Science.gov

Sample records for adaptive molecular evolution

  1. Adaptive evolution of molecular phenotypes

    NASA Astrophysics Data System (ADS)

    Held, Torsten; Nourmohammad, Armita; Lässig, Michael

    2014-09-01

    Molecular phenotypes link genomic information with organismic functions, fitness, and evolution. Quantitative traits are complex phenotypes that depend on multiple genomic loci. In this paper, we study the adaptive evolution of a quantitative trait under time-dependent selection, which arises from environmental changes or through fitness interactions with other co-evolving phenotypes. We analyze a model of trait evolution under mutations and genetic drift in a single-peak fitness seascape. The fitness peak performs a constrained random walk in the trait amplitude, which determines the time-dependent trait optimum in a given population. We derive analytical expressions for the distribution of the time-dependent trait divergence between populations and of the trait diversity within populations. Based on this solution, we develop a method to infer adaptive evolution of quantitative traits. Specifically, we show that the ratio of the average trait divergence and the diversity is a universal function of evolutionary time, which predicts the stabilizing strength and the driving rate of the fitness seascape. From an information-theoretic point of view, this function measures the macro-evolutionary entropy in a population ensemble, which determines the predictability of the evolutionary process. Our solution also quantifies two key characteristics of adapting populations: the cumulative fitness flux, which measures the total amount of adaptation, and the adaptive load, which is the fitness cost due to a population's lag behind the fitness peak.

  2. Molecular evolution and thermal adaptation

    NASA Astrophysics Data System (ADS)

    Chen, Peiqiu

    2011-12-01

    In this thesis, we address problems in molecular evolution, thermal adaptation, and the kinetics of adaptation of bacteria and viruses to elevated environmental temperatures. We use a nearly neutral fitness model where the replication speed of an organism is proportional to the copy number of folded proteins. Our model reproduces the distribution of stabilities of natural proteins in excellent agreement with experiment. We find that species with high mutation rates tend to have less stable proteins compared to species with low mutation rate. We found that a broad distribution of protein stabilities observed in the model and in experiment is the key determinant of thermal response for viruses and bacteria. Our results explain most of the earlier experimental observations: striking asymmetry of thermal response curves, the absence of evolutionary trade-off which was expected but not found in experiments, correlation between denaturation temperature for several protein families and the Optimal Growth Temperature (OGT) of their carrier organisms, and proximity of bacterial or viral OGTs to their evolutionary temperatures. Our theory quantitatively and with high accuracy described thermal response curves for 35 bacterial species. The model also addresses the key to adaptation is in weak-link genes (WLG), which encode least thermodynamically stable essential proteins in the proteome. We observe, as in experiment, a two-stage adaptation process. The first stage is a Luria-Delbruck type of selection, whereby rare WLG alleles, whose proteins are more stable than WLG proteins of the majority of the population (either due to standing genetic variation or due to an early acquired mutation), rapidly rise to fixation. The second stage constitutes subsequent slow accumulation of mutations in an adapted population. As adaptation progresses, selection regime changes from positive to neutral: Selection coefficient of beneficial mutations scales as a negative power of number of

  3. Sex speeds adaptation by altering the dynamics of molecular evolution.

    PubMed

    McDonald, Michael J; Rice, Daniel P; Desai, Michael M

    2016-03-10

    Sex and recombination are pervasive throughout nature despite their substantial costs. Understanding the evolutionary forces that maintain these phenomena is a central challenge in biology. One longstanding hypothesis argues that sex is beneficial because recombination speeds adaptation. Theory has proposed several distinct population genetic mechanisms that could underlie this advantage. For example, sex can promote the fixation of beneficial mutations either by alleviating interference competition (the Fisher-Muller effect) or by separating them from deleterious load (the ruby in the rubbish effect). Previous experiments confirm that sex can increase the rate of adaptation, but these studies did not observe the evolutionary dynamics that drive this effect at the genomic level. Here we present the first, to our knowledge, comparison between the sequence-level dynamics of adaptation in experimental sexual and asexual Saccharomyces cerevisiae populations, which allows us to identify the specific mechanisms by which sex speeds adaptation. We find that sex alters the molecular signatures of evolution by changing the spectrum of mutations that fix, and confirm theoretical predictions that it does so by alleviating clonal interference. We also show that substantially deleterious mutations hitchhike to fixation in adapting asexual populations. In contrast, recombination prevents such mutations from fixing. Our results demonstrate that sex both speeds adaptation and alters its molecular signature by allowing natural selection to more efficiently sort beneficial from deleterious mutations. PMID:26909573

  4. The Coevolution of Phycobilisomes: Molecular Structure Adapting to Functional Evolution

    PubMed Central

    Shi, Fei; Qin, Song; Wang, Yin-Chu

    2011-01-01

    Phycobilisome is the major light-harvesting complex in cyanobacteria and red alga. It consists of phycobiliproteins and their associated linker peptides which play key role in absorption and unidirectional transfer of light energy and the stability of the whole complex system, respectively. Former researches on the evolution among PBPs and linker peptides had mainly focused on the phylogenetic analysis and selective evolution. Coevolution is the change that the conformation of one residue is interrupted by mutation and a compensatory change selected for in its interacting partner. Here, coevolutionary analysis of allophycocyanin, phycocyanin, and phycoerythrin and covariation analysis of linker peptides were performed. Coevolution analyses reveal that these sites are significantly correlated, showing strong evidence of the functional and structural importance of interactions among these residues. According to interprotein coevolution analysis, less interaction was found between PBPs and linker peptides. Our results also revealed the correlations between the coevolution and adaptive selection in PBS were not directly related, but probably demonstrated by the sites coupled under physical-chemical interactions. PMID:21904470

  5. Molecular evolution and adaptation of the mitochondrial cytochrome b gene in the subgenus Martes.

    PubMed

    Li, B; Malyarchuk, B; He, X B; Derenko, M

    2013-01-01

    Martes species represent a typical example of rapid evolutionary radiation and a recent speciation event. To identify regions of the genome that experienced adaptive evolution, which might provide clues to their functional importance and may be informative about the features that make each species unique, we sought evidence of molecular adaptation in the mitochondrial DNA (mtDNA) cytochrome b gene in the subgenus Martes. Complete sequences of the cytochrome b gene were obtained from 87 samples, including 49 sables, 28 pine martens, and 10 stone martens, and were combined with mtDNA sequences of other true martens, such as M. melampus and M. americana. Analysis of the cytochrome b gene variation in true martens has shown that the evolution of this gene is under negative selection. In contrast, positive selection on the cytochrome b protein has been detected by means of the software TreeSAAP using a phylogenetic reconstruction of Martes taxa. Signatures of adaptive variation in cytochrome b were restricted to the transmembrane domains, which likely function as proton pumps. We compared results of different methods for testing selection and molecular adaptation, and we supposed that the radical changes of the cytochrome b amino acid residues in the subgenus Martes may be the result of molecular adaptation to specific environmental conditions coupled with species dispersals. PMID:24085456

  6. Molecular Specificity, Convergence and Constraint Shape Adaptive Evolution in Nutrient-Poor Environments

    PubMed Central

    Hong, Jungeui; Gresham, David

    2014-01-01

    One of the central goals of evolutionary biology is to explain and predict the molecular basis of adaptive evolution. We studied the evolution of genetic networks in Saccharomyces cerevisiae (budding yeast) populations propagated for more than 200 generations in different nitrogen-limiting conditions. We find that rapid adaptive evolution in nitrogen-poor environments is dominated by the de novo generation and selection of copy number variants (CNVs), a large fraction of which contain genes encoding specific nitrogen transporters including PUT4, DUR3 and DAL4. The large fitness increases associated with these alleles limits the genetic heterogeneity of adapting populations even in environments with multiple nitrogen sources. Complete identification of acquired point mutations, in individual lineages and entire populations, identified heterogeneity at the level of genetic loci but common themes at the level of functional modules, including genes controlling phosphatidylinositol-3-phosphate metabolism and vacuole biogenesis. Adaptive strategies shared with other nutrient-limited environments point to selection of genetic variation in the TORC1 and Ras/PKA signaling pathways as a general mechanism underlying improved growth in nutrient-limited environments. Within a single population we observed the repeated independent selection of a multi-locus genotype, comprised of the functionally related genes GAT1, MEP2 and LST4. By studying the fitness of individual alleles, and their combination, as well as the evolutionary history of the evolving population, we find that the order in which these mutations are acquired is constrained by epistasis. The identification of repeatedly selected variation at functionally related loci that interact epistatically suggests that gene network polymorphisms (GNPs) may be a frequent outcome of adaptive evolution. Our results provide insight into the mechanistic basis by which cells adapt to nutrient-limited environments and suggest that

  7. Molecular evolution of rbcL in three gymnosperm families: identifying adaptive and coevolutionary patterns

    PubMed Central

    2011-01-01

    forward the conclusion that this evolutionary scenario has been possible through a complex interplay between adaptive mutations, often structurally destabilizing, and compensatory mutations. Our results unearth patterns of evolution that have likely optimized the Rubisco activity and uncover mutational dynamics useful in the molecular engineering of enzymatic activities. Reviewers This article was reviewed by Prof. Christian Blouin (nominated by Dr W Ford Doolittle), Dr Endre Barta (nominated by Dr Sandor Pongor), and Dr Nicolas Galtier. PMID:21639885

  8. Molecular mechanisms of adaptation emerging from the physics and evolution of nucleic acids and proteins

    PubMed Central

    Goncearenco, Alexander; Ma, Bin-Guang; Berezovsky, Igor N.

    2014-01-01

    DNA, RNA and proteins are major biological macromolecules that coevolve and adapt to environments as components of one highly interconnected system. We explore here sequence/structure determinants of mechanisms of adaptation of these molecules, links between them, and results of their mutual evolution. We complemented statistical analysis of genomic and proteomic sequences with folding simulations of RNA molecules, unraveling causal relations between compositional and sequence biases reflecting molecular adaptation on DNA, RNA and protein levels. We found many compositional peculiarities related to environmental adaptation and the life style. Specifically, thermal adaptation of protein-coding sequences in Archaea is characterized by a stronger codon bias than in Bacteria. Guanine and cytosine load in the third codon position is important for supporting the aerobic life style, and it is highly pronounced in Bacteria. The third codon position also provides a tradeoff between arginine and lysine, which are favorable for thermal adaptation and aerobicity, respectively. Dinucleotide composition provides stability of nucleic acids via strong base-stacking in ApG dinucleotides. In relation to coevolution of nucleic acids and proteins, thermostability-related demands on the amino acid composition affect the nucleotide content in the second codon position in Archaea. PMID:24371267

  9. Adaptation or biased gene conversion? Extending the null hypothesis of molecular evolution.

    PubMed

    Galtier, Nicolas; Duret, Laurent

    2007-06-01

    The analysis of evolutionary rates is a popular approach to characterizing the effect of natural selection at the molecular level. Sequences contributing to species adaptation are expected to evolve faster than nonfunctional sequences because favourable mutations have a higher fixation probability than neutral ones. Such an accelerated rate of evolution might be due to factors other than natural selection, in particular GC-biased gene conversion. This is true of neutral sequences, but also of constrained sequences, which can be illustrated using the mouse Fxy gene. Several criteria can discriminate between the natural selection and biased gene conversion models. These criteria suggest that the recently reported human accelerated regions are most likely the result of biased gene conversion. We argue that these regions, far from contributing to human adaptation, might represent the Achilles' heel of our genome. PMID:17418442

  10. Molecular characterization of insulin from squamate reptiles reveals sequence diversity and possible adaptive evolution.

    PubMed

    Yamagishi, Genki; Yoshida, Ayaka; Kobayashi, Aya; Park, Min Kyun

    2016-01-01

    The Squamata are the most adaptive and prosperous group among ectothermic amniotes, reptiles, due to their species-richness and geographically wide habitat. Although the molecular mechanisms underlying their prosperity remain largely unknown, unique features have been reported from hormones that regulate energy metabolism. Insulin, a central anabolic hormone, is one such hormone, as its roles and effectiveness in regulation of blood glucose levels remain to be examined in squamates. In the present study, cDNAs coding for insulin were isolated from multiple species that represent various groups of squamates. The deduced amino acid sequences showed a high degree of divergence, with four lineages showing obviously higher number of amino acid substitutions than most of vertebrates, from teleosts to mammals. Among 18 sites presented to comprise the two receptor binding surfaces (one with 12 sites and the other with 6 sites), substitutions were observed in 13 sites. Among them was the substitution of HisB10, which results in the loss of the ability to hexamerize. Furthermore, three of these substitutions were reported to increase mitogenicity in human analogues. These substitutions were also reported from insulin of hystricomorph rodents and agnathan fishes, whose mitogenic potency have been shown to be increased. The estimated value of the non-synonymous-to-synonymous substitution ratio (ω) for the Squamata clade was larger than those of the other reptiles and aves. Even higher values were estimated for several lineages among squamates. These results, together with the regulatory mechanisms of digestion and nutrient assimilation in squamates, suggested a possible adaptive process through the molecular evolution of squamate INS. Further studies on the roles of insulin, in relation to the physiological and ecological traits of squamate species, will provide an insight into the molecular mechanisms that have led to the adaptivity and prosperity of squamates. PMID:26344944

  11. Targeted metagenomics unveils the molecular basis for adaptive evolution of enzymes to their environment

    PubMed Central

    Suenaga, Hikaru

    2015-01-01

    Microorganisms have a wonderful ability to adapt rapidly to new or altered environmental conditions. Enzymes are the basis of metabolism in all living organisms and, therefore, enzyme adaptation plays a crucial role in the adaptation of microorganisms. Comparisons of homology and parallel beneficial mutations in an enzyme family provide valuable hints of how an enzyme adapted to an ecological system; consequently, a series of enzyme collections is required to investigate enzyme evolution. Targeted metagenomics is a promising tool for the construction of enzyme pools and for studying the adaptive evolution of enzymes. This perspective article presents a summary of targeted metagenomic approaches useful for this purpose. PMID:26441940

  12. Targeted metagenomics unveils the molecular basis for adaptive evolution of enzymes to their environment.

    PubMed

    Suenaga, Hikaru

    2015-01-01

    Microorganisms have a wonderful ability to adapt rapidly to new or altered environmental conditions. Enzymes are the basis of metabolism in all living organisms and, therefore, enzyme adaptation plays a crucial role in the adaptation of microorganisms. Comparisons of homology and parallel beneficial mutations in an enzyme family provide valuable hints of how an enzyme adapted to an ecological system; consequently, a series of enzyme collections is required to investigate enzyme evolution. Targeted metagenomics is a promising tool for the construction of enzyme pools and for studying the adaptive evolution of enzymes. This perspective article presents a summary of targeted metagenomic approaches useful for this purpose. PMID:26441940

  13. Dolphin genome provides evidence for adaptive evolution of nervous system genes and a molecular rate slowdown

    PubMed Central

    McGowen, Michael R.; Grossman, Lawrence I.; Wildman, Derek E.

    2012-01-01

    Cetaceans (dolphins and whales) have undergone a radical transformation from the original mammalian bodyplan. In addition, some cetaceans have evolved large brains and complex cognitive capacities. We compared approximately 10 000 protein-coding genes culled from the bottlenose dolphin genome with nine other genomes to reveal molecular correlates of the remarkable phenotypic features of these aquatic mammals. Evolutionary analyses demonstrated that the overall synonymous substitution rate in dolphins has slowed compared with other studied mammals, and is within the range of primates and elephants. We also discovered 228 genes potentially under positive selection (dN/dS > 1) in the dolphin lineage. Twenty-seven of these genes are associated with the nervous system, including those related to human intellectual disabilities, synaptic plasticity and sleep. In addition, genes expressed in the mitochondrion have a significantly higher mean dN/dS ratio in the dolphin lineage than others examined, indicating evolution in energy metabolism. We encountered selection in other genes potentially related to cetacean adaptations such as glucose and lipid metabolism, dermal and lung development, and the cardiovascular system. This study underlines the parallel molecular trajectory of cetaceans with other mammalian groups possessing large brains. PMID:22740643

  14. Evolution of the fruit endocarp: molecular mechanisms underlying adaptations in seed protection and dispersal strategies

    PubMed Central

    Dardick, Chris; Callahan, Ann M.

    2014-01-01

    Plant evolution is largely driven by adaptations in seed protection and dispersal strategies that allow diversification into new niches. This is evident by the tremendous variation in flowering and fruiting structures present both across and within different plant lineages. Within a single plant family a staggering variety of fruit types can be found such as fleshy fruits including berries, pomes, and drupes and dry fruit structures like achenes, capsules, and follicles. What are the evolutionary mechanisms that enable such dramatic shifts to occur in a relatively short period of time? This remains a fundamental question of plant biology today. On the surface it seems that these extreme differences in form and function must be the consequence of very different developmental programs that require unique sets of genes. Yet as we begin to decipher the molecular and genetic basis underlying fruit form it is becoming apparent that simple genetic changes in key developmental regulatory genes can have profound anatomical effects. In this review, we discuss recent advances in understanding the molecular mechanisms of fruit endocarp tissue differentiation that have contributed to species diversification within three plant lineages. PMID:25009543

  15. Evolution of the fruit endocarp: molecular mechanisms underlying adaptations in seed protection and dispersal strategies

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plant evolution is largely driven by adaptations in seed protection and dispersal strategies that allow diversification into new niches. This is evident by the tremendous variation in flowering and fruiting structures present both across and within different plant lineages. Within a single plant f...

  16. Tracking adaptive evolution in the structure, function and molecular phylogeny of haemoglobin in non-Antarctic notothenioid fish species

    NASA Astrophysics Data System (ADS)

    Verde, Cinzia; Parisi, Elio; di Prisco, Guido

    2006-04-01

    With the notable exception of Antarctic icefishes, haemoglobin (Hb) is present in all vertebrates. In polar fish, Hb evolution has included adaptations with implications at the biochemical, physiological and molecular levels. Cold adaptation has been shown to be also linked to small changes in primary structure and post-translational modifications in proteins, including hydrophobic remodelling and increased flexibility. A wealth of knowledge is available on the oxygen-transport system of fish inhabiting Antarctic waters, but very little is known on the structure and function of Hb of non-Antarctic notothenioid fishes. The comparison of the biochemical and physiological adaptations between cold-adapted and non-cold-adapted species is a powerful tool to understand whether (and to what extent) extreme environments require specific adaptations or simply select for phenotypically different life styles. This study focuses on structure, function and molecular phylogeny of Hb in Antarctic and non-Antarctic notothenioid fishes. The rationale is to use the primary structure of Hb as tool of choice to gain insight into the pathways of the evolution history of α and β globins of notothenioids and also as a basis for reconstructing the phylogenetic relationships among Antarctic and non-Antarctic species.

  17. Workshop on Molecular Evolution

    NASA Technical Reports Server (NTRS)

    Cummings, Michael P.

    2004-01-01

    Molecular evolution has become the nexus of many areas of biological research. It both brings together and enriches such areas as biochemistry, molecular biology, microbiology, population genetics, systematics, developmental biology, genomics, bioinformatics, in vitro evolution, and molecular ecology. The Workshop provides an important contribution to these fields in that it promotes interdisciplinary research and interaction, and thus provides a glue that sticks together disparate fields. Due to the wide range of fields addressed by the study of molecular evolution, it is difficult to offer a comprehensive course in a university setting. It is rare for a single institution to maintain expertise in all necessary areas. In contrast, the Workshop is uniquely able to provide necessary breadth and depth by utilizing a large number of faculty with appropriate expertise. Furthermore, the flexible nature of the Workshop allows for rapid adaptation to changes in the dynamic field of molecular evolution. For example, the 2003 Workshop included recently emergent research areas of molecular evolution of development and genomics.

  18. Collembolan Transcriptomes Highlight Molecular Evolution of Hexapods and Provide Clues on the Adaptation to Terrestrial Life

    PubMed Central

    Faddeeva, A.; Studer, R. A.; Kraaijeveld, K.; Sie, D.; Ylstra, B.; Mariën, J.; op den Camp, H. J. M.; Datema, E.; den Dunnen, J. T.; van Straalen, N. M.; Roelofs, D.

    2015-01-01

    Background Collembola (springtails) represent a soil-living lineage of hexapods in between insects and crustaceans. Consequently, their genomes may hold key information on the early processes leading to evolution of Hexapoda from a crustacean ancestor. Method We assembled and annotated transcriptomes of the Collembola Folsomia candida and Orchesella cincta, and performed comparative analysis with protein-coding gene sequences of three crustaceans and three insects to identify adaptive signatures associated with the evolution of hexapods within the pancrustacean clade. Results Assembly of the springtail transcriptomes resulted in 37,730 transcripts with predicted open reading frames for F. candida and 32,154 for O. cincta, of which 34.2% were functionally annotated for F. candida and 38.4% for O. cincta. Subsequently, we predicted orthologous clusters among eight species and applied the branch-site test to detect episodic positive selection in the Hexapoda and Collembola lineages. A subset of 250 genes showed significant positive selection along the Hexapoda branch and 57 in the Collembola lineage. Gene Ontology categories enriched in these genes include metabolism, stress response (i.e. DNA repair, immune response), ion transport, ATP metabolism, regulation and development-related processes (i.e. eye development, neurological development). Conclusions We suggest that the identified gene families represent processes that have played a key role in the divergence of hexapods within the pancrustacean clade that eventually evolved into the most species-rich group of all animals, the hexapods. Furthermore, some adaptive signatures in collembolans may provide valuable clues to understand evolution of hexapods on land. PMID:26075903

  19. Molecular evolution of the odorant and gustatory receptor genes in lepidopteran insects: implications for their adaptation and speciation.

    PubMed

    Engsontia, Patamarerk; Sangket, Unitsa; Chotigeat, Wilaiwan; Satasook, Chutamas

    2014-08-01

    Lepidoptera (comprised of butterflies and moths) is one of the largest groups of insects, including more than 160,000 described species. Chemoreception plays important roles in the adaptation of these species to a wide range of niches, e.g., plant hosts, egg-laying sites, and mates. This study investigated the molecular evolution of the lepidopteran odorant (Or) and gustatory receptor (Gr) genes using recently identified genes from Bombyx mori, Danaus plexippus, Heliconius melpomene, Plutella xylostella, Heliothis virescens, Manduca sexta, Cydia pomonella, and Spodoptera littoralis. A limited number of cases of large lineage-specific gene expansion are observed (except in the P. xylostella lineage), possibly due to selection against tandem gene duplication. There has been strong purifying selection during the evolution of both lepidopteran odorant and gustatory genes, as shown by the low ω values estimated through CodeML analysis, ranging from 0.0093 to 0.3926. However, purifying selection has been relaxed on some amino acid sites in these receptors, leading to sequence divergence, which is a precursor of positive selection on these sequences. Signatures of positive selection were detected only in a few loci from the lineage-specific analysis. Estimation of gene gains and losses suggests that the common ancestor of the Lepidoptera had fewer Or genes compared to extant species and an even more reduced number of Gr genes, particularly within the bitter receptor clade. Multiple gene gains and a few gene losses occurred during the evolution of Lepidoptera. Gene family expansion may be associated with the adaptation of lepidopteran species to plant hosts, especially after angiosperm radiation. Phylogenetic analysis of the moth sex pheromone receptor genes suggested that chromosomal translocations have occurred several times. New sex pheromone receptors have arisen through tandem gene duplication. Positive selection was detected at some amino acid sites predicted to be

  20. Mistakes and Molecular Evolution.

    ERIC Educational Resources Information Center

    Trevors, J. T.

    1998-01-01

    Examines the role mistakes play in the molecular evolution of bacteria. Discusses the interacting physical, chemical, and biological factors that cause changes in DNA and play a role in prokaryotic evolution. (DDR)

  1. Genome-wide analysis of adaptive molecular evolution in the carnivorous plant Utricularia gibba.

    PubMed

    Carretero-Paulet, Lorenzo; Chang, Tien-Hao; Librado, Pablo; Ibarra-Laclette, Enrique; Herrera-Estrella, Luis; Rozas, Julio; Albert, Victor A

    2015-02-01

    The genome of the bladderwort Utricularia gibba provides an unparalleled opportunity to uncover the adaptive landscape of an aquatic carnivorous plant with unique phenotypic features such as absence of roots, development of water-filled suction bladders, and a highly ramified branching pattern. Despite its tiny size, the U. gibba genome accommodates approximately as many genes as other plant genomes. To examine the relationship between the compactness of its genome and gene turnover, we compared the U. gibba genome with that of four other eudicot species, defining a total of 17,324 gene families (orthogroups). These families were further classified as either 1) lineage-specific expanded/contracted or 2) stable in size. The U. gibba-expanded families are generically related to three main phenotypic features: 1) trap physiology, 2) key plant morphogenetic/developmental pathways, and 3) response to environmental stimuli, including adaptations to life in aquatic environments. Further scans for signatures of protein functional specialization permitted identification of seven candidate genes with amino acid changes putatively fixed by positive Darwinian selection in the U. gibba lineage. The Arabidopsis orthologs of these genes (AXR, UMAMIT41, IGS, TAR2, SOL1, DEG9, and DEG10) are involved in diverse plant biological functions potentially relevant for U. gibba phenotypic diversification, including 1) auxin metabolism and signal transduction, 2) flowering induction and floral meristem transition, 3) root development, and 4) peptidases. Taken together, our results suggest numerous candidate genes and gene families as interesting targets for further experimental confirmation of their functional and adaptive roles in the U. gibba's unique lifestyle and highly specialized body plan. PMID:25577200

  2. Genome-Wide Analysis of Adaptive Molecular Evolution in the Carnivorous Plant Utricularia gibba

    PubMed Central

    Librado, Pablo; Ibarra-Laclette, Enrique; Herrera-Estrella, Luis; Rozas, Julio; Albert, Victor A.

    2015-01-01

    The genome of the bladderwort Utricularia gibba provides an unparalleled opportunity to uncover the adaptive landscape of an aquatic carnivorous plant with unique phenotypic features such as absence of roots, development of water-filled suction bladders, and a highly ramified branching pattern. Despite its tiny size, the U. gibba genome accommodates approximately as many genes as other plant genomes. To examine the relationship between the compactness of its genome and gene turnover, we compared the U. gibba genome with that of four other eudicot species, defining a total of 17,324 gene families (orthogroups). These families were further classified as either 1) lineage-specific expanded/contracted or 2) stable in size. The U. gibba-expanded families are generically related to three main phenotypic features: 1) trap physiology, 2) key plant morphogenetic/developmental pathways, and 3) response to environmental stimuli, including adaptations to life in aquatic environments. Further scans for signatures of protein functional specialization permitted identification of seven candidate genes with amino acid changes putatively fixed by positive Darwinian selection in the U. gibba lineage. The Arabidopsis orthologs of these genes (AXR, UMAMIT41, IGS, TAR2, SOL1, DEG9, and DEG10) are involved in diverse plant biological functions potentially relevant for U. gibba phenotypic diversification, including 1) auxin metabolism and signal transduction, 2) flowering induction and floral meristem transition, 3) root development, and 4) peptidases. Taken together, our results suggest numerous candidate genes and gene families as interesting targets for further experimental confirmation of their functional and adaptive roles in the U. gibba’s unique lifestyle and highly specialized body plan. PMID:25577200

  3. Inferring the Frequency Spectrum of Derived Variants to Quantify Adaptive Molecular Evolution in Protein-Coding Genes of Drosophila melanogaster.

    PubMed

    Keightley, Peter D; Campos, José L; Booker, Tom R; Charlesworth, Brian

    2016-06-01

    Many approaches for inferring adaptive molecular evolution analyze the unfolded site frequency spectrum (SFS), a vector of counts of sites with different numbers of copies of derived alleles in a sample of alleles from a population. Accurate inference of the high-copy-number elements of the SFS is difficult, however, because of misassignment of alleles as derived vs. ancestral. This is a known problem with parsimony using outgroup species. Here we show that the problem is particularly serious if there is variation in the substitution rate among sites brought about by variation in selective constraint levels. We present a new method for inferring the SFS using one or two outgroups that attempts to overcome the problem of misassignment. We show that two outgroups are required for accurate estimation of the SFS if there is substantial variation in selective constraints, which is expected to be the case for nonsynonymous sites in protein-coding genes. We apply the method to estimate unfolded SFSs for synonymous and nonsynonymous sites in a population of Drosophila melanogaster from phase 2 of the Drosophila Population Genomics Project. We use the unfolded spectra to estimate the frequency and strength of advantageous and deleterious mutations and estimate that ∼50% of amino acid substitutions are positively selected but that <0.5% of new amino acid mutations are beneficial, with a scaled selection strength of Nes ≈ 12. PMID:27098912

  4. Life-history evolution at the molecular level: adaptive amino acid composition of avian vitellogenins

    PubMed Central

    Hughes, Austin L.

    2015-01-01

    Avian genomes typically encode three distinct vitellogenin (VTG) egg yolk proteins (VTG1, VTG2 and VTG3), which arose by gene duplication prior to the most recent common ancestor of birds. Analysis of VTG sequences from 34 avian species in a phylogenetic framework supported the hypothesis that VTG amino acid composition has co-evolved with embryo incubation time. Embryo incubation time was positively correlated with the proportions of dietary essential amino acids (EAAs) in VTG1 and VTG2, and with the proportion of sulfur-containing amino acids in VTG3. These patterns were seen even when only semi-altricial and/or altricial species were considered, suggesting that the duration of embryo incubation is a major selective factor on the amino acid composition of VTGs, rather than developmental mode alone. The results are consistent with the hypothesis that the level of EAAs provided to the egg represents an adaptation to the loss of amino acids through breakdown over the course of incubation and imply that life-history phenotypes and VTG amino acid composition have co-evolved throughout the evolutionary history of birds. PMID:26224713

  5. Combining molecular evolution and environmental genomics to unravel adaptive processes of MHC class IIB diversity in European minnows (Phoxinus phoxinus)

    PubMed Central

    Collin, Helene; Burri, Reto; Comtesse, Fabien; Fumagalli, Luca

    2013-01-01

    Abstract Host–pathogen interactions are a major evolutionary force promoting local adaptation. Genes of the major histocompatibility complex (MHC) represent unique candidates to investigate evolutionary processes driving local adaptation to parasite communities. The present study aimed at identifying the relative roles of neutral and adaptive processes driving the evolution of MHC class IIB (MHCIIB) genes in natural populations of European minnows (Phoxinus phoxinus). To this end, we isolated and genotyped exon 2 of two MHCIIB gene duplicates (DAB1 and DAB3) and 1′665 amplified fragment length polymorphism (AFLP) markers in nine populations, and characterized local bacterial communities by 16S rDNA barcoding using 454 amplicon sequencing. Both MHCIIB loci exhibited signs of historical balancing selection. Whereas genetic differentiation exceeded that of neutral markers at both loci, the populations' genetic diversities were positively correlated with local pathogen diversities only at DAB3. Overall, our results suggest pathogen-mediated local adaptation in European minnows at both MHCIIB loci. While at DAB1 selection appears to favor different alleles among populations, this is only partially the case in DAB3, which appears to be locally adapted to pathogen communities in terms of genetic diversity. These results provide new insights into the importance of host–pathogen interactions in driving local adaptation in the European minnow, and highlight that the importance of adaptive processes driving MHCIIB gene evolution may differ among duplicates within species, presumably as a consequence of alternative selective regimes or different genomic context. Using next-generation sequencing, the present manuscript identifies the relative roles of neutral and adaptive processes driving the evolution of MHC class IIB (MHCIIB) genes in natural populations of a cyprinid fish: the European minnow (Phoxinus phoxinus). We highlight that the relative importance of neutral

  6. Molecular mechanisms of temperature adaptation

    PubMed Central

    Bagriantsev, Sviatoslav N; Gracheva, Elena O

    2015-01-01

    Thermal perception is a fundamental physiological process pertaining to the vast majority of organisms. In vertebrates, environmental temperature is detected by the primary afferents of the somatosensory neurons in the skin, which express a ‘choir’ of ion channels tuned to detect particular temperatures. Nearly two decades of research have revealed a number of receptor ion channels that mediate the perception of several temperature ranges, but most still remain molecularly orphaned. Yet even within this well-researched realm, most of our knowledge largely pertains to two closely related species of rodents, mice and rats. While these are standard biomedical research models, mice and rats provide a limited perspective to elucidate the general principles that drive somatosensory evolution. In recent years, significant advances have been made in understanding the molecular mechanism of temperature adaptation in evolutionarily distant vertebrates and in organisms with acute thermal sensitivity. These studies have revealed the remarkable versatility of the somatosensory system and highlighted adaptations at the molecular level, which often include changes in biophysical properties of ion channels from the transient receptor potential family. Exploiting non-standard animal models has the potential to provide unexpected insights into general principles of thermosensation and thermoregulation, unachievable using the rodent model alone. PMID:25433072

  7. Molecular mechanisms of temperature adaptation.

    PubMed

    Bagriantsev, Sviatoslav N; Gracheva, Elena O

    2015-08-15

    Thermal perception is a fundamental physiological process pertaining to the vast majority of organisms. In vertebrates, environmental temperature is detected by the primary afferents of the somatosensory neurons in the skin, which express a 'choir' of ion channels tuned to detect particular temperatures. Nearly two decades of research have revealed a number of receptor ion channels that mediate the perception of several temperature ranges, but most still remain molecularly orphaned. Yet even within this well-researched realm, most of our knowledge largely pertains to two closely related species of rodents, mice and rats. While these are standard biomedical research models, mice and rats provide a limited perspective to elucidate the general principles that drive somatosensory evolution. In recent years, significant advances have been made in understanding the molecular mechanism of temperature adaptation in evolutionarily distant vertebrates and in organisms with acute thermal sensitivity. These studies have revealed the remarkable versatility of the somatosensory system and highlighted adaptations at the molecular level, which often include changes in biophysical properties of ion channels from the transient receptor potential family. Exploiting non-standard animal models has the potential to provide unexpected insights into general principles of thermosensation and thermoregulation, unachievable using the rodent model alone. PMID:25433072

  8. Molecular evolution of the hyaluronan synthase 2 gene in mammals: implications for adaptations to the subterranean niche and cancer resistance.

    PubMed

    Faulkes, Christopher G; Davies, Kalina T J; Rossiter, Stephen J; Bennett, Nigel C

    2015-05-01

    The naked mole-rat (NMR) Heterocephalus glaber is a unique and fascinating mammal exhibiting many unusual adaptations to a subterranean lifestyle. The recent discovery of their resistance to cancer and exceptional longevity has opened up new and important avenues of research. Part of this resistance to cancer has been attributed to the fact that NMRs produce a modified form of hyaluronan--a key constituent of the extracellular matrix--that is thought to confer increased elasticity of the skin as an adaptation for living in narrow tunnels. This so-called high molecular mass hyaluronan (HMM-HA) stems from two apparently unique substitutions in the hyaluronan synthase 2 enzyme (HAS2). To test whether other subterranean mammals with similar selection pressures also show molecular adaptation in their HAS2 gene, we sequenced the HAS2 gene for 11 subterranean mammals and closely related species, and combined these with data from 57 other mammals. Comparative screening revealed that one of the two putatively important HAS2 substitutions in the NMR predicted to have a significant effect on hyaluronan synthase function was uniquely shared by all African mole-rats. Interestingly, we also identified multiple other amino acid substitutions in key domains of the HAS2 molecule, although the biological consequences of these for hyaluronan synthesis remain to be determined. Despite these results, we found evidence of strong purifying selection acting on the HAS2 gene across all mammals, and the NMR remains unique in its particular HAS2 sequence. Our results indicate that more work is needed to determine whether the apparent cancer resistance seen in NMR is shared by other members of the African mole-rat clade. PMID:25948568

  9. Molecular evolution of the hyaluronan synthase 2 gene in mammals: implications for adaptations to the subterranean niche and cancer resistance

    PubMed Central

    Faulkes, Christopher G.; Davies, Kalina T. J.; Rossiter, Stephen J.; Bennett, Nigel C.

    2015-01-01

    The naked mole-rat (NMR) Heterocephalus glaber is a unique and fascinating mammal exhibiting many unusual adaptations to a subterranean lifestyle. The recent discovery of their resistance to cancer and exceptional longevity has opened up new and important avenues of research. Part of this resistance to cancer has been attributed to the fact that NMRs produce a modified form of hyaluronan—a key constituent of the extracellular matrix—that is thought to confer increased elasticity of the skin as an adaptation for living in narrow tunnels. This so-called high molecular mass hyaluronan (HMM-HA) stems from two apparently unique substitutions in the hyaluronan synthase 2 enzyme (HAS2). To test whether other subterranean mammals with similar selection pressures also show molecular adaptation in their HAS2 gene, we sequenced the HAS2 gene for 11 subterranean mammals and closely related species, and combined these with data from 57 other mammals. Comparative screening revealed that one of the two putatively important HAS2 substitutions in the NMR predicted to have a significant effect on hyaluronan synthase function was uniquely shared by all African mole-rats. Interestingly, we also identified multiple other amino acid substitutions in key domains of the HAS2 molecule, although the biological consequences of these for hyaluronan synthesis remain to be determined. Despite these results, we found evidence of strong purifying selection acting on the HAS2 gene across all mammals, and the NMR remains unique in its particular HAS2 sequence. Our results indicate that more work is needed to determine whether the apparent cancer resistance seen in NMR is shared by other members of the African mole-rat clade. PMID:25948568

  10. Physicochemical Evolution and Molecular Adaptation of the Cetacean Osmoregulation-related Gene UT-A2 and Implications for Functional Studies

    PubMed Central

    Wang, Jingzhen; Yu, Xueying; Hu, Bo; Zheng, Jinsong; Xiao, Wuhan; Hao, Yujiang; Liu, Wenhua; Wang, Ding

    2015-01-01

    Cetaceans have an enigmatic evolutionary history of re-invading aquatic habitats. One of their essential adaptabilities that has enabled this process is their homeostatic strategy adjustment. Here, we investigated the physicochemical evolution and molecular adaptation of the cetacean urea transporter UT-A2, which plays an important role in urine concentration and water homeostasis. First, we cloned UT-A2 from the freshwater Yangtze finless porpoise, after which bioinformatics analyses were conducted based on available datasets (including freshwater baiji and marine toothed and baleen whales) using MEGA, PAML, DataMonkey, TreeSAAP and Consurf. Our findings suggest that the UT-A2 protein shows folding similar to that of dvUT and UT-B, whereas some variations occurred in the functional So and Si regions of the selectivity filter. Additionally, several regions of the cetacean UT-A2 protein have experienced molecular adaptations. We suggest that positive-destabilizing selection could contribute to adaptations by influencing its biochemical and conformational character. The conservation of amino acid residues within the selectivity filter of the urea conduction pore is likely to be necessary for urea conduction, whereas the non-conserved amino acid replacements around the entrance and exit of the conduction pore could potentially affect the activity, which could be interesting target sites for future mutagenesis studies. PMID:25762239

  11. Independent molecular basis of convergent highland adaptation in maize

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Convergent evolution is the independent evolution of similar traits in different species or lineages of the same species; this often is a result of adaptation to similar environments, a process referred to as convergent adaptation. We investigate here the molecular basis of convergent adaptation in ...

  12. Selective transport systems mediate sequestration of plant glucosides in leaf beetles: A molecular basis for adaptation and evolution

    PubMed Central

    Kuhn, Jürgen; Pettersson, Eva M.; Feld, Birte K.; Burse, Antje; Termonia, Arnaud; Pasteels, Jacques M.; Boland, Wilhelm

    2004-01-01

    Chrysomeline larvae respond to disturbance and attack by everting dorsal glandular reservoirs, which release defensive secretions. The ancestral defense is based on the de novo synthesis of monoterpene iridoids. The catabolization of the host-plant O-glucoside salicin into salicylaldehyde is a character state that evolved later in two distinct lineages, which specialized on Salicaceae. By using two species producing monoterpenes (Hydrothassa marginella and Phratora laticollis) and two sequestering species (Chrysomela populi and Phratora vitellinae), we studied the molecular basis of sequestration by feeding the larvae structurally different thioglucosides resembling natural O-glucosides. Their accumulation in the defensive systems demonstrated that the larvae possess transport systems, which are evolutionarily adapted to the glycosides of their host plants. Minor structural modifications in the aglycon result in drastically reduced transport rates of the test compounds. Moreover, the ancestral iridoid-producing leaf beetles already possess a fully functional import system for an early precursor of the iridoid defenses. Our data confirm an evolutionary scenario in which, after a host-plant change, the transport system of the leaf beetles may play a pivotal role in the adaptation on new hosts by selecting plant-derived glucosides that can be channeled to the defensive system. PMID:15365181

  13. Evolution of molecular clouds

    NASA Technical Reports Server (NTRS)

    Sevenster, M.

    1993-01-01

    The evolution of interstellar molecular hydrogen was studied, with a special interest for the formation and evolution of molecular clouds and star formation within them, by a two-dimensional hydrodynamical simulation performed on a rectangular grid of physical sizes on the order of 100 pc. It is filled with an initial density of approx. 1 cm(exp -3), except for one cell (approx. 1 pc(exp 2)) at the center of the grid where an accretion core of 1-10(exp 3) solar masses is placed. The grid is co-moving with the gridcenter that is on a circular orbit around the Galactic center and that also is the guiding center of epicyclic approximation of orbits of the matter surrounding it. The initial radial velocity is zero; to account for differential rotation the initial tangential velocity (i.e. the movement around the galactic center) is proportional to the radial distance to the grid center. The rate is comparable to the rotation rate at the Local Standard of Rest. The influence of galactic rotation is noticed by spiral or elliptical forms, but on much longer time scales than self gravitation and cooling processes. Density and temperature are kept constant at the boundaries and no inflow is allowed along the tangential boundaries.

  14. The speciation of conger eel galectins by rapid adaptive evolution.

    PubMed

    Ogawa, Tomohisa; Shirai, Tsuyoshi; Shionyu-Mitsuyama, Clara; Yamane, Takashi; Kamiya, Hisao; Muramoto, Koji

    2004-01-01

    Many cases of accelerated evolution driven by positive Darwinian selection are identified in the genes of venomous and reproductive proteins. This evolutional phenomenon might have important consequences in their gene-products' functions, such as multiple specific toxins for quick immobilization of the prey and the establishment of barriers to fertilization that might lead to speciation, and in the molecular evolution of novel genes. Recently, we analyzed the molecular evolution of two galectins isolated from the skin mucus of conger eel (Conger myriaster), named congerins I and II, by cDNA cloning and X-ray structural analysis, and we found that they have evolved in the rapid adaptive manner to emergence of a new structure including strand-swapping and a unique new ligand-binding site. In this review article we summarize and discuss the molecular evolution, especially the rapid adaptive evolution, and the structure-function relationships of conger eel galectins. PMID:14758068

  15. The Molecular Basis of Evolution.

    ERIC Educational Resources Information Center

    Wilson, Allan C.

    1985-01-01

    Discovery that mutations accumulate at steady rates over time in the genes of all lineages of plants and animals has led to new insights into evolution at the molecular and organismal levels. Discusses molecular evolution, examining deoxyribonuclei acid (DNA) sequences, morphological distances, and codon rate of change. (DH)

  16. Directed evolution and in silico analysis of reaction centre proteins reveal molecular signatures of photosynthesis adaptation to radiation pressure.

    PubMed

    Rea, Giuseppina; Lambreva, Maya; Polticelli, Fabio; Bertalan, Ivo; Antonacci, Amina; Pastorelli, Sandro; Damasso, Mario; Johanningmeier, Udo; Giardi, Maria Teresa

    2011-01-01

    Evolutionary mechanisms adopted by the photosynthetic apparatus to modifications in the Earth's atmosphere on a geological time-scale remain a focus of intense research. The photosynthetic machinery has had to cope with continuously changing environmental conditions and particularly with the complex ionizing radiation emitted by solar flares. The photosynthetic D1 protein, being the site of electron tunneling-mediated charge separation and solar energy transduction, is a hot spot for the generation of radiation-induced radical injuries. We explored the possibility to produce D1 variants tolerant to ionizing radiation in Chlamydomonas reinhardtii and clarified the effect of radiation-induced oxidative damage on the photosynthetic proteins evolution. In vitro directed evolution strategies targeted at the D1 protein were adopted to create libraries of chlamydomonas random mutants, subsequently selected by exposures to radical-generating proton or neutron sources. The common trend observed in the D1 aminoacidic substitutions was the replacement of less polar by more polar amino acids. The applied selection pressure forced replacement of residues more sensitive to oxidative damage with less sensitive ones, suggesting that ionizing radiation may have been one of the driving forces in the evolution of the eukaryotic photosynthetic apparatus. A set of the identified aminoacidic substitutions, close to the secondary plastoquinone binding niche and oxygen evolving complex, were introduced by site-directed mutagenesis in un-transformed strains, and their sensitivity to free radicals attack analyzed. Mutants displayed reduced electron transport efficiency in physiological conditions, and increased photosynthetic performance stability and oxygen evolution capacity in stressful high-light conditions. Finally, comparative in silico analyses of D1 aminoacidic sequences of organisms differently located in the evolution chain, revealed a higher ratio of residues more sensitive to

  17. Directed Evolution and In Silico Analysis of Reaction Centre Proteins Reveal Molecular Signatures of Photosynthesis Adaptation to Radiation Pressure

    PubMed Central

    Rea, Giuseppina; Lambreva, Maya; Polticelli, Fabio; Bertalan, Ivo; Antonacci, Amina; Pastorelli, Sandro; Damasso, Mario; Johanningmeier, Udo; Giardi, Maria Teresa

    2011-01-01

    Evolutionary mechanisms adopted by the photosynthetic apparatus to modifications in the Earth's atmosphere on a geological time-scale remain a focus of intense research. The photosynthetic machinery has had to cope with continuously changing environmental conditions and particularly with the complex ionizing radiation emitted by solar flares. The photosynthetic D1 protein, being the site of electron tunneling-mediated charge separation and solar energy transduction, is a hot spot for the generation of radiation-induced radical injuries. We explored the possibility to produce D1 variants tolerant to ionizing radiation in Chlamydomonas reinhardtii and clarified the effect of radiation-induced oxidative damage on the photosynthetic proteins evolution. In vitro directed evolution strategies targeted at the D1 protein were adopted to create libraries of chlamydomonas random mutants, subsequently selected by exposures to radical-generating proton or neutron sources. The common trend observed in the D1 aminoacidic substitutions was the replacement of less polar by more polar amino acids. The applied selection pressure forced replacement of residues more sensitive to oxidative damage with less sensitive ones, suggesting that ionizing radiation may have been one of the driving forces in the evolution of the eukaryotic photosynthetic apparatus. A set of the identified aminoacidic substitutions, close to the secondary plastoquinone binding niche and oxygen evolving complex, were introduced by site-directed mutagenesis in un-transformed strains, and their sensitivity to free radicals attack analyzed. Mutants displayed reduced electron transport efficiency in physiological conditions, and increased photosynthetic performance stability and oxygen evolution capacity in stressful high-light conditions. Finally, comparative in silico analyses of D1 aminoacidic sequences of organisms differently located in the evolution chain, revealed a higher ratio of residues more sensitive to

  18. Molecular evolution tracks macroevolutionary transitions in Cetacea.

    PubMed

    McGowen, Michael R; Gatesy, John; Wildman, Derek E

    2014-06-01

    Cetacea (whales, dolphins, and porpoises) is a model group for investigating the molecular signature of macroevolutionary transitions. Recent research has begun to reveal the molecular underpinnings of the remarkable anatomical and behavioral transformation in this clade. This shift from terrestrial to aquatic environments is arguably the best-understood major morphological transition in vertebrate evolution. The ancestral body plan and physiology were extensively modified and, in many cases, these crucial changes are recorded in cetacean genomes. Recent studies have highlighted cetaceans as central to understanding adaptive molecular convergence and pseudogene formation. Here, we review current research in cetacean molecular evolution and the potential of Cetacea as a model for the study of other macroevolutionary transitions from a genomic perspective. PMID:24794916

  19. Chemical evolution of molecular clouds

    NASA Technical Reports Server (NTRS)

    Prasad, Sheo S.; Tarafdar, Sankar P.; Villere, Karen R.; Huntress, Wesley T., Jr.

