-Second Edition (ABAS-II; Harrison & Oakland, 2003) was completed for each participant and compared with actual levels of work and…

  6. Variability in Adaptive Behavior in Autism: Evidence for the Importance of Family History

    ERIC Educational Resources Information Center

    Mazefsky, Carla A.; Williams, Diane L.; Minshew, Nancy J.

    2008-01-01

    Adaptive behavior in autism is highly variable and strongly related to prognosis. This study explored family history as a potential source of variability in adaptive behavior in autism. Participants included 77 individuals (mean age = 18) with average or better intellectual ability and autism. Parents completed the Family History Interview about…

  7. Integrated Locomotor Function Tests for Countermeasure Evaluation

    NASA Technical Reports Server (NTRS)

    Bloomberg, J. J.; Mulavara, A. P.; Peters, B. T.; Cohen, H. S.; Landsness, E. C.; Black, F. O.

    2005-01-01

    Following spaceflight crewmembers experience locomotor dysfunction due to inflight adaptive alterations in sensorimotor function. Countermeasures designed to mitigate these postflight gait alterations need to be assessed with a new generation of tests that evaluate the interaction of various sensorimotor sub-systems central to locomotor control. The goal of the present study was to develop new functional tests of locomotor control that could be used to test the efficacy of countermeasures. These tests were designed to simultaneously examine the function of multiple sensorimotor systems underlying the control of locomotion and be operationally relevant to the astronaut population. Traditionally, gaze stabilization has been studied almost exclusively in seated subjects performing target acquisition tasks requiring only the involvement of coordinated eye-head movements. However, activities like walking involve full-body movement and require coordination between lower limbs and the eye-head-trunk complex to achieve stabilized gaze during locomotion. Therefore the first goal of this study was to determine how the multiple, interdependent, full-body sensorimotor gaze stabilization subsystems are functionally coordinated during locomotion. In an earlier study we investigated how alteration in gaze tasking changes full-body locomotor control strategies. Subjects walked on a treadmill and either focused on a central point target or read numeral characters. We measured: temporal parameters of gait, full body sagittal plane segmental kinematics of the head, trunk, thigh, shank and foot, accelerations along the vertical axis at the head and the shank, and the vertical forces acting on the support surface. In comparison to the point target fixation condition, the results of the number reading task showed that compensatory head pitch movements increased, peak head acceleration was reduced and knee flexion at heel-strike was increased. In a more recent study we investigated the

  8. Variability in Adaptive Behavior in Autism: Evidence for the Importance of Family History

    PubMed Central

    Mazefsky, C. A.; Williams, D. L.; Minshew, N. J.

    2008-01-01

    Adaptive behavior in autism is highly variable and strongly related to prognosis. This study explored family history as a potential source of variability in adaptive behavior in autism. Participants included 77 individuals (mean age=18) with average or better intellectual ability and autism. Parents completed the Family History Interview about the presence of broader autism phenotype symptoms and major psychiatric disorders in first degree relatives. Adaptive behavior was assessed via the Vineland Adaptive Behavior Scales (VABS). Based on family history variables, age, and intelligence quotient (IQ), 87% of participants were correctly classified as having impaired or average VABS scores. Family history of depression and shyness accounted for the most variance in VABS scores, and they had the greatest influence on VABS Socialization scores in particular. Possible underlying mechanisms include genetics, psychosocial factors, and social resources. This study provides initial evidence of the importance of family history to adaptive behavior in autism and has implications for genetics and treatment. PMID:18188537

  9. Chronotype and stability of spontaneous locomotor activity rhythm in BMAL1-deficient mice.

    PubMed

    Pfeffer, Martina; Korf, Horst-Werner; von Gall, Charlotte

    2015-02-01

    Behavior, physiological functions and cognitive performance change over the time of the day. These daily rhythms are either externally driven by rhythmic environmental cues such as the light/dark cycle (masking) or controlled by an internal circadian clock, the suprachiasmatic nucleus (SCN), which can be entrained to the light/dark cycle. Within a given species, there is genetically determined variability in the temporal preference for the onset of the active phase, the chronotype. The chronotype is the phase of entrainment between external and internal time and is largely regulated by the circadian clock. Genetic variations in clock genes and environmental influences contribute to the distribution of chronotypes in a given population. However, little is known about the determination of the chronotype, the stability of the locomotor rhythm and the re-synchronization capacity to jet lag in an animal without a functional endogenous clock. Therefore, we analyzed the chronotype of BMAL1-deficient mice (BMAL1-/-) as well as the effects of repeated experimental jet lag on locomotor activity rhythms. Moreover, light-induced period expression in the retina was analyzed to assess the responsiveness of the circadian light input system. In contrast to wild-type mice, BMAL1-/- showed a significantly later chronotype, adapted more rapidly to both phase advance and delay but showed reduced robustness of rhythmic locomotor activity after repeated phase shifts. However, photic induction of Period in the retina was not different between the two genotypes. Our findings suggest that a disturbed clockwork is associated with a late chronotype, reduced rhythm stability and higher vulnerability to repeated external desynchronization. PMID:25216070

  10. Do Children With Fragile X Syndrome Show Declines or Plateaus in Adaptive Behavior?

    PubMed

    Hahn, Laura J; Brady, Nancy C; Warren, Steven F; Fleming, Kandace K

    2015-09-01

    This study explores if children with fragile X syndrome (FXS) show advances, declines, or plateaus in adaptive behavior over time and the relationship of nonverbal cognitive abilities and autistic behavior on these trajectories. Parents of 55 children with FXS completed the Vineland Adaptive Behavior Scales ( Sparrow, Balla, & Cicchetti, 1984 ; Sparrow, Cicchetti, & Balla, 2005 ) between 3 and 6 times from 2 to 10 years of age. Using raw scores, results indicate that about half of the sample showed advances in adaptive behavior, whereas the other half showed declines, indicating a regression in skills. Children who were more cognitively advanced and had less autistic behaviors had higher trajectories. Understanding the developmental course of adaptive behavior in FXS has implications for educational planning and intervention, especially for those children showing declines. PMID:26322389

  11. The toxicity of chlorpyrifos on the early life stage of zebrafish: a survey on the endpoints at development, locomotor behavior, oxidative stress and immunotoxicity.

    PubMed

    Jin, Yuanxiang; Liu, Zhenzhen; Peng, Tao; Fu, Zhengwei

    2015-04-01

    Chlorpyrifos (CPF) is one of the most toxic pesticides in aquatic ecosystem, but its toxicity mechanisms to fish are still not fully understood. This study examined the toxicity targets of CPF in early life stage of zebrafish on the endpoints at developmental toxicity, neurotoxicity, oxidative stress and immunotoxicity. Firstly, CPF exposure decreased the body length, inhibited the hatchability and heart rate, and resulted in a number of morphological abnormalities, primarily spinal deformities (SD) and pericardial edema (PE), in larval zebrafish. Secondly, the free swimming activities and the swimming behaviors of the larvae in response to the stimulation of light-to-dark photoperiod transition were significantly influenced by the exposure to 100 and 300 μg/L CPF. In addition, the activity of acetylcholinesterase (AChE) and the transcription of some genes related to neurotoxicity were also influenced by CPF exposure. Thirdly, CPF exposure induced oxidative stress in the larval zebrafish. The malondialdehyde (MDA) levels increased and the glutathione (GSH) contents decreased significantly in a concentration-dependent manner after the exposure to CPF for 96 hours post fertilization (hpf). CPF affected not only the activities of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPX) and glutathione S-transferase (GST), but also the transcriptional levels of their respective genes. Finally, the mRNA levels of the main cytokines including tumor necrosis factor α (Tnfα), interferon (Ifn), interleukin-1 beta (Il-1β), interleukin 6 (Il6), complement factor 4 (C4) in the larvae increased significantly after the exposure to 100 or 300 μg/L CPF for 96 hpf, suggesting that the innate immune system disturbed by CPF in larvae. Taken together, our results suggested that CPF had the potential to cause developmental toxicity, behavior alterations, oxidative stress and immunotoxicity in the larval zebrafish. PMID:25634256

  12. Assessing locomotor-stimulating effects of cocaine in rodents.

    PubMed

    Morgan, Drake; Dupree, Jameson P; Bibbey, Alex D; Sizemore, Glen M

    2012-01-01

    Locomotor activity procedures are useful for characterizing the behavioral effects of a drug, the influence of pharmacological, neurobiological, and environmental manipulations on drug sensitivity, and changes in activity following repeated administration (e.g., tolerance or sensitization) are thought to be related to the development of an addiction-like behavioral phenotype. The effects of cocaine on locomotor activity have been relatively extensively characterized. Many of the published studies use between-subject experimental designs, even though changes in sensitivity within a particular individual due to experimental manipulations, or behavioral and pharmacological histories is potentially the most important outcome as these changes may relate to differential development of an addiction-like phenotype in some, but not all, animals (including humans). The two behavioral protocols described herein allow extensive within-subject analyses. The first protocol uses daily locomotor activity levels as a stable baseline to assess the effects of experimental manipulations, and the second uses a pre- versus post-session experimental design to demonstrate the importance of drug-environment interactions in determining the behavioral effects of cocaine. PMID:22231824

  13. Engaging African American Fathers in Behavioral Parent Training: To Adapt or Not Adapt

    PubMed Central

    Kohl, Patricia L.; Seay, Kristen D.

    2015-01-01

    The Positive Parenting Program, Triple P, is an evidence-based parenting program with strong empirical support that increases parenting skills and decreases child behavior problems. Few studies on Triple P include fathers or African American fathers. This study was undertaken to determine if adaptation to Triple P level 4 is necessary to ensure fit with urban African American fathers. Qualitative focus groups and interviews were conducted with African American fathers. Some received a brief overview of the program before giving feedback (series A) and others received the entire intervention (series B). Inductive thematic analysis was used to analyze transcripts and codebooks were developed through an iterative process. Series B fathers had fewer negative perceptions and a more detailed perspective. Limited exposure to an intervention may cause participants to provide inaccurate data on intervention acceptability. The fathers’ initial perceptions of interventions, regardless of accuracy, will affect recruitment and engagement and must be addressed. One strategy is to tailor program examples and language to reflect the experiences of African American fathers. PMID:26190952

  14. Locomotor Dysfunction after Long-Duration Space Flight and Development of Countermeasures to Facilitate Faster Recovery

    NASA Technical Reports Server (NTRS)

    Mulavara, A. P.; Wood, S. J.; Cohen, H. S.; Bloomberg, J. J.

    2012-01-01

    Exposure to the microgravity conditions of space flight induces adaptive modification in sensorimotor function allowing astronauts to operate in this unique environment. This adaptive state, however, is inappropriate for a 1-g environment. Consequently astronauts must spend time readapting to Earth s gravity following their return to Earth. During this readaptation period, alterations in sensorimotor function cause various disturbances in astronaut gait during postflight walking. They often rely more on vision for postural and gait stability and many report the need for greater cognitive supervision of motor actions that previous to space flight were fully automated. Over the last several years our laboratory has investigated postflight astronaut locomotion with the aim of better understanding how adaptive changes in underlying sensorimotor mechanisms contribute to postflight gait dysfunction. Exposure to the microgravity conditions of space flight induces adaptive modification in the control of vestibularly-mediated reflexive head movement during locomotion after space flight. Furthermore, during motor learning, adaptive transitions are composed of two main mechanisms: strategic and plastic. Strategic mechanisms represent immediate and transitory modifications in control to deal with changes in the prevailing environment that, if prolonged, induce plastic mechanisms designed to automate new behavioral responses. The goal of the present study was to examine the contributions of sensorimotor subsystems such as the vestibular and body load sensing (BLS) somatosensory influences on head movement control during locomotion after long-duration space flight. Further we present data on the two motor learning processes during readaptation of locomotor function after long-duration space flight.

  15. Visuomotor Control of Human Adaptive Locomotion: Understanding the Anticipatory Nature

    PubMed Central

    Higuchi, Takahiro

    2013-01-01

    To maintain balance during locomotion, the central nervous system (CNS) accommodates changes in the constraints of spatial environment (e.g., existence of an obstacle or changes in the surface properties). Locomotion while modifying the basic movement patterns in response to such constraints is referred to as adaptive locomotion. The most powerful means of ensuring balance during adaptive locomotion is to visually perceive the environmental properties at a distance and modify the movement patterns in an anticipatory manner to avoid perturbation altogether. For this reason, visuomotor control of adaptive locomotion is characterized, at least in part, by its anticipatory nature. The purpose of the present article is to review the relevant studies which revealed the anticipatory nature of the visuomotor control of adaptive locomotion. The anticipatory locomotor adjustments for stationary and changeable environment, as well as the spatio-temporal patterns of gaze behavior to support the anticipatory locomotor adjustments are described. Such description will clearly show that anticipatory locomotor adjustments are initiated when an object of interest (e.g., a goal or obstacle) still exists in far space. This review also show that, as a prerequisite of anticipatory locomotor adjustments, environmental properties are accurately perceived from a distance in relation to individual’s action capabilities. PMID:23720647

  16. Functional redundancy of ventral spinal locomotor pathways.

    PubMed

    Loy, David N; Magnuson, David S K; Zhang, Y Ping; Onifer, Stephen M; Mills, Michael D; Cao, Qi-lin; Darnall, Jessica B; Fajardo, Lily C; Burke, Darlene A; Whittemore, Scott R

    2002-01-01

    Identification of long tracts responsible for the initiation of spontaneous locomotion is critical for spinal cord injury (SCI) repair strategies. Pathways derived from the mesencephalic locomotor region and pontomedullary medial reticular formation responsible for fictive locomotion in decerebrate preparations project to the thoracolumbar levels of the spinal cord via reticulospinal axons in the ventrolateral funiculus (VLF). However, white matter regions critical for spontaneous over-ground locomotion remain unclear because cats, monkeys, and humans display varying degrees of locomotor recovery after ventral SCIs. We studied the contributions of myelinated tracts in the VLF and ventral columns (VC) to spontaneous over-ground locomotion in the adult rat using demyelinating lesions. Animals received ethidium bromide plus photon irradiation producing discrete demyelinating lesions sufficient to stop axonal conduction in the VLF, VC, VLF-VC, or complete ventral white matter (CV). Behavior [open-field Basso, Beattie, and Bresnahan (BBB) scores and grid walking] and transcranial magnetic motor-evoked potentials (tcMMEP) were studied at 1, 2, and 4 weeks after lesion. VLF lesions resulted in complete loss or severe attenuation of tcMMEPs, with mean BBB scores of 18.0, and no grid walking deficits. VC lesions produced behavior similar to VLF-lesioned animals but did not significantly affect tcMMEPs. VC-VLF and CV lesions resulted in complete loss of tcMMEP signals with mean BBB scores of 12.7 and 6.5, respectively. Our data support a diffuse arrangement of axons within the ventral white matter that may comprise a system of multiple descending pathways subserving spontaneous over-ground locomotion in the intact animal. PMID:11756515

  17. Efficacy of Stochastic Vestibular Stimulation to Improve Locomotor Performance in a Discordant Sensory Environment

    NASA Technical Reports Server (NTRS)

    Temple, D. R.; De Dios, Y. E.; Layne, C. S.; Bloomberg, J. J.; Mulavara, A. P.

    2016-01-01

    Astronauts exposed to microgravity face sensorimotor challenges incurred when readapting to a gravitational environment. Sensorimotor Adaptability (SA) training has been proposed as a countermeasure to improve locomotor performance during re-adaptation, and it is suggested that the benefits of SA training may be further enhanced by improving detection of weak sensory signals via mechanisms such as stochastic resonance when a non-zero level of stochastic white noise based electrical stimulation is applied to the vestibular system (stochastic vestibular stimulation, SVS). The purpose of this study was to test the efficacy of using SVS to improve short-term adaptation in a sensory discordant environment during performance of a locomotor task.

  18. Locomotor Dysfunction after Spaceflight: Characterization and Countermeasure Development

    NASA Technical Reports Server (NTRS)

    Mulavara, A. P.; Cohen, H. S.; Peters, B. T.; Miller, C. A.; Brady, R.; Bloomberg, Jacob J.

    2007-01-01

    Astronauts returning from space flight show disturbances in locomotor control manifested by changes in various sub-systems including head-trunk coordination, dynamic visual acuity, lower limb muscle activation patterning and kinematics (Glasauer, et al., 1995; Bloomberg, et al., 1997; McDonald, et al., 1996; 1997; Layne, et al., 1997; 1998, 2001, 2004; Newman, et al., 1997; Bloomberg and Mulavara, 2003). These post flight changes in locomotor performance, due to neural adaptation to the microgravity conditions of space flight, affect the ability of crewmembers especially after a long duration mission to egress their vehicle and perform extravehicular activities soon after landing on Earth or following a landing on the surface of the Moon or Mars. At present, no operational training intervention is available pre- or in- flight to mitigate post flight locomotor disturbances. Our laboratory is currently developing a gait adaptability training program that is designed to facilitate recovery of locomotor function following a return to a gravitational environment. The training program exploits the ability of the sensorimotor system to generalize from exposure to multiple adaptive challenges during training so that the gait control system essentially "learns to learn" and therefore can reorganize more rapidly when faced with a novel adaptive challenge. Ultimately, the functional goal of an adaptive generalization countermeasure is not necessarily to immediately return movement patterns back to "normal". Rather the training regimen should facilitate the reorganization of available sensorimotor sub-systems to achieve safe and effective locomotion as soon as possible after space flight. We have previously confirmed that subjects participating in adaptive generalization training programs, using a variety of visuomotor distortions and different motor tasks from throwing to negotiating an obstacle course as the dependent measure, can learn to enhance their ability to adapt to a

  19. Treating Individuals With Intellectual Disabilities and Challenging Behaviors With Adapted Dialectical Behavior Therapy

    PubMed Central

    Brown, Julie F.; Brown, Milton Z.; Dibiasio, Paige

    2013-01-01

    Approximately one third of adults with intellectual and developmental disabilities have emotion dysregulation and challenging behaviors (CBs). Although research has not yet confirmed that existing treatments adequately reduce CBs in this population, dialectical behavior therapy (DBT) holds promise, as it has been shown to effectively reduce CBs in other emotionally dysregulated populations. This longitudinal single-group pilot study examined whether individuals with impaired intellectual functioning would show reductions in CBs while receiving standard DBT individual therapy used in conjunction with the Skills System (DBT-SS), a DBT emotion regulation skills curriculum adapted for individuals with cognitive impairment. Forty adults with developmental disabilities (most of whom also had intellectual disabilities) and CBs, including histories of aggression, self-injury, sexual offending, or other CBs, participated in this study. Changes in their behaviors were monitored over 4 years while in DBT-SS. Large reductions in CBs were observed during the 4 years. These findings suggest that modified DBT holds promise for effectively treating individuals with intellectual and developmental disabilities. PMID:23914278

  20. Adaptive Effects on Locomotion Performance Following Exposure to a Rotating Virtual Environment

    NASA Technical Reports Server (NTRS)

    Mulavara, A. P.; Richards, J. T.; Marshburn, A. M.; Bucello, R.; Bloomberg, J. J.

    2003-01-01

    During long-duration spaceflight, astronauts experience alterations in vestibular and somatosensory cues that result in adaptive disturbances in balance and coordination upon return to Earth. These changes can pose a risk to crew safety and to mission objectives if nominal or emergency vehicle egress is required immediately following long-duration spaceflight. At present, no operational countermeasure is available to mitigate the adaptive sensorimotor component underlying the locomotor disturbances that occur after spaceflight. Therefore, the goal of this study is to develop an inflight training regimen that facilitates recovery of locomotor function after long-duration spaceflight. The countermeasure we are proposing is based on the concept of adaptive generalization. During this type of training the subject gains experience producing the appropriate adaptive motor behavior under a variety of sensory conditions and response constraints. As a result of this training a subject learns to solve a class of motor problems, rather than a specific motor solution to one problem, i.e., the subject learns response generalizability or the ability to "learn to learn." under a variety of environmental constraints. We are developing an inflight countermeasure built around treadmill exercise activities. By manipulating the sensory conditions of exercise by varying visual flow patterns, body load and speed we will systematically and repeatedly promote adaptive change in locomotor behavior. It has been shown that variable practice training increases adaptability to novel visuo-motor situations. While walking over ground in a stereoscopic virtual environment that oscillated in roll, subjects have shown compensatory torso rotation in the direction of scene rotation that resulted in positional variation away from a desired linear path. Thus, postural sway and locomotor stability in 1-g can be modulated by visual flow patterns and used during inflight treadmill training to promote

  1. Behaviorally mediated, warm adaptation: a physiological strategy when mice behaviorally thermoregulate.

    PubMed

    Gordon, Christopher J; Aydin, Cenk; Repasky, Elizabeth A; Kokolus, Kathleen M; Dheyongera, Geoffrey; Johnstone, Andrew F M

    2014-08-01

    Laboratory mice housed under standard vivarium conditions with an ambient temperature (Ta) of ~22°C are likely to be cold stressed because this Ta is below their thermoneutral zone (TNZ). Mice raised at Tas within the TNZ adapt to the warmer temperatures, developing smaller internal organs and longer tails compared to mice raised at 22°C. Since mice prefer Tas equal to their TNZ when housed in a thermocline, we hypothesized that mice reared for long periods (e.g., months) in a thermocline would undergo significant changes in organ development and tail length as a result of their thermoregulatory behavior. Groups of three female BALB/c mice at an age of 37 days were housed together in a thermocline consisting of a 90cm long aluminum runway with a floor temperature ranging from 23 to 39°C. Two side-by-side thermoclines allowed for a total of 6 mice to be tested simultaneously. Control mice were tested in isothermal runways maintained at a Ta of 22°C. All groups were given cotton pads for bedding/nest building. Mass of heart, lung, liver, kidney, brain, and tail length were assessed after 73 days of treatment. Mice in the thermocline and control (isothermal) runways were compared to cage control mice housed 3/cage with bedding under standard vivarium conditions. Mice in the thermocline generally remained in the warm end throughout the daytime with little evidence of nest building, suggesting a state of thermal comfort. Mice in the isothermal runway built elaborate nests and huddled together in the daytime. Mice housed in the thermocline had significantly smaller livers and kidneys and an increase in tail length compared to mice in the isothermal runway as well as when compared to the cage controls. These patterns of organ growth and tail length of mice in the thermocline are akin to warm adaptation. Thus, thermoregulatory behavior altered organ development, a process we term behaviorally mediated, warm adaptation. Moreover, the data suggest that the standard

  2. A quantitative evolutionary theory of adaptive behavior dynamics.

    PubMed

    McDowell, J J

    2013-10-01

    The idea that behavior is selected by its consequences in a process analogous to organic evolution has been discussed for over 100 years. A recently proposed theory instantiates this idea by means of a genetic algorithm that operates on a population of potential behaviors. Behaviors in the population are represented by numbers in decimal integer (phenotypic) and binary bit string (genotypic) forms. One behavior from the population is emitted at random each time tick, after which a new population of potential behaviors is constructed by recombining parent behavior bit strings. If the emitted behavior produced a benefit to the organism, then parents are chosen on the basis of their phenotypic similarity to the emitted behavior; otherwise, they are chosen at random. After parent behavior recombination, the population is subjected to a small amount of mutation by flipping random bits in the population's bit strings. The behavior generated by this process of selection, reproduction, and mutation reaches equilibrium states that conform to every empirically valid equation of matching theory, exactly and without systematic error. These equations are known to describe the behavior of many vertebrate species, including humans, in a variety of experimental, naturalistic, natural, and social environments. The evolutionary theory also generates instantaneous dynamics and patterns of preference change in constantly changing environments that are consistent with the dynamics of live-organism behavior. These findings support the assertion that the world of behavior we observe and measure is generated by evolutionary dynamics. PMID:24219847

  3. Linking Screening for Emotional and Behavioral Problems to Problem-Solving Efforts: An Adaptive Model of Behavioral Assessment

    ERIC Educational Resources Information Center

    Volpe, Robert J.; Briesch, Amy M.; Chafouleas, Sandra M.

    2010-01-01

    This paper addresses several objectives of the special issue on universal screening by addressing gaps in the current research base concerning universal screening for mental, emotional, and behavioral health and by providing a framework for addressing the limitations of extant approaches. Specifically, an adaptive model of behavioral assessment…

  4. Brief Report: The Relationship between Language Skills, Adaptive Behavior, and Emotional and Behavior Problems in Pre-Schoolers with Autism

    ERIC Educational Resources Information Center

    Park, Carlie J.; Yelland, Gregory W.; Taffe, John R.; Gray, Kylie M.

    2012-01-01

    This study investigated the relationship between structural language skills, and communication skills, adaptive behavior, and emotional and behavior problems in pre-school children with autism. Participants were aged 3-5 years with autism (n = 27), and two comparison groups of children with developmental delay without autism (n = 12) and typically…

  5. The Classroom Adaptation Scale: A Behavior Rating Scale Designed to Screen Primary Grade Children for School Adaptation Problems.

    ERIC Educational Resources Information Center

    Virbickis, Joseph A.

    After a brief historical review of the background and research, the paper focuses on development of a teacher-administered behavior rating scale to screen for school adaptation problems on a large scale basis using as Ss 15 primary grade teachers and their ratings of 315 primary grade children (ages 6-to-10 years) in their classes. A 16-item…

  6. MDMA (ecstasy) modulates locomotor and prefrontal cortex sensory evoked activity.

    PubMed

    Atkins, Kristal; Burks, Tilithia; Swann, Alan C; Dafny, Nachum

    2009-12-11

    Ingestion of 3, 4-methylenedioxymethamphetamine (MDMA) leads to heightened response to sensory stimulation; thus, MDMA is referred to as "ecstasy" because it produces pleasurable enhancement of such sensation. There have been no electrophysiological studies that report the consequences of MDMA on sensory input. The present study was initiated to study the effects of acute and chronic MDMA on locomotor activity and sensory evoked field potential from freely behaving rats previously implanted with permanent electrodes in the prefrontal cortex (PFC). The main findings of this study are that: (1) acute MDMA augments locomotor behavior and attenuates the incoming sensory input, (2) chronic treatment of MDMA elicits behavioral sensitization, (3) chronic administration of MDMA results in attenuation of the baseline activity of the sensory evoked field potential, and (4) administration of rechallenge MDMA result in enhancement of the PFC sensory evoked field potential. PMID:19769950

  7. Multigroup Confirmatory Factor Analysis for the Adaptive Behavior Assessment System-II Parent Form, Ages 5-21

    ERIC Educational Resources Information Center

    Wei, Youhua; Oakland, Thomas; Algina, James

    2008-01-01

    The AAIDD has promulgated various models of adaptive behavior, including its 1992 model stressing 10 adaptive skills and its 2002 model that highlighted three conceptual domains. In previous studies on the Adaptive Behavior Assessment System-II (ABAS-II), researchers found support for a model including both 10 adaptive skills and three conceptual…

  8. Adapting the Behavior Education Program for Preschool Settings

    ERIC Educational Resources Information Center

    Steed, Elizabeth A.

    2011-01-01

    Behavior Education Program (BEP) is the most researched targeted intervention that is used in schoolwide positive behavior intervention and supports (PBIS). It is a daily check-in and check-out system in which students receive extra attention for positive social behavior throughout their school day. This extra attention is intended to prevent…

  9. Adaptive categorization of ART networks in robot behavior learning using game-theoretic formulation.

    PubMed

    Fung, Wai-keung; Liu, Yun-hui

    2003-12-01

    Adaptive Resonance Theory (ART) networks are employed in robot behavior learning. Two of the difficulties in online robot behavior learning, namely, (1) exponential memory increases with time, (2) difficulty for operators to specify learning tasks accuracy and control learning attention before learning. In order to remedy the aforementioned difficulties, an adaptive categorization mechanism is introduced in ART networks for perceptual and action patterns categorization in this paper. A game-theoretic formulation of adaptive categorization for ART networks is proposed for vigilance parameter adaptation for category size control on the categories formed. The proposed vigilance parameter update rule can help improving categorization performance in the aspect of category number stability and solve the problem of selecting initial vigilance parameter prior to pattern categorization in traditional ART networks. Behavior learning using physical robot is conducted to demonstrate the effectiveness of the proposed adaptive categorization mechanism in ART networks. PMID:14622873

  10. Activation of neurotensin receptor type 1 attenuates locomotor activity.

    PubMed

    Vadnie, Chelsea A; Hinton, David J; Choi, Sun; Choi, YuBin; Ruby, Christina L; Oliveros, Alfredo; Prieto, Miguel L; Park, Jun Hyun; Choi, Doo-Sup

    2014-10-01

    Intracerebroventricular administration of neurotensin (NT) suppresses locomotor activity. However, the brain regions that mediate the locomotor depressant effect of NT and receptor subtype-specific mechanisms involved are unclear. Using a brain-penetrating, selective NT receptor type 1 (NTS1) agonist PD149163, we investigated the effect of systemic and brain region-specific NTS1 activation on locomotor activity. Systemic administration of PD149163 attenuated the locomotor activity of C57BL/6J mice both in a novel environment and in their homecage. However, mice developed tolerance to the hypolocomotor effect of PD149163 (0.1 mg/kg, i.p.). Since NTS1 is known to modulate dopaminergic signaling, we examined whether PD149163 blocks dopamine receptor-mediated hyperactivity. Pretreatment with PD149163 (0.1 or 0.05 mg/kg, i.p.) inhibited D2R agonist bromocriptine (8 mg/kg, i.p.)-mediated hyperactivity. D1R agonist SKF-81297 (8 mg/kg, i.p.)-induced hyperlocomotion was only inhibited by 0.1 mg/kg of PD149163. Since the nucleus accumbens (NAc) and medial prefrontal cortex (mPFC) have been implicated in the behavioral effects of NT, we examined whether microinjection of PD149163 into these regions reduces locomotion. Microinjection of PD149163 (2 pmol) into the NAc, but not the mPFC suppressed locomotor activity. In summary, our results indicate that systemic and intra-NAc activation of NTS1 is sufficient to reduce locomotion and NTS1 activation inhibits D2R-mediated hyperactivity. Our study will be helpful to identify pharmacological factors and a possible therapeutic window for NTS1-targeted therapies for movement disorders. PMID:24929110

  11. Fluctuation-Driven Neural Dynamics Reproduce Drosophila Locomotor Patterns

    PubMed Central

    Cruchet, Steeve; Gustafson, Kyle; Benton, Richard; Floreano, Dario

    2015-01-01

    The neural mechanisms determining the timing of even simple actions, such as when to walk or rest, are largely mysterious. One intriguing, but untested, hypothesis posits a role for ongoing activity fluctuations in neurons of central action selection circuits that drive animal behavior from moment to moment. To examine how fluctuating activity can contribute to action timing, we paired high-resolution measurements of freely walking Drosophila melanogaster with data-driven neural network modeling and dynamical systems analysis. We generated fluctuation-driven network models whose outputs—locomotor bouts—matched those measured from sensory-deprived Drosophila. From these models, we identified those that could also reproduce a second, unrelated dataset: the complex time-course of odor-evoked walking for genetically diverse Drosophila strains. Dynamical models that best reproduced both Drosophila basal and odor-evoked locomotor patterns exhibited specific characteristics. First, ongoing fluctuations were required. In a stochastic resonance-like manner, these fluctuations allowed neural activity to escape stable equilibria and to exceed a threshold for locomotion. Second, odor-induced shifts of equilibria in these models caused a depression in locomotor frequency following olfactory stimulation. Our models predict that activity fluctuations in action selection circuits cause behavioral output to more closely match sensory drive and may therefore enhance navigation in complex sensory environments. Together these data reveal how simple neural dynamics, when coupled with activity fluctuations, can give rise to complex patterns of animal behavior. PMID:26600381

  12. Adapted Dialectical Behavior Therapy for Adolescents with Self-injurious Thoughts and Behaviors.

    PubMed

    Courtney, Darren B; Flament, Martine F

    2015-07-01

    The purpose of this study was to explore clinical changes observed in suicidal adolescents treated with an adapted form of Dialectical Behavior Therapy for adolescents (A-DBT-A) in a tertiary care setting. We conducted an open-label naturalistic study including 61 adolescents with self-injurious thoughts and behaviors and associated features of borderline personality disorder, who underwent a 15-week course of A-DBT-A. Pre- and post-treatment measures were administered, the primary outcome being the total score on the Suicidal Ideas Questionnaire. Self-harm, symptoms of borderline personality disorder, resiliency measures, predictors of response, and predictors of attrition were also explored. Among participants who completed post-treatment measures, we found a significant reduction in suicidal ideation (n = 31, p < 0.001). Secondary outcomes also suggested improvement. Baseline substance use predicted attrition (HR 2.51; 95% CI 1.03-6.14; p < 0.05), as did baseline impulsivity score on the Life Problems Inventory (HR 1.03; 95% CI 1.004-1.06; p < 0.05). Overall, we observed clinical improvements in adolescents receiving A-DBT-A. PMID:26075841

  13. The Development of Adaptive Behavior in Toddlers and Preschoolers with Fragile X versus Autism

    PubMed Central

    McCary, Lindsay M.; Machlin, Laura; Roberts, Jane E.

    2014-01-01

    Although there is extensive research in the early detection of autism, no study has compared the adaptive behavior of young children with fragile X syndrome (FXS) and children with autism across ages. We investigated the cross-sectional development of adaptive behavior in children with FXS and children with autism between 18 and 83 months of age. Analyses revealed a significant relationship between age and adaptive behavior standard scores for children with FXS, with decreased performance across ages. Analyses also revealed that children with FXS had a relatively flat performance across domains while children with autism are typically more variable with lower scores in the communication domain relative to other domains. Delays in adaptive behavior were evident for children with FXS and children with autism at 24 months of age as reported in previous literature. Implications and future directions are discussed. PMID:25191537

  14. Systematic Review of Engagement in Culturally Adapted Parent Training for Disruptive Behavior

    ERIC Educational Resources Information Center

    Butler, Ashley M.; Titus, Courtney

    2015-01-01

    This article reviews the literature reporting engagement (enrollment, attendance, and attrition) in culturally adapted parent training for disruptive behavior among racial/ethnic minority parents of children ages 2 to 7 years. The review describes the reported rates of engagement in adapted interventions and how engagement is analyzed in studies,…

  15. Development of Adaptive Behavior in Adolescents and Young Adults with Autism and Down Syndrome.

    ERIC Educational Resources Information Center

    Loveland, Katherine A.; Kelley, Michelle L.

    1988-01-01

    Sixteen individuals with autism and sixteen with Down's Syndrome, aged 10-29, were matched for verbal mental age. The groups' scores did not differ on the Vineland Adaptive Behavior Scales. However, the adaptive skills of Down's Syndrome individuals kept pace with mental age, while the skills of autistic subjects did not change. (Author/JDD)

  16. Adapted Behavior Therapy for Persistently Depressed Primary Care Patients: An Open Trial

    ERIC Educational Resources Information Center

    Uebelacker, Lisa A.; Weisberg, Risa B.; Haggarty, Ryan; Miller, Ivan W.

    2009-01-01

    Major depressive disorder is commonly treated in primary care settings. Psychotherapy occurring in primary care should take advantage of the unique aspects of the setting and must adapt to the problems and limitations of the setting. In this open trial, the authors used a treatment development model to adapt behavior therapy for primary care…

  17. Profiles of School Adaptation: Social, Behavioral and Academic Functioning in Sexually Abused Girls

    ERIC Educational Resources Information Center

    Daignault, Isabelle V.; Hebert, Martine

    2009-01-01

    Objectives: The short-term outcomes of child sexual abuse (CSA) on academic, behavioral and social adaptation at school were examined in order to: (1) document the proportion of sexually abused (SA) girls struggling in school and define the nature of their difficulties, (2) explore whether different profiles of school adaptation could be…

  18. Someone has to give in: theta oscillations correlate with adaptive behavior in social bargaining

    PubMed Central

    Zamorano, Francisco; López, Tamara; Rodriguez, Carlos; Cosmelli, Diego; Aboitiz, Francisco

    2014-01-01

    During social bargain, one has to both figure out the others’ intentions and behave strategically in such a way that the others’ behaviors will be consistent with one’s expectations. To understand the neurobiological mechanisms underlying these behaviors, we used electroencephalography while subjects played as proposers in a repeated ultimatum game. We found that subjects adapted their offers to obtain more acceptances in the last round and that this adaptation correlated negatively with prefrontal theta oscillations. People with higher prefrontal theta activity related to a rejection did not adapt their offers along the game to maximize their earning. Moreover, between-subject variation in posterior theta oscillations correlated positively with how individual theta activity influenced the change of offer after a rejection, reflecting a process of behavioral adaptation to the others’ demands. Interestingly, people adapted better their offers when they knew that they where playing against a computer, although the behavioral adaptation did not correlate with prefrontal theta oscillation. Behavioral changes between human and computer games correlated with prefrontal theta activity, suggesting that low adaptation in human games could be a strategy. Taken together, these results provide evidence for specific roles of prefrontal and posterior theta oscillations in social bargaining. PMID:24493841

  19. Locomotor Expertise Predicts Infants' Perseverative Errors

    ERIC Educational Resources Information Center

    Berger, Sarah E.

    2010-01-01

    This research examined the development of inhibition in a locomotor context. In a within-subjects design, infants received high- and low-demand locomotor A-not-B tasks. In Experiment 1, walking 13-month-old infants followed an indirect path to a goal. In a control condition, infants took a direct route. In Experiment 2, crawling and walking…

  20. Vestibular lesion-induced developmental plasticity in spinal locomotor networks during Xenopus laevis metamorphosis.

    PubMed

    Beyeler, Anna; Rao, Guillaume; Ladepeche, Laurent; Jacques, André; Simmers, John; Le Ray, Didier

    2013-01-01

    During frog metamorphosis, the vestibular sensory system remains unchanged, while spinal motor networks undergo a massive restructuring associated with the transition from the larval to adult biomechanical system. We investigated in Xenopus laevis the impact of a pre- (tadpole stage) or post-metamorphosis (juvenile stage) unilateral labyrinthectomy (UL) on young adult swimming performance and underlying spinal locomotor circuitry. The acute disruptive effects on locomotion were similar in both tadpoles and juvenile frogs. However, animals that had metamorphosed with a preceding UL expressed restored swimming behavior at the juvenile stage, whereas animals lesioned after metamorphosis never recovered. Whilst kinematic and electrophysiological analyses of the propulsive system showed no significant differences in either juvenile group, a 3D biomechanical simulation suggested that an asymmetry in the dynamic control of posture during swimming could account for the behavioral restoration observed in animals that had been labyrinthectomized before metamorphosis. This hypothesis was subsequently supported by in vivo electromyography during free swimming and in vitro recordings from isolated brainstem/spinal cord preparations. Specifically, animals lesioned prior to metamorphosis at the larval stage exhibited an asymmetrical propulsion/posture coupling as a post-metamorphic young adult. This developmental alteration was accompanied by an ipsilesional decrease in propriospinal coordination that is normally established in strict left-right symmetry during metamorphosis in order to synchronize dorsal trunk muscle contractions with bilateral hindlimb extensions in the swimming adult. Our data thus suggest that a disequilibrium in descending vestibulospinal information during Xenopus metamorphosis leads to an altered assembly of adult spinal locomotor circuitry. This in turn enables an adaptive compensation for the dynamic postural asymmetry induced by the vestibular imbalance

  1. Vestibular Lesion-Induced Developmental Plasticity in Spinal Locomotor Networks during Xenopus laevis Metamorphosis

    PubMed Central

    Beyeler, Anna; Rao, Guillaume; Ladepeche, Laurent; Jacques, André; Simmers, John; Le Ray, Didier

    2013-01-01

    During frog metamorphosis, the vestibular sensory system remains unchanged, while spinal motor networks undergo a massive restructuring associated with the transition from the larval to adult biomechanical system. We investigated in Xenopus laevis the impact of a pre- (tadpole stage) or post-metamorphosis (juvenile stage) unilateral labyrinthectomy (UL) on young adult swimming performance and underlying spinal locomotor circuitry. The acute disruptive effects on locomotion were similar in both tadpoles and juvenile frogs. However, animals that had metamorphosed with a preceding UL expressed restored swimming behavior at the juvenile stage, whereas animals lesioned after metamorphosis never recovered. Whilst kinematic and electrophysiological analyses of the propulsive system showed no significant differences in either juvenile group, a 3D biomechanical simulation suggested that an asymmetry in the dynamic control of posture during swimming could account for the behavioral restoration observed in animals that had been labyrinthectomized before metamorphosis. This hypothesis was subsequently supported by in vivo electromyography during free swimming and in vitro recordings from isolated brainstem/spinal cord preparations. Specifically, animals lesioned prior to metamorphosis at the larval stage exhibited an asymmetrical propulsion/posture coupling as a post-metamorphic young adult. This developmental alteration was accompanied by an ipsilesional decrease in propriospinal coordination that is normally established in strict left-right symmetry during metamorphosis in order to synchronize dorsal trunk muscle contractions with bilateral hindlimb extensions in the swimming adult. Our data thus suggest that a disequilibrium in descending vestibulospinal information during Xenopus metamorphosis leads to an altered assembly of adult spinal locomotor circuitry. This in turn enables an adaptive compensation for the dynamic postural asymmetry induced by the vestibular imbalance

  2. Comparison of Measures of Adaptive Behaviors in Preschool Children.

    ERIC Educational Resources Information Center

    Garrity, Linda I.; Servos, Andria B.

