Sample records for adaptive memory programming

  1. Adaptive powertrain control for plugin hybrid electric vehicles

    DOEpatents

    Kedar-Dongarkar, Gurunath; Weslati, Feisel

    2013-10-15

    A powertrain control system for a plugin hybrid electric vehicle. The system comprises an adaptive charge sustaining controller; at least one internal data source connected to the adaptive charge sustaining controller; and a memory connected to the adaptive charge sustaining controller for storing data generated by the at least one internal data source. The adaptive charge sustaining controller is operable to select an operating mode of the vehicle's powertrain along a given route based on programming generated from data stored in the memory associated with that route. Further described is a method of adaptively controlling operation of a plugin hybrid electric vehicle powertrain comprising identifying a route being traveled, activating stored adaptive charge sustaining mode programming for the identified route and controlling operation of the powertrain along the identified route by selecting from a plurality of operational modes based on the stored adaptive charge sustaining mode programming.

  2. Method for programming a flash memory

    DOEpatents

    Brosky, Alexander R.; Locke, William N.; Maher, Conrado M.

    2016-08-23

    A method of programming a flash memory is described. The method includes partitioning a flash memory into a first group having a first level of write-protection, a second group having a second level of write-protection, and a third group having a third level of write-protection. The write-protection of the second and third groups is disabled using an installation adapter. The third group is programmed using a Software Installation Device.

  3. Failure of Working Memory Training to Enhance Cognition or Intelligence

    PubMed Central

    Thompson, Todd W.; Waskom, Michael L.; Garel, Keri-Lee A.; Cardenas-Iniguez, Carlos; Reynolds, Gretchen O.; Winter, Rebecca; Chang, Patricia; Pollard, Kiersten; Lala, Nupur; Alvarez, George A.; Gabrieli, John D. E.

    2013-01-01

    Fluid intelligence is important for successful functioning in the modern world, but much evidence suggests that fluid intelligence is largely immutable after childhood. Recently, however, researchers have reported gains in fluid intelligence after multiple sessions of adaptive working memory training in adults. The current study attempted to replicate and expand those results by administering a broad assessment of cognitive abilities and personality traits to young adults who underwent 20 sessions of an adaptive dual n-back working memory training program and comparing their post-training performance on those tests to a matched set of young adults who underwent 20 sessions of an adaptive attentional tracking program. Pre- and post-training measurements of fluid intelligence, standardized intelligence tests, speed of processing, reading skills, and other tests of working memory were assessed. Both training groups exhibited substantial and specific improvements on the trained tasks that persisted for at least 6 months post-training, but no transfer of improvement was observed to any of the non-trained measurements when compared to a third untrained group serving as a passive control. These findings fail to support the idea that adaptive working memory training in healthy young adults enhances working memory capacity in non-trained tasks, fluid intelligence, or other measures of cognitive abilities. PMID:23717453

  4. Trained immunity: a program of innate immune memory in health and disease

    PubMed Central

    Netea, Mihai G.; Joosten, Leo A.B.; Latz, Eicke; Mills, Kingston H.G.; Natoli, Gioacchino; Stunnenberg, Hendrik G.; O’Neill, Luke A.J.; Xavier, Ramnik J.

    2016-01-01

    The general view that only adaptive immunity can build immunological memory has recently been challenged. In organisms lacking adaptive immunity as well as in mammals, the innate immune system can mount resistance to reinfection, a phenomenon termed trained immunity or innate immune memory. Trained immunity is orchestrated by epigenetic reprogramming, broadly defined as sustained changes in gene expression and cell physiology that do not involve permanent genetic changes such as mutations and recombination, which are essential for adaptive immunity. The discovery of trained immunity may open the door for novel vaccine approaches, for new therapeutic strategies for the treatment of immune deficiency states, and for modulation of exaggerated inflammation in autoinflammatory diseases. PMID:27102489

  5. Working memory training in survivors of pediatric cancer: a randomized pilot study.

    PubMed

    Hardy, Kristina K; Willard, Victoria W; Allen, Taryn M; Bonner, Melanie J

    2013-08-01

    Survivors of pediatric brain tumors and acute lymphoblastic leukemia (ALL) are at increased risk for neurocognitive deficits, but few empirically supported treatment options exist. We examined the feasibility and preliminary efficacy of a home-based, computerized working memory training program, CogmedRM, with survivors of childhood cancer. Survivors of brain tumors or ALL (n = 20) with identified deficits in attention and/or working memory were randomized to either the success-adapted computer intervention or a non-adaptive, active control condition. Specifically, children in the adaptive condition completed exercises that became more challenging with each correct trial, whereas those in the non-adaptive version trained with exercises that never increased in difficulty. All participants were asked to complete 25 training sessions at home, with weekly, phone-based coaching support. Brief assessments were completed pre-intervention and post-intervention; outcome measures included both performance-based and parent-report measures of working memory and attention. Eighty-five percent of survivors were compliant with the intervention, with no adverse events reported. After controlling for baseline intellectual functioning, survivors who completed the intervention program evidenced significant post-training improvements in their visual working memory and in parent-rated learning problems compared with those in the active control group. No differences in verbal working memory functioning were evident between groups, however. Home-based, computerized cognitive training demonstrates good feasibility and acceptability in our sample. Children with higher intellectual functioning at baseline appeared to benefit more from the training, although further study is needed to clarify the strength, scope, and particularly the generalizability of potential treatment effects. Copyright © 2012 John Wiley & Sons, Ltd.

  6. Effectiveness of Working Memory Training among Subjects Currently on Sick Leave Due to Complex Symptoms.

    PubMed

    Aasvik, Julie K; Woodhouse, Astrid; Stiles, Tore C; Jacobsen, Henrik B; Landmark, Tormod; Glette, Mari; Borchgrevink, Petter C; Landrø, Nils I

    2016-01-01

    Introduction: The current study examined if adaptive working memory training (Cogmed QM) has the potential to improve inhibitory control, working memory capacity, and perceptions of memory functioning in a group of patients currently on sick leave due to symptoms of pain, insomnia, fatigue, depression and anxiety. Participants who were referred to a vocational rehabilitation center volunteered to take part in the study. Methods: Participants were randomly assigned to either a training condition ( N = 25) or a control condition ( N = 29). Participants in the training condition received working memory training in addition to the clinical intervention offered as part of the rehabilitation program, while participants in the control condition received treatment as usual i.e., the rehabilitation program only. Inhibitory control was measured by The Stop Signal Task, working memory was assessed by the Spatial Working Memory Test, while perceptions of memory functioning were assessed by The Everyday Memory Questionnaire-Revised. Results: Participants in the training group showed a significant improvement on the post-tests of inhibitory control when compared with the comparison group ( p = 0.025). The groups did not differ on the post-tests of working memory. Both groups reported less memory problems at post-testing, but there was no sizeable difference between the two groups. Conclusions: Results indicate that working memory training does not improve general working memory capacity per se . Nor does it seem to give any added effects in terms of targeting and improving self-perceived memory functioning. Results do, however, provide evidence to suggest that inhibitory control is accessible and susceptible to modification by adaptive working memory training.

  7. Encoding mechano-memories in filamentous-actin networks

    NASA Astrophysics Data System (ADS)

    Majumdar, Sayantan; Foucard, Louis; Levine, Alex; Gardel, Margaret L.

    History-dependent adaptation is a central feature of learning and memory. Incorporating such features into `adaptable materials' that can modify their mechanical properties in response to external cues, remains an outstanding challenge in materials science. Here, we study a novel mechanism of mechano-memory in cross-linked F-actin networks, the essential determinants of the mechanical behavior of eukaryotic cells. We find that the non-linear mechanical response of such networks can be reversibly programmed through induction of mechano-memories. In particular, the direction, magnitude, and duration of previously applied shear stresses can be encoded into the network architecture. The `memory' of the forcing history is long-lived, but it can be erased by force applied in the opposite direction. These results demonstrate that F-actin networks can encode analog read-write mechano-memories which can be used for adaptation to mechanical stimuli. We further show that the mechano-memory arises from changes in the nematic order of the constituent filaments. Our results suggest a new mechanism of mechanical sensing in eukaryotic cells and provide a strategy for designing a novel class of materials. S.M. acknowledges U. Chicago MRSEC for support through a Kadanoff-Rice fellowship.

  8. Microprogramming Handbook. Second Edition.

    ERIC Educational Resources Information Center

    Microdata Corp., Santa Ana, CA.

    Instead of instructions residing in the main memory as in a fixed instruction computer, a micro-programable computer has a separete read-only memory which is alterable so that the system can be efficiently adapted to the application at hand. Microprogramable computers are faster than fixed instruction computers for several reasons: instruction…

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hull, L.C.

    The Prickett and Lonnquist two-dimensional groundwater model has been programmed for the Apple II minicomputer. Both leaky and nonleaky confined aquifers can be simulated. The model was adapted from the FORTRAN version of Prickett and Lonnquist. In the configuration presented here, the program requires 64 K bits of memory. Because of the large number of arrays used in the program, and memory limitations of the Apple II, the maximum grid size that can be used is 20 rows by 20 columns. Input to the program is interactive, with prompting by the computer. Output consists of predicted lead values at themore » row-column intersections (nodes).« less

  10. Multi-layered epigenetic mechanisms contribute to transcriptional memory in T lymphocytes.

    PubMed

    Dunn, Jennifer; McCuaig, Robert; Tu, Wen Juan; Hardy, Kristine; Rao, Sudha

    2015-05-06

    Immunological memory is the ability of the immune system to respond more rapidly and effectively to previously encountered pathogens, a key feature of adaptive immunity. The capacity of memory T cells to "remember" previous cellular responses to specific antigens ultimately resides in their unique patterns of gene expression. Following re-exposure to an antigen, previously activated genes are transcribed more rapidly and robustly in memory T cells compared to their naïve counterparts. The ability for cells to remember past transcriptional responses is termed "adaptive transcriptional memory". Recent global epigenome studies suggest that epigenetic mechanisms are central to establishing and maintaining transcriptional memory, with elegant studies in model organisms providing tantalizing insights into the epigenetic programs that contribute to adaptive immunity. These epigenetic mechanisms are diverse, and include not only classical acetylation and methylation events, but also exciting and less well-known mechanisms involving histone structure, upstream signalling pathways, and nuclear localisation of genomic regions. Current global health challenges in areas such as tuberculosis and influenza demand not only more effective and safer vaccines, but also vaccines for a wider range of health priorities, including HIV, cancer, and emerging pathogens such as Ebola. Understanding the multi-layered epigenetic mechanisms that underpin the rapid recall responses of memory T cells following reactivation is a critical component of this development pathway.

  11. Vascular surgical data registries for small computers.

    PubMed

    Kaufman, J L; Rosenberg, N

    1984-08-01

    Recent designs for computer-based vascular surgical registries and clinical data bases have employed large centralized systems with formal programming and mass storage. Small computers, of the types created for office use or for word processing, now contain sufficient speed and memory storage capacity to allow construction of decentralized office-based registries. Using a standardized dictionary of terms and a method of data organization adapted to word processing, we have created a new vascular surgery data registry, "VASREG." Data files are organized without programming, and a limited number of powerful logical statements in English are used for sorting. The capacity is 25,000 records with current inexpensive memory technology. VASREG is adaptable to computers made by a variety of manufacturers, and interface programs are available for conversion of the word processor formated registry data into forms suitable for analysis by programs written in a standard programming language. This is a low-cost clinical data registry available to any physician. With a standardized dictionary, preparation of regional and national statistical summaries may be facilitated.

  12. Molecular Mechanisms That Underlie the Dynamic Adaptation of Innate Monocyte Memory to Varying Stimulant Strength of TLR Ligands.

    PubMed

    Yuan, Ruoxi; Geng, Shuo; Li, Liwu

    2016-01-01

    In adaptation to rising stimulant strength, innate monocytes can be dynamically programed to preferentially express either pro- or anti-inflammatory mediators. Such dynamic innate adaptation or programing may bear profound relevance in host health and disease. However, molecular mechanisms that govern innate adaptation to varying strength of stimulants are not well understood. Using lipopolysaccharide (LPS), the model stimulant of toll-like-receptor 4 (TLR4), we reported that the expressions of pro-inflammatory mediators are preferentially sustained in monocytes adapted by lower doses of LPS, and suppressed/tolerized in monocytes adapted by higher doses of LPS. Mechanistically, monocytes adapted by super-low dose LPS exhibited higher levels of transcription factor, interferon regulatory factor 5 (IRF5), and reduced levels of transcriptional modulator B lymphocyte-induced maturation protein-1 (Blimp-1). Intriguingly, the inflammatory monocyte adaptation by super-low dose LPS is dependent upon TRAM/TRIF but not MyD88. Similar to LPS, we also observed biphasic inflammatory adaptation and tolerance in monocytes challenged with varying dosages of TLR7 agonist. In sharp contrast, rising doses of TLR3 agonist preferentially caused inflammatory adaptation without inducing tolerance. At the molecular level, the differential regulation of IRF5 and Blimp-1 coincides with unique monocyte adaptation dynamics by TLR4/7 and TLR3 agonists. Our study provides novel clue toward the understanding of monocyte adaptation and memory toward distinct TLR ligands.

  13. A manual for PARTI runtime primitives

    NASA Technical Reports Server (NTRS)

    Berryman, Harry; Saltz, Joel

    1990-01-01

    Primitives are presented that are designed to help users efficiently program irregular problems (e.g., unstructured mesh sweeps, sparse matrix codes, adaptive mesh partial differential equations solvers) on distributed memory machines. These primitives are also designed for use in compilers for distributed memory multiprocessors. Communications patterns are captured at runtime, and the appropriate send and receive messages are automatically generated.

  14. Categories, diversity, and relevance of memory strategies reported by community-dwelling seniors.

    PubMed

    Haché, Marie-Michèle; Lussier, Maxime; Parisien, Manon; Langlois, Francis; Bier, Nathalie

    2018-01-01

    Memory strategies help seniors remember information that is essential for the performance of their daily activities and contribute to their independence in the context of declining memory skills. This study aimed to analyze the categories, the diversity, and relevance of memory strategies known by seniors, and to identify individual characteristics that correlated with these variables. The sample consisted of 294 participants aged 60 and over who decided to take part in a cognitive vitality promotion program. An adapted version of the memory situation questionnaire (Troyer, 2001) was administered to identify the memory strategies that seniors would use in five daily life situations. A scoring grid, also adapted from the questionnaire's original version (Troyer, 2001), was used to quantify the relevance of the strategies that were reported by participants. All participants mentioned at least once that they would use a strategy from the physical category of memory strategies. Out of a possible range of 26 strategies, participants answered an average of 6.14 (SD = 1.7) different answers across the five situations. Based on expert consensus, 67.7% of the mentioned memory strategies were relevant. Diversity and relevance were significantly higher when trying to remember appointments, things to bring or phone numbers (p ≤ 0.05). The level of education, cognitive skills, and participation in leisure activities were related to diversity and relevance of reported strategies. Seniors know various and relevant memory strategies to perform daily activities. The advantages of integrating strategies that they already know in cognitive health promotion programs should be considered in further studies.

  15. A manual for PARTI runtime primitives, revision 1

    NASA Technical Reports Server (NTRS)

    Das, Raja; Saltz, Joel; Berryman, Harry

    1991-01-01

    Primitives are presented that are designed to help users efficiently program irregular problems (e.g., unstructured mesh sweeps, sparse matrix codes, adaptive mesh partial differential equations solvers) on distributed memory machines. These primitives are also designed for use in compilers for distributed memory multiprocessors. Communications patterns are captured at runtime, and the appropriate send and receive messages are automatically generated.

  16. Non-tables look-up search algorithm for efficient H.264/AVC context-based adaptive variable length coding decoding

    NASA Astrophysics Data System (ADS)

    Han, Yishi; Luo, Zhixiao; Wang, Jianhua; Min, Zhixuan; Qin, Xinyu; Sun, Yunlong

    2014-09-01

    In general, context-based adaptive variable length coding (CAVLC) decoding in H.264/AVC standard requires frequent access to the unstructured variable length coding tables (VLCTs) and significant memory accesses are consumed. Heavy memory accesses will cause high power consumption and time delays, which are serious problems for applications in portable multimedia devices. We propose a method for high-efficiency CAVLC decoding by using a program instead of all the VLCTs. The decoded codeword from VLCTs can be obtained without any table look-up and memory access. The experimental results show that the proposed algorithm achieves 100% memory access saving and 40% decoding time saving without degrading video quality. Additionally, the proposed algorithm shows a better performance compared with conventional CAVLC decoding, such as table look-up by sequential search, table look-up by binary search, Moon's method, and Kim's method.

  17. Implementing Dementia Care Models in Primary Care Settings: The Aging Brain Care Medical Home (Special Supplement)

    PubMed Central

    Callahan, Christopher M.; Boustani, Malaz A.; Weiner, Michael; Beck, Robin A.; Livin, Lee R.; Kellams, Jeffrey J.; Willis, Deanna R.; Hendrie, Hugh C.

    2010-01-01

    Objectives The purpose of this paper is to describe our experience in implementing a primary care-based dementia and depression care program focused on providing collaborative care for dementia and late-life depression. Methods Capitalizing on the substantial interest in the US on the patient-centered medical home concept, the Aging Brain Care Medical Home targets older adults with dementia and/or late life depression in the primary care setting. We describe a structured set of activities that laid the foundation for a new partnership with the primary care practice and the lessons learned in implementing this new care model. We also provide a description of the core components of this innovative memory care program. Results Findings from three recent randomized clinical trials provided the rationale and basic components for implementing the new memory care program. We used the reflective adaptive process as a relationship building framework that recognizes primary care practices as complex adaptive systems. This framework allows for local adaptation of the protocols and procedures developed in the clinical trials. Tailored care for individual patients is facilitated through a care manager working in collaboration with a primary care physician and supported by specialists in a memory care clinic as well as by information technology resources. Conclusions We have successfully overcome many system-level barriers in implementing a collaborative care program for dementia and depression in primary care. Spontaneous adoption of new models of care is unlikely without specific attention to the complexities and resource constraints of health care systems. PMID:20945236

  18. 'Biologic memory' in response to acute kidney injury: cytoresistance, toll-like receptor hyper-responsiveness and the onset of progressive renal disease.

    PubMed

    Zager, Richard A

    2013-08-01

    Following the induction of ischemic or toxin-mediated acute kidney injury (AKI), cellular adaptations occur that 're-program' how the kidney responds to future superimposed insults. This re-programming is not simply a short-lived phenomenon; rather it can persist for many weeks, implying that a state of 'biologic memory' has emerged. These changes can be both adaptive and maladaptive in nature and they can co-exist in time. A beneficial adaptation is the emergence of acquired cytoresistance, whereby a number of physiologic responses develop that serve to protect the kidney against further ischemic or nephrotoxic attack. Conversely, some changes are maladaptive, such as a predisposition to Gram-negative or Gram-positive bacteremia due to a renal tubular up-regulation of toll-like receptor responses. This latter change culminates in exaggerated cytokine production, and with efflux into the systemic circulation, extra-renal tissue injury can result (so-called 'organ cross talk'). Another maladaptive response is a persistent up-regulation of pro-inflammatory, pro-fibrotic and vasoconstrictive genes, culminating in progressive renal injury and ultimately end-stage renal failure. The mechanisms by which this biologic re-programming, or biologic memory, is imparted remain subjects for considerable debate. However, injury-induced, and stable, epigenetic remodeling at pro-inflammatory/pro-fibrotic genes seems likely to be involved. The goal of this editorial is to highlight that the so-called 'maintenance phase' of acute renal failure is not a static one, somewhere between injury induction and the onset of repair. Rather, this period is one in which the induction of 'biologic memory' can ultimately impact renal functional recovery, extra-renal injury and the possible transition of AKI into chronic, progressive renal disease.

  19. Memories of environmental change and local adaptations among molapo farming communities in the Okavango Delta, Botswana-A gender perspective.

    PubMed

    Ngwenya, B N; Thakadu, O T; Magole, L; Chimbari, M J

    2017-11-01

    This paper focuses on ways in which three riparian communities (Xobe, Shorobe and Tubu) practising flood recession (molapo) farming along the fringes of the Okavango Delta in Ngamiland District in north-western Botswana, present memories of experiential impacts of and adaptation to key environmental and anthropogenic change events. Participatory methodological tools were used to capture local knowledge of people who had resided in the Okavango wetlands for many years. Findings indicate that key environmental change events were characterized by intergenerational experiences of severe and frequent droughts, floods, and recurrent outbreaks of human and animal disease. These events had impacted livelihoods and well-being of communities. Community adaptation strategies were embedded in local institutions of governance, especially chieftainship and the Kgotla, as legitimate platforms for community re-organization against unpredictable environmental change. We concluded that policy/program formulation processes need to take cognisance of local communities' historical knowledge of environmental change and adaptation. In particular it emerged that men and women, and people of different ages have differentiated memories of historical events which are complementary and necessary in developing a comprehensive adaptation strategy. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Triple shape memory polymers by 4D printing

    NASA Astrophysics Data System (ADS)

    Bodaghi, M.; Damanpack, A. R.; Liao, W. H.

    2018-06-01

    This article aims at introducing triple shape memory polymers (SMPs) by four-dimensional (4D) printing technology and shaping adaptive structures for mechanical/bio-medical devices. The main approach is based on arranging hot–cold programming of SMPs with fused decomposition modeling technology to engineer adaptive structures with triple shape memory effect (SME). Experiments are conducted to characterize elasto-plastic and hyper-elastic thermo-mechanical material properties of SMPs in low and high temperatures at large deformation regime. The feasibility of the dual and triple SMPs with self-bending features is demonstrated experimentally. It is advantageous in situations either where it is desired to perform mechanical manipulations on the 4D printed objects for specific purposes or when they experience cold programming inevitably before activation. A phenomenological 3D constitutive model is developed for quantitative understanding of dual/triple SME of SMPs fabricated by 4D printing in the large deformation range. Governing equations of equilibrium are established for adaptive structures on the basis of the nonlinear Green–Lagrange strains. They are then solved by developing a finite element approach along with an elastic-predictor plastic-corrector return map procedure accomplished by the Newton–Raphson method. The computational tool is applied to simulate dual/triple SMP structures enabled by 4D printing and explore hot–cold programming mechanisms behind material tailoring. It is shown that the 4D printed dual/triple SMPs have great potential in mechanical/bio-medical applications such as self-bending gripers/stents and self-shrinking/tightening staples.

  1. Preventing academic difficulties in preterm children: a randomised controlled trial of an adaptive working memory training intervention - IMPRINT study.

    PubMed

    Pascoe, Leona; Roberts, Gehan; Doyle, Lex W; Lee, Katherine J; Thompson, Deanne K; Seal, Marc L; Josev, Elisha K; Nosarti, Chiara; Gathercole, Susan; Anderson, Peter J

    2013-09-16

    Very preterm children exhibit difficulties in working memory, a key cognitive ability vital to learning information and the development of academic skills. Previous research suggests that an adaptive working memory training intervention (Cogmed) may improve working memory and other cognitive and behavioural domains, although further randomised controlled trials employing long-term outcomes are needed, and with populations at risk for working memory deficits, such as children born preterm.In a cohort of extremely preterm (<28 weeks' gestation)/extremely low birthweight (<1000 g) 7-year-olds, we will assess the effectiveness of Cogmed in improving academic functioning 2 years' post-intervention. Secondary objectives are to assess the effectiveness of Cogmed in improving working memory and attention 2 weeks', 12 months' and 24 months' post-intervention, and to investigate training related neuroplasticity in working memory neural networks 2 weeks' post-intervention. This double-blind, placebo-controlled, randomised controlled trial aims to recruit 126 extremely preterm/extremely low birthweight 7-year-old children. Children attending mainstream school without major intellectual, sensory or physical impairments will be eligible. Participating children will undergo an extensive baseline cognitive assessment before being randomised to either an adaptive or placebo (non-adaptive) version of Cogmed. Cogmed is a computerised working memory training program consisting of 25 sessions completed over a 5 to 7 week period. Each training session takes approximately 35 minutes and will be completed in the child's home. Structural, diffusion and functional Magnetic Resonance Imaging, which is optional for participants, will be completed prior to and 2 weeks following the training period. Follow-up assessments focusing on academic skills (primary outcome), working memory and attention (secondary outcomes) will be conducted at 2 weeks', 12 months' and 24 months' post-intervention. To our knowledge, this study will be the first randomised controlled trial to (a) assess the effectiveness of Cogmed in school-aged extremely preterm/extremely low birthweight children, while incorporating advanced imaging techniques to investigate neural changes associated with adaptive working memory training, and (b) employ long-term follow-up to assess the potential benefit of improved working memory on academic functioning. If effective, Cogmed would serve as a valuable, available intervention for improving developmental outcomes for this population. Australian New Zealand Clinical Trials Registry ACTRN12612000124831.

  2. Programming model for distributed intelligent systems

    NASA Technical Reports Server (NTRS)

    Sztipanovits, J.; Biegl, C.; Karsai, G.; Bogunovic, N.; Purves, B.; Williams, R.; Christiansen, T.

    1988-01-01

    A programming model and architecture which was developed for the design and implementation of complex, heterogeneous measurement and control systems is described. The Multigraph Architecture integrates artificial intelligence techniques with conventional software technologies, offers a unified framework for distributed and shared memory based parallel computational models and supports multiple programming paradigms. The system can be implemented on different hardware architectures and can be adapted to strongly different applications.

  3. Self-defining memories, scripts, and the life story: narrative identity in personality and psychotherapy.

    PubMed

    Singer, Jefferson A; Blagov, Pavel; Berry, Meredith; Oost, Kathryn M

    2013-12-01

    An integrative model of narrative identity builds on a dual memory system that draws on episodic memory and a long-term self to generate autobiographical memories. Autobiographical memories related to critical goals in a lifetime period lead to life-story memories, which in turn become self-defining memories when linked to an individual's enduring concerns. Self-defining memories that share repetitive emotion-outcome sequences yield narrative scripts, abstracted templates that filter cognitive-affective processing. The life story is the individual's overarching narrative that provides unity and purpose over the life course. Healthy narrative identity combines memory specificity with adaptive meaning-making to achieve insight and well-being, as demonstrated through a literature review of personality and clinical research, as well as new findings from our own research program. A clinical case study drawing on this narrative identity model is also presented with implications for treatment and research. © 2012 Wiley Periodicals, Inc.

  4. Tissue-specific programming of memory CD8 T cell subsets impacts protection against lethal respiratory virus infection

    PubMed Central

    Tahiliani, Vikas

    2016-01-01

    How tissue-specific anatomical distribution and phenotypic specialization are linked to protective efficacy of memory T cells against reinfection is unclear. Here, we show that lung environmental cues program recently recruited central-like memory cells with migratory potentials for their tissue-specific functions during lethal respiratory virus infection. After entering the lung, some central-like cells retain their original CD27hiCXCR3hi phenotype, enabling them to localize near the infected bronchiolar epithelium and airway lumen to function as the first line of defense against pathogen encounter. Others, in response to local cytokine triggers, undergo a secondary program of differentiation that leads to the loss of CXCR3, migration arrest, and clustering within peribronchoarterial areas and in interalveolar septa. Here, the immune system adapts its response to prevent systemic viral dissemination and mortality. These results reveal the striking and unexpected spatial organization of central- versus effector-like memory cells within the lung and how cooperation between these two subsets contributes to host defense. PMID:27879287

  5. Does skeletal muscle have an 'epi'-memory? The role of epigenetics in nutritional programming, metabolic disease, aging and exercise.

    PubMed

    Sharples, Adam P; Stewart, Claire E; Seaborne, Robert A

    2016-08-01

    Skeletal muscle mass, quality and adaptability are fundamental in promoting muscle performance, maintaining metabolic function and supporting longevity and healthspan. Skeletal muscle is programmable and can 'remember' early-life metabolic stimuli affecting its function in adult life. In this review, the authors pose the question as to whether skeletal muscle has an 'epi'-memory? Following an initial encounter with an environmental stimulus, we discuss the underlying molecular and epigenetic mechanisms enabling skeletal muscle to adapt, should it re-encounter the stimulus in later life. We also define skeletal muscle memory and outline the scientific literature contributing to this field. Furthermore, we review the evidence for early-life nutrient stress and low birth weight in animals and human cohort studies, respectively, and discuss the underlying molecular mechanisms culminating in skeletal muscle dysfunction, metabolic disease and loss of skeletal muscle mass across the lifespan. We also summarize and discuss studies that isolate muscle stem cells from different environmental niches in vivo (physically active, diabetic, cachectic, aged) and how they reportedly remember this environment once isolated in vitro. Finally, we will outline the molecular and epigenetic mechanisms underlying skeletal muscle memory and review the epigenetic regulation of exercise-induced skeletal muscle adaptation, highlighting exercise interventions as suitable models to investigate skeletal muscle memory in humans. We believe that understanding the 'epi'-memory of skeletal muscle will enable the next generation of targeted therapies to promote muscle growth and reduce muscle loss to enable healthy aging. © 2016 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  6. Effect of the adapted Virtual Reality cognitive training program among Chinese older adults with chronic schizophrenia: a pilot study.

    PubMed

    Chan, Christopher L F; Ngai, Elena K Y; Leung, Paul K H; Wong, Stephen

    2010-06-01

    To examine the effect of the adapted virtual reality cognitive training program in older adults with chronic schizophrenia. Older adults with chronic schizophrenia were recruited from a long-stay care setting and were randomly assigned into intervention (n = 12) and control group (n = 15). The intervention group received 10-session of VR program that consisted of 2 VR activities using IREX. The control group attended the usual programs in the setting. After the 10-session intervention, older adults with chronic schizophrenia preformed significantly better than control in overall cognitive function (p .000), and in two cognitive subscales: repetition (p .001) and memory (p .040). These participants engaged in the VR activities volitionally. No problem of cybersickness was observed. The results of the current study indicate that engaging in the adapted virtual reality cognitive training program offers the potential for significant gains in cognitive function of the older adults with chronic schizophrenia.

  7. Adaptive Constructive Processes and the Future of Memory

    ERIC Educational Resources Information Center

    Schacter, Daniel L.

    2012-01-01

    Memory serves critical functions in everyday life but is also prone to error. This article examines adaptive constructive processes, which play a functional role in memory and cognition but can also produce distortions, errors, and illusions. The article describes several types of memory errors that are produced by adaptive constructive processes…

  8. 40 CFR 86.132-00 - Vehicle preconditioning.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Vehicle preconditioning. 86.132-00 Section 86.132-00 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS...] (iii) If a manufacturer has concerns about fuel effects on adaptive memory systems, a manufacturer may...

  9. The effects of working memory resource depletion and training on sensorimotor adaptation

    PubMed Central

    Anguera, Joaquin A.; Bernard, Jessica A.; Jaeggi, Susanne M.; Buschkuehl, Martin; Benson, Bryan L.; Jennett, Sarah; Humfleet, Jennifer; Reuter-Lorenz, Patricia; Jonides, John; Seidler, Rachael D.

    2011-01-01

    We have recently demonstrated that visuospatial working memory performance predicts the rate of motor skill learning, particularly during the early phase of visuomotor adaptation. Here, we follow up these correlational findings with direct manipulations of working memory resources to determine the impact on visuomotor adaptation, a form of motor learning. We conducted two separate experiments. In the first one, we used a resource depletion strategy to investigate whether the rate of early visuomotor adaptation would be negatively affected by fatigue of spatial working memory resources. In the second study, we employed a dual n-back task training paradigm that has been shown to result in transfer effects [1] over five weeks to determine whether training-related improvements would boost the rate of early visuomotor adaptation. The depletion of spatial working memory resources negatively affected the rate of early visuomotor adaptation. However, enhancing working memory capacity via training did not lead to improved rates of visuomotor adaptation, suggesting that working memory capacity may not be the factor limiting maximal rate of visuomotor adaptation in young adults. These findings are discussed from a resource limitation / capacity framework with respect to current views of motor learning. PMID:22155489

  10. Multiprocessor and memory architecture of the neurocomputer SYNAPSE-1.

    PubMed

    Ramacher, U; Raab, W; Anlauf, J; Hachmann, U; Beichter, J; Brüls, N; Wesseling, M; Sicheneder, E; Männer, R; Glass, J

    1993-12-01

    A general purpose neurocomputer, SYNAPSE-1, which exhibits a multiprocessor and memory architecture is presented. It offers wide flexibility with respect to neural algorithms and a speed-up factor of several orders of magnitude--including learning. The computational power is provided by a 2-dimensional systolic array of neural signal processors. Since the weights are stored outside these NSPs, memory size and processing power can be adapted individually to the application needs. A neural algorithms programming language, embedded in C(+2) has been defined for the user to cope with the neurocomputer. In a benchmark test, the prototype of SYNAPSE-1 was 8000 times as fast as a standard workstation.

  11. Adaptive smart wing design for military aircraft: requirements, concepts, and payoffs

    NASA Astrophysics Data System (ADS)

    Kudva, Jayanth N.; Appa, Kari; Van Way, Craig B.; Lockyer, Allen J.

    1995-05-01

    New developments in smart structures and materials have made it possible to revisit earlier work in adaptive and flexible wing technology, and remove some of the limitations for technology transition to next-generation aircraft. Research performed by Northrop Grumman, under internal funding, has led to a new program sponsored by ARPA to investigate the application of smart structures and materials technologies to twist and adapt and aircraft wing. Conceptual designs are presented based on state-of-the-art materials, including shape memory alloys, piezoelectrics, and fiber optic sensors for incorporation in a proposed smart wing design. Plans are described to demonstrate proof-of-concept on a prototype 1/10 scale -18 model that will be tested in a wind tunnel for final validation. Highlights of the proposed program are summarized with respect to program objectives, requirements, key concept design features, demonstration testing, and smart wing technology payoffs and risks.

  12. High Performance Programming Using Explicit Shared Memory Model on Cray T3D1

    NASA Technical Reports Server (NTRS)

    Simon, Horst D.; Saini, Subhash; Grassi, Charles

    1994-01-01

    The Cray T3D system is the first-phase system in Cray Research, Inc.'s (CRI) three-phase massively parallel processing (MPP) program. This system features a heterogeneous architecture that closely couples DEC's Alpha microprocessors and CRI's parallel-vector technology, i.e., the Cray Y-MP and Cray C90. An overview of the Cray T3D hardware and available programming models is presented. Under Cray Research adaptive Fortran (CRAFT) model four programming methods (data parallel, work sharing, message-passing using PVM, and explicit shared memory model) are available to the users. However, at this time data parallel and work sharing programming models are not available to the user community. The differences between standard PVM and CRI's PVM are highlighted with performance measurements such as latencies and communication bandwidths. We have found that the performance of neither standard PVM nor CRI s PVM exploits the hardware capabilities of the T3D. The reasons for the bad performance of PVM as a native message-passing library are presented. This is illustrated by the performance of NAS Parallel Benchmarks (NPB) programmed in explicit shared memory model on Cray T3D. In general, the performance of standard PVM is about 4 to 5 times less than obtained by using explicit shared memory model. This degradation in performance is also seen on CM-5 where the performance of applications using native message-passing library CMMD on CM-5 is also about 4 to 5 times less than using data parallel methods. The issues involved (such as barriers, synchronization, invalidating data cache, aligning data cache etc.) while programming in explicit shared memory model are discussed. Comparative performance of NPB using explicit shared memory programming model on the Cray T3D and other highly parallel systems such as the TMC CM-5, Intel Paragon, Cray C90, IBM-SP1, etc. is presented.

  13. Assessing Working Memory in Spanish-Speaking Children: Automated Working Memory Assessment Battery Adaptation

    ERIC Educational Resources Information Center

    Injoque-Ricle, Irene; Calero, Alejandra D.; Alloway, Tracy P.; Burin, Debora I.

    2011-01-01

    The Automated Working Memory Assessment battery was designed to assess verbal and visuospatial passive and active working memory processing in children and adolescents. The aim of this paper is to present the adaptation and validation of the AWMA battery to Argentinean Spanish-speaking children aged 6 to 11 years. Verbal subtests were adapted and…

  14. Adaption of Machine Fluid Analysis for Manufacturing - Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pardini, Allan F.

    2005-08-16

    Pacific Northwest National Laboratory (PNNL: Operated by Battelle Memorial Institute for the Department of Energy) is working with the Department of Energy (DOE) to develop technology for the US mining industry. Filtration and lubricant suppliers to the pulp and paper industry had noted the recent accomplishments by PNNL and its industrial partners in the DOE OIT Mining Industry of the Future Program, and asked for assistance in adapting this DOE-funded technology to the pulp and paper industry.

  15. Remembering forward: Neural correlates of memory and prediction in human motor adaptation

    PubMed Central

    Scheidt, Robert A; Zimbelman, Janice L; Salowitz, Nicole M G; Suminski, Aaron J; Mosier, Kristine M; Houk, James; Simo, Lucia

    2011-01-01

    We used functional MR imaging (FMRI), a robotic manipulandum and systems identification techniques to examine neural correlates of predictive compensation for spring-like loads during goal-directed wrist movements in neurologically-intact humans. Although load changed unpredictably from one trial to the next, subjects nevertheless used sensorimotor memories from recent movements to predict and compensate upcoming loads. Prediction enabled subjects to adapt performance so that the task was accomplished with minimum effort. Population analyses of functional images revealed a distributed, bilateral network of cortical and subcortical activity supporting predictive load compensation during visual target capture. Cortical regions - including prefrontal, parietal and hippocampal cortices - exhibited trial-by-trial fluctuations in BOLD signal consistent with the storage and recall of sensorimotor memories or “states” important for spatial working memory. Bilateral activations in associative regions of the striatum demonstrated temporal correlation with the magnitude of kinematic performance error (a signal that could drive reward-optimizing reinforcement learning and the prospective scaling of previously learned motor programs). BOLD signal correlations with load prediction were observed in the cerebellar cortex and red nuclei (consistent with the idea that these structures generate adaptive fusimotor signals facilitating cancellation of expected proprioceptive feedback, as required for conditional feedback adjustments to ongoing motor commands and feedback error learning). Analysis of single subject images revealed that predictive activity was at least as likely to be observed in more than one of these neural systems as in just one. We conclude therefore that motor adaptation is mediated by predictive compensations supported by multiple, distributed, cortical and subcortical structures. PMID:21840405

  16. Perturbation schedule does not alter retention of a locomotor adaptation across days.

    PubMed

    Hussain, Sara J; Morton, Susanne M

    2014-06-15

    Motor adaptation in response to gradual vs. abrupt perturbation schedules may involve different neural mechanisms, potentially leading to different levels of motor memory. However, no study has investigated whether perturbation schedules alter memory of a locomotor adaptation across days. We measured adaptation and retention (memory) of altered interlimb symmetry during walking in two groups of participants over 2 days. On day 1, participants adapted to either a single, large perturbation (abrupt schedule) or a series of small perturbations that increased in size over time (gradual schedule). Retention was examined on day 2. On day 1, initial swing time and foot placement symmetry error sizes differed between groups but overall adaptation magnitudes were similar. On day 2, participants in both groups showed similar retention, readaptation, and aftereffect sizes, although there were some trends for improved memory in the abrupt group. These results conflict with previous data but are consistent with newer studies reporting no behavioral differences following adaptation using abrupt vs. gradual schedules. Although memory levels were very similar between groups, we cannot rule out the possibility that the neural mechanisms underlying this memory storage differ. Overall, it appears that adaptation of locomotor patterns via abrupt and gradual perturbation schedules produces similar expression of locomotor memories across days. Copyright © 2014 the American Physiological Society.

  17. Near-memory data reorganization engine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gokhale, Maya; Lloyd, G. Scott

    A memory subsystem package is provided that has processing logic for data reorganization within the memory subsystem package. The processing logic is adapted to reorganize data stored within the memory subsystem package. In some embodiments, the memory subsystem package includes memory units, a memory interconnect, and a data reorganization engine ("DRE"). The data reorganization engine includes a stream interconnect and DRE units including a control processor and a load-store unit. The control processor is adapted to execute instructions to control a data reorganization. The load-store unit is adapted to process data move commands received from the control processor via themore » stream interconnect for loading data from a load memory address of a memory unit and storing data to a store memory address of a memory unit.« less

  18. Mnemonic anosognosia in Alzheimer's disease is caused by a failure to transfer online evaluations of performance: Evidence from memory training programs.

    PubMed

    Silva, Ana Rita; Pinho, Maria Salomé; Macedo, Luís; Souchay, Céline; Moulin, Christopher

    2017-06-01

    There is a debate about the ability of patients with Alzheimer's disease to build an up-to-date representation of their memory function, which has been termed mnemonic anosognosia. This form of anosognosia is typified by accurate online evaluations of performance, but dysfunctional or outmoded representations of function more generally. We tested whether people with Alzheimer's disease could adapt or change their representations of memory performance across three different six-week memory training programs using global judgements of learning. We showed that whereas online assessments of performance were accurate, patients continued to make inaccurate overestimations of their memory performance. This was despite the fact that the magnitude of predictions shifted according to the memory training. That is, on some level patients showed an ability to change and retain a representation of performance over time, but it was a dysfunctional one. For the first time in the literature we were able to use an analysis using correlations to support this claim, based on a large heterogeneous sample of 51 patients with Alzheimer's disease. The results point not to a failure to retain online metamemory information, but rather that this information is never used or incorporated into longer term representations, supporting but refining the mnemonic anosognosia hypothesis.

  19. A shared resource between declarative memory and motor memory.

    PubMed

    Keisler, Aysha; Shadmehr, Reza

    2010-11-03

    The neural systems that support motor adaptation in humans are thought to be distinct from those that support the declarative system. Yet, during motor adaptation changes in motor commands are supported by a fast adaptive process that has important properties (rapid learning, fast decay) that are usually associated with the declarative system. The fast process can be contrasted to a slow adaptive process that also supports motor memory, but learns gradually and shows resistance to forgetting. Here we show that after people stop performing a motor task, the fast motor memory can be disrupted by a task that engages declarative memory, but the slow motor memory is immune from this interference. Furthermore, we find that the fast/declarative component plays a major role in the consolidation of the slow motor memory. Because of the competitive nature of declarative and nondeclarative memory during consolidation, impairment of the fast/declarative component leads to improvements in the slow/nondeclarative component. Therefore, the fast process that supports formation of motor memory is not only neurally distinct from the slow process, but it shares critical resources with the declarative memory system.

  20. A shared resource between declarative memory and motor memory

    PubMed Central

    Keisler, Aysha; Shadmehr, Reza

    2010-01-01

    The neural systems that support motor adaptation in humans are thought to be distinct from those that support the declarative system. Yet, during motor adaptation changes in motor commands are supported by a fast adaptive process that has important properties (rapid learning, fast decay) that are usually associated with the declarative system. The fast process can be contrasted to a slow adaptive process that also supports motor memory, but learns gradually and shows resistance to forgetting. Here we show that after people stop performing a motor task, the fast motor memory can be disrupted by a task that engages declarative memory, but the slow motor memory is immune from this interference. Furthermore, we find that the fast/declarative component plays a major role in the consolidation of the slow motor memory. Because of the competitive nature of declarative and non-declarative memory during consolidation, impairment of the fast/declarative component leads to improvements in the slow/non-declarative component. Therefore, the fast process that supports formation of motor memory is not only neurally distinct from the slow process, but it shares critical resources with the declarative memory system. PMID:21048140

  1. 3-D parallel program for numerical calculation of gas dynamics problems with heat conductivity on distributed memory computational systems (CS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sofronov, I.D.; Voronin, B.L.; Butnev, O.I.

    1997-12-31

    The aim of the work performed is to develop a 3D parallel program for numerical calculation of gas dynamics problem with heat conductivity on distributed memory computational systems (CS), satisfying the condition of numerical result independence from the number of processors involved. Two basically different approaches to the structure of massive parallel computations have been developed. The first approach uses the 3D data matrix decomposition reconstructed at temporal cycle and is a development of parallelization algorithms for multiprocessor CS with shareable memory. The second approach is based on using a 3D data matrix decomposition not reconstructed during a temporal cycle.more » The program was developed on 8-processor CS MP-3 made in VNIIEF and was adapted to a massive parallel CS Meiko-2 in LLNL by joint efforts of VNIIEF and LLNL staffs. A large number of numerical experiments has been carried out with different number of processors up to 256 and the efficiency of parallelization has been evaluated in dependence on processor number and their parameters.« less

  2. An adaptive replacement algorithm for paged-memory computer systems.

    NASA Technical Reports Server (NTRS)

    Thorington, J. M., Jr.; Irwin, J. D.

    1972-01-01

    A general class of adaptive replacement schemes for use in paged memories is developed. One such algorithm, called SIM, is simulated using a probability model that generates memory traces, and the results of the simulation of this adaptive scheme are compared with those obtained using the best nonlookahead algorithms. A technique for implementing this type of adaptive replacement algorithm with state of the art digital hardware is also presented.

  3. High Performance Programming Using Explicit Shared Memory Model on the Cray T3D

    NASA Technical Reports Server (NTRS)

    Saini, Subhash; Simon, Horst D.; Lasinski, T. A. (Technical Monitor)

    1994-01-01

    The Cray T3D is the first-phase system in Cray Research Inc.'s (CRI) three-phase massively parallel processing program. In this report we describe the architecture of the T3D, as well as the CRAFT (Cray Research Adaptive Fortran) programming model, and contrast it with PVM, which is also supported on the T3D We present some performance data based on the NAS Parallel Benchmarks to illustrate both architectural and software features of the T3D.

  4. On the susceptibility of adaptive memory to false memory illusions.

    PubMed

    Howe, Mark L; Derbish, Mary H

    2010-05-01

    Previous research has shown that survival-related processing of word lists enhances retention for that material. However, the claim that survival-related memories are more accurate has only been examined when true recall and recognition of neutral material has been measured. In the current experiments, we examined the adaptive memory superiority effect for different types of processing and material, measuring accuracy more directly by comparing true and false recollection rates. Survival-related information and processing was examined using word lists containing backward associates of neutral, negative, and survival-related critical lures and type of processing (pleasantness, moving, survival) was varied using an incidental memory paradigm. Across four experiments, results showed that survival-related words were more susceptible than negative and neutral words to the false memory illusion and that processing information in terms of its relevance to survival independently increased this susceptibility to the false memory illusion. Overall, although survival-related processing and survival-related information resulted in poorer, not more accurate, memory, such inaccuracies may have adaptive significance. These findings are discussed in the context of false memory research and recent theories concerning the importance of survival processing and the nature of adaptive memory. Copyright 2009 Elsevier B.V. All rights reserved.

  5. Academic Outcomes 2 Years After Working Memory Training for Children With Low Working Memory: A Randomized Clinical Trial.

    PubMed

    Roberts, Gehan; Quach, Jon; Spencer-Smith, Megan; Anderson, Peter J; Gathercole, Susan; Gold, Lisa; Sia, Kah-Ling; Mensah, Fiona; Rickards, Field; Ainley, John; Wake, Melissa

    2016-05-02

    Working memory training may help children with attention and learning difficulties, but robust evidence from population-level randomized controlled clinical trials is lacking. To test whether a computerized adaptive working memory intervention program improves long-term academic outcomes of children 6 to 7 years of age with low working memory compared with usual classroom teaching. Population-based randomized controlled clinical trial of first graders from 44 schools in Melbourne, Australia, who underwent a verbal and visuospatial working memory screening. Children were classified as having low working memory if their scores were below the 15th percentile on either the Backward Digit Recall or Mister X subtest from the Automated Working Memory Assessment, or if their scores were below the 25th percentile on both. These children were randomly assigned by an independent statistician to either an intervention or a control arm using a concealed computerized random number sequence. Researchers were blinded to group assignment at time of screening. We conducted our trial from March 1, 2012, to February 1, 2015; our final analysis was on October 30, 2015. We used intention-to-treat analyses. Cogmed working memory training, comprising 20 to 25 training sessions of 45 minutes' duration at school. Directly assessed (at 12 and 24 months) academic outcomes (reading, math, and spelling scores as primary outcomes) and working memory (also assessed at 6 months); parent-, teacher-, and child-reported behavioral and social-emotional functioning and quality of life; and intervention costs. Of 1723 children screened (mean [SD] age, 6.9 [0.4] years), 226 were randomized to each arm (452 total), with 90% retention at 1 year and 88% retention at 2 years; 90.3% of children in the intervention arm completed at least 20 sessions. Of the 4 short-term and working memory outcomes, 1 outcome (visuospatial short-term memory) benefited the children at 6 months (effect size, 0.43 [95% CI, 0.25-0.62]) and 12 months (effect size, 0.49 [95% CI, 0.28-0.70]), but not at 24 months. There were no benefits to any other outcomes; in fact, the math scores of the children in the intervention arm were worse at 2 years (mean difference, -3.0 [95% CI, -5.4 to -0.7]; P = .01). Intervention costs were A$1035 per child. Working memory screening of children 6 to 7 years of age is feasible, and an adaptive working memory training program may temporarily improve visuospatial short-term memory. Given the loss of classroom time, cost, and lack of lasting benefit, we cannot recommend population-based delivery of Cogmed within a screening paradigm. anzctr.org.au Identifier: ACTRN12610000486022.

  6. Tuning the Engine of Cognition: A Focus on NMDA/D1 Receptor Interactions in Prefrontal Cortex

    ERIC Educational Resources Information Center

    Castner, Stacy A.; Williams, Graham V.

    2007-01-01

    The prefrontal cortex of the primate frontal lobes provides the capacity for judgment which can constantly adapt behavior in order to optimize its outcome. Adjudicating between long-term memory programs and prepotent responses, this capacity reviews all incoming information and provides an interpretation dependent on the events that have just…

  7. Adaptive constructive processes and the future of memory.

    PubMed

    Schacter, Daniel L

    2012-11-01

    Memory serves critical functions in everyday life but is also prone to error. This article examines adaptive constructive processes, which play a functional role in memory and cognition but can also produce distortions, errors, and illusions. The article describes several types of memory errors that are produced by adaptive constructive processes and focuses in particular on the process of imagining or simulating events that might occur in one's personal future. Simulating future events relies on many of the same cognitive and neural processes as remembering past events, which may help to explain why imagination and memory can be easily confused. The article considers both pitfalls and adaptive aspects of future event simulation in the context of research on planning, prediction, problem solving, mind-wandering, prospective and retrospective memory, coping and positivity bias, and the interconnected set of brain regions known as the default network. PsycINFO Database Record (c) 2012 APA, all rights reserved.

  8. On the Susceptibility of Adaptive Memory to False Memory Illusions

    ERIC Educational Resources Information Center

    Howe, Mark L.; Derbish, Mary H.

    2010-01-01

    Previous research has shown that survival-related processing of word lists enhances retention for that material. However, the claim that survival-related memories are more accurate has only been examined when true recall and recognition of neutral material has been measured. In the current experiments, we examined the adaptive memory superiority…

  9. Increased gamma band power during movement planning coincides with motor memory retrieval.

    PubMed

    Thürer, Benjamin; Stockinger, Christian; Focke, Anne; Putze, Felix; Schultz, Tanja; Stein, Thorsten

    2016-01-15

    The retrieval of motor memory requires a previous memory encoding and subsequent consolidation of the specific motor memory. Previous work showed that motor memory seems to rely on different memory components (e.g., implicit, explicit). However, it is still unknown if explicit components contribute to the retrieval of motor memories formed by dynamic adaptation tasks and which neural correlates are linked to memory retrieval. We investigated the lower and higher gamma bands of subjects' electroencephalography during encoding and retrieval of a dynamic adaptation task. A total of 24 subjects were randomly assigned to a treatment and control group. Both groups adapted to a force field A on day 1 and were re-exposed to the same force field A on day 3 of the experiment. On day 2, treatment group learned an interfering force field B whereas control group had a day rest. Kinematic analyses showed that control group improved their initial motor performance from day 1 to day 3 but treatment group did not. This behavioral result coincided with an increased higher gamma band power in the electrodes over prefrontal areas on the initial trials of day 3 for control but not treatment group. Intriguingly, this effect vanished with the subsequent re-adaptation on day 3. We suggest that improved re-test performance in a dynamic motor adaptation task is contributed by explicit memory and that gamma bands in the electrodes over the prefrontal cortex are linked to these explicit components. Furthermore, we suggest that the contribution of explicit memory vanishes with the subsequent re-adaptation while task automaticity increases. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Adaptive Value Normalization in the Prefrontal Cortex Is Reduced by Memory Load.

    PubMed

    Holper, L; Van Brussel, L D; Schmidt, L; Schulthess, S; Burke, C J; Louie, K; Seifritz, E; Tobler, P N

    2017-01-01

    Adaptation facilitates neural representation of a wide range of diverse inputs, including reward values. Adaptive value coding typically relies on contextual information either obtained from the environment or retrieved from and maintained in memory. However, it is unknown whether having to retrieve and maintain context information modulates the brain's capacity for value adaptation. To address this issue, we measured hemodynamic responses of the prefrontal cortex (PFC) in two studies on risky decision-making. In each trial, healthy human subjects chose between a risky and a safe alternative; half of the participants had to remember the risky alternatives, whereas for the other half they were presented visually. The value of safe alternatives varied across trials. PFC responses adapted to contextual risk information, with steeper coding of safe alternative value in lower-risk contexts. Importantly, this adaptation depended on working memory load, such that response functions relating PFC activity to safe values were steeper with presented versus remembered risk. An independent second study replicated the findings of the first study and showed that similar slope reductions also arose when memory maintenance demands were increased with a secondary working memory task. Formal model comparison showed that a divisive normalization model fitted effects of both risk context and working memory demands on PFC activity better than alternative models of value adaptation, and revealed that reduced suppression of background activity was the critical parameter impairing normalization with increased memory maintenance demand. Our findings suggest that mnemonic processes can constrain normalization of neural value representations.

  11. Memory and communication support in dementia: research-based strategies for caregivers.

    PubMed

    Smith, Erin R; Broughton, Megan; Baker, Rosemary; Pachana, Nancy A; Angwin, Anthony J; Humphreys, Michael S; Mitchell, Leander; Byrne, Gerard J; Copland, David A; Gallois, Cindy; Hegney, Desley; Chenery, Helen J

    2011-03-01

    Difficulties with memory and communication are prominent and distressing features of dementia which impact on the person with dementia and contribute to caregiver stress and burden. There is a need to provide caregivers with strategies to support and maximize memory and communication abilities in people with dementia. In this project, a team of clinicians, researchers and educators in neuropsychology, psychogeriatrics, nursing and speech pathology translated research-based knowledge from these fields into a program of practical strategies for everyday use by family and professional caregivers. From the available research evidence, the project team identified compensatory or facilitative strategies to assist with common areas of difficulty, and structured these under the mnemonics RECAPS (for memory) and MESSAGE (for communication). This information was adapted for presentation in a DVD-based education program in accordance with known characteristics of effective caregiver education. The resultant DVD comprises (1) information on the nature and importance of memory and communication in everyday life; (2) explanations of common patterns of difficulty and preserved ability in memory and communication across the stages of dementia; (3) acted vignettes demonstrating the strategies, based on authentic samples of speech in dementia; and (4) scenarios to prompt the viewer to consider the benefits of using the strategies. Using a knowledge-translation framework, information and strategies can be provided to family and professional caregivers to help them optimize residual memory and communication in people with dementia. Future development of the materials, incorporating consumer feedback, will focus on methods for enabling wider dissemination.

  12. Reward Retroactively Enhances Memory Consolidation for Related Items

    ERIC Educational Resources Information Center

    Patil, Anuya; Murty, Vishnu P.; Dunsmoor, Joseph E.; Phelps, Elizabeth A.; Davachi, Lila

    2017-01-01

    Reward motivation has been shown to modulate episodic memory processes in order to support future adaptive behavior. However, for a memory system to be truly adaptive, it should enhance memory for rewarded events as well as for neutral events that may seem inconsequential at the time of encoding but can gain importance later. Here, we investigated…

  13. What kind of memory has evolution wrought? Introductory article for the special issue of memory: adaptive memory: the emergence and nature of proximate mechanisms.

    PubMed

    Otgaar, Henry; Howe, Mark L

    2014-01-01

    It is without question that our memory system evolved through a process of natural selection. However, basic research into the evolutionary foundations of memory has begun in earnest only recently. This is quite peculiar as the majority, perhaps even all, of memory research relates to whether memory is adaptive or not. In this Special Issue of Memory we have assembled a variety of papers that represent the cutting edge in research on the evolution of memory. These papers are centred on issues about the ultimate and proximate explanations of memory, the development of the adaptive functions of memory, as well as the positive consequences that arise from the current evolutionary form that our memory has taken. In this introductory article we briefly outline these different areas and indicate why they are vital for a more complete theory of memory. Further we argue that, by adopting a more applied stance in the area of the evolution of memory, one of the many future directions in this field could be a new branch of psychology that addresses questions in evolutionary legal psychology.

  14. How visual short-term memory maintenance modulates subsequent visual aftereffects.

    PubMed

    Saad, Elyana; Silvanto, Juha

    2013-05-01

    Prolonged viewing of a visual stimulus can result in sensory adaptation, giving rise to perceptual phenomena such as the tilt aftereffect (TAE). However, it is not known if short-term memory maintenance induces such effects. We examined how visual short-term memory (VSTM) maintenance modulates the strength of the TAE induced by subsequent visual adaptation. We reasoned that if VSTM maintenance induces aftereffects on subsequent encoding of visual information, then it should either enhance or reduce the TAE induced by a subsequent visual adapter, depending on the congruency of the memory cue and the adapter. Our results were consistent with this hypothesis and thus indicate that the effects of VSTM maintenance can outlast the maintenance period.

  15. Adaptive Value Normalization in the Prefrontal Cortex Is Reduced by Memory Load

    PubMed Central

    Burke, C. J.; Seifritz, E.; Tobler, P. N.

    2017-01-01

    Abstract Adaptation facilitates neural representation of a wide range of diverse inputs, including reward values. Adaptive value coding typically relies on contextual information either obtained from the environment or retrieved from and maintained in memory. However, it is unknown whether having to retrieve and maintain context information modulates the brain’s capacity for value adaptation. To address this issue, we measured hemodynamic responses of the prefrontal cortex (PFC) in two studies on risky decision-making. In each trial, healthy human subjects chose between a risky and a safe alternative; half of the participants had to remember the risky alternatives, whereas for the other half they were presented visually. The value of safe alternatives varied across trials. PFC responses adapted to contextual risk information, with steeper coding of safe alternative value in lower-risk contexts. Importantly, this adaptation depended on working memory load, such that response functions relating PFC activity to safe values were steeper with presented versus remembered risk. An independent second study replicated the findings of the first study and showed that similar slope reductions also arose when memory maintenance demands were increased with a secondary working memory task. Formal model comparison showed that a divisive normalization model fitted effects of both risk context and working memory demands on PFC activity better than alternative models of value adaptation, and revealed that reduced suppression of background activity was the critical parameter impairing normalization with increased memory maintenance demand. Our findings suggest that mnemonic processes can constrain normalization of neural value representations. PMID:28462394

  16. Episodic memories predict adaptive value-based decision-making

    PubMed Central

    Murty, Vishnu; FeldmanHall, Oriel; Hunter, Lindsay E.; Phelps, Elizabeth A; Davachi, Lila

    2016-01-01

    Prior research illustrates that memory can guide value-based decision-making. For example, previous work has implicated both working memory and procedural memory (i.e., reinforcement learning) in guiding choice. However, other types of memories, such as episodic memory, may also influence decision-making. Here we test the role for episodic memory—specifically item versus associative memory—in supporting value-based choice. Participants completed a task where they first learned the value associated with trial unique lotteries. After a short delay, they completed a decision-making task where they could choose to re-engage with previously encountered lotteries, or new never before seen lotteries. Finally, participants completed a surprise memory test for the lotteries and their associated values. Results indicate that participants chose to re-engage more often with lotteries that resulted in high versus low rewards. Critically, participants not only formed detailed, associative memories for the reward values coupled with individual lotteries, but also exhibited adaptive decision-making only when they had intact associative memory. We further found that the relationship between adaptive choice and associative memory generalized to more complex, ecologically valid choice behavior, such as social decision-making. However, individuals more strongly encode experiences of social violations—such as being treated unfairly, suggesting a bias for how individuals form associative memories within social contexts. Together, these findings provide an important integration of episodic memory and decision-making literatures to better understand key mechanisms supporting adaptive behavior. PMID:26999046

  17. Adaptive scaling of reward in episodic memory: a replication study.

    PubMed

    Mason, Alice; Ludwig, Casimir; Farrell, Simon

    2017-11-01

    Reward is thought to enhance episodic memory formation via dopaminergic consolidation. Bunzeck, Dayan, Dolan, and Duzel [(2010). A common mechanism for adaptive scaling of reward and novelty. Human Brain Mapping, 31, 1380-1394] provided functional magnetic resonance imaging (fMRI) and behavioural evidence that reward and episodic memory systems are sensitive to the contextual value of a reward-whether it is relatively higher or lower-as opposed to absolute value or prediction error. We carried out a direct replication of their behavioural study and did not replicate their finding that memory performance associated with reward follows this pattern of adaptive scaling. An effect of reward outcome was in the opposite direction to that in the original study, with lower reward outcomes leading to better memory than higher outcomes. There was a marginal effect of reward context, suggesting that expected value affected memory performance. We discuss the robustness of the reward memory relationship to variations in reward context, and whether other reward-related factors have a more reliable influence on episodic memory.

  18. Fast but fleeting: adaptive motor learning processes associated with aging and cognitive decline.

    PubMed

    Trewartha, Kevin M; Garcia, Angeles; Wolpert, Daniel M; Flanagan, J Randall

    2014-10-01

    Motor learning has been shown to depend on multiple interacting learning processes. For example, learning to adapt when moving grasped objects with novel dynamics involves a fast process that adapts and decays quickly-and that has been linked to explicit memory-and a slower process that adapts and decays more gradually. Each process is characterized by a learning rate that controls how strongly motor memory is updated based on experienced errors and a retention factor determining the movement-to-movement decay in motor memory. Here we examined whether fast and slow motor learning processes involved in learning novel dynamics differ between younger and older adults. In addition, we investigated how age-related decline in explicit memory performance influences learning and retention parameters. Although the groups adapted equally well, they did so with markedly different underlying processes. Whereas the groups had similar fast processes, they had different slow processes. Specifically, the older adults exhibited decreased retention in their slow process compared with younger adults. Within the older group, who exhibited considerable variation in explicit memory performance, we found that poor explicit memory was associated with reduced retention in the fast process, as well as the slow process. These findings suggest that explicit memory resources are a determining factor in impairments in the both the fast and slow processes for motor learning but that aging effects on the slow process are independent of explicit memory declines. Copyright © 2014 the authors 0270-6474/14/3413411-11$15.00/0.

  19. Adaptive microwave impedance memory effect in a ferromagnetic insulator.

    PubMed

    Lee, Hanju; Friedman, Barry; Lee, Kiejin

    2016-12-14

    Adaptive electronics, which are often referred to as memristive systems as they often rely on a memristor (memory resistor), are an emerging technology inspired by adaptive biological systems. Dissipative systems may provide a proper platform to implement an adaptive system due to its inherent adaptive property that parameters describing the system are optimized to maximize the entropy production for a given environment. Here, we report that a non-volatile and reversible adaptive microwave impedance memory device can be realized through the adaptive property of the dissipative structure of the driven ferromagnetic system. Like the memristive device, the microwave impedance of the device is modulated as a function of excitation microwave passing through the device. This kind of new device may not only helpful to implement adaptive information processing technologies, but also may be useful to investigate and understand the underlying mechanism of spontaneous formation of complex and ordered structures.

  20. Adaptive microwave impedance memory effect in a ferromagnetic insulator

    PubMed Central

    Lee, Hanju; Friedman, Barry; Lee, Kiejin

    2016-01-01

    Adaptive electronics, which are often referred to as memristive systems as they often rely on a memristor (memory resistor), are an emerging technology inspired by adaptive biological systems. Dissipative systems may provide a proper platform to implement an adaptive system due to its inherent adaptive property that parameters describing the system are optimized to maximize the entropy production for a given environment. Here, we report that a non-volatile and reversible adaptive microwave impedance memory device can be realized through the adaptive property of the dissipative structure of the driven ferromagnetic system. Like the memristive device, the microwave impedance of the device is modulated as a function of excitation microwave passing through the device. This kind of new device may not only helpful to implement adaptive information processing technologies, but also may be useful to investigate and understand the underlying mechanism of spontaneous formation of complex and ordered structures. PMID:27966536

  1. Adaptive sampler

    DOEpatents

    Watson, Bobby L.; Aeby, Ian

    1982-01-01

    An adaptive data compression device for compressing data having variable frequency content, including a plurality of digital filters for analyzing the content of the data over a plurality of frequency regions, a memory, and a control logic circuit for generating a variable rate memory clock corresponding to the analyzed frequency content of the data in the frequency region and for clocking the data into the memory in response to the variable rate memory clock.

  2. Work stealing for GPU-accelerated parallel programs in a global address space framework: WORK STEALING ON GPU-ACCELERATED SYSTEMS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arafat, Humayun; Dinan, James; Krishnamoorthy, Sriram

    Task parallelism is an attractive approach to automatically load balance the computation in a parallel system and adapt to dynamism exhibited by parallel systems. Exploiting task parallelism through work stealing has been extensively studied in shared and distributed-memory contexts. In this paper, we study the design of a system that uses work stealing for dynamic load balancing of task-parallel programs executed on hybrid distributed-memory CPU-graphics processing unit (GPU) systems in a global-address space framework. We take into account the unique nature of the accelerator model employed by GPUs, the significant performance difference between GPU and CPU execution as a functionmore » of problem size, and the distinct CPU and GPU memory domains. We consider various alternatives in designing a distributed work stealing algorithm for CPU-GPU systems, while taking into account the impact of task distribution and data movement overheads. These strategies are evaluated using microbenchmarks that capture various execution configurations as well as the state-of-the-art CCSD(T) application module from the computational chemistry domain.« less

  3. Work stealing for GPU-accelerated parallel programs in a global address space framework

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arafat, Humayun; Dinan, James; Krishnamoorthy, Sriram

    Task parallelism is an attractive approach to automatically load balance the computation in a parallel system and adapt to dynamism exhibited by parallel systems. Exploiting task parallelism through work stealing has been extensively studied in shared and distributed-memory contexts. In this paper, we study the design of a system that uses work stealing for dynamic load balancing of task-parallel programs executed on hybrid distributed-memory CPU-graphics processing unit (GPU) systems in a global-address space framework. We take into account the unique nature of the accelerator model employed by GPUs, the significant performance difference between GPU and CPU execution as a functionmore » of problem size, and the distinct CPU and GPU memory domains. We consider various alternatives in designing a distributed work stealing algorithm for CPU-GPU systems, while taking into account the impact of task distribution and data movement overheads. These strategies are evaluated using microbenchmarks that capture various execution configurations as well as the state-of-the-art CCSD(T) application module from the computational chemistry domain« less

  4. Advanced Integrated Display System V/STOL Program Performance Specification. Volume I.

    DTIC Science & Technology

    1980-06-01

    sensor inputs required before the sensor can be designated acceptable. The reactivation count of each sensor parameter which satisfies its veri...129 3.5.2 AIDS Configuration Parameters .............. 133 3.5.3 AIDS Throughput Requirements ............... 133 4 QUALITY ASSURANCE...lists the adaptation parameters of the AIDS software; these parameters include the throughput and memory requirements of the software. 3.2 SYSTEM

  5. Can Survival Processing Enhance Story Memory? Testing the Generalizability of the Adaptive Memory Framework

    ERIC Educational Resources Information Center

    Seamon, John G.; Bohn, Justin M.; Coddington, Inslee E.; Ebling, Maritza C.; Grund, Ethan M.; Haring, Catherine T.; Jang, Sue-Jung; Kim, Daniel; Liong, Christopher; Paley, Frances M.; Pang, Luke K.; Siddique, Ashik H.