    1987-01-01

    The principles behind the coupled chemical-dynamical evolution of molecular clouds are described. Particular attention is given to current problems involving the simplest species (i.e., C. CO, O2, and H2) in quiescent clouds. The results of a comparison made between the molecular abundances in the Orion ridge and the hot core (Blake, 1986) are presented.

  20. Epistatic Adaptive Evolution of Human Color Vision

    PubMed Central

    Yokoyama, Shozo; Xing, Jinyi; Liu, Yang; Faggionato, Davide; Altun, Ahmet; Starmer, William T.

    2014-01-01

    Establishing genotype-phenotype relationship is the key to understand the molecular mechanism of phenotypic adaptation. This initial step may be untangled by analyzing appropriate ancestral molecules, but it is a daunting task to recapitulate the evolution of non-additive (epistatic) interactions of amino acids and function of a protein separately. To adapt to the ultraviolet (UV)-free retinal environment, the short wavelength-sensitive (SWS1) visual pigment in human (human S1) switched from detecting UV to absorbing blue light during the last 90 million years. Mutagenesis experiments of the UV-sensitive pigment in the Boreoeutherian ancestor show that the blue-sensitivity was achieved by seven mutations. The experimental and quantum chemical analyses show that 4,008 of all 5,040 possible evolutionary trajectories are terminated prematurely by containing a dehydrated nonfunctional pigment. Phylogenetic analysis further suggests that human ancestors achieved the blue-sensitivity gradually and almost exclusively by epistasis. When the final stage of spectral tuning of human S1 was underway 45–30 million years ago, the middle and long wavelength-sensitive (MWS/LWS) pigments appeared and so-called trichromatic color vision was established by interprotein epistasis. The adaptive evolution of human S1 differs dramatically from orthologous pigments with a major mutational effect used in achieving blue-sensitivity in a fish and several mammalian species and in regaining UV vision in birds. These observations imply that the mechanisms of epistatic interactions must be understood by studying various orthologues in different species that have adapted to various ecological and physiological environments. PMID:25522367

  1. The functional basis of adaptive evolution in chemostats

    PubMed Central

    Gresham, David; Hong, Jungeui

    2014-01-01

    Two of the central problems in biology are determining the molecular basis of adaptive evolution and understanding how cells regulate their growth. The chemostat is a device for culturing cells that provides great utility in tackling both of these problems: it enables precise control of the selective pressure under which organisms evolve and it facilitates experimental control of cell growth rate. The aim of this review is to synthesize results from studies of the functional basis of adaptive evolution in long-term chemostat selections using Escherichia coli and Saccharomyces cerevisiae. We describe the principle of the chemostat, provide a summary of studies of experimental evolution in chemostats, and use these studies to assess our current understanding of selection in the chemostat. Functional studies of adaptive evolution in chemostats provide a unique means of interrogating the genetic networks that control cell growth, which complements functional genomic approaches and quantitative trait loci (QTL) mapping in natural populations. An integrated approach to the study of adaptive evolution that accounts for both molecular function and evolutionary processes is critical to advancing our understanding of evolution. By renewing efforts to integrate these two research programs, experimental evolution in chemostats is ideally suited to extending the functional synthesis to the study of genetic networks. PMID:25098268

  2. Molecular imprint of dust evolution

    NASA Astrophysics Data System (ADS)

    Akimkin, Vitaly; Zhukovska, Svitlana; Wiebe, Dmitri; Semenov, Dmitry; Pavlyuchenkov, Yaroslav; Vasyunin, Anton; Birnstiel, Til; Henning, Thomas

    2013-07-01

    Evolution of sub-micron grains is an essential process during early stages of planet formation. The dust growth and sedimentation to the midplane affect a spectral energy distribution. At the same time dust evolution can alter significantly the distribution of gas that is a factor of 100 more massive than dust and can be traced with molecular line observations. We present simulations of protoplanetary disk structure with grain evolution using the ANDES code ("AccretioN disk with Dust Evolution and Sedimentation"). ANDES comprises (1) a 1+1D frequency-dependent continuum radiative transfer module, (2) a module to calculate the chemical evolution using an extended gas-grain chemical network with UV/X-ray-driven processes and surface reactions, (3) a module to calculate the gas thermal energy balance, and (4) a 1+1D module that simulates dust grain evolution. Such a set of physical processes allows us to assess the impact of dust evolution on the gas component, which is primarily related to radiation field and total available surface for chemical reactions. Considering cases of (i) evolved dust (2 Myr of grain coagulation, fragmentation and sedimentation) and (ii) pristine dust (well- mixed 0.1 micron grains), we found a sufficient changes in disk physical and chemical structure caused by the dust evolution. Due to higher transparency of the evolved disk model UV-shielded molecular layer is shifted closer to the midplane. The presence of big grains in the disk midplane delays the freeze-out of volatile gas-phase species such as CO, while the depletion is still effective in adjacent upper layers. Molecular concentrations of many species are enhanced in the disk model with dust evolution (CO2, NH2CN, HNO, H2O, HCOOH, HCN, CO) which provides an opportunity to use these molecules as tracers of dust evolution.

  3. Evolution of adaptation mechanisms: Adaptation energy, stress, and oscillating death.

    PubMed

    Gorban, Alexander N; Tyukina, Tatiana A; Smirnova, Elena V; Pokidysheva, Lyudmila I

    2016-09-21

    In 1938, Selye proposed the notion of adaptation energy and published 'Experimental evidence supporting the conception of adaptation energy.' Adaptation of an animal to different factors appears as the spending of one resource. Adaptation energy is a hypothetical extensive quantity spent for adaptation. This term causes much debate when one takes it literally, as a physical quantity, i.e. a sort of energy. The controversial points of view impede the systematic use of the notion of adaptation energy despite experimental evidence. Nevertheless, the response to many harmful factors often has general non-specific form and we suggest that the mechanisms of physiological adaptation admit a very general and nonspecific description. We aim to demonstrate that Selye׳s adaptation energy is the cornerstone of the top-down approach to modelling of non-specific adaptation processes. We analyze Selye׳s axioms of adaptation energy together with Goldstone׳s modifications and propose a series of models for interpretation of these axioms. Adaptation energy is considered as an internal coordinate on the 'dominant path' in the model of adaptation. The phenomena of 'oscillating death' and 'oscillating remission' are predicted on the base of the dynamical models of adaptation. Natural selection plays a key role in the evolution of mechanisms of physiological adaptation. We use the fitness optimization approach to study of the distribution of resources for neutralization of harmful factors, during adaptation to a multifactor environment, and analyze the optimal strategies for different systems of factors. PMID:26801872

  4. Thermal Solutions for Molecular Evolution

    NASA Astrophysics Data System (ADS)

    Mast, Christof B.; Osterman, Natan; Braun, Dieter

    2012-12-01

    The key requirement to solve the origin of life puzzle are disequilibrium conditions. Early molecular evolution cannot be explained by initial high concentrations of energetic chemicals since they would just react towards their chemical equilibrium allowing no further development. We argue here that persistent disequilibria are needed to increase complexity during molecular evolution. We propose thermal gradients as the disequilibrium setting which drove Darwinian molecular evolution. On the one hand the thermal gradient gives rise to laminar thermal convection flow with highly regular temperature oscillations that allow melting and replication of DNA. On the other hand molecules move along the thermal gradient, a mechanism termed Soret effect or thermophoresis. Inside a long chamber a combination of the convection flow and thermophoresis leads to a very efficient accumulation of molecules. Short DNA is concentrated thousand-fold, whereas longer DNA is exponentially better accumulated. We demonstrated both scenarios in the same micrometer-sized setting. Forthcoming experiments will reveal how replication and accumulation of DNA in a system, driven only by a thermal gradient, could create a Darwinian process of replication and selection.

  5. Selectionism and Neutralism in Molecular Evolution

    PubMed Central

    Nei, Masatoshi

    2006-01-01

    Charles Darwin proposed that evolution occurs primarily by natural selection, but this view has been controversial from the beginning. Two of the major opposing views have been mutationism and neutralism. Early molecular studies suggested that most amino acid substitutions in proteins are neutral or nearly neutral and the functional change of proteins occurs by a few key amino acid substitutions. This suggestion generated an intense controversy over selectionism and neutralism. This controversy is partially caused by Kimura's definition of neutrality, which was too strict (|2Ns| ≤ 1). If we define neutral mutations as the mutations that do not change the function of gene products appreciably, many controversies disappear because slightly deleterious and slightly advantageous mutations are engulfed by neutral mutations. The ratio of the rate of nonsynonymous nucleotide substitution to that of synonymous substitution is a useful quantity to study positive Darwinian selection operating at highly variable genetic loci, but it does not necessarily detect adaptively important codons. Previously, multigene families were thought to evolve following the model of concerted evolution, but new evidence indicates that most of them evolve by a birth-and-death process of duplicate genes. It is now clear that most phenotypic characters or genetic systems such as the adaptive immune system in vertebrates are controlled by the interaction of a number of multigene families, which are often evolutionarily related and are subject to birth-and-death evolution. Therefore, it is important to study the mechanisms of gene family interaction for understanding phenotypic evolution. Because gene duplication occurs more or less at random, phenotypic evolution contains some fortuitous elements, though the environmental factors also play an important role. The randomness of phenotypic evolution is qualitatively different from allele frequency changes by random genetic drift. However, there is

  6. Adaptation, plant evolution, and the fossil record

    NASA Technical Reports Server (NTRS)

    Knoll, A. H.; Niklas, K. J.

    1987-01-01

    The importance of adaptation in determining patterns of evolution has become an important focus of debate in evolutionary biology. As it pertains to paleobotany, the issue is whether or not adaptive evolution mediated by natural selection is sufficient to explain the stratigraphic distributions of taxa and character states observed in the plant fossil record. One means of addressing this question is the functional evaluation of stratigraphic series of plant organs set in the context of paleoenvironmental change and temporal patterns of floral composition within environments. For certain organ systems, quantitative estimates of biophysical performance can be made on the basis of structures preserved in the fossil record. Performance estimates for plants separated in time or space can be compared directly. Implicit in different hypotheses of the forces that shape the evolutionary record (e.g. adaptation, mass extinction, rapid environmental change, chance) are predictions about stratigraphic and paleoenvironmental trends in the efficacy of functional performance. Existing data suggest that following the evolution of a significant structural innovation, adaptation for improved functional performance can be a major determinant of evolutionary changes in plants; however, there are structural and development limits to functional improvement, and once these are reached, the structure in question may no longer figure strongly in selection until and unless a new innovation evolves. The Silurian-Devonian paleobotanical record is consistent with the hypothesis that the succession of lowland floodplain dominants preserved in the fossil record of this interval was determined principally by the repeated evolution of new taxa that rose to ecological importance because of competitive advantages conferred by improved biophysical performance. This does not seem to be equally true for Carboniferous-Jurassic dominants of swamp and lowland floodplain environments. In these cases

  7. Molecular epidemiology, phylogeny and evolution of Legionella.

    PubMed

    Khodr, A; Kay, E; Gomez-Valero, L; Ginevra, C; Doublet, P; Buchrieser, C; Jarraud, S

    2016-09-01

    Legionella are opportunistic pathogens that develop in aquatic environments where they multiply in protozoa. When infected aerosols reach the human respiratory tract they may accidentally infect the alveolar macrophages leading to a severe pneumonia called Legionnaires' disease (LD). The ability of Legionella to survive within host-cells is strictly dependent on the Dot/Icm Type 4 Secretion System that translocates a large repertoire of effectors into the host cell cytosol. Although Legionella is a large genus comprising nearly 60 species that are worldwide distributed, only about half of them have been involved in LD cases. Strikingly, the species Legionella pneumophila alone is responsible for 90% of all LD cases. The present review summarizes the molecular approaches that are used for L. pneumophila genotyping with a major focus on the contribution of whole genome sequencing (WGS) to the investigation of local L. pneumophila outbreaks and global epidemiology studies. We report the newest knowledge regarding the phylogeny and the evolution of Legionella and then focus on virulence evolution of those Legionella species that are known to have the capacity to infect humans. Finally, we discuss the evolutionary forces and adaptation mechanisms acting on the Dot/Icm system itself as well as the role of mobile genetic elements (MGE) encoding T4ASSs and of gene duplications in the evolution of Legionella and its adaptation to different hosts and lifestyles. PMID:27180896

  8. Parallel genotypic adaptation: when evolution repeats itself

    PubMed Central

    Wood, Troy E.; Burke, John M.; Rieseberg, Loren H.

    2008-01-01

    Until recently, parallel genotypic adaptation was considered unlikely because phenotypic differences were thought to be controlled by many genes. There is increasing evidence, however, that phenotypic variation sometimes has a simple genetic basis and that parallel adaptation at the genotypic level may be more frequent than previously believed. Here, we review evidence for parallel genotypic adaptation derived from a survey of the experimental evolution, phylogenetic, and quantitative genetic literature. The most convincing evidence of parallel genotypic adaptation comes from artificial selection experiments involving microbial populations. In some experiments, up to half of the nucleotide substitutions found in independent lineages under uniform selection are the same. Phylogenetic studies provide a means for studying parallel genotypic adaptation in non-experimental systems, but conclusive evidence may be difficult to obtain because homoplasy can arise for other reasons. Nonetheless, phylogenetic approaches have provided evidence of parallel genotypic adaptation across all taxonomic levels, not just microbes. Quantitative genetic approaches also suggest parallel genotypic evolution across both closely and distantly related taxa, but it is important to note that this approach cannot distinguish between parallel changes at homologous loci versus convergent changes at closely linked non-homologous loci. The finding that parallel genotypic adaptation appears to be frequent and occurs at all taxonomic levels has important implications for phylogenetic and evolutionary studies. With respect to phylogenetic analyses, parallel genotypic changes, if common, may result in faulty estimates of phylogenetic relationships. From an evolutionary perspective, the occurrence of parallel genotypic adaptation provides increasing support for determinism in evolution and may provide a partial explanation for how species with low levels of gene flow are held together. PMID:15881688

  9. Molecular evolution of prolactin in primates.

    PubMed

    Wallis, O Caryl; Mac-Kwashie, Akofa O; Makri, Georgia; Wallis, Michael

    2005-05-01

    Pituitary prolactin, like growth hormone (GH) and several other protein hormones, shows an episodic pattern of molecular evolution in which sustained bursts of rapid change contrast with long periods of slow evolution. A period of rapid change occurred in the evolution of prolactin in primates, leading to marked sequence differences between human prolactin and that of nonprimate mammals. We have defined this burst more precisely by sequencing the coding regions of prolactin genes for a prosimian, the slow loris (Nycticebus pygmaeus), and a New World monkey, the marmoset (Callithrix jacchus). Slow loris prolactin is very similar in sequence to pig prolactin, so the episode of rapid change occurred during primate evolution, after the separation of lines leading to prosimians and higher primates. Marmoset prolactin is similar in sequence to human prolactin, so the accelerated evolution occurred before divergence of New World monkeys and Old World monkeys/apes. The burst of change was confined largely to coding sequence (nonsynonymous sites) for mature prolactin and is not marked in other components of the gene sequence. This and the observations that (1) there was no apparent loss of function during the episode of rapid evolution, (2) the rate of evolution slowed toward the basal rate after this burst, and (3) the distribution of substitutions in the prolactin molecule is very uneven support the idea that this episode of rapid change was due to positive adaptive selection. In the slow loris and marmoset there is no evidence for duplication of the prolactin gene, and evidence from another New World monkey (Cebus albifrons) and from the chimpanzee and human genome sequences, suggests that this is the general position in primates, contrasting with the situation for GH genes. The chimpanzee prolactin sequence differs from that of human at two residues and comparison of human and chimpanzee prolactin gene sequences suggests that noncoding regions associated with regulating

  10. Towards the identification of the loci of adaptive evolution

    PubMed Central

    Pardo-Diaz, Carolina; Salazar, Camilo; Jiggins, Chris D

    2015-01-01

    1. Establishing the genetic and molecular basis underlying adaptive traits is one of the major goals of evolutionary geneticists in order to understand the connection between genotype and phenotype and elucidate the mechanisms of evolutionary change. Despite considerable effort to address this question, there remain relatively few systems in which the genes shaping adaptations have been identified. 2. Here, we review the experimental tools that have been applied to document the molecular basis underlying evolution in several natural systems, in order to highlight their benefits, limitations and suitability. In most cases, a combination of DNA, RNA and functional methodologies with field experiments will be needed to uncover the genes and mechanisms shaping adaptation in nature. PMID:25937885

  11. Adaptive Evolution of the STRA6 Genes in Mammalian

    PubMed Central

    Wu, Jianghong; Xiang, Hui; Qi, Yunxia; Yang, Ding; Wang, Xiaojuan; Sun, Hailian; Wang, Feng; Liu, Bin

    2014-01-01

    Stimulated by retinoic acid 6 (STRA6) is the receptor for retinol binding protein and is relevant for the transport of retinol to specific sites such as the eye. The adaptive evolution mechanism that vertebrates have occupied nearly every habitat available on earth and adopted various lifestyles associated with different light conditions and visual challenges, as well as their role in development and adaptation is thus far unknown. In this work, we have investigated different aspects of vertebrate STRA6 evolution and used molecular evolutionary analyses to detect evidence of vertebrate adaptation to the lightless habitat. Free-ratio model revealed significant rate shifts immediately after the species divergence. The amino acid sites detected to be under positive selection are within the extracellular loops of STRA6 protein. Branch-site model A test revealed that STRA6 has undergone positive selection in the different phyla of mammalian except for the branch of rodent. The results suggest that interactions between different light environments and host may be driving adaptive change in STRA6 by competition between species. In support of this, we found that altered functional constraints may take place at some amino acid residues after speciation. We suggest that STRA6 has undergone adaptive evolution in different branch of vertebrate relation to habitat environment. PMID:25251323

  12. The adaptive evolution of the mammalian mitochondrial genome

    PubMed Central

    da Fonseca, Rute R; Johnson, Warren E; O'Brien, Stephen J; Ramos, Maria João; Antunes, Agostinho

    2008-01-01

    Background The mitochondria produce up to 95% of a eukaryotic cell's energy through oxidative phosphorylation. The proteins involved in this vital process are under high functional constraints. However, metabolic requirements vary across species, potentially modifying selective pressures. We evaluate the adaptive evolution of 12 protein-coding mitochondrial genes in 41 placental mammalian species by assessing amino acid sequence variation and exploring the functional implications of observed variation in secondary and tertiary protein structures. Results Wide variation in the properties of amino acids were observed at functionally important regions of cytochrome b in species with more-specialized metabolic requirements (such as adaptation to low energy diet or large body size, such as in elephant, dugong, sloth, and pangolin, and adaptation to unusual oxygen requirements, for example diving in cetaceans, flying in bats, and living at high altitudes in alpacas). Signatures of adaptive variation in the NADH dehydrogenase complex were restricted to the loop regions of the transmembrane units which likely function as protons pumps. Evidence of adaptive variation in the cytochrome c oxidase complex was observed mostly at the interface between the mitochondrial and nuclear-encoded subunits, perhaps evidence of co-evolution. The ATP8 subunit, which has an important role in the assembly of F0, exhibited the highest signal of adaptive variation. ATP6, which has an essential role in rotor performance, showed a high adaptive variation in predicted loop areas. Conclusion Our study provides insight into the adaptive evolution of the mtDNA genome in mammals and its implications for the molecular mechanism of oxidative phosphorylation. We present a framework for future experimental characterization of the impact of specific mutations in the function, physiology, and interactions of the mtDNA encoded proteins involved in oxidative phosphorylation. PMID:18318906

  13. Evolution and ecology meet molecular genetics: adaptive phenotypic plasticity in two isolated Negev desert populations of Acacia raddiana at either end of a rainfall gradient

    PubMed Central

    Ward, David; Shrestha, Madan K.; Golan-Goldhirsh, Avi

    2012-01-01

    Background and Aims The ecological, evolutionary and genetic bases of population differentiation in a variable environment are often related to the selection pressures that plants experience. We compared differences in several growth- and defence-related traits in two isolated populations of Acacia raddiana trees from sites at either end of an extreme environmental gradient in the Negev desert. Methods We used random amplified polymorphic DNA (RAPD) to determine the molecular differences between populations. We grew plants under two levels of water, three levels of nutrients and three levels of herbivory to test for phenotypic plasticity and adaptive phenotypic plasticity. Key Results The RAPD analyses showed that these populations are highly genetically differentiated. Phenotypic plasticity in various morphological traits in A. raddiana was related to patterns of population genetic differentiation between the two study sites. Although we did not test for maternal effects in these long-lived trees, significant genotype × environment (G × E) interactions in some of these traits indicated that such plasticity may be adaptive. Conclusions The main selection pressure in this desert environment, perhaps unsurprisingly, is water. Increased water availability resulted in greater growth in the southern population, which normally receives far less rain than the northern population. Even under the conditions that we defined as low water and/or nutrients, the performance of the seedlings from the southern population was significantly better, perhaps reflecting selection for these traits. Consistent with previous studies of this genus, there was no evidence of trade-offs between physical and chemical defences and plant growth parameters in this study. Rather, there appeared to be positive correlations between plant size and defence parameters. The great variation in several traits in both populations may result in a diverse potential for responding to selection pressures in

  14. Adapting Digital Libraries to Continual Evolution

    NASA Technical Reports Server (NTRS)

    Barkstrom, Bruce R.; Finch, Melinda; Ferebee, Michelle; Mackey, Calvin

    2002-01-01

    In this paper, we describe five investment streams (data storage infrastructure, knowledge management, data production control, data transport and security, and personnel skill mix) that need to be balanced against short-term operating demands in order to maximize the probability of long-term viability of a digital library. Because of the rapid pace of information technology change, a digital library cannot be a static institution. Rather, it has to become a flexible organization adapted to continuous evolution of its infrastructure.

  15. Bringing Molecules Back into Molecular Evolution

    PubMed Central

    Wilke, Claus O.

    2012-01-01

    Much molecular-evolution research is concerned with sequence analysis. Yet these sequences represent real, three-dimensional molecules with complex structure and function. Here I highlight a growing trend in the field to incorporate molecular structure and function into computational molecular-evolution work. I consider three focus areas: reconstruction and analysis of past evolutionary events, such as phylogenetic inference or methods to infer selection pressures; development of toy models and simulations to identify fundamental principles of molecular evolution; and atom-level, highly realistic computational modeling of molecular structure and function aimed at making predictions about possible future evolutionary events. PMID:22761562

  16. Adaptive soft molecular self-assemblies.

    PubMed

    Wang, Andong; Shi, Wenyue; Huang, Jianbin; Yan, Yun

    2016-01-14

    Adaptive molecular self-assemblies provide possibility of constructing smart and functional materials in a non-covalent bottom-up manner. Exploiting the intrinsic properties of responsiveness of non-covalent interactions, a great number of fancy self-assemblies have been achieved. In this review, we try to highlight the recent advances in this field. The following contents are focused: (1) environmental adaptiveness, including smart self-assemblies adaptive to pH, temperature, pressure, and moisture; (2) special chemical adaptiveness, including nanostructures adaptive to important chemicals, such as enzymes, CO2, metal ions, redox agents, explosives, biomolecules; (3) field adaptiveness, including self-assembled materials that are capable of adapting to external fields such as magnetic field, electric field, light irradiation, and shear forces. PMID:26509717

  17. Evolution of speech-specific cognitive adaptations.

    PubMed

    de Boer, Bart

    2015-01-01

    This paper argues that an evolutionary perspective is natural when investigating cognitive adaptations related to language. This is because there appears to be correspondence between traits that linguists consider interesting and traits that have undergone selective pressure related to language. The paper briefly reviews theoretical results that shed light on what kind of adaptations we can expect to have evolved and then reviews concrete work related to the evolution of adaptations for combinatorial speech. It turns out that there is as yet no strong direct evidence for cognitive traits that have undergone selection related to speech, but there is indirect evidence that indicates selection. However, the traits that may have undergone selection are expected to be continuously variable ones, rather than the discrete ones that linguists have focused on traditionally. PMID:26483746

  18. Evolution of speech-specific cognitive adaptations

    PubMed Central

    de Boer, Bart

    2015-01-01

    This paper argues that an evolutionary perspective is natural when investigating cognitive adaptations related to language. This is because there appears to be correspondence between traits that linguists consider interesting and traits that have undergone selective pressure related to language. The paper briefly reviews theoretical results that shed light on what kind of adaptations we can expect to have evolved and then reviews concrete work related to the evolution of adaptations for combinatorial speech. It turns out that there is as yet no strong direct evidence for cognitive traits that have undergone selection related to speech, but there is indirect evidence that indicates selection. However, the traits that may have undergone selection are expected to be continuously variable ones, rather than the discrete ones that linguists have focused on traditionally. PMID:26483746

  19. Adaptive control of molecular alignment

    SciTech Connect

    Horn, C.; Wollenhaupt, M.; Krug, M.; Baumert, T.; Nalda, R. de; Banares, L.

    2006-03-15

    We demonstrate control on nonadiabatic molecular alignment by using a spectrally phase-shaped laser pulse. An evolutionary algorithm in a closed feedback loop has been used in order to find pulse shapes that maximize a given effect. In particular, this scheme has been applied to the optimization of total alignment, and to the control of the temporal structure of the alignment transient within a revival. Asymmetric temporal pulse shapes have been found to be very effective for the latter and have been studied separately in a single-parameter control scheme. Our experimental results are supported by numerical simulations.

  20. Molecular Adaptation during Adaptive Radiation in the Hawaiian Endemic Genus Schiedea

    PubMed Central

    Kapralov, Maxim V.; Filatov, Dmitry A.

    2006-01-01

    Background “Explosive” adaptive radiations on islands remain one of the most puzzling evolutionary phenomena. The rate of phenotypic and ecological adaptations is extremely fast during such events, suggesting that many genes may be under fairly strong selection. However, no evidence for adaptation at the level of protein coding genes was found, so it has been suggested that selection may work mainly on regulatory elements. Here we report the first evidence that positive selection does operate at the level of protein coding genes during rapid adaptive radiations. We studied molecular adaptation in Hawaiian endemic plant genus Schiedea (Caryophyllaceae), which includes closely related species with a striking range of morphological and ecological forms, varying from rainforest vines to woody shrubs growing in desert-like conditions on cliffs. Given the remarkable difference in photosynthetic performance between Schiedea species from different habitats, we focused on the “photosynthetic” Rubisco enzyme, the efficiency of which is known to be a limiting step in plant photosynthesis. Results We demonstrate that the chloroplast rbcL gene, encoding the large subunit of Rubisco enzyme, evolved under strong positive selection in Schiedea. Adaptive amino acid changes occurred in functionally important regions of Rubisco that interact with Rubisco activase, a chaperone which promotes and maintains the catalytic activity of Rubisco. Interestingly, positive selection acting on the rbcL might have caused favorable cytotypes to spread across several Schiedea species. Significance We report the first evidence for adaptive changes at the DNA and protein sequence level that may have been associated with the evolution of photosynthetic performance and colonization of new habitats during a recent adaptive radiation in an island plant genus. This illustrates how small changes at the molecular level may change ecological species performance and helps us to understand the

  1. The Molecular Evolution of Actin

    PubMed Central

    Hightower, Robin C.; Meagher, Richard B.

    1986-01-01

    We have investigated the molecular evolution of plant and nonplant actin genes comparing nucleotide and amino acid sequences of 20 actin genes. Nucleotide changes resulting in amino acid substitutions (replacement substitutions) ranged from 3–7% for all pairwise comparisons of animal actin genes with the following exceptions. Comparisons between higher animal muscle actin gene sequences and comparisons between higher animal cytoplasmic actin gene sequences indicated <3% divergence. Comparisons between plant and nonplant actin genes revealed, with two exceptions, 11–15% replacement substitution. In the analysis of plant actins, replacement substitution between soybean actin genes SAc1, SAc3, SAc4 and maize actin gene MAc1 ranged from 8–10%, whereas these members within the soybean actin gene family ranged from 6–9% replacement substitution. The rate of sequence divergence of plant actin sequences appears to be similar to that observed for animal actins. Furthermore, these and other data suggest that the plant actin gene family is ancient and that the families of soybean and maize actin genes have diverged from a single common ancestral plant actin gene that originated long before the divergence of monocots and dicots. The soybean actin multigene family encodes at least three classes of actin. These classes each contain a pair of actin genes that have been designated kappa (SAc1, SAc6), lambda (SAc2, SAc4) and mu (SAc3, SAc7). The three classes of soybean actin are more divergent in nucleotide sequence from one another than higher animal cytoplasmic actin is divergent from muscle actin. The location and distribution of amino acid changes were compared between actin proteins from all sources. A comparison of the hydropathy of all actin sequences, except from Oxytricha, indicated a strong similarity in hydropathic character between all plant and nonplant actins despite the greater number of replacement substitutions in plant actins. These protein sequence

  2. Statistical limitations on molecular evolution.

    PubMed

    Perlovsky, Leonid I

    2002-06-01

    Complexity of functions evolving in an evolution process are expected to be limited by the time length of an evolution process among other factors. This paper outlines a general method of deriving function-complexity limitations based on mathematical statistics and independent from details of a biological or genetic mechanism of the evolution of the function. Limitations on the emergence of life are derived, these limitations indicate a possibility of a very fast evolution and are consistent with "RNA world" hypothesis. The discussed method is general and can be used to characterize evolution of more specific biological organism functions and relate functions to genetic structures. The derived general limitations indicate that a co-evolution of multiple functions and species could be a slow process, whereas an evolution of a specific function might proceed very fast, so that no trace of intermediate forms (species) is preserved in fossil records of phenotype or DNA structure; this is consistent with a picture of "punctuated equilibrium". PMID:12023805

  3. Evolution of cooperation on adaptively weighted networks.

    PubMed

    Cao, Lang; Ohtsuki, Hisashi; Wang, Bing; Aihara, Kazuyuki

    2011-03-01

    Recent studies have explored interactions between evolutionary game dynamics and population structure. Yet most studies so far mainly paid attention to unweighted and static networks. Here we explore evolutionary games played on dynamically weighted networks. Players update their strategies according to the payoffs they obtain. Players also update weights of their adjacent links depending on payoffs they gain through those links; profitable links are reinforced whereas unprofitable ones are weakened. The system is characterized by two time scales, the one for strategy update, β(S), and the other for weight adjustment, β(W). We find that, under a mean-field approximation, the asymptotic behavior of the system is described by the replicator equation with an effective payoff matrix, which is a combination of the original game matrix A and its transpose, A(T). Both analytical and numerical results show that such an adaptive weight adjustment mechanism dramatically promotes evolution of cooperation. PMID:21163270

  4. Adaptive evolution of four microcephaly genes and the evolution of brain size in anthropoid primates.

    PubMed

    Montgomery, Stephen H; Capellini, Isabella; Venditti, Chris; Barton, Robert A; Mundy, Nicholas I

    2011-01-01

    The anatomical basis and adaptive function of the expansion in primate brain size have long been studied; however, we are only beginning to understand the genetic basis of these evolutionary changes. Genes linked to human primary microcephaly have received much attention as they have accelerated evolutionary rates along lineages leading to humans. However, these studies focus narrowly on apes, and the link between microcephaly gene evolution and brain evolution is disputed. We analyzed the molecular evolution of four genes associated with microcephaly (ASPM, CDK5RAP2, CENPJ, MCPH1) across 21 species representing all major clades of anthropoid primates. Contrary to prevailing assumptions, positive selection was not limited to or intensified along the lineage leading to humans. In fact we show that all four loci were subject to positive selection across the anthropoid primate phylogeny. We developed clearly defined hypotheses to explicitly test if selection on these loci was associated with the evolution of brain size. We found positive relationships between both CDK5RAP2 and ASPM and neonatal brain mass and somewhat weaker relationships between these genes and adult brain size. In contrast, there is no evidence linking CENPJ and MCPH1 to brain size evolution. The stronger association of ASPM and CDK5RAP2 evolution with neonatal brain size than with adult brain size is consistent with these loci having a direct effect on prenatal neuronal proliferation. These results suggest that primate brain size may have at least a partially conserved genetic basis. Our results contradict a previous study that linked adaptive evolution of ASPM to changes in relative cortex size; however, our analysis indicates that this conclusion is not robust. Our finding that the coding regions of two widely expressed loci has experienced pervasive positive selection in relation to a complex, quantitative developmental phenotype provides a notable counterexample to the commonly asserted

  5. Bat echolocation calls: adaptation and convergent evolution

    PubMed Central

    Jones, Gareth; Holderied, Marc W

    2007-01-01

    Bat echolocation calls provide remarkable examples of ‘good design’ through evolution by natural selection. Theory developed from acoustics and sonar engineering permits a strong predictive basis for understanding echolocation performance. Call features, such as frequency, bandwidth, duration and pulse interval are all related to ecological niche. Recent technological breakthroughs have aided our understanding of adaptive aspects of call design in free-living bats. Stereo videogrammetry, laser scanning of habitat features and acoustic flight path tracking permit reconstruction of the flight paths of echolocating bats relative to obstacles and prey in nature. These methods show that echolocation calls are among the most intense airborne vocalizations produced by animals. Acoustic tracking has clarified how and why bats vary call structure in relation to flight speed. Bats using broadband echolocation calls adjust call design in a range-dependent manner so that nearby obstacles are localized accurately. Recent phylogenetic analyses based on gene sequences show that particular types of echolocation signals have evolved independently in several lineages of bats. Call design is often influenced more by perceptual challenges imposed by the environment than by phylogeny, and provides excellent examples of convergent evolution. Now that whole genome sequences of bats are imminent, understanding the functional genomics of echolocation will become a major challenge. PMID:17251105

  6. Bat echolocation calls: adaptation and convergent evolution.

    PubMed

    Jones, Gareth; Holderied, Marc W

    2007-04-01

    Bat echolocation calls provide remarkable examples of 'good design' through evolution by natural selection. Theory developed from acoustics and sonar engineering permits a strong predictive basis for understanding echolocation performance. Call features, such as frequency, bandwidth, duration and pulse interval are all related to ecological niche. Recent technological breakthroughs have aided our understanding of adaptive aspects of call design in free-living bats. Stereo videogrammetry, laser scanning of habitat features and acoustic flight path tracking permit reconstruction of the flight paths of echolocating bats relative to obstacles and prey in nature. These methods show that echolocation calls are among the most intense airborne vocalizations produced by animals. Acoustic tracking has clarified how and why bats vary call structure in relation to flight speed. Bats using broadband echolocation calls adjust call design in a range-dependent manner so that nearby obstacles are localized accurately. Recent phylogenetic analyses based on gene sequences show that particular types of echolocation signals have evolved independently in several lineages of bats. Call design is often influenced more by perceptual challenges imposed by the environment than by phylogeny, and provides excellent examples of convergent evolution. Now that whole genome sequences of bats are imminent, understanding the functional genomics of echolocation will become a major challenge. PMID:17251105

  7. Molecular adaptations in Antarctic fish and bacteria

    NASA Astrophysics Data System (ADS)

    Russo, Roberta; Riccio, Alessia; di Prisco, Guido; Verde, Cinzia; Giordano, Daniela

    2010-08-01

    Marine organisms, living in the cold waters of the Southern Ocean, are exposed to high oxygen concentrations. Cold-adapted organisms have developed networks of defence mechanisms to protect themselves against oxidative stress. The dominant suborder Notothenioidei of the Southern Ocean is one of the most interesting models, within vertebrates, to study the evolutionary biological responses to extreme environment. Within bacteria, the psychrophilic Antarctic bacterium Pseudoalteromonas haloplanktis TAC125 gives the opportunity to explore the cellular strategies adopted in vivo by cold-adapted microorganisms to cope with cold and high oxygen concentration. Understanding the molecular mechanisms underlying how a range of Antarctic organisms have responded to climate change in the past will enable predictions as to how they and other species will adapt to global climate change, in terms of physiological function, distribution patterns and ecosystem balance.

  8. An Adaptive Threshold in Mammalian Neocortical Evolution

    PubMed Central

    Kalinka, Alex T.; Tomancak, Pavel; Huttner, Wieland B.

    2014-01-01

    Expansion of the neocortex is a hallmark of human evolution. However, determining which adaptive mechanisms facilitated its expansion remains an open question. Here we show, using the gyrencephaly index (GI) and other physiological and life-history data for 102 mammalian species, that gyrencephaly is an ancestral mammalian trait. We find that variation in GI does not evolve linearly across species, but that mammals constitute two principal groups above and below a GI threshold value of 1.5, approximately equal to 109 neurons, which may be characterized by distinct constellations of physiological and life-history traits. By integrating data on neurogenic period, neuroepithelial founder pool size, cell-cycle length, progenitor-type abundances, and cortical neuron number into discrete mathematical models, we identify symmetric proliferative divisions of basal progenitors in the subventricular zone of the developing neocortex as evolutionarily necessary for generating a 14-fold increase in daily prenatal neuron production, traversal of the GI threshold, and thus establishment of two principal groups. We conclude that, despite considerable neuroanatomical differences, changes in the length of the neurogenic period alone, rather than any novel neurogenic progenitor lineage, are sufficient to explain differences in neuron number and neocortical size between species within the same principal group. PMID:25405475

  9. ADAPTIVE MULTILEVEL SPLITTING IN MOLECULAR DYNAMICS SIMULATIONS*

    PubMed Central

    Aristoff, David; Lelièvre, Tony; Mayne, Christopher G.; Teo, Ivan

    2014-01-01

    Adaptive Multilevel Splitting (AMS) is a replica-based rare event sampling method that has been used successfully in high-dimensional stochastic simulations to identify trajectories across a high potential barrier separating one metastable state from another, and to estimate the probability of observing such a trajectory. An attractive feature of AMS is that, in the limit of a large number of replicas, it remains valid regardless of the choice of reaction coordinate used to characterize the trajectories. Previous studies have shown AMS to be accurate in Monte Carlo simulations. In this study, we extend the application of AMS to molecular dynamics simulations and demonstrate its effectiveness using a simple test system. Our conclusion paves the way for useful applications, such as molecular dynamics calculations of the characteristic time of drug dissociation from a protein target. PMID:26005670

  10. Molecular musings in microbial ecology and evolution

    PubMed Central

    2011-01-01

    A few major discoveries have influenced how ecologists and evolutionists study microbes. Here, in the format of an interview, we answer questions that directly relate to how these discoveries are perceived in these two branches of microbiology, and how they have impacted on both scientific thinking and methodology. The first question is "What has been the influence of the 'Universal Tree of Life' based on molecular markers?" For evolutionists, the tree was a tool to understand the past of known (cultured) organisms, mapping the invention of various physiologies on the evolutionary history of microbes. For ecologists the tree was a guide to discover the current diversity of unknown (uncultured) organisms, without much knowledge of their physiology. The second question we ask is "What was the impact of discovering frequent lateral gene transfer among microbes?" In evolutionary microbiology, frequent lateral gene transfer (LGT) made a simple description of relationships between organisms impossible, and for microbial ecologists, functions could not be easily linked to specific genotypes. Both fields initially resisted LGT, but methods or topics of inquiry were eventually changed in one to incorporate LGT in its theoretical models (evolution) and in the other to achieve its goals despite that phenomenon (ecology). The third and last question we ask is "What are the implications of the unexpected extent of diversity?" The variation in the extent of diversity between organisms invalidated the universality of species definitions based on molecular criteria, a major obstacle to the adaptation of models developed for the study of macroscopic eukaryotes to evolutionary microbiology. This issue has not overtly affected microbial ecology, as it had already abandoned species in favor of the more flexible operational taxonomic units. This field is nonetheless moving away from traditional methods to measure diversity, as they do not provide enough resolution to uncover what lies

  11. Molecular Evolution of Puumala Hantavirus

    PubMed Central

    Sironen, Tarja; Vaheri, Antti; Plyusnin, Alexander

    2001-01-01

    Puumala virus (PUUV) is a negative-stranded RNA virus in the genus Hantavirus, family Bunyaviridae. In this study, detailed phylogenetic analysis was performed on 42 complete S segment sequences of PUUV originated from several European countries, Russia, and Japan, the largest set available thus far for hantaviruses. The results show that PUUV sequences form seven distinct and well-supported genetic lineages; within these lineages, geographical clustering of genetic variants is observed. The overall phylogeny of PUUV is star-like, suggesting an early split of genetic lineages. The individual PUUV lineages appear to be independent, with the only exception to this being the Finnish and the Russian lineages that are closely connected to each other. Two strains of PUUV-like virus from Japan form the most ancestral lineage diverging from PUUV. Recombination points within the S segment were searched for and evidence for intralineage recombination events was seen in the Finnish, Russian, Danish, and Belgian lineages of PUUV. Molecular clock analysis showed that PUUV is a stable virus, evolving slowly at a rate of 0.7 × 10−7 to 2.2 × 10−6 nt substitutions per site per year. PMID:11689661

  12. Evidence for adaptive evolution of low-temperature stress response genes in a Pooideae grass ancestor

    PubMed Central

    Vigeland, Magnus D; Spannagl, Manuel; Asp, Torben; Paina, Cristiana; Rudi, Heidi; Rognli, Odd-Arne; Fjellheim, Siri; Sandve, Simen R

    2013-01-01

    Adaptation to temperate environments is common in the grass subfamily Pooideae, suggesting an ancestral origin of cold climate adaptation. Here, we investigated substitution rates of genes involved in low-temperature-induced (LTI) stress responses to test the hypothesis that adaptive molecular evolution of LTI pathway genes was important for Pooideae evolution. Substitution rates and signatures of positive selection were analyzed using 4330 gene trees including three warm climate-adapted species (maize (Zea mays), sorghum (Sorghum bicolor), and rice (Oryza sativa)) and five temperate Pooideae species (Brachypodium distachyon, wheat (Triticum aestivum), barley (Hordeum vulgare), Lolium perenne and Festuca pratensis). Nonsynonymous substitution rate differences between Pooideae and warm habitat-adapted species were elevated in LTI trees compared with all trees. Furthermore, signatures of positive selection were significantly stronger in LTI trees after the rice and Pooideae split but before the Brachypodium divergence (P < 0.05). Genome-wide heterogeneity in substitution rates was also observed, reflecting divergent genome evolution processes within these grasses. Our results provide evidence for a link between adaptation to cold habitats and adaptive evolution of LTI stress responses in early Pooideae evolution and shed light on a poorly understood chapter in the evolutionary history of some of the world's most important temperate crops. PMID:23701123

  13. [The molecular evolution of rice stress-related genes].

    PubMed

    Song, Xiaojun; Xie, Kaibin; Zhang, Yanping; Jin, Ping

    2014-10-01

    In the processes of evolution, plants have formed a perfect regulation system to tolerate adverse environmental conditions. However, there has not been any report about the molecular evolution of rice stress-related genes. We derived a family of 22 stress-related genes in rice from Plant Stress Gene Database, and analyzed it by bioinformatics and comparative genome method. The results showed that these genes are relatively conservative in low organisms, and their copy numbers increase along with the environmental changes and the evolution. We also found four conserved sequence motifs and three other specific motifs. We propose that these motifs are closely associated with the function of rice stress-related genes. The analysis of selection pressure showed that about 50% rice stress-related genes have positive selection sites, although they were subject to a strong purifying selection. Positive selection sites might be very significant for plants to adapt to environmental changes. PMID:25406251

  14. Non-adaptive plasticity potentiates rapid adaptive evolution of gene expression in nature.

    PubMed

    Ghalambor, Cameron K; Hoke, Kim L; Ruell, Emily W; Fischer, Eva K; Reznick, David N; Hughes, Kimberly A

    2015-09-17

    Phenotypic plasticity is the capacity for an individual genotype to produce different phenotypes in response to environmental variation. Most traits are plastic, but the degree to which plasticity is adaptive or non-adaptive depends on whether environmentally induced phenotypes are closer or further away from the local optimum. Existing theories make conflicting predictions about whether plasticity constrains or facilitates adaptive evolution. Debate persists because few empirical studies have tested the relationship between initial plasticity and subsequent adaptive evolution in natural populations. Here we show that the direction of plasticity in gene expression is generally opposite to the direction of adaptive evolution. We experimentally transplanted Trinidadian guppies (Poecilia reticulata) adapted to living with cichlid predators to cichlid-free streams, and tested for evolutionary divergence in brain gene expression patterns after three to four generations. We find 135 transcripts that evolved parallel changes in expression within the replicated introduction populations. These changes are in the same direction exhibited in a native cichlid-free population, suggesting rapid adaptive evolution. We find 89% of these transcripts exhibited non-adaptive plastic changes in expression when the source population was reared in the absence of predators, as they are in the opposite direction to the evolved changes. By contrast, the remaining transcripts exhibiting adaptive plasticity show reduced population divergence. Furthermore, the most plastic transcripts in the source population evolved reduced plasticity in the introduction populations, suggesting strong selection against non-adaptive plasticity. These results support models predicting that adaptive plasticity constrains evolution, whereas non-adaptive plasticity potentiates evolution by increasing the strength of directional selection. The role of non-adaptive plasticity in evolution has received relatively

  15. Adaptive Protein Evolution in Animals and the Effective Population Size Hypothesis

    PubMed Central

    Galtier, Nicolas

    2016-01-01

    The rate at which genomes adapt to environmental changes and the prevalence of adaptive processes in molecular evolution are two controversial issues in current evolutionary genetics. Previous attempts to quantify the genome-wide rate of adaptation through amino-acid substitution have revealed a surprising diversity of patterns, with some species (e.g. Drosophila) experiencing a very high adaptive rate, while other (e.g. humans) are dominated by nearly-neutral processes. It has been suggested that this discrepancy reflects between-species differences in effective population size. Published studies, however, were mainly focused on model organisms, and relied on disparate data sets and methodologies, so that an overview of the prevalence of adaptive protein evolution in nature is currently lacking. Here we extend existing estimators of the amino-acid adaptive rate by explicitly modelling the effect of favourable mutations on non-synonymous polymorphism patterns, and we apply these methods to a newly-built, homogeneous data set of 44 non-model animal species pairs. Data analysis uncovers a major contribution of adaptive evolution to the amino-acid substitution process across all major metazoan phyla—with the notable exception of humans and primates. The proportion of adaptive amino-acid substitution is found to be positively correlated to species effective population size. This relationship, however, appears to be primarily driven by a decreased rate of nearly-neutral amino-acid substitution because of more efficient purifying selection in large populations. Our results reveal that adaptive processes dominate the evolution of proteins in most animal species, but do not corroborate the hypothesis that adaptive substitutions accumulate at a faster rate in large populations. Implications regarding the factors influencing the rate of adaptive evolution and positive selection detection in humans vs. other organisms are discussed. PMID:26752180

  16. Can Population Genetics Adapt to Rapid Evolution?

    PubMed

    Messer, Philipp W; Ellner, Stephen P; Hairston, Nelson G

    2016-07-01

    Population genetics largely rests on a 'standard model' in which random genetic drift is the dominant force, selective sweeps occur infrequently, and deleterious mutations are purged from the population by purifying selection. Studies of phenotypic evolution in nature reveal a very different picture, with strong selection and rapid heritable trait changes being common. The time-rate scaling of phenotypic evolution suggests that selection on phenotypes is often fluctuating in direction, allowing phenotypes to respond rapidly to environmental fluctuations while remaining within relatively constant bounds over longer periods. Whether such rapid phenotypic evolution undermines the standard model will depend on how many genomic loci typically contribute to strongly selected traits and how phenotypic evolution impacts the dynamics of genetic variation in a population. Population-level sequencing will allow us to dissect the genetic basis of phenotypic evolution and study the evolutionary dynamics of genetic variation through direct measurement of polymorphism trajectories over time. PMID:27185237

  17. Urban Evolution: The Role of Water and Adaptation

    NASA Astrophysics Data System (ADS)

    Kaushal, S.