    1978-01-01

    Nonproblem and problem children were compared on Minnesota Child Development Inventory, Classroom Adjustment Rating Scale, Ottawa School Behavior Survey, AML Behavior Rating Scale, Teacher Rating Scale, and Denver Developmental Screening Test. Problem children scored significantly lower than nonproblem children on all measures. Minnesota Child…

  3. Cocaine-induced adaptations in cellular redox balance contributes to enduring behavioral plasticity.

    PubMed

    Uys, Joachim D; Knackstedt, Lori; Hurt, Phelipe; Tew, Kenneth D; Manevich, Yefim; Hutchens, Steven; Townsend, Danyelle M; Kalivas, Peter W

    2011-11-01

    Impaired glutamate homeostasis in the nucleus accumbens has been linked to cocaine relapse in animal models, and results in part from cocaine-induced downregulation of the cystine-glutamate exchanger. In addition to regulating extracellular glutamate, the uptake of cystine by the exchanger is a rate-limiting step in the synthesis of glutathione (GSH). GSH is critical for balancing cellular redox in response to oxidative stress. Cocaine administration induces oxidative stress, and we first determined if downregulated cystine-glutamate exchange alters redox homeostasis in rats withdrawn from daily cocaine injections and then challenged with acute cocaine. Among the daily cocaine-induced changes in redox homeostasis were an increase in protein S-glutathionylation and a decrease in expression of GSH-S-transferase pi (GSTpi). To mimic reduced GSTpi, a genetic mouse model of GSTpi deletion or pharmacological inhibition of GSTpi by administering ketoprofen during daily cocaine administration was used. The capacity of cocaine to induce conditioned place preference or locomotor sensitization was augmented, indicating that reducing GSTpi may contribute to cocaine-induced behavioral neuroplasticity. Conversely, an acute cocaine challenge after withdrawal from daily cocaine elicited a marked increase in accumbens GSTpi, and the expression of behavioral sensitization to a cocaine challenge injection was inhibited by ketoprofen pretreatment; supporting a protective effect by the acute cocaine-induced rise in GSTpi. Together, these data indicate that cocaine-induced oxidative stress induces changes in GSTpi that contribute to cocaine-induced behavioral plasticity. PMID:21796101

  4. Cocaine-Induced Adaptations in Cellular Redox Balance Contributes to Enduring Behavioral Plasticity

    PubMed Central

    Uys, Joachim D; Knackstedt, Lori; Hurt, Phelipe; Tew, Kenneth D; Manevich, Yefim; Hutchens, Steven; Townsend, Danyelle M; Kalivas, Peter W

    2011-01-01

    Impaired glutamate homeostasis in the nucleus accumbens has been linked to cocaine relapse in animal models, and results in part from cocaine-induced downregulation of the cystine–glutamate exchanger. In addition to regulating extracellular glutamate, the uptake of cystine by the exchanger is a rate-limiting step in the synthesis of glutathione (GSH). GSH is critical for balancing cellular redox in response to oxidative stress. Cocaine administration induces oxidative stress, and we first determined if downregulated cystine–glutamate exchange alters redox homeostasis in rats withdrawn from daily cocaine injections and then challenged with acute cocaine. Among the daily cocaine-induced changes in redox homeostasis were an increase in protein S-glutathionylation and a decrease in expression of GSH-S-transferase pi (GSTpi). To mimic reduced GSTpi, a genetic mouse model of GSTpi deletion or pharmacological inhibition of GSTpi by administering ketoprofen during daily cocaine administration was used. The capacity of cocaine to induce conditioned place preference or locomotor sensitization was augmented, indicating that reducing GSTpi may contribute to cocaine-induced behavioral neuroplasticity. Conversely, an acute cocaine challenge after withdrawal from daily cocaine elicited a marked increase in accumbens GSTpi, and the expression of behavioral sensitization to a cocaine challenge injection was inhibited by ketoprofen pretreatment; supporting a protective effect by the acute cocaine-induced rise in GSTpi. Together, these data indicate that cocaine-induced oxidative stress induces changes in GSTpi that contribute to cocaine-induced behavioral plasticity. PMID:21796101

  5. Kindergarten Children's Perceptions of "Anthropomorphic Artifacts" with Adaptive Behavior

    ERIC Educational Resources Information Center

    Kuperman, Asi; Mioduser, David

    2012-01-01

    In recent years, children from a kindergarten in central Israel have been exposed to learning experiences in technology as part of the implementation of a curriculum based on technological thinking, including topics related to behaving-adaptive-artifacts (e.g., robots). This study aims to unveil children's stance towards behaving artifacts:…

  6. Predicting Adaptive Behavior from the Bayley Scales of Infant Development.

    ERIC Educational Resources Information Center

    Hotard, Stephen; McWhirter, Richard

    To examine the proportion of variance in adaptive functioning predictable from mental ability, chronological age, I.Q., evidence of brain malfunction, seizure medication, and receptive and expressive language scores, 25 severely and profoundly retarded institutionalized persons (2-19 years old) were administered the Bayley Infant Scale Mental…

  7. Illness behavior, social adaptation, and the management of illness. A comparison of educational and medical models.

    PubMed

    Mechanic, D

    1977-08-01

    Motivational needs and coping are important aspects of illness response. Clinicians must help guide illness response by suggesting constructive adaptive opportunities and by avoiding reinforcement of maladaptive patterns. This paper examines how the patient's search for meaning, social attributions, and social comparisons shapes adaptation to illness and subsequent disability. It proposes a coping-adaptation model involving the following five resources relevant to rehabilitation: economic assets, abilities and skills, defensive techniques, social supports, and motivational impetus. It is maintained that confusion between illness and illness behavior obfuscates the alternatives available to guide patients through smoother adaptations and resumption of social roles. PMID:328824

  8. Disparate effects of pramipexole on locomotor activity and sensorimotor gating in Sprague-Dawley rats.

    PubMed

    Chang, Wei-li; Breier, Michelle R; Yang, Alex; Swerdlow, Neal R

    2011-10-01

    Prepulse inhibition (PPI) of acoustic startle and locomotor activity are both widely studied in the preclinical development of dopaminergic agents, including those acting at D3 dopamine receptors. In mice, the dopamine D3 receptor-preferential agonist pramipexole (PPX) alters locomotor activity in a biphasic manner at doses that have no effect on PPI. The present study examined the time-course of PPX effects on locomotion and PPI in rats. In adult male Sprague-Dawley rats, PPX (0, 0.1, 0.3, 1.0mg/kg) was injected prior to measurement of locomotor activity for 90 min in photobeam chambers. Based on disparate early vs. late effects of PPX on locomotion, the effects of PPX (0 vs. 0.3mg/kg) on PPI were tested 20 and 80 min after injection. All doses of PPX decreased locomotor activity for 30 min compared to vehicle, and the higher doses stimulated hyperlocomotion later in the session; the late hyperlocomotion, but not the early hypolocomotion, was blocked by the D2-selective antagonist, L741626 (1.0mg/kg sc). In contrast to its locomotor effects, PPX caused a similar reduction in PPI at 20 and 80 min after administration. These findings suggest both a temporal and pharmacological dissociation between PPX effects on locomotor activity and PPI; these two behavioral measures contribute non-redundant information to the investigation of D3-related behavioral pharmacology. PMID:21683731

  9. Visual Behaviors and Adaptations Associated with Cortical and Ocular Impairment in Children.

    ERIC Educational Resources Information Center

    Jan, J. E.; Groenveld, M.

    1993-01-01

    This article shows the usefulness of understanding visual behaviors in the diagnosis of various types of visual impairments that are due to ocular and cortical disorders. Behaviors discussed include nystagmus, ocular motor dyspraxia, head position, close viewing, field loss adaptations, mannerisms, photophobia, and abnormal color perception. (JDD)

  10. Use of Vineland Adaptive Behavior Scales-II in Children with Autism--An Indian Experience

    ERIC Educational Resources Information Center

    Manohari, S. M.; Raman, Vijaya; Ashok, M. V.

    2013-01-01

    The Vineland Adaptive Behavior Scales-II Edition 2005 (Vineland-II) is useful in assessing abilities in autism spectrum disorder, where an accurate assessment of intelligence using standardized tools is difficult both due to the unique social and communication difficulties that these children present with and the behavioral issues that occur as…

  11. Making Sense by Building Sense: Kindergarten Children's Construction and Understanding of Adaptive Robot Behaviors

    ERIC Educational Resources Information Center

    Mioduser, David; Levy, Sharona T.

    2010-01-01

    This study explores young children's ability to construct and explain adaptive behaviors of a behaving artifact, an autonomous mobile robot with sensors. A central component of the behavior construction environment is the RoboGan software that supports children's construction of spatiotemporal events with an a-temporal rule structure. Six…

  12. Adaptive Skills and Maladaptive Behavior of Adolescents with Autism Spectrum Disorders Attending Special Schools in Singapore

    ERIC Educational Resources Information Center

    Poon, Kenneth K.

    2011-01-01

    This study describes the profile of and relationships between adaptive skills and the maladaptive behaviors exhibited by adolescents with autism spectrum disorders (ASD) attending special schools in Singapore. Parents of 20 adolescents with ASD attending special schools completed the Development Behavior Checklist (DBC; Einfeld & Tonge, 1995;…

  13. Adaptive Behavior of 4- through 8-Year-Old Children with Williams Syndrome.

    ERIC Educational Resources Information Center

    Mervis, Carolyn B.; Klein-Tasman, Bonita P.; Mastin, Michelle E.

    2001-01-01

    This study assessed the behavior of 41 4-through 8-year-olds with Williams syndrome. As expected, socialization and communication were relative strengths, whereas daily living skills and motor skills were relative weaknesses. Within socialization, interpersonal skills were stronger than play/leisure or coping skills. Adaptive behavior was not…

  14. Researching Travel Behavior and Adaptability: Using a Virtual Reality Role-Playing Game

    ERIC Educational Resources Information Center

    Watcharasukarn, Montira; Krumdieck, Susan; Green, Richard; Dantas, Andre

    2011-01-01

    This article describes a virtual reality role-playing game that was developed as a survey tool to collect travel behavior data and explore and monitor travel behavior adaptation. The Advanced Energy and Material Systems Laboratory has designed, developed a prototype, and tested such a game platform survey tool, called Travel Activity Constraint…

  15. Dialectical Behavior Therapy Adapted for the Vocational Rehabilitation of Significantly Disabled Mentally Ill Adults

    ERIC Educational Resources Information Center

    Koons, Cedar R.; Chapman, Alexander L.; Betts, Bette B.; O'Rourke, Beth; Morse, Nesha; Robins, Clive J.

    2006-01-01

    Twelve vocational rehabilitation clients with severe mental illness received a comprehensive adaptation of dialectical behavior therapy (DBT) delivered in a group format. Treatment consisted of 2 hours of standard DBT skills training per week and 90 minutes of diary card review, chain analysis, and behavioral rehearsal. Participants were selected…

  16. Effects of adaptive protective behavior on the dynamics of sexually transmitted infections.

    PubMed

    Hayashi, Michael A L; Eisenberg, Marisa C

    2016-01-01

    Sexually transmitted infections (STIs) continue to present a complex and costly challenge to public health programs. The preferences and social dynamics of a population can have a large impact on the course of an outbreak as well as the effectiveness of interventions intended to influence individual behavior. In addition, individuals may alter their sexual behavior in response to the presence of STIs, creating a feedback loop between transmission and behavior. We investigate the consequences of modeling the interaction between STI transmission and prophylactic use with a model that links a Susceptible-Infectious-Susceptible (SIS) system to evolutionary game dynamics that determine the effective contact rate. The combined model framework allows us to address protective behavior by both infected and susceptible individuals. Feedback between behavioral adaptation and prevalence creates a wide range of dynamic behaviors in the combined model, including damped and sustained oscillations as well as bistability, depending on the behavioral parameters and disease growth rate. We found that disease extinction is possible for multiple regions where R0>1, due to behavior adaptation driving the epidemic downward, although conversely endemic prevalence for arbitrarily low R0 is also possible if contact rates are sufficiently high. We also tested how model misspecification might affect disease forecasting and estimation of the model parameters and R0. We found that alternative models that neglect the behavioral feedback or only consider behavior adaptation by susceptible individuals can potentially yield misleading parameter estimates or omit significant features of the disease trajectory. PMID:26362102

  17. Genetic variation in locomotor activity rhythm among populations of Leptopilina heterotoma (Hymenoptera: Eucoilidae), a larval parasitoid of Drosophila species.

    PubMed

    Fleury, F; Allemand, R; Fouillet, P; Boulétreau, M

    1995-01-01

    The locomotor activity rhythm of Leptopilina heterotoma, a parasitoid insect of Drosophila larvae, was investigated under laboratory conditions. Under LD 12:12, the locomotor activity of females shows a clear rhythm which persists under continuous darkness (circadian rhythm). However, comparative study of five populations indicates that both the rate of activity and the profile of the rhythm vary according to the origin of females. The Mediterranean populations (Tunisia and Antibes) show two peaks of activity, at the beginning and at the end of the photophase, whereas more northern populations (Lyon and the Netherlands) are mostly active during the afternoon. Females originating from the area of Lyon have a very low level of activity. Reciprocal crosses (F1 hybrids and backcrosses) between the French and the Tunisian strains demonstrated the genetic basis of these variations and the biparental inheritance of the trait. This genetic variability is interpreted as a consequence of selective pressures and suggests a local adaptation of natural populations in host foraging behavior. The selective factors which could act on the daily organization of parasitoid behaviors are discussed. PMID:7755522

  18. Neural Adaptation and Behavioral Measures of Temporal Processing and Speech Perception in Cochlear Implant Recipients

    PubMed Central

    Zhang, Fawen; Benson, Chelsea; Murphy, Dora; Boian, Melissa; Scott, Michael; Keith, Robert; Xiang, Jing; Abbas, Paul

    2013-01-01

    The objective was to determine if one of the neural temporal features, neural adaptation, can account for the across-subject variability in behavioral measures of temporal processing and speech perception performance in cochlear implant (CI) recipients. Neural adaptation is the phenomenon in which neural responses are the strongest at the beginning of the stimulus and decline following stimulus repetition (e.g., stimulus trains). It is unclear how this temporal property of neural responses relates to psychophysical measures of temporal processing (e.g., gap detection) or speech perception. The adaptation of the electrical compound action potential (ECAP) was obtained using 1000 pulses per second (pps) biphasic pulse trains presented directly to the electrode. The adaptation of the late auditory evoked potential (LAEP) was obtained using a sequence of 1-kHz tone bursts presented acoustically, through the cochlear implant. Behavioral temporal processing was measured using the Random Gap Detection Test at the most comfortable listening level. Consonant nucleus consonant (CNC) word and AzBio sentences were also tested. The results showed that both ECAP and LAEP display adaptive patterns, with a substantial across-subject variability in the amount of adaptation. No correlations between the amount of neural adaptation and gap detection thresholds (GDTs) or speech perception scores were found. The correlations between the degree of neural adaptation and demographic factors showed that CI users having more LAEP adaptation were likely to be those implanted at a younger age than CI users with less LAEP adaptation. The results suggested that neural adaptation, at least this feature alone, cannot account for the across-subject variability in temporal processing ability in the CI users. However, the finding that the LAEP adaptive pattern was less prominent in the CI group compared to the normal hearing group may suggest the important role of normal adaptation pattern at the

  19. Seasonality in circadian locomotor activity and serum testosterone level in the subtropical tree sparrow (Passer montanus).

    PubMed

    Dixit, Anand S; Singh, Namram S

    2016-05-01

    Seasonality in daily locomotor activity pattern was investigated in the subtropical tree sparrow by exposing a group of birds to natural day lengths (NDL) for 30days and another group to 12L/12D for 14days followed by transfer to constant dim light (LLdim) for another 15days in four different seasons of the year. Serum testosterone levels were also measured during different seasons. Sparrows, under NDL, exhibited distinct circadian rhythmicity in their locomotor activity with almost similar general pattern in different seasons that restricted mainly to the light hours. However, they showed season-dependent differences in the characteristics of circadian locomotor activity rhythm. Birds, when exposed to 12L/12D, showed entrainment of their locomotor activity rhythm with the activity confined mainly during the light phase. Though, tau (τ) under free run conditions did not show any significant difference, the activity period varied significantly in different seasons. The highest level of testosterone was recorded in the spring season that corresponded with the maximum locomotor activity in spring months. The seasonality in daily locomotor activity correlates with the seasonal changes in testosterone levels suggesting the influence of gonadal steroids on endogenous circadian system which is indicative of adaptation of tree sparrow to local photoperiodic conditions. PMID:26945648

  20. Bovine growth hormone transgenic mice display alterations in locomotor activity and brain monoamine neurochemistry.

    PubMed

    Söderpalm, B; Ericson, M; Bohlooly, M; Engel, J A; Törnell, J

    1999-12-01

    Recent clinical and experimental data indicate a role for GH in mechanisms related to anhedonia/hedonia, psychic energy, and reward. In the present study we have investigated whether bovine GH (bGH) transgenic mice and nontransgenic controls differ in spontaneous locomotor activity, a behavioral response related to brain dopamine (DA) and reward mechanisms, as well as in locomotor activity response to drugs of abuse known to interfere with brain DA systems. The animals were tested for locomotor activity once a week for 4 weeks. When first exposed to the test apparatus, bGH transgenic animals displayed significantly more locomotor activity than controls during the entire registration period (1 h). One week later, after acute pretreatment with saline, the two groups did not differ in locomotor activity, whereas at the third test occasion, bGH mice were significantly more stimulated by d-amphetamine (1 mg/kg, ip) than controls. At the fourth test, a tendency for a larger locomotor stimulatory effect of ethanol (2.5 g/kg, ip) was observed in bGH transgenic mice. bGH mice displayed increased tissue levels of serotonin and 5-hydroxyindoleacetic acid in several brain regions, decreased DA levels in the brain stem, and decreased levels of the DA metabolite 3,4-dihydroxyphenylacetic acid in the mesencephalon and diencephalon, compared with controls. In conclusion, bGH mice display more spontaneous locomotor activity than nontransgenic controls in a novel environment and possibly also a disturbed habituation process. The finding that bGH mice were also more sensitive to d-amphetamine-induced locomotor activity may suggest that the behavioral differences observed are related to differences in brain DA systems, indicating a hyperresponsiveness of these systems in bGH transgenic mice. These findings may constitute a neurochemical basis for the reported psychic effects of GH in humans. PMID:10579325

  1. Neuropsychological, behavioral, and adaptive functioning of Swiss children with congenital central hypoventilation syndrome.

    PubMed

    Ruof, Helge; Hammer, Juerg; Tillmann, Bettina; Ghelfi, Daniela; Weber, Peter

    2008-11-01

    This study collected data about developmental problems in a cohort of children with congenital central hypoventilation syndrome. In 2003, in Switzerland, 11 children with this disease were registered. Nine of them gave their informed consent to participate in the study and were examined. Clinical assessments were conducted, including examinations of neuropsychological, behavioral, and adaptive functions using Kaufman-Assessment Battery for Children, Child Behavior Checklist, and Vineland Adaptive Behavior Scales. The mean age (+/- standard deviation) was 7.5 +/- 2.5 years. The cognitive tests showed problems in working memory functions with a near-to-normal full-range intelligence quotient (87.4 +/- 23.3). The children showed normal values (t-values < 67) on problem scales of behavior, although 5 of the 9 children showed elevated values on the attention and on the social interaction problem scales. Adaptive function problems were identified in communication and daily living skills. PMID:18984833

  2. Multigroup Confirmatory Factor Analysis for the Teacher Form, Ages 5 to 21, of the Adaptive Behavior Assessment System-II

    ERIC Educational Resources Information Center

    Aricak, O. Tolga; Oakland, Thomas

    2010-01-01

    The American Association on Intellectual and Developmental Disabilities has promulgated various models of adaptive behavior, including its 1992 model that highlighted 10 adaptive skills and its 2002 model that highlighted three conceptual domains. The Adaptive Behavior Assessment System-II (ABAS-II) was designed to be consistent with these models.…

  3. Options for Managing Student Behavior: Adaptations for Individual Needs.

    ERIC Educational Resources Information Center

    Richardson, Rita C.; Evans, Elizabeth T.

    This paper applies principles of situational leadership theory to the management of student behavior problems. First, it summarizes situational leadership, noting the theory's premise that leaders must consider two important factors to gain acceptance and compliance in managing people--the maturity level of the individuals and the nature of the…

  4. Systematic Review of Engagement in Culturally Adapted Parent Training for Disruptive Behavior

    PubMed Central

    Butler, Ashley M.; Titus, Courtney

    2016-01-01

    This article reviews the literature reporting engagement (enrollment, attendance, and attrition) in culturally adapted parent training for disruptive behavior among racial/ethnic minority parents of children ages 2–7 years. The review describes the reported rates of engagement in adapted interventions and how engagement is analyzed in studies, methods to develop adaptations, and adaptations that have been implemented. Seven studies were identified. Parental engagement varied across and within studies. Only one study examined whether adaptations improved engagement compared to non-adapted intervention. Frequent methods to develop adaptations were building partnerships or conducting interviews/focus groups with minority parents or community members. Adaptations included addressing cultural beliefs (perceptions of parenting skills), values (interdependence), or experiences (immigration) that affect parenting or receptivity to interventions; ensuring racial/ethnic diversity of interventionists; and addressing cultural relevancy and literacy level of materials. Future research should examine engagement in adapted interventions compared to non-adapted interventions and examine factors (e.g., immigration status) that may moderate impact on engagement. PMID:27429537

  5. Ceftriaxone attenuates locomotor activity induced by acute and repeated cocaine exposure in mice.

    PubMed

    Tallarida, Christopher S; Corley, Gladys; Kovalevich, Jane; Yen, William; Langford, Dianne; Rawls, Scott M

    2013-11-27

    Ceftriaxone (CTX) decreases locomotor activation produced by initial cocaine exposure and attenuates development of behavioral sensitization produced by repeated cocaine exposure. An important question that has not yet been answered is whether or not CTX reduces behavioral sensitization to cocaine in cases in which the antibiotic is administered only during the period of cocaine absence that follows repeated cocaine exposure and precedes reintroduction to cocaine. We investigated this question using C57BL/6 mice. Mice pretreated with cocaine (15mg/kg×14 days) and then challenged with cocaine (15mg/kg) after 30 days of cocaine absence displayed sensitization of locomotor activity. For combination experiments, CTX injected during the 30 days of cocaine absence attenuated behavioral sensitization produced by cocaine challenge. In the case in which CTX was injected together with cocaine for 14 days, development of behavioral sensitization to cocaine challenge was also reduced. CTX attenuated the increase in locomotor activity produced by acute cocaine exposure; however, its efficacy was dependent on the dose of cocaine as inhibition was detected against 30mg/kg, but not 15mg/kg, of cocaine. These results from mice indicate that CTX attenuates locomotor activity produced by acute and repeated cocaine exposure and counters cocaine's locomotor activating properties in a paradigm in which the antibiotic is injected during the period of forced cocaine absence that follows repeated cocaine exposure. PMID:24120434

  6. Resistance to exercise-induced weight loss: compensatory behavioral adaptations.

    PubMed

    Melanson, Edward L; Keadle, Sarah Kozey; Donnelly, Joseph E; Braun, Barry; King, Neil A

    2013-08-01

    In many interventions that are based on an exercise program intended to induce weight loss, the mean weight loss observed is modest and sometimes far less than what the individual expected. The individual responses are also widely variable, with some individuals losing a substantial amount of weight, others maintaining weight, and a few actually gaining weight. The media have focused on the subpopulation that loses little weight, contributing to a public perception that exercise has limited utility to cause weight loss. The purpose of the symposium was to present recent, novel data that help explain how compensatory behaviors contribute to a wide discrepancy in exercise-induced weight loss. The presentations provide evidence that some individuals adopt compensatory behaviors, that is, increased energy intake and/or reduced activity, that offset the exercise energy expenditure and limit weight loss. The challenge for both scientists and clinicians is to develop effective tools to identify which individuals are susceptible to such behaviors and to develop strategies to minimize their effect. PMID:23470300

  7. Resistance to exercise-induced weight loss: compensatory behavioral adaptations

    PubMed Central

    Melanson, Edward L.; Keadle, Sarah Kozey; Donnelly, Joseph E.; Braun, Barry; King, Neil A.

    2013-01-01

    In many interventions that are based on an exercise program intended to induce weight loss, the mean weight loss observed is modest and sometimes far less than the individual expected. The individual responses are also widely variable, with some individuals losing a substantial amount of weight, others maintaining weight, and a few actually gaining weight. The media have focused on the sub-population that loses little weight, contributing to a public perception that exercise has limited utility to cause weight loss. The purpose of the symposium was to present recent, novel data that help explain how compensatory behaviors contribute to a wide discrepancy in exercise-induced weight loss. The presentations provide evidence that some individuals adopt compensatory behaviors, i.e. increased energy intake and/or reduced activity, that offset the exercise energy expenditure and limit weight loss. The challenge for both scientists and clinicians is to develop effective tools to identify which individuals are susceptible to such behaviors, and to develop strategies to minimize their impact. PMID:23470300

  8. Parental genetic effects in a cavefish adaptive behavior explain disparity between nuclear and mitochondrial DNA.

    PubMed

    Yoshizawa, Masato; Ashida, Go; Jeffery, William R

    2012-09-01

    Epigenetic parental genetic effects are important in many biological processes but their roles in the evolution of adaptive traits and their consequences in naturally evolving populations remain to be addressed. By comparing two divergent blind cave-dwelling cavefish populations with a sighted surface-dwelling population (surface fish) of the teleost Astyanax mexicanus, we report here that convergences in vibration attraction behavior (VAB), the lateral line sensory receptors underlying this behavior, and the feeding benefits of this behavior are controlled by parental genetic effects, either maternal or paternal inheritance. From behavioral studies and mathematical evolutionary simulations, we further demonstrate that disparity in nuclear and mitochondrial DNA in one of these cavefish populations that has hybridized with surface fish can be explained by paternal inheritance of VAB. The results suggest that parental genetic effects in adaptive behaviors may be important factors in biasing mitochondrial DNA inheritance in natural populations that are subject to introgression. PMID:22946818

  9. Complex Features in Lotka-Volterra Systems with Behavioral Adaptation

    NASA Astrophysics Data System (ADS)

    Tebaldi, Claudio; Lacitignola, Deborah

    Lotka-Volterra systems have played a fundamental role for mathematical modelling in many branches of theoretical biology and proved to describe, at least qualitatively, the essential features of many phenomena, see for example Murray [Murray 2002]. Furthermore models of that kind have been considered successfully also in quite different and less mathematically formalized context: Goodwin' s model of economic growth cycles [Goodwin 1967] and urban dynamics [Dendrinos 1992] are only two of a number of examples. Such systems can certainly be defined as complex ones and in fact the aim of modelling was essentially to clarify mechanims rather than to provide actual precise simulations and predictions. With regards to complex systems, we recall that one of their main feature, no matter of the specific definition one has in mind, is adaptation, i. e. the ability to adjust.

  10. Modeling bee swarming behavior through diffusion adaptation with asymmetric information sharing

    NASA Astrophysics Data System (ADS)

    Li, Jinchao; Sayed, Ali H.

    2012-12-01

    Honeybees swarm when they move to a new site for their hive. During the process of swarming, their behavior can be analyzed by classifying them as informed bees or uninformed bees, where the informed bees have some information about the destination while the uninformed bees follow the informed bees. The swarm's movement can be viewed as a network of mobile nodes with asymmetric information exchange about their destination. In these networks, adaptive and mobile agents share information on the fly and adapt their estimates in response to local measurements and data shared with neighbors. Diffusion adaptation is used to model the adaptation process in the presence of asymmetric nodes and noisy data. The simulations indicate that the models are able to emulate the swarming behavior of bees under varied conditions such as a small number of informed bees, sharing of target location, sharing of target direction, and noisy measurements.

  11. Effects of sex pheromones and sexual maturation on locomotor activity in female sea lamprey (Petromyzon marinus).

    PubMed

    Walaszczyk, Erin J; Johnson, Nicholas S; Steibel, Juan Pedro; Li, Weiming

    2013-06-01

    Synchronization of male and female locomotor rhythmicity can play a vital role in ensuring reproductive success. Several physiological and environmental factors alter these locomotor rhythms. As sea lamprey, Petromyzon marinus, progress through their life cycle, their locomotor activity rhythm changes multiple times. The goal of this study was to elucidate the activity patterns of adult female sea lamprey during the sexual maturation process and discern the interactions of these patterns with exposure to male pheromones. During these stages, preovulated and ovulated adult females are exposed to sex pheromone compounds, which are released by spermiated males and attract ovulated females to the nest for spawning. The locomotor behavior of adult females was monitored in a natural stream with a passive integrated tag responder system as they matured, and they were exposed to a sex pheromone treatment (spermiated male washings) or a control (prespermiated male washings). Results showed that, dependent on the hour of day, male sex pheromone compounds reduce total activity (p < 0.05) and cause increases in activity during several daytime hours in preovulated and ovulated females. These results are one of the first examples of how sex pheromones modulate a locomotor rhythm in a vertebrate, and they suggest that the interaction between maturity stage and sex pheromone exposure contributes to the differential locomotor rhythms found in adult female sea lamprey. This phenomenon may contribute to the reproductive synchrony of mature adults, thus increasing reproductive success in this species. PMID:23735501

  12. Effects of sex pheromones and sexual maturation on locomotor activity in female sea lamprey (Petromyzon marinus)

    USGS Publications Warehouse

    Walaszczyk, Erin J.; Johnson, Nicholas S.; Steibel, Juan Pedro; Li, Weiming

    2013-01-01

    Synchronization of male and female locomotor rhythmicity can play a vital role in ensuring reproductive success. Several physiological and environmental factors alter these locomotor rhythms. As sea lamprey, Petromyzon marinus, progress through their life cycle, their locomotor activity rhythm changes multiple times. The goal of this study was to elucidate the activity patterns of adult female sea lamprey during the sexual maturation process and discern the interactions of these patterns with exposure to male pheromones. During these stages, preovulated and ovulated adult females are exposed to sex pheromone compounds, which are released by spermiated males and attract ovulated females to the nest for spawning. The locomotor behavior of adult females was monitored in a natural stream with a passive integrated tag responder system as they matured, and they were exposed to a sex pheromone treatment (spermiated male washings) or a control (prespermiated male washings). Results showed that, dependent on the hour of day, male sex pheromone compounds reduce total activity (p < 0.05) and cause increases in activity during several daytime hours in preovulated and ovulated females. These results are one of the first examples of how sex pheromones modulate a locomotor rhythm in a vertebrate, and they suggest that the interaction between maturity stage and sex pheromone exposure contributes to the differential locomotor rhythms found in adult female sea lamprey. This phenomenon may contribute to the reproductive synchrony of mature adults, thus increasing reproductive success in this species.

  13. The adaptive trade-off between detection and discrimination in cortical representations and behavior

    PubMed Central

    Ollerenshaw, Douglas R.; Zheng, He J. V.; Millard, Daniel C.; Wang, Qi; Stanley, Garrett B.

    2014-01-01

    SUMMARY It has long been posited that detectability of sensory inputs can be sacrificed in favor of improved discriminability, and that sensory adaptation may mediate this trade-off. The extent to which this trade-off exists behaviorally, and the complete picture of the underlying neural representations that likely subserve the phenomenon, remain unclear. In the rodent vibrissa system, an ideal observer analysis of cortical activity measured using voltage sensitive dye (VSD) imaging in anesthetized animals was combined with behavioral detection and discrimination tasks, thalamic recordings from awake animals, and computational modeling to show that spatial discrimination performance was improved following adaptation, but at the expense of the ability to detect weak stimuli. Together, these results provide direct behavioral evidence for the trade-off between detectability and discriminability, that this trade-off can be modulated through bottom-up sensory adaptation, and that these effects correspond to important changes in thalamocortical coding properties. PMID:24607233

  14. Assessing heat-adaptive behaviors among older, urban-dwelling adults

    PubMed Central

    White-Newsome, Jalonne L.; Sánchez, Brisa N.; Parker, Edith A.; Dvonch, J. Timothy; Zhang, Zhenzhen; O’Neill, Marie S.

    2015-01-01

    Objectives Health studies have shown that the elderly are at a greater risk to extreme heat. The frequency and intensity of summer heat waves will continue to increase as a result of climate change. It is important that we understand the environmental and structural factors that increase heat vulnerability, as well as examine the behaviors used by the elderly to adapt to hot indoor temperatures. Study design From June 1 to August 31, 2009, residents in 29 homes in Detroit, MI, kept an hourly log of eight heat-adaptive behaviors: opening windows/doors, turning fans or the air conditioner on, changing clothes, taking a shower, going to the basement, the porch/yard, or leaving the house. Percentages of hourly behavior were calculated, overall and stratified by housing type and percent surface imperviousness. The frequency of behavior use, as a result of indoor and outdoor predetermined temperature intervals was compared to a reference temperature range of 21.1–23.8 °C. Results The use of all adaptive behaviors, except going to the porch or yard, was significantly associated with indoor temperature. Non-mechanical adaptations such as changing clothes, taking showers, and going outside or to the basement were rarely used. Residents living in high-rises and highly impervious areas reported a higher use of adaptive behaviors. The odds of leaving the house significantly increased as outdoor temperature increased. Conclusions These findings suggest that the full range of heat adaptation measures may be underused by the elderly and public health interventions need to focus on outreach to these populations. PMID:21782363

  15. Cybernetic control model from ethology for adaptive coordination of robot behaviors

    NASA Astrophysics Data System (ADS)

    Schlueter, Bernd

    1992-08-01

    In this paper we propose a cybernetic approach to behavior based robotics. We present a distributed adaptive control architecture for coordination of different motivations and behaviors of an autonomous vehicle. The system is based on the Zurich Model of Social Motivation, a cybernetic approach to mammalian behavior by the Swiss ethologist BISCHOF. Our system controls a simulated autonomous robot by teaching a reflective associative memory to propose an action based on the input of eight range sensors. The emerging behavior at every stage reflects the system's experience, and the robust in unexpected situations.

  16. Tonic Pain Experienced during Locomotor Training Impairs Retention Despite Normal Performance during Acquisition

    PubMed Central

    Bouffard, Jason; Bouyer, Laurent J.; Roy, Jean-Sébastien

    2014-01-01

    Many patients are in pain when they receive gait training during rehabilitation. Based on animal studies, it has been proposed that central sensitization associated to nociception (maladaptive plasticity) and plasticity related to the sensorimotor learning (adaptive plasticity) share similar neural mechanisms and compete with each other. The aim of this study was to evaluate whether experimental tonic pain influences motor learning (acquisition and next-day retention) of a new locomotor task. Thirty healthy human subjects performed a locomotor adaptation task (perturbing force field applied to the ankle during swing using a robotized orthosis) on 2 consecutive days. Learning was assessed using kinematic measures (peak and mean absolute plantarflexion errors) and electromyographic (EMG) activity. Half of the participants performed the locomotor adaptation task with pain on Day 1 (capsaicin cream around the ankle), while the task was performed pain-free for all subjects on Day 2 to assess retention. Pain had no significant effect on baseline gait parameters nor on performance during the locomotor adaptation task (for either kinematic or EMG measures) on Day 1. Despite this apparently normal motor acquisition, pain-free Day 2 performance was markedly and significantly impaired in the Pain group, indicating that pain during training had an impact on the retention of motor memories (interfering with consolidation and/or retrieval). These results suggest that the same motor rehabilitation intervention could be less effective if administered in the presence of pain. PMID:25009252

  17. Self-Motion Perception during Locomotor Recalibration: More than Meets the Eye

    ERIC Educational Resources Information Center

    Durgin, Frank H.; Pelah, Adar; Fox, Laura F.; Lewis, Jed; Kane, Rachel; Walley, Katherine A.

    2005-01-01

    Do locomotor after effects depend specifically on visual feedback? In 7 experiments, 116 college students were tested, with closed eyes, at stationary running or at walking to a previewed target after adaptation, with closed eyes, to treadmill locomotion. Subjects showed faster inadvertent drift during stationary running and increased distance…

  18. ADAPTIVE BEHAVIORS IN YOUNG CHILDREN: A UNIQUE CULTURAL COMPARISON IN ITALY

    PubMed Central

    Taverna, Livia; Bornstein, Marc H.; Putnick, Diane L.; Axia, Giovanna

    2010-01-01

    On account of a series of unique historical events, the present-day denizens of South Tyrol inhabit a cultural, political, and linguistic autonomous region that intercalates Italians and Austrian/German Italians. We compared contemporary Italian and Austrian/German Italian girls' and boys' adaptive behaviors in everyday activities in this region. Using the Vineland Adaptive Behavior Scales, we first interviewed mothers about their children's communication, daily living, socialization, and motor skills. Main effects of local culture (and no interactions with gender) emerged: Austrian/German Italian children were rated higher than Italian children in both adaptive daily living and socialization skills. Next, we explored ethnic differences in childrearing. Austrian/German Italians reported fostering greater autonomy in their children than Italians, and children's autonomy was associated with their adaptive behavior. Children living in neighboring Italian and Austrian/German Italian cultural niches appear to experience subtle but consequentially different conditions of development that express themselves in terms of differing levels of adaptive behaviors. PMID:21532914

  19. Organizational Adaptative Behavior: The Complex Perspective of Individuals-Tasks Interaction

    NASA Astrophysics Data System (ADS)

    Wu, Jiang; Sun, Duoyong; Hu, Bin; Zhang, Yu

    Organizations with different organizational structures have different organizational behaviors when responding environmental changes. In this paper, we use a computational model to examine organizational adaptation on four dimensions: Agility, Robustness, Resilience, and Survivability. We analyze the dynamics of organizational adaptation by a simulation study from a complex perspective of the interaction between tasks and individuals in a sales enterprise. The simulation studies in different scenarios show that more flexible communication between employees and less hierarchy level with the suitable centralization can improve organizational adaptation.

  20. Spatiotemporal Spike Coding of Behavioral Adaptation in the Dorsal Anterior Cingulate Cortex

    PubMed Central

    Logiaco, Laureline; Quilodran, René; Procyk, Emmanuel; Arleo, Angelo

    2015-01-01

    The frontal cortex controls behavioral adaptation in environments governed by complex rules. Many studies have established the relevance of firing rate modulation after informative events signaling whether and how to update the behavioral policy. However, whether the spatiotemporal features of these neuronal activities contribute to encoding imminent behavioral updates remains unclear. We investigated this issue in the dorsal anterior cingulate cortex (dACC) of monkeys while they adapted their behavior based on their memory of feedback from past choices. We analyzed spike trains of both single units and pairs of simultaneously recorded neurons using an algorithm that emulates different biologically plausible decoding circuits. This method permits the assessment of the performance of both spike-count and spike-timing sensitive decoders. In response to the feedback, single neurons emitted stereotypical spike trains whose temporal structure identified informative events with higher accuracy than mere spike count. The optimal decoding time scale was in the range of 70–200 ms, which is significantly shorter than the memory time scale required by the behavioral task. Importantly, the temporal spiking patterns of single units were predictive of the monkeys’ behavioral response time. Furthermore, some features of these spiking patterns often varied between jointly recorded neurons. All together, our results suggest that dACC drives behavioral adaptation through complex spatiotemporal spike coding. They also indicate that downstream networks, which decode dACC feedback signals, are unlikely to act as mere neural integrators. PMID:26266537

  1. Spatiotemporal Spike Coding of Behavioral Adaptation in the Dorsal Anterior Cingulate Cortex.

    PubMed

    Logiaco, Laureline; Quilodran, René; Procyk, Emmanuel; Arleo, Angelo

    2015-08-01

    The frontal cortex controls behavioral adaptation in environments governed by complex rules. Many studies have established the relevance of firing rate modulation after informative events signaling whether and how to update the behavioral policy. However, whether the spatiotemporal features of these neuronal activities contribute to encoding imminent behavioral updates remains unclear. We investigated this issue in the dorsal anterior cingulate cortex (dACC) of monkeys while they adapted their behavior based on their memory of feedback from past choices. We analyzed spike trains of both single units and pairs of simultaneously recorded neurons using an algorithm that emulates different biologically plausible decoding circuits. This method permits the assessment of the performance of both spike-count and spike-timing sensitive decoders. In response to the feedback, single neurons emitted stereotypical spike trains whose temporal structure identified informative events with higher accuracy than mere spike count. The optimal decoding time scale was in the range of 70-200 ms, which is significantly shorter than the memory time scale required by the behavioral task. Importantly, the temporal spiking patterns of single units were predictive of the monkeys' behavioral response time. Furthermore, some features of these spiking patterns often varied between jointly recorded neurons. All together, our results suggest that dACC drives behavioral adaptation through complex spatiotemporal spike coding. They also indicate that downstream networks, which decode dACC feedback signals, are unlikely to act as mere neural integrators. PMID:26266537

  2. Group Selection as Behavioral Adaptation to Systematic Risk

    PubMed Central

    Zhang, Ruixun; Brennan, Thomas J.; Lo, Andrew W.

    2014-01-01

    Despite many compelling applications in economics, sociobiology, and evolutionary psychology, group selection is still one of the most hotly contested ideas in evolutionary biology. Here we propose a simple evolutionary model of behavior and show that what appears to be group selection may, in fact, simply be the consequence of natural selection occurring in stochastic environments with reproductive risks that are correlated across individuals. Those individuals with highly correlated risks will appear to form “groups”, even if their actions are, in fact, totally autonomous, mindless, and, prior to selection, uniformly randomly distributed in the population. This framework implies that a separate theory of group selection is not strictly necessary to explain observed phenomena such as altruism and cooperation. At the same time, it shows that the notion of group selection does captures a unique aspect of evolution—selection with correlated reproductive risk–that may be sufficiently widespread to warrant a separate term for the phenomenon. PMID:25353167

  3. Consequences of Serotonin Transporter Genotype and Early Adversity on Behavioral Profile – Pathology or Adaptation?

    PubMed Central

    Heiming, Rebecca S.; Sachser, Norbert

    2010-01-01

    This review focuses on how behavioral profile is shaped by early adversity in individuals with varying serotonin transporter (5-HTT) genotype. In a recent study on 5-HTT knockout mice Heiming et al. (2009) simulated a ‘dangerous environment‘ by confronting pregnant and lactating females with odor cues of unfamiliar males, indicating the risk of infant killing. Growing up in a dangerous environment induced increased anxiety-related behavior and decreased exploratory locomotion in the offspring, the effects being most pronounced in mice lacking 5-HTT expression. We argue that these alterations in behavioral profile represent adaptive maternal effects that help the individuals to cope with adversity. In principle, such effects of adversity on behavioral profile should not automatically be regarded as pathological. Rather and in accordance with modern evolutionary theory they may represent adaptations, although individuals with 5-HTT genotype induced susceptibility to adversity may be at risk of developing pathologies. PMID:21151780

  4. Do constraints associated with the locomotor habitat drive the evolution of forelimb shape? A case study in musteloid carnivorans.

    PubMed

    Fabre, Anne-Claire; Cornette, Raphael; Goswami, Anjali; Peigné, Stéphane

    2015-06-01

    Convergence in morphology can result from evolutionary adaptations in species living in environments with similar selective pressures. Here, we investigate whether the shape of the forelimb long bones has converged in environments imposing similar functional constraints, using musteloid carnivores as a model. The limbs of quadrupeds are subjected to many factors that may influence their shape. They need to support body mass without collapsing or breaking, yet at the same time resist the stresses and strains induced by locomotion. This likely imposes strong constraints on their morphology. Our geometric morphometric analyses show that locomotion, body mass and phylogeny all influence the shape of the forelimb. Furthermore, we find a remarkable convergence between: (i) aquatic and semi-fossorial species, both displaying a robust forelimb, with a shape that improves stability and load transfer in response to the physical resistance imposed by the locomotor environment; and (ii) aquatic and arboreal/semi-arboreal species, with both groups displaying a broad capitulum. This augments the degree of pronation/supination, an important feature for climbing as well as grasping and manipulation ability, behaviors common to aquatic and arboreal species. In summary, our results highlight how musteloids with different locomotor ecologies show differences in the anatomy of their forelimb bones. Yet, functional demands for limb movement through dense media also result in convergence in forelimb long-bone shape between diverse groups, for example, otters and badgers. PMID:25994128

  5. Adaptation of community health worker-delivered behavioral activation for torture survivors in Kurdistan, Iraq

    PubMed Central

    Magidson, J. F.; Lejuez, C. W.; Kamal, T.; Blevins, E. J.; Murray, L. K.; Bass, J. K.; Bolton, P.; Pagoto, S.