    2012-01-01

    Research from the adaptive memory framework shows that thinking about words in terms of their survival value in an incidental learning task enhances their free recall relative to other semantic encoding strategies and intentional learning (Nairne, Pandeirada, & Thompson, 2008). We found similar results. When participants used incidental…

  6. Functional Evidence for Memory Stabilization in Sensorimotor Adaptation: A 24-h Resting-State fMRI Study.

    PubMed

    Della-Maggiore, Valeria; Villalta, Jorge I; Kovacevic, Natasa; McIntosh, Anthony Randal

    2017-03-01

    Adaptation learning is crucial to maintain precise motor control in face of environmental perturbations. Although much progress has been made in understanding the psychophysics and neurophysiology of sensorimotor adaptation (SA), the time course of memory consolidation remains elusive. The lack of a reproducible gradient of memory resistance using protocols of retrograde interference has even led to the proposal that memories produced through SA do not consolidate. Here, we pursued an alternative approach using resting-state fMRI to track changes in functional connectivity (FC) induced by learning. Given that consolidation leads to long-term memory, we hypothesized that a change in FC that predicted long-term memory but not short-term memory would provide indirect evidence for memory stabilization. Six scans were acquired before, 15 min, 1, 3, 5.5, and 24 h after training on a center-out task under veridical or distorted visual feedback. The experimental group showed an increment in FC of a network including motor, premotor, posterior parietal cortex, cerebellum, and putamen that peaked at 5.5 h. Crucially, the strengthening of this network correlated positively with long-term retention but negatively with short-term retention. Our work provides evidence, suggesting that adaptation memories stabilize within a 6-h window, and points to different mechanisms subserving short- and long-term memory. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  7. The Memories of NK Cells: Innate-Adaptive Immune Intrinsic Crosstalk

    PubMed Central

    Ortolani, Claudio; del Zotto, Genny; Luchetti, Francesca; Canonico, Barbara; Artico, Marco; Papa, Stefano

    2016-01-01

    Although NK cells are considered part of the innate immune system, a series of evidences has demonstrated that they possess characteristics typical of the adaptive immune system. These NK adaptive features, in particular their memory-like functions, are discussed from an ontogenetic and evolutionary point of view. PMID:28078307

  8. The Memories of NK Cells: Innate-Adaptive Immune Intrinsic Crosstalk.

    PubMed

    Gabrielli, Sara; Ortolani, Claudio; Del Zotto, Genny; Luchetti, Francesca; Canonico, Barbara; Buccella, Flavia; Artico, Marco; Papa, Stefano; Zamai, Loris

    2016-01-01

    Although NK cells are considered part of the innate immune system, a series of evidences has demonstrated that they possess characteristics typical of the adaptive immune system. These NK adaptive features, in particular their memory-like functions, are discussed from an ontogenetic and evolutionary point of view.

  9. Probability differently modulating the effects of reward and punishment on visuomotor adaptation.

    PubMed

    Song, Yanlong; Smiley-Oyen, Ann L

    2017-12-01

    Recent human motor learning studies revealed that punishment seemingly accelerated motor learning but reward enhanced consolidation of motor memory. It is not evident how intrinsic properties of reward and punishment modulate the potentially dissociable effects of reward and punishment on motor learning and motor memory. It is also not clear what causes the dissociation of the effects of reward and punishment. By manipulating probability of distribution, a critical property of reward and punishment, the present study demonstrated that probability had distinct modulation on the effects of reward and punishment in adapting to a sudden visual rotation and consolidation of the adaptation memory. Specifically, two probabilities of monetary reward and punishment distribution, 50 and 100%, were applied during young adult participants adapting to a sudden visual rotation. Punishment and reward showed distinct effects on motor adaptation and motor memory. The group that received punishments in 100% of the adaptation trials adapted significantly faster than the other three groups, but the group that received rewards in 100% of the adaptation trials showed marked savings in re-adapting to the same rotation. In addition, the group that received punishments in 50% of the adaptation trials that were randomly selected also had savings in re-adapting to the same rotation. Sensitivity to sensory prediction error or difference in explicit process induced by reward and punishment may likely contribute to the distinct effects of reward and punishment.

  10. Adaptable liquid crystal elastomers with transesterification-based bond exchange reactions.

    PubMed

    Hanzon, Drew W; Traugutt, Nicholas A; McBride, Matthew K; Bowman, Christopher N; Yakacki, Christopher M; Yu, Kai

    2018-02-14

    Adaptable liquid crystal elastomers (LCEs) have recently emerged to provide a new and robust method to program monodomain LCE samples. When a constant stress is applied with active bond exchange reactions (BERs), polymer chains and mesogens gradually align in the strain direction. Mesogen alignment is maintained after removing the BER stimulus (e.g. by lowering the temperature) and the programmed LCE samples exhibit free-standing two-way shape switching behavior. Here, a new adaptable main-chain LCE system was developed with thermally induced transesterification BERs. The network combines the conventional properties of LCEs, such as an isotropic phase transition and soft elasticity, with the dynamic features of adaptable network polymers, which are malleable to stress relaxation due to the BERs. Polarized Fourier transform infrared measurements confirmed the alignment of polymer chains and mesogens after strain-induced programming. The influence of the creep stress, temperature, and time on the strain amplitude of two-way shape switching was examined. The LCE network demonstrates an innovative feature of reprogrammability, where the reversible shape-switching memory of programmed LCEs is readily deleted by free-standing heating as random BERs disrupt the mesogen alignment, so LCEs are reprogrammed after returning to the polydomain state. Due to the dynamic nature of the LCE network, it also exhibits a surface welding effect and can be fully dissolved in the organic solvent, which might be utilized for green and sustainable recycling of LCEs.

  11. Programming by early nutrition: an experimental approach.

    PubMed

    Lucas, A

    1998-02-01

    That events during critical or sensitive periods of development may "program" long-term or life-time structure or function of the organism is well recognized. Evidence for programming by nutrition is established in animals, in whom brief pre- or postnatal nutritional manipulations may program adult size, metabolism, blood lipids, diabetes, blood pressure, obesity, atherosclerosis, learning, behavior and life span. Human epidemiological data link potential markers of early nutrition (size at birth or in infancy) to cardiovascular disease and its risk factors in adulthood. However, these retrospective data cannot prove nutritional cause or underpin health policies. After 16 y, however, of ethical, randomized intervention studies of early nutrition in humans with long-term follow-up to test experimentally the nutritional programming hypothesis, we find that humans, like other species, have sensitive windows for nutrition in terms of later outcomes; for instance, perinatal diet influences neurodevelopment and bone mineralization into mid-childhood. Possible biological mechanisms for storing throughout life the "memory" of early nutritional experience and its expression in adulthood include adaptive changes in gene expression, preferential clonal selection of adapted cells in programmed tissues and programmed differential proliferation of tissue cell types. Animal and human evidence supporting nutritional programming has major potential biological and medical significance.

  12. Adaptive sampler

    DOEpatents

    Watson, B.L.; Aeby, I.

    1980-08-26

    An adaptive data compression device for compressing data is described. The device has a frequency content, including a plurality of digital filters for analyzing the content of the data over a plurality of frequency regions, a memory, and a control logic circuit for generating a variable rate memory clock corresponding to the analyzed frequency content of the data in the frequency region and for clocking the data into the memory in response to the variable rate memory clock.

  13. Programming Native CRISPR Arrays for the Generation of Targeted Immunity.

    PubMed

    Hynes, Alexander P; Labrie, Simon J; Moineau, Sylvain

    2016-05-03

    The adaptive immune system of prokaryotes, called CRISPR-Cas (clustered regularly interspaced short palindromic repeats and CRISPR-associated genes), results in specific cleavage of invading nucleic acid sequences recognized by the cell's "memory" of past encounters. Here, we exploited the properties of native CRISPR-Cas systems to program the natural "memorization" process, efficiently generating immunity not only to a bacteriophage or plasmid but to any specifically chosen DNA sequence. CRISPR-Cas systems have entered the public consciousness as genome editing tools due to their readily programmable nature. In industrial settings, natural CRISPR-Cas immunity is already exploited to generate strains resistant to potentially disruptive viruses. However, the natural process by which bacteria acquire new target specificities (adaptation) is difficult to study and manipulate. The target against which immunity is conferred is selected stochastically. By biasing the immunization process, we offer a means to generate customized immunity, as well as provide a new tool to study adaptation. Copyright © 2016 Hynes et al.

  14. Aerospace Ground Equipment for model 4080 sequence programmer. A standard computer terminal is adapted to provide convenient operator to device interface

    NASA Technical Reports Server (NTRS)

    Nissley, L. E.

    1979-01-01

    The Aerospace Ground Equipment (AGE) provides an interface between a human operator and a complete spaceborne sequence timing device with a memory storage program. The AGE provides a means for composing, editing, syntax checking, and storing timing device programs. The AGE is implemented with a standard Hewlett-Packard 2649A terminal system and a minimum of special hardware. The terminal's dual tape interface is used to store timing device programs and to read in special AGE operating system software. To compose a new program for the timing device the keyboard is used to fill in a form displayed on the screen.

  15. Tachycardia detection in ICDs by Boston Scientific : Algorithms, pearls, and pitfalls.

    PubMed

    Zanker, Norbert; Schuster, Diane; Gilkerson, James; Stein, Kenneth

    2016-09-01

    The aim of this study was to summarize how implantable cardioverter defibrillators (ICDs) by Boston Scientific sense, detect, discriminate rhythms, and classify episodes. Modern devices include multiple programming selections, diagnostic features, therapy options, memory functions, and device-related history features. Device operation includes logical steps from sensing, detection, discrimination, therapy delivery to history recording. The program is designed to facilitate the application of the device algorithms to the individual patient's clinical needs. Features and functions described in this article represent a selective excerpt by the authors from Boston Scientific publicly available product resources. Programming of ICDs may affect patient outcomes. Patient-adapted and optimized programming requires understanding of device operation and concepts.

  16. In Respect to the Cognitive Load Theory: Adjusting Instructional Guidance with Student Expertise.

    PubMed

    Schilling, Jim

    2017-01-01

    The amount of guidance supplied by educators to students in allied health programs is a factor in student learning. According to the cognitive load theory of learning, without adequate instructional support, novice learners will be overwhelmed and unable to store information, while unnecessary guidance supplied to advanced students will cause extraneous cognitive load on the working memory system. Adjusting instructional guidance for students according to their level of expertise to minimize extraneous cognitive load and optimize working memory storage capacity will enhance learning effectiveness. Novice students presented with complex subject matter require significant guidance during the initial stages, using strategies such as worked examples. As students comprehend information, instructional guidance needs to gradually fade to avoid elevated extraneous cognitive load from the expertise reversal effect. An instructional strategy that utilizes a systemic (fixed) or adjustable (adaptive) tapering of guidance to students in allied health programs depending on their expertise will optimize learning capability.

  17. Computational memory architectures for autobiographic agents interacting in a complex virtual environment: a working model

    NASA Astrophysics Data System (ADS)

    Ho, Wan Ching; Dautenhahn, Kerstin; Nehaniv, Chrystopher

    2008-03-01

    In this paper, we discuss the concept of autobiographic agent and how memory may extend an agent's temporal horizon and increase its adaptability. These concepts are applied to an implementation of a scenario where agents are interacting in a complex virtual artificial life environment. We present computational memory architectures for autobiographic virtual agents that enable agents to retrieve meaningful information from their dynamic memories which increases their adaptation and survival in the environment. The design of the memory architectures, the agents, and the virtual environment are described in detail. Next, a series of experimental studies and their results are presented which show the adaptive advantage of autobiographic memory, i.e. from remembering significant experiences. Also, in a multi-agent scenario where agents can communicate via stories based on their autobiographic memory, it is found that new adaptive behaviours can emerge from an individual's reinterpretation of experiences received from other agents whereby higher communication frequency yields better group performance. An interface is described that visualises the memory contents of an agent. From an observer perspective, the agents' behaviours can be understood as individually structured, and temporally grounded, and, with the communication of experience, can be seen to rely on emergent mixed narrative reconstructions combining the experiences of several agents. This research leads to insights into how bottom-up story-telling and autobiographic reconstruction in autonomous, adaptive agents allow temporally grounded behaviour to emerge. The article concludes with a discussion of possible implications of this research direction for future autobiographic, narrative agents.

  18. Maintenance of CCL5 mRNA stores by post-effector and memory CD8 T cells is dependent on transcription and is coupled to increased mRNA stability.

    PubMed

    Marçais, Antoine; Tomkowiak, Martine; Walzer, Thierry; Coupet, Charles-Antoine; Ravel-Chapuis, Aymeric; Marvel, Jacqueline

    2006-10-01

    Immunological memory is associated with the display of improved effector functions by cells of the adaptive immune system. The storage of untranslated mRNA coding for the CCL5 chemokine by CD8 memory cells is a new process supporting the immediate display of an effector function. Here, we show that, after induction during the primary response, high CCL5 mRNA levels are specifically preserved in CD8 T cells. We have investigated the mechanisms involved in the long-term maintenance of CCL5 mRNA levels by memory CD8 T cells. We demonstrate that the CCL5 mRNA half-life is increased in memory CD8 T cells and that these cells constitutively transcribe ccl5 gene. By inhibiting ccl5 transcription using IL-4, we demonstrate the essential role of transcription in the maintenance of CCL5 mRNA stores. Finally, we show that these stores are spontaneously reconstituted when the inhibitory signal is removed, indicating that the transcription of ccl5 is a default feature of memory CD8 T cells imprinted in their genetic program.

  19. Covert rapid action-memory simulation (CRAMS): a hypothesis of hippocampal-prefrontal interactions for adaptive behavior.

    PubMed

    Wang, Jane X; Cohen, Neal J; Voss, Joel L

    2015-01-01

    Effective choices generally require memory, yet little is known regarding the cognitive or neural mechanisms that allow memory to influence choices. We outline a new framework proposing that covert memory processing of hippocampus interacts with action-generation processing of prefrontal cortex in order to arrive at optimal, memory-guided choices. Covert, rapid action-memory simulation (CRAMS) is proposed here as a framework for understanding cognitive and/or behavioral choices, whereby prefrontal-hippocampal interactions quickly provide multiple simulations of potential outcomes used to evaluate the set of possible choices. We hypothesize that this CRAMS process is automatic, obligatory, and covert, meaning that many cycles of action-memory simulation occur in response to choice conflict without an individual's necessary intention and generally without awareness of the simulations, leading to adaptive behavior with little perceived effort. CRAMS is thus distinct from influential proposals that adaptive memory-based behavior in humans requires consciously experienced memory-based construction of possible future scenarios and deliberate decisions among possible future constructions. CRAMS provides an account of why hippocampus has been shown to make critical contributions to the short-term control of behavior, and it motivates several new experimental approaches and hypotheses that could be used to better understand the ubiquitous role of prefrontal-hippocampal interactions in situations that require adaptively using memory to guide choices. Importantly, this framework provides a perspective that allows for testing decision-making mechanisms in a manner that translates well across human and nonhuman animal model systems. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Study of chromatic adaptation using memory color matches, Part I: neutral illuminants.

    PubMed

    Smet, Kevin A G; Zhai, Qiyan; Luo, Ming R; Hanselaer, Peter

    2017-04-03

    Twelve corresponding color data sets have been obtained using the long-term memory colors of familiar objects as target stimuli. Data were collected for familiar objects with neutral, red, yellow, green and blue hues under 4 approximately neutral illumination conditions on or near the blackbody locus. The advantages of the memory color matching method are discussed in light of other more traditional asymmetric matching techniques. Results were compared to eight corresponding color data sets available in literature. The corresponding color data was used to test several linear (von Kries, RLAB, etc.) and nonlinear (Hunt & Nayatani) chromatic adaptation transforms (CAT). It was found that a simple two-step von Kries, whereby the degree of adaptation D is optimized to minimize the DEu'v' prediction errors, outperformed all other tested models for both memory color and literature corresponding color sets, whereby prediction errors were lower for the memory color sets. The predictive errors were substantially smaller than the standard uncertainty on the average observer and were comparable to what are considered just-noticeable-differences in the CIE u'v' chromaticity diagram, supporting the use of memory color based internal references to study chromatic adaptation mechanisms.

  1. Cognitive training with casual video games: points to consider.

    PubMed

    Baniqued, Pauline L; Kranz, Michael B; Voss, Michelle W; Lee, Hyunkyu; Cosman, Joshua D; Severson, Joan; Kramer, Arthur F

    2014-01-07

    Brain training programs have proliferated in recent years, with claims that video games or computer-based tasks can broadly enhance cognitive function. However, benefits are commonly seen only in trained tasks. Assessing generalized improvement and practicality of laboratory exercises complicates interpretation and application of findings. In this study, we addressed these issues by using active control groups, training tasks that more closely resemble real-world demands and multiple tests to determine transfer of training. We examined whether casual video games can broadly improve cognition, and selected training games from a study of the relationship between game performance and cognitive abilities. A total of 209 young adults were randomized into a working memory-reasoning group, an adaptive working memory-reasoning group, an active control game group, and a no-contact control group. Before and after 15 h of training, participants completed tests of reasoning, working memory, attention, episodic memory, perceptual speed, and self-report measures of executive function, game experience, perceived improvement, knowledge of brain training research, and game play outside the laboratory. Participants improved on the training games, but transfer to untrained tasks was limited. No group showed gains in reasoning, working memory, episodic memory, or perceptual speed, but the working memory-reasoning groups improved in divided attention, with better performance in an attention-demanding game, a decreased attentional blink and smaller trail-making costs. Perceived improvements did not differ across training groups and those with low reasoning ability at baseline showed larger gains. Although there are important caveats, our study sheds light on the mixed effects in the training and transfer literature and offers a novel and potentially practical training approach. Still, more research is needed to determine the real-world benefits of computer programs such as casual games.

  2. Differential changes in hippocampal CaMKII and GluA1 activity after memory training involving different levels of adaptive forgetting

    PubMed Central

    Fraize, Nicolas; Hamieh, Al Mahdy; Joseph, Mickaël Antoine; Touret, Monique; Parmentier, Régis; Salin, Paul Antoine; Malleret, Gaël

    2017-01-01

    Phosphorylation of CaMKII and AMPA receptor GluA1 subunit has been shown to play a major role in hippocampal-dependent long-term/reference memory (RM) and in the expression of long-term synaptic potentiation (LTP). In contrast, it has been proposed that dephosphorylation of these proteins could be involved in the opposite phenomenon of hippocampal long-term synaptic depression (LTD) and in adaptive forgetting. Adaptive forgetting allows interfering old memories to be forgotten to give new ones the opportunity to be stored in memory, and in particular in short-term/working memory (WM) that was shown to be very sensitive to proactive interference. To determine the role of CaMKII and GluA1 in adaptive forgetting, we adopted a comparative approach to assess the relative quantity and phosphorylation state of these proteins in the brain of rats trained in one of three radial maze paradigms: a RM task, a WM task involving a high level of adaptive forgetting, or a WM involving a low level of adaptive forgetting. Surprisingly, Western blot analyses revealed that training in a WM task involving a high level of adaptive forgetting specifically increased the expression of AMPA receptor GluA1 subunit and the activity of CaMKII in the dentate gyrus. These results highlight that WM with proactive interference involves mechanisms of synaptic plasticity selectively in the dentate gyrus. PMID:28096498

  3. Differential changes in hippocampal CaMKII and GluA1 activity after memory training involving different levels of adaptive forgetting.

    PubMed

    Fraize, Nicolas; Hamieh, Al Mahdy; Joseph, Mickaël Antoine; Touret, Monique; Parmentier, Régis; Salin, Paul Antoine; Malleret, Gaël

    2017-02-01

    Phosphorylation of CaMKII and AMPA receptor GluA1 subunit has been shown to play a major role in hippocampal-dependent long-term/reference memory (RM) and in the expression of long-term synaptic potentiation (LTP). In contrast, it has been proposed that dephosphorylation of these proteins could be involved in the opposite phenomenon of hippocampal long-term synaptic depression (LTD) and in adaptive forgetting. Adaptive forgetting allows interfering old memories to be forgotten to give new ones the opportunity to be stored in memory, and in particular in short-term/working memory (WM) that was shown to be very sensitive to proactive interference. To determine the role of CaMKII and GluA1 in adaptive forgetting, we adopted a comparative approach to assess the relative quantity and phosphorylation state of these proteins in the brain of rats trained in one of three radial maze paradigms: a RM task, a WM task involving a high level of adaptive forgetting, or a WM involving a low level of adaptive forgetting. Surprisingly, Western blot analyses revealed that training in a WM task involving a high level of adaptive forgetting specifically increased the expression of AMPA receptor GluA1 subunit and the activity of CaMKII in the dentate gyrus. These results highlight that WM with proactive interference involves mechanisms of synaptic plasticity selectively in the dentate gyrus. © 2017 Fraize et al.; Published by Cold Spring Harbor Laboratory Press.

  4. Randomized Controlled Trial of Exercise for ADHD and Disruptive Behavior Disorders.

    PubMed

    Bustamante, Eduardo Esteban; Davis, Catherine Lucy; Frazier, Stacy Lynn; Rusch, Dana; Fogg, Louis F; Atkins, Marc S; Marquez, David Xavier

    2016-07-01

    The objective of this study is to test the feasibility and impact of a 10-wk after-school exercise program for children with attention deficit hyperactivity disorder and/or disruptive behavior disorders living in an urban poor community. Children were randomized to an exercise program (n = 19) or a comparable but sedentary attention control program (n = 16). Cognitive and behavioral outcomes were collected pre-/posttest. Intent-to-treat mixed models tested group-time and group-time-attendance interactions. Effect sizes were calculated within and between groups. Feasibility was evidenced by 86% retention, 60% attendance, and average 75% maximum HR. Group-time results were null on the primary outcome, parent-reported executive function. Among secondary outcomes, between-group effect sizes favored exercise on hyperactive symptoms (d = 0.47) and verbal working memory (d = 0.26), and controls on visuospatial working memory (d = -0.21) and oppositional defiant symptoms (d = -0.37). In each group, within-group effect sizes were moderate to large on most outcomes (d = 0.67 to 1.60). A group-time-attendance interaction emerged on visuospatial working memory (F[1,33] = 7.42, P < 0.05), such that attendance to the control program was related to greater improvements (r = 0.72, P < 0.01), whereas attendance to the exercise program was not (r = 0.25, P = 0.34). Although between-group findings on the primary outcome, parent-reported executive function, were null, between-group effect sizes on hyperactivity and visuospatial working memory may reflect adaptations to the specific challenges presented by distinct formats. Both groups demonstrated substantial within-group improvements on clinically relevant outcomes. Findings underscore the importance of programmatic features, such as routines, engaging activities, behavior management strategies, and adult attention, and highlight the potential for after-school programs to benefit children with attention deficit hyperactivity disorder and disruptive behavior disorder living in urban poverty where health needs are high and services resources few.

  5. Adaptive top-down suppression of hippocampal activity and the purging of intrusive memories from consciousness.

    PubMed

    Benoit, Roland G; Hulbert, Justin C; Huddleston, Ean; Anderson, Michael C

    2015-01-01

    When reminded of unwanted memories, people often attempt to suppress these experiences from awareness. Prior work indicates that control processes mediated by the dorsolateral prefrontal cortex (DLPFC) modulate hippocampal activity during such retrieval suppression. It remains unknown whether this modulation plays a role in purging an intrusive memory from consciousness. Here, we combined fMRI and effective connectivity analyses with phenomenological reports to scrutinize a role for adaptive top-down suppression of hippocampal retrieval processes in terminating mnemonic awareness of intrusive memories. Participants either suppressed or recalled memories of pictures depicting faces or places. After each trial, they reported their success at regulating awareness of the memory. DLPFC activation was greatest when unwanted memories intruded into consciousness and needed to be purged, and this increased engagement predicted superior control of intrusive memories over time. However, hippocampal activity was decreased during the suppression of place memories only. Importantly, the inhibitory influence of the DLPFC on the hippocampus was linked to the ensuing reduction in intrusions of the suppressed memories. Individuals who exhibited negative top-down coupling during early suppression attempts experienced fewer involuntary memory intrusions later on. Over repeated suppressions, the DLPFC-hippocampus connectivity grew less negative with the degree that they no longer had to purge unwanted memories from awareness. These findings support a role of DLPFC in countermanding the unfolding recollection of an unwanted memory via the suppression of hippocampal processing, a mechanism that may contribute to adaptation in the aftermath of traumatic experiences.

  6. CD8+ T Cell Exhaustion, Suppressed Gamma Interferon Production, and Delayed Memory Response Induced by Chronic Brucella melitensis Infection

    PubMed Central

    Durward-Diioia, Marina; Harms, Jerome; Khan, Mike; Hall, Cherisse; Smith, Judith A.

    2015-01-01

    Brucella melitensis is a well-adapted zoonotic pathogen considered a scourge of mankind since recorded history. In some cases, initial infection leads to chronic and reactivating brucellosis, incurring significant morbidity and economic loss. The mechanism by which B. melitensis subverts adaptive immunological memory is poorly understood. Previous work has shown that Brucella-specific CD8+ T cells express gamma interferon (IFN-γ) and can transition to long-lived memory cells but are not polyfunctional. In this study, chronic infection of mice with B. melitensis led to CD8+ T cell exhaustion, manifested by programmed cell death 1 (PD-1) and lymphocyte activation gene 3 (LAG-3) expression and a lack of IFN-γ production. The B. melitensis-specific CD8+ T cells that produced IFN-γ expressed less IFN-γ per cell than did CD8+ cells from uninfected mice. Both memory precursor (CD8+ LFA1HI CD127HI KLRG1LO) and long-lived memory (CD8+ CD27HI CD127HI KLRG1LO) cells were identified during chronic infection. Interestingly, after adoptive transfer, mice receiving cells from chronically infected animals were able to contain infection more rapidly than recipients of cells from acutely infected or uninfected donors, although the proportions of exhausted CD8+ T cells increased after adoptive transfer in both challenged and unchallenged recipients. CD8+ T cells of challenged recipients initially retained the stunted IFN-γ production found prior to transfer, and cells from acutely infected mice were never seen to transition to either memory subset at all time points tested, up to 30 days post-primary infection, suggesting a delay in the generation of memory. Here we have identified defects in Brucella-responsive CD8+ T cells that allow chronic persistence of infection. PMID:26416901

  7. Recent advances in active noise and vibration control at NASA Langley Research Center

    NASA Astrophysics Data System (ADS)

    Gibbs, Gary P.; Cabell, Randolph H.; Palumbo, Daniel L.; Silcox, Richard J.; Turner, Travis L.

    2002-11-01

    Over the past 15 years NASA has investigated the use of active control technology for aircraft interior noise. More recently this work has been supported through the Advanced Subsonic Technology Noise Reduction Program (1994-2001), High Speed Research Program (1994-1999), and through the Quiet Aircraft Technology Program (2000-present). The interior environment is recognized as an important element in flight safety, crew communications and fatigue, as well as passenger comfort. This presentation will overview research in active noise and vibration control relating to interior noise being investigated by NASA. The research to be presented includes: active control of aircraft fuselage sidewall transmission due to turbulent boundary layer or jet noise excitation, active control of interior tones due to propeller excitation of aircraft structures, and adaptive stiffening of structures for noise, vibration, and fatigue control. Work on actuator technology ranging from piezoelectrics, shape memory actuators, and fluidic actuators will be described including applications. Control system technology will be included that is experimentally based, real-time, and adaptive.

  8. Spike frequency adaptation is a possible mechanism for control of attractor preference in auto-associative neural networks

    NASA Astrophysics Data System (ADS)

    Roach, James; Sander, Leonard; Zochowski, Michal

    Auto-associative memory is the ability to retrieve a pattern from a small fraction of the pattern and is an important function of neural networks. Within this context, memories that are stored within the synaptic strengths of networks act as dynamical attractors for network firing patterns. In networks with many encoded memories, some attractors will be stronger than others. This presents the problem of how networks switch between attractors depending on the situation. We suggest that regulation of neuronal spike-frequency adaptation (SFA) provides a universal mechanism for network-wide attractor selectivity. Here we demonstrate in a Hopfield type attractor network that neurons minimal SFA will reliably activate in the pattern corresponding to a local attractor and that a moderate increase in SFA leads to the network to converge to the strongest attractor state. Furthermore, we show that on long time scales SFA allows for temporal sequences of activation to emerge. Finally, using a model of cholinergic modulation within the cortex we argue that dynamic regulation of attractor preference by SFA could be critical for the role of acetylcholine in attention or for arousal states in general. This work was supported by: NSF Graduate Research Fellowship Program under Grant No. DGE 1256260 (JPR), NSF CMMI 1029388 (MRZ) and NSF PoLS 1058034 (MRZ & LMS).

  9. The Sleep Elaboration-Awake Pruning (SEAP) theory of memory: long term memories grow in complexity during sleep and undergo selection while awake. Clinical, psychopharmacological and creative implications.

    PubMed

    Charlton, Bruce G; Andras, Peter

    2009-07-01

    Long term memory (LTM) systems need to be adaptive such that they enhance an organism's reproductive fitness and self-reproducing in order to maintain their complexity of communications over time in the face of entropic loss of information. Traditional 'representation-consolidation' accounts conceptualize memory adaptiveness as due to memories being 'representations' of the environment, and the longevity of memories as due to 'consolidation' processes. The assumption is that memory representations are formed while an animal is awake and interacting with the environment, and these memories are consolidated mainly while the animal is asleep. So the traditional view of memory is 'instructionist' and assumes that information is transferred from the environment into the brain. By contrast, we see memories as arising endogenously within the brain's LTM system mainly during sleep, to create complex but probably maladaptive memories which are then simplified ('pruned') and selected during the awake period. When awake the LTM system is brought into a more intense interaction with past and present experience. Ours is therefore a 'selectionist' account of memory, and could be termed the Sleep Elaboration-Awake Pruning (or SEAP) theory. The SEAP theory explains the longevity of memories in the face of entropy by the tendency for memories to grow in complexity during sleep; and explains the adaptiveness of memory by selection for consistency with perceptions and previous memories during the awake state. Sleep is therefore that behavioural state during which most of the internal processing of the system of LTM occurs; and the reason sleep remains poorly understood is that its primary activity is the expansion of long term memories. By re-conceptualizing the relationship between memory, sleep and the environment; SEAP provides a radically new framework for memory research, with implications for the measurement of memory and the design of empirical investigations in clinical, psychopharmacological and creative domains. For example, it would be predicted that states of insufficient alertness such as delirium would produce errors of commission (memory distortion and false memories, as with psychotic delusions), while sleep deprivation would produce errors of memory omission (memory loss). Ultimately, the main argument in favour of SEAP is that long term memory must be a complex adaptive system, and complex systems arise, are selected and sustained according to the principles of systems theory; and therefore LTM cannot be functioning in the way assumed by 'representation-consolidation' theories.

  10. Formation of model-free motor memories during motor adaptation depends on perturbation schedule.

    PubMed

    Orban de Xivry, Jean-Jacques; Lefèvre, Philippe

    2015-04-01

    Motor adaptation to an external perturbation relies on several mechanisms such as model-based, model-free, strategic, or repetition-dependent learning. Depending on the experimental conditions, each of these mechanisms has more or less weight in the final adaptation state. Here we focused on the conditions that lead to the formation of a model-free motor memory (Huang VS, Haith AM, Mazzoni P, Krakauer JW. Neuron 70: 787-801, 2011), i.e., a memory that does not depend on an internal model or on the size or direction of the errors experienced during the learning. The formation of such model-free motor memory was hypothesized to depend on the schedule of the perturbation (Orban de Xivry JJ, Ahmadi-Pajouh MA, Harran MD, Salimpour Y, Shadmehr R. J Neurophysiol 109: 124-136, 2013). Here we built on this observation by directly testing the nature of the motor memory after abrupt or gradual introduction of a visuomotor rotation, in an experimental paradigm where the presence of model-free motor memory can be identified (Huang VS, Haith AM, Mazzoni P, Krakauer JW. Neuron 70: 787-801, 2011). We found that relearning was faster after abrupt than gradual perturbation, which suggests that model-free learning is reduced during gradual adaptation to a visuomotor rotation. In addition, the presence of savings after abrupt introduction of the perturbation but gradual extinction of the motor memory suggests that unexpected errors are necessary to induce a model-free motor memory. Overall, these data support the hypothesis that different perturbation schedules do not lead to a more or less stabilized motor memory but to distinct motor memories with different attributes and neural representations. Copyright © 2015 the American Physiological Society.

  11. Formation of model-free motor memories during motor adaptation depends on perturbation schedule

    PubMed Central

    Lefèvre, Philippe

    2015-01-01

    Motor adaptation to an external perturbation relies on several mechanisms such as model-based, model-free, strategic, or repetition-dependent learning. Depending on the experimental conditions, each of these mechanisms has more or less weight in the final adaptation state. Here we focused on the conditions that lead to the formation of a model-free motor memory (Huang VS, Haith AM, Mazzoni P, Krakauer JW. Neuron 70: 787–801, 2011), i.e., a memory that does not depend on an internal model or on the size or direction of the errors experienced during the learning. The formation of such model-free motor memory was hypothesized to depend on the schedule of the perturbation (Orban de Xivry JJ, Ahmadi-Pajouh MA, Harran MD, Salimpour Y, Shadmehr R. J Neurophysiol 109: 124–136, 2013). Here we built on this observation by directly testing the nature of the motor memory after abrupt or gradual introduction of a visuomotor rotation, in an experimental paradigm where the presence of model-free motor memory can be identified (Huang VS, Haith AM, Mazzoni P, Krakauer JW. Neuron 70: 787–801, 2011). We found that relearning was faster after abrupt than gradual perturbation, which suggests that model-free learning is reduced during gradual adaptation to a visuomotor rotation. In addition, the presence of savings after abrupt introduction of the perturbation but gradual extinction of the motor memory suggests that unexpected errors are necessary to induce a model-free motor memory. Overall, these data support the hypothesis that different perturbation schedules do not lead to a more or less stabilized motor memory but to distinct motor memories with different attributes and neural representations. PMID:25673736

  12. Effectiveness of a computerised working memory training in adolescents with mild to borderline intellectual disabilities.

    PubMed

    Van der Molen, M J; Van Luit, J E H; Van der Molen, M W; Klugkist, I; Jongmans, M J

    2010-05-01

    The goal of this study is to evaluate the effectiveness of a computerised working memory (WM) training on memory, response inhibition, fluid intelligence, scholastic abilities and the recall of stories in adolescents with mild to borderline intellectual disabilities attending special education. A total of 95 adolescents with mild to borderline intellectual disabilities were randomly assigned to either a training adaptive to each child's progress in WM, a non-adaptive WM training, or to a control group. Verbal short-term memory (STM) improved significantly from pre- to post-testing in the group who received the adaptive training compared with the control group. The beneficial effect on verbal STM was maintained at follow-up and other effects became clear at that time as well. Both the adaptive and non-adaptive WM training led to higher scores at follow-up than at post-intervention on visual STM, arithmetic and story recall compared with the control condition. In addition, the non-adaptive training group showed a significant increase in visuo-spatial WM capacity. The current study provides the first demonstration that WM can be effectively trained in adolescents with mild to borderline intellectual disabilities.

  13. Measuring working memory capacity in children using adaptive tasks: Example validation of an adaptive complex span.

    PubMed

    Gonthier, Corentin; Aubry, Alexandre; Bourdin, Béatrice

    2018-06-01

    Working memory tasks designed for children usually present trials in order of ascending difficulty, with testing discontinued when the child fails a particular level. Unfortunately, this procedure comes with a number of issues, such as decreased engagement from high-ability children, vulnerability of the scores to temporary mind-wandering, and large between-subjects variations in number of trials, testing time, and proactive interference. To circumvent these problems, the goal of the present study was to demonstrate the feasibility of assessing working memory using an adaptive testing procedure. The principle of adaptive testing is to dynamically adjust the level of difficulty as the task progresses to match the participant's ability. We used this method to develop an adaptive complex span task (the ACCES) comprising verbal and visuo-spatial subtests. The task presents a fixed number of trials to all participants, allows for partial credit scoring, and can be used with children regardless of ability level. The ACCES demonstrated satisfying psychometric properties in a sample of 268 children aged 8-13 years, confirming the feasibility of using adaptive tasks to measure working memory capacity in children. A free-to-use implementation of the ACCES is provided.

  14. PROspective MEmory Training to improve HEart failUre Self-care (PROMETHEUS): study protocol for a randomised controlled trial.

    PubMed

    Cameron, Jan; Rendell, Peter G; Ski, Chantal F; Kure, Christina E; McLennan, Skye N; Rose, Nathan S; Prior, David L; Thompson, David R

    2015-04-29

    Cognitive impairment is seen in up to three quarters of heart failure (HF) patients and has a significant negative impact on patients' health outcomes. Prospective memory, which is defined as memory to carry out future intentions, is important for functional independence in older adults and involves application of multiple cognitive processes that are often impaired in HF patients. The objective of this study is to examine the effects of prospective memory training on patients' engagement in HF self-care and health outcomes, carer strain and quality of life. The proposed study is a randomised, controlled trial in which 200 patients diagnosed with HF, and their carers will be recruited from 3 major hospitals across Melbourne. Eligible patients with HF will be randomised to receive either: 1) The Virtual Week Training Program - a computerised prospective memory (PM) training program (intervention) or 2) non-adaptive computer-based word puzzles (active control). HF patients' baseline cognitive function will be compared to a healthy control group (n = 60) living independently in the community. Patients will undergo a comprehensive assessment of PM, neuropsychological functioning, self-care, physical, and emotional functioning. Assessments will take place at baseline, 4 weeks and 12 months following intervention. Carers will complete measures assessing quality of life, strain, perceived control in the management of the patients' HF symptoms, and ratings of the patients' level of engagement in HF self-care behaviours. If the Virtual Week Training Program is effective in improving: 1) prospective memory; 2) self-care behaviours, and 3) wellbeing in HF patients, this study will enhance our understanding of impaired cognitive processes in HF and potentially is a mechanism to reduce healthcare costs. Australian New Zealand Clinical Trials Registry #366376; 27 May 2014. https://www.anzctr.org.au/Trial/Registration/TrialReview.aspx?id=366376&isClinicalTrial=False .

  15. Joint Services Electronics Program Annual Progress Report.

    DTIC Science & Technology

    1985-11-01

    one symbol memory) adaptive lHuffman codes were performed, and the compression achieved was compared with that of Ziv - Lempel coding. As was expected...MATERIALS 8 4. Information Systems 9 4.1 REAL TIME STATISTICAL DATA PROCESSING 9 -. 4.2 DATA COMPRESSION for COMPUTER DATA STRUCTURES 9 5. PhD...a. Real Time Statistical Data Processing (T. Kailatb) b. Data Compression for Computer Data Structures (J. Gill) Acces Fo NTIS CRA&I I " DTIC TAB

  16. Epigenetic and chromatin-based mechanisms in environmental stress adaptation and stress memory in plants.

    PubMed

    Lämke, Jörn; Bäurle, Isabel

    2017-06-27

    Plants frequently have to weather both biotic and abiotic stressors, and have evolved sophisticated adaptation and defense mechanisms. In recent years, chromatin modifications, nucleosome positioning, and DNA methylation have been recognized as important components in these adaptations. Given their potential epigenetic nature, such modifications may provide a mechanistic basis for a stress memory, enabling plants to respond more efficiently to recurring stress or even to prepare their offspring for potential future assaults. In this review, we discuss both the involvement of chromatin in stress responses and the current evidence on somatic, intergenerational, and transgenerational stress memory.

  17. Everyday Experiences of Memory Problems and Control: The Adaptive Role of Selective Optimization with Compensation in the Context of Memory Decline

    PubMed Central

    Hahn, Elizabeth A.; Lachman, Margie E.

    2014-01-01

    The present study examined the role of long-term working memory decline in the relationship between everyday experiences of memory problems and perceived control, and we also considered whether the use of accommodative strategies [selective optimization with compensation (SOC)] would be adaptive. The study included Boston-area participants (n=103) from the Midlife in the United States study (MIDUS) who completed two working memory assessments over ten years and weekly diaries following Time 2. In adjusted multi-level analyses, greater memory decline and lower general perceived control were associated with more everyday memory problems. Low perceived control reported in a weekly diary was associated with more everyday memory problems among those with greater memory decline and low SOC strategy use (Est.=−0.28, SE=0.13, p=.036). These results suggest that the use of SOC strategies in the context of declining memory may help to buffer the negative effects of low perceived control on everyday memory. PMID:24597768

  18. Everyday experiences of memory problems and control: the adaptive role of selective optimization with compensation in the context of memory decline.

    PubMed

    Hahn, Elizabeth A; Lachman, Margie E

    2015-01-01

    The present study examined the role of long-term working memory decline in the relationship between everyday experiences of memory problems and perceived control, and we also considered whether the use of accommodative strategies [selective optimization with compensation (SOC)] would be adaptive. The study included Boston-area participants (n = 103) from the Midlife in the United States study (MIDUS) who completed two working memory assessments over 10 years and weekly diaries following Time 2. In adjusted multi-level analyses, greater memory decline and lower general perceived control were associated with more everyday memory problems. Low perceived control reported in a weekly diary was associated with more everyday memory problems among those with greater memory decline and low SOC strategy use (Est. = -0.28, SE= 0.13, p = .036). These results suggest that the use of SOC strategies in the context of declining memory may help to buffer the negative effects of low perceived control on everyday memory.

  19. Effects of Ordering Strategies and Programming Paradigms on Sparse Matrix Computations

    NASA Technical Reports Server (NTRS)

    Oliker, Leonid; Li, Xiaoye; Husbands, Parry; Biswas, Rupak; Biegel, Bryan (Technical Monitor)

    2002-01-01

    The Conjugate Gradient (CG) algorithm is perhaps the best-known iterative technique to solve sparse linear systems that are symmetric and positive definite. For systems that are ill-conditioned, it is often necessary to use a preconditioning technique. In this paper, we investigate the effects of various ordering and partitioning strategies on the performance of parallel CG and ILU(O) preconditioned CG (PCG) using different programming paradigms and architectures. Results show that for this class of applications: ordering significantly improves overall performance on both distributed and distributed shared-memory systems, that cache reuse may be more important than reducing communication, that it is possible to achieve message-passing performance using shared-memory constructs through careful data ordering and distribution, and that a hybrid MPI+OpenMP paradigm increases programming complexity with little performance gains. A implementation of CG on the Cray MTA does not require special ordering or partitioning to obtain high efficiency and scalability, giving it a distinct advantage for adaptive applications; however, it shows limited scalability for PCG due to a lack of thread level parallelism.

  20. CRISPR-Cas adaptation: insights into the mechanism of action.

    PubMed

    Amitai, Gil; Sorek, Rotem

    2016-02-01

    Since the first demonstration that CRISPR-Cas systems provide bacteria and archaea with adaptive immunity against phages and plasmids, numerous studies have yielded key insights into the molecular mechanisms governing how these systems attack and degrade foreign DNA. However, the molecular mechanisms underlying the adaptation stage, in which new immunological memory is formed, have until recently represented a major unresolved question. In this Progress article, we discuss recent discoveries that have shown both how foreign DNA is identified by the CRISPR-Cas adaptation machinery and the molecular basis for its integration into the chromosome to form an immunological memory. Furthermore, we describe the roles of each of the specific CRISPR-Cas components that are involved in memory formation, and consider current models for their evolutionary origin.

  1. InSync Adaptive Traffic Control System for the Veterans Memorial Hwy Corridor on Long Island, NY

    DOT National Transportation Integrated Search

    2012-08-01

    This report documents Rhythm Engineerings adaptive traffic control system field installation performed : by New York State Department of Transportation (NYSDOT) along Veterans Memorial Hwy in Long : Island, NY. This report reviews the reason for t...

  2. Homeostatic Regulation of Memory Systems and Adaptive Decisions

    PubMed Central

    Mizumori, Sheri JY; Jo, Yong Sang

    2013-01-01

    While it is clear that many brain areas process mnemonic information, understanding how their interactions result in continuously adaptive behaviors has been a challenge. A homeostatic-regulated prediction model of memory is presented that considers the existence of a single memory system that is based on a multilevel coordinated and integrated network (from cells to neural systems) that determines the extent to which events and outcomes occur as predicted. The “multiple memory systems of the brain” have in common output that signals errors in the prediction of events and/or their outcomes, although these signals differ in terms of what the error signal represents (e.g., hippocampus: context prediction errors vs. midbrain/striatum: reward prediction errors). The prefrontal cortex likely plays a pivotal role in the coordination of prediction analysis within and across prediction brain areas. By virtue of its widespread control and influence, and intrinsic working memory mechanisms. Thus, the prefrontal cortex supports the flexible processing needed to generate adaptive behaviors and predict future outcomes. It is proposed that prefrontal cortex continually and automatically produces adaptive responses according to homeostatic regulatory principles: prefrontal cortex may serve as a controller that is intrinsically driven to maintain in prediction areas an experience-dependent firing rate set point that ensures adaptive temporally and spatially resolved neural responses to future prediction errors. This same drive by prefrontal cortex may also restore set point firing rates after deviations (i.e. prediction errors) are detected. In this way, prefrontal cortex contributes to reducing uncertainty in prediction systems. An emergent outcome of this homeostatic view may be the flexible and adaptive control that prefrontal cortex is known to implement (i.e. working memory) in the most challenging of situations. Compromise to any of the prediction circuits should result in rigid and suboptimal decision making and memory as seen in addiction and neurological disease. © 2013 The Authors. Hippocampus Published by Wiley Periodicals, Inc. PMID:23929788

  3. Homeostatic regulation of memory systems and adaptive decisions.

    PubMed

    Mizumori, Sheri J Y; Jo, Yong Sang

    2013-11-01

    While it is clear that many brain areas process mnemonic information, understanding how their interactions result in continuously adaptive behaviors has been a challenge. A homeostatic-regulated prediction model of memory is presented that considers the existence of a single memory system that is based on a multilevel coordinated and integrated network (from cells to neural systems) that determines the extent to which events and outcomes occur as predicted. The "multiple memory systems of the brain" have in common output that signals errors in the prediction of events and/or their outcomes, although these signals differ in terms of what the error signal represents (e.g., hippocampus: context prediction errors vs. midbrain/striatum: reward prediction errors). The prefrontal cortex likely plays a pivotal role in the coordination of prediction analysis within and across prediction brain areas. By virtue of its widespread control and influence, and intrinsic working memory mechanisms. Thus, the prefrontal cortex supports the flexible processing needed to generate adaptive behaviors and predict future outcomes. It is proposed that prefrontal cortex continually and automatically produces adaptive responses according to homeostatic regulatory principles: prefrontal cortex may serve as a controller that is intrinsically driven to maintain in prediction areas an experience-dependent firing rate set point that ensures adaptive temporally and spatially resolved neural responses to future prediction errors. This same drive by prefrontal cortex may also restore set point firing rates after deviations (i.e. prediction errors) are detected. In this way, prefrontal cortex contributes to reducing uncertainty in prediction systems. An emergent outcome of this homeostatic view may be the flexible and adaptive control that prefrontal cortex is known to implement (i.e. working memory) in the most challenging of situations. Compromise to any of the prediction circuits should result in rigid and suboptimal decision making and memory as seen in addiction and neurological disease. Copyright © 2013 Wiley Periodicals, Inc.

  4. [Assessing program sustainability in public health organizations: a tool-kit application in Haiti].

    PubMed

    Ridde, V; Pluye, P; Queuille, L

    2006-10-01

    Public health stakeholders are concerned about program sustainability. However, they usually conceive sustainability in accordance with financial criteria for at least one reason. No simple frameworks are operationally and theoretically sound enough to globally evaluate program sustainability. The present paper aims to describe an application of one framework assessment tool used to evaluate the sustainability level and process of a Nutritional Care Unit managed by a Swiss humanitarian agency to fight against severe child malnutrition in a Haitian area. The managing agency is committed to put this Unit back into the structure of a local public hospital. The evaluation was performed within the sustainability framework proposed in a former article. Data were collected with a combination of tools, semi-structured interviews (n=33, medical and support staff from the agency and the hospital), participatory observation and document review. Data concerned the four characteristics of organizational routines (memory, adaptation, values and rules) enabling assess to the level of sustainability. In addition, data were related to three types of events distinguishing routinization processes from implementation processes: specific events of routinization, routinization-implementation joint events, and specific events of implementation. Data analysis was thematic and results were validated by actors through a feed-back session and written comments. The current level of sustainability of the Nutritional Care Unit within the Hospital is weak: weak memory, high adaptation, weak sharing of values and rules. This may be explained by the sustainability process, and the absence of specific routinization events. The relevance of such processes is reasonable, while it has been strongly challenged in the troublesome Haitian context. Riots have been widespread over the last years, creating difficulties for the Hospital. This experience suggests the proposed framework and sustainability assessment tools are useful when the context permits scrutinization of program sustainability.

  5. Striatal contributions to declarative memory retrieval

    PubMed Central

    Scimeca, Jason M.; Badre, David

    2012-01-01

    Declarative memory is known to depend on the medial temporal lobe memory system. Recently, there has been renewed focus on the relationship between the basal ganglia and declarative memory, including the involvement of striatum. However, the contribution of striatum to declarative memory retrieval remains unknown. Here, we review neuroimaging and neuropsychological evidence for the involvement of the striatum in declarative memory retrieval. From this review, we propose that, along with the prefrontal cortex (PFC), the striatum primarily supports cognitive control of memory retrieval. We conclude by proposing three hypotheses for the specific role of striatum in retrieval: (1) Striatum modulates the re-encoding of retrieved items in accord with their expected utility (adaptive encoding), (2) striatum selectively admits information into working memory that is expected to increase the likelihood of successful retrieval (adaptive gating), and (3) striatum enacts adjustments in cognitive control based on the outcome of retrieval (reinforcement learning). PMID:22884322

  6. The Memory Aid study: protocol for a randomized controlled clinical trial evaluating the effect of computer-based working memory training in elderly patients with mild cognitive impairment (MCI)

    PubMed Central

    2014-01-01

    Background Mild cognitive impairment (MCI) is a condition characterized by memory problems that are more severe than the normal cognitive changes due to aging, but less severe than dementia. Reduced working memory (WM) is regarded as one of the core symptoms of an MCI condition. Recent studies have indicated that WM can be improved through computer-based training. The objective of this study is to evaluate if WM training is effective in improving cognitive function in elderly patients with MCI, and if cognitive training induces structural changes in the white and gray matter of the brain, as assessed by structural MRI. Methods/Designs The proposed study is a blinded, randomized, controlled trail that will include 90 elderly patients diagnosed with MCI at a hospital-based memory clinic. The participants will be randomized to either a training program or a placebo version of the program. The intervention is computerized WM training performed for 45 minutes of 25 sessions over 5 weeks. The placebo version is identical in duration but is non-adaptive in the difficulty level of the tasks. Neuropsychological assessment and structural MRI will be performed before and 1 month after training, and at a 5-month folllow-up. Discussion If computer-based training results in positive changes to memory functions in patients with MCI this may represent a new, cost-effective treatment for MCI. Secondly, evaluation of any training-induced structural changes to gray or white matter will improve the current understanding of the mechanisms behind effective cognitive interventions in patients with MCI. Trial registration ClinicalTrials.gov NCT01991405. November 18, 2013. PMID:24886034

  7. The Memory Aid study: protocol for a randomized controlled clinical trial evaluating the effect of computer-based working memory training in elderly patients with mild cognitive impairment (MCI).

    PubMed

    Flak, Marianne M; Hernes, Susanne S; Chang, Linda; Ernst, Thomas; Douet, Vanessa; Skranes, Jon; Løhaugen, Gro C C

    2014-05-03

    Mild cognitive impairment (MCI) is a condition characterized by memory problems that are more severe than the normal cognitive changes due to aging, but less severe than dementia. Reduced working memory (WM) is regarded as one of the core symptoms of an MCI condition. Recent studies have indicated that WM can be improved through computer-based training. The objective of this study is to evaluate if WM training is effective in improving cognitive function in elderly patients with MCI, and if cognitive training induces structural changes in the white and gray matter of the brain, as assessed by structural MRI. The proposed study is a blinded, randomized, controlled trail that will include 90 elderly patients diagnosed with MCI at a hospital-based memory clinic. The participants will be randomized to either a training program or a placebo version of the program. The intervention is computerized WM training performed for 45 minutes of 25 sessions over 5 weeks. The placebo version is identical in duration but is non-adaptive in the difficulty level of the tasks. Neuropsychological assessment and structural MRI will be performed before and 1 month after training, and at a 5-month folllow-up. If computer-based training results in positive changes to memory functions in patients with MCI this may represent a new, cost-effective treatment for MCI. Secondly, evaluation of any training-induced structural changes to gray or white matter will improve the current understanding of the mechanisms behind effective cognitive interventions in patients with MCI. ClinicalTrials.gov NCT01991405. November 18, 2013.

  8. Randomized Controlled Trial of Exercise for ADHD and Disruptive Behavior Disorders

    PubMed Central

    Bustamante, Eduardo E.; Davis, Catherine L.; Frazier, Stacy L.; Rusch, Dana; Fogg, Louis F.; Atkins, Marc S.; Marquez, David X.

    2016-01-01

    Purpose To test feasibility and impact of a 10-week after-school exercise program for children with ADHD and/or disruptive behavior disorders (DBD) living in an urban poor community. Methods Children were randomized to exercise (n=19) or a comparable but sedentary attention control program (n=16). Cognitive and behavioral outcomes were collected pre-post. Intent-to-treat mixed models tested group × time and group × time × attendance interactions. Effect sizes were calculated within and between groups. Results Feasibility was evidenced by 86% retention, 60% attendance, and average 75% maximum heart rate. Group × time results were null on the primary outcome, parent-reported executive function. Among secondary outcomes, between-group effect sizes favored exercise on hyperactive symptoms (d=0.47) and verbal working memory (d=0.26), and controls on visuospatial working memory (d=-0.21) and oppositional defiant symptoms (d=-0.37). In each group, within-group effect sizes were moderate-large on most outcomes (d=0.67 to 1.60). A group × time × attendance interaction emerged on visuospatial working memory (F[1,33]=7.42, p<.05), such that attendance to the control program was related to greater improvements (r=.72, p<.01) while attendance to the exercise program was not (r=.25, p=.34). Conclusions While between-group findings on the primary outcome, parent-reported executive function, were null, between-group effect sizes on hyperactivity and visuospatial working memory may reflect adaptations to the specific challenges presented by distinct formats. Both groups demonstrated substantial within-group improvements on clinically relevant outcomes. Findings underscore the importance of programmatic features such as routines, engaging activities, behavior management strategies, and adult attention; and highlight the potential for after-school programs to benefit children with ADHD and DBD living in urban poverty where health needs are high and services resources few. PMID:26829000

  9. Associations of Memory and Executive Functioning With Academic and Adaptive Functioning Among Youth With Perinatal HIV Exposure and/or Infection.

    PubMed

    Sirois, Patricia A; Chernoff, Miriam C; Malee, Kathleen M; Garvie, Patricia A; Harris, Lynnette L; Williams, Paige L; Woods, Steven P; Nozyce, Molly L; Kammerer, Betsy L; Yildirim, Cenk; Nichols, Sharon L

    2016-12-01

    Perinatally acquired HIV (PHIV) confers risk for neurocognitive impairment, which potentially affects school performance and functional independence of infected children. In this study, we examined the associations of 2 key neurocognitive domains, memory and executive function (EF), with academic and adaptive skills among youth with PHIV and perinatally HIV-exposed but uninfected (PHEU) youth. Participants ages 9 to <19 years enrolled in the Pediatric HIV/AIDS Cohort Study's Memory and Executive Functioning Study completed standardized measures of reading and math. The primary caregivers completed a standardized measure of their child's adaptive behavior. Participants with PHIV, those with (PHIV/C) and without (PHIV/non-C) a Centers for Disease Control and Prevention class C diagnosis, and PHEU participants were compared. Retrospective memory (RM), prospective memory (PM), and EF were evaluated relative to outcomes using general linear regression models adjusted for sociodemographic characteristics. Of the participants (N = 258; mean age, 14.1 years), 46% were male, 75% were black, and 18% were Hispanic. Adjusted mean scores in math and adaptive behavior did not differ among the youth with PHIV/C (n = 45), those with PHIV/non-C (n = 128), and PHEU youth (n = 85). Youth with PHIV/C had lower adjusted mean reading scores than PHIV/non-C and PHEU youth (86.9 vs 93.8 [P = .02] and 93.2 [P = .04], respectively). There were positive associations of RM, PM, EF, and some sociodemographic characteristics with higher reading and math scores. Immediate and delayed verbal memory, delayed visual memory, PM, and some EF measures were positively associated with adaptive behavior. Higher-order cognitive abilities such as memory and EF seem to play a key role in academic and adaptive capacities, regardless of a child's HIV status, and might serve as intervention targets for improving functional outcomes. © The Author 2016. Published by Oxford University Press on behalf of the Pediatric Infectious Diseases Society. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  10. Alzheimer's disease and natural cognitive aging may represent adaptive metabolism reduction programs

    PubMed Central

    2009-01-01

    The present article examines several lines of converging evidence suggesting that the slow and insidious brain changes that accumulate over the lifespan, resulting in both natural cognitive aging and Alzheimer's disease (AD), represent a metabolism reduction program. A number of such adaptive programs are known to accompany aging and are thought to have decreased energy requirements for ancestral hunter-gatherers in their 30s, 40s and 50s. Foraging ability in modern hunter-gatherers declines rapidly, more than a decade before the average terminal age of 55 years. Given this, the human brain would have been a tremendous metabolic liability that must have been advantageously tempered by the early cellular and molecular changes of AD which begin to accumulate in all humans during early adulthood. Before the recent lengthening of life span, individuals in the ancestral environment died well before this metabolism reduction program resulted in clinical AD, thus there was never any selective pressure to keep adaptive changes from progressing to a maladaptive extent. Aging foragers may not have needed the same cognitive capacities as their younger counterparts because of the benefits of accumulated learning and life experience. It is known that during both childhood and adulthood metabolic rate in the brain decreases linearly with age. This trend is thought to reflect the fact that children have more to learn. AD "pathology" may be a natural continuation of this trend. It is characterized by decreasing cerebral metabolism, selective elimination of synapses and reliance on accumulating knowledge (especially implicit and procedural) over raw brain power (working memory). Over decades of subsistence, the behaviors of aging foragers became routinized, their motor movements automated and their expertise ingrained to a point where they no longer necessitated the first-rate working memory they possessed when younger and learning actively. Alzheimer changes selectively and precisely mediate an adaptation to this major life-history transition. AD symptomatology shares close similarities with deprivation syndromes in other animals including the starvation response. Both molecular and anatomical features of AD imitate brain changes that have been conceptualized as adaptive responses to low food availability in mammals and birds. Alzheimer's patients are known to express low overall metabolic rates and are genetically inclined to exhibit physiologically thrifty traits widely thought to allow mammals to subsist under conditions of nutritional scarcity. Additionally, AD is examined here in the contexts of anthropology, comparative neuroscience, evolutionary medicine, expertise, gerontology, neural Darwinism, neuroecology and the thrifty genotype. PMID:19250550

  11. Alzheimer's disease and natural cognitive aging may represent adaptive metabolism reduction programs.

    PubMed

    Reser, Jared Edward

    2009-02-28

    The present article examines several lines of converging evidence suggesting that the slow and insidious brain changes that accumulate over the lifespan, resulting in both natural cognitive aging and Alzheimer's disease (AD), represent a metabolism reduction program. A number of such adaptive programs are known to accompany aging and are thought to have decreased energy requirements for ancestral hunter-gatherers in their 30s, 40s and 50s. Foraging ability in modern hunter-gatherers declines rapidly, more than a decade before the average terminal age of 55 years. Given this, the human brain would have been a tremendous metabolic liability that must have been advantageously tempered by the early cellular and molecular changes of AD which begin to accumulate in all humans during early adulthood. Before the recent lengthening of life span, individuals in the ancestral environment died well before this metabolism reduction program resulted in clinical AD, thus there was never any selective pressure to keep adaptive changes from progressing to a maladaptive extent.Aging foragers may not have needed the same cognitive capacities as their younger counterparts because of the benefits of accumulated learning and life experience. It is known that during both childhood and adulthood metabolic rate in the brain decreases linearly with age. This trend is thought to reflect the fact that children have more to learn. AD "pathology" may be a natural continuation of this trend. It is characterized by decreasing cerebral metabolism, selective elimination of synapses and reliance on accumulating knowledge (especially implicit and procedural) over raw brain power (working memory). Over decades of subsistence, the behaviors of aging foragers became routinized, their motor movements automated and their expertise ingrained to a point where they no longer necessitated the first-rate working memory they possessed when younger and learning actively. Alzheimer changes selectively and precisely mediate an adaptation to this major life-history transition.AD symptomatology shares close similarities with deprivation syndromes in other animals including the starvation response. Both molecular and anatomical features of AD imitate brain changes that have been conceptualized as adaptive responses to low food availability in mammals and birds. Alzheimer's patients are known to express low overall metabolic rates and are genetically inclined to exhibit physiologically thrifty traits widely thought to allow mammals to subsist under conditions of nutritional scarcity. Additionally, AD is examined here in the contexts of anthropology, comparative neuroscience, evolutionary medicine, expertise, gerontology, neural Darwinism, neuroecology and the thrifty genotype.

  12. Gray matter responsiveness to adaptive working memory training: a surface-based morphometry study

    PubMed Central

    Román, Francisco J.; Lewis, Lindsay B.; Chen, Chi-Hua; Karama, Sherif; Burgaleta, Miguel; Martínez, Kenia; Lepage, Claude; Jaeggi, Susanne M.; Evans, Alan C.; Kremen, William S.

    2016-01-01

    Here we analyze gray matter indices before and after completing a challenging adaptive cognitive training program based on the n-back task. The considered gray matter indices were cortical thickness (CT) and cortical surface area (CSA). Twenty-eight young women (age range 17–22 years) completed 24 training sessions over the course of 3 months (12 weeks, 24 sessions), showing expected performance improvements. CT and CSA values for the training group were compared with those of a matched control group. Statistical analyses were computed using a ROI framework defined by brain areas distinguished by their genetic underpinning. The interaction between group and time was analyzed. Middle temporal, ventral frontal, inferior parietal cortices, and pars opercularis were the regions where the training group showed conservation of gray matter with respect to the control group. These regions support working memory, resistance to interference, and inhibition. Furthermore, an interaction with baseline intelligence differences showed that the expected decreasing trend at the biological level for individuals showing relatively low intelligence levels at baseline was attenuated by the completed training. PMID:26701168

  13. Study of chromatic adaptation using memory color matches, Part II: colored illuminants.

    PubMed

    Smet, Kevin A G; Zhai, Qiyan; Luo, Ming R; Hanselaer, Peter

    2017-04-03

    In a previous paper, 12 corresponding color data sets were derived for 4 neutral illuminants using the long-term memory colours of five familiar objects. The data were used to test several linear (one-step and two-step von Kries, RLAB) and nonlinear (Hunt and Nayatani) chromatic adaptation transforms (CAT). This paper extends that study to a total of 156 corresponding color sets by including 9 more colored illuminants: 2 with low and 2 with high correlated color temperatures as well as 5 representing high chroma adaptive conditions. As in the previous study, a two-step von Kries transform whereby the degree of adaptation D is optimized to minimize the DEu'v' prediction errors outperformed all other tested models for both memory color and literature corresponding color sets, whereby prediction errors were lower for the memory color set. Most of the transforms tested, except the two- and one-step von Kries models with optimized D, showed large errors for corresponding color subsets that contained non-neutral adaptive conditions as all of them tended to overestimate the effective degree of adaptation in this study. An analysis of the impact of the sensor space primaries in which the adaptation is performed was found to have little impact compared to that of model choice. Finally, the effective degree of adaptation for the 13 illumination conditions (4 neutral + 9 colored) was successfully modelled using a bivariate Gaussian in a Macleod-Boyton like chromaticity diagram.

  14. GPU acceleration of particle-in-cell methods

    NASA Astrophysics Data System (ADS)

    Cowan, Benjamin; Cary, John; Meiser, Dominic

    2015-11-01

    Graphics processing units (GPUs) have become key components in many supercomputing systems, as they can provide more computations relative to their cost and power consumption than conventional processors. However, to take full advantage of this capability, they require a strict programming model which involves single-instruction multiple-data execution as well as significant constraints on memory accesses. To bring the full power of GPUs to bear on plasma physics problems, we must adapt the computational methods to this new programming model. We have developed a GPU implementation of the particle-in-cell (PIC) method, one of the mainstays of plasma physics simulation. This framework is highly general and enables advanced PIC features such as high order particles and absorbing boundary conditions. The main elements of the PIC loop, including field interpolation and particle deposition, are designed to optimize memory access. We describe the performance of these algorithms and discuss some of the methods used. Work supported by DARPA contract W31P4Q-15-C-0061 (SBIR).

  15. Wavelet-based associative memory

    NASA Astrophysics Data System (ADS)

    Jones, Katharine J.

    2004-04-01

    Faces provide important characteristics of a person"s identification. In security checks, face recognition still remains the method in continuous use despite other approaches (i.e. fingerprints, voice recognition, pupil contraction, DNA scanners). With an associative memory, the output data is recalled directly using the input data. This can be achieved with a Nonlinear Holographic Associative Memory (NHAM). This approach can also distinguish between strongly correlated images and images that are partially or totally enclosed by others. Adaptive wavelet lifting has been used for Content-Based Image Retrieval. In this paper, adaptive wavelet lifting will be applied to face recognition to achieve an associative memory.

  16. Parallel implementation of an adaptive and parameter-free N-body integrator

    NASA Astrophysics Data System (ADS)

    Pruett, C. David; Ingham, William H.; Herman, Ralph D.

    2011-05-01

    Previously, Pruett et al. (2003) [3] described an N-body integrator of arbitrarily high order M with an asymptotic operation count of O(MN). The algorithm's structure lends itself readily to data parallelization, which we document and demonstrate here in the integration of point-mass systems subject to Newtonian gravitation. High order is shown to benefit parallel efficiency. The resulting N-body integrator is robust, parameter-free, highly accurate, and adaptive in both time-step and order. Moreover, it exhibits linear speedup on distributed parallel processors, provided that each processor is assigned at least a handful of bodies. Program summaryProgram title: PNB.f90 Catalogue identifier: AEIK_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEIK_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC license, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 3052 No. of bytes in distributed program, including test data, etc.: 68 600 Distribution format: tar.gz Programming language: Fortran 90 and OpenMPI Computer: All shared or distributed memory parallel processors Operating system: Unix/Linux Has the code been vectorized or parallelized?: The code has been parallelized but has not been explicitly vectorized. RAM: Dependent upon N Classification: 4.3, 4.12, 6.5 Nature of problem: High accuracy numerical evaluation of trajectories of N point masses each subject to Newtonian gravitation. Solution method: Parallel and adaptive extrapolation in time via power series of arbitrary degree. Running time: 5.1 s for the demo program supplied with the package.