    2015-12-01

    The structure, function, and services of urban ecosystems evolve over time scales from seconds to centuries as Earth's population grows, infrastructure ages, and management decisions alter them. The concept of "urban evolution" was proposed in order to study changes in urban ecosystems over time. Urban evolution has exerted a major influence on Earth's water and elemental cycles from local to global scales over human history. A current understanding of urban evolution allows urban planning, management, and restoration to move beyond reactive management to predictive management. We explore two key mechanisms of urban evolution, urban selective pressure and adaptation, and their relationship to the evolution of modern water and biogeochemical cycles. Urban selective pressure is an environmental or societal driver contributing to urban adaptation. Urban adaptation is the sequential process by which an urban structure, function, or services becomes more fitted to its changing environment or human choices. We show how hydrological and biogeochemical traits evolve across successive generations of urban ecosystems via shifts in selective pressures and adaptations. We also discuss how urban evolution can be divided into distinct stages and transition periods of growth and expansion and decay and repair during the Anthropocene epoch. We explore multiple examples and drivers of urban evolution and adaptations including the role of unintended consequences and societal drivers. We also present a conceptual model for the evolution of urban waters from the Industrial Revolution to the present day emphasizing the role of urban adaptations in response to selective pressures. Finally, we conclude by proposing new concepts and questions for future research related to the urban evolution of water, material, and energy cycles.

  18. Evolution of molecular phenotypes under stabilizing selection

    NASA Astrophysics Data System (ADS)

    Nourmohammad, Armita; Schiffels, Stephan; Lässig, Michael

    2013-01-01

    Molecular phenotypes are important links between genomic information and organismic functions, fitness, and evolution. Complex phenotypes, which are also called quantitative traits, often depend on multiple genomic loci. Their evolution builds on genome evolution in a complicated way, which involves selection, genetic drift, mutations and recombination. Here we develop a coarse-grained evolutionary statistics for phenotypes, which decouples from details of the underlying genotypes. We derive approximate evolution equations for the distribution of phenotype values within and across populations. This dynamics covers evolutionary processes at high and low recombination rates, that is, it applies to sexual and asexual populations. In a fitness landscape with a single optimal phenotype value, the phenotypic diversity within populations and the divergence between populations reach evolutionary equilibria, which describe stabilizing selection. We compute the equilibrium distributions of both quantities analytically and we show that the ratio of mean divergence and diversity depends on the strength of selection in a universal way: it is largely independent of the phenotype’s genomic encoding and of the recombination rate. This establishes a new method for the inference of selection on molecular phenotypes beyond the genome level. We discuss the implications of our findings for the predictability of evolutionary processes.

  19. Fitness seascapes and adaptive evolution of the influenza virus

    NASA Astrophysics Data System (ADS)

    Lassig, Michael

    2014-03-01

    The seasonal human influenza A virus undergoes rapid genome evolution. This process is triggered by interactions with the host immune system and produces significant year-to-year sequence turnover in the population of circulating viral strains. We develop a dynamical fitness model that predicts the evolution of the viral population from one year to the next. Two factors are shown to determine the fitness of a viral strain: adaptive changes, which are under positive selection, and deleterious mutations, which affect conserved viral functions such as protein stability. Combined with the influenza strain tree, this fitness model maps the adaptive history of influenza A. We discuss the implications of our results for the statistical theory of adaptive evolution in asexual populations. Based on this and related systems, we touch upon the fundamental question of when evolution can be predicted. Joint work with Marta Luksza, Columbia University.

  20. Detecting non-Brownian trait evolution in adaptive radiations.

    PubMed

    Freckleton, Robert P; Harvey, Paul H

    2006-11-01

    Many phylogenetic comparative methods that are currently widely used in the scientific literature assume a Brownian motion model for trait evolution, but the suitability of that model is rarely tested, and a number of important factors might affect whether this model is appropriate or not. For instance, we might expect evolutionary change in adaptive radiations to be driven by the availability of ecological niches. Such evolution has been shown to produce patterns of change that are different from those modelled by the Brownian process. We applied two tests for the assumption of Brownian motion that generally have high power to reject data generated under non-Brownian niche-filling models for the evolution of traits in adaptive radiations. As a case study, we used these tests to explore the evolution of feeding adaptations in two radiations of warblers. In one case, the patterns revealed do not accord with Brownian motion but show characteristics expected under certain niche-filling models. PMID:17090217

  1. Molecular adaptation of telomere associated genes in mammals

    PubMed Central

    2013-01-01

    Background Placental mammals display a huge range of life history traits, including size, longevity, metabolic rate and germ line generation time. Although a number of general trends have been proposed between these traits, there are exceptions that warrant further investigation. Species such as naked mole rat, human and certain bat species all exhibit extreme longevity with respect to body size. It has long been established that telomeres and telomere maintenance have a clear role in ageing but it has not yet been established whether there is evidence for adaptation in telomere maintenance proteins that could account for increased longevity in these species. Results Here we carry out a molecular investigation of selective pressure variation, specifically focusing on telomere associated genes across placental mammals. In general we observe a large number of instances of positive selection acting on telomere genes. Although these signatures of selection overall are not significantly correlated with either longevity or body size we do identify positive selection in the microbat species Myotis lucifugus in functionally important regions of the telomere maintenance genes DKC1 and TERT, and in naked mole rat in the DNA repair gene BRCA1. Conclusion These results demonstrate the multifarious selective pressures acting across the mammal phylogeny driving lineage-specific adaptations of telomere associated genes. Our results show that regardless of the longevity of a species, these proteins have evolved under positive selection thereby removing increased longevity as the single selective force driving this rapid rate of evolution. However, evidence of molecular adaptations specific to naked mole rat and Myotis lucifugus highlight functionally significant regions in genes that may alter the way in which telomeres are regulated and maintained in these longer-lived species. PMID:24237966

  2. Trends in substitution models of molecular evolution

    PubMed Central

    Arenas, Miguel

    2015-01-01

    Substitution models of evolution describe the process of genetic variation through fixed mutations and constitute the basis of the evolutionary analysis at the molecular level. Almost 40 years after the development of first substitution models, highly sophisticated, and data-specific substitution models continue emerging with the aim of better mimicking real evolutionary processes. Here I describe current trends in substitution models of DNA, codon and amino acid sequence evolution, including advantages and pitfalls of the most popular models. The perspective concludes that despite the large number of currently available substitution models, further research is required for more realistic modeling, especially for DNA coding and amino acid data. Additionally, the development of more accurate complex models should be coupled with new implementations and improvements of methods and frameworks for substitution model selection and downstream evolutionary analysis. PMID:26579193

  3. Trends in substitution models of molecular evolution.

    PubMed

    Arenas, Miguel

    2015-01-01

    Substitution models of evolution describe the process of genetic variation through fixed mutations and constitute the basis of the evolutionary analysis at the molecular level. Almost 40 years after the development of first substitution models, highly sophisticated, and data-specific substitution models continue emerging with the aim of better mimicking real evolutionary processes. Here I describe current trends in substitution models of DNA, codon and amino acid sequence evolution, including advantages and pitfalls of the most popular models. The perspective concludes that despite the large number of currently available substitution models, further research is required for more realistic modeling, especially for DNA coding and amino acid data. Additionally, the development of more accurate complex models should be coupled with new implementations and improvements of methods and frameworks for substitution model selection and downstream evolutionary analysis. PMID:26579193

  4. An Adaptive Unified Differential Evolution Algorithm for Global Optimization

    SciTech Connect

    Qiang, Ji; Mitchell, Chad

    2014-11-03

    In this paper, we propose a new adaptive unified differential evolution algorithm for single-objective global optimization. Instead of the multiple mutation strate- gies proposed in conventional differential evolution algorithms, this algorithm employs a single equation unifying multiple strategies into one expression. It has the virtue of mathematical simplicity and also provides users the flexibility for broader exploration of the space of mutation operators. By making all control parameters in the proposed algorithm self-adaptively evolve during the process of optimization, it frees the application users from the burden of choosing appro- priate control parameters and also improves the performance of the algorithm. In numerical tests using thirteen basic unimodal and multimodal functions, the proposed adaptive unified algorithm shows promising performance in compari- son to several conventional differential evolution algorithms.

  5. Convergent Evolution During Local Adaptation to Patchy Landscapes.

    PubMed

    Ralph, Peter L; Coop, Graham

    2015-11-01

    Species often encounter, and adapt to, many patches of similar environmental conditions across their range. Such adaptation can occur through convergent evolution if different alleles arise in different patches, or through the spread of shared alleles by migration acting to synchronize adaptation across the species. The tension between the two reflects the constraint imposed on evolution by the underlying genetic architecture versus how effectively selection and geographic isolation act to inhibit the geographic spread of locally adapted alleles. This paper studies the balance between these two routes to adaptation in a model of continuous environments with patchy selection pressures. We address the following questions: How long does it take for a novel allele to appear in a patch where it is locally adapted through mutation? Or, through migration from another, already adapted patch? Which is more likely to occur, as a function of distance between the patches? What population genetic signal is left by the spread of migrant alleles? To answer these questions we examine the family structure underlying migration-selection equilibrium surrounding an already adapted patch, treating those rare families that reach new patches as spatial branching processes. A main result is that patches further apart than a critical distance will likely evolve independent locally adapted alleles; this distance is proportional to the spatial scale of selection ([Formula: see text], where σ is the dispersal distance and sm is the selective disadvantage of these alleles between patches), and depends linearly on log(sm/μ), where μ is the mutation rate. This provides a way to understand the role of geographic separation between patches in promoting convergent adaptation and the genomic signals it leaves behind. We illustrate these ideas using the convergent evolution of cryptic coloration in the rock pocket mouse, Chaetodipus intermedius, as an empirical example. PMID:26571125

  6. Convergent Evolution During Local Adaptation to Patchy Landscapes

    PubMed Central

    2015-01-01

    Species often encounter, and adapt to, many patches of similar environmental conditions across their range. Such adaptation can occur through convergent evolution if different alleles arise in different patches, or through the spread of shared alleles by migration acting to synchronize adaptation across the species. The tension between the two reflects the constraint imposed on evolution by the underlying genetic architecture versus how effectively selection and geographic isolation act to inhibit the geographic spread of locally adapted alleles. This paper studies the balance between these two routes to adaptation in a model of continuous environments with patchy selection pressures. We address the following questions: How long does it take for a novel allele to appear in a patch where it is locally adapted through mutation? Or, through migration from another, already adapted patch? Which is more likely to occur, as a function of distance between the patches? What population genetic signal is left by the spread of migrant alleles? To answer these questions we examine the family structure underlying migration–selection equilibrium surrounding an already adapted patch, treating those rare families that reach new patches as spatial branching processes. A main result is that patches further apart than a critical distance will likely evolve independent locally adapted alleles; this distance is proportional to the spatial scale of selection (σ/sm, where σ is the dispersal distance and s m is the selective disadvantage of these alleles between patches), and depends linearly on log(s m/μ), where μ is the mutation rate. This provides a way to understand the role of geographic separation between patches in promoting convergent adaptation and the genomic signals it leaves behind. We illustrate these ideas using the convergent evolution of cryptic coloration in the rock pocket mouse, Chaetodipus intermedius, as an empirical example. PMID:26571125

  7. Evolution of morphological and climatic adaptations in Veronica L. (Plantaginaceae)

    PubMed Central

    Wang, Jian-Cheng; Pan, Bo-Rong

    2016-01-01

    Perennials and annuals apply different strategies to adapt to the adverse environment, based on ‘tolerance’ and ‘avoidance’, respectively. To understand lifespan evolution and its impact on plant adaptability, we carried out a comparative study of perennials and annuals in the genus Veronica from a phylogenetic perspective. The results showed that ancestors of the genus Veronicawere likely to be perennial plants. Annual life history of Veronica has evolved multiple times and subtrees with more annual species have a higher substitution rate. Annuals can adapt to more xeric habitats than perennials. This indicates that annuals are more drought-resistant than their perennial relatives. Due to adaptation to similar selective pressures, parallel evolution occurs in morphological characters among annual species of Veronica. PMID:27602296

  8. Evolution of morphological and climatic adaptations in Veronica L. (Plantaginaceae).

    PubMed

    Wang, Jian-Cheng; Pan, Bo-Rong; Albach, Dirk C

    2016-01-01

    Perennials and annuals apply different strategies to adapt to the adverse environment, based on 'tolerance' and 'avoidance', respectively. To understand lifespan evolution and its impact on plant adaptability, we carried out a comparative study of perennials and annuals in the genus Veronica from a phylogenetic perspective. The results showed that ancestors of the genus Veronicawere likely to be perennial plants. Annual life history of Veronica has evolved multiple times and subtrees with more annual species have a higher substitution rate. Annuals can adapt to more xeric habitats than perennials. This indicates that annuals are more drought-resistant than their perennial relatives. Due to adaptation to similar selective pressures, parallel evolution occurs in morphological characters among annual species of Veronica. PMID:27602296

  9. Molecular evolution of the lysophosphatidic acid acyltransferase (LPAAT) gene family.

    PubMed

    Körbes, Ana Paula; Kulcheski, Franceli Rodrigues; Margis, Rogério; Margis-Pinheiro, Márcia; Turchetto-Zolet, Andreia Carina

    2016-03-01

    Lysophosphatidic acid acyltransferases (LPAATs) perform an essential cellular function by controlling the production of phosphatidic acid (PA), a key intermediate in the synthesis of membrane, signaling and storage lipids. Although LPAATs have been extensively explored by functional and biotechnological studies, little is known about their molecular evolution and diversification. We performed a genome-wide analysis using data from several plants and animals, as well as other eukaryotic and prokaryotic species, to identify LPAAT genes and analyze their evolutionary history. We used phylogenetic and molecular evolution analysis to test the hypothesis of distinct origins for these genes. The reconstructed phylogeny supported the ancient origin of some isoforms (plant LPAAT1 and LPAATB; animal AGPAAT1/2), while others emerged more recently (plant LPAAT2/3/4/5; AGPAAT3/4/5/8). Additionally, the hypothesis of endosymbiotic origin of the plastidic isoform LPAAT1 was confirmed. LPAAT genes from plants and animals mainly experienced strong purifying selection pressures with limited functional divergence after the species-specific duplications. Gene expression analyses of LPAAT isoforms in model plants demonstrated distinct LPAAT expression patterns in these organisms. The results showed that distinct origins followed by diversification of the LPAAT genes shaped the evolution of TAG biosynthesis. The expression pattern of individual genes may be responsible for adaptation into multiple ecological niches. PMID:26721558

  10. Molecular hyperdiversity and evolution in very large populations

    PubMed Central

    Cutter, Asher D.; Jovelin, Richard; Dey, Alivia

    2014-01-01

    The genomic density of sequence polymorphisms critically affects the sensitivity of inferences about ongoing sequence evolution, function, and demographic history. Most animal and plant genomes have relatively low densities of polymorphisms, but some species are hyperdiverse with neutral nucleotide heterozygosity exceeding 5%. Eukaryotes with extremely large populations, mimicking bacterial and viral populations, present novel opportunities for studying molecular evolution in sexually-reproducing taxa with complex development. In particular, hyperdiverse species can help answer controversial questions about the evolution of genome complexity, the limits of natural selection, modes of adaptation, and subtleties of the mutation process. However, such systems have some inherent complications and here we identify topics in need of theoretical developments. Close relatives of the model organisms Caenorhabditis elegans and Drosophila melanogaster provide known examples of hyperdiverse eukaryotes, encouraging functional dissection of resulting molecular evolutionary patterns. We recommend how best to exploit hyperdiverse populations for analysis, for example, in quantifying the impact of non-crossover recombination in genomes and for determining the identity and micro-evolutionary selective pressures on non-coding regulatory elements. PMID:23506466

  11. Pax6 in Collembola: Adaptive Evolution of Eye Regression

    PubMed Central

    Hou, Ya-Nan; Li, Sheng; Luan, Yun-Xia

    2016-01-01

    Unlike the compound eyes in insects, collembolan eyes are comparatively simple: some species have eyes with different numbers of ocelli (1 + 1 to 8 + 8), and some species have no apparent eye structures. Pax6 is a universal master control gene for eye morphogenesis. In this study, full-length Pax6 cDNAs, Fc-Pax6 and Cd-Pax6, were cloned from an eyeless collembolan (Folsomia candida, soil-dwelling) and an eyed one (Ceratophysella denticulata, surface-dwelling), respectively. Their phylogenetic positions are between the two Pax6 paralogs in insects, eyeless (ey) and twin of eyeless (toy), and their protein sequences are more similar to Ey than to Toy. Both Fc-Pax6 and Cd-Pax6 could induce ectopic eyes in Drosophila, while Fc-Pax6 exhibited much weaker transactivation ability than Cd-Pax6. The C-terminus of collembolan Pax6 is indispensable for its transactivation ability, and determines the differences of transactivation ability between Fc-Pax6 and Cd-Pax6. One of the possible reasons is that Fc-Pax6 accumulated more mutations at some key functional sites of C-terminus under a lower selection pressure on eye development due to the dark habitats of F. candida. The composite data provide a first molecular evidence for the monophyletic origin of collembolan eyes, and indicate the eye degeneration of collembolans is caused by adaptive evolution. PMID:26856893

  12. Adaptive evolution toward larger size in mammals

    PubMed Central

    Baker, Joanna; Meade, Andrew; Pagel, Mark; Venditti, Chris

    2015-01-01

    The notion that large body size confers some intrinsic advantage to biological species has been debated for centuries. Using a phylogenetic statistical approach that allows the rate of body size evolution to vary across a phylogeny, we find a long-term directional bias toward increasing size in the mammals. This pattern holds separately in 10 of 11 orders for which sufficient data are available and arises from a tendency for accelerated rates of evolution to produce increases, but not decreases, in size. On a branch-by-branch basis, increases in body size have been more than twice as likely as decreases, yielding what amounts to millions and millions of years of rapid and repeated increases in size away from the small ancestral mammal. These results are the first evidence, to our knowledge, from extant species that are compatible with Cope’s rule: the pattern of body size increase through time observed in the mammalian fossil record. We show that this pattern is unlikely to be explained by several nonadaptive mechanisms for increasing size and most likely represents repeated responses to new selective circumstances. By demonstrating that it is possible to uncover ancient evolutionary trends from a combination of a phylogeny and appropriate statistical models, we illustrate how data from extant species can complement paleontological accounts of evolutionary history, opening up new avenues of investigation for both. PMID:25848031

  13. Molecular evolution of hydrogen peroxide degrading enzymes.

    PubMed

    Zámocký, Marcel; Gasselhuber, Bernhard; Furtmüller, Paul G; Obinger, Christian

    2012-09-15

    For efficient removal of intra- and/or extracellular hydrogen peroxide by dismutation to harmless dioxygen and water (2H(2)O(2) → O(2) + 2H(2)O), nature designed three metalloenzyme families that differ in oligomeric organization, monomer architecture as well as active site geometry and catalytic residues. Here we report on the updated reconstruction of the molecular phylogeny of these three gene families. Ubiquitous typical (monofunctional) heme catalases are found in all domains of life showing a high structural conservation. Their evolution was directed from large subunit towards small subunit proteins and further to fused proteins where the catalase fold was retained but lost its original functionality. Bifunctional catalase-peroxidases were at the origin of one of the two main heme peroxidase superfamilies (i.e. peroxidase-catalase superfamily) and constitute a protein family predominantly present among eubacteria and archaea, but two evolutionary branches are also found in the eukaryotic world. Non-heme manganese catalases are a relatively small protein family with very old roots only present among bacteria and archaea. Phylogenetic analyses of the three protein families reveal features typical (i) for the evolution of whole genomes as well as (ii) for specific evolutionary events including horizontal gene transfer, paralog formation and gene fusion. As catalases have reached a striking diversity among prokaryotic and eukaryotic pathogens, understanding their phylogenetic and molecular relationship and function will contribute to drug design for prevention of diseases of humans, animals and plants. PMID:22330759

  14. Integrating influenza antigenic dynamics with molecular evolution

    PubMed Central

    Bedford, Trevor; Suchard, Marc A; Lemey, Philippe; Dudas, Gytis; Gregory, Victoria; Hay, Alan J; McCauley, John W; Russell, Colin A; Smith, Derek J; Rambaut, Andrew

    2014-01-01

    Influenza viruses undergo continual antigenic evolution allowing mutant viruses to evade host immunity acquired to previous virus strains. Antigenic phenotype is often assessed through pairwise measurement of cross-reactivity between influenza strains using the hemagglutination inhibition (HI) assay. Here, we extend previous approaches to antigenic cartography, and simultaneously characterize antigenic and genetic evolution by modeling the diffusion of antigenic phenotype over a shared virus phylogeny. Using HI data from influenza lineages A/H3N2, A/H1N1, B/Victoria and B/Yamagata, we determine patterns of antigenic drift across viral lineages, showing that A/H3N2 evolves faster and in a more punctuated fashion than other influenza lineages. We also show that year-to-year antigenic drift appears to drive incidence patterns within each influenza lineage. This work makes possible substantial future advances in investigating the dynamics of influenza and other antigenically-variable pathogens by providing a model that intimately combines molecular and antigenic evolution. DOI: http://dx.doi.org/10.7554/eLife.01914.001 PMID:24497547

  15. Rhodopsin Molecular Evolution in Mammals Inhabiting Low Light Environments

    PubMed Central

    Zhao, Huabin; Ru, Binghua; Teeling, Emma C.; Faulkes, Christopher G.; Zhang, Shuyi; Rossiter, Stephen J.

    2009-01-01

    The ecological radiation of mammals to inhabit a variety of light environments is largely attributed to adaptive changes in their visual systems. Visual capabilities are conferred by anatomical features of the eyes as well as the combination and properties of their constituent light sensitive pigments. To test whether evolutionary switches to different niches characterized by dim-light conditions coincided with molecular adaptation of the rod pigment rhodopsin, we sequenced the rhodopsin gene in twenty-two mammals including several bats and subterranean mole-rats. We compared these to thirty-seven published mammal rhodopsin sequences, from species with divergent visual ecologies, including nocturnal, diurnal and aquatic groups. All taxa possessed an intact functional rhodopsin; however, phylogenetic tree reconstruction recovered a gene tree in which rodents were not monophyletic, and also in which echolocating bats formed a monophyletic group. These conflicts with the species tree appear to stem from accelerated evolution in these groups, both of which inhabit low light environments. Selection tests confirmed divergent selection pressures in the clades of subterranean rodents and bats, as well as in marine mammals that live in turbid conditions. We also found evidence of divergent selection pressures among groups of bats with different sensory modalities based on vision and echolocation. Sliding window analyses suggest most changes occur in transmembrane domains, particularly obvious within the pinnipeds; however, we found no obvious pattern between photopic niche and predicted spectral sensitivity based on known critical amino acids. This study indicates that the independent evolution of rhodopsin vision in ecologically specialised groups of mammals has involved molecular evolution at the sequence level, though such changes might not mediate spectral sensitivity directly. PMID:20016835

  16. Camelid genomes reveal evolution and adaptation to desert environments.

    PubMed

    Wu, Huiguang; Guang, Xuanmin; Al-Fageeh, Mohamed B; Cao, Junwei; Pan, Shengkai; Zhou, Huanmin; Zhang, Li; Abutarboush, Mohammed H; Xing, Yanping; Xie, Zhiyuan; Alshanqeeti, Ali S; Zhang, Yanru; Yao, Qiulin; Al-Shomrani, Badr M; Zhang, Dong; Li, Jiang; Manee, Manee M; Yang, Zili; Yang, Linfeng; Liu, Yiyi; Zhang, Jilin; Altammami, Musaad A; Wang, Shenyuan; Yu, Lili; Zhang, Wenbin; Liu, Sanyang; Ba, La; Liu, Chunxia; Yang, Xukui; Meng, Fanhua; Wang, Shaowei; Li, Lu; Li, Erli; Li, Xueqiong; Wu, Kaifeng; Zhang, Shu; Wang, Junyi; Yin, Ye; Yang, Huanming; Al-Swailem, Abdulaziz M; Wang, Jun

    2014-01-01

    Bactrian camel (Camelus bactrianus), dromedary (Camelus dromedarius) and alpaca (Vicugna pacos) are economically important livestock. Although the Bactrian camel and dromedary are large, typically arid-desert-adapted mammals, alpacas are adapted to plateaus. Here we present high-quality genome sequences of these three species. Our analysis reveals the demographic history of these species since the Tortonian Stage of the Miocene and uncovers a striking correlation between large fluctuations in population size and geological time boundaries. Comparative genomic analysis reveals complex features related to desert adaptations, including fat and water metabolism, stress responses to heat, aridity, intense ultraviolet radiation and choking dust. Transcriptomic analysis of Bactrian camels further reveals unique osmoregulation, osmoprotection and compensatory mechanisms for water reservation underpinned by high blood glucose levels. We hypothesize that these physiological mechanisms represent kidney evolutionary adaptations to the desert environment. This study advances our understanding of camelid evolution and the adaptation of camels to arid-desert environments. PMID:25333821

  17. Microcephaly genes evolved adaptively throughout the evolution of eutherian mammals

    PubMed Central

    2014-01-01

    Background Genes associated with the neurodevelopmental disorder microcephaly display a strong signature of adaptive evolution in primates. Comparative data suggest a link between selection on some of these loci and the evolution of primate brain size. Whether or not either positive selection or this phenotypic association are unique to primates is unclear, but recent studies in cetaceans suggest at least two microcephaly genes evolved adaptively in other large brained mammalian clades. Results Here we analyse the evolution of seven microcephaly loci, including three recently identified loci, across 33 eutherian mammals. We find extensive evidence for positive selection having acted on the majority of these loci not just in primates but also across non-primate mammals. Furthermore, the patterns of selection in major mammalian clades are not significantly different. Using phylogenetically corrected comparative analyses, we find that the evolution of two microcephaly loci, ASPM and CDK5RAP2, are correlated with neonatal brain size in Glires and Euungulata, the two most densely sampled non-primate clades. Conclusions Together with previous results, this suggests that ASPM and CDK5RAP2 may have had a consistent role in the evolution of brain size in mammals. Nevertheless, several limitations of currently available data and gene-phenotype tests are discussed, including sparse sampling across large evolutionary distances, averaging gene-wide rates of evolution, potential phenotypic variation and evolutionary reversals. We discuss the implications of our results for studies of the genetic basis of brain evolution, and explicit tests of gene-phenotype hypotheses. PMID:24898820

  18. The chemical evolution of molecular clouds

    NASA Technical Reports Server (NTRS)

    Iglesias, E.

    1977-01-01

    The nonequilibrium chemistry of dense molecular clouds (10,000 to 1 million hydrogen molecules per cu cm) is studied in the framework of a model that includes the latest published chemical data and most of the recent theoretical advances. In this model the only important external source of ionization is assumed to be high-energy cosmic-ray bombardment; standard charge-transfer reactions are taken into account as well as reactions that transfer charge from molecular ions to trace-metal atoms. Schemes are proposed for the synthesis of such species as NCO, HNCO, and CN. The role played by adsorption and condensation of molecules on the surface of dust grains is investigated, and effects on the chemical evolution of a dense molecular cloud are considered which result from varying the total density or the elemental abundances and from assuming negligible or severe condensation of gaseous species on dust grains. It is shown that the chemical-equilibrium time scale is given approximately by the depletion times of oxygen and nitrogen when the condensation efficiency is negligible; that this time scale is probably in the range from 1 to 4 million years, depending on the elemental composition and initial conditions in the cloud; and that this time scale is insensitive to variations in the total density.

  19. Evolution of evolvability via adaptation of mutation rates.

    PubMed

    Bedau, Mark A; Packard, Norman H

    2003-05-01

    We examine a simple form of the evolution of evolvability-the evolution of mutation rates-in a simple model system. The system is composed of many agents moving, reproducing, and dying in a two-dimensional resource-limited world. We first examine various macroscopic quantities (three types of genetic diversity, a measure of population fitness, and a measure of evolutionary activity) as a function of fixed mutation rates. The results suggest that (i) mutation rate is a control parameter that governs a transition between two qualitatively different phases of evolution, an ordered phase characterized by punctuated equilibria of diversity, and a disordered phase of characterized by noisy fluctuations around an equilibrium diversity, and (ii) the ability of evolution to create adaptive structure is maximized when the mutation rate is just below the transition between these two phases of evolution. We hypothesize that this transition occurs when the demands for evolutionary memory and evolutionary novelty are typically balanced. We next allow the mutation rate itself to evolve, and we observe that evolving mutation rates adapt to values at this transition. Furthermore, the mutation rates adapt up (or down) as the evolutionary demands for novelty (or memory) increase, thus supporting the balance hypothesis. PMID:12689727

  20. OASes and STING: adaptive evolution in concert.

    PubMed

    Mozzi, Alessandra; Pontremoli, Chiara; Forni, Diego; Clerici, Mario; Pozzoli, Uberto; Bresolin, Nereo; Cagliani, Rachele; Sironi, Manuela

    2015-04-01

    OAS (2'-5'-oligoadenylate synthases) proteins and cyclic GMP-AMP synthase (cGAS, gene symbol: MB21D1) patrol the cytoplasm for the presence of foreign nucleic acids. Upon binding to double-stranded RNA or double-stranded DNA, OAS proteins and cGAS produce nucleotide second messengers to activate RNase L and STING (stimulator of interferon genes, gene symbol: TMEM173), respectively; this leads to the initiation of antiviral responses. We analyzed the evolutionary history of the MB21D1-TMEM173 and OAS-RNASEL axes in primates and bats and found evidence of widespread positive selection in both orders. In TMEM173, residue 230, a major determinant of response to natural ligands and to mimetic drugs (e.g., DMXAA), was positively selected in Primates and Chiroptera. In both orders, selection also targeted an α-helix/loop element in RNase L that modulates the enzyme preference for single-stranded RNA versus stem loops. Analysis of positively selected sites in OAS1, OAS2, and MB21D1 revealed parallel evolution, with the corresponding residues being selected in different genes. As this cannot result from gene conversion, these data suggest that selective pressure acting on OAS and MB21D1 genes is related to nucleic acid recognition and to the specific mechanism of enzyme activation, which requires a conformational change. Finally, a population genetics-phylogenetics analysis in humans, chimpanzees, and gorillas detected several positively selected sites in most genes. Data herein shed light into species-specific differences in infection susceptibility and in response to synthetic compounds, with relevance for the design of synthetic compounds as vaccine adjuvants. PMID:25752600

  1. OASes and STING: Adaptive Evolution in Concert

    PubMed Central

    Mozzi, Alessandra; Pontremoli, Chiara; Forni, Diego; Clerici, Mario; Pozzoli, Uberto; Bresolin, Nereo; Cagliani, Rachele; Sironi, Manuela

    2015-01-01

    OAS (2′–5′-oligoadenylate synthases) proteins and cyclic GMP–AMP synthase (cGAS, gene symbol: MB21D1) patrol the cytoplasm for the presence of foreign nucleic acids. Upon binding to double-stranded RNA or double-stranded DNA, OAS proteins and cGAS produce nucleotide second messengers to activate RNase L and STING (stimulator of interferon genes, gene symbol: TMEM173), respectively; this leads to the initiation of antiviral responses. We analyzed the evolutionary history of the MB21D1–TMEM173 and OAS–RNASEL axes in primates and bats and found evidence of widespread positive selection in both orders. In TMEM173, residue 230, a major determinant of response to natural ligands and to mimetic drugs (e.g., DMXAA), was positively selected in Primates and Chiroptera. In both orders, selection also targeted an α-helix/loop element in RNase L that modulates the enzyme preference for single-stranded RNA versus stem loops. Analysis of positively selected sites in OAS1, OAS2, and MB21D1 revealed parallel evolution, with the corresponding residues being selected in different genes. As this cannot result from gene conversion, these data suggest that selective pressure acting on OAS and MB21D1 genes is related to nucleic acid recognition and to the specific mechanism of enzyme activation, which requires a conformational change. Finally, a population genetics-phylogenetics analysis in humans, chimpanzees, and gorillas detected several positively selected sites in most genes. Data herein shed light into species-specific differences in infection susceptibility and in response to synthetic compounds, with relevance for the design of synthetic compounds as vaccine adjuvants. PMID:25752600

  2. Molecular Evolution of the Capsid Gene in Norovirus Genogroup I.

    PubMed

    Kobayashi, Miho; Yoshizumi, Shima; Kogawa, Sayaka; Takahashi, Tomoko; Ueki, Yo; Shinohara, Michiyo; Mizukoshi, Fuminori; Tsukagoshi, Hiroyuki; Sasaki, Yoshiko; Suzuki, Rieko; Shimizu, Hideaki; Iwakiri, Akira; Okabe, Nobuhiko; Shirabe, Komei; Shinomiya, Hiroto; Kozawa, Kunihisa; Kusunoki, Hideki; Ryo, Akihide; Kuroda, Makoto; Katayama, Kazuhiko; Kimura, Hirokazu

    2015-01-01

    We studied the molecular evolution of the capsid gene in all genotypes (genotypes 1-9) of human norovirus (NoV) genogroup I. The evolutionary time scale and rate were estimated by the Bayesian Markov chain Monte Carlo (MCMC) method. We also performed selective pressure analysis and B-cell linear epitope prediction in the deduced NoV GI capsid protein. Furthermore, we analysed the effective population size of the virus using Bayesian skyline plot (BSP) analysis. A phylogenetic tree by MCMC showed that NoV GI diverged from the common ancestor of NoV GII, GIII, and GIV approximately 2,800 years ago with rapid evolution (about 10(-3) substitutions/site/year). Some positive selection sites and over 400 negative selection sites were estimated in the deduced capsid protein. Many epitopes were estimated in the deduced virus capsid proteins. An epitope of GI.1 may be associated with histo-blood group antigen binding sites (Ser377, Pro378, and Ser380). Moreover, BSP suggested that the adaptation of NoV GI strains to humans was affected by natural selection. The results suggested that NoV GI strains evolved rapidly and date back to many years ago. Additionally, the virus may have undergone locally affected natural selection in the host resulting in its adaptation to humans. PMID:26338545

  3. Fisheries-induced neutral and adaptive evolution in exploited fish populations and consequences for their adaptive potential

    PubMed Central

    Marty, Lise; Dieckmann, Ulf; Ernande, Bruno

    2015-01-01

    Fishing may induce neutral and adaptive evolution affecting life-history traits, and molecular evidence has shown that neutral genetic diversity has declined in some exploited populations. Here, we theoretically study the interplay between neutral and adaptive evolution caused by fishing. An individual-based eco-genetic model is devised that includes neutral and functional loci in a realistic ecological setting. In line with theoretical expectations, we find that fishing induces evolution towards slow growth, early maturation at small size and higher reproductive investment. We show, first, that the choice of genetic model (based on either quantitative genetics or gametic inheritance) influences the evolutionary recovery of traits after fishing ceases. Second, we analyse the influence of three factors possibly involved in the lack of evolutionary recovery: the strength of selection, the effect of genetic drift and the loss of adaptive potential. We find that evolutionary recovery is hampered by an association of weak selection differentials with reduced additive genetic variances. Third, the contribution of fisheries-induced selection to the erosion of functional genetic diversity clearly dominates that of genetic drift only for the traits related to maturation. Together, our results highlight the importance of taking into account population genetic variability in predictions of eco-evolutionary dynamics. PMID:25667602

  4. Colloquium paper: phylogenomic evidence of adaptive evolution in the ancestry of humans.

    PubMed

    Goodman, Morris; Sterner, Kirstin N

    2010-05-11

    In Charles Darwin's tree model for life's evolution, natural selection adaptively modifies newly arisen species as they branch apart from their common ancestor. In accord with this Darwinian concept, the phylogenomic approach to elucidating adaptive evolution in genes and genomes in the ancestry of modern humans requires a well supported and well sampled phylogeny that accurately places humans and other primates and mammals with respect to one another. For more than a century, first from the comparative immunological work of Nuttall on blood sera and now from comparative genomic studies, molecular findings have demonstrated the close kinship of humans to chimpanzees. The close genetic correspondence of chimpanzees to humans and the relative shortness of our evolutionary separation suggest that most distinctive features of the modern human phenotype had already evolved during our ancestry with chimpanzees. Thus, a phylogenomic assessment of being human should examine earlier stages of human ancestry as well as later stages. In addition, with the availability of a number of mammalian genomes, similarities in phenotype between distantly related taxa should be explored for evidence of convergent or parallel adaptive evolution. As an example, recent phylogenomic evidence has shown that adaptive evolution of aerobic energy metabolism genes may have helped shape such distinctive modern human features as long life spans and enlarged brains in the ancestries of both humans and elephants. PMID:20445097

  5. Local adaptation and the evolution of chromosome fusions.

    PubMed

    Guerrero, Rafael F; Kirkpatrick, Mark

    2014-10-01

    We use forward and coalescent models of population genetics to study chromosome fusions that reduce the recombination between two locally adapted loci. Under a continent-island model, a fusion spreads and reaches a polymorphic equilibrium when it causes recombination between locally adapted alleles to be less than their selective advantage. In contrast, fusions in a two-deme model always spread; whether it reaches a polymorphic equilibrium or becomes fixed depends on the relative recombination rates of fused homozygotes and heterozygotes. Neutral divergence around fusion polymorphisms is markedly increased, showing peaks at the point of fusion and at the locally adapted loci. Local adaptation could explain the evolution of many of chromosome fusions, which are some of the most common chromosome rearrangements in nature. PMID:24964074

  6. Molecular epidemiology and evolution of fish Novirhabdoviruses

    USGS Publications Warehouse

    Kurath, Gael

    2014-01-01

    The genus Novirhabdoviridae contains several of the important rhabdoviruses that infect fish hosts. There are four established virus species: Infectious hematopoietic necrosis virus (IHNV), Viral hemorrhagic septicemia virus (VHSV), Hirame rhabdovirus(HIRRV), and Snakehead rhabdovirus (SHRV). Viruses of these species vary in host and geographic range, and they have all been studied at the molecular and genomic level. As globally significant pathogens of cultured fish, IHNV and VHSV have been particularly well studied in terms of molecular epidemiology and evolution. Phylogenic analyses of hundreds of field isolates have defined five major genogroups of IHNV and four major genotypes of VHSV worldwide. These phylogenies are informed by the known histories of IHNV and VHSV, each involving a series of viral emergence events that are sometimes associated with host switches, most often into cultured rainbow trout. In general, IHNV has relatively low genetic diversity and a narrow host range, and has been spread from its endemic source in North American to Europe and Asia due to aquaculture activities. In contrast, VHSV has broad host range and high genetic diversity, and the source of emergence events is virus in widespread marine fish reservoirs in the northern Atlantic and Pacific Oceans. Common mechanisms of emergence and host switch events include use of raw feed, proximity to wild fish reservoirs of virus, and geographic translocations of virus or naive fish hosts associated with aquaculture.

  7. Development vs. behavior: a role for neural adaptation in evolution?

    PubMed

    Ghysen, Alain; Dambly-Chaudière, Christine

    2016-01-01

    We examine the evolution of sensory organ patterning in the lateral line system of fish. Based on recent studies of how this system develops in zebrafish, and on comparative analyses between zebrafish and tuna, we argue that the evolution of lateral line patterns is mostly determined by variations in the underlying developmental processes, independent of any selective pressure. Yet the development of major developmental innovations is so directly linked to their exploitation that it is hard not to think of them as selected for, i.e., adaptive. We propose that adaptation resides mostly in how the nervous system adjusts to new morphologies to make them functional, i.e., that species are neurally adapted to whatever morphology is provided to them by their own developmental program. We show that recent data on behavioral differences between cave forms (blind) and surface forms (eyed) of the mexican fish Astyanax fasciatus support this view, and we propose that this species might provide a unique opportunity to assess the nature of adaptation and of selection in animal evolution. PMID:27389980

  8. Adaptive Evolution and Functional Redesign of Core Metabolic Proteins in Snakes

    PubMed Central

    Gu, Wanjun; Wang, Zhengyuan O.; Pollock, David D.

    2008-01-01

    Background Adaptive evolutionary episodes in core metabolic proteins are uncommon, and are even more rarely linked to major macroevolutionary shifts. Methodology/Principal Findings We conducted extensive molecular evolutionary analyses on snake mitochondrial proteins and discovered multiple lines of evidence suggesting that the proteins at the core of aerobic metabolism in snakes have undergone remarkably large episodic bursts of adaptive change. We show that snake mitochondrial proteins experienced unprecedented levels of positive selection, coevolution, convergence, and reversion at functionally critical residues. We examined Cytochrome C oxidase subunit I (COI) in detail, and show that it experienced extensive modification of normally conserved residues involved in proton transport and delivery of electrons and oxygen. Thus, adaptive changes likely altered the flow of protons and other aspects of function in CO, thereby influencing fundamental characteristics of aerobic metabolism. We refer to these processes as “evolutionary redesign” because of the magnitude of the episodic bursts and the degree to which they affected core functional residues. Conclusions/Significance The evolutionary redesign of snake COI coincided with adaptive bursts in other mitochondrial proteins and substantial changes in mitochondrial genome structure. It also generally coincided with or preceded major shifts in ecological niche and the evolution of extensive physiological adaptations related to lung reduction, large prey consumption, and venom evolution. The parallel timing of these major evolutionary events suggests that evolutionary redesign of metabolic and mitochondrial function may be related to, or underlie, the extreme changes in physiological and metabolic efficiency, flexibility, and innovation observed in snake evolution. PMID:18493604

  9. Epigenetic mutations can both help and hinder adaptive evolution.

    PubMed

    Kronholm, Ilkka; Collins, Sinéad

    2016-04-01

    Epigenetic variation is being integrated into our understanding of adaptation, yet we lack models on how epigenetic mutations affect evolution that includes de novo genetic change. We model the effects of epigenetic mutations on the dynamics and endpoints of adaptive walks-a process where a series of beneficial mutations move a population towards a fitness optimum. We use an individual-based model of an asexual population, where mutational effects are drawn from Fisher's geometric model. We find cases where epigenetic mutations speed adaptation or result in populations with higher fitness. However, we also find cases where they slow adaptation or result in populations with lower fitness. The effect of epigenetic mutations on adaptive walks depends crucially on their stability and fitness effects relative to genetic mutations, with small-effect epigenetic mutations generally speeding adaptation, and epigenetic mutations with the same fitness effects as genetic mutations slowing adaptation. Our work reveals a complex relationship between epigenetic mutations and natural selection and highlights the need for empirical data. PMID:26139359

  10. Influenza Virus Evolution, Host Adaptation and Pandemic Formation

    PubMed Central

    Taubenberger, Jeffery K.; Kash, John C.

    2010-01-01

    Newly emerging or `re-emerging' viral diseases continue to pose significant global public health threats. Prototypic are influenza viruses that are major causes of human respiratory infections and mortality. Influenza viruses can cause zoonotic infections and adapt to humans leading to sustained transmission and emergence of novel viruses. Mechanisms by which viruses evolve in one host, cause zoonotic infection and adapt to a new host species remain unelucidated. Here we review evolution of influenza A viruses in their reservoir hosts and discuss genetic changes associated with introduction of novel viruses into humans leading to pandemics and the establishment of seasonal viruses. PMID:20542248

  11. Adaptive optical biocompact disk for molecular recognition

    NASA Astrophysics Data System (ADS)

    Peng, Leilei; Varma, Manoj M.; Regnier, Fred E.; Nolte, David D.

    2005-05-01

    We report the use of adaptive interferometry to detect a monolayer of protein immobilized in a periodic pattern on a spinning glass disk. A photorefractive quantum-well device acting as an adaptive beam mixer in a two-wave mixing geometry stabilizes the interferometric quadrature in the far field. Phase modulation generated by the spinning biolayer pattern in the probe beam is detected as a homodyne signal free of amplitude modulation. Binding between antibodies and immobilized antigens in a two-analyte immunoassay was tested with high specificity and without observable cross reactivity.

  12. Energy dissipation in an adaptive molecular circuit

    NASA Astrophysics Data System (ADS)

    Wang, Shou-Wen; Lan, Yueheng; Tang, Lei-Han

    2015-07-01

    The ability to monitor nutrient and other environmental conditions with high sensitivity is crucial for cell growth and survival. Sensory adaptation allows a cell to recover its sensitivity after a transient response to a shift in the strength of extracellular stimulus. The working principles of adaptation have been established previously based on rate equations which do not consider fluctuations in a thermal environment. Recently, Lan et al (2012 Nat. Phys. 8 422-8) performed a detailed analysis of a stochastic model for the Escherichia coli sensory network. They showed that accurate adaptation is possible only when the system operates in a nonequilibrium steady-state (NESS). They further proposed an energy-speed-accuracy (ESA) trade-off relation. We present here analytic results on the NESS of the model through a mapping to a one-dimensional birth-death process. An exact expression for the entropy production rate is also derived. Based on these results, we are able to discuss the ESA relation in a more general setting. Our study suggests that the adaptation error can be reduced exponentially as the methylation range increases. Finally, we show that a nonequilibrium phase transition exists in the infinite methylation range limit, despite the fact that the model contains only two discrete variables.

  13. Adaptive evolution of cytochrome c oxidase: Infrastructure for a carnivorous plant radiation

    PubMed Central

    Jobson, Richard W.; Nielsen, Rasmus; Laakkonen, Liisa; Wikström, Mårten; Albert, Victor A.