    2016-01-01

    Background Growing evidence supports the use of Western therapies for the treatment of depression, trauma, and stress delivered by community health workers (CHWs) in conflict-affected, resource-limited countries. A recent randomized controlled trial (Bolton et al. 2014a) supported the efficacy of two CHW-delivered interventions, cognitive processing therapy (CPT) and brief behavioral activation treatment for depression (BATD), for reducing depressive symptoms and functional impairment among torture survivors in the Kurdish region of Iraq. Methods This study describes the adaptation of the CHW-delivered BATD approach delivered in this trial (Bolton et al.2014a), informed by the Assessment–Decision–Administration-Production–Topical experts–Integration–Training–Testing (ADAPT–ITT) framework for intervention adaptation (Wingood & DiClemente, 2008). Cultural modifications, adaptations for low-literacy, and tailored training and supervision for non-specialist CHWs are presented, along with two clinical case examples to illustrate delivery of the adapted intervention in this setting. Results Eleven CHWs, a study psychiatrist, and the CHW clinical supervisor were trained in BATD. The adaptation process followed the ADAPT–ITT framework and was iterative with significant input from the on-site supervisor and CHWs. Modifications were made to fit Kurdish culture, including culturally relevant analogies, use of stickers for behavior monitoring, cultural modifications to behavioral contracts, and including telephone-delivered sessions to enhance feasibility. Conclusions BATD was delivered by CHWs in a resource-poor, conflict-affected area in Kurdistan, Iraq, with some important modifications, including low-literacy adaptations, increased cultural relevancy of clinical materials, and tailored training and supervision for CHWs. Barriers to implementation, lessons learned, and recommendations for future efforts to adapt behavioral therapies for resource

  6. Fetal antiepileptic drug exposure: Adaptive and emotional/behavioral functioning at age 6years.

    PubMed

    Cohen, Morris J; Meador, Kimford J; Browning, Nancy; May, Ryan; Baker, Gus A; Clayton-Smith, Jill; Kalayjian, Laura A; Kanner, Andres; Liporace, Joyce D; Pennell, Page B; Privitera, Michael; Loring, David W

    2013-11-01

    The Neurodevelopmental Effects of Antiepileptic Drugs (NEAD) study is a prospective observational multicenter study in the USA and UK, which enrolled pregnant women with epilepsy on antiepileptic drug (AED) monotherapy from 1999 to 2004. The study aimed to determine if differential long-term neurodevelopmental effects exist across four commonly used AEDs (carbamazepine, lamotrigine, phenytoin, and valproate). In this report, we examine fetal AED exposure effects on adaptive and emotional/behavioral functioning at 6years of age in 195 children (including three sets of twins) whose parent (in most cases, the mother) completed at least one of the rating scales. Adjusted mean scores for the four AED groups were in the low average to average range for parent ratings of adaptive functioning on the Adaptive Behavior Assessment System-Second Edition (ABAS-II) and for parent and teacher ratings of emotional/behavioral functioning on the Behavior Assessment System for Children (BASC). However, children whose mothers took valproate during pregnancy had significantly lower General Adaptive Composite scores than the lamotrigine and phenytoin groups. Further, a significant dose-related performance decline in parental ratings of adaptive functioning was seen for both valproate and phenytoin. Children whose mothers took valproate were also rated by their parents as exhibiting significantly more atypical behaviors and inattention than those in the lamotrigine and phenytoin groups. Based upon BASC parent and teacher ratings of attention span and hyperactivity, children of mothers who took valproate during their pregnancy were at a significantly greater risk for a diagnosis of ADHD. The increased likelihood of difficulty with adaptive functioning and ADHD with fetal valproate exposure should be communicated to women with epilepsy who require antiepileptic medication. Finally, additional research is needed to confirm these findings in larger prospective study samples, examine

  7. Interpreting problematic behavior: systematic compensatory adaptations as emergent phenomena in autism.

    PubMed

    Damico, Jack S; Nelson, Ryan L

    2005-01-01

    Based upon an emergent account of pragmatic ability and disability, this article provides theoretical and empirical support for a conceptually deeper understanding of some systematic behaviors that have served as diagnostic indices in communicatively impaired populations. Specifically, by employing conversation analysis, several examples of problematic behaviors in autism are analysed as a specific type of compensatory adaptation. Theoretical and clinical implications are discussed. PMID:16019784

  8. Neurodevelopmental Status and Adaptive Behaviors in Preschool Children with Chronic Kidney Disease

    ERIC Educational Resources Information Center

    Duquette, Peter J.; Hooper, Stephen R.; Icard, Phil F.; Hower, Sarah J.; Mamak, Eva G.; Wetherington, Crista E.; Gipson, Debbie S.

    2009-01-01

    This study examines the early neurodevelopmental function of infants and preschool children who have chronic kidney disease (CKD). Fifteen patients with CKD are compared to a healthy control group using the "Mullen Scales of Early Learning" (MSEL) and the "Vineland Adaptive Behavior Scale" (VABS). Multivariate analysis reveals significant…

  9. Future Time Perspective as a Predictor of Adolescents' Adaptive Behavior in School

    ERIC Educational Resources Information Center

    Carvalho, Renato Gil Gomes

    2015-01-01

    Future time perspective (FTP) has been associated with positive outcomes in adolescents' development across different contexts. However, the extent to which FTP influences adaptation needs additional understanding. In this study, we analysed the relationship between FTP and adolescents' behavior in school, as expressed in several indicators of…

  10. Adaptive Responses to Prochloraz Exposure That Alter Dose-Response and Time-Course Behaviors

    EPA Science Inventory

    Dose response and time-course (DRTC) are, along with exposure, the major determinants of health risk. Adaptive changes within exposed organisms in response to environmental stress are common, and alter DRTC behaviors to minimize the effects caused by stressors. In this project, ...

  11. A Systematic Review and Psychometric Evaluation of Adaptive Behavior Scales and Recommendations for Practice

    ERIC Educational Resources Information Center

    Floyd, Randy G.; Shands, Elizabeth I.; Alfonso, Vincent C.; Phillips, Jessica F.; Autry, Beth K.; Mosteller, Jessica A.; Skinner, Mary; Irby, Sarah

    2015-01-01

    Adaptive behavior scales are vital in assessing children and adolescents who experience a range of disabling conditions in school settings. This article presents the results of an evaluation of the design characteristics, norming, scale characteristics, reliability and validity evidence, and bias identification studies supporting 14…

  12. Effects of Age on the Adaptive Behavior of Institutionalized and Noninstitutionalized Individuals with Down Syndrome.

    ERIC Educational Resources Information Center

    Silverstein, A. B.; And Others

    1988-01-01

    Evidence of an association between Alzheimer disease and Down syndrome led to three studies on the effects of age on the adaptive behavior of over 400 Down syndrome individuals. One study found a decline in motor development competence among older (over 60 years) Down syndrome individuals when compared with other mentally retarded persons.…

  13. Adaptive Behavior and Cognitive Function of Adults with Down Syndrome: Modeling Change with Age.

    ERIC Educational Resources Information Center

    Hawkins, Barbara A.; Eklund, Susan J.; James, David R.; Foose, Alice K.

    2003-01-01

    Fifty-eight adults with Down syndrome were assessed longitudinally over 10 years for the purpose of modeling aging-related change in cognitive function and adaptive behavior. Findings provide further evidence of changes in performance with age and include selected effects for participants who completed the study and those lost to follow-up.…

  14. Incidence and Temporal Patterns of Adaptive Behavior Change in Adults with Mental Retardation.

    ERIC Educational Resources Information Center

    Zigman, Warren B.; Schupf, Nicole; Urv, Tiina; Zigman, April; Silverman, Wayne

    2002-01-01

    A study found cumulative decline in adaptive behavior and functional skills in 248 adults with Down syndrome increased from less than .04 at age 50, to .67 by 72, whereas decline for 398 adults with mental retardation increased from less than .02 at age 50 to .52 at 88. (Contains references.) (Author/CR)

  15. Assessment of Social Competence, Adaptive Behaviors, and Approaches to Learning with Young Children. Working Paper Series.

    ERIC Educational Resources Information Center

    Meisels, Samuel J.; Atkins-Burnett, Sally; Nicholson, Julie

    Prepared in support of the Early Childhood Longitudinal Study (ECLS), which will examine children's early school experiences beginning with kindergarten, this working paper focuses on research regarding the measurement of young children's social competence, adaptive behavior, and approaches to learning. The paper reviews the key variables and…

  16. Adaptive Behavior and Development of Infants and Toddlers with Williams Syndrome.

    PubMed

    Kirchner, Rebecca M; Martens, Marilee A; Andridge, Rebecca R

    2016-01-01

    Williams syndrome (WS) is a neurodevelopmental disorder that causes deficits in adaptive behavior, difficulties eating and sleeping, cognitive delays, and delayed development. Although researchers have conducted characterizations of children and adults with WS, less is known about young children with this disorder. This study characterizes the developmental and adaptive behavior features of 16 infants and toddlers with WS aged 3 months - 5 years. Data for this project was obtained from 2007 to 2014, and includes parent report data and standardized developmental testing. Thirty-one percent (31.3%) of parents reported that their infant/toddler with WS had sleeping problems and 58.3% reported feeding difficulties. Levels of adaptive behavior were in the Mildly Delayed range as measured by the Adaptive Behavior Assessment System, Second Edition. Self-care skills such as feeding or dressing oneself were significantly weaker than skills needed to function in the community, such as recognizing his/her home or throwing away trash. The difficulty with self-care skills is hypothesized to be related to the reported difficulties with eating and sleeping. Motor skills were significantly lower than both cognitive and language skills on the Bayley Scales of Infant and Toddler Development, Third Edition. The current study highlights the need for early intervention in these young children across all areas of development, particularly in self-care skills. PMID:27199832

  17. Longitudinal Changes in Adaptive Behavior in Adults with Down Syndrome: Interim Findings from a Longitudinal Study.

    ERIC Educational Resources Information Center

    Prasher, V. P.; Chung, Man Cheung; Haque, M. S.

    1998-01-01

    A study examined underlying factors for age-related decline in adaptive behavior in 128 adults with trisomy 21 over a three-year period. Presence of dementia was the only determining factor, although the difference in trend over time as compared to subjects without dementia was not significant. (Author/CR)

  18. An ICF-CY-Based Content Analysis of the Vineland Adaptive Behavior Scales-II

    ERIC Educational Resources Information Center

    Gleason, Kara; Coster, Wendy

    2012-01-01

    Background: The International Classification of Functioning, Disability and Health (ICF), and its version for children and youth (ICF-CY), has been increasingly adopted as a system to describe function and disability. A content analysis of the Vineland Adaptive Behavior Scales-II (VABS-II) was conducted to examine congruence with the functioning…

  19. Intelligence, Parental Depression, and Behavior Adaptability in Deaf Children Being Considered for Cochlear Implantation

    ERIC Educational Resources Information Center

    Kushalnagar, Poorna; Krull, Kevin; Hannay, Julia; Mehta, Paras; Caudle, Susan; Oghalai, John

    2007-01-01

    Cognitive ability and behavioral adaptability are distinct, yet related, constructs that can impact childhood development. Both are often reduced in deaf children of hearing parents who do not provide sufficient language and communication access. Additionally, parental depression is commonly observed due to parent-child communication difficulties…

  20. Cross-Cultural Adaptation of Internationally Adopted Chinese Children: Communication and Symbolic Behavior Development

    ERIC Educational Resources Information Center

    Hwa-Froelich, Deborah A.; Matsuoh, Hisako

    2008-01-01

    Adaptation of internationally adopted children to another culture and language has not been studied extensively. This study followed four infant girls from China during the 1st year postadoption, measuring vocabulary, gestural, social, communication, and symbolic behavior development each month. The children were also tested at 2 and 3 years…

  1. Psychometric Properties of the Portuguese Version of the Adaptive Behavior Scale

    ERIC Educational Resources Information Center

    Santos, Sofia; Morato, Pedro; Luckasson, Ruth

    2014-01-01

    The adaptive behavior construct has gained prominent attention in human services over the last several years in Portugal, and its measurement has become an integral part of the assessment of populations with intellectual disability. In Portugal, diagnosis remains exclusively based on IQ measures, although some attention recently has been given to…

  2. The Assessment of Minority Students: Are Adaptive Behavior Scales the Answer?

    ERIC Educational Resources Information Center

    Baca, Leonard; Cervantes, Hermes

    1978-01-01

    The use of adaptive behavior scales in the assessment of minority children was discussed. Positive and negative characteristics of the scales developed by Mercer and Lambert were identified and discussed. Recommendations included cautions for the use of such scales in the evaluation of culturally different minority children. (Author)

  3. Studying the Genetics of Behavior and Evolution by Adaptation and Natural Selection.

    ERIC Educational Resources Information Center

    Silverman, Jules

    1998-01-01

    Provides an exercise designed to give students an appreciation for the genetic basis of behavior. Employs the phenomenon of glucose aversion as an example of evolution by mutation and accelerated natural selection, thereby revealing one of the ways in which organisms adapt to human interference. (DDR)

  4. Nonsocial Play Patterns of Young Children with Communication Disorders: Implications for Behavioral Adaptation

    ERIC Educational Resources Information Center

    Guralnick, Michael J.; Hammond, Mary A.; Connor, Robert T.

    2006-01-01

    It has been well established that young children with communication disorders (CD) have considerable difficulties interacting socially with peers in free-play settings. The central purpose of this study was to determine whether behavioral adaptations of children with CD could contribute to their peer interaction problems. To accomplish this, the…

  5. Adaptive Behavior and Development of Infants and Toddlers with Williams Syndrome

    PubMed Central

    Kirchner, Rebecca M.; Martens, Marilee A.; Andridge, Rebecca R.

    2016-01-01

    Williams syndrome (WS) is a neurodevelopmental disorder that causes deficits in adaptive behavior, difficulties eating and sleeping, cognitive delays, and delayed development. Although researchers have conducted characterizations of children and adults with WS, less is known about young children with this disorder. This study characterizes the developmental and adaptive behavior features of 16 infants and toddlers with WS aged 3 months – 5 years. Data for this project was obtained from 2007 to 2014, and includes parent report data and standardized developmental testing. Thirty-one percent (31.3%) of parents reported that their infant/toddler with WS had sleeping problems and 58.3% reported feeding difficulties. Levels of adaptive behavior were in the Mildly Delayed range as measured by the Adaptive Behavior Assessment System, Second Edition. Self-care skills such as feeding or dressing oneself were significantly weaker than skills needed to function in the community, such as recognizing his/her home or throwing away trash. The difficulty with self-care skills is hypothesized to be related to the reported difficulties with eating and sleeping. Motor skills were significantly lower than both cognitive and language skills on the Bayley Scales of Infant and Toddler Development, Third Edition. The current study highlights the need for early intervention in these young children across all areas of development, particularly in self-care skills. PMID:27199832

  6. The Two Faces of Adolescents' Success with Peers: Adolescent Popularity, Social Adaptation, and Deviant Behavior

    ERIC Educational Resources Information Center

    Allen, Joseph P.; Porter, Maryfrances R.; McFarland, F. Christy; Marsh, Penny; McElhaney, Kathleen Boykin

    2005-01-01

    This study assessed the hypothesis that popularity in adolescence takes on a twofold role, marking high levels of concurrent adaptation but predicting increases over time in both positive and negative behaviors sanctioned by peer norms. Multimethod, longitudinal data, on a diverse community sample of 185 adolescents (13 to 14 years), addressed…

  7. A Post-Genomic View of Behavioral Development and Adaptation to the Environment

    ERIC Educational Resources Information Center

    LaFreniere, Peter; MacDonald, Kevin

    2013-01-01

    Recent advances in molecular genetics and epigenetics are reviewed that have major implications for the bio-behavioral sciences and for understanding how organisms adapt to their environments at both phylogenetic and ontogenic levels. From a post-genomics perspective, the environment is as crucial as the DNA sequence for constructing the…

  8. Reliability of the AAMD Adaptive Behavior Scale-Public School Version.

    ERIC Educational Resources Information Center

    Mayfield, Kathy L.; And Others

    1984-01-01

    Investigated interrater reliability of the AAMD Adaptive Behavior Scale-Public School Version in a sample of 31 educable mentally handicapped children who were rated by their parents, special education teacher, classroom teacher, and an independent observer. Results showed ratings of the special education teacher were generally lower. (JAC)

  9. The Effects of Sociodrama on the Adaptive and Maladaptive Behaviors of Elementary School Boys.

    ERIC Educational Resources Information Center

    Bell, Steven Harvey

    The effects of sociodrama on the adaptive and maladaptive behaviors of elementary school boys were examined in three groups of six boys each. One group was used as a control for the Hawthorne effect; the second, as a control for teacher expectation effects and for changes as a function of involvement with a male counselor. In the experimental…

  10. Mothers' and Fathers' Parenting Styles and Associations with Toddlers' Externalizing, Internalizing, and Adaptive Behaviors

    ERIC Educational Resources Information Center

    Rinaldi, Christina M.; Howe, Nina

    2012-01-01

    The two primary objectives of the present study were to (a) investigate mothers' and fathers' reports of their own as well as their partner's parenting styles, and (b) assess how mothers' and fathers' parenting styles uniquely and jointly predicted toddlers' externalizing, internalizing, and adaptive behaviors. Fifty-nine mothers and fathers…

  11. Changes in taste neurons support the emergence of an adaptive behavior in cockroaches.

    PubMed

    Wada-Katsumata, Ayako; Silverman, Jules; Schal, Coby

    2013-05-24

    In response to the anthropogenic assault of toxic baits, populations of the German cockroach have rapidly evolved an adaptive behavioral aversion to glucose (a phagostimulant component of baits). We hypothesized that changes in the peripheral gustatory system are responsible for glucose aversion. In both wild-type and glucose-averse (GA) cockroaches, D-fructose and D-glucose stimulated sugar-gustatory receptor neurons (GRNs), whereas the deterrent caffeine stimulated bitter-GRNs. In contrast, in GA cockroaches, D-glucose also stimulated bitter-GRNs and suppressed the responses of sugar-GRNs. Thus, D-glucose is processed as both a phagostimulant and deterrent in GA cockroaches, and this newly acquired peripheral taste sensitivity underlies glucose aversion in multiple GA populations. The rapid emergence of this highly adaptive behavior underscores the plasticity of the sensory system to adapt to rapid environmental change. PMID:23704571

  12. The adaptive problems of female teenage refugees and their behavioral adjustment methods for coping

    PubMed Central

    Mhaidat, Fatin

    2016-01-01

    This study aimed at identifying the levels of adaptive problems among teenage female refugees in the government schools and explored the behavioral methods that were used to cope with the problems. The sample was composed of 220 Syrian female students (seventh to first secondary grades) enrolled at government schools within the Zarqa Directorate and who came to Jordan due to the war conditions in their home country. The study used the scale of adaptive problems that consists of four dimensions (depression, anger and hostility, low self-esteem, and feeling insecure) and a questionnaire of the behavioral adjustment methods for dealing with the problem of asylum. The results indicated that the Syrian teenage female refugees suffer a moderate degree of adaptation problems, and the positive adjustment methods they have used are more than the negatives. PMID:27175098

  13. Plasticity and modular control of locomotor patterns in neurological disorders with motor deficits

    PubMed Central

    Ivanenko, Y. P.; Cappellini, G.; Solopova, I. A.; Grishin, A. A.; MacLellan, M. J.; Poppele, R. E.; Lacquaniti, F.

    2013-01-01

    Human locomotor movements exhibit considerable variability and are highly complex in terms of both neural activation and biomechanical output. The building blocks with which the central nervous system constructs these motor patterns can be preserved in patients with various sensory-motor disorders. In particular, several studies highlighted a modular burst-like organization of the muscle activity. Here we review and discuss this issue with a particular emphasis on the various examples of adaptation of locomotor patterns in patients (with large fiber neuropathy, amputees, stroke and spinal cord injury). The results highlight plasticity and different solutions to reorganize muscle patterns in both peripheral and central nervous system lesions. The findings are discussed in a general context of compensatory gait mechanisms, spatiotemporal architecture and modularity of the locomotor program. PMID:24032016

  14. Behavioral reactivity and addiction: the adaptation of behavioral response to reward opportunities.

    PubMed

    Trafton, Jodie A; Gifford, Elizabeth V

    2008-01-01

    Persons recovering from addiction must refrain from drug use even when the opportunity to use exists. Understanding how behavioral response to drug reward opportunities is modified is key to treating addiction. Most effective behavioral therapies encourage patients to increase reinforcement opportunities by engaging unidentified sources of nondrug reward. The authors integrate transdisciplinary research on the brain and behavioral effects of increasing reward availability to demonstrate one neurobiological mechanism by which behavioral therapies help patients abstain. Explicating neurobiological processes underlying psychotherapy provides predictions about the interaction between dopaminergic medications and therapy and the impact of individual differences in dopamine receptor expression on addiction vulnerability. PMID:18305282

  15. Interplay between postcranial morphology and locomotor types in Neotropical sigmodontine rodents

    PubMed Central

    Carrizo, Luz V; Tulli, María J; Dos Santos, Daniel A; Abdala, Virginia

    2014-01-01

    Sigmodontine rats are one of the most diverse components of the Neotropical mammal fauna. They exhibit a wide ecological diversity and a variety of locomotor types that allow them to occupy different environments. To explore the relationship between morphology and locomotor types, we analyzed traits of the postcranial osteology (axial and appendicular skeletons) of 329 specimens belonging to 51 species and 29 genera of sigmodontines exhibiting different locomotor types. In this work, postcranial skeletal characters of these rats are considered in an ecomorphological study for the first time. Statistical analyses showed that of the 34 osteological characters considered, 15 were related to the locomotor types studied, except for ambulatory. However, character mapping showed that climbing and jumping sigmodontines are the only taxa exhibiting clear adaptations in their postcranial osteology, which are highly consistent with the tendencies described in many other mammal taxa. Climbing, digging and swimming rats presented statistically differences in traits associated with their vertebral column and limbs, whereas jumping rats showed modifications associated with all the skeletal regions. Our data suggest that sigmodontine rats retain an all-purpose morphology that allows them to use a variety of habitats. This versatility is particularly important when considering the lack of specialization of sigmodontines for a specific locomotor mode. Another possible interpretation is that our dataset probably did not consider relevant information about these groups and should be increased with other types of characters (e.g. characters from the external morphology, myology, etc.). PMID:24372154

  16. Longitudinal changes in cognitive and adaptive behavior in fragile X females: a prospective multicenter analysis.

    PubMed

    Fisch, G S; Carpenter, N; Holden, J J; Howard-Peebles, P N; Maddalena, A; Borghgraef, M; Steyaert, J; Fryns, J P

    1999-04-01

    In prospective studies of young, fragile X [fra(X)] males with the full mutation, cognitive abilities (IQ scores) and adaptive behavior levels (DQ scores) declined in most subjects tested. Little is known about longitudinal changes in IQ and DQ scores in young fra(X) females, although one earlier retrospective study showed declines in IQ scores in 8 of 11 subjects. To examine fra(X) females prospectively, we tested and retested 13 females with the full mutation, age 4 to 15 years. Nine were tested and retested in North America, and four were evaluated at the Catholic University in Leuven, Belgium. Cognitive abilities of North American females were measured using the Stanford-Binet 4th Edition. Adaptive behavior levels were ascertained from the Vineland Adaptive Behavior Scales. For Belgians, test-retest scores from the Wechsler Intelligence Scales for Children-Revised were used. Subjects were subsequently separated into two age cohorts: those tested initially before age 7 years and those tested initially after age 7 years. Compared with young males with the full mutation and of the same age, females expectedly display a wider range of IQ scores. Test-retest IQ scores showed statistically significant decreases (P < 0.03). Analysis of individual test-retest scores indicate that declines in eight females were statistically significant. Adaptive behavior scores were available only for North American females. Five of nine (55%) showed significant declines in DQ. Like young males with the full mutation, all females with the full mutation attained higher adaptive behavior levels than cognitive scores, i.e., DQ > IQ. PMID:10208167

  17. A control systems engineering approach for adaptive behavioral interventions: illustration with a fibromyalgia intervention.

    PubMed

    Deshpande, Sunil; Rivera, Daniel E; Younger, Jarred W; Nandola, Naresh N

    2014-09-01

    The term adaptive intervention has been used in behavioral medicine to describe operationalized and individually tailored strategies for prevention and treatment of chronic, relapsing disorders. Control systems engineering offers an attractive means for designing and implementing adaptive behavioral interventions that feature intensive measurement and frequent decision-making over time. This is illustrated in this paper for the case of a low-dose naltrexone treatment intervention for fibromyalgia. System identification methods from engineering are used to estimate dynamical models from daily diary reports completed by participants. These dynamical models then form part of a model predictive control algorithm which systematically decides on treatment dosages based on measurements obtained under real-life conditions involving noise, disturbances, and uncertainty. The effectiveness and implications of this approach for behavioral interventions (in general) and pain treatment (in particular) are demonstrated using informative simulations. PMID:25264467

  18. Treating Individuals with Intellectual Disabilities and Challenging Behaviors with Adapted Dialectical Behavior Therapy

    ERIC Educational Resources Information Center

    Brown, Julie F.; Brown, Milton Z.; Dibiasio, Paige

    2013-01-01

    Approximately one third of adults with intellectual and developmental disabilities have emotion dysregulation and challenging behaviors (CBs). Although research has not yet confirmed that existing treatments adequately reduce CBs in this population, dialectical behavior therapy (DBT) holds promise, as it has been shown to effectively reduce CBs in…

  19. Nature of Adaptive Behavior Deficits among Individuals Who Are Moderately-Severely Mentally Retarded in the West Bank.

    ERIC Educational Resources Information Center

    Baker, Ahmad M.

    1989-01-01

    Results of assessing the adaptive behavior of 200 individuals classified as mentally retarded and living in the West Bank region of the Middle East suggest that the nature and development of adaptive behavior of the mentally retarded in Third World areas may not conform to expected trends. (Author/DB)

  20. Adaptive Behavior in Childhood as an Antecedent of Psychological Functioning in Early Middle Age: Linkage via Career Orientation

    ERIC Educational Resources Information Center

    Pulkkinen, Lea; Feldt, Taru; Kokko, Katja

    2006-01-01

    The main aim of the study was to investigate the link between child and adolescent adaptive behavior and adult psychological functioning, and the role of career orientation in this linkage. This was based on a Finnish longitudinal study, where data at ages 8, 14, and 42 were available for 118 females and 115 males. Adaptive behavior, indicated by…

  1. Longitudinal Changes in Cognitive and Adaptive Behavior Scores in Children and Adolescents with the Fragile X Mutation or Autism.

    ERIC Educational Resources Information Center

    Fisch, Gene S.; Simensen, Richard J.; Schroer, R. J.

    2002-01-01

    Comparison of children and adolescents with Fragile X Syndrome (n=18) or autism (n=18) for changes in cognitive ability and adaptive behavior over 9 years found steeper decreases in IQ scores among Fragile X subjects with older autistic subjects autism exhibiting stable test-retest scores. Comparative declines in adaptive behavior scores were…

  2. Adaptive Behavior Ratings Correlate with Symptomatology and IQ among Individuals with High-Functioning Autism Spectrum Disorders

    ERIC Educational Resources Information Center

    Kenworthy, Lauren; Case, Laura; Harms, Madeline B.; Martin, Alex; Wallace, Gregory L.

    2010-01-01

    Caregiver report on the Adaptive Behavior Assessment System-II (ABAS) for 40 high-functioning individuals with Autism Spectrum Disorders (ASD) and 30 typically developing (TD) individuals matched for age, IQ, and sex ratio revealed global adaptive behavior deficits in ASD, with social skills impairments particularly prominent. Within the ASD…

  3. Causes of Age-Related Decline in Adaptive Behavior of Adults with Down Syndrome: Differential Diagnoses of Dementia.

    ERIC Educational Resources Information Center

    Prasher, V. P.; Chung, Man Cheung

    1996-01-01

    A study was conducted of 201 adults with Down's syndrome to investigate the differential causes of decline in adaptive behavior. Results indicated that aging, dementia, and severity of mental retardation were significant factors, while absence of a medical illness predicted a higher level of adaptive behavior. (CR)

  4. Increasing Adaptive Behavior Skill Deficits from Childhood to Adolescence in Autism Spectrum Disorder: Role of Executive Function

    ERIC Educational Resources Information Center

    Pugliese, Cara E.; Anthony, Laura; Strang, John F.; Dudley, Katerina; Wallace, Gregory L.; Kenworthy, Lauren

    2015-01-01

    Almost half of all children with autism spectrum disorder have average cognitive abilities, yet outcome remains poor. Because outcome in HFASD is more related to adaptive behavior skills than cognitive level it is important to identify predictors of adaptive behavior. This study examines cognitive and demographic factors related to adaptive…

  5. A Self-Adaptive Behavior-Aware Recruitment Scheme for Participatory Sensing.

    PubMed

    Zeng, Yuanyuan; Li, Deshi

    2015-01-01

    Participatory sensing services utilizing the abundant social participants with sensor-enabled handheld smart device resources are gaining high interest nowadays. One of the challenges faced is the recruitment of participants by fully utilizing their daily activity behavior with self-adaptiveness toward the realistic application scenarios. In the paper, we propose a self-adaptive behavior-aware recruitment scheme for participatory sensing. People are assumed to join the sensing tasks along with their daily activity without pre-defined ground truth or any instructions. The scheme is proposed to model the tempo-spatial behavior and data quality rating to select participants for participatory sensing campaign. Based on this, the recruitment is formulated as a linear programming problem by considering tempo-spatial coverage, data quality, and budget. The scheme enables one to check and adjust the recruitment strategy adaptively according to application scenarios. The evaluations show that our scheme provides efficient sensing performance as stability, low-cost, tempo-spatial correlation and self-adaptiveness. PMID:26389910

  6. A Self-Adaptive Behavior-Aware Recruitment Scheme for Participatory Sensing

    PubMed Central

    Zeng, Yuanyuan; Li, Deshi

    2015-01-01

    Participatory sensing services utilizing the abundant social participants with sensor-enabled handheld smart device resources are gaining high interest nowadays. One of the challenges faced is the recruitment of participants by fully utilizing their daily activity behavior with self-adaptiveness toward the realistic application scenarios. In the paper, we propose a self-adaptive behavior-aware recruitment scheme for participatory sensing. People are assumed to join the sensing tasks along with their daily activity without pre-defined ground truth or any instructions. The scheme is proposed to model the tempo-spatial behavior and data quality rating to select participants for participatory sensing campaign. Based on this, the recruitment is formulated as a linear programming problem by considering tempo-spatial coverage, data quality, and budget. The scheme enables one to check and adjust the recruitment strategy adaptively according to application scenarios. The evaluations show that our scheme provides efficient sensing performance as stability, low-cost, tempo-spatial correlation and self-adaptiveness. PMID:26389910

  7. Positional behavior and limb bone adaptations in red howling monkeys (Alouatta seniculus).

    PubMed

    Schön Ybarra, M A; Schön, M A

    1987-01-01

    Morphological adaptations to climbing (a scansorial mode of quadrupedal, arboreal locomotion practised on twigs and small branches) are identified by relating anatomical details of limb bones to a sample of 6,136 instantaneous observational recordings on the positional behavior and support uses of 20 different free-ranging, adult red howlers. Our findings are used to infer the original habitat in which proto-red howlers may have acquired such adaptations and to hypothesize that climbing and its related anatomy are a primitive condition for anthropoids. PMID:3454342

  8. Adaptation.

    PubMed

    Broom, Donald M

    2006-01-01

    The term adaptation is used in biology in three different ways. It may refer to changes which occur at the cell and organ level, or at the individual level, or at the level of gene action and evolutionary processes. Adaptation by cells, especially nerve cells helps in: communication within the body, the distinguishing of stimuli, the avoidance of overload and the conservation of energy. The time course and complexity of these mechanisms varies. Adaptive characters of organisms, including adaptive behaviours, increase fitness so this adaptation is evolutionary. The major part of this paper concerns adaptation by individuals and its relationships to welfare. In complex animals, feed forward control is widely used. Individuals predict problems and adapt by acting before the environmental effect is substantial. Much of adaptation involves brain control and animals have a set of needs, located in the brain and acting largely via motivational mechanisms, to regulate life. Needs may be for resources but are also for actions and stimuli which are part of the mechanism which has evolved to obtain the resources. Hence pigs do not just need food but need to be able to carry out actions like rooting in earth or manipulating materials which are part of foraging behaviour. The welfare of an individual is its state as regards its attempts to cope with its environment. This state includes various adaptive mechanisms including feelings and those which cope with disease. The part of welfare which is concerned with coping with pathology is health. Disease, which implies some significant effect of pathology, always results in poor welfare. Welfare varies over a range from very good, when adaptation is effective and there are feelings of pleasure or contentment, to very poor. A key point concerning the concept of individual adaptation in relation to welfare is that welfare may be good or poor while adaptation is occurring. Some adaptation is very easy and energetically cheap and

  9. Glycyrrhizae Radix Methanol Extract Attenuates Methamphetamine-Induced Locomotor Sensitization and Conditioned Place Preference

    PubMed Central

    Zhao, ZhengLin; Zhang, Jie; Jung, Ji Yun; Chang, Suchan; Zhou, FuBo; Zhao, JunChang; Lee, Bong Hyeo; Yang, Chae Ha; Zhao, RongJie

    2014-01-01

    Glycyrrhizae Radix modulates the neurochemical and locomotor alterations induced by acute psychostimulants in rodents via GABAb receptors. This study investigated the influence of methanol extract from Glycyrrhizae Radix (MEGR) on repeated methamphetamine- (METH-) induced locomotor sensitization and conditioned place preference (CPP). A cohort of rats was treated with METH (1 mg/kg/day) for 6 consecutive days, subjected to 6 days of withdrawal, and then challenged with the same dose of METH to induce locomotor sensitization; during the withdrawal period, the rats were administered MEGR (60 or 180 mg/kg/day). A separate cohort of rats was treated with either METH or saline every other day for 6 days in METH-paired or saline-paired chambers, respectively, to induce CPP. These rats were also administered MEGR (180 mg/kg) prior to every METH or CPP expression test. Pretreatment with MEGR (60 and 180 mg/kg/day) attenuated the expression of METH-induced locomotor sensitization dose-dependently, and 180 mg/kg MEGR significantly inhibited the development and expression of METH-induced CPP. Furthermore, administration of a selective GABAb receptor antagonist (SCH50911) prior to MEGR treatment effectively blocked the inhibitory effects of MEGR on locomotor sensitization, but not CPP. These results suggest that Glycyrrhizae Radix blocked repeated METH-induced behavioral changes via GABAb receptors. PMID:25386216

  10. Dynamics of locomotor activity and heat production in rats after acute stress.

    PubMed

    Pertsov, S S; Alekseeva, I V; Koplik, E V; Sharanova, N E; Kirbaeva, N V; Gapparov, M M G

    2014-05-01

    The dynamics of locomotor activity and heat production were studied in rats demonstrating passive and active behavior in the open field test at different time after exposure to acute emotional stress caused by 12-h immobilization during dark hours. The most pronounced changes in behavior and heat production followed by disturbances in circadian rhythms of these parameters were detected within the first 2 days after stress. In contrast to behaviorally active rats, the most significant decrease in locomotor activity and heat production of passive animals subjected to emotional stress was observed during dark hours. Circadian rhythms of behavior and heat production in rats tended to recover on day 3 after immobilization stress. These data illustrate the specificity of metabolic and behavioral changes reflecting the shift of endogenous biological rhythms in individuals with different prognostic resistance to stress at different terms after exposure to negative emotiogenic stimuli. PMID:24906959

  11. Modeling the behavioral substrates of associate learning and memory - Adaptive neural models

    NASA Technical Reports Server (NTRS)

    Lee, Chuen-Chien

    1991-01-01

    Three adaptive single-neuron models based on neural analogies of behavior modification episodes are proposed, which attempt to bridge the gap between psychology and neurophysiology. The proposed models capture the predictive nature of Pavlovian conditioning, which is essential to the theory of adaptive/learning systems. The models learn to anticipate the occurrence of a conditioned response before the presence of a reinforcing stimulus when training is complete. Furthermore, each model can find the most nonredundant and earliest predictor of reinforcement. The behavior of the models accounts for several aspects of basic animal learning phenomena in Pavlovian conditioning beyond previous related models. Computer simulations show how well the models fit empirical data from various animal learning paradigms.

  12. Locomotor Experience Affects Self and Emotion

    ERIC Educational Resources Information Center

    Uchiyama, Ichiro; Anderson, David I.; Campos, Joseph J.; Witherington, David; Frankel, Carl B.; Lejeune, Laure; Barbu-Roth, Marianne

    2008-01-01

    Two studies investigated the role of locomotor experience on visual proprioception in 8-month-old infants. "Visual proprioception" refers to the sense of self-motion induced in a static person by patterns of optic flow. A moving room apparatus permitted displacement of an entire enclosure (except for the floor) or the side walls and ceiling. In…

  13. Locomotor Dysfunction after Long-duration Space Flight and Development of Countermeasures to Facilitate Faster Recovery

    NASA Astrophysics Data System (ADS)

    Mulavara, Ajitkumar; Wood, Scott; Cohen, Helen; Bloomberg, Jacob

    2012-07-01

    Exposure to the microgravity conditions of space flight induces adaptive modification in sensorimotor function allowing astronauts to operate in this unique environment. This adaptive state, however, is inappropriate for a 1-g environment. Consequently astronauts must spend time readapting to Earth's gravity following their return to Earth. During this readaptation period, alterations in sensorimotor function cause various disturbances in astronaut gait during postflight walking. They often rely more on vision for postural and gait stability and many report the need for greater cognitive supervision of motor actions that previous to space flight were fully automated. Over the last several years our laboratory has investigated postflight astronaut locomotion with the aim of better understanding how adaptive changes in underlying sensorimotor mechanisms contribute to postflight gait dysfunction. Exposure to the microgravity conditions of space flight induces adaptive modification in the control of vestibularly-mediated reflexive head movement during locomotion after space flight. Furthermore, during motor learning, adaptive transitions are composed of two main mechanisms: strategic and plastic. Strategic mechanisms represent immediate and transitory modifications in control to deal with changes in the prevailing environment that, if prolonged, induce plastic mechanisms designed to automate new behavioral responses. The goal of the present study was to examine the contributions of sensorimotor subsystems such as the vestibular and body load sensing (BLS) somatosensory influences on head movement control during locomotion after long-duration space flight. Further we present data on the two motor learning processes during readaptation of locomotor function after long-duration space flight. Eighteen astronauts performed two tests of locomotion before and after 6 months of space flight: a treadmill walking test to examine vestibular reflexive mechanisms controlling head

  14. Evolutionary Influences of Plastic Behavioral Responses Upon Environmental Challenges in an Adaptive Radiation.

    PubMed

    Foster, Susan A; Wund, Matthew A; Baker, John A

    2015-09-01

    At the end of the 19th century, the suggestion was made by several scientists, including J. M. Baldwin, that behavioral responses to environmental change could both rescue populations from extinction (Baldwin Effect) and influence the course of subsequent evolution. Here we provide the historical and theoretical background for this argument and offer evidence of the importance of these ideas for understanding how animals (and other organisms that exhibit behavior) will respond to the rapid environmental changes caused by human activity. We offer examples from long-term research on the evolution of behavioral and other phenotypes in the adaptive radiation of the threespine stickleback fish (Gasterosteus aculeatus), a radiation in which it is possible to infer ancestral patterns of behavioral plasticity relative to the post-glacial freshwater radiation in northwestern North America, and to use patterns of parallelism and contemporary evolution to understand adaptive causes of responses to environmental modification. Our work offers insights into the complexity of cognitive responses to environmental change, and into the importance of examining multiple aspects of the phenotype simultaneously, if we are to understand how behavioral shifts contribute to the persistence of populations and to subsequent evolution. We conclude by discussing the origins of apparent novelties induced by environmental shifts, and the importance of accounting for geographic variation within species if we are to accurately anticipate the effects of anthropogenic environmental modification on the persistence and evolution of animals. PMID:26163679

  15. Neurocognitive, adaptive, and behavioral functioning of individuals with Costello syndrome: a review.

    PubMed

    Axelrad, Marni E; Schwartz, David D; Katzenstein, Jennifer M; Hopkins, Elizabeth; Gripp, Karen W

    2011-05-15

    Costello syndrome is a rare rasopathy resulting from germline mutations of the proto-oncogene HRAS. Its phenotype includes severe failure-to-thrive, cardiac abnormalities, a predisposition to benign and malignant tumors, hypotonia, and developmental delay. Costello syndrome is associated with cognitive impairment, including intellectual functioning generally in the mild to moderate range of disability, commensurate adaptive functioning, and increased anxiety. Relative strengths have been found for nonverbal fluid reasoning (FR). Gender effects have been reported, with females showing better adaptive functioning across domains. Developmentally, nonverbal skills plateau in late childhood/early adolescence, whereas the rate of vocabulary acquisition may increase in adolescence into early adulthood. Here we review the literature assessing cognitive, adaptive, and behavioral functioning in Costello syndrome, and we provide data from an ongoing longitudinal study. Severity of cognitive impairment may depend upon the specific HRAS mutation, as three individuals with the p.G13C change showed average nonverbal FR skills and borderline-to-low average overall nonverbal IQ. Further, separation anxiety is more common in Costello syndrome than in the general population, affecting 39% of this cohort, and males are more often overly anxious than females. Interrelations between anxiety and cognitive and adaptive functioning were found, pointing to functional difficulties as a likely source of stress and anxiety. Taking into account data from animal models, cognitive and behavioral changes likely originate from abnormal differentiation of neuronal precursor cells, which result in structural and functional brain differences. PMID:21495179

  16. MPS II: adaptive behavior of patients and impact on the family system.

    PubMed

    Needham, Mary; Packman, Wendy; Rappoport, Maxwell; Quinn, Natasha; Cordova, Matthew; Macias, Sandra; Morgan, Cynthia; Packman, Seymour

    2014-06-01

    Mucopolysaccharidosis type II (MPS II), also known as Hunter syndrome, is a chronic and progressive X-linked lysosomal disease that mainly affects males. It occurs in 1 in every 65,000 to 1 in 132,000 births. There are two distinct forms of the disease based on age of onset and clinical course: mild and severe. MPS II affects many organ systems including the nervous, cardiovascular, gastrointestinal and respiratory systems. Complications can include vision problems, progressive hearing loss, thickened and elastic skin, mental impairment, and enlarged liver and spleen. We herein focus on the adaptive behavior of individuals with MPS II, and the impact of MPS II on the family system. Outcomes from the Vineland-II Adaptive Behavior Scales showed that the MPS II patient sample experienced significantly lower functioning in communication, daily living skills, socialization, and motor skills compared to normative data. Patients with severe MPS II were found to have significantly lower adaptive functioning in all domains, as compared to those with mild MPS II. Length of time on ERT had no significant relationship to adaptive functioning. Results from the Peds QL Family Impact Module indicated that families of patients with MPS II experienced a lower overall health-related quality of life and overall lower family functioning (including lower emotional and cognitive functioning) than those with chronic illnesses residing in an inpatient setting. PMID:24190099

  17. Examining Specific Effects of Context on Adaptive Behavior and Achievement in Rural Africa: Six Case Studies from Southern Province, Zambia

    PubMed Central

    Reich, Jodi; Hart, Lesley; Thuma, Philip E.