  17. Adapting to Changing Memory Retrieval Demands: Evidence from Event-Related Potentials

    ERIC Educational Resources Information Center

    Benoit, Roland G.; Werkle-Bergner, Markus; Mecklinger, Axel; Kray, Jutta

    2009-01-01

    This study investigated preparatory processes involved in adapting to changing episodic memory retrieval demands. Event-related potentials (ERPs) were recorded while participants performed a general old/new recognition task and a specific task that also required retrieval of perceptual details. The relevant task remained either constant or changed…

  18. Facilitating change in health-related behaviors and intentions: a randomized controlled trial of a multidimensional memory program for older adults.

    PubMed

    Wiegand, Melanie A; Troyer, Angela K; Gojmerac, Christina; Murphy, Kelly J

    2013-01-01

    Many older adults are concerned about memory changes with age and consequently seek ways to optimize their memory function. Memory programs are known to be variably effective in improving memory knowledge, other aspects of metamemory, and/or objective memory, but little is known about their impact on implementing and sustaining lifestyle and healthcare-seeking intentions and behaviors. We evaluated a multidimensional, evidence-based intervention, the Memory and Aging Program, that provides education about memory and memory change, training in the use of practical memory strategies, and support for implementation of healthy lifestyle behavior changes. In a randomized controlled trial, 42 healthy older adults participated in a program (n = 21) or a waitlist control (n = 21) group. Relative to the control group, participants in the program implemented more healthy lifestyle behaviors by the end of the program and maintained these changes 1 month later. Similarly, program participants reported a decreased intention to seek unnecessary medical attention for their memory immediately after the program and 1 month later. Findings support the use of multidimensional memory programs to promote healthy lifestyles and influence healthcare-seeking behaviors. Discussion focuses on implications of these changes for maximizing cognitive health and minimizing impact on healthcare resources.

  19. Designing a VMEbus FDDI adapter card

    NASA Astrophysics Data System (ADS)

    Venkataraman, Raman

    1992-03-01

    This paper presents a system architecture for a VMEbus FDDI adapter card containing a node core, FDDI block, frame buffer memory and system interface unit. Most of the functions of the PHY and MAC layers of FDDI are implemented with National's FDDI chip set and the SMT implementation is simplified with a low cost microcontroller. The factors that influence the system bus bandwidth utilization and FDDI bandwidth utilization are the data path and frame buffer memory architecture. The VRAM based frame buffer memory has two sections - - LLC frame memory and SMT frame memory. Each section with an independent serial access memory (SAM) port provides an independent access after the initial data transfer cycle on the main port and hence, the throughput is maximized on each port of the memory. The SAM port simplifies the system bus master DMA design and the VMEbus interface can be designed with low-cost off-the-shelf interface chips.

  20. Architecture Adaptive Computing Environment

    NASA Technical Reports Server (NTRS)

    Dorband, John E.

    2006-01-01

    Architecture Adaptive Computing Environment (aCe) is a software system that includes a language, compiler, and run-time library for parallel computing. aCe was developed to enable programmers to write programs, more easily than was previously possible, for a variety of parallel computing architectures. Heretofore, it has been perceived to be difficult to write parallel programs for parallel computers and more difficult to port the programs to different parallel computing architectures. In contrast, aCe is supportable on all high-performance computing architectures. Currently, it is supported on LINUX clusters. aCe uses parallel programming constructs that facilitate writing of parallel programs. Such constructs were used in single-instruction/multiple-data (SIMD) programming languages of the 1980s, including Parallel Pascal, Parallel Forth, C*, *LISP, and MasPar MPL. In aCe, these constructs are extended and implemented for both SIMD and multiple- instruction/multiple-data (MIMD) architectures. Two new constructs incorporated in aCe are those of (1) scalar and virtual variables and (2) pre-computed paths. The scalar-and-virtual-variables construct increases flexibility in optimizing memory utilization in various architectures. The pre-computed-paths construct enables the compiler to pre-compute part of a communication operation once, rather than computing it every time the communication operation is performed.

  1. Adaptation and optimization of a line-by-line radiative transfer program for the STAR-100 (STARSMART)

    NASA Technical Reports Server (NTRS)

    Rarig, P. L.

    1980-01-01

    A program to calculate upwelling infrared radiation was modified to operate efficiently on the STAR-100. The modified software processes specific test cases significantly faster than the initial STAR-100 code. For example, a midlatitude summer atmospheric model is executed in less than 2% of the time originally required on the STAR-100. Furthermore, the optimized program performs extra operations to save the calculated absorption coefficients. Some of the advantages and pitfalls of virtual memory and vector processing are discussed along with strategies used to avoid loss of accuracy and computing power. Results from the vectorized code, in terms of speed, cost, and relative error with respect to serial code solutions are encouraging.

  2. BioSmalltalk: a pure object system and library for bioinformatics.

    PubMed

    Morales, Hernán F; Giovambattista, Guillermo

    2013-09-15

    We have developed BioSmalltalk, a new environment system for pure object-oriented bioinformatics programming. Adaptive end-user programming systems tend to become more important for discovering biological knowledge, as is demonstrated by the emergence of open-source programming toolkits for bioinformatics in the past years. Our software is intended to bridge the gap between bioscientists and rapid software prototyping while preserving the possibility of scaling to whole-system biology applications. BioSmalltalk performs better in terms of execution time and memory usage than Biopython and BioPerl for some classical situations. BioSmalltalk is cross-platform and freely available (MIT license) through the Google Project Hosting at http://code.google.com/p/biosmalltalk hernan.morales@gmail.com Supplementary data are available at Bioinformatics online.

  3. Working Memory Training and Speech in Noise Comprehension in Older Adults.

    PubMed

    Wayne, Rachel V; Hamilton, Cheryl; Jones Huyck, Julia; Johnsrude, Ingrid S

    2016-01-01

    Understanding speech in the presence of background sound can be challenging for older adults. Speech comprehension in noise appears to depend on working memory and executive-control processes (e.g., Heald and Nusbaum, 2014), and their augmentation through training may have rehabilitative potential for age-related hearing loss. We examined the efficacy of adaptive working-memory training (Cogmed; Klingberg et al., 2002) in 24 older adults, assessing generalization to other working-memory tasks (near-transfer) and to other cognitive domains (far-transfer) using a cognitive test battery, including the Reading Span test, sensitive to working memory (e.g., Daneman and Carpenter, 1980). We also assessed far transfer to speech-in-noise performance, including a closed-set sentence task (Kidd et al., 2008). To examine the effect of cognitive training on benefit obtained from semantic context, we also assessed transfer to open-set sentences; half were semantically coherent (high-context) and half were semantically anomalous (low-context). Subjects completed 25 sessions (0.5-1 h each; 5 sessions/week) of both adaptive working memory training and placebo training over 10 weeks in a crossover design. Subjects' scores on the adaptive working-memory training tasks improved as a result of training. However, training did not transfer to other working memory tasks, nor to tasks recruiting other cognitive domains. We did not observe any training-related improvement in speech-in-noise performance. Measures of working memory correlated with the intelligibility of low-context, but not high-context, sentences, suggesting that sentence context may reduce the load on working memory. The Reading Span test significantly correlated only with a test of visual episodic memory, suggesting that the Reading Span test is not a pure-test of working memory, as is commonly assumed.

  4. Working Memory Training and Speech in Noise Comprehension in Older Adults

    PubMed Central

    Wayne, Rachel V.; Hamilton, Cheryl; Jones Huyck, Julia; Johnsrude, Ingrid S.

    2016-01-01

    Understanding speech in the presence of background sound can be challenging for older adults. Speech comprehension in noise appears to depend on working memory and executive-control processes (e.g., Heald and Nusbaum, 2014), and their augmentation through training may have rehabilitative potential for age-related hearing loss. We examined the efficacy of adaptive working-memory training (Cogmed; Klingberg et al., 2002) in 24 older adults, assessing generalization to other working-memory tasks (near-transfer) and to other cognitive domains (far-transfer) using a cognitive test battery, including the Reading Span test, sensitive to working memory (e.g., Daneman and Carpenter, 1980). We also assessed far transfer to speech-in-noise performance, including a closed-set sentence task (Kidd et al., 2008). To examine the effect of cognitive training on benefit obtained from semantic context, we also assessed transfer to open-set sentences; half were semantically coherent (high-context) and half were semantically anomalous (low-context). Subjects completed 25 sessions (0.5–1 h each; 5 sessions/week) of both adaptive working memory training and placebo training over 10 weeks in a crossover design. Subjects' scores on the adaptive working-memory training tasks improved as a result of training. However, training did not transfer to other working memory tasks, nor to tasks recruiting other cognitive domains. We did not observe any training-related improvement in speech-in-noise performance. Measures of working memory correlated with the intelligibility of low-context, but not high-context, sentences, suggesting that sentence context may reduce the load on working memory. The Reading Span test significantly correlated only with a test of visual episodic memory, suggesting that the Reading Span test is not a pure-test of working memory, as is commonly assumed. PMID:27047370

  5. Revision of FMM-Yukawa: An adaptive fast multipole method for screened Coulomb interactions

    NASA Astrophysics Data System (ADS)

    Zhang, Bo; Huang, Jingfang; Pitsianis, Nikos P.; Sun, Xiaobai

    2010-12-01

    FMM-YUKAWA is a mathematical software package primarily for rapid evaluation of the screened Coulomb interactions of N particles in three dimensional space. Since its release, we have revised and re-organized the data structure, software architecture, and user interface, for the purpose of enabling more flexible, broader and easier use of the package. The package and its documentation are available at http://www.fastmultipole.org/, along with a few other closely related mathematical software packages. New version program summaryProgram title: FMM-Yukawa Catalogue identifier: AEEQ_v2_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEEQ_v2_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU GPL 2.0 No. of lines in distributed program, including test data, etc.: 78 704 No. of bytes in distributed program, including test data, etc.: 854 265 Distribution format: tar.gz Programming language: FORTRAN 77, FORTRAN 90, and C. Requires gcc and gfortran version 4.4.3 or later Computer: All Operating system: Any Classification: 4.8, 4.12 Catalogue identifier of previous version: AEEQ_v1_0 Journal reference of previous version: Comput. Phys. Comm. 180 (2009) 2331 Does the new version supersede the previous version?: Yes Nature of problem: To evaluate the screened Coulomb potential and force field of N charged particles, and to evaluate a convolution type integral where the Green's function is the fundamental solution of the modified Helmholtz equation. Solution method: The new version of fast multipole method (FMM) that diagonalizes the multipole-to-local translation operator is applied with the tree structure adaptive to sample particle locations. Reasons for new version: To handle much larger particle ensembles, to enable the iterative use of the subroutines in a solver, and to remove potential contention in assignments for parallelization. Summary of revisions: The software package FMM-Yukawa has been revised and re-organized in data structure, software architecture, programming methods, and user interface. The revision enables more flexible use of the package and economic use of memory resources. It consists of five stages. The initial stage (stage 1) determines, based on the accuracy requirement and FMM theory, the length of multipole expansions and the number of quadrature points for diagonalization, and loads the quadrature nodes and weights that are computed off line. Stage 2 constructs the oct-tree and interaction lists, with adaptation to the sparsity or density of particles and employing a dynamic memory allocation scheme at every tree level. Stage 3 executes the core FMM subroutine for numerical calculation of the particle interactions. The subroutine can now be used iteratively as in a solver, while the particle locations remain the same. Stage 4 releases the memory allocated in Stage 2 for the adaptive tree and interaction lists. The user can modify the iterative routine easily. When the particle locations are changed such as in a molecular dynamics simulation, stage 2 to 4 can also be used together repeatedly. The final stage releases the memory space used for the quadrature and other remaining FMM parameters. Programs at the stage level and at the user interface are re-written in the C programming language, while most of the translation and interaction operations remain in FORTRAN. As a result of the change in data structures and memory allocation, the revised package can accommodate much larger particle ensembles while maintaining the same accuracy-efficiency performance. The new version is also developed as an important precursor to its parallel counterpart on multi-core or many core processors in a shared memory programming environment. Particularly, in order to ensure mutual exclusion in concurrent updates without incurring extra latency, we have replaced all the assignment statements at a source box that put its data to multiple target boxes with assignments at every target box that gather data from source boxes. This amounts to replacing the column version of matrix-vector multiplication with the row version. The matrix here, however, is in compressive representation. Sufficient care is taken in the revision not to alter the algorithmic complexity or numerical behavior, as concurrent writing potentially takes place in the upward calculation of the multipole expansion coefficients, interactions at every level of the FMM tree, and downward calculation of the local expansion coefficients. The software modules and their compositions are also organized according to the stages they are used. Demonstration files and makefiles for merging the user routines and the library routines are provided. Restrictions: Accuracy requirement is described in terms of three or six digits. Higher multiples of three digits will be allowed in a later version. Finer decimation in digits for accuracy specification may or may not be necessary. Unusual features: Ready and friendly for customized use and instrumental in expression of concurrency and dependency for efficient parallelization. Running time: The running time depends linearly on the number N of particles, and varies with the distribution characteristics of the particle distribution. It also depends on the accuracy requirement, a higher accuracy requirement takes relatively longer time. The code outperforms the direct summation method when N⩾750.

  6. Eliminating Age Differences in Children's and Adults' Suggestibility and Memory Conformity Effects

    ERIC Educational Resources Information Center

    Otgaar, Henry; Howe, Mark L.; Brackmann, Nathalie; van Helvoort, Daniël H. J.

    2017-01-01

    We examined whether typical developmental trends in suggestion-induced false memories (i.e., age-related decrease) could be changed. Using theoretical principles from the spontaneous false memory field, we adapted 2 often-used false memory procedures: misinformation (Experiment 1) and memory conformity (Experiment 2). In Experiment 1, 7- to…

  7. Effects of a computerized working memory training program on working memory, attention, and academics in adolescents with severe LD and comorbid ADHD: a randomized controlled trial.

    PubMed

    Gray, S A; Chaban, P; Martinussen, R; Goldberg, R; Gotlieb, H; Kronitz, R; Hockenberry, M; Tannock, R

    2012-12-01

    Youths with coexisting learning disabilities (LD) and attention deficit hyperactivity disorder (ADHD) are at risk for poor academic and social outcomes. The underlying cognitive deficits, such as poor working memory (WM), are not well targeted by current treatments for either LD or ADHD. Emerging evidence suggests that WM might be improved by intensive and adaptive computerized training, but it remains unclear whether this intervention would be effective for adolescents with severe LD and comorbid ADHD. A total of sixty 12- to 17-year olds with LD/ADHD (52 male, 8 female, IQ > 80) were randomized to one of two computerized intervention programs: working memory training (Cogmed RM) or math training (Academy of Math) and evaluated before and 3 weeks after completion. The criterion measures of WM included auditory-verbal and visual-spatial tasks. Near and far transfer measures included indices of cognitive and behavioral attention and academic achievement. Adolescents in the WM training group showed greater improvements in a subset of WM criterion measures compared with those in the math-training group, but no training effects were observed on the near or far measures. Those who showed the most improvement on the WM training tasks at school were rated as less inattentive/hyperactive at home by parents. Results suggest that WM training may enhance some aspects of WM in youths with LD/ADHD, but further development of the training program is required to promote transfer effects to other domains of function. © 2012 The Authors. Journal of Child Psychology and Psychiatry © 2012 Association for Child and Adolescent Mental Health.

  8. A modulatory effect of male voice pitch on long-term memory in women: evidence of adaptation for mate choice?

    PubMed

    Smith, David S; Jones, Benedict C; Feinberg, David R; Allan, Kevin

    2012-01-01

    From a functionalist perspective, human memory should be attuned to information of adaptive value for one's survival and reproductive fitness. While evidence of sensitivity to survival-related information is growing, specific links between memory and information that could impact upon reproductive fitness have remained elusive. Here, in two experiments, we showed that memory in women is sensitive to male voice pitch, a sexually dimorphic cue important for mate choice because it not only serves as an indicator of genetic quality, but may also signal behavioural traits undesirable in a long-term partner. In Experiment 1, we report that women's visual object memory is significantly enhanced when an object's name is spoken during encoding in a masculinised (i.e., lower-pitch) versus feminised (i.e., higher-pitch) male voice, but that no analogous effect occurs when women listen to other women's voices. Experiment 2 replicated this pattern of results, additionally showing that lowering and raising male voice pitch enhanced and impaired women's memory, respectively, relative to a baseline (i.e., unmanipulated) voice condition. The modulatory effect of sexual dimorphism cues in the male voice may reveal a mate-choice adaptation within women's memory, sculpted by evolution in response to the dilemma posed by the double-edged qualities of male masculinity.

  9. Efficient Parallelization of a Dynamic Unstructured Application on the Tera MTA

    NASA Technical Reports Server (NTRS)

    Oliker, Leonid; Biswas, Rupak

    1999-01-01

    The success of parallel computing in solving real-life computationally-intensive problems relies on their efficient mapping and execution on large-scale multiprocessor architectures. Many important applications are both unstructured and dynamic in nature, making their efficient parallel implementation a daunting task. This paper presents the parallelization of a dynamic unstructured mesh adaptation algorithm using three popular programming paradigms on three leading supercomputers. We examine an MPI message-passing implementation on the Cray T3E and the SGI Origin2OOO, a shared-memory implementation using cache coherent nonuniform memory access (CC-NUMA) of the Origin2OOO, and a multi-threaded version on the newly-released Tera Multi-threaded Architecture (MTA). We compare several critical factors of this parallel code development, including runtime, scalability, programmability, and memory overhead. Our overall results demonstrate that multi-threaded systems offer tremendous potential for quickly and efficiently solving some of the most challenging real-life problems on parallel computers.

  10. The effects of nongenetic memory on population level sensitivity to stress

    NASA Astrophysics Data System (ADS)

    Adams, Rhys; Nevozhay, Dmitry; van Itallie, Elizabeth; Bennett, Matthew; Balazsi, Gabor

    2011-03-01

    While gene expression is often thought of as a unidirectional determinant of cellular fitness, recent studies have shown how growth retardation due to protein expression can affect gene expression levels in single cells. We developed two yeast strains carrying a drug resistance protein under the control of different synthetic gene constructs, one of which was monostable, while the other was bistable. The gene expression of these cell populations was tuned using a molecular inducer so that their respective means and noises were identical, while their nongenetic memory properties were different. We tested the sensitivity of these two cell population distributions to the antibiotic zeocin. We found that the gene expression distributions of bistable cell populations were sensitive to stressful environments, while the gene expression distribution of monostable cells were nearly unchanged by stress. We conclude that cell populations with high nongenetic memory are more adaptable to their environment. This work was funded by the National Institutes of Health through the NIH Director's New Innovator Award Program, 1-DP2- OD006481-01.

  11. Characterization of Nonlinear Systems with Memory by Means of Volterra Expansions with Frequency Partitioning: Application to a Cicada Mating Call

    DTIC Science & Technology

    2010-06-15

    Partitioning Application to a Cicada Mating Call Albert H. Nuttall Adaptive Methods Inc. Derke R. Hughes NUWC Division Newport IVAVSEA WARFARE...Frequency Partitioning: Application to a Cicada Mating Call 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Albert H... cicada mating call with a distinctly non-white and non-Gaussian excitation gives good results for the estimated first- and second-order kernels and

  12. Neural Differentiation Tracks Improved Recall of Competing Memories Following Interleaved Study and Retrieval Practice

    PubMed Central

    Hulbert, J. C.; Norman, K. A.

    2015-01-01

    Selective retrieval of overlapping memories can generate competition. How does the brain adaptively resolve this competition? One possibility is that competing memories are inhibited; in support of this view, numerous studies have found that selective retrieval leads to forgetting of memories that are related to the just-retrieved memory. However, this retrieval-induced forgetting (RIF) effect can be eliminated or even reversed if participants are given opportunities to restudy the materials between retrieval attempts. Here, we outline an explanation for such a reversal, rooted in a neural network model of RIF that predicts representational differentiation when restudy is interleaved with selective retrieval. To test this hypothesis, we measured changes in pattern similarity of the BOLD fMRI signal elicited by related memories after undergoing interleaved competitive retrieval and restudy. Reduced pattern similarity within the hippocampus positively correlated with retrieval-induced facilitation of competing memories. This result is consistent with an adaptive differentiation process that allows individuals to learn to distinguish between once-confusable memories. PMID:25477369

  13. Modeling Students' Memory for Application in Adaptive Educational Systems

    ERIC Educational Resources Information Center

    Pelánek, Radek

    2015-01-01

    Human memory has been thoroughly studied and modeled in psychology, but mainly in laboratory setting under simplified conditions. For application in practical adaptive educational systems we need simple and robust models which can cope with aspects like varied prior knowledge or multiple-choice questions. We discuss and evaluate several models of…

  14. Self-guided strategy-adaption training for older adults: Transfer effects to everyday tasks.

    PubMed

    Bottiroli, Sara; Cavallini, Elena; Dunlosky, John; Vecchi, Tomaso; Hertzog, Christopher

    2017-09-01

    The goal of the present research was to examine the potential of a learner-oriented approach to improving older adults' performance in tasks that are similar to real-life situations that require strategic deployment of cognitive resources. A crucial element of this approach involves encouraging older adults to explicitly analyze tasks to consider how to adapt trained skills to a new task context. In an earlier study, a specialist-directed intervention produced training gains and transfer to some untrained memory tasks. In the present study, older adults received a manual instructing them about principles of task analysis, two memory strategies, and strategy adaptation. Self-guided strategy-adaption training involved practicing some memory tasks as well as instructions on how the trained skills could be applied to new tasks that were not practiced. The criterion tasks involved practice tasks, non-practiced tasks that were discussed in the manual, and transfer tasks that were never mentioned in the manual. Two of the tests were from the Everyday Cognition Battery (inductive reasoning and working memory). As compared to a waiting-list control group, older adults assigned to self-guided strategy-adaption training showed memory improvements on tasks that were practiced or discussed during training. Most important, the learner-oriented approach produced transfer to the everyday tasks. Our findings show the potential of instructing task appraisal processes as a basis for fostering transfer, including improving older adults' performance in simulated everyday tasks. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Socio-sexuality and episodic memory function in women: further evidence of an adaptive "mating mode".

    PubMed

    Smith, David S; Jones, Benedict C; Allan, Kevin

    2013-08-01

    The functionalist memory perspective predicts that information of adaptive value may trigger specific processing modes. It was recently demonstrated that women's memory is sensitive to cues of male sexual dimorphism (i.e., masculinity) that convey information of adaptive value for mate choice because they signal health and genetic quality, as well as personality traits important in relationship contexts. Here, we show that individual differences in women's mating strategies predict the effect of facial masculinity cues upon memory, strengthening the case for functional design within memory. Using the revised socio-sexual orientation inventory, Experiment 1 demonstrates that women pursuing a short-term, uncommitted mating strategy have enhanced source memory for men with exaggerated versus reduced masculine facial features, an effect that reverses in women who favor long-term committed relationships. The reversal in the direction of the effect indicates that it does not reflect the sex typicality of male faces per se. The same pattern occurred within women's source memory for women's faces, implying that the memory bias does not reflect the perceived attractiveness of faces per se. In Experiment 2, we reran the experiment using men's faces to establish the reliability of the core finding and replicated Experiment 1's results. Masculinity cues may therefore trigger a specific mode within women's episodic memory. We discuss why this mode may be triggered by female faces and its possible role in mate choice. In so doing, we draw upon the encoding specificity principle and the idea that episodic memory limits the scope of stereotypical inferences about male behavior.

  16. IPEG- IMPROVED PRICE ESTIMATION GUIDELINES (IBM PC VERSION)

    NASA Technical Reports Server (NTRS)

    Aster, R. W.

    1994-01-01

    The Improved Price Estimation Guidelines, IPEG, program provides a simple yet accurate estimate of the price of a manufactured product. IPEG facilitates sensitivity studies of price estimates at considerably less expense than would be incurred by using the Standard Assembly-line Manufacturing Industry Simulation, SAMIS, program (COSMIC program NPO-16032). A difference of less than one percent between the IPEG and SAMIS price estimates has been observed with realistic test cases. However, the IPEG simplification of SAMIS allows the analyst with limited time and computing resources to perform a greater number of sensitivity studies than with SAMIS. Although IPEG was developed for the photovoltaics industry, it is readily adaptable to any standard assembly line type of manufacturing industry. IPEG estimates the annual production price per unit. The input data includes cost of equipment, space, labor, materials, supplies, and utilities. Production on an industry wide basis or a process wide basis can be simulated. Once the IPEG input file is prepared, the original price is estimated and sensitivity studies may be performed. The IPEG user selects a sensitivity variable and a set of values. IPEG will compute a price estimate and a variety of other cost parameters for every specified value of the sensitivity variable. IPEG is designed as an interactive system and prompts the user for all required information and offers a variety of output options. The IPEG/PC program is written in TURBO PASCAL for interactive execution on an IBM PC computer under DOS 2.0 or above with at least 64K of memory. The IBM PC color display and color graphics adapter are needed to use the plotting capabilities in IPEG/PC. IPEG/PC was developed in 1984. The original IPEG program is written in SIMSCRIPT II.5 for interactive execution and has been implemented on an IBM 370 series computer with a central memory requirement of approximately 300K of 8 bit bytes. The original IPEG was developed in 1980.

  17. IPEG- IMPROVED PRICE ESTIMATION GUIDELINES (IBM 370 VERSION)

    NASA Technical Reports Server (NTRS)

    Chamberlain, R. G.

    1994-01-01

    The Improved Price Estimation Guidelines, IPEG, program provides a simple yet accurate estimate of the price of a manufactured product. IPEG facilitates sensitivity studies of price estimates at considerably less expense than would be incurred by using the Standard Assembly-line Manufacturing Industry Simulation, SAMIS, program (COSMIC program NPO-16032). A difference of less than one percent between the IPEG and SAMIS price estimates has been observed with realistic test cases. However, the IPEG simplification of SAMIS allows the analyst with limited time and computing resources to perform a greater number of sensitivity studies than with SAMIS. Although IPEG was developed for the photovoltaics industry, it is readily adaptable to any standard assembly line type of manufacturing industry. IPEG estimates the annual production price per unit. The input data includes cost of equipment, space, labor, materials, supplies, and utilities. Production on an industry wide basis or a process wide basis can be simulated. Once the IPEG input file is prepared, the original price is estimated and sensitivity studies may be performed. The IPEG user selects a sensitivity variable and a set of values. IPEG will compute a price estimate and a variety of other cost parameters for every specified value of the sensitivity variable. IPEG is designed as an interactive system and prompts the user for all required information and offers a variety of output options. The IPEG/PC program is written in TURBO PASCAL for interactive execution on an IBM PC computer under DOS 2.0 or above with at least 64K of memory. The IBM PC color display and color graphics adapter are needed to use the plotting capabilities in IPEG/PC. IPEG/PC was developed in 1984. The original IPEG program is written in SIMSCRIPT II.5 for interactive execution and has been implemented on an IBM 370 series computer with a central memory requirement of approximately 300K of 8 bit bytes. The original IPEG was developed in 1980.

  18. The gravitational field and brain function.

    PubMed

    Mei, L; Zhou, C D; Lan, J Q; Wang, Z G; Wu, W C; Xue, X M

    1983-01-01

    The frontal cortex is recognized as the highest adaptive control center of the human brain. The principle of the "frontalization" of human brain function offers new possibilities for brain research in space. There is evolutionary and experimental evidence indicating the validity of the principle, including it's role in nervous response to gravitational stimulation. The gravitational field is considered here as one of the more constant and comprehensive factors acting on brain evolution, which has undergone some successive crucial steps: "encephalization", "corticalization", "lateralization" and "frontalization". The dominating effects of electrical responses from the frontal cortex have been discovered 1) in experiments under gravitational stimulus; and 2) in processes potentially relating to gravitational adaptation, such as memory and learning, sensory information processing, motor programing, and brain state control. A brain research experiment during space flight is suggested to test the role of the frontal cortex in space adaptation and it's potentiality in brain control.

  19. Quantifying Precision and Availability of Location Memory in Everyday Pictures and Some Implications for Picture Database Design

    ERIC Educational Resources Information Center

    Lansdale, Mark W.; Oliff, Lynda; Baguley, Thom S.

    2005-01-01

    The authors investigated whether memory for object locations in pictures could be exploited to address known difficulties of designing query languages for picture databases. M. W. Lansdale's (1998) model of location memory was adapted to 4 experiments observing memory for everyday pictures. These experiments showed that location memory is…

  20. System level mechanisms of adaptation, learning, memory formation and evolvability: the role of chaperone and other networks.

    PubMed

    Gyurko, David M; Soti, Csaba; Stetak, Attila; Csermely, Peter

    2014-05-01

    During the last decade, network approaches became a powerful tool to describe protein structure and dynamics. Here, we describe first the protein structure networks of molecular chaperones, then characterize chaperone containing sub-networks of interactomes called as chaperone-networks or chaperomes. We review the role of molecular chaperones in short-term adaptation of cellular networks in response to stress, and in long-term adaptation discussing their putative functions in the regulation of evolvability. We provide a general overview of possible network mechanisms of adaptation, learning and memory formation. We propose that changes of network rigidity play a key role in learning and memory formation processes. Flexible network topology provides ' learning-competent' state. Here, networks may have much less modular boundaries than locally rigid, highly modular networks, where the learnt information has already been consolidated in a memory formation process. Since modular boundaries are efficient filters of information, in the 'learning-competent' state information filtering may be much smaller, than after memory formation. This mechanism restricts high information transfer to the 'learning competent' state. After memory formation, modular boundary-induced segregation and information filtering protect the stored information. The flexible networks of young organisms are generally in a 'learning competent' state. On the contrary, locally rigid networks of old organisms have lost their 'learning competent' state, but store and protect their learnt information efficiently. We anticipate that the above mechanism may operate at the level of both protein-protein interaction and neuronal networks.

  1. Training working memory to improve attentional control in anxiety: A proof-of-principle study using behavioral and electrophysiological measures.

    PubMed

    Sari, Berna A; Koster, Ernst H W; Pourtois, Gilles; Derakshan, Nazanin

    2016-12-01

    Trait anxiety is associated with impairments in attentional control and processing efficiency (see Berggren & Derakshan, 2013, for a review). Working memory training using the adaptive dual n-back task has shown to improve attentional control in subclinical depression with transfer effects at the behavioral and neural level on a working memory task (Owens, Koster, & Derakshan, 2013). Here, we examined the beneficial effects of working memory training on attentional control in pre-selected high trait anxious individuals who underwent a three week daily training intervention using the adaptive dual n-back task. Pre and post outcome measures of attentional control were assessed using a Flanker task that included a stress induction and an emotional a Antisaccade task (with angry and neutral faces as target). Resting state EEG (theta/beta ratio) was recorded to as a neural marker of trait attentional control. Our results showed that adaptive working memory training improved attentional control with transfer effects on the Flanker task and resting state EEG, but effects of training on the Antisaccade task were less conclusive. Finally, training related gains were associated with lower levels of trait anxiety at post (vs pre) intervention. Our results demonstrate that adaptive working memory training in anxiety can have beneficial effects on attentional control and cognitive performance that may protect against emotional vulnerability in individuals at risk of developing clinical anxiety. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Epigenetic regulation of memory formation and maintenance

    PubMed Central

    Zovkic, Iva B.; Guzman-Karlsson, Mikael C.; Sweatt, J. David

    2013-01-01

    Understanding the cellular and molecular mechanisms underlying the formation and maintenance of memories is a central goal of the neuroscience community. It is well regarded that an organism's ability to lastingly adapt its behavior in response to a transient environmental stimulus relies on the central nervous system's capability for structural and functional plasticity. This plasticity is dependent on a well-regulated program of neurotransmitter release, post-synaptic receptor activation, intracellular signaling cascades, gene transcription, and subsequent protein synthesis. In the last decade, epigenetic markers like DNA methylation and post-translational modifications of histone tails have emerged as important regulators of the memory process. Their ability to regulate gene transcription dynamically in response to neuronal activation supports the consolidation of long-term memory. Furthermore, the persistent and self-propagating nature of these mechanisms, particularly DNA methylation, suggests a molecular mechanism for memory maintenance. In this review, we will examine the evidence that supports a role of epigenetic mechanisms in learning and memory. In doing so, we hope to emphasize (1) the widespread involvement of these mechanisms across different behavioral paradigms and distinct brain regions, (2) the temporal and genetic specificity of these mechanisms in response to upstream signaling cascades, and (3) the functional outcome these mechanisms may have on structural and functional plasticity. Finally, we consider the future directions of neuroepigenetic research as it relates to neuronal storage of information. PMID:23322554

  3. Stress and glucocorticoid receptor-dependent mechanisms in long-term memory: from adaptive responses to psychopathologies

    PubMed Central

    Finsterwald, Charles; Alberini, Cristina M.

    2013-01-01

    A proper response against stressors is critical for survival. In mammals, the stress response is primarily mediated by secretion of glucocorticoids via the hypothalamic-pituitaryadrenocortical (HPA) axis and release of catecholamines through adrenergic neurotransmission. Activation of these pathways results in a quick physical response to the stress and, in adaptive conditions, mediates long-term changes in the brain that lead to the formation of long-term memories of the experience. These long-term memories are an essential adaptive mechanism that allows an animal to effectively face similar demands again. Indeed, a moderate stress level has a strong positive effect on memory and cognition, as a single arousing or moderately stressful event can be remembered for up to a lifetime. Conversely, exposure to extreme, traumatic, or chronic stress can have the opposite effect and cause memory loss, cognitive impairments, and stress-related psychopathologies such as anxiety disorders, depression and post-traumatic stress disorder (PTSD). While more effort has been devoted to the understanding of the effects of the negative effects of chronic stress, much less has been done thus far on the identification of the mechanisms engaged in the brain when stress promotes long-term memory formation. Understanding these mechanisms will provide critical information for use in ameliorating memory processes in both normal and pathological conditions. Here, we will review the role of glucocorticoids and glucocorticoid receptors (GRs) in memory formation and modulation. Furthermore, we will discuss recent findings on the molecular cascade of events underlying the effect of GR activation in adaptive levels of stress that leads to strong, long-lasting memories. Our recent data indicate that the positive effects of GR activation on memory consolidation critically engage the brain-derived neurotrophic factor (BDNF) pathway. We propose and will discuss the hypothesis that stress promotes the formation of strong long-term memories because the activation of hippocampal GRs after learning is coupled to the recruitment of the growth and pro-survival BDNF/cAMP response element-binding protein (CREB) pathway, which is well-know to be a general mechanism required for long-term memory formation. We will then speculate about how these results may explain the negative effects of traumatic or chronic stress on memory and cognitive functions. PMID:24113652

  4. Training working memory updating in young adults.

    PubMed

    Linares, Rocío; Borella, Erika; Lechuga, M Teresa; Carretti, Barbara; Pelegrina, Santiago

    2018-05-01

    Working memory updating (WMU) is a core mechanism in the human mental architecture and a good predictor of a wide range of cognitive processes. This study analyzed the benefits of two different WMU training procedures, near transfer effects on a working memory measure, and far transfer effects on nonverbal reasoning. Maintenance of any benefits a month later was also assessed. Participants were randomly assigned to: an adaptive training group that performed two numerical WMU tasks during four sessions; a non-adaptive training group that performed the same tasks but on a constant and less demanding level of difficulty; or an active control group that performed other tasks unrelated with working memory. After the training, all three groups showed improvements in most of the tasks, and these benefits were maintained a month later. The gain in one of the two WMU measures was larger for the adaptive and non-adaptive groups than for the control group. This specific gain in a task similar to the one trained would indicate the use of a better strategy for performing the task. Besides this nearest transfer effect, no other transfer effects were found. The adaptability of the training procedure did not produce greater improvements. These results are discussed in terms of the training procedure and the feasibility of training WMU.

  5. Unipolar Terminal-Attractor Based Neural Associative Memory with Adaptive Threshold

    NASA Technical Reports Server (NTRS)

    Liu, Hua-Kuang (Inventor); Barhen, Jacob (Inventor); Farhat, Nabil H. (Inventor); Wu, Chwan-Hwa (Inventor)

    1996-01-01

    A unipolar terminal-attractor based neural associative memory (TABAM) system with adaptive threshold for perfect convergence is presented. By adaptively setting the threshold values for the dynamic iteration for the unipolar binary neuron states with terminal-attractors for the purpose of reducing the spurious states in a Hopfield neural network for associative memory and using the inner-product approach, perfect convergence and correct retrieval is achieved. Simulation is completed with a small number of stored states (M) and a small number of neurons (N) but a large M/N ratio. An experiment with optical exclusive-OR logic operation using LCTV SLMs shows the feasibility of optoelectronic implementation of the models. A complete inner-product TABAM is implemented using a PC for calculation of adaptive threshold values to achieve a unipolar TABAM (UIT) in the case where there is no crosstalk, and a crosstalk model (CRIT) in the case where crosstalk corrupts the desired state.

  6. Unipolar terminal-attractor based neural associative memory with adaptive threshold

    NASA Technical Reports Server (NTRS)

    Liu, Hua-Kuang (Inventor); Barhen, Jacob (Inventor); Farhat, Nabil H. (Inventor); Wu, Chwan-Hwa (Inventor)

    1993-01-01

    A unipolar terminal-attractor based neural associative memory (TABAM) system with adaptive threshold for perfect convergence is presented. By adaptively setting the threshold values for the dynamic iteration for the unipolar binary neuron states with terminal-attractors for the purpose of reducing the spurious states in a Hopfield neural network for associative memory and using the inner product approach, perfect convergence and correct retrieval is achieved. Simulation is completed with a small number of stored states (M) and a small number of neurons (N) but a large M/N ratio. An experiment with optical exclusive-OR logic operation using LCTV SLMs shows the feasibility of optoelectronic implementation of the models. A complete inner-product TABAM is implemented using a PC for calculation of adaptive threshold values to achieve a unipolar TABAM (UIT) in the case where there is no crosstalk, and a crosstalk model (CRIT) in the case where crosstalk corrupts the desired state.

  7. Selecting Learning Tasks: Effects of Adaptation and Shared Control on Learning Efficiency and Task Involvement

    ERIC Educational Resources Information Center

    Corbalan, Gemma; Kester, Liesbeth; van Merrienboer, Jeroen J. G.

    2008-01-01

    Complex skill acquisition by performing authentic learning tasks is constrained by limited working memory capacity [Baddeley, A. D. (1992). Working memory. "Science, 255", 556-559]. To prevent cognitive overload, task difficulty and support of each newly selected learning task can be adapted to the learner's competence level and perceived task…

  8. Seeing Coloured Fruits: Utilisation of the Theory of Adaptive Memory in Teaching Botany

    ERIC Educational Resources Information Center

    Prokop, Pavol; Fancovicová, Jana

    2014-01-01

    Plants are characterised by a great diversity of easily observed features such as colours or shape, but children show low interest in learning about them. Here, we integrated modern theory of adaptive memory and evolutionary views of the function of fruit colouration on children's retention of information. Survival-relevant (fruit toxicity) and…

  9. Design of Unstructured Adaptive (UA) NAS Parallel Benchmark Featuring Irregular, Dynamic Memory Accesses

    NASA Technical Reports Server (NTRS)

    Feng, Hui-Yu; VanderWijngaart, Rob; Biswas, Rupak; Biegel, Bryan (Technical Monitor)

    2001-01-01

    We describe the design of a new method for the measurement of the performance of modern computer systems when solving scientific problems featuring irregular, dynamic memory accesses. The method involves the solution of a stylized heat transfer problem on an unstructured, adaptive grid. A Spectral Element Method (SEM) with an adaptive, nonconforming mesh is selected to discretize the transport equation. The relatively high order of the SEM lowers the fraction of wall clock time spent on inter-processor communication, which eases the load balancing task and allows us to concentrate on the memory accesses. The benchmark is designed to be three-dimensional. Parallelization and load balance issues of a reference implementation will be described in detail in future reports.

  10. Memory-like Responses of Natural Killer Cells

    PubMed Central

    Cooper, Megan A.; Yokoyama, Wayne M.

    2010-01-01

    Summary Natural killer (NK) cells are lymphocytes with the capacity to produce cytokines and kill target cells upon activation. NK cells have long been categorized as members of the innate immune system and as such have been thought to follow the ‘rules’ of innate immunity, including the principle that they have no immunologic memory, a property thought to be strictly limited to adaptive immunity. However, recent studies have suggested that NK cells have the capacity to alter their behavior based on prior activation. This property is analogous to adaptive immune memory; however, some NK cell memory-like functions are not strictly antigen-dependent and can be demonstrated following cytokine stimulation. Here we discuss the recent evidence that NK cells can exhibit properties of immunologic memory, focusing on the ability of cytokines to non-specifically induce memory-like NK cells with enhanced responses to restimulation. PMID:20536571

  11. Working Memory, Reasoning, and Task Switching Training: Transfer Effects, Limitations, and Great Expectations?

    PubMed Central

    Baniqued, Pauline L.; Ward, Nathan; Geyer, Alexandra; Kramer, Arthur F.

    2015-01-01

    Although some studies have shown that cognitive training can produce improvements to untrained cognitive domains (far transfer), many others fail to show these effects, especially when it comes to improving fluid intelligence. The current study was designed to overcome several limitations of previous training studies by incorporating training expectancy assessments, an active control group, and “Mind Frontiers,” a video game-based mobile program comprised of six adaptive, cognitively demanding training tasks that have been found to lead to increased scores in fluid intelligence (Gf) tests. We hypothesize that such integrated training may lead to broad improvements in cognitive abilities by targeting aspects of working memory, executive function, reasoning, and problem solving. Ninety participants completed 20 hour-and-a-half long training sessions over four to five weeks, 45 of whom played Mind Frontiers and 45 of whom completed visual search and change detection tasks (active control). After training, the Mind Frontiers group improved in working memory n-back tests, a composite measure of perceptual speed, and a composite measure of reaction time in reasoning tests. No training-related improvements were found in reasoning accuracy or other working memory tests, nor in composite measures of episodic memory, selective attention, divided attention, and multi-tasking. Perceived self-improvement in the tested abilities did not differ between groups. A general expectancy difference in problem-solving was observed between groups, but this perceived benefit did not correlate with training-related improvement. In summary, although these findings provide modest evidence regarding the efficacy of an integrated cognitive training program, more research is needed to determine the utility of Mind Frontiers as a cognitive training tool. PMID:26555341

  12. Test program for 4-K memory card, JOLT microprocessor

    NASA Technical Reports Server (NTRS)

    Lilley, R. W.

    1976-01-01

    A memory test program is described for use with the JOLT microcomputer 4,096-word memory board used in development of an Omega navigation receiver. The program allows a quick test of the memory board by cycling the memory through all possible bit combinations in all words.

  13. Disentangling cognition and emotion in older adults: the role of cognitive control and mental health in emotional conflict adaptation.

    PubMed

    Hantke, Nathan C; Gyurak, Anett; Van Moorleghem, Katie; Waring, Jill D; Adamson, Maheen M; O'Hara, Ruth; Beaudreau, Sherry A

    2017-08-01

    Recent research suggests cognition has a bidirectional relationship with emotional processing in older adults, yet the relationship is still poorly understood. We aimed to examine a potential relationship between late-life cognitive function, mental health symptoms, and emotional conflict adaptation. We hypothesized that worse cognitive control abilities would be associated with poorer emotional conflict adaptation. We further hypothesized that a higher severity of mental health symptoms would be associated with poorer emotional conflict adaptation. Participants included 83 cognitively normal community-dwelling older adults who completed a targeted mental health and cognitive battery, and emotion and gender conflict-adaptation tasks. Consistent with our hypothesis, poorer performance on components of cognitive control, specifically attention and working memory, was associated with poorer emotional conflict adaptation. This association with attention and working memory was not observed in the non-affective-based gender conflict adaptation task. Mental health symptoms did not predict emotional conflict adaptation, nor did performance on other cognitive measures. Our findings suggest that emotion conflict adaptation is disrupted in older individuals who have poorer attention and working memory. Components of cognitive control may therefore be an important potential source of inter-individual differences in late-life emotion regulation and cognitive affective deficits. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  14. Hänsel, Gretel and the slime mould—how an external spatial memory aids navigation in complex environments

    NASA Astrophysics Data System (ADS)

    Smith-Ferguson, Jules; Reid, Chris R.; Latty, Tanya; Beekman, Madeleine

    2017-10-01

    The ability to navigate through an environment is critical to most organisms’ ability to survive and reproduce. The presence of a memory system greatly enhances navigational success. Therefore, natural selection is likely to drive the creation of memory systems, even in non-neuronal organisms, if having such a system is adaptive. Here we examine if the external spatial memory system present in the acellular slime mould, Physarum polycephalum, provides an adaptive advantage for resource acquisition. P. polycephalum lays tracks of extracellular slime as it moves through its environment. Previous work has shown that the presence of extracellular slime allows the organism to escape from a trap in laboratory experiments simply by avoiding areas previously explored. Here we further investigate the benefits of using extracellular slime as an external spatial memory by testing the organism’s ability to navigate through environments of differing complexity with and without the ability to use its external memory. Our results suggest that the external memory has an adaptive advantage in ‘open’ and simple bounded environments. However, in a complex bounded environment, the extracellular slime provides no advantage, and may even negatively affect the organism’s navigational abilities. Our results indicate that the exact experimental set up matters if one wants to fully understand how the presence of extracellular slime affects the slime mould’s search behaviour.

  15. Wnt signaling inhibits CTL memory programming

    PubMed Central

    Xiao, Zhengguo; Sun, Zhifeng; Smyth, Kendra; Li, Lei

    2013-01-01

    Induction of functional CTLs is one of the major goals for vaccine development and cancer therapy. Inflammatory cytokines are critical for memory CTL generation. Wnt signaling is important for CTL priming and memory formation, but its role in cytokine-driven memory CTL programming is unclear. We found that wnt signaling inhibited IL-12-driven CTL activation and memory programming. This impaired memory CTL programming was attributed to up-regulation of eomes and down-regulation of T-bet. Wnt signaling suppressed the mTOR pathway during CTL activation, which was different to its effects on other cell types. Interestingly, the impaired memory CTL programming by wnt was partially rescued by mTOR inhibitor rapamycin. In conclusion, we found that crosstalk between wnt and the IL-12 signaling inhibits T-bet and mTOR pathways and impairs memory programming which can be recovered in part by rapamycin. In addition, direct inhibition of wnt signaling during CTL activation does not affect CTL memory programming. Therefore, wnt signaling may serve as a new tool for CTL manipulation in autoimmune diseases and immune therapy for certain cancers. PMID:23911398

  16. Parallel design of JPEG-LS encoder on graphics processing units

    NASA Astrophysics Data System (ADS)

    Duan, Hao; Fang, Yong; Huang, Bormin

    2012-01-01

    With recent technical advances in graphic processing units (GPUs), GPUs have outperformed CPUs in terms of compute capability and memory bandwidth. Many successful GPU applications to high performance computing have been reported. JPEG-LS is an ISO/IEC standard for lossless image compression which utilizes adaptive context modeling and run-length coding to improve compression ratio. However, adaptive context modeling causes data dependency among adjacent pixels and the run-length coding has to be performed in a sequential way. Hence, using JPEG-LS to compress large-volume hyperspectral image data is quite time-consuming. We implement an efficient parallel JPEG-LS encoder for lossless hyperspectral compression on a NVIDIA GPU using the computer unified device architecture (CUDA) programming technology. We use the block parallel strategy, as well as such CUDA techniques as coalesced global memory access, parallel prefix sum, and asynchronous data transfer. We also show the relation between GPU speedup and AVIRIS block size, as well as the relation between compression ratio and AVIRIS block size. When AVIRIS images are divided into blocks, each with 64×64 pixels, we gain the best GPU performance with 26.3x speedup over its original CPU code.

  17. Effects of Adaptive Training on Working Memory and Academic Achievement of Children with Learning Disabilities: A School-Based Study

    ERIC Educational Resources Information Center

    Cunningham, Rhonda Phillips

    2013-01-01

    Research has suggested many children with learning disabilities (LD) have deficits in working memory (WM) that hinder their academic achievement. Cogmed RM, a computerized intervention, uses adaptive training over 25 sessions and has shown efficacy in improving WM in children with attention deficit hyperactivity disorder (ADHD) and a variety of…

  18. Change in the relative contributions of habit and working memory facilitates serial reversal learning expertise in rhesus monkeys.

    PubMed

    Hassett, Thomas C; Hampton, Robert R

    2017-05-01

    Functionally distinct memory systems likely evolved in response to incompatible demands placed on learning by distinct environmental conditions. Working memory appears adapted, in part, for conditions that change frequently, making rapid acquisition and brief retention of information appropriate. In contrast, habits form gradually over many experiences, adapting organisms to contingencies of reinforcement that are stable over relatively long intervals. Serial reversal learning provides an opportunity to simultaneously examine the processes involved in adapting to rapidly changing and relatively stable contingencies. In serial reversal learning, selecting one of the two simultaneously presented stimuli is positively reinforced, while selection of the other is not. After a preference for the positive stimulus develops, the contingencies of reinforcement reverse. Naïve subjects adapt to such reversals gradually, perseverating in selection of the previously rewarded stimulus. Experts reverse rapidly according to a win-stay, lose-shift response pattern. We assessed whether a change in the relative control of choice by habit and working memory accounts for the development of serial reversal learning expertise. Across three experiments, we applied manipulations intended to attenuate the contribution of working memory but leave the contribution of habit intact. We contrasted performance following long and short intervals in Experiments 1 and 2, and we interposed a competing cognitive load between trials in Experiment 3. These manipulations slowed the acquisition of reversals in expert subjects, but not naïve subjects, indicating that serial reversal learning expertise is facilitated by a shift in the control of choice from passively acquired habit to actively maintained working memory.

  19. Experimental evaluation of shape memory alloy actuation technique in adaptive antenna design concepts

    NASA Astrophysics Data System (ADS)

    Kefauver, W. Neill; Carpenter, Bernie F.

    1994-09-01

    Creation of an antenna system that could autonomously adapt contours of reflecting surfaces to compensate for structural loads induced by a variable environment would maximize performance of space-based communication systems. Design of such a system requires the comprehensive development and integration of advanced actuator, sensor, and control technologies. As an initial step in this process, a test has been performed to assess the use of a shape memory alloy as a potential actuation technique. For this test, an existing, offset, cassegrain antenna system was retrofit with a subreflector equipped with shape memory alloy actuators for surface contour control. The impacts that the actuators had on both the subreflector contour and the antenna system patterns were measured. The results of this study indicate the potential for using shape memory alloy actuation techniques to adaptively control antenna performance; both variations in gain and beam steering capabilities were demonstrated. Future development effort is required to evolve this potential into a useful technology for satellite applications.

  20. Experimental evaluation of shape memory alloy actuation technique in adaptive antenna design concepts

    NASA Technical Reports Server (NTRS)

    Kefauver, W. Neill; Carpenter, Bernie F.

    1994-01-01

    Creation of an antenna system that could autonomously adapt contours of reflecting surfaces to compensate for structural loads induced by a variable environment would maximize performance of space-based communication systems. Design of such a system requires the comprehensive development and integration of advanced actuator, sensor, and control technologies. As an initial step in this process, a test has been performed to assess the use of a shape memory alloy as a potential actuation technique. For this test, an existing, offset, cassegrain antenna system was retrofit with a subreflector equipped with shape memory alloy actuators for surface contour control. The impacts that the actuators had on both the subreflector contour and the antenna system patterns were measured. The results of this study indicate the potential for using shape memory alloy actuation techniques to adaptively control antenna performance; both variations in gain and beam steering capabilities were demonstrated. Future development effort is required to evolve this potential into a useful technology for satellite applications.

  1. Targeted Memory Reactivation during Sleep Adaptively Promotes the Strengthening or Weakening of Overlapping Memories.

    PubMed

    Oyarzún, Javiera P; Morís, Joaquín; Luque, David; de Diego-Balaguer, Ruth; Fuentemilla, Lluís

    2017-08-09

    System memory consolidation is conceptualized as an active process whereby newly encoded memory representations are strengthened through selective memory reactivation during sleep. However, our learning experience is highly overlapping in content (i.e., shares common elements), and memories of these events are organized in an intricate network of overlapping associated events. It remains to be explored whether and how selective memory reactivation during sleep has an impact on these overlapping memories acquired during awake time. Here, we test in a group of adult women and men the prediction that selective memory reactivation during sleep entails the reactivation of associated events and that this may lead the brain to adaptively regulate whether these associated memories are strengthened or pruned from memory networks on the basis of their relative associative strength with the shared element. Our findings demonstrate the existence of efficient regulatory neural mechanisms governing how complex memory networks are shaped during sleep as a function of their associative memory strength. SIGNIFICANCE STATEMENT Numerous studies have demonstrated that system memory consolidation is an active, selective, and sleep-dependent process in which only subsets of new memories become stabilized through their reactivation. However, the learning experience is highly overlapping in content and thus events are encoded in an intricate network of related memories. It remains to be explored whether and how memory reactivation has an impact on overlapping memories acquired during awake time. Here, we show that sleep memory reactivation promotes strengthening and weakening of overlapping memories based on their associative memory strength. These results suggest the existence of an efficient regulatory neural mechanism that avoids the formation of cluttered memory representation of multiple events and promotes stabilization of complex memory networks. Copyright © 2017 the authors 0270-6474/17/377748-11$15.00/0.

  2. Dynamic Connectivity between Brain Networks Supports Working Memory: Relationships to Dopamine Release and Schizophrenia.

    PubMed

    Cassidy, Clifford M; Van Snellenberg, Jared X; Benavides, Caridad; Slifstein, Mark; Wang, Zhishun; Moore, Holly; Abi-Dargham, Anissa; Horga, Guillermo

    2016-04-13

    Connectivity between brain networks may adapt flexibly to cognitive demand, a process that could underlie adaptive behaviors and cognitive deficits, such as those observed in neuropsychiatric conditions like schizophrenia. Dopamine signaling is critical for working memory but its influence on internetwork connectivity is relatively unknown. We addressed these questions in healthy humans using functional magnetic resonance imaging (during ann-back working-memory task) and positron emission tomography using the radiotracer [(11)C]FLB457 before and after amphetamine to measure the capacity for dopamine release in extrastriatal brain regions. Brain networks were defined by spatial independent component analysis (ICA) and working-memory-load-dependent connectivity between task-relevant pairs of networks was determined via a modified psychophysiological interaction analysis. For most pairs of task-relevant networks, connectivity significantly changed as a function of working-memory load. Moreover, load-dependent changes in connectivity between left and right frontoparietal networks (Δ connectivity lFPN-rFPN) predicted interindividual differences in task performance more accurately than other fMRI and PET imaging measures. Δ Connectivity lFPN-rFPN was not related to cortical dopamine release capacity. A second study in unmedicated patients with schizophrenia showed no abnormalities in load-dependent connectivity but showed a weaker relationship between Δ connectivity lFPN-rFPN and working memory performance in patients compared with matched healthy individuals. Poor working memory performance in patients was, in contrast, related to deficient cortical dopamine release. Our findings indicate that interactions between brain networks dynamically adapt to fluctuating environmental demands. These dynamic adaptations underlie successful working memory performance in healthy individuals and are not well predicted by amphetamine-induced dopamine release capacity. It is unclear how communication between brain networks responds to changing environmental demands during complex cognitive processes. Also, unknown in regard to these network dynamics is the role of neuromodulators, such as dopamine, and whether their dysregulation could underlie cognitive deficits in neuropsychiatric illness. We found that connectivity between brain networks changes with working-memory load and greater increases predict better working memory performance; however, it was not related to capacity for dopamine release in the cortex. Patients with schizophrenia did show dynamic internetwork connectivity; however, this was more weakly associated with successful performance in patients compared with healthy individuals. Our findings indicate that dynamic interactions between brain networks may support the type of flexible adaptations essential to goal-directed behavior. Copyright © 2016 the authors 0270-6474/16/364378-12$15.00/0.

  3. Dynamic Connectivity between Brain Networks Supports Working Memory: Relationships to Dopamine Release and Schizophrenia

    PubMed Central

    Van Snellenberg, Jared X.; Benavides, Caridad; Slifstein, Mark; Wang, Zhishun; Moore, Holly; Abi-Dargham, Anissa

    2016-01-01

    Connectivity between brain networks may adapt flexibly to cognitive demand, a process that could underlie adaptive behaviors and cognitive deficits, such as those observed in neuropsychiatric conditions like schizophrenia. Dopamine signaling is critical for working memory but its influence on internetwork connectivity is relatively unknown. We addressed these questions in healthy humans using functional magnetic resonance imaging (during an n-back working-memory task) and positron emission tomography using the radiotracer [11C]FLB457 before and after amphetamine to measure the capacity for dopamine release in extrastriatal brain regions. Brain networks were defined by spatial independent component analysis (ICA) and working-memory-load-dependent connectivity between task-relevant pairs of networks was determined via a modified psychophysiological interaction analysis. For most pairs of task-relevant networks, connectivity significantly changed as a function of working-memory load. Moreover, load-dependent changes in connectivity between left and right frontoparietal networks (Δ connectivity lFPN-rFPN) predicted interindividual differences in task performance more accurately than other fMRI and PET imaging measures. Δ Connectivity lFPN-rFPN was not related to cortical dopamine release capacity. A second study in unmedicated patients with schizophrenia showed no abnormalities in load-dependent connectivity but showed a weaker relationship between Δ connectivity lFPN-rFPN and working memory performance in patients compared with matched healthy individuals. Poor working memory performance in patients was, in contrast, related to deficient cortical dopamine release. Our findings indicate that interactions between brain networks dynamically adapt to fluctuating environmental demands. These dynamic adaptations underlie successful working memory performance in healthy individuals and are not well predicted by amphetamine-induced dopamine release capacity. SIGNIFICANCE STATEMENT It is unclear how communication between brain networks responds to changing environmental demands during complex cognitive processes. Also, unknown in regard to these network dynamics is the role of neuromodulators, such as dopamine, and whether their dysregulation could underlie cognitive deficits in neuropsychiatric illness. We found that connectivity between brain networks changes with working-memory load and greater increases predict better working memory performance; however, it was not related to capacity for dopamine release in the cortex. Patients with schizophrenia did show dynamic internetwork connectivity; however, this was more weakly associated with successful performance in patients compared with healthy individuals. Our findings indicate that dynamic interactions between brain networks may support the type of flexible adaptations essential to goal-directed behavior. PMID:27076432

  4. Effectiveness of the Vital Aging program to promote active aging in Mexican older adults

    PubMed Central

    Mendoza-Ruvalcaba, Neyda Ma; Fernández-Ballesteros, Rocío

    2016-01-01

    Introduction Aging is not only a population phenomenon but also an experience and an individual reality. Vital Aging® is a program that considers active aging as the lifelong adaptation process of maximizing health and independence, physical and cognitive functioning, positive affect regulation and control, and social engagement. Through its different versions and editions, it has demonstrated being an effective program to promote active aging. The aim of this study is to determine the effectiveness of the “face-to-face” and “combined” versions of the program to promote active aging in Mexican older adults trial. Methods Seventy-six older adults aged 60 years and over participated in a quasi-experimental study and were recruited in a senior center to participate in the two experimental conditions: Vital Aging face-to-face (VA-FF) (n=35) and Vital Aging combined (VA-C; multimedia/face-to-face) (n=15), and the remaining 26 adults were assigned to a control group. Pretest and posttest assessments were performed after the theoretical–practical intervention. Mean differences and size effects were calculated for estimating the effect of the program. Results At the end of the study, participants showed improvements in the active aging outcome measures. Positive effects were observed in the frequency of intellectual, cultural – artistic, and social activities, perceptions of aging, satisfaction with social relationships, and self-efficacy for aging. Additionally, those who participated in VA-FF showed better memory performance, meta-memory, and a trend to report less memory problems, while older persons in VA-C showed a trend to have better life satisfaction. No effects were observed in physical activity, frequency of social relationships, and subjective health. Conclusion Findings show that the Vital Aging program in face-to-face and combined versions encourages active aging in Mexican older persons. These results are in general similar to those found in editions performed in Spain, revealing its consistency as a cross-cultural practical initiative for promoting active aging. PMID:27881913

  5. Effectiveness of the Vital Aging program to promote active aging in Mexican older adults.

    PubMed

    Mendoza-Ruvalcaba, Neyda Ma; Fernández-Ballesteros, Rocío

    2016-01-01

    Aging is not only a population phenomenon but also an experience and an individual reality. Vital Aging ® is a program that considers active aging as the lifelong adaptation process of maximizing health and independence, physical and cognitive functioning, positive affect regulation and control, and social engagement. Through its different versions and editions, it has demonstrated being an effective program to promote active aging. The aim of this study is to determine the effectiveness of the "face-to-face" and "combined" versions of the program to promote active aging in Mexican older adults trial. Seventy-six older adults aged 60 years and over participated in a quasi-experimental study and were recruited in a senior center to participate in the two experimental conditions: Vital Aging face-to-face (VA-FF) (n=35) and Vital Aging combined (VA-C; multimedia/face-to-face) (n=15), and the remaining 26 adults were assigned to a control group. Pretest and posttest assessments were performed after the theoretical-practical intervention. Mean differences and size effects were calculated for estimating the effect of the program. At the end of the study, participants showed improvements in the active aging outcome measures. Positive effects were observed in the frequency of intellectual, cultural - artistic, and social activities, perceptions of aging, satisfaction with social relationships, and self-efficacy for aging. Additionally, those who participated in VA-FF showed better memory performance, meta-memory, and a trend to report less memory problems, while older persons in VA-C showed a trend to have better life satisfaction. No effects were observed in physical activity, frequency of social relationships, and subjective health. Findings show that the Vital Aging program in face-to-face and combined versions encourages active aging in Mexican older persons. These results are in general similar to those found in editions performed in Spain, revealing its consistency as a cross-cultural practical initiative for promoting active aging.

  6. Adaptive Memory: Evaluating Alternative Forms of Fitness-Relevant Processing in the Survival Processing Paradigm

    PubMed Central

    Sandry, Joshua; Trafimow, David; Marks, Michael J.; Rice, Stephen

    2013-01-01

    Memory may have evolved to preserve information processed in terms of its fitness-relevance. Based on the assumption that the human mind comprises different fitness-relevant adaptive mechanisms contributing to survival and reproductive success, we compared alternative fitness-relevant processing scenarios with survival processing. Participants rated words for relevancy to fitness-relevant and control conditions followed by a delay and surprise recall test (Experiment 1a). Participants recalled more words processed for their relevance to a survival situation. We replicated these findings in an online study (Experiment 2) and a study using revised fitness-relevant scenarios (Experiment 3). Across all experiments, we did not find a mnemonic benefit for alternative fitness-relevant processing scenarios, questioning assumptions associated with an evolutionary account of remembering. Based on these results, fitness-relevance seems to be too wide-ranging of a construct to account for the memory findings associated with survival processing. We propose that memory may be hierarchically sensitive to fitness-relevant processing instructions. We encourage future researchers to investigate the underlying mechanisms responsible for survival processing effects and work toward developing a taxonomy of adaptive memory. PMID:23585858

  7. Incidental recall on WAIS-R digit symbol discriminates Alzheimer's and Parkinson's diseases.

    PubMed

    Demakis, G J; Sawyer, T P; Fritz, D; Sweet, J J

    2001-03-01

    The purpose of this study was to examine how Alzheimer's (n = 37) and Parkinson's (n = 21) patients perform on the incidental recall adaptation to the Digit Symbol of the Wechsler Adult Intelligence Scale-Revised (WAIS-R) and how such performance is related to established cognitive efficiency and memory measures. This adaptation requires the examinee to complete the entire subtest and then, without warning, to immediately recall the symbols associated with each number. Groups did not differ significantly on standard Digit Symbol administration (90 seconds), but on recall Parkinson's patients recalled significantly more symbols and symbol-number pairs than Alzheimer's patients. Using only the number of symbols recalled, discriminate function analysis correctly classified 76% of these patients. Correlations between age-corrected scaled score, symbols incidentally recalled, and established measures of cognitive efficiency and memory provided evidence of convergent and divergent validity. Age-corrected scaled scores were more consistently and strongly related to cognitive efficiency, whereas symbols recalled were more consistently and strongly related to memory measures. These findings suggest that the Digit Symbol recall adaptation is actually assessing memory and that it can be another useful way to detect memory impairment. Copyright 2001 John Wiley & Sons, Inc.

  8. Testing for Near and Far Transfer Effects with a Short, Face-to-Face Adaptive Working Memory Training Intervention in Typical Children

    ERIC Educational Resources Information Center

    Henry, Lucy A.; Messer, David J.; Nash, Gilly

    2014-01-01

    A relatively quick, face-to-face, adaptive working memory training intervention was assessed in 5-to 8-year-old typically developing children, randomly allocated to a 6-week intervention condition, or an active control condition. All children received 18 sessions of 10?minutes, three times/week for 6?weeks. Assessments of six working memory…

  9. Can an aversive, extinction-resistant memory trigger impairments in walking adaptability? An experimental study using adult rats.

    PubMed

    Medeiros, Filipe Mello; de Carvalho Myskiw, Jociane; Baptista, Pedro Porto Alegre; Neves, Laura Tartari; Martins, Lucas Athaydes; Furini, Cristiane Regina Guerino; Izquierdo, Iván; Xavier, Léder Leal; Hollands, Kristen; Mestriner, Régis Gemerasca

    2018-02-05

    Cognitive demands can influence the adaptation of walking, a crucial skill to maintain body stability and prevent falls. Whilst previous research has shown emotional load tunes goal-directed movements, little attention has been given to this finding. This study sought to assess the effects of suffering an extinction-resistant memory on skilled walking performance in adult rats, as an indicator of walking adaptability. Thus, 36 Wistar rats were divided in a two-part experiment. In the first part (n=16), the aversive, extinction-resistance memory paradigm was established using a fear-conditioning chamber. In the second, rats (n=20) were assessed in a neutral room using the ladder rung walking test before and tree days after inducing an extinction-resistance memory. In addition, the elevated plus-maze test was used to control the influence of the anxiety-like status on gait adaptability. Our results revealed the shock group exhibited worse walking adaptability (lower skilled walking score), when compared to the sham group. Moreover, the immobility time in the ladder rung walking test was similar to the controls, suggesting that gait adaptability performance was not a consequence of the fear generalization. No anxiety-like behavior was observed in the plus maze test. Finally, correlation coefficients also showed the skilled walking performance score was positively correlated with the number of gait cycles and trial time in the ladder rung walking test and the total crossings in the plus maze. Overall, these preliminary findings provide evidence to hypothesize an aversive, extinction-resistant experience might change the emotional load, affecting the ability to adapt walking. Copyright © 2017. Published by Elsevier B.V.

  10. Reciprocity phase in various 2×2 games by agents equipped with two-memory length strategy encouraged by grouping for interaction and adaptation.