    2004-01-01

    Much recent attention in the study of adaptation of organismal form has centered on developmental regulation. As such, the highly conserved respiratory machinery of eukaryotic cells might seem an unlikely target for selection supporting novel morphologies. We demonstrate that a dramatic molecular evolutionary rate increase in subunit I of cytochrome c oxidase (COX) from an active-trapping lineage of carnivorous plants is caused by positive Darwinian selection. Bladderworts (Utricularia) trap plankton when water-immersed, negatively pressured suction bladders are triggered. The resetting of traps involves active ion transport, requiring considerable energy expenditure. As judged from the quaternary structure of bovine COX, the most profound adaptive substitutions are two contiguous cysteines absent in ≈99.9% of databased COX I sequences from Eukaryota, Archaea, and Bacteria. This motif lies directly at the docking point of COX I helix 3 and cytochrome c, and modeling of bovine COX I suggests the possibility of an unprecedented helix-terminating disulfide bridge that could alter COX/cytochrome c dissociation kinetics. Thus, the key adaptation in Utricularia likely lies in molecular energetic changes that buttressed the mechanisms responsible for the bladderworts' radical morphological evolution. Along with evidence for COX evolution underlying expansion of the anthropoid neocortex, our findings underscore that important morphological and physiological innovations must often be accompanied by specific adaptations in proteins with basic cellular functions. PMID:15596720

  14. Molecular epidemiology and evolution of porcine parvoviruses.

    PubMed

    Streck, André Felipe; Canal, Cláudio Wageck; Truyen, Uwe

    2015-12-01

    Porcine parvovirus (PPV), recently named Ungulate protoparvovirus 1, is considered to be one of the most important causes of reproductive failure in swine. Fetal death, mummification, stillbirths and delayed return to estrus are predominant clinical signs commonly associated with PPV infection in a herd. It has recently been shown that certain parvoviruses exhibit a nucleotide substitution rate close to that commonly determined for RNA viruses. However, the PPV vaccines broadly used in the last 30 years have most likely reduced the genetic diversity of the virus and led to the predominance of strains with a capsid profile distinct from that of the original vaccine-based strains. Furthermore, a number of novel porcine parvovirus species with yet-unknown veterinary relevance and characteristics have been described during the last decade. In this review, an overview of PPV molecular evolution is presented, highlighting characteristics of the various genetic elements, their evolutionary rate and the discovery of new capsid profiles driven by the currently used vaccines. PMID:26453771

  15. Molecular pathogenesis of CLL and its evolution.

    PubMed

    Rodríguez, David; Bretones, Gabriel; Arango, Javier R; Valdespino, Víctor; Campo, Elías; Quesada, Víctor; López-Otín, Carlos

    2015-03-01

    In spite of being the most prevalent adult leukemia in Western countries, the molecular mechanisms driving the establishment and progression of chronic lymphocytic leukemia (CLL) remain largely unknown. In recent years, the use of next-generation sequencing techniques has uncovered new and, in some cases, unexpected driver genes with prognostic and therapeutic value. The mutational landscape of CLL is characterized by high-genetic and epigenetic heterogeneity, low mutation recurrence and a long tail of cases with undefined driver genes. On the other hand, the use of deep sequencing has also revealed high intra-tumor heterogeneity and provided a detailed picture of clonal evolution processes. This phenomenon, in which aberrant DNA methylation can also participate, appears to be tightly associated to poor outcomes and chemo-refractoriness, thus providing a new subject for therapeutic intervention. Hence, and having in mind the limitations derived from the CLL complexity thus described, the application of massively parallel sequencing studies has unveiled a wealth of information that is expected to substantially improve patient staging schemes and CLL clinical management. PMID:25630433

  16. High rates of molecular evolution in hantaviruses.

    PubMed

    Ramsden, Cadhla; Melo, Fernando L; Figueiredo, Luiz M; Holmes, Edward C; Zanotto, Paolo M A

    2008-07-01

    Hantaviruses are rodent-borne Bunyaviruses that infect the Arvicolinae, Murinae, and Sigmodontinae subfamilies of Muridae. The rate of molecular evolution in the hantaviruses has been previously estimated at approximately 10(-7) nucleotide substitutions per site, per year (substitutions/site/year), based on the assumption of codivergence and hence shared divergence times with their rodent hosts. If substantiated, this would make the hantaviruses among the slowest evolving of all RNA viruses. However, as hantaviruses replicate with an RNA-dependent RNA polymerase, with error rates in the region of one mutation per genome replication, this low rate of nucleotide substitution is anomalous. Here, we use a Bayesian coalescent approach to estimate the rate of nucleotide substitution from serially sampled gene sequence data for hantaviruses known to infect each of the 3 rodent subfamilies: Araraquara virus (Sigmodontinae), Dobrava virus (Murinae), Puumala virus (Arvicolinae), and Tula virus (Arvicolinae). Our results reveal that hantaviruses exhibit short-term substitution rates of 10(-2) to 10(-4) substitutions/site/year and so are within the range exhibited by other RNA viruses. The disparity between this substitution rate and that estimated assuming rodent-hantavirus codivergence suggests that the codivergence hypothesis may need to be reevaluated. PMID:18417484

  17. The Molecular Evolution of the Qo Motif

    PubMed Central

    Kao, Wei-Chun; Hunte, Carola

    2014-01-01

    Quinol oxidation in the catalytic quinol oxidation site (Qo site) of cytochrome (cyt) bc1 complexes is the key step of the Q cycle mechanism, which laid the ground for Mitchell’s chemiosmotic theory of energy conversion. Bifurcated electron transfer upon quinol oxidation enables proton uptake and release on opposite membrane sides, thus generating a proton gradient that fuels ATP synthesis in cellular respiration and photosynthesis. The Qo site architecture formed by cyt b and Rieske iron–sulfur protein (ISP) impedes harmful bypass reactions. Catalytic importance is assigned to four residues of cyt b formerly described as PEWY motif in the context of mitochondrial complexes, which we now denominate Qo motif as comprehensive evolutionary sequence analysis of cyt b shows substantial natural variance of the motif with phylogenetically specific patterns. In particular, the Qo motif is identified as PEWY in mitochondria, α- and ε-Proteobacteria, Aquificae, Chlorobi, Cyanobacteria, and chloroplasts. PDWY is present in Gram-positive bacteria, Deinococcus–Thermus and haloarchaea, and PVWY in β- and γ-Proteobacteria. PPWF only exists in Archaea. Distinct patterns for acidophilic organisms indicate environment-specific adaptations. Importantly, the presence of PDWY and PEWY is correlated with the redox potential of Rieske ISP and quinone species. We propose that during evolution from low to high potential electron-transfer systems in the emerging oxygenic atmosphere, cyt bc1 complexes with PEWY as Qo motif prevailed to efficiently use high potential ubiquinone as substrate, whereas cyt b with PDWY operate best with low potential Rieske ISP and menaquinone, with the latter being the likely composition of the ancestral cyt bc1 complex. PMID:25115012

  18. Parallel evolution controlled by adaptation and covariation in ammonoid cephalopods

    PubMed Central

    2011-01-01

    Background A major goal in evolutionary biology is to understand the processes that shape the evolutionary trajectory of clades. The repeated and similar large-scale morphological evolutionary trends of distinct lineages suggest that adaptation by means of natural selection (functional constraints) is the major cause of parallel evolution, a very common phenomenon in extinct and extant lineages. However, parallel evolution can result from other processes, which are usually ignored or difficult to identify, such as developmental constraints. Hence, understanding the underlying processes of parallel evolution still requires further research. Results Herein, we present a possible case of parallel evolution between two ammonoid lineages (Auguritidae and Pinacitidae) of Early-Middle Devonian age (405-395 Ma), which are extinct cephalopods with an external, chambered shell. In time and through phylogenetic order of appearance, both lineages display a morphological shift toward more involute coiling (i.e. more tightly coiled whorls), larger adult body size, more complex suture line (the folded walls separating the gas-filled buoyancy-chambers), and the development of an umbilical lid (a very peculiar extension of the lateral shell wall covering the umbilicus) in the most derived taxa. Increased involution toward shells with closed umbilicus has been demonstrated to reflect improved hydrodynamic properties of the shell and thus likely results from similar natural selection pressures. The peculiar umbilical lid might have also added to the improvement of the hydrodynamic properties of the shell. Finally, increasing complexity of suture lines likely results from covariation induced by trends of increasing adult size and whorl overlap given the morphogenetic properties of the suture. Conclusions The morphological evolution of these two Devonian ammonoid lineages follows a near parallel evolutionary path for some important shell characters during several million years and

  19. Insights into Arbovirus Evolution and Adaptation from Experimental Studies

    PubMed Central

    Ciota, Alexander T.; Kramer, Laura D.

    2010-01-01

    Arthropod-borne viruses (arboviruses) are maintained in nature by cycling between vertebrate hosts and haematophagous invertebrate vectors. These viruses are responsible for causing a significant public health burden throughout the world, with over 100 species having the capacity to cause human disease. Arbovirus outbreaks in previously naïve environments demonstrate the potential of these pathogens for expansion and emergence, possibly exacerbated more recently by changing climates. These recent outbreaks, together with the continued devastation caused by endemic viruses, such as Dengue virus which persists in many areas, demonstrate the need to better understand the selective pressures that shape arbovirus evolution. Specifically, a comprehensive understanding of host-virus interactions and how they shape both host-specific and virus-specific evolutionary pressures is needed to fully evaluate the factors that govern the potential for host shifts and geographic expansions. One approach to advance our understanding of the factors influencing arbovirus evolution in nature is the use of experimental studies in the laboratory. Here, we review the contributions that laboratory passage and experimental infection studies have made to the field of arbovirus adaptation and evolution, and how these studies contribute to the overall field of arbovirus evolution. In particular, this review focuses on the areas of evolutionary constraints and mutant swarm dynamics; how experimental results compare to theoretical predictions; the importance of arbovirus ecology in shaping viral swarms; and how current knowledge should guide future questions relevant to understanding arbovirus evolution. PMID:21994633

  20. Out of the blue: adaptive visual pigment evolution accompanies Amazon invasion.

    PubMed

    Van Nynatten, Alexander; Bloom, Devin; Chang, Belinda S W; Lovejoy, Nathan R

    2015-07-01

    Incursions of marine water into South America during the Miocene prompted colonization of freshwater habitats by ancestrally marine species and present a unique opportunity to study the molecular evolution of adaptations to varying environments. Freshwater and marine environments are distinct in both spectra and average intensities of available light. Here, we investigate the molecular evolution of rhodopsin, the photosensitive pigment in the eye that activates in response to light, in a clade of South American freshwater anchovies derived from a marine ancestral lineage. Using likelihood-based comparative sequence analyses, we found evidence for positive selection in the rhodopsin of freshwater anchovy lineages at sites known to be important for aspects of rhodopsin function such as spectral tuning. No evidence was found for positive selection in marine lineages, nor in three other genes not involved in vision. Our results suggest that an increased rate of rhodopsin evolution was driven by diversification into freshwater habitats, thereby constituting a rare example of molecular evolution mirroring large-scale palaeogeographic events. PMID:26224386

  1. Accelerated evolution of constraint elements for hematophagic adaptation in mosquitoes

    PubMed Central

    WANG, Ming-Shan; ADEOLA, Adeniyi C.; LI, Yan; ZHANG, Ya-Ping; WU, Dong-Dong

    2015-01-01

    Comparative genomics is a powerful approach that comprehensively interprets the genome. Herein, we performed whole genome comparative analysis of 16 Diptera genomes, including four mosquitoes and 12 Drosophilae. We found more than 540 000 constraint elements (CEs) in the Diptera genome, with the majority found in the intergenic, coding and intronic regions. Accelerated elements (AEs) identified in mosquitoes were mostly in the protein-coding regions (>93%), which differs from vertebrates in genomic distribution. Some genes functionally enriched in blood digestion, body temperature regulation and insecticide resistance showed rapid evolution not only in the lineage of the recent common ancestor of mosquitoes (RCAM), but also in some mosquito lineages. This may be associated with lineage-specific traits and/or adaptations in comparison with other insects. Our findings revealed that although universally fast evolution acted on biological systems in RCAM, such as hematophagy, same adaptations also appear to have occurred through distinct degrees of evolution in different mosquito species, enabling them to be successful blood feeders in different environments. PMID:26646568

  2. Molecular aspects of adaptation to extreme cold environments

    NASA Technical Reports Server (NTRS)

    Finegold, Leonard

    1986-01-01

    Some of the various strategies adopted by living organisms for survival at low temperatures are discussed from the molecular and membrane points of view. Two examples of connections between biological cold adaptation and the molecular level are considered: (1) antifreeze proteins in fish from cold sea water and (2) the fluidity characteristics of cell membranes in a wide variety of organisms. Emphasis is placed on the occurrence of s-phases.

  3. Strategy Uniform Crossover Adaptation Evolution in a Minority Game

    NASA Astrophysics Data System (ADS)

    Yang, Wei-Song; Wang, Bing-Hong; Quan, Hong-Jun; Hu, Chin-Kun

    2003-10-01

    We propose and study a new adaptation minority game for understanding of the complex dynamical behaviour characterized by agent interactions competing limited resource in many natural and social systems. Intelligent agents may modify a part of strategies held by them periodically, depending on the strategy performances. In the new model, the strategies will be updated according to uniform-crossover variation process inspired by genetic evolution algorithm in biology. The performances of the agents in the new model are calculated for different parameter conditions. It has been found that the new system may evolve via the strategy uniform crossover adaptation mechanism into a frozen equilibrium state in which the performance of the system may reach the best limit, implying the strongest cooperation among agents and the most effective utilization of the social resources.

  4. An adaptive hypothesis for the evolution of the Y chromosome.

    PubMed Central

    Orr, H A; Kim, Y

    1998-01-01

    Population geneticists remain unsure of the forces driving the evolution of Y chromosomes. Here we consider the possibility that the degeneration of the Y reflects its inability to evolve adaptively. Because the overwhelming majority of favorable mutations on a nonrecombining proto-Y suffer a zero probability of fixation, the fitness of the Y must lag far behind that of the recombining X. At some point, this disparity will grow so large that selection favors an increase in the expression of (fit) X-linked alleles and a decrease in the expression of (unfit) Y-linked alleles. Our calculations suggest that this process acts far more rapidly than hitchhiking-induced erosion of the Y and at least as rapidly as the fixation of deleterious alleles on the Y by background selection. Most important, this hypothesis can explain the evolution of Y chromosomes in taxa such as Drosophila that have very large population sizes. PMID:9832543

  5. Gene Duplication and Adaptive Evolution of Digestive Proteases in Drosophila arizonae Female Reproductive Tracts

    PubMed Central

    Kelleher, Erin S; Swanson, Willie J; Markow, Therese A

    2007-01-01

    It frequently has been postulated that intersexual coevolution between the male ejaculate and the female reproductive tract is a driving force in the rapid evolution of reproductive proteins. The dearth of research on female tracts, however, presents a major obstacle to empirical tests of this hypothesis. Here, we employ a comparative EST approach to identify 241 candidate female reproductive proteins in Drosophila arizonae, a repleta group species in which physiological ejaculate–female coevolution has been documented. Thirty-one of these proteins exhibit elevated amino acid substitution rates, making them candidates for molecular coevolution with the male ejaculate. Strikingly, we also discovered 12 unique digestive proteases whose expression is specific to the D. arizonae lower female reproductive tract. These enzymes belong to classes most commonly found in the gastrointestinal tracts of a diverse array of organisms. We show that these proteases are associated with recent, lineage-specific gene duplications in the Drosophila repleta species group, and exhibit strong signatures of positive selection. Observation of adaptive evolution in several female reproductive tract proteins indicates they are active players in the evolution of reproductive tract interactions. Additionally, pervasive gene duplication, adaptive evolution, and rapid acquisition of a novel digestive function by the female reproductive tract points to a novel coevolutionary mechanism of ejaculate–female interaction. PMID:17784792

  6. Within-host co-evolution of chronic viruses and the adaptive immune system

    NASA Astrophysics Data System (ADS)

    Nourmohammad, Armita

    We normally think of evolution occurring in a population of organisms, in response to their external environment. Rapid evolution of cellular populations also occurs within our bodies, as the adaptive immune system works to eliminate infection. Some pathogens, such as HIV, are able to persist in a host for extended periods of time, during which they also evolve to evade the immune response. In this talk I will introduce an analytical framework for the rapid co-evolution of B-cell and viral populations, based on the molecular interactions between them. Since the co-evolution of antibodies and viruses is perpetually out of equilibrium, I will show how to quantify the amount of adaptation in each of the two populations by analysis of their co-evolutionary history. I will discuss the consequences of competition between lineages of antibodies, and characterize the fate of a given lineage dependent on the state of the antibody and viral populations. In particular, I will discuss the conditions for emergence of highly potent broadly neutralizing antibodies, which are now recognized as critical for designing an effective vaccine against HIV.

  7. The Structure and Evolution of Self-Gravitating Molecular Clouds

    NASA Astrophysics Data System (ADS)

    Holliman, John Herbert, II

    1995-01-01

    We present a theoretical formalism to evaluate the structure of molecular clouds and to determine precollapse conditions in star-forming regions. Models consist of pressure-bounded, self-gravitating spheres of a single -fluid ideal gas. We treat the case without rotation. The analysis is generalized to consider states in hydrostatic equilibrium maintained by multiple pressure components. Individual pressures vary with density as P_i(r) ~ rho^{gamma {rm p},i}(r), where gamma_{rm p},i is the polytropic index. Evolution depends additionally on whether conduction occurs on a dynamical time scale and on the adiabatic index gammai of each component, which is modified to account for the effects of any thermal coupling to the environment of the cloud. Special attention is given to properly representing the major contributors to dynamical support in molecular clouds: the pressures due to static magnetic fields, Alfven waves, and thermal motions. Straightforward adjustments to the model allow us to treat the intrinsically anisotropic support provided by the static fields. We derive structure equations, as well as perturbation equations for performing a linear stability analysis. The analysis provides insight on the nature of dynamical motions due to collapse from an equilibrium state and estimates the mass of condensed objects that form in such a process. After presenting a set of general results, we describe models of star-forming regions that include the major pressure components. We parameterize the extent of ambipolar diffusion. The analysis contributes to the physical understanding of several key results from observations of these regions. Commonly observed quantities are explicitly cross-referenced with model results. We theoretically determine density and linewidth profiles on scales ranging from that of molecular cloud cores to that of giant molecular clouds (GMCs). The model offers an explanation of the mean pressures in GMCs, which are observed to be high relative

  8. Elucidating the molecular architecture of adaptation via evolve and resequence experiments

    PubMed Central

    Long, Anthony; Liti, Gianni; Luptak, Andrej; Tenaillon, Olivier

    2016-01-01

    Evolve and resequence (E&R) experiments use experimental evolution to adapt populations to a novel environment, followed by next-generation sequencing. They enable molecular evolution to be monitored in real time at a genome-wide scale. We review the field of E&R experiments across diverse systems, ranging from simple non-living RNA to bacteria, yeast and complex multicellular Drosophila melanogaster. We explore how different evolutionary outcomes in these systems are largely consistent with common population genetics principles. Differences in outcomes across systems are largely explained by different: starting population sizes, levels of pre-existing genetic variation, recombination rates, and adaptive landscapes. We highlight emerging themes and inconsistencies that future experiments must address. PMID:26347030

  9. On the adaptivity and complexity embedded into differential evolution

    NASA Astrophysics Data System (ADS)

    Senkerik, Roman; Pluhacek, Michal; Zelinka, Ivan; Jasek, Roman

    2016-06-01

    This research deals with the comparison of the two modern approaches for evolutionary algorithms, which are the adaptivity and complex chaotic dynamics. This paper aims on the investigations on the chaos-driven Differential Evolution (DE) concept. This paper is aimed at the embedding of discrete dissipative chaotic systems in the form of chaotic pseudo random number generators for the DE and comparing the influence to the performance with the state of the art adaptive representative jDE. This research is focused mainly on the possible disadvantages and advantages of both compared approaches. Repeated simulations for Lozi map driving chaotic systems were performed on the simple benchmark functions set, which are more close to the real optimization problems. Obtained results are compared with the canonical not-chaotic and not adaptive DE. Results show that with used simple test functions, the performance of ChaosDE is better in the most cases than jDE and Canonical DE, furthermore due to the unique sequencing in CPRNG given by the hidden chaotic dynamics, thus better and faster selection of unique individuals from population, ChaosDE is faster.

  10. Adaptive network dynamics and evolution of leadership in collective migration

    NASA Astrophysics Data System (ADS)

    Pais, Darren; Leonard, Naomi E.

    2014-01-01

    The evolution of leadership in migratory populations depends not only on costs and benefits of leadership investments but also on the opportunities for individuals to rely on cues from others through social interactions. We derive an analytically tractable adaptive dynamic network model of collective migration with fast timescale migration dynamics and slow timescale adaptive dynamics of individual leadership investment and social interaction. For large populations, our analysis of bifurcations with respect to investment cost explains the observed hysteretic effect associated with recovery of migration in fragmented environments. Further, we show a minimum connectivity threshold above which there is evolutionary branching into leader and follower populations. For small populations, we show how the topology of the underlying social interaction network influences the emergence and location of leaders in the adaptive system. Our model and analysis can be extended to study the dynamics of collective tracking or collective learning more generally. Thus, this work may inform the design of robotic networks where agents use decentralized strategies that balance direct environmental measurements with agent interactions.

  11. Automatic Evolution of Molecular Nanotechnology Designs

    NASA Technical Reports Server (NTRS)

    Globus, Al; Lawton, John; Wipke, Todd; Saini, Subhash (Technical Monitor)

    1998-01-01

    This paper describes strategies for automatically generating designs for analog circuits at the molecular level. Software maps out the edges and vertices of potential nanotechnology systems on graphs, then selects appropriate ones through evolutionary or genetic paradigms.

  12. Molecular clouds. [significance in stellar evolution

    NASA Technical Reports Server (NTRS)

    Thaddeus, P.

    1977-01-01

    An attempt is made to understand star formation in the context of the dense interstellar molecular gas from which stars are made. Attention is given to how molecular observations (e.g., UV spectroscopy and radio 21-cm and recombination line observations) provide data on the physical state of the dense interstellar gas; observations of H II regions, stellar associations, and dark nebulae are discussed. CO clouds are studied with reference to radial velocity, temperature, density, ionization, magnetic field.

  13. Molecular evolution of the capsid gene in human norovirus genogroup II

    PubMed Central

    Kobayashi, Miho; Matsushima, Yuki; Motoya, Takumi; Sakon, Naomi; Shigemoto, Naoki; Okamoto-Nakagawa, Reiko; Nishimura, Koichi; Yamashita, Yasutaka; Kuroda, Makoto; Saruki, Nobuhiro; Ryo, Akihide; Saraya, Takeshi; Morita, Yukio; Shirabe, Komei; Ishikawa, Mariko; Takahashi, Tomoko; Shinomiya, Hiroto; Okabe, Nobuhiko; Nagasawa, Koo; Suzuki, Yoshiyuki; Katayama, Kazuhiko; Kimura, Hirokazu

    2016-01-01

    Capsid protein of norovirus genogroup II (GII) plays crucial roles in host infection. Although studies on capsid gene evolution have been conducted for a few genotypes of norovirus, the molecular evolution of norovirus GII is not well understood. Here we report the molecular evolution of all GII genotypes, using various bioinformatics techniques. The time-scaled phylogenetic tree showed that the present GII strains diverged from GIV around 1630CE at a high evolutionary rate (around 10−3 substitutions/site/year), resulting in three lineages. The GII capsid gene had large pairwise distances (maximum > 0.39). The effective population sizes of the present GII strains were large (>102) for about 400 years. Positive (20) and negative (over 450) selection sites were estimated. Moreover, some linear and conformational B-cell epitopes were found in the deduced GII capsid protein. These results suggested that norovirus GII strains rapidly evolved with high divergence and adaptation to humans. PMID:27384324

  14. Adaptive Evolution of the Myo6 Gene in Old World Fruit Bats (Family: Pteropodidae)

    PubMed Central

    Shen, Bin; Han, Xiuqun; Jones, Gareth; Rossiter, Stephen J.; Zhang, Shuyi

    2013-01-01

    Myosin VI (encoded by the Myo6 gene) is highly expressed in the inner and outer hair cells of the ear, retina, and polarized epithelial cells such as kidney proximal tubule cells and intestinal enterocytes. The Myo6 gene is thought to be involved in a wide range of physiological functions such as hearing, vision, and clathrin-mediated endocytosis. Bats (Chiroptera) represent one of the most fascinating mammal groups for molecular evolutionary studies of the Myo6 gene. A diversity of specialized adaptations occur among different bat lineages, such as echolocation and associated high-frequency hearing in laryngeal echolocating bats, large eyes and a strong dependence on vision in Old World fruit bats (Pteropodidae), and specialized high-carbohydrate but low-nitrogen diets in both Old World and New World fruit bats (Phyllostomidae). To investigate what role(s) the Myo6 gene might fulfill in bats, we sequenced the coding region of the Myo6 gene in 15 bat species and used molecular evolutionary analyses to detect evidence of positive selection in different bat lineages. We also conducted real-time PCR assays to explore the expression levels of Myo6 in a range of tissues from three representative bat species. Molecular evolutionary analyses revealed that the Myo6 gene, which was widely considered as a hearing gene, has undergone adaptive evolution in the Old World fruit bats which lack laryngeal echolocation and associated high-frequency hearing. Real-time PCR showed the highest expression level of the Myo6 gene in the kidney among ten tissues examined in three bat species, indicating an important role for this gene in kidney function. We suggest that Myo6 has undergone adaptive evolution in Old World fruit bats in relation to receptor-mediated endocytosis for the preservation of protein and essential nutrients. PMID:23620821

  15. Adaptive evolution of the myo6 gene in old world fruit bats (family: pteropodidae).

    PubMed

    Shen, Bin; Han, Xiuqun; Jones, Gareth; Rossiter, Stephen J; Zhang, Shuyi

    2013-01-01

    Myosin VI (encoded by the Myo6 gene) is highly expressed in the inner and outer hair cells of the ear, retina, and polarized epithelial cells such as kidney proximal tubule cells and intestinal enterocytes. The Myo6 gene is thought to be involved in a wide range of physiological functions such as hearing, vision, and clathrin-mediated endocytosis. Bats (Chiroptera) represent one of the most fascinating mammal groups for molecular evolutionary studies of the Myo6 gene. A diversity of specialized adaptations occur among different bat lineages, such as echolocation and associated high-frequency hearing in laryngeal echolocating bats, large eyes and a strong dependence on vision in Old World fruit bats (Pteropodidae), and specialized high-carbohydrate but low-nitrogen diets in both Old World and New World fruit bats (Phyllostomidae). To investigate what role(s) the Myo6 gene might fulfill in bats, we sequenced the coding region of the Myo6 gene in 15 bat species and used molecular evolutionary analyses to detect evidence of positive selection in different bat lineages. We also conducted real-time PCR assays to explore the expression levels of Myo6 in a range of tissues from three representative bat species. Molecular evolutionary analyses revealed that the Myo6 gene, which was widely considered as a hearing gene, has undergone adaptive evolution in the Old World fruit bats which lack laryngeal echolocation and associated high-frequency hearing. Real-time PCR showed the highest expression level of the Myo6 gene in the kidney among ten tissues examined in three bat species, indicating an important role for this gene in kidney function. We suggest that Myo6 has undergone adaptive evolution in Old World fruit bats in relation to receptor-mediated endocytosis for the preservation of protein and essential nutrients. PMID:23620821

  16. The Burmese python genome reveals the molecular basis for extreme adaptation in snakes.

    PubMed

    Castoe, Todd A; de Koning, A P Jason; Hall, Kathryn T; Card, Daren C; Schield, Drew R; Fujita, Matthew K; Ruggiero, Robert P; Degner, Jack F; Daza, Juan M; Gu, Wanjun; Reyes-Velasco, Jacobo; Shaney, Kyle J; Castoe, Jill M; Fox, Samuel E; Poole, Alex W; Polanco, Daniel; Dobry, Jason; Vandewege, Michael W; Li, Qing; Schott, Ryan K; Kapusta, Aurélie; Minx, Patrick; Feschotte, Cédric; Uetz, Peter; Ray, David A; Hoffmann, Federico G; Bogden, Robert; Smith, Eric N; Chang, Belinda S W; Vonk, Freek J; Casewell, Nicholas R; Henkel, Christiaan V; Richardson, Michael K; Mackessy, Stephen P; Bronikowski, Anne M; Bronikowsi, Anne M; Yandell, Mark; Warren, Wesley C; Secor, Stephen M; Pollock, David D

    2013-12-17

    Snakes possess many extreme morphological and physiological adaptations. Identification of the molecular basis of these traits can provide novel understanding for vertebrate biology and medicine. Here, we study snake biology using the genome sequence of the Burmese python (Python molurus bivittatus), a model of extreme physiological and metabolic adaptation. We compare the python and king cobra genomes along with genomic samples from other snakes and perform transcriptome analysis to gain insights into the extreme phenotypes of the python. We discovered rapid and massive transcriptional responses in multiple organ systems that occur on feeding and coordinate major changes in organ size and function. Intriguingly, the homologs of these genes in humans are associated with metabolism, development, and pathology. We also found that many snake metabolic genes have undergone positive selection, which together with the rapid evolution of mitochondrial proteins, provides evidence for extensive adaptive redesign of snake metabolic pathways. Additional evidence for molecular adaptation and gene family expansions and contractions is associated with major physiological and phenotypic adaptations in snakes; genes involved are related to cell cycle, development, lungs, eyes, heart, intestine, and skeletal structure, including GRB2-associated binding protein 1, SSH, WNT16, and bone morphogenetic protein 7. Finally, changes in repetitive DNA content, guanine-cytosine isochore structure, and nucleotide substitution rates indicate major shifts in the structure and evolution of snake genomes compared with other amniotes. Phenotypic and physiological novelty in snakes seems to be driven by system-wide coordination of protein adaptation, gene expression, and changes in the structure of the genome. PMID:24297902

  17. The Burmese python genome reveals the molecular basis for extreme adaptation in snakes

    PubMed Central

    Castoe, Todd A.; de Koning, A. P. Jason; Hall, Kathryn T.; Card, Daren C.; Schield, Drew R.; Fujita, Matthew K.; Ruggiero, Robert P.; Degner, Jack F.; Daza, Juan M.; Gu, Wanjun; Reyes-Velasco, Jacobo; Shaney, Kyle J.; Castoe, Jill M.; Fox, Samuel E.; Poole, Alex W.; Polanco, Daniel; Dobry, Jason; Vandewege, Michael W.; Li, Qing; Schott, Ryan K.; Kapusta, Aurélie; Minx, Patrick; Feschotte, Cédric; Uetz, Peter; Ray, David A.; Hoffmann, Federico G.; Bogden, Robert; Smith, Eric N.; Chang, Belinda S. W.; Vonk, Freek J.; Casewell, Nicholas R.; Henkel, Christiaan V.; Richardson, Michael K.; Mackessy, Stephen P.; Bronikowski, Anne M.; Yandell, Mark; Warren, Wesley C.; Secor, Stephen M.; Pollock, David D.

    2013-01-01

    Snakes possess many extreme morphological and physiological adaptations. Identification of the molecular basis of these traits can provide novel understanding for vertebrate biology and medicine. Here, we study snake biology using the genome sequence of the Burmese python (Python molurus bivittatus), a model of extreme physiological and metabolic adaptation. We compare the python and king cobra genomes along with genomic samples from other snakes and perform transcriptome analysis to gain insights into the extreme phenotypes of the python. We discovered rapid and massive transcriptional responses in multiple organ systems that occur on feeding and coordinate major changes in organ size and function. Intriguingly, the homologs of these genes in humans are associated with metabolism, development, and pathology. We also found that many snake metabolic genes have undergone positive selection, which together with the rapid evolution of mitochondrial proteins, provides evidence for extensive adaptive redesign of snake metabolic pathways. Additional evidence for molecular adaptation and gene family expansions and contractions is associated with major physiological and phenotypic adaptations in snakes; genes involved are related to cell cycle, development, lungs, eyes, heart, intestine, and skeletal structure, including GRB2-associated binding protein 1, SSH, WNT16, and bone morphogenetic protein 7. Finally, changes in repetitive DNA content, guanine-cytosine isochore structure, and nucleotide substitution rates indicate major shifts in the structure and evolution of snake genomes compared with other amniotes. Phenotypic and physiological novelty in snakes seems to be driven by system-wide coordination of protein adaptation, gene expression, and changes in the structure of the genome. PMID:24297902

  18. Adaptive modelling of structured molecular representations for toxicity prediction

    NASA Astrophysics Data System (ADS)

    Bertinetto, Carlo; Duce, Celia; Micheli, Alessio; Solaro, Roberto; Tiné, Maria Rosaria

    2012-12-01

    We investigated the possibility of modelling structure-toxicity relationships by direct treatment of the molecular structure (without using descriptors) through an adaptive model able to retain the appropriate structural information. With respect to traditional descriptor-based approaches, this provides a more general and flexible way to tackle prediction problems that is particularly suitable when little or no background knowledge is available. Our method employs a tree-structured molecular representation, which is processed by a recursive neural network (RNN). To explore the realization of RNN modelling in toxicological problems, we employed a data set containing growth impairment concentrations (IGC50) for Tetrahymena pyriformis.

  19. Dual-phase evolution in complex adaptive systems

    PubMed Central

    Paperin, Greg; Green, David G.; Sadedin, Suzanne

    2011-01-01

    Understanding the origins of complexity is a key challenge in many sciences. Although networks are known to underlie most systems, showing how they contribute to well-known phenomena remains an issue. Here, we show that recurrent phase transitions in network connectivity underlie emergent phenomena in many systems. We identify properties that are typical of systems in different connectivity phases, as well as characteristics commonly associated with the phase transitions. We synthesize these common features into a common framework, which we term dual-phase evolution (DPE). Using this framework, we review the literature from several disciplines to show that recurrent connectivity phase transitions underlie the complex properties of many biological, physical and human systems. We argue that the DPE framework helps to explain many complex phenomena, including perpetual novelty, modularity, scale-free networks and criticality. Our review concludes with a discussion of the way DPE relates to other frameworks, in particular, self-organized criticality and the adaptive cycle. PMID:21247947

  20. Comparative genomics reveals insights into avian genome evolution and adaptation

    PubMed Central

    Zhang, Guojie; Li, Cai; Li, Qiye; Li, Bo; Larkin, Denis M.; Lee, Chul; Storz, Jay F.; Antunes, Agostinho; Greenwold, Matthew J.; Meredith, Robert W.; Ödeen, Anders; Cui, Jie; Zhou, Qi; Xu, Luohao; Pan, Hailin; Wang, Zongji; Jin, Lijun; Zhang, Pei; Hu, Haofu; Yang, Wei; Hu, Jiang; Xiao, Jin; Yang, Zhikai; Liu, Yang; Xie, Qiaolin; Yu, Hao; Lian, Jinmin; Wen, Ping; Zhang, Fang; Li, Hui; Zeng, Yongli; Xiong, Zijun; Liu, Shiping; Zhou, Long; Huang, Zhiyong; An, Na; Wang, Jie; Zheng, Qiumei; Xiong, Yingqi; Wang, Guangbiao; Wang, Bo; Wang, Jingjing; Fan, Yu; da Fonseca, Rute R.; Alfaro-Núñez, Alonzo; Schubert, Mikkel; Orlando, Ludovic; Mourier, Tobias; Howard, Jason T.; Ganapathy, Ganeshkumar; Pfenning, Andreas; Whitney, Osceola; Rivas, Miriam V.; Hara, Erina; Smith, Julia; Farré, Marta; Narayan, Jitendra; Slavov, Gancho; Romanov, Michael N; Borges, Rui; Machado, João Paulo; Khan, Imran; Springer, Mark S.; Gatesy, John; Hoffmann, Federico G.; Opazo, Juan C.; Håstad, Olle; Sawyer, Roger H.; Kim, Heebal; Kim, Kyu-Won; Kim, Hyeon Jeong; Cho, Seoae; Li, Ning; Huang, Yinhua; Bruford, Michael W.; Zhan, Xiangjiang; Dixon, Andrew; Bertelsen, Mads F.; Derryberry, Elizabeth; Warren, Wesley; Wilson, Richard K; Li, Shengbin; Ray, David A.; Green, Richard E.; O’Brien, Stephen J.; Griffin, Darren; Johnson, Warren E.; Haussler, David; Ryder, Oliver A.; Willerslev, Eske; Graves, Gary R.; Alström, Per; Fjeldså, Jon; Mindell, David P.; Edwards, Scott V.; Braun, Edward L.; Rahbek, Carsten; Burt, David W.; Houde, Peter; Zhang, Yong; Yang, Huanming; Wang, Jian; Jarvis, Erich D.; Gilbert, M. Thomas P.; Wang, Jun

    2015-01-01

    Birds are the most species-rich class of tetrapod vertebrates and have wide relevance across many research fields. We explored bird macroevolution using full genomes from 48 avian species representing all major extant clades. The avian genome is principally characterized by its constrained size, which predominantly arose because of lineage-specific erosion of repetitive elements, large segmental deletions, and gene loss. Avian genomes furthermore show a remarkably high degree of evolutionary stasis at the levels of nucleotide sequence, gene synteny, and chromosomal structure. Despite this pattern of conservation, we detected many non-neutral evolutionary changes in protein-coding genes and noncoding regions. These analyses reveal that pan-avian genomic diversity covaries with adaptations to different lifestyles and convergent evolution of traits. PMID:25504712

  1. Comparative genomics reveals insights into avian genome evolution and adaptation.

    PubMed

    Zhang, Guojie; Li, Cai; Li, Qiye; Li, Bo; Larkin, Denis M; Lee, Chul; Storz, Jay F; Antunes, Agostinho; Greenwold, Matthew J; Meredith, Robert W; Ödeen, Anders; Cui, Jie; Zhou, Qi; Xu, Luohao; Pan, Hailin; Wang, Zongji; Jin, Lijun; Zhang, Pei; Hu, Haofu; Yang, Wei; Hu, Jiang; Xiao, Jin; Yang, Zhikai; Liu, Yang; Xie, Qiaolin; Yu, Hao; Lian, Jinmin; Wen, Ping; Zhang, Fang; Li, Hui; Zeng, Yongli; Xiong, Zijun; Liu, Shiping; Zhou, Long; Huang, Zhiyong; An, Na; Wang, Jie; Zheng, Qiumei; Xiong, Yingqi; Wang, Guangbiao; Wang, Bo; Wang, Jingjing; Fan, Yu; da Fonseca, Rute R; Alfaro-Núñez, Alonzo; Schubert, Mikkel; Orlando, Ludovic; Mourier, Tobias; Howard, Jason T; Ganapathy, Ganeshkumar; Pfenning, Andreas; Whitney, Osceola; Rivas, Miriam V; Hara, Erina; Smith, Julia; Farré, Marta; Narayan, Jitendra; Slavov, Gancho; Romanov, Michael N; Borges, Rui; Machado, João Paulo; Khan, Imran; Springer, Mark S; Gatesy, John; Hoffmann, Federico G; Opazo, Juan C; Håstad, Olle; Sawyer, Roger H; Kim, Heebal; Kim, Kyu-Won; Kim, Hyeon Jeong; Cho, Seoae; Li, Ning; Huang, Yinhua; Bruford, Michael W; Zhan, Xiangjiang; Dixon, Andrew; Bertelsen, Mads F; Derryberry, Elizabeth; Warren, Wesley; Wilson, Richard K; Li, Shengbin; Ray, David A; Green, Richard E; O'Brien, Stephen J; Griffin, Darren; Johnson, Warren E; Haussler, David; Ryder, Oliver A; Willerslev, Eske; Graves, Gary R; Alström, Per; Fjeldså, Jon; Mindell, David P; Edwards, Scott V; Braun, Edward L; Rahbek, Carsten; Burt, David W; Houde, Peter; Zhang, Yong; Yang, Huanming; Wang, Jian; Jarvis, Erich D; Gilbert, M Thomas P; Wang, Jun

    2014-12-12

    Birds are the most species-rich class of tetrapod vertebrates and have wide relevance across many research fields. We explored bird macroevolution using full genomes from 48 avian species representing all major extant clades. The avian genome is principally characterized by its constrained size, which predominantly arose because of lineage-specific erosion of repetitive elements, large segmental deletions, and gene loss. Avian genomes furthermore show a remarkably high degree of evolutionary stasis at the levels of nucleotide sequence, gene synteny, and chromosomal structure. Despite this pattern of conservation, we detected many non-neutral evolutionary changes in protein-coding genes and noncoding regions. These analyses reveal that pan-avian genomic diversity covaries with adaptations to different lifestyles and convergent evolution of traits. PMID:25504712

  2. Adaptive gains through repeated gene loss: parallel evolution of cyanogenesis polymorphisms in the genus Trifolium (Fabaceae)

    PubMed Central

    Olsen, Kenneth M.; Kooyers, Nicholas J.; Small, Linda L.

    2014-01-01

    Variation in cyanogenesis (hydrogen cyanide release following tissue damage) was first noted in populations of white clover more than a century ago, and subsequent decades of research have established this system as a classic example of an adaptive chemical defence polymorphism. Here, we document polymorphisms for cyanogenic components in several relatives of white clover, and we determine the molecular basis of this trans-specific adaptive variation. One hundred and thirty-nine plants, representing 13 of the 14 species within Trifolium section Trifoliastrum, plus additional species across the genus, were assayed for cyanogenic components (cyanogenic glucosides and their hydrolysing enzyme, linamarase) and for the presence of underlying cyanogenesis genes (CYP79D15 and Li, respectively). One or both cyanogenic components were detected in seven species, all within section Trifoliastrum; polymorphisms for the presence/absence (PA) of components were detected in six species. In a pattern that parallels our previous findings for white clover, all observed biochemical polymorphisms correspond to gene PA polymorphisms at CYP79D15 and Li. Relationships of DNA sequence haplotypes at the cyanogenesis loci and flanking genomic regions suggest independent evolution of gene deletions within species. This study thus provides evidence for the parallel evolution of adaptive biochemical polymorphisms through recurrent gene deletions in multiple species. PMID:24958921

  3. Molecular phylogeny analysis of fiddler crabs: test of the hypothesis of increasing behavioral complexity in evolution.

    PubMed Central

    Sturmbauer, C; Levinton, J S; Christy, J

    1996-01-01

    The current phylogenetic hypothesis for the evolution and biogeography of fiddler crabs relies on the assumption that complex behavioral traits are assumed to also be evolutionary derived. Indo-west Pacific fiddler crabs have simpler reproductive social behavior and are more marine and were thought to be ancestral to the more behaviorally complex and more terrestrial American species. It was also hypothesized that the evolution of more complex social and reproductive behavior was associated with the colonization of the higher intertidal zones. Our phylogenetic analysis, based upon a set of independent molecular characters, however, demonstrates how widely entrenched ideas about evolution and biogeography led to a reasonable, but apparently incorrect, conclusion about the evolutionary trends within this pantropical group of crustaceans. Species bearing the set of "derived traits" are phylogenetically ancestral, suggesting an alternative evolutionary scenario: the evolution of reproductive behavioral complexity in fiddler crabs may have arisen multiple times during their evolution. The evolution of behavioral complexity may have arisen by coopting of a series of other adaptations for high intertidal living and antipredator escape. A calibration of rates of molecular evolution from populations on either side of the Isthmus of Panama suggest a sequence divergence rate for 16S rRNA of 0.9% per million years. The divergence between the ancestral clade and derived forms is estimated to be approximately 22 million years ago, whereas the divergence between the American and Indo-west Pacific is estimated to be approximately 17 million years ago. Images Fig. 1 PMID:11607711

  4. Adaptive evolution of facial colour patterns in Neotropical primates

    PubMed Central

    Santana, Sharlene E.; Lynch Alfaro, Jessica; Alfaro, Michael E.

    2012-01-01

    The rich diversity of primate faces has interested naturalists for over a century. Researchers have long proposed that social behaviours have shaped the evolution of primate facial diversity. However, the primate face constitutes a unique structure where the diverse and potentially competing functions of communication, ecology and physiology intersect, and the major determinants of facial diversity remain poorly understood. Here, we provide the first evidence for an adaptive role of facial colour patterns and pigmentation within Neotropical primates. Consistent with the hypothesis that facial patterns function in communication and species recognition, we find that species living in smaller groups and in sympatry with a higher number of congener species have evolved more complex patterns of facial colour. The evolution of facial pigmentation and hair length is linked to ecological factors, and ecogeographical rules related to UV radiation and thermoregulation are met by some facial regions. Our results demonstrate the interaction of behavioural and ecological factors in shaping one of the most outstanding facial diversities of any mammalian lineage. PMID:22237906

  5. Molecular evolution in food allergy diagnosis.

    PubMed

    Barocci, Fiorella; DE Amici, Mara; Marseglia, Gian L

    2016-10-01

    Traditional allergological diagnostics often provide laboratory data that seem to correspond with similar positive results in different patients. However, with technological developments and the introduction of molecular diagnostics, it is possible to extract and highlight the differences in the serological laboratory data, to obtain detailed specificity on the various allergen components in different clinical settings. Allergological diagnostics prove to be increasingly useful in accurately distinguishing "cross-reactivity" and "cosensitization". This aspect is very important especially in patients who are, with a traditional diagnosis, polysensitized. Molecular diagnosis in allergology has expanded its range of applications thanks to the ability to IgE dose specific (in addition to classic total IgE serum) not only to allergens, food and inhalants, but also to the individual protein components which make up the allergenic source. It is essential to establish a correct diagnosis in order to determine the appropriate therapy. Therefore it is crucial to discern whether a patient is truly allergic because he presents specific IgE for molecules of a species or if the positivity is given from the structural homology between the different proteins. Molecular diagnostics emerges as a valuable tool for the discrimination of allergic patients and to differentiate between "true allergies" and "cross-reactivity". Molecular diagnostics should be used in a targeted manner for an accurate assessment and diagnosis, which would also reduce the use of oral challenges, to predict severe reactions and allergy persistence. PMID:26091488

  6. Adaptive Evolution of Synthetic Cooperating Communities Improves Growth Performance

    PubMed Central

    Zhang, Xiaolin; Reed, Jennifer L.