    2011-01-01

    Generally accepted as universal, the construct of adaptive behavior differs in its manifestations across different cultures and settings. The Vineland-II was translated into Chitonga and adapted to the setting of rural Southern Province, Zambia. This version was administered to the parents/caregivers of 114 children (grades 3-7, mean age = 12.94, sd = 2.34). The relationships between these children's adaptive behavior, academic achievement and cognitive ability indicators are compared to those usually observed in US samples. Results reflect no association between adaptive behavior and cognitive ability indicators, but a strong relationship between high adaptive behavior and reading-related measures. Six case studies of children with high and low scores on the Vineland-II are presented to illustrate the possible factors affecting these outcomes. PMID:22391811

  18. The Association of Intelligence, Visual-Motor Functioning, and Personality Characteristics With Adaptive Behavior in Individuals With Williams Syndrome.

    PubMed

    Fu, Trista J; Lincoln, Alan J; Bellugi, Ursula; Searcy, Yvonne M

    2015-07-01

    Williams syndrome (WS) is associated with deficits in adaptive behavior and an uneven adaptive profile. This study investigated the association of intelligence, visual-motor functioning, and personality characteristics with the adaptive behavior in individuals with WS. One hundred individuals with WS and 25 individuals with developmental disabilities of other etiologies were included in this study. This study found that IQ and visual-motor functioning significantly predicted adaptive behavior in individuals of WS. Visual-motor functioning especially predicted the most amount of unique variance in overall adaptive behavior and contributed to the variance above and beyond that of IQ. Present study highlights the need for interventions that address visual-motor and motor functioning in individuals with WS. PMID:26161466

  19. Assaying Locomotor Activity to Study Circadian Rhythms and Sleep Parameters in Drosophila

    PubMed Central

    Chiu, Joanna C.; Low, Kwang Huei; Pike, Douglas H.; Yildirim, Evrim; Edery, Isaac

    2010-01-01

    Most life forms exhibit daily rhythms in cellular, physiological and behavioral phenomena that are driven by endogenous circadian (≡24 hr) pacemakers or clocks. Malfunctions in the human circadian system are associated with numerous diseases or disorders. Much progress towards our understanding of the mechanisms underlying circadian rhythms has emerged from genetic screens whereby an easily measured behavioral rhythm is used as a read-out of clock function. Studies using Drosophila have made seminal contributions to our understanding of the cellular and biochemical bases underlying circadian rhythms. The standard circadian behavioral read-out measured in Drosophila is locomotor activity. In general, the monitoring system involves specially designed devices that can measure the locomotor movement of Drosophila. These devices are housed in environmentally controlled incubators located in a darkroom and are based on using the interruption of a beam of infrared light to record the locomotor activity of individual flies contained inside small tubes. When measured over many days, Drosophila exhibit daily cycles of activity and inactivity, a behavioral rhythm that is governed by the animal's endogenous circadian system. The overall procedure has been simplified with the advent of commercially available locomotor activity monitoring devices and the development of software programs for data analysis. We use the system from Trikinetics Inc., which is the procedure described here and is currently the most popular system used worldwide. More recently, the same monitoring devices have been used to study sleep behavior in Drosophila. Because the daily wake-sleep cycles of many flies can be measured simultaneously and only 1 to 2 weeks worth of continuous locomotor activity data is usually sufficient, this system is ideal for large-scale screens to identify Drosophila manifesting altered circadian or sleep properties. PMID:20972399

  20. Locomotor play drives motor skill acquisition at the expense of growth: A life history trade-off

    PubMed Central

    Berghänel, Andreas; Schülke, Oliver; Ostner, Julia

    2015-01-01

    The developmental costs and benefits of early locomotor play are a puzzling topic in biology, psychology, and health sciences. Evolutionary theory predicts that energy-intensive behavior such as play can only evolve if there are considerable benefits. Prominent theories propose that locomotor play is (i) low cost, using surplus energy remaining after growth and maintenance, and (ii) beneficial because it trains motor skills. However, both theories are largely untested. Studying wild Assamese macaques, we combined behavioral observations of locomotor play and motor skill acquisition with quantitative measures of natural food availability and individual growth rates measured noninvasively via photogrammetry. Our results show that investments in locomotor play were indeed beneficial by accelerating motor skill acquisition but carried sizable costs in terms of reduced growth. Even under moderate natural energy restriction, investment in locomotor play accounted for up to 50% of variance in growth, which strongly contradicts the current theory that locomotor play only uses surplus energy remaining after growth and maintenance. Male immatures played more, acquired motor skills faster, and grew less than female immatures, leading to persisting size differences until the age of female maturity. Hence, depending on skill requirements, investment in play can take ontogenetic priority over physical development unconstrained by costs of play with consequences for life history, which strongly highlights the ontogenetic and evolutionary importance of play. PMID:26601237

  1. Locomotor play drives motor skill acquisition at the expense of growth: A life history trade-off.

    PubMed

    Berghänel, Andreas; Schülke, Oliver; Ostner, Julia

    2015-08-01

    The developmental costs and benefits of early locomotor play are a puzzling topic in biology, psychology, and health sciences. Evolutionary theory predicts that energy-intensive behavior such as play can only evolve if there are considerable benefits. Prominent theories propose that locomotor play is (i) low cost, using surplus energy remaining after growth and maintenance, and (ii) beneficial because it trains motor skills. However, both theories are largely untested. Studying wild Assamese macaques, we combined behavioral observations of locomotor play and motor skill acquisition with quantitative measures of natural food availability and individual growth rates measured noninvasively via photogrammetry. Our results show that investments in locomotor play were indeed beneficial by accelerating motor skill acquisition but carried sizable costs in terms of reduced growth. Even under moderate natural energy restriction, investment in locomotor play accounted for up to 50% of variance in growth, which strongly contradicts the current theory that locomotor play only uses surplus energy remaining after growth and maintenance. Male immatures played more, acquired motor skills faster, and grew less than female immatures, leading to persisting size differences until the age of female maturity. Hence, depending on skill requirements, investment in play can take ontogenetic priority over physical development unconstrained by costs of play with consequences for life history, which strongly highlights the ontogenetic and evolutionary importance of play. PMID:26601237

  2. Hybrid Model Predictive Control for Sequential Decision Policies in Adaptive Behavioral Interventions

    PubMed Central

    Dong, Yuwen; Deshpande, Sunil; Rivera, Daniel E.; Downs, Danielle S.; Savage, Jennifer S.

    2015-01-01

    Control engineering offers a systematic and efficient method to optimize the effectiveness of individually tailored treatment and prevention policies known as adaptive or “just-in-time” behavioral interventions. The nature of these interventions requires assigning dosages at categorical levels, which has been addressed in prior work using Mixed Logical Dynamical (MLD)-based hybrid model predictive control (HMPC) schemes. However, certain requirements of adaptive behavioral interventions that involve sequential decision making have not been comprehensively explored in the literature. This paper presents an extension of the traditional MLD framework for HMPC by representing the requirements of sequential decision policies as mixed-integer linear constraints. This is accomplished with user-specified dosage sequence tables, manipulation of one input at a time, and a switching time strategy for assigning dosages at time intervals less frequent than the measurement sampling interval. A model developed for a gestational weight gain (GWG) intervention is used to illustrate the generation of these sequential decision policies and their effectiveness for implementing adaptive behavioral interventions involving multiple components. PMID:25635157

  3. Control of cognition and adaptive behavior by the GLP/G9a epigenetic suppressor complex

    PubMed Central

    Schaefer, Anne; Sampath, Srihari C.; Intrator, Adam; Min, Alice; Gertler, Tracy S.; Surmeier, D. James; Tarakhovsky, Alexander; Greengard, Paul

    2009-01-01

    SUMMARY The genetic basis of cognition and behavioral adaptation to the environment remains poorly understood. Here we demonstrate that the histone methyltransferase complex GLP/G9a controls cognition and adaptive responses in a region-specific fashion in the adult brain. Using conditional mutagenesis in mice, we show that postnatal, neuron-specific deficiency of GLP/G9a leads to de-repression of numerous non-neuronal and neuron progenitor genes in adult neurons. This transcriptional alteration is associated with complex behavioral abnormalities, including defects in learning, motivation and environmental adaptation. The behavioral changes triggered by GLP/G9a deficiency are similar to key symptoms of the human 9q34 mental retardation syndrome that is associated with structural alterations of the GLP gene. The likely causal role of GLP/G9a in mental retardation in mice and humans suggests a key role for the GLP/G9a controlled histone H3K9 di-methylation in regulation of brain function through maintenance of the transcriptional homeostasis in adult neurons. PMID:20005824

  4. The role of metabotropic glutamate receptors and cortical adaptation in habituation of odor-guided behavior

    PubMed Central

    Yadon, Carly A.; Wilson, Donald A.

    2005-01-01

    Decreases in behavioral investigation of novel stimuli over time may be mediated by a variety of factors including changes in attention, internal state, and motivation. Sensory cortical adaptation, a decrease in sensory cortical responsiveness over prolonged stimulation, may also play a role. In olfaction, metabotropic glutamate receptors on cortical afferent pre-synaptic terminals have been shown to underlie both cortical sensory adaptation and habituation of odor-evoked reflexes. The present experiment examined whether blockade of sensory cortical adaptation through bilateral infusion of the group III metabotropic glutamate receptor antagonist cyclopropyl-4-phosphonophenylglycine (CPPG) into the anterior piriform cortex could reduce habituation of a more complex odor-driven behavior such as investigation of a scented object or a conspecific. The results demonstrate that time spent investigating a scented jar, or a conspecific, decreases over the course of a continuous 10 minute trial. Acute infusion of CPPG bilaterally into the anterior piriform cortex significantly enhanced the time spent investigating the scented jar compared to investigation time in control rats, without affecting overall behavioral activity levels. Infusions into the brain outside of the piriform cortex were without effect. CPPG infusion into the piriform cortex also produced an enhancement of time spent investigating a conspecific, although this effect was not significant. PMID:16322361

  5. Longitudinal Effects of Adaptability on Behavior Problems and Maternal Depression in Families of Adolescents with Autism

    PubMed Central

    Baker, Jason K.; Seltzer, Marsha Mailick; Greenberg, Jan S.

    2014-01-01

    Research on families of individuals with autism has tended to focus on child-driven effects utilizing models of stress and coping. The current study used a family-systems perspective to examine whether family-level adaptability promoted beneficial outcomes for mothers and their adolescents with autism over time. Participants were 149 families of children diagnosed with autism who were between the ages of 10 and 22 years during the three-year period examined. Mothers reported on family adaptability, the mother-child relationship, their own depressive symptoms, and the behavior problems of their children at Wave 1, and these factors were used to predict maternal depression and child behavior problems three years later. Family-level adaptability predicted change in both maternal depression and child behavior problems over the study period, above and beyond the contribution of the dyadic mother-child relationship. These associations did not appear to depend upon the intellectual disability status of the individual with autism. Implications for autism, parent mental health, family systems theory, and for intervention with this population are discussed. PMID:21668120

  6. Dose-dependent changes in the synaptic strength on dopamine neurons and locomotor activity after cocaine exposure

    PubMed Central

    Wanat, M.J.; Bonci, A.

    2016-01-01

    Changes in synaptic strength on ventral tegmental area (VTA) dopamine neurons are thought to play a critical role in the development of addiction-related behaviors. However, it is unknown how a single injection of cocaine at different doses affects locomotor activity, behavioral sensitization, and glutamatergic synaptic strength on VTA dopamine neurons in mice. We observed that behavioral sensitization to a challenge cocaine injection scaled with the dose of cocaine received one day prior. Interestingly, the locomotor activity after the initial exposure to different doses of cocaine corresponded to the changes in glutamatergic strength on VTA dopamine neurons. These results in mice suggest that a single exposure to cocaine dose-dependently affects excitatory synapses on VTA dopamine neurons, and that this acute synaptic alteration is directly associated with the locomotor responses to cocaine and not to behavioral sensitization. PMID:18655120

  7. Adolescents Misperceive and Are Influenced By High Status Peers' Health Risk, Deviant, and Adaptive Behavior

    PubMed Central

    Helms, Sarah W.; Choukas-Bradley, Sophia; Widman, Laura; Giletta, Matteo; Cohen, Geoffrey L.; Prinstein, Mitchell J.

    2015-01-01

    Most peer influence research examines socialization between adolescents and their best friends. Yet, adolescents also are influenced by popular peers, perhaps due to misperceptions of social norms. This research examined the extent to which out-group and in-group adolescents misperceive the frequencies of peers' deviant, health risk, and adaptive behaviors in different reputation-based peer crowds (Study 1) and the prospective associations between perceptions of high status peers' and adolescents' own substance use over 2.5 years (Study 2). Study 1 examined 235 adolescents' reported deviant (vandalism, theft), health risk (substance use, sexual risk), and adaptive (exercise, studying) behavior, and their perceptions of Jocks', Populars', Burnouts', and Brains' engagement in the same behaviors. Peer nominations identified adolescents in each peer crowd. Jocks and Populars were rated as higher status than Brains and Burnouts. Results indicated that peer crowd stereotypes are caricatures. Misperceptions of high status crowds were dramatic, but for many behaviors, no differences between Populars'/Jocks' and others' actual reported behaviors were revealed. Study 2 assessed 166 adolescents' substance use and their perceptions of popular peers' (i.e., peers high in peer perceived popularity) substance use. Parallel process latent growth analyses revealed that higher perceptions of popular peers' substance use in Grade 9 (intercept) significantly predicted steeper increases in adolescents' own substance use from Grade 9 to 11 (slope). Results from both studies, utilizing different methods, offer evidence to suggest that adolescents misperceive high status peers' risk behaviors, and these misperceptions may predict adolescents' own risk behavior engagement. PMID:25365121

  8. Synaptic plasticity in a recurrent neural network for versatile and adaptive behaviors of a walking robot.

    PubMed

    Grinke, Eduard; Tetzlaff, Christian; Wörgötter, Florentin; Manoonpong, Poramate

    2015-01-01

    Walking animals, like insects, with little neural computing can effectively perform complex behaviors. For example, they can walk around their environment, escape from corners/deadlocks, and avoid or climb over obstacles. While performing all these behaviors, they can also adapt their movements to deal with an unknown situation. As a consequence, they successfully navigate through their complex environment. The versatile and adaptive abilities are the result of an integration of several ingredients embedded in their sensorimotor loop. Biological studies reveal that the ingredients include neural dynamics, plasticity, sensory feedback, and biomechanics. Generating such versatile and adaptive behaviors for a many degrees-of-freedom (DOFs) walking robot is a challenging task. Thus, in this study, we present a bio-inspired approach to solve this task. Specifically, the approach combines neural mechanisms with plasticity, exteroceptive sensory feedback, and biomechanics. The neural mechanisms consist of adaptive neural sensory processing and modular neural locomotion control. The sensory processing is based on a small recurrent neural network consisting of two fully connected neurons. Online correlation-based learning with synaptic scaling is applied to adequately change the connections of the network. By doing so, we can effectively exploit neural dynamics (i.e., hysteresis effects and single attractors) in the network to generate different turning angles with short-term memory for a walking robot. The turning information is transmitted as descending steering signals to the neural locomotion control which translates the signals into motor actions. As a result, the robot can walk around and adapt its turning angle for avoiding obstacles in different situations. The adaptation also enables the robot to effectively escape from sharp corners or deadlocks. Using backbone joint control embedded in the the locomotion control allows the robot to climb over small obstacles

  9. Synaptic plasticity in a recurrent neural network for versatile and adaptive behaviors of a walking robot

    PubMed Central

    Grinke, Eduard; Tetzlaff, Christian; Wörgötter, Florentin; Manoonpong, Poramate

    2015-01-01

    Walking animals, like insects, with little neural computing can effectively perform complex behaviors. For example, they can walk around their environment, escape from corners/deadlocks, and avoid or climb over obstacles. While performing all these behaviors, they can also adapt their movements to deal with an unknown situation. As a consequence, they successfully navigate through their complex environment. The versatile and adaptive abilities are the result of an integration of several ingredients embedded in their sensorimotor loop. Biological studies reveal that the ingredients include neural dynamics, plasticity, sensory feedback, and biomechanics. Generating such versatile and adaptive behaviors for a many degrees-of-freedom (DOFs) walking robot is a challenging task. Thus, in this study, we present a bio-inspired approach to solve this task. Specifically, the approach combines neural mechanisms with plasticity, exteroceptive sensory feedback, and biomechanics. The neural mechanisms consist of adaptive neural sensory processing and modular neural locomotion control. The sensory processing is based on a small recurrent neural network consisting of two fully connected neurons. Online correlation-based learning with synaptic scaling is applied to adequately change the connections of the network. By doing so, we can effectively exploit neural dynamics (i.e., hysteresis effects and single attractors) in the network to generate different turning angles with short-term memory for a walking robot. The turning information is transmitted as descending steering signals to the neural locomotion control which translates the signals into motor actions. As a result, the robot can walk around and adapt its turning angle for avoiding obstacles in different situations. The adaptation also enables the robot to effectively escape from sharp corners or deadlocks. Using backbone joint control embedded in the the locomotion control allows the robot to climb over small obstacles

  10. Changes in cortical activity associated with adaptive behavior during repeated balance perturbation of unpredictable timing

    PubMed Central

    Mierau, Andreas; Hülsdünker, Thorben; Strüder, Heiko K.

    2015-01-01

    The compensation for a sudden balance perturbation, unpracticed and unpredictable in timing and magnitude is accompanied by pronounced postural instability that is suggested to be causal to falls. However, subsequent presentations of an identical perturbation are characterized by a marked decrease of the amplitude of postural reactions; a phenomenon called adaptation or habituation. This study aimed to identify cortical characteristics associated with adaptive behavior during repetitive balance perturbations based on single-trial analyses of the P1 and N1 perturbation-evoked potentials. Thirty-seven young men were exposed to ten transient balance perturbations while balancing on the dominant leg. Thirty two-channel electroencephalography (EEG), surface electromyography (EMG) of the ankle plantar flexor muscles and postural sway (i.e., Euclidean distance of the supporting platform) were recorded simultaneously. The P1 and N1 potentials were localized and the amplitude/latency was analyzed trial by trial. The best match sources for P1 and N1 potentials were located in the parietal (Brodmann area (BA) 5) and midline fronto-central cortex (BA 6), respectively. The amplitude and latency of the P1 potential remained unchanged over trials. In contrast, a significant adaptation of the N1 amplitude was observed. Similar adaptation effects were found with regard to postural sway and ankle plantarflexors EMG activity of the non-dominant (free) leg; i.e., an indicator for reduced muscular co-contraction and/or less temporary bipedal stance to regain stability. Significant but weak correlations were found between N1 amplitude and postural sway as well as EMG activity. These results highlight the important role of the midline fronto-central cortex for adaptive behavior associated with balance control. PMID:26528154

  11. Applying Computer Adaptive Testing to Optimize Online Assessment of Suicidal Behavior: A Simulation Study

    PubMed Central

    de Vries, Anton LM; de Groot, Marieke H; de Keijser, Jos; Kerkhof, Ad JFM

    2014-01-01

    Background The Internet is used increasingly for both suicide research and prevention. To optimize online assessment of suicidal patients, there is a need for short, good-quality tools to assess elevated risk of future suicidal behavior. Computer adaptive testing (CAT) can be used to reduce response burden and improve accuracy, and make the available pencil-and-paper tools more appropriate for online administration. Objective The aim was to test whether an item response–based computer adaptive simulation can be used to reduce the length of the Beck Scale for Suicide Ideation (BSS). Methods The data used for our simulation was obtained from a large multicenter trial from The Netherlands: the Professionals in Training to STOP suicide (PITSTOP suicide) study. We applied a principal components analysis (PCA), confirmatory factor analysis (CFA), a graded response model (GRM), and simulated a CAT. Results The scores of 505 patients were analyzed. Psychometric analyses showed the questionnaire to be unidimensional with good internal consistency. The computer adaptive simulation showed that for the estimation of elevation of risk of future suicidal behavior 4 items (instead of the full 19) were sufficient, on average. Conclusions This study demonstrated that CAT can be applied successfully to reduce the length of the Dutch version of the BSS. We argue that the use of CAT can improve the accuracy and the response burden when assessing the risk of future suicidal behavior online. Because CAT can be daunting for clinicians and applied scientists, we offer a concrete example of our computer adaptive simulation of the Dutch version of the BSS at the end of the paper. PMID:25213259

  12. Iron supplementation in infancy contributes to more adaptive behavior at 10 years of age.

    PubMed

    Lozoff, Betsy; Castillo, Marcela; Clark, Katy M; Smith, Julia B; Sturza, Julie

    2014-06-01

    Most studies of behavioral/developmental effects of iron deficiency anemia (IDA) or iron supplementation in infancy have found social-emotional differences. Differences could relate to behavioral inhibition or lack of positive affect and altered response to reward. To determine long-term behavioral effects, the study was a follow-up of a randomized controlled trial of behavioral/developmental effects of preventing IDA in infancy. Healthy Chilean infants free of IDA at age 6 mo were randomly assigned to iron supplementation or no added iron (formula with iron/powdered cow milk, vitamins with/without iron) from ages 6 to 12 mo. At age 10 y, 59% (666 of 1123) and 68% (366 of 534) of iron-supplemented and no-added-iron groups were assessed. Social-emotional outcomes included maternal-reported behavior problems, self-reported behavior, examiner ratings, and video coding of a social stress task and gamelike paradigms. Examiners rated the iron-supplemented group as more cooperative, confident, persistent after failure, coordinated, and direct and reality-oriented in speech and working harder after praise compared with the no-added-iron group. In a task designed to elicit positive affect, supplemented children spent more time laughing and smiling together with their mothers and started smiling more quickly. In the social stress task they smiled and laughed more and needed less prompting to complete the task. All P values were <0.05; effect sizes were 0.14-0.36. There were no differences in behaviors related to behavioral inhibition, such as anxiety/depression or social problems. In sum, iron supplementation in infancy was associated with more adaptive behavior at age 10 y, especially in affect and response to reward, which may improve performance at school and work, mental health, and personal relationships. PMID:24717366

  13. Peer reports of adaptive behavior in twins and singletons: is twinship a risk or an advantage?

    PubMed

    Pulkkinen, Lea; Vaalamo, Inka; Hietala, Risto; Kaprio, Jaakko; Rose, Richard J

    2003-04-01

    We compared twins to their gender-matched singleton classmates in peer-assessed behavioral adjustment. Our samples include 1874 11- to 12-year-old Finnish twins (687 monozygotic, MZ; 610 same-sex dizygotic, SSDZ; 577 opposite-sex dizygotic, OSDZ) and their 23,200 non-twin classmates. Data were collected using a 30-item Multidimensional Peer Nomination Inventory containing three factors and their subscales. We found twin-singleton differences: classmates rated twin girls and boys higher than gender-matched singletons in Adaptive Behaviors (constructive, compliant, and socially active behavior), and those effects were particularly evident among OSDZ twins for assessments of social interaction, popularity, and leadership. We found no evidence that individual twins differ from singletons in Externalizing (hyperactivity-impulsivity, inattention, aggression) or Internalizing Problem Behaviors (depressive symptoms, social anxiety). Nor did we find systematic differences between MZ and SSDZ twins. Among both twins and singletons, boys exceeded girls in Externalizing, and girls exceeded boys in Internalizing Problem Behaviors. Results suggest that a twinship forms a positive developmental environment for socioemotional behavior, particularly among OSDZ twins. PMID:12723997

  14. Fractal behavior of traffic volume on urban expressway through adaptive fractal analysis

    NASA Astrophysics Data System (ADS)

    He, Hong-di; Wang, Jun-li; Wei, Hai-rui; Ye, Cheng; Ding, Yi

    2016-02-01

    In this paper, we investigate the fractal behavior of traffic volume in urban expressway based on a newly developed adaptive fractal analysis (AFA), which has a number of advantages over traditional method of detrended fluctuation analysis (DFA). Before fractal analysis, autocorrelation function was first adopted on traffic volume data and the long-range correlation behavior was found to be existed in both on-ramp and off-ramp situations. Then AFA as well as DFA was applied to further examine the fractal behavior. The results showed that the multifractality and the long-range anti-persistent behavior existed on both on-ramp and off-ramp. Additionally, multifractal analysis on weekdays and weekends are performed respectively and the results show that the degree of multifractality on weekdays is higher than that on weekends, implying that long-range correlation behaviors were more obvious on weekdays. Finally, the source of multifractality is examined with randomly shuffled and the surrogated series. Long-range correlation behaviors are identified in both on-ramp and off-ramp situations and fat-tail distributions were found to make little in the contributions of multifractality.

  15. Adapt

    NASA Astrophysics Data System (ADS)

    Bargatze, L. F.

    2015-12-01

    Active Data Archive Product Tracking (ADAPT) is a collection of software routines that permits one to generate XML metadata files to describe and register data products in support of the NASA Heliophysics Virtual Observatory VxO effort. ADAPT is also a philosophy. The ADAPT concept is to use any and all available metadata associated with scientific data to produce XML metadata descriptions in a consistent, uniform, and organized fashion to provide blanket access to the full complement of data stored on a targeted data server. In this poster, we present an application of ADAPT to describe all of the data products that are stored by using the Common Data File (CDF) format served out by the CDAWEB and SPDF data servers hosted at the NASA Goddard Space Flight Center. These data servers are the primary repositories for NASA Heliophysics data. For this purpose, the ADAPT routines have been used to generate data resource descriptions by using an XML schema named Space Physics Archive, Search, and Extract (SPASE). SPASE is the designated standard for documenting Heliophysics data products, as adopted by the Heliophysics Data and Model Consortium. The set of SPASE XML resource descriptions produced by ADAPT includes high-level descriptions of numerical data products, display data products, or catalogs and also includes low-level "Granule" descriptions. A SPASE Granule is effectively a universal access metadata resource; a Granule associates an individual data file (e.g. a CDF file) with a "parent" high-level data resource description, assigns a resource identifier to the file, and lists the corresponding assess URL(s). The CDAWEB and SPDF file systems were queried to provide the input required by the ADAPT software to create an initial set of SPASE metadata resource descriptions. Then, the CDAWEB and SPDF data repositories were queried subsequently on a nightly basis and the CDF file lists were checked for any changes such as the occurrence of new, modified, or deleted

  16. Initial moments of adaptation to microgravity of human orientation behavior, in parabolic flight conditions

    NASA Astrophysics Data System (ADS)

    Tafforin, Carole

    1996-06-01

    The first ethological studies of astronauts' adaptation to microgravity dealt with the behavioral strategies observed during short-term space missions. No attempts had however been made to consider the initial moments of adaptation dynamics, when the subject is first submitted to conditions allowing body orientations in the full three dimensions of space. The present experimental approach was both longitudinal and transversal. It consisted of analysing, during a goal-directed orientation task in parabolic flight, the orientation behavior of 12 subjects with a past experience of 0, 30 or more than 300 parabolas. During each microgravity phase, the subjects were asked to orientate their bodies and touch, with the dominant hand, four coloured targets arranged inside the aircraft. Results showed that for inexperienced subjects, the time between two target contacts was longer than experienced subjects. They often failed to reach all targets in the series during the first parabolas. They showed right-left confusion and a preference for the "up-down" vertical body orientation. Their performance, described by the efficiency of orientation in all three dimensions, improved over time and according to the level of experience. The results are discussed for the spontaneous, preliminary and integrative stages of adaptation, emphasizing new relationships between the body references and those of the surroundings. Such experiences lead the subject to develop a new mental representation of space.

  17. A Risk-based Model Predictive Control Approach to Adaptive Interventions in Behavioral Health.

    PubMed

    Zafra-Cabeza, Ascensión; Rivera, Daniel E; Collins, Linda M; Ridao, Miguel A; Camacho, Eduardo F

    2011-07-01

    This paper examines how control engineering and risk management techniques can be applied in the field of behavioral health through their use in the design and implementation of adaptive behavioral interventions. Adaptive interventions are gaining increasing acceptance as a means to improve prevention and treatment of chronic, relapsing disorders, such as abuse of alcohol, tobacco, and other drugs, mental illness, and obesity. A risk-based Model Predictive Control (MPC) algorithm is developed for a hypothetical intervention inspired by Fast Track, a real-life program whose long-term goal is the prevention of conduct disorders in at-risk children. The MPC-based algorithm decides on the appropriate frequency of counselor home visits, mentoring sessions, and the availability of after-school recreation activities by relying on a model that includes identifiable risks, their costs, and the cost/benefit assessment of mitigating actions. MPC is particularly suited for the problem because of its constraint-handling capabilities, and its ability to scale to interventions involving multiple tailoring variables. By systematically accounting for risks and adapting treatment components over time, an MPC approach as described in this paper can increase intervention effectiveness and adherence while reducing waste, resulting in advantages over conventional fixed treatment. A series of simulations are conducted under varying conditions to demonstrate the effectiveness of the algorithm. PMID:21643450

  18. Initial locomotor sensitivity to cocaine varies widely among inbred mouse strains.

    PubMed

    Wiltshire, T; Ervin, R B; Duan, H; Bogue, M A; Zamboni, W C; Cook, S; Chung, W; Zou, F; Tarantino, L M

    2015-03-01

    Initial sensitivity to psychostimulants can predict subsequent use and abuse in humans. Acute locomotor activation in response to psychostimulants is commonly used as an animal model of initial drug sensitivity and has been shown to have a substantial genetic component. Identifying the specific genetic differences that lead to phenotypic differences in initial drug sensitivity can advance our understanding of the processes that lead to addiction. Phenotyping inbred mouse strain panels are frequently used as a first step for studying the genetic architecture of complex traits. We assessed locomotor activation following a single, acute 20 mg/kg dose of cocaine (COC) in males from 45 inbred mouse strains and observed significant phenotypic variation across strains indicating a substantial genetic component. We also measured levels of COC, the active metabolite, norcocaine and the major inactive metabolite, benzoylecgonine, in plasma and brain in the same set of inbred strains. Pharmacokinetic (PK) and behavioral data were significantly correlated, but at a level that indicates that PK alone does not account for the behavioral differences observed across strains. Phenotypic data from this reference population of inbred strains can be utilized in studies aimed at examining the role of psychostimulant-induced locomotor activation on drug reward and reinforcement and to test theories about addiction processes. Moreover, these data serve as a starting point for identifying genes that alter sensitivity to the locomotor stimulatory effects of COC. PMID:25727211

  19. Initial locomotor sensitivity to cocaine varies widely among inbred mouse strains

    PubMed Central

    Wiltshire, T.; Ervin, R. B.; Duan, H.; Bogue, M. A.; Zamboni, W. C.; Cook, S.; Chung, W.; Zou, F.; Tarantino, L. M.

    2015-01-01

    Initial sensitivity to psychostimulants can predict subsequent use and abuse in humans. Acute locomotor activation in response to psychostimulants is commonly used as an animal model of initial drug sensitivity and has been shown to have a substantial genetic component. Identifying the specific genetic differences that lead to phenotypic differences in initial drug sensitivity can advance our understanding of the processes that lead to addiction. Phenotyping inbred mouse strain panels are frequently used as a first step for studying the genetic architecture of complex traits. We assessed locomotor activation following a single, acute 20 mg/kg dose of cocaine (COC) in males from 45 inbred mouse strains and observed significant phenotypic variation across strains indicating a substantial genetic component. We also measured levels of COC, the active metabolite, norcocaine and the major inactive metabolite, benzoylecgonine, in plasma and brain in the same set of inbred strains. Pharmacokinetic (PK) and behavioral data were significantly correlated, but at a level that indicates that PK alone does not account for the behavioral differences observed across strains. Phenotypic data from this reference population of inbred strains can be utilized in studies aimed at examining the role of psychostimulant-induced locomotor activation on drug reward and reinforcement and to test theories about addiction processes. Moreover, these data serve as a starting point for identifying genes that alter sensitivity to the locomotor stimulatory effects of COC. PMID:25727211

  20. Adapting the VOICES HIV behavioral intervention for Latino men who have sex with men.

    PubMed

    O'Donnell, Lydia; Stueve, Ann; Joseph, Heather A; Flores, Stephen

    2014-04-01

    Latino men who have sex with men (MSM) are disproportionately impacted by HIV/AIDS, but few behavioral interventions address their prevention needs. Adaptation of evidence-based interventions is a pragmatic strategy that builds upon lessons learned and has the potential to fill gaps in prevention programming. Yet there are few reports of how transfers are executed and whether effectiveness is achieved. This research reports on the adaptation of VOICES/VOICES, a single-session intervention designed for heterosexual adults, into No Excuses/Sin buscar excuses for Latino MSM. To test the adapted intervention, 370 at-risk Latino MSM were enrolled in a randomized trial. At a three-month follow-up, there was a sharper decrease in unprotected intercourse in the intervention group compared to controls (59 % vs. 39 %, ANOVA p < 0.05, F = 4.10). Intervention participants also reported more condom use at last intercourse (AOR = 1.69; 95 % CI 1.02-2.81, p < 02). Findings support use of adapted models for meeting prevention needs of high-priority populations. PMID:24419993

  1. The evolution of locomotor rhythmicity in tetrapods.

    PubMed

    Ross, Callum F; Blob, Richard W; Carrier, David R; Daley, Monica A; Deban, Stephen M; Demes, Brigitte; Gripper, Janaya L; Iriarte-Diaz, Jose; Kilbourne, Brandon M; Landberg, Tobias; Polk, John D; Schilling, Nadja; Vanhooydonck, Bieke

    2013-04-01

    Differences in rhythmicity (relative variance in cycle period) among mammal, fish, and lizard feeding systems have been hypothesized to be associated with differences in their sensorimotor control systems. We tested this hypothesis by examining whether the locomotion of tachymetabolic tetrapods (birds and mammals) is more rhythmic than that of bradymetabolic tetrapods (lizards, alligators, turtles, salamanders). Species averages of intraindividual coefficients of variation in cycle period were compared while controlling for gait and substrate. Variance in locomotor cycle periods is significantly lower in tachymetabolic than in bradymetabolic animals for datasets that include treadmill locomotion, non-treadmill locomotion, or both. When phylogenetic relationships are taken into account the pooled analyses remain significant, whereas the non-treadmill and the treadmill analyses become nonsignificant. The co-occurrence of relatively high rhythmicity in both feeding and locomotor systems of tachymetabolic tetrapods suggests that the anatomical substrate of rhythmicity is in the motor control system, not in the musculoskeletal components. PMID:23550769

  2. Human Behavior & Low Energy Architecture: Linking Environmental Adaptation, Personal Comfort, & Energy Use in the Built Environment

    NASA Astrophysics Data System (ADS)

    Langevin, Jared

    Truly sustainable buildings serve to enrich the daily sensory experience of their human inhabitants while consuming the least amount of energy possible; yet, building occupants and their environmentally adaptive behaviors remain a poorly characterized variable in even the most "green" building design and operation approaches. This deficiency has been linked to gaps between predicted and actual energy use, as well as to eventual problems with occupant discomfort, productivity losses, and health issues. Going forward, better tools are needed for considering the human-building interaction as a key part of energy efficiency strategies that promote good Indoor Environmental Quality (IEQ) in buildings. This dissertation presents the development and implementation of a Human and Building Interaction Toolkit (HABIT), a framework for the integrated simulation of office occupants' thermally adaptive behaviors, IEQ, and building energy use as part of sustainable building design and operation. Development of HABIT begins with an effort to devise more reliable methods for predicting individual occupants' thermal comfort, considered the driving force behind the behaviors of focus for this project. A long-term field study of thermal comfort and behavior is then presented, and the data it generates are used to develop and validate an agent-based behavior simulation model. Key aspects of the agent-based behavior model are described, and its predictive abilities are shown to compare favorably to those of multiple other behavior modeling options. Finally, the agent-based behavior model is linked with whole building energy simulation in EnergyPlus, forming the full HABIT program. The program is used to evaluate the energy and IEQ impacts of several occupant behavior scenarios in the simulation of a case study office building for the Philadelphia climate. Results indicate that more efficient local heating/cooling options may be paired with wider set point ranges to yield up to 24

  3. Water balance and locomotor performance in three species of neotropical toads that differ in geographical distribution.

    PubMed

    Titon, Braz; Navas, Carlos Arturo; Jim, Jorge; Gomes, Fernando Ribeiro

    2010-05-01

    Water availability in the environment is a fundamental factor in determining the limits of geographical distribution and the evolution of the physiological characters associated to water balance in anurans. In this paper, we compare some aspects of water balance and the sensitivity of locomotor performance to dehydration at different temperatures for three species of toads from the genus Rhinella, with different levels of dependence on forested environments. Results show patterns associated to interspecific differences in both geographical distribution and time of seasonal reproduction. Sensitivity of locomotor performance to dehydration was lower at low temperatures for R. icterica, the species that are reproductively active during winter and lower at intermediate temperatures for R. schneideri, the species that reproduces mostly during spring, suggesting a pattern of thermal adaptation of locomotor performance for these species. Otherwise, R. ornata, a species with broader reproductive season, shows high sensitivity of locomotor performance to dehydration at all temperatures tested, suggesting a stronger relation of breeding activity with patterns of rainfall than temperature variation. Furthermore, the low rates of water uptake of R. ornata may pose restrictions on the occupation of open areas by this species. PMID:20096361

  4. Effect of Environmental Conditions and Toxic Compounds on the Locomotor Activity of Pediculus humanus capitis (Phthiraptera: Pediculidae).

    PubMed

    Ortega-Insaurralde, I; Toloza, A C; Gonzalez-Audino, P; Mougabure-Cueto, G A; Alvarez-Costa, A; Roca-Acevedo, G; Picollo, M I

    2015-09-01

    In this work, we evaluated the effect of environmental variables such as temperature, humidity, and light on the locomotor activity of Pediculus humanus capitis. In addition, we used selected conditions of temperature, humidity, and light to study the effects of cypermethrin and N,N-diethyl-3-methylbenzamide (DEET) on the locomotor activity of head lice. Head lice increased their locomotor activity in an arena at 30°C compared with activity at 20°C. When we tested the influence of the humidity level, the locomotor activity of head lice showed no significant differences related to humidity level, both at 30°C and 20°C. Concerning light influence, we observed that the higher the intensity of light, the slower the movement of head lice. We also demonstrated that sublethal doses of toxics may alter locomotor activity in adults of head lice. Sublethal doses of cypermethrin induced hyperactivated responses in adult head lice. Sublethal doses of DEET evocated hypoactivated responses in head lice. The observation of stereotyped behavior in head lice elicited by toxic compounds proved that measuring locomotor activity in an experimental set-up where environmental conditions are controlled would be appropriate to evaluate compounds of biological importance, such as molecules involved in the host-parasite interaction and intraspecific relationships. PMID:26336260

  5. Treatment Sequencing for Childhood ADHD: A Multiple-Randomization Study of Adaptive Medication and Behavioral Interventions.