    PubMed

    Wakiyama, Motoya; Tanimoto, Jun

    2011-01-01

    This paper numerically investigates 2×2 games involving the Prisoner's Dilemma, Chicken, Hero, Leader, Stag Hunt, and Trivial Games in which agents have a strategy expressed by five-bit, two-memory length. Our motivation is to explore how grouping for game interaction and strategy adaptation influence ST reciprocity and R reciprocity (Tanimoto and Sagara, 2007a [Tanimoto, J., Sagara, H., 2007a. A study on emergence of coordinated alternating reciprocity in a 2×2 game with 2-memory length strategy. Biosystems 90(3), 728-737]. Enhanced R reciprocity is observed with the stronger grouping for game interaction when a relatively stronger grouping for strategy adaptation is assumed. On the other hand, enhanced ST reciprocity emerged with the stronger grouping for strategy adaptation when the relatively weaker grouping for game interaction is imposed. Our numerical experiment deals with those two groupings independently and dependently. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  11. Genetic algorithms with memory- and elitism-based immigrants in dynamic environments.

    PubMed

    Yang, Shengxiang

    2008-01-01

    In recent years the genetic algorithm community has shown a growing interest in studying dynamic optimization problems. Several approaches have been devised. The random immigrants and memory schemes are two major ones. The random immigrants scheme addresses dynamic environments by maintaining the population diversity while the memory scheme aims to adapt genetic algorithms quickly to new environments by reusing historical information. This paper investigates a hybrid memory and random immigrants scheme, called memory-based immigrants, and a hybrid elitism and random immigrants scheme, called elitism-based immigrants, for genetic algorithms in dynamic environments. In these schemes, the best individual from memory or the elite from the previous generation is retrieved as the base to create immigrants into the population by mutation. This way, not only can diversity be maintained but it is done more efficiently to adapt genetic algorithms to the current environment. Based on a series of systematically constructed dynamic problems, experiments are carried out to compare genetic algorithms with the memory-based and elitism-based immigrants schemes against genetic algorithms with traditional memory and random immigrants schemes and a hybrid memory and multi-population scheme. The sensitivity analysis regarding some key parameters is also carried out. Experimental results show that the memory-based and elitism-based immigrants schemes efficiently improve the performance of genetic algorithms in dynamic environments.

  12. tDCS-induced alterations in GABA concentration within primary motor cortex predict motor learning and motor memory: a 7 T magnetic resonance spectroscopy study.

    PubMed

    Kim, Soyoung; Stephenson, Mary C; Morris, Peter G; Jackson, Stephen R

    2014-10-01

    Transcranial direct current stimulation (tDCS) is a non-invasive brain stimulation technique that alters cortical excitability in a polarity specific manner and has been shown to influence learning and memory. tDCS may have both on-line and after-effects on learning and memory, and the latter are thought to be based upon tDCS-induced alterations in neurochemistry and synaptic function. We used ultra-high-field (7 T) magnetic resonance spectroscopy (MRS), together with a robotic force adaptation and de-adaptation task, to investigate whether tDCS-induced alterations in GABA and Glutamate within motor cortex predict motor learning and memory. Note that adaptation to a robot-induced force field has long been considered to be a form of model-based learning that is closely associated with the computation and 'supervised' learning of internal 'forward' models within the cerebellum. Importantly, previous studies have shown that on-line tDCS to the cerebellum, but not to motor cortex, enhances model-based motor learning. Here we demonstrate that anodal tDCS delivered to the hand area of the left primary motor cortex induces a significant reduction in GABA concentration. This effect was specific to GABA, localised to the left motor cortex, and was polarity specific insofar as it was not observed following either cathodal or sham stimulation. Importantly, we show that the magnitude of tDCS-induced alterations in GABA concentration within motor cortex predicts individual differences in both motor learning and motor memory on the robotic force adaptation and de-adaptation task. Copyright © 2014. Published by Elsevier Inc.

  13. Sleep's influence on a reflexive form of memory that does not require voluntary attention.

    PubMed

    Sheth, Bhavin R; Serranzana, Andrew; Anjum, Syed F; Khan, Murtuza

    2012-05-01

    Studies to date have examined the influence of sleep on forms of memory that require voluntary attention. The authors examine the influence of sleep on a form of memory that is acquired by passive viewing. Induction of the McCollough effect, and measurement of perceptual color bias before and after induction, and before and after intervening sleep, wake, or visual deprivation. Sound-attenuated sleep research room. 13 healthy volunteers (mean age = 23 years; age range = 18-31 years) with normal or corrected-to-normal vision. N/A. ) ENCODING: sleep preceded adaptation. On separate nights, each participant slept for an average of 0 (wake), 1, 2, 4, or 7 hr (complete sleep). Upon awakening, the participant's baseline perceptual color bias was measured. Then, he or she viewed an adapter consisting of alternating red/horizontal and green/vertical gratings for 5 min. Color bias was remeasured. The strength of the aftereffect is the postadaptation color bias relative to baseline. A strong orientation contingent color aftereffect was observed in all participants, but total sleep duration (TSD) prior to the adaptation did not modulate aftereffect strength. Further, prior sleep provided no benefit over prior wake. Retention: sleep followed adaptation. The procedure was similar except that adaptation preceded sleep. Postadaptation sleep, irrespective of its duration (1, 3, 5, or 7 hr), arrested aftereffect decay. By contrast, aftereffect decay was arrested during subsequent wake only if the adapted eye was visually deprived. Sleep as well as passive sensory deprivation enables the retention of a color aftereffect. Sleep shelters this reflexive form of memory in a manner akin to preventing sensory interference.

  14. Thy1+ Nk Cells from Vaccinia Virus-Primed Mice Confer Protection against Vaccinia Virus Challenge in the Absence of Adaptive Lymphocytes

    PubMed Central

    Gillard, Geoffrey O.; Bivas-Benita, Maytal; Hovav, Avi-Hai; Grandpre, Lauren E.; Panas, Michael W.; Seaman, Michael S.; Haynes, Barton F.; Letvin, Norman L.

    2011-01-01

    While immunological memory has long been considered the province of T- and B- lymphocytes, it has recently been reported that innate cell populations are capable of mediating memory responses. We now show that an innate memory immune response is generated in mice following infection with vaccinia virus, a poxvirus for which no cognate germline-encoded receptor has been identified. This immune response results in viral clearance in the absence of classical adaptive T and B lymphocyte populations, and is mediated by a Thy1+ subset of natural killer (NK) cells. We demonstrate that immune protection against infection from a lethal dose of virus can be adoptively transferred with memory hepatic Thy1+ NK cells that were primed with live virus. Our results also indicate that, like classical immunological memory, stronger innate memory responses form in response to priming with live virus than a highly attenuated vector. These results demonstrate that a defined innate memory cell population alone can provide host protection against a lethal systemic infection through viral clearance. PMID:21829360

  15. Views of Memory and the Self.

    ERIC Educational Resources Information Center

    Anderson, Bill; And Others

    1990-01-01

    Beings participating in mutual interrelationships with an environment do not need memories. Instead, they are involved in remembering as part of their continual adaptation within that environment. (PCB)

  16. Consolidation through the looking-glass: sleep-dependent proactive interference on visuomotor adaptation in children.

    PubMed

    Urbain, Charline; Houyoux, Emeline; Albouy, Geneviève; Peigneux, Philippe

    2014-02-01

    Although a beneficial role of post-training sleep for declarative memory has been consistently evidenced in children, as in adults, available data suggest that procedural memory consolidation does not benefit from sleep in children. However, besides the absence of performance gains in children, sleep-dependent plasticity processes involved in procedural memory consolidation might be expressed through differential interference effects on the learning of novel but related procedural material. To test this hypothesis, 32 10-12-year-old children were trained on a motor rotation adaptation task. After either a sleep or a wake period, they were first retested on the same rotation applied at learning, thus assessing offline sleep-dependent changes in performance, then on the opposite (unlearned) rotation to assess sleep-dependent modulations in proactive interference coming from the consolidated visuomotor memory trace. Results show that children gradually improve performance over the learning session, showing effective adaptation to the imposed rotation. In line with previous findings, no sleep-dependent changes in performance were observed for the learned rotation. However, presentation of the opposite, unlearned deviation elicited significantly higher interference effects after post-training sleep than wakefulness in children. Considering that a definite feature of procedural motor memory and skill acquisition is the implementation of highly automatized motor behaviour, thus lacking flexibility, our results suggest a better integration and/or automation or motor adaptation skills after post-training sleep, eventually resulting in higher proactive interference effects on untrained material. © 2013 European Sleep Research Society.

  17. Adaptive modulations of martensites.

    PubMed

    Kaufmann, S; Rössler, U K; Heczko, O; Wuttig, M; Buschbeck, J; Schultz, L; Fähler, S

    2010-04-09

    Modulated phases occur in numerous functional materials like giant ferroelectrics and magnetic shape-memory alloys. To understand the origin of these phases, we employ and generalize the concept of adaptive martensite. As a starting point, we investigate the coexistence of austenite, adaptive 14M phase, and tetragonal martensite in Ni-Mn-Ga magnetic shape-memory alloy epitaxial films. We show that the modulated martensite can be constructed from nanotwinned variants of the tetragonal martensite phase. By combining the concept of adaptive martensite with branching of twin variants, we can explain key features of modulated phases from a microscopic view. This includes metastability, the sequence of 6M-10M-14M-NM intermartensitic transitions, and the magnetocrystalline anisotropy.

  18. Sleep's Influence on a Reflexive Form of Memory That Does Not Require Voluntary Attention

    PubMed Central

    Sheth, Bhavin R.; Serranzana, Andrew; Anjum, Syed F.; Khan, Murtuza

    2012-01-01

    Study Objectives: Studies to date have examined the influence of sleep on forms of memory that require voluntary attention. The authors examine the influence of sleep on a form of memory that is acquired by passive viewing. Design: Induction of the McCollough effect, and measurement of perceptual color bias before and after induction, and before and after intervening sleep, wake, or visual deprivation. Setting: Sound-attenuated sleep research room. Participants: 13 healthy volunteers (mean age = 23 years; age range = 18–31 years) with normal or corrected-to-normal vision. Interventions: N/A. Measurements and Results:) Encoding: sleep preceded adaptation. On separate nights, each participant slept for an average of 0 (wake), 1, 2, 4, or 7 hr (complete sleep). Upon awakening, the participant's baseline perceptual color bias was measured. Then, he or she viewed an adapter consisting of alternating red/horizontal and green/vertical gratings for 5 min. Color bias was remeasured. The strength of the aftereffect is the postadaptation color bias relative to baseline. A strong orientation contingent color aftereffect was observed in all participants, but total sleep duration (TSD) prior to the adaptation did not modulate aftereffect strength. Further, prior sleep provided no benefit over prior wake. Retention: sleep followed adaptation. The procedure was similar except that adaptation preceded sleep. Postadaptation sleep, irrespective of its duration (1, 3, 5, or 7 hr), arrested aftereffect decay. By contrast, aftereffect decay was arrested during subsequent wake only if the adapted eye was visually deprived. Conclusions: Sleep as well as passive sensory deprivation enables the retention of a color aftereffect. Sleep shelters this reflexive form of memory in a manner akin to preventing sensory interference. Citation: Sheth BR; Serranzana A; Anjum SF; Khan M. Sleep's influence on a reflexive form of memory that does not require voluntary attention. SLEEP 2012;35(5):657-666. PMID:22547892

  19. Multibit Polycristalline Silicon-Oxide-Silicon Nitride-Oxide-Silicon Memory Cells with High Density Designed Utilizing a Separated Control Gate

    NASA Astrophysics Data System (ADS)

    Rok Kim, Kyeong; You, Joo Hyung; Dal Kwack, Kae; Kim, Tae Whan

    2010-10-01

    Unique multibit NAND polycrystalline silicon-oxide-silicon nitride-oxide-silicon (SONOS) memory cells utilizing a separated control gate (SCG) were designed to increase memory density. The proposed NAND SONOS memory device based on a SCG structure was operated as two bits, resulting in an increase in the storage density of the NVM devices in comparison with conventional single-bit memories. The electrical properties of the SONOS memory cells with a SCG were investigated to clarify the charging effects in the SONOS memory cells. When the program voltage was supplied to each gate of the NAND SONOS flash memory cells, the electrons were trapped in the nitride region of the oxide-nitride-oxide layer under the gate to supply the program voltage. The electrons were accumulated without affecting the other gate during the programming operation, indicating the absence of cross-talk between two trap charge regions. It is expected that the inference effect will be suppressed by the lower program voltage than the program voltage of the conventional NAND flash memory. The simulation results indicate that the proposed unique NAND SONOS memory cells with a SCG can be used to increase memory density.

  20. Mnemons: encoding memory by protein super-assembly.

    PubMed

    Caudron, Fabrice; Barral, Yves

    2014-02-25

    Memory is mainly understood as the recollection of past events. The human brain and its simplest unit, the synapse, belong to the places in which such memories are physically stored. From an experimental point of view, memory can be tested in humans by recall. However, in other organisms, memory is reflected in its use by individuals to learn about and adapt their behavior to their environment. Under this criterion, even unicellular organisms are able to learn from their environments and show the ability to adapt their responses to repeating stimuli. This indicates that they are able to keep track of their histories and use these traces to elaborate adapted responses, making these traces akin to memory encodings. Understanding these phenomena may even help us to dissect part of the rather complex molecular orchestration happening in our synapses. When exposed unsuccessfully to mating pheromone, i.e. when mating does not happen, budding yeast cells become refractory to the mating signal. This refractory state is restricted to the mother cell and not inherited by the daughter cells, even though it is stable for most if not the entire life span of the mother cell. Interestingly, both stability and asymmetric segregation of the acquired state are explained by the molecular mechanism underlying its establishment, which shows important analogies and distinctions to prions. Here we discuss these similarities and differences.

  1. [Extinction and Reconsolidation of Memory].

    PubMed

    Zuzina, A B; Balaban, P M

    2015-01-01

    Retrieval of memory followed by reconsolidation can strengthen a memory, while retrieval followed by extinction results in a decrease of memory performance due to weakening of existing memory or formation of a competing memory. In our study we analyzed the behavior and responses of identified neurons involved in the network underlying aversive learning in terrestrial snail Helix, and made an attempt to describe the conditions in which the retrieval of memory leads either to extinction or reconsolidation. In the network underlying the withdrawal behavior, sensory neurons, premotor interneurons, motor neurons, and modulatory for this network serotonergic neurons are identified and recordings from representatives of these groups were made before and after aversive learning. In the network underlying feeding behavior, the premotor modulatory serotonergic interneurons and motor neurons involved in motor program of feeding are identified. Analysis of changes in neural activity after aversive learning showed that modulatory neurons of feeding behavior do not demonstrate any changes (sometimes a decrease of responses to food was observed), while responses to food in withdrawal behavior premotor interneurons changed qualitatively, from under threshold EPSPs to spike discharges. Using a specific for serotonergic neurons neurotoxin 5,7-DiHT it was shown previously that the serotonergic system is necessary for the aversive learning, but is not necessary for maintenance and retrieval of this memory. These results suggest that the serotonergic neurons that are necessary as part of a reinforcement for developing the associative changes in the network may be not necessary for the retrieval of memory. The hypothesis presented in this review concerns the activity of the "reinforcement" serotonergic neurons that is suggested to be the gate condition for the choice between extinction/reconsolidation triggered by memory retrieval: if these serotonergic neurons do not respond during the retrieval due to adaptation, habituation, changes in environment, etc., then we will observe the extinction; while if these neurons respond to the CS during memory retrieval, we will observe the reconsolidation phenomenon.

  2. Distinct Effects of Saracatinib on Memory CD8+ T-cell Differentiation

    PubMed Central

    Takai, Shinji; Sabzevari, Helen; Farsaci, Benedetto; Schlom, Jeffrey; Greiner, John W.

    2012-01-01

    Immunologic memory involving CD8+ T-cells is a hallmark of an adaptive antigen-specific immune response and comprises a critical component of protective immunity. Designing approaches that enhance long-term T-cell memory would, for the most part, fortify vaccines and enhance host protection against infectious diseases and, perhaps, cancer immunotherapy. A better understanding of the cellular programs involved in the antigen-specific T-cell response has led to new approaches that target the magnitude and quality of the memory T-cell response. Here we show that T-cells from T-cell receptor transgenic mice for the nucleoprotein of influenza virus NP68 exhibit the distinct phases priming, expansion, contraction, memory - of an antigen-specific T-cell response when exposed in vitro to the cognate peptide. Saracatinib, a specific inhibitor of Src family kinases, administered at low doses during the expansion or contraction phases, increased CD62Lhigh/CD44high central memory CD8+ T-cells and IFN-γ production, while suppressing immunity when added during the priming phase. These effects by saracatinib were not accompanied by the expected decline of Src family kinases, but were accompanied by Akt-mTOR suppression and/or mediated via another pathway. Increased central memory cells by saracatinib were recapitulated in mice using a poxvirus-based influenza vaccine, thus underscoring the importance of dose and timing of the inhibitor in the context of memory T-cell differentiation. Finally, vaccine plus saracatinib treatment showed better protection against tumor challenge. The immune-potentiating effects on CD8+ T-cells by a low dose of saracatinib might afford better protection from pathogen or cancer when combined with vaccine. PMID:22450814

  3. Adaptive Memory: Thinking about Function

    ERIC Educational Resources Information Center

    Bell, Raoul; Röer, Jan P.; Buchner, Axel

    2015-01-01

    Rating the relevance of words for the imagined situation of being stranded in the grasslands without survival material leads to exceptionally good memory for these words. This survival processing effect has received much attention because it promises to elucidate the evolutionary foundations of memory. However, the proximate mechanisms of the…

  4. Ventromedial Prefrontal Cortex Is Necessary for Normal Associative Inference and Memory Integration.

    PubMed

    Spalding, Kelsey N; Schlichting, Margaret L; Zeithamova, Dagmar; Preston, Alison R; Tranel, Daniel; Duff, Melissa C; Warren, David E

    2018-04-11

    The ability to flexibly combine existing knowledge in response to novel circumstances is highly adaptive. However, the neural correlates of flexible associative inference are not well characterized. Laboratory tests of associative inference have measured memory for overlapping pairs of studied items (e.g., AB, BC) and for nonstudied pairs with common associates (i.e., AC). Findings from functional neuroimaging and neuropsychology suggest the ventromedial prefrontal cortex (vmPFC) may be necessary for associative inference. Here, we used a neuropsychological approach to test the necessity of vmPFC for successful memory-guided associative inference in humans using an overlapping pairs associative memory task. We predicted that individuals with focal vmPFC damage ( n = 5; 3F, 2M) would show impaired inferential memory but intact non-inferential memory. Performance was compared with normal comparison participants ( n = 10; 6F, 4M). Participants studied pairs of visually presented objects including overlapping pairs (AB, BC) and nonoverlapping pairs (XY). Participants later completed a three-alternative forced-choice recognition task for studied pairs (AB, BC, XY) and inference pairs (AC). As predicted, the vmPFC group had intact memory for studied pairs but significantly impaired memory for inferential pairs. These results are consistent with the perspective that the vmPFC is necessary for memory-guided associative inference, indicating that the vmPFC is critical for adaptive abilities that require application of existing knowledge to novel circumstances. Additionally, vmPFC damage was associated with unexpectedly reduced memory for AB pairs post-inference, which could potentially reflect retroactive interference. Together, these results reinforce an emerging understanding of a role for the vmPFC in brain networks supporting associative memory processes. SIGNIFICANCE STATEMENT We live in a constantly changing environment, so the ability to adapt our knowledge to support understanding of new circumstances is essential. One important adaptive ability is associative inference which allows us to extract shared features from distinct experiences and relate them. For example, if we see a woman holding a baby, and later see a man holding the same baby, then we might infer that the two adults are a couple. Despite the importance of associative inference, the brain systems necessary for this ability are not known. Here, we report that damage to human ventromedial prefrontal cortex (vmPFC) disproportionately impairs associative inference. Our findings show the necessity of the vmPFC for normal associative inference and memory integration. Copyright © 2018 the authors 0270-6474/18/383767-09$15.00/0.

  5. Human Memory Organization for Computer Programs.

    ERIC Educational Resources Information Center

    Norcio, A. F.; Kerst, Stephen M.

    1983-01-01

    Results of study investigating human memory organization in processing of computer programming languages indicate that algorithmic logic segments form a cognitive organizational structure in memory for programs. Statement indentation and internal program documentation did not enhance organizational process of recall of statements in five Fortran…

  6. Enhanced oxygen vacancy diffusion in Ta2O5 resistive memory devices due to infinitely adaptive crystal structure

    NASA Astrophysics Data System (ADS)

    Jiang, Hao; Stewart, Derek A.

    2016-04-01

    Metal oxide resistive memory devices based on Ta2O5 have demonstrated high switching speed, long endurance, and low set voltage. However, the physical origin of this improved performance is still unclear. Ta2O5 is an important archetype of a class of materials that possess an adaptive crystal structure that can respond easily to the presence of defects. Using first principles nudged elastic band calculations, we show that this adaptive crystal structure leads to low energy barriers for in-plane diffusion of oxygen vacancies in λ phase Ta2O5. Identified diffusion paths are associated with collective motion of neighboring atoms. The overall vacancy diffusion is anisotropic with higher diffusion barriers found for oxygen vacancy movement between Ta-O planes. Coupled with the fact that oxygen vacancy formation energy in Ta2O5 is relatively small, our calculated low diffusion barriers can help explain the low set voltage in Ta2O5 based resistive memory devices. Our work shows that other oxides with adaptive crystal structures could serve as potential candidates for resistive random access memory devices. We also discuss some general characteristics for ideal resistive RAM oxides that could be used in future computational material searches.

  7. Effects of a Memory Training Program in Older People with Severe Memory Loss

    ERIC Educational Resources Information Center

    Mateos, Pedro M.; Valentin, Alberto; González-Tablas, Maria del Mar; Espadas, Verónica; Vera, Juan L.; Jorge, Inmaculada García

    2016-01-01

    Strategies based memory training programs are widely used to enhance the cognitive abilities of the elderly. Participants in these training programs are usually people whose mental abilities remain intact. Occasionally, people with cognitive impairment also participate. The aim of this study was to test if memory training designed specifically for…

  8. Analysis of the Evaluation of a New Glucose Meter with Integrated Self-Management Software and USB Connectivity

    PubMed Central

    Crowe, Daniel J

    2011-01-01

    Glucose meter technology has not kept up with the advances that have occurred in other sectors in mobile and health care technology. A new device that combines strip-based capillary blood glucose monitoring and USB flash drive technology is evaluated in an industry-funded study in a cohort of patients and health care professionals. The expanded memory capacity of flash drives allows the software program to be stored on the device for analyzing the blood glucose readings in memory. The study analyzes the device for precision and accuracy as well as for ease of adaptability and usage. This analysis focuses on shortcomings in the design of the study and methodology in addition to features of the hardware device itself. Although the device has distinct advantages over many devices on the market, a challenge is made to device manufacturers to encourage further innovation. PMID:22027309

  9. A cortical substrate for the long-term memory of saccadic eye movements calibration.

    PubMed

    Pélisson, Denis; Habchi, Ouazna; Panouillères, Muriel T N; Hernoux, Charles; Farnè, Alessandro

    2018-06-19

    How movements are continuously adapted to physiological and environmental changes is a fundamental question in systems neuroscience. While many studies have elucidated the mechanisms which underlie short-term sensorimotor adaptation (∼10-30 min), how these motor memories are maintained over longer-term (>3-5 days) -and thanks to which neural systems-is virtually unknown. Here, we examine in healthy human participants whether the temporo-parietal junction (TPJ) is causally involved in the induction and/or the retention of saccadic eye movements' adaptation. Single-pulse transcranial magnetic stimulation (spTMS) was applied while subjects performed a ∼15min size-decrease adaptation task of leftward reactive saccades. A TMS pulse was delivered over the TPJ in the right hemisphere (rTPJ) in each trial either 30, 60, 90 or 120 msec (in 4 separate adaptation sessions) after the saccade onset. In two control groups of subjects, the same adaptation procedure was achieved either alone (No-TMS) or combined with spTMS applied over the vertex (SHAM-TMS). While the timing of spTMS over the rTPJ did not significantly affect the speed and immediate after-effect of adaptation, we found that the amount of adaptation retention measured 10 days later was markedly larger (42%) than in both the No-TMS (21%) and the SHAM-TMS (11%) control groups. These results demonstrate for the first time that the cerebral cortex is causally involved in maintaining long-term oculomotor memories. Copyright © 2018. Published by Elsevier Inc.

  10. Individual differences in multitasking ability and adaptability.

    PubMed

    Morgan, Brent; D'Mello, Sidney; Abbott, Robert; Radvansky, Gabriel; Haass, Michael; Tamplin, Andrea

    2013-08-01

    The aim of this study was to identify the cognitive factors that predictability and adaptability during multitasking with a flight simulator. Multitasking has become increasingly prevalent as most professions require individuals to perform multiple tasks simultaneously. Considerable research has been undertaken to identify the characteristics of people (i.e., individual differences) that predict multitasking ability. Although working memory is a reliable predictor of general multitasking ability (i.e., performance in normal conditions), there is the question of whether different cognitive faculties are needed to rapidly respond to changing task demands (adaptability). Participants first completed a battery of cognitive individual differences tests followed by multitasking sessions with a flight simulator. After a baseline condition, difficulty of the flight simulator was incrementally increased via four experimental manipulations, and performance metrics were collected to assess multitasking ability and adaptability. Scholastic aptitude and working memory predicted general multitasking ability (i.e., performance at baseline difficulty), but spatial manipulation (in conjunction with working memory) was a major predictor of adaptability (performance in difficult conditions after accounting for baseline performance). Multitasking ability and adaptability may be overlapping but separate constructs that draw on overlapping (but not identical) sets of cognitive abilities. The results of this study are applicable to practitioners and researchers in human factors to assess multitasking performance in real-world contexts and with realistic task constraints. We also present a framework for conceptualizing multitasking adaptability on the basis of five adaptability profiles derived from performance on tasks with consistent versus increased difficulty.

  11. Adaptive Memory: Is Survival Processing Special?

    ERIC Educational Resources Information Center

    Nairne, James S.; Pandeirada, Josefa N. S.

    2008-01-01

    Do the operating characteristics of memory continue to bear the imprints of ancestral selection pressures? Previous work in our laboratory has shown that human memory may be specially tuned to retain information processed in terms of its survival relevance. A few seconds of survival processing in an incidental learning context can produce recall…

  12. The Specificity of Autobiographical Memories in Early Adolescence: The Role of Mother-Child Communication and Attachment-Related Beliefs

    ERIC Educational Resources Information Center

    Bosmans, Guy; Dujardin, Adinda; Raes, Filip; Braet, Caroline

    2013-01-01

    Although autobiographical memory specificity is an important developmental feature fostering adaptation throughout life, little is known about factors related to interindividual differences in autobiographical memory specificity. The current study investigated associations with early adolescents' communication with mother about their experiences…

  13. A simultaneous examination of two forms of working memory training: Evidence for near transfer only.

    PubMed

    Minear, Meredith; Brasher, Faith; Guerrero, Claudia Brandt; Brasher, Mandy; Moore, Andrew; Sukeena, Joshua

    2016-10-01

    The efficacy of working-memory training is a topic of considerable debate, with some studies showing transfer to measures such as fluid intelligence while others have not. We report the results of a study designed to examine two forms of working-memory training, one using a spatial n-back and the other a verbal complex span. Thirty-one undergraduates completed 4 weeks of n-back training and 32 completed 4 weeks of verbal complex span training. We also included two active control groups. One group trained on a non-adaptive version of n-back and the other trained on a real-time strategy video game. All participants completed pre- and post-training measures of a large battery of transfer tasks used to create composite measures of short-term and working memory in both verbal and visuo-spatial domains as well as verbal reasoning and fluid intelligence. We only found clear evidence for near transfer from the spatial n-back training to new forms of n-back, and this was the case for both adaptive and non-adaptive n-back.

  14. Computerized training of non-verbal reasoning and working memory in children with intellectual disability

    PubMed Central

    Söderqvist, Stina; Nutley, Sissela B.; Ottersen, Jon; Grill, Katja M.; Klingberg, Torkel

    2012-01-01

    Children with intellectual disabilities show deficits in both reasoning ability and working memory (WM) that impact everyday functioning and academic achievement. In this study we investigated the feasibility of cognitive training for improving WM and non-verbal reasoning (NVR) ability in children with intellectual disability. Participants were randomized to a 5-week adaptive training program (intervention group) or non-adaptive version of the program (active control group). Cognitive assessments were conducted prior to and directly after training and 1 year later to examine effects of the training. Improvements during training varied largely and amount of progress during training predicted transfer to WM and comprehension of instructions, with higher training progress being associated with greater transfer improvements. The strongest predictors for training progress were found to be gender, co-morbidity, and baseline capacity on verbal WM. In particular, females without an additional diagnosis and with higher baseline performance showed greater progress. No significant effects of training were observed at the 1-year follow-up, suggesting that training should be more intense or repeated in order for effects to persist in children with intellectual disabilities. A major finding of this study is that cognitive training is feasible in this clinical sample and can help improve their cognitive performance. However, a minimum cognitive capacity or training ability seems necessary for the training to be beneficial, with some individuals showing little improvement in performance. Future studies of cognitive training should take into consideration how inter-individual differences in training progress influence transfer effects and further investigate how baseline capacities predict training outcome. PMID:23060775

  15. Adaptive emotional memory: the key hippocampal-amygdalar interaction.

    PubMed

    Desmedt, Aline; Marighetto, Aline; Richter-Levin, Gal; Calandreau, Ludovic

    2015-01-01

    For centuries philosophical and clinical studies have emphasized a fundamental dichotomy between emotion and cognition, as, for instance, between behavioral/emotional memory and explicit/representative memory. However, the last few decades cognitive neuroscience have highlighted data indicating that emotion and cognition, as well as their underlying neural networks, are in fact in close interaction. First, it turns out that emotion can serve cognition, as exemplified by its critical contribution to decision-making or to the enhancement of episodic memory. Second, it is also observed that reciprocally cognitive processes as reasoning, conscious appraisal or explicit representation of events can modulate emotional responses, like promoting or reducing fear. Third, neurobiological data indicate that reciprocal amygdalar-hippocampal influences underlie such mutual regulation of emotion and cognition. While supporting this view, the present review discusses experimental data, obtained in rodents, indicating that the hippocampal and amygdalar systems not only regulate each other and their functional outcomes, but also qualify specific emotional memory representations through specific activations and interactions. Specifically, we review consistent behavioral, electrophysiological, pharmacological, biochemical and imaging data unveiling a direct contribution of both the amygdala and hippocampal-septal system to the identification of the predictor of a threat in different situations of fear conditioning. Our suggestion is that these two brain systems and their interplay determine the selection of relevant emotional stimuli, thereby contributing to the adaptive value of emotional memory. Hence, beyond the mutual quantitative regulation of these two brain systems described so far, we develop the idea that different activations of the hippocampus and amygdala, leading to specific configurations of neural activity, qualitatively impact the formation of emotional memory representations, thereby producing either adaptive or maladaptive fear memories.

  16. Physiological, Molecular and Genetic Mechanisms of Long-Term Habituation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Calin-Jageman, Robert J

    Work funded on this grant has explored the mechanisms of long-term habituation, a ubiquitous form of learning that plays a key role in basic cognitive functioning. Specifically, behavioral, physiological, and molecular mechanisms of habituation have been explored using a simple model system, the tail-elicited siphon-withdrawal reflex (T-SWR) in the marine mollusk Aplysia californica. Substantial progress has been made on the first and third aims, providing some fundamental insights into the mechanisms by which memories are stored. We have characterized the physiological correlates of short- and long-term habituation. We found that short-term habituation is accompanied by a robust sensory adaptation, whereasmore » long-term habituation is accompanied by alterations in sensory and interneuron synaptic efficacy. Thus, our data indicates memories can be shifted between different sites in a neural network as they are consolidated from short to long term. At the molecular level, we have accomplished microarray analysis comparing gene expression in both habituated and control ganglia. We have identified a network of putatively regulated transcripts that seems particularly targeted towards synaptic changes (e.g. SNAP25, calmodulin) . We are now beginning additional work to confirm regulation of these transcripts and build a more detailed understanding of the cascade of molecular events leading to the permanent storage of long-term memories. On the third aim, we have fostered a nascent neuroscience program via a variety of successful initiatives. We have funded over 11 undergraduate neuroscience scholars, several of whom have been recognized at national and regional levels for their research. We have also conducted a pioneering summer research program for community college students which is helping enhance access of underrepresented groups to life science careers. Despite minimal progress on the second aim, this project has provided a) novel insight into the network mechanisms by which short-term memories are permanently stored, and b) a strong foundation for continued growth of an excellent undergraduate neuroscience program.« less

  17. Unstructured Adaptive Meshes: Bad for Your Memory?

    NASA Technical Reports Server (NTRS)

    Biswas, Rupak; Feng, Hui-Yu; VanderWijngaart, Rob

    2003-01-01

    This viewgraph presentation explores the need for a NASA Advanced Supercomputing (NAS) parallel benchmark for problems with irregular dynamical memory access. This benchmark is important and necessary because: 1) Problems with localized error source benefit from adaptive nonuniform meshes; 2) Certain machines perform poorly on such problems; 3) Parallel implementation may provide further performance improvement but is difficult. Some examples of problems which use irregular dynamical memory access include: 1) Heat transfer problem; 2) Heat source term; 3) Spectral element method; 4) Base functions; 5) Elemental discrete equations; 6) Global discrete equations. Nonconforming Mesh and Mortar Element Method are covered in greater detail in this presentation.

  18. Working memory for braille is shaped by experience.

    PubMed

    Cohen, Henri; Scherzer, Peter; Viau, Robert; Voss, Patrice; Lepore, Franco

    2011-03-01

    Tactile working memory was found to be more developed in completely blind (congenital and acquired) than in semi-sighted subjects, indicating that experience plays a crucial role in shaping working memory. A model of working memory, adapted from the classical model proposed by Baddeley and Hitch1 and Baddeley2 is presented where the connection strengths of a highly cross-modal network are altered through experience.

  19. HTMT-class Latency Tolerant Parallel Architecture for Petaflops Scale Computation

    NASA Technical Reports Server (NTRS)

    Sterling, Thomas; Bergman, Larry

    2000-01-01

    Computational Aero Sciences and other numeric intensive computation disciplines demand computing throughputs substantially greater than the Teraflops scale systems only now becoming available. The related fields of fluids, structures, thermal, combustion, and dynamic controls are among the interdisciplinary areas that in combination with sufficient resolution and advanced adaptive techniques may force performance requirements towards Petaflops. This will be especially true for compute intensive models such as Navier-Stokes are or when such system models are only part of a larger design optimization computation involving many design points. Yet recent experience with conventional MPP configurations comprising commodity processing and memory components has shown that larger scale frequently results in higher programming difficulty and lower system efficiency. While important advances in system software and algorithms techniques have had some impact on efficiency and programmability for certain classes of problems, in general it is unlikely that software alone will resolve the challenges to higher scalability. As in the past, future generations of high-end computers may require a combination of hardware architecture and system software advances to enable efficient operation at a Petaflops level. The NASA led HTMT project has engaged the talents of a broad interdisciplinary team to develop a new strategy in high-end system architecture to deliver petaflops scale computing in the 2004/5 timeframe. The Hybrid-Technology, MultiThreaded parallel computer architecture incorporates several advanced technologies in combination with an innovative dynamic adaptive scheduling mechanism to provide unprecedented performance and efficiency within practical constraints of cost, complexity, and power consumption. The emerging superconductor Rapid Single Flux Quantum electronics can operate at 100 GHz (the record is 770 GHz) and one percent of the power required by convention semiconductor logic. Wave Division Multiplexing optical communications can approach a peak per fiber bandwidth of 1 Tbps and the new Data Vortex network topology employing this technology can connect tens of thousands of ports providing a bi-section bandwidth on the order of a Petabyte per second with latencies well below 100 nanoseconds, even under heavy loads. Processor-in-Memory (PIM) technology combines logic and memory on the same chip exposing the internal bandwidth of the memory row buffers at low latency. And holographic storage photorefractive storage technologies provide high-density memory with access a thousand times faster than conventional disk technologies. Together these technologies enable a new class of shared memory system architecture with a peak performance in the range of a Petaflops but size and power requirements comparable to today's largest Teraflops scale systems. To achieve high-sustained performance, HTMT combines an advanced multithreading processor architecture with a memory-driven coarse-grained latency management strategy called "percolation", yielding high efficiency while reducing the much of the parallel programming burden. This paper will present the basic system architecture characteristics made possible through this series of advanced technologies and then give a detailed description of the new percolation approach to runtime latency management.

  20. Are animacy effects in episodic memory independent of encoding instructions?

    PubMed

    Gelin, Margaux; Bugaiska, Aurélia; Méot, Alain; Bonin, Patrick

    2017-01-01

    The adaptive view of human memory [Nairne, J. S. 2010. Adaptive memory: Evolutionary constraints on remembering. In B. H. Ross (Ed.), The psychology of learning and motivation (Vol. 53 pp. 1-32). Burlington: Academic Press; Nairne, J. S., & Pandeirada, J. N. S. 2010a. Adaptive memory: Ancestral priorities and the mnemonic value of survival processing. Cognitive Psychology, 61, 1-22, 2010b; Memory functions. In The Corsini encyclopedia of psychology and behavioral science, (Vol 3, 4th ed. pp. 977-979). Hokoben, NJ: John Wiley & Sons] assumes that animates (e.g., baby, rabbit presented as words or pictures) are better remembered than inanimates (e.g., bottle, mountain) because animates are more important for fitness than inanimates. In four studies, we investigated whether the animacy effect in episodic memory (i.e., the better remembering of animates over inanimates) is independent of encoding instructions. Using both a factorial (Studies 1 and 3) and a multiple regression approach (Study 2), three studies tested whether certain contexts drive people to attend to inanimate more than to animate things (or the reverse), and therefore lead to differential animacy effects. The findings showed that animacy effects on recall performance were observed in the grassland-survival scenario used by Nairne, Thompson, and Pandeirada (2007. Adaptive memory: Survival processing enhances retention. Journal of Experimental Psychology: Learning, Memory, & Cognition, 33, 263-273) (Studies 1-3), when words were rated for their pleasantness (Study 2), and in explicit learning (Study 3). In the non-survival scenario of moving to a foreign land (Studies 1-2), animacy effects on recall rates were not reliable in Study 1, but were significant in Study 2, whereas these effects were reliable in the non-survival scenario of planning a trip as a tour guide (Study 3). A final (control) study (Study 4) was conducted to test specifically whether animacy effects are related to the more organised nature of animates than inanimates. Overall, the findings suggest that animacy effects are robust since they do not vary across different sets of encoding instructions (e.g., encoding for survival, preparing a trip and pleasantness).

  1. Smart Plants: Memory and Communication without Brains.

    PubMed

    Carl Leopold, A

    2014-08-08

    The immobility of plants is consistent with their principal function: collecting light to provide photosynthetic substrate for the biological system. Their immobility does impose limitations on some basic requirements, such as the need for pollination, for seed dispersal, and for protection against herbivores. Meeting these three needs will logically necessitate some ability for plant communication - at least a capability for beneficial adaptive behavior. Three types of plant behavior provide evidence of memory and communication abilities: a capability for memory, a capability for measuring time, and extensive evidence of chemical signaling systems. These may provide benefits for genetic outcrossing, seed dispersal and protection - beneficial adaptive behaviors. The chemical signaling system constitutes a wireless communication network that draws mobile animals into assisting plant functions that require mobility. Plants share their chemical signaling systems most frequently with insects and birds. These beneficial adaptable behaviors may be interpreted as some type of consciousness.

  2. Smart plants: memory and communication without brains.

    PubMed

    Leopold, A Carl

    2014-01-01

    The immobility of plants is consistent with their principal function: collecting light to provide photosynthetic substrate for the biological system. Their immobility does impose limitations on some basic requirements, such as the need for pollination, for seed dispersal, and for protection against herbivores. Meeting these 3 needs will logically necessitate some ability for plant communication - at least a capability for beneficial adaptive behavior. Three types of plant behavior provide evidence of memory and communication abilities: a capability for memory, a capability for measuring time, and extensive evidence of chemical signaling systems. These may provide benefits for genetic outcrossing, seed dispersal and protection - beneficial adaptive behaviors. The chemical signaling system constitutes a wireless communication network that draws mobile animals into assisting plant functions that require mobility. Plants share their chemical signaling systems most frequently with insects and birds. These beneficial adaptable behaviors may be interpreted as some type of consciousness.

  3. Finite Element Analysis of Adaptive-Stiffening and Shape-Control SMA Hybrid Composites

    NASA Technical Reports Server (NTRS)

    Gao, Xiujie; Burton, Deborah; Turner, Travis L.; Brinson, Catherine

    2005-01-01

    Shape memory alloy hybrid composites with adaptive-stiffening or morphing functions are simulated using finite element analysis. The composite structure is a laminated fiber-polymer composite beam with embedded SMA ribbons at various positions with respect to the neutral axis of the beam. Adaptive stiffening or morphing is activated via selective resistance heating of the SMA ribbons or uniform thermal loads on the beam. The thermomechanical behavior of these composites was simulated in ABAQUS using user-defined SMA elements. The examples demonstrate the usefulness of the methods for the design and simulation of SMA hybrid composites. Keywords: shape memory alloys, Nitinol, ABAQUS, finite element analysis, post-buckling control, shape control, deflection control, adaptive stiffening, morphing, constitutive modeling, user element

  4. Programming distributed memory architectures using Kali

    NASA Technical Reports Server (NTRS)

    Mehrotra, Piyush; Vanrosendale, John

    1990-01-01

    Programming nonshared memory systems is more difficult than programming shared memory systems, in part because of the relatively low level of current programming environments for such machines. A new programming environment is presented, Kali, which provides a global name space and allows direct access to remote data values. In order to retain efficiency, Kali provides a system on annotations, allowing the user to control those aspects of the program critical to performance, such as data distribution and load balancing. The primitives and constructs provided by the language is described, and some of the issues raised in translating a Kali program for execution on distributed memory systems are also discussed.

  5. Initial Feasibility and Validity of a Prospective Memory Training Program in a Substance Use Treatment Population

    PubMed Central

    Sweeney, Mary M.; Rass, Olga; Johnson, Patrick S.; Strain, Eric C.; Berry, Meredith S.; Vo, Hoa T.; Fishman, Marc J.; Munro, Cynthia A.; Rebok, George W.; Mintzer, Miriam Z.; Johnson, Matthew W.

    2016-01-01

    Individuals with substance use disorders have shown deficits in the ability to implement future intentions, called prospective memory. Deficits in prospective memory and working memory, a critical underlying component of prospective memory, likely contribute to substance use treatment failures. Thus, improvement of prospective memory and working memory in substance use patients is an innovative target for intervention. We sought to develop a feasible and valid prospective memory training program that incorporates working memory training and may serve as a useful adjunct to substance use disorder treatment. We administered a single session of the novel prospective memory and working memory training program to participants (n = 22; 13 male; 9 female) enrolled in outpatient substance use disorder treatment and correlated performance to existing measures of prospective memory and working memory. Generally accurate prospective memory performance in a single session suggests feasibility in a substance use treatment population. However, training difficulty should be increased to avoid ceiling effects across repeated sessions. Consistent with existing literature, we observed superior performance on event-based relative to time-based prospective memory tasks. Performance on the prospective memory and working memory training components correlated with validated assessments of prospective memory and working memory, respectively. Correlations between novel memory training program performance and established measures suggest that our training engages appropriate cognitive processes. Further, differential event- and time-based prospective memory task performance suggests internal validity of our training. These data support development of this intervention as an adjunctive therapy for substance use disorders. PMID:27690506

  6. Initial feasibility and validity of a prospective memory training program in a substance use treatment population.

    PubMed

    Sweeney, Mary M; Rass, Olga; Johnson, Patrick S; Strain, Eric C; Berry, Meredith S; Vo, Hoa T; Fishman, Marc J; Munro, Cynthia A; Rebok, George W; Mintzer, Miriam Z; Johnson, Matthew W

    2016-10-01

    Individuals with substance use disorders have shown deficits in the ability to implement future intentions, called prospective memory. Deficits in prospective memory and working memory, a critical underlying component of prospective memory, likely contribute to substance use treatment failures. Thus, improvement of prospective memory and working memory in substance use patients is an innovative target for intervention. We sought to develop a feasible and valid prospective memory training program that incorporates working memory training and may serve as a useful adjunct to substance use disorder treatment. We administered a single session of the novel prospective memory and working memory training program to participants (n = 22; 13 men, 9 women) enrolled in outpatient substance use disorder treatment and correlated performance to existing measures of prospective memory and working memory. Generally accurate prospective memory performance in a single session suggests feasibility in a substance use treatment population. However, training difficulty should be increased to avoid ceiling effects across repeated sessions. Consistent with existing literature, we observed superior performance on event-based relative to time-based prospective memory tasks. Performance on the prospective memory and working memory training components correlated with validated assessments of prospective memory and working memory, respectively. Correlations between novel memory training program performance and established measures suggest that our training engages appropriate cognitive processes. Further, differential event- and time-based prospective memory task performance suggests internal validity of our training. These data support the development of this intervention as an adjunctive therapy for substance use disorders. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  7. NASCRIN - NUMERICAL ANALYSIS OF SCRAMJET INLET

    NASA Technical Reports Server (NTRS)

    Kumar, A.

    1994-01-01

    The NASCRIN program was developed for analyzing two-dimensional flow fields in supersonic combustion ramjet (scramjet) inlets. NASCRIN solves the two-dimensional Euler or Navier-Stokes equations in conservative form by an unsplit, explicit, two-step finite-difference method. A more recent explicit-implicit, two-step scheme has also been incorporated in the code for viscous flow analysis. An algebraic, two-layer eddy-viscosity model is used for the turbulent flow calculations. NASCRIN can analyze both inviscid and viscous flows with no struts, one strut, or multiple struts embedded in the flow field. NASCRIN can be used in a quasi-three-dimensional sense for some scramjet inlets under certain simplifying assumptions. Although developed for supersonic internal flow, NASCRIN may be adapted to a variety of other flow problems. In particular, it should be readily adaptable to subsonic inflow with supersonic outflow, supersonic inflow with subsonic outflow, or fully subsonic flow. The NASCRIN program is available for batch execution on the CDC CYBER 203. The vectorized FORTRAN version was developed in 1983. NASCRIN has a central memory requirement of approximately 300K words for a grid size of about 3,000 points.

  8. Supporting shared data structures on distributed memory architectures

    NASA Technical Reports Server (NTRS)

    Koelbel, Charles; Mehrotra, Piyush; Vanrosendale, John

    1990-01-01

    Programming nonshared memory systems is more difficult than programming shared memory systems, since there is no support for shared data structures. Current programming languages for distributed memory architectures force the user to decompose all data structures into separate pieces, with each piece owned by one of the processors in the machine, and with all communication explicitly specified by low-level message-passing primitives. A new programming environment is presented for distributed memory architectures, providing a global name space and allowing direct access to remote parts of data values. The analysis and program transformations required to implement this environment are described, and the efficiency of the resulting code on the NCUBE/7 and IPSC/2 hypercubes are described.

  9. Role of cerebellar cortical protein synthesis in transfer of memory trace of cerebellum-dependent motor learning.

    PubMed

    Okamoto, Takehito; Endo, Shogo; Shirao, Tomoaki; Nagao, Soichi

    2011-06-15

    We developed a new protocol that induces long-term adaptation of horizontal optokinetic response (HOKR) eye movement by hours of spaced training and examined the role of protein synthesis in the cerebellar cortex in the formation of memory of adaptation. Mice were trained to view 800 cycles of screen oscillation either by 1 h of massed training or by 2.5 h to 8 d of training with 0.5 h to 1 d space intervals. The HOKR gains increased similarly by 20-30% at the end of training; however, the gains increased by 1 h of massed training recovered within 24 h, whereas the gains increased by spaced training were sustained over 24 h. Bilateral floccular lidocaine microinfusions immediately after the end of training recovered the gains increased by 1 h of massed training but did not affect the gains increased by 4 h of spaced training, suggesting that the memory trace of adaptation was transferred from the flocculus to the vestibular nuclei within 4 h of spaced training. Blockade of floccular protein synthesis, examined by bilateral floccular microinfusions of anisomycin or actinomycin D 1-4 h before the training, impaired the gains increased by 4 h of spaced training but did not affect the gains increased by 1 h of massed training. These findings suggest that the transfer of the memory trace of adaptation occurs within 4 h of spaced training, and proteins synthesized in the flocculus during training period may play an important role in memory transfer.

  10. The C. elegans CSR-1 argonaute pathway counteracts epigenetic silencing to promote germline gene expression.

    PubMed

    Seth, Meetu; Shirayama, Masaki; Gu, Weifeng; Ishidate, Takao; Conte, Darryl; Mello, Craig C

    2013-12-23

    Organisms can develop adaptive sequence-specific immunity by reexpressing pathogen-specific small RNAs that guide gene silencing. For example, the C. elegans PIWI-Argonaute/piwi-interacting RNA (piRNA) pathway recruits RNA-dependent RNA polymerase (RdRP) to foreign sequences to amplify a transgenerational small-RNA-induced epigenetic silencing signal (termed RNAe). Here, we provide evidence that, in addition to an adaptive memory of silenced sequences, C. elegans can also develop an opposing adaptive memory of expressed/self-mRNAs. We refer to this mechanism, which can prevent or reverse RNAe, as RNA-induced epigenetic gene activation (RNAa). We show that CSR-1, which engages RdRP-amplified small RNAs complementary to germline-expressed mRNAs, is required for RNAa. We show that a transgene with RNAa activity also exhibits accumulation of cognate CSR-1 small RNAs. Our findings suggest that C. elegans adaptively acquires and maintains a transgenerational CSR-1 memory that recognizes and protects self-mRNAs, allowing piRNAs to recognize foreign sequences innately, without the need for prior exposure

  11. The C. elegans CSR-1 Argonaute pathway counteracts epigenetic silencing to promote germline gene expression

    PubMed Central

    Seth, Meetu; Shirayama, Masaki; Gu, Weifeng; Ishidate, Takao; Conte, Darryl; Mello, Craig C.

    2014-01-01

    SUMMARY Organisms can develop adaptive sequence-specific immunity by re-expressing pathogen-specific small RNAs that guide gene silencing. For example, the C. elegans PIWI-Argonaute/piRNA pathway recruits RNA-dependent RNA polymerase RdRP to foreign sequences to amplify a trans-generational small RNA-induced epigenetic silencing signal (termed RNAe). Here we provide evidence that in addition to an adaptive memory of silenced sequences, C. elegans can also develop an opposing adaptive memory of expressed/self mRNAs. We refer to this mechanism, which can prevent or reverse RNAe as RNA-induced epigenetic gene activation (RNAa). We show that CSR-1, which engages RdRP-amplified small RNAs complementary to germline-expressed mRNAs, is required for RNAa. We show that a transgene with RNAa activity also exhibits accumulation of cognate CSR-1 small RNAs. Our findings suggest that C. elegans adaptively acquires and maintains a trans-generational CSR-1 memory that recognizes and protects self mRNAs, allowing piRNAs to recognize foreign sequences innately, without need for prior exposure. PMID:24360782

  12. Planning Coverage Campaigns for Mission Design and Analysis: CLASP for DESDynl

    NASA Technical Reports Server (NTRS)

    Knight, Russell L.; McLaren, David A.; Hu, Steven

    2013-01-01

    Mission design and analysis presents challenges in that almost all variables are in constant flux, yet the goal is to achieve an acceptable level of performance against a concept of operations, which might also be in flux. To increase responsiveness, automated planning tools are used that allow for the continual modification of spacecraft, ground system, staffing, and concept of operations, while returning metrics that are important to mission evaluation, such as area covered, peak memory usage, and peak data throughput. This approach was applied to the DESDynl mission design using the CLASP planning system, but since this adaptation, many techniques have changed under the hood for CLASP, and the DESDynl mission concept has undergone drastic changes. The software produces mission evaluation products, such as memory highwater marks, coverage percentages, given a mission design in the form of coverage targets, concept of operations, spacecraft parameters, and orbital parameters. It tries to overcome the lack of fidelity and timeliness of mission requirements coverage analysis during mission design. Previous techniques primarily use Excel in ad hoc fashion to approximate key factors in mission performance, often falling victim to overgeneralizations necessary in such an adaptation. The new program allows designers to faithfully represent their mission designs quickly, and get more accurate results just as quickly.

  13. Perinatal programming of emotional brain circuits: an integrative view from systems to molecules

    PubMed Central

    Bock, Jörg; Rether, Kathy; Gröger, Nicole; Xie, Lan; Braun, Katharina

    2014-01-01

    Environmental influences such as perinatal stress have been shown to program the developing organism to adapt brain and behavioral functions to cope with daily life challenges. Evidence is now accumulating that the specific and individual effects of early life adversity on the functional development of brain and behavior emerge as a function of the type, intensity, timing and the duration of the adverse environment, and that early life stress (ELS) is a major risk factor for developing behavioral dysfunctions and mental disorders. Results from clinical as well as experimental studies in animal models support the hypothesis that ELS can induce functional “scars” in prefrontal and limbic brain areas, regions that are essential for emotional control, learning and memory functions. On the other hand, the concept of “stress inoculation” is emerging from more recent research, which revealed positive functional adaptations in response to ELS resulting in resilience against stress and other adversities later in life. Moreover, recent studies indicate that early life experiences and the resulting behavioral consequences can be transmitted to the next generation, leading to a transgenerational cycle of adverse or positive adaptations of brain function and behavior. In this review we propose a unifying view of stress vulnerability and resilience by connecting genetic predisposition and programming sensitivity to the context of experience-expectancy and transgenerational epigenetic traits. The adaptive maturation of stress responsive neural and endocrine systems requires environmental challenges to optimize their functions. Repeated environmental challenges can be viewed within the framework of the match/mismatch hypothesis, the outcome, psychopathology or resilience, depends on the respective predisposition and on the context later in life. PMID:24550772

  14. Retrieval Constraints on the Front End Create Differences in Recollection on a Subsequent Test

    ERIC Educational Resources Information Center

    Marsh, Richard L.; Meeks, J. Thadeus; Cook, Gabriel I.; Clark-Foos, Arlo; Hicks, Jason L.; Brewer, Gene A.

    2009-01-01

    Four experiments were conducted to investigate how the cognitive control of memory retrieval selects particular qualitative characteristics as a consequence of instantiating a retrieval mode for recognition memory. Adapting the memory for foils paradigm from Jacoby, Shimizu, Daniels, and Rhodes (Jacoby, L. L., Shimizu, Y., Daniels, K. A., &…

  15. The Memory Mosaic Project and Presentation

    ERIC Educational Resources Information Center

    Smith, Cynthia Duquette

    2015-01-01

    This article describes a unit-length project involving students in the analysis of how public memory is shaped by multiple factors and functions persuasively to influence one's understanding of historical events. This project was designed for an upper-division undergraduate course in Rhetoric and Public Memory, but could be adapted for use in…

  16. Memory recall and spike-frequency adaptation

    NASA Astrophysics Data System (ADS)

    Roach, James P.; Sander, Leonard M.; Zochowski, Michal R.

    2016-05-01

    The brain can reproduce memories from partial data; this ability is critical for memory recall. The process of memory recall has been studied using autoassociative networks such as the Hopfield model. This kind of model reliably converges to stored patterns that contain the memory. However, it is unclear how the behavior is controlled by the brain so that after convergence to one configuration, it can proceed with recognition of another one. In the Hopfield model, this happens only through unrealistic changes of an effective global temperature that destabilizes all stored configurations. Here we show that spike-frequency adaptation (SFA), a common mechanism affecting neuron activation in the brain, can provide state-dependent control of pattern retrieval. We demonstrate this in a Hopfield network modified to include SFA, and also in a model network of biophysical neurons. In both cases, SFA allows for selective stabilization of attractors with different basins of attraction, and also for temporal dynamics of attractor switching that is not possible in standard autoassociative schemes. The dynamics of our models give a plausible account of different sorts of memory retrieval.

  17. Adaptive memory: enhanced location memory after survival processing.

    PubMed

    Nairne, James S; Vanarsdall, Joshua E; Pandeirada, Josefa N S; Blunt, Janell R

    2012-03-01

    Two experiments investigated whether survival processing enhances memory for location. From an adaptive perspective, remembering that food has been located in a particular area, or that potential predators are likely to be found in a given territory, should increase the chances of subsequent survival. Participants were shown pictures of food or animals located at various positions on a computer screen. The task was to rate the ease of collecting the food or capturing the animals relative to a central fixation point. Surprise retention tests revealed that people remembered the locations of the items better when the collection or capturing task was described as relevant to survival. These data extend the generality of survival processing advantages to a new domain (location memory) by means of a task that does not involve rating the relevance of words to a scenario. 2012 APA, all rights reserved

  18. Cognitive training with casual video games: points to consider

    PubMed Central

    Baniqued, Pauline L.; Kranz, Michael B.; Voss, Michelle W.; Lee, Hyunkyu; Cosman, Joshua D.; Severson, Joan; Kramer, Arthur F.

    2014-01-01

    Brain training programs have proliferated in recent years, with claims that video games or computer-based tasks can broadly enhance cognitive function. However, benefits are commonly seen only in trained tasks. Assessing generalized improvement and practicality of laboratory exercises complicates interpretation and application of findings. In this study, we addressed these issues by using active control groups, training tasks that more closely resemble real-world demands and multiple tests to determine transfer of training. We examined whether casual video games can broadly improve cognition, and selected training games from a study of the relationship between game performance and cognitive abilities. A total of 209 young adults were randomized into a working memory–reasoning group, an adaptive working memory–reasoning group, an active control game group, and a no-contact control group. Before and after 15 h of training, participants completed tests of reasoning, working memory, attention, episodic memory, perceptual speed, and self-report measures of executive function, game experience, perceived improvement, knowledge of brain training research, and game play outside the laboratory. Participants improved on the training games, but transfer to untrained tasks was limited. No group showed gains in reasoning, working memory, episodic memory, or perceptual speed, but the working memory–reasoning groups improved in divided attention, with better performance in an attention-demanding game, a decreased attentional blink and smaller trail-making costs. Perceived improvements did not differ across training groups and those with low reasoning ability at baseline showed larger gains. Although there are important caveats, our study sheds light on the mixed effects in the training and transfer literature and offers a novel and potentially practical training approach. Still, more research is needed to determine the real-world benefits of computer programs such as casual games. PMID:24432009

  19. Adaptability and reproducibility of a memory disruption rTMS protocol in the PharmaCog IMI European project.

    PubMed

    Martin-Trias, Pablo; Lanteaume, Laura; Solana, Elisabeth; Cassé-Perrot, Catherine; Fernández-Cabello, Sara; Babiloni, Claudio; Marzano, Nicola; Junqué, Carme; Rossini, Paolo Maria; Micallef, Joëlle; Truillet, Romain; Charles, Estelle; Jouve, Elisabeth; Bordet, Régis; Santamaria, Joan; Jovicich, Jorge; Rossi, Simone; Pascual-Leone, Alvaro; Blin, Olivier; Richardson, Jill; Bartrés-Faz, David

    2018-06-19

    Transcranial magnetic stimulation (TMS) can interfere with cognitive processes, such as transiently impairing memory. As part of a multi-center European project, we investigated the adaptability and reproducibility of a previously published TMS memory interfering protocol in two centers using EEG or fMRI scenarios. Participants were invited to attend three experimental sessions on different days, with sham repetitive TMS (rTMS) applied on day 1 and real rTMS on days 2 and 3. Sixty-eight healthy young men were included. On each experimental day, volunteers were instructed to remember visual pictures while receiving neuronavigated rTMS trains (20 Hz, 900 ms) during picture encoding at the left dorsolateral prefrontal cortex (L-DLPFC) and the vertex. Mixed ANOVA model analyses were performed. rTMS to the L-DLPFC significantly disrupted recognition memory on experimental day 2. No differences were found between centers or between fMRI and EEG recordings. Subjects with lower baseline memory performances were more susceptible to TMS disruption. No stability of TMS-induced memory interference could be demonstrated on day 3. Our data suggests that adapted cognitive rTMS protocols can be implemented in multi-center studies incorporating standardized experimental procedures. However, our center and modality effects analyses lacked sufficient statistical power, hence highlighting the need to conduct further studies with larger samples. In addition, inter and intra-subject variability in response to TMS might limit its application in crossover or longitudinal studies.

  20. Recognition Without Words: Using Taste to Explore Survival Processing

    PubMed Central

    Hallock, Henry L.; Garman, Heather D.; Cook, Shaun P.; Gallagher, Shawn P.

    2017-01-01

    Many educational demonstrations of memory and recall employ word lists and number strings; items that lend themselves to semantic organization and “chunking.” By applying taste recall to the adaptive memory paradigm, which evaluates memory from a survival-based evolutionary perspective, we have developed a simple, inexpensive exercise that defies mnemonic strategies. Most adaptive memory studies have evaluated recall of words encountered while imagining survival and non-survival scenarios. Here, we’ve left the lexical domain and hypothesized that taste memory, as measured by recognition, would be best when acquisition occurs under imagined threat of personal harm, namely poisoning. We tested participants individually while they evaluated eight teas in one of three conditions: in one, they evaluated the toxicity of the tea (survival condition), in a second, they considered the marketability of the tea and, in the third, they evaluated the bitterness of the tea. After a filler task, a surprise recognition task required the participants to taste and identify the eight original teas from a group of 16 that included eight novel teas. The survival condition led to better recognition than the bitterness condition but, surprisingly, it did not yield better recognition than the marketing condition. A second experiment employed a streamlined design more appropriate for classroom settings and failed to support the hypothesis that planning enhanced recognition in survival scenarios. This simple technique has, at least, revealed a robust levels-of-processing effect for taste recognition and invites students to consider the adaptive advantages of all forms of memory. PMID:28690433

  1. Decay of motor memories in the absence of error

    PubMed Central

    Vaswani, Pavan A.; Shadmehr, Reza

    2013-01-01

    When motor commands are accompanied by an unexpected outcome, the resulting error induces changes in subsequent commands. However, when errors are artificially eliminated, changes in motor commands are not sustained, but show decay. Why does the adaptation-induced change in motor output decay in the absence of error? A prominent idea is that decay reflects the stability of the memory. We show results that challenge this idea and instead suggest that motor output decays because the brain actively disengages a component of the memory. Humans adapted their reaching movements to a perturbation and were then introduced to a long period of trials in which errors were absent (error-clamp). We found that, in some subjects, motor output did not decay at the onset of the error-clamp block, but a few trials later. We manipulated the kinematics of movements in the error-clamp block and found that as movements became more similar to subjects’ natural movements in the perturbation block, the lag to decay onset became longer and eventually reached hundreds of trials. Furthermore, when there was decay in the motor output, the endpoint of decay was not zero, but a fraction of the motor memory that was last acquired. Therefore, adaptation to a perturbation installed two distinct kinds of memories: one that was disengaged when the brain detected a change in the task, and one that persisted despite it. Motor memories showed little decay in the absence of error if the brain was prevented from detecting a change in task conditions. PMID:23637163

  2. Research about Memory Detection Based on the Embedded Platform

    NASA Astrophysics Data System (ADS)

    Sun, Hao; Chu, Jian

    As is known to us all, the resources of memory detection of the embedded systems are very limited. Taking the Linux-based embedded arm as platform, this article puts forward two efficient memory detection technologies according to the characteristics of the embedded software. Especially for the programs which need specific libraries, the article puts forwards portable memory detection methods to help program designers to reduce human errors,improve programming quality and therefore make better use of the valuable embedded memory resource.

  3. Diversity in T cell memory: An embarrassment of riches

    PubMed Central

    Jameson, Stephen C.; Masopust, David

    2010-01-01

    The adaptive immune response meets the needs of the organism to generate effector cells capable of controlling pathogens, but also leads to production of memory cells, which mediate more effective protection during rechallenge. In this review we focus on the generation, maintenance and function of memory T cells, with a special emphasis on the increasing evidence for great diversity among functional memory T cell subsets. PMID:20064446

  4. Working memory for braille is shaped by experience

    PubMed Central

    Scherzer, Peter; Viau, Robert; Voss, Patrice; Lepore, Franco

    2011-01-01

    Tactile working memory was found to be more developed in completely blind (congenital and acquired) than in semi-sighted subjects, indicating that experience plays a crucial role in shaping working memory. A model of working memory, adapted from the classical model proposed by Baddeley and Hitch1 and Baddeley2 is presented where the connection strengths of a highly cross-modal network are altered through experience. PMID:21655448

  5. Working memory training in older adults: Bayesian evidence supporting the absence of transfer.

    PubMed

    Guye, Sabrina; von Bastian, Claudia C

    2017-12-01

    The question of whether working memory training leads to generalized improvements in untrained cognitive abilities is a longstanding and heatedly debated one. Previous research provides mostly ambiguous evidence regarding the presence or absence of transfer effects in older adults. Thus, to draw decisive conclusions regarding the effectiveness of working memory training interventions, methodologically sound studies with larger sample sizes are needed. In this study, we investigated whether or not a computer-based working memory training intervention induced near and far transfer in a large sample of 142 healthy older adults (65 to 80 years). Therefore, we randomly assigned participants to either the experimental group, which completed 25 sessions of adaptive, process-based working memory training, or to the active, adaptive visual search control group. Bayesian linear mixed-effects models were used to estimate performance improvements on the level of abilities, using multiple indicator tasks for near (working memory) and far transfer (fluid intelligence, shifting, and inhibition). Our data provided consistent evidence supporting the absence of near transfer to untrained working memory tasks and the absence of far transfer effects to all of the assessed abilities. Our results suggest that working memory training is not an effective way to improve general cognitive functioning in old age. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  6. The effects of velocity difference changes with memory on the dynamics characteristics and fuel economy of traffic flow

    NASA Astrophysics Data System (ADS)

    Yu, Shaowei; Zhao, Xiangmo; Xu, Zhigang; Zhang, Licheng

    2016-11-01

    To evaluate the effects of velocity difference changes with memory in the intelligent transportation environment on the dynamics and fuel consumptions of traffic flow, we first investigate the linkage between velocity difference changes with memory and car-following behaviors with the measured data in cities, and then propose an improved cooperative car-following model considering multiple velocity difference changes with memory in the cooperative adaptive cruise control strategy, finally carry out several numerical simulations under the periodic boundary condition and at signalized intersections to explore how velocity difference changes with memory affect car's velocity, velocity fluctuation, acceleration and fuel consumptions in the intelligent transportation environment. The results show that velocity difference changes with memory have obvious effects on car-following behaviors, that the improved cooperative car-following model can describe the phase transition of traffic flow and estimate the evolution of traffic congestion, that the stability and fuel economy of traffic flow simulated by the improved car-following model with velocity difference changes with memory is obviously superior to those without velocity difference changes, and that taking velocity difference changes with memory into account in designing the advanced adaptive cruise control strategy can significantly improve the stability and fuel economy of traffic flow.

  7. False memories from survival processing make better primes for problem-solving.

    PubMed

    Garner, Sarah R; Howe, Mark L

    2014-01-01

    Previous research has demonstrated that participants remember significantly more survival-related information and more information that is processed for its survival relevance. Recent research has also shown that survival materials and processing result in more false memories, ones that are adaptive inasmuch as they prime solutions to insight-based problems. Importantly, false memories for survival-related information facilitate problem solving more than false memories for other types of information. The present study explores this survival advantage using an incidental rather than intentional memory task. Here participants rated information either in the context of its importance to a survival-processing scenario or to moving to a new house. Following this, participants solved a number of compound remote associate tasks (CRATs), half of which had the solution primed by false memories that were generated during the processing task. Results showed that (a) CRATs were primed by false memories in this incidental task, with participants solving significantly more CRATs when primed than when unprimed, (b) this effect was greatest when participants rated items for survival than moving, and (c) processing items for a survival scenario improved overall problem-solving performance even when specific problems themselves were not primed. Results are discussed with regard to adaptive theories of memory.