    2014-01-01

    Symbiotic interactions between organisms are important for human health and biotechnological applications. Microbial mutualism is a widespread phenomenon and is important in maintaining natural microbial communities. Although cooperative interactions are prevalent in nature, little is known about the processes that allow their initial establishment, govern population dynamics and affect evolutionary processes. To investigate cooperative interactions between bacteria, we constructed, characterized, and adaptively evolved a synthetic community comprised of leucine and lysine Escherichia coli auxotrophs. The co-culture can grow in glucose minimal medium only if the two auxotrophs exchange essential metabolites — lysine and leucine (or its precursors). Our experiments showed that a viable co-culture using these two auxotrophs could be established and adaptively evolved to increase growth rates (by ∼3 fold) and optical densities. While independently evolved co-cultures achieved similar improvements in growth, they took different evolutionary trajectories leading to different community compositions. Experiments with individual isolates from these evolved co-cultures showed that changes in both the leucine and lysine auxotrophs improved growth of the co-culture. Interestingly, while evolved isolates increased growth of co-cultures, they exhibited decreased growth in mono-culture (in the presence of leucine or lysine). A genome-scale metabolic model of the co-culture was also constructed and used to investigate the effects of amino acid (leucine or lysine) release and uptake rates on growth and composition of the co-culture. When the metabolic model was constrained by the estimated leucine and lysine release rates, the model predictions agreed well with experimental growth rates and composition measurements. While this study and others have focused on cooperative interactions amongst community members, the adaptive evolution of communities with other types of

  7. Molecular evolution of the vertebrate mechanosensory cell and ear

    PubMed Central

    Fritzsch, Bernd; Beisel, Kirk W.; Pauley, Sarah; Soukup, Garrett

    2014-01-01

    The molecular basis of mechanosensation, mechanosensory cell development and mechanosensory organ development is reviewed with an emphasis on its evolution. In contrast to eye evolution and development, which apparently modified a genetic program through intercalation of genes between the master control genes on the top (Pax6, Eya1, Six1) of the hierarchy and the structural genes (rhodopsin) at the bottom, the as yet molecularly unknown mechanosensory channel precludes such a firm conclusion for mechanosensors. However, recent years have seen the identification of several structural genes which are involved in mechanosensory tethering and several transcription factors controlling mechanosensory cell and organ development; these warrant the interpretation of available data in very much the same fashion as for eye evolution: molecular homology combined with potential morphological parallelism. This assertion of molecular homology is strongly supported by recent findings of a highly conserved set of microRNAs that appear to be associated with mechanosensory cell development across phyla. The conservation of transcription factors and their regulators fits very well to the known or presumed mechanosensory specializations which can be mostly grouped as variations of a common cellular theme. Given the widespread distribution of the molecular ability to form mechanosensory cells, it comes as no surprise that structurally different mechanosensory organs evolved in different phyla, presenting a variation of a common theme specified by a conserved set of transcription factors in their cellular development. Within vertebrates and arthropods, some mechanosensory organs evolved into auditory organs, greatly increasing sensitivity to sound through modifications of accessory structures to direct sound to the specific sensory epithelia. However, while great attention has been paid to the evolution of these accessory structures in vertebrate fossils, comparatively less attention has

  8. Back to Water: Signature of Adaptive Evolution in Cetacean Mitochondrial tRNAs.

    PubMed

    Montelli, Stefano; Peruffo, Antonella; Patarnello, Tomaso; Cozzi, Bruno; Negrisolo, Enrico

    2016-01-01

    The mitochondrion is the power plant of the eukaryotic cell, and tRNAs are the fundamental components of its translational machinery. In the present paper, the evolution of mitochondrial tRNAs was investigated in the Cetacea, a clade of Cetartiodactyla that retuned to water and thus had to adapt its metabolism to a different medium than that of its mainland ancestors. Our analysis focussed on identifying the factors that influenced the evolution of Cetacea tRNA double-helix elements, which play a pivotal role in the formation of the secondary and tertiary structures of each tRNA and consequently manipulate the whole translation machinery of the mitochondrion. Our analyses showed that the substitution pathways in the stems of different tRNAs were influenced by various factors, determining a molecular evolution that was unique to each of the 22 tRNAs. Our data suggested that the composition, AT-skew, and GC-skew of the tRNA stems were the main factors influencing the substitution process. In particular, the range of variation and the fluctuation of these parameters affected the fate of single tRNAs. Strong heterogeneity was observed among the different species of Cetacea. Finally, it appears that the evolution of mitochondrial tRNAs was also shaped by the environments in which the Cetacean taxa differentiated. This latter effect was particularly evident in toothed whales that either live in freshwater or are deep divers. PMID:27336480

  9. Back to Water: Signature of Adaptive Evolution in Cetacean Mitochondrial tRNAs

    PubMed Central

    Patarnello, Tomaso; Cozzi, Bruno; Negrisolo, Enrico

    2016-01-01

    The mitochondrion is the power plant of the eukaryotic cell, and tRNAs are the fundamental components of its translational machinery. In the present paper, the evolution of mitochondrial tRNAs was investigated in the Cetacea, a clade of Cetartiodactyla that retuned to water and thus had to adapt its metabolism to a different medium than that of its mainland ancestors. Our analysis focussed on identifying the factors that influenced the evolution of Cetacea tRNA double-helix elements, which play a pivotal role in the formation of the secondary and tertiary structures of each tRNA and consequently manipulate the whole translation machinery of the mitochondrion. Our analyses showed that the substitution pathways in the stems of different tRNAs were influenced by various factors, determining a molecular evolution that was unique to each of the 22 tRNAs. Our data suggested that the composition, AT-skew, and GC-skew of the tRNA stems were the main factors influencing the substitution process. In particular, the range of variation and the fluctuation of these parameters affected the fate of single tRNAs. Strong heterogeneity was observed among the different species of Cetacea. Finally, it appears that the evolution of mitochondrial tRNAs was also shaped by the environments in which the Cetacean taxa differentiated. This latter effect was particularly evident in toothed whales that either live in freshwater or are deep divers. PMID:27336480

  10. Slow rate of molecular evolution in high-elevation hummingbirds.

    PubMed

    Bleiweiss, R

    1998-01-20

    Estimates of relative rates of molecular evolution from a DNA-hybridization phylogeny for 26 hummingbird species provide evidence for a negative association between elevation and rate of single-copy genome evolution. This effect of elevation on rate remains significant even after taking into account a significant negative association between body mass and molecular rate. Population-level processes do not appear to account for these patterns because (i) all hummingbirds breed within their first year and (ii) the more extensive subdivision and speciation of bird populations living at high elevations predicts a positive association between elevation and rate. The negative association between body mass and molecular rate in other organisms has been attributed to higher mutation rates in forms with higher oxidative metabolism. As ambient oxygen tensions and temperature decrease with elevation, the slow rate of molecular evolution in high-elevation hummingbirds also may have a metabolic basis. A slower rate of single-copy DNA change at higher elevations suggests that the dynamics of molecular evolution cannot be separated from the environmental context. PMID:9435240

  11. Molecular and ecological signs of mitochondrial adaptation: consequences for introgression?

    PubMed Central

    Boratyński, Z; Melo-Ferreira, J; Alves, P C; Berto, S; Koskela, E; Pentikäinen, O T; Tarroso, P; Ylilauri, M; Mappes, T

    2014-01-01

    The evolution of the mitochondrial genome and its potential adaptive impact still generates vital debates. Even if mitochondria have a crucial functional role, as they are the main cellular energy suppliers, mitochondrial DNA (mtDNA) introgression is common in nature, introducing variation in populations upon which selection may act. Here we evaluated whether the evolution of mtDNA in a rodent species affected by mtDNA introgression is explained by neutral expectations alone. Variation in one mitochondrial and six nuclear markers in Myodes glareolus voles was examined, including populations that show mtDNA introgression from its close relative, Myodes rutilus. In addition, we modelled protein structures of the mtDNA marker (cytochrome b) and estimated the environmental envelopes of mitotypes. We found that massive mtDNA introgression occurred without any trace of introgression in the analysed nuclear genes. The results show that the native glareolus mtDNA evolved under past positive selection, suggesting that mtDNA in this system has selective relevance. The environmental models indicate that the rutilus mitotype inhabits colder and drier habitats than the glareolus one that can result from local adaptation or from the geographic context of introgression. Finally, homology models of the cytochrome b protein revealed a substitution in rutilus mtDNA in the vicinity of the catalytic fraction, suggesting that differences between mitotypes may result in functional changes. These results suggest that the evolution of mtDNA in Myodes may have functional, ecological and adaptive significance. This work opens perspective onto future experimental tests of the role of natural selection in mtDNA introgression in this system. PMID:24690754

  12. Molecular and ecological signs of mitochondrial adaptation: consequences for introgression?

    PubMed

    Boratyński, Z; Melo-Ferreira, J; Alves, P C; Berto, S; Koskela, E; Pentikäinen, O T; Tarroso, P; Ylilauri, M; Mappes, T

    2014-10-01

    The evolution of the mitochondrial genome and its potential adaptive impact still generates vital debates. Even if mitochondria have a crucial functional role, as they are the main cellular energy suppliers, mitochondrial DNA (mtDNA) introgression is common in nature, introducing variation in populations upon which selection may act. Here we evaluated whether the evolution of mtDNA in a rodent species affected by mtDNA introgression is explained by neutral expectations alone. Variation in one mitochondrial and six nuclear markers in Myodes glareolus voles was examined, including populations that show mtDNA introgression from its close relative, Myodes rutilus. In addition, we modelled protein structures of the mtDNA marker (cytochrome b) and estimated the environmental envelopes of mitotypes. We found that massive mtDNA introgression occurred without any trace of introgression in the analysed nuclear genes. The results show that the native glareolus mtDNA evolved under past positive selection, suggesting that mtDNA in this system has selective relevance. The environmental models indicate that the rutilus mitotype inhabits colder and drier habitats than the glareolus one that can result from local adaptation or from the geographic context of introgression. Finally, homology models of the cytochrome b protein revealed a substitution in rutilus mtDNA in the vicinity of the catalytic fraction, suggesting that differences between mitotypes may result in functional changes. These results suggest that the evolution of mtDNA in Myodes may have functional, ecological and adaptive significance. This work opens perspective onto future experimental tests of the role of natural selection in mtDNA introgression in this system. PMID:24690754

  13. Genetic constraints on adaptive evolution in principle and in practice

    NASA Astrophysics Data System (ADS)

    Weinreich, Daniel

    2014-03-01

    Geneticists have long recognized that pairs of mutations often produce surprising effects on the organism, given their effects in isolation. Such mutational interactions are called epistasis. Importantly, epistasis among mutations influencing an organism's survival or reproductive success can constrain the temporal order in which mutations will be favored by natural selection. After exploring these theoretical considerations more fully, we will demonstrate substantial epistatic constraint on the evolution of an enzyme that confers bacterial antibiotic resistance. Such epistatically induced constraints turn out to be rather common in enzyme evolution, and we will briefly discuss recent work that seeks to explicate its mechanistic basis using methods of molecular and structural biology. Finally we observe that the epistatic interaction between two mutations itself often varies with genetic context, implying the existence of higher-order interactions. We present a computational framework for assessing magnitude of epistatic interactions of all orders, and show that non-negligible epistatic interactions of all orders are common in a diverse set of biological systems. Work supported by NIGMS Award R01GM095728 and NSF Emerging Frontiers Award 1038657

  14. A half-century after the molecular clock: new dimensions of molecular evolution.

    PubMed

    Koonin, Eugene V

    2012-08-01

    The EMBO workshop on 'Evolution in the Time of Genomics' took place in May 2012 in the magnificent sixteenth century Palazzo Franchetti near Ponte dell'Accademia in Venice. The meeting focused on phenomena that are not part of the traditional narrative of molecular evolution and which might signal a paradigm shift in the field. PMID:22791022

  15. Cellular and molecular aspects of plant adaptation to microgravity

    NASA Astrophysics Data System (ADS)

    Kordyum, Elizabeth; Kozeko, Liudmyla

    2016-07-01

    Elucidation of the range and mechanisms of the biological effects of microgravity is one of the urgent fundamental tasks of space and gravitational biology. The absence of forbidding on plant growth and development in orbital flight allows studying different aspects of plant adaptation to this factor that is directly connected with development of the technologies of bioregenerative life-support systems. Microgravity belongs to the environmental factors which cause adaptive reactions at the cellular and molecular levels in the range of physiological responses in the framework of genetically determined program of ontogenesis. It is known that cells of a multicellular organism not only take part in reactions of the organism but also carry out processes that maintain their integrity. In light of these principles, the problem of identification of biochemical, physiological and structural patterns that can have adaptive significance at the cellular and molecular levels in real and simulated microgravity is considered. It is pointed that plant cell responses in microgravity and under clinorotation vary according to growth phase, physiological state, and taxonomic position of the object. At the same time, the responses have, to some degree, a similar character reflecting the changes in the cell organelle functional load. The maintenance of the plasmalemma fluidity at the certain level, an activation of both the antioxidant system and expression of HSP genes, especially HSP70, under increasing reactive oxygen species, lipid peroxidation intensity and alteration in protein homeostasis, are a strategic paradigm of rapid (primary) cell adaptation to microgravity. In this sense, biological membranes, especially plasmalemma, and their properties and functions may be considered as the most sensitive indicators of the influence of gravity or altered gravity on a cell. The plasmalemma lipid bilayer is a border between the cell internal content and environment, so it is a mediator

  16. Molecular evolution of GPCRs: Ghrelin/ghrelin receptors.

    PubMed

    Kaiya, Hiroyuki; Kangawa, Kenji; Miyazato, Mikiya

    2014-06-01

    After the discovery in 1996 of the GH secretagogue-receptor type-1a (GHS-R1a) as an orphan G-protein coupled receptor, many research groups attempted to identify the endogenous ligand. Finally, Kojima and colleagues successfully isolated the peptide ligand from rat stomach extracts, determined its structure, and named it ghrelin. The GHS-R1a is now accepted to be the ghrelin receptor. The existence of the ghrelin system has been demonstrated in many animal classes through biochemical and molecular biological strategies as well as through genome projects. Our work, focused on identifying the ghrelin receptor and its ligand ghrelin in laboratory animals, particularly nonmammalian vertebrates, has provided new insights into the molecular evolution of the ghrelin receptor. In mammals, it is assumed that the ghrelin receptor evolution is in line with the plate tectonics theory. In contrast, the evolution of the ghrelin receptor in nonmammalian vertebrates differs from that of mammals: multiplicity of the ghrelin receptor isoforms is observed in nonmammalian vertebrates only. This multiplicity is due to genome duplication and polyploidization events that particularly occurred in Teleostei. Furthermore, it is likely that the evolution of the ghrelin receptor is distinct from that of its ligand, ghrelin, because only one ghrelin isoform has been detected in all species examined so far. In this review, we summarize current knowledge related to the molecular evolution of the ghrelin receptor in mammalian and nonmammalian vertebrates. PMID:24353285

  17. The Jukes-Cantor Model of Molecular Evolution

    ERIC Educational Resources Information Center

    Erickson, Keith

    2010-01-01

    The material in this module introduces students to some of the mathematical tools used to examine molecular evolution. This topic is standard fare in many mathematical biology or bioinformatics classes, but could also be suitable for classes in linear algebra or probability. While coursework in matrix algebra, Markov processes, Monte Carlo…

  18. Cellular and molecular aspects of plant adaptation to microgravity

    NASA Astrophysics Data System (ADS)

    Kordyum, Elizabeth; Kozeko, Liudmyla

    2016-07-01

    Elucidation of the range and mechanisms of the biological effects of microgravity is one of the urgent fundamental tasks of space and gravitational biology. The absence of forbidding on plant growth and development in orbital flight allows studying different aspects of plant adaptation to this factor that is directly connected with development of the technologies of bioregenerative life-support systems. Microgravity belongs to the environmental factors which cause adaptive reactions at the cellular and molecular levels in the range of physiological responses in the framework of genetically determined program of ontogenesis. It is known that cells of a multicellular organism not only take part in reactions of the organism but also carry out processes that maintain their integrity. In light of these principles, the problem of identification of biochemical, physiological and structural patterns that can have adaptive significance at the cellular and molecular levels in real and simulated microgravity is considered. It is pointed that plant cell responses in microgravity and under clinorotation vary according to growth phase, physiological state, and taxonomic position of the object. At the same time, the responses have, to some degree, a similar character reflecting the changes in the cell organelle functional load. The maintenance of the plasmalemma fluidity at the certain level, an activation of both the antioxidant system and expression of HSP genes, especially HSP70, under increasing reactive oxygen species, lipid peroxidation intensity and alteration in protein homeostasis, are a strategic paradigm of rapid (primary) cell adaptation to microgravity. In this sense, biological membranes, especially plasmalemma, and their properties and functions may be considered as the most sensitive indicators of the influence of gravity or altered gravity on a cell. The plasmalemma lipid bilayer is a border between the cell internal content and environment, so it is a mediator

  19. A parallel adaptive finite element simplified spherical harmonics approximation solver for frequency domain fluorescence molecular imaging.

    PubMed

    Lu, Yujie; Zhu, Banghe; Shen, Haiou; Rasmussen, John C; Wang, Ge; Sevick-Muraca, Eva M

    2010-08-21

    Fluorescence molecular imaging/tomography may play an important future role in preclinical research and clinical diagnostics. Time- and frequency-domain fluorescence imaging can acquire more measurement information than the continuous wave (CW) counterpart, improving the image quality of fluorescence molecular tomography. Although diffusion approximation (DA) theory has been extensively applied in optical molecular imaging, high-order photon migration models need to be further investigated to match quantitation provided by nuclear imaging. In this paper, a frequency-domain parallel adaptive finite element solver is developed with simplified spherical harmonics (SP(N)) approximations. To fully evaluate the performance of the SP(N) approximations, a fast time-resolved tetrahedron-based Monte Carlo fluorescence simulator suitable for complex heterogeneous geometries is developed using a convolution strategy to realize the simulation of the fluorescence excitation and emission. The validation results show that high-order SP(N) can effectively correct the modeling errors of the diffusion equation, especially when the tissues have high absorption characteristics or when high modulation frequency measurements are used. Furthermore, the parallel adaptive mesh evolution strategy improves the modeling precision and the simulation speed significantly on a realistic digital mouse phantom. This solver is a promising platform for fluorescence molecular tomography using high-order approximations to the radiative transfer equation. PMID:20671350

  20. Molecular clocks and the early evolution of metazoan nervous systems.

    PubMed

    Wray, Gregory A

    2015-12-19

    The timing of early animal evolution remains poorly resolved, yet remains critical for understanding nervous system evolution. Methods for estimating divergence times from sequence data have improved considerably, providing a more refined understanding of key divergences. The best molecular estimates point to the origin of metazoans and bilaterians tens to hundreds of millions of years earlier than their first appearances in the fossil record. Both the molecular and fossil records are compatible, however, with the possibility of tiny, unskeletonized, low energy budget animals during the Proterozoic that had planktonic, benthic, or meiofaunal lifestyles. Such animals would likely have had relatively simple nervous systems equipped primarily to detect food, avoid inhospitable environments and locate mates. The appearance of the first macropredators during the Cambrian would have changed the selective landscape dramatically, likely driving the evolution of complex sense organs, sophisticated sensory processing systems, and diverse effector systems involved in capturing prey and avoiding predation. PMID:26554040

  1. Witnessing Phenotypic and Molecular Evolution in the Fruit Fly.

    PubMed

    Heil, Caiti S S; Hunter, Mika J; Noor, Juliet Kf; Miglia, Kathleen; Manzano-Winkler, Brenda; McDermott, Shannon R; Noor, Mohamed Af

    2012-12-01

    This multi-day exercise is designed for a college Genetics and Evolution laboratory to demonstrate concepts of inheritance and phenotypic and molecular evolution using a live model organism, Drosophila simulans. Students set up an experimental fruit fly population consisting of ten white eyed flies and one red eyed fly. Having red eyes is advantageous compared to having white eyes, allowing students to track the spread of this advantageous trait over several generations. Ultimately, the students perform PCR and gel electrophoresis at two neutral markers, one located in close proximity to the eye-color locus, and one located at the other end of the chromosome. Students observe that most flies have red eyes, and these red-eyed flies have lost variation at the near marker, but maintained variation at the far marker, hence observing a "selective sweep" and the "hitchhiking" of a nearby neutral variant. Students literally observe phenotypic and molecular evolution in their classroom! PMID:23459154

  2. Evolution of time-keeping mechanisms: early emergence and adaptation to photoperiod

    PubMed Central

    Hut, R. A.; Beersma, D. G. M.

    2011-01-01

    Virtually all species have developed cellular oscillations and mechanisms that synchronize these cellular oscillations to environmental cycles. Such environmental cycles in biotic (e.g. food availability and predation risk) or abiotic (e.g. temperature and light) factors may occur on a daily, annual or tidal time scale. Internal timing mechanisms may facilitate behavioural or physiological adaptation to such changes in environmental conditions. These timing mechanisms commonly involve an internal molecular oscillator (a ‘clock’) that is synchronized (‘entrained’) to the environmental cycle by receptor mechanisms responding to relevant environmental signals (‘Zeitgeber’, i.e. German for time-giver). To understand the evolution of such timing mechanisms, we have to understand the mechanisms leading to selective advantage. Although major advances have been made in our understanding of the physiological and molecular mechanisms driving internal cycles (proximate questions), studies identifying mechanisms of natural selection on clock systems (ultimate questions) are rather limited. Here, we discuss the selective advantage of a circadian system and how its adaptation to day length variation may have a functional role in optimizing seasonal timing. We discuss various cases where selective advantages of circadian timing mechanisms have been shown and cases where temporarily loss of circadian timing may cause selective advantage. We suggest an explanation for why a circadian timing system has emerged in primitive life forms like cyanobacteria and we evaluate a possible molecular mechanism that enabled these bacteria to adapt to seasonal variation in day length. We further discuss how the role of the circadian system in photoperiodic time measurement may explain differential selection pressures on circadian period when species are exposed to changing climatic conditions (e.g. global warming) or when they expand their geographical range to different latitudes or

  3. Epigenetics in adaptive evolution and development: the interplay between evolving species and epigenetic mechanisms: extract from Trygve Tollefsbol (ed.) (2011) Handbook of epigenetics--the new molecular and medical genetics. Chapter 26. Amsterdam, USA: Elsevier, pp. 423-446.

    PubMed

    House, Simon H

    2013-04-01

    By comparing epigenetics of current species with fossil records across evolutionary transitions, we can gauge the moment of emergence of some novel mechanisms in evolution, and recognize that epigenetic mechanisms have a bearing on mutation. Understanding the complexity and changeability of these mechanisms, as well as the changes they can effect, is both fascinating and of vital practical benefit. Our most serious pandemics of so-called 'non-communicable' diseases - mental and cardiovascular disorders, obesity and diabetes, rooted in the 'metabolic syndrome' - are evidently related to effects on our evolutionary mechanisms of agricultural and food industrialization, modern lifestyle and diet. Pollution affects us directly as well as indirectly by its destruction of ecologically essential biosystems. Evidently such powerful conditions of existence have epigenetic effects on both our health and our continuing evolution. Such effects are most profound during reproductive and developmental processes, when levels of hormones, as affected by stress particularly, may be due to modern cultures in childbearing such as excessive intervention, separation, maternal distress and disruption of bonding. Mechanisms of genomic imprinting seem likely to throw light on problems in assisted reproductive technology, among other transgenerational effects. PMID:25178658

  4. Giant Molecular Cloud Structure and Evolution

    NASA Technical Reports Server (NTRS)

    Hollenbach, David (Technical Monitor); Bodenheimer, P. H.

    2003-01-01

    Bodenheimer and Burkert extended earlier calculations of cloud core models to study collapse and fragmentation. The initial condition for an SPH collapse calculation is the density distribution of a Bonnor-Ebert sphere, with near balance between turbulent plus thermal energy and gravitational energy. The main parameter is the turbulent Mach number. For each Mach number several runs are made, each with a different random realization of the initial turbulent velocity field. The turbulence decays on a dynamical time scale, leading the cloud into collapse. The collapse proceeds isothermally until the density has increased to about 10(exp 13) g cm(exp -3). Then heating is included in the dense regions. The nature of the fragmentation is investigated. About 15 different runs have been performed with Mach numbers ranging from 0.3 to 3.5 (the typical value observed in molecular cloud cores is 0.7). The results show a definite trend of increasing multiplicity with increasing Mach number (M), with the number of fragments approximately proportional to (1 + M). In general, this result agrees with that of Fisher, Klein, and McKee who published three cases with an AMR grid code. However our results show that there is a large spread about this curve. For example, for M=0.3 one case resulted in no fragmentation while a second produced three fragments. Thus it is not only the value of M but also the details of the superposition of the various velocity modes that play a critical role in the formation of binaries. Also, the simulations produce a wide range of separations (10-1000 AU) for the multiple systems, in rough agreement with observations. These results are discussed in two conference proceedings.

  5. Molecular evolution of nitrate reductase genes.

    PubMed

    Zhou, J; Kleinhofs, A

    1996-04-01

    To understand the evolutionary mechanisms and relationships of nitrate reductases (NRs), the nucleotide sequences encoding 19 nitrate reductase (NR) genes from 16 species of fungi, algae, and higher plants were analyzed. The NR genes examined show substantial sequence similarity, particularly within functional domains, and large variations in GC content at the third codon position and intron number. The intron positions were different between the fungi and plants, but conserved within these groups. The overall and nonsynonymous substitution rates among fungi, algae, and higher plants were estimated to be 4.33 x 10(-10) and 3.29 x 10(-10) substitutions per site per year. The three functional domains of NR genes evolved at about one-third of the rate of the N-terminal and the two hinge regions connecting the functional domains. Relative rate tests suggested that the nonsynonymous substitution rates were constant among different lineages, while the overall nucleotide substitution rates varied between some lineages. The phylogenetic trees based on NR genes correspond well with the phylogeny of the organisms determined from systematics and other molecular studies. Based on the nonsynonymous substitution rate, the divergence time of monocots and dicots was estimated to be about 340 Myr when the fungi-plant or algae-higher plant divergence times were used as reference points and 191 Myr when the rice-barley divergence time was used as a reference point. These two estimates are consistent with other estimates of divergence times based on these reference points. The lack of consistency between these two values appears to be due to the uncertainty of the reference times. PMID:8642612

  6. DNA Re-EvolutioN: a game for learning molecular genetics and evolution.

    PubMed

    Miralles, Laura; Moran, Paloma; Dopico, Eduardo; Garcia-Vazquez, Eva

    2013-01-01

    Evolution is a main concept in biology, but not many students understand how it works. In this article we introduce the game DNA Re-EvolutioN as an active learning tool that uses genetic concepts (DNA structure, transcription and translation, mutations, natural selection, etc.) as playing rules. Students will learn about molecular evolution while playing a game that mixes up theory and entertainment. The game can be easily adapted to different educational levels. The main goal of this play is to arrive at the end of the game with the longest protein. Students play with pawns and dices, a board containing hypothetical events (mutations, selection) that happen to molecules, "Evolution cards" with indications for DNA mutations, prototypes of a DNA and a mRNA chain with colored "nucleotides" (plasticine balls), and small pieces simulating t-RNA with aminoacids that will serve to construct a "protein" based on the DNA chain. Students will understand how changes in DNA affect the final protein product and may be subjected to positive or negative selection, using a didactic tool funnier than classical theory lectures and easier than molecular laboratory experiments: a flexible and feasible game to learn and enjoy molecular evolution at no-cost. The game was tested by majors and non-majors in genetics from 13 different countries and evaluated with pre- and post-tests obtaining very positive results. PMID:24259334

  7. HIV-1 evolution: frustrating therapies, but disclosing molecular mechanisms

    PubMed Central

    Das, Atze T.; Berkhout, Ben

    2010-01-01

    Replication of HIV-1 under selective pressure frequently results in the evolution of virus variants that replicate more efficiently under the applied conditions. For example, in patients on antiretroviral therapy, such evolution can result in variants that are resistant to the HIV-1 inhibitors, thus frustrating the therapy. On the other hand, virus evolution can help us to understand the molecular mechanisms that underlie HIV-1 replication. For example, evolution of a defective virus mutant can result in variants that overcome the introduced defect by restoration of the original sequence or by the introduction of additional mutations in the viral genome. Analysis of the evolution pathway can reveal the requirements of the element under study and help to understand its function. Analysis of the escape routes may generate new insight in the viral life cycle and result in the identification of unexpected biological mechanisms. We have developed in vitro HIV-1 evolution into a systematic research tool that allows the study of different aspects of the viral replication cycle. We will briefly review this method of forced virus evolution and provide several examples that illustrate the power of this approach. PMID:20478891

  8. Social parasitism and the molecular basis of phenotypic evolution.

    PubMed

    Cini, Alessandro; Patalano, Solenn; Segonds-Pichon, Anne; Busby, George B J; Cervo, Rita; Sumner, Seirian

    2015-01-01

    Contrasting phenotypes arise from similar genomes through a combination of losses, gains, co-option and modifications of inherited genomic material. Understanding the molecular basis of this phenotypic diversity is a fundamental challenge in modern evolutionary biology. Comparisons of the genes and their expression patterns underlying traits in closely related species offer an unrivaled opportunity to evaluate the extent to which genomic material is reorganized to produce novel traits. Advances in molecular methods now allow us to dissect the molecular machinery underlying phenotypic diversity in almost any organism, from single-celled entities to the most complex vertebrates. Here we discuss how comparisons of social parasites and their free-living hosts may provide unique insights into the molecular basis of phenotypic evolution. Social parasites evolve from a eusocial ancestor and are specialized to exploit the socially acquired resources of their closely-related eusocial host. Molecular comparisons of such species pairs can reveal how genomic material is re-organized in the loss of ancestral traits (i.e., of free-living traits in the parasites) and the gain of new ones (i.e., specialist traits required for a parasitic lifestyle). We define hypotheses on the molecular basis of phenotypes in the evolution of social parasitism and discuss their wider application in our understanding of the molecular basis of phenotypic diversity within the theoretical framework of phenotypic plasticity and shifting reaction norms. Currently there are no data available to test these hypotheses, and so we also provide some proof of concept data using the paper wasp social parasite/host system (Polistes sulcifer-Polistes dominula). This conceptual framework and first empirical data provide a spring-board for directing future genomic analyses on exploiting social parasites as a route to understanding the evolution of phenotypic specialization. PMID:25741361

  9. Social parasitism and the molecular basis of phenotypic evolution

    PubMed Central

    Cini, Alessandro; Patalano, Solenn; Segonds-Pichon, Anne; Busby, George B. J.; Cervo, Rita; Sumner, Seirian

    2015-01-01

    Contrasting phenotypes arise from similar genomes through a combination of losses, gains, co-option and modifications of inherited genomic material. Understanding the molecular basis of this phenotypic diversity is a fundamental challenge in modern evolutionary biology. Comparisons of the genes and their expression patterns underlying traits in closely related species offer an unrivaled opportunity to evaluate the extent to which genomic material is reorganized to produce novel traits. Advances in molecular methods now allow us to dissect the molecular machinery underlying phenotypic diversity in almost any organism, from single-celled entities to the most complex vertebrates. Here we discuss how comparisons of social parasites and their free-living hosts may provide unique insights into the molecular basis of phenotypic evolution. Social parasites evolve from a eusocial ancestor and are specialized to exploit the socially acquired resources of their closely-related eusocial host. Molecular comparisons of such species pairs can reveal how genomic material is re-organized in the loss of ancestral traits (i.e., of free-living traits in the parasites) and the gain of new ones (i.e., specialist traits required for a parasitic lifestyle). We define hypotheses on the molecular basis of phenotypes in the evolution of social parasitism and discuss their wider application in our understanding of the molecular basis of phenotypic diversity within the theoretical framework of phenotypic plasticity and shifting reaction norms. Currently there are no data available to test these hypotheses, and so we also provide some proof of concept data using the paper wasp social parasite/host system (Polistes sulcifer—Polistes dominula). This conceptual framework and first empirical data provide a spring-board for directing future genomic analyses on exploiting social parasites as a route to understanding the evolution of phenotypic specialization. PMID:25741361

  10. Influenza A Virus Polymerase Is a Site for Adaptive Changes during Experimental Evolution in Bat Cells

    PubMed Central

    Poole, Daniel S.; Yú, Shuǐqìng; Caì, Yíngyún; Dinis, Jorge M.; Müller, Marcel A.; Jordan, Ingo; Friedrich, Thomas C.; Kuhn, Jens H.

    2014-01-01

    ABSTRACT The recent identification of highly divergent influenza A viruses in bats revealed a new, geographically dispersed viral reservoir. To investigate the molecular mechanisms of host-restricted viral tropism and the potential for transmission of viruses between humans and bats, we exposed a panel of cell lines from bats of diverse species to a prototypical human-origin influenza A virus. All of the tested bat cell lines were susceptible to influenza A virus infection. Experimental evolution of human and avian-like viruses in bat cells resulted in efficient replication and created highly cytopathic variants. Deep sequencing of adapted human influenza A virus revealed a mutation in the PA polymerase subunit not previously described, M285K. Recombinant virus with the PA M285K mutation completely phenocopied the adapted virus. Adaptation of an avian virus-like virus resulted in the canonical PB2 E627K mutation that is required for efficient replication in other mammals. None of the adaptive mutations occurred in the gene for viral hemagglutinin, a gene that frequently acquires changes to recognize host-specific variations in sialic acid receptors. We showed that human influenza A virus uses canonical sialic acid receptors to infect bat cells, even though bat influenza A viruses do not appear to use these receptors for virus entry. Our results demonstrate that bats are unique hosts that select for both a novel mutation and a well-known adaptive mutation in the viral polymerase to support replication. IMPORTANCE Bats constitute well-known reservoirs for viruses that may be transferred into human populations, sometimes with fatal consequences. Influenza A viruses have recently been identified in bats, dramatically expanding the known host range of this virus. Here we investigated the replication of human influenza A virus in bat cell lines and the barriers that the virus faces in this new host. Human influenza A and B viruses infected cells from geographically and

  11. Widespread convergence in toxin resistance by predictable molecular evolution

    PubMed Central

    Ujvari, Beata; Casewell, Nicholas R.; Sunagar, Kartik; Arbuckle, Kevin; Wüster, Wolfgang; Lo, Nathan; O’Meally, Denis; Beckmann, Christa; King, Glenn F.; Deplazes, Evelyne; Madsen, Thomas

    2015-01-01

    The question about whether evolution is unpredictable and stochastic or intermittently constrained along predictable pathways is the subject of a fundamental debate in biology, in which understanding convergent evolution plays a central role. At the molecular level, documented examples of convergence are rare and limited to occurring within specific taxonomic groups. Here we provide evidence of constrained convergent molecular evolution across the metazoan tree of life. We show that resistance to toxic cardiac glycosides produced by plants and bufonid toads is mediated by similar molecular changes to the sodium-potassium-pump (Na+/K+-ATPase) in insects, amphibians, reptiles, and mammals. In toad-feeding reptiles, resistance is conferred by two point mutations that have evolved convergently on four occasions, whereas evidence of a molecular reversal back to the susceptible state in varanid lizards migrating to toad-free areas suggests that toxin resistance is maladaptive in the absence of selection. Importantly, resistance in all taxa is mediated by replacements of 2 of the 12 amino acids comprising the Na+/K+-ATPase H1–H2 extracellular domain that constitutes a core part of the cardiac glycoside binding site. We provide mechanistic insight into the basis of resistance by showing that these alterations perturb the interaction between the cardiac glycoside bufalin and the Na+/K+-ATPase. Thus, similar selection pressures have resulted in convergent evolution of the same molecular solution across the breadth of the animal kingdom, demonstrating how a scarcity of possible solutions to a selective challenge can lead to highly predictable evolutionary responses. PMID:26372961

  12. Adaptive Evolution Favoring KLK4 Downregulation in East Asians.

    PubMed

    Marques, Patrícia Isabel; Fonseca, Filipa; Sousa, Tânia; Santos, Paulo; Camilo, Vânia; Ferreira, Zélia; Quesada, Victor; Seixas, Susana

    2016-01-01

    The human kallikrein (KLK) cluster, located at chromosome 19q13.3-13.4, encodes 15 serine proteases, including neighboring genes (KLK3, KLK2, KLK4, and KLK5) with key roles in the cascades of semen liquefaction, tooth enamel maturation, and skin desquamation. KLK2 and KLK3 were previously identified as targets of adaptive evolution in primates through different mechanisms linked to reproductive biology and, in humans, genome-wide scans of positive selection captured, a yet unexplored, evidence for KLK neutrality departure in East Asians. We perform a detailed evaluation of KLK3-KLK5 variability in the 1000 Genomes samples from East Asia, Europe, and Africa, which was sustained by our own sequencing. In East Asians, we singled out a 70-kb region surrounding KLK4 that combined unusual low levels of diversity, high frequency variants with significant levels of population differentiation (FST > 0.5) and fairly homogenous haplotypes given the large local recombination rates. Among these variants, rs1654556_G, rs198968_T, and rs17800874_A stand out for their location on putative regulatory regions and predicted functional effects, namely the introduction of several microRNA binding sites and a repressor motif. Our functional assays carried out in different cellular models showed that rs198968_T and rs17800874_A operate synergistically to reduce KLK4 expression and could be further assisted by rs1654556_G. Considering the previous findings that KLK4 inactivation causes enamel malformations in humans and mice, and that this gene is coexpressed in epidermal layers along with several substrates involved in either cell adhesion or keratinocyte differentiation, we propose KLK4 as another target of selection in East Asians correlated to tooth and epidermal morphological traits. PMID:26420451

  13. Molecular evolution of sex-biased genes in the Drosophila ananassae subgroup

    PubMed Central

    2009-01-01

    Background Genes with sex-biased expression often show rapid molecular evolution between species. Previous population genetic and comparative genomic studies of Drosophila melanogaster and D. simulans revealed that male-biased genes have especially high rates of adaptive evolution. To test if this is also the case for other lineages within the melanogaster group, we investigated gene expression in D. ananassae, a species that occurs in structured populations in tropical and subtropical regions. We used custom-made microarrays and published microarray data to characterize the sex-biased expression of 129 D. ananassae genes whose D. melanogaster orthologs had been classified previously as male-biased, female-biased, or unbiased in their expression and had been studied extensively at the population-genetic level. For 43 of these genes we surveyed DNA sequence polymorphism in a natural population of D. ananassae and determined divergence to the sister species D. atripex and D. phaeopleura. Results Sex-biased expression is generally conserved between D. melanogaster and D. ananassae, with the majority of genes exhibiting the same bias in the two species. However, about one-third of the genes have either gained or lost sex-biased expression in one of the species and a small proportion of genes (~4%) have changed bias from one sex to the other. The male-biased genes of D. ananassae show evidence of positive selection acting at the protein level. However, the signal of adaptive protein evolution for male-biased genes is not as strong in D. ananassae as it is in D. melanogaster and is limited to genes with conserved male-biased expression in both species. Within D. ananassae, a significant signal of adaptive evolution is also detected for female-biased and unbiased genes. Conclusions Our findings extend previous observations of widespread adaptive protein evolution to an independent Drosophila lineage, the D. ananassae subgroup. However, the rate of adaptive evolution is

  14. Molecular mechanisms of genetic adaptation to xenobiotic compounds.

    PubMed Central

    van der Meer, J R; de Vos, W M; Harayama, S; Zehnder, A J

    1992-01-01

    Microorganisms in the environment can often adapt to use xenobiotic chemicals as novel growth and energy substrates. Specialized enzyme systems and metabolic pathways for the degradation of man-made compounds such as chlorobiphenyls and chlorobenzenes have been found in microorganisms isolated from geographically separated areas of the world. The genetic characterization of an increasing number of aerobic pathways for degradation of (substituted) aromatic compounds in different bacteria has made it possible to compare the similarities in genetic organization and in sequence which exist between genes and proteins of these specialized catabolic routes and more common pathways. These data suggest that discrete modules containing clusters of genes have been combined in different ways in the various catabolic pathways. Sequence information further suggests divergence of catabolic genes coding for specialized enzymes in the degradation of xenobiotic chemicals. An important question will be to find whether these specialized enzymes evolved from more common isozymes only after the introduction of xenobiotic chemicals into the environment. Evidence is presented that a range of genetic mechanisms, such as gene transfer, mutational drift, and genetic recombination and transposition, can accelerate the evolution of catabolic pathways in bacteria. However, there is virtually no information concerning the rates at which these mechanisms are operating in bacteria living in nature and the response of such rates to the presence of potential (xenobiotic) substrates. Quantitative data on the genetic processes in the natural environment and on the effect of environmental parameters on the rate of evolution are needed. PMID:1480115

  15. [The genotyping and molecular evolution of varicella-zoster virus].

    PubMed

    Jiang, Long-Feng; Gan, Lin; Chen, Jing-Xian; Wang, Ming-Li

    2012-09-01

    Varicella-zoster virus (VZV, Human herpesvirus 3) is a member of the family Herpesviridae, and is classified as alpha-subfamily along with HSV-1 and HSV-2. VZV is the causative agent of chicken pox (varicella) mostly in children, after which it establishes latency in the sensory ganglia with the potential to reactivate at a later time to cause shingles (zoster). Increasing molecular epidemiological studies in recent years have been performed to monitor the mutations in VZV genome, discriminate vaccine virus from wild type virus, study the phylogeny of VZV strains throughout the world, and understand the evolution of the different clades of VZV. The progress has great impact on the fields of epidemiology, virology and bioinformatics. In this review, the currently available data concerning the geographic distribution and molecular evolution of VZV clades are discussed. PMID:23233938

  16. Reconstructing phylogenies and phenotypes: a molecular view of human evolution.

    PubMed

    Bradley, Brenda J

    2008-04-01

    This review broadly summarizes how molecular biology has contributed to our understanding of human evolution. Molecular anthropology began in the 1960s with immunological comparisons indicating that African apes and humans were closely related and, indeed, shared a common ancestor as recently as 5 million years ago. Although initially dismissed, this finding has proven robust and numerous lines of molecular evidence now firmly place the human-ape divergence at 4-8 Ma. Resolving the trichotomy among humans, chimpanzees and gorillas took a few more decades. Despite the readily apparent physical similarities shared by African apes to the exclusion of modern humans (body hair, knuckle-walking, thin tooth enamel), the molecular support for a human-chimpanzee clade is now overwhelming. More recently, whole genome sequencing and gene mapping have shifted the focus of molecular anthropology from phylogenetic analyses to phenotypic reconstruction and functional genomics. We are starting to identify the genetic basis of the morphological, physiological and behavioural traits that distinguish modern humans from apes and apes from other primates. Most notably, recent comparative genomic analyses strongly indicate that the marked differences between modern humans and chimpanzees are likely due more to changes in gene regulation than to modifications of the genes themselves, an idea first proposed over 30 years ago. Almost weekly, press releases describe newly identified genes and regulatory elements that seem to have undergone strong positive selection along the human lineage. Loci involved in speech (e.g. FOXP2), brain development (e.g. ASPM), and skull musculature (e.g. MYH16) have been of particular interest, but some surprising candidate loci (e.g. those involved in auditory capabilities) have emerged as well. Exciting new research avenues, such as the Neanderthal Genome Project, promise that molecular analyses will continue to provide novel insights about our evolution

  17. Chromosome inversions, adaptive cassettes and the evolution of species' ranges.

    PubMed

    Kirkpatrick, Mark; Barrett, Brian

    2015-05-01

    A chromosome inversion can spread when it captures locally adapted alleles or when it is introduced into a species by hybridization with adapted alleles that were previously absent. We present a model that shows how both processes can cause a species range to expand. Introgression of an inversion that carries novel, locally adapted alleles is a particularly powerful mechanism for range expansion. The model supports the earlier proposal that introgression of an inversion triggered a large range expansion of a malaria mosquito. These results suggest a role for inversions as cassettes of genes that can accelerate adaptation by crossing species boundaries, rather than protecting genomes from introgression. PMID:25583098

  18. Plant adaptation to low atmospheric pressures: potential molecular responses

    NASA Technical Reports Server (NTRS)

    Ferl, Robert J.; Schuerger, Andrew C.; Paul, Anna-Lisa; Gurley, William B.; Corey, Kenneth; Bucklin, Ray

    2002-01-01

    There is an increasing realization that it may be impossible to attain Earth normal atmospheric pressures in orbital, lunar, or Martian greenhouses, simply because the construction materials do not exist to meet the extraordinary constraints imposed by balancing high engineering requirements against high lift costs. This equation essentially dictates that NASA have in place the capability to grow plants at reduced atmospheric pressure. Yet current understanding of plant growth at low pressures is limited to just a few experiments and relatively rudimentary assessments of plant vigor and growth. The tools now exist, however, to make rapid progress toward understanding the fundamental nature of plant responses and adaptations to low pressures, and to develop strategies for mitigating detrimental effects by engineering the growth conditions or by engineering the plants themselves. The genomes of rice and the model plant Arabidopsis thaliana have recently been sequenced in their entirety, and public sector and commercial DNA chips are becoming available such that thousands of genes can be assayed at once. A fundamental understanding of plant responses and adaptation to low pressures can now be approached and translated into procedures and engineering considerations to enhance plant growth at low atmospheric pressures. In anticipation of such studies, we present here the background arguments supporting these contentions, as well as informed speculation about the kinds of molecular physiological responses that might be expected of plants in low-pressure environments.

  19. Widespread adaptive evolution during repeated evolutionary radiations in New World lupins

    PubMed Central

    Nevado, Bruno; Atchison, Guy W.; Hughes, Colin E.; Filatov, Dmitry A.

    2016-01-01

    The evolutionary processes that drive rapid species diversification are poorly understood. In particular, it is unclear whether Darwinian adaptation or non-adaptive processes are the primary drivers of explosive species diversifications. Here we show that repeated rapid radiations within New World lupins (Lupinus, Leguminosae) were underpinned by a major increase in the frequency of adaptation acting on coding and regulatory changes genome-wide. This contrasts with far less frequent adaptation in genomes of slowly diversifying lupins and all other plant genera analysed. Furthermore, widespread shifts in optimal gene expression coincided with shifts to high rates of diversification and evolution of perenniality, a putative key adaptation trait thought to have triggered the evolutionary radiations in New World lupins. Our results reconcile long-standing debate about the relative importance of protein-coding and regulatory evolution, and represent the first unambiguous evidence for the rapid onset of lineage- and genome-wide accelerated Darwinian evolution during rapid species diversification. PMID:27498896

  20. Widespread adaptive evolution during repeated evolutionary radiations in New World lupins.

    PubMed

    Nevado, Bruno; Atchison, Guy W; Hughes, Colin E; Filatov, Dmitry A

    2016-01-01

    The evolutionary processes that drive rapid species diversification are poorly understood. In particular, it is unclear whether Darwinian adaptation or non-adaptive processes are the primary drivers of explosive species diversifications. Here we show that repeated rapid radiations within New World lupins (Lupinus, Leguminosae) were underpinned by a major increase in the frequency of adaptation acting on coding and regulatory changes genome-wide. This contrasts with far less frequent adaptation in genomes of slowly diversifying lupins and all other plant genera analysed. Furthermore, widespread shifts in optimal gene expression coincided with shifts to high rates of diversification and evolution of perenniality, a putative key adaptation trait thought to have triggered the evolutionary radiations in New World lupins. Our results reconcile long-standing debate about the relative importance of protein-coding and regulatory evolution, and represent the first unambiguous evidence for the rapid onset of lineage- and genome-wide accelerated Darwinian evolution during rapid species diversification. PMID:27498896

  1. Flight loss linked to faster molecular evolution in insects

    PubMed Central

    Mitterboeck, T. Fatima; Adamowicz, Sarah J.

    2013-01-01

    The loss of flight ability has occurred thousands of times independently during insect evolution. Flight loss may be linked to higher molecular evolutionary rates because of reductions in effective population sizes (Ne) and relaxed selective constraints. Reduced dispersal ability increases population subdivision, may decrease geographical range size and increases (sub)population extinction risk, thus leading to an expected reduction in Ne. Additionally, flight loss in birds has been linked to higher molecular rates of energy-related genes, probably owing to relaxed selective constraints on energy metabolism. We tested for an association between insect flight loss and molecular rates through comparative analysis in 49 phylogenetically independent transitions spanning multiple taxa, including moths, flies, beetles, mayflies, stick insects, stoneflies, scorpionflies and caddisflies, using available nuclear and mitochondrial protein-coding DNA sequences. We estimated the rate of molecular evolution of flightless (FL) and related flight-capable lineages by ratios of non-synonymous-to-synonymous substitutions (dN/dS) and overall substitution rates (OSRs). Across multiple instances of flight loss, we show a significant pattern of higher dN/dS ratios and OSRs in FL lineages in mitochondrial but not nuclear genes. These patterns may be explained by relaxed selective constraints in FL ectotherms relating to energy metabolism, possibly in combination with reduced Ne. PMID:23884090

  2. Molecular mechanisms underlying the exceptional adaptations of batoid fins

    PubMed Central

    Nakamura, Tetsuya; Klomp, Jeff; Pieretti, Joyce; Schneider, Igor; Gehrke, Andrew R.; Shubin, Neil H.

    2015-01-01

    Extreme novelties in the shape and size of paired fins are exemplified by extinct and extant cartilaginous and bony fishes. Pectoral fins of skates and rays, such as the little skate (Batoid, Leucoraja erinacea), show a strikingly unique morphology where the pectoral fin extends anteriorly to ultimately fuse with the head. This results in a morphology that essentially surrounds the body and is associated with the evolution of novel swimming mechanisms in the group. In an approach that extends from RNA sequencing to in situ hybridization to functional assays, we show that anterior and posterior portions of the pectoral fin have different genetic underpinnings: canonical genes of appendage development control posterior fin development via an apical ectodermal ridge (AER), whereas an alternative Homeobox (Hox)–Fibroblast growth factor (Fgf)–Wingless type MMTV integration site family (Wnt) genetic module in the anterior region creates an AER-like structure that drives anterior fin expansion. Finally, we show that GLI family zinc finger 3 (Gli3), which is an anterior repressor of tetrapod digits, is expressed in the posterior half of the pectoral fin of skate, shark, and zebrafish but in the anterior side of the pelvic fin. Taken together, these data point to both highly derived and deeply ancestral patterns of gene expression in skate pectoral fins, shedding light on the molecular mechanisms behind the evolution of novel fin morphologies. PMID:26644578

  3. Molecular mechanisms underlying the exceptional adaptations of batoid fins.

    PubMed

    Nakamura, Tetsuya; Klomp, Jeff; Pieretti, Joyce; Schneider, Igor; Gehrke, Andrew R; Shubin, Neil H

    2015-12-29

    Extreme novelties in the shape and size of paired fins are exemplified by extinct and extant cartilaginous and bony fishes. Pectoral fins of skates and rays, such as the little skate (Batoid, Leucoraja erinacea), show a strikingly unique morphology where the pectoral fin extends anteriorly to ultimately fuse with the head. This results in a morphology that essentially surrounds the body and is associated with the evolution of novel swimming mechanisms in the group. In an approach that extends from RNA sequencing to in situ hybridization to functional assays, we show that anterior and posterior portions of the pectoral fin have different genetic underpinnings: canonical genes of appendage development control posterior fin development via an apical ectodermal ridge (AER), whereas an alternative Homeobox (Hox)-Fibroblast growth factor (Fgf)-Wingless type MMTV integration site family (Wnt) genetic module in the anterior region creates an AER-like structure that drives anterior fin expansion. Finally, we show that GLI family zinc finger 3 (Gli3), which is an anterior repressor of tetrapod digits, is expressed in the posterior half of the pectoral fin of skate, shark, and zebrafish but in the anterior side of the pelvic fin. Taken together, these data point to both highly derived and deeply ancestral patterns of gene expression in skate pectoral fins, shedding light on the molecular mechanisms behind the evolution of novel fin morphologies. PMID:26644578

  4. Molecular mechanisms underlying phosphate sensing, signaling, and adaptation in plants.

    PubMed

    Zhang, Zhaoliang; Liao, Hong; Lucas, William J

    2014-03-01

    As an essential plant macronutrient, the low availability of phosphorus (P) in most soils imposes serious limitation on crop production. Plants have evolved complex responsive and adaptive mechanisms for acquisition, remobilization and recycling of phosphate (Pi) to maintain P homeostasis. Spatio-temporal molecular, physiological, and biochemical Pi deficiency responses developed by plants are the consequence of local and systemic sensing and signaling pathways. Pi deficiency is sensed locally by the root system where hormones serve as important signaling components in terms of developmental reprogramming, leading to changes in root system architecture. Root-to-shoot and shoot-to-root signals, delivered through the xylem and phloem, respectively, involving Pi itself, hormones, miRNAs, mRNAs, and sucrose, serve to coordinate Pi deficiency responses at the whole-plant level. A combination of chromatin remodeling, transcriptional and posttranslational events contribute to globally regulating a wide range of Pi deficiency responses. In this review, recent advances are evaluated in terms of progress toward developing a comprehensive understanding of the molecular events underlying control over P homeostasis. Application of this knowledge, in terms of developing crop plants having enhanced attributes for P use efficiency, is discussed from the perspective of agricultural sustainability in the face of diminishing global P supplies. PMID:24417933

  5. The expansion of amino-acid repeats is not associated to adaptive evolution in mammalian genes

    PubMed Central

    2009-01-01

    Background The expansion of amino acid repeats is determined by a high mutation rate and can be increased or limited by selection. It has been suggested that recent expansions could be associated with the potential of adaptation to new environments. In this work, we quantify the strength of this association, as well as the contribution of potential confounding factors. Results Mammalian positively selected genes have accumulated more recent amino acid repeats than other mammalian genes. However, we found little support for an accelerated evolutionary rate as the main driver for the expansion of amino acid repeats. The most significant predictors of amino acid repeats are gene function and GC content. There is no correlation with expression level. Conclusions Our analyses show that amino acid repeat expansions are causally independent from protein adaptive evolution in mammalian genomes. Relaxed purifying selection or positive selection do not associate with more or more recent amino acid repeats. Their occurrence is slightly favoured by the sequence context but mainly determined by the molecular function of the gene. PMID:20021652

  6. Genetic constraints and the adaptive evolution of rabies virus in nature.

    PubMed

    Holmes, Edward C; Woelk, Christopher H; Kassis, Raid; Bourhy, Hervé

    2002-01-20

    We used a molecular evolutionary approach to investigate the species adaptation of rabies virus in nature. A maximum likelihood analysis of selection pressures revealed that the nucleoprotein (N) and glycoprotein (G) genes of natural viral isolates were highly constrained, especially at nonsynonymous sites, in contrast to the higher rates of nonsynonymous evolution observed in viruses subject to laboratory passage. Positive selection was only found at a single amino acid site--position 183 in the ectodomain of the G gene. The low rate of nonsynonymous evolution in natural isolates of rabies virus may be due to constraints imposed by the need to replicate in multiple cell types within the host, which in turn facilitates cross-species transmission, or because viral proteins are not subject to immune selection. Using known dates in the epidemiologic history of European viral isolates, we estimated that overall rates of nucleotide substitution in rabies virus were similar to those observed in other RNA viruses. Assuming that the average rate of synonymous change does not vary among species, we estimated that the current genetic diversity in lyssavirus genotype 1 may have arisen only during the last 500 years. PMID:11878928

  7. Trickle-down evolution: an approach to getting major evolutionary adaptive changes into textbooks and curricula.

    PubMed

    Padian, Kevin

    2008-08-01

    Although contemporary high school and college textbooks of biology generally cover the principles and data of microevolution (genetic and populational change) and speciation rather well, coverage of what is known of the major changes in evolution (macroevolution), and how the evidence is understood is generally poor to nonexistent. It is critical to improve this because acceptance of evolution by the American public rests on the understanding of how we know what we know about the emergence of major new taxonomic groups, and about their adaptations, behaviors, and ecologies in geologic time. An efficient approach to this problem is to improve the illustrations in college textbooks to show the consilience of different lines of fossil, morphological, and molecular evidence mapped on phylogenies. Such "evograms" will markedly improve traditional illustrations of phylogenies, "menageries," and "companatomies." If "evograms" are installed at the college level, the basic principles and evidence of macroevolution will be more likely taught in K-12, thus providing an essential missing piece in biological education. PMID:21669782

  8. Characterizing Microbe-Environment Interactions Through Experimental Evolution: The Autonomous Adaptive Directed Evolution Chamber

    NASA Astrophysics Data System (ADS)

    Ibanez, C. R.; Blaich, J.; Owyang, S.; Storrs, A.; Moffet, A.; Wong, N.; Zhou, J.; Gentry, D.