    PubMed

    Pelham, William E; Fabiano, Gregory A; Waxmonsky, James G; Greiner, Andrew R; Gnagy, Elizabeth M; Pelham, William E; Coxe, Stefany; Verley, Jessica; Bhatia, Ira; Hart, Katie; Karch, Kathryn; Konijnendijk, Evelien; Tresco, Katy; Nahum-Shani, Inbal; Murphy, Susan A

    2016-01-01

    Behavioral and pharmacological treatments for children with attention deficit/hyperactivity disorder (ADHD) were evaluated to address whether endpoint outcomes are better depending on which treatment is initiated first and, in case of insufficient response to initial treatment, whether increasing dose of initial treatment or adding the other treatment modality is superior. Children with ADHD (ages 5-12, N = 146, 76% male) were treated for 1 school year. Children were randomized to initiate treatment with low doses of either (a) behavioral parent training (8 group sessions) and brief teacher consultation to establish a Daily Report Card or (b) extended-release methylphenidate (equivalent to .15 mg/kg/dose bid). After 8 weeks or at later monthly intervals as necessary, insufficient responders were rerandomized to secondary interventions that either increased the dose/intensity of the initial treatment or added the other treatment modality, with adaptive adjustments monthly as needed to these secondary treatments. The group beginning with behavioral treatment displayed significantly lower rates of observed classroom rule violations (the primary outcome) at study endpoint and tended to have fewer out-of-class disciplinary events. Further, adding medication secondary to initial behavior modification resulted in better outcomes on the primary outcomes and parent/teacher ratings of oppositional behavior than adding behavior modification to initial medication. Normalization rates on teacher and parent ratings were generally high. Parents who began treatment with behavioral parent training had substantially better attendance than those assigned to receive training following medication. Beginning treatment with behavioral intervention produced better outcomes overall than beginning treatment with medication. PMID:26882332

  6. Being Mindful about the Assessment of Culture: A Cultural Analysis of Culturally Adapted Acceptance-Based Behavior Therapy Approaches

    ERIC Educational Resources Information Center

    La Roche, Martin; Lustig, Kara

    2013-01-01

    In this article we review a wide range of cultural adaptations of acceptance-based behavior therapies (ABBT) from a cultural perspective. Consistent with the cultural match model, we argue that psychotherapeutic cultural adaptations are more effective as the cultural characteristics of patients are matched to the cultural characteristics of the…

  7. Effects of Risperidone and Parent Training on Adaptive Functioning in Children with Pervasive Developmental Disorders and Serious Behavioral Problems

    ERIC Educational Resources Information Center

    Scahill, Lawrence; McDougle, Christopher J.; Aman, Michael G.; Johnson, Cynthia; Handen, Benjamin; Bearss, Karen; Dziura, James; Butter, Eric; Swiezy, Naomi G.; Arnold, L. Eugene; Stigler, Kimberly A.; Sukhodolsky, Denis D.; Lecavalier, Luc; Pozdol, Stacie L.; Nikolov, Roumen; Hollway, Jill A.; Korzekwa, Patricia; Gavaletz, Allison; Kohn, Arlene E.; Koenig, Kathleen; Grinnon, Stacie; Mulick, James A.; Yu, Sunkyung; Vitiello, Benedetto

    2012-01-01

    Objective: Children with Pervasive Developmental Disorders (PDDs) have social interaction deficits, delayed communication, and repetitive behaviors as well as impairments in adaptive functioning. Many children actually show a decline in adaptive skills compared with age mates over time. Method: This 24-week, three-site, controlled clinical trial…

  8. First-Year Students' Psychological and Behavior Adaptation to College: The Role of Coping Strategies and Social Support

    ERIC Educational Resources Information Center

    Wang, Aiping; Chen, Lang; Zhao, Bo; Xu, Yan

    2006-01-01

    This study investigates 311 first-year students' psychological and behavior adaptation to college and the mediate role of coping strategies and social support. The investigates reveal that: (1) first-year students who are from countryside, live in poor families, speak in dialects or major in science and engineering have poorer adaptation to…

  9. Criticality as a Set-Point for Adaptive Behavior in Neuromorphic Hardware.

    PubMed

    Srinivasa, Narayan; Stepp, Nigel D; Cruz-Albrecht, Jose

    2015-01-01

    Neuromorphic hardware are designed by drawing inspiration from biology to overcome limitations of current computer architectures while forging the development of a new class of autonomous systems that can exhibit adaptive behaviors. Several designs in the recent past are capable of emulating large scale networks but avoid complexity in network dynamics by minimizing the number of dynamic variables that are supported and tunable in hardware. We believe that this is due to the lack of a clear understanding of how to design self-tuning complex systems. It has been widely demonstrated that criticality appears to be the default state of the brain and manifests in the form of spontaneous scale-invariant cascades of neural activity. Experiment, theory and recent models have shown that neuronal networks at criticality demonstrate optimal information transfer, learning and information processing capabilities that affect behavior. In this perspective article, we argue that understanding how large scale neuromorphic electronics can be designed to enable emergent adaptive behavior will require an understanding of how networks emulated by such hardware can self-tune local parameters to maintain criticality as a set-point. We believe that such capability will enable the design of truly scalable intelligent systems using neuromorphic hardware that embrace complexity in network dynamics rather than avoiding it. PMID:26648839

  10. Criticality as a Set-Point for Adaptive Behavior in Neuromorphic Hardware

    PubMed Central

    Srinivasa, Narayan; Stepp, Nigel D.; Cruz-Albrecht, Jose

    2015-01-01

    Neuromorphic hardware are designed by drawing inspiration from biology to overcome limitations of current computer architectures while forging the development of a new class of autonomous systems that can exhibit adaptive behaviors. Several designs in the recent past are capable of emulating large scale networks but avoid complexity in network dynamics by minimizing the number of dynamic variables that are supported and tunable in hardware. We believe that this is due to the lack of a clear understanding of how to design self-tuning complex systems. It has been widely demonstrated that criticality appears to be the default state of the brain and manifests in the form of spontaneous scale-invariant cascades of neural activity. Experiment, theory and recent models have shown that neuronal networks at criticality demonstrate optimal information transfer, learning and information processing capabilities that affect behavior. In this perspective article, we argue that understanding how large scale neuromorphic electronics can be designed to enable emergent adaptive behavior will require an understanding of how networks emulated by such hardware can self-tune local parameters to maintain criticality as a set-point. We believe that such capability will enable the design of truly scalable intelligent systems using neuromorphic hardware that embrace complexity in network dynamics rather than avoiding it. PMID:26648839

  11. Brief Report: Adaptive Behavior and Cognitive Skills for Toddlers on the Autism Spectrum

    PubMed Central

    Ray-Subramanian, Corey E.; Huai, Nan; Weismer, Susan Ellis

    2012-01-01

    This study examined adaptive behavior and cognitive skills for 125 toddlers on the autism spectrum using the recently updated Vineland-II and Bayley-III. Delays in adaptive skills were apparent at two years of age. As a group, toddlers on the autism spectrum had a profile of Vineland-II standard scores in which Motor Skills > Daily Living Skills > Socialization > Communication. Vineland-II scores were significantly correlated with Bayley-III Cognitive scores. Performance on the ADOS was significantly negatively correlated with Bayley-III Cognitive standard scores and standard scores in the Daily Living Skills and Communication domains of the Vineland-II. However, calibrated ADOS scores did not contribute significant variance to Vineland-II scores beyond that predicted by age and Bayley-III scores. PMID:20697794

  12. Gender differences in adapting driving behavior to accommodate visual health limitations.

    PubMed

    Sarkin, Andrew J; Tally, Steven R; Wooldridge, Jennalee S; Choi, Kyle; Shieh, Marian; Kaplan, Robert M

    2013-12-01

    This study investigated whether men and women are equally likely to adapt their driving behaviors in response to visual limitations. Participants were 376 (222 women and 154 men) pre-surgical cataract patients from the Shiley Eye Center in La Jolla, California. All participants completed the National Eye Institute Visual Functioning Questionnaire, which assesses self-reported visual symptoms, functional limitations, and behaviors including driving during the day, at night, or in difficult conditions. Visual acuity was assessed using the log of the minimal angle of resolution (LogMAR) scale. There were no significant differences in LogMAR visual acuity between men and women who reported either that they stopped driving at night because of visual impairment or reported having no difficulty driving at night. Of participants who reported having difficulty driving at night, mean weighted LogMAR scores indicated significantly better visual acuity for women than men. There were no significant differences in LogMAR visual acuity between women and men in any of the difficult driving condition categories. Significantly more women than men reported that they stopped driving in difficult conditions because of eyesight, despite the lack of gender differences in visual acuity for this sample. We found no evidence that cataract disease had different effects on the visual acuity of older adult men and women. However, there was a significant difference between genders in self-reported driving behavior. It is possible that some women are more cautious or have less need to drive. However, failing to adapt driving behaviors to accommodate visual limitations may represent a potential behavioral public health risk for men. PMID:23852327

  13. Facets and mechanisms of adaptive pain behavior: predictive regulation and action

    PubMed Central

    Morrison, India; Perini, Irene; Dunham, James

    2013-01-01

    Neural mechanisms underlying nociception and pain perception are considered to serve the ultimate goal of limiting tissue damage. However, since pain usually occurs in complex environments and situations that call for elaborate control over behavior, simple avoidance is insufficient to explain a range of mammalian pain responses, especially in the presence of competing goals. In this integrative review we propose a Predictive Regulation and Action (PRA) model of acute pain processing. It emphasizes evidence that the nervous system is organized to anticipate potential pain and to adjust behavior before the risk of tissue damage becomes critical. Regulatory processes occur on many levels, and can be dynamically influenced by local interactions or by modulation from other brain areas in the network. The PRA model centers on neural substrates supporting the predictive nature of pain processing, as well as on finely-calibrated yet versatile regulatory processes that ultimately affect behavior. We outline several operational categories of pain behavior, from spinally-mediated reflexes to adaptive voluntary action, situated at various neural levels. An implication is that neural processes that track potential tissue damage in terms of behavioral consequences are an integral part of pain perception. PMID:24348358

  14. Building Zebrafish Neurobehavioral Phenomics: Effects of Common Environmental Factors on Anxiety and Locomotor Activity.

    PubMed

    Stewart, Adam Michael; Kaluyeva, Alexandra A; Poudel, Manoj K; Nguyen, Michael; Song, Cai; Kalueff, Allan V

    2015-10-01

    Zebrafish are emerging as an important model organism for neurobehavioral phenomics research. Given the likely variation of zebrafish behavioral phenotypes between and within laboratories, in this study, we examine the influence and variability of several common environmental modifiers on adult zebrafish anxiety and locomotor activity. Utilizing the novel tank paradigm, this study assessed the role of various laboratory factors, including experimenter/handling, testing time and days, batch, and the order of testing, on the behavior of a large population of experimentally naive control fish. Although time of the day, experimenter identity, and order of testing had little effect on zebrafish anxiety and locomotor activity levels, subtle differences were found for testing days and batches. Our study establishes how zebrafish behaviors are modulated by common environmental/laboratory factors and outlines several implications for zebrafish neurobehavioral phenomics research. PMID:26244595

  15. Behavior Change Interventions to Improve the Health of Racial and Ethnic Minority Populations: A Tool Kit of Adaptation Approaches

    PubMed Central

    Davidson, Emma M; Liu, Jing Jing; Bhopal, Raj; White, Martin; Johnson, Mark RD; Netto, Gina; Wabnitz, Cecile; Sheikh, Aziz

    2013-01-01

    Context Adapting behavior change interventions to meet the needs of racial and ethnic minority populations has the potential to enhance their effectiveness in the target populations. But because there is little guidance on how best to undertake these adaptations, work in this field has proceeded without any firm foundations. In this article, we present our Tool Kit of Adaptation Approaches as a framework for policymakers, practitioners, and researchers interested in delivering behavior change interventions to ethnically diverse, underserved populations in the United Kingdom. Methods We undertook a mixed-method program of research on interventions for smoking cessation, increasing physical activity, and promoting healthy eating that had been adapted to improve salience and acceptability for African-, Chinese-, and South Asian–origin minority populations. This program included a systematic review (reported using PRISMA criteria), qualitative interviews, and a realist synthesis of data. Findings We compiled a richly informative data set of 161 publications and twenty-six interviews detailing the adaptation of behavior change interventions and the contexts in which they were undertaken. On the basis of these data, we developed our Tool Kit of Adaptation Approaches, which contains (1) a forty-six-item Typology of Adaptation Approaches; (2) a Pathway to Adaptation, which shows how to use the Typology to create a generic behavior change intervention; and (3) RESET, a decision tool that provides practical guidance on which adaptations to use in different contexts. Conclusions Our Tool Kit of Adaptation Approaches provides the first evidence-derived suite of materials to support the development, design, implementation, and reporting of health behavior change interventions for minority groups. The Tool Kit now needs prospective, empirical evaluation in a range of intervention and population settings. PMID:24320170

  16. Vibrational behavior of adaptive aircraft wing structures modelled as composite thin-walled beams

    NASA Technical Reports Server (NTRS)

    Song, O.; Librescu, L.; Rogers, C. A.

    1992-01-01

    The vibrational behavior of cantilevered aircraft wings modeled as thin-walled beams and incorporating piezoelectric effects is studied. Based on the converse piezoelectric effect, the system of piezoelectric actuators conveniently located on the wing yield the control of its associated vertical and lateral bending eigenfrequencies. The possibility revealed by this study enabling one to increase adaptively the eigenfrequencies of thin-walled cantilevered beams could play a significant role in the control of the dynamic response and flutter of wing and rotor blade structures.

  17. Differential Effects of Inhaled Toluene on Locomotor Activity in Adolescent and Adult Rats

    PubMed Central

    Batis, Jeffery C.; Hannigan, John H.; Bowen, Scott E.

    2010-01-01

    Inhalant abuse is a world-wide public health concern among adolescents. Most preclinical studies have assessed inhalant effects in adult animals leaving unclear how behavioral effects differ in younger animals. We exposed adolescent (postnatal day [PN] 28) and adult (PN90) male rats to toluene using 1 of 3 exposure patterns. These patterns modeled those reported in toluene abuse in teens and varied concentration, number and length of exposures, as well as the inter-exposure interval. Animals were exposed repeatedly over 12 days to toluene concentrations of 0, 8,000 or 16,000 parts per million (ppm). Locomotor activity was quantified during toluene exposures and for 30 min following completion of the final daily toluene exposure. For each exposure pattern, there were significant toluene concentration-related increases and decreases in locomotor activity compared to the 0-ppm “air” controls at both ages. These changes depended upon when activity was measured – during or following exposure. Compared to adults, adolescents displayed greater locomotor activity on the first day and generally greater increases in activity over days than adults during toluene exposure. Adults displayed greater locomotor activity than adolescents in the “recovery” period following exposure on the first and subsequent days. Age group differences were clearest following the pattern of paced, brief (5-min) repeated binge exposures. The results suggest that locomotor behavior in rats during and following inhalation of high concentrations of toluene depends on age and the pattern of exposure. The results are consistent with dose-dependent shifts in sensitivity and sensitization or tolerance to repeated toluene in the adolescent animals compared to the adult animals. Alternate interpretations are possible and our interpretation is limited by the range of very high concentrations of toluene used. The results imply that both pharmacological and psychosocial factors contribute to the teen

  18. A parallel cholinergic brainstem pathway for enhancing locomotor drive

    PubMed Central

    Smetana, Roy; Juvin, Laurent; Dubuc, Réjean; Alford, Simon

    2010-01-01

    The brainstem locomotor system is believed to be organized serially from the mesencephalic locomotor region (MLR) to reticulospinal neurons, which in turn, project to locomotor neurons in the spinal cord. In contrast, we now identify in lampreys, brainstem muscarinoceptive neurons receiving parallel inputs from the MLR and projecting back to reticulospinal cells to amplify and extend durations of locomotor output. These cells respond to muscarine with extended periods of excitation, receive direct muscarinic excitation from the MLR, and project glutamatergic excitation to reticulospinal neurons. Targeted block of muscarine receptors over these neurons profoundly reduces MLR-induced excitation of reticulospinal neurons and markedly slows MLR-evoked locomotion. Their presence forces us to rethink the organization of supraspinal locomotor control, to include a sustained feedforward loop that boosts locomotor output. PMID:20473293

  19. Cortical Structure of Hallucal Metatarsals and Locomotor Adaptations in Hominoids

    PubMed Central

    Jashashvili, Tea; Dowdeswell, Mark R.; Lebrun, Renaud; Carlson, Kristian J.

    2015-01-01

    Diaphyseal morphology of long bones, in part, reflects in vivo loads experienced during the lifetime of an individual. The first metatarsal, as a cornerstone structure of the foot, presumably expresses diaphyseal morphology that reflects loading history of the foot during stance phase of gait. Human feet differ substantially from those of other apes in terms of loading histories when comparing the path of the center of pressure during stance phase, which reflects different weight transfer mechanisms. Here we use a novel approach for quantifying continuous thickness and cross-sectional geometric properties of long bones in order to test explicit hypotheses about loading histories and diaphyseal structure of adult chimpanzee, gorilla, and human first metatarsals. For each hallucal metatarsal, 17 cross sections were extracted at regularly-spaced intervals (2.5% length) between 25% and 65% length. Cortical thickness in cross sections was measured in one degree radially-arranged increments, while second moments of area were measured about neutral axes also in one degree radially-arranged increments. Standardized thicknesses and second moments of area were visualized using false color maps, while penalized discriminant analyses were used to evaluate quantitative species differences. Humans systematically exhibit the thinnest diaphyseal cortices, yet the greatest diaphyseal rigidities, particularly in dorsoplantar regions. Shifts in orientation of maximum second moments of area along the diaphysis also distinguish human hallucal metatarsals from those of chimpanzees and gorillas. Diaphyseal structure reflects different loading regimes, often in predictable ways, with human versus non-human differences probably resulting both from the use of arboreal substrates by non-human apes and by differing spatial relationships between hallux position and orientation of the substrate reaction resultant during stance. The novel morphological approach employed in this study offers the potential for transformative insights into form-function relationships in additional long bones, including those of extinct organisms (e.g., fossils). PMID:25635768

  20. LABRADOR: a learning autonomous behavior-based robot for adaptive detection and object retrieval

    NASA Astrophysics Data System (ADS)

    Yamauchi, Brian; Moseley, Mark; Brookshire, Jonathan

    2013-01-01

    As part of the TARDEC-funded CANINE (Cooperative Autonomous Navigation in a Networked Environment) Program, iRobot developed LABRADOR (Learning Autonomous Behavior-based Robot for Adaptive Detection and Object Retrieval). LABRADOR was based on the rugged, man-portable, iRobot PackBot unmanned ground vehicle (UGV) equipped with an explosives ordnance disposal (EOD) manipulator arm and a custom gripper. For LABRADOR, we developed a vision-based object learning and recognition system that combined a TLD (track-learn-detect) filter based on object shape features with a color-histogram-based object detector. Our vision system was able to learn in real-time to recognize objects presented to the robot. We also implemented a waypoint navigation system based on fused GPS, IMU (inertial measurement unit), and odometry data. We used this navigation capability to implement autonomous behaviors capable of searching a specified area using a variety of robust coverage strategies - including outward spiral, random bounce, random waypoint, and perimeter following behaviors. While the full system was not integrated in time to compete in the CANINE competition event, we developed useful perception, navigation, and behavior capabilities that may be applied to future autonomous robot systems.

  1. Agouti-related peptide neural circuits mediate adaptive behaviors in the starved state.

    PubMed

    Padilla, Stephanie L; Qiu, Jian; Soden, Marta E; Sanz, Elisenda; Nestor, Casey C; Barker, Forrest D; Quintana, Albert; Zweifel, Larry S; Rønnekleiv, Oline K; Kelly, Martin J; Palmiter, Richard D

    2016-05-01

    In the face of starvation, animals will engage in high-risk behaviors that would normally be considered maladaptive. Starving rodents, for example, will forage in areas that are more susceptible to predators and will also modulate aggressive behavior within a territory of limited or depleted nutrients. The neural basis of these adaptive behaviors likely involves circuits that link innate feeding, aggression and fear. Hypothalamic agouti-related peptide (AgRP)-expressing neurons are critically important for driving feeding and project axons to brain regions implicated in aggression and fear. Using circuit-mapping techniques in mice, we define a disynaptic network originating from a subset of AgRP neurons that project to the medial nucleus of the amygdala and then to the principal bed nucleus of the stria terminalis, which suppresses territorial aggression and reduces contextual fear. We propose that AgRP neurons serve as a master switch capable of coordinating behavioral decisions relative to internal state and environmental cues. PMID:27019015

  2. Genomic Response to Selection for Predatory Behavior in a Mammalian Model of Adaptive Radiation.

    PubMed

    Konczal, Mateusz; Koteja, Paweł; Orlowska-Feuer, Patrycja; Radwan, Jacek; Sadowska, Edyta T; Babik, Wiesław

    2016-09-01

    If genetic architectures of various quantitative traits are similar, as studies on model organisms suggest, comparable selection pressures should produce similar molecular patterns for various traits. To test this prediction, we used a laboratory model of vertebrate adaptive radiation to investigate the genetic basis of the response to selection for predatory behavior and compare it with evolution of aerobic capacity reported in an earlier work. After 13 generations of selection, the proportion of bank voles (Myodes [=Clethrionomys] glareolus) showing predatory behavior was five times higher in selected lines than in controls. We analyzed the hippocampus and liver transcriptomes and found repeatable changes in allele frequencies and gene expression. Genes with the largest differences between predatory and control lines are associated with hunger, aggression, biological rhythms, and functioning of the nervous system. Evolution of predatory behavior could be meaningfully compared with evolution of high aerobic capacity, because the experiments and analyses were performed in the same methodological framework. The number of genes that changed expression was much smaller in predatory lines, and allele frequencies changed repeatably in predatory but not in aerobic lines. This suggests that more variants of smaller effects underlie variation in aerobic performance, whereas fewer variants of larger effects underlie variation in predatory behavior. Our results thus contradict the view that comparable selection pressures for different quantitative traits produce similar molecular patterns. Therefore, to gain knowledge about molecular-level response to selection for complex traits, we need to investigate not only multiple replicate populations but also multiple quantitative traits. PMID:27401229

  3. Neocortical Tet3-mediated accumulation of 5-hydroxymethylcytosine promotes rapid behavioral adaptation.

    PubMed

    Li, Xiang; Wei, Wei; Zhao, Qiong-Yi; Widagdo, Jocelyn; Baker-Andresen, Danay; Flavell, Charlotte R; D'Alessio, Ana; Zhang, Yi; Bredy, Timothy W

    2014-05-13

    5-hydroxymethylcytosine (5-hmC) is a novel DNA modification that is highly enriched in the adult brain and dynamically regulated by neural activity. 5-hmC accumulates across the lifespan; however, the functional relevance of this change in 5-hmC and whether it is necessary for behavioral adaptation have not been fully elucidated. Moreover, although the ten-eleven translocation (Tet) family of enzymes is known to be essential for converting methylated DNA to 5-hmC, the role of individual Tet proteins in the adult cortex remains unclear. Using 5-hmC capture together with high-throughput DNA sequencing on individual mice, we show that fear extinction, an important form of reversal learning, leads to a dramatic genome-wide redistribution of 5-hmC within the infralimbic prefrontal cortex. Moreover, extinction learning-induced Tet3-mediated accumulation of 5-hmC is associated with the establishment of epigenetic states that promote gene expression and rapid behavioral adaptation. PMID:24757058

  4. Effects of Sex and Gender on Adaptation to Space: Behavioral Health

    PubMed Central

    Bale, Tracy L.; Epperson, C. Neill; Kornstein, Susan G.; Leon, Gloria R.; Palinkas, Lawrence A.; Stuster, Jack W.; Dinges, David F.

    2014-01-01

    Abstract This article is part of a larger body of work entitled, “The Impact of Sex and Gender on Adaptation to Space.” It was developed in response to a recommendation from the 2011 National Academy of Sciences Decadal Survey, “Recapturing a Future for Space Exploration: Life and Physical Sciences for a New Era,” which emphasized the need to fully understand sex and gender differences. In this article, our workgroup—consisting of expert scientists and clinicians from academia and the private sector—investigated and summarized the current body of published and unpublished human research performed to date related to sex- and gender-based differences in behavioral adaptations to human spaceflight. This review identifies sex-related differences in: (1) sleep, circadian rhythms, and neurobehavioral measures; (2) personality, group interactions, and work performance and satisfaction; and (3) stress and clinical disorders. Differences in these areas substantially impact the risks and optimal medical care required by space-faring women. To ensure the health and safety of male and female astronauts during long-duration space missions, it is imperative to understand the influences that sex and gender have on behavioral health changes occurring during spaceflight. PMID:25259837

  5. Effects of sex and gender on adaptation to space: behavioral health.

    PubMed

    Goel, Namni; Bale, Tracy L; Epperson, C Neill; Kornstein, Susan G; Leon, Gloria R; Palinkas, Lawrence A; Stuster, Jack W; Dinges, David F

    2014-11-01

    This article is part of a larger body of work entitled, "The Impact of Sex and Gender on Adaptation to Space." It was developed in response to a recommendation from the 2011 National Academy of Sciences Decadal Survey, "Recapturing a Future for Space Exploration: Life and Physical Sciences for a New Era," which emphasized the need to fully understand sex and gender differences. In this article, our workgroup-consisting of expert scientists and clinicians from academia and the private sector-investigated and summarized the current body of published and unpublished human research performed to date related to sex- and gender-based differences in behavioral adaptations to human spaceflight. This review identifies sex-related differences in: (1) sleep, circadian rhythms, and neurobehavioral measures; (2) personality, group interactions, and work performance and satisfaction; and (3) stress and clinical disorders. Differences in these areas substantially impact the risks and optimal medical care required by space-faring women. To ensure the health and safety of male and female astronauts during long-duration space missions, it is imperative to understand the influences that sex and gender have on behavioral health changes occurring during spaceflight. PMID:25259837

  6. Development of Testing Methodologies to Evaluate Postflight Locomotor Performance

    NASA Technical Reports Server (NTRS)

    Mulavara, A. P.; Peters, B. T.; Cohen, H. S.; Richards, J. T.; Miller, C. A.; Brady, R.; Warren, L. E.; Bloomberg, J. J.

    2006-01-01

    Crewmembers experience locomotor and postural instabilities during ambulation on Earth following their return from space flight. Gait training programs designed to facilitate recovery of locomotor function following a transition to a gravitational environment need to be accompanied by relevant assessment methodologies to evaluate their efficacy. The goal of this paper is to demonstrate the operational validity of two tests of locomotor function that were used to evaluate performance after long duration space flight missions on the International Space Station (ISS).

  7. Examining the Specific Effects of Context on Adaptive Behavior and Achievement in a Rural African Community: Six Case Studies from Rural Areas of Southern Province, Zambia

    ERIC Educational Resources Information Center

    Tan, Mei; Reich, Jodi; Hart, Lesley; Thuma, Philip E.; Grigorenko, Elena L.

    2014-01-01

    Generally accepted as universal, the construct of adaptive behavior differs in its manifestations across different cultures and settings. The Vineland-II (Sparrow et al. in "Vineland Adaptive Behavior Scales, Second edn." AGS Publishing, Circle Pines, MN, 2005) was translated into Chitonga and adapted to the setting of rural Southern…

  8. Role of the 5-HT₂A receptor in the locomotor hyperactivity produced by phenylalkylamine hallucinogens in mice.

    PubMed

    Halberstadt, Adam L; Powell, Susan B; Geyer, Mark A

    2013-07-01

    The 5-HT₂A receptor mediates the effects of serotonergic hallucinogens and may play a role in the pathophysiology of certain psychiatric disorders, including schizophrenia. Given these findings, there is a need for animal models to assess the behavioral effects of 5-HT₂A receptor activation. Our previous studies demonstrated that the phenylalkylamine hallucinogen and 5-HT₂A/₂C agonist 2,5-dimethoxy-4-iodoamphetamine (DOI) produces dose-dependent effects on locomotor activity in C57BL/6J mice, increasing activity at low to moderate doses and reducing activity at high doses. DOI did not increase locomotor activity in 5-HT₂A knockout mice, indicating the effect is a consequence of 5-HT₂A receptor activation. Here, we tested a series of phenylalkylamine hallucinogens in C57BL/6J mice using the Behavioral Pattern Monitor (BPM) to determine whether these compounds increase locomotor activity by activating the 5-HT₂A receptor. Low doses of mescaline, 2,5-dimethoxy-4-ethylamphetamine (DOET), 2,5-dimethoxy-4-propylamphetamine (DOPR), 2,4,5-trimethoxyamphetamine (TMA-2), and the conformationally restricted phenethylamine (4-bromo-3,6-dimethoxybenzocyclobuten-1-yl)methylamine (TCB-2) increased locomotor activity. By contrast, the non-hallucinogenic phenylalkylamine 2,5-dimethoxy-4-tert-butylamphetamine (DOTB) did not alter locomotor activity at any dose tested (0.1-10 mg/kg i.p.). The selective 5-HT₂A antagonist M100907 blocked the locomotor hyperactivity induced by mescaline and TCB-2. Similarly, mescaline and TCB-2 did not increase locomotor activity in 5-HT₂A knockout mice. These results confirm that phenylalkylamine hallucinogens increase locomotor activity in mice and demonstrate that this effect is mediated by 5-HT₂A receptor activation. Thus, locomotor hyperactivity in mice can be used to assess phenylalkylamines for 5-HT₂A agonist activity and hallucinogen-like behavioral effects. These studies provide additional support for the link between 5

  9. Distributed recurrent neural forward models with synaptic adaptation and CPG-based control for complex behaviors of walking robots

    PubMed Central

    Dasgupta, Sakyasingha; Goldschmidt, Dennis; Wörgötter, Florentin; Manoonpong, Poramate

    2015-01-01

    Walking animals, like stick insects, cockroaches or ants, demonstrate a fascinating range of locomotive abilities and complex behaviors. The locomotive behaviors can consist of a variety of walking patterns along with adaptation that allow the animals to deal with changes in environmental conditions, like uneven terrains, gaps, obstacles etc. Biological study has revealed that such complex behaviors are a result of a combination of biomechanics and neural mechanism thus representing the true nature of embodied interactions. While the biomechanics helps maintain flexibility and sustain a variety of movements, the neural mechanisms generate movements while making appropriate predictions crucial for achieving adaptation. Such predictions or planning ahead can be achieved by way of internal models that are grounded in the overall behavior of the animal. Inspired by these findings, we present here, an artificial bio-inspired walking system which effectively combines biomechanics (in terms of the body and leg structures) with the underlying neural mechanisms. The neural mechanisms consist of (1) central pattern generator based control for generating basic rhythmic patterns and coordinated movements, (2) distributed (at each leg) recurrent neural network based adaptive forward models with efference copies as internal models for sensory predictions and instantaneous state estimations, and (3) searching and elevation control for adapting the movement of an individual leg to deal with different environmental conditions. Using simulations we show that this bio-inspired approach with adaptive internal models allows the walking robot to perform complex locomotive behaviors as observed in insects, including walking on undulated terrains, crossing large gaps, leg damage adaptations, as well as climbing over high obstacles. Furthermore, we demonstrate that the newly developed recurrent network based approach to online forward models outperforms the adaptive neuron forward models

  10. Re-Adaptation to 1-G of Pregnant Rats Following Exposure to Spaceflight or Centrifugation

    NASA Technical Reports Server (NTRS)

    Johnson, K. E.; Ronca, A. E.; Alberts, J. R.

    2003-01-01

    Late-pregnant rat dams were flown on a 9-day Space Shuttle mission or exposed to 1.5, 1.75 or 2-g centrifugation and compared with 1 .O-g vivarium controls. Exposure to altered gravity began on the 11th day and recovery occurred on the 20th day of the dams' 22-day pregnancy. In the 1 st experiment, comparisons were made between Flight (FLT), Synchronous (SYN; identically-housed) and Vivarium (VIV) controls. In the 2nd experiment, comparisons were made between dams centrifuged at 2-G, 1.75-G, 1.5-G, Rotational controls (1.08-G) or Stationary controls (1 G). Within three hours of recovery from either spaceflight or centrifugation, the dams' locomotor behavior was videotaped for 2 min. FLT dams showed dramatically reduced movement relative to both SYN and VIV control conditions, with significantly greater amounts of locomotor activity observed in SYN as compared to VIV dams. Significantly greater locomotor activity was observed in SYN as compared to VIV controls. In the second experiment, no differences were observed between dams exposed either 1, 1.5, 1.75, or 2-G. In both studies, the dams showed similar patterns of hindlimb rearing. Together, these findings provide quantitative evidence for decreased locomotor activity during re-adaptation to 1-g following spaceflight, but not centrifugation.

  11. Health problem behaviors in Iranian adolescents: a study of cross-cultural adaptation, reliability, and validity

    PubMed Central

    Eslami, Ahmad Ali; Ghofranipour, Fazlollah; Bonab, Bagher Ghobari; Zadeh, Davood Shojaei; Shokravi, Farkhondeh Amin; Tabatabaie, Mahmoud Ghazi

    2010-01-01

    BACKGROUND: The main purpose of this study was to assess the factorial validity and reliability of the Iranian versions of the personality and behavior system scales (49 items) of the AHDQ (The Adolescent Health and Development Questionnaire) and interrelations among them based on Jessor’s PBT (Problem Behavior Theory). METHODS: A multi-staged approach was employed. The cross-cultural adaptation was performed according to the internationally recommended methodology, using the following guidelines: translation, back-translation, revision by a committee, and pretest. After modifying and identifying of the best items, a cross-sectional study was conducted to assess the psychometric properties of Persian version using calibration and validation samples of adolescents. Also 113 of them completed it again two weeks later for stability. RESULTS: The findings of the exploratory factor analysis suggested that the 7-factor solution with low self concept, emotional distress, general delinquency, cigarette, hookah, alcohol, and hard drugs use provided a better fitting model. The α range for these identified factors was 0.69 to 0.94, the ICC range was 0.73 to 0.93, and there was a significant difference in mean scores for these instruments in compare between the male normative and detention adolescents. The first and second-order measurement models testing found good model fit for the 7-factor model. CONCLUSIONS: Factor analyses provided support of existence internalizing and externalizing problem behavior syndrome. With those qualifications, this model can be applied for studies among Persian adolescents. PMID:21526075

  12. Adaptive behavior for texture discrimination by the free-flying big brown bat, Eptesicus fuscus.

    PubMed

    Falk, Ben; Williams, Tameeka; Aytekin, Murat; Moss, Cynthia F

    2011-05-01

    This study examined behavioral strategies for texture discrimination by echolocation in free-flying bats. Big brown bats, Eptesicus fuscus, were trained to discriminate a smooth 16 mm diameter object (S+) from a size-matched textured object (S-), both of which were tethered in random locations in a flight room. The bat's three-dimensional flight path was reconstructed using stereo images from high-speed video recordings, and the bat's sonar vocalizations were recorded for each trial and analyzed off-line. A microphone array permitted reconstruction of the sonar beam pattern, allowing us to study the bat's directional gaze and inspection of the objects. Bats learned the discrimination, but performance varied with S-. In acoustic studies of the objects, the S+ and S- stimuli were ensonified with frequency-modulated sonar pulses. Mean intensity differences between S+ and S- were within 4 dB. Performance data, combined with analyses of echo recordings, suggest that the big brown bat listens to changes in sound spectra from echo to echo to discriminate between objects. Bats adapted their sonar calls as they inspected the stimuli, and their sonar behavior resembled that of animals foraging for insects. Analysis of sonar beam-directing behavior in certain trials clearly showed that the bat sequentially inspected S+ and S-. PMID:21246202

  13. Adaptive behavior for texture discrimination by the free-flying big brown bat, Eptesicus fuscus

    PubMed Central

    Falk, Ben; Williams, Tameeka; Aytekin, Murat

    2011-01-01

    This study examined behavioral strategies for texture discrimination by echolocation in free-flying bats. Big brown bats, Eptesicus fuscus, were trained to discriminate a smooth 16 mm diameter object (S+) from a size-matched textured object (S−), both of which were tethered in random locations in a flight room. The bat’s three-dimensional flight path was reconstructed using stereo images from high-speed video recordings, and the bat’s sonar vocalizations were recorded for each trial and analyzed off-line. A microphone array permitted reconstruction of the sonar beam pattern, allowing us to study the bat’s directional gaze and inspection of the objects. Bats learned the discrimination, but performance varied with S−. In acoustic studies of the objects, the S+ and S− stimuli were ensonified with frequency-modulated sonar pulses. Mean intensity differences between S+ and S− were within 4 dB. Performance data, combined with analyses of echo recordings, suggest that the big brown bat listens to changes in sound spectra from echo to echo to discriminate between objects. Bats adapted their sonar calls as they inspected the stimuli, and their sonar behavior resembled that of animals foraging for insects. Analysis of sonar beam-directing behavior in certain trials clearly showed that the bat sequentially inspected S+ and S−. PMID:21246202

  14. Restraint stress attenuates nicotine’s locomotor stimulant but not discriminative stimulus effects in rats

    PubMed Central

    Harris, Andrew C.; Mattson, Christina; Shelley, David; LeSage, Mark G.

    2014-01-01

    Stress enhances the locomotor stimulant and discriminative stimulus effects of several addictive drugs (e.g., morphine) in rodents, yet interactions between stress and nicotine’s effects in these behavioral models have not been well established. To this end, the current studies examined the effects of restraint stress on nicotine-induced locomotor activity and nicotine discrimination in rats. We used a novel approach in which onset of stress and nicotine administration occurred concurrently (i.e., simultaneous exposure) to simulate effects of stress on ongoing tobacco use, as well as a more traditional approach in which a delay was imposed between stress and nicotine administration (i.e., sequential exposure). Simultaneous exposure to stress reduced the rate of locomotor sensitization induced by daily injections of nicotine (0.4 mg/kg, s.c.). A lower dose of nicotine (0.1 mg/kg, s.c.) produced modest effects on activity that were generally unaffected by simultaneous exposure to stress. Sequential exposure to stress and nicotine (0.4 mg/kg, s.c.) slightly suppressed nicotine-induced activity, but did not influence rate of locomotor sensitization. Neither simultaneous nor sequential exposure to stress influenced the discriminative stimulus effects of nicotine (0.01 – 0.2 mg/kg, s.c.). These data show that restraint stress reduces nicotine’s locomotor stimulant effects, particularly when onset of stress and nicotine exposure occurs simultaneously, but does not influence nicotine discrimination. These findings contrast with the ability of stress to enhance the effects of other drugs in these models. This study also suggests that studying the influence of simultaneous stress exposure on drug effects may be useful for understanding the role of stress in addiction. PMID:24867077

  15. Dynamic Control of Posture Across Locomotor Tasks

    PubMed Central

    Earhart, Gammon M.

    2013-01-01

    Successful locomotion depends on postural control to establish and maintain appropriate postural orientation of body segments relative to one another and to the environment, and to ensure dynamic stability of the moving body. This paper provides a framework for considering dynamic postural control, highlighting the importance of coordination, consistency, and challenges to postural control posed by various locomotor tasks such as turning and backward walking. The impacts of aging and various movement disorders on postural control are discussed broadly in an effort to provide a general overview of the field and recommendations for assessment of dynamic postural control across different populations in both clinical and research settings. Suggestions for future research on dynamic postural control during locomotion are also provided and include discussion of opportunities afforded by new and developing technologies, the need for long-term monitoring of locomotor performance in everyday activities, gaps in our knowledge of how targeted intervention approaches modify dynamic postural control, and the relative paucity of literature regarding dynamic postural control in movement disorder populations other than Parkinson disease. PMID:24132838

  16. The GALS locomotor screen and disability.

    PubMed Central

    Plant, M J; Linton, S; Dodd, E; Jones, P W; Dawes, P T

    1993-01-01

    OBJECTIVES--Examination of the locomotor system is frequently neglected. Therefore, the GALS locomotor screen (Gait, Arms, Legs, Spine) has been proposed by Doherty et al as a practical method of identifying functionally important problems. This study was designed to test whether this screen reflects functional impairment, as measured by accepted health status measures. METHODS--Two observers performed the GALS screen in a total of 83 patients with a variety of musculoskeletal conditions. The examination components of GALS were rated by a simple 0 to 3 scale. Physical ability was further assessed by Health Activity Questionnaire (HAQ), Barthel index and Steinbrocker's ARA classification. RESULTS--For the total patient group, Spearman correlations between GALS and the three functional indices were good (r = 0.62 to 0.71, p < 0.001). Correlations were equally good for rheumatoid arthritis patients alone (r = 0.65 to 0.70, p < 0.001), but less good although still significant for the other miscellaneous rheumatic conditions (r = 0.31 to 0.46, p < 0.05). Observed proportional agreement between the two observers for the individual scores was > 70%, with a kappa statistic k = 0.49 to 0.74. CONCLUSIONS--The GALS screen is a reliable and valid measure of functional ability, compared with standard accepted indices in a variety of musculoskeletal diseases. This supports the proposal for its use as a screening test by general practitioners and medical students. PMID:8311541

  17. Evidence for a Role of Orexin/Hypocretin System in Vestibular Lesion-Induced Locomotor Abnormalities in Rats

    PubMed Central

    Pan, Leilei; Qi, Ruirui; Wang, Junqin; Zhou, Wei; Liu, Jiluo; Cai, Yiling

    2016-01-01

    Vestibular damage can induce locomotor abnormalities in both animals and humans. Rodents with bilateral vestibular loss showed vestibular deficits syndrome such as circling, opisthotonus as well as locomotor and exploratory hyperactivity. Previous studies have investigated the changes in the dopamine system after vestibular loss, but the results are inconsistent and inconclusive. Numerous evidences indicate that the orexin system is implicated in central motor control. We hypothesized that orexin may be potentially involved in vestibular loss-induced motor disorders. In this study, we examined the effects of arsanilate- or 3,3′-iminodipropionitrile (IDPN)-induced vestibular lesion (AVL or IVL) on the orexin-A (OXA) labeling in rat hypothalamus using immunohistochemistry. The vestibular lesion-induced locomotor abnormalities were recorded and verified using a histamine H4 receptor antagonist JNJ7777120 (20 mg/kg, i.p.). The effects of the orexin receptor type 1 antagonist SB334867 (16 μg, i.c.v.) on these behavior responses were also investigated. At 72 h post-AVL and IVL, animals exhibited vestibular deficit syndrome and locomotor hyperactivity in the home cages. These responses were significantly alleviated by JNJ7777120 which also eliminated AVL-induced increases in exploratory behavior in an open field. The numbers of OXA-labeled neurons in the hypothalamus were significantly increased in the AVL animals at 72 h post-AVL and in the IVL animals at 24, 48, and 72 h post-IVL. SB334867 significantly attenuated the vestibular deficit syndrome and locomotor hyperactivity at 72 h post-AVL and IVL. It also decreased exploratory behavior in the AVL animals. These results suggested that the alteration of OXA expression might contribute to locomotor abnormalities after acute vestibular lesion. The orexin receptors might be the potential therapeutic targets for vestibular disorders. PMID:27507932

  18. Evidence for a Role of Orexin/Hypocretin System in Vestibular Lesion-Induced Locomotor Abnormalities in Rats.

    PubMed

    Pan, Leilei; Qi, Ruirui; Wang, Junqin; Zhou, Wei; Liu, Jiluo; Cai, Yiling

    2016-01-01

    Vestibular damage can induce locomotor abnormalities in both animals and humans. Rodents with bilateral vestibular loss showed vestibular deficits syndrome such as circling, opisthotonus as well as locomotor and exploratory hyperactivity. Previous studies have investigated the changes in the dopamine system after vestibular loss, but the results are inconsistent and inconclusive. Numerous evidences indicate that the orexin system is implicated in central motor control. We hypothesized that orexin may be potentially involved in vestibular loss-induced motor disorders. In this study, we examined the effects of arsanilate- or 3,3'-iminodipropionitrile (IDPN)-induced vestibular lesion (AVL or IVL) on the orexin-A (OXA) labeling in rat hypothalamus using immunohistochemistry. The vestibular lesion-induced locomotor abnormalities were recorded and verified using a histamine H4 receptor antagonist JNJ7777120 (20 mg/kg, i.p.). The effects of the orexin receptor type 1 antagonist SB334867 (16 μg, i.c.v.) on these behavior responses were also investigated. At 72 h post-AVL and IVL, animals exhibited vestibular deficit syndrome and locomotor hyperactivity in the home cages. These responses were significantly alleviated by JNJ7777120 which also eliminated AVL-induced increases in exploratory behavior in an open field. The numbers of OXA-labeled neurons in the hypothalamus were significantly increased in the AVL animals at 72 h post-AVL and in the IVL animals at 24, 48, and 72 h post-IVL. SB334867 significantly attenuated the vestibular deficit syndrome and locomotor hyperactivity at 72 h post-AVL and IVL. It also decreased exploratory behavior in the AVL animals. These results suggested that the alteration of OXA expression might contribute to locomotor abnormalities after acute vestibular lesion. The orexin receptors might be the potential therapeutic targets for vestibular disorders. PMID:27507932

  19. Effects of culturally adapted parent management training on Latino youth behavioral health outcomes.

    PubMed

    Martinez, Charles R; Eddy, J Mark

    2005-10-01

    A randomized experimental test of the implementation feasibility and the efficacy of a culturally adapted Parent Management Training intervention was conducted with a sample of 73 Spanish-speaking Latino parents with middle-school-aged youth at risk for problem behaviors. Intervention feasibility was evaluated through weekly parent satisfaction ratings, intervention participation and attendance, and overall program satisfaction. Intervention effects were evaluated by examining changes in parenting and youth adjustment for the intervention and control groups between baseline and intervention termination approximately 5 months later. Findings provided strong evidence for the feasibility of delivering the intervention in a larger community context. The intervention produced benefits in both parenting outcomes (i.e., general parenting, skill encouragement, overall effective parenting) and youth outcomes (i.e., aggression, externalizing, likelihood of smoking and use of alcohol, marijuana, and other drugs). Differential effects of the intervention were based on youth nativity status. PMID:16287384

  20. Early Nonparental Care and Social Behavior in Elementary School: Support for a Social Group Adaptation Hypothesis.

    PubMed

    Pingault, Jean-Baptiste; Tremblay, Richard E; Vitaro, Frank; Japel, Christa; Boivin, Michel; Côté, Sylvana M

    2015-01-01

    This study examined the contribution of nonparental child-care services received during the preschool years to the development of social behavior between kindergarten and the end of elementary school with a birth cohort from Québec, Canada (N = 1,544). Mothers reported on the use of child-care services, while elementary school teachers rated children's shyness, social withdrawal, prosociality, opposition, and aggression. Children who received nonparental child-care services were less shy, less socially withdrawn, more oppositional, and more aggressive at school entry (age 6 years). However, these differences disappeared during elementary school as children who received exclusive parental care caught up with those who received nonparental care services. This "catch-up" effect from the perspective of children's adaptation to the social group is discussed. PMID:26358177

  1. Comparative Cost Analysis of Sequential, Adaptive, Behavioral, Pharmacological, and Combined Treatments for Childhood ADHD.