  8. Generation of effector CD8+ T cells and their conversion to memory T cells

    PubMed Central

    Cui, Weiguo; Kaech, Susan M.

    2015-01-01

    Summary Immunological memory is a cardinal feature of adaptive immunity. We are now beginning to elucidate the mechanisms that govern the formation of memory T cells and their ability to acquire longevity, survive the effector-to-memory transition, and mature into multipotent, functional memory T cells that self-renew. Here, we discuss the recent findings in this area and highlight extrinsic and intrinsic factors that regulate the cellular fate of activated CD8+ T cells. PMID:20636815

  9. Neurogenesis-mediated forgetting minimizes proactive interference.

    PubMed

    Epp, Jonathan R; Silva Mera, Rudy; Köhler, Stefan; Josselyn, Sheena A; Frankland, Paul W

    2016-02-26

    Established memories may interfere with the encoding of new memories, particularly when existing and new memories overlap in content. By manipulating levels of hippocampal neurogenesis, here we show that neurogenesis regulates this form of proactive interference. Increasing hippocampal neurogenesis weakens existing memories and, in doing so, facilitates the encoding of new, conflicting (but not non-conflicting) information in mice. Conversely, decreasing neurogenesis stabilizes existing memories, and impedes the encoding of new, conflicting information. These results suggest that reduced proactive interference is an adaptive benefit of neurogenesis-induced forgetting.

  10. A class of designs for a sparse distributed memory

    NASA Technical Reports Server (NTRS)

    Jaeckel, Louis A.

    1989-01-01

    A general class of designs for a space distributed memory (SDM) is described. The author shows that Kanerva's original design and the selected-coordinate design are related, and that there is a series of possible intermediate designs between those two designs. In each such design, the set of addresses that activate a memory location is a sphere in the address space. We can also have hybrid designs, in which the memory locations may be a mixture of those found in the other designs. In some applications, the bits of the read and write addresses that will actually be used might be mostly zeros; that is, the addresses might lie on or near z hyperplane in the address space. The author describes a hyperplane design which is adapted to this situation and compares it to an adaptation of Kanerva's design. To study the performance of these designs, he computes the expected number of memory locations activated by both of two addresses.

  11. Footprints of the sun: memory of UV and light stress in plants

    PubMed Central

    Müller-Xing, Ralf; Xing, Qian; Goodrich, Justin

    2014-01-01

    Sunlight provides the necessary energy for plant growth via photosynthesis but high light and particular its integral ultraviolet (UV) part causes stress potentially leading to serious damage to DNA, proteins, and other cellular components. Plants show adaptation to environmental stresses, sometimes referred to as “plant memory.” There is growing evidence that plants memorize exposure to biotic or abiotic stresses through epigenetic mechanisms at the cellular level. UV target genes such as CHALCONE SYNTHASE (CHS) respond immediately to UV treatment and studies of the recently identified UV-B receptor UV RESISTANCE LOCUS 8 (UVR8) confirm the expedite nature of UV signaling. Considering these findings, an UV memory seems redundant. However, several lines of evidence suggest that plants may develop an epigenetic memory of UV and light stress, but in comparison to other abiotic stresses there has been relatively little investigation. Here we summarize the state of knowledge about acclimation and adaptation of plants to UV light and discuss the possibility of chromatin based epigenetic memory. PMID:25278950

  12. The evolutionary psychology of hunger.

    PubMed

    Al-Shawaf, Laith

    2016-10-01

    An evolutionary psychological perspective suggests that emotions can be understood as coordinating mechanisms whose job is to regulate various psychological and physiological programs in the service of solving an adaptive problem. This paper suggests that it may also be fruitful to approach hunger from this coordinating mechanism perspective. To this end, I put forward an evolutionary task analysis of hunger, generating novel a priori hypotheses about the coordinating effects of hunger on psychological processes such as perception, attention, categorization, and memory. This approach appears empirically fruitful in that it yields a bounty of testable new hypotheses. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Synchronizing Photography For High-Speed-Engine Research

    NASA Technical Reports Server (NTRS)

    Chun, K. S.

    1989-01-01

    Light flashes when shaft reaches predetermined angle. Synchronization system facilitates visualization of flow in high-speed internal-combustion engines. Designed for cinematography and holographic interferometry, system synchronizes camera and light source with predetermined rotational angle of engine shaft. 10-bit resolution of absolute optical shaft encoder adapted, and 2 to tenth power combinations of 10-bit binary data computed to corresponding angle values. Pre-computed angle values programmed into EPROM's (erasable programmable read-only memories) to use as angle lookup table. Resolves shaft angle to within 0.35 degree at rotational speeds up to 73,240 revolutions per minute.

  14. Study of the modifications needed for efficient operation of NASTRAN on the Control Data Corporation STAR-100 computer

    NASA Technical Reports Server (NTRS)

    1975-01-01

    NASA structural analysis (NASTRAN) computer program is operational on three series of third generation computers. The problem and difficulties involved in adapting NASTRAN to a fourth generation computer, namely, the Control Data STAR-100, are discussed. The salient features which distinguish Control Data STAR-100 from third generation computers are hardware vector processing capability and virtual memory. A feasible method is presented for transferring NASTRAN to Control Data STAR-100 system while retaining much of the machine-independent code. Basic matrix operations are noted for optimization for vector processing.

  15. Displaying Data As Movies

    NASA Technical Reports Server (NTRS)

    Moore, Judith G.

    1992-01-01

    NMSB Movie computer program displays large sets of data (more than million individual values). Presentation dynamic, rapidly displaying sequential image "frames" in main "movie" window. Any sequence of two-dimensional sets of data scaled between 0 and 255 (1-byte resolution) displayed as movie. Time- or slice-wise progression of data illustrated. Originally written to present data from three-dimensional ultrasonic scans of damaged aerospace composite materials, illustrates data acquired by thermal-analysis systems measuring rates of heating and cooling of various materials. Developed on Macintosh IIx computer with 8-bit color display adapter and 8 megabytes of memory using Symantec Corporation's Think C, version 4.0.

  16. Military Adaptation of Commercial Item (MACI) Program of Electrically Alterable Read Only Memory (EAROM).

    DTIC Science & Technology

    1980-04-01

    has been slow. 2810 Parts ordered from Nitron and NCR (NC7810 from Nitron ) have resulted in only a partial shipment from Nitron ( 40 of 225 parts...Supply Current (IDD) Read Mode 38 6-22 7053 Chip Select High Current (ICSH ) 39 6-23 7053 VDD Supply Current 40 (IDD) 6-24 7053 VCC Supply Current...Post Rad Schmoo No. 3 61 6-39 ER 3400 No. 4 +250C Post Rad Schmoo No. 4 62 6- 40 ER 3400 No. 4 +850C Post Radiation Test 63 6-41 3400 No. 4 +250C Post

  17. WE-D-204-00: Session in Memory of Franca Kuchnir: Excellence in Medical Physics Residency Education

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    Speakers in this session will present overview and details of a specific rotation or feature of their Medical Physics Residency Program that is particularly exceptional and noteworthy. The featured rotations include foundational topics executed with exceptional acumen and innovative educational rotations perhaps not commonly found in Medical Physics Residency Programs. A site-specific clinical rotation will be described, where the medical physics resident follows the physician and medical resident for two weeks into patient consultations, simulation sessions, target contouring sessions, planning meetings with dosimetry, patient follow up visits, and tumor boards, to gain insight into the thought processes of the radiationmore » oncologist. An incident learning rotation will be described where the residents learns about and practices evaluating clinical errors and investigates process improvements for the clinic. The residency environment at a Canadian medical physics residency program will be described, where the training and interactions with radiation oncology residents is integrated. And the first month rotation will be described, where the medical physics resident rotates through the clinical areas including simulation, dosimetry, and treatment units, gaining an overview of the clinical flow and meeting all the clinical staff to begin the residency program. This session will be of particular interest to residency programs who are interested in adopting or adapting these curricular ideas into their programs and to residency candidates who want to learn about programs already employing innovative practices. Learning Objectives: To learn about exceptional and innovative clinical rotations or program features within existing Medical Physics Residency Programs. To understand how to adopt/adapt innovative curricular designs into your own Medical Physics Residency Program, if appropriate.« less

  18. Whitmore, Henschke, and Hilaris: The reorientation of prostate brachytherapy (1970-1987).

    PubMed

    Aronowitz, Jesse N

    2012-01-01

    Urologists had performed prostate brachytherapy for decades before New York's Memorial Hospital retropubic program. This paper explores the contribution of Willet Whitmore, Ulrich Henschke, Basil Hilaris, and Memorial's physicists to the evolution of the procedure. Literature review and interviews with program participants. More than 1000 retropubic implants were performed at Memorial between 1970 and 1987. Unlike previous efforts, Memorial's program benefited from the participation of three disciplines in its conception and execution. Memorial's retropubic program was a collaboration of urologists, radiation therapists, and physicists. Their approach focused greater attention on dosimetry and radiation safety, and served as a template for subsequent prostate brachytherapy programs. Copyright © 2012 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.

  19. Flash Memory Reliability: Read, Program, and Erase Latency Versus Endurance Cycling

    NASA Technical Reports Server (NTRS)

    Heidecker, Jason

    2010-01-01

    This report documents the efforts and results of the fiscal year (FY) 2010 NASA Electronic Parts and Packaging Program (NEPP) task for nonvolatile memory (NVM) reliability. This year's focus was to measure latency (read, program, and erase) of NAND Flash memories and determine how these parameters drift with erase/program/read endurance cycling.

  20. Relation of Physical Activity to Memory Functioning in Older Adults: The Memory Workout Program.

    ERIC Educational Resources Information Center

    Rebok, George W.; Plude, Dana J.

    2001-01-01

    The Memory Workout, a CD-ROM program designed to help older adults increase changes in physical and cognitive activity influencing memory, was tested with 24 subjects. Results revealed a significant relationship between exercise time, exercise efficacy, and cognitive function, as well as interest in improving memory and physical activity.…

  1. CRISPR-Cas: Adapting to change.

    PubMed

    Jackson, Simon A; McKenzie, Rebecca E; Fagerlund, Robert D; Kieper, Sebastian N; Fineran, Peter C; Brouns, Stan J J

    2017-04-07

    Bacteria and archaea are engaged in a constant arms race to defend against the ever-present threats of viruses and invasion by mobile genetic elements. The most flexible weapons in the prokaryotic defense arsenal are the CRISPR-Cas adaptive immune systems. These systems are capable of selective identification and neutralization of foreign DNA and/or RNA. CRISPR-Cas systems rely on stored genetic memories to facilitate target recognition. Thus, to keep pace with a changing pool of hostile invaders, the CRISPR memory banks must be regularly updated with new information through a process termed CRISPR adaptation. In this Review, we outline the recent advances in our understanding of the molecular mechanisms governing CRISPR adaptation. Specifically, the conserved protein machinery Cas1-Cas2 is the cornerstone of adaptive immunity in a range of diverse CRISPR-Cas systems. Copyright © 2017, American Association for the Advancement of Science.

  2. Impact of Load Balancing on Unstructured Adaptive Grid Computations for Distributed-Memory Multiprocessors

    NASA Technical Reports Server (NTRS)

    Sohn, Andrew; Biswas, Rupak; Simon, Horst D.

    1996-01-01

    The computational requirements for an adaptive solution of unsteady problems change as the simulation progresses. This causes workload imbalance among processors on a parallel machine which, in turn, requires significant data movement at runtime. We present a new dynamic load-balancing framework, called JOVE, that balances the workload across all processors with a global view. Whenever the computational mesh is adapted, JOVE is activated to eliminate the load imbalance. JOVE has been implemented on an IBM SP2 distributed-memory machine in MPI for portability. Experimental results for two model meshes demonstrate that mesh adaption with load balancing gives more than a sixfold improvement over one without load balancing. We also show that JOVE gives a 24-fold speedup on 64 processors compared to sequential execution.

  3. The relative kicking frequency of infants born full-term and preterm during learning and short-term and long-term memory periods of the mobile paradigm.

    PubMed

    Heathcock, Jill C; Bhat, Anjana N; Lobo, Michele A; Galloway, James C

    2005-01-01

    Infants born preterm differ in their spontaneous kicking, as well as their learning and memory abilities in the mobile paradigm, compared with infants born full-term. In the mobile paradigm, a supine infant's ankle is tethered to a mobile so that leg kicks cause a proportional amount of mobile movement. The purpose of this study was to investigate the relative kicking frequency of the tethered (right) and nontethered (left) legs in these 2 groups of infants. Ten infants born full-term and 10 infants born preterm (<33 weeks gestational age, <2,500 g) and 10 comparison infants participated in the study. The relative kicking frequencies of the tethered and nontethered legs were analyzed during learning and short-term and long-term memory periods of the mobile paradigm. Infants born full-term showed an increase in the relative kicking frequency of the tethered leg during the learning period and the short-term memory period but not for the long-term memory period. Infants born preterm did not show a change in kicking pattern for learning or memory periods, and consistently kicked both legs in relatively equal amounts. Infants born full-term adapted their baseline kicking frequencies in a task-specific manner to move the mobile and then retained this adaptation for the short-term memory period. In contrast, infants born preterm showed no adaptation, suggesting a lack of purposeful leg control. This lack of control may reflect a general decrease in the ability of infants born preterm to use their limb movements to interact with their environment. As such, the mobile paradigm may be clinically useful in the early assessment and intervention of infants born preterm and at risk for future impairment.

  4. Adaptive Memory: Survival Processing Increases Both True and False Memory in Adults and Children

    ERIC Educational Resources Information Center

    Otgaar, Henry; Smeets, Tom

    2010-01-01

    Research has shown that processing information in a survival context can enhance the information's memorability. The current study examined whether survival processing can also decrease the susceptibility to false memories and whether the survival advantage can be found in children. In Experiment 1, adults rated semantically related words in a…

  5. Taking Working Memory Training from the Laboratory into Schools

    ERIC Educational Resources Information Center

    Holmes, Joni; Gathercole, Susan Elizabeth

    2014-01-01

    Working memory skills have been shown to be enhanced by adaptive training in several randomised controlled trials. Here, two field trials were conducted in which teachers administered working memory training to their own pupils in school. Twenty-two children aged 8-9?years participated in Trial 1. In Trial 2, 50 children aged 9-11?years with the…

  6. Memory Dynamics and Decision Making in Younger and Older Adults

    ERIC Educational Resources Information Center

    Lechuga, M. Teresa; Gomez-Ariza, Carlos J.; Iglesias-Parro, Sergio; Pelegrina, Santiago

    2012-01-01

    The main aim of this research was to study whether memory dynamics influence older people's choices to the same extent as younger's ones. To do so, we adapted the retrieval-practice paradigm to produce variations in memory accessibility of information on which decisions were made later. Based on previous results, we expected to observe…

  7. Shape memory polymer actuator and catheter

    DOEpatents

    Maitland, Duncan J.; Lee, Abraham P.; Schumann, Daniel L.; Matthews, Dennis L.; Decker, Derek E.; Jungreis, Charles A.

    2004-05-25

    An actuator system is provided for acting upon a material in a vessel. The system includes an optical fiber and a shape memory polymer material operatively connected to the optical fiber. The shape memory polymer material is adapted to move from a first shape for moving through said vessel to a second shape where it can act upon said material.

  8. Memory Activation and the Availability of Explanations in Sequential Diagnostic Reasoning

    ERIC Educational Resources Information Center

    Mehlhorn, Katja; Taatgen, Niels A.; Lebiere, Christian; Krems, Josef F.

    2011-01-01

    In the field of diagnostic reasoning, it has been argued that memory activation can provide the reasoner with a subset of possible explanations from memory that are highly adaptive for the task at hand. However, few studies have experimentally tested this assumption. Even less empirical and theoretical work has investigated how newly incoming…

  9. Shape memory polymer actuator and catheter

    DOEpatents

    Maitland, Duncan J.; Lee, Abraham P.; Schumann, Daniel L.; Matthews, Dennis L.; Decker, Derek E.; Jungreis, Charles A.

    2007-11-06

    An actuator system is provided for acting upon a material in a vessel. The system includes an optical fiber and a shape memory polymer material operatively connected to the optical fiber. The shape memory polymer material is adapted to move from a first shape for moving through said vessel to a second shape where it can act upon said material.

  10. A randomised controlled trial investigating the benefits of adaptive working memory training for working memory capacity and attentional control in high worriers.

    PubMed

    Hotton, Matthew; Derakshan, Nazanin; Fox, Elaine

    2018-01-01

    The process of worry has been associated with reductions in working memory capacity and availability of resources necessary for efficient attentional control. This, in turn, can lead to escalating worry. Recent investigations into working memory training have shown improvements in attentional control and cognitive performance in high trait-anxious individuals and individuals with sub-clinical depression. The current randomised controlled trial investigated the effects of 15 days of adaptive n-back working memory training, or an active control task, on working memory capacity, attentional control and worry in a sample of high worriers. Pre-training, post-training and one-month follow-up measures of working memory capacity were assessed using a Change Detection task, while a Flanker task was used to assess attentional control. A breathing focus task was used as a behavioural measure of worry in addition to a number of self-report assessments of worry and anxiety. Overall there was no difference between the active training and the active control condition with both groups demonstrating similar improvements in working memory capacity and worry, post-training and at follow-up. However, training-related improvements on the n-back task were associated with gains in working memory capacity and reductions in worry symptoms in the active training condition. These results highlight the need for further research investigating the role of individual differences in working memory training. Copyright © 2017. Published by Elsevier Ltd.

  11. High-throughput olfactory conditioning and memory retention test show variation in Nasonia parasitic wasps

    PubMed Central

    Hoedjes, K M; Steidle, J L M; Werren, J H; Vet, L E M; Smid, H M

    2012-01-01

    Most of our knowledge on learning and memory formation results from extensive studies on a small number of animal species. Although features and cellular pathways of learning and memory are highly similar in this diverse group of species, there are also subtle differences. Closely related species of parasitic wasps display substantial variation in memory dynamics and can be instrumental to understanding both the adaptive benefit of and mechanisms underlying this variation. Parasitic wasps of the genus Nasonia offer excellent opportunities for multidisciplinary research on this topic. Genetic and genomic resources available for Nasonia are unrivaled among parasitic wasps, providing tools for genetic dissection of mechanisms that cause differences in learning. This study presents a robust, high-throughput method for olfactory conditioning of Nasonia using a host encounter as reward. A T-maze olfactometer facilitates high-throughput memory retention testing and employs standardized odors of equal detectability, as quantified by electroantennogram recordings. Using this setup, differences in memory retention between Nasonia species were shown. In both Nasonia vitripennis and Nasonia longicornis, memory was observed up to at least 5 days after a single conditioning trial, whereas Nasonia giraulti lost its memory after 2 days. This difference in learning may be an adaptation to species-specific differences in ecological factors, for example, host preference. The high-throughput methods for conditioning and memory retention testing are essential tools to study both ultimate and proximate factors that cause variation in learning and memory formation in Nasonia and other parasitic wasp species. PMID:22804968

  12. DANoC: An Efficient Algorithm and Hardware Codesign of Deep Neural Networks on Chip.

    PubMed

    Zhou, Xichuan; Li, Shengli; Tang, Fang; Hu, Shengdong; Lin, Zhi; Zhang, Lei

    2017-07-18

    Deep neural networks (NNs) are the state-of-the-art models for understanding the content of images and videos. However, implementing deep NNs in embedded systems is a challenging task, e.g., a typical deep belief network could exhaust gigabytes of memory and result in bandwidth and computational bottlenecks. To address this challenge, this paper presents an algorithm and hardware codesign for efficient deep neural computation. A hardware-oriented deep learning algorithm, named the deep adaptive network, is proposed to explore the sparsity of neural connections. By adaptively removing the majority of neural connections and robustly representing the reserved connections using binary integers, the proposed algorithm could save up to 99.9% memory utility and computational resources without undermining classification accuracy. An efficient sparse-mapping-memory-based hardware architecture is proposed to fully take advantage of the algorithmic optimization. Different from traditional Von Neumann architecture, the deep-adaptive network on chip (DANoC) brings communication and computation in close proximity to avoid power-hungry parameter transfers between on-board memory and on-chip computational units. Experiments over different image classification benchmarks show that the DANoC system achieves competitively high accuracy and efficiency comparing with the state-of-the-art approaches.

  13. System for simultaneously loading program to master computer memory devices and corresponding slave computer memory devices

    NASA Technical Reports Server (NTRS)

    Hall, William A. (Inventor)

    1993-01-01

    A bus programmable slave module card for use in a computer control system is disclosed which comprises a master computer and one or more slave computer modules interfacing by means of a bus. Each slave module includes its own microprocessor, memory, and control program for acting as a single loop controller. The slave card includes a plurality of memory means (S1, S2...) corresponding to a like plurality of memory devices (C1, C2...) in the master computer, for each slave memory means its own communication lines connectable through the bus with memory communication lines of an associated memory device in the master computer, and a one-way electronic door which is switchable to either a closed condition or a one-way open condition. With the door closed, communication lines between master computer memory (C1, C2...) and slave memory (S1, S2...) are blocked. In the one-way open condition invention, the memory communication lines or each slave memory means (S1, S2...) connect with the memory communication lines of its associated memory device (C1, C2...) in the master computer, and the memory devices (C1, C2...) of the master computer and slave card are electrically parallel such that information seen by the master's memory is also seen by the slave's memory. The slave card is also connectable to a switch for electronically removing the slave microprocessor from the system. With the master computer and the slave card in programming mode relationship, and the slave microprocessor electronically removed from the system, loading a program in the memory devices (C1, C2...) of the master accomplishes a parallel loading into the memory devices (S1, S2...) of the slave.

  14. Mobile phones as a new memory aid: a preliminary investigation using case studies.

    PubMed

    Wade, T K; Troy, J C

    2001-04-01

    Memory impairment is one of the most common concerns following a brain injury of any severity. The use of effective external memory aids can help minimize the devastating effects such memory impairment can have on an individual's everyday life. Reviewed in this report are case studies of five individuals suffering significant everyday memory problems that were given a new memory aid that utilizes standard mobile phones. Measurements included diary-format observations and qualitative feedback. The results of the study show promising outcomes for all of the cases, and have led to recent adaptations to allow for wider and more effective use of this memory aid.

  15. Emotional power of music in patients with memory disorders: clinical implications of cognitive neuroscience.

    PubMed

    Samson, Séverine; Dellacherie, Delphine; Platel, Hervé

    2009-07-01

    By adapting methods of cognitive psychology to neuropsychology, we examined memory and familiarity abilities in music in relation to emotion. First we present data illustrating how the emotional content of stimuli influences memory for music. Second, we discuss recent findings obtained in patients with two different brain disorders (medically intractable epilepsy and Alzheimer's disease) that show relatively spared memory performance for music, despite severe verbal memory disorders. Studies on musical memory and its relation to emotion open up paths for new strategies in cognitive rehabilitation and reinstate the importance of examining interactions between cognitive and clinical neurosciences.

  16. Memories as Useful Outcomes of Residential Outdoor Environmental Education

    ERIC Educational Resources Information Center

    Liddicoat, Kendra R.; Krasny, Marianne E.

    2014-01-01

    Residential outdoor environmental education (ROEE) programs for youth have been shown to yield lasting autobiographical episodic memories. This article explores how past program participants have used such memories, and draws on the memory psychology literature to offer a new perspective on the long-term impacts of environmental education.…

  17. Spermidine boosts autophagy to protect from synapse aging.

    PubMed

    Bhukel, Anuradha; Madeo, Frank; Sigrist, Stephan J

    2017-02-01

    All animals form memories to adapt their behavior in a context-dependent manner. With increasing age, however, forming new memories becomes less efficient. While synaptic plasticity promotes memory formation, the etiology of age-induced memory formation remained enigmatic. Previous work showed that simple feeding of polyamine spermidine protects from age-induced memory impairment in Drosophila. Most recent work now shows that spermidine operates directly at synapses, allowing for an autophagy-dependent homeostatic regulation of presynaptic specializations. How exactly autophagic regulations intersect with synaptic plasticity should be an interesting subject for future research.

  18. Neurogenesis-mediated forgetting minimizes proactive interference

    PubMed Central

    Epp, Jonathan R.; Silva Mera, Rudy; Köhler, Stefan; Josselyn, Sheena A.; Frankland, Paul W.

    2016-01-01

    Established memories may interfere with the encoding of new memories, particularly when existing and new memories overlap in content. By manipulating levels of hippocampal neurogenesis, here we show that neurogenesis regulates this form of proactive interference. Increasing hippocampal neurogenesis weakens existing memories and, in doing so, facilitates the encoding of new, conflicting (but not non-conflicting) information in mice. Conversely, decreasing neurogenesis stabilizes existing memories, and impedes the encoding of new, conflicting information. These results suggest that reduced proactive interference is an adaptive benefit of neurogenesis-induced forgetting. PMID:26917323

  19. Memory-efficient table look-up optimized algorithm for context-based adaptive variable length decoding in H.264/advanced video coding

    NASA Astrophysics Data System (ADS)

    Wang, Jianhua; Cheng, Lianglun; Wang, Tao; Peng, Xiaodong

    2016-03-01

    Table look-up operation plays a very important role during the decoding processing of context-based adaptive variable length decoding (CAVLD) in H.264/advanced video coding (AVC). However, frequent table look-up operation can result in big table memory access, and then lead to high table power consumption. Aiming to solve the problem of big table memory access of current methods, and then reduce high power consumption, a memory-efficient table look-up optimized algorithm is presented for CAVLD. The contribution of this paper lies that index search technology is introduced to reduce big memory access for table look-up, and then reduce high table power consumption. Specifically, in our schemes, we use index search technology to reduce memory access by reducing the searching and matching operations for code_word on the basis of taking advantage of the internal relationship among length of zero in code_prefix, value of code_suffix and code_lengh, thus saving the power consumption of table look-up. The experimental results show that our proposed table look-up algorithm based on index search can lower about 60% memory access consumption compared with table look-up by sequential search scheme, and then save much power consumption for CAVLD in H.264/AVC.

  20. Shape memory alloy actuated adaptive exhaust nozzle for jet engine

    NASA Technical Reports Server (NTRS)

    Ma, Ning (Inventor); Song, Gangbing (Inventor)

    2009-01-01

    The proposed adaptive exhaust nozzle features an innovative use of the shape memory alloy (SMA) actuators for actively control of the opening area of the exhaust nozzle for jet engines. The SMA actuators remotely control the opening area of the exhaust nozzle through a set of mechanism. An important advantage of using SMA actuators is the reduction of weight of the actuator system for variable area exhaust nozzle. Another advantage is that the SMA actuator can be activated using the heat from the exhaust and eliminate the need of other energy source. A prototype has been designed and fabricated. The functionality of the proposed SMA actuated adaptive exhaust nozzle is verified in the open-loop tests.

  1. Low Temperature Shape Memory Alloys for Adaptive, Autonomous Systems Project

    NASA Technical Reports Server (NTRS)

    Falker, John; Zeitlin, Nancy; Williams, Martha; Benafan, Othmane; Fesmire, James

    2015-01-01

    The objective of this joint activity between Kennedy Space Center (KSC) and Glenn Research Center (GRC) is to develop and evaluate the applicability of 2-way SMAs in proof-of-concept, low-temperature adaptive autonomous systems. As part of this low technology readiness (TRL) activity, we will develop and train low-temperature novel, 2-way shape memory alloys (SMAs) with actuation temperatures ranging from 0 C to 150 C. These experimental alloys will also be preliminary tested to evaluate their performance parameters and transformation (actuation) temperatures in low- temperature or cryogenic adaptive proof-of-concept systems. The challenge will be in the development, design, and training of the alloys for 2-way actuation at those temperatures.

  2. Adaptive Fading Memory H∞ Filter Design for Compensation of Delayed Components in Self Powered Flux Detectors

    NASA Astrophysics Data System (ADS)

    Tamboli, Prakash Kumar; Duttagupta, Siddhartha P.; Roy, Kallol

    2015-08-01

    The paper deals with dynamic compensation of delayed Self Powered Flux Detectors (SPFDs) using discrete time H∞ filtering method for improving the response of SPFDs with significant delayed components such as Platinum and Vanadium SPFD. We also present a comparative study between the Linear Matrix Inequality (LMI) based H∞ filtering and Algebraic Riccati Equation (ARE) based Kalman filtering methods with respect to their delay compensation capabilities. Finally an improved recursive H∞ filter based on the adaptive fading memory technique is proposed which provides an improved performance over existing methods. The existing delay compensation algorithms do not account for the rate of change in the signal for determining the filter gain and therefore add significant noise during the delay compensation process. The proposed adaptive fading memory H∞ filter minimizes the overall noise very effectively at the same time keeps the response time at minimum values. The recursive algorithm is easy to implement in real time as compared to the LMI (or ARE) based solutions.

  3. The effects of adaptive working memory training and mindfulness meditation training on processing efficiency and worry in high worriers.

    PubMed

    Course-Choi, Jenna; Saville, Harry; Derakshan, Nazanin

    2017-02-01

    Worry is the principle characteristic of generalised anxiety disorder, and has been linked to deficient attentional control, a main function of working memory (WM). Adaptive WM training and mindfulness meditation practice (MMP) have both shown potential to increase attentional control. The present study hence investigates the individual and combined effects of MMP and a dual adaptive n-back task on a non-clinical, randomised sample of high worriers. 60 participants were tested before and after seven days of training. Assessment included self-report questionnaires, as well as performance tasks measuring attentional control and working memory capacity. Combined training resulted in continued reduction in worry in the week after training, highlighting the potential of utilising n-back training as an adjunct to established clinical treatment. Engagement with WM training correlated with immediate improvements in attentional control and resilience, with worry decreasing over time. Implications of these findings and suggestions for future research are discussed. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.

  4. Role of the lateral habenula in memory through online processing of information.

    PubMed

    Mathis, Victor; Lecourtier, Lucas

    2017-11-01

    Our memory abilities, whether they involve short-term working memory or long-term episodic or procedural memories, are essential for our well-being, our capacity to adapt to constraints of our environment and survival. Therefore, several key brain regions and neurotransmitter systems are engaged in the processing of sensory information to either maintain such information in working memory so that it will quickly be used, and/or participate in the elaboration and storage of enduring traces useful for longer periods of time. Animal research has recently attracted attention on the lateral habenula which, as shown in rodents and non-human primates, seems to process information stemming in the main regions involved in memory processing, e.g., the medial prefrontal cortex, the hippocampus, the amygdala, the septal region, the basal ganglia, and participates in the control of key memory-related neurotransmitters systems, i.e., dopamine, serotonin, acetylcholine. Recently, the lateral habenula has been involved in working and spatial reference memories, in rodents, likely by participating in online processing of contextual information. In addition, several behavioral studies strongly suggest that it is also involved in the processing of the emotional valance of incoming information in order to adapt to particularly stressful situations. Therefore, the lateral habenula appears like a key region at the interface between cognition and emotion to participate in the selection of appropriate behaviors. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Abnormal Fear Memory as a Model for Posttraumatic Stress Disorder.

    PubMed

    Desmedt, Aline; Marighetto, Aline; Piazza, Pier-Vincenzo

    2015-09-01

    For over a century, clinicians have consistently described the paradoxical co-existence in posttraumatic stress disorder (PTSD) of sensory intrusive hypermnesia and declarative amnesia for the same traumatic event. Although this amnesia is considered as a critical etiological factor of the development and/or persistence of PTSD, most current animal models in basic neuroscience have focused exclusively on the hypermnesia, i.e., the persistence of a strong fear memory, neglecting the qualitative alteration of fear memory. The latest is characterized by an underrepresentation of the trauma in the context-based declarative memory system in favor of its overrepresentation in a cue-based sensory/emotional memory system. Combining psychological and neurobiological data as well as theoretical hypotheses, this review supports the idea that contextual amnesia is at the core of PTSD and its persistence and that altered hippocampal-amygdalar interaction may contribute to such pathologic memory. In a first attempt to unveil the neurobiological alterations underlying PTSD-related hypermnesia/amnesia, we describe a recent animal model mimicking in mice some critical aspects of such abnormal fear memory. Finally, this line of argument emphasizes the pressing need for a systematic comparison between normal/adaptive versus abnormal/maladaptive fear memory to identify biomarkers of PTSD while distinguishing them from general stress-related, potentially adaptive, neurobiological alterations. Copyright © 2015 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  6. Immunity: Insect Immune Memory Goes Viral.

    PubMed

    Ligoxygakis, Petros

    2017-11-20

    Adaptive memory in insect immunity has been controversial. In this issue, Andino and co-workers propose that acquisition of viral sequences in the host genome gives rise to anti-sense, anti-viral piRNAs. Such sequences can be regarded as both a genomic archive of past infections and as an armour of potential heritable memory. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Inhibitory Voluntary Control of Memory: Effect of Stimulus Onset Asynchrony on Reaction Time to Suppressed Memories

    ERIC Educational Resources Information Center

    Algarabel, Salvador; Luciano, Juan V.; Martinez, Jose L.

    2006-01-01

    Anderson & Green (2001) have recently shown that using an adaptation of the go-no go task, participants can voluntarily inhibit the retrieval of specific memories. We present three experiments in which we try to determine the degree of automaticity involved, and the role of the previous prime-target relation on the development of this inhibitory…

  8. How Does the Linguistic Distance between Spoken and Standard Language in Arabic Affect Recall and Recognition Performances during Verbal Memory Examination

    ERIC Educational Resources Information Center

    Taha, Haitham

    2017-01-01

    The current research examined how Arabic diglossia affects verbal learning memory. Thirty native Arab college students were tested using auditory verbal memory test that was adapted according to the Rey Auditory Verbal Learning Test and developed in three versions: Pure spoken language version (SL), pure standard language version (SA), and…

  9. Adaptive Memory: Determining the Proximate Mechanisms Responsible for the Memorial Advantages of Survival Processing

    ERIC Educational Resources Information Center

    Burns, Daniel J.; Burns, Sarah A.; Hwang, Ana J.

    2011-01-01

    J. S. Nairne, S. R. Thompson, and J. N. S. Pandeirada (2007) suggested that our memory systems may have evolved to help us remember fitness-relevant information and showed that retention of words rated for their relevance to survival is superior to that of words encoded under other deep processing conditions. The authors present 4 experiments that…

  10. Adaptive false memory: Imagining future scenarios increases false memories in the DRM paradigm.

    PubMed

    Dewhurst, Stephen A; Anderson, Rachel J; Grace, Lydia; van Esch, Lotte

    2016-10-01

    Previous research has shown that rating words for their relevance to a future scenario enhances memory for those words. The current study investigated the effect of future thinking on false memory using the Deese/Roediger-McDermott (DRM) procedure. In Experiment 1, participants rated words from 6 DRM lists for relevance to a past or future event (with or without planning) or in terms of pleasantness. In a surprise recall test, levels of correct recall did not vary between the rating tasks, but the future rating conditions led to significantly higher levels of false recall than the past and pleasantness conditions did. Experiment 2 found that future rating led to higher levels of false recognition than did past and pleasantness ratings but did not affect correct recognition. The effect in false recognition was, however, eliminated when DRM items were presented in random order. Participants in Experiment 3 were presented with both DRM lists and lists of unrelated words. Future rating increased levels of false recognition for DRM lures but did not affect correct recognition for DRM or unrelated lists. The findings are discussed in terms of the view that false memories can be associated with adaptive memory functions.

  11. Developmental trends in adaptive memory.

    PubMed

    Otgaar, Henry; Howe, Mark L; Smeets, Tom; Garner, Sarah R

    2014-01-01

    Recent studies have revealed that memory is enhanced when information is processed for fitness-related purposes. The main objective of the current experiments was to test developmental trends in the evolutionary foundation of memory using different types of stimuli and paradigms. In Experiment 1, 11-year-olds and adults were presented with neutral, negative, and survival-related DRM word lists. We found a memory benefit for the survival-related words and showed that false memories were more likely to be elicited for the survival-related word lists than for the other lists. Experiment 2 examined developmental trends in the survival processing paradigm using neutral, negative, and survival-related pictures. A survival processing advantage was found for survival-related pictures in adults, for negative pictures in 11/12-year-olds, and for neutral pictures in 7/8-year-olds. In Experiment 3, 11/12-year-olds and adults had to imagine the standard survival scenario or an adapted survival condition (or pleasantness condition) that was designed to reduce the possibilities for elaborative processing. We found superior memory retention for both survival scenarios in children and adults. Collectively, our results evidently show that the survival processing advantage is developmentally invariant and that certain proximate mechanisms (elaboration and distinctiveness) underlie these developmental trends.

  12. Facing the Music or Burying Our Heads in the Sand?: Adaptive Emotion Regulation in Midlife and Late Life

    PubMed Central

    Waldinger, Robert J.; Schulz, Marc S.

    2011-01-01

    Defenses that keep threatening information out of awareness are posited to reduce anxiety at the cost of longer-term dysfunction. By contrast, socioemotional selectivity theory suggests that preference for positively-valenced information is a late-life manifestation of adaptive emotion regulation. Using longitudinal data on 61 men, we examined links between emotion regulation indices informed by these distinct conceptualizations: defenses in earlier adulthood and selective memory for positively-valenced images in late-life. Use of avoidant defenses in midlife predicted poorer memory for positive, negative, and neutral images nearly 4 decades later. Late-life satisfaction was positively linked with midlife engaging defenses but negatively linked at the trend level with concurrent positive memory bias. PMID:21544264

  13. Variable memory strategy use in children's adaptive intratask learning behavior: developmental changes and working memory influences in free recall.

    PubMed

    Lehmann, Martin; Hasselhorn, Marcus

    2007-01-01

    Variability in strategy use within single trials in free recall was analyzed longitudinally from second to fourth grades (ages 8-10 years). To control for practice effects another sample of fourth graders was included (age 10 years). Video analyses revealed that children employed different strategies when preparing for free recall. A gradual shift from labeling to cumulative rehearsal was present both with increasing age and across different list positions. Whereas cumulative rehearsal was frequent at early list positions, labeling was dominant at later list portions. Working memory capacity predicted the extent of cumulative rehearsal usage, which became more efficient with increasing age. Results are discussed in the context of the adaptive strategy choice model.

  14. Scalable Triadic Analysis of Large-Scale Graphs: Multi-Core vs. Multi-Processor vs. Multi-Threaded Shared Memory Architectures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chin, George; Marquez, Andres; Choudhury, Sutanay

    2012-09-01

    Triadic analysis encompasses a useful set of graph mining methods that is centered on the concept of a triad, which is a subgraph of three nodes and the configuration of directed edges across the nodes. Such methods are often applied in the social sciences as well as many other diverse fields. Triadic methods commonly operate on a triad census that counts the number of triads of every possible edge configuration in a graph. Like other graph algorithms, triadic census algorithms do not scale well when graphs reach tens of millions to billions of nodes. To enable the triadic analysis ofmore » large-scale graphs, we developed and optimized a triad census algorithm to efficiently execute on shared memory architectures. We will retrace the development and evolution of a parallel triad census algorithm. Over the course of several versions, we continually adapted the code’s data structures and program logic to expose more opportunities to exploit parallelism on shared memory that would translate into improved computational performance. We will recall the critical steps and modifications that occurred during code development and optimization. Furthermore, we will compare the performances of triad census algorithm versions on three specific systems: Cray XMT, HP Superdome, and AMD multi-core NUMA machine. These three systems have shared memory architectures but with markedly different hardware capabilities to manage parallelism.« less

  15. Programming and memory dynamics of innate leukocytes during tissue homeostasis and inflammation.

    PubMed

    Lee, Christina; Geng, Shuo; Zhang, Yao; Rahtes, Allison; Li, Liwu

    2017-09-01

    The field of innate immunity is witnessing a paradigm shift regarding "memory" and "programming" dynamics. Past studies of innate leukocytes characterized them as first responders to danger signals with no memory. However, recent findings suggest that innate leukocytes, such as monocytes and neutrophils, are capable of "memorizing" not only the chemical nature but also the history and dosages of external stimulants. As a consequence, innate leukocytes can be dynamically programmed or reprogrammed into complex inflammatory memory states. Key examples of innate leukocyte memory dynamics include the development of primed and tolerant monocytes when "programmed" with a variety of inflammatory stimulants at varying signal strengths. The development of innate leukocyte memory may have far-reaching translational implications, as programmed innate leukocytes may affect the pathogenesis of both acute and chronic inflammatory diseases. This review intends to critically discuss some of the recent studies that address this emerging concept and its implication in the pathogenesis of inflammatory diseases. © Society for Leukocyte Biology.

  16. Honoring our donors: a survey of memorial ceremonies in United States anatomy programs.

    PubMed

    Jones, Trahern W; Lachman, Nirusha; Pawlina, Wojciech

    2014-01-01

    Many anatomy programs that incorporate dissection of donated human bodies hold memorial ceremonies of gratitude towards body donors. The content of these ceremonies may include learners' reflections on mortality, respect, altruism, and personal growth told through various humanities modalities. The task of planning is usually student- and faculty-led with participation from other health care students. Objective information on current memorial ceremonies for body donors in anatomy programs in the United States appears to be lacking. The number of programs in the United States that currently plan these memorial ceremonies and information on trends in programs undertaking such ceremonies remain unknown. Gross anatomy program directors throughout the United States were contacted and asked to respond to a voluntary questionnaire on memorial ceremonies held at their institution. The results (response rate 68.2%) indicated that a majority of human anatomy programs (95.5%) hold memorial ceremonies. These ceremonies are, for the most part, student-driven and nondenominational or secular in nature. Participants heavily rely upon speech, music, poetry, and written essays, with a small inclusion of other humanities modalities, such as dance or visual art, to explore a variety of themes during these ceremonies. © 2013 American Association of Anatomists.

  17. The iconic memory skills of brain injury survivors and non-brain injured controls after visual scanning training.

    PubMed

    McClure, J T; Browning, R T; Vantrease, C M; Bittle, S T

    1994-01-01

    Previous research suggests that traumatic brain injury (TBI) results in impairment of iconic memory abilities.We would like to acknowledge the contribution of Jeffrey D. Vantrease, who wrote the software program for the Iconic Memory procedure and measurement. This raises serious implications for brain injury rehabilitation. Most cognitive rehabilitation programs do not include iconic memory training. Instead it is common for cognitive rehabilitation programs to focus on attention and concentration skills, memory skills, and visual scanning skills.This study compared the iconic memory skills of brain-injury survivors and control subjects who all reached criterion levels of visual scanning skills. This involved previous training for the brain-injury survivors using popular visual scanning programs that allowed them to visually scan with response time and accuracy within normal limits. Control subjects required only minimal training to reach normal limits criteria. This comparison allows for the dissociation of visual scanning skills and iconic memory skills.The results are discussed in terms of their implications for cognitive rehabilitation and the relationship between visual scanning training and iconic memory skills.

  18. [Cortical potentials evoked to response to a signal to make a memory-guided saccade].

    PubMed

    Slavutskaia, M V; Moiseeva, V V; Shul'govskiĭ, V V

    2010-01-01

    The difference in parameters of visually guided and memory-guided saccades was shown. Increase in the memory-guided saccade latency as compared to that of the visually guided saccades may indicate the deceleration of saccadic programming on the basis of information extraction from the memory. The comparison of parameters and topography of evoked components N1 and P1 of the evoked potential on the signal to make a memory- or visually guided saccade suggests that the early stage of the saccade programming associated with the space information processing is performed predominantly with top-down attention mechanism before the memory-guided saccade and bottom-up mechanism before the visually guided saccade. The findings show that the increase in the latency of the memory-guided saccades is connected with decision making at the central stage of the saccade programming. We proposed that wave N2, which develops in the middle of the latent period of the memory-guided saccades, is correlated with this process. Topography and spatial dynamics of components N1, P1 and N2 testify that the memory-guided saccade programming is controlled by the frontal mediothalamic system of selective attention and left-hemispheric brain mechanisms of motor attention.

  19. Dynamic Reconfiguration of Security Policies in Wireless Sensor Networks

    PubMed Central

    Pinto, Mónica; Gámez, Nadia; Fuentes, Lidia; Amor, Mercedes; Horcas, José Miguel; Ayala, Inmaculada

    2015-01-01

    Providing security and privacy to wireless sensor nodes (WSNs) is very challenging, due to the heterogeneity of sensor nodes and their limited capabilities in terms of energy, processing power and memory. The applications for these systems run in a myriad of sensors with different low-level programming abstractions, limited capabilities and different routing protocols. This means that applications for WSNs need mechanisms for self-adaptation and for self-protection based on the dynamic adaptation of the algorithms used to provide security. Dynamic software product lines (DSPLs) allow managing both variability and dynamic software adaptation, so they can be considered a key technology in successfully developing self-protected WSN applications. In this paper, we propose a self-protection solution for WSNs based on the combination of the INTER-TRUST security framework (a solution for the dynamic negotiation and deployment of security policies) and the FamiWare middleware (a DSPL approach to automatically configure and reconfigure instances of a middleware for WSNs). We evaluate our approach using a case study from the intelligent transportation system domain. PMID:25746093

  20. A lipidomics approach to assess the association between plasma sphingolipids and verbal memory performance in coronary artery disease patients undertaking cardiac rehabilitation: a C18:0 signature for cognitive response to exercise

    PubMed Central

    Saleem, Mahwesh; Herrmann, Nathan; Dinoff, Adam; Mielke, Michelle M.; Oh, Paul I.; Shammi, Prathiba; Cao, Xingshan; Venkata, Swarajya Lakshmi Vattem; Haughey, Norman J.; Lanctôt, Krista L.

    2017-01-01

    Background Early subtle deficits in verbal memory, which may indicate early neural risk, are common in patients with coronary artery disease (CAD). While exercise can improve cognition, cognitive response to exercise is heterogeneous. Sphingolipids have been associated with the development and progression of CAD, and impairments in sphingolipid metabolism may play roles in neurodegeneration, and in the neural adaptation response to exercise. In this study, change in plasma concentrations of sphingolipids were assessed in relation to change in verbal memory performance and in other cognitive domains among CAD subjects undertaking a 6-month cardiac rehabilitation (CR) program. Methods Patients with CAD (n=120, mean age=64±6 years, 84% male, years of education=16±3 years) underwent CR with neuropsychological assessments and blood collected at baseline, 3-, and 6-months. Z-scores based on age, gender and education were combined for verbal memory, visuospatial memory, processing speed, executive function and global cognition tasks to calculate cognitive domain Z-scores. Plasma sphingolipid concentrations were measured from fasting blood samples using high performance liquid chromatography coupled electrospray ionization tandem mass spectrometry (LC/MS/MS). Mixed models were used to identify sphingolipids significantly associated with performance in verbal memory and other cognitive domains, adjusting for potential confounders. Results A decrease in ceramide C18:0 concentrations was significantly associated with improvement in verbal memory performance (b[SE]=-0.51 [0.25], p=0.04), visuospatial memory (b[SE]=-0.44 [0.22], p=0.05), processing speed (b[SE]=-0.89 [0.32], p=0.007) and global cognition (b[SE]=-1.47 [0.59], p=0.01) over 6 months of CR. Conclusions Plasma ceramide C18:0 concentrations may be a sensitive marker of cognitive response to exercise in patients with CAD. PMID:28598843

  1. A Lipidomics Approach to Assess the Association Between Plasma Sphingolipids and Verbal Memory Performance in Coronary Artery Disease Patients Undertaking Cardiac Rehabilitation: A C18:0 Signature for Cognitive Response to Exercise.

    PubMed

    Saleem, Mahwesh; Herrmann, Nathan; Dinoff, Adam; Mielke, Michelle M; Oh, Paul I; Shammi, Prathiba; Cao, Xingshan; Venkata, Swarajya Lakshmi Vattem; Haughey, Norman J; Lanctôt, Krista L

    2017-01-01

    Early subtle deficits in verbal memory, which may indicate early neural risk, are common in patients with coronary artery disease (CAD). While exercise can improve cognition, cognitive response to exercise is heterogeneous. Sphingolipids have been associated with the development and progression of CAD, and impairments in sphingolipid metabolism may play roles in neurodegeneration and in the neural adaptation response to exercise. In this study, change in plasma concentrations of sphingolipids was assessed in relation to change in verbal memory performance and in other cognitive domains among CAD subjects undertaking a 6-month cardiac rehabilitation (CR) program. Patients with CAD (n = 120, mean age = 64±6 y, 84% male, years of education = 16±3) underwent CR with neuropsychological assessments and blood collected at baseline, 3-, and 6-months. Z-scores based on age, gender, and education were combined for verbal memory, visuospatial memory, processing speed, executive function, and global cognition tasks to calculate cognitive domain Z-scores. Plasma sphingolipid concentrations were measured from fasting blood samples using high performance liquid chromatography coupled electrospray ionization tandem mass spectrometry (LC/MS/MS). Mixed models were used to identify sphingolipids significantly associated with performance in verbal memory and other cognitive domains, adjusting for potential confounders. A decrease in ceramide C18:0 concentration was significantly associated with improvement in verbal memory performance (b[SE] = -0.51 [0.25], p = 0.04), visuospatial memory (b[SE] = -0.44 [0.22], p = 0.05), processing speed (b[SE] = -0.89 [0.32], p = 0.007), and global cognition (b[SE] = -1.47 [0.59], p = 0.01) over 6 months of CR. Plasma ceramide C18:0 concentrations may be a sensitive marker of cognitive response to exercise in patients with CAD.

  2. CLOCS (Computer with Low Context-Switching Time) Architecture Reference Documents

    DTIC Science & Technology

    1988-05-06

    Peculiarities The only state inside the central processing unit(CPU) is a program status word. All data operations are memory to memory. One result of this... to the challenge "if I whore to design RISC, this is how I would do it." The architecture was designed by Mark Davis and Bill Gallmeister. 1.2...are memory to memory. Any special devices added should be memory mapped. The program counter is even memory mapped. 1.3.1 Working storage There is no

  3. Chemically programmed ink-jet printed resistive WORM memory array and readout circuit

    NASA Astrophysics Data System (ADS)

    Andersson, H.; Manuilskiy, A.; Sidén, J.; Gao, J.; Hummelgård, M.; Kunninmel, G. V.; Nilsson, H.-E.

    2014-09-01

    In this paper an ink-jet printed write once read many (WORM) resistive memory fabricated on paper substrate is presented. The memory elements are programmed for different resistance states by printing triethylene glycol monoethyl ether on the substrate before the actual memory element is printed using silver nano particle ink. The resistance is thus able to be set to a broad range of values without changing the geometry of the elements. A memory card consisting of 16 elements is manufactured for which the elements are each programmed to one of four defined logic levels, providing a total of 4294 967 296 unique possible combinations. Using a readout circuit, originally developed for resistive sensors to avoid crosstalk between elements, a memory card reader is manufactured that is able to read the values of the memory card and transfer the data to a PC. Such printed memory cards can be used in various applications.

  4. The Deese-Roediger-McDermott (DRM) Task: A Simple Cognitive Paradigm to Investigate False Memories in the Laboratory.

    PubMed

    Pardilla-Delgado, Enmanuelle; Payne, Jessica D

    2017-01-31

    The Deese, Roediger and McDermott (DRM) task is a false memory paradigm in which subjects are presented with lists of semantically related words (e.g., nurse, hospital, etc.) at encoding. After a delay, subjects are asked to recall or recognize these words. In the recognition memory version of the task, subjects are asked whether they remember previously presented words, as well as related (but never presented) critical lure words ('doctor'). Typically, the critical word is recognized with high probability and confidence. This false memory effect has been robustly demonstrated across short (e.g., immediate, 20 min) and long (e.g., 1, 7, 60 d) delays between encoding and memory testing. A strength of using this task to study false memory is its simplicity and short duration. If encoding and retrieval components of the task occur in the same session, the entire task can take as little as 2 - 30 min. However, although the DRM task is widely considered a 'false memory' paradigm, some researchers consider DRM illusions to be based on the activation of semantic memory networks in the brain, and argue that such semantic gist-based false memory errors may actually be useful in some scenarios (e.g., remembering the forest for the trees; remembering that a word list was about "doctors", even though the actual word "doctor" was never presented for study). Remembering the gist of experience (instead of or along with individual details) is arguably an adaptive process and this task has provided a great deal of knowledge about the constructive, adaptive nature of memory. Therefore, researchers should use caution when discussing the overall reach and implications of their experiments when using this task to study 'false memory', as DRM memory errors may not adequately reflect false memories in the real world, such as false memory in eyewitness testimony, or false memories of sexual abuse.

  5. Adaptive efficient compression of genomes

    PubMed Central

    2012-01-01

    Modern high-throughput sequencing technologies are able to generate DNA sequences at an ever increasing rate. In parallel to the decreasing experimental time and cost necessary to produce DNA sequences, computational requirements for analysis and storage of the sequences are steeply increasing. Compression is a key technology to deal with this challenge. Recently, referential compression schemes, storing only the differences between a to-be-compressed input and a known reference sequence, gained a lot of interest in this field. However, memory requirements of the current algorithms are high and run times often are slow. In this paper, we propose an adaptive, parallel and highly efficient referential sequence compression method which allows fine-tuning of the trade-off between required memory and compression speed. When using 12 MB of memory, our method is for human genomes on-par with the best previous algorithms in terms of compression ratio (400:1) and compression speed. In contrast, it compresses a complete human genome in just 11 seconds when provided with 9 GB of main memory, which is almost three times faster than the best competitor while using less main memory. PMID:23146997

  6. Long-term moderate elevation of corticosterone facilitates avian food-caching behaviour and enhances spatial memory.

    PubMed

    Pravosudov, Vladimir V

    2003-12-22

    It is widely assumed that chronic stress and corresponding chronic elevations of glucocorticoid levels have deleterious effects on animals' brain functions such as learning and memory. Some animals, however, appear to maintain moderately elevated levels of glucocorticoids over long periods of time under natural energetically demanding conditions, and it is not clear whether such chronic but moderate elevations may be adaptive. I implanted wild-caught food-caching mountain chickadees (Poecile gambeli), which rely at least in part on spatial memory to find their caches, with 90-day continuous time-release corticosterone pellets designed to approximately double the baseline corticosterone levels. Corticosterone-implanted birds cached and consumed significantly more food and showed more efficient cache recovery and superior spatial memory performance compared with placebo-implanted birds. Thus, contrary to prevailing assumptions, long-term moderate elevations of corticosterone appear to enhance spatial memory in food-caching mountain chickadees. These results suggest that moderate chronic elevation of corticosterone may serve as an adaptation to unpredictable environments by facilitating feeding and food-caching behaviour and by improving cache-retrieval efficiency in food-caching birds.

  7. [Ecological executive function characteristics and effects of executive function on social adaptive function in school-aged children with epilepsy].

    PubMed

    Xu, X J; Wang, L L; Zhou, N

    2016-02-23

    To explore the characteristics of ecological executive function in school-aged children with idiopathic or probably symptomatic epilepsy and examine the effects of executive function on social adaptive function. A total of 51 school-aged children with idiopathic or probably symptomatic epilepsy aged 5-12 years at our hospital and 37 normal ones of the same gender, age and educational level were included. The differences in ecological executive function and social adaptive function were compared between the two groups with the Behavior Rating Inventory of Executive Function (BRIEF) and Child Adaptive Behavior Scale, the Pearson's correlation test and multiple stepwise linear regression were used to explore the impact of executive function on social adaptive function. The scores of school-aged children with idiopathic or probably symptomatic epilepsy in global executive composite (GEC), behavioral regulation index (BRI) and metacognition index (MI) of BRIEF ((62±12), (58±13) and (63±12), respectively) were significantly higher than those of the control group ((47±7), (44±6) and (48±8), respectively))(P<0.01). The scores of school-aged children with idiopathic or probably symptomatic epilepsy in adaptive behavior quotient (ADQ), independence, cognition, self-control ((86±22), (32±17), (49±14), (41±16), respectively) were significantly lower than those of the control group ((120±12), (59±14), (59±7) and (68±10), respectively))(P<0.01). Pearson's correlation test showed that the scores of BRIEF, such as GEC, BRI, MI, inhibition, emotional control, monitoring, initiation and working memory had significantly negative correlations with the score of ADQ, independence, self-control ((r=-0.313--0.741, P<0.05)). Also, GEC, inhibition, MI, initiation, working memory, plan, organization and monitoring had significantly negative correlations with the score of cognition ((r=-0.335--0.437, P<0.05)); Multiple stepwise linear regression analysis showed that BRI, inhibition and working memory were closely related with the social adaptive function of school-aged children with idiopathic or probably symptomatic epilepsy. School-aged children with idiopathic or probably symptomatic epilepsy may have significantly ecological executive function impairment and social adaptive function reduction. The aspects of BRI, inhibition and working memory in ecological executive function are significantly related with social adaptive function in school-aged children with epilepsy.

  8. Effects of cacheing on multitasking efficiency and programming strategy on an ELXSI 6400

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Montry, G.R.; Benner, R.E.

    1985-12-01

    The impact of a cache/shared memory architecture, and, in particular, the cache coherency problem, upon concurrent algorithm and program development is discussed. In this context, a simple set of programming strategies are proposed which streamline code development and improve code performance when multitasking in a cache/shared memory or distributed memory environment.

  9. Method and system for training dynamic nonlinear adaptive filters which have embedded memory

    NASA Technical Reports Server (NTRS)

    Rabinowitz, Matthew (Inventor)

    2002-01-01

    Described herein is a method and system for training nonlinear adaptive filters (or neural networks) which have embedded memory. Such memory can arise in a multi-layer finite impulse response (FIR) architecture, or an infinite impulse response (IIR) architecture. We focus on filter architectures with separate linear dynamic components and static nonlinear components. Such filters can be structured so as to restrict their degrees of computational freedom based on a priori knowledge about the dynamic operation to be emulated. The method is detailed for an FIR architecture which consists of linear FIR filters together with nonlinear generalized single layer subnets. For the IIR case, we extend the methodology to a general nonlinear architecture which uses feedback. For these dynamic architectures, we describe how one can apply optimization techniques which make updates closer to the Newton direction than those of a steepest descent method, such as backpropagation. We detail a novel adaptive modified Gauss-Newton optimization technique, which uses an adaptive learning rate to determine both the magnitude and direction of update steps. For a wide range of adaptive filtering applications, the new training algorithm converges faster and to a smaller value of cost than both steepest-descent methods such as backpropagation-through-time, and standard quasi-Newton methods. We apply the algorithm to modeling the inverse of a nonlinear dynamic tracking system 5, as well as a nonlinear amplifier 6.

  10. Cognitive stimulation in healthy older adults: a cognitive stimulation program using leisure activities compared to a conventional cognitive stimulation program.

    PubMed

    Grimaud, Élisabeth; Taconnat, Laurence; Clarys, David

    2017-06-01

    The aim of this study was to compare two methods of cognitive stimulation for the cognitive functions. The first method used an usual approach, the second used leisure activities in order to assess their benefits on cognitive functions (speed of processing; working memory capacity and executive functions) and psychoaffective measures (memory span and self esteem). 67 participants over 60 years old took part in the experiment. They were divided into three groups: 1 group followed a program of conventional cognitive stimulation, 1 group a program of cognitive stimulation using leisure activities and 1 control group. The different measures have been evaluated before and after the training program. Results show that the cognitive stimulation program using leisure activities is as effective on memory span, updating and memory self-perception as the program using conventional cognitive stimulation, and more effective on self-esteem than the conventional program. There is no difference between the two stimulated groups and the control group on speed of processing. Neither of the two cognitive stimulation programs provides a benefit over shifting and inhibition. These results indicate that it seems to be possible to enhance working memory and to observe far transfer benefits over self-perception (self-esteem and memory self-perception) when using leisure activities as a tool for cognitive stimulation.

  11. Evidence for Decay in Verbal Short-Term Memory: A Commentary on Berman, Jonides, and Lewis (2009)

    ERIC Educational Resources Information Center

    Campoy, Guillermo

    2012-01-01

    M. G. Berman, J. Jonides, and R. L. Lewis (2009) adapted the recent-probes task to investigate the causes of forgetting in short-term memory. In 7 experiments, they studied the persistence of memory traces by assessing the level of proactive interference generated by previous-trial items over a range of intertrial intervals. None of the…

  12. A memory structure adapted simulated annealing algorithm for a green vehicle routing problem.

    PubMed

    Küçükoğlu, İlker; Ene, Seval; Aksoy, Aslı; Öztürk, Nursel

    2015-03-01

    Currently, reduction of carbon dioxide (CO2) emissions and fuel consumption has become a critical environmental problem and has attracted the attention of both academia and the industrial sector. Government regulations and customer demands are making environmental responsibility an increasingly important factor in overall supply chain operations. Within these operations, transportation has the most hazardous effects on the environment, i.e., CO2 emissions, fuel consumption, noise and toxic effects on the ecosystem. This study aims to construct vehicle routes with time windows that minimize the total fuel consumption and CO2 emissions. The green vehicle routing problem with time windows (G-VRPTW) is formulated using a mixed integer linear programming model. A memory structure adapted simulated annealing (MSA-SA) meta-heuristic algorithm is constructed due to the high complexity of the proposed problem and long solution times for practical applications. The proposed models are integrated with a fuel consumption and CO2 emissions calculation algorithm that considers the vehicle technical specifications, vehicle load, and transportation distance in a green supply chain environment. The proposed models are validated using well-known instances with different numbers of customers. The computational results indicate that the MSA-SA heuristic is capable of obtaining good G-VRPTW solutions within a reasonable amount of time by providing reductions in fuel consumption and CO2 emissions.

  13. Thermo-Mechanical Response of Monolithic and NiTi Shape Memory Alloy Fiber Reinforced Sn-3.8Ag-0.7Cu Solder

    DTIC Science & Technology

    2005-09-01

    novel adaptive Tin-Silver-Copper ( SnAgCu ) solder reinforced with NiTi shape-memory alloy (particles or fiber) developed. An experimental...to meet the demands of miniaturization and enhanced performance in severe environments, a novel adaptive Tin-Silver-Copper ( SnAgCu ) solder...4. Crack region of SnAgCu solder after TMF, from reference [1] ............. 5 Figure 5. Phase diagram of 95.5Sn-3.8Ag-0.7Cu solder, from reference

  14. Limited-memory adaptive snapshot selection for proper orthogonal decomposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oxberry, Geoffrey M.; Kostova-Vassilevska, Tanya; Arrighi, Bill

    2015-04-02

    Reduced order models are useful for accelerating simulations in many-query contexts, such as optimization, uncertainty quantification, and sensitivity analysis. However, offline training of reduced order models can have prohibitively expensive memory and floating-point operation costs in high-performance computing applications, where memory per core is limited. To overcome this limitation for proper orthogonal decomposition, we propose a novel adaptive selection method for snapshots in time that limits offline training costs by selecting snapshots according an error control mechanism similar to that found in adaptive time-stepping ordinary differential equation solvers. The error estimator used in this work is related to theory boundingmore » the approximation error in time of proper orthogonal decomposition-based reduced order models, and memory usage is minimized by computing the singular value decomposition using a single-pass incremental algorithm. Results for a viscous Burgers’ test problem demonstrate convergence in the limit as the algorithm error tolerances go to zero; in this limit, the full order model is recovered to within discretization error. The resulting method can be used on supercomputers to generate proper orthogonal decomposition-based reduced order models, or as a subroutine within hyperreduction algorithms that require taking snapshots in time, or within greedy algorithms for sampling parameter space.« less

  15. Dynamic modulation of innate immunity programming and memory.

    PubMed

    Yuan, Ruoxi; Li, Liwu

    2016-01-01

    Recent progress harkens back to the old theme of immune memory, except this time in the area of innate immunity, to which traditional paradigm only prescribes a rudimentary first-line defense function with no memory. However, both in vitro and in vivo studies reveal that innate leukocytes may adopt distinct activation states such as priming, tolerance, and exhaustion, depending upon the history of prior challenges. The dynamic programming and potential memory of innate leukocytes may have far-reaching consequences in health and disease. This review aims to provide some salient features of innate programing and memory, patho-physiological consequences, underlying mechanisms, and current pressing issues.

  16. [Interview Questions

    NASA Technical Reports Server (NTRS)

    Smith, Dan

    2007-01-01

    The Goddard Mission Services Evolution Center, or GMSEC, was started in 2001 to create a new standard approach for managing GSFC missions. Standardized approaches in the past involved selecting and then integrating the most appropriate set of functional tools. Assumptions were made that "one size fits all" and that tool changes would not be necessary for many years. GMSEC took a very different approach and has proven to be very successful. The core of the GMSEC architecture consists of a publish/subscribe message bus, standardized message formats, and an Applications Programming Interface (API). The API supports multiple operating systems, programming languages and messaging middleware products. We use a GMSEC-developed free middleware for low-cost development. A high capacity, robust middleware is used for operations and a messaging system with a very small memory footprint is used for on-board flight software. Software components can use the standard message formats or develop adapters to convert from their native formats to the GMSEC formats. We do not want vendors to modify their core products. Over 50 software components are now available for use with the GMSEC architecture. Most available commercial telemetry and command systems, including the GMV hifly Satellite Control System, have been adapted to run in the GMSEC labs.

  17. A Mission-Adaptive Variable Camber Flap Control System to Optimize High Lift and Cruise Lift-to-Drag Ratios of Future N+3 Transport Aircraft

    NASA Technical Reports Server (NTRS)

    Urnes, James, Sr.; Nguyen, Nhan; Ippolito, Corey; Totah, Joseph; Trinh, Khanh; Ting, Eric

    2013-01-01

    Boeing and NASA are conducting a joint study program to design a wing flap system that will provide mission-adaptive lift and drag performance for future transport aircraft having light-weight, flexible wings. This Variable Camber Continuous Trailing Edge Flap (VCCTEF) system offers a lighter-weight lift control system having two performance objectives: (1) an efficient high lift capability for take-off and landing, and (2) reduction in cruise drag through control of the twist shape of the flexible wing. This control system during cruise will command varying flap settings along the span of the wing in order to establish an optimum wing twist for the current gross weight and cruise flight condition, and continue to change the wing twist as the aircraft changes gross weight and cruise conditions for each mission segment. Design weight of the flap control system is being minimized through use of light-weight shape memory alloy (SMA) actuation augmented with electric actuators. The VCCTEF program is developing better lift and drag performance of flexible wing transports with the further benefits of lighter-weight actuation and less drag using the variable camber shape of the flap.

  18. Stress and multiple memory systems: from 'thinking' to 'doing'.

    PubMed

    Schwabe, Lars; Wolf, Oliver T

    2013-02-01

    Although it has been known for decades that stress influences memory performance, it was only recently shown that stress may alter the contribution of multiple, anatomically and functionally distinct memory systems to behavior. Here, we review recent animal and human studies demonstrating that stress promotes a shift from flexible 'cognitive' to rather rigid 'habit' memory systems and discuss, based on recent neuroimaging data in humans, the underlying brain mechanisms. We argue that, despite being generally adaptive, this stress-induced shift towards 'habit' memory may, in vulnerable individuals, be a risk factor for psychopathology. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Autologous Stem Cell Transplantation Disrupts Adaptive Immune Responses during Rebound Simian/Human Immunodeficiency Virus Viremia.