    2015-12-01

    We are developing a laboratory system for studying micro- to meso-scale interactions between microorganisms and their physicochemical environments. The Autonomous Adaptive Directed Evolution Chamber (AADEC) cultures microorganisms in controlled,small-scale geochemical environments. It observes corresponding microbial interactions to these environments and has the ability to adjust thermal, chemical, and other parameters in real time in response to these interactions. In addition to the sensed data, the system allows the generation of time-resolved ecological, genomic, etc. samples on the order of microbial generations. The AADEC currently houses cultures in liquid media and controls UVC radiation, heat exposure, and nutrient supply. In a proof-of-concept experimental evolution application, it can increase UVC radiation resistance of Escherichia coli cultures by iteratively exposing them to UVC and allowing the surviving cells to regrow. A baseline characterization generated a million fold resistance increase. This demonstration uses a single-well growth chamber prototype, but it was limited by scalability. We have expanded upon this system by implementing a microwell plate compatible fluidics system and sensor housing. This microwell plate system increases the diversity of microbial interactions seen in response to the geochemical environments generated by the system, allowing greater control over individual cultures' environments and detection of rarer events. The custom microfluidic card matches the footprint of a standard microwell plate. This card enables controllable fluid flow between wells and introduces multiple separate exposure and sensor chambers, increasing the variety of sensors compatible with the system. This gives the device control over scale and the interconnectedness of environments within the system. The increased controllability of the multiwell system provides a platform for implementing machine learning algorithms that will autonomously

  9. Molecular evolution of haemagglutinin (H) gene in measles virus.

    PubMed

    Kimura, Hirokazu; Saitoh, Mika; Kobayashi, Miho; Ishii, Haruyuki; Saraya, Takeshi; Kurai, Daisuke; Tsukagoshi, Hiroyuki; Shirabe, Komei; Nishina, Atsuyoshi; Kozawa, Kunihisa; Kuroda, Makoto; Takeuchi, Fumihiko; Sekizuka, Tsuyoshi; Minakami, Hisanori; Ryo, Akihide; Takeda, Makoto

    2015-01-01

    We studied the molecular evolution of the haemagglutinin (H) gene (full length) in all genotypes (24 genotypes, 297 strains) of measles virus (MeV). The gene's evolutionary timescale was estimated by the Bayesian Markov chain Monte Carlo (MCMC) method. We also analysed positive selection sites. The MCMC tree indicated that the MeV H gene diverged from the rinderpest virus (same genus) about 250 years ago and that 24 MeV genotypes formed 3 lineages dating back to a 1915 ancestor (95% highest posterior density [HPD] 1882-1941) with relatively rapid evolution (mean rate: 9.02 × 10(-4) substitutions/site/year). The 3 lineages diverged in 1915 (lineage 1, 95% HPD 1882-1941), 1954 (lineage 2, 95% HPD 1937-1969), and 1940 (lineage 3, 95% HPD 1927-1952). These 24 genotypes may have diverged and emerged between the 1940s and 1990 s. Selective pressure analysis identified many negative selection sites on the H protein but only a few positive selection sites, suggesting strongly operated structural and/or functional constraint of changes on the H protein. Based on the molecular evolution of H gene, an ancestor MeV of the 24 genotypes emerged about 100 years ago and the structure of H protein has been well conserved. PMID:26130388

  10. Evolution of a single gene highlights the complexity underlying molecular descriptions of fitness

    PubMed Central

    Peña, Matthew I.; Van Itallie, Elizabeth; Bennett, Matthew R.; Shamoo, Yousif

    2010-01-01

    Evolution by natural selection is the driving force behind the endless variation we see in nature, yet our understanding of how changes at the molecular level give rise to different phenotypes and altered fitness at the population level remains inadequate. The reproductive fitness of an organism is the most basic metric that describes the chance that an organism will succeed or fail in its environment and it depends upon a complex network of inter- and intramolecular interactions. A deeper understanding of the quantitative relationships relating molecular evolution to adaptation, and consequently fitness, can guide our understanding of important issues in biomedicine such as drug resistance and the engineering of new organisms with applications to biotechnology. We have developed the “weak link” approach to determine how changes in molecular structure and function can relate to fitness and evolutionary outcomes. By replacing adenylate kinase (AK), an essential gene, in a thermophile with a homologous AK from a mesophile we have created a maladapted weak link that produces a temperature-sensitive phenotype. The recombinant strain adapts to nonpermissive temperatures through point mutations to the weak link that increase both stability and activity of the enzyme AK at higher temperatures. Here, we propose a fitness function relating enzyme activity to growth rate and use it to create a dynamic model of a population of bacterial cells. Using metabolic control analysis we show that the growth rate exhibits thresholdlike behavior, saturating at high enzyme activity as other reactions in the energy metabolism pathway become rate limiting. The dynamic model accurately recapitulates observed evolutionary outcomes. These findings suggest that in vitro enzyme kinetic data, in combination with metabolic network analysis, can be used to create fitness functions and dynamic models of evolution within simple metabolic systems. PMID:20590336

  11. Evolution of a single gene highlights the complexity underlying molecular descriptions of fitness

    NASA Astrophysics Data System (ADS)

    Peña, Matthew I.; Van Itallie, Elizabeth; Bennett, Matthew R.; Shamoo, Yousif

    2010-06-01

    Evolution by natural selection is the driving force behind the endless variation we see in nature, yet our understanding of how changes at the molecular level give rise to different phenotypes and altered fitness at the population level remains inadequate. The reproductive fitness of an organism is the most basic metric that describes the chance that an organism will succeed or fail in its environment and it depends upon a complex network of inter- and intramolecular interactions. A deeper understanding of the quantitative relationships relating molecular evolution to adaptation, and consequently fitness, can guide our understanding of important issues in biomedicine such as drug resistance and the engineering of new organisms with applications to biotechnology. We have developed the "weak link" approach to determine how changes in molecular structure and function can relate to fitness and evolutionary outcomes. By replacing adenylate kinase (AK), an essential gene, in a thermophile with a homologous AK from a mesophile we have created a maladapted weak link that produces a temperature-sensitive phenotype. The recombinant strain adapts to nonpermissive temperatures through point mutations to the weak link that increase both stability and activity of the enzyme AK at higher temperatures. Here, we propose a fitness function relating enzyme activity to growth rate and use it to create a dynamic model of a population of bacterial cells. Using metabolic control analysis we show that the growth rate exhibits thresholdlike behavior, saturating at high enzyme activity as other reactions in the energy metabolism pathway become rate limiting. The dynamic model accurately recapitulates observed evolutionary outcomes. These findings suggest that in vitro enzyme kinetic data, in combination with metabolic network analysis, can be used to create fitness functions and dynamic models of evolution within simple metabolic systems.

  12. Trichinella spiralis: the evolution of adaptation and parasitism

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Parasitism among nematodes has occurred in multiple, independent events. Deciphering processes that drive species diversity and adaptation are keys to understanding parasitism and advancing control strategies. Studies have been put forth on morphological and physiological aspects of parasitism and a...

  13. Adaptive evolution of complex innovations through stepwise metabolic niche expansion.

    PubMed

    Szappanos, Balázs; Fritzemeier, Jonathan; Csörgő, Bálint; Lázár, Viktória; Lu, Xiaowen; Fekete, Gergely; Bálint, Balázs; Herczeg, Róbert; Nagy, István; Notebaart, Richard A; Lercher, Martin J; Pál, Csaba; Papp, Balázs

    2016-01-01

    A central challenge in evolutionary biology concerns the mechanisms by which complex metabolic innovations requiring multiple mutations arise. Here, we propose that metabolic innovations accessible through the addition of a single reaction serve as stepping stones towards the later establishment of complex metabolic features in another environment. We demonstrate the feasibility of this hypothesis through three complementary analyses. First, using genome-scale metabolic modelling, we show that complex metabolic innovations in Escherichia coli can arise via changing nutrient conditions. Second, using phylogenetic approaches, we demonstrate that the acquisition patterns of complex metabolic pathways during the evolutionary history of bacterial genomes support the hypothesis. Third, we show how adaptation of laboratory populations of E. coli to one carbon source facilitates the later adaptation to another carbon source. Our work demonstrates how complex innovations can evolve through series of adaptive steps without the need to invoke non-adaptive processes. PMID:27197754

  14. Molecular adaptation and resilience of the insect’s nuclear receptor USP

    PubMed Central

    2012-01-01

    propose a model in which the molecular adaptation of this protein is seen as a process of resilience for the maintenance of the ecdysone receptor functionality. PMID:23039844

  15. Molecular evolution of WDR62, a gene that regulates neocorticogenesis

    PubMed Central

    Pervaiz, Nashaiman; Abbasi, Amir Ali

    2016-01-01

    Human brain evolution is characterized by dramatic expansion in cerebral cortex size. WDR62 (WD repeat domain 62) is one of the important gene in controlling human cortical development. Mutations in WDR62 lead to primary microcephaly, a neurodevelopmental disease characterized by three to four fold reduction in cerebral cortex size of affected individuals. This study analyzes comparative protein evolutionary rate to provide a useful insight into the molecular evolution of WDR62 and hence pinpointed human specific amino acid replacements. Comparative analysis of human WDR62 with two archaic humans (Neanderthals and Denisovans) and modern human populations revealed that five hominin specific amino acid residues (human specific amino acids shared with two archaic humans) might have been accumulated in the common ancestor of extinct archaic humans and modern humans about 550,000–765,000 years ago. Collectively, the data demonstrates an acceleration of WDR62 sequence evolution in hominin lineage and suggests that the ability of WDR62 protein to mediate the neurogenesis has been altered in the course of hominin evolution. PMID:27114917

  16. Molecular evolution of WDR62, a gene that regulates neocorticogenesis.

    PubMed

    Pervaiz, Nashaiman; Abbasi, Amir Ali

    2016-09-01

    Human brain evolution is characterized by dramatic expansion in cerebral cortex size. WDR62 (WD repeat domain 62) is one of the important gene in controlling human cortical development. Mutations in WDR62 lead to primary microcephaly, a neurodevelopmental disease characterized by three to four fold reduction in cerebral cortex size of affected individuals. This study analyzes comparative protein evolutionary rate to provide a useful insight into the molecular evolution of WDR62 and hence pinpointed human specific amino acid replacements. Comparative analysis of human WDR62 with two archaic humans (Neanderthals and Denisovans) and modern human populations revealed that five hominin specific amino acid residues (human specific amino acids shared with two archaic humans) might have been accumulated in the common ancestor of extinct archaic humans and modern humans about 550,000-765,000 years ago. Collectively, the data demonstrates an acceleration of WDR62 sequence evolution in hominin lineage and suggests that the ability of WDR62 protein to mediate the neurogenesis has been altered in the course of hominin evolution. PMID:27114917

  17. Molecular basis of chill resistance adaptations in poikilothermic animals.

    PubMed

    Hayward, Scott A L; Manso, Bruno; Cossins, Andrew R

    2014-01-01

    Chill and freeze represent very different components of low temperature stress. Whilst the principal mechanisms of tissue damage and of acquired protection from freeze-induced effects are reasonably well established, those for chill damage and protection are not. Non-freeze cold exposure (i.e. chill) can lead to serious disruption to normal life processes, including disruption to energy metabolism, loss of membrane perm-selectivity and collapse of ion gradients, as well as loss of neuromuscular coordination. If the primary lesions are not relieved then the progressive functional debilitation can lead to death. Thus, identifying the underpinning molecular lesions can point to the means of building resistance to subsequent chill exposures. Researchers have focused on four specific lesions: (i) failure of neuromuscular coordination, (ii) perturbation of bio-membrane structure and adaptations due to altered lipid composition, (iii) protein unfolding, which might be mitigated by the induced expression of compatible osmolytes acting as 'chemical chaperones', (iv) or the induced expression of protein chaperones along with the suppression of general protein synthesis. Progress in all these potential mechanisms has been ongoing but not substantial, due in part to an over-reliance on straightforward correlative approaches. Also, few studies have intervened by adoption of single gene ablation, which provides much more direct and compelling evidence for the role of specific genes, and thus processes, in adaptive phenotypes. Another difficulty is the existence of multiple mechanisms, which often act together, thus resulting in compensatory responses to gene manipulations, which may potentially mask disruptive effects on the chill tolerance phenotype. Consequently, there is little direct evidence of the underpinning regulatory mechanisms leading to induced resistance to chill injury. Here, we review recent advances mainly in lower vertebrates and in arthropods, but increasingly

  18. Iterative adaptive radiations of fossil canids show no evidence for diversity-dependent trait evolution.

    PubMed

    Slater, Graham J

    2015-04-21

    A long-standing hypothesis in adaptive radiation theory is that ecological opportunity constrains rates of phenotypic evolution, generating a burst of morphological disparity early in clade history. Empirical support for the early burst model is rare in comparative data, however. One possible reason for this lack of support is that most phylogenetic tests have focused on extant clades, neglecting information from fossil taxa. Here, I test for the expected signature of adaptive radiation using the outstanding 40-My fossil record of North American canids. Models implying time- and diversity-dependent rates of morphological evolution are strongly rejected for two ecologically important traits, body size and grinding area of the molar teeth. Instead, Ornstein-Uhlenbeck processes implying repeated, and sometimes rapid, attraction to distinct dietary adaptive peaks receive substantial support. Diversity-dependent rates of morphological evolution seem uncommon in clades, such as canids, that exhibit a pattern of replicated adaptive radiation. Instead, these clades might best be thought of as deterministic radiations in constrained Simpsonian subzones of a major adaptive zone. Support for adaptive peak models may be diagnostic of subzonal radiations. It remains to be seen whether early burst or ecological opportunity models can explain broader adaptive radiations, such as the evolution of higher taxa. PMID:25901311

  19. Iterative adaptive radiations of fossil canids show no evidence for diversity-dependent trait evolution

    NASA Astrophysics Data System (ADS)

    Slater, Graham J.

    2015-04-01

    A long-standing hypothesis in adaptive radiation theory is that ecological opportunity constrains rates of phenotypic evolution, generating a burst of morphological disparity early in clade history. Empirical support for the early burst model is rare in comparative data, however. One possible reason for this lack of support is that most phylogenetic tests have focused on extant clades, neglecting information from fossil taxa. Here, I test for the expected signature of adaptive radiation using the outstanding 40-My fossil record of North American canids. Models implying time- and diversity-dependent rates of morphological evolution are strongly rejected for two ecologically important traits, body size and grinding area of the molar teeth. Instead, Ornstein-Uhlenbeck processes implying repeated, and sometimes rapid, attraction to distinct dietary adaptive peaks receive substantial support. Diversity-dependent rates of morphological evolution seem uncommon in clades, such as canids, that exhibit a pattern of replicated adaptive radiation. Instead, these clades might best be thought of as deterministic radiations in constrained Simpsonian subzones of a major adaptive zone. Support for adaptive peak models may be diagnostic of subzonal radiations. It remains to be seen whether early burst or ecological opportunity models can explain broader adaptive radiations, such as the evolution of higher taxa.

  20. Iterative adaptive radiations of fossil canids show no evidence for diversity-dependent trait evolution

    PubMed Central

    Slater, Graham J.

    2015-01-01

    A long-standing hypothesis in adaptive radiation theory is that ecological opportunity constrains rates of phenotypic evolution, generating a burst of morphological disparity early in clade history. Empirical support for the early burst model is rare in comparative data, however. One possible reason for this lack of support is that most phylogenetic tests have focused on extant clades, neglecting information from fossil taxa. Here, I test for the expected signature of adaptive radiation using the outstanding 40-My fossil record of North American canids. Models implying time- and diversity-dependent rates of morphological evolution are strongly rejected for two ecologically important traits, body size and grinding area of the molar teeth. Instead, Ornstein–Uhlenbeck processes implying repeated, and sometimes rapid, attraction to distinct dietary adaptive peaks receive substantial support. Diversity-dependent rates of morphological evolution seem uncommon in clades, such as canids, that exhibit a pattern of replicated adaptive radiation. Instead, these clades might best be thought of as deterministic radiations in constrained Simpsonian subzones of a major adaptive zone. Support for adaptive peak models may be diagnostic of subzonal radiations. It remains to be seen whether early burst or ecological opportunity models can explain broader adaptive radiations, such as the evolution of higher taxa. PMID:25901311

  1. Genome-wide amplifications caused by chromosomal rearrangements play a major role in the adaptive evolution of natural yeast.

    PubMed Central

    Infante, Juan J; Dombek, Kenneth M; Rebordinos, Laureana; Cantoral, Jesús M; Young, Elton T

    2003-01-01

    The relative importance of gross chromosomal rearrangements to adaptive evolution has not been precisely defined. The Saccharomyces cerevisiae flor yeast strains offer significant advantages for the study of molecular evolution since they have recently evolved to a high degree of specialization in a very restrictive environment. Using DNA microarray technology, we have compared the genomes of two prominent variants of S. cerevisiae flor yeast strains. The strains differ from one another in the DNA copy number of 116 genomic regions that comprise 38% of the genome. In most cases, these regions are amplicons flanked by repeated sequences or other recombination hotspots previously described as regions where double-strand breaks occur. The presence of genes that confer specific characteristics to the flor yeast within the amplicons supports the role of chromosomal rearrangements as a major mechanism of adaptive evolution in S. cerevisiae. We propose that nonallelic interactions are enhanced by ethanol- and acetaldehyde-induced double-strand breaks in the chromosomal DNA, which are repaired by pathways that yield gross chromosomal rearrangements. This mechanism of chromosomal evolution could also account for the sexual isolation shown among the flor yeast. PMID:14704163

  2. Exploiting models of molecular evolution to efficiently direct protein engineering.

    PubMed

    Cole, Megan F; Gaucher, Eric A

    2011-02-01

    Directed evolution and protein engineering approaches used to generate novel or enhanced biomolecular function often use the evolutionary sequence diversity of protein homologs to rationally guide library design. To fully capture this sequence diversity, however, libraries containing millions of variants are often necessary. Screening libraries of this size is often undesirable due to inaccuracies of high-throughput assays, costs, and time constraints. The ability to effectively cull sequence diversity while still generating the functional diversity within a library thus holds considerable value. This is particularly relevant when high-throughput assays are not amenable to select/screen for certain biomolecular properties. Here, we summarize our recent attempts to develop an evolution-guided approach, Reconstructing Evolutionary Adaptive Paths (REAP), for directed evolution and protein engineering that exploits phylogenetic and sequence analyses to identify amino acid substitutions that are likely to alter or enhance function of a protein. To demonstrate the utility of this technique, we highlight our previous work with DNA polymerases in which a REAP-designed small library was used to identify a DNA polymerase capable of accepting non-standard nucleosides. We anticipate that the REAP approach will be used in the future to facilitate the engineering of biopolymers with expanded functions and will thus have a significant impact on the developing field of 'evolutionary synthetic biology'. PMID:21132281

  3. [Evolution and systematics of nematodes based on molecular investigation].

    PubMed

    Okulewicz, Anna; Perec, Agnieszka

    2004-01-01

    Evolution and systematics of nematodes based on molecular investigation. The use of molecular phylogenetics to examine the interrelationships between animal parasites, free-living nematodes, and plant parasites versus traditional classification based on morphological-ecological characters was discussed and reviewed. Distinct differences were observed between parasitic nematodes and free-living ones. Within the former group, animal parasites turned out to be distinctly different from plant parasites. Using small subunit of ribosomal RNA gene sequence from a wide range of nematodes, there is a possibility to compare animal-parasitic, plant-parasitic and free-living taxa. Nowadays the parasitic nematodes expressed sequence tag (EST) project is currently generating sequence information to provide a new source of data to examine the evolutionary history of this taxonomic group. PMID:16859012

  4. Evolution of molecular crystal optical phonons near structural phase transitions

    NASA Astrophysics Data System (ADS)

    Michki, Nigel; Niessen, Katherine; Xu, Mengyang; Markelz, Andrea

    Molecular crystals are increasingly important photonic and electronic materials. For example organic semiconductors are lightweight compared to inorganic semiconductors and have inexpensive scale up processing with roll to roll printing. However their implementation is limited by their environmental sensitivity, in part arising from the weak intermolecular interactions of the crystal. These weak interactions result in optical phonons in the terahertz frequency range. We examine the evolution of intermolecular interactions near structural phase transitions by measuring the optical phonons as a function of temperature and crystal orientation using terahertz time-domain spectroscopy. The measured orientation dependence of the resonances provides an additional constraint for comparison of the observed spectra with the density functional calculations, enabling us to follow specific phonon modes. We observe crystal reorganization near 350 K for oxalic acid as it transforms from dihydrate to anhydrous form. We also report the first THz spectra for the molecular crystal fructose through its melting point.

  5. A Tale of Two Crocoducks: Creationist Misuses of Molecular Evolution

    NASA Astrophysics Data System (ADS)

    Hofmann, James R.

    2014-10-01

    Although some creationist objections to evolutionary biology are simplistic and thus are easily refuted, when more technical arguments become widespread it is important for science educators to explain the relevant science in a straightforward manner. An interesting case study is provided by misguided allegations about how cytochrome c data pertain to molecular evolution. The most common of these misrepresentations bears a striking similarity to a particularly glaring misunderstanding of what should be expected of a transitional form in a fossil sequence. Although evangelist Kirk Cameron's ridiculous injunction of a hypothetical `crocoduck' as an example of a potential transitional form is frequently invoked to illustrate the ignorance of many critics of evolutionary science, a strikingly analogous argument was applied to cytochrome c data by biochemist Michael Denton in 1985. The details of this analogy are worth exploring to clarify the fallacy of the widely circulated molecular argument.

  6. Molecular evolution of the capsid gene in human norovirus genogroup II.

    PubMed

    Kobayashi, Miho; Matsushima, Yuki; Motoya, Takumi; Sakon, Naomi; Shigemoto, Naoki; Okamoto-Nakagawa, Reiko; Nishimura, Koichi; Yamashita, Yasutaka; Kuroda, Makoto; Saruki, Nobuhiro; Ryo, Akihide; Saraya, Takeshi; Morita, Yukio; Shirabe, Komei; Ishikawa, Mariko; Takahashi, Tomoko; Shinomiya, Hiroto; Okabe, Nobuhiko; Nagasawa, Koo; Suzuki, Yoshiyuki; Katayama, Kazuhiko; Kimura, Hirokazu

    2016-01-01

    Capsid protein of norovirus genogroup II (GII) plays crucial roles in host infection. Although studies on capsid gene evolution have been conducted for a few genotypes of norovirus, the molecular evolution of norovirus GII is not well understood. Here we report the molecular evolution of all GII genotypes, using various bioinformatics techniques. The time-scaled phylogenetic tree showed that the present GII strains diverged from GIV around 1630CE at a high evolutionary rate (around 10(-3) substitutions/site/year), resulting in three lineages. The GII capsid gene had large pairwise distances (maximum > 0.39). The effective population sizes of the present GII strains were large (>10(2)) for about 400 years. Positive (20) and negative (over 450) selection sites were estimated. Moreover, some linear and conformational B-cell epitopes were found in the deduced GII capsid protein. These results suggested that norovirus GII strains rapidly evolved with high divergence and adaptation to humans. PMID:27384324

  7. From the ultrasonic to the infrared: molecular evolution and the sensory biology of bats.

    PubMed

    Jones, Gareth; Teeling, Emma C; Rossiter, Stephen J

    2013-01-01

    Great advances have been made recently in understanding the genetic basis of the sensory biology of bats. Research has focused on the molecular evolution of candidate sensory genes, genes with known functions [e.g., olfactory receptor (OR) genes] and genes identified from mutations associated with sensory deficits (e.g., blindness and deafness). For example, the FoxP2 gene, underpinning vocal behavior and sensorimotor coordination, has undergone diversification in bats, while several genes associated with audition show parallel amino acid substitutions in unrelated lineages of echolocating bats and, in some cases, in echolocating dolphins, representing a classic case of convergent molecular evolution. Vision genes encoding the photopigments rhodopsin and the long-wave sensitive opsin are functional in bats, while that encoding the short-wave sensitive opsin has lost functionality in rhinolophoid bats using high-duty cycle laryngeal echolocation, suggesting a sensory trade-off between investment in vision and echolocation. In terms of olfaction, bats appear to have a distinctive OR repertoire compared with other mammals, and a gene involved in signal transduction in the vomeronasal system has become non-functional in most bat species. Bitter taste receptors appear to have undergone a "birth-and death" evolution involving extensive gene duplication and loss, unlike genes coding for sweet and umami tastes that show conservation across most lineages but loss in vampire bats. Common vampire bats have also undergone adaptations for thermoperception, via alternative splicing resulting in the evolution of a novel heat-sensitive channel. The future for understanding the molecular basis of sensory biology is promising, with great potential for comparative genomic analyses, studies on gene regulation and expression, exploration of the role of alternative splicing in the generation of proteomic diversity, and linking genetic mechanisms to behavioral consequences. PMID:23755015

  8. From the ultrasonic to the infrared: molecular evolution and the sensory biology of bats

    PubMed Central

    Jones, Gareth; Teeling, Emma C.; Rossiter, Stephen J.

    2013-01-01

    Great advances have been made recently in understanding the genetic basis of the sensory biology of bats. Research has focused on the molecular evolution of candidate sensory genes, genes with known functions [e.g., olfactory receptor (OR) genes] and genes identified from mutations associated with sensory deficits (e.g., blindness and deafness). For example, the FoxP2 gene, underpinning vocal behavior and sensorimotor coordination, has undergone diversification in bats, while several genes associated with audition show parallel amino acid substitutions in unrelated lineages of echolocating bats and, in some cases, in echolocating dolphins, representing a classic case of convergent molecular evolution. Vision genes encoding the photopigments rhodopsin and the long-wave sensitive opsin are functional in bats, while that encoding the short-wave sensitive opsin has lost functionality in rhinolophoid bats using high-duty cycle laryngeal echolocation, suggesting a sensory trade-off between investment in vision and echolocation. In terms of olfaction, bats appear to have a distinctive OR repertoire compared with other mammals, and a gene involved in signal transduction in the vomeronasal system has become non-functional in most bat species. Bitter taste receptors appear to have undergone a “birth-and death” evolution involving extensive gene duplication and loss, unlike genes coding for sweet and umami tastes that show conservation across most lineages but loss in vampire bats. Common vampire bats have also undergone adaptations for thermoperception, via alternative splicing resulting in the evolution of a novel heat-sensitive channel. The future for understanding the molecular basis of sensory biology is promising, with great potential for comparative genomic analyses, studies on gene regulation and expression, exploration of the role of alternative splicing in the generation of proteomic diversity, and linking genetic mechanisms to behavioral consequences. PMID

  9. Molecular mechanisms involved in plant adaptation to low K(+) availability.

    PubMed

    Chérel, Isabelle; Lefoulon, Cécile; Boeglin, Martin; Sentenac, Hervé

    2014-03-01

    Potassium is a major inorganic constituent of the living cell and the most abundant cation in the cytosol. It plays a role in various functions at the cell level, such as electrical neutralization of anionic charges, protein synthesis, long- and short-term control of membrane polarization, and regulation of the osmotic potential. Through the latter function, K(+) is involved at the whole-plant level in osmotically driven functions such as cell movements, regulation of stomatal aperture, or phloem transport. Thus, plant growth and development require that large amounts of K(+) are taken up from the soil and translocated to the various organs. In most ecosystems, however, soil K(+) availability is low and fluctuating, so plants have developed strategies to take up K(+) more efficiently and preserve vital functions and growth when K(+) availability is becoming limited. These strategies include increased capacity for high-affinity K(+) uptake from the soil, K(+) redistribution between the cytosolic and vacuolar pools, ensuring cytosolic homeostasis, and modification of root system development and architecture. Our knowledge about the mechanisms and signalling cascades involved in these different adaptive responses has been rapidly growing during the last decade, revealing a highly complex network of interacting processes. This review is focused on the different physiological responses induced by K(+) deprivation, their underlying molecular events, and the present knowledge and hypotheses regarding the mechanisms responsible for K(+) sensing and signalling. PMID:24293613

  10. Molecular mechanisms of Tetranychus urticae chemical adaptation in hop fields.

    PubMed

    Piraneo, Tara G; Bull, Jon; Morales, Mariany A; Lavine, Laura C; Walsh, Douglas B; Zhu, Fang

    2015-01-01

    The two-spotted spider mite, Tetranychus urticae Koch is a major pest that feeds on >1,100 plant species. Many perennial crops including hop (Humulus lupulus) are routinely plagued by T. urticae infestations. Hop is a specialty crop in Pacific Northwest states, where 99% of all U.S. hops are produced. To suppress T. urticae, growers often apply various acaricides. Unfortunately T. urticae has been documented to quickly develop resistance to these acaricides which directly cause control failures. Here, we investigated resistance ratios and distribution of multiple resistance-associated mutations in field collected T. urticae samples compared with a susceptible population. Our research revealed that a mutation in the cytochrome b gene (G126S) in 35% tested T. urticae populations and a mutation in the voltage-gated sodium channel gene (F1538I) in 66.7% populations may contribute resistance to bifenazate and bifenthrin, respectively. No mutations were detected in Glutamate-gated chloride channel subunits tested, suggesting target site insensitivity may not be important in our hop T. urticae resistance to abamectin. However, P450-mediated detoxification was observed and is a putative mechanism for abamectin resistance. Molecular mechanisms of T. urticae chemical adaptation in hopyards is imperative new information that will help growers develop effective and sustainable management strategies. PMID:26621458

  11. Molecular mechanisms of Tetranychus urticae chemical adaptation in hop fields

    PubMed Central

    Piraneo, Tara G.; Bull, Jon; Morales, Mariany A.; Lavine, Laura C.; Walsh, Douglas B.; Zhu, Fang

    2015-01-01

    The two-spotted spider mite, Tetranychus urticae Koch is a major pest that feeds on >1,100 plant species. Many perennial crops including hop (Humulus lupulus) are routinely plagued by T. urticae infestations. Hop is a specialty crop in Pacific Northwest states, where 99% of all U.S. hops are produced. To suppress T. urticae, growers often apply various acaricides. Unfortunately T. urticae has been documented to quickly develop resistance to these acaricides which directly cause control failures. Here, we investigated resistance ratios and distribution of multiple resistance-associated mutations in field collected T. urticae samples compared with a susceptible population. Our research revealed that a mutation in the cytochrome b gene (G126S) in 35% tested T. urticae populations and a mutation in the voltage-gated sodium channel gene (F1538I) in 66.7% populations may contribute resistance to bifenazate and bifenthrin, respectively. No mutations were detected in Glutamate-gated chloride channel subunits tested, suggesting target site insensitivity may not be important in our hop T. urticae resistance to abamectin. However, P450-mediated detoxification was observed and is a putative mechanism for abamectin resistance. Molecular mechanisms of T. urticae chemical adaptation in hopyards is imperative new information that will help growers develop effective and sustainable management strategies. PMID:26621458

  12. Hepatitis C virus molecular evolution: Transmission, disease progression and antiviral therapy

    PubMed Central

    Preciado, Maria Victoria; Valva, Pamela; Escobar-Gutierrez, Alejandro; Rahal, Paula; Ruiz-Tovar, Karina; Yamasaki, Lilian; Vazquez-Chacon, Carlos; Martinez-Guarneros, Armando; Carpio-Pedroza, Juan Carlos; Fonseca-Coronado, Salvador; Cruz-Rivera, Mayra

    2014-01-01

    Hepatitis C virus (HCV) infection represents an important public health problem worldwide. Reduction of HCV morbidity and mortality is a current challenge owned to several viral and host factors. Virus molecular evolution plays an important role in HCV transmission, disease progression and therapy outcome. The high degree of genetic heterogeneity characteristic of HCV is a key element for the rapid adaptation of the intrahost viral population to different selection pressures (e.g., host immune responses and antiviral therapy). HCV molecular evolution is shaped by different mechanisms including a high mutation rate, genetic bottlenecks, genetic drift, recombination, temporal variations and compartmentalization. These evolutionary processes constantly rearrange the composition of the HCV intrahost population in a staging manner. Remarkable advances in the understanding of the molecular mechanism controlling HCV replication have facilitated the development of a plethora of direct-acting antiviral agents against HCV. As a result, superior sustained viral responses have been attained. The rapidly evolving field of anti-HCV therapy is expected to broad its landscape even further with newer, more potent antivirals, bringing us one step closer to the interferon-free era. PMID:25473152

  13. The interface of protein structure, protein biophysics, and molecular evolution

    PubMed Central

    Liberles, David A; Teichmann, Sarah A; Bahar, Ivet; Bastolla, Ugo; Bloom, Jesse; Bornberg-Bauer, Erich; Colwell, Lucy J; de Koning, A P Jason; Dokholyan, Nikolay V; Echave, Julian; Elofsson, Arne; Gerloff, Dietlind L; Goldstein, Richard A; Grahnen, Johan A; Holder, Mark T; Lakner, Clemens; Lartillot, Nicholas; Lovell, Simon C; Naylor, Gavin; Perica, Tina; Pollock, David D; Pupko, Tal; Regan, Lynne; Roger, Andrew; Rubinstein, Nimrod; Shakhnovich, Eugene; Sjölander, Kimmen; Sunyaev, Shamil; Teufel, Ashley I; Thorne, Jeffrey L; Thornton, Joseph W; Weinreich, Daniel M; Whelan, Simon

    2012-01-01

    Abstract The interface of protein structural biology, protein biophysics, molecular evolution, and molecular population genetics forms the foundations for a mechanistic understanding of many aspects of protein biochemistry. Current efforts in interdisciplinary protein modeling are in their infancy and the state-of-the art of such models is described. Beyond the relationship between amino acid substitution and static protein structure, protein function, and corresponding organismal fitness, other considerations are also discussed. More complex mutational processes such as insertion and deletion and domain rearrangements and even circular permutations should be evaluated. The role of intrinsically disordered proteins is still controversial, but may be increasingly important to consider. Protein geometry and protein dynamics as a deviation from static considerations of protein structure are also important. Protein expression level is known to be a major determinant of evolutionary rate and several considerations including selection at the mRNA level and the role of interaction specificity are discussed. Lastly, the relationship between modeling and needed high-throughput experimental data as well as experimental examination of protein evolution using ancestral sequence resurrection and in vitro biochemistry are presented, towards an aim of ultimately generating better models for biological inference and prediction. PMID:22528593

  14. Host resistance influences patterns of experimental viral adaptation and virulence evolution

    PubMed Central

    Kubinak, Jason L; Potts, Wayne K

    2013-01-01

    Infectious diseases are major threats to all living systems, so understanding the forces of selection that limit the evolution of more virulent pathogens is of fundamental importance; this includes the practical application of identifying possible mitigation strategies for at-risk host populations. The evolution of more virulent pathogens has been classically understood to be limited by the tradeoff between within-host growth rate and transmissibility. Importantly, heterogeneity among hosts can influence both of these factors. However, despite our substantial understanding of how the immune system operates to control pathogen replication during infection, we have only a limited appreciation of how variability in intrinsic (i.e., genetically determined) levels of host resistance influences patterns of pathogen adaptation and virulence evolution. Here, we describe results from experimental evolution studies using a model host–pathogen (virus–mammal) system; we demonstrate that variability in intrinsic levels of resistance among host genotypes can have significant effects on patterns of pathogen adaptation and virulence evolution during serial passage. Both the magnitude of adaptive response as well as the degree of pathogen specialization was positively correlated with host resistance, while mean overall virulence of post-passage virus was negatively correlated with host resistance. These results are consistent with a model whereby resistant host genotypes impose stronger selection on adapting pathogen populations, which in turn leads to the evolution of more specialized pathogen variants whose overall (i.e., mean) virulence across host genotypes is reduced. PMID:23645287

  15. The evolution of human populations: a molecular perspective.

    PubMed

    Ayala, F J; Escalante, A A

    1996-02-01

    Human evolution exhibits repeated speciations and conspicuous morphological change: from Australopithecus to Homo habilis, H. erectus, and H. sapiens; and from their hominoid ancestor to orangutans, gorillas, chimpanzees, and humans. Theories of founder-event speciation propose that speciation often occurs as a consequence of population bottlenecks, down to one or very few individual pairs. Proponents of punctuated equilibrium claim in addition that founder-event speciation results in rapid morphological change. The major histocompatibility complex (MHC) consists of several very polymorphic gene loci. The genealogy of 19 human alleles of the DQB1 locus coalesces more than 30 million years ago, before the divergence of apes and Old World monkeys. Many human alleles are more closely related to pongid and cercopithecoid alleles than to other human alleles. Using the theory of gene coalescence, we estimate that these polymorphisms require human populations of the order of N = 100,000 individuals for the last several million years. This conclusion is confirmed by computer simulations showing the rate of decay of the polymorphisms over time. Computer simulations indicate, in addition, that in human evolution no bottlenecks have occurred with fewer than several thousand individuals. We evaluate studies of mtDNA, Y-chromosome, and microsatellite autosomal polymorphisms and conclude that they are consistent with the MHC result that no narrow population bottlenecks have occurred in human evolution. The available molecular information favors a recent African origin of modern humans, who spread out of Africa approximately 100,000 to 200,000 years ago. PMID:8673287

  16. Statistical mechanics of quasispecies theories of molecular evolution

    NASA Astrophysics Data System (ADS)

    Munoz Tavera, Enrique

    This thesis presents a statistical mechanical analysis of different formulations of quasispecies theory of molecular evolution. These theories, characterized by two different families of models, the Crow-Kimura and the Eigen model, constitute a microscopie description of evolution. These models are most often used for RNA viruses, where a phase transition is predicted, in agreement with experiments, between an organized or quasispecies phase, and a disordered non-selective phase when the mutation rate exceeds a critical value. The methods of statistical mechanics, in particular field-theoretic methods, are employed to obtain analytic solutions to four problems relevant to biological interest. The first chapter presents the study of evolution under a multiple-peak fitness landscape, with biological applications in the study of the proliferation of viruses or cancer under the control of drugs or the immune system. The second chapter studies the effect of incorporating different forms of horizontal gene transfer and two-parent recombination to the classical formulation of quasispecies models. As an example, we study the effect of the sign of epistasis of the fitness landscape on the advantage or disadvantage of recombination for the mean fitness. The third chapter considers the relaxation of the purine/pyrimidine assumption in the classical formulation of the models, by formulating and solving the parallel and Eigen models in the context of a four-letter alphabet. The fourth and final chapter studies finite population effects, both in the presence and in the absence of horizontal gene transfer.

  17. Molecular evolution of peste des petits ruminants virus.

    PubMed

    Muniraju, Murali; Munir, Muhammad; Parthiban, AravindhBabu R; Banyard, Ashley C; Bao, Jingyue; Wang, Zhiliang; Ayebazibwe, Chrisostom; Ayelet, Gelagay; El Harrak, Mehdi; Mahapatra, Mana; Libeau, Geneviève; Batten, Carrie; Parida, Satya

    2014-12-01

    Despite safe and efficacious vaccines against peste des petits ruminants virus (PPRV), this virus has emerged as the cause of a highly contagious disease with serious economic consequences for small ruminant agriculture across Asia, the Middle East, and Africa. We used complete and partial genome sequences of all 4 lineages of the virus to investigate evolutionary and epidemiologic dynamics of PPRV. A Bayesian phylogenetic analysis of all PPRV lineages mapped the time to most recent common ancestor and initial divergence of PPRV to a lineage III isolate at the beginning of 20th century. A phylogeographic approach estimated the probability for root location of an ancestral PPRV and individual lineages as being Nigeria for PPRV, Senegal for lineage I, Nigeria/Ghana for lineage II, Sudan for lineage III, and India for lineage IV. Substitution rates are critical parameters for understanding virus evolution because restrictions in genetic variation can lead to lower adaptability and pathogenicity. PMID:25418782

  18. Achieving runtime adaptability through automated model evolution and variant selection

    NASA Astrophysics Data System (ADS)

    Mosincat, Adina; Binder, Walter; Jazayeri, Mehdi

    2014-01-01

    Dynamically adaptive systems propose adaptation by means of variants that are specified in the system model at design time and allow for a fixed set of different runtime configurations. However, in a dynamic environment, unanticipated changes may result in the inability of the system to meet its quality requirements. To allow the system to react to these changes, this article proposes a solution for automatically evolving the system model by integrating new variants and periodically validating the existing ones based on updated quality parameters. To illustrate this approach, the article presents a BPEL-based framework using a service composition model to represent the functional requirements of the system. The framework estimates quality of service (QoS) values based on information provided by a monitoring mechanism, ensuring that changes in QoS are reflected in the system model. The article shows how the evolved model can be used at runtime to increase the system's autonomic capabilities and delivered QoS.

  19. From lifetime to evolution: timescales of human gut microbiota adaptation.

    PubMed

    Quercia, Sara; Candela, Marco; Giuliani, Cristina; Turroni, Silvia; Luiselli, Donata; Rampelli, Simone; Brigidi, Patrizia; Franceschi, Claudio; Bacalini, Maria Giulia; Garagnani, Paolo; Pirazzini, Chiara

    2014-01-01

    Human beings harbor gut microbial communities that are essential to preserve human health. Molded by the human genome, the gut microbiota (GM) is an adaptive component of the human superorganisms that allows host adaptation at different timescales, optimizing host physiology from daily life to lifespan scales and human evolutionary history. The GM continuously changes from birth up to the most extreme limits of human life, reconfiguring its metagenomic layout in response to daily variations in diet or specific host physiological and immunological needs at different ages. On the other hand, the microbiota plasticity was strategic to face changes in lifestyle and dietary habits along the course of the recent evolutionary history, that has driven the passage from Paleolithic hunter-gathering societies to Neolithic agricultural farmers to modern Westernized societies. PMID:25408692

  20. Adaptive virulence evolution: the good old fitness-based approach.

    PubMed

    Alizon, Samuel; Michalakis, Yannis

    2015-05-01

    Infectious diseases could be expected to evolve towards complete avirulence to their hosts if given enough time. However, this is not the case. Often, virulence is maintained because it is linked to adaptive advantages to the parasite, a situation that is often associated with the hypothesis known as the transmission-virulence trade-off hypothesis. Here, we argue that this hypothesis has three limitations, which are related to how virulence is defined, the possibility of multiple trade-offs, and the difficulty of testing the hypothesis empirically. By adopting a fitness-based approach, where the relation between virulence and the fitness of the parasite throughout its life cycle is directly assessed, it is possible to address these limitations and to determine directly whether virulence is adaptive. PMID:25837917

  1. From lifetime to evolution: timescales of human gut microbiota adaptation

    PubMed Central

    Quercia, Sara; Candela, Marco; Giuliani, Cristina; Turroni, Silvia; Luiselli, Donata; Rampelli, Simone; Brigidi, Patrizia; Franceschi, Claudio; Bacalini, Maria Giulia; Garagnani, Paolo; Pirazzini, Chiara

    2014-01-01

    Human beings harbor gut microbial communities that are essential to preserve human health. Molded by the human genome, the gut microbiota (GM) is an adaptive component of the human superorganisms that allows host adaptation at different timescales, optimizing host physiology from daily life to lifespan scales and human evolutionary history. The GM continuously changes from birth up to the most extreme limits of human life, reconfiguring its metagenomic layout in response to daily variations in diet or specific host physiological and immunological needs at different ages. On the other hand, the microbiota plasticity was strategic to face changes in lifestyle and dietary habits along the course of the recent evolutionary history, that has driven the passage from Paleolithic hunter-gathering societies to Neolithic agricultural farmers to modern Westernized societies. PMID:25408692

  2. Fecundity increase supports adaptive radiation hypothesis in spider web evolution

    PubMed Central

    Coddington, Jonathan A; Agnarsson, Ingi

    2009-01-01

    Identifying the mechanisms driving adaptive radiations is key to explaining the diversity of life. The extreme reliance of spiders upon silk for survival provides an exceptional system in which to link patterns of diversification to adaptive changes in silk use. Most of the world’s 41,000 species of spiders belong to two apical lineages of spiders that exhibit quite different silk ecologies, distinct from their ancestors. Orb spiders spin highly stereotyped webs that are suspended in air and utilize a chemical glue to make them adhesive. RTA clade spiders mostly abandoned silk capture webs altogether. We recently proposed that these two clades present very different evolutionary routes of achieving the same key innovation—escape from the constraints imposed by spinning webs that contain a relatively costly type of physically adhesive cribellate silk. Here, we test the prediction that orb and RTA clade spiders are not only more diverse, but also have higher fecundity than other spiders. We show that RTA clade spiders average 23% higher fecundity and orb spiders average 123% higher fecundity than their ancestors. This supports a functional link between the adaptive escape from cribellate silk and increased resource allocation to reproduction in spiders. PMID:20195450

  3. THE EVOLUTION OF BET-HEDGING ADAPTATIONS TO RARE SCENARIOS

    PubMed Central

    King, Oliver D.