    PubMed

    Page, Timothy F; Pelham, William E; Fabiano, Gregory A; Greiner, Andrew R; Gnagy, Elizabeth M; Hart, Katie C; Coxe, Stefany; Waxmonsky, James G; Foster, E Michael; Pelham, William E

    2016-01-01

    We conducted a cost analysis of the behavioral, pharmacological, and combined interventions employed in a sequential, multiple assignment, randomized, and adaptive trial investigating the sequencing and enhancement of treatment for children with attention deficit hyperactivity disorder (ADHD; Pelham et al., 201X; N = 146, 76% male, 80% Caucasian). The quantity of resources expended on each child's treatment was determined from records that listed the type, date, location, persons present, and duration of all services provided. The inputs considered were the amount of physician time, clinician time, paraprofessional time, teacher time, parent time, medication, and gasoline. Quantities of these inputs were converted into costs in 2013 USD using national wage estimates from the Bureau of Labor Statistics, the prices of 30-day supplies of prescription drugs from the national Express Scripts service, and mean fuel prices from the Energy Information Administration. Beginning treatment with a low-dose/intensity regimen of behavior modification (large-group parent training) was less costly for a school year of treatment ($961) than beginning treatment with a low dose of stimulant medication ($1,669), regardless of whether the initial treatment was intensified with a higher "dose" or if the other modality was added. Outcome data from the parent study (Pelham et al., 201X) found equivalent or superior outcomes for treatments beginning with low-intensity behavior modification compared to intervention beginning with medication. Combined with the present analyses, these findings suggest that initiating treatment with behavior modification rather than medication is the more cost-effective option for children with ADHD. PMID:26808137

  2. Behavioral buffering of global warming in a cold-adapted lizard.

    PubMed

    Ortega, Zaida; Mencía, Abraham; Pérez-Mellado, Valentín

    2016-07-01

    Alpine lizards living in restricted areas might be particularly sensitive to climate change. We studied thermal biology of Iberolacerta cyreni in high mountains of central Spain. Our results suggest that I. cyreni is a cold-adapted thermal specialist and an effective thermoregulator. Among ectotherms, thermal specialists are more threatened by global warming than generalists. Alpine lizards have no chance to disperse to new suitable habitats. In addition, physiological plasticity is unlikely to keep pace with the expected rates of environmental warming. Thus, lizards might rely on their behavior in order to deal with ongoing climate warming. Plasticity of thermoregulatory behavior has been proposed to buffer the rise of environmental temperatures. Therefore, we studied the change in body and environmental temperatures, as well as their relationships, for I. cyreni between the 1980s and 2012. Air temperatures have increased more than 3.5°C and substrate temperatures have increased by 6°C in the habitat of I. cyreni over the last 25 years. However, body temperatures of lizards have increased less than 2°C in the same period, and the linear relationship between body and environmental temperatures remains similar. These results show that alpine lizards are buffering the potential impact of the increase in their environmental temperatures, most probably by means of their behavior. Body temperatures of I. cyreni are still cold enough to avoid any drop in fitness. Nonetheless, if warming continues, behavioral buffering might eventually become useless, as it would imply spending too much time in shelter, losing feeding, and mating opportunities. Eventually, if body temperature exceeds the thermal optimum in the near future, fitness would decrease abruptly. PMID:27386098

  3. Culturally Adapted Cognitive Behavioral Therapy for Depressed Chinese Americans: A Randomized Controlled Trial

    PubMed Central

    Hwang, Wei-Chin; Myers, Hector; Chiu, Eddie; Mak, Elsie; Butner, Jonathan; Fujimoto, Ken; Wood, Jeff; Miranda, Jeanne

    2015-01-01

    Objective No randomized controlled trials (RCTs) for adults have tested the effectiveness of a well-specified psychotherapy compared with a culturally adapted version of the same treatment. This study evaluates the effectiveness of cognitive behavioral therapy (CBT) and culturally adapted CBT (CA-CBT) in treating depressed Chinese American adults. Methods This was a RCT that treated 50 Chinese Americans who met criteria for major depression and sought treatment at community mental health clinics. Participants were screened beginning September 2008, with the last assessment conducted in March 2011. Participants were randomly assigned to 12 sessions of CBT or CA-CBT. Stratified randomization was used for patients who were on and not on antidepressants when they first came to the clinic, and the study did not influence regular prescription practices. The primary outcomes were dropout rates and the Hamilton Depression Rating Scale measured at baseline, session 4, session 8, and session 12. Results Participants in CA-CBT evidenced a greater overall decrease in depressive symptoms than those in CBT, but depression rates remained similarly high at week 12. Differences in dropout rates approached, but did not meet statistical significance (7% CA-CBT and 26% CBT). Conclusions Chinese Americans entered this study with very severe depression. Participants in both CBT and CA-CBT evidenced significant decreases in depressive symptoms, but the majority did not reach remission. Results suggest that these short-term treatments were not sufficient to address such severe depression and that more intensive and longer treatments may be needed. Results also indicate that cultural adaptations may confer additional treatment benefits. PMID:26129996

  4. Neuromusculoskeletal models based on the muscle synergy hypothesis for the investigation of adaptive motor control in locomotion via sensory-motor coordination.

    PubMed

    Aoi, Shinya; Funato, Tetsuro

    2016-03-01

    Humans and animals walk adaptively in diverse situations by skillfully manipulating their complicated and redundant musculoskeletal systems. From an analysis of measured electromyographic (EMG) data, it appears that despite complicated spatiotemporal properties, muscle activation patterns can be explained by a low dimensional spatiotemporal structure. More specifically, they can be accounted for by the combination of a small number of basic activation patterns. The basic patterns and distribution weights indicate temporal and spatial structures, respectively, and the weights show the muscle sets that are activated synchronously. In addition, various locomotor behaviors have similar low dimensional structures and major differences appear in the basic patterns. These analysis results suggest that neural systems use muscle group combinations to solve motor control redundancy problems (muscle synergy hypothesis) and manipulate those basic patterns to create various locomotor functions. However, it remains unclear how the neural system controls such muscle groups and basic patterns through neuromechanical interactions in order to achieve adaptive locomotor behavior. This paper reviews simulation studies that explored adaptive motor control in locomotion via sensory-motor coordination using neuromusculoskeletal models based on the muscle synergy hypothesis. Herein, the neural mechanism in motor control related to the muscle synergy for adaptive locomotion and a potential muscle synergy analysis method including neuromusculoskeletal modeling for motor impairments and rehabilitation are discussed. PMID:26616311

  5. The reliability and validity of the Test of Adaptive Behavior in Schizophrenia (TABS).

    PubMed

    Velligan, Dawn I; Diamond, Pamela; Glahn, David C; Ritch, Janice; Maples, Natalie; Castillo, Desiree; Miller, Alexander L

    2007-05-30

    Performance-based tests of functional capacity are important to utilize in schizophrenia where global measures may underestimate community functioning in the context of impoverished environments and disincentives to return to work. The Test of Adaptive Behavior in Schizophrenia (TABS) is a performance-based measure of adaptive functioning designed to address limitations of other available measures including limited assessment of the ability to initiate and of the ability to identify problems that occur in the course of performing functional activities. The TABS and a variety of symptom, functional outcome, and cognitive measures were administered to 264 outpatients with schizophrenia/schizoaffective disorders at an initial assessment. At 3 months, 110 subjects received a follow-up assessment. Results indicated that the TABS had very good test-retest reliability (0.80) and inter-item consistency (0.84). Moreover, TABS scores were moderately to strongly correlated with other measures of functional outcome, negative symptoms and neuropsychological test scores (convergent validity). Measures of positive symptoms were not found to be related to TABS performance (discriminate validity). The data provide preliminary evidence for the reliability and validity of the TABS. Further studies of the psychometric properties of the TABS including those examining the sensitivity of the TABS to treatments with different pharmacological agents or psychosocial treatments are encouraged. PMID:17379319

  6. Cognitive Adaptations for n-person Exchange: The Evolutionary Roots of Organizational Behavior

    PubMed Central

    Tooby, John; Cosmides, Leda; Price, Michael E.

    2013-01-01

    Organizations are composed of stable, predominantly cooperative interactions or n-person exchanges. Humans have been engaging in n-person exchanges for a great enough period of evolutionary time that we appear to have evolved a distinct constellation of species-typical mechanisms specialized to solve the adaptive problems posed by this form of social interaction. These mechanisms appear to have been evolutionarily elaborated out of the cognitive infrastructure that initially evolved for dyadic exchange. Key adaptive problems that these mechanisms are designed to solve include coordination among individuals, and defense against exploitation by free riders. Multi-individual cooperation could not have been maintained over evolutionary time if free riders reliably benefited more than contributors to collective enterprises, and so outcompeted them. As a result, humans evolved mechanisms that implement an aversion to exploitation by free riding, and a strategy of conditional cooperation, supplemented by punitive sentiment towards free riders. Because of the design of these mechanisms, how free riding is treated is a central determinant of the survival and health of cooperative organizations. The mapping of the evolved psychology of n-party exchange cooperation may contribute to the construction of a principled theoretical foundation for the understanding of human behavior in organizations. PMID:23814325

  7. Antenatal Glucocorticoid Treatment Induces Adaptations in Adult Midbrain Dopamine Neurons, which Underpin Sexually Dimorphic Behavioral Resilience

    PubMed Central

    Virdee, Kanwar; McArthur, Simon; Brischoux, Frédéric; Caprioli, Daniele; Ungless, Mark A; Robbins, Trevor W; Dalley, Jeffrey W; Gillies, Glenda E

    2014-01-01

    We demonstrated previously that antenatal glucocorticoid treatment (AGT, gestational days 16–19) altered the size and organization of the adult rat midbrain dopaminergic (DA) populations. Here we investigated the consequences of these AGT-induced cytoarchitectural disturbances on indices of DA function in adult rats. We show that in adulthood, enrichment of striatal DA fiber density paralleled AGT-induced increases in the numbers of midbrain DA neurons, which retained normal basal electrophysiological properties. This was co-incident with changes in (i) striatal D2-type receptor levels (increased, both sexes); (ii) D1-type receptor levels (males decreased; females increased); (iii) DA transporter levels (males increased; females decreased) in striatal regions; and (iv) amphetamine-induced mesolimbic DA release (males increased; females decreased). However, despite these profound, sexually dimorphic changes in markers of DA neurotransmission, in-utero glucocorticoid overexposure had a modest or no effect on a range of conditioned and unconditioned appetitive behaviors known to depend on mesolimbic DA activity. These findings provide empirical evidence for enduring AGT-induced adaptive mechanisms within the midbrain DA circuitry, which preserve some, but not all, functions, thereby casting further light on the vulnerability of these systems to environmental perturbations. Furthermore, they demonstrate these effects are achieved by different, often opponent, adaptive mechanisms in males and females, with translational implications for sex biases commonly found in midbrain DA-associated disorders. PMID:23929547

  8. Children with Williams syndrome: Developmental trajectories for intellectual abilities, vocabulary abilities, and adaptive behavior.

    PubMed

    Mervis, Carolyn B; Pitts, C Holley

    2015-06-01

    To examine longitudinal trajectories of intellectual abilities, single-word vocabulary abilities, and adaptive behavior for 76 children with Williams syndrome (WS) aged 4-15 years, we compared their standard scores (SSs) at two time points approximately 3 years apart on the same standardized measures. At the group level, mean SS declined significantly for 8 of the 12 measures and showed a slight (nonsignificant) increase or decrease for 4 measures. However, for most measures significant changes in SS were found for only a small proportion of the children, with some children evidencing significant declines and a smaller proportion evidencing significant increases. Significant SS changes were most common for adaptive behavior. For all measures, the mean magnitude of SS change was smaller for older children (>7.5 years at Time 1) than for younger children (<7.5 years at Time 1). Furthermore, correlations between Time 1 and Time 2 SSs were larger for the older cohort than for the younger cohort, indicating that SS stability was greater for older children than for younger children. Although mean SSs declined for most measures, indicating that children with WS as a group were not making the expected amount of progress relative to their general population peers who earned the same SS at Time 1, there was little evidence either of regression (loss of skills) or stagnation (failure to increase raw scores). The relations of these results to those of previous smaller-sample longitudinal studies of children with WS and the implications of the findings are considered. PMID:25989316

  9. Numerical Relations and Skill Level Constrain Co-Adaptive Behaviors of Agents in Sports Teams

    PubMed Central

    Silva, Pedro; Travassos, Bruno; Vilar, Luís; Aguiar, Paulo; Davids, Keith; Araújo, Duarte; Garganta, Júlio

    2014-01-01

    Similar to other complex systems in nature (e.g., a hunting pack, flocks of birds), sports teams have been modeled as social neurobiological systems in which interpersonal coordination tendencies of agents underpin team swarming behaviors. Swarming is seen as the result of agent co-adaptation to ecological constraints of performance environments by collectively perceiving specific possibilities for action (affordances for self and shared affordances). A major principle of invasion team sports assumed to promote effective performance is to outnumber the opposition (creation of numerical overloads) during different performance phases (attack and defense) in spatial regions adjacent to the ball. Such performance principles are assimilated by system agents through manipulation of numerical relations between teams during training in order to create artificially asymmetrical performance contexts to simulate overloaded and underloaded situations. Here we evaluated effects of different numerical relations differentiated by agent skill level, examining emergent inter-individual, intra- and inter-team coordination. Groups of association football players (national – NLP and regional-level – RLP) participated in small-sided and conditioned games in which numerical relations between system agents were manipulated (5v5, 5v4 and 5v3). Typical grouping tendencies in sports teams (major ranges, stretch indices, distances of team centers to goals and distances between the teams' opposing line-forces in specific team sectors) were recorded by plotting positional coordinates of individual agents through continuous GPS tracking. Results showed that creation of numerical asymmetries during training constrained agents' individual dominant regions, the underloaded teams' compactness and each team's relative position on-field, as well as distances between specific team sectors. We also observed how skill level impacted individual and team coordination tendencies. Data revealed

  10. Numerical relations and skill level constrain co-adaptive behaviors of agents in sports teams.

    PubMed

    Silva, Pedro; Travassos, Bruno; Vilar, Luís; Aguiar, Paulo; Davids, Keith; Araújo, Duarte; Garganta, Júlio

    2014-01-01

    Similar to other complex systems in nature (e.g., a hunting pack, flocks of birds), sports teams have been modeled as social neurobiological systems in which interpersonal coordination tendencies of agents underpin team swarming behaviors. Swarming is seen as the result of agent co-adaptation to ecological constraints of performance environments by collectively perceiving specific possibilities for action (affordances for self and shared affordances). A major principle of invasion team sports assumed to promote effective performance is to outnumber the opposition (creation of numerical overloads) during different performance phases (attack and defense) in spatial regions adjacent to the ball. Such performance principles are assimilated by system agents through manipulation of numerical relations between teams during training in order to create artificially asymmetrical performance contexts to simulate overloaded and underloaded situations. Here we evaluated effects of different numerical relations differentiated by agent skill level, examining emergent inter-individual, intra- and inter-team coordination. Groups of association football players (national--NLP and regional-level--RLP) participated in small-sided and conditioned games in which numerical relations between system agents were manipulated (5v5, 5v4 and 5v3). Typical grouping tendencies in sports teams (major ranges, stretch indices, distances of team centers to goals and distances between the teams' opposing line-forces in specific team sectors) were recorded by plotting positional coordinates of individual agents through continuous GPS tracking. Results showed that creation of numerical asymmetries during training constrained agents' individual dominant regions, the underloaded teams' compactness and each team's relative position on-field, as well as distances between specific team sectors. We also observed how skill level impacted individual and team coordination tendencies. Data revealed emergence of

  11. Children with Williams Syndrome: Developmental Trajectories for Intellectual Abilities, Vocabulary Abilities, and Adaptive Behavior

    PubMed Central

    Mervis, Carolyn B.; Pitts, C. Holley

    2016-01-01

    To examine longitudinal trajectories of intellectual abilities, single-word vocabulary abilities, and adaptive behavior for 76 children with Williams syndrome (WS) aged 4 – 15 years, we compared their standard scores (SSs) at two time points approximately 3 years apart on the same standardized measures. At the group level, mean SS declined significantly for 8 of the 12 measures and showed a slight (nonsignificant) increase or decrease for 4 measures. However, for most measures significant changes in SS were found for only a small proportion of the children, with some children evidencing significant declines and a smaller proportion evidencing significant increases. Significant SS changes were most common for adaptive behavior. For all measures, the mean magnitude of SS change was smaller for older children (> 7.5 years at Time 1) than for younger children (< 7.5 years at Time 1). Furthermore, correlations between Time 1 and Time 2 SSs were larger for the older cohort than for the younger cohort, indicating that SS stability was greater for older children than for younger children. Although mean SSs declined for most measures, indicating that children with WS as a group were not making the expected amount of progress relative to their general population peers who earned the same SS at Time 1, there was little evidence either of regression (loss of skills) or stagnation (failure to increase raw scores). The relations of these results to those of previous smaller-sample longitudinal studies of children with WS and the implications of the findings are considered. PMID:25989316

  12. Executive Function Predicts Adaptive Behavior in Children with Histories of Heavy Prenatal Alcohol Exposure and Attention Deficit/Hyperactivity Disorder

    PubMed Central

    Ware, Ashley L.; Crocker, Nicole; O’Brien, Jessica W.; Deweese, Benjamin N.; Roesch, Scott C.; Coles, Claire D.; Kable, Julie A.; May, Philip A.; Kalberg, Wendy O.; Sowell, Elizabeth R.; Jones, Kenneth Lyons; Riley, Edward P.; Mattson, Sarah N.

    2011-01-01

    Purpose of Study Prenatal exposure to alcohol often results in disruption to discrete cognitive and behavioral domains, including executive function (EF) and adaptive functioning. In the current study, the relation between these two domains was examined in children with histories of heavy prenatal alcohol exposure, non-exposed children with a diagnosis of attention-deficit/hyperactivity disorder (ADHD), and typically developing controls. Methods As part of a multisite study, three groups of children (8-18y, M = 12.10) were tested: children with histories of heavy prenatal alcohol exposure (ALC, N=142), non-exposed children with ADHD (ADHD, N=82), and typically developing controls (CON, N=133) who did not have ADHD or a history of prenatal alcohol exposure. Children completed subtests of the Delis-Kaplan Executive Function System (D-KEFS) and their primary caregivers completed the Vineland Adaptive Behavior Scales-II (VABS). Data were analyzed using regression analyses. Results Analyses showed that EF measures were predictive of adaptive abilities and significant interactions between D-KEFS measures and group were present. For the ADHD group, the relation between adaptive abilities and EF was more general, with three of the four EF measures showing a significant relation with adaptive score. In contrast, for the ALC group, this relation was specific to the nonverbal EF measures. In the CON group, performance on EF tasks did not predict adaptive scores over the influence of age. Conclusion These results support prior research in ADHD suggesting that EF deficits are predictive of poorer adaptive behavior and extend this finding to include children with heavy prenatal exposure to alcohol. However, the relation between EF and adaptive ability differed by group, suggesting unique patterns of abilities in these children. These results provide enhanced understanding of adaptive deficits in these populations, as well as demonstrate the ecological validity of laboratory

  13. Locomotor Behaviour of Blattella germanica Modified by DEET

    PubMed Central

    Sfara, Valeria; Mougabure-Cueto, Gastón A.; Zerba, Eduardo N.; Alzogaray, Raúl A.

    2013-01-01

    N,N-diethyl-3-methylbenzamide (DEET) is the active principle of most insect repellents used worldwide. However, its toxicity on insects has not been widely studied. The aim of this work is to study the effects of DEET on the locomotor activity of Blattella germanica. DEET has a dose-dependent repellent activity on B. germanica. Locomotor activity was significantly lower when insects were pre-exposed to 700 µg/cm2 of DEET for 20 or 30 minutes, but it did not change when pre-exposure was shorter. Locomotor activity of insects that were pre-exposed to 2.000 µg/cm2 of DEET for 10 minutes was significantly lower than the movement registered in controls. No differences were observed when insects were pre-exposed to lower concentrations of DEET. A 30-minute pre-exposure to 700 µg/cm2 of DEET caused a significant decrease in locomotor activity. Movement was totally recovered 24 h later. The locomotor activity measured during the exposure to different concentrations of DEET remained unchanged. Insects with decreased locomotor activity were repelled to the same extent than control insects by the same concentration of DEET. We demonstrated that the repellency and modification of locomotor activity elicited by DEET are non-associated phenomena. We also suggested that the reduction in locomotor activity indicates toxicity of DEET, probably to insect nervous system. PMID:24376701

  14. Locomotor behaviour of Blattella germanica modified by DEET.

    PubMed

    Sfara, Valeria; Mougabure-Cueto, Gastón A; Zerba, Eduardo N; Alzogaray, Raúl A

    2013-01-01

    N,N-diethyl-3-methylbenzamide (DEET) is the active principle of most insect repellents used worldwide. However, its toxicity on insects has not been widely studied. The aim of this work is to study the effects of DEET on the locomotor activity of Blattella germanica. DEET has a dose-dependent repellent activity on B. germanica. Locomotor activity was significantly lower when insects were pre-exposed to 700 µg/cm(2) of DEET for 20 or 30 minutes, but it did not change when pre-exposure was shorter. Locomotor activity of insects that were pre-exposed to 2.000 µg/cm(2) of DEET for 10 minutes was significantly lower than the movement registered in controls. No differences were observed when insects were pre-exposed to lower concentrations of DEET. A 30-minute pre-exposure to 700 µg/cm(2) of DEET caused a significant decrease in locomotor activity. Movement was totally recovered 24 h later. The locomotor activity measured during the exposure to different concentrations of DEET remained unchanged. Insects with decreased locomotor activity were repelled to the same extent than control insects by the same concentration of DEET. We demonstrated that the repellency and modification of locomotor activity elicited by DEET are non-associated phenomena. We also suggested that the reduction in locomotor activity indicates toxicity of DEET, probably to insect nervous system. PMID:24376701

  15. The effects of inhaled isoparaffins on locomotor activity and operant performance in mice.

    PubMed

    Bowen, S E; Balster, R L

    1998-11-01

    Very little is known qualitatively or quantitatively about the acute central nervous system effects of isoparaffin solvents that are widely used in household and commercial applications. Four isoparaffinic hydrocarbon solvent products differing in predominant carbon number and volatility (ISOPAR-C, -E -G, -H) were tested for their acute effects on locomotor activity and operant performance after inhalation exposure in mice. For both measures, concentration-effect curves were obtained for 30-min exposures using a within-subject design. The more volatile products, ISOPAR-C and -E, were as easily vaporized under our conditions as vapors such as toluene and TCE, which have acute effects on human behavior and are abused. ISOPAR-G was slowly volatilized and ISOPAR-H could not be completely volatilized within our 30-min exposures, suggesting that acute human exposures may be less likely and that it may be more difficult to abuse them. ISOPAR-C, -E, and -G produced reversible increases in locomotor activity of mice at 4000 and 6000 ppm while ISOPAR-C and -E produced reversible concentration-dependent decreases in rates of schedule-controlled operant behavior in approximately the same concentration range as they affected locomotor activity. The fact that only locomotor activity increases were observed with these isoparaffins provides evidence that they produce a different pattern of effects than those reported for abused solvents such as toluene and TCE. Further research will be needed to determine if this different pattern of effects on animal behavior between isoparaffins and abused solvents is correlated with a different pattern of acute intoxication and abuse potential in humans. PMID:9768561

  16. Comparative locomotor ecology of gibbons and macaques: selection of canopy elements for crossing gaps.

    PubMed

    Cannon, C H; Leighton, M

    1994-04-01

    To examine functional questions of arboreal locomotor ecology, the selection of canopy elements by Bornean agile gibbons (Hylobates agilis) and long-tailed macaques (Macaca fascicularis) was contrasted, and related to locomotor behaviors. The two species, and in some cases, the macaque sexes, varied in their use of most structural elements. Although both species traveled most frequently in the main canopy layer (macaques: 56%, gibbons: 48%), the gibbons strongly preferred the emergent canopy layer and traveled higher than the macaques (31 vs. 23 m above ground) in larger trees (48 vs. 26 cm dbh). Macaques preferred to cross narrower gaps (50% were in the class 0.1-0.5 m wide) than gibbons (42% were 1.6-3.0 m wide), consistent with the maximum gap width each crossed (3.5 m for macaques, 9 m for gibbons). Macaques could cross only 12% of the gaps encountered in the main canopy, and < 5% of the gaps in each of the other four layers. In contrast, all layers appear relatively continuous for gibbons. Specialized locomotor modes were used disproportionately at the beginning and end of travel segments, further indicating that behavior was organized around gap crossings. A model is defined, the Perceived Continuity Index (PCI), which predicts the relative use of canopy strata for each species, based on the percentage of gaps a species can cross, the frequency of gaps, and median length of continuous canopy structure in each canopy layer. The results support the hypothesis that locomotor behaviors, and strategies of selecting canopy strata for travel, are strongly constrained by wide gaps between trees and are ultimately based on selection for efficient direct line travel between distant points. PMID:8048471

  17. Effect of caffeine on cocaine locomotor stimulant activity in rats.

    PubMed

    Misra, A L; Vadlamani, N L; Pontani, R B

    1986-03-01

    The effect of caffeine on the locomotor stimulant activity induced by intravenous cocaine in rats was investigated. Low doses of caffeine (20 mg/kg IP) potentiated the locomotor activity induced by 1, 2.5 mg/kg intravenous doses of cocaine and higher doses of caffeine (50, 100 mg/kg IP) had no significant effect. The locomotor stimulant effect of 20 mg/kg IP dose of caffeine per se in vehicle was significantly higher and that with 100 mg/kg dose significantly lower than that of the vehicle control. Thus caffeine produced dose-dependent effects on cocaine-induced locomotor stimulant activity, with low dose potentiating and higher doses having no significant effect on such activity. Pharmacokinetic or dispositional factors did not appear to play a role in potentiation of cocaine locomotor stimulant activity by caffeine. PMID:3703910

  18. Effects of 3-O-methyldopa, L-3,4-dihydroxyphenylalanine metabolite, on locomotor activity and dopamine turnover in rats.

    PubMed

    Onzawa, Yoritaka; Kimura, Yasuhiro; Uzuhashi, Kengo; Shirasuna, Megumi; Hirosawa, Tasuku; Taogoshi, Takanori; Kihira, Kenji

    2012-01-01

    It has been well known that 3-O-methyldopa (3-OMD) is a metabolite of L-3,4-dihydroxyphenylalanine (L-DOPA) formed by catechol O-methyltransferase (COMT), and 3-OMD blood level often reaches higher than physiological level in Parkinson's disease (PD) patients receiving long term L-DOPA therapy. However, the physiological role of 3-OMD has not been well understood. Therefore, in order to clarify the effects of 3-OMD on physiological function, we examined the behavioral alteration in rats based on locomotor activity, and measured dopamine (DA) and its metabolites levels in rats at the same time after 3-OMD subchronic administration. The study results showed that repeated administrations of 3-OMD increased its blood and the striatum tissue levels in those rats, and decreased locomotor activity in a dose dependent manner. Although 3-OMD subchronic administration showed no significant change in DA level in the striatum, DA metabolite levels, such as 3,4-dihydroxyphenylacetic acid (DOPAC), 3-methoxytyramine (3-MT), and homovanillic acid (HVA) were significantly decreased. After 3-OMD washout period (7 d), locomotor activity and DA turnover in those rats returned to normal levels. Furthermore, locomotor activity and DA turnover decreased by 3-OMD administration were recovered to normal level by acute L-DOPA administration. These results suggested that 3-OMD affect to locomotor activity via DA neuron system. In conclusion, 3-OMD itself may have a disadvantage in PD patients receiving L-DOPA therapy. PMID:22863920

  19. Multi-optimization Criteria-based Robot Behavioral Adaptability and Motion Planning

    SciTech Connect

    Pin, Francois G.

    2002-06-01

    Robotic tasks are typically defined in Task Space (e.g., the 3-D World), whereas robots are controlled in Joint Space (motors). The transformation from Task Space to Joint Space must consider the task objectives (e.g., high precision, strength optimization, torque optimization), the task constraints (e.g., obstacles, joint limits, non-holonomic constraints, contact or tool task constraints), and the robot kinematics configuration (e.g., tools, type of joints, mobile platform, manipulator, modular additions, locked joints). Commercially available robots are optimized for a specific set of tasks, objectives and constraints and, therefore, their control codes are extremely specific to a particular set of conditions. Thus, there exist a multiplicity of codes, each handling a particular set of conditions, but none suitable for use on robots with widely varying tasks, objectives, constraints, or environments. On the other hand, most DOE missions and tasks are typically ''batches of one''. Attempting to use commercial codes for such work requires significant personnel and schedule costs for re-programming or adding code to the robots whenever a change in task objective, robot configuration, number and type of constraint, etc. occurs. The objective of our project is to develop a ''generic code'' to implement this Task-space to Joint-Space transformation that would allow robot behavior adaptation, in real time (at loop rate), to changes in task objectives, number and type of constraints, modes of controls, kinematics configuration (e.g., new tools, added module). Our specific goal is to develop a single code for the general solution of under-specified systems of algebraic equations that is suitable for solving the inverse kinematics of robots, is useable for all types of robots (mobile robots, manipulators, mobile manipulators, etc.) with no limitation on the number of joints and the number of controlled Task-Space variables, can adapt to real time changes in number and

  20. Spontaneous Neuronal Network Dynamics Reveal Circuit’s Functional Adaptations for Behavior

    PubMed Central

    Romano, Sebastián A.; Pietri, Thomas; Pérez-Schuster, Verónica; Jouary, Adrien; Haudrechy, Mathieu; Sumbre, Germán

    2015-01-01

    Summary Spontaneous neuronal activity is spatiotemporally structured, influencing brain computations. Nevertheless, the neuronal interactions underlying these spontaneous activity patterns, and their biological relevance, remain elusive. Here, we addressed these questions using two-photon calcium imaging of intact zebrafish larvae to monitor the neuron-to-neuron spontaneous activity fine structure in the tectum, a region involved in visual spatial detection. Spontaneous activity was organized in topographically compact assemblies, grouping functionally similar neurons rather than merely neighboring ones, reflecting the tectal retinotopic map despite being independent of retinal drive. Assemblies represent all-or-none-like sub-networks shaped by competitive dynamics, mechanisms advantageous for visual detection in noisy natural environments. Notably, assemblies were tuned to the same angular sizes and spatial positions as prey-detection performance in behavioral assays, and their spontaneous activation predicted directional tail movements. Therefore, structured spontaneous activity represents “preferred” network states, tuned to behaviorally relevant features, emerging from the circuit’s intrinsic non-linear dynamics, adapted for its functional role. PMID:25704948

  1. Sex-based differences in the adaptive value of social behavior contrasted against morphology and environment.

    PubMed

    Vander Wal, E; Festa-Bianchet, M; Réale, D; Coltman, D W; Pelletier, F

    2015-03-01

    The adaptive nature of sociality has long been a central question in ecology and evolution. However, the relative importance of social behavior for fitness, compared to morphology and environment, remains largely unknown. We assessed the importance of sociality for fitness (lamb production and survival) in a population of mark6d bighorn sheep (Ovis canadensis) over 16 years (n = 1022 sheep-years). We constructed social networks from observations (n = 38,350) of group membership (n = 3150 groups). We then tested whether consistent individual differences in social behavior (centrality) exist and evaluated their relative importance compared to factors known to affect fitness: mass, age, parental effects, and population density. Sheep exhibited consistent individual differences in social centrality. Controlling for maternal carryover effects and age, the positive effect of centrality in a social network on adult female lamb production and survival was equal or greater than the effect of body mass or population density. Social centrality had less effect on male survival and no effect on adult male lamb production or lamb survival. Through its effect on lamb production and survival, sociality in fission-fusion animal societies may ultimately influence population dynamics equally or more than morphological or environmental effects. PMID:26236860

  2. Stability of executive function and predictions to adaptive behavior from middle childhood to pre-adolescence

    PubMed Central

    Harms, Madeline B.; Zayas, Vivian; Meltzoff, Andrew N.; Carlson, Stephanie M.

    2014-01-01

    The shift from childhood to adolescence is characterized by rapid remodeling of the brain and increased risk-taking behaviors. Current theories hypothesize that developmental enhancements in sensitivity to affective environmental cues in adolescence may undermine executive function (EF) and increase the likelihood of problematic behaviors. In the current study, we examined the extent to which EF in childhood predicts EF in early adolescence. We also tested whether individual differences in neural responses to affective cues (rewards/punishments) in childhood serve as a biological marker for EF, sensation-seeking, academic performance, and social skills in early adolescence. At age 8, 84 children completed a gambling task while event-related potentials (ERPs) were recorded. We examined the extent to which selections resulting in rewards or losses in this task elicited (i) the P300, a post-stimulus waveform reflecting the allocation of attentional resources toward a stimulus, and (ii) the SPN, a pre-stimulus anticipatory waveform reflecting a neural representation of a “hunch” about an outcome that originates in insula and ventromedial PFC. Children also completed a Dimensional Change Card-Sort (DCCS) and Flanker task to measure EF. At age 12, 78 children repeated the DCCS and Flanker and completed a battery of questionnaires. Flanker and DCCS accuracy at age 8 predicted Flanker and DCCS performance at age 12, respectively. Individual differences in the magnitude of P300 (to losses vs. rewards) and SPN (preceding outcomes with a high probability of punishment) at age 8 predicted self-reported sensation seeking (lower) and teacher-rated academic performance (higher) at age 12. We suggest there is stability in EF from age 8 to 12, and that childhood neural sensitivity to reward and punishment predicts individual differences in sensation seeking and adaptive behaviors in children entering adolescence. PMID:24795680

  3. A Review: Development of a Microdose Model for Analysis of Adaptive Response and Bystander Dose Response Behavior

    PubMed Central

    Leonard, Bobby E.

    2008-01-01

    Prior work has provided incremental phases to a microdosimetry modeling program to describe the dose response behavior of the radio-protective adaptive response effect. We have here consolidated these prior works (Leonard 2000, 2005, 2007a, 2007b, 2007c) to provide a composite, comprehensive Microdose Model that is also herein modified to include the bystander effect. The nomenclature for the model is also standardized for the benefit of the experimental cellular radio-biologist. It extends the prior work to explicitly encompass separately the analysis of experimental data that is 1.) only dose dependent and reflecting only adaptive response radio-protection, 2.) both dose and dose-rate dependent data and reflecting only adaptive response radio-protection for spontaneous and challenge dose damage, 3.) only dose dependent data and reflecting both bystander deleterious damage and adaptive response radio-protection (AR-BE model). The Appendix cites the various applications of the model. Here we have used the Microdose Model to analyze the, much more human risk significant, Elmore et al (2006) data for the dose and dose rate influence on the adaptive response radio-protective behavior of HeLa x Skin cells for naturally occurring, spontaneous chromosome damage from a Brachytherapy type 125I photon radiation source. We have also applied the AR-BE Microdose Model to the Chromosome inversion data of Hooker et al (2004) reflecting both low LET bystander and adaptive response effects. The micro-beam facility data of Miller et al (1999), Nagasawa and Little (1999) and Zhou et al (2003) is also examined. For the Zhou et al (2003) data, we use the AR-BE model to estimate the threshold for adaptive response reduction of the bystander effect. The mammogram and diagnostic X-ray induction of AR and protective BE are observed. We show that bystander damage is reduced in the similar manner as spontaneous and challenge dose damage as shown by the Azzam et al (1996) data. We cite

  4. Locomotor Dysfunction after Long-duration Space Flight and Development of Countermeasures to Facilitate Faster Recovery

    NASA Astrophysics Data System (ADS)

    Mulavara, Ajitkumar; Wood, Scott; Cohen, Helen; Bloomberg, Jacob

    2012-07-01

    Exposure to the microgravity conditions of space flight induces adaptive modification in sensorimotor function allowing astronauts to operate in this unique environment. This adaptive state, however, is inappropriate for a 1-g environment. Consequently astronauts must spend time readapting to Earth's gravity following their return to Earth. During this readaptation period, alterations in sensorimotor function cause various disturbances in astronaut gait during postflight walking. They often rely more on vision for postural and gait stability and many report the need for greater cognitive supervision of motor actions that previous to space flight were fully automated. Over the last several years our laboratory has investigated postflight astronaut locomotion with the aim of better understanding how adaptive changes in underlying sensorimotor mechanisms contribute to postflight gait dysfunction. Exposure to the microgravity conditions of space flight induces adaptive modification in the control of vestibularly-mediated reflexive head movement during locomotion after space flight. Furthermore, during motor learning, adaptive transitions are composed of two main mechanisms: strategic and plastic. Strategic mechanisms represent immediate and transitory modifications in control to deal with changes in the prevailing environment that, if prolonged, induce plastic mechanisms designed to automate new behavioral responses. The goal of the present study was to examine the contributions of sensorimotor subsystems such as the vestibular and body load sensing (BLS) somatosensory influences on head movement control during locomotion after long-duration space flight. Further we present data on the two motor learning processes during readaptation of locomotor function after long-duration space flight. Eighteen astronauts performed two tests of locomotion before and after 6 months of space flight: a treadmill walking test to examine vestibular reflexive mechanisms controlling head

  5. Visuo-locomotor coordination for direction changes in a manual wheelchair as compared to biped locomotion in healthy subjects.

    PubMed

    Charette, Caroline; Routhier, François; McFadyen, Bradford J

    2015-02-19

    The visual system during walking provides travel path and environmental information. Although the manual wheelchair (MWC) is also a frequent mode of locomotion, its underlying visuo-locomotor control is not well understood. This study begins to understand the visuo-locomotor coordination for MWC navigation in relation to biped gait during direction changes in healthy subjects. Eight healthy male subjects (26.9±6.4 years) were asked to walk as well as to propel a MWC straight ahead and while changing direction by 45° to the right guided by a vertical pole. Body and MWC movement (speed, minimal clearance, point of deviation, temporal body coordination, relative timing of body rotations) and gaze behavior were analysed. There was a main speed effect for direction and a direction by mode interaction with slower speeds for MWC direction change. Point of deviation was later for MWC direction change and always involved a counter movement (seen for vehicular control) with greater minimal distance from the vertical pole as compared to biped gait. In straight ahead locomotion, subjects predominantly fixed their gaze on the end target for both locomotor modes while there was a clear trend for subjects to fixate on the vertical pole more for MWC direction change. When changing direction, head movement always preceded gaze changes, which was followed by trunk movement for both modes. Yet while subjects turned the trunk at the same time during approach regardless of locomotor mode, head movement was earlier for MWC locomotion. These results suggest that MWC navigation combines both biped locomotor and vehicular-based movement control. Head movement to anticipate path deviations and lead steering for locomotion appears to be stereotypic across locomotor modes, while specific gaze behavior predominantly depends on the environmental demands. PMID:25562632

  6. Dynamic Locomotor Capabilities Revealed by Early Dinosaur Trackmakers from Southern Africa

    PubMed Central

    Wilson, Jeffrey A.; Marsicano, Claudia A.; Smith, Roger M. H.

    2009-01-01

    Background A new investigation of the sedimentology and ichnology of the Early Jurassic Moyeni tracksite in Lesotho, southern Africa has yielded new insights into the behavior and locomotor dynamics of early dinosaurs. Methodology/Principal Findings The tracksite is an ancient point bar preserving a heterogeneous substrate of varied consistency and inclination that includes a ripple-marked riverbed, a bar slope, and a stable algal-matted bar top surface. Several basal ornithischian dinosaurs and a single theropod dinosaur crossed its surface within days or perhaps weeks of one another, but responded to substrate heterogeneity differently. Whereas the theropod trackmaker accommodated sloping and slippery surfaces by gripping the substrate with its pedal claws, the basal ornithischian trackmakers adjusted to the terrain by changing between quadrupedal and bipedal stance, wide and narrow gauge limb support (abduction range = 31°), and plantigrade and digitigrade foot posture. Conclusions/Significance The locomotor adjustments coincide with changes in substrate consistency along the trackway and appear to reflect ‘real time’ responses to a complex terrain. It is proposed that these responses foreshadow important locomotor transformations characterizing the later evolution of the two main dinosaur lineages. Ornithischians, which shifted from bipedal to quadrupedal posture at least three times in their evolutionary history, are shown to have been capable of adopting both postures early in their evolutionary history. The substrate-gripping behavior demonstrated by the early theropod, in turn, is consistent with the hypothesized function of pedal claws in bird ancestors. PMID:19806213

  7. Locomotor training improves reciprocal and nonreciprocal inhibitory control of soleus motoneurons in human spinal cord injury

    PubMed Central

    Smith, Andrew C.; Mummidisetty, Chaithanya K.