    PubMed

    Reeves, Daniel B; Peterson, Christopher W; Kiem, Hans-Peter; Schiffer, Joshua T

    2017-07-01

    Primary HIV-1 infection induces a virus-specific adaptive/cytolytic immune response that impacts the plasma viral load set point and the rate of progression to AIDS. Combination antiretroviral therapy (cART) suppresses plasma viremia to undetectable levels that rebound upon cART treatment interruption. Following cART withdrawal, the memory component of the virus-specific adaptive immune response may improve viral control compared to primary infection. Here, using primary infection and treatment interruption data from macaques infected with simian/human immunodeficiency virus (SHIV), we observe a lower peak viral load but an unchanged viral set point during viral rebound. The addition of an autologous stem cell transplant before cART withdrawal alters viral dynamics: we found a higher rebound set point but similar peak viral loads compared to the primary infection. Mathematical modeling of the data that accounts for fundamental immune parameters achieves excellent fit to heterogeneous viral loads. Analysis of model output suggests that the rapid memory immune response following treatment interruption does not ultimately lead to better viral containment. Transplantation decreases the durability of the adaptive immune response following cART withdrawal and viral rebound. Our model's results highlight the impact of the endogenous adaptive immune response during primary SHIV infection. Moreover, because we capture adaptive immune memory and the impact of transplantation, this model will provide insight into further studies of cure strategies inspired by the Berlin patient. IMPORTANCE HIV patients who interrupt combination antiretroviral therapy (cART) eventually experience viral rebound, the return of viral loads to pretreatment levels. However, the "Berlin patient" remained free of HIV rebound over a decade after stopping cART. His cure is attributed to leukemia treatment that included an HIV-resistant stem cell transplant. Inspired by this case, we studied the impact of stem cell transplantation in a macaque simian/HIV (SHIV) system. Using a mechanistic mathematical model, we found that while primary infection generates an adaptive immune memory response, stem cell transplantation disrupts this learned immunity. The results have implications for HIV cure regimens based on stem cell transplantation. Copyright © 2017 American Society for Microbiology.

  20. Autologous Stem Cell Transplantation Disrupts Adaptive Immune Responses during Rebound Simian/Human Immunodeficiency Virus Viremia

    PubMed Central

    Peterson, Christopher W.; Kiem, Hans-Peter

    2017-01-01

    ABSTRACT Primary HIV-1 infection induces a virus-specific adaptive/cytolytic immune response that impacts the plasma viral load set point and the rate of progression to AIDS. Combination antiretroviral therapy (cART) suppresses plasma viremia to undetectable levels that rebound upon cART treatment interruption. Following cART withdrawal, the memory component of the virus-specific adaptive immune response may improve viral control compared to primary infection. Here, using primary infection and treatment interruption data from macaques infected with simian/human immunodeficiency virus (SHIV), we observe a lower peak viral load but an unchanged viral set point during viral rebound. The addition of an autologous stem cell transplant before cART withdrawal alters viral dynamics: we found a higher rebound set point but similar peak viral loads compared to the primary infection. Mathematical modeling of the data that accounts for fundamental immune parameters achieves excellent fit to heterogeneous viral loads. Analysis of model output suggests that the rapid memory immune response following treatment interruption does not ultimately lead to better viral containment. Transplantation decreases the durability of the adaptive immune response following cART withdrawal and viral rebound. Our model's results highlight the impact of the endogenous adaptive immune response during primary SHIV infection. Moreover, because we capture adaptive immune memory and the impact of transplantation, this model will provide insight into further studies of cure strategies inspired by the Berlin patient. IMPORTANCE HIV patients who interrupt combination antiretroviral therapy (cART) eventually experience viral rebound, the return of viral loads to pretreatment levels. However, the “Berlin patient” remained free of HIV rebound over a decade after stopping cART. His cure is attributed to leukemia treatment that included an HIV-resistant stem cell transplant. Inspired by this case, we studied the impact of stem cell transplantation in a macaque simian/HIV (SHIV) system. Using a mechanistic mathematical model, we found that while primary infection generates an adaptive immune memory response, stem cell transplantation disrupts this learned immunity. The results have implications for HIV cure regimens based on stem cell transplantation. PMID:28404854

  1. From brain synapses to systems for learning and memory: Object recognition, spatial navigation, timed conditioning, and movement control.

    PubMed

    Grossberg, Stephen

    2015-09-24

    This article provides an overview of neural models of synaptic learning and memory whose expression in adaptive behavior depends critically on the circuits and systems in which the synapses are embedded. It reviews Adaptive Resonance Theory, or ART, models that use excitatory matching and match-based learning to achieve fast category learning and whose learned memories are dynamically stabilized by top-down expectations, attentional focusing, and memory search. ART clarifies mechanistic relationships between consciousness, learning, expectation, attention, resonance, and synchrony. ART models are embedded in ARTSCAN architectures that unify processes of invariant object category learning, recognition, spatial and object attention, predictive remapping, and eye movement search, and that clarify how conscious object vision and recognition may fail during perceptual crowding and parietal neglect. The generality of learned categories depends upon a vigilance process that is regulated by acetylcholine via the nucleus basalis. Vigilance can get stuck at too high or too low values, thereby causing learning problems in autism and medial temporal amnesia. Similar synaptic learning laws support qualitatively different behaviors: Invariant object category learning in the inferotemporal cortex; learning of grid cells and place cells in the entorhinal and hippocampal cortices during spatial navigation; and learning of time cells in the entorhinal-hippocampal system during adaptively timed conditioning, including trace conditioning. Spatial and temporal processes through the medial and lateral entorhinal-hippocampal system seem to be carried out with homologous circuit designs. Variations of a shared laminar neocortical circuit design have modeled 3D vision, speech perception, and cognitive working memory and learning. A complementary kind of inhibitory matching and mismatch learning controls movement. This article is part of a Special Issue entitled SI: Brain and Memory. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Hierarchically clustered adaptive quantization CMAC and its learning convergence.

    PubMed

    Teddy, S D; Lai, E M K; Quek, C

    2007-11-01

    The cerebellar model articulation controller (CMAC) neural network (NN) is a well-established computational model of the human cerebellum. Nevertheless, there are two major drawbacks associated with the uniform quantization scheme of the CMAC network. They are the following: (1) a constant output resolution associated with the entire input space and (2) the generalization-accuracy dilemma. Moreover, the size of the CMAC network is an exponential function of the number of inputs. Depending on the characteristics of the training data, only a small percentage of the entire set of CMAC memory cells is utilized. Therefore, the efficient utilization of the CMAC memory is a crucial issue. One approach is to quantize the input space nonuniformly. For existing nonuniformly quantized CMAC systems, there is a tradeoff between memory efficiency and computational complexity. Inspired by the underlying organizational mechanism of the human brain, this paper presents a novel CMAC architecture named hierarchically clustered adaptive quantization CMAC (HCAQ-CMAC). HCAQ-CMAC employs hierarchical clustering for the nonuniform quantization of the input space to identify significant input segments and subsequently allocating more memory cells to these regions. The stability of the HCAQ-CMAC network is theoretically guaranteed by the proof of its learning convergence. The performance of the proposed network is subsequently benchmarked against the original CMAC network, as well as two other existing CMAC variants on two real-life applications, namely, automated control of car maneuver and modeling of the human blood glucose dynamics. The experimental results have demonstrated that the HCAQ-CMAC network offers an efficient memory allocation scheme and improves the generalization and accuracy of the network output to achieve better or comparable performances with smaller memory usages. Index Terms-Cerebellar model articulation controller (CMAC), hierarchical clustering, hierarchically clustered adaptive quantization CMAC (HCAQ-CMAC), learning convergence, nonuniform quantization.

  3. Adaptive synchronization and anticipatory dynamical systems

    NASA Astrophysics Data System (ADS)

    Yang, Ying-Jen; Chen, Chun-Chung; Lai, Pik-Yin; Chan, C. K.

    2015-09-01

    Many biological systems can sense periodical variations in a stimulus input and produce well-timed, anticipatory responses after the input is removed. Such systems show memory effects for retaining timing information in the stimulus and cannot be understood from traditional synchronization consideration of passive oscillatory systems. To understand this anticipatory phenomena, we consider oscillators built from excitable systems with the addition of an adaptive dynamics. With such systems, well-timed post-stimulus responses similar to those from experiments can be obtained. Furthermore, a well-known model of working memory is shown to possess similar anticipatory dynamics when the adaptive mechanism is identified with synaptic facilitation. The last finding suggests that this type of oscillator can be common in neuronal systems with plasticity.

  4. Adaptive synchronization and anticipatory dynamical systems.

    PubMed

    Yang, Ying-Jen; Chen, Chun-Chung; Lai, Pik-Yin; Chan, C K

    2015-09-01

    Many biological systems can sense periodical variations in a stimulus input and produce well-timed, anticipatory responses after the input is removed. Such systems show memory effects for retaining timing information in the stimulus and cannot be understood from traditional synchronization consideration of passive oscillatory systems. To understand this anticipatory phenomena, we consider oscillators built from excitable systems with the addition of an adaptive dynamics. With such systems, well-timed post-stimulus responses similar to those from experiments can be obtained. Furthermore, a well-known model of working memory is shown to possess similar anticipatory dynamics when the adaptive mechanism is identified with synaptic facilitation. The last finding suggests that this type of oscillator can be common in neuronal systems with plasticity.

  5. The influence of an uncertain force environment on reshaping trial-to-trial motor variability.

    PubMed

    Izawa, Jun; Yoshioka, Toshinori; Osu, Rieko

    2014-09-10

    Motor memory is updated to generate ideal movements in a novel environment. When the environment changes every trial randomly, how does the brain incorporate this uncertainty into motor memory? To investigate how the brain adapts to an uncertain environment, we considered a reach adaptation protocol where individuals practiced moving in a force field where a noise was injected. After they had adapted, we measured the trial-to-trial variability in the temporal profiles of the produced hand force. We found that the motor variability was significantly magnified by the adaptation to the random force field. Temporal profiles of the motor variance were significantly dissociable between two different types of random force fields experienced. A model-based analysis suggests that the variability is generated by noise in the gains of the internal model. It further suggests that the trial-to-trial motor variability magnified by the adaptation in a random force field is generated by the uncertainty of the internal model formed in the brain as a result of the adaptation.

  6. Will working memory training generalize to improve off-task behavior in children with attention-deficit/hyperactivity disorder?

    PubMed

    Green, Chloe T; Long, Debra L; Green, David; Iosif, Ana-Maria; Dixon, J Faye; Miller, Meghan R; Fassbender, Catherine; Schweitzer, Julie B

    2012-07-01

    Computerized working memory and executive function training programs designed to target specific impairments in executive functioning are becoming increasingly available, yet how well these programs generalize to improve functional deficits in disorders, such as attention-deficit/hyperactivity disorder (ADHD), beyond the training context is not well-established. The aim of this study was to examine the extent to which working memory (WM) training in children with ADHD would diminish a core dysfunctional behavior associated with the disorder, "off-task" behavior during academic task performance. The effect of computerized WM training (adaptive) was compared to a placebo condition (nonadaptive) in a randomized, double-blind, placebo-controlled design in 26 children (18 males; age, 7 to 14 years old) diagnosed with ADHD. Participants completed the training in approximately 25 sessions. The Restricted Academic Situations Task (RAST) observational system was used to assess aspects of off-task behavior during the completion of an academic task. Traditional measures of ADHD symptoms (Conners' Parent Rating Scale) and WM ability (standardized WM tests) were also collected. WM training led to significant reductions in off-task ADHD-associated behavior on the RAST system and improvement on WM tests. There were no significant differences between groups in improvement on parent rating scales. Findings lend insight into the generalizability of the effects of WM training and the relation between deficits in WM and off-task behavioral components of ADHD. These preliminary data suggest WM training may provide a mechanism for indirectly altering academic performance in children with ADHD.

  7. The Aging Well through Interaction and Scientific Education (AgeWISE) Program.

    PubMed

    O'Connor, Maureen K; Kraft, Malissa L; Daley, Ryan; Sugarman, Michael A; Clark, Erika L; Scoglio, Arielle A J; Shirk, Steven D

    2017-12-08

    We conducted a randomized controlled trial of the Aging Well through Interaction and Scientific Education (AgeWISE) program, a 12-week manualized cognitive rehabilitation program designed to provide psychoeducation to older adults about the aging brain, lifestyle factors associated with successful brain aging, and strategies to compensate for age related cognitive decline. Forty-nine cognitively intact participants ≥ 60 years old were randomly assigned to the AgeWISE program (n = 25) or a no-treatment control group (n = 24). Questionnaire data were collected prior to group assignment and post intervention. Two-factor repeated-measures analyses of covariance (ANCOVAs) were used to compare group outcomes. Upon completion, participants in the AgeWISE program reported increases in memory contentment and their sense of control in improving memory; no significant changes were observed in the control group. Surprisingly, participation in the group was not associated with significant changes in knowledge of memory aging, perception of memory ability, or greater use of strategies. The AgeWISE program was successfully implemented and increased participants' memory contentment and their sense of control in improving memory in advancing age. This study supports the use of AgeWISE to improve perspectives on healthy cognitive aging.

  8. Computers for the Disabled.

    ERIC Educational Resources Information Center

    Lazzaro, Joseph J.

    1993-01-01

    Describes adaptive technology for personal computers that accommodate disabled users and may require special equipment including hardware, memory, expansion slots, and ports. Highlights include vision aids, including speech synthesizers, magnification, braille, and optical character recognition (OCR); hearing adaptations; motor-impaired…

  9. Frequent Statement and Dereference Elimination for Imperative and Object-Oriented Distributed Programs

    PubMed Central

    El-Zawawy, Mohamed A.

    2014-01-01

    This paper introduces new approaches for the analysis of frequent statement and dereference elimination for imperative and object-oriented distributed programs running on parallel machines equipped with hierarchical memories. The paper uses languages whose address spaces are globally partitioned. Distributed programs allow defining data layout and threads writing to and reading from other thread memories. Three type systems (for imperative distributed programs) are the tools of the proposed techniques. The first type system defines for every program point a set of calculated (ready) statements and memory accesses. The second type system uses an enriched version of types of the first type system and determines which of the ready statements and memory accesses are used later in the program. The third type system uses the information gather so far to eliminate unnecessary statement computations and memory accesses (the analysis of frequent statement and dereference elimination). Extensions to these type systems are also presented to cover object-oriented distributed programs. Two advantages of our work over related work are the following. The hierarchical style of concurrent parallel computers is similar to the memory model used in this paper. In our approach, each analysis result is assigned a type derivation (serves as a correctness proof). PMID:24892098

  10. Adaptive LINE-P: An Adaptive Linear Energy Prediction Model for Wireless Sensor Network Nodes.

    PubMed

    Ahmed, Faisal; Tamberg, Gert; Le Moullec, Yannick; Annus, Paul

    2018-04-05

    In the context of wireless sensor networks, energy prediction models are increasingly useful tools that can facilitate the power management of the wireless sensor network (WSN) nodes. However, most of the existing models suffer from the so-called fixed weighting parameter, which limits their applicability when it comes to, e.g., solar energy harvesters with varying characteristics. Thus, in this article we propose the Adaptive LINE-P (all cases) model that calculates adaptive weighting parameters based on the stored energy profiles. Furthermore, we also present a profile compression method to reduce the memory requirements. To determine the performance of our proposed model, we have used real data for the solar and wind energy profiles. The simulation results show that our model achieves 90-94% accuracy and that the compressed method reduces memory overheads by 50% as compared to state-of-the-art models.

  11. Adaptive LINE-P: An Adaptive Linear Energy Prediction Model for Wireless Sensor Network Nodes

    PubMed Central

    Ahmed, Faisal

    2018-01-01

    In the context of wireless sensor networks, energy prediction models are increasingly useful tools that can facilitate the power management of the wireless sensor network (WSN) nodes. However, most of the existing models suffer from the so-called fixed weighting parameter, which limits their applicability when it comes to, e.g., solar energy harvesters with varying characteristics. Thus, in this article we propose the Adaptive LINE-P (all cases) model that calculates adaptive weighting parameters based on the stored energy profiles. Furthermore, we also present a profile compression method to reduce the memory requirements. To determine the performance of our proposed model, we have used real data for the solar and wind energy profiles. The simulation results show that our model achieves 90–94% accuracy and that the compressed method reduces memory overheads by 50% as compared to state-of-the-art models. PMID:29621169

  12. Adaptive memory: the survival-processing memory advantage is not due to negativity or mortality salience.

    PubMed

    Bell, Raoul; Röer, Jan P; Buchner, Axel

    2013-05-01

    Recent research has highlighted the adaptive function of memory by showing that imagining being stranded in the grasslands without any survival material and rating words according to their survival value in this situation leads to exceptionally good memory for these words. Studies examining the role of emotions in causing the survival-processing memory advantage have been inconclusive, but some studies have suggested that the effect might be due to negativity or mortality salience. In Experiments 1 and 2, we compared the survival scenario to a control scenario that implied imagining a hopeless situation (floating in outer space with dwindling oxygen supplies) in which only suicide can avoid the agony of choking to death. Although this scenario was perceived as being more negative than the survival scenario, the survival-processing memory advantage persisted. In Experiment 3, thinking about the relevance of words for survival led to better memory for these words than did thinking about the relevance of words for death. This survival advantage was found for concrete, but not for abstract, words. The latter finding is consistent with the assumption that the survival instructions encourage participants to think about many different potential uses of items to aid survival, which may be a particularly efficient form of elaborate encoding. Together, the results suggest that thinking about death is much less effective in promoting recall than is thinking about survival. Therefore, the survival-processing memory advantage cannot be satisfactorily explained by negativity or mortality salience.

  13. Confidence and memory: assessing positive and negative correlations.

    PubMed

    Roediger, Henry L; DeSoto, K Andrew

    2014-01-01

    The capacity to learn and remember surely evolved to help animals solve problems in their quest to reproduce and survive. In humans we assume that metacognitive processes also evolved, so that we know when to trust what we remember (i.e., when we have high confidence in our memories) and when not to (when we have low confidence). However this latter feature has been questioned by researchers, with some finding a high correlation between confidence and accuracy in reports from memory and others finding little to no correlation. In two experiments we report a recognition memory paradigm that, using the same materials (categorised lists), permits the study of positive correlations, zero correlations, and negative correlations between confidence and accuracy within the same procedure. We had subjects study words from semantic categories with the five items most frequently produced in norms omitted from the list; later, subjects were given an old/new recognition test and made confidence ratings on their judgements. Although the correlation between confidence and accuracy for studied items was generally positive, the correlation for the five omitted items was negative in some methods of analysis. We pinpoint the similarity between lures and targets as creating inversions between confidence and accuracy in memory. We argue that, while confidence is generally a useful indicant of accuracy in reports from memory, in certain environmental circumstances even adaptive processes can foster illusions of memory. Thus understanding memory illusions is similar to understanding perceptual illusions: Processes that are usually adaptive can go awry under certain circumstances.

  14. Effects of a Memory and Visual-Motor Integration Program for Older Adults Based on Self-Efficacy Theory.

    PubMed

    Kim, Eun Hwi; Suh, Soon Rim

    2017-06-01

    This study was conducted to verify the effects of a memory and visual-motor integration program for older adults based on self-efficacy theory. A non-equivalent control group pretest-posttest design was implemented in this quasi-experimental study. The participants were 62 older adults from senior centers and older adult welfare facilities in D and G city (Experimental group=30, Control group=32). The experimental group took part in a 12-session memory and visual-motor integration program over 6 weeks. Data regarding memory self-efficacy, memory, visual-motor integration, and depression were collected from July to October of 2014 and analyzed with independent t-test and Mann-Whitney U test using PASW Statistics (SPSS) 18.0 to determine the effects of the interventions. Memory self-efficacy (t=2.20, p=.031), memory (Z=-2.92, p=.004), and visual-motor integration (Z=-2.49, p=.013) increased significantly in the experimental group as compared to the control group. However, depression (Z=-0.90, p=.367) did not decrease significantly. This program is effective for increasing memory, visual-motor integration, and memory self-efficacy in older adults. Therefore, it can be used to improve cognition and prevent dementia in older adults. © 2017 Korean Society of Nursing Science

  15. Virtual reality-based prospective memory training program for people with acquired brain injury.

    PubMed

    Yip, Ben C B; Man, David W K

    2013-01-01

    Acquired brain injuries (ABI) may display cognitive impairments and lead to long-term disabilities including prospective memory (PM) failure. Prospective memory serves to remember to execute an intended action in the future. PM problems would be a challenge to an ABI patient's successful community reintegration. While retrospective memory (RM) has been extensively studied, treatment programs for prospective memory are rarely reported. The development of a treatment program for PM, which is considered timely, can be cost-effective and appropriate to the patient's environment. A 12-session virtual reality (VR)-based cognitive rehabilitation program was developed using everyday PM activities as training content. 37 subjects were recruited to participate in a pretest-posttest control experimental study to evaluate its treatment effectiveness. Results suggest that significantly better changes were seen in both VR-based and real-life PM outcome measures, related cognitive attributes such as frontal lobe functions and semantic fluency. VR-based training may be well accepted by ABI patients as encouraging improvement has been shown. Large-scale studies of a virtual reality-based prospective memory (VRPM) training program are indicated.

  16. The Memory Fitness Program: Cognitive Effects of a Healthy Aging Intervention

    PubMed Central

    Miller, Karen J.; Siddarth, Prabha; Gaines, Jean M.; Parrish, John M.; Ercoli, Linda M.; Marx, Katherine; Ronch, Judah; Pilgram, Barbara; Burke, Kasey; Barczak, Nancy; Babcock, Bridget; Small, Gary W.

    2014-01-01

    Context Age-related memory decline affects a large proportion of older adults. Cognitive training, physical exercise, and other lifestyle habits may help to minimize self-perception of memory loss and a decline in objective memory performance. Objective The purpose of this study was to determine whether a 6-week educational program on memory training, physical activity, stress reduction, and healthy diet led to improved memory performance in older adults. Design A convenience sample of 115 participants (mean age: 80.9 [SD: 6.0 years]) was recruited from two continuing care retirement communities. The intervention consisted of 60-minute classes held twice weekly with 15–20 participants per class. Testing of both objective and subjective cognitive performance occurred at baseline, preintervention, and postintervention. Objective cognitive measures evaluated changes in five domains: immediate verbal memory, delayed verbal memory, retention of verbal information, memory recognition, and verbal fluency. A standardized metamemory instrument assessed four domains of memory self-awareness: frequency and severity of forgetting, retrospective functioning, and mnemonics use. Results The intervention program resulted in significant improvements on objective measures of memory, including recognition of word pairs (t[114] = 3.62, p < 0.001) and retention of verbal information from list learning (t[114] = 2.98, p < 0.01). No improvement was found for verbal fluency. Regarding subjective memory measures, the retrospective functioning score increased significantly following the intervention (t[114] = 4.54, p < 0.0001), indicating perception of a better memory. Conclusions These findings indicate that a 6-week healthy lifestyle program can improve both encoding and recalling of new verbal information, as well as self-perception of memory ability in older adults residing in continuing care retirement communities. PMID:21765343

  17. Working Memory Training for Children with Cochlear Implants: A Pilot Study

    ERIC Educational Resources Information Center

    Kronenberger, William G.; Pisoni, David B.; Henning, Shirley C.; Colson, Bethany G.; Hazzard, Lindsey M.

    2011-01-01

    Purpose: This study investigated the feasibility and efficacy of a working memory training program for improving memory and language skills in a sample of 9 children who are deaf (age 7-15 years) with cochlear implants (CIs). Method: All children completed the Cogmed Working Memory Training program on a home computer over a 5-week period.…

  18. Obstacle avoidance locomotor tasks: adaptation, memory and skill transfer.

    PubMed

    Kloter, Evelyne; Dietz, Volker

    2012-05-01

    The aim of this study was to explore the neural basis of adaptation, memory and skill transfer during human stepping over obstacles. Whilst walking on a treadmill, subjects had to perform uni- and bilateral obstacle steps. Acoustic feedback information about foot clearance was provided. Non-noxious electrical stimuli were applied to the right tibial nerve during the mid-stance phase of the right leg, i.e. 'prior' to the right or 'during' the left leg swing over the obstacle. The electromyogram (EMG) responses evoked by these stimuli in arm and leg muscles are known to reflect the neural coordination during normal and obstacle steps. The leading and trailing legs rapidly adapted foot clearance during obstacle steps with small further changes when the same obstacle condition was repeated. This adaptation was associated with a corresponding decrease in arm and leg muscle reflex EMG responses. Arm (but not leg) muscle EMG responses were greater when the stimulus was applied 'during' obstacle crossing by the left leg leading compared with stimulation 'prior' to right leg swing over the obstacle. A corresponding difference existed in arm muscle background EMG. The results indicate that, firstly, the somatosensory information gained by the performance and adaptation of uni- and bilateral obstacle stepping becomes transferred to the trailing leg in a context-specific manner. Secondly, EMG activity in arm and leg muscles parallels biomechanical adaptation of foot clearance. Thirdly, a consistently high EMG activity in the arm muscles during swing over the obstacle is required for equilibrium control. Thus, such a precision locomotor task is achieved by a context-specific, coordinated activation of arm and leg muscles for performance and equilibrium control that includes adaptation, memory and skill transfer. © 2012 The Authors. European Journal of Neuroscience © 2012 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  19. Adaptability to Changes in Temporal Structure Is Fornix-Dependent

    ERIC Educational Resources Information Center

    Kwok, Sze Chai; Mitchell, Anna S.; Buckley, Mark J.

    2015-01-01

    Recognition memory deficits, even after short delays, are sometimes observed following hippocampal damage. One hypothesis links the hippocampus with processes in updating contextual memory representation. Here, we used fornix transection, which partially disconnects the hippocampal system, and compares the performance of fornix-transected monkeys…

  20. Adaptability to Changes Intemporal Structure Is Fornix-Dependent

    ERIC Educational Resources Information Center

    Kwok, Sze Chai; Mitchell, Anna S.; Buckley, Mark J.

    2015-01-01

    Recognition memory deficits, even after short delays, are sometimes observed following hippocampal damage. One hypothesis links the hippocampus with processes in updating contextual memory representation. Here, we used fornix transection, which partially disconnects the hippocampal system, and compares the performance of fornix-transected monkeys…

  1. Adaptive memory: young children show enhanced retention of fitness-related information.

    PubMed

    Aslan, Alp; Bäuml, Karl-Heinz T

    2012-01-01

    Evolutionary psychologists propose that human cognition evolved through natural selection to solve adaptive problems related to survival and reproduction, with its ultimate function being the enhancement of reproductive fitness. Following this proposal and the evolutionary-developmental view that ancestral selection pressures operated not only on reproductive adults, but also on pre-reproductive children, the present study examined whether young children show superior memory for information that is processed in terms of its survival value. In two experiments, we found such survival processing to enhance retention in 4- to 10-year-old children, relative to various control conditions that also required deep, meaningful processing but were not related to survival. These results suggest that, already in very young children, survival processing is a special and extraordinarily effective form of memory encoding. The results support the functional-evolutionary proposal that young children's memory is "tuned" to process and retain fitness-related information. Copyright © 2011 Elsevier B.V. All rights reserved.

  2. Not explicit but implicit memory is influenced by individual perception style

    PubMed Central

    Tsushima, Yoshiaki

    2018-01-01

    Not only explicit but also implicit memory has considerable influence on our daily life. However, it is still unclear whether explicit and implicit memories are sensitive to individual differences. Here, we investigated how individual perception style (global or local) correlates with implicit and explicit memory. As a result, we found that not explicit but implicit memory was affected by the perception style: local perception style people more greatly used implicit memory than global perception style people. These results help us to make the new effective application adapting to individual perception style and understand some clinical symptoms such as autistic spectrum disorder. Furthermore, this finding might give us new insight of memory involving consciousness and unconsciousness as well as relationship between implicit/explicit memory and individual perception style. PMID:29370212

  3. Not explicit but implicit memory is influenced by individual perception style.

    PubMed

    Hine, Kyoko; Tsushima, Yoshiaki

    2018-01-01

    Not only explicit but also implicit memory has considerable influence on our daily life. However, it is still unclear whether explicit and implicit memories are sensitive to individual differences. Here, we investigated how individual perception style (global or local) correlates with implicit and explicit memory. As a result, we found that not explicit but implicit memory was affected by the perception style: local perception style people more greatly used implicit memory than global perception style people. These results help us to make the new effective application adapting to individual perception style and understand some clinical symptoms such as autistic spectrum disorder. Furthermore, this finding might give us new insight of memory involving consciousness and unconsciousness as well as relationship between implicit/explicit memory and individual perception style.

  4. The neurobiological bases of memory formation: from physiological conditions to psychopathology.

    PubMed

    Bisaz, Reto; Travaglia, Alessio; Alberini, Cristina M

    2014-01-01

    The formation of long-term memories is a function necessary for an adaptive survival. In the last two decades, great progress has been made in the understanding of the biological bases of memory formation. The identification of mechanisms necessary for memory consolidation and reconsolidation, the processes by which the posttraining and postretrieval fragile memory traces become stronger and insensitive to disruption, has indicated new approaches for investigating and treating psychopathologies. In this review, we will discuss some key biological mechanisms found to be critical for memory consolidation and strengthening, the role/s and mechanisms of memory reconsolidation, and how the interference with consolidation and/or reconsolidation can modulate the retention and/or storage of memories that are linked to psychopathologies. © 2014 S. Karger AG, Basel.

  5. CD4 T-Cell Memory Generation and Maintenance

    PubMed Central

    Gasper, David J.; Tejera, Melba Marie; Suresh, M.

    2014-01-01

    Immunologic memory is the adaptive immune system's powerful ability to remember a previous antigen encounter and react with accelerated vigor upon antigen re-exposure. It provides durable protection against reinfection with pathogens and is the foundation for vaccine-induced immunity. Unlike the relatively restricted immunologic purview of memory B cells and CD8 T cells, the field of CD4 T-cell memory must account for multiple distinct lineages with diverse effector functions, the issue of lineage commitment and plasticity, and the variable distribution of memory cells within each lineage. Here, we discuss the evidence for lineage-specific CD4 T-cell memory and summarize the known factors contributing to memory-cell generation, plasticity, and long-term maintenance. PMID:24940912

  6. Bermuda Triangle: a subsystem of the 168/E interfacing scheme used by Group B at SLAC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oxoby, G.J.; Levinson, L.J.; Trang, Q.H.

    1979-12-01

    The Bermuda Triangle system is a method of interfacing several 168/E microprocessors to a central system for control of the processors and overlaying their memories. The system is a three-way interface with I/O ports to a large buffer memory, a PDP11 Unibus and a bus to the 168/E processors. Data may be transferred bidirectionally between any two ports. Two Bermuda Triangles are used, one for the program memory and one for the data memory. The program buffer memory stores the overlay programs for the 168/E, and the data buffer memory, the incoming raw data, the data portion of the overlays,more » and the outgoing processed events. This buffering is necessary since the memories of 168/E microprocessors are small compared to the main program and the amount of data being processed. The link to the computer facility is via a Unibus to IBM channel interface. A PDP11/04 controls the data flow. 7 figures, 4 tables. (RWR)« less

  7. Guidance system operations plan for manned CSM earth orbital and lunar missions using program COLOSSUS 3. Section 7: Erasable memory programs

    NASA Technical Reports Server (NTRS)

    Hamilton, M. H.

    1972-01-01

    Erasable-memory programs designed for guidance computers used in command and lunar modules are presented. The purpose, functional description, assumptions, restrictions, and imitations are given for each program.

  8. Apollo guidance, navigation and control: Guidance system operations plans for manned LM earth orbital and lunar missions using Program COLOSSUS 3. Section 7: Erasable memory programs

    NASA Technical Reports Server (NTRS)

    Hamilton, M. H.

    1972-01-01

    Erasable-memory programs (EMPs) designed for the guidance computers used in the command (CMC) and lunar modules (LGC) are described. CMC programs are designated COLOSSUS 3, and the associated EMPs are identified by a three-digit number beginning with 5. LGC programs are designated LUMINARY 1E, and the associated EMPs are identified, with one exception, by a three-digit number beginning with 1. The exception is EMP 99. The EMPs vary in complexity from a simple flagbit setting to a long and intricate logical structure. They all, however, cause the computer to behave in a way not intended in the original design of the programs; they accomplish this off-nominal behavior by some alteration of erasable memory to interface with existing fixed-memory programs to effect a desired result.

  9. Automatic Generation of Directive-Based Parallel Programs for Shared Memory Parallel Systems

    NASA Technical Reports Server (NTRS)

    Jin, Hao-Qiang; Yan, Jerry; Frumkin, Michael

    2000-01-01

    The shared-memory programming model is a very effective way to achieve parallelism on shared memory parallel computers. As great progress was made in hardware and software technologies, performance of parallel programs with compiler directives has demonstrated large improvement. The introduction of OpenMP directives, the industrial standard for shared-memory programming, has minimized the issue of portability. Due to its ease of programming and its good performance, the technique has become very popular. In this study, we have extended CAPTools, a computer-aided parallelization toolkit, to automatically generate directive-based, OpenMP, parallel programs. We outline techniques used in the implementation of the tool and present test results on the NAS parallel benchmarks and ARC3D, a CFD application. This work demonstrates the great potential of using computer-aided tools to quickly port parallel programs and also achieve good performance.

  10. The efficacy of a multifactorial memory training in older adults living in residential care settings.

    PubMed

    Vranić, Andrea; Španić, Ana Marija; Carretti, Barbara; Borella, Erika

    2013-11-01

    Several studies have shown an increase in memory performance after teaching mnemonic techniques to older participants. However, transfer effects to non-trained tasks are generally either very small, or not found. The present study investigates the efficacy of a multifactorial memory training program for older adults living in a residential care center. The program combines teaching of memory strategies with activities based on metacognitive (metamemory) and motivational aspects. Specific training-related gains in the Immediate list recall task (criterion task), as well as transfer effects on measures of short-term memory, long-term memory, working memory, motivational (need for cognition), and metacognitive aspects (subjective measure of one's memory) were examined. Maintenance of training benefits was assessed after seven months. Fifty-one older adults living in a residential care center, with no cognitive impairments, participated in the study. Participants were randomly assigned to two programs: the experimental group attended the training program, while the active control group was involved in a program in which different psychological issues were discussed. A benefit in the criterion task and substantial general transfer effects were found for the trained group, but not for the active control, and they were maintained at the seven months follow-up. Our results suggest that training procedures, which combine teaching of strategies with metacognitive-motivational aspects, can improve cognitive functioning and attitude toward cognitive activities in older adults.

  11. Evaluating spatial memory function in mice: a within-subjects comparison between the water maze test and its adaptation to dry land.

    PubMed

    Llano Lopez, L; Hauser, J; Feldon, J; Gargiulo, P A; Yee, B K

    2010-05-01

    The Morris water maze (WM) is a common spatial memory test in rats. It has been adapted for evaluating genetic manipulations in mice. One major acknowledged problem of this cross-species translation is floating. We investigated here in mice the feasibility and practicality of an alternative paradigm-the cheeseboard (CB), which is a dry version of the WM, in a within-subject design allowing direct comparison with the conventional WM. Under identical task demands (reference or working memory), mice learned in the CB as efficiently as in the WM. Furthermore, individual differences in learning rate correlated between the two reference memory tests conducted separately in the two mazes. However, no such correlation was found with respect to reference memory retention or working memory performance. This study demonstrated that the CB is an effective alternative to the WM as spatial cognition test. Additional tests in the CB confirmed that the mice relied on extra maze cues in their spatial search. We would recommend the CB as a valuable addition to, rather than a replacement of the WM in phenotyping transgenic mice, because the two apparatus might diverge in the ability to detect individual differences in various domains of mnemonic functions.

  12. Preface

    NASA Astrophysics Data System (ADS)

    Lexcellent, C.; Patoor, E.

    2004-06-01

    This international conference was held between the 18 and the 23th may 2003, in the "Villa Clythia" belonging to the CAES of the french "Comité National de la Recherche Scientifique CNRS" at Fréjus (France). The scope of this EMMC7 conference was about the use of smart materials which permits the conception of some adaptive systems for industrial applications. A special attention was devoted to active and passive controls of damping in structures. The use of this new class of materials (shape memory alloys, piezoelectric ceramics, TRIP steels, ferromagnetic shape memory alloys, ...) implies the development of numerical tools for computer assisted design process. Complexity of the involved material behaviour requires a deep understanding of strain mechanisms (martensitic phase transformation, reorientation process of domains), the use of accurate experimental techniques and advanced modelling approaches at various scale (micro, meso, macroscopic). In this purpose, it is necessary to use some coupled calculations connecting different fields of physics such as thermal, electromagnetism, electricity and mechanics of materials ones. The conference topic gave the opportunity of fruitful discussions between the mechanics of materials communauty and the specialists of damping or passive control. The scientific program contains nine oral sessions and one poster session. - Experimental characterization of the shape memory alloys thermomechanical behavior (two sessions) - Modeling of the shape memory alloy thermomechanical behavior (two sessions) - Ferromagnetic shape memory alloys behavior (one session) - Piezoelectric ceramics behavior (one session) - Transformation induced plasticity steel behavior (one session) - Hybrid structures including smart materials as sensor or actuator (one session) - Adaptive structure for vibration control (one session) - Poster session. The conference programm contains 50 lectures. 57 scientists were present and come from 14 different countries: 20 from France, 7 from Germany, 6 from Italy, 4 from Russia, 4 from Finland and 5 from USA ... This scientific programm allows all the participants interesting exchanges on "the state of art" about smart materials and adaptive systems. In the aim of its publication in the Proceedings of the EMMC7 Conference (EDP Sciences "Journal de Physique IV") each paper was expertised by two reviewers belonging to the International Scientific Committee and also other specialists. On that occasion, we will thank them for their very important contribution of the scientific level quality of the Proceedings. We will also thank: the sponsors of the Conference: Délégation Générale aux Armements (DGA), le Ministère de la Recherche, l'Université de Metz, l'ENSAM, le CNRS, l'Association Française de Mécanique et l'Institut des Microtechniques de Franche-Comté, the members of the organizing committee, the MECAMAT committee for trusting us, EDP Sciences for the Proceedings, The "Villa Clythia" team for his nice help in the material organization, ... and all the participants. The Co-chairmen Christian LEXCELLENT et Étienne PATOOR

  13. The neurobiology of the human memory.

    PubMed

    Fietta, Pierluigi; Fietta, Pieranna

    2011-01-01

    Memory can be defined as the ability to acquire, process, store, and retrieve information. Memory is indispensable for learning, adaptation, and survival of every living organism. In humans, the remembering process has acquired great flexibility and complexity, reaching close links with other mental functions, such as thinking and emotions. Changes in synaptic connectivity and interactions among multiple neural networks provide the neurobiological substrates for memory encoding, retention, and consolidation. Memory may be categorized as short-term and long-term memory (according to the storage temporal duration), as implicit and explicit memory (with respect to the consciousness of remembering), as declarative (knowing that [fact]) and procedural (knowing how [skill]) memory, or as sensory (echoic, iconic and haptil), semantic, and episodic memory (according to the various remembering domains). Significant advances have been obtained in understanding memory neurobiology, but much remains to be learned in its cognitive, psychological, and phenomenological aspects.

  14. Declarative memory impairments following a military combat course: parallel neuropsychological and biochemical investigations.

    PubMed

    Piérard, Christophe; Béracochéa, Daniel; Pérès, Michel; Jouanin, Jean-Claude; Liscia, Pierrette; Satabin, Pascale; Martin, Serge; Testylier, Guy; Guézennec, Charles Yannick; Beaumont, Maurice

    2004-01-01

    The aim of this study was to investigate the impact on several forms of memory and metabolism of a 5-day combat course including heavy and continuous physical activities and sleep deprivation. Mnemonic performance and biochemical parameters of 21 male soldiers were examined before and at the end of the course. Our results showed that short-term memory (memory span, visual memory, audiovisual association) and long-term memory were significantly impaired, whereas short-term spatial memory and planning tasks were spared. Parallel biochemical analysis showed an adaptation of energy metabolism. The observed decrease in glycaemia may be partly responsible for the long-term memory impairment, whereas the decreases in plasma cholinesterases and choline may be involved in the short-term memory deterioration. However, there are also many other reasons for the observed memory changes, one of them being chronic sleep deprivation. Copyright 2004 S. Karger AG, Basel

  15. Adaptive constructive processes and memory accuracy: Consequences of counterfactual simulations in young and older adults

    PubMed Central

    Gerlach, Kathy D.; Dornblaser, David W.; Schacter, Daniel L.

    2013-01-01

    People frequently engage in counterfactual thinking: mental simulations of alternative outcomes to past events. Like simulations of future events, counterfactual simulations serve adaptive functions. However, future simulation can also result in various kinds of distortions and has thus been characterized as an adaptive constructive process. Here we approach counterfactual thinking as such and examine whether it can distort memory for actual events. In Experiments 1a/b, young and older adults imagined themselves experiencing different scenarios. Participants then imagined the same scenario again, engaged in no further simulation of a scenario, or imagined a counterfactual outcome. On a subsequent recognition test, participants were more likely to make false alarms to counterfactual lures than novel scenarios. Older adults were more prone to these memory errors than younger adults. In Experiment 2, younger and older participants selected and performed different actions, then recalled performing some of those actions, imagined performing alternative actions to some of the selected actions, and did not imagine others. Participants, especially older adults, were more likely to falsely remember counterfactual actions than novel actions as previously performed. The findings suggest that counterfactual thinking can cause source confusion based on internally generated misinformation, consistent with its characterization as an adaptive constructive process. PMID:23560477

  16. Adaptive constructive processes and memory accuracy: consequences of counterfactual simulations in young and older adults.

    PubMed

    Gerlach, Kathy D; Dornblaser, David W; Schacter, Daniel L

    2014-01-01

    People frequently engage in counterfactual thinking: mental simulations of alternative outcomes to past events. Like simulations of future events, counterfactual simulations serve adaptive functions. However, future simulation can also result in various kinds of distortions and has thus been characterised as an adaptive constructive process. Here we approach counterfactual thinking as such and examine whether it can distort memory for actual events. In Experiments 1a/b young and older adults imagined themselves experiencing different scenarios. Participants then imagined the same scenario again, engaged in no further simulation of a scenario, or imagined a counterfactual outcome. On a subsequent recognition test participants were more likely to make false alarms to counterfactual lures than novel scenarios. Older adults were more prone to these memory errors than younger adults. In Experiment 2 younger and older participants selected and performed different actions, then recalled performing some of those actions, imagined performing alternative actions to some of the selected actions, and did not imagine others. Participants, especially older adults, were more likely to falsely remember counterfactual actions than novel actions as previously performed. The findings suggest that counterfactual thinking can cause source confusion based on internally generated misinformation, consistent with its characterisation as an adaptive constructive process.

  17. An Investigation of Unified Memory Access Performance in CUDA

    PubMed Central

    Landaverde, Raphael; Zhang, Tiansheng; Coskun, Ayse K.; Herbordt, Martin

    2015-01-01

    Managing memory between the CPU and GPU is a major challenge in GPU computing. A programming model, Unified Memory Access (UMA), has been recently introduced by Nvidia to simplify the complexities of memory management while claiming good overall performance. In this paper, we investigate this programming model and evaluate its performance and programming model simplifications based on our experimental results. We find that beyond on-demand data transfers to the CPU, the GPU is also able to request subsets of data it requires on demand. This feature allows UMA to outperform full data transfer methods for certain parallel applications and small data sizes. We also find, however, that for the majority of applications and memory access patterns, the performance overheads associated with UMA are significant, while the simplifications to the programming model restrict flexibility for adding future optimizations. PMID:26594668

  18. Residual stresses in injection molded shape memory polymer parts

    NASA Astrophysics Data System (ADS)

    Katmer, Sukran; Esen, Huseyin; Karatas, Cetin

    2016-03-01

    Shape memory polymers (SMPs) are materials which have shape memory effect (SME). SME is a property which has the ability to change shape when induced by a stimulator such as temperature, moisture, pH, electric current, magnetic field, light, etc. A process, known as programming, is applied to SMP parts in order to alter them from their permanent shape to their temporary shape. In this study we investigated effects of injection molding and programming processes on residual stresses in molded thermoplastic polyurethane shape memory polymer, experimentally. The residual stresses were measured by layer removal method. The study shows that injection molding and programming process conditions have significantly influence on residual stresses in molded shape memory polyurethane parts.

  19. Performance Evaluation of Remote Memory Access (RMA) Programming on Shared Memory Parallel Computers

    NASA Technical Reports Server (NTRS)

    Jin, Hao-Qiang; Jost, Gabriele; Biegel, Bryan A. (Technical Monitor)

    2002-01-01

    The purpose of this study is to evaluate the feasibility of remote memory access (RMA) programming on shared memory parallel computers. We discuss different RMA based implementations of selected CFD application benchmark kernels and compare them to corresponding message passing based codes. For the message-passing implementation we use MPI point-to-point and global communication routines. For the RMA based approach we consider two different libraries supporting this programming model. One is a shared memory parallelization library (SMPlib) developed at NASA Ames, the other is the MPI-2 extensions to the MPI Standard. We give timing comparisons for the different implementation strategies and discuss the performance.

  20. Influence of diagnosis threat and illness cognitions on the cognitive performance of people with acquired brain injury.

    PubMed

    Fresson, Megan; Dardenne, Benoit; Meulemans, Thierry

    2018-02-27

    Illness cognitions - cognitive representations of illness - have been found to influence health outcomes in chronic diseases: more adaptive illness cognitions generally lead to better outcomes. Concomitantly, diagnosis threat (DT) is a phenomenon whereby participants with acquired brain injury (ABI) underperform on neuropsychological tasks due to stereotype activation. This randomised study examined the impact of illness cognitions and DT on cognitive performance. People with ABI completed the Illness Cognitions Questionnaire and were then exposed to either a DT condition or a reduced DT condition (in which stereotype cues were reduced). They then completed memory and attentional tasks. Control participants performed only the tasks under one of the two conditions. Under the reduced DT condition, higher adaptive illness cognitions were associated with better memory and attentional performance. However, the DT condition diminished memory (but not attentional) performance in participants with a high level of adaptive illness cognitions, often leading to performance at the pathological level. This study confirms the detrimental impact of DT in people with ABI and highlights the necessity for clinicians to consider psychosocial influences when assessing and treating this population.

  1. Soar: A Unified Theory of Cognition?

    ERIC Educational Resources Information Center

    Waldrop, M. Mitchell

    1988-01-01

    Describes an artificial intelligence system known as SOAR that approximates a theory of human cognition. Discusses cognition as problem solving, working memory, long term memory, autonomy and adaptability, and learning from experience as they relate to artificial intelligence generally and to SOAR specifically. Highlights the status of the…

  2. Flexible Retrieval: When True Inferences Produce False Memories

    ERIC Educational Resources Information Center

    Carpenter, Alexis C.; Schacter, Daniel L.

    2017-01-01

    Episodic memory involves flexible retrieval processes that allow us to link together distinct episodes, make novel inferences across overlapping events, and recombine elements of past experiences when imagining future events. However, the same flexible retrieval and recombination processes that underpin these adaptive functions may also leave…

  3. Long-Lasting Modifications of Saccadic Eye Movements Following Adaptation Induced in the Double-Step Target Paradigm

    ERIC Educational Resources Information Center

    Alahyane, Nadia; Pelisson, Denis

    2005-01-01

    The adaptation of saccadic eye movements to environmental changes occurring throughout life is a good model of motor learning and motor memory. Numerous studies have analyzed the behavioral properties and neural substrate of oculomotor learning in short-term saccadic adaptation protocols, but to our knowledge, none have tested the persistence of…

  4. Odor-Specific Habituation Arises from Interaction of Afferent Synaptic Adaptation and Intrinsic Synaptic Potentiation in Olfactory Cortex

    ERIC Educational Resources Information Center

    Linster, Christiane; Menon, Alka V.; Singh, Christopher Y.; Wilson, Donald A.

    2009-01-01

    Segmentation of target odorants from background odorants is a fundamental computational requirement for the olfactory system and is thought to be behaviorally mediated by olfactory habituation memory. Data from our laboratory have shown that odor-specific adaptation in piriform neurons, mediated at least partially by synaptic adaptation between…

  5. Spiral: Automated Computing for Linear Transforms

    NASA Astrophysics Data System (ADS)

    Püschel, Markus

    2010-09-01

    Writing fast software has become extraordinarily difficult. For optimal performance, programs and their underlying algorithms have to be adapted to take full advantage of the platform's parallelism, memory hierarchy, and available instruction set. To make things worse, the best implementations are often platform-dependent and platforms are constantly evolving, which quickly renders libraries obsolete. We present Spiral, a domain-specific program generation system for important functionality used in signal processing and communication including linear transforms, filters, and other functions. Spiral completely replaces the human programmer. For a desired function, Spiral generates alternative algorithms, optimizes them, compiles them into programs, and intelligently searches for the best match to the computing platform. The main idea behind Spiral is a mathematical, declarative, domain-specific framework to represent algorithms and the use of rewriting systems to generate and optimize algorithms at a high level of abstraction. Experimental results show that the code generated by Spiral competes with, and sometimes outperforms, the best available human-written code.

  6. Feasibility study of current pulse induced 2-bit/4-state multilevel programming in phase-change memory

    NASA Astrophysics Data System (ADS)

    Liu, Yan; Fan, Xi; Chen, Houpeng; Wang, Yueqing; Liu, Bo; Song, Zhitang; Feng, Songlin

    2017-08-01

    In this brief, multilevel data storage for phase-change memory (PCM) has attracted more attention in the memory market to implement high capacity memory system and reduce cost-per-bit. In this work, we present a universal programing method of SET stair-case current pulse in PCM cells, which can exploit the optimum programing scheme to achieve 2-bit/ 4state resistance-level with equal logarithm interval. SET stair-case waveform can be optimized by TCAD real time simulation to realize multilevel data storage efficiently in an arbitrary phase change material. Experimental results from 1 k-bit PCM test-chip have validated the proposed multilevel programing scheme. This multilevel programming scheme has improved the information storage density, robustness of resistance-level, energy efficient and avoiding process complexity.

  7. Multicomponent physical exercise with simultaneous cognitive training to enhance dual-task walking of older adults: a secondary analysis of a 6-month randomized controlled trial with 1-year follow-up.

    PubMed

    Eggenberger, Patrick; Theill, Nathan; Holenstein, Stefan; Schumacher, Vera; de Bruin, Eling D

    2015-01-01

    About one-third of people older than 65 years fall at least once a year. Physical exercise has been previously demonstrated to improve gait, enhance physical fitness, and prevent falls. Nonetheless, the addition of cognitive training components may potentially increase these effects, since cognitive impairment is related to gait irregularities and fall risk. We hypothesized that simultaneous cognitive-physical training would lead to greater improvements in dual-task (DT) gait compared to exclusive physical training. Elderly persons older than 70 years and without cognitive impairment were randomly assigned to the following groups: 1) virtual reality video game dancing (DANCE), 2) treadmill walking with simultaneous verbal memory training (MEMORY), or 3) treadmill walking (PHYS). Each program was complemented with strength and balance exercises. Two 1-hour training sessions per week over 6 months were applied. Gait variables, functional fitness (Short Physical Performance Battery, 6-minute walk), and fall frequencies were assessed at baseline, after 3 months and 6 months, and at 1-year follow-up. Multiple regression analyses with planned comparisons were carried out. Eighty-nine participants were randomized to three groups initially; 71 completed the training and 47 were available at 1-year follow-up. DANCE/MEMORY showed a significant advantage compared to PHYS in DT costs of step time variability at fast walking (P=0.044). Training-specific gait adaptations were found on comparing DANCE and MEMORY: DANCE reduced step time at fast walking (P=0.007) and MEMORY reduced gait variability in DT and DT costs at preferred walking speed (both trend P=0.062). Global linear time effects showed improved gait (P<0.05), functional fitness (P<0.05), and reduced fall frequency (-77%, P<0.001). Only single-task fast walking, gait variability at preferred walking speed, and Short Physical Performance Battery were reduced at follow-up (all P<0.05 or trend). Long-term multicomponent cognitive-physical and exclusive physical training programs demonstrated similar potential to counteract age-related decline in physical functioning.

  8. Multicomponent physical exercise with simultaneous cognitive training to enhance dual-task walking of older adults: a secondary analysis of a 6-month randomized controlled trial with 1-year follow-up

    PubMed Central

    Eggenberger, Patrick; Theill, Nathan; Holenstein, Stefan; Schumacher, Vera; de Bruin, Eling D

    2015-01-01

    Background About one-third of people older than 65 years fall at least once a year. Physical exercise has been previously demonstrated to improve gait, enhance physical fitness, and prevent falls. Nonetheless, the addition of cognitive training components may potentially increase these effects, since cognitive impairment is related to gait irregularities and fall risk. We hypothesized that simultaneous cognitive–physical training would lead to greater improvements in dual-task (DT) gait compared to exclusive physical training. Methods Elderly persons older than 70 years and without cognitive impairment were randomly assigned to the following groups: 1) virtual reality video game dancing (DANCE), 2) treadmill walking with simultaneous verbal memory training (MEMORY), or 3) treadmill walking (PHYS). Each program was complemented with strength and balance exercises. Two 1-hour training sessions per week over 6 months were applied. Gait variables, functional fitness (Short Physical Performance Battery, 6-minute walk), and fall frequencies were assessed at baseline, after 3 months and 6 months, and at 1-year follow-up. Multiple regression analyses with planned comparisons were carried out. Results Eighty-nine participants were randomized to three groups initially; 71 completed the training and 47 were available at 1-year follow-up. DANCE/MEMORY showed a significant advantage compared to PHYS in DT costs of step time variability at fast walking (P=0.044). Training-specific gait adaptations were found on comparing DANCE and MEMORY: DANCE reduced step time at fast walking (P=0.007) and MEMORY reduced gait variability in DT and DT costs at preferred walking speed (both trend P=0.062). Global linear time effects showed improved gait (P<0.05), functional fitness (P<0.05), and reduced fall frequency (−77%, P<0.001). Only single-task fast walking, gait variability at preferred walking speed, and Short Physical Performance Battery were reduced at follow-up (all P<0.05 or trend). Conclusion Long-term multicomponent cognitive–physical and exclusive physical training programs demonstrated similar potential to counteract age-related decline in physical functioning. PMID:26604719

  9. [Hypoxia and memory. Specific features of nootropic agents effects and their use].

    PubMed

    Voronina, T A

    2000-01-01

    Hypoxia and hypoxic adaptation are powerful factors of controlling memory and behavior processes. Acute hypoxia exerts a differential impact on different deficits of mnestic and cognitive functions. Instrumental reflexes of active and passive avoidance, negative learning, behavior with a change in the stereotype of learning are more greatly damaged. Memory with spatial and visual differentiation and their rearrangement change to a lesser extent and conditional reflexes are not deranged. In this contract, altitude hypoxic adaptation enhances information fixation and increases the degree and duration of retention of temporary relations. Nootropic agents with an antihypoxic action exert a marked effect on hypoxia-induced cognitive and memory disorders and the magnitude of this effect depends on the ration of proper nootropic to antihypoxic components in the spectrum of the drugs' pharmacological activity. The agents that combine a prevailing antiamnestic effect and a marked and moderate antihypoxic action (mexidole, nooglutil, pyracetam, beglymin, etc.) are most effective in eliminating different hypoxia-induced cognitive and memory disorders, nootropic drugs that have a pronounced antiamnestic activity (centrophenoxine, etc.) and no antihypoxic component also restore the main types of mnestic disorders after hypoxia, but to a lesser extent.

  10. Dyslexics’ faster decay of implicit memory for sounds and words is manifested in their shorter neural adaptation

    PubMed Central

    Jaffe-Dax, Sagi; Frenkel, Or; Ahissar, Merav

    2017-01-01

    Dyslexia is a prevalent reading disability whose underlying mechanisms are still disputed. We studied the neural mechanisms underlying dyslexia using a simple frequency-discrimination task. Though participants were asked to compare the two tones in each trial, implicit memory of previous trials affected their responses. We hypothesized that implicit memory decays faster among dyslexics. We tested this by increasing the temporal intervals between consecutive trials, and by measuring the behavioral impact and ERP responses from the auditory cortex. Dyslexics showed a faster decay of implicit memory effects on both measures, with similar time constants. Finally, faster decay of implicit memory also characterized the impact of sound regularities in benefitting dyslexics' oral reading rate. Their benefit decreased faster as a function of the time interval from the previous reading of the same non-word. We propose that dyslexics’ shorter neural adaptation paradoxically accounts for their longer reading times, since it reduces their temporal window of integration of past stimuli, resulting in noisier and less reliable predictions for both simple and complex stimuli. Less reliable predictions limit their acquisition of reading expertise. DOI: http://dx.doi.org/10.7554/eLife.20557.001 PMID:28115055

  11. A spin transfer torque magnetoresistance random access memory-based high-density and ultralow-power associative memory for fully data-adaptive nearest neighbor search with current-mode similarity evaluation and time-domain minimum searching

    NASA Astrophysics Data System (ADS)

    Ma, Yitao; Miura, Sadahiko; Honjo, Hiroaki; Ikeda, Shoji; Hanyu, Takahiro; Ohno, Hideo; Endoh, Tetsuo

    2017-04-01

    A high-density nonvolatile associative memory (NV-AM) based on spin transfer torque magnetoresistive random access memory (STT-MRAM), which achieves highly concurrent and ultralow-power nearest neighbor search with full adaptivity of the template data format, has been proposed and fabricated using the 90 nm CMOS/70 nm perpendicular-magnetic-tunnel-junction hybrid process. A truly compact current-mode circuitry is developed to realize flexibly controllable and high-parallel similarity evaluation, which makes the NV-AM adaptable to any dimensionality and component-bit of template data. A compact dual-stage time-domain minimum searching circuit is also developed, which can freely extend the system for more template data by connecting multiple NM-AM cores without additional circuits for integrated processing. Both the embedded STT-MRAM module and the computing circuit modules in this NV-AM chip are synchronously power-gated to completely eliminate standby power and maximally reduce operation power by only activating the currently accessed circuit blocks. The operations of a prototype chip at 40 MHz are demonstrated by measurement. The average operation power is only 130 µW, and the circuit density is less than 11 µm2/bit. Compared with the latest conventional works in both volatile and nonvolatile approaches, more than 31.3% circuit area reductions and 99.2% power improvements are achieved, respectively. Further power performance analyses are discussed, which verify the special superiority of the proposed NV-AM in low-power and large-memory-based VLSIs.

  12. The Family in Us: Family History, Family Identity and Self-Reproductive Adaptive Behavior.

    PubMed

    Ferring, Dieter

    2017-06-01

    This contribution is an essay about the notion of family identity reflecting shared significant experiences within a family system originating a set of signs used in social communication within and between families. Significant experiences are considered as experiences of events that have an immediate impact on the adaptation of the family in a given socio-ecological and cultural context at a given historical time. It is assumed that family history is stored in a shared "family memory" holding both implicit and explicit knowledge and exerting an influence on the behavior of each family member. This is described as transgenerational family memory being constituted of a system of meaningful signs. The crucial dimension underlying the logic of this essay are the ideas of adaptation as well as self-reproduction of systems.

  13. Comparison of Cognitive Change after Working Memory Training and Logic and Planning Training in Healthy Older Adults.

    PubMed

    Goghari, Vina M; Lawlor-Savage, Linette

    2017-01-01

    Recent attention has focused on the benefits of cognitive training in healthy adults. Many commercial cognitive training programs are available given the attraction of not only bettering one's cognitive capacity, but also potentially preventing age-related declines, which is of particular interest to older adults. The issue of whether cognitive training can improve performance within cognitive domains not trained (i.e., far transfer) is controversial, with meta-analyses of cognitive training both supporting and falsifying this claim. More support is present for the near transfer (i.e., transfer in cognitive domain trained) of cognitive training; however, not in all studies. To date, no studies have compared working memory training to training higher-level processes themselves, namely logic and planning. We studied 97 healthy older adults above the age of 65. Healthy older adults completed either an 8-week web-based cognitive training program on working memory or logic and planning. An additional no-training control group completed two assessments 8-weeks apart. Participants were assessed on cognitive measures of near and far transfer, including working memory, planning, reasoning, processing speed, verbal fluency, cognitive flexibility, and creativity. Participants improved on the trained tasks from the first day to last day of training. Bayesian analyses demonstrated no near or far transfer effects after cognitive training. These results support the conclusion that performance-adaptive computerized cognitive training may not enhance cognition in healthy older adults. Our lack of findings could be due to a variety of reasons, including studying a cohort of healthy older adults that were performing near their cognitive ceiling, employing a training protocol that was not sufficient to produce a change, or that no true findings exist. Research suggests numerous study factors that can moderate the results. In addition, the role of psychological variables, such as expectations and motivation to train, are critical in understanding the effects of cognitive training.

  14. A test of the adaptive specialization hypothesis: population differences in caching, memory, and the hippocampus in black-capped chickadees (Poecile atricapilla).

    PubMed

    Pravosudov, Vladimir V; Clayton, Nicola S

    2002-08-01

    To test the hypothesis that accurate cache recovery is more critical for birds that live in harsh conditions where the food supply is limited and unpredictable, the authors compared food caching, memory, and the hippocampus of black-capped chickadees (Poecile atricapilla) from Alaska and Colorado. Under identical laboratory conditions, Alaska chickadees (a) cached significantly more food; (b) were more efficient at cache recovery: (c) performed more accurately on one-trial associative learning tasks in which birds had to rely on spatial memory, but did not differ when tested on a nonspatial version of this task; and (d) had significantly larger hippocampal volumes containing more neurons compared with Colorado chickadees. The results support the hypothesis that these population differences may reflect adaptations to a harsh environment.

  15. Rhesus Monkeys (Macaca Mulatta) Demonstrate Robust Memory for What and Where, but Not When, in an Open-Field Test of Memory

    ERIC Educational Resources Information Center

    Hampton, R.R.; Hampstead, B.M.; Murray, E.A.

    2005-01-01

    We adapted a paradigm developed by Clayton and Dickinson (1998), who demonstrated memory for what, where, and when in scrub jays, for use with rhesus monkeys. In the study phase of each trial, monkeys found a preferred and a less-preferred food reward in a trial-unique array of three locations in a large room. After 1h, monkeys returned to the…

  16. Epigenetic Regulation of Memory Formation and Maintenance

    ERIC Educational Resources Information Center

    Zovkic, Iva B.; Guzman-Karlsson, Mikael C.; Sweatt, J. David

    2013-01-01

    Understanding the cellular and molecular mechanisms underlying the formation and maintenance of memories is a central goal of the neuroscience community. It is well regarded that an organism's ability to lastingly adapt its behavior in response to a transient environmental stimulus relies on the central nervous system's capability for structural…

  17. Adaptive Memory: Survival Processing Enhances Retention

    ERIC Educational Resources Information Center

    Nairne, James S.; Thompson, Sarah R.; Pandeirada, Josefa N. S.

    2007-01-01

    The authors investigated the idea that memory systems might have evolved to help us remember fitness-relevant information--specifically, information relevant to survival. In 4 incidental learning experiments, people were asked to rate common nouns for their survival relevance (e.g., in securing food, water, or protection from predators); in…

  18. Drink, drugs and disruption: memory manipulation for the treatment of addiction.

    PubMed

    Milton, A L

    2013-08-01

    Addiction is a complex disorder, and one characterised by the acquisition of maladaptive instrumental (drug-seeking and drug-taking) and pavlovian (cue-drug associations) memories. These memories markedly contribute to the long-term risk of relapse, so reduction of the impact of these memories on behaviour could potentially be an important addition to current therapies for addiction. Memory reconsolidation may provide such a target for disrupting well-consolidated pavlovian cue-drug memories following an extensive drug history. Reconsolidation can be disrupted either by administering amnestic drugs in conjunction with a memory reactivation session, or by updating the memory adaptively through the induction of 'superextinction'. More work is needed before these therapies are ready for translation to the clinic, but if found clinically effective memory manipulation promises a radical new way of treating addiction. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Stress-induced neuroplasticity: (mal)adaptation to adverse life events in patients with PTSD--a critical overview.

    PubMed

    Deppermann, S; Storchak, H; Fallgatter, A J; Ehlis, A-C

    2014-12-26

    Stress is an adaptive response to demands of the environment and thus essential for survival. Exposure to stress triggers hypothalamic-pituitary-adrenocortical (HPA) axis activation and associated neurochemical reactions, following glucocorticoid release from the adrenal glands, accompanied by rapid physiological responses. Stimulation of this pathway results in the activation of specific brain regions, including the hippocampus, amygdala and prefrontal cortex which are enriched with glucocorticoid receptors (GRs). Recent findings indicate that the activation of GRs mediates the regulation of the brain-derived neurotrophic factor (BDNF). BDNF is crucial for neural plasticity, as it promotes cellular growth and synaptic changes. Hence stress-induced activation of these pathways leads to neuroplastic changes, including the formation of long-lasting memories of the experiences. As a consequence, organisms can learn from stressful events and respond in an adaptive manner to similar demands in the future. Whereas an optimal stress level leads to enhancement of memory performance, the exposure to extreme, traumatic or chronic stressors is a risk factor for psychopathologies which are associated with memory impairment and cognitive deficits such as posttraumatic stress disorder (PTSD). In this review article, we will outline the implications of stress exposure on memory formation involving the role of glucocorticoids and BDNF. Within this context, potential adverse effects of neuroplastic alterations will be discussed using the example of PTSD. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.

  20. Crystallized and fluid intelligence of university students with intellectual disability who are fully integrated versus those who studied in adapted enrichment courses

    PubMed Central

    Verkuilen, Jay; Shnitzer-Meirovich, Shlomit; Altman, Carmit

    2018-01-01

    Background Inclusion of people with intellectual disability (ID) in higher postsecondary academic education is on the rise. However, there are no scientific criteria for determining the eligibility for full inclusion of students with ID in university courses. This study focuses on two models of academic inclusion for students with ID: (a) separate adapted enrichment model: students with ID study in separate enrichment courses adapted to their level; (b) full inclusion model: students with ID are included in undergraduate courses, receive academic credits and are expected to accumulate the amount of credits for a B.A. Aim (a) To examine whether crystallized and fluid intelligence and cognitive tests can serve as screening tests for determining the appropriate placement of students with ID for the adapted enrichment model versus the full inclusion model. (b) To examine the attitudes towards the program of students with ID in the inclusion model. Method/Procedure The sample included 31 adults with ID: students with ID who were fully included (N = 10) and students with ID who participated in the adapted enrichment model (N = 21). Crystallized and fluid intelligence were examined (WAIS-III, Wechsler, 1997) and Hebrew abstract verbal tests (Glanz, 1989). Semi-structured interviews were conducted in order to examine the attitudes of students in the inclusion model towards the program. Outcomes and results The ANOVAs indicate that the most prominent difference between the groups was in vocabulary, knowledge and working memory. ROC analysis, a fundamental tool for diagnostic test evaluation, was used to determine the students’ eligibility for appropriate placement in the two models. Seven tests distinguished between the groups in terms of sensitivity and specificity. The interviews were analyzed according to three phases. Conclusions/Implications The results indicate that students with ID are able to participate in undergraduate courses and achieve academic goals. The general IQ and idioms test seem to be best determiners for appropriate placement of students with ID to one of the two models. The included students with ID are motivated and self-determined in continuing in the program. PMID:29684024

  1. Crystallized and fluid intelligence of university students with intellectual disability who are fully integrated versus those who studied in adapted enrichment courses.