    2007-01-01

    When faced with a variable environment, organisms may switch between different strategies according to some probabilistic rule. In an infinite population, evolution is expected to favor the rule that maximizes geometric mean fitness. If some environments are encountered only rarely, selection may not be strong enough for optimal switching probabilities to evolve. Here we calculate the evolution of switching probabilities in a finite population by analyzing fixation probabilities of alleles specifying switching rules. We calculate the conditions required for the evolution of phenotypic switching as a form of bet-hedging as a function of the population size N, the rateθ at which a rare environment is encountered, and the selective advantage s associated with switching in the rare environment. We consider a simplified model in which environmental switching and phenotypic switching are one-way processes, and mutation is symmetric and rare with respect to the timescale of fixation events. In this case, the approximate requirements for bet-hedging to be favored by a ratio of at least R are that sN > log(R) and θN>R. PMID:17915273

  4. Microbial community succession mechanism coupling with adaptive evolution of adsorption performance in chalcopyrite bioleaching.

    PubMed

    Feng, Shoushuai; Yang, Hailin; Wang, Wu

    2015-09-01

    The community succession mechanism of Acidithiobacillus sp. coupling with adaptive evolution of adsorption performance were systematically investigated. Specifically, the μmax of attached and free cells was increased and peak time was moved ahead, indicating both cell growth of Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans was promoted. In the mixed strains system, the domination courses of A. thiooxidans was dramatically shortened from 22th day to 15th day, although community structure finally approached to the normal system. Compared to A. ferrooxidans, more positive effects of adaptive evolution on cell growth of A. thiooxidans were shown in either single or mixed strains system. Moreover, higher concentrations of sulfate and ferric ions indicated that both sulfur and iron metabolism was enhanced, especially of A. thiooxidans. Consistently, copper ion production was improved from 65.5 to 88.5 mg/L. This new adaptive evolution and community succession mechanism may be useful for guiding similar bioleaching processes. PMID:25978855

  5. Supernova Feedback in Molecular Clouds: Global Evolution and Dynamics

    NASA Astrophysics Data System (ADS)

    Körtgen, Bastian; Seifried, Daniel; Banerjee, Robi; Vázquez-Semadeni, Enrique; Zamora-Avilés, Manuel

    2016-04-01

    We use magnetohydrodynamical simulations of converging warm neutral medium flows to analyse the formation and global evolution of magnetised and turbulent molecular clouds subject to supernova feedback from massive stars. We show that supernova feedback alone fails to disrupt entire, gravitationally bound, molecular clouds, but is able to disperse small-sized (˜10 pc) regions on timescales of less than 1 Myr. Efficient radiative cooling of the supernova remnant as well as strong compression of the surrounding gas result in non-persistent energy and momentum input from the supernovae. However, if the time between subsequent supernovae is short and they are clustered, large hot bubbles form that disperse larger regions of the parental cloud. On longer timescales, supernova feedback increases the amount of gas with moderate temperatures (T ≈ 300 - 3000 K). Despite its inability to disrupt molecular clouds, supernova feedback leaves a strong imprint on the star formation process. We find an overall reduction of the star formation efficiency by a factor of 2 and of the star formation rate by roughly factors of 2-4.

  6. Supernova feedback in molecular clouds: global evolution and dynamics

    NASA Astrophysics Data System (ADS)

    Körtgen, Bastian; Seifried, Daniel; Banerjee, Robi; Vázquez-Semadeni, Enrique; Zamora-Avilés, Manuel

    2016-07-01

    We use magnetohydrodynamical simulations of converging warm neutral medium flows to analyse the formation and global evolution of magnetized and turbulent molecular clouds subject to supernova feedback from massive stars. We show that supernova feedback alone fails to disrupt entire, gravitationally bound, molecular clouds, but is able to disperse small-sized (˜10 pc) regions on time-scales of less than 1 Myr. Efficient radiative cooling of the supernova remnant as well as strong compression of the surrounding gas result in non-persistent energy and momentum input from the supernovae. However, if the time between subsequent supernovae is short and they are clustered, large hot bubbles form that disperse larger regions of the parental cloud. On longer time-scales, supernova feedback increases the amount of gas with moderate temperatures (T ≈ 300-3000 K). Despite its inability to disrupt molecular clouds, supernova feedback leaves a strong imprint on the star formation process. We find an overall reduction of the star formation efficiency by a factor of 2 and of the star formation rate by roughly factors of 2-4.

  7. Phylogeography and molecular evolution of potato virus Y.

    PubMed

    Cuevas, José M; Delaunay, Agnès; Visser, Johan C; Bellstedt, Dirk U; Jacquot, Emmanuel; Elena, Santiago F

    2012-01-01

    Potato virus Y (PVY) is an important plant pathogen, whose host range includes economically important crops such as potato, tobacco, tomato, and pepper. PVY presents three main strains (PVY(O), PVY(N) and PVY(C)) and several recombinant forms. PVY has a worldwide distribution, yet the mechanisms that promote and maintain its population structure and genetic diversity are still unclear. In this study, we used a pool of 77 complete PVY genomes from isolates collected worldwide. After removing the effect of recombination in our data set, we used bayesian techniques to study the influence of geography and host species in both PVY population structure and dynamics. We have also performed selection and covariation analyses to identify evolutionarily relevant amino acid residues. Our results show that both geographic and host-driven adaptations explain PVY diversification. Furthermore, purifying selection is the main force driving PVY evolution, although some indications of positive selection accounted for the diversification of the different strains. Interestingly, the analysis of P3N-PIPO, a recently described gene in potyviruses, seems to show a variable length among the isolates analyzed, and this variability is explained, in part, by host-driven adaptation. PMID:22655074

  8. Molecular phylogeny, biogeography, and habitat preference evolution of marsupials.

    PubMed

    Mitchell, Kieren J; Pratt, Renae C; Watson, Laura N; Gibb, Gillian C; Llamas, Bastien; Kasper, Marta; Edson, Janette; Hopwood, Blair; Male, Dean; Armstrong, Kyle N; Meyer, Matthias; Hofreiter, Michael; Austin, Jeremy; Donnellan, Stephen C; Lee, Michael S Y; Phillips, Matthew J; Cooper, Alan

    2014-09-01

    Marsupials exhibit great diversity in ecology and morphology. However, compared with their sister group, the placental mammals, our understanding of many aspects of marsupial evolution remains limited. We use 101 mitochondrial genomes and data from 26 nuclear loci to reconstruct a dated phylogeny including 97% of extant genera and 58% of modern marsupial species. This tree allows us to analyze the evolution of habitat preference and geographic distributions of marsupial species through time. We found a pattern of mesic-adapted lineages evolving to use more arid and open habitats, which is broadly consistent with regional climate and environmental change. However, contrary to the general trend, several lineages subsequently appear to have reverted from drier to more mesic habitats. Biogeographic reconstructions suggest that current views on the connectivity between Australia and New Guinea/Wallacea during the Miocene and Pliocene need to be revised. The antiquity of several endemic New Guinean clades strongly suggests a substantially older period of connection stretching back to the Middle Miocene and implies that New Guinea was colonized by multiple clades almost immediately after its principal formation. PMID:24881050

  9. Molecular Evolution of the TET Gene Family in Mammals

    PubMed Central

    Akahori, Hiromichi; Guindon, Stéphane; Yoshizaki, Sumio; Muto, Yoshinori

    2015-01-01

    Ten-eleven translocation (TET) proteins, a family of Fe2+- and 2-oxoglutarate-dependent dioxygenases, are involved in DNA demethylation. They also help regulate various cellular functions. Three TET paralogs have been identified (TET1, TET2, and TET3) in humans. This study focuses on the evolution of mammalian TET genes. Distinct patterns in TET1 and TET2 vs. TET3 were revealed by codon-based tests of positive selection. Results indicate that TET1 and TET2 genes have experienced positive selection more frequently than TET3 gene, and that the majority of codon sites evolved under strong negative selection. These findings imply that the selective pressure on TET3 may have been relaxed in several lineages during the course of evolution. Our analysis of convergent amino acid substitutions also supports the different evolutionary dynamics among TET gene subfamily members. All of the five amino acid sites that are inferred to have evolved under positive selection in the catalytic domain of TET2 are localized at the protein’s outer surface. The adaptive changes of these positively selected amino acid sites could be associated with dynamic interactions between other TET-interacting proteins, and positive selection thus appears to shift the regulatory scheme of TET enzyme function. PMID:26633372

  10. The Lineage-Specific Evolution of Aquaporin Gene Clusters Facilitated Tetrapod Terrestrial Adaptation

    PubMed Central

    Finn, Roderick Nigel; Chauvigné, François; Hlidberg, Jón Baldur; Cutler, Christopher P.; Cerdà, Joan

    2014-01-01

    A major physiological barrier for aquatic organisms adapting to terrestrial life is dessication in the aerial environment. This barrier was nevertheless overcome by the Devonian ancestors of extant Tetrapoda, but the origin of specific molecular mechanisms that solved this water problem remains largely unknown. Here we show that an ancient aquaporin gene cluster evolved specifically in the sarcopterygian lineage, and subsequently diverged into paralogous forms of AQP2, -5, or -6 to mediate water conservation in extant Tetrapoda. To determine the origin of these apomorphic genomic traits, we combined aquaporin sequencing from jawless and jawed vertebrates with broad taxon assembly of >2,000 transcripts amongst 131 deuterostome genomes and developed a model based upon Bayesian inference that traces their convergent roots to stem subfamilies in basal Metazoa and Prokaryota. This approach uncovered an unexpected diversity of aquaporins in every lineage investigated, and revealed that the vertebrate superfamily consists of 17 classes of aquaporins (Aqp0 - Aqp16). The oldest orthologs associated with water conservation in modern Tetrapoda are traced to a cluster of three aqp2-like genes in Actinistia that likely arose >500 Ma through duplication of an aqp0-like gene present in a jawless ancestor. In sea lamprey, we show that aqp0 first arose in a protocluster comprised of a novel aqp14 paralog and a fused aqp01 gene. To corroborate these findings, we conducted phylogenetic analyses of five syntenic nuclear receptor subfamilies, which, together with observations of extensive genome rearrangements, support the coincident loss of ancestral aqp2-like orthologs in Actinopterygii. We thus conclude that the divergence of sarcopterygian-specific aquaporin gene clusters was permissive for the evolution of water conservation mechanisms that facilitated tetrapod terrestrial adaptation. PMID:25426855

  11. Evolution of Heat Sensors Drove Shifts in Thermosensation between Xenopus Species Adapted to Different Thermal Niches.

    PubMed

    Saito, Shigeru; Ohkita, Masashi; Saito, Claire T; Takahashi, Kenji; Tominaga, Makoto; Ohta, Toshio

    2016-05-20

    Temperature is one of the most critical environmental factors affecting survival, and thus species that inhabit different thermal niches have evolved thermal sensitivities suitable for their respective habitats. During the process of shifting thermal niches, various types of genes expressed in diverse tissues, including those of the peripheral to central nervous systems, are potentially involved in the evolutionary changes in thermosensation. To elucidate the molecular mechanisms behind the evolution of thermosensation, thermal responses were compared between two species of clawed frogs (Xenopus laevis and Xenopus tropicalis) adapted to different thermal environments. X. laevis was much more sensitive to heat stimulation than X. tropicalis at the behavioral and neural levels. The activity and sensitivity of the heat-sensing TRPA1 channel were higher in X. laevis compared with those of X. tropicalis The thermal responses of another heat-sensing channel, TRPV1, also differed between the two Xenopus species. The species differences in Xenopus TRPV1 heat responses were largely determined by three amino acid substitutions located in the first three ankyrin repeat domains, known to be involved in the regulation of rat TRPV1 activity. In addition, Xenopus TRPV1 exhibited drastic species differences in sensitivity to capsaicin, contained in chili peppers, between the two Xenopus species. Another single amino acid substitution within Xenopus TRPV1 is responsible for this species difference, which likely alters the neural and behavioral responses to capsaicin. These combined subtle amino acid substitutions in peripheral thermal sensors potentially serve as a driving force for the evolution of thermal and chemical sensation. PMID:27022021

  12. Adaptive laboratory evolution of ethanologenic Zymomonas mobilis strain tolerant to furfural and acetic acid inhibitors.

    PubMed

    Shui, Zong-Xia; Qin, Han; Wu, Bo; Ruan, Zhi-yong; Wang, Lu-shang; Tan, Fu-Rong; Wang, Jing-Li; Tang, Xiao-Yu; Dai, Li-Chun; Hu, Guo-Quan; He, Ming-Xiong

    2015-07-01

    Furfural and acetic acid from lignocellulosic hydrolysates are the prevalent inhibitors to Zymomonas mobilis during cellulosic ethanol production. Developing a strain tolerant to furfural or acetic acid inhibitors is difficul by using rational engineering strategies due to poor understanding of their underlying molecular mechanisms. In this study, strategy of adaptive laboratory evolution (ALE) was used for development of a furfural and acetic acid-tolerant strain. After three round evolution, four evolved mutants (ZMA7-2, ZMA7-3, ZMF3-2, and ZMF3-3) that showed higher growth capacity were successfully obtained via ALE method. Based on the results of profiling of cell growth, glucose utilization, ethanol yield, and activity of key enzymes, two desired strains, ZMA7-2 and ZMF3-3, were achieved, which showed higher tolerance under 7 g/l acetic acid and 3 g/l furfural stress condition. Especially, it is the first report of Z. mobilis strain that could tolerate higher furfural. The best strain, Z. mobilis ZMF3-3, has showed 94.84% theoretical ethanol yield under 3-g/l furfural stress condition, and the theoretical ethanol yield of ZM4 is only 9.89%. Our study also demonstrated that ALE method might also be used as a powerful metabolic engineering tool for metabolic engineering in Z. mobilis. Furthermore, the two best strains could be used as novel host for further metabolic engineering in cellulosic ethanol or future biorefinery. Importantly, the two strains may also be used as novel-tolerant model organisms for the genetic mechanism on the "omics" level, which will provide some useful information for inverse metabolic engineering. PMID:25935346

  13. Cosmic radiation and evolution of life on earth: Roles of environment, adaptation and selection

    NASA Astrophysics Data System (ADS)

    Todd, P.

    1994-10-01

    The role of ionizing radiation in general, and cosmic radiation in particular, in the evolution of organisms on the earth by adaptation and natural selection is considered in a series of questions: (1) Are there times during the evolution of the earth and of life when genetic material could be exposed to heavy ion radiation? (2) Throughout the course of chemical and biological evolution on the earth, what fraction of environmental mutagenesis could be attributable to cosmic and/or solar ionizing radiation? (3) Is ionizing radiation an agent of adaptation or selection, or both? (4) What can the cladistics of the evolution of genetic repair tell us about the global history of genotoxic selection pressures? (How much genetic diversity can be attributed to the selection of radiation-damage repair processes?

  14. Unfolding Thermodynamics of Cysteine-Rich Proteins and Molecular Thermal-Adaptation of Marine Ciliates

    PubMed Central

    Cazzolli, Giorgia; Škrbić, Tatjana; Guella, Graziano; Faccioli, Pietro

    2013-01-01

    Euplotes nobilii and Euplotes raikovi are phylogenetically closely allied species of marine ciliates, living in polar and temperate waters, respectively. Their evolutional relation and the sharply different temperatures of their natural environments make them ideal organisms to investigate thermal-adaptation. We perform a comparative study of the thermal unfolding of disulfide-rich protein pheromones produced by these ciliates. Recent circular dichroism (CD) measurements have shown that the two psychrophilic (E. nobilii) and mesophilic (E. raikovi) protein families are characterized by very different melting temperatures, despite their close structural homology. The enhanced thermal stability of the E. raikovi pheromones is realized notwithstanding the fact that these proteins form, as a rule, a smaller number of disulfide bonds. We perform Monte Carlo (MC) simulations in a structure-based coarse-grained (CG) model to show that the higher stability of the E. raikovi pheromones is due to the lower locality of the disulfide bonds, which yields a lower entropy increase in the unfolding process. Our study suggests that the higher stability of the mesophilic E. raikovi phermones is not mainly due to the presence of a strongly hydrophobic core, as it was proposed in the literature. In addition, we argue that the molecular adaptation of these ciliates may have occurred from cold to warm, and not from warm to cold. To provide a testable prediction, we identify a point-mutation of an E. nobilii pheromone that should lead to an unfolding temperature typical of that of E. raikovi pheromones. PMID:24970199

  15. Adaptive evolution of tight junction protein claudin-14 in echolocating whales.

    PubMed

    Xu, Huihui; Liu, Yang; He, Guimei; Rossiter, Stephen J; Zhang, Shuyi

    2013-11-10

    Toothed whales and bats have independently evolved specialized ultrasonic hearing for echolocation. Recent findings have suggested that several genes including Prestin, Tmc1, Pjvk and KCNQ4 appear to have undergone molecular adaptations associated with the evolution of this ultrasonic hearing in mammals. Here we studied the hearing gene Cldn14, which encodes the claudin-14 protein and is a member of tight junction proteins that functions in the organ of Corti in the inner ear to maintain a cationic gradient between endolymph and perilymph. Particular mutations in human claudin-14 give rise to non-syndromic deafness, suggesting an essential role in hearing. Our results uncovered two bursts of positive selection, one in the ancestral branch of all toothed whales and a second in the branch leading to the delphinid, phocoenid and ziphiid whales. These two branches are the same as those previously reported to show positive selection in the Prestin gene. Furthermore, as with Prestin, the estimated hearing frequencies of whales significantly correlate with numbers of branch-wise non-synonymous substitutions in Cldn14, but not with synonymous changes. However, in contrast to Prestin, we found no evidence of positive selection in bats. Our findings from Cldn14, and comparisons with Prestin, strongly implicate multiple loci in the acquisition of echolocation in cetaceans, but also highlight possible differences in the evolutionary route to echolocation taken by whales and bats. PMID:23965379

  16. The evolution of predictive adaptive responses in human life history

    PubMed Central

    Nettle, Daniel; Frankenhuis, Willem E.; Rickard, Ian J.

    2013-01-01

    Many studies in humans have shown that adverse experience in early life is associated with accelerated reproductive timing, and there is comparative evidence for similar effects in other animals. There are two different classes of adaptive explanation for associations between early-life adversity and accelerated reproduction, both based on the idea of predictive adaptive responses (PARs). According to external PAR hypotheses, early-life adversity provides a ‘weather forecast’ of the environmental conditions into which the individual will mature, and it is adaptive for the individual to develop an appropriate phenotype for this anticipated environment. In internal PAR hypotheses, early-life adversity has a lasting negative impact on the individual's somatic state, such that her health is likely to fail more rapidly as she gets older, and there is an advantage to adjusting her reproductive schedule accordingly. We use a model of fluctuating environments to derive evolveability conditions for acceleration of reproductive timing in response to early-life adversity in a long-lived organism. For acceleration to evolve via the external PAR process, early-life cues must have a high degree of validity and the level of annual autocorrelation in the individual's environment must be almost perfect. For acceleration to evolve via the internal PAR process requires that early-life experience must determine a significant fraction of the variance in survival prospects in adulthood. The two processes are not mutually exclusive, and mechanisms for calibrating reproductive timing on the basis of early experience could evolve through a combination of the predictive value of early-life adversity for the later environment and its negative impact on somatic state. PMID:23843395

  17. Temperate phages both mediate and drive adaptive evolution in pathogen biofilms.

    PubMed

    Davies, Emily V; James, Chloe E; Williams, David; O'Brien, Siobhan; Fothergill, Joanne L; Haldenby, Sam; Paterson, Steve; Winstanley, Craig; Brockhurst, Michael A

    2016-07-19

    Temperate phages drive genomic diversification in bacterial pathogens. Phage-derived sequences are more common in pathogenic than nonpathogenic taxa and are associated with changes in pathogen virulence. High abundance and mobilization of temperate phages within hosts suggests that temperate phages could promote within-host evolution of bacterial pathogens. However, their role in pathogen evolution has not been experimentally tested. We experimentally evolved replicate populations of Pseudomonas aeruginosa with or without a community of three temperate phages active in cystic fibrosis (CF) lung infections, including the transposable phage, ɸ4, which is closely related to phage D3112. Populations grew as free-floating biofilms in artificial sputum medium, mimicking sputum of CF lungs where P. aeruginosa is an important pathogen and undergoes evolutionary adaptation and diversification during chronic infection. Although bacterial populations adapted to the biofilm environment in both treatments, population genomic analysis revealed that phages altered both the trajectory and mode of evolution. Populations evolving with phages exhibited a greater degree of parallel evolution and faster selective sweeps than populations without phages. Phage ɸ4 integrated randomly into the bacterial chromosome, but integrations into motility-associated genes and regulators of quorum sensing systems essential for virulence were selected in parallel, strongly suggesting that these insertional inactivation mutations were adaptive. Temperate phages, and in particular transposable phages, are therefore likely to facilitate adaptive evolution of bacterial pathogens within hosts. PMID:27382184

  18. Experiments on the role of deleterious mutations as stepping stones in adaptive evolution.

    PubMed

    Covert, Arthur W; Lenski, Richard E; Wilke, Claus O; Ofria, Charles

    2013-08-20

    Many evolutionary studies assume that deleterious mutations necessarily impede adaptive evolution. However, a later mutation that is conditionally beneficial may interact with a deleterious predecessor before it is eliminated, thereby providing access to adaptations that might otherwise be inaccessible. It is unknown whether such sign-epistatic recoveries are inconsequential events or an important factor in evolution, owing to the difficulty of monitoring the effects and fates of all mutations during experiments with biological organisms. Here, we used digital organisms to compare the extent of adaptive evolution in populations when deleterious mutations were disallowed with control populations in which such mutations were allowed. Significantly higher fitness levels were achieved over the long term in the control populations because some of the deleterious mutations served as stepping stones across otherwise impassable fitness valleys. As a consequence, initially deleterious mutations facilitated the evolution of complex, beneficial functions. We also examined the effects of disallowing neutral mutations, of varying the mutation rate, and of sexual recombination. Populations evolving without neutral mutations were able to leverage deleterious and compensatory mutation pairs to overcome, at least partially, the absence of neutral mutations. Substantially raising or lowering the mutation rate reduced or eliminated the long-term benefit of deleterious mutations, but introducing recombination did not. Our work demonstrates that deleterious mutations can play an important role in adaptive evolution under at least some conditions. PMID:23918358

  19. Temperate phages both mediate and drive adaptive evolution in pathogen biofilms

    PubMed Central

    Davies, Emily V.; James, Chloe E.; Williams, David; O’Brien, Siobhan; Fothergill, Joanne L.; Haldenby, Sam; Paterson, Steve; Winstanley, Craig

    2016-01-01

    Temperate phages drive genomic diversification in bacterial pathogens. Phage-derived sequences are more common in pathogenic than nonpathogenic taxa and are associated with changes in pathogen virulence. High abundance and mobilization of temperate phages within hosts suggests that temperate phages could promote within-host evolution of bacterial pathogens. However, their role in pathogen evolution has not been experimentally tested. We experimentally evolved replicate populations of Pseudomonas aeruginosa with or without a community of three temperate phages active in cystic fibrosis (CF) lung infections, including the transposable phage, ɸ4, which is closely related to phage D3112. Populations grew as free-floating biofilms in artificial sputum medium, mimicking sputum of CF lungs where P. aeruginosa is an important pathogen and undergoes evolutionary adaptation and diversification during chronic infection. Although bacterial populations adapted to the biofilm environment in both treatments, population genomic analysis revealed that phages altered both the trajectory and mode of evolution. Populations evolving with phages exhibited a greater degree of parallel evolution and faster selective sweeps than populations without phages. Phage ɸ4 integrated randomly into the bacterial chromosome, but integrations into motility-associated genes and regulators of quorum sensing systems essential for virulence were selected in parallel, strongly suggesting that these insertional inactivation mutations were adaptive. Temperate phages, and in particular transposable phages, are therefore likely to facilitate adaptive evolution of bacterial pathogens within hosts. PMID:27382184

  20. Anticipatory dynamics of biological systems: from molecular quantum states to evolution

    NASA Astrophysics Data System (ADS)

    Igamberdiev, Abir U.

    2015-08-01

    Living systems possess anticipatory behaviour that is based on the flexibility of internal models generated by the system's embedded description. The idea was suggested by Aristotle and is explicitly introduced to theoretical biology by Rosen. The possibility of holding the embedded internal model is grounded in the principle of stable non-equilibrium (Bauer). From the quantum mechanical view, this principle aims to minimize energy dissipation in expense of long relaxation times. The ideas of stable non-equilibrium were developed by Liberman who viewed living systems as subdivided into the quantum regulator and the molecular computer supporting coherence of the regulator's internal quantum state. The computational power of the cell molecular computer is based on the possibility of molecular rearrangements according to molecular addresses. In evolution, the anticipatory strategies are realized both as a precession of phylogenesis by ontogenesis (Berg) and as the anticipatory search of genetic fixation of adaptive changes that incorporates them into the internal model of genetic system. We discuss how the fundamental ideas of anticipation can be introduced into the basic foundations of theoretical biology.

  1. MOLECULAR GAS EVOLUTION ACROSS A SPIRAL ARM IN M51

    SciTech Connect

    Egusa, Fumi; Scoville, Nick; Koda, Jin

    2011-01-10

    We present sensitive and high angular resolution CO(1-0) data obtained by the Combined Array for Research in Millimeter-wave Astronomy observations toward the nearby grand-design spiral galaxy M51. The angular resolution of 0.''7 corresponds to 30 pc, which is similar to the typical size of giant molecular clouds (GMCs), and the sensitivity is also high enough to detect typical GMCs. Within the 1' field of view centered on a spiral arm, a number of GMC-scale structures are detected as clumps. However, only a few clumps are found to be associated with each giant molecular association (GMA) and more than 90% of the total flux is resolved out in our data. Considering the high sensitivity and resolution of our data, these results indicate that GMAs are not mere confusion with GMCs but plausibly smooth structures. In addition, we have found that the most massive clumps are located downstream of the spiral arm, which suggests that they are at a later stage of molecular cloud evolution across the arm and plausibly are cores of GMAs. By comparing with H{alpha} and Pa{alpha} images, most of these cores are found to have nearby star-forming regions. We thus propose an evolutionary scenario for the interstellar medium, in which smaller molecular clouds collide to form smooth GMAs at spiral arm regions and then star formation is triggered in the GMA cores. Our new CO data have revealed the internal structure of GMAs at GMC scales, finding the most massive substructures on the downstream side of the arm in close association with the brightest H II regions.

  2. Molecular determinants of enzyme cold adaptation: comparative structural and computational studies of cold- and warm-adapted enzymes.

    PubMed

    Papaleo, Elena; Tiberti, Matteo; Invernizzi, Gaetano; Pasi, Marco; Ranzani, Valeria

    2011-11-01

    The identification of molecular mechanisms underlying enzyme cold adaptation is a hot-topic both for fundamental research and industrial applications. In the present contribution, we review the last decades of structural computational investigations on cold-adapted enzymes in comparison to their warm-adapted counterparts. Comparative sequence and structural studies allow the definition of a multitude of adaptation strategies. Different enzymes carried out diverse mechanisms to adapt to low temperatures, so that a general theory for enzyme cold adaptation cannot be formulated. However, some common features can be traced in dynamic and flexibility properties of these enzymes, as well as in their intra- and inter-molecular interaction networks. Interestingly, the current data suggest that a family-centered point of view is necessary in the comparative analyses of cold- and warm-adapted enzymes. In fact, enzymes belonging to the same family or superfamily, thus sharing at least the three-dimensional fold and common features of the functional sites, have evolved similar structural and dynamic patterns to overcome the detrimental effects of low temperatures. PMID:21827423

  3. Adaptive specializations, social exchange, and the evolution of human intelligence

    PubMed Central

    Cosmides, Leda; Barrett, H. Clark; Tooby, John

    2010-01-01

    Blank-slate theories of human intelligence propose that reasoning is carried out by general-purpose operations applied uniformly across contents. An evolutionary approach implies a radically different model of human intelligence. The task demands of different adaptive problems select for functionally specialized problem-solving strategies, unleashing massive increases in problem-solving power for ancestrally recurrent adaptive problems. Because exchange can evolve only if cooperators can detect cheaters, we hypothesized that the human mind would be equipped with a neurocognitive system specialized for reasoning about social exchange. Whereas humans perform poorly when asked to detect violations of most conditional rules, we predicted and found a dramatic spike in performance when the rule specifies an exchange and violations correspond to cheating. According to critics, people's uncanny accuracy at detecting violations of social exchange rules does not reflect a cheater detection mechanism, but extends instead to all rules regulating when actions are permitted (deontic conditionals). Here we report experimental tests that falsify these theories by demonstrating that deontic rules as a class do not elicit the search for violations. We show that the cheater detection system functions with pinpoint accuracy, searching for violations of social exchange rules only when these are likely to reveal the presence of someone who intends to cheat. It does not search for violations of social exchange rules when these are accidental, when they do not benefit the violator, or when the situation would make cheating difficult. PMID:20445099

  4. Evolution of highly pathogenic avian influenza H5N1 viruses in Egypt indicating progressive adaptation.

    PubMed

    Arafa, A; Suarez, D; Kholosy, S G; Hassan, M K; Nasef, S; Selim, A; Dauphin, G; Kim, M; Yilma, J; Swayne, D; Aly, M M

    2012-10-01

    Highly pathogenic avian influenza (HPAI) virus of the H5N1 subtype was first diagnosed in poultry in Egypt in 2006, and since then the disease became enzootic in poultry throughout the country, affecting the poultry industry and village poultry as well as infecting humans. Vaccination has been used as a part of the control strategy to help to control the disease. Epidemiological data with sequence analysis of H5N1 viruses is important to link the mechanism of virus evolution in Egypt. This study describes the evolutionary pattern of Egyptian H5N1 viruses based on molecular characterization for the isolates collected from commercial poultry farms and village poultry from 2006 to 2011. Genetic analysis of the hemagglutinin (HA) gene was done by sequencing of the full-length H5 gene. The epidemiological pattern of disease outbreaks in Egyptian poultry farms seems to be seasonal with no specific geographic distribution across the country. The molecular epidemiological data revealed that there are two major groups of viruses: the classic group of subclade 2.2.1 and a variant group of 2.2.1.1. The classic group is prevailing mainly in village poultry and had fewer mutations compared to the originally introduced virus in 2006. Since 2009, this group has started to be transmitted back to commercial sectors. The variant group emerged by late 2007, was prevalent mainly in vaccinated commercial poultry, mutated continuously at a higher rate until 2010, and started to decline in 2011. Genetic analysis of the neuraminidase (NA) gene and the other six internal genes indicates a grouping of the Egyptian viruses similar to that obtained using the HA gene, with no obvious reassortments. The results of this study indicate that HPAI-H5N1 viruses are progressively evolving and adapting in Egypt and continue to acquire new mutations every season. PMID:22760662

  5. Electrocatalytic hydrogen evolution in acidic water with molecular cobalt tetraazamacrocycles.

    PubMed

    McCrory, Charles C L; Uyeda, Christopher; Peters, Jonas C

    2012-02-15

    A series of water-soluble molecular cobalt complexes of tetraazamacrocyclic ligands are reported for the electrocatalytic production of H(2) from pH 2.2 aqueous solutions. The comparative data reported for this family of complexes shed light on their relative efficiencies for hydrogen evolution in water. Rotating disk electrode voltammetry data are presented for each of the complexes discussed, as are data concerning their respective pH-dependent electrocatalytic activity. In particular, two diimine-dioxime complexes were identified as exhibiting catalytic onset at comparatively low overpotentials relative to other reported homogeneous cobalt and nickel electrocatalysts in aqueous solution. These complexes are stable at pH 2.2 and produce hydrogen with high Faradaic efficiency in bulk electrolysis experiments over time intervals ranging from 2 to 24 h. PMID:22280515

  6. Molecular Evolution and Structural Features of IRAK Family Members

    PubMed Central

    Gosu, Vijayakumar; Basith, Shaherin; Durai, Prasannavenkatesh; Choi, Sangdun

    2012-01-01

    The interleukin-1 receptor-associated kinase (IRAK) family comprises critical signaling mediators of the TLR/IL-1R signaling pathways. IRAKs are Ser/Thr kinases. There are 4 members in the vertebrate genome (IRAK1, IRAK2, IRAKM, and IRAK4) and an IRAK homolog, Pelle, in insects. IRAK family members are highly conserved in vertebrates, but the evolutionary relationship between IRAKs in vertebrates and insects is not clear. To investigate the evolutionary history and functional divergence of IRAK members, we performed extensive bioinformatics analysis. The phylogenetic relationship between IRAK sequences suggests that gene duplication events occurred in the evolutionary lineage, leading to early vertebrates. A comparative phylogenetic analysis with insect homologs of IRAKs suggests that the Tube protein is a homolog of IRAK4, unlike the anticipated protein, Pelle. Furthermore, the analysis supports that an IRAK4-like kinase is an ancestral protein in the metazoan lineage of the IRAK family. Through functional analysis, several potentially diverged sites were identified in the common death domain and kinase domain. These sites have been constrained during evolution by strong purifying selection, suggesting their functional importance within IRAKs. In summary, our study highlighted the molecular evolution of the IRAK family, predicted the amino acids that contributed to functional divergence, and identified structural variations among the IRAK paralogs that may provide a starting point for further experimental investigations. PMID:23166766

  7. The evolution of adhesiveness as a social adaptation.

    PubMed

    Garcia, Thomas; Doulcier, Guilhem; De Monte, Silvia

    2015-01-01

    Cellular adhesion is a key ingredient to sustain collective functions of microbial aggregates. Here, we investigate the evolutionary origins of adhesion and the emergence of groups of genealogically unrelated cells with a game-theoretical model. The considered adhesiveness trait is costly, continuous and affects both group formation and group-derived benefits. The formalism of adaptive dynamics reveals two evolutionary stable strategies, at each extreme on the axis of adhesiveness. We show that cohesive groups can evolve by small mutational steps, provided the population is already endowed with a minimum adhesiveness level. Assortment between more adhesive types, and in particular differential propensities to leave a fraction of individuals ungrouped at the end of the aggregation process, can compensate for the cost of increased adhesiveness. We also discuss the change in the social nature of more adhesive mutations along evolutionary trajectories, and find that altruism arises before directly beneficial behavior, despite being the most challenging form of cooperation. PMID:26613415

  8. Diversity and adaptive evolution of Saccharomyces wine yeast: a review

    PubMed Central

    Marsit, Souhir; Dequin, Sylvie

    2015-01-01

    Saccharomyces cerevisiae and related species, the main workhorses of wine fermentation, have been exposed to stressful conditions for millennia, potentially resulting in adaptive differentiation. As a result, wine yeasts have recently attracted considerable interest for studying the evolutionary effects of domestication. The widespread use of whole-genome sequencing during the last decade has provided new insights into the biodiversity, population structure, phylogeography and evolutionary history of wine yeasts. Comparisons between S. cerevisiae isolates from various origins have indicated that a variety of mechanisms, including heterozygosity, nucleotide and structural variations, introgressions, horizontal gene transfer and hybridization, contribute to the genetic and phenotypic diversity of S. cerevisiae. This review will summarize the current knowledge on the diversity and evolutionary history of wine yeasts, focusing on the domestication fingerprints identified in these strains. PMID:26205244

  9. Molecular Assortment of Lens Species with Different Adaptations to Drought Conditions Using SSR Markers.

    PubMed

    Singh, Dharmendra; Singh, Chandan Kumar; Tomar, Ram Sewak Singh; Taunk, Jyoti; Singh, Ranjeet; Maurya, Sadhana; Chaturvedi, Ashish Kumar; Pal, Madan; Singh, Rajendra; Dubey, Sarawan Kumar

    2016-01-01

    The success of drought tolerance breeding programs can be enhanced through molecular assortment of germplasm. This study was designed to characterize molecular diversity within and between Lens species with different adaptations to drought stress conditions using SSR markers. Drought stress was applied at seedling stage to study the effects on morpho-physiological traits under controlled condition, where tolerant cultivars and wilds showed 12.8-27.6% and 9.5-23.2% reduction in seed yield per plant respectively. When juxtaposed to field conditions, the tolerant cultivars (PDL-1 and PDL-2) and wild (ILWL-314 and ILWL-436) accessions showed 10.5-26.5% and 7.5%-15.6% reduction in seed yield per plant, respectively under rain-fed conditions. The reductions in seed yield in the two tolerant cultivars and wilds under severe drought condition were 48-49% and 30.5-45.3% respectively. A set of 258 alleles were identified among 278 genotypes using 35 SSR markers. Genetic diversity and polymorphism information contents varied between 0.321-0.854 and 0.299-0.836, with mean value of 0.682 and 0.643, respectively. All the genotypes were clustered into 11 groups based on SSR markers. Tolerant genotypes were grouped in cluster 6 while sensitive ones were mainly grouped into cluster 7. Wild accessions were separated from cultivars on the basis of both population structure and cluster analysis. Cluster analysis has further grouped the wild accessions on the basis of species and sub-species into 5 clusters. Physiological and morphological characters under drought stress were significantly (P = 0.05) different among microsatellite clusters. These findings suggest that drought adaptation is variable among wild and cultivated genotypes. Also, genotypes from contrasting clusters can be selected for hybridization which could help in evolution of better segregants for improving drought tolerance in lentil. PMID:26808306

  10. Molecular Assortment of Lens Species with Different Adaptations to Drought Conditions Using SSR Markers

    PubMed Central

    Singh, Dharmendra; Singh, Chandan Kumar; Tomar, Ram Sewak Singh; Taunk, Jyoti; Singh, Ranjeet; Maurya, Sadhana; Chaturvedi, Ashish Kumar; Pal, Madan; Singh, Rajendra; Dubey, Sarawan Kumar

    2016-01-01

    The success of drought tolerance breeding programs can be enhanced through molecular assortment of germplasm. This study was designed to characterize molecular diversity within and between Lens species with different adaptations to drought stress conditions using SSR markers. Drought stress was applied at seedling stage to study the effects on morpho-physiological traits under controlled condition, where tolerant cultivars and wilds showed 12.8–27.6% and 9.5–23.2% reduction in seed yield per plant respectively. When juxtaposed to field conditions, the tolerant cultivars (PDL-1 and PDL-2) and wild (ILWL-314 and ILWL-436) accessions showed 10.5–26.5% and 7.5%–15.6% reduction in seed yield per plant, respectively under rain-fed conditions. The reductions in seed yield in the two tolerant cultivars and wilds under severe drought condition were 48–49% and 30.5–45.3% respectively. A set of 258 alleles were identified among 278 genotypes using 35 SSR markers. Genetic diversity and polymorphism information contents varied between 0.321–0.854 and 0.299–0.836, with mean value of 0.682 and 0.643, respectively. All the genotypes were clustered into 11 groups based on SSR markers. Tolerant genotypes were grouped in cluster 6 while sensitive ones were mainly grouped into cluster 7. Wild accessions were separated from cultivars on the basis of both population structure and cluster analysis. Cluster analysis has further grouped the wild accessions on the basis of species and sub-species into 5 clusters. Physiological and morphological characters under drought stress were significantly (P = 0.05) different among microsatellite clusters. These findings suggest that drought adaptation is variable among wild and cultivated genotypes. Also, genotypes from contrasting clusters can be selected for hybridization which could help in evolution of better segregants for improving drought tolerance in lentil. PMID:26808306

  11. The genomic signatures of Shigella evolution, adaptation and geographical spread.

    PubMed

    The, Hao Chung; Thanh, Duy Pham; Holt, Kathryn E; Thomson, Nicholas R; Baker, Stephen

    2016-04-01

    Shigella spp. are some of the key pathogens responsible for the global burden of diarrhoeal disease. These facultative intracellular bacteria belong to the family Enterobacteriaceae, together with other intestinal pathogens, such as Escherichia coli and Salmonella spp. The genus Shigella comprises four different species, each consisting of several serogroups, all of which show phenotypic similarity, including invasive pathogenicity. DNA sequencing suggests that this similarity results from the convergent evolution of different Shigella spp. founders. Here, we review the evolutionary relationships between Shigella spp. and E . coli, and we highlight how the genomic plasticity of these bacteria and their acquisition of a distinctive virulence plasmid have enabled the development of such highly specialized pathogens. Furthermore, we discuss the insights that genotyping and whole-genome sequencing have provided into the phylogenetics and intercontinental spread of Shigella spp. PMID:26923111

  12. Family Wide Molecular Adaptations to Underground Life in African Mole-Rats Revealed by Phylogenomic Analysis

    PubMed Central

    Davies, Kalina T.J.; Bennett, Nigel C.; Tsagkogeorga, Georgia; Rossiter, Stephen J.; Faulkes, Christopher G.

    2015-01-01

    During their evolutionary radiation, mammals have colonized diverse habitats. Arguably the subterranean niche is the most inhospitable of these, characterized by reduced oxygen, elevated carbon dioxide, absence of light, scarcity of food, and a substrate that is energetically costly to burrow through. Of all lineages to have transitioned to a subterranean niche, African mole-rats are one of the most successful. Much of their ecological success can be attributed to a diet of plant storage organs, which has allowed them to colonize climatically varied habitats across sub-Saharan Africa, and has probably contributed to the evolution of their diverse social systems. Yet despite their many remarkable phenotypic specializations, little is known about molecular adaptations underlying these traits. To address this, we sequenced the transcriptomes of seven mole-rat taxa, including three solitary species, and combined new sequences with existing genomic data sets. Alignments of more than 13,000 protein-coding genes encompassed, for the first time, all six genera and the full spectrum of ecological and social variation in the clade. We detected positive selection within the mole-rat clade and along ancestral branches in approximately 700 genes including loci associated with tumorigenesis, aging, morphological development, and sociality. By combining these results with gene ontology annotation and protein–protein networks, we identified several clusters of functionally related genes. This family wide analysis of molecular evolution in mole-rats has identified a suite of positively selected genes, deepening our understanding of the extreme phenotypic traits exhibited by this group. PMID:26318402

  13. Family Wide Molecular Adaptations to Underground Life in African Mole-Rats Revealed by Phylogenomic Analysis.

    PubMed

    Davies, Kalina T J; Bennett, Nigel C; Tsagkogeorga, Georgia; Rossiter, Stephen J; Faulkes, Christopher G

    2015-12-01

    During their evolutionary radiation, mammals have colonized diverse habitats. Arguably the subterranean niche is the most inhospitable of these, characterized by reduced oxygen, elevated carbon dioxide, absence of light, scarcity of food, and a substrate that is energetically costly to burrow through. Of all lineages to have transitioned to a subterranean niche, African mole-rats are one of the most successful. Much of their ecological success can be attributed to a diet of plant storage organs, which has allowed them to colonize climatically varied habitats across sub-Saharan Africa, and has probably contributed to the evolution of their diverse social systems. Yet despite their many remarkable phenotypic specializations, little is known about molecular adaptations underlying these traits. To address this, we sequenced the transcriptomes of seven mole-rat taxa, including three solitary species, and combined new sequences with existing genomic data sets. Alignments of more than 13,000 protein-coding genes encompassed, for the first time, all six genera and the full spectrum of ecological and social variation in the clade. We detected positive selection within the mole-rat clade and along ancestral branches in approximately 700 genes including loci associated with tumorigenesis, aging, morphological development, and sociality. By combining these results with gene ontology annotation and protein-protein networks, we identified several clusters of functionally related genes. This family wide analysis of molecular evolution in mole-rats has identified a suite of positively selected genes, deepening our understanding of the extreme phenotypic traits exhibited by this group. PMID:26318402

  14. The molecular evolution of the vertebrate behavioural repertoire.

    PubMed

    Grant, Seth G N

    2016-01-01

    How the sophisticated vertebrate behavioural repertoire evolved remains a major question in biology. The behavioural repertoire encompasses the set of individual behavioural components that an organism uses when adapting and responding to changes in its external world. Although unicellular organisms, invertebrates and vertebrates share simple reflex responses, the fundamental mechanisms that resulted in the complexity and sophistication that is characteristic of vertebrate behaviours have only recently been examined. A series of behavioural genetic experiments in mice and humans support a theory that posited the importance of synapse proteome expansion in generating complexity in the behavioural repertoire. Genome duplication events, approximately 550 Ma, produced expansion in the synapse proteome that resulted in increased complexity in synapse signalling mechanisms that regulate components of the behavioural repertoire. The experiments demonstrate the importance to behaviour of the gene duplication events, the diversification of paralogues and sequence constraint. They also confirm the significance of comparative proteomic and genomic studies that identified the molecular origins of synapses in unicellular eukaryotes and the vertebrate expansion in proteome complexity. These molecular mechanisms have general importance for understanding the repertoire of behaviours in different species and for human behavioural disorders arising from synapse gene mutations. PMID:26598730

  15. The molecular evolution of the vertebrate behavioural repertoire

    PubMed Central

    2016-01-01

    How the sophisticated vertebrate behavioural repertoire evolved remains a major question in biology. The behavioural repertoire encompasses the set of individual behavioural components that an organism uses when adapting and responding to changes in its external world. Although unicellular organisms, invertebrates and vertebrates share simple reflex responses, the fundamental mechanisms that resulted in the complexity and sophistication that is characteristic of vertebrate behaviours have only recently been examined. A series of behavioural genetic experiments in mice and humans support a theory that posited the importance of synapse proteome expansion in generating complexity in the behavioural repertoire. Genome duplication events, approximately 550 Ma, produced expansion in the synapse proteome that resulted in increased complexity in synapse signalling mechanisms that regulate components of the behavioural repertoire. The experiments demonstrate the importance to behaviour of the gene duplication events, the diversification of paralogues and sequence constraint. They also confirm the significance of comparative proteomic and genomic studies that identified the molecular origins of synapses in unicellular eukaryotes and the vertebrate expansion in proteome complexity. These molecular mechanisms have general importance for understanding the repertoire of behaviours in different species and for human behavioural disorders arising from synapse gene mutations. PMID:26598730

  16. Adaptation to warmer climates by parallel functional evolution of CBF genes in Arabidopsis thaliana.

    PubMed

    Monroe, J Grey; McGovern, Cullen; Lasky, Jesse R; Grogan, Kelsi; Beck, James; McKay, John K

    2016-08-01

    The evolutionary processes and genetics underlying local adaptation at a specieswide level are largely unknown. Recent work has indicated that a frameshift mutation in a member of a family of transcription factors, C-repeat binding factors or CBFs, underlies local adaptation and freezing tolerance divergence between two European populations of Arabidopsis thaliana. To ask whether the specieswide evolution of CBF genes in Arabidopsis is consistent with local adaptation, we surveyed CBF variation from 477 wild accessions collected across the species' range. We found that CBF sequence variation is strongly associated with winter temperature variables. Looking specifically at the minimum temperature experienced during the coldest month, we found that Arabidopsis from warmer climates exhibit a significant excess of nonsynonymous polymorphisms in CBF genes and revealed a CBF haplotype network whose structure points to multiple independent transitions to warmer climates. We also identified a number of newly described mutations of significant functional effect in CBF genes, similar to the frameshift mutation previously indicated to be locally adaptive in Italy, and find that they are significantly associated with warm winters. Lastly, we uncover relationships between climate and the position of significant functional effect mutations between and within CBF paralogs, suggesting variation in adaptive function of different mutations. Cumulatively, these findings support the hypothesis that disruption of CBF gene function is adaptive in warmer climates, and illustrate how parallel evolution in a transcription factor can underlie adaptation to climate. PMID:27247130

  17. Molecular tools and bumble bees: revealing hidden details of ecology and evolution in a model system.

    PubMed

    Woodard, S Hollis; Lozier, Jeffrey D; Goulson, David; Williams, Paul H; Strange, James P; Jha, Shalene

    2015-06-01

    Bumble bees are a longstanding model system for studies on behaviour, ecology and evolution, due to their well-studied social lifestyle, invaluable role as wild and managed pollinators, and ubiquity and diversity across temperate ecosystems. Yet despite their importance, many aspects of bumble bee biology have remained enigmatic until the rise of the genetic and, more recently, genomic eras. Here, we review and synthesize new insights into the ecology, evolution and behaviour of bumble bees that have been gained using modern genetic and genomic techniques. Special emphasis is placed on four areas of bumble bee biology: the evolution of eusociality in this group, population-level processes, large-scale evolutionary relationships and patterns, and immunity and resistance to pesticides. We close with a prospective on the future of bumble bee genomics research, as this rapidly advancing field has the potential to further revolutionize our understanding of bumble bees, particularly in regard to adaptation and resilience. Worldwide, many bumble bee populations are in decline. As such, throughout the review, connections are drawn between new molecular insights into bumble bees and our understanding of the causal factors involved in their decline. Ongoing and potential applications to bumble bee management and conservation are also included to demonstrate how genetics- and genomics-enabled research aids in the preservation of this threatened group. PMID:25865395

  18. Evolution of Molecular Clouds in a Hot Plasma

    NASA Astrophysics Data System (ADS)

    Vieser, Wolfgang; Hensler, Gerhard

    We are performing 2D hydrodynamic simulations to examine the evaporation and condensation of molecular clouds in the hot phase of the interstellar medium due to heat conduction. Heat conduction is a process that may not be neglected for clouds which are embedded in a hot gas, High-Velocity-Clouds falling through the hot galactic halo or clouds in a galactic chimney. The evolution of cold and dense clouds with different masses and radii is calculated in the subsonic streaming of a hot rarefied plasma. Our code includes self-gravity, heating and cooling effects and heat conduction by electrons. Simulations with and without heat conduction show significant differences. Heat conduction provides a possibility to stabilize clouds agains hydrodynamic instabilities. Molecular clouds become able to survive significantly longer in a violent stream of hot gas. Additionally, this hot gas condensates onto the cloud's surface and is mixed very efficiently with the cloud material. Therefore, heat conduction is an important process, which has to be considered in order to explain the existence and metallicity of clouds in a stream of hot gas.