    2015-01-01

    Pathologic reorganization of spinal networks and activity-dependent plasticity are common neuronal adaptations after spinal cord injury (SCI) in humans. In this work, we examined changes of reciprocal Ia and nonreciprocal Ib inhibition after locomotor training in 16 people with chronic SCI. The soleus H-reflex depression following common peroneal nerve (CPN) and medial gastrocnemius (MG) nerve stimulation at short conditioning-test (C-T) intervals was assessed before and after training in the seated position and during stepping. The conditioned H reflexes were normalized to the unconditioned H reflex recorded during seated. During stepping, both H reflexes were normalized to the maximal M wave evoked at each bin of the step cycle. In the seated position, locomotor training replaced reciprocal facilitation with reciprocal inhibition in all subjects, and Ib facilitation was replaced by Ib inhibition in 13 out of 14 subjects. During stepping, reciprocal inhibition was decreased at early stance and increased at midswing in American Spinal Injury Association Impairment Scale C (AIS C) and was decreased at midstance and midswing phases in AIS D after training. Ib inhibition was decreased at early swing and increased at late swing in AIS C and was decreased at early stance phase in AIS D after training. The results of this study support that locomotor training alters postsynaptic actions of Ia and Ib inhibitory interneurons on soleus motoneurons at rest and during stepping and that such changes occur in cases with limited or absent supraspinal inputs. PMID:25609110

  8. Adaptive evolution of a derived radius morphology in manakins (Aves, Pipridae) to support acrobatic display behavior.

    PubMed

    Friscia, Anthony; Sanin, Gloria D; Lindsay, Willow R; Day, Lainy B; Schlinger, Barney A; Tan, Josh; Fuxjager, Matthew J

    2016-06-01

    The morphology of the avian skeleton is often studied in the context of adaptations for powered flight. The effects of other evolutionary forces, such as sexual selection, on avian skeletal design are unclear, even though birds produce diverse behaviors that undoubtedly require a variety of osteological modifications. Here, we investigate this issue in a family of passerine birds called manakins (Pipridae), which have evolved physically unusual and elaborate courtship displays. We report that, in species within the genus Manacus, the shaft of the radius is heavily flattened and shows substantial solidification. Past work anecdotally notes this morphology and attributes it to the species' ability to hit their wings together above their heads to produce loud mechanical sonations. Our results show that this feature is unique to Manacus compared to the other species in our study, including a variety of taxa that produce other sonations through alternate wing mechanisms. At the same time, our data reveal striking similarities across species in total radius volume and solidification. Together, this suggests that supposedly adaptive alterations in radial morphology occur within a conserved framework of a set radius volume and solidness, which in turn is likely determined by natural selection. Further allometric analyses imply that the radius is less constrained by body size and the structural demands that underlie powered flight, compared to other forelimb bones that are mostly unmodified across taxa. These results are consistent with the idea that the radius is more susceptible to selective modification by sexual selection. Overall, this study provides some of the first insight into the osteological evolution of passerine birds, as well as the way in which opposing selective forces can shape skeletal design in these species. J. Morphol. 277:766-775, 2016. © 2016 Wiley Periodicals, Inc. PMID:27027525

  9. Two Boys with Multiple Disabilities Increasing Adaptive Responding and Curbing Dystonic/Spastic Behavior via a Microswitch-Based Program

    ERIC Educational Resources Information Center

    Lancioni, Giulio E.; Singh, Nirbhay N.; O'Reilly, Mark F.; Sigafoos, Jeff; Didden, Robert; Oliva, Doretta

    2009-01-01

    A recent study has shown that microswitch clusters (i.e., combinations of microswitches) and contingent stimulation could be used to increase adaptive responding and reduce dystonic/spastic behavior in two children with multiple disabilities [Lancioni, G. E., Singh, N. N., Oliva, D., Scalini, L., & Groeneweg, J. (2003). Microswitch clusters to…

  10. Does a Measure of Support Needs Predict Funding Need Better Than a Measure of Adaptive and Maladaptive Behavior?

    PubMed

    Arnold, Samuel R C; Riches, Vivienne C; Stancliffe, Roger J

    2015-09-01

    Internationally, various approaches are used for the allocation of individualized funding. When using a databased approach, a key question is the predictive validity of adaptive behavior versus support needs assessment. This article reports on a subset of data from a larger project that allowed for a comparison of support needs and adaptive behavior assessments when predicting person-centered funding allocation. The first phase of the project involved a trial of the Inventory for Client and Agency Planning (ICAP) adaptive behavior and Instrument for the Classification and Assessment of Support Needs (I-CAN)-Brief Research version support needs assessments. Participants were in receipt of an individual support package allocated using a person-centered planning process, and were stable in their support arrangements. Regression analysis showed that the most useful items in predicting funding allocation came from the I-CAN-Brief Research. No additional variance could be explained by adding the ICAP, or using the ICAP alone. A further unique approach of including only items from the I-CAN-Brief Research marked as funded supports showed high predictive validity. It appears support need is more effective at determining resource need than adaptive behavior. PMID:26322387

  11. An Adaptive Approach to Family Intervention: Linking Engagement in Family-Centered Intervention to Reductions in Adolescent Problem Behavior

    ERIC Educational Resources Information Center

    Connell, Arin M.; Dishion, Thomas J.; Yasui, Miwa; Kavanagh, Kathryn

    2007-01-01

    This study used Complier Average Causal Effect analysis (CACE; see G. Imbens & D. Rubin, 1997) to examine the impact of an adaptive approach to family intervention in the public schools on rates of substance use and antisocial behavior among students ages 11-17. Students were randomly assigned to a family-centered intervention (N = 998) in 6th…

  12. An Overview of Intervention Options for Promoting Adaptive Behavior of Persons with Acquired Brain Injury and Minimally Conscious State

    ERIC Educational Resources Information Center

    Lancioni, Giulio E.; Bosco, Andrea; Belardinelli, Marta Olivetti; Singh, Nirbhay N.; O'Reilly, Mark F.; Sigafoos, Jeff

    2010-01-01

    This paper presents an overview of the studies directed at helping post-coma persons with minimally conscious state improve their adaptive behavior. Twenty-one studies were identified for the 2000-2010 period (i.e., a period in which an intense debate has occurred about diagnostic, rehabilitative, prognostic, and ethical issues concerning people…

  13. Longitudinal study of cognitive abilities and adaptive behavior levels in fragile X males: a prospective multicenter analysis.

    PubMed

    Fisch, G S; Simensen, R; Tarleton, J; Chalifoux, M; Holden, J J; Carpenter, N; Howard-Peebles, P N; Maddalena, A

    1996-08-01

    Retrospective longitudinal studies have noted declines in IQ scores in many but not all fra(X) (fragile X) males and females. We report on a prospective investigation of longitudinal changes in cognitive ability (IQ) and adaptive behavior (DQ) in 24 fra(X) males from four test sites. Individuals who were tested ranged in age from 3-15 years. To determine cognitive ability, all males were administered the Stanford-Binet test (4th Edition). To assess adaptive behavior, all males were evaluated using the Vineland Adaptive Behavior Scales. Mean interest interval was 2.3 years. Using identical DNA protocols, all subjects were identified as bearing the fra(X) mutation. Results showed declines in IQ scores in 18/24 (75%) males. Four males showed no change in scores. Declines in DQ scores were noted in 22/24 (92%) of those tested. DQ scores were higher than IQ scores in 20/24 (83%) subjects. From a descriptive cohort analysis, decreases in IQ scores appear to follow a well-defined, negatively decelerating function. Declines in DQ were steeper and more nearly linear. Declining scores are not indicative of regression of intellectual and/or social skills, but of a relative inability to keep pace with their age-normed cohort. We conclude that the fra(X) mutation affects cognitive abilities in a uniform, nonlinear manner comparable to outcomes observed in earlier retrospective studies. Adaptive behavior also declines, but in a more linear fashion. PMID:8844080

  14. An Annotated Bibliography of the Literature Concerning Students' Adaptive and Maladaptive Behavior Patterns in Response to Failure in Achievement Situations.

    ERIC Educational Resources Information Center

    Moriarty, Kathleen Pelletier

    An examination of the dynamics of academic failure is presented in this monograph in the form of an annotated bibliography of current literature. The writings cited offer a cross-section of research on what factors affect students' choices of adaptive or maladaptive behavior patterns in the classroom and in relation to their peers. Section one of…

  15. Adapting Phonological Awareness Interventions for Children with Down Syndrome Based on the Behavioral Phenotype: A Promising Approach?

    ERIC Educational Resources Information Center

    Lemons, Christopher J.; King, Seth A.; Davidson, Kimberly A.; Puranik, Cynthia S.; Fulmer, Deborah; Mrachko, Alicia A.; Partanen, Jane; Al Otaiba, Stephanie; Fidler, Deborah J.

    2015-01-01

    Many children with Down syndrome demonstrate deficits in phonological awareness, a prerequisite to learning to read in an alphabetic language. The purpose of this study was to determine whether adapting a commercially available phonological awareness program to better align with characteristics associated with the behavioral phenotype of Down…

  16. Emotional Intelligence and Adaptive Success of Nurses Caring for People with Mental Retardation and Severe Behavior Problems

    ERIC Educational Resources Information Center

    Gerits, Linda; Derksen, Jan J. L.; Verbruggen, Antoine B.

    2004-01-01

    The emotional intelligence profiles, gender differences, and adaptive success of 380 Dutch nurses caring for people with mental retardation and accompanying severe behavior problems are reported. Data were collected with the Bar-On Emotional Quotient Inventory, Utrecht-Coping List, Utrecht-Burnout Scale, MMPI-2, and GAMA. Absence due to illness…

  17. The Relationship between Parent Report of Adaptive Behavior and Direct Assessment of Reading Ability in Children with Autism Spectrum Disorder

    ERIC Educational Resources Information Center

    Arciuli. Joanne; Stevens, Kirsten; Trembath, David; Simpson, Ian Craig

    2013-01-01

    Purpose: This study was designed to shed light on the profile of reading ability in children with autism spectrum disorder (ASD). A key aim was to examine the relationship between parent report of adaptive behavior and direct assessment of reading ability in these children. Method: The authors investigated children's reading ability using the…

  18. Adaptation of Social Problem Solving for Children Questionnaire in 6 Age Groups and its Relationships with Preschool Behavior Problems

    ERIC Educational Resources Information Center

    Dereli-Iman, Esra

    2013-01-01

    Social Problem Solving for Child Scale is frequently used to determine behavioral problems of children with their own word and to identify ways of conflict encountered in daily life, and interpersonal relationships in abroad. The primary purpose of this study was to adapt the Wally Child Social Problem-Solving Detective Game Test. In order to…

  19. The Contribution of Children's Self-Regulation and Classroom Quality to Children's Adaptive Behaviors in the Kindergarten Classroom

    ERIC Educational Resources Information Center

    Rimm-Kaufman, Sara E.; Curby, Tim W.; Grimm, Kevin J.; Brock, Laura L.; Nathanson, Lori

    2009-01-01

    In this study, the authors examined the extent to which children's self-regulation upon kindergarten entrance and classroom quality in kindergarten contributed to children's adaptive classroom behavior. Children's self-regulation was assessed using a direct assessment upon entrance into kindergarten. Classroom quality was measured on the basis of…

  20. Promoting Adaptive Behavior in Persons with Acquired Brain Injury, Extensive Motor and Communication Disabilities, and Consciousness Disorders

    ERIC Educational Resources Information Center

    Lancioni, Giulio E.; Singh, Nirbhay N.; O'Reilly, Mark F.; Sigafoos, Jeff; Belardinelli, Marta Olivetti; Buonocunto, Francesca; Sacco, Valentina; Navarro, Jorge; Lanzilotti, Crocifissa; De Tommaso, Marina; Megna, Marisa; Badagliacca, Francesco

    2012-01-01

    These two studies extended the evidence on the use of technology-based intervention packages to promote adaptive behavior in persons with acquired brain injury and multiple disabilities. Study I involved five participants in a minimally conscious state who were provided with intervention packages based on specific arrangements of optic, tilt, or…

  1. Family Emotional Climate and Sibling Relationship Quality: Influences on Behavioral Problems and Adaptation in Preschool-Aged Children

    ERIC Educational Resources Information Center

    Modry-Mandell, Kerri L.; Gamble, Wendy C.; Taylor, Angela R.

    2007-01-01

    We examined the impact of family emotional climate and sibling relationship quality on behavioral problems and adaptation in preschool-aged children. Participants were 63 mothers with a preschool-aged child enrolled in a Southern Arizona Head Start Program. Siblings were identified as children closest in age to target child. Mothers of…

  2. Two Children with Multiple Disabilities Increase Adaptive Object Manipulation and Reduce Inappropriate Behavior via a Technology-Assisted Program

    ERIC Educational Resources Information Center

    Lancioni, Giulio E.; O'Reilly, Mark F.; Singh, Nirbhay N.; Sigafoos, Jeff; Didden, Robert; Oliva, Doretta; Campodonico, Francesca

    2010-01-01

    Persons with severe to profound multiple disabilities, such as intellectual, visual, and motor disabilities, may be characterized by low levels of adaptive engagement with the environment. They may also display forms of inappropriate, stereotypical behavior (like hand mouthing, that is, putting their fingers into or over their mouths) or…

  3. Locomotor training modifies soleus monosynaptic motoneuron responses in human spinal cord injury

    PubMed Central

    Smith, Andrew C.; Rymer, William Zev

    2015-01-01

    The objective of this study was to assess changes in monosynaptic motoneuron responses to stimulation of Ia afferents after locomotor training in individuals with chronic spinal cord injury (SCI). We hypothesized that locomotor training modifies the amplitude of the soleus monosynaptic motoneuron responses in a body position-dependent manner. Fifteen individuals with chronic clinical motor complete or incomplete SCI received an average of 45 locomotor training sessions. The soleus H-reflex and M-wave recruitment curves were assembled using data collected in both the right and left legs, with subjects seated and standing, before and after training. The soleus H-reflexes and M-waves, measured as peak-to-peak amplitudes, were normalized to the maximal M-wave (Mmax). Stimulation intensities were normalized to 50 % Mmax stimulus intensity. A sigmoid function was also fitted to the normalized soleus H-reflexes on the ascending limb of the recruitment curve. After training, soleus H-reflex excitability was increased in both legs in AIS C subjects, and remained unchanged in AIS A-B and AIS D subjects during standing. When subjects were seated, soleus H-reflex excitability was decreased after training in many AIS C and D subjects. Changes in reflex excitability coincided with changes in stimulation intensities at H-threshold, 50 % maximal H-reflex, and at maximal H-reflex, while an interaction between leg side and AIS scale for the H-reflex slope was also found. Adaptations of the intrinsic properties of soleus motoneurons and Ia afferents, the excitability profile of the soleus motoneuron pool, oligosynaptic inputs, and corticospinal inputs may all contribute to these changes. The findings of this study demonstrate that locomotor training impacts the amplitude of the monosynaptic motoneuron responses based on the demands of the motor task in people with chronic SCI. PMID:25205562

  4. Some psychophysiological and behavioral aspects of adaptation to simulated autonomous Mission to Mars

    NASA Astrophysics Data System (ADS)

    Gushin, V.; Shved, D.; Vinokhodova, A.; Vasylieva, G.; Nitchiporuk, I.; Ehmann, B.; Balazs, L.

    2012-01-01

    “Mars-105” experiment was executed in March-July 2009 in Moscow, at the Institute for Bio-Medical Problems (IBMP) with participation of European Space Agency (ESA) to simulate some specific conditions of future piloted Mars mission. In the last 35 days of isolation, in order to simulate autonomous flight conditions, some serious restrictions were established for the crew resupply and communication with Mission Control (MC). The objective of the study was to investigate psychophysiological and behavioral aspects (communication) of adaptation during this period of “high autonomy”. We used computerized analysis of the crew written daily reports to calculate the frequencies of utilization of certain semantic units, expressing different psychological functions. To estimate the level of psycho-physiological stress, we measured the concentration of urinal cortisol once in two weeks. To investigate psycho-emotional state, we used the questionnaire SAN, estimating Mood, Activity and Health once in two weeks.During the simulation of autonomous flight, we found out the different tendencies of communicative behavior. One group of subjects demonstrated the tendency to “activation and self-government” under “high autonomy” conditions. The other subjects continued to use communicative strategy that we called “closing the communication channel”. “Active” communication strategy was accompanied by increasing in subjective scores of mood and activity. The subjects, whose communication strategy was attributed as “closing”, demonstrated the considerably lower subjective scores of mood and activity. Period of high autonomy causes specific changes in communication strategies of the isolated crew.

  5. General and Specific Strategies Used to Facilitate Locomotor Maneuvers

    PubMed Central

    Wu, Mengnan; Matsubara, Jesse H.; Gordon, Keith E.

    2015-01-01

    People make anticipatory changes in gait patterns prior to initiating a rapid change of direction. How they prepare will change based on their knowledge of the maneuver. To investigate specific and general strategies used to facilitate locomotor maneuvers, we manipulated subjects’ ability to anticipate the direction of an upcoming lateral “lane-change” maneuver. To examine specific anticipatory adjustments, we observed the four steps immediately preceding a maneuver that subjects were instructed to perform at a known time in a known direction. We hypothesized that to facilitate a specific change of direction, subjects would proactively decrease margin of stability in the future direction of travel. Our results support this hypothesis: subjects significantly decreased lateral margin of stability by 69% on the side ipsilateral to the maneuver during only the step immediately preceding the maneuver. This gait adaptation may have improved energetic efficiency and simplified the control of the maneuver. To examine general anticipatory adjustments, we observed the two steps immediately preceding the instant when subjects received information about the direction of the maneuver. When the maneuver direction was unknown, we hypothesized that subjects would make general anticipatory adjustments that would improve their ability to actively initiate a maneuver in multiple directions. This second hypothesis was partially supported as subjects increased step width and stance phase hip flexion during these anticipatory steps. These modifications may have improved subjects’ ability to generate forces in multiple directions and maintain equilibrium during the onset and execution of the rapid maneuver. However, adapting these general anticipatory strategies likely incurred an additional energetic cost. PMID:26167931

  6. Learning from experience: Event-related potential correlates of reward processing, neural adaptation, and behavioral choice

    PubMed Central

    Walsh, Matthew M.; Anderson, John R.

    2012-01-01

    To behave adaptively, we must learn from the consequences of our actions. Studies using event-related potentials (ERPs) have been informative with respect to the question of how such learning occurs. These studies have revealed a frontocentral negativity termed the feedback-related negativity (FRN) that appears after negative feedback. According to one prominent theory, the FRN tracks the difference between the values of actual and expected outcomes, or reward prediction errors. As such, the FRN provides a tool for studying reward valuation and decision making. We begin this review by examining the neural significance of the FRN. We then examine its functional significance. To understand the cognitive processes that occur when the FRN is generated, we explore variables that influence its appearance and amplitude. Specifically, we evaluate four hypotheses: (1) the FRN encodes a quantitative reward prediction error; (2) the FRN is evoked by outcomes and by stimuli that predict outcomes; (3) the FRN and behavior change with experience; and (4) the system that produces the FRN is maximally engaged by volitional actions. PMID:22683741

  7. Highly Dynamic and Adaptive Traffic Congestion Avoidance in Real-Time Inspired by Honey Bee Behavior

    NASA Astrophysics Data System (ADS)

    Wedde, Horst F.; Lehnhoff, Sebastian; van Bonn, Bernhard; Bay, Z.; Becker, S.; Böttcher, S.; Brunner, C.; Büscher, A.; Fürst, T.; Lazarescu, A. M.; Rotaru, E.; Senge, S.; Steinbach, B.; Yilmaz, F.; Zimmermann, T.

    Traffic congestions have become a major problem in metropolitan areas world-wide, within and between cities, to an extent where they make driving and transportation times largely unpredictable. Due to the highly dynamic character of congestion building and dissolving this phenomenon appears even to resist a formal treatment. Static approaches, and even more their global management, have proven counterproductive in practice. Given the latest progress in VANET technology and the remarkable commercially driven efforts like in the European C2C consortium, or the VSC Project in the US, allow meanwhile to tackle various aspects of traffic regulation through VANET communication. In this paper we introduce a novel, completely decentralized multi-agent routing algorithm (termed BeeJamA) which we have derived from the foraging behavior of honey bees. It is highly dynamic, adaptive, robust, and scalable, and it allows for both avoiding congestions, and minimizing traveling times to individual destinations. Vehicle guidance is provided well ahead of every intersection, depending on the individual speeds. Thus strict deadlines are imposed on, and respected by, the BeeJamA algorithm. We report on extensive simulation experiments which show the superior performance of BeeJamA over conventional approaches.

  8. Adapted cognitive-behavioral therapy for religious individuals with mental disorder: a systematic review.

    PubMed

    Lim, Caroline; Sim, Kang; Renjan, Vidhya; Sam, Hui Fang; Quah, Soo Li

    2014-06-01

    Cognitive-behavioral therapy (CBT) is considered an evidence-based psychological intervention for various mental disorders. However, mental health clinicians should be cognizant of the population that was used to validate the intervention and assess its acceptability to a target group that is culturally different. We systematically reviewed published empirical studies of CBT adapted for religious individuals with mental disorder to determine the extent to which religiously modified CBT can be considered an empirically supported treatment following the criteria delineated by the American Psychological Association Task Force on Promotion and Dissemination of Psychological Procedures. Overall, nine randomized controlled trials and one quasi-experimental study were included that compared the effectiveness of religiously modified CBT to standard CBT or other treatment modalities for the treatment of depressive disorders, generalized anxiety disorder, and schizophrenia. The majority of these studies either found no difference in effectiveness between religiously modified CBT compared to standard CBT or other treatment modalities, or early effects that were not sustained. Considering the methodological limitations of the reviewed studies, religiously modified CBT cannot be considered a well-established psychological intervention for the treatment of the foregoing mental disorders following the a priori set criteria at this juncture. Nevertheless, melding religious content with CBT may be an acceptable treatment modality for individuals with strong religious convictions. PMID:24813028

  9. Morphological and behavioral evidence for adaptive diversification of sympatric Hawaiian limpets (Cellana spp.).

    PubMed

    Bird, Christopher E

    2011-09-01

    The endemic Hawaiian limpets (Cellana exarata, Cellana sandwicensis, and Cellana talcosa), reside at different elevations on wave-exposed rocky shores and comprise a monophyletic lineage that diversified within Hawai'i. Here, I report phenotypic differences in shell, soft tissue, and behavioral characters among these limpets and discuss their potential utility in exploiting their respective niches. The high-shore limpet, C. exarata, is characterized by a tall round shell, short mantle tentacles, and long evasion distance when confronted by a predatory gastropod. The mid-shore limpet, C. sandwicensis, is characterized by a shorter oblong shell, long mantle tentacles, and a short evasion distance when confronted by a predatory snail. The low-shore, shallow-subtidal limpet, C. talcosa, is characterized by a flat shell that is thin in juveniles and disproportionately massive in large adults (relative to the other two species), and mantle tentacles of varying lengths (some individuals exhibit short tentacles, some long). These species-specific suites of characters are likely to confer specific fitness advantages on the high shore (C. exarata) where thermal and desiccation stress is severe, on the mid shore (C. sandwicensis) where hydrodynamic forces are severe, and on the low-shallow subtidal shore (C. talcosa) where pelagic predators have free access to the limpets. These data add to the growing body of evidence for adaptive diversification and speciation in the Hawaiian Cellana, and in marine species in general. PMID:21700576

  10. Vineland Adaptive Behavior Scales: II Profile of Young Children with Autism Spectrum Disorder

    ERIC Educational Resources Information Center

    Yang, Sabrina; Paynter, Jessica M.; Gilmore, Linda

    2016-01-01

    Adaptive behaviour is a crucial area of assessment for individuals with Autism Spectrum Disorder (ASD). This study examined the adaptive behaviour profile of 77 young children with ASD using the Vineland-II, and analysed factors associated with adaptive functioning. Consistent with previous research with the original Vineland a distinct autism…

  11. A New Approach to the Measurement of Adaptive Behavior: Development of the PEDI-CAT for Children and Youth with Autism Spectrum Disorders

    ERIC Educational Resources Information Center

    Kramer, Jessica M.; Coster, Wendy J.; Kao, Ying-Chia; Snow, Anne; Orsmond, Gael I.

    2012-01-01

    The use of current adaptive behavior measures in practice and research is limited by their length and need for a professional interviewer. There is a need for alternative measures that more efficiently assess adaptive behavior in children and youth with autism spectrum disorders (ASDs). The Pediatric Evaluation of Disability Inventory-Computer…

  12. Adaptive Behavior Assessment System-II Parent/Primary Caregiver Form: Ages 0-5--Its Factor Structure and Other Implications for Practice

    ERIC Educational Resources Information Center

    Oakland, Thomas; Algina, James

    2011-01-01

    A child's acquisition of adaptive behavior and skills may constitute his or her most important goal during infancy and early childhood. In addition, adaptive behavior data often are required when making decisions under Part C of the 2004 Individuals With Disabilities Education Improvement Act. This study reports the results of a factor analysis of…

  13. Dynamics of locomotor transitions from arboreal to terrestrial substrates in Verreaux's sifaka (Propithecus verreauxi).

    PubMed

    Wunderlich, R E; Tongen, A; Gardiner, J; Miller, C E; Schmitt, D

    2014-12-01

    Most primates are able to move with equal facility on the ground and in trees, but most use the same quadrupedal gaits in both environments. A few specialized primates, however, use a suspensory or leaping mode of locomotion when in the trees but a bipedal gait while on the ground. This is a rare behavioral pattern among mammals, and the extent to which the bipedal gaits of these primates converge and are constrained by the anatomical and neurological adaptations associated with arboreal locomotion is poorly understood. Sifakas (Propithecus), primates living only in Madagascar, are highly committed vertical clingers and leapers that also spend a substantial amount of time on the ground. When moving terrestrially sifakas use a unique bipedal galloping gait seen in no other mammals. Little research has examined the mechanics of these gaits, and most of that research has been restricted to controlled captive conditions. The energetic costs associated with leaping and bipedal galloping are unknown. This study begins to fill that gap using triaxial accelerometry to characterize and compare the dynamics of sifakas' leaping and bipedal galloping behavior. As this is a relatively novel approach, the first goal of this article is to explore the feasibility of collecting such data on free-roaming animals and attempt to automate the identification of leaping and bipedal behavior within the output. The second goal is to compare the overall accelerations of the body and to use that as an approximation of aspects of energetic costs during leaping and bipedalism. To achieve this, a lightweight accelerometer was mounted on freely moving sifakas. The resulting acceleration profiles were processed, and sequences of leaps (bouts) were automatically extracted from the waveforms with 85% accuracy. Both vector dynamic body acceleration and overall dynamic body acceleration (ODBA) were used to characterize locomotor patterns and energy expenditure during leaping and bipedalism. The

  14. Behavioral adaptations imply a direct link between ecological specialization and reproductive isolation in a sympatrically diverging ground beetle.

    PubMed

    Van Belleghem, Steven M; De Wolf, Katrien; Hendrickx, Frederik

    2016-08-01

    Adaptation to a previously unoccupied niche within a single population is one of the most contentious topics in evolutionary biology as it assumes the simultaneous evolution of ecologically selected and preference traits. Here, we demonstrate behavioral adaptation to contrasting hydrological regimes in a sympatric mosaic of Pogonus chalceus beetle populations, and argue that this adaptation may result in nonrandom gene flow. When exposed to experimental inundations, individuals from tidal marshes, which are naturally subjected to frequent but short floods, showed a higher propensity to remain submerged compared to individuals from seasonal marshes that are inundated for several months. This adaptive behavior is expected to decrease the probability that individuals will settle in the alternative habitat, resulting in spatial sorting and reproductive isolation of both ecotypes. Additionally, we show that this difference in behavior is induced by the environmental conditions experienced by the beetles during their nondispersive larval stages. Hence, accidental or forced ovipositioning in the alternative habitat may induce both an increased performance and preference to the natal habitat type. Such plastic traits could play an important role in the most incipient stages of divergence with gene flow. PMID:27405686

  15. The effect of early environmental manipulation on locomotor sensitivity and methamphetamine conditioned place preference reward.

    PubMed

    Hensleigh, E; Pritchard, L M

    2014-07-15

    Early life stress leads to several effects on neurological development, affecting health and well-being later in life. Instances of child abuse and neglect are associated with higher rates of depression, risk taking behavior, and an increased risk of drug abuse later in life. This study used repeated neonatal separation of rat pups as a model of early life stress. Rat pups were either handled and weighed as controls or separated for 180 min per day during postnatal days 2-8. In adulthood, male and female rats were tested for methamphetamine conditioned place preference reward and methamphetamine induced locomotor activity. Tissue samples were collected and mRNA was quantified for the norepinephrine transporter in the prefrontal cortex and the dopamine transporter in the nucleus accumbens. Results indicated rats given methamphetamine formed a conditioned place preference, but there was no effect of early separation or sex. Separated males showed heightened methamphetamine-induced locomotor activity, but there was no effect of early separation for females. Overall females were more active than males in response to both saline and methamphetamine. No differences in mRNA levels were observed across any conditions. These results suggest early neonatal separation affects methamphetamine-induced locomotor activity in a sex-dependent manner but has no effects on methamphetamine conditioned place preference. PMID:24713150

  16. Multiple amidated neuropeptides are required for normal circadian locomotor rhythms in Drosophila.

    PubMed

    Taghert, P H; Hewes, R S; Park, J H; O'Brien, M A; Han, M; Peck, M E

    2001-09-01

    In Drosophila, the amidated neuropeptide pigment dispersing factor (PDF) is expressed by the ventral subset of lateral pacemaker neurons and is required for circadian locomotor rhythms. Residual rhythmicity in pdf mutants likely reflects the activity of other neurotransmitters. We asked whether other neuropeptides contribute to such auxiliary mechanisms. We used the gal4/UAS system to create mosaics for the neuropeptide amidating enzyme PHM; amidation is a highly specific and widespread modification of secretory peptides in Drosophila. Three different gal4 drivers restricted PHM expression to different numbers of peptidergic neurons. These mosaics displayed aberrant locomotor rhythms to degrees that paralleled the apparent complexity of the spatial patterns. Certain PHM mosaics were less rhythmic than pdf mutants and as severe as per mutants. Additional gal4 elements were added to the weakly rhythmic PHM mosaics. Although adding pdf-gal4 provided only partial improvement, adding the widely expressed tim-gal4 largely restored rhythmicity. These results indicate that, in Drosophila, peptide amidation is required for neuropeptide regulation of behavior. They also support the hypothesis that multiple amidated neuropeptides, acting upstream, downstream, or in parallel to PDF, help organize daily locomotor rhythms. PMID:11517257

  17. The alcohol-induced locomotor stimulation and accumbal dopamine release is suppressed in ghrelin knockout mice.

    PubMed

    Jerlhag, Elisabet; Landgren, Sara; Egecioglu, Emil; Dickson, Suzanne L; Engel, Jörgen A

    2011-06-01

    Ghrelin, the first endogenous ligand for the type 1A growth hormone secretagogue receptor (GHS-R1A), plays a role in energy balance, feeding behavior, and reward. Previously, we showed that pharmacologic and genetic suppression of the GHS-R1A attenuates the alcohol-induced stimulation, accumbal dopamine release, and conditioned place preference as well as alcohol consumption in mice, implying that the GHS-R1A is required for alcohol reward. The present study further elucidates the role of ghrelin for alcohol-induced dopamine release in nucleus accumbens and locomotor stimulation by means of ghrelin knockout mice. We found that the ability of alcohol to increase accumbal dopamine release in wild-type mice is not observed in ghrelin knockout mice. Furthermore, alcohol induced a locomotor stimulation in the wild-type mice and ghrelin knockout mice; however, the locomotor stimulation in homozygote mice was significantly lower than in the wild-type mice. The present series of experiments suggest that endogenous ghrelin may be required for the ability of alcohol to activate the mesolimbic dopamine system. PMID:21145690

  18. THE EFFECT OF EARLY ENVIRONMENTAL MANIPULATION ON LOCOMOTOR SENSITIVITY AND METHAMPHETAMINE CONDITIONED PLACE PREFERENCE REWARD

    PubMed Central

    Hensleigh, E.; Pritchard, L. M.

    2014-01-01

    Early life stress leads to several effects on neurological development, affecting health and well-being later in life. Instances of child abuse and neglect are associated with higher rates of depression, risk taking behavior, and an increased risk of drug abuse later in life. This study used repeated neonatal separation of rat pups as a model of early life stress. Rat pups were either handled and weighed as controls or separated for 180 minutes per day during postnatal days 2-8. In adulthood, male and female rats were tested for methamphetamine conditioned place preference reward and methamphetamine induced locomotor activity. Tissue samples were collected and mRNA was quantified for the norepinephrine transporter in the prefrontal cortex and the dopamine transporter in the nucleus accumbens. Results indicated rats given methamphetamine formed a conditioned place preference, but there was no effect of early separation or sex. Separated males showed heightened methamphetamine-induced locomotor activity, but there was no effect of early separation for females. Overall females were more active than males in response to both saline and methamphetamine. No differences in mRNA levels were observed across any conditions. These results suggest early neonatal separation affects methamphetamine-induced locomotor activity in a sex-dependent manner but has no effects on methamphetamine conditioned place preference. PMID:24713150

  19. Music and Methamphetamine: Conditioned Cue-induced Increases in Locomotor Activity and Dopamine Release in Rats

    PubMed Central

    Polston, J.E.; Rubbinaccio, H.Y.; Morra, J.T.; Sell, E.M.; Glick, S.D.

    2011-01-01

    Associations between drugs of abuse and cues facilitate the acquisition and maintenance of addictive behaviors. Although significant research has been done to elucidate the role that simple discriminative or discrete conditioned stimuli (e.g., a tone or a light) play in addiction, less is known about complex environmental cues. The purpose of the present study was to examine the role of a musical conditioned stimulus by assessing locomotor activity and in vivo microdialysis. Two groups of rats were given non-contingent injections of methamphetamine (1.0 mg/kg) or vehicle and placed in standard conditioning chambers. During these conditioning sessions both groups were exposed to a continuous conditioned stimulus, in the form of a musical selection (“Four” by Miles Davis) played repeatedly for ninety minutes. After seven consecutive conditioning days subjects were given one day of rest, and subsequently tested for locomotor activity or dopamine release in the absence of drug while the musical conditioned stimulus was continually present. The brain regions examined included the basolateral amygdala, nucleus accumbens, and prefrontal cortex. The results show that music is an effective contextual conditioned stimulus, significantly increasing locomotor activity after repeated association with methamphetamine. Furthermore, this musical conditioned stimulus significantly increased extracellular dopamine levels in the basolateral amygdala and nucleus accumbens. These findings support other evidence showing the importance of these brain regions in conditioned learning paradigms, and demonstrate that music is an effective conditioned stimulus warranting further investigation. PMID:21145911

  20. Distinct Motor Strategies Underlying Split-Belt Adaptation in Human Walking and Running

    PubMed Central

    Ogawa, Tetsuya; Kawashima, Noritaka; Obata, Hiroki; Kanosue, Kazuyuki; Nakazawa, Kimitaka

    2015-01-01

    The aim of the present study was to elucidate the adaptive and de-adaptive nature of human running on a split-belt treadmill. The degree of adaptation and de-adaptation was compared with those in walking by calculating the antero-posterior component of the ground reaction force (GRF). Adaptation to walking and running on a split-belt resulted in a prominent asymmetry in the movement pattern upon return to the normal belt condition, while the two components of the GRF showed different behaviors depending on the gaits. The anterior braking component showed prominent adaptive and de-adaptive behaviors in both gaits. The posterior propulsive component, on the other hand, exhibited such behavior only in running, while that in walking showed only short-term aftereffect (lasting less than 10 seconds) accompanied by largely reactive responses. These results demonstrate a possible difference in motor strategies (that is, the use of reactive feedback and adaptive feedforward control) by the central nervous system (CNS) for split-belt locomotor adaptation between walking and running. The present results provide basic knowledge on neural control of human walking and running as well as possible strategies for gait training in athletic and rehabilitation scenes. PMID:25775426

  1. Reliability review of the remote tool delivery system locomotor

    SciTech Connect

    Chesser, J.B.

    1999-04-01

    The locomotor being built by RedZone Robotics is designed to serve as a remote tool delivery (RID) system for waste retrieval, tank cleaning, viewing, and inspection inside the high-level waste tanks 8D-1 and 8D-2 at West Valley Nuclear Services (WVNS). The RTD systm is to be deployed through a tank riser. The locomotor portion of the RTD system is designed to be inserted into the tank and is to be capable of moving around the tank by supporting itself and moving on the tank internal structural columns. The locomotor will serve as a mounting platform for a dexterous manipulator arm. The complete RTD system consists of the locomotor, dexterous manipulator arm, cameras, lights, cables, hoses, cable/hose management system, power supply, and operator control station.

  2. Adaptive Optics with a Liquid-Crystal-on-Silicon Spatial Light Modulator and Its Behavior in Retinal Imaging

    NASA Astrophysics Data System (ADS)

    Shirai, Tomohiro; Takeno, Kohei; Arimoto, Hidenobu; Furukawa, Hiromitsu

    2009-07-01

    An adaptive optics system with a brand-new device of a liquid-crystal-on-silicon (LCOS) spatial light modulator (SLM) and its behavior in in vivo imaging of the human retina are described. We confirmed by experiments that closed-loop correction of ocular aberrations of the subject's eye was successfully achieved at the rate of 16.7 Hz in our system to obtain a clear retinal image in real time. The result suggests that an LCOS SLM is one of the promising candidates for a wavefront corrector in a prospective commercial ophthalmic instrument with adaptive optics.

  3. Effects of Nicotine on Ethanol-Induced Locomotor Sensitization: A Model of Neuroadaptation

    PubMed Central

    Gubner, Noah R.; Phillips, Tamara J.

    2015-01-01

    Co-morbid use of nicotine-containing tobacco products and alcohol (ethanol) is prevalent in young adults initiating use and in alcohol dependent adults, suggesting that these drugs in combination may increase risk to develop dependence on one or both drugs. Neuroadaptations caused by repeated drug exposure are related to the development of drug dependence and vulnerability to relapse. Locomotor sensitization has been used as a behavioral measure used to detect changes in neural drug sensitivity that are thought to contribute to drug dependence and relapse. Locomotor sensitization was measured in the current studies to examine potential differences in the effects of nicotine and ethanol given alone and in combination. Baseline activity levels of DBA/2J mice were assessed on 2 days, then mice were treated for ten days with saline, nicotine (1 or 2 mg/kg of nicotine tartrate), ethanol (1 or 2 g/kg), or nicotine plus ethanol and locomotor activity was assessed every third day. On the following day, all mice were challenged with ethanol to measure the expression of sensitization. Mice treated with both nicotine and ethanol exhibited greater stimulation than predicted from the combined independent effects of these drugs, consistent with our previously published results. The combined effects of nicotine and ethanol on locomotor sensitization were dependent on the dose of ethanol and whether testing was performed after the drugs were given together, or after challenge with ethanol alone. These results suggest that nicotine and ethanol in combination can have neuroadaptive effects that differ from the independent effects of these drugs. PMID:25857831

  4. Effect of Temporal Organization of the Visuo-Locomotor Coupling on the Predictive Steering

    PubMed Central

    Rybarczyk, Yves Philippe; Mestre, Daniel

    2012-01-01

    Studies on the direction of a driver’s gaze while taking a bend show that the individual looks toward the tangent-point of the inside curve. Mathematically, the direction of this point in relation to the car enables the driver to predict the curvature of the road. In the same way, when a person walking in the street turns a corner, his/her gaze anticipates the rotation of the body. A current explanation for the visuo-motor anticipation over the locomotion would be that the brain, involved in a steering behavior, executes an internal model of the trajectory that anticipates the completion of the path, and not the contrary. This paper proposes to test this hypothesis by studying the effect of an artificial manipulation of the visuo-locomotor coupling on the trajectory prediction. In this experiment, subjects remotely control a mobile robot with a pan-tilt camera. This experimental paradigm is chosen to manipulate in an easy and precise way the temporal organization of the visuo-locomotor coupling. The results show that only the visuo-locomotor coupling organized from the visual sensor to the locomotor organs enables (i) a significant smoothness of the trajectory and (ii) a velocity-curvature relationship that follows the “2/3 Power Law.” These findings are consistent with the theory of an anticipatory construction of an internal model of the trajectory. This mental representation used by the brain as a forward prediction of the formation of the path seems conditioned by the motor program. The overall results are discussed in terms of the sensorimotor scheme bases of the predictive coding. PMID:22798955

  5. Effect of temporal organization of the visuo-locomotor coupling on the predictive steering.

    PubMed

    Rybarczyk, Yves Philippe; Mestre, Daniel

    2012-01-01

    Studies on the direction of a driver's gaze while taking a bend show that the individual looks toward the tangent-point of the inside curve. Mathematically, the direction of this point in relation to the car enables the driver to predict the curvature of the road. In the same way, when a person walking in the street turns a corner, his/her gaze anticipates the rotation of the body. A current explanation for the visuo-motor anticipation over the locomotion would be that the brain, involved in a steering behavior, executes an internal model of the trajectory that anticipates the completion of the path, and not the contrary. This paper proposes to test this hypothesis by studying the effect of an artificial manipulation of the visuo-locomotor coupling on the trajectory prediction. In this experiment, subjects remotely control a mobile robot with a pan-tilt camera. This experimental paradigm is chosen to manipulate in an easy and precise way the temporal organization of the visuo-locomotor coupling. The results show that only the visuo-locomotor coupling organized from the visual sensor to the locomotor organs enables (i) a significant smoothness of the trajectory and (ii) a velocity-curvature relationship that follows the "2/3 Power Law." These findings are consistent with the theory of an anticipatory construction of an internal model of the trajectory. This mental representation used by the brain as a forward prediction of the formation of the path seems conditioned by the motor program. The overall results are discussed in terms of the sensorimotor scheme bases of the predictive coding. PMID:22798955

  6. Effects of nicotine on ethanol-induced locomotor sensitization: A model of neuroadaptation.

    PubMed

    Gubner, Noah R; Phillips, Tamara J

    2015-07-15

    Co-morbid use of nicotine-containing tobacco products and alcohol (ethanol) is prevalent in young adults initiating use and in alcohol dependent adults, suggesting that these drugs in combination may increase risk to develop dependence on one or both drugs. Neuroadaptations caused by repeated drug exposure are related to the development of drug dependence and vulnerability to relapse. Locomotor sensitization has been used as a behavioral measure used to detect changes in neural drug sensitivity that are thought to contribute to drug dependence and relapse. Locomotor sensitization was measured in the current studies to examine potential differences in the effects of nicotine and ethanol given alone and in combination. Baseline activity levels of DBA/2J mice were assessed on 2 days, then mice were treated for 10 days with saline, nicotine (1 or 2mg/kg of nicotine tartrate), ethanol (1 or 2g/kg), or nicotine plus ethanol and locomotor activity was assessed every third day. On the following day, all mice were challenged with ethanol to measure the expression of sensitization. Mice treated with both nicotine and ethanol exhibited greater stimulation than predicted from the combined independent effects of these drugs, consistent with our previously published results. The combined effects of nicotine and ethanol on locomotor sensitization were dependent on the dose of ethanol and whether testing was performed after the drugs were given together, or after challenge with ethanol alone. These results suggest that nicotine and ethanol in combination can have neuroadaptive effects that differ from the independent effects of these drugs. PMID:25857831

  7. Adapting Phonological Awareness Interventions for Children With Down Syndrome Based on the Behavioral Phenotype: A Promising Approach?