    PubMed

    Lifshitz, Hefziba; Verkuilen, Jay; Shnitzer-Meirovich, Shlomit; Altman, Carmit

    2018-01-01

    Inclusion of people with intellectual disability (ID) in higher postsecondary academic education is on the rise. However, there are no scientific criteria for determining the eligibility for full inclusion of students with ID in university courses. This study focuses on two models of academic inclusion for students with ID: (a) separate adapted enrichment model: students with ID study in separate enrichment courses adapted to their level; (b) full inclusion model: students with ID are included in undergraduate courses, receive academic credits and are expected to accumulate the amount of credits for a B.A. (a) To examine whether crystallized and fluid intelligence and cognitive tests can serve as screening tests for determining the appropriate placement of students with ID for the adapted enrichment model versus the full inclusion model. (b) To examine the attitudes towards the program of students with ID in the inclusion model. The sample included 31 adults with ID: students with ID who were fully included (N = 10) and students with ID who participated in the adapted enrichment model (N = 21). Crystallized and fluid intelligence were examined (WAIS-III, Wechsler, 1997) and Hebrew abstract verbal tests (Glanz, 1989). Semi-structured interviews were conducted in order to examine the attitudes of students in the inclusion model towards the program. The ANOVAs indicate that the most prominent difference between the groups was in vocabulary, knowledge and working memory. ROC analysis, a fundamental tool for diagnostic test evaluation, was used to determine the students' eligibility for appropriate placement in the two models. Seven tests distinguished between the groups in terms of sensitivity and specificity. The interviews were analyzed according to three phases. The results indicate that students with ID are able to participate in undergraduate courses and achieve academic goals. The general IQ and idioms test seem to be best determiners for appropriate placement of students with ID to one of the two models. The included students with ID are motivated and self-determined in continuing in the program.

  2. No Evidence for Improved Associative Memory Performance Following Process-Based Associative Memory Training in Older Adults

    PubMed Central

    Bellander, Martin; Eschen, Anne; Lövdén, Martin; Martin, Mike; Bäckman, Lars; Brehmer, Yvonne

    2017-01-01

    Studies attempting to improve episodic memory performance with strategy instructions and training have had limited success in older adults: their training gains are limited in comparison to those of younger adults and do not generalize to untrained tasks and contexts. This limited success has been partly attributed to age-related impairments in associative binding of information into coherent episodes. We therefore investigated potential training and transfer effects of process-based associative memory training (i.e., repeated practice). Thirty-nine older adults (Mage = 68.8) underwent 6 weeks of either adaptive associative memory training or item recognition training. Both groups improved performance in item memory, spatial memory (object-context binding) and reasoning. A disproportionate effect of associative memory training was only observed for item memory, whereas no training-related performance changes were observed for associative memory. Self-reported strategies showed no signs of spontaneous development of memory-enhancing associative memory strategies. Hence, the results do not support the hypothesis that process-based associative memory training leads to higher associative memory performance in older adults. PMID:28119597

  3. No Evidence for Improved Associative Memory Performance Following Process-Based Associative Memory Training in Older Adults.

    PubMed

    Bellander, Martin; Eschen, Anne; Lövdén, Martin; Martin, Mike; Bäckman, Lars; Brehmer, Yvonne

    2016-01-01

    Studies attempting to improve episodic memory performance with strategy instructions and training have had limited success in older adults: their training gains are limited in comparison to those of younger adults and do not generalize to untrained tasks and contexts. This limited success has been partly attributed to age-related impairments in associative binding of information into coherent episodes. We therefore investigated potential training and transfer effects of process-based associative memory training (i.e., repeated practice). Thirty-nine older adults ( M age = 68.8) underwent 6 weeks of either adaptive associative memory training or item recognition training. Both groups improved performance in item memory, spatial memory (object-context binding) and reasoning. A disproportionate effect of associative memory training was only observed for item memory, whereas no training-related performance changes were observed for associative memory. Self-reported strategies showed no signs of spontaneous development of memory-enhancing associative memory strategies. Hence, the results do not support the hypothesis that process-based associative memory training leads to higher associative memory performance in older adults.

  4. Performance and scalability evaluation of "Big Memory" on Blue Gene Linux.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoshii, K.; Iskra, K.; Naik, H.

    2011-05-01

    We address memory performance issues observed in Blue Gene Linux and discuss the design and implementation of 'Big Memory' - an alternative, transparent memory space introduced to eliminate the memory performance issues. We evaluate the performance of Big Memory using custom memory benchmarks, NAS Parallel Benchmarks, and the Parallel Ocean Program, at a scale of up to 4,096 nodes. We find that Big Memory successfully resolves the performance issues normally encountered in Blue Gene Linux. For the ocean simulation program, we even find that Linux with Big Memory provides better scalability than does the lightweight compute node kernel designed solelymore » for high-performance applications. Originally intended exclusively for compute node tasks, our new memory subsystem dramatically improves the performance of certain I/O node applications as well. We demonstrate this performance using the central processor of the LOw Frequency ARray radio telescope as an example.« less

  5. Low latency and persistent data storage

    DOEpatents

    Fitch, Blake G; Franceschini, Michele M; Jagmohan, Ashish; Takken, Todd

    2014-11-04

    Persistent data storage is provided by a computer program product that includes computer program code configured for receiving a low latency store command that includes write data. The write data is written to a first memory device that is implemented by a nonvolatile solid-state memory technology characterized by a first access speed. It is acknowledged that the write data has been successfully written to the first memory device. The write data is written to a second memory device that is implemented by a volatile memory technology. At least a portion of the data in the first memory device is written to a third memory device when a predetermined amount of data has been accumulated in the first memory device. The third memory device is implemented by a nonvolatile solid-state memory technology characterized by a second access speed that is slower than the first access speed.

  6. Autobiographical memory development from an attachment perspective: the special role of negative events.

    PubMed

    Chae, Yoojin; Goodman, Gail S; Edelstein, Robin S

    2011-01-01

    The authors propose a novel model of autobiographical memory development that features the fundamental role of attachment orientations and negative life events. In the model, it is proposed that early autobiographical memory derives in part from the need to express and remember negative experiences, a need that has adaptive value, and that attachment orientations create individual differences in children's recollections of negative experiences. Specifically, the role of attachment in the processing of negative information is discussed in regard to the mnemonic stages of encoding, storage, and retrieval. This model sheds light on several areas of contradictory data in the memory development literature, such as concerning earliest memories and children's and adults' memory/suggestibility for stressful events.

  7. Cognitively Elite, Cognitively Normal, and Cognitively Impaired Aging: Neurocognitive Status and Stability Moderate Memory Performance

    PubMed Central

    Dixon, Roger A.; de Frias, Cindy M.

    2014-01-01

    Objective Although recent theories of brain and cognitive aging distinguish among normal, exceptional, and impaired groups, further empirical evidence is required. We adapted and applied standard procedures for classifying groups of cognitively impaired (CI) and cognitively normal (CN) older adults to a third classification, cognitively healthy, exceptional, or elite (CE) aging. We then examined concurrent and two-wave longitudinal performance on composite variables of episodic, semantic, and working memory. Method We began with a two-wave source sample from the Victoria Longitudinal Study (VLS) (source n=570; baseline age=53–90 years). The goals were to: (a) apply standard and objective classification procedures to discriminate three cognitive status groups, (b) conduct baseline comparisons of memory performance, (c) develop two-wave status stability and change subgroups, and (d) compare of stability subgroup differences in memory performance and change. Results As expected, the CE group performed best on all three memory composites. Similarly, expected status stability effects were observed: (a) stable CE and CN groups performed memory tasks better than their unstable counterparts and (b) stable (and chronic) CI group performed worse than its unstable (variable) counterpart. These stability group differences were maintained over two waves. Conclusion New data validate the expectations that (a) objective clinical classification procedures for cognitive impairment can be adapted for detecting cognitively advantaged older adults and (b) performance in three memory systems is predictably related to the tripartite classification. PMID:24742143

  8. Evaluation of seven hypotheses for metamemory performance in rhesus monkeys

    PubMed Central

    Basile, Benjamin M.; Schroeder, Gabriel R.; Brown, Emily Kathryn; Templer, Victoria L.; Hampton, Robert R.

    2014-01-01

    Knowing the extent to which nonhumans and humans share mechanisms for metacognition will advance our understanding of cognitive evolution and will improve selection of model systems for biomedical research. Some nonhuman species avoid difficult cognitive tests, seek information when ignorant, or otherwise behave in ways consistent with metacognition. There is agreement that some nonhuman animals “succeed” in these metacognitive tasks, but little consensus about the cognitive mechanisms underlying performance. In one paradigm, rhesus monkeys visually searched for hidden food when ignorant of the location of the food, but acted immediately when knowledgeable. This result has been interpreted as evidence that monkeys introspectively monitored their memory to adaptively control information seeking. However, convincing alternative hypotheses have been advanced that might also account for the adaptive pattern of visual searching. We evaluated seven hypotheses using a computerized task in which monkeys chose either to take memory tests immediately or to see the answer again before proceeding to the test. We found no evidence to support the hypotheses of behavioral cue association, rote response learning, expectancy violation, response competition, generalized search strategy, or postural mediation. In contrast, we repeatedly found evidence to support the memory monitoring hypothesis. Monkeys chose to see the answer when memory was poor, either from natural variation or experimental manipulation. We found limited evidence that monkeys also monitored the fluency of memory access. Overall, the evidence indicates that rhesus monkeys can use memory strength as a discriminative cue for information seeking, consistent with introspective monitoring of explicit memory. PMID:25365530

  9. Neuro-Cognitive Intervention for Working Memory: Preliminary Results and Future Directions.

    PubMed

    Bree, Kathleen D; Beljan, Paul

    2016-01-01

    Definitions of working memory identify it as a function of the executive function system in which an individual maintains two or more pieces of information in mind and uses that information simultaneously for some purpose. In academics, working memory is necessary for a variety of functions, including attending to the information one's teacher presents and then using that information simultaneously for problem solving. Research indicates difficulties with working memory are observed in children with mathematics learning disorder (MLD) and reading disorders (RD). To improve working memory and other executive function difficulties, and as an alternative to medication treatments for attention and executive function disorders, the Motor Cognition(2)® (MC(2)®)program was developed. Preliminary research on this program indicates statistically significant improvements in working memory, mathematics, and nonsense word decoding for reading. Further research on the MC(2)® program and its impact on working memory, as well as other areas of executive functioning, is warranted.

  10. Genome-wide Functional Analysis of CREB/Long-Term Memory-Dependent Transcription Reveals Distinct Basal and Memory Gene Expression Programs

    PubMed Central

    Lakhina, Vanisha; Arey, Rachel N.; Kaletsky, Rachel; Kauffman, Amanda; Stein, Geneva; Keyes, William; Xu, Daniel; Murphy, Coleen T.

    2014-01-01

    SUMMARY Induced CREB activity is a hallmark of long-term memory, but the full repertoire of CREB transcriptional targets required specifically for memory is not known in any system. To obtain a more complete picture of the mechanisms involved in memory, we combined memory training with genome-wide transcriptional analysis of C. elegans CREB mutants. This approach identified 757 significant CREB/memory-induced targets and confirmed the involvement of known memory genes from other organisms, but also suggested new mechanisms and novel components that may be conserved through mammals. CREB mediates distinct basal and memory transcriptional programs at least partially through spatial restriction of CREB activity: basal targets are regulated primarily in nonneuronal tissues, while memory targets are enriched for neuronal expression, emanating from CREB activity in AIM neurons. This suite of novel memory-associated genes will provide a platform for the discovery of orthologous mammalian long-term memory components. PMID:25611510

  11. Memory for radio advertisements: the effect of program and typicality.

    PubMed

    Martín-Luengo, Beatriz; Luna, Karlos; Migueles, Malen

    2013-01-01

    We examined the influence of the type of radio program on the memory for radio advertisements. We also investigated the role in memory of the typicality (high or low) of the elements of the products advertised. Participants listened to three types of programs (interesting, boring, enjoyable) with two advertisements embedded in each. After completing a filler task, the participants performed a true/false recognition test. Hits and false alarm rates were higher for the interesting and enjoyable programs than for the boring one. There were also more hits and false alarms for the high-typicality elements. The response criterion for the advertisements embedded in the boring program was stricter than for the advertisements in other types of programs. We conclude that the type of program in which an advertisement is inserted and the nature of the elements of the advertisement affect both the number of hits and false alarms and the response criterion, but not the accuracy of the memory.

  12. Array processor architecture

    NASA Technical Reports Server (NTRS)

    Barnes, George H. (Inventor); Lundstrom, Stephen F. (Inventor); Shafer, Philip E. (Inventor)

    1983-01-01

    A high speed parallel array data processing architecture fashioned under a computational envelope approach includes a data base memory for secondary storage of programs and data, and a plurality of memory modules interconnected to a plurality of processing modules by a connection network of the Omega gender. Programs and data are fed from the data base memory to the plurality of memory modules and from hence the programs are fed through the connection network to the array of processors (one copy of each program for each processor). Execution of the programs occur with the processors operating normally quite independently of each other in a multiprocessing fashion. For data dependent operations and other suitable operations, all processors are instructed to finish one given task or program branch before all are instructed to proceed in parallel processing fashion on the next instruction. Even when functioning in the parallel processing mode however, the processors are not locked-step but execute their own copy of the program individually unless or until another overall processor array synchronization instruction is issued.

  13. Motor Learning in Childhood Reveals Distinct Mechanisms for Memory Retention and Re-Learning

    ERIC Educational Resources Information Center

    Musselman, Kristin E.; Roemmich, Ryan T.; Garrett, Ben; Bastian, Amy J.

    2016-01-01

    Adults can easily learn and access multiple versions of the same motor skill adapted for different conditions (e.g., walking in water, sand, snow). Following even a single session of adaptation, adults exhibit clear day-to-day retention and faster re-learning of the adapted pattern. Here, we studied the retention and re-learning of an adapted…

  14. Electrically programmable-erasable In-Ga-Zn-O thin-film transistor memory with atomic-layer-deposited Al{sub 2}O{sub 3}/Pt nanocrystals/Al{sub 2}O{sub 3} gate stack

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qian, Shi-Bing; Zhang, Wen-Peng; Liu, Wen-Jun

    Amorphous indium-gallium-zinc oxide (a-IGZO) thin-film transistor (TFT) memory is very promising for transparent and flexible system-on-panel displays; however, electrical erasability has always been a severe challenge for this memory. In this article, we demonstrated successfully an electrically programmable-erasable memory with atomic-layer-deposited Al{sub 2}O{sub 3}/Pt nanocrystals/Al{sub 2}O{sub 3} gate stack under a maximal processing temperature of 300 {sup o}C. As the programming voltage was enhanced from 14 to 19 V for a constant pulse of 0.2 ms, the threshold voltage shift increased significantly from 0.89 to 4.67 V. When the programmed device was subjected to an appropriate pulse under negative gatemore » bias, it could return to the original state with a superior erasing efficiency. The above phenomena could be attributed to Fowler-Nordheim tunnelling of electrons from the IGZO channel to the Pt nanocrystals during programming, and inverse tunnelling of the trapped electrons during erasing. In terms of 0.2-ms programming at 16 V and 350-ms erasing at −17 V, a large memory window of 3.03 V was achieved successfully. Furthermore, the memory exhibited stable repeated programming/erasing (P/E) characteristics and good data retention, i.e., for 2-ms programming at 14 V and 250-ms erasing at −14 V, a memory window of 2.08 V was still maintained after 10{sup 3} P/E cycles, and a memory window of 1.1 V was retained after 10{sup 5} s retention time.« less

  15. Conditions for Interference Versus Facilitation During Sequential Sensorimotor Adaptation

    NASA Technical Reports Server (NTRS)

    Bock, Otmar; Schneider, Stefan; Bloomberg, Jacob

    2001-01-01

    We investigated how sensorimotor adaptation acquired during one experimental session influenced the adaptation in a subsequent session. The subjects' task was to track a visual target using a joystick-controlled cursor, while the relationship between joystick and cursor position was manipulated to introduce a sensorimotor discordance. Each subject participated in two sessions, separated by a pause of 2 min to 1 month duration. We found that adaptation was achieved within minutes, and persisted in the memory for at least a month, with only a small decay (experiment A). When the discordances administered in the two sessions were in mutual conflict, we found evidence for task interference (experiment B). However, when the discordances were independent, we found facilitation rather than interference (experiment C); the latter finding could not be explained by the use of an "easier" discordance in the second session (experiment D). We conclude that interference is due to an incompatibility between task requirements, and not to a competition of tasks for short-term memory. We further conclude that the ability to adapt to a sensorimotor discordance.

  16. Human memory CD8 T cell effector potential is epigenetically preserved during in vivo homeostasis.

    PubMed

    Abdelsamed, Hossam A; Moustaki, Ardiana; Fan, Yiping; Dogra, Pranay; Ghoneim, Hazem E; Zebley, Caitlin C; Triplett, Brandon M; Sekaly, Rafick-Pierre; Youngblood, Ben

    2017-06-05

    Antigen-independent homeostasis of memory CD8 T cells is vital for sustaining long-lived T cell-mediated immunity. In this study, we report that maintenance of human memory CD8 T cell effector potential during in vitro and in vivo homeostatic proliferation is coupled to preservation of acquired DNA methylation programs. Whole-genome bisulfite sequencing of primary human naive, short-lived effector memory (T EM ), and longer-lived central memory (T CM ) and stem cell memory (T SCM ) CD8 T cells identified effector molecules with demethylated promoters and poised for expression. Effector-loci demethylation was heritably preserved during IL-7- and IL-15-mediated in vitro cell proliferation. Conversely, cytokine-driven proliferation of T CM and T SCM memory cells resulted in phenotypic conversion into T EM cells and was coupled to increased methylation of the CCR7 and Tcf7 loci. Furthermore, haploidentical donor memory CD8 T cells undergoing in vivo proliferation in lymphodepleted recipients also maintained their effector-associated demethylated status but acquired T EM -associated programs. These data demonstrate that effector-associated epigenetic programs are preserved during cytokine-driven subset interconversion of human memory CD8 T cells. © 2017 Abdelsamed et al.

  17. Global adaptation in networks of selfish components: emergent associative memory at the system scale.

    PubMed

    Watson, Richard A; Mills, Rob; Buckley, C L

    2011-01-01

    In some circumstances complex adaptive systems composed of numerous self-interested agents can self-organize into structures that enhance global adaptation, efficiency, or function. However, the general conditions for such an outcome are poorly understood and present a fundamental open question for domains as varied as ecology, sociology, economics, organismic biology, and technological infrastructure design. In contrast, sufficient conditions for artificial neural networks to form structures that perform collective computational processes such as associative memory/recall, classification, generalization, and optimization are well understood. Such global functions within a single agent or organism are not wholly surprising, since the mechanisms (e.g., Hebbian learning) that create these neural organizations may be selected for this purpose; but agents in a multi-agent system have no obvious reason to adhere to such a structuring protocol or produce such global behaviors when acting from individual self-interest. However, Hebbian learning is actually a very simple and fully distributed habituation or positive feedback principle. Here we show that when self-interested agents can modify how they are affected by other agents (e.g., when they can influence which other agents they interact with), then, in adapting these inter-agent relationships to maximize their own utility, they will necessarily alter them in a manner homologous with Hebbian learning. Multi-agent systems with adaptable relationships will thereby exhibit the same system-level behaviors as neural networks under Hebbian learning. For example, improved global efficiency in multi-agent systems can be explained by the inherent ability of associative memory to generalize by idealizing stored patterns and/or creating new combinations of subpatterns. Thus distributed multi-agent systems can spontaneously exhibit adaptive global behaviors in the same sense, and by the same mechanism, as with the organizational principles familiar in connectionist models of organismic learning.

  18. MILC Code Performance on High End CPU and GPU Supercomputer Clusters

    NASA Astrophysics Data System (ADS)

    DeTar, Carleton; Gottlieb, Steven; Li, Ruizi; Toussaint, Doug

    2018-03-01

    With recent developments in parallel supercomputing architecture, many core, multi-core, and GPU processors are now commonplace, resulting in more levels of parallelism, memory hierarchy, and programming complexity. It has been necessary to adapt the MILC code to these new processors starting with NVIDIA GPUs, and more recently, the Intel Xeon Phi processors. We report on our efforts to port and optimize our code for the Intel Knights Landing architecture. We consider performance of the MILC code with MPI and OpenMP, and optimizations with QOPQDP and QPhiX. For the latter approach, we concentrate on the staggered conjugate gradient and gauge force. We also consider performance on recent NVIDIA GPUs using the QUDA library.

  19. Is bigger always better? A critical appraisal of the use of volumetric analysis in the study of the hippocampus.

    PubMed

    Roth, Timothy C; Brodin, Anders; Smulders, Tom V; LaDage, Lara D; Pravosudov, Vladimir V

    2010-03-27

    A well-developed spatial memory is important for many animals, but appears especially important for scatter-hoarding species. Consequently, the scatter-hoarding system provides an excellent paradigm in which to study the integrative aspects of memory use within an ecological and evolutionary framework. One of the main tenets of this paradigm is that selection for enhanced spatial memory for cache locations should specialize the brain areas involved in memory. One such brain area is the hippocampus (Hp). Many studies have examined this adaptive specialization hypothesis, typically relating spatial memory to Hp volume. However, it is unclear how the volume of the Hp is related to its function for spatial memory. Thus, the goal of this article is to evaluate volume as a main measurement of the degree of morphological and physiological adaptation of the Hp as it relates to memory. We will briefly review the evidence for the specialization of memory in food-hoarding animals and discuss the philosophy behind volume as the main currency. We will then examine the problems associated with this approach, attempting to understand the advantages and limitations of using volume and discuss alternatives that might yield more specific hypotheses. Overall, there is strong evidence that the Hp is involved in the specialization of spatial memory in scatter-hoarding animals. However, volume may be only a coarse proxy for more relevant and subtle changes in the structure of the brain underlying changes in behaviour. To better understand the nature of this brain/memory relationship, we suggest focusing on more specific and relevant features of the Hp, such as the number or size of neurons, variation in connectivity depending on dendritic and axonal arborization and the number of synapses. These should generate more specific hypotheses derived from a solid theoretical background and should provide a better understanding of both neural mechanisms of memory and their evolution.

  20. Tracking a changing environment: optimal sampling, adaptive memory and overnight effects.

    PubMed

    Dunlap, Aimee S; Stephens, David W

    2012-02-01

    Foraging in a variable environment presents a classic problem of decision making with incomplete information. Animals must track the changing environment, remember the best options and make choices accordingly. While several experimental studies have explored the idea that sampling behavior reflects the amount of environmental change, we take the next logical step in asking how change influences memory. We explore the hypothesis that memory length should be tied to the ecological relevance and the value of the information learned, and that environmental change is a key determinant of the value of memory. We use a dynamic programming model to confirm our predictions and then test memory length in a factorial experiment. In our experimental situation we manipulate rates of change in a simple foraging task for blue jays over a 36 h period. After jays experienced an experimentally determined change regime, we tested them at a range of retention intervals, from 1 to 72 h. Manipulated rates of change influenced learning and sampling rates: subjects sampled more and learned more quickly in the high change condition. Tests of retention revealed significant interactions between retention interval and the experienced rate of change. We observed a striking and surprising difference between the high and low change treatments at the 24h retention interval. In agreement with earlier work we find that a circadian retention interval is special, but we find that the extent of this 'specialness' depends on the subject's prior experience of environmental change. Specifically, experienced rates of change seem to influence how subjects balance recent information against past experience in a way that interacts with the passage of time. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. Natural Killer Cell Memory

    PubMed Central

    O’Sullivan, Timothy E.; Sun, Joseph C.; Lanier, Lewis L.

    2015-01-01

    Natural killer (NK) cells have historically been considered short-lived cytolytic cells that can rapidly respond against pathogens and tumors in an antigen-independent manner, and then undergo cell death. Recently, however, NK cells have been shown to possess traits of adaptive immunity, and can acquire immunological memory in a similar manner to T and B cells. In this review, we discuss evidence for NK cell memory and the mechanisms involved in the generation and survival of these innate lymphocytes. PMID:26488815

  2. Working Memory Training Does Not Improve Performance on Measures of Intelligence or Other Measures of “Far Transfer”

    PubMed Central

    Melby-Lervåg, Monica; Redick, Thomas S.; Hulme, Charles

    2016-01-01

    It has been claimed that working memory training programs produce diverse beneficial effects. This article presents a meta-analysis of working memory training studies (with a pretest-posttest design and a control group) that have examined transfer to other measures (nonverbal ability, verbal ability, word decoding, reading comprehension, or arithmetic; 87 publications with 145 experimental comparisons). Immediately following training there were reliable improvements on measures of intermediate transfer (verbal and visuospatial working memory). For measures of far transfer (nonverbal ability, verbal ability, word decoding, reading comprehension, arithmetic) there was no convincing evidence of any reliable improvements when working memory training was compared with a treated control condition. Furthermore, mediation analyses indicated that across studies, the degree of improvement on working memory measures was not related to the magnitude of far-transfer effects found. Finally, analysis of publication bias shows that there is no evidential value from the studies of working memory training using treated controls. The authors conclude that working memory training programs appear to produce short-term, specific training effects that do not generalize to measures of “real-world” cognitive skills. These results seriously question the practical and theoretical importance of current computerized working memory programs as methods of training working memory skills. PMID:27474138

  3. MODA A Framework for Memory Centric Performance Characterization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shrestha, Sunil; Su, Chun-Yi; White, Amanda M.

    2012-06-29

    In the age of massive parallelism, the focus of performance analysis has switched from the processor and related structures to the memory and I/O resources. Adapting to this new reality, a performance analysis tool has to provide a way to analyze resource usage to pinpoint existing and potential problems in a given application. This paper provides an overview of the Memory Observant Data Analysis (MODA) tool, a memory-centric tool first implemented on the Cray XMT supercomputer. Throughout the paper, MODA's capabilities have been showcased with experiments done on matrix multiply and Graph-500 application codes.

  4. The first sight of love: Relationship-defining memories and marital satisfaction across adulthood.

    PubMed

    Alea, Nicole; Vick, Stephanie C

    2010-10-01

    The current study begins the exploration of relationship-defining memories (i.e., the first time someone met their spouse) across adulthood. Men and women ranging from 20 to 85 years old (N=267; M age=47.19) completed a measure of marital satisfaction, wrote a relationship-defining memory, and answered questions about the quality of their memory (i.e., vividness, valence, emotional intensity, and rehearsal). Data were collected online. Results indicate that individuals over 70 and those younger than 30 rehearsed relationship-defining memories most often. Women in midlife also reported more vivid memories. The quality of relationship-defining memories also predicted marital satisfaction. Relationship-defining memories that were more vivid, positive, emotionally intense, and rehearsed related to higher marital satisfaction. Age and gender differences were minimal. Results are discussed in the context of the adaptive social function of autobiographical memories, such that these memories might have a role in influencing marital satisfaction across adulthood.

  5. Is All Motivation Good for Learning? Dissociable Influences of Approach and Avoidance Motivation in Declarative Memory

    ERIC Educational Resources Information Center

    Murty, Vishnu P.; LaBar, Kevin S.; Hamilton, Derek A.; Adcock, R. Alison

    2011-01-01

    The present study investigated the effects of approach versus avoidance motivation on declarative learning. Human participants navigated a virtual reality version of the Morris water task, a classic spatial memory paradigm, adapted to permit the experimental manipulation of motivation during learning. During this task, participants were instructed…

  6. Models Provide Specificity: Testing a Proposed Mechanism of Visual Working Memory Capacity Development

    ERIC Educational Resources Information Center

    Simmering, Vanessa R.; Patterson, Rebecca

    2012-01-01

    Numerous studies have established that visual working memory has a limited capacity that increases during childhood. However, debate continues over the source of capacity limits and its developmental increase. Simmering (2008) adapted a computational model of spatial cognitive development, the Dynamic Field Theory, to explain not only the source…

  7. Adaptive Memory: Animacy Enhances Free Recall but Impairs Cued Recall

    ERIC Educational Resources Information Center

    Popp, Earl Y.; Serra, Michael J.

    2016-01-01

    Recent research suggests that human memory systems evolved to remember animate things better than inanimate things. In the present experiments, we examined whether these effects occur for both free recall and cued recall. In Experiment 1, we directly compared the effect of animacy on free recall and cued recall. Participants studied lists of…

  8. Ignoring Memory Hints: The Stubborn Influence of Environmental Cues on Recognition Memory

    ERIC Educational Resources Information Center

    Selmeczy, Diana; Dobbins, Ian G.

    2017-01-01

    Recognition judgments can benefit from the use of environmental cues that signal the general likelihood of encountering familiar versus unfamiliar stimuli. While incorporating such cues is often adaptive, there are circumstances (e.g., eyewitness testimony) in which observers should fully ignore environmental cues in order to preserve memory…

  9. Computer-Presented Organizational/Memory Aids as Instruction for Solving Pico-Fomi Problems.

    ERIC Educational Resources Information Center

    Steinberg, Esther R.; And Others

    1985-01-01

    Describes investigation of effectiveness of computer-presented organizational/memory aids (matrix and verbal charts controlled by computer or learner) as instructional technique for solving Pico-Fomi problems, and the acquisition of deductive inference rules when such aids are present. Results indicate chart use control should be adapted to…

  10. Pain-Relief Learning in Flies, Rats, and Man: Basic Research and Applied Perspectives

    ERIC Educational Resources Information Center

    Gerber, Bertram; Yarali, Ayse; Diegelmann, Sören; Wotjak, Carsten T.; Pauli, Paul; Fendt, Marcus

    2014-01-01

    Memories relating to a painful, negative event are adaptive and can be stored for a lifetime to support preemptive avoidance, escape, or attack behavior. However, under unfavorable circumstances such memories can become overwhelmingly powerful. They may trigger excessively negative psychological states and uncontrollable avoidance of locations,…

  11. Motor Adaptation and Manual Transfer: Insight into the Persistent Nature of Sensorimotor Representations

    ERIC Educational Resources Information Center

    Green, Sharon; Grierson, Lawrence E. M.; Dubrowski, Adam; Carnahan, Heather

    2010-01-01

    It is well known that sensorimotor memories are built and updated through experience with objects. These representations are useful to anticipatory and feedforward control processes that preset grip and load forces during lifting. When individuals lift objects with qualities that are not congruent with their memory-derived expectations, feedback…

  12. To hear or not to hear: Voice processing under visual load.

    PubMed

    Zäske, Romi; Perlich, Marie-Christin; Schweinberger, Stefan R

    2016-07-01

    Adaptation to female voices causes subsequent voices to be perceived as more male, and vice versa. This contrastive aftereffect disappears under spatial inattention to adaptors, suggesting that voices are not encoded automatically. According to Lavie, Hirst, de Fockert, and Viding (2004), the processing of task-irrelevant stimuli during selective attention depends on perceptual resources and working memory. Possibly due to their social significance, faces may be an exceptional domain: That is, task-irrelevant faces can escape perceptual load effects. Here we tested voice processing, to study whether voice gender aftereffects (VGAEs) depend on low or high perceptual (Exp. 1) or working memory (Exp. 2) load in a relevant visual task. Participants adapted to irrelevant voices while either searching digit displays for a target (Exp. 1) or recognizing studied digits (Exp. 2). We found that the VGAE was unaffected by perceptual load, indicating that task-irrelevant voices, like faces, can also escape perceptual-load effects. Intriguingly, the VGAE was increased under high memory load. Therefore, visual working memory load, but not general perceptual load, determines the processing of task-irrelevant voices.

  13. Transfer of Learning between Hemifields in Multiple Object Tracking: Memory Reduces Constraints of Attention

    PubMed Central

    Lapierre, Mark; Howe, Piers D. L.; Cropper, Simon J.

    2013-01-01

    Many tasks involve tracking multiple moving objects, or stimuli. Some require that individuals adapt to changing or unfamiliar conditions to be able to track well. This study explores processes involved in such adaptation through an investigation of the interaction of attention and memory during tracking. Previous research has shown that during tracking, attention operates independently to some degree in the left and right visual hemifields, due to putative anatomical constraints. It has been suggested that the degree of independence is related to the relative dominance of processes of attention versus processes of memory. Here we show that when individuals are trained to track a unique pattern of movement in one hemifield, that learning can be transferred to the opposite hemifield, without any evidence of hemifield independence. However, learning is not influenced by an explicit strategy of memorisation of brief periods of recognisable movement. The findings lend support to a role for implicit memory in overcoming putative anatomical constraints on the dynamic, distributed spatial allocation of attention involved in tracking multiple objects. PMID:24349555

  14. Generating Adaptive Behaviour within a Memory-Prediction Framework

    PubMed Central

    Rawlinson, David; Kowadlo, Gideon

    2012-01-01

    The Memory-Prediction Framework (MPF) and its Hierarchical-Temporal Memory implementation (HTM) have been widely applied to unsupervised learning problems, for both classification and prediction. To date, there has been no attempt to incorporate MPF/HTM in reinforcement learning or other adaptive systems; that is, to use knowledge embodied within the hierarchy to control a system, or to generate behaviour for an agent. This problem is interesting because the human neocortex is believed to play a vital role in the generation of behaviour, and the MPF is a model of the human neocortex. We propose some simple and biologically-plausible enhancements to the Memory-Prediction Framework. These cause it to explore and interact with an external world, while trying to maximize a continuous, time-varying reward function. All behaviour is generated and controlled within the MPF hierarchy. The hierarchy develops from a random initial configuration by interaction with the world and reinforcement learning only. Among other demonstrations, we show that a 2-node hierarchy can learn to successfully play “rocks, paper, scissors” against a predictable opponent. PMID:22272231

  15. Memory sources of dreams: the incorporation of autobiographical rather than episodic experiences.

    PubMed

    Malinowski, Josie E; Horton, Caroline L

    2014-08-01

    The present study aimed to explore autobiographical memories (long-lasting memories about the self) and episodic memories (memories about discrete episodes or events) within dream content. We adapted earlier episodic memory study paradigms and reinvestigated the incorporation of episodic memory sources into dreams, operationalizing episodic memory as featuring autonoetic consciousness, which is the feeling of truly re-experiencing or reliving a past event. Participants (n = 32) recorded daily diaries and dream diaries, and reported on wake-dream relations for 2 weeks. Using a new scale, dreams were rated for their episodic richness, which categorized memory sources of dreams as being truly episodic (featuring autonoetic consciousness), autobiographical (containing segregated features of experiences that pertained to waking life) or otherwise. Only one dream (0.5%) was found to contain an episodic memory. However, the majority of dreams (>80%) were found to contain low to moderate incorporations of autobiographical memory features. These findings demonstrate the inactivity of intact episodic memories, and emphasize the activity of autobiographical memory and processing within dreams. Taken together, this suggests that memories for personal experiences are experienced fragmentarily and selectively during dreaming, perhaps in order to assimilate these memories into the autobiographical memory schema. © 2014 European Sleep Research Society.

  16. Feasibility of computerized working memory training in individuals with Huntington disease

    PubMed Central

    Sadeghi, Mahsa; Barlow-Krelina, Emily; Gibbons, Clare; Shaikh, Komal T.; Fung, Wai Lun Alan; Meschino, Wendy S.; Till, Christine

    2017-01-01

    Objectives Huntington disease (HD) is associated with a variety of cognitive deficits, with prominent difficulties in working memory (WM). WM deficits are notably compromised in early-onset and prodromal HD patients. This study aimed to determine the feasibility of a computerized WM training program (Cogmed QM), novel to the HD population. Methods Nine patients, aged 26–62, with early stage HD underwent a 25-session (5 days/week for 5 weeks) WM training program (Cogmed QM). Training exercises involved the manipulation and storage of verbal and visuospatial information, with difficulty adapted as a function of individual performance. Neuropsychological testing was conducted before and after training, and performance on criterion WM measures (Digit Span and Spatial Span), near-transfer WM measures (Symbol Span and Auditory WM), and control measures were evaluated. Post-training interviews about patient experience were thematically analyzed using NVivo software. Results Seven of nine patients demonstrated adherence to the training and completed all sessions within the recommended timeframe of 5 weeks. All adherent patients showed improvement on the Cogmed tasks as defined by the Improvement Index (M = 22.17, SD = 8.84, range = 13–36). All adherent patients reported that they found training helpful (n = 7), and almost all felt that their memory improved (n = 6). Participants also expressed that the training was difficult, sometimes frustrating, and time consuming. Conclusions This pilot study provides support for feasibility of computerized WM training in early-stage patients with HD. Results suggest that HD patients perceive benefits of intensive WM training, though a full-scale and controlled intervention project is needed to understand the size of the effect and reliability of changes over time. Trial registration ClinicalTrials.gov, Registry number NCT02926820 PMID:28453532

  17. 45 CFR 2490.149 - Program accessibility: Discrimination prohibited.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    .... 2490.149 Section 2490.149 Public Welfare Regulations Relating to Public Welfare (Continued) JAMES MADISON MEMORIAL FELLOWSHIP FOUNDATION ENFORCEMENT OF NONDISCRIMINATION ON THE BASIS OF HANDICAP IN PROGRAMS OR ACTIVITIES CONDUCTED BY THE JAMES MADISON MEMORIAL FELLOWSHIP FOUNDATION § 2490.149 Program...

  18. 45 CFR 2490.149 - Program accessibility: Discrimination prohibited.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    .... 2490.149 Section 2490.149 Public Welfare Regulations Relating to Public Welfare (Continued) JAMES MADISON MEMORIAL FELLOWSHIP FOUNDATION ENFORCEMENT OF NONDISCRIMINATION ON THE BASIS OF HANDICAP IN PROGRAMS OR ACTIVITIES CONDUCTED BY THE JAMES MADISON MEMORIAL FELLOWSHIP FOUNDATION § 2490.149 Program...

  19. 45 CFR 2490.149 - Program accessibility: Discrimination prohibited.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    .... 2490.149 Section 2490.149 Public Welfare Regulations Relating to Public Welfare (Continued) JAMES MADISON MEMORIAL FELLOWSHIP FOUNDATION ENFORCEMENT OF NONDISCRIMINATION ON THE BASIS OF HANDICAP IN PROGRAMS OR ACTIVITIES CONDUCTED BY THE JAMES MADISON MEMORIAL FELLOWSHIP FOUNDATION § 2490.149 Program...

  20. 45 CFR 2490.149 - Program accessibility: Discrimination prohibited.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    .... 2490.149 Section 2490.149 Public Welfare Regulations Relating to Public Welfare (Continued) JAMES MADISON MEMORIAL FELLOWSHIP FOUNDATION ENFORCEMENT OF NONDISCRIMINATION ON THE BASIS OF HANDICAP IN PROGRAMS OR ACTIVITIES CONDUCTED BY THE JAMES MADISON MEMORIAL FELLOWSHIP FOUNDATION § 2490.149 Program...

  1. 45 CFR 2490.149 - Program accessibility: Discrimination prohibited.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    .... 2490.149 Section 2490.149 Public Welfare Regulations Relating to Public Welfare (Continued) JAMES MADISON MEMORIAL FELLOWSHIP FOUNDATION ENFORCEMENT OF NONDISCRIMINATION ON THE BASIS OF HANDICAP IN PROGRAMS OR ACTIVITIES CONDUCTED BY THE JAMES MADISON MEMORIAL FELLOWSHIP FOUNDATION § 2490.149 Program...

  2. Finite element analysis of Al 2024/Cu-Al-Ni shape memory alloy composites with defects/cracks

    NASA Astrophysics Data System (ADS)

    Kotresh, M.; Benal, M. M., Dr; Siddalinga Swamy, N. H., Dr

    2018-02-01

    In this work, a numerical approach to predict the stress field behaviour of defect/crack in shape memory alloy (SMA) particles reinforced composite known as the adaptive composite is presented. Simulation is based on the finite element method. The critical stress field approach was used to determine the stresses around defect/crack. Thereby stress amplification issue is being resolved. In this paper, the effect volume % of shape memory alloy and shape memory effect of reinforcement for as-cast and SME trained composites are examined and discussed. Shape memory effect known as training is achieved by pre-straining of reinforcement particles by equivalent changes in their expansion coefficients.

  3. Bim controls IL-15 availability and limits engagement of multiple BH3-only proteins

    PubMed Central

    Kurtulus, S; Sholl, A; Toe, J; Tripathi, P; Raynor, J; Li, K-P; Pellegrini, M; Hildeman, D A

    2015-01-01

    During the effector CD8+ T-cell response, transcriptional differentiation programs are engaged that promote effector T cells with varying memory potential. Although these differentiation programs have been used to explain which cells die as effectors and which cells survive and become memory cells, it is unclear if the lack of cell death enhances memory. Here, we investigated effector CD8+ T-cell fate in mice whose death program has been largely disabled because of the loss of Bim. Interestingly, the absence of Bim resulted in a significant enhancement of effector CD8+ T cells with more memory potential. Bim-driven control of memory T-cell development required T-cell-specific, but not dendritic cell-specific, expression of Bim. Both total and T-cell-specific loss of Bim promoted skewing toward memory precursors, by enhancing the survival of memory precursors, and limiting the availability of IL-15. Decreased IL-15 availability in Bim-deficient mice facilitated the elimination of cells with less memory potential via the additional pro-apoptotic molecules Noxa and Puma. Combined, these data show that Bim controls memory development by limiting the survival of pre-memory effector cells. Further, by preventing the consumption of IL-15, Bim limits the role of Noxa and Puma in causing the death of effector cells with less memory potential. PMID:25124553

  4. Bim controls IL-15 availability and limits engagement of multiple BH3-only proteins.

    PubMed

    Kurtulus, S; Sholl, A; Toe, J; Tripathi, P; Raynor, J; Li, K-P; Pellegrini, M; Hildeman, D A

    2015-01-01

    During the effector CD8+ T-cell response, transcriptional differentiation programs are engaged that promote effector T cells with varying memory potential. Although these differentiation programs have been used to explain which cells die as effectors and which cells survive and become memory cells, it is unclear if the lack of cell death enhances memory. Here, we investigated effector CD8+ T-cell fate in mice whose death program has been largely disabled because of the loss of Bim. Interestingly, the absence of Bim resulted in a significant enhancement of effector CD8+ T cells with more memory potential. Bim-driven control of memory T-cell development required T-cell-specific, but not dendritic cell-specific, expression of Bim. Both total and T-cell-specific loss of Bim promoted skewing toward memory precursors, by enhancing the survival of memory precursors, and limiting the availability of IL-15. Decreased IL-15 availability in Bim-deficient mice facilitated the elimination of cells with less memory potential via the additional pro-apoptotic molecules Noxa and Puma. Combined, these data show that Bim controls memory development by limiting the survival of pre-memory effector cells. Further, by preventing the consumption of IL-15, Bim limits the role of Noxa and Puma in causing the death of effector cells with less memory potential.

  5. Ventral striatum and the evaluation of memory retrieval strategies.

    PubMed

    Badre, David; Lebrecht, Sophie; Pagliaccio, David; Long, Nicole M; Scimeca, Jason M

    2014-09-01

    Adaptive memory retrieval requires mechanisms of cognitive control that facilitate the recovery of goal-relevant information. Frontoparietal systems are known to support control of memory retrieval. However, the mechanisms by which the brain acquires, evaluates, and adapts retrieval strategies remain unknown. Here, we provide evidence that ventral striatal activation tracks the success of a retrieval strategy and correlates with subsequent reliance on that strategy. Human participants were scanned with fMRI while performing a lexical decision task. A rule was provided that indicated the likely semantic category of a target word given the category of a preceding prime. Reliance on the rule improved decision-making, as estimated within a drift diffusion framework. Ventral striatal activation tracked the benefit that relying on the rule had on decision-making. Moreover, activation in ventral striatum correlated with a participant's subsequent reliance on the rule. Taken together, these results support a role for ventral striatum in learning and evaluating declarative retrieval strategies.

  6. Retrieval of long and short lists from long term memory: a functional magnetic resonance imaging study with human subjects.

    PubMed

    Zysset, S; Müller, K; Lehmann, C; Thöne-Otto, A I; von Cramon, D Y

    2001-11-13

    Previous studies have shown that reaction time in an item-recognition task with both short and long lists is a quadratic function of list length. This suggests that either different memory retrieval processes are implied for short and long lists or an adaptive process is involved. An event-related functional magnetic resonance imaging study with nine subjects and list lengths varying between 3 and 18 words was conducted to identify the underlying neuronal structures of retrieval from long and short lists. For the retrieval and processing of word-lists a single fronto-parietal network, including premotor, left prefrontal, left precuneal and left parietal regions, was activated. With increasing list length, no additional regions became involved in retrieving information from long-term memory, suggesting that not necessarily different, but highly adaptive retrieval processes are involved.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Juhee; Lee, Sungpyo; Lee, Moo Hyung

    Quasi-unipolar non-volatile organic transistor memory (NOTM) can combine the best characteristics of conventional unipolar and ambipolar NOTMs and, as a result, exhibit improved device performance. Unipolar NOTMs typically exhibit a large signal ratio between the programmed and erased current signals but also require a large voltage to program and erase the memory cells. Meanwhile, an ambipolar NOTM can be programmed and erased at lower voltages, but the resulting signal ratio is small. By embedding a discontinuous n-type fullerene layer within a p-type pentacene film, quasi-unipolar NOTMs are fabricated, of which the signal storage utilizes both electrons and holes while themore » electrical signal relies on only hole conduction. These devices exhibit superior memory performance relative to both pristine unipolar pentacene devices and ambipolar fullerene/pentacene bilayer devices. The quasi-unipolar NOTM exhibited a larger signal ratio between the programmed and erased states while also reducing the voltage required to program and erase a memory cell. This simple approach should be readily applicable for various combinations of advanced organic semiconductors that have been recently developed and thereby should make a significant impact on organic memory research.« less

  8. Optimization of an organic memristor as an adaptive memory element

    NASA Astrophysics Data System (ADS)

    Berzina, Tatiana; Smerieri, Anteo; Bernabò, Marco; Pucci, Andrea; Ruggeri, Giacomo; Erokhin, Victor; Fontana, M. P.

    2009-06-01

    The combination of memory and signal handling characteristics of a memristor makes it a promising candidate for adaptive bioinspired information processing systems. This poses stringent requirements on the basic device, such as stability and reproducibility over a large number of training/learning cycles, and a large anisotropy in the fundamental control material parameter, in our case the electrical conductivity. In this work we report results on the improved performance of electrochemically controlled polymeric memristors, where optimization of a conducting polymer (polyaniline) in the active channel and better environmental control of fabrication methods led to a large increase both in the absolute values of the conductivity in the partially oxydized state of polyaniline and of the on-off conductivity ratio. These improvements are crucial for the application of the organic memristor to adaptive complex signal handling networks.

  9. Finite Element Analysis of Adaptive-Stiffening and Shape-Control SMA Hybrid Composites

    NASA Technical Reports Server (NTRS)

    Gao, Xiu-Jie; Turner, Travis L.; Burton, Deborah; Brinson, L. Catherine

    2005-01-01

    The usage of shape memory materials has extended rapidly to many fields, including medical devices, actuators, composites, structures and MEMS devices. For these various applications, shape memory alloys (SMAs) are available in various forms: bulk, wire, ribbon, thin film, and porous. In this work, the focus is on SMA hybrid composites with adaptive-stiffening or morphing functions. These composites are created by using SMA ribbons or wires embedded in a polymeric based composite panel/beam. Adaptive stiffening or morphing is activated via selective resistance heating or uniform thermal loads. To simulate the thermomechanical behavior of these composites, a SMA model was implemented using ABAQUS user element interface and finite element simulations of the systems were studied. Several examples are presented which show that the implemented model can be a very useful design and simulation tool for SMA hybrid composites.

  10. Quantifying precision and availability of location memory in everyday pictures and some implications for picture database design.

    PubMed

    Lansdale, Mark W; Oliff, Lynda; Baguley, Thom S

    2005-06-01

    The authors investigated whether memory for object locations in pictures could be exploited to address known difficulties of designing query languages for picture databases. M. W. Lansdale's (1998) model of location memory was adapted to 4 experiments observing memory for everyday pictures. These experiments showed that location memory is quantified by 2 parameters: a probability that memory is available and a measure of its precision. Availability is determined by controlled attentional processes, whereas precision is mostly governed by picture composition beyond the viewer's control. Additionally, participants' confidence judgments were good predictors of availability but were insensitive to precision. This research suggests that databases using location memory are feasible. The implications of these findings for database design and for further research and development are discussed. (c) 2005 APA

  11. Injecting Artificial Memory Errors Into a Running Computer Program

    NASA Technical Reports Server (NTRS)

    Bornstein, Benjamin J.; Granat, Robert A.; Wagstaff, Kiri L.

    2008-01-01

    Single-event upsets (SEUs) or bitflips are computer memory errors caused by radiation. BITFLIPS (Basic Instrumentation Tool for Fault Localized Injection of Probabilistic SEUs) is a computer program that deliberately injects SEUs into another computer program, while the latter is running, for the purpose of evaluating the fault tolerance of that program. BITFLIPS was written as a plug-in extension of the open-source Valgrind debugging and profiling software. BITFLIPS can inject SEUs into any program that can be run on the Linux operating system, without needing to modify the program s source code. Further, if access to the original program source code is available, BITFLIPS offers fine-grained control over exactly when and which areas of memory (as specified via program variables) will be subjected to SEUs. The rate of injection of SEUs is controlled by specifying either a fault probability or a fault rate based on memory size and radiation exposure time, in units of SEUs per byte per second. BITFLIPS can also log each SEU that it injects and, if program source code is available, report the magnitude of effect of the SEU on a floating-point value or other program variable.

  12. Optics Program Modified for Multithreaded Parallel Computing

    NASA Technical Reports Server (NTRS)

    Lou, John; Bedding, Dave; Basinger, Scott

    2006-01-01

    A powerful high-performance computer program for simulating and analyzing adaptive and controlled optical systems has been developed by modifying the serial version of the Modeling and Analysis for Controlled Optical Systems (MACOS) program to impart capabilities for multithreaded parallel processing on computing systems ranging from supercomputers down to Symmetric Multiprocessing (SMP) personal computers. The modifications included the incorporation of OpenMP, a portable and widely supported application interface software, that can be used to explicitly add multithreaded parallelism to an application program under a shared-memory programming model. OpenMP was applied to parallelize ray-tracing calculations, one of the major computing components in MACOS. Multithreading is also used in the diffraction propagation of light in MACOS based on pthreads [POSIX Thread, (where "POSIX" signifies a portable operating system for UNIX)]. In tests of the parallelized version of MACOS, the speedup in ray-tracing calculations was found to be linear, or proportional to the number of processors, while the speedup in diffraction calculations ranged from 50 to 60 percent, depending on the type and number of processors. The parallelized version of MACOS is portable, and, to the user, its interface is basically the same as that of the original serial version of MACOS.

  13. Encoding attentional states during visuomotor adaptation

    PubMed Central

    Im, Hee Yeon; Bédard, Patrick; Song, Joo-Hyun

    2015-01-01

    We recently showed that visuomotor adaptation acquired under attentional distraction is better recalled under a similar level of distraction compared to no distraction. This paradoxical effect suggests that attentional state (e.g., divided or undivided) is encoded as an internal context during visuomotor learning and should be reinstated for successful recall (Song & Bédard, 2015). To investigate if there is a critical temporal window for encoding attentional state in visuomotor memory, we manipulated whether participants performed the secondary attention-demanding task concurrently in the early or late phase of visuomotor learning. Recall performance was enhanced when the attentional states between recall and the early phase of visuomotor learning were consistent. However, it reverted to untrained levels when tested under the attentional state of the late-phase learning. This suggests that attentional state is primarily encoded during the early phase of learning before motor errors decrease and reach an asymptote. Furthermore, we demonstrate that when divided and undivided attentional states were mixed during visuomotor adaptation, only divided attention was encoded as an internal cue for memory retrieval. Therefore, a single attentional state appears to be primarily integrated with visuomotor memory while motor error reduction is in progress during learning. PMID:26114683

  14. Benefits of a Classroom Based Instrumental Music Program on Verbal Memory of Primary School Children: A Longitudinal Study

    ERIC Educational Resources Information Center

    Rickard, Nikki S.; Vasquez, Jorge T.; Murphy, Fintan; Gill, Anneliese; Toukhsati, Samia R.

    2010-01-01

    Previous research has demonstrated a benefit of music training on a number of cognitive functions including verbal memory performance. The impact of school-based music programs on memory processes is however relatively unknown. The current study explored the effect of increasing frequency and intensity of classroom-based instrumental training…

  15. Processing of NiTi Reinforced Adaptive Solder for Electronic Packaging

    DTIC Science & Technology

    2004-03-01

    NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA THESIS PROCESSING OF NITI REINFORCED ADAPTIVE SOLDER FOR ELECTRONIC PACKAGING...March 2004 3. REPORT TYPE AND DATES COVERED Master’s Thesis 4. TITLE AND SUBTITLE: Processing of NiTi Reinforced Adaptive Solder for Electronic...reports in the development a process to fabricate solder joints with a fine distribution of shape memory alloys (SMA) NiTi particulates. The

  16. Brain structural changes following adaptive cognitive training assessed by Tensor-Based Morphometry (TBM)

    PubMed Central

    Colom, Roberto; Hua, Xue; Martínez, Kenia; Burgaleta, Miguel; Román, Francisco J.; Gunter, Jeffrey L.; Carmona, Susanna; Jaeggi, Susanne M.; Thompson, Paul M.

    2016-01-01

    Tensor-Based Morphometry (TBM) allows the automatic mapping of brain changes across time building 3D deformation maps. This technique has been applied for tracking brain degeneration in Alzheimer's and other neurodegenerative diseases with high sensitivity and reliability. Here we applied TBM to quantify changes in brain structure after completing a challenging adaptive cognitive training program based on the n-back task. Twenty-six young women completed twenty-four training sessions across twelve weeks and they showed, on average, large cognitive improvements. High-resolution MRI scans were obtained before and after training. The computed longitudinal deformation maps were analyzed for answering three questions: (a) Are there differential brain structural changes in the training group as compared with a matched control group? (b) Are these changes related to performance differences in the training program? (c) Are standardized changes in a set of psychological factors (fluid and crystallized intelligence, working memory, and attention control) measured before and after training, related to structural changes in the brain? Results showed (a) greater structural changes for the training group in the temporal lobe, (b) a negative correlation between these changes and performance across training sessions (the greater the structural change, the lower the cognitive performance improvements), and (c) negligible effects regarding the psychological factors measured before and after training. PMID:27477628

  17. 45 CFR 2490.151 - Program accessibility: New construction and alterations.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... alterations. 2490.151 Section 2490.151 Public Welfare Regulations Relating to Public Welfare (Continued) JAMES MADISON MEMORIAL FELLOWSHIP FOUNDATION ENFORCEMENT OF NONDISCRIMINATION ON THE BASIS OF HANDICAP IN PROGRAMS OR ACTIVITIES CONDUCTED BY THE JAMES MADISON MEMORIAL FELLOWSHIP FOUNDATION § 2490.151 Program...

  18. 45 CFR 2490.151 - Program accessibility: New construction and alterations.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... alterations. 2490.151 Section 2490.151 Public Welfare Regulations Relating to Public Welfare (Continued) JAMES MADISON MEMORIAL FELLOWSHIP FOUNDATION ENFORCEMENT OF NONDISCRIMINATION ON THE BASIS OF HANDICAP IN PROGRAMS OR ACTIVITIES CONDUCTED BY THE JAMES MADISON MEMORIAL FELLOWSHIP FOUNDATION § 2490.151 Program...

  19. 45 CFR 2490.151 - Program accessibility: New construction and alterations.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... alterations. 2490.151 Section 2490.151 Public Welfare Regulations Relating to Public Welfare (Continued) JAMES MADISON MEMORIAL FELLOWSHIP FOUNDATION ENFORCEMENT OF NONDISCRIMINATION ON THE BASIS OF HANDICAP IN PROGRAMS OR ACTIVITIES CONDUCTED BY THE JAMES MADISON MEMORIAL FELLOWSHIP FOUNDATION § 2490.151 Program...

  20. 45 CFR 2490.151 - Program accessibility: New construction and alterations.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... alterations. 2490.151 Section 2490.151 Public Welfare Regulations Relating to Public Welfare (Continued) JAMES MADISON MEMORIAL FELLOWSHIP FOUNDATION ENFORCEMENT OF NONDISCRIMINATION ON THE BASIS OF HANDICAP IN PROGRAMS OR ACTIVITIES CONDUCTED BY THE JAMES MADISON MEMORIAL FELLOWSHIP FOUNDATION § 2490.151 Program...

  1. 45 CFR 2490.151 - Program accessibility: New construction and alterations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... alterations. 2490.151 Section 2490.151 Public Welfare Regulations Relating to Public Welfare (Continued) JAMES MADISON MEMORIAL FELLOWSHIP FOUNDATION ENFORCEMENT OF NONDISCRIMINATION ON THE BASIS OF HANDICAP IN PROGRAMS OR ACTIVITIES CONDUCTED BY THE JAMES MADISON MEMORIAL FELLOWSHIP FOUNDATION § 2490.151 Program...

  2. What we remember affects how we see: spatial working memory steers saccade programming.

    PubMed

    Wong, Jason H; Peterson, Matthew S

    2013-02-01

    Relationships between visual attention, saccade programming, and visual working memory have been hypothesized for over a decade. Awh, Jonides, and Reuter-Lorenz (Journal of Experimental Psychology: Human Perception and Performance 24(3):780-90, 1998) and Awh et al. (Psychological Science 10(5):433-437, 1999) proposed that rehearsing a location in memory also leads to enhanced attentional processing at that location. In regard to eye movements, Belopolsky and Theeuwes (Attention, Perception & Psychophysics 71(3):620-631, 2009) found that holding a location in working memory affects saccade programming, albeit negatively. In three experiments, we attempted to replicate the findings of Belopolsky and Theeuwes (Attention, Perception & Psychophysics 71(3):620-631, 2009) and determine whether the spatial memory effect can occur in other saccade-cuing paradigms, including endogenous central arrow cues and exogenous irrelevant singletons. In the first experiment, our results were the opposite of those in Belopolsky and Theeuwes (Attention, Perception & Psychophysics 71(3):620-631, 2009), in that we found facilitation (shorter saccade latencies) instead of inhibition when the saccade target matched the region in spatial working memory. In Experiment 2, we sought to determine whether the spatial working memory effect would generalize to other endogenous cuing tasks, such as a central arrow that pointed to one of six possible peripheral locations. As in Experiment 1, we found that saccade programming was facilitated when the cued location coincided with the saccade target. In Experiment 3, we explored how spatial memory interacts with other types of cues, such as a peripheral color singleton target or irrelevant onset. In both cases, the eyes were more likely to go to either singleton when it coincided with the location held in spatial working memory. On the basis of these results, we conclude that spatial working memory and saccade programming are likely to share common overlapping circuitry.

  3. What’s working in working memory training? An educational perspective

    PubMed Central

    Redick, Thomas S.; Shipstead, Zach; Wiemers, Elizabeth A.; Melby-Lervåg, Monica; Hulme, Charles

    2015-01-01

    Working memory training programs have generated great interest, with claims that the training interventions can have profound beneficial effects on children’s academic and intellectual attainment. We describe the criteria by which to evaluate evidence for or against the benefit of working memory training. Despite the promising results of initial research studies, the current review of all of the available evidence of working memory training efficacy is less optimistic. Our conclusion is that working memory training produces limited benefits in terms of specific gains on short-term and working memory tasks that are very similar to the training programs, but no advantage for academic and achievement-based reading and arithmetic outcomes. PMID:26640352

  4. Demonstration of an ebbinghaus illusion at a memory level: manipulation of the memory size and not the perceptual size.

    PubMed

    Rey, Amandine Eve; Riou, Benoit; Versace, Rémy

    2014-01-01

    Based on recent behavioral and neuroimaging data suggesting that memory and perception are partially based on the same sensorimotor system, the theoretical aim of the present study was to show that it is difficult to dissociate memory mechanisms from perceptual mechanisms other than on the basis of the presence (perceptual processing) or absence (memory processing) of the characteristics of the objects involved in the processing. In line with this assumption, two experiments using an adaptation of the Ebbinghaus illusion paradigm revealed similar effects irrespective of whether the size difference between the inner circles and the surrounding circles was manipulated perceptually (the size difference was perceptually present, Experiment 1) or merely reactivated in memory (the difference was perceptually absent, Experiment 2).

  5. Regular Latin Dancing and Health Education may Improve Cognition of Late Middle-Aged and Older Latinos

    PubMed Central

    Marquez, David X.; Wilson, Robert; Aguiñaga, Susan; Vásquez, Priscilla; Fogg, Louis; Yang, Zhi; Wilbur, JoEllen; Hughes, Susan; Spanbauer, Charles

    2017-01-01

    Disparities exist between Latinos and non-Latino whites in cognitive function. Dance is culturally appropriate and challenges individuals physically and cognitively, yet the impact of regular dancing on cognitive function in older Latinos has not been examined. A two-group pilot trial was employed among inactive, older Latinos. Participants (N = 57) participated in the BAILAMOS© dance program or a health education program. Cognitive test scores were converted to z-scores and measures of global cognition and specific domains (executive function, episodic memory, working memory) were derived. Results revealed a group × time interaction for episodic memory (p<0.05), such that the dance group showed greater improvement in episodic memory than the health education group. A main effect for time for global cognition (p<0.05) was also demonstrated, with participants in both groups improving. Structured Latin dance programs can positively influence episodic memory; and participation in structured programs may improve overall cognition among older Latinos. PMID:28095105

  6. Regular Latin Dancing and Health Education May Improve Cognition of Late Middle-Aged and Older Latinos.

    PubMed

    Marquez, David X; Wilson, Robert; Aguiñaga, Susan; Vásquez, Priscilla; Fogg, Louis; Yang, Zhi; Wilbur, JoEllen; Hughes, Susan; Spanbauer, Charles

    2017-07-01

    Disparities exist between Latinos and non-Latino Whites in cognitive function. Dance is culturally appropriate and challenges individuals physically and cognitively, yet the impact of regular dancing on cognitive function in older Latinos has not been examined. A two-group pilot trial was employed among inactive, older Latinos. Participants (N = 57) participated in the BAILAMOS © dance program or a health education program. Cognitive test scores were converted to z-scores and measures of global cognition and specific domains (executive function, episodic memory, working memory) were derived. Results revealed a group × time interaction for episodic memory (p < .05), such that the dance group showed greater improvement in episodic memory than the health education group. A main effect for time for global cognition (p < .05) was also demonstrated, with participants in both groups improving. Structured Latin dance programs can positively influence episodic memory, and participation in structured programs may improve overall cognition among older Latinos.

  7. Anxiety promotes memory for mood-congruent faces but does not alter loss aversion

    PubMed Central

    Charpentier, Caroline J.; Hindocha, Chandni; Roiser, Jonathan P.; Robinson, Oliver J.

    2016-01-01

    Pathological anxiety is associated with disrupted cognitive processing, including working memory and decision-making. In healthy individuals, experimentally-induced state anxiety or high trait anxiety often results in the deployment of adaptive harm-avoidant behaviours. However, how these processes affect cognition is largely unknown. To investigate this question, we implemented a translational within-subjects anxiety induction, threat of shock, in healthy participants reporting a wide range of trait anxiety scores. Participants completed a gambling task, embedded within an emotional working memory task, with some blocks under unpredictable threat and others safe from shock. Relative to the safe condition, threat of shock improved recall of threat-congruent (fearful) face location, especially in highly trait anxious participants. This suggests that threat boosts working memory for mood-congruent stimuli in vulnerable individuals, mirroring memory biases in clinical anxiety. By contrast, Bayesian analysis indicated that gambling decisions were better explained by models that did not include threat or treat anxiety, suggesting that: (i) higher-level executive functions are robust to these anxiety manipulations; and (ii) decreased risk-taking may be specific to pathological anxiety. These findings provide insight into the complex interactions between trait anxiety, acute state anxiety and cognition, and may help understand the cognitive mechanisms underlying adaptive anxiety. PMID:27098489

  8. Anxiety promotes memory for mood-congruent faces but does not alter loss aversion.

    PubMed

    Charpentier, Caroline J; Hindocha, Chandni; Roiser, Jonathan P; Robinson, Oliver J

    2016-04-21

    Pathological anxiety is associated with disrupted cognitive processing, including working memory and decision-making. In healthy individuals, experimentally-induced state anxiety or high trait anxiety often results in the deployment of adaptive harm-avoidant behaviours. However, how these processes affect cognition is largely unknown. To investigate this question, we implemented a translational within-subjects anxiety induction, threat of shock, in healthy participants reporting a wide range of trait anxiety scores. Participants completed a gambling task, embedded within an emotional working memory task, with some blocks under unpredictable threat and others safe from shock. Relative to the safe condition, threat of shock improved recall of threat-congruent (fearful) face location, especially in highly trait anxious participants. This suggests that threat boosts working memory for mood-congruent stimuli in vulnerable individuals, mirroring memory biases in clinical anxiety. By contrast, Bayesian analysis indicated that gambling decisions were better explained by models that did not include threat or treat anxiety, suggesting that: (i) higher-level executive functions are robust to these anxiety manipulations; and (ii) decreased risk-taking may be specific to pathological anxiety. These findings provide insight into the complex interactions between trait anxiety, acute state anxiety and cognition, and may help understand the cognitive mechanisms underlying adaptive anxiety.

  9. Fast and memory efficient text image compression with JBIG2.

    PubMed

    Ye, Yan; Cosman, Pamela

    2003-01-01

    In this paper, we investigate ways to reduce encoding time, memory consumption and substitution errors for text image compression with JBIG2. We first look at page striping where the encoder splits the input image into horizontal stripes and processes one stripe at a time. We propose dynamic dictionary updating procedures for page striping to reduce the bit rate penalty it incurs. Experiments show that splitting the image into two stripes can save 30% of encoding time and 40% of physical memory with a small coding loss of about 1.5%. Using more stripes brings further savings in time and memory but the return diminishes. We also propose an adaptive way to update the dictionary only when it has become out-of-date. The adaptive updating scheme can resolve the time versus bit rate tradeoff and the memory versus bit rate tradeoff well simultaneously. We then propose three speedup techniques for pattern matching, the most time-consuming encoding activity in JBIG2. When combined together, these speedup techniques can save up to 75% of the total encoding time with at most 1.7% of bit rate penalty. Finally, we look at improving reconstructed image quality for lossy compression. We propose enhanced prescreening and feature monitored shape unifying to significantly reduce substitution errors in the reconstructed images.

  10. Strategies for memory-based decision making: Modeling behavioral and neural signatures within a cognitive architecture.