  19. Evolution of Molecular Alignment in a Background Plasma

    NASA Astrophysics Data System (ADS)

    Pearson, Andrew; Antonsen, Thomas

    2008-11-01

    We study numerically the behavior of rotational revivals in a molecular gas when subject to the fluctuating electric field of a background plasma. We model a molecule as a rigid rotor and couple it to an electric field using permanent and induced multipole interactions. The evolution of the density matrix for the molecule is calculated for a short, intense laser pulse, followed by a fluctuating electric field. A broad superposition of angular momentum eigenstates of a molecule is created by the laser field, and the result is a set of recurring peaks in the probability density for observing a particular orientation -- the so-called 'rotational revivals.' Experimentally, this effect is manifest as a variation in the refractive index of the gas [1]. The fluctuating field is created using the dressed particle method, and the result is a loss of coherence between the phases of the basis states of the molecule, which causes a decreasing amplitude for subsequent alignment peaks. Modern short-pulse lasers operate with sufficient intensity to make this effect relevant to experiments in molecular alignment. This work was supported by the Department of Energy.[1] Y.-H. Chen et. al., Optics Express Vol. 15, No. 18, 11341 (2007)

  20. Mathematical model for adaptive evolution of populations based on a complex domain

    PubMed Central

    Ibrahim, Rabha W.; Ahmad, M.Z.; Al-Janaby, Hiba F.

    2015-01-01

    A mutation is ultimately essential for adaptive evolution in all populations. It arises all the time, but is mostly fixed by enzymes. Further, most do consider that the evolution mechanism is by a natural assortment of variations in organisms in line for random variations in their DNA, and the suggestions for this are overwhelming. The altering of the construction of a gene, causing a different form that may be communicated to succeeding generations, produced by the modification of single base units in DNA, or the deletion, insertion, or rearrangement of larger units of chromosomes or genes. This altering is called a mutation. In this paper, a mathematical model is introduced to this reality. The model describes the time and space for the evolution. The tool is based on a complex domain for the space. We show that the evolution is distributed with the hypergeometric function. The Boundedness of the evolution is imposed by utilizing the Koebe function. PMID:26858564

  1. An adaptive interpolation scheme for molecular potential energy surfaces.

    PubMed

    Kowalewski, Markus; Larsson, Elisabeth; Heryudono, Alfa

    2016-08-28

    The calculation of potential energy surfaces for quantum dynamics can be a time consuming task-especially when a high level of theory for the electronic structure calculation is required. We propose an adaptive interpolation algorithm based on polyharmonic splines combined with a partition of unity approach. The adaptive node refinement allows to greatly reduce the number of sample points by employing a local error estimate. The algorithm and its scaling behavior are evaluated for a model function in 2, 3, and 4 dimensions. The developed algorithm allows for a more rapid and reliable interpolation of a potential energy surface within a given accuracy compared to the non-adaptive version. PMID:27586901

  2. Studying the Genetics of Behavior and Evolution by Adaptation and Natural Selection.

    ERIC Educational Resources Information Center

    Silverman, Jules

    1998-01-01

    Provides an exercise designed to give students an appreciation for the genetic basis of behavior. Employs the phenomenon of glucose aversion as an example of evolution by mutation and accelerated natural selection, thereby revealing one of the ways in which organisms adapt to human interference. (DDR)

  3. Gradually Adaptive Frameworks: Reasonable Disagreement and the Evolution of Evaluative Systems in Music Education

    ERIC Educational Resources Information Center

    Haskins, Stanley

    2013-01-01

    The concept of "gradually adaptive frameworks" is introduced as a model with the potential to describe the evolution of belief evaluative systems through the consideration of reasonable arguments and evidence. This concept is demonstrated through an analysis of specific points of disagreement between David Elliott's praxial philosophy…

  4. Gradually Adaptive Frameworks: Reasonable Disagreement and the Evolution of Evaluative Systems in Music Education

    ERIC Educational Resources Information Center

    Haskins, Stanley

    2013-01-01

    The concept of "gradually adaptive frameworks" is introduced as a model with the potential to describe the evolution of belief evaluative systems through the consideration of reasonable arguments and evidence. This concept is demonstrated through an analysis of specific points of disagreement between David Elliott's praxial…

  5. Adaptive bridge control strategy for opinion evolution on social networks

    NASA Astrophysics Data System (ADS)

    Qian, Cheng; Cao, Jinde; Lu, Jianquan; Kurths, Jürgen

    2011-06-01

    In this paper, we present an efficient opinion control strategy for complex networks, in particular, for social networks. The proposed adaptive bridge control (ABC) strategy calls for controlling a special kind of nodes named bridge and requires no knowledge of the node degrees or any other global or local knowledge, which are necessary for some other immunization strategies including targeted immunization and acquaintance immunization. We study the efficiency of the proposed ABC strategy on random networks, small-world networks, scale-free networks, and the random networks adjusted by the edge exchanging method. Our results show that the proposed ABC strategy is efficient for all of these four kinds of networks. Through an adjusting clustering coefficient by the edge exchanging method, it is found out that the efficiency of our ABC strategy is closely related with the clustering coefficient. The main contributions of this paper can be listed as follows: (1) A new high-order social network is proposed to describe opinion dynamic. (2) An algorithm, which does not require the knowledge of the nodes' degree and other global/local network structure information, is proposed to control the "bridges" more accurately and further control the opinion dynamics of the social networks. The efficiency of our ABC strategy is illustrated by numerical examples. (3) The numerical results indicate that our ABC strategy is more efficient for networks with higher clustering coefficient.

  6. The evolution of adhesiveness as a social adaptation

    PubMed Central

    Garcia, Thomas; Doulcier, Guilhem; De Monte, Silvia

    2015-01-01

    Cellular adhesion is a key ingredient to sustain collective functions of microbial aggregates. Here, we investigate the evolutionary origins of adhesion and the emergence of groups of genealogically unrelated cells with a game-theoretical model. The considered adhesiveness trait is costly, continuous and affects both group formation and group-derived benefits. The formalism of adaptive dynamics reveals two evolutionary stable strategies, at each extreme on the axis of adhesiveness. We show that cohesive groups can evolve by small mutational steps, provided the population is already endowed with a minimum adhesiveness level. Assortment between more adhesive types, and in particular differential propensities to leave a fraction of individuals ungrouped at the end of the aggregation process, can compensate for the cost of increased adhesiveness. We also discuss the change in the social nature of more adhesive mutations along evolutionary trajectories, and find that altruism arises before directly beneficial behavior, despite being the most challenging form of cooperation. DOI: http://dx.doi.org/10.7554/eLife.08595.001 PMID:26613415

  7. Adaptation of ticks to a blood-feeding environment: evolution from a functional perspective.

    PubMed

    Mans, Ben J; Neitz, Albert W H

    2004-01-01

    Ticks had to adapt to an existing and complex vertebrate hemostatic system from being free-living scavengers. A large array of anti-hemostatic mechanisms evolved during this process and includes blood coagulation as well as platelet aggregation inhibitors. Several questions regarding tick evolution exist. What was the nature of the ancestral tick? When did ticks evolve blood-feeding capabilities? How did these capabilities evolve? Did host specificity influence the adaptation of ticks to a blood-feeding environment? What are the implications of tick evolution for future research into tick biology and vaccine development? We investigate these questions in the light of recent research into protein superfamilies from tick saliva. Our conclusions are that the main tick families adapted independently to a blood-feeding environment. This is supported by major differences observed in all processes involved with blood-feeding for hard and soft ticks. Gene duplication events played a major role in the evolution of novel protein functions involved in tick-host interactions. This occurred during the late Cretaceous and was stimulated by the radiation of birds and placental mammals, which provided numerous new niches for ticks to adapt to a new lifestyle. Independent adaptation of the main tick families to a blood-feeding environment has several implications for future tick research in terms of tick genome projects and vaccine development. PMID:14723893

  8. The first molecular phylogeny of Strepsiptera (Insecta) reveals an early burst of molecular evolution correlated with the transition to endoparasitism.

    PubMed

    McMahon, Dino P; Hayward, Alexander; Kathirithamby, Jeyaraney

    2011-01-01

    A comprehensive model of evolution requires an understanding of the relationship between selection at the molecular and phenotypic level. We investigate this in Strepsiptera, an order of endoparasitic insects whose evolutionary biology is poorly studied. We present the first molecular phylogeny of Strepsiptera, and use this as a framework to investigate the association between parasitism and molecular evolution. We find evidence of a significant burst in the rate of molecular evolution in the early history of Strepsiptera. The evolution of morphological traits linked to parasitism is significantly correlated with the pattern in molecular rate. The correlated burst in genotypic-phenotypic evolution precedes the main phase of strepsipteran diversification, which is characterised by the return to a low and even molecular rate, and a period of relative morphological stability. These findings suggest that the transition to endoparasitism led to relaxation of selective constraint in the strepsipteran genome. Our results indicate that a parasitic lifestyle can affect the rate of molecular evolution, although other causal life-history traits correlated with parasitism may also play an important role. PMID:21738621

  9. Long-term dynamics of adaptive evolution in a globally important phytoplankton species to ocean acidification.

    PubMed

    Schlüter, Lothar; Lohbeck, Kai T; Gröger, Joachim P; Riebesell, Ulf; Reusch, Thorsten B H

    2016-07-01

    Marine phytoplankton may adapt to ocean change, such as acidification or warming, because of their large population sizes and short generation times. Long-term adaptation to novel environments is a dynamic process, and phenotypic change can take place thousands of generations after exposure to novel conditions. We conducted a long-term evolution experiment (4 years = 2100 generations), starting with a single clone of the abundant and widespread coccolithophore Emiliania huxleyi exposed to three different CO2 levels simulating ocean acidification (OA). Growth rates as a proxy for Darwinian fitness increased only moderately under both levels of OA [+3.4% and +4.8%, respectively, at 1100 and 2200 μatm partial pressure of CO2 (Pco2)] relative to control treatments (ambient CO2, 400 μatm). Long-term adaptation to OA was complex, and initial phenotypic responses of ecologically important traits were later reverted. The biogeochemically important trait of calcification, in particular, that had initially been restored within the first year of evolution was later reduced to levels lower than the performance of nonadapted populations under OA. Calcification was not constitutively lost but returned to control treatment levels when high CO2-adapted isolates were transferred back to present-day control CO2 conditions. Selection under elevated CO2 exacerbated a general decrease of cell sizes under long-term laboratory evolution. Our results show that phytoplankton may evolve complex phenotypic plasticity that can affect biogeochemically important traits, such as calcification. Adaptive evolution may play out over longer time scales (>1 year) in an unforeseen way under future ocean conditions that cannot be predicted from initial adaptation responses. PMID:27419227

  10. Adaptation to Temporally Fluctuating Environments by the Evolution of Maternal Effects.

    PubMed

    Dey, Snigdhadip; Proulx, Stephen R; Teotónio, Henrique

    2016-02-01

    All organisms live in temporally fluctuating environments. Theory predicts that the evolution of deterministic maternal effects (i.e., anticipatory maternal effects or transgenerational phenotypic plasticity) underlies adaptation to environments that fluctuate in a predictably alternating fashion over maternal-offspring generations. In contrast, randomizing maternal effects (i.e., diversifying and conservative bet-hedging), are expected to evolve in response to unpredictably fluctuating environments. Although maternal effects are common, evidence for their adaptive significance is equivocal since they can easily evolve as a correlated response to maternal selection and may or may not increase the future fitness of offspring. Using the hermaphroditic nematode Caenorhabditis elegans, we here show that the experimental evolution of maternal glycogen provisioning underlies adaptation to a fluctuating normoxia-anoxia hatching environment by increasing embryo survival under anoxia. In strictly alternating environments, we found that hermaphrodites evolved the ability to increase embryo glycogen provisioning when they experienced normoxia and to decrease embryo glycogen provisioning when they experienced anoxia. At odds with existing theory, however, populations facing irregularly fluctuating normoxia-anoxia hatching environments failed to evolve randomizing maternal effects. Instead, adaptation in these populations may have occurred through the evolution of fitness effects that percolate over multiple generations, as they maintained considerably high expected growth rates during experimental evolution despite evolving reduced fecundity and reduced embryo survival under one or two generations of anoxia. We develop theoretical models that explain why adaptation to a wide range of patterns of environmental fluctuations hinges on the existence of deterministic maternal effects, and that such deterministic maternal effects are more likely to contribute to adaptation than

  11. Long-term dynamics of adaptive evolution in a globally important phytoplankton species to ocean acidification

    PubMed Central

    Schlüter, Lothar; Lohbeck, Kai T.; Gröger, Joachim P.; Riebesell, Ulf; Reusch, Thorsten B. H.

    2016-01-01

    Marine phytoplankton may adapt to ocean change, such as acidification or warming, because of their large population sizes and short generation times. Long-term adaptation to novel environments is a dynamic process, and phenotypic change can take place thousands of generations after exposure to novel conditions. We conducted a long-term evolution experiment (4 years = 2100 generations), starting with a single clone of the abundant and widespread coccolithophore Emiliania huxleyi exposed to three different CO2 levels simulating ocean acidification (OA). Growth rates as a proxy for Darwinian fitness increased only moderately under both levels of OA [+3.4% and +4.8%, respectively, at 1100 and 2200 μatm partial pressure of CO2 (Pco2)] relative to control treatments (ambient CO2, 400 μatm). Long-term adaptation to OA was complex, and initial phenotypic responses of ecologically important traits were later reverted. The biogeochemically important trait of calcification, in particular, that had initially been restored within the first year of evolution was later reduced to levels lower than the performance of nonadapted populations under OA. Calcification was not constitutively lost but returned to control treatment levels when high CO2–adapted isolates were transferred back to present-day control CO2 conditions. Selection under elevated CO2 exacerbated a general decrease of cell sizes under long-term laboratory evolution. Our results show that phytoplankton may evolve complex phenotypic plasticity that can affect biogeochemically important traits, such as calcification. Adaptive evolution may play out over longer time scales (>1 year) in an unforeseen way under future ocean conditions that cannot be predicted from initial adaptation responses. PMID:27419227

  12. Adaptation to Temporally Fluctuating Environments by the Evolution of Maternal Effects

    PubMed Central

    Dey, Snigdhadip; Proulx, Stephen R.; Teotónio, Henrique

    2016-01-01

    All organisms live in temporally fluctuating environments. Theory predicts that the evolution of deterministic maternal effects (i.e., anticipatory maternal effects or transgenerational phenotypic plasticity) underlies adaptation to environments that fluctuate in a predictably alternating fashion over maternal-offspring generations. In contrast, randomizing maternal effects (i.e., diversifying and conservative bet-hedging), are expected to evolve in response to unpredictably fluctuating environments. Although maternal effects are common, evidence for their adaptive significance is equivocal since they can easily evolve as a correlated response to maternal selection and may or may not increase the future fitness of offspring. Using the hermaphroditic nematode Caenorhabditis elegans, we here show that the experimental evolution of maternal glycogen provisioning underlies adaptation to a fluctuating normoxia–anoxia hatching environment by increasing embryo survival under anoxia. In strictly alternating environments, we found that hermaphrodites evolved the ability to increase embryo glycogen provisioning when they experienced normoxia and to decrease embryo glycogen provisioning when they experienced anoxia. At odds with existing theory, however, populations facing irregularly fluctuating normoxia–anoxia hatching environments failed to evolve randomizing maternal effects. Instead, adaptation in these populations may have occurred through the evolution of fitness effects that percolate over multiple generations, as they maintained considerably high expected growth rates during experimental evolution despite evolving reduced fecundity and reduced embryo survival under one or two generations of anoxia. We develop theoretical models that explain why adaptation to a wide range of patterns of environmental fluctuations hinges on the existence of deterministic maternal effects, and that such deterministic maternal effects are more likely to contribute to adaptation than

  13. Phylemon: a suite of web tools for molecular evolution, phylogenetics and phylogenomics

    PubMed Central

    Tárraga, Joaquín; Medina, Ignacio; Arbiza, Leonardo; Huerta-Cepas, Jaime; Gabaldón, Toni; Dopazo, Joaquín; Dopazo, Hernán

    2007-01-01

    Phylemon is an online platform for phylogenetic and evolutionary analyses of molecular sequence data. It has been developed as a web server that integrates a suite of different tools selected among the most popular stand-alone programs in phylogenetic and evolutionary analysis. It has been conceived as a natural response to the increasing demand of data analysis of many experimental scientists wishing to add a molecular evolution and phylogenetics insight into their research. Tools included in Phylemon cover a wide yet selected range of programs: from the most basic for multiple sequence alignment to elaborate statistical methods of phylogenetic reconstruction including methods for evolutionary rates analyses and molecular adaptation. Phylemon has several features that differentiates it from other resources: (i) It offers an integrated environment that enables the direct concatenation of evolutionary analyses, the storage of results and handles required data format conversions, (ii) Once an outfile is produced, Phylemon suggests the next possible analyses, thus guiding the user and facilitating the integration of multi-step analyses, and (iii) users can define and save complete pipelines for specific phylogenetic analysis to be automatically used on many genes in subsequent sessions or multiple genes in a single session (phylogenomics). The Phylemon web server is available at http://phylemon.bioinfo.cipf.es. PMID:17452346

  14. DAMBE5: a comprehensive software package for data analysis in molecular biology and evolution.

    PubMed

    Xia, Xuhua

    2013-07-01

    Since its first release in 2001 as mainly a software package for phylogenetic analysis, data analysis for molecular biology and evolution (DAMBE) has gained many new functions that may be classified into six categories: 1) sequence retrieval, editing, manipulation, and conversion among more than 20 standard sequence formats including MEGA, NEXUS, PHYLIP, GenBank, and the new NeXML format for interoperability, 2) motif characterization and discovery functions such as position weight matrix and Gibbs sampler, 3) descriptive genomic analysis tools with improved versions of codon adaptation index, effective number of codons, protein isoelectric point profiling, RNA and protein secondary structure prediction and calculation of minimum folding energy, and genomic skew plots with optimized window size, 4) molecular phylogenetics including sequence alignment, testing substitution saturation, distance-based, maximum parsimony, and maximum-likelihood methods for tree reconstructions, testing the molecular clock hypothesis with either a phylogeny or with relative-rate tests, dating gene duplication and speciation events, choosing the best-fit substitution models, and estimating rate heterogeneity over sites, 5) phylogeny-based comparative methods for continuous and discrete variables, and 6) graphic functions including secondary structure display, optimized skew plot, hydrophobicity plot, and many other plots of amino acid properties along a protein sequence, tree display and drawing by dragging nodes to each other, and visual searching of the maximum parsimony tree. DAMBE features a graphic, user-friendly, and intuitive interface and is freely available from http://dambe.bio.uottawa.ca (last accessed April 16, 2013). PMID:23564938

  15. PyEvolve: a toolkit for statistical modelling of molecular evolution

    PubMed Central

    Butterfield, Andrew; Vedagiri, Vivek; Lang, Edward; Lawrence, Cath; Wakefield, Matthew J; Isaev, Alexander; Huttley, Gavin A

    2004-01-01

    Background Examining the distribution of variation has proven an extremely profitable technique in the effort to identify sequences of biological significance. Most approaches in the field, however, evaluate only the conserved portions of sequences – ignoring the biological significance of sequence differences. A suite of sophisticated likelihood based statistical models from the field of molecular evolution provides the basis for extracting the information from the full distribution of sequence variation. The number of different problems to which phylogeny-based maximum likelihood calculations can be applied is extensive. Available software packages that can perform likelihood calculations suffer from a lack of flexibility and scalability, or employ error-prone approaches to model parameterisation. Results Here we describe the implementation of PyEvolve, a toolkit for the application of existing, and development of new, statistical methods for molecular evolution. We present the object architecture and design schema of PyEvolve, which includes an adaptable multi-level parallelisation schema. The approach for defining new methods is illustrated by implementing a novel dinucleotide model of substitution that includes a parameter for mutation of methylated CpG's, which required 8 lines of standard Python code to define. Benchmarking was performed using either a dinucleotide or codon substitution model applied to an alignment of BRCA1 sequences from 20 mammals, or a 10 species subset. Up to five-fold parallel performance gains over serial were recorded. Compared to leading alternative software, PyEvolve exhibited significantly better real world performance for parameter rich models with a large data set, reducing the time required for optimisation from ~10 days to ~6 hours. Conclusion PyEvolve provides flexible functionality that can be used either for statistical modelling of molecular evolution, or the development of new methods in the field. The toolkit can be

  16. Adaptive evolution of a lactose-consuming Saccharomyces cerevisiae recombinant.

    PubMed

    Guimarães, Pedro M R; François, Jean; Parrou, Jean Luc; Teixeira, José A; Domingues, Lucília

    2008-03-01

    The construction of Saccharomyces cerevisiae strains that ferment lactose has biotechnological interest, particularly for cheese whey fermentation. A flocculent lactose-consuming S. cerevisiae recombinant expressing the LAC12 (lactose permease) and LAC4 (beta-galactosidase) genes of Kluyveromyces lactis was constructed previously but showed poor efficiency in lactose fermentation. This strain was therefore subjected to an evolutionary engineering process (serial transfer and dilution in lactose medium), which yielded an evolved recombinant strain that consumed lactose twofold faster, producing 30% more ethanol than the original recombinant. We identified two molecular events that targeted the LAC construct in the evolved strain: a 1,593-bp deletion in the intergenic region (promoter) between LAC4 and LAC12 and a decrease of the plasmid copy number by about 10-fold compared to that in the original recombinant. The results suggest that the intact promoter was unable to mediate the induction of the transcription of LAC4 and LAC12 by lactose in the original recombinant and that the deletion established the transcriptional induction of both genes in the evolved strain. We propose that the tuning of the expression of the heterologous LAC genes in the evolved recombinant was accomplished by the interplay between the decreased copy number of both genes and the different levels of transcriptional induction for LAC4 and LAC12 resulting from the changed promoter structure. Nevertheless, our results do not exclude other possible mutations that may have contributed to the improved lactose fermentation phenotype. This study illustrates the usefulness of simple evolutionary engineering approaches in strain improvement. The evolved strain efficiently fermented threefold-concentrated cheese whey, providing an attractive alternative for the fermentation of lactose-based media. PMID:18245248

  17. Molecular-level tradeoffs and metabolic adaptation to simultaneous stressors

    PubMed Central

    Carlson, Ross P.; Taffs, Reed L.

    2010-01-01

    Summary Life is a dynamic process driven by the complex interplay between physical constraints and selection pressures, ranging from nutrient limitation to inhibitory substances to predators. These stressors are not mutually exclusive; microbes have faced concurrent challenges for eons. Genome-enabled systems biology approaches are adapting economic and ecological concepts like tradeoff curves and strategic resource allocation theory to analyze metabolic adaptations to simultaneous stressors. These methodologies can accurately describe and predict metabolic adaptations to concurrent stresses by considering the tradeoff between investment of limiting resources into enzymatic machinery and the resulting cellular function. The approaches represent promising links between computational biology and well established economic and ecological methodologies for analyzing the interplay between physical constraints and microbial fitness. PMID:20637598

  18. Molecular evolution of the MAGUK family in metazoan genomes

    PubMed Central

    te Velthuis, Aartjan JW; Admiraal, Jeroen F; Bagowski, Christoph P

    2007-01-01

    Background Development, differentiation and physiology of metazoans all depend on cell to cell communication and subsequent intracellular signal transduction. Often, these processes are orchestrated via sites of specialized cell-cell contact and involve receptors, adhesion molecules and scaffolding proteins. Several of these scaffolding proteins important for synaptic and cellular junctions belong to the large family of membrane-associated guanylate kinases (MAGUK). In order to elucidate the origin and the evolutionary history of the MAGUKs we investigated full-length cDNA, EST and genomic sequences of species in major phyla. Results Our results indicate that at least four of the seven MAGUK subfamilies were present in early metazoan lineages, such as Porifera. We employed domain sequence and structure based methods to infer a model for the evolutionary history of the MAGUKs. Notably, the phylogenetic trees for the guanylate kinase (GK)-, the PDZ- and the SH3-domains all suggested a matching evolutionary model which was further supported by molecular modeling of the 3D structures of different GK domains. We found no MAGUK in plants, fungi or other unicellular organisms, which suggests that the MAGUK core structure originated early in metazoan history. Conclusion In summary, we have characterized here the molecular and structural evolution of the large MAGUK family. Using the MAGUKs as an example, our results show that it is possible to derive a highly supported evolutionary model for important multidomain families by analyzing encoded protein domains. It further suggests that larger superfamilies encoded in the different genomes can be analyzed in a similar manner. PMID:17678554

  19. Chemical evolution of giant molecular clouds in simulations of galaxies

    NASA Astrophysics Data System (ADS)

    Richings, Alexander J.; Schaye, Joop

    2016-08-01

    We present an analysis of giant molecular clouds (GMCs) within hydrodynamic simulations of isolated, low-mass (M* ˜ 109 M⊙) disc galaxies. We study the evolution of molecular abundances and the implications for CO emission and the XCO conversion factor in individual clouds. We define clouds either as regions above a density threshold n_{H, min} = 10 {cm}^{-3}, or using an observationally motivated CO intensity threshold of 0.25 {K} {km} {s}^{-1}. Our simulations include a non-equilibrium chemical model with 157 species, including 20 molecules. We also investigate the effects of resolution and pressure floors (i.e. Jeans limiters). We find cloud lifetimes up to ≈ 40 Myr, with a median of 13 Myr, in agreement with observations. At one-tenth solar metallicity, young clouds ( ≲ 10-15 Myr) are underabundant in H2 and CO compared to chemical equilibrium, by factors of ≈3 and one to two orders of magnitude, respectively. At solar metallicity, GMCs reach chemical equilibrium faster (within ≈ 1 Myr). We also compute CO emission from individual clouds. The mean CO intensity, ICO, is strongly suppressed at low dust extinction, Av, and possibly saturates towards high Av, in agreement with observations. The ICO-Av relation shifts towards higher Av for higher metallicities and, to a lesser extent, for stronger UV radiation. At one-tenth solar metallicity, CO emission is weaker in young clouds ( ≲ 10-15 Myr), consistent with the underabundance of CO. Consequently, XCO decreases by an order of magnitude from 0 to 15 Myr, albeit with a large scatter.

  20. Chemical evolution of giant molecular clouds in simulations of galaxies

    NASA Astrophysics Data System (ADS)

    Richings, Alexander J.; Schaye, Joop

    2016-08-01

    We present an analysis of Giant Molecular Clouds (GMCs) within hydrodynamic simulations of isolated, low-mass (M* ~ 10^9 M_sol) disc galaxies. We study the evolution of molecular abundances and the implications for CO emission and the X_CO conversion factor in individual clouds. We define clouds either as regions above a density threshold n_H,min = 10 cm^-3, or using an observationally motivated CO intensity threshold of 0.25 K km s^-1. Our simulations include a non-equilibrium chemical model with 157 species, including 20 molecules. We also investigate the effects of resolution and pressure floors (i.e. Jeans limiters). We find cloud lifetimes up to ~40 Myr, with a median of 13 Myr, in agreement with observations. At one tenth solar metallicity, young clouds (<10-15 Myr) are underabundant in H2 and CO compared to chemical equilibrium, by factors of ~3 and 1-2 orders of magnitude, respectively. At solar metallicity, GMCs reach chemical equilibrium faster (within ~1 Myr). We also compute CO emission from individual clouds. The mean CO intensity, I_CO, is strongly suppressed at low dust extinction, A_v, and possibly saturates towards high A_v, in agreement with observations. The I_CO - A_v relation shifts towards higher A_v for higher metallicities and, to a lesser extent, for stronger UV radiation. At one tenth solar metallicity, CO emission is weaker in young clouds (<10-15 Myr), consistent with the underabundance of CO. Consequently, X_CO decreases by an order of magnitude from 0 to 15 Myr, albeit with a large scatter.

  1. Evolution of the atomic and molecular gas content of galaxies

    NASA Astrophysics Data System (ADS)

    Popping, Gergö; Somerville, Rachel S.; Trager, Scott C.

    2014-08-01

    We study the evolution of atomic and molecular gas in galaxies in semi-analytic models of galaxy formation that include new modelling of the partitioning of cold gas in galactic discs into atomic, molecular, and ionized phases. We adopt two scenarios for the formation of molecules: one pressure based and one metallicity based. We find that both recipes successfully reproduce the gas fractions and gas-to-stellar mass ratios of H I and H2 in local galaxies, as well as the H I and H2 disc sizes up to z ≤ 2. We reach good agreement with the locally observed H I and H2 mass function, although both recipes slightly overpredict the low-mass end of the H I mass function. Both of our models predict that the high-mass end of the H I mass function remains nearly constant at redshifts z < 2.0. The metallicity-based recipe yields a higher cosmic density of cold gas and much lower cosmic H2 fraction over the entire redshift range probed than the pressure-based recipe. These strong differences in H I mass function and cosmic density between the two recipes are driven by low-mass galaxies (log (M*/M⊙) ≤ 7) residing in low-mass haloes (log (Mvir/M⊙) ≤ 10). Both recipes predict that galaxy gas fractions remain high from z ˜ 6to3 and drop rapidly at lower redshift. The galaxy H2 fractions show a similar trend, but drop even more rapidly. We provide predictions for the CO J = 1-0 luminosity of galaxies, which will be directly comparable with observations with sub-mm and radio instruments.

  2. Free energy calculations from adaptive molecular dynamics simulations with adiabatic reweighting

    NASA Astrophysics Data System (ADS)

    Cao, Lingling; Stoltz, Gabriel; Lelièvre, Tony; Marinica, Mihai-Cosmin; Athènes, Manuel

    2014-03-01

    We propose an adiabatic reweighting algorithm for computing the free energy along an external parameter from adaptive molecular dynamics simulations. The adaptive bias is estimated using Bayes identity and information from all the sampled configurations. We apply the algorithm to a structural transition in a cluster and to the migration of a crystalline defect along a reaction coordinate. Compared to standard adaptive molecular dynamics, we observe an acceleration of convergence. With the aid of the algorithm, it is also possible to iteratively construct the free energy along the reaction coordinate without having to differentiate the gradient of the reaction coordinate or any biasing potential.

  3. Diversity-dependent cladogenesis and trait evolution in the adaptive radiation of the auks (aves: alcidae).

    PubMed

    Weir, Jason T; Mursleen, Sara

    2013-02-01

    Through the course of an adaptive radiation, the evolutionary speed of cladogenesis and ecologically relevant trait evolution are expected to slow as species diversity increases, niches become occupied, and ecological opportunity declines. We develop new likelihood-based models to test diversity-dependent evolution in the auks, one of only a few families of seabirds adapted to underwater "flight," and which exhibit a large variety of bill sizes and shapes. Consistent with the expectations of adaptive radiation, we find both a decline in rates of cladogenesis (a sixfold decline) and bill shape (a 64-fold decline) evolution as diversity increased. Bill shape diverged into two clades at the basal cladogenesis event with one clade possessing mostly long, narrow bills used to forage primarily on fish, and the other with short thick bills used to forage primarily on plankton. Following this initial divergence in bill shape, size, a known correlate of both prey size and maximum diving depth, diverged rapidly within each of these clades. These results suggest that adaptive radiation in foraging traits underwent initial divergence in bill shape to occupy different food resources, followed by size differentiation to subdivide each niche along the depth axis of the water column. PMID:23356613

  4. Interacting Proteins on Human Spermatozoa: Adaptive Evolution of the Binding of Semenogelin I to EPPIN

    PubMed Central

    Silva, Erick J. R.; Hamil, Katherine G.; O’Rand, Michael G.

    2013-01-01

    Semenogelin I (SEMG1) is found in human semen coagulum and on the surface of spermatozoa bound to EPPIN. The physiological significance of the SEMG1/EPPIN interaction on the surface of spermatozoa is its capacity to modulate sperm progressive motility. The present study investigates the hypothesis that the interacting surface of SEMG1 and EPPIN co-evolved within the Hominoidea time scale, as a result of adaptive pressures applied by their roles in sperm protection and reproductive fitness. Our results indicate that some amino acid residues of SEMG1 and EPPIN possess a remarkable deficiency of variation among hominoid primates. We observe a distinct residue change unique to humans within the EPPIN sequence containing a SEMG1 interacting surface, namely His92. In addition, Bayes Empirical Bayes analysis for positive selection indicates that the SEMG1 Cys239 residue underwent positive selection in humans, probably as a consequence of its role in increasing the binding affinity of these interacting proteins. We confirm the critical role of Cys239 residue for SEMG1 binding to EPPIN and inhibition of sperm motility by showing that recombinant SEMG1 mutants in which Cys239 residue was changed to glycine, aspartic acid, histidine, serine or arginine have reduced capacity to interact to EPPIN and to inhibit human sperm motility in vitro. In conclusion, our results indicate that EPPIN and SEMG1 rapidly co-evolved in primates due to their critical role in the modulation of sperm motility in the semen coagulum, providing unique insights into the molecular co-evolution of sperm surface interacting proteins. PMID:24312623

  5. Molecular mechanisms of cobalt-catalyzed hydrogen evolution

    PubMed Central

    Marinescu, Smaranda C.; Winkler, Jay R.; Gray, Harry B.

    2012-01-01

    Several cobalt complexes catalyze the evolution of hydrogen from acidic solutions, both homogeneously and at electrodes. The detailed molecular mechanisms of these transformations remain unresolved, largely owing to the fact that key reactive intermediates have eluded detection. One method of stabilizing reactive intermediates involves minimizing the overall reaction free-energy change. Here, we report a new cobalt(I) complex that reacts with tosylic acid to evolve hydrogen with a driving force of just 30 meV/Co. Protonation of CoI produces a transient CoIII-H complex that was characterized by nuclear magnetic resonance spectroscopy. The CoIII-H intermediate decays by second-order kinetics with an inverse dependence on acid concentration. Analysis of the kinetics suggests that CoIII-H produces hydrogen by two competing pathways: a slower homolytic route involving two CoIII-H species and a dominant heterolytic channel in which a highly reactive CoII-H transient is generated by CoI reduction of CoIII-H. PMID:22949704

  6. Dynamical Evolution of Supernova Remnants Breaking Through Molecular Clouds

    NASA Astrophysics Data System (ADS)

    Cho, Wankee; Kim, Jongsoo; Koo, Bon-Chul

    2015-04-01

    We carry out three-dimensional hydrodynamic simulations of the supernova remnants (SNRs) produced inside molecular clouds (MCs) near their surface using the HLL code tep{har83}. We explore the dynamical evolution and the X-ray morphology of SNRs after breaking through the MC surface for ranges of the explosion depths below the surface and the density ratios of the clouds to the intercloud media (ICM). We find that if an SNR breaks out through an MC surface in its Sedov stage, the outermost dense shell of the remnant is divided into several layers. The divided layers are subject to the Rayleigh-Taylor instability and fragmented. On the other hand, if an SNR breaks through an MC after the remnant enters the snowplow phase, the radiative shell is not divided to layers. We also compare the predictions of previous analytic solutions for the expansion of SNRs in stratified media with our one-dimensional simulations. Moreover, we produce synthetic X-ray surface brightness in order to research the center-bright X-ray morphology shown in thermal composite SNRs. In the late stages, a breakout SNR shows the center-bright X-ray morphology inside an MC in our results. We apply our model to the observational results of the X-ray morphology of the thermal composite SNR 3C 391.

  7. The evolution of control and distribution of adaptive mutations in a metabolic pathway.

    PubMed

    Wright, Kevin M; Rausher, Mark D

    2010-02-01

    In an attempt to understand whether it should be expected that some genes tend to be used disproportionately often by natural selection, we investigated two related phenomena: the evolution of flux control among enzymes in a metabolic pathway and properties of adaptive substitutions in pathway enzymes. These two phenomena are related by the principle that adaptive substitutions should occur more frequently in enzymes with greater flux control. Predicting which enzymes will be preferentially involved in adaptive evolution thus requires an evolutionary theory of flux control. We investigated the evolution of enzyme control in metabolic pathways with two models of enzyme kinetics: metabolic control theory (MCT) and Michaelis-Menten saturation kinetics (SK). Our models generate two main predictions for pathways in which reactions are moderately to highly irreversible: (1) flux control will evolve to be highly unequal among enzymes in a pathway and (2) upstream enzymes evolve a greater control coefficient then those downstream. This results in upstream enzymes fixing the majority of beneficial mutations during adaptive evolution. Once the population has reached high fitness, the trend is reversed, with the majority of neutral/slightly deleterious mutations occurring in downstream enzymes. These patterns are the result of three factors (the first of these is unique to the MCT simulations while the other two seem to be general properties of the metabolic pathways): (1) the majority of randomly selected, starting combinations of enzyme kinetic rates generate pathways that possess greater control for the upstream enzymes compared to downstream enzymes; (2) selection against large pools of intermediate substrates tends to prevent majority control by downstream enzymes; and (3) equivalent mutations in enzyme kinetic rates have the greatest effect on flux for enzymes with high levels of flux control, and these enzymes will accumulate adaptive substitutions, strengthening their

  8. Contemporary evolution during invasion: evidence for differentiation, natural selection, and local adaptation.

    PubMed

    Colautti, Robert I; Lau, Jennifer A

    2015-05-01

    Biological invasions are 'natural' experiments that can improve our understanding of contemporary evolution. We evaluate evidence for population differentiation, natural selection and adaptive evolution of invading plants and animals at two nested spatial scales: (i) among introduced populations (ii) between native and introduced genotypes. Evolution during invasion is frequently inferred, but rarely confirmed as adaptive. In common garden studies, quantitative trait differentiation is only marginally lower (~3.5%) among introduced relative to native populations, despite genetic bottlenecks and shorter timescales (i.e. millennia vs. decades). However, differentiation between genotypes from the native vs. introduced range is less clear and confounded by nonrandom geographic sampling; simulations suggest this causes a high false-positive discovery rate (>50%) in geographically structured populations. Selection differentials (¦s¦) are stronger in introduced than in native species, although selection gradients (¦β¦) are not, consistent with introduced species experiencing weaker genetic constraints. This could facilitate rapid adaptation, but evidence is limited. For example, rapid phenotypic evolution often manifests as geographical clines, but simulations demonstrate that nonadaptive trait clines can evolve frequently during colonization (~two-thirds of simulations). Additionally, QST-FST studies may often misrepresent the strength and form of natural selection acting during invasion. Instead, classic approaches in evolutionary ecology (e.g. selection analysis, reciprocal transplant, artificial selection) are necessary to determine the frequency of adaptive evolution during invasion and its influence on establishment, spread and impact of invasive species. These studies are rare but crucial for managing biological invasions in the context of global change. PMID:25891044

  9. Genomic rearrangements and the evolution of clusters of locally adaptive loci

    PubMed Central

    Yeaman, Sam

    2013-01-01

    Numerous studies of ecological genetics have found that alleles contributing to local adaptation sometimes cluster together, forming “genomic islands of divergence.” Divergence hitchhiking theory posits that these clusters evolve by the preferential establishment of tightly linked locally adapted mutations, because such linkage reduces the rate that recombination breaks up locally favorable combinations of alleles. Here, I use calculations based on previously developed analytical models of divergence hitchhiking to show that very few clustered mutations should be expected in a single bout of adaptation, relative to the number of unlinked mutations, suggesting that divergence hitchhiking theory alone may often be insufficient to explain empirical observations. Using individual-based simulations that allow for the transposition of a single genetic locus from one position on a chromosome to another, I then show that tight clustering of the loci involved in local adaptation tends to evolve on biologically realistic time scales. These results suggest that genomic rearrangements may often be an important component of local adaptation and the evolution of genomic islands of divergence. More generally, these results suggest that genomic architecture and functional neighborhoods of genes may be actively shaped by natural selection in heterogeneous environments. Because small-scale changes in gene order are relatively common in some taxa, comparative genomic studies could be coupled with studies of adaptation to explore how commonly such rearrangements are involved in local adaptation. PMID:23610436

  10. The evolution of cultural adaptations: Fijian food taboos protect against dangerous marine toxins.

    PubMed

    Henrich, Joseph; Henrich, Natalie

    2010-12-22

    The application of evolutionary theory to understanding the origins of our species' capacities for social learning has generated key insights into cultural evolution. By focusing on how our psychology has evolved to adaptively extract beliefs and practices by observing others, theorists have hypothesized how social learning can, over generations, give rise to culturally evolved adaptations. While much field research documents the subtle ways in which culturally transmitted beliefs and practices adapt people to their local environments, and much experimental work reveals the predicted patterns of social learning, little research connects real-world adaptive cultural traits to the patterns of transmission predicted by these theories. Addressing this gap, we show how food taboos for pregnant and lactating women in Fiji selectively target the most toxic marine species, effectively reducing a woman's chances of fish poisoning by 30 per cent during pregnancy and 60 per cent during breastfeeding. We further analyse how these taboos are transmitted, showing support for cultural evolutionary models that combine familial transmission with selective learning from locally prestigious individuals. In addition, we explore how particular aspects of human cognitive processes increase the frequency of some non-adaptive taboos. This case demonstrates how evolutionary theory can be deployed to explain both adaptive and non-adaptive behavioural patterns. PMID:20667878

  11. Evidence of adaptive evolution of alpine pheasants to high-altitude environment from mitogenomic perspective.

    PubMed

    Gu, Peng; Liu, Wei; Yao, Yong-fang; Ni, Qing-yong; Zhang, Ming-wang; Li, Di-yan; Xu, Huai-liang

    2016-01-01

    Adaptive evolutions to high-altitude adaptation have been intensively studied in mammals. However, considering the additional vertebrate groups, new perception regarding selection challenged by high-altitude stress on mitochondrial genome can be gained. To test this hypothesis, we compiled and analyzed the mitochondrial genomes of 5 alpine pheasants and 12 low-altitude species in Phasianidae. The results that evolutionary rates of ATP6 and ND6 showing significant fluctuation among branches when involved with five alpine pheasants revealed both genes might have implications with adapting to highland environment. The radical physico-chemical property changes identified by the modified MM01 model, including composition (C) and equilibrium constant (ionization of COOH) (Pk') in ATP6 and beta-structure tendencies (Pβ), Pk', and long-range non-bonded energy (El) in ND6, suggested that minor overall adjustments in size, protein conformation and relative orientation of reaction interfaces have been optimized to provide the ideal environments for electron transfer, proton translocation and generation of adenosine triphosphate (ATP). Additionally, three unique substitution sites were identified under selection in ND6, which could be potentially important adaptive changes contributing to cellular energy production. Our findings suggested that adaptive evolution may occur in alpine pheasants, which are an important complement to the knowledge of genetic mechanisms against the high-altitude environment in non-mammal animals. PMID:24708132

  12. [Episodes of adaptive evolution of mitochondrial genome in Asiatic salamanders (Amphibia, Caudata, Hynobiidae)].

    PubMed

    Maliarchuk, B A; Derenko, M V; Denisova, G A

    2014-02-01

    To elucidate the effect of natural selection on the evolution of mitochondrial DNA (mtDNA) in Asiatic salamanders of the family Hynobiidae, nucleotide sequences of 12 protein-coding genes were analyzed. Using a mixed effects model of evolution, it was found that, in spite of the pronounced effect of negative selection on the mtDNA evolution in Hynobiidae (which is typical for the animals in general), two phylogenetic clusters, the West Asian one, represented by the genera Ranodon and Paradactylodon, and North Eurasian one, represented by the genus Salamandrella, were formed under the influence of episodic positive selection. Analysis of protein sequences encoded by the mitochondrial genome also supported the influence of positive selection on the evolution of Hynobiidae at some stages of their cladogenesis. It is suggested that the signatures of adaptive evolution detected in the mtDNA of Hynobiidae were determined by the complex and long-lasting history of their formation, accompanied by adaptation to the changing environment. PMID:25711027

  13. Detecting the signatures of adaptive evolution in protein-coding genes.

    PubMed

    Bielawski, Joseph P

    2013-01-01

    The field of molecular evolution, which includes genome evolution, is devoted to finding variation within and between groups of organisms and explaining the processes responsible for generating this variation. Many DNA changes are believed to have little to no functional effect, and a neutral process will best explain their evolution. Thus, a central task is to discover which changes had positive fitness consequences and were subject to Darwinian natural selection during the course of evolution. Due the size and complexity of modern molecular datasets, the field has come to rely extensively on statistical modeling techniques to meet this analytical challenge. For DNA sequences that encode proteins, one of the most powerful approaches is to employ a statistical model of codon evolution. This unit provides a general introduction to the practice of modeling codon evolution using the statistical framework of maximum likelihood. Four real-data analysis activities are used to illustrate the principles of parameter estimation, robustness, hypothesis testing, and site classification. Each activity includes an explicit analytical protocol based on programs provided by the Phylogenetic Analysis by Maximum Likelihood (PAML) package. PMID:23288462

  14. The relation between recombination rate and patterns of molecular evolution and variation in Drosophila melanogaster.

    PubMed

    Campos, José L; Halligan, Daniel L; Haddrill, Penelope R; Charlesworth, Brian

    2014-04-01

    Genetic recombination associated with sexual reproduction increases the efficiency of natural selection by reducing the strength of Hill-Robertson interference. Such interference can be caused either by selective sweeps of positively selected alleles or by background selection (BGS) against deleterious mutations. Its consequences can be studied by comparing patterns of molecular evolution and variation in genomic regions with different rates of crossing over. We carried out a comprehensive study of the benefits of recombination in Drosophila melanogaster, both by contrasting five independent genomic regions that lack crossing over with the rest of the genome and by comparing regions with different rates of crossing over, using data on DNA sequence polymorphisms from an African population that is geographically close to the putatively ancestral population for the species, and on sequence divergence from a related species. We observed reductions in sequence diversity in noncrossover (NC) regions that are inconsistent with the effects of hard selective sweeps in the absence of recombination. Overall, the observed patterns suggest that the recombination rate experienced by a gene is positively related to an increase in the efficiency of both positive and purifying selection. The results are consistent with a BGS model with interference among selected sites in NC regions, and joint effects of BGS, selective sweeps, and a past population expansion on variability in regions of the genome that experience crossing over. In such crossover regions, the X chromosome exhibits a higher rate of adaptive protein sequence evolution than the autosomes, implying a Faster-X effect. PMID:24489114

  15. Molecular Evolution of the Yersinia Major Outer Membrane Protein C (OmpC).

    PubMed

    Stenkova, Anna M; Bystritskaya, Evgeniya P; Guzev, Konstantin V; Rakin, Alexander V; Isaeva, Marina P

    2016-01-01

    The genus Yersinia includes species with a wide range of eukaryotic hosts (from fish, insects, and plants to mammals and humans). One of the major outer membrane proteins, the porin OmpC, is preferentially expressed in the host gut, where osmotic pressure, temperature, and the concentrations of nutrients and toxic products are relatively high. We consider here the molecular evolution and phylogeny of Yersinia ompC. The maximum likelihood gene tree reflects the macroevolution processes occurring within