    PubMed

    Lemons, Christopher J; King, Seth A; Davidson, Kimberly A; Puranik, Cynthia S; Fulmer, Deborah; Mrachko, Alicia A; Partanen, Jane; Al Otaiba, Stephanie; Fidler, Deborah J

    2015-08-01

    Many children with Down syndrome demonstrate deficits in phonological awareness, a prerequisite to learning to read in an alphabetic language. The purpose of this study was to determine whether adapting a commercially available phonological awareness program to better align with characteristics associated with the behavioral phenotype of Down syndrome would increase children's learning of phonological awareness, letter sounds, and words. Five children with Down syndrome, ages 6 to 8 years, participated in a multiple baseline across participants single case design experiment in which response to an adapted phonological awareness intervention was compared with response to the nonadapted program. Results indicate a functional relation between the adapted program and phonological awareness. Suggestions for future research and implications for practice are provided. PMID:26214557

  8. Cross-cultural adaptation and reliability testing of Polish adaptation of the European Heart Failure Self-care Behavior Scale (EHFScBS)

    PubMed Central

    Uchmanowicz, Izabella; Łoboz-Rudnicka, Maria; Jaarsma, Tiny; Łoboz-Grudzień, Krystyna

    2014-01-01

    Background Development of simple instruments for determination of self-care levels in heart failure (HF) patients is a subject of ongoing research. One such instrument, gaining growing popularity worldwide, is the European Heart Failure Self-care Behavior Scale (EHFScBS). The aim of this study was to adapt and to test reliability of the Polish version of EHFScBS. Method A standard guideline was used for translation and cultural adaptation of the English version of EHFScBS into Polish. The study included 100 Polish HF patients aged between 24 and 91 years, among them 67 men and 33 women. Cronbach’s alpha was used for analysis of the internal consistency of EHFScBS. Results Mean total self-care score in the study group was 34.2±8.1 points. Good or satisfactory level of self-care were documented in four out of 12 analyzed EHFScBS domains. Cronbach’s alpha for the entire questionnaire was 0.64. The value of Cronbach’s alpha after deletion of specific items ranged from 0.55 to 0.65. Conclusion Polish HF patients present significant deficits of self-care, which are to a large extent associated with inefficacy of the public health care system. Apart from cultural characteristics, the socioeconomic context of the target population should be considered during language adaptation of EHFScBS, as well as during interpretation of data obtained with this instrument. A number of self-care–related behaviors may be optimized as a result of appropriate educational activities, also those offered by nursing personnel. PMID:25382973

  9. Promoting Classroom Learning for Head Start Children: The Importance of Identifying Early Behavior Problems and Fostering Adaptive Learning Behaviors

    ERIC Educational Resources Information Center

    Escalon, Ximena Dominguez; Shearer, Rebecca Bulotsky; Greenfield, Daryl; Manrique, Sandra

    2009-01-01

    In partnership with a local Head Start program in the southeastern United States, this study sought to: (a) examine the influence of problem behaviors on preschool language and literacy and mathematics achievement and (b) identify mechanisms that explain why children with behavior problems have difficulty learning in the preschool classroom.…

  10. Theta synchronization between medial prefrontal cortex and cerebellum is associated with adaptive performance of associative learning behavior

    PubMed Central

    Chen, Hao; Wang, Yi-jie; Yang, Li; Sui, Jian-feng; Hu, Zhi-an; Hu, Bo

    2016-01-01

    Associative learning is thought to require coordinated activities among distributed brain regions. For example, to direct behavior appropriately, the medial prefrontal cortex (mPFC) must encode and maintain sensory information and then interact with the cerebellum during trace eyeblink conditioning (TEBC), a commonly-used associative learning model. However, the mechanisms by which these two distant areas interact remain elusive. By simultaneously recording local field potential (LFP) signals from the mPFC and the cerebellum in guinea pigs undergoing TEBC, we found that theta-frequency (5.0–12.0 Hz) oscillations in the mPFC and the cerebellum became strongly synchronized following presentation of auditory conditioned stimulus. Intriguingly, the conditioned eyeblink response (CR) with adaptive timing occurred preferentially in the trials where mPFC-cerebellum theta coherence was stronger. Moreover, both the mPFC-cerebellum theta coherence and the adaptive CR performance were impaired after the disruption of endogenous orexins in the cerebellum. Finally, association of the mPFC -cerebellum theta coherence with adaptive CR performance was time-limited occurring in the early stage of associative learning. These findings suggest that the mPFC and the cerebellum may act together to contribute to the adaptive performance of associative learning behavior by means of theta synchronization. PMID:26879632

  11. Site-specific postural and locomotor changes evoked in awake, freely moving intact cats by stimulating the brainstem.

    PubMed

    Mori, S; Sakamoto, T; Ohta, Y; Takakusaki, K; Matsuyama, K

    1989-12-25

    Locomotor behaviors evoked by stimulating the hypothalamus and the brainstem were studied in freely moving, awake cats. To do this, stimulating microelectrodes were chronically implanted into the subthalamic locomotor region (SLR) in the lateral hypothalamic area (LHA), the mesencephalic locomotor region (MLR) corresponding to the nucleus cuneiformis, the dorsal tegmental field (DTF) and the ventral tegmental field (VTF) of caudal pons along its midline. After recovery from surgery (2-3 days), open field tests were performed to study stimulus effects upon posture and locomotor movements. The stimuli consisted of pulses of 0.2 ms duration of less than 80 microA delivered at 50 pulses/s for 5-20 s. DTF stimulation resulted in suppression of postural support by the hindlimbs. When the cat was in a standing posture, DTF stimulation simply resulted in a sequential alteration of posture to a squatting and then to a final lying posture. In contrast, VTF stimulation evoked an almost opposite series of postural changes to those induced by DTF stimulation. With VTF stimulation, the cat changed from a lying or a squatting position, and then started to walk during continuation of the stimulation. With MLR stimulation, the cat invariably exhibited fast walking and then running movements. It ran straight forward, avoiding collision with walls or other obstacles, and even tried to jump over a fence placed in front of it. With LHA stimulation, the cat started to walk slowly extending its head forward and looking around repeatedly. It tended to walk with a stoop and stealthy steps along the corners of the room. Induced postural and locomotor changes were always accompanied by behavioral arousal reactions.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2611678

  12. Brazilian Pampa Biome Honey Protects Against Mortality, Locomotor Deficits and Oxidative Stress Induced by Hypoxia/Reperfusion in Adult Drosophila melanogaster.

    PubMed

    Cruz, L C; Ecker, A; Dias, R S; Seeger, R L; Braga, M M; Boligon, A A; Martins, I K; Costa-Silva, D G; Barbosa, N V; Cañedo, A D; Posser, T; Franco, J L

    2016-02-01

    We aimed to investigate the potential beneficial effects of the Brazilian Pampa biome honey in a Drosophila-based hypoxia model. Adult flies were reared in standard medium in the presence or absence of honey (at a final concentration of 10 % in medium). Then, control flies (4 % sucrose in medium) and honey-treated flies were submitted to hypoxia. Subsequently, flies were analyzed for mortality, neurolocomotor behavior (negative geotaxis), mitochondrial/oxidative stress parameters and expression of hypoxia/stress related genes by RT-qPCR. The HPLC analysis revealed the presence of phenolics and flavonoids in the studied honey. Caffeic acid was the major compound followed by p-coumaric acid and kaempferol. The presence of such compounds was correlated with a substantial antioxidant activity in vitro. Flies subjected to hypoxia presented marked mortality, locomotor deficits and changes in oxidative stress and mitochondrial activity parameters. Honey treatment was able to completely block mortality and locomotor phenotypes. In addition, honey was able to reverse ROS production and hypoxia-induced changes in mitochondrial complex I and II activity. Hypoxia also induced an up-regulation in mRNA expression of Sima (HIF-1), NFκβ, NRF2, HOX, AKT-1, InR, dILP2, dILP5 and HSP27. Honey treatment was not able to modulate changes in the tested genes, indicating that its protective effects involve additional mechanisms other than transcriptional activity of hypoxia-driven adaptive responses in flies. Our results demonstrated, for the first time, the beneficial effects of honey against the deleterious effects of hypoxia/reperfusion processes in a complex organism. PMID:26518676

  13. Designing Automated Adaptive Support to Improve Student Helping Behaviors in a Peer Tutoring Activity

    ERIC Educational Resources Information Center

    Walker, Erin; Rummel, Nikol; Koedinger, Kenneth R.

    2011-01-01

    Adaptive collaborative learning support systems analyze student collaboration as it occurs and provide targeted assistance to the collaborators. Too little is known about how to design adaptive support to have a positive effect on interaction and learning. We investigated this problem in a reciprocal peer tutoring scenario, where two students take…

  14. Eco-evo-devo of the lemur syndrome: did adaptive behavioral plasticity get canalized in a large primate radiation?

    PubMed Central

    2015-01-01

    Background Comprehensive explanations of behavioral adaptations rarely invoke all levels famously admonished by Niko Tinbergen. The role of developmental processes and plasticity, in particular, has often been neglected. In this paper, we combine ecological, physiological and developmental perspectives in developing a hypothesis to account for the evolution of ‘the lemur syndrome’, a combination of reduced sexual dimorphism, even adult sex ratios, female dominance and mild genital masculinization characterizing group-living species in two families of Malagasy primates. Results We review the different components of the lemur syndrome and compare it with similar adaptations reported for other mammals. We find support for the assertion that the lemur syndrome represents a unique set of integrated behavioral, demographic and morphological traits. We combine existing hypotheses about underlying adaptive function and proximate causation by adding a potential developmental mechanism linking maternal stress and filial masculinization, and outline an evolutionary scenario for its canalization. Conclusions We propose a new hypothesis linking ecological, physiological, developmental and evolutionary processes to adumbrate a comprehensive explanation for the evolution of the lemur syndrome, whose assumptions and predictions can guide diverse future research on lemurs. This hypothesis should also encourage students of other behavioral phenomena to consider the potential role of developmental plasticity in evolutionary innovation. PMID:26816515

  15. Characteristics of simian adaptation fields produced by behavioral changes in saccade size and direction.

    PubMed

    Noto, C T; Watanabe, S; Fuchs, A F

    1999-06-01

    The gain of saccadic eye movements can be altered gradually by moving targets either forward or backward during targeting saccades. If the gain of saccades to targets of only one size is adapted, the gain change generalizes or transfers only to saccades with similar vectors. In this study, we examined the spatial extent of such saccadic size adaptation, i.e., the gain adaptation field. We also attempted to adapt saccade direction by moving the target orthogonally during the targeting saccade to document the extent of a direction or cross-axis adaptation field. After adaptive gain decreases of horizontal saccades to 15 degrees target steps, >82% of the gain reduction transferred to saccades to 25 degrees horizontal target steps but only approximately 30% transferred to saccades to 5 degrees steps. For the horizontal component of oblique saccades to target steps with 15 degrees horizontal components and 10 degrees upward or downward vertical components, the transfer was similar at 51 and 60%, respectively. Thus the gain decrease adaptation field was quite asymmetric in the horizontal dimension but symmetric in the vertical dimension. Although gain increase adaptation produced a smaller gain change (13% increase for a 30% forward adapting target step) than did gain decrease adaptation (20% decrease for a 30% backward adapting target step), the spatial extent of gain transfer was quite similar. In particular, the gain increase adaptation field displayed asymmetry in the horizontal dimension (58% transfer to 25 degrees saccades but only 32% transfer to 5 degrees saccades) and symmetry in the vertical direction (50% transfer to the horizontal component of 10 degrees upward and 40% transfer to 10 degrees downward oblique saccades). When a 5 degrees vertical target movement was made to occur during a saccade to a horizontal 10 degrees target step, a vertical component gradually appeared in saccades to horizontal targets. More than 88% of the cross-axis change in the

  16. Sex differences in locomotor effects of morphine in the rat

    PubMed Central

    Craft, Rebecca M.; Clark, James L.; Hart, Stephen P.; Pinckney, Megan K.

    2007-01-01

    Sex differences in reinforcing, analgesic and other effects of opioids have been demonstrated; however, the extent to which sex differences in motoric effects of opioids contribute to apparent sex differences in their primary effects is not known. The goal of this study was to compare the effects of the prototypic mu opioid agonist morphine on locomotor activity in male vs. female rats. Saline or morphine (1-10 mg/kg) was administered s.c. to adult Sprague-Dawley rats, which were placed into a photobeam apparatus for 3-5 hr to measure activity. Modulation of morphine's effects by gonadal hormones and by handling (either during the test session or for 4 days before the test session) were examined. Morphine initially suppressed and later increased locomotor activity in both sexes relative to their saline-injected controls, but males were more sensitive than females to the initial locomotor suppressant effect of morphine. Intermittent, brief handling during the 3-hr test session blunted morphine-induced locomotor activation in both sexes. Females in proestrus were the most sensitive to morphine's locomotor-stimulant effect, with females in estrus showing the least response to morphine. Gonadectomized (GDX) males with or without testosterone were equally sensitive to morphine's effects, whereas GDX females treated with estradiol showed a blunted response to morphine's effects, similar to intact females in estrus. Brief handling on each of 4 consecutive days pre-test attenuated morphine's locomotor suppressant effect in males but had no effect in females, thereby eliminating the sex difference. These data suggest that sex differences in morphine's effects on locomotor activity can be attributed to gonadal hormones in females, and to differential stress-induced modulation of morphine's effects in males vs. females. PMID:17217999

  17. A test of an adapted multiple domain model in predicting sexual behaviors among unmarried young adults in India.

    PubMed

    Mehrotra, Purnima; Zimmerman, Rick S; Noar, Seth M; Dumenci, Levant

    2013-01-01

    Theory-based, scientific research examining sexual behaviors of young adults is sparse in India, even though pre-marital sex among unmarried young people has been rising in recent years. At the same time, young people aged 15 to 24 are disproportionately affected by HIV/AIDS. This has been attributed in part to rising pre-marital sexual behaviors, coupled with a lack of sex education. The objective of this study was to advance an understanding of the determinants of sexual behavior among unmarried young adults in northern India. An adaptation of a comprehensive model of health behavior, the Multiple Domain Model, was employed to study the effects of environmental/cultural influences (parental and media), structural determinants (sex, socioeconomic status, age, caste, and place of residence), personality factors (sensation-seeking and impulsive decision making), gender role identity, psychosocial variables (attitudes, norms, and self-efficacy), contextual influences (relationship status and alcohol/drug use) and preparatory behaviors (frequency of being in sexual situations) on adolescents' sexual behaviors. Results of path analysis indicated that key predictors of ever having had vaginal sex included preparatory behaviors, masculine gender role identity, attitudes toward having sex and peer norms regarding sex. Implications of these findings for future research and intervention are discussed. PMID:22206501

  18. Mechanisms of Left-Right Coordination in Mammalian Locomotor Pattern Generation Circuits: A Mathematical Modeling View

    PubMed Central

    Talpalar, Adolfo E.; Rybak, Ilya A.

    2015-01-01

    The locomotor gait in limbed animals is defined by the left-right leg coordination and locomotor speed. Coordination between left and right neural activities in the spinal cord controlling left and right legs is provided by commissural interneurons (CINs). Several CIN types have been genetically identified, including the excitatory V3 and excitatory and inhibitory V0 types. Recent studies demonstrated that genetic elimination of all V0 CINs caused switching from a normal left-right alternating activity to a left-right synchronized “hopping” pattern. Furthermore, ablation of only the inhibitory V0 CINs (V0D subtype) resulted in a lack of left-right alternation at low locomotor frequencies and retaining this alternation at high frequencies, whereas selective ablation of the excitatory V0 neurons (V0V subtype) maintained the left–right alternation at low frequencies and switched to a hopping pattern at high frequencies. To analyze these findings, we developed a simplified mathematical model of neural circuits consisting of four pacemaker neurons representing left and right, flexor and extensor rhythm-generating centers interacting via commissural pathways representing V3, V0D, and V0V CINs. The locomotor frequency was controlled by a parameter defining the excitation of neurons and commissural pathways mimicking the effects of N-methyl-D-aspartate on locomotor frequency in isolated rodent spinal cord preparations. The model demonstrated a typical left-right alternating pattern under control conditions, switching to a hopping activity at any frequency after removing both V0 connections, a synchronized pattern at low frequencies with alternation at high frequencies after removing only V0D connections, and an alternating pattern at low frequencies with hopping at high frequencies after removing only V0V connections. We used bifurcation theory and fast-slow decomposition methods to analyze network behavior in the above regimes and transitions between them. The model

  19. Mechanisms of left-right coordination in mammalian locomotor pattern generation circuits: a mathematical modeling view.

    PubMed

    Molkov, Yaroslav I; Bacak, Bartholomew J; Talpalar, Adolfo E; Rybak, Ilya A

    2015-05-01

    The locomotor gait in limbed animals is defined by the left-right leg coordination and locomotor speed. Coordination between left and right neural activities in the spinal cord controlling left and right legs is provided by commissural interneurons (CINs). Several CIN types have been genetically identified, including the excitatory V3 and excitatory and inhibitory V0 types. Recent studies demonstrated that genetic elimination of all V0 CINs caused switching from a normal left-right alternating activity to a left-right synchronized "hopping" pattern. Furthermore, ablation of only the inhibitory V0 CINs (V0D subtype) resulted in a lack of left-right alternation at low locomotor frequencies and retaining this alternation at high frequencies, whereas selective ablation of the excitatory V0 neurons (V0V subtype) maintained the left-right alternation at low frequencies and switched to a hopping pattern at high frequencies. To analyze these findings, we developed a simplified mathematical model of neural circuits consisting of four pacemaker neurons representing left and right, flexor and extensor rhythm-generating centers interacting via commissural pathways representing V3, V0D, and V0V CINs. The locomotor frequency was controlled by a parameter defining the excitation of neurons and commissural pathways mimicking the effects of N-methyl-D-aspartate on locomotor frequency in isolated rodent spinal cord preparations. The model demonstrated a typical left-right alternating pattern under control conditions, switching to a hopping activity at any frequency after removing both V0 connections, a synchronized pattern at low frequencies with alternation at high frequencies after removing only V0D connections, and an alternating pattern at low frequencies with hopping at high frequencies after removing only V0V connections. We used bifurcation theory and fast-slow decomposition methods to analyze network behavior in the above regimes and transitions between them. The model

  20. Withdrawal from repeated administration of a low dose of reserpine induced opposing adaptive changes in the noradrenaline and serotonin system function: a behavioral and neurochemical ex vivo and in vivo studies in the rat.

    PubMed

    Antkiewicz-Michaluk, Lucyna; Wąsik, Agnieszka; Możdżeń, Edyta; Romańska, Irena; Michaluk, Jerzy

    2015-03-01

    Reserpine is an inhibitor of the vesicular monoamine transporter 2 (VMAT2) and monoamine releaser, so it can be used as a pharmacological model of depression. In the present paper, we investigated the behavioral and neurochemical effects of withdrawal from acute and repeated administration of a low dose of reserpine (0.2 mg/kg) in Wistar Han rats. We demonstrated the behavioral and receptor oversensitivity (postsynaptic dopamine D1) during withdrawal from chronic reserpine. It was accompanied by a significant increase in motility in the locomotor activity test and climbing behavior in the forced swim test (FST). Neurochemical studies revealed that repeated but not acute administration the a low dose of reserpine triggered opposing adaptive changes in the noradrenergic and serotonin system function analyzed during reserpine withdrawal, i.e. 48 h after the last injection. The tissue concentration of noradrenaline was significantly decreased in the hypothalamus and nucleus accumbens only after repeated drug administration (by about 20% and 35% vs. control; p<0.05, respectively). On the other hand, the concentration of its extraneuronal metabolite, normetanephrine (NM) increased significantly in the VTA during withdrawal both from acute and chronic reserpine. The serotonin concentration was significantly reduced in the VTA after chronic reserpine (by about 40% vs. the control group, p<0.05) as well as its main metabolite, 5-HIAA (by about 30% vs. control; p<0.05) in the VTA and hypothalamus. Dopamine and its metabolites were not changed after acute or chronic reserpine administration. In vivo microdialysis studies clearly evidenced the lack of the effect of a single dose of reserpine, and its distinct effects after chronic treatment on the release of noradrenaline and serotonin in the rat striatum. In fact, the withdrawal from repeated administration of reserpine significantly increased an extraneuronal concentration of noradrenaline in the rat striatum but at the same

  1. Behavioral toxicity of selected radioprotectors

    NASA Astrophysics Data System (ADS)

    Landauer, M. R.; Davis, H. D.; Kumar, K. S.; Weiss, J. F.

    1992-10-01

    Effective radioprotection with minimal behavioral disruption is essential for the selection of protective agents to be used in manned spaceflight. This overview summarizes the studies on the behavioral toxicity of selected radioprotectors classified as phosphorothioates (WR-2721, WR-3689), bioactive lipids (16, 16 dimethylprostaglandin E2(DiPGE2), platelet activating factor (PAF), leukotriene C4), and immunomodulators (glucan, synthetic trehalose dicorynomycolate, and interleukin-1). Behavioral toxicity was examined in laboratory mice using a locomotor activity test. For all compounds tested, there was a dose-dependent decrease in locomotor behavior that paralleled the dose-dependent increase in radioprotection. While combinations of radioprotective compounds (DiPGE2 plus WR-2721) increased radioprotection, they also decreased locomotor activity. The central nervous system stimulant, caffeine, was able to mitigate the locomotor decrement produced by WR-3689 or PAF.

  2. Locomotor activity changes in female adolescent and adult rats during repeated treatment with a cannabinoid or club drug.

    PubMed

    Wiley, Jenny L; Evans, Rhys L; Grainger, Darren B; Nicholson, Katherine L

    2011-01-01

    Adolescents and young adults of both sexes are the primary consumers of "club" drugs; yet, most of the mechanistic preclinical research in this area has been performed in adult male rodents. The purpose of this study was to evaluate the acute and repeated effects of drugs that are commonly abused by adolescents in female adolescent and adult rats in a rodent model of behavioral sensitization. During two five-day periods separated by a two-day break, rats were injected daily with saline or with one of the following drugs: cocaine (7 or 15 mg/kg), ketamine (3 or 10 mg/kg), 3,4-methylenedioxymethamphetamine (MDMA) (3, 10, or 30 mg/kg), or Δ(9)-tetrahydrocannabinol (THC) (0.03, 0.1, 0.3 or 1 mg/kg) and their locomotor activity was measured. Cocaine increased activity across days in both age groups. Whereas ketamine produced progressive increases in activity with repeated administration in rats of both ages, MDMA increased, and then decreased, activity in the chronic dosing regimen in female adolescents only. Tolerance to the initial stimulatory effects of low doses of THC was observed at both ages. The results with THC are similar to those obtained for male rats tested under identical conditions in a previous study; however, in contrast with the present results in females, male adolescent rats in the previous study failed to develop behavioral sensitization to ketamine. Together, these results suggest that age and sex strongly influence the progressive adaptive changes that occur with repeated administration of some, but not all, of these commonly abused substances. PMID:22180350

  3. Adapting evidence-based, cognitive-behavioral interventions for anxiety for use with adults in integrated primary care settings.

    PubMed

    Shepardson, Robyn L; Funderburk, Jennifer S; Weisberg, Risa B

    2016-06-01

    Evidence-based treatments for adult patients with anxiety are greatly needed within primary care settings. Psychotherapy protocols, including those for cognitive-behavioral therapy (CBT), are often disorder-specific and were developed for specialty mental health settings, rendering them infeasible in primary care. Behavioral health consultants (BHCs) integrated into primary care settings are uniquely positioned to provide anxiety treatment. However, due to the dearth of empirically supported brief treatments for anxiety, BHCs are tasked with adapting existing treatments for use in primary care, which is quite challenging due to the abbreviated format and population-based approach to care. CBT protocols are highly effective in the treatment of anxiety and fit well with the self-management emphasis of integrated primary care. We review the rationale and procedure for 6 evidence-based CBT intervention techniques (psycho-education, mindfulness and acceptance-based behavioral techniques, relaxation training, exposure, cognitive restructuring, and behavioral activation) that can be adapted for use in the brief format typical of integrated primary care. We offer tips based on our clinical experience, highlight resources (e.g., handouts, websites, apps), and discuss 2 case examples to aid BHCs in their everyday practice. Our goal is to provide BHCs with practical knowledge that will facilitate the use of evidence-based interventions to improve the treatment of anxiety in primary care settings. (PsycINFO Database Record PMID:27064434

  4. Dialectical Behavior Therapy for Adolescents: Theory, Treatment Adaptations, and Empirical Outcomes

    ERIC Educational Resources Information Center

    MacPherson, Heather A.; Cheavens, Jennifer S.; Fristad, Mary A.

    2013-01-01

    Dialectical behavior therapy (DBT) was originally developed for chronically suicidal adults with borderline personality disorder (BPD) and emotion dysregulation. Randomized controlled trials (RCTs) indicate DBT is associated with improvements in problem behaviors, including suicide ideation and behavior, non-suicidal self-injury (NSSI), attrition,…

  5. Toward a Mechanics of Adaptive Behavior: Evolutionary Dynamics and Matching Theory Statics

    ERIC Educational Resources Information Center

    McDowell, J. J.; Popa, Andrei

    2010-01-01

    One theory of behavior dynamics instantiates the idea that behavior evolves in response to selection pressure from the environment in the form of reinforcement. This computational theory implements Darwinian principles of selection, reproduction, and mutation, which operate on a population of potential behaviors by means of a genetic algorithm.…

  6. Effects of acute and repeated administration of N-methyl-D-aspartate (NMDA) into the ventral tegmental area: locomotor activating effects of NMDA and cocaine.

    PubMed

    Schenk, S; Partridge, B

    1997-09-26

    Repeated, intermittent administration of psychostimulants produces an enhancement of the subsequent behavioral effects of these drugs. This behavioral sensitization has been implicated in maintenance of and relapse to drug-taking. As a result, there has been great interest in elucidating the mechanisms underlying both the development and expression of sensitization. An accumulation of data from studies of stimulant-induced locomotor activity has implicated excitatory amino acids in the development of behavioral sensitization. In the present study, N-methyl-D-aspartate (NMDA) (0.6, 1.25 or 2.5 microg) infused bilaterally into the ventral tegmental area (VTA) produced dose-dependent locomotor activation. The locomotor activating effect of NMDA was increased following repeated NMDA administration (two exposures to intra-VTA NMDA), suggesting sensitization. However, repeated intra-VTA NMDA failed to sensitize rats to the locomotor activating effects of systemically administered cocaine (5.0, 10.0 or 20.0 mg/kg). These findings are consistent with the notion that repeated activation of NMDA receptors is sufficient for the development of behavioral sensitization to NMDA. Other neuroadaptations produced by repeated psychostimulant administration are required in order for the development of sensitization to the behavioral effects of those drugs. PMID:9374190

  7. Covert rapid action-memory simulation (CRAMS): a hypothesis of hippocampal-prefrontal interactions for adaptive behavior.

    PubMed

    Wang, Jane X; Cohen, Neal J; Voss, Joel L

    2015-01-01

    Effective choices generally require memory, yet little is known regarding the cognitive or neural mechanisms that allow memory to influence choices. We outline a new framework proposing that covert memory processing of hippocampus interacts with action-generation processing of prefrontal cortex in order to arrive at optimal, memory-guided choices. Covert, rapid action-memory simulation (CRAMS) is proposed here as a framework for understanding cognitive and/or behavioral choices, whereby prefrontal-hippocampal interactions quickly provide multiple simulations of potential outcomes used to evaluate the set of possible choices. We hypothesize that this CRAMS process is automatic, obligatory, and covert, meaning that many cycles of action-memory simulation occur in response to choice conflict without an individual's necessary intention and generally without awareness of the simulations, leading to adaptive behavior with little perceived effort. CRAMS is thus distinct from influential proposals that adaptive memory-based behavior in humans requires consciously experienced memory-based construction of possible future scenarios and deliberate decisions among possible future constructions. CRAMS provides an account of why hippocampus has been shown to make critical contributions to the short-term control of behavior, and it motivates several new experimental approaches and hypotheses that could be used to better understand the ubiquitous role of prefrontal-hippocampal interactions in situations that require adaptively using memory to guide choices. Importantly, this framework provides a perspective that allows for testing decision-making mechanisms in a manner that translates well across human and nonhuman animal model systems. PMID:24752152

  8. Static and quasi-static behavior of an adaptive system to compensate path errors for smart fiber placement

    NASA Astrophysics Data System (ADS)

    Perner, M.; Monner, H. P.; Krombholz, C.; Kruse, F. F.

    2015-04-01

    Smart fiber placement is an ambitious topic in current research for automated manufacturing of large-scale composite structures, e.g. wing covers. Adaptive systems get in focus to obtain a high degree of observability and controllability of the manufacturing process. In particular, vibrational issues and material failure have to be studied to significantly increase the production rate with no loss in accuracy of the fiber layup. As one contribution, an adaptive system has been developed to be integrated into the fiber placement head. It decouples the compaction roller from disturbances caused by misalignments, varying components' behavior over a large work area and acceleration changes during operation. Therefore, the smart system axially adapts the position of the compaction roller in case of disturbances. This paper investigates the behavior of the system to compensate quasi-static deviations from the desired path. In particular, the compensation efficiency of a constant offset, a linear drift with constant gradient and a single-curved drift is studied. Thus, the test bed with measurement devices and scenarios is explained. Based on the knowledge obtained by the experimental data, the paper concludes with a discussion of the proposed approach for its use under operating conditions and further implementation.

  9. Down-Regulation of Decapping Protein 2 Mediates Chronic Nicotine Exposure-Induced Locomotor Hyperactivity in Drosophila

    PubMed Central

    Ren, Jing; Sun, Jinghan; Zhang, Yunpeng; Liu, Tong; Ren, Qingzhong; Li, Yan; Guo, Aike

    2012-01-01

    Long-term tobacco use causes nicotine dependence via the regulation of a wide range of genes and is accompanied by various health problems. Studies in mammalian systems have revealed some key factors involved in the effects of nicotine, including nicotinic acetylcholine receptors (nAChRs), dopamine and other neurotransmitters. Nevertheless, the signaling pathways that link nicotine-induced molecular and behavioral modifications remain elusive. Utilizing a chronic nicotine administration paradigm, we found that adult male fruit flies exhibited locomotor hyperactivity after three consecutive days of nicotine exposure, while nicotine-naive flies did not. Strikingly, this chronic nicotine-induced locomotor hyperactivity (cNILH) was abolished in Decapping Protein 2 or 1 (Dcp2 or Dcp1) -deficient flies, while only Dcp2-deficient flies exhibited higher basal levels of locomotor activity than controls. These results indicate that Dcp2 plays a critical role in the response to chronic nicotine exposure. Moreover, the messenger RNA (mRNA) level of Dcp2 in the fly head was suppressed by chronic nicotine treatment, and up-regulation of Dcp2 expression in the nervous system blocked cNILH. These results indicate that down-regulation of Dcp2 mediates chronic nicotine-exposure-induced locomotor hyperactivity in Drosophila. The decapping proteins play a major role in mRNA degradation; however, their function in the nervous system has rarely been investigated. Our findings reveal a significant role for the mRNA decapping pathway in developing locomotor hyperactivity in response to chronic nicotine exposure and identify Dcp2 as a potential candidate for future research on nicotine dependence. PMID:23300696

  10. Metachronal coupling between spinal neuronal networks during locomotor activity in newborn rat

    PubMed Central

    Falgairolle, Mélanie; Cazalets, Jean-René

    2007-01-01

    In the present study, we investigate spinal cord neuronal network interactions in the neonatal rat during locomotion. The behavioural and physiological relevance of metachronally propagated locomotor activity were inferred from kinematic, anatomical and in vitro electrophysiological data. Kinematic analysis of freely behaving animals indicated that there is a rhythmic sequential change in trunk curvature during the step cycle. The motoneurons innervating back and tail muscles were identified along the spinal cord using retrograde labelling. Systematic multiple recordings from ventral roots were made to determine the precise intrinsic pattern of coordination in the isolated spinal cord. During locomotor-like activity, rhythmic ventral root motor bursts propagate caudo-rostrally in the sacral and the thoracic spinal cord regions. Plotting the latency as a function of the cycle period revealed that the system adapts the intersegmental latency to the ongoing motor period in order to maintain a constant phase relationship along the spinal axis. The thoracic, lumbar and sacral regions were capable of generating right and left alternating motor bursts when isolated. Longitudinal sections of the spinal cord revealed that both the bilateral antiphase pattern observed for the sacral region with respect to the lumbar segment 2 as well as the intersegmental phase lag were due to cross-cord connections. Together, these results provide physiological evidence that the dynamic changes observed in trunk bending during locomotion are determined by the intrinsic organization of spinal cord networks and their longitudinal and transverse interactions. Similarities between this organization, and that of locomotor pattern generation in more primitive vertebrates, suggest that the circuits responsible for metachronal propagation of motor patterns during locomotion are highly conserved. PMID:17185345

  11. Developing Sensorimotor Countermeasures to Mitigate Post-Flight Locomotor Dysfunction

    NASA Technical Reports Server (NTRS)

    Bloomberg, J. J.; Mulavara, A. P.; Cohen, H.; Miller, C. A.; Richards, J. T.; Houser, J.; McDonald, P. V.; Seidler, R. D.; Merkle, L. A.; Stelmach, G. E.

    2001-01-01

    Following spaceflight, crewmembers experience postural and locomotor instability. The magnitude and duration of post-flight sensorimotor disturbances increase with longer duration exposure to microgravity. These post-flight postural and locomotor alterations can pose a risk to crew safety and to mission objectives if nominal or emergency vehicle egress is required immediately following long-duration spaceflight. Gait instabilities could prevent or extend the time required to make an emergency egress from the Orbiter, Crew Return Vehicle or a future Martian lander leading to compromised mission objectives. We propose a countermeasure that aids in maintaining functional locomotor performance. This includes retaining the ability to perform vehicular egress and meet early mission objectives soon after landing on a planetary surface.

  12. Advancing Behavioral HIV Prevention: Adapting an Evidence-Based Intervention for People Living with HIV and Alcohol Use Disorders

    PubMed Central

    Armstrong, M. L.; LaPlante, A. M.; Altice, F. L.; Copenhaver, M.; Molina, P. E.

    2015-01-01

    Alcohol use disorders (AUDs) are highly prevalent among people living with HIV/AIDS (PLWHA) and are associated with increased HIV risk behaviors, suboptimal treatment adherence, and greater risk for disease progression. We used the ADAPT-ITT strategy to adapt an evidence-based intervention (EBI), the Holistic Health Recovery Program (HHRP+), that focuses on secondary HIV prevention and antiretroviral therapy (ART) adherence and apply it to PLWHA with problematic drinking. Focus groups (FGs) were conducted with PLWHA who consume alcohol and with treatment providers at the largest HIV primary care clinic in New Orleans, LA. Overall themes that emerged from the FGs included the following: (1) negative mood states contribute to heavy alcohol consumption in PLWHA; (2) high levels of psychosocial stress, paired with few adaptive coping strategies, perpetuate the use of harmful alcohol consumption in PLWHA; (3) local cultural norms are related to the permissiveness and pervasiveness of drinking and contribute to heavy alcohol use; (4) healthcare providers unanimously stated that outpatient options for AUD intervention are scarce, (5) misperceptions about the relationships between alcohol and HIV are common; (6) PLWHA are interested in learning about alcohol's impact on ART and HIV disease progression. These data were used to design the adapted EBI. PMID:26697216

  13. The Chinese Life-Steps Program: A Cultural Adaptation of a Cognitive-Behavioral Intervention to Enhance HIV Medication Adherence

    PubMed Central

    Shiu, Cheng-Shi; Chen, Wei-Ti; Simoni, Jane; Fredriksen-Goldsen, Karen; Zhang, Fujie; Zhou, Hongxin

    2013-01-01

    China is considered to be the new frontier of the global AIDS pandemic. Although effective treatment for HIV is becoming widely available in China, adherence to treatment remains a challenge. This study aimed to adapt an intervention promoting HIV-medication adherence—favorably evaluated in the West—for Chinese HIV-positive patients. The adaptation process was theory-driven and covered several key issues of cultural adaptation. We considered the importance of interpersonal relationships and family in China and cultural notions of health. Using an evidence-based treatment protocol originally designed for Western HIV-positive patients, we developed an 11-step Chinese Life-Steps program with an additional culture-specific intervention option. We describe in detail how the cultural elements were incorporated into the intervention and put into practice at each stage. Clinical considerations are also outlined and followed by two case examples that are provided to illustrate our application of the intervention. Finally, we discuss practical and research issues and limitations emerging from our field experiments in a HIV clinic in Beijing. The intervention was tailored to address both universal and culturally specific barriers to adherence and is readily applicable to generalized clinical settings. This evidence-based intervention provides a case example of the process of adapting behavioral interventions to culturally diverse communities with limited resources. PMID:23667305

  14. Association of locomotor complaints and disability in the Rotterdam study.

    PubMed Central

    Odding, E; Valkenburg, H A; Algra, D; Vandenouweland, F A; Grobbee, D E; Hofman, A

    1995-01-01

    OBJECTIVE--To determine the association between joint complaints and locomotor disability. METHODS--During a home interview survey 1901 men and 3135 women aged 55 years and over (the Rotterdam Study) were asked about joint pain and morning stiffness in the past month, and locomotor disability was assessed by six questions from the Health Assessment Questionnaire (HAQ). RESULTS--The prevalence of locomotor disability was 24.5% for men and 40.5% for women. The prevalence of joint pain in men was 0.7% for pain in the hips, knees, and feet simultaneously, 3.7% for pain at two joint sites, 16.0% for pain at one joint site, and 20.4% for pain in the hips and/or knees and/or feet (any joint site); the corresponding estimates for women were 1.9%, 9.0%, 23.7%, and 34.5%, respectively. The prevalence of generalised morning stiffness was 4.9% for men and 10.4% for women. The age adjusted odds ratios for locomotor disability in men ranged from 2.4 of pain at one joint site to 8.8 of pain at all three joint sites; for women these odds ratios varied between 2.5 and 5.7, respectively. The age adjusted odds ratios of generalised morning stiffness were 8.0 for men and 7.3 for women. CONCLUSION--There is a strong and independent association between locomotor disability and age, joint pain, and generalised morning stiffness in people aged 55 years and over. The odds for locomotor disability increase onefold for every year increase in age, while the presence of generalised morning stiffness is of greater influence than the presence of joint pain. PMID:7495342

  15. Adaptive Behaviors in High-Functioning Taiwanese Children with Autism Spectrum Disorders: An Investigation of the Mediating Roles of Symptom Severity and Cognitive Ability

    ERIC Educational Resources Information Center

    Chang, Chen-Lin; Lung, For-Wey; Yen, Cheng-Fang; Yang, Pinchen

    2013-01-01

    We investigated the relationship among cognitive level, autistic severity and adaptive function in a Taiwanese sample of 94 high-functioning children with autism spectrum disorders (ASD) (mean full scale intelligent quotients FSIQ = 84.8). Parents and teachers both completed the Adaptive Behavior Assessment System-II and the Social Responsiveness…

  16. Genotypic structure of a Drosophila population for adult locomotor activity

    SciTech Connect

    Grechanyi, G.V.; Korzun, V.M.

    1995-01-01

    Analysis of the variation of adult locomotor activity in four samples taken at different times from a natural population of Drosophila melanogaster showed that the total variation of this trait is relatively stable in time and has a substantial genetic component. Genotypic structure of the population for locomotor activity is characterized by the presence of large groups of genotypes with high and low values of this trait. A possible explanation for the presence of such groups in a population is cyclic density-dependent selection.

  17. Cognitive flexibility in adolescence: neural and behavioral mechanisms of reward prediction error processing in adaptive decision making during development.

    PubMed

    Hauser, Tobias U; Iannaccone, Reto; Walitza, Susanne; Brandeis, Daniel; Brem, Silvia

    2015-01-01

    Adolescence is associated with quickly changing environmental demands which require excellent adaptive skills and high cognitive flexibility. Feedback-guided adaptive learning and cognitive flexibility are driven by reward prediction error (RPE) signals, which indicate the accuracy of expectations and can be estimated using computational models. Despite the importance of cognitive flexibility during adolescence, only little is known about how RPE processing in cognitive flexibility deviates between adolescence and adulthood. In this study, we investigated the developmental aspects of cognitive flexibility by means of computational models and functional magnetic resonance imaging (fMRI). We compared the neural and behavioral correlates of cognitive flexibility in healthy adolescents (12-16years) to adults performing a probabilistic reversal learning task. Using a modified risk-sensitive reinforcement learning model, we found that adolescents learned faster from negative RPEs than adults. The fMRI analysis revealed that within the RPE network, the adolescents had a significantly altered RPE-response in the anterior insula. This effect seemed to be mainly driven by increased responses to negative prediction errors. In summary, our findings indicate that decision making in adolescence goes beyond merely increased reward-seeking behavior and provides a developmental perspective to the behavioral and neural mechanisms underlying cognitive flexibility in the context of reinforcement learning. PMID:25234119

  18. Mexican American women's perspectives on a culturally adapted cognitive-behavioral therapy guided self-help program for binge eating.

    PubMed

    Shea, Munyi; Cachelin, Fary M; Gutierrez, Guadalupe; Wang, Sherry; Phimphasone, Phoutdavone

    2016-02-01

    The prevalence of bulimia nervosa (BN) and binge eating disorder (BED) among Latinas is comparable to those of the general population; however, few interventions and treatment trial research have focused on this group. Cognitive-behavioral therapy (CBT) is the treatment of choice for binge eating related disorders. CBT-based guided self-help (CBTgsh)-a low-cost minimal intervention-has also been shown effective in improving binge eating related symptom, but the effectiveness of the CBTgsh among ethnic minority women is not well understood. Cultural adaptation of evidence-based treatments can be an important step for promoting treatment accessibility and engagement among underserved groups. This qualitative study was part of a larger investigation that examined the feasibility and efficacy of a culturally adapted CBTgsh program among Mexican American women with binge eating disorders. Posttreatment focus groups were conducted with 12 Mexican American women with BN or BED who participated in the intervention. Data were analyzed with the grounded theory methodology (Corbin & Strauss, 2008). Three themes emerged from the data: (a) eating behavior and body ideals are socially and culturally constructed, (b) multifaceted support system is crucial to Mexican American women's treatment engagement and success, and (c) the culturally adapted CBTgsh program is feasible and relevant to Mexican American women's experience, but it can be strengthened with increased family and peer involvement. The findings provide suggestions for further adaptation and refinement of the CBTgsh, and implications for future research as well as early intervention for disordered eating in organized care settings. PMID:26462112

  19. The Appalachian Perspective: An Adaptation to a Parent Training Program for Disruptive Behavior Disorders

    ERIC Educational Resources Information Center

    Newland, Jessica Marie

    2010-01-01

    Disruptive behavior disorders in children are distressing to others due to the abnormal nature of the child's behavior (Christophersen & Mortweet, 2003). These disorders include attention-deficit/hyperactivity disorder (ADHD), oppositional defiant disorder (ODD), and conduct disorder (CD). Prevalent rates for these disorders range from 2% to 23%…

  20. Role of proinflammatory cytokines on lipopolysaccharide-induced phase shifts in locomotor activity circadian rhythm.

    PubMed

    Leone, M Juliana; Marpegan, Luciano; Duhart, José M; Golombek, Diego A

    2012-07-01

    We previously reported that early night peripheral bacterial lipopolysaccharide (LPS) injection produces phase delays in the circadian rhythm of locomotor activity in mice. We now assess the effects of proinflammatory cytokines on circadian physiology, including their role in LPS-induced phase shifts. First, we investigated whether differential systemic induction of classic proinflammatory cytokines could explain the time-specific behavioral effects of peripheral LPS. Induction levels for plasma interleukin (IL)-1α, IL-1β, IL-6, or tumor necrosis factor (TNF)-α did not differ between animals receiving a LPS challenge in the early day or early night. We next tested the in vivo effects of central proinflammatory cytokines on circadian physiology. We found that intracerebroventricular (i.c.v.) delivery of TNF-α or interleukin IL-1β induced phase delays on wheel-running activity rhythms. Furthermore, we analyzed if these cytokines mediate the LPS-induced phase shifts and found that i.c.v. administration of soluble TNF-α receptor (but not an IL-1β antagonistic) prior to LPS stimulation inhibited the phase delays. Our work suggests that the suprachiasmatic nucleus (SCN) responds to central proinflammatory cytokines