    PubMed

    Fechner, Hanna B; Pachur, Thorsten; Schooler, Lael J; Mehlhorn, Katja; Battal, Ceren; Volz, Kirsten G; Borst, Jelmer P

    2016-12-01

    How do people use memories to make inferences about real-world objects? We tested three strategies based on predicted patterns of response times and blood-oxygen-level-dependent (BOLD) responses: one strategy that relies solely on recognition memory, a second that retrieves additional knowledge, and a third, lexicographic (i.e., sequential) strategy, that considers knowledge conditionally on the evidence obtained from recognition memory. We implemented the strategies as computational models within the Adaptive Control of Thought-Rational (ACT-R) cognitive architecture, which allowed us to derive behavioral and neural predictions that we then compared to the results of a functional magnetic resonance imaging (fMRI) study in which participants inferred which of two cities is larger. Overall, versions of the lexicographic strategy, according to which knowledge about many but not all alternatives is searched, provided the best account of the joint patterns of response times and BOLD responses. These results provide insights into the interplay between recognition and additional knowledge in memory, hinting at an adaptive use of these two sources of information in decision making. The results highlight the usefulness of implementing models of decision making within a cognitive architecture to derive predictions on the behavioral and neural level. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. [Supposed role of "metabolic memory" in formation of response reaction to stress-factors in young and adult organisms].

    PubMed

    Bozhkov, A I; Dlubovskaia, V L; Dmitriev, Iu V; Meshaĭkina, N I; Maleev, V A; Klimova, E M

    2009-01-01

    The influence of the combined long-lasted influences of sulfur sulfate and diet restriction in young (3 month age) and adult (21 month age) Vistar rats on activity of glucose-6-phospatase, alaninaminotranspherase (ALT), aspartataminotranspherase (AST), and on phosphorilating activity of liver mitochondria was studied to investigate the role of metabolic memory on the peculiarities of response reaction. The young animals not differed from adult ones in the possibility of inducing activity of glucose-6-phospatase, ALT, and on phosphorilating activity after the influence of sulfur sulfate and diet restriction. The age-related differences in glucose-6-phospatase and transpherases and phosphorilating activity existing in control disappeared after the long-lasted action of sulfur sulfate and diet restriction. The answer reaction in enzyme activity to stress factors applied many times depends upon the metabolic memory formed in the process of adaptation, and the age of animals have no influence on it. In some relation the ontogenesis may be considered as a result of adaptation genesis. The metabolic memory can change the answer of the system to the stress influence. There are three types of modification of the answer to stress factors: the answer remains unchanged (metabolic memory), "paradox answer" formation, and super activation of the metabolic system.

  12. FMM-Yukawa: An adaptive fast multipole method for screened Coulomb interactions

    NASA Astrophysics Data System (ADS)

    Huang, Jingfang; Jia, Jun; Zhang, Bo

    2009-11-01

    A Fortran program package is introduced for the rapid evaluation of the screened Coulomb interactions of N particles in three dimensions. The method utilizes an adaptive oct-tree structure, and is based on the new version of fast multipole method in which the exponential expansions are used to diagonalize the multipole-to-local translations. The program and its full description, as well as several closely related packages are also available at http://www.fastmultipole.org/. This paper is a brief review of the program and its performance. Catalogue identifier: AEEQ_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEEQ_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GPL 2.0 No. of lines in distributed program, including test data, etc.: 12 385 No. of bytes in distributed program, including test data, etc.: 79 222 Distribution format: tar.gz Programming language: Fortran77 and Fortran90 Computer: Any Operating system: Any RAM: Depends on the number of particles, their distribution, and the adaptive tree structure Classification: 4.8, 4.12 Nature of problem: To evaluate the screened Coulomb potential and force field of N charged particles, and to evaluate a convolution type integral where the Green's function is the fundamental solution of the modified Helmholtz equation. Solution method: An adaptive oct-tree is generated, and a new version of fast multipole method is applied in which the "multipole-to-local" translation operator is diagonalized. Restrictions: Only three and six significant digits accuracy options are provided in this version. Unusual features: Most of the codes are written in Fortran77. Functions for memory allocation from Fortran90 and above are used in one subroutine. Additional comments: For supplementary information see http://www.fastmultipole.org/ Running time: The running time varies depending on the number of particles (denoted by N) in the system and their distribution. The running time scales linearly as a function of N for nearly uniform particle distributions. For three digits accuracy, the solver breaks even with direct summation method at about N = 750. References: [1] L. Greengard, J. Huang, A new version of the fast multipole method for screened Coulomb interactions in three dimensions, J. Comput. Phys. 180 (2002) 642-658.

  13. Better imagined: Neural correlates of the episodic simulation boost to prospective memory performance.

    PubMed

    Spreng, R Nathan; Madore, Kevin P; Schacter, Daniel L

    2018-05-01

    Episodic simulation is an adaptive process that can support goal-directed activity and planning success. We investigated the neural architecture associated with the episodic simulation improvement to the likelihood of carrying out future actions by isolating the brain regions associated with this facilitation in a prospective memory paradigm. Participants performed a lexical decision task by making word/non-word judgments, with rarely occurring prospective memory target words requiring a pre-specified manual response. Prior to scanning, participants were given exposure to two lists of prospective memory targets: animals and tools. In a fully counterbalanced design, participants generated a rhyme to one target list and imagined their subsequent encounter (episodic simulation) with target words on the other list. Replicating prior behavioral work, episodic simulation improved subsequent prospective memory performance. Brain activation was assessed in a multivariate partial least squares analysis. Relative to lexical decision blocks with no prospective memory demand, sustained prospective memory replicated prior observations of frontal polar activation. Critically, maintaining the intention to respond to simulated targets, over and above rhyme targets, engaged middle frontal and angular gyri, and medial parietal and prefrontal cortices. Transient activity associated with prospective memory target hits revealed activation for simulated targets in medial prefrontal cortex, posterior cingulate, lateral temporal lobe and inferior parietal lobule. In contrast, rhyme target hits engaged more left lateralized dorsolateral prefrontal cortex and anterior insula. Episodic simulation, thus effectively shifts executive control strategy and boosts task performance. These results are consistent with a growing body of evidence implicating executive control and default network region interactions in adaptive, goal-directed behavior. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Two demonstrators and a simulator for a sparse, distributed memory

    NASA Technical Reports Server (NTRS)

    Brown, Robert L.

    1987-01-01

    Described are two programs demonstrating different aspects of Kanerva's Sparse, Distributed Memory (SDM). These programs run on Sun 3 workstations, one using color, and have straightforward graphically oriented user interfaces and graphical output. Presented are descriptions of the programs, how to use them, and what they show. Additionally, this paper describes the software simulator behind each program.

  15. Large-scale hydropower system optimization using dynamic programming and object-oriented programming: the case of the Northeast China Power Grid.

    PubMed

    Li, Ji-Qing; Zhang, Yu-Shan; Ji, Chang-Ming; Wang, Ai-Jing; Lund, Jay R

    2013-01-01

    This paper examines long-term optimal operation using dynamic programming for a large hydropower system of 10 reservoirs in Northeast China. Besides considering flow and hydraulic head, the optimization explicitly includes time-varying electricity market prices to maximize benefit. Two techniques are used to reduce the 'curse of dimensionality' of dynamic programming with many reservoirs. Discrete differential dynamic programming (DDDP) reduces the search space and computer memory needed. Object-oriented programming (OOP) and the ability to dynamically allocate and release memory with the C++ language greatly reduces the cumulative effect of computer memory for solving multi-dimensional dynamic programming models. The case study shows that the model can reduce the 'curse of dimensionality' and achieve satisfactory results.

  16. A theory for how sensorimotor skills are learned and retained in noisy and nonstationary neural circuits

    PubMed Central

    Ajemian, Robert; D’Ausilio, Alessandro; Moorman, Helene; Bizzi, Emilio

    2013-01-01

    During the process of skill learning, synaptic connections in our brains are modified to form motor memories of learned sensorimotor acts. The more plastic the adult brain is, the easier it is to learn new skills or adapt to neurological injury. However, if the brain is too plastic and the pattern of synaptic connectivity is constantly changing, new memories will overwrite old memories, and learning becomes unstable. This trade-off is known as the stability–plasticity dilemma. Here a theory of sensorimotor learning and memory is developed whereby synaptic strengths are perpetually fluctuating without causing instability in motor memory recall, as long as the underlying neural networks are sufficiently noisy and massively redundant. The theory implies two distinct stages of learning—preasymptotic and postasymptotic—because once the error drops to a level comparable to that of the noise-induced error, further error reduction requires altered network dynamics. A key behavioral prediction derived from this analysis is tested in a visuomotor adaptation experiment, and the resultant learning curves are modeled with a nonstationary neural network. Next, the theory is used to model two-photon microscopy data that show, in animals, high rates of dendritic spine turnover, even in the absence of overt behavioral learning. Finally, the theory predicts enhanced task selectivity in the responses of individual motor cortical neurons as the level of task expertise increases. From these considerations, a unique interpretation of sensorimotor memory is proposed—memories are defined not by fixed patterns of synaptic weights but, rather, by nonstationary synaptic patterns that fluctuate coherently. PMID:24324147

  17. A model of attention-guided visual perception and recognition.

    PubMed

    Rybak, I A; Gusakova, V I; Golovan, A V; Podladchikova, L N; Shevtsova, N A

    1998-08-01

    A model of visual perception and recognition is described. The model contains: (i) a low-level subsystem which performs both a fovea-like transformation and detection of primary features (edges), and (ii) a high-level subsystem which includes separated 'what' (sensory memory) and 'where' (motor memory) structures. Image recognition occurs during the execution of a 'behavioral recognition program' formed during the primary viewing of the image. The recognition program contains both programmed attention window movements (stored in the motor memory) and predicted image fragments (stored in the sensory memory) for each consecutive fixation. The model shows the ability to recognize complex images (e.g. faces) invariantly with respect to shift, rotation and scale.

  18. Working Memory Training Does Not Improve Performance on Measures of Intelligence or Other Measures of "Far Transfer": Evidence From a Meta-Analytic Review.

    PubMed

    Melby-Lervåg, Monica; Redick, Thomas S; Hulme, Charles

    2016-07-01

    It has been claimed that working memory training programs produce diverse beneficial effects. This article presents a meta-analysis of working memory training studies (with a pretest-posttest design and a control group) that have examined transfer to other measures (nonverbal ability, verbal ability, word decoding, reading comprehension, or arithmetic; 87 publications with 145 experimental comparisons). Immediately following training there were reliable improvements on measures of intermediate transfer (verbal and visuospatial working memory). For measures of far transfer (nonverbal ability, verbal ability, word decoding, reading comprehension, arithmetic) there was no convincing evidence of any reliable improvements when working memory training was compared with a treated control condition. Furthermore, mediation analyses indicated that across studies, the degree of improvement on working memory measures was not related to the magnitude of far-transfer effects found. Finally, analysis of publication bias shows that there is no evidential value from the studies of working memory training using treated controls. The authors conclude that working memory training programs appear to produce short-term, specific training effects that do not generalize to measures of "real-world" cognitive skills. These results seriously question the practical and theoretical importance of current computerized working memory programs as methods of training working memory skills. © The Author(s) 2016.

  19. Sparse distributed memory prototype: Principles of operation

    NASA Technical Reports Server (NTRS)

    Flynn, Michael J.; Kanerva, Pentti; Ahanin, Bahram; Bhadkamkar, Neal; Flaherty, Paul; Hickey, Philip

    1988-01-01

    Sparse distributed memory is a generalized random access memory (RAM) for long binary words. Such words can be written into and read from the memory, and they can be used to address the memory. The main attribute of the memory is sensitivity to similarity, meaning that a word can be read back not only by giving the original right address but also by giving one close to it as measured by the Hamming distance between addresses. Large memories of this kind are expected to have wide use in speech and scene analysis, in signal detection and verification, and in adaptive control of automated equipment. The memory can be realized as a simple, massively parallel computer. Digital technology has reached a point where building large memories is becoming practical. The research is aimed at resolving major design issues that have to be faced in building the memories. The design of a prototype memory with 256-bit addresses and from 8K to 128K locations for 256-bit words is described. A key aspect of the design is extensive use of dynamic RAM and other standard components.

  20. Prenatal glucocorticoid exposure in rats: programming effects on stress reactivity and cognition in adult offspring.

    PubMed

    Zeng, Yan; Brydges, Nichola M; Wood, Emma R; Drake, Amanda J; Hall, Jeremy

    2015-01-01

    Human epidemiological studies have provided compelling evidence that prenatal exposure to stress is associated with significantly increased risks of developing psychiatric disorders in adulthood. Exposure to excessive maternal glucocorticoids may underlie this fetal programming effect. In the current study, we assessed how prenatal dexamethasone administration during the last week of gestation affects stress reactivity and cognition in adult offspring. Stress reactivity was assessed by evaluating anxiety-like behavior on an elevated plus maze and in an open field. In addition, to characterize the long-term cognitive outcomes of prenatal exposure to glucocorticoids, animals were assessed on two cognitive tasks, a spatial reference memory task with reversal learning and a delayed matching to position (DMTP) task. Our results suggest that prenatal exposure to dexamethasone had no observable effect on anxiety-like behavior, but affected cognition in the adult offspring. Prenatally dexamethasone-exposed animals showed a transient deficit in the spatial reference memory task and a trend to faster acquisition during the reversal-learning phase. Furthermore, prenatally dexamethasone-treated animals also showed faster learning of new platform positions in the DMTP task. These results suggest that fetal overexposure to glucocorticoids programs a phenotype characterized by cognitive flexibility and adaptability to frequent changes in environmental circumstances. This can be viewed as an attempt to increase the fitness of survival in a potentially hazardous postnatal environment, as predicted by intrauterine adversity. Collectively, our data suggest that prenatal exposure to dexamethasone in rats could be used as an animal model for studying some cognitive components of related psychiatric disorders.

  1. Free Recall Behaviour in Children with and without Spelling Impairment: The Impact of Working Memory Subcapacities

    ERIC Educational Resources Information Center

    Malstadt, Nadine; Hasselhorn, Marcus; Lehmann, Martin

    2012-01-01

    This study examined supraspan free recall in children with and without spelling impairment. A repeated free recall task involving overt rehearsal and three computer-based adaptive working memory tasks were administered to 54 eight-year-old children. Children without spelling impairments tended to recall more items than did those children with…

  2. The Effect of Working Memory Capacity Limitations on the Intuitive Assessment of Correlation: Amplification, Attenuation, or Both?

    ERIC Educational Resources Information Center

    Cahan, Sorel; Mor, Yaniv

    2007-01-01

    This article challenges Yaakov Kareev's (1995a, 2000) argument regarding the positive bias of intuitive correlation estimates due to working memory capacity limitations and its adaptive value. The authors show that, under narrow window theory's primacy effect assumption, there is a considerable between-individual variability of the effects of…

  3. Determinants of Autobiographical Memory in Patients with Unilateral Temporal Lobe Epilepsy or Excisions

    ERIC Educational Resources Information Center

    St-Laurent, Marie; Moscovitch, Morris; Levine, Brian; McAndrews, Mary Pat

    2009-01-01

    Patients with unilateral temporal lobe epilepsy from hippocampal origin and patients with unilateral surgical excision of an epileptic focus located in the medial temporal lobe were compared to healthy controls on a version of the Autobiographical Interview (AI) adapted to assess memory for event-specific and generic personal episodes. For both…

  4. Low Working Memory Capacity Impedes both Efficiency and Learning of Number Transcoding in Children

    ERIC Educational Resources Information Center

    Camos, Valerie

    2008-01-01

    This study aimed to evaluate the impact of individual differences in working memory capacity on number transcoding. A recently proposed model, ADAPT (a developmental asemantic procedural transcoding model), accounts for the development of number transcoding from verbal form to Arabic form by two mechanisms: the learning of new production rules…

  5. Postural Adaptations to a Suprapostural Memory Task among Children with and without Developmental Coordination Disorder

    ERIC Educational Resources Information Center

    Chen, Fu-Chen; Tsai, Chia-Liang; Stoffregen, Thomas A.; Chang, Chihu-Hui; Wade, Michael G.

    2012-01-01

    Aim: The present study investigated the effects of varying the cognitive demands of a memory task (a suprapostural task) while recording postural motion on two groups of children, one diagnosed with developmental coordination disorder (DCD) and an age-matched group of typically developing children. Method: Two groups, each comprising 38 child…

  6. Medial Prefrontal Lesions in Mice Impair Sustained Attention but Spare Maintenance of Information in Working Memory

    ERIC Educational Resources Information Center

    Kahn, Julia B.; Ward, Ryan D.; Kahn, Lora W.; Rudy, Nicole M.; Kandel, Eric R.; Balsam, Peter D.; Simpson, Eleanor H.

    2012-01-01

    Working memory and attention are complex cognitive functions that are disrupted in several neuropsychiatric disorders. Mouse models of such human diseases are commonly subjected to maze-based tests that can neither distinguish between these cognitive functions nor isolate specific aspects of either function. Here, we have adapted a simple visual…

  7. Enhancing Mobile Working Memory Training by Using Affective Feedback

    ERIC Educational Resources Information Center

    Schaaff, Kristina

    2013-01-01

    The objective of this paper is to propose a novel approach to enhance working memory (WM) training for mobile devices by using information about the arousal level of a person. By the example of an adaptive n-back task, we combine methodologies from different disciplines to tackle this challenge: mobile learning, affective computing and cognitive…

  8. Short-Term Memories in "Drosophila" Are Governed by General and Specific Genetic Systems

    ERIC Educational Resources Information Center

    Zars, Troy

    2010-01-01

    In a dynamic environment, there is an adaptive value in the ability of animals to acquire and express memories. That both simple and complex animals can learn is therefore not surprising. How animals have solved this problem genetically and anatomically probably lies somewhere in a range between a single molecular/anatomical mechanism that applies…

  9. Shape Morphing Adaptive Radiator Technology (SMART) for Variable Heat Rejection

    NASA Technical Reports Server (NTRS)

    Erickson, Lisa

    2016-01-01

    The proposed technology leverages the temperature dependent phase change of shape memory alloys (SMAs) to drive the shape of a flexible radiator panel. The opening/closing of the radiator panel, as a function of temperature, passively adapts the radiator's rate of heat rejection in response to a vehicle's needs.

  10. Teaching Beginning College Students with Adapted Published Research Reports

    ERIC Educational Resources Information Center

    Klemm, William R.

    2013-01-01

    This study used peer-reviewed published research reports to teach a seminar on learning and memory to first-semester college students. Complete reports (not summaries, reviews, or news reports) were re-written by this author to be more "student friendly" to college freshmen. These adapted published research reports (APRRs) retained…

  11. Adaptive Memory: Ancestral Priorities and the Mnemonic Value of Survival Processing

    ERIC Educational Resources Information Center

    Nairne, James S.; Pandeirada, Josefa N. S.

    2010-01-01

    Evolutionary psychologists often propose that humans carry around "stone-age" brains, along with a toolkit of cognitive adaptations designed originally to solve hunter-gatherer problems. This perspective predicts that optimal cognitive performance might sometimes be induced by ancestrally-based problems, those present in ancestral environments,…

  12. Adaptive Memory: Young Children Show Enhanced Retention of Fitness-Related Information

    ERIC Educational Resources Information Center

    Aslan, Alp; Bauml, Karl-Heinz T.

    2012-01-01

    Evolutionary psychologists propose that human cognition evolved through natural selection to solve adaptive problems related to survival and reproduction, with its ultimate function being the enhancement of reproductive fitness. Following this proposal and the evolutionary-developmental view that ancestral selection pressures operated not only on…

  13. Effects of a School-Based Instrumental Music Program on Verbal and Visual Memory in Primary School Children: A Longitudinal Study

    PubMed Central

    Roden, Ingo; Kreutz, Gunter; Bongard, Stephan

    2012-01-01

    This study examined the effects of a school-based instrumental training program on the development of verbal and visual memory skills in primary school children. Participants either took part in a music program with weekly 45 min sessions of instrumental lessons in small groups at school, or they received extended natural science training. A third group of children did not receive additional training. Each child completed verbal and visual memory tests three times over a period of 18 months. Significant Group by Time interactions were found in the measures of verbal memory. Children in the music group showed greater improvements than children in the control groups after controlling for children’s socio-economic background, age, and IQ. No differences between groups were found in the visual memory tests. These findings are consistent with and extend previous research by suggesting that children receiving music training may benefit from improvements in their verbal memory skills. PMID:23267341

  14. Neural correlates of working memory training in HIV patients: study protocol for a randomized controlled trial.

    PubMed

    Chang, L; Løhaugen, G C; Douet, V; Miller, E N; Skranes, J; Ernst, T

    2016-02-02

    Potent combined antiretroviral therapy decreased the incidence and severity of HIV-associated neurocognitive disorders (HAND); however, no specific effective pharmacotherapy exists for HAND. Patients with HIV commonly have deficits in working memory and attention, which may negatively impact many other cognitive domains, leading to HAND. Since HAND may lead to loss of independence in activities of daily living and negative emotional well-being, and incur a high economic burden, effective treatments for HAND are urgently needed. This study aims to determine whether adaptive working memory training might improve cognitive functions and neural network efficiency and possibly decrease neuroinflammation. This study also aims to assess whether subjects with the LMX1A-rs4657412 TT(AA) genotype show greater training effects from working memory training than TC(AG) or CC(GG)-carriers. 60 HIV-infected and 60 seronegative control participants will be randomized to a double-blind active-controlled study, using adaptive versus non-adaptive Cogmed Working Memory Training® (CWMT), 20-25 sessions over 5-8 weeks. Each subject will be assessed with near- and far-transfer cognitive tasks, self-reported mood and executive function questionnaires, and blood-oxygenation level-dependent functional MRI during working memory (n-back) and visual attention (ball tracking) tasks, at baseline, 1-month, and 6-months after CWMT. Furthermore, genotyping for LMX1A-rs4657412 will be performed to identify whether subjects with the TT(AA)-genotype show greater gain or neural efficiency after CWMT than those with other genotypes. Lastly, cerebrospinal fluid will be obtained before and after CWMT to explore changes in levels of inflammatory proteins (cytokines and chemokines) and monoamines. Improving working memory in HIV patients, using CWMT, might slow the progression or delay the onset of HAND. Observation of decreased brain activation or normalized neural networks, using fMRI, after CWMT would lead to a better understanding of how neural networks are modulated by CWMT. Moreover, validating the greater training gain in subjects with the LMX1A-TT(AA) genotype could lead to a personalized approach for future working memory training studies. Demonstrating and understanding the neural correlates of the efficacy of CWMT in HIV patients could lead to a safe adjunctive therapy for HAND, and possibly other brain disorders. ClinicalTrial.gov, NCT02602418.

  15. Effect of virtual memory on efficient solution of two model problems

    NASA Technical Reports Server (NTRS)

    Lambiotte, J. J., Jr.

    1977-01-01

    Computers with virtual memory architecture allow programs to be written as if they were small enough to be contained in memory. Two types of problems are investigated to show that this luxury can lead to quite an inefficient performance if the programmer does not interact strongly with the characteristics of the operating system when developing the program. The two problems considered are the simultaneous solutions of a large linear system of equations by Gaussian elimination and a model three-dimensional finite-difference problem. The Control Data STAR-100 computer runs are made to demonstrate the inefficiencies of programming the problems in the manner one would naturally do if the problems were indeed, small enough to be contained in memory. Program redesigns are presented which achieve large improvements in performance through changes in the computational procedure and the data base arrangement.

  16. Multiprocessor architecture: Synthesis and evaluation

    NASA Technical Reports Server (NTRS)

    Standley, Hilda M.

    1990-01-01

    Multiprocessor computed architecture evaluation for structural computations is the focus of the research effort described. Results obtained are expected to lead to more efficient use of existing architectures and to suggest designs for new, application specific, architectures. The brief descriptions given outline a number of related efforts directed toward this purpose. The difficulty is analyzing an existing architecture or in designing a new computer architecture lies in the fact that the performance of a particular architecture, within the context of a given application, is determined by a number of factors. These include, but are not limited to, the efficiency of the computation algorithm, the programming language and support environment, the quality of the program written in the programming language, the multiplicity of the processing elements, the characteristics of the individual processing elements, the interconnection network connecting processors and non-local memories, and the shared memory organization covering the spectrum from no shared memory (all local memory) to one global access memory. These performance determiners may be loosely classified as being software or hardware related. This distinction is not clear or even appropriate in many cases. The effect of the choice of algorithm is ignored by assuming that the algorithm is specified as given. Effort directed toward the removal of the effect of the programming language and program resulted in the design of a high-level parallel programming language. Two characteristics of the fundamental structure of the architecture (memory organization and interconnection network) are examined.

  17. Memory protection

    NASA Technical Reports Server (NTRS)

    Denning, Peter J.

    1988-01-01

    Accidental overwriting of files or of memory regions belonging to other programs, browsing of personal files by superusers, Trojan horses, and viruses are examples of breakdowns in workstations and personal computers that would be significantly reduced by memory protection. Memory protection is the capability of an operating system and supporting hardware to delimit segments of memory, to control whether segments can be read from or written into, and to confine accesses of a program to its segments alone. The absence of memory protection in many operating systems today is the result of a bias toward a narrow definition of performance as maximum instruction-execution rate. A broader definition, including the time to get the job done, makes clear that cost of recovery from memory interference errors reduces expected performance. The mechanisms of memory protection are well understood, powerful, efficient, and elegant. They add to performance in the broad sense without reducing instruction execution rate.

  18. Improving attention control in dysphoria through cognitive training: transfer effects on working memory capacity and filtering efficiency.

    PubMed

    Owens, Max; Koster, Ernst H W; Derakshan, Nazanin

    2013-03-01

    Impaired filtering of irrelevant information from working memory is thought to underlie reduced working memory capacity for relevant information in dysphoria. The current study investigated whether training-related gains in working memory performance on the adaptive dual n-back task could result in improved inhibitory function. Efficacy of training was monitored in a change detection paradigm allowing measurement of a sustained event-related potential asymmetry sensitive to working memory capacity and the efficient filtering of irrelevant information. Dysphoric participants in the training group showed training-related gains in working memory that were accompanied by gains in working memory capacity and filtering efficiency compared to an active control group. Results provide important initial evidence that behavioral performance and neural function in dysphoria can be improved by facilitating greater attentional control. Copyright © 2013 Society for Psychophysiological Research.

  19. Quantitative Measurements of Autobiographical Memory Content

    PubMed Central

    Mainetti, Matteo; Ascoli, Giorgio A.

    2012-01-01

    Autobiographical memory (AM), subjective recollection of past experiences, is fundamental in everyday life. Nevertheless, characterization of the spontaneous occurrence of AM, as well as of the number and types of recollected details, remains limited. The CRAM (Cue-Recalled Autobiographical Memory) test (http://cramtest.info) adapts and combines the cue-word method with an assessment that collects counts of details recalled from different life periods. The SPAM (Spontaneous Probability of Autobiographical Memories) protocol samples introspection during everyday activity, recording memory duration and frequency. These measures provide detailed, naturalistic accounts of AM content and frequency, quantifying essential dimensions of recollection. AM content (∼20 details/recollection) decreased with the age of the episode, but less drastically than the probability of reporting remote compared to recent memories. AM retrieval was frequent (∼20/hour), each memory lasting ∼30 seconds. Testable hypotheses of the specific content retrieved in a fixed time from given life periods are presented. PMID:23028629

  20. The Future of Memory: Remembering, Imagining, and the Brain

    PubMed Central

    Schacter, Daniel L.; Addis, Donna Rose; Hassabis, Demis; Martin, Victoria C.; Spreng, R. Nathan; Szpunar, Karl K.

    2013-01-01

    During the past few years, there has been a dramatic increase in research examining the role of memory in imagination and future thinking. This work has revealed striking similarities between remembering the past and imagining or simulating the future, including the finding that a common brain network underlies both memory and imagination. Here we discuss a number of key points that have emerged during recent years, focusing in particular on the importance of distinguishing between temporal and non-temporal factors in analyses of memory and imagination, the nature of differences between remembering the past and imagining the future, the identification of component processes that comprise the default network supporting memory-based simulations, and the finding that this network can couple flexibly with other networks to support complex goal-directed simulations. This growing area of research has broadened our conception of memory by highlighting the many ways in which memory supports adaptive functioning. PMID:23177955

  1. A CCD Monolithic LMS Adaptive Analog Signal Processor Integrated Circuit.

    DTIC Science & Technology

    1980-03-01

    adaptive filter with electrically- reprogrammable MOS analog conductance weights. I The analog and digital peripheral MOS on-chip circuits are provided with...electrically reprogrammable analog weights at tap positions along a CCD analog delay line in order to form a basic linear combiner for adaptive filtering...electrically reprogrammable analog conductance weights was introduced with the use of non-volatile MNOS memory 6-7 transistors biased in their triode

  2. Immunometabolic circuits in trained immunity.

    PubMed

    Arts, Rob J W; Joosten, Leo A B; Netea, Mihai G

    2016-10-01

    The classical view that only adaptive immunity can build immunological memory has recently been challenged. Both in organisms lacking adaptive immunity as well as in mammals, the innate immune system can adapt to mount an increased resistance to reinfection, a de facto innate immune memory termed trained immunity. Recent studies have revealed that rewiring of cellular metabolism induced by different immunological signals is a crucial step for determining the epigenetic changes underlying trained immunity. Processes such as a shift of glucose metabolism from oxidative phosphorylation to aerobic glycolysis, increased glutamine metabolism and cholesterol synthesis, play a crucial role in these processes. The discovery of trained immunity opens the door for the design of novel generations of vaccines, for new therapeutic strategies for the treatment of immune deficiency states, and for modulation of exaggerated inflammation in autoinflammatory diseases. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  3. Adaptive choice between articulatory rehearsal and attentional refreshing in verbal working memory.

    PubMed

    Camos, Valérie; Mora, Gerome; Oberauer, Klaus

    2011-02-01

    Because both articulatory rehearsal and attentional refreshing aid in the maintenance of verbal information in the short term, the present study evaluated the adaptive use of these mechanisms, using a complex span paradigm. In Experiment 1, the phonological similarity of memory list words and the attentional demand of concurrent processing were manipulated. As was predicted, a phonological similarity effect (PSE) appeared only when the concurrent task was attention demanding, thus impairing the use of refreshing and encouraging rehearsal. To verify that PSE indicates the use of rehearsal, participants were instructed to use one of the two mechanisms in Experiments 2 and 3. In accordance wih Experiment 1, the PSE was observed only under rehearsal. Thus, adults could adaptively choose between the two mechanisms. When remembering phonologically confusable materials, they prefer refreshing in order to reduce the impact of phonological characteristics. When available attention is reduced, they favor a less attention-demanding mechanism, rehearsal.

  4. On the adaptive flexibility of evaluative priming.

    PubMed

    Fiedler, Klaus; Bluemke, Matthias; Unkelbach, Christian

    2011-05-01

    If priming effects serve an adaptive function, they have to be both robust and flexible. In four experiments, we demonstrated regular evaluative-priming effects for relatively long stimulus-onset asynchronies, which can, however, be eliminated or reversed strategically. When participants responded to both primes and targets, rather than only to targets, the standard congruity effect disappeared. In Experiments 1a-1c, this result was regularly obtained, independently of the prime response (valence or gender classification) and the response mode (pronunciation or keystroke). In Experiment 2, we showed that once the default congruity effect was eliminated, strategic-priming effects reflected the statistical contingency between prime valence and target valence. Positive contingencies produced congruity, whereas negative contingencies produced equally strong incongruity effects. Altogether, these findings are consistent with an adaptive-cognitive perspective, which highlights the role of flexible strategic processes in working memory as opposed to fixed structures in semantic long-term memory or in the sensorimotor system.

  5. Adaptive online inverse control of a shape memory alloy wire actuator using a dynamic neural network

    NASA Astrophysics Data System (ADS)

    Mai, Huanhuan; Song, Gangbing; Liao, Xiaofeng

    2013-01-01

    Shape memory alloy (SMA) actuators exhibit severe hysteresis, a nonlinear behavior, which complicates control strategies and limits their applications. This paper presents a new approach to controlling an SMA actuator through an adaptive inverse model based controller that consists of a dynamic neural network (DNN) identifier, a copy dynamic neural network (CDNN) feedforward term and a proportional (P) feedback action. Unlike fixed hysteresis models used in most inverse controllers, the proposed one uses a DNN to identify online the relationship between the applied voltage to the actuator and the displacement (the inverse model). Even without a priori knowledge of the SMA hysteresis and without pre-training, the proposed controller can precisely control the SMA wire actuator in various tracking tasks by identifying online the inverse model of the SMA actuator. Experiments were conducted, and experimental results demonstrated real-time modeling capabilities of DNN and the performance of the adaptive inverse controller.

  6. Adaptive Working Memory Training Reduces the Negative Impact of Anxiety on Competitive Motor Performance.

    PubMed

    Ducrocq, Emmanuel; Wilson, Mark; Smith, Tim J; Derakshan, Nazanin

    2017-12-01

    Optimum levels of attentional control are essential to prevent athletes from experiencing performance breakdowns under pressure. The current study explored whether training attentional control using the adaptive dual n-back paradigm, designed to directly target processing efficiency of the main executive functions of working memory (WM), would result in transferrable effects on sports performance outcomes. A total of 30 tennis players were allocated to an adaptive WM training or active control group and underwent 10 days of training. Measures of WM capacity as well as performance and objective gaze indices of attentional control in a tennis volley task were assessed in low- and high-pressure posttraining conditions. Results revealed significant benefits of training on WM capacity, quiet eye offset, and tennis performance in the high-pressure condition. Our results confirm and extend previous findings supporting the transfer of cognitive training benefits to objective measures of sports performance under pressure.

  7. Memory device for two-dimensional radiant energy array computers

    NASA Technical Reports Server (NTRS)

    Schaefer, D. H.; Strong, J. P., III (Inventor)

    1977-01-01

    A memory device for two dimensional radiant energy array computers was developed, in which the memory device stores digital information in an input array of radiant energy digital signals that are characterized by ordered rows and columns. The memory device contains a radiant energy logic storing device having a pair of input surface locations for receiving a pair of separate radiant energy digital signal arrays and an output surface location adapted to transmit a radiant energy digital signal array. A regenerative feedback device that couples one of the input surface locations to the output surface location in a manner for causing regenerative feedback is also included

  8. High performance computing for deformable image registration: towards a new paradigm in adaptive radiotherapy.

    PubMed

    Samant, Sanjiv S; Xia, Junyi; Muyan-Ozcelik, Pinar; Owens, John D

    2008-08-01

    The advent of readily available temporal imaging or time series volumetric (4D) imaging has become an indispensable component of treatment planning and adaptive radiotherapy (ART) at many radiotherapy centers. Deformable image registration (DIR) is also used in other areas of medical imaging, including motion corrected image reconstruction. Due to long computation time, clinical applications of DIR in radiation therapy and elsewhere have been limited and consequently relegated to offline analysis. With the recent advances in hardware and software, graphics processing unit (GPU) based computing is an emerging technology for general purpose computation, including DIR, and is suitable for highly parallelized computing. However, traditional general purpose computation on the GPU is limited because the constraints of the available programming platforms. As well, compared to CPU programming, the GPU currently has reduced dedicated processor memory, which can limit the useful working data set for parallelized processing. We present an implementation of the demons algorithm using the NVIDIA 8800 GTX GPU and the new CUDA programming language. The GPU performance will be compared with single threading and multithreading CPU implementations on an Intel dual core 2.4 GHz CPU using the C programming language. CUDA provides a C-like language programming interface, and allows for direct access to the highly parallel compute units in the GPU. Comparisons for volumetric clinical lung images acquired using 4DCT were carried out. Computation time for 100 iterations in the range of 1.8-13.5 s was observed for the GPU with image size ranging from 2.0 x 10(6) to 14.2 x 10(6) pixels. The GPU registration was 55-61 times faster than the CPU for the single threading implementation, and 34-39 times faster for the multithreading implementation. For CPU based computing, the computational time generally has a linear dependence on image size for medical imaging data. Computational efficiency is characterized in terms of time per megapixels per iteration (TPMI) with units of seconds per megapixels per iteration (or spmi). For the demons algorithm, our CPU implementation yielded largely invariant values of TPMI. The mean TPMIs were 0.527 spmi and 0.335 spmi for the single threading and multithreading cases, respectively, with <2% variation over the considered image data range. For GPU computing, we achieved TPMI =0.00916 spmi with 3.7% variation, indicating optimized memory handling under CUDA. The paradigm of GPU based real-time DIR opens up a host of clinical applications for medical imaging.

  9. Hyperfunction of muscarinic receptor maintains long-term memory in 5-HT4 receptor knock-out mice.

    PubMed

    Segu, Luis; Lecomte, Marie-José; Wolff, Mathieu; Santamaria, Julie; Hen, René; Dumuis, Aline; Berrard, Sylvie; Bockaert, Joël; Buhot, Marie-Christine; Compan, Valérie

    2010-03-04

    Patients suffering from dementia of Alzheimer's type express less serotonin 4 receptors (5-HTR(4)), but whether an absence of these receptors modifies learning and memory is unexplored. In the spatial version of the Morris water maze, we show that 5-HTR(4) knock-out (KO) and wild-type (WT) mice performed similarly for spatial learning, short- and long-term retention. Since 5-HTR(4) control mnesic abilities, we tested whether cholinergic system had circumvented the absence of 5-HTR(4). Inactivating muscarinic receptor with scopolamine, at an ineffective dose (0.8 mg/kg) to alter memory in WT mice, decreased long-term but not short-term memory of 5-HTR(4) KO mice. Other changes included decreases in the activity of choline acetyltransferase (ChAT), the required enzyme for acetylcholine synthesis, in the septum and the dorsal hippocampus in 5-HTR(4) KO under baseline conditions. Training- and scopolamine-induced increase and decrease, respectively in ChAT activity in the septum in WT mice were not detected in the 5-HTR(4) KO animals. Findings suggest that adaptive changes in cholinergic systems may circumvent the absence of 5-HTR(4) to maintain long-term memory under baseline conditions. In contrast, despite adaptive mechanisms, the absence of 5-HTR(4) aggravates scopolamine-induced memory impairments. The mechanisms whereby 5-HTR(4) mediate a tonic influence on ChAT activity and muscarinic receptors remain to be determined.

  10. Here Today, Gone Tomorrow – Adaptation to Change in Memory-Guided Visual Search

    PubMed Central

    Zellin, Martina; Conci, Markus; von Mühlenen, Adrian; Müller, Hermann J.

    2013-01-01

    Visual search for a target object can be facilitated by the repeated presentation of an invariant configuration of nontargets (‘contextual cueing’). Here, we tested adaptation of learned contextual associations after a sudden, but permanent, relocation of the target. After an initial learning phase targets were relocated within their invariant contexts and repeatedly presented at new locations, before they returned to the initial locations. Contextual cueing for relocated targets was neither observed after numerous presentations nor after insertion of an overnight break. Further experiments investigated whether learning of additional, previously unseen context-target configurations is comparable to adaptation of existing contextual associations to change. In contrast to the lack of adaptation to changed target locations, contextual cueing developed for additional invariant configurations under identical training conditions. Moreover, across all experiments, presenting relocated targets or additional contexts did not interfere with contextual cueing of initially learned invariant configurations. Overall, the adaptation of contextual memory to changed target locations was severely constrained and unsuccessful in comparison to learning of an additional set of contexts, which suggests that contextual cueing facilitates search for only one repeated target location. PMID:23555038

  11. Modeling and quantification of repolarization feature dependency on heart rate.

    PubMed

    Minchole, A; Zacur, E; Pueyo, E; Laguna, P

    2014-01-01

    This article is part of the Focus Theme of Methods of Information in Medicine on "Biosignal Interpretation: Advanced Methods for Studying Cardiovascular and Respiratory Systems". This work aims at providing an efficient method to estimate the parameters of a non linear model including memory, previously proposed to characterize rate adaptation of repolarization indices. The physiological restrictions on the model parameters have been included in the cost function in such a way that unconstrained optimization techniques such as descent optimization methods can be used for parameter estimation. The proposed method has been evaluated on electrocardiogram (ECG) recordings of healthy subjects performing a tilt test, where rate adaptation of QT and Tpeak-to-Tend (Tpe) intervals has been characterized. The proposed strategy results in an efficient methodology to characterize rate adaptation of repolarization features, improving the convergence time with respect to previous strategies. Moreover, Tpe interval adapts faster to changes in heart rate than the QT interval. In this work an efficient estimation of the parameters of a model aimed at characterizing rate adaptation of repolarization features has been proposed. The Tpe interval has been shown to be rate related and with a shorter memory lag than the QT interval.

  12. The Science of Computing: Virtual Memory

    NASA Technical Reports Server (NTRS)

    Denning, Peter J.

    1986-01-01

    In the March-April issue, I described how a computer's storage system is organized as a hierarchy consisting of cache, main memory, and secondary memory (e.g., disk). The cache and main memory form a subsystem that functions like main memory but attains speeds approaching cache. What happens if a program and its data are too large for the main memory? This is not a frivolous question. Every generation of computer users has been frustrated by insufficient memory. A new line of computers may have sufficient storage for the computations of its predecessor, but new programs will soon exhaust its capacity. In 1960, a longrange planning committee at MIT dared to dream of a computer with 1 million words of main memory. In 1985, the Cray-2 was delivered with 256 million words. Computational physicists dream of computers with 1 billion words. Computer architects have done an outstanding job of enlarging main memories yet they have never kept up with demand. Only the shortsighted believe they can.

  13. Neural and Cellular Mechanisms of Fear and Extinction Memory Formation

    PubMed Central

    Orsini, Caitlin A.; Maren, Stephen

    2012-01-01

    Over the course of natural history, countless animal species have evolved adaptive behavioral systems to cope with dangerous situations and promote survival. Emotional memories are central to these defense systems because they are rapidly acquired and prepare organisms for future threat. Unfortunately, the persistence and intrusion of memories of fearful experiences are quite common and can lead to pathogenic conditions, such as anxiety and phobias. Over the course of the last thirty years, neuroscientists and psychologists alike have attempted to understand the mechanisms by which the brain encodes and maintains these aversive memories. Of equal interest, though, is the neurobiology of extinction memory formation as this may shape current therapeutic techniques. Here we review the extant literature on the neurobiology of fear and extinction memory formation, with a strong focus on the cellular and molecular mechanisms underlying these processes. PMID:22230704

  14. UPC++ Programmer’s Guide (v1.0 2017.9)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bachan, J.; Baden, S.; Bonachea, D.

    UPC++ is a C++11 library that provides Asynchronous Partitioned Global Address Space (APGAS) programming. It is designed for writing parallel programs that run efficiently and scale well on distributed-memory parallel computers. The APGAS model is single program, multiple-data (SPMD), with each separate thread of execution (referred to as a rank, a term borrowed from MPI) having access to local memory as it would in C++. However, APGAS also provides access to a global address space, which is allocated in shared segments that are distributed over the ranks. UPC++ provides numerous methods for accessing and using global memory. In UPC++, allmore » operations that access remote memory are explicit, which encourages programmers to be aware of the cost of communication and data movement. Moreover, all remote-memory access operations are by default asynchronous, to enable programmers to write code that scales well even on hundreds of thousands of cores.« less

  15. UPC++ Programmer’s Guide, v1.0-2018.3.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bachan, J.; Baden, S.; Bonachea, Dan

    UPC++ is a C++11 library that provides Partitioned Global Address Space (PGAS) programming. It is designed for writing parallel programs that run efficiently and scale well on distributed-memory parallel computers. The PGAS model is single program, multiple-data (SPMD), with each separate thread of execution (referred to as a rank, a term borrowed from MPI) having access to local memory as it would in C++. However, PGAS also provides access to a global address space, which is allocated in shared segments that are distributed over the ranks. UPC++ provides numerous methods for accessing and using global memory. In UPC++, all operationsmore » that access remote memory are explicit, which encourages programmers to be aware of the cost of communication and data movement. Moreover, all remote-memory access operations are by default asynchronous, to enable programmers to write code that scales well even on hundreds of thousands of cores.« less

  16. Nicotine Inhibits Memory CTL Programming

    PubMed Central

    Sun, Zhifeng; Smyth, Kendra; Garcia, Karla; Mattson, Elliot; Li, Lei; Xiao, Zhengguo

    2013-01-01

    Nicotine is the main tobacco component responsible for tobacco addiction and is used extensively in smoking and smoking cessation therapies. However, little is known about its effects on the immune system. We confirmed that multiple nicotinic receptors are expressed on mouse and human cytotoxic T lymphocytes (CTLs) and demonstrated that nicotinic receptors on mouse CTLs are regulated during activation. Acute nicotine presence during activation increases primary CTL expansion in vitro, but impairs in vivo expansion after transfer and subsequent memory CTL differentiation, which reduces protection against subsequent pathogen challenges. Furthermore, nicotine abolishes the regulatory effect of rapamycin on memory CTL programming, which can be attributed to the fact that rapamycin enhances expression of nicotinic receptors. Interestingly, naïve CTLs from chronic nicotine-treated mice have normal memory programming, which is impaired by nicotine during activation in vitro. In conclusion, simultaneous exposure to nicotine and antigen during CTL activation negatively affects memory development. PMID:23844169

  17. Synaptic Orb2A Bridges Memory Acquisition and Late Memory Consolidation in Drosophila

    PubMed Central

    Krüttner, Sebastian; Traunmüller, Lisa; Dag, Ugur; Jandrasits, Katharina; Stepien, Barbara; Iyer, Nirmala; Fradkin, Lee G.; Noordermeer, Jasprina N.; Mensh, Brett D.; Keleman, Krystyna

    2015-01-01

    Summary To adapt to an ever-changing environment, animals consolidate some, but not all, learning experiences to long-term memory. In mammals, long-term memory consolidation often involves neural pathway reactivation hours after memory acquisition. It is not known whether this delayed-reactivation schema is common across the animal kingdom or how information is stored during the delay period. Here, we show that, during courtship suppression learning, Drosophila exhibits delayed long-term memory consolidation. We also show that the same class of dopaminergic neurons engaged earlier in memory acquisition is also both necessary and sufficient for delayed long-term memory consolidation. Furthermore, we present evidence that, during learning, the translational regulator Orb2A tags specific synapses of mushroom body neurons for later consolidation. Consolidation involves the subsequent recruitment of Orb2B and the activity-dependent synthesis of CaMKII. Thus, our results provide evidence for the role of a neuromodulated, synapse-restricted molecule bridging memory acquisition and long-term memory consolidation in a learning animal. PMID:26095367

  18. Mechanisms underlying interlimb transfer of visuomotor rotations

    PubMed Central

    Wang, Jinsung; Sainburg, Robert L.

    2013-01-01

    We previously reported that opposite arm training improved the initial direction of dominant arm movements, whereas it only improved the final position accuracy of non-dominant arm movements. We now ask whether each controller accesses common, or separate, short-term memory resources. To address this question, we investigated interlimb transfer of learning for visuomotor rotations that were directed oppositely [clockwise (CW)/counterclockwise (CCW)] for the two arms. We expected that if information obtained by initial training was stored in the same short-term memory space for both arms, opposite arm training of a CW rotation would interfere with subsequent adaptation to a CCW rotation. All subjects first adapted to a 30° rotation (CW) in the visual display during reaching movements. Following this, they adapted to a 30° rotation in the opposite direction (CCW) with the other arm. In contrast to our previous findings for interlimb transfer of same direction rotations (CCW/CCW), no effects of opposite arm adaptation were indicated in the initial trials performed. This indicates that interlimb transfer is not obligatory, and suggests that short-term memory resources for the two limbs are independent. Through single trial analysis, we found that the direction and final position errors of the first trial of movement, following opposite arm training, were always the same as those of naive performance. This was true whether the opposite arm was trained with the same or the opposing rotation. When trained with the same rotation, transfer of learning did not occur until the second trial. These findings suggest that the selective use of opposite arm information is dependent on the first trial to probe current movement conditions. Interestingly, the final extent of adaptation appeared to be reduced by opposite arm training of opposing rotations. Thus, the extent of adaptation, but not initial information transfer, appears obligatorily affected by prior opposite arm adaptation. According to our findings, it is plausible that the initiation and the final extent of adaptation involve two independent neural processes. Theoretical implications of these findings are discussed. PMID:12677333

  19. Fast adaptation of the internal model of gravity for manual interceptions: evidence for event-dependent learning.

    PubMed

    Zago, Myrka; Bosco, Gianfranco; Maffei, Vincenzo; Iosa, Marco; Ivanenko, Yuri P; Lacquaniti, Francesco

    2005-02-01

    We studied how subjects learn to deal with two conflicting sensory environments as a function of the probability of each environment and the temporal distance between repeated events. Subjects were asked to intercept a visual target moving downward on a screen with randomized laws of motion. We compared five protocols that differed in the probability of constant speed (0g) targets and accelerated (1g) targets. Probability ranged from 9 to 100%, and the time interval between consecutive repetitions of the same target ranged from about 1 to 20 min. We found that subjects systematically timed their responses consistent with the assumption of gravity effects, for both 1 and 0g trials. With training, subjects rapidly adapted to 0g targets by shifting the time of motor activation. Surprisingly, the adaptation rate was independent of both the probability of 0g targets and their temporal distance. Very few 0g trials sporadically interspersed as catch trials during immersive practice with 1g trials were sufficient for learning and consolidation in long-term memory, as verified by retesting after 24 h. We argue that the memory store for adapted states of the internal gravity model is triggered by individual events and can be sustained for prolonged periods of time separating sporadic repetitions. This form of event-related learning could depend on multiple-stage memory, with exponential rise and decay in the initial stages followed by a sample-and-hold module.

  20. Age differences in spatial working memory contributions to visuomotor adaptation and transfer.

    PubMed

    Langan, Jeanne; Seidler, Rachael D

    2011-11-20

    Throughout our life span we encounter challenges that require us to adapt to the demands of our changing environment; this entails learning new skills. Two primary components of motor skill learning are motor acquisition, the initial process of learning the skill, and motor transfer, when learning a new skill is benefitted by the overlap with a previously learned one. Older adults typically exhibit declines in motor acquisition compared to young adults, but remarkably, do not demonstrate deficits in motor transfer [10]. Our recent work demonstrates that a failure to engage spatial working memory (SWM) is associated with skill learning deficits in older adults [16]. Here, we investigate the role that SWM plays in both motor learning and transfer in young and older adults. Both age groups exhibited performance savings, or positive transfer, at transfer of learning for some performance variables. Measures of spatial working memory performance and reaction time correlated with both motor learning and transfer for young adults. Young adults recruited overlapping brain regions in prefrontal, premotor, parietal and occipital cortex for performance of a SWM and a visuomotor adaptation task, most notably during motor learning, replicating our prior findings [12]. Neural overlap between the SWM task and visuomotor adaptation for the older adults was limited to parietal cortex, with minimal changes from motor learning to transfer. Combined, these results suggest that age differences in engagement of cognitive strategies have a differential impact on motor learning and transfer. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. Age differences in spatial working memory contributions to visuomotor adaptation and transfer

    PubMed Central

    Langan, Jeanne; Seidler, Rachael. D.

    2011-01-01

    Throughout our life span we encounter challenges that require us to adapt to the demands of our changing environment; this entails learning new skills. Two primary components of motor skill learning are motor acquisition, the initial process of learning the skill, and motor transfer, when learning a new skill is benefitted by the overlap with a previously learned one. Older adults typically exhibit declines in motor acquisition compared to young adults, but remarkably, do not demonstrate deficits in motor transfer (Seidler, 2007). Our recent work demonstrates that a failure to engage spatial working memory (SWM) is associated with skill learning deficits in older adults (Anguera et al., 2011). Here, we investigate the role that SWM plays in both motor learning and transfer in young and older adults. Both age groups exhibited performance savings, or positive transfer, at transfer of learning for some performance variables. Measures of spatial working memory performance and reaction time correlated with both motor learning and transfer for young adults. Young adults recruited overlapping brain regions in prefrontal, premotor, parietal and occipital cortex for performance of a SWM and a visuomotor adaptation task, most notably during motor learning, replicating our prior findings (Anguera et al., 2010). Neural overlap between the SWM task and visuomotor adaptation for the older adults was limited to parietal cortex, with minimal changes from motor learning to transfer. Combined, these results suggest that age differences in engagement of cognitive strategies have a differential impact on motor learning and transfer. PMID:21784106

  2. Self-Latching Piezocomposite Actuator

    NASA Technical Reports Server (NTRS)

    Wilkie, William K. (Inventor); Lynch, Christopher S. (Inventor); Bryant, Robert G. (Inventor)

    2017-01-01

    A self-latching piezocomposite actuator includes a plurality of shape memory ceramic fibers. The actuator can be latched by applying an electrical field to the shape memory ceramic fibers. The actuator remains in a latched state/shape after the electrical field is no longer present. A reverse polarity electric field may be applied to reset the actuator to its unlatched state/shape. Applied electric fields may be utilized to provide a plurality of latch states between the latched and unlatched states of the actuator. The self-latching piezocomposite actuator can be used for active/adaptive airfoils having variable camber, trim tabs, active/deformable engine inlets, adaptive or adjustable vortex generators, active optical components such as mirrors that change shapes, and other morphing structures.

  3. Compression of CCD raw images for digital still cameras

    NASA Astrophysics Data System (ADS)

    Sriram, Parthasarathy; Sudharsanan, Subramania

    2005-03-01

    Lossless compression of raw CCD images captured using color filter arrays has several benefits. The benefits include improved storage capacity, reduced memory bandwidth, and lower power consumption for digital still camera processors. The paper discusses the benefits in detail and proposes the use of a computationally efficient block adaptive scheme for lossless compression. Experimental results are provided that indicate that the scheme performs well for CCD raw images attaining compression factors of more than two. The block adaptive method also compares favorably with JPEG-LS. A discussion is provided indicating how the proposed lossless coding scheme can be incorporated into digital still camera processors enabling lower memory bandwidth and storage requirements.

  4. Interaction of sleep and emotional content on the production of false memories.

    PubMed

    McKeon, Shannon; Pace-Schott, Edward F; Spencer, Rebecca M C

    2012-01-01

    Sleep benefits veridical memories, resulting in superior recall relative to off-line intervals spent awake. Sleep also increases false memory recall in the Deese-Roediger-McDermott (DRM) paradigm. Given the suggestion that emotional veridical memories are prioritized for consolidation over sleep, here we examined whether emotion modulates sleep's effect on false memory formation. Participants listened to semantically related word lists lacking a critical lure representing each list's "gist." Free recall was tested after 12 hours containing sleep or wake. The Sleep group recalled more studied words than the Wake group but only for emotionally neutral lists. False memories of both negative and neutral critical lures were greater following sleep relative to wake. Morning and Evening control groups (20-minute delay) did not differ ruling out circadian accounts for these differences. These results support the adaptive function of sleep in both promoting the consolidation of veridical declarative memories and in extracting unifying aspects from memory details.

  5. Interaction of Sleep and Emotional Content on the Production of False Memories

    PubMed Central

    McKeon, Shannon; Pace-Schott, Edward F.; Spencer, Rebecca M. C.

    2012-01-01

    Sleep benefits veridical memories, resulting in superior recall relative to off-line intervals spent awake. Sleep also increases false memory recall in the Deese-Roediger-McDermott (DRM) paradigm. Given the suggestion that emotional veridical memories are prioritized for consolidation over sleep, here we examined whether emotion modulates sleep’s effect on false memory formation. Participants listened to semantically related word lists lacking a critical lure representing each list’s “gist.” Free recall was tested after 12 hours containing sleep or wake. The Sleep group recalled more studied words than the Wake group but only for emotionally neutral lists. False memories of both negative and neutral critical lures were greater following sleep relative to wake. Morning and Evening control groups (20-minute delay) did not differ ruling out circadian accounts for these differences. These results support the adaptive function of sleep in both promoting the consolidation of veridical declarative memories and in extracting unifying aspects from memory details. PMID:23145159

  6. Both mineralocorticoid and glucocorticoid receptors regulate emotional memory in mice.

    PubMed

    Zhou, Ming; Bakker, Eveline H M; Velzing, Els H; Berger, Stefan; Oitzl, Melly; Joëls, Marian; Krugers, Harm J

    2010-11-01

    Corticosteroid hormones are thought to promote optimal behavioral adaptation under fearful conditions, primarily via glucocorticoid receptors (GRs). Here, we examined - using pharmacological and genetic approaches in mice - if mineralocorticoid receptors (MRs) also play a role in fearful memory formation. As expected, administration of the GR-antagonist RU38486 prior to training in a fear conditioning paradigm impaired contextual memory when tested 24 (but not when tested 3) h after training. Tone-cue memory was enhanced by RU38486 when tested at 4 (but not 25) h after training. Interestingly, pre (but not post)-training administration of MR antagonist spironolactone impaired contextual memory, both at 3 and 24h after training. Similar effects were also found in forebrain-specific MR knockout mice. Spironolactone also impaired tone-cue memory, but only at 4h after training. These results reveal that - in addition to GRs - MRs also play a critical role in establishing fear memories, particularly in the early phase of memory formation. Copyright © 2010 Elsevier Inc. All rights reserved.

  7. Transcriptional 'memory' of a stress: transient chromatin and memory (epigenetic) marks at stress-response genes.

    PubMed

    Avramova, Zoya

    2015-07-01

    Drought, salinity, extreme temperature variations, pathogen and herbivory attacks are recurring environmental stresses experienced by plants throughout their life. To survive repeated stresses, plants provide responses that may be different from their response during the first encounter with the stress. A different response to a similar stress represents the concept of 'stress memory'. A coordinated reaction at the organismal, cellular and gene/genome levels is thought to increase survival chances by improving the plant's tolerance/avoidance abilities. Ultimately, stress memory may provide a mechanism for acclimation and adaptation. At the molecular level, the concept of stress memory indicates that the mechanisms responsible for memory-type transcription during repeated stresses are not based on repetitive activation of the same response pathways activated by the first stress. Some recent advances in the search for transcription 'memory factors' are discussed with an emphasis on super-induced dehydration stress memory response genes in Arabidopsis. © 2015 The Author The Plant Journal © 2015 John Wiley & Sons Ltd.

  8. Turning back the hands of time: autobiographical memories in dementia cued by a museum setting.

    PubMed

    Miles, Amanda N; Fischer-Mogensen, Lise; Nielsen, Nadia H; Hermansen, Stine; Berntsen, Dorthe

    2013-09-01

    The current study examined the effects of cuing autobiographical memory retrieval in 12 older participants with dementia through immersion into a historically authentic environment that recreated the material and cultural context of the participants' youth. Participants conversed in either an everyday setting (control condition) or a museum setting furnished in early twentieth century style (experimental condition) while being presented with condition matched cues. Conversations were coded for memory content based on an adapted version of Levine, Svoboda, Hay, Winocur, and Moscovitch (2002) coding scheme. More autobiographical memories were recalled in the museum setting, and these memories were more elaborated, more spontaneous and included especially more internal (episodic) details compared to memories in the control condition. The findings have theoretical and practical implications by showing that the memories retrieved in the museum setting were both quantitatively and qualitatively different from memories retrieved during a control condition. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. Functions of autobiographical memory in Taiwanese and American emerging adults.

    PubMed

    Liao, Hsiao-Wen; Bluck, Susan; Alea, Nicole; Cheng, Ching-Ling

    2016-01-01

    The study addresses cultural and person-level factors contributing to emerging adult's use of memory to serve adaptive functions. The focus is on three functions: self-continuity, social-bonding and directing-behaviour. Taiwanese (N = 85, 52 women) and American (N = 95, 51 women) emerging adults completed the Thinking about Life Experiences scale, and measures of trait personality, self-concept clarity and future time perspective. Findings show that individuals from both cultures use memory to serve these three functions, but Taiwanese individuals use memory more frequently than Americans to maintain self-continuity. Culture also interacted with person-level factors: in Taiwan, but not America, memory is more frequently used to create self-continuity in individuals high in conscientiousness. Across cultures, having lower self-concept clarity was related to greater use of memory to create self-continuity. Findings are discussed in terms of how memory serves functions in context and specific aspects of the Taiwanese and American cultural context that may predict the functional use of memory in emerging adulthood.

  10. Comparison of reversible methods for data compression

    NASA Astrophysics Data System (ADS)

    Heer, Volker K.; Reinfelder, Hans-Erich

    1990-07-01

    Widely differing methods for data compression described in the ACR-NEMA draft are used in medical imaging. In our contribution we will review various methods briefly and discuss the relevant advantages and disadvantages. In detail we evaluate 1st order DPCM pyramid transformation and S transformation. We compare as coding algorithms both fixed and adaptive Huffman coding and Lempel-Ziv coding. Our comparison is performed on typical medical images from CT MR DSA and DLR (Digital Luminescence Radiography). Apart from the achieved compression factors we take into account CPU time required and main memory requirement both for compression and for decompression. For a realistic comparison we have implemented the mentioned algorithms in the C program language on a MicroVAX II and a SPARC station 1. 2.

  11. ORCA Project: Research on high-performance parallel computer programming environments. Final report, 1 Apr-31 Mar 90

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Snyder, L.; Notkin, D.; Adams, L.

    1990-03-31

    This task relates to research on programming massively parallel computers. Previous work on the Ensamble concept of programming was extended and investigation into nonshared memory models of parallel computation was undertaken. Previous work on the Ensamble concept defined a set of programming abstractions and was used to organize the programming task into three distinct levels; Composition of machine instruction, composition of processes, and composition of phases. It was applied to shared memory models of computations. During the present research period, these concepts were extended to nonshared memory models. During the present research period, one Ph D. thesis was completed, onemore » book chapter, and six conference proceedings were published.« less

  12. Violence and sex impair memory for television ads.

    PubMed

    Bushman, Brad J; Bonacci, Angelica M

    2002-06-01

    Participants watched a violent, sexually explicit, or neutral TV program that contained 9 ads. Participants recalled the advertised brands. They also identified the advertised brands from slides of supermarket shelves. The next day, participants were telephoned and asked to recall again the advertised brands. Results showed better memory for people who saw the ads during a neutral program than for people who saw the ads during a violent or sexual program both immediately after exposure and 24 hr later. Violence and sex impaired memory for males and females of all ages, regardless of whether they liked programs containing violence and sex. These results suggest that sponsoring violent and sexually explicit TV programs might not be a profitable venture for advertisers.

  13. Episodic and Semantic Memories of a Residential Environmental Education Program

    ERIC Educational Resources Information Center

    Knapp, Doug; Benton, Gregory M.

    2006-01-01

    This study used a phenomenological approach to investigate the recollections of participants of an environmental education (EE) residential program. Ten students who participated in a residential EE program in the fall of 2001 were interviewed in the fall of 2002. Three major themes relating to the participants' long-term memory of the residential…

  14. 78 FR 37741 - Approval and Promulgation of Implementation Plans; California; South Coast; Contingency Measures...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-24

    .... Id. \\7\\ Consistent with EPA's definition of ``design value'' in 40 CFR 58.1, we use the term ``design... evaluations below. Carl Moyer Memorial Air Quality Standards Attainment Program The Contingency Measures SIP identifies a portion of the Carl Moyer Memorial Air Quality Standards Attainment Program (Carl Moyer Program...

  15. Multi-mode sensor processing on a dynamically reconfigurable massively parallel processor array

    NASA Astrophysics Data System (ADS)

    Chen, Paul; Butts, Mike; Budlong, Brad; Wasson, Paul

    2008-04-01

    This paper introduces a novel computing architecture that can be reconfigured in real time to adapt on demand to multi-mode sensor platforms' dynamic computational and functional requirements. This 1 teraOPS reconfigurable Massively Parallel Processor Array (MPPA) has 336 32-bit processors. The programmable 32-bit communication fabric provides streamlined inter-processor connections with deterministically high performance. Software programmability, scalability, ease of use, and fast reconfiguration time (ranging from microseconds to milliseconds) are the most significant advantages over FPGAs and DSPs. This paper introduces the MPPA architecture, its programming model, and methods of reconfigurability. An MPPA platform for reconfigurable computing is based on a structural object programming model. Objects are software programs running concurrently on hundreds of 32-bit RISC processors and memories. They exchange data and control through a network of self-synchronizing channels. A common application design pattern on this platform, called a work farm, is a parallel set of worker objects, with one input and one output stream. Statically configured work farms with homogeneous and heterogeneous sets of workers have been used in video compression and decompression, network processing, and graphics applications.

  16. Effects of Cogmed working memory training on cognitive performance.

    PubMed

    Etherton, Joseph L; Oberle, Crystal D; Rhoton, Jayson; Ney, Ashley

    2018-04-16

    Research on the cognitive benefits of working memory training programs has produced inconsistent results. Such research has frequently used laboratory-specific training tasks, or dual-task n-back training. The current study used the commercial Cogmed Working Memory (WM) Training program, involving several different training tasks involving visual and auditory input. Healthy college undergraduates were assigned to either the full Cogmed training program of 25, 40-min training sessions; an abbreviated Cogmed program of 25, 20-min training sessions; or a no-contact control group. Pretest and posttest measures included multiple measures of attention, working memory, fluid intelligence, and executive functions. Although improvement was observed for the full training group for a digit span task, no training-related improvement was observed for any of the other measures. Results of the study suggest that WM training does not improve performance on unrelated tasks or enhance other cognitive abilities.

  17. Command and Control Software Development Memory Management

    NASA Technical Reports Server (NTRS)

    Joseph, Austin Pope

    2017-01-01

    This internship was initially meant to cover the implementation of unit test automation for a NASA ground control project. As is often the case with large development projects, the scope and breadth of the internship changed. Instead, the internship focused on finding and correcting memory leaks and errors as reported by a COTS software product meant to track such issues. Memory leaks come in many different flavors and some of them are more benign than others. On the extreme end a program might be dynamically allocating memory and not correctly deallocating it when it is no longer in use. This is called a direct memory leak and in the worst case can use all the available memory and crash the program. If the leaks are small they may simply slow the program down which, in a safety critical system (a system for which a failure or design error can cause a risk to human life), is still unacceptable. The ground control system is managed in smaller sub-teams, referred to as CSCIs. The CSCI that this internship focused on is responsible for monitoring the health and status of the system. This team's software had several methods/modules that were leaking significant amounts of memory. Since most of the code in this system is safety-critical, correcting memory leaks is a necessity.

  18. The Influence of Personality Traits on the Use of Memory English Language Learning Strategies

    ERIC Educational Resources Information Center

    Fazeli, Seyed Hossein

    2012-01-01

    The present study aims to find out the influence of personality traits on the choice and use of Memory English Language Learning Strategies (MELLSs) for learners of English as a foreign language, and the role of personality traits in the prediction of use of such Strategies. Four instruments were used, which were Adapted Inventory for Memory…

  19. Serial Dependence across Perception, Attention, and Memory.

    PubMed

    Kiyonaga, Anastasia; Scimeca, Jason M; Bliss, Daniel P; Whitney, David

    2017-07-01

    Information that has been recently perceived or remembered can bias current processing. This has been viewed as both a corrupting (e.g., proactive interference in short-term memory) and stabilizing (e.g., serial dependence in perception) phenomenon. We hypothesize that this bias is a generally adaptive aspect of brain function that leads to occasionally maladaptive outcomes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Rapid Dynamic Assessment of Expertise to Improve the Efficiency of Adaptive Elearning

    ERIC Educational Resources Information Center

    Kalyuga, Slava; Sweller, John

    2005-01-01

    In this article we suggest a method of evaluating learner expertise based on assessment of the content of working memory and the extent to which cognitive load has been reduced by knowledge retrieved from long-term memory. The method was tested in an experiment with an elementary algebra tutor using a yoked control design. In the learner-adapted…

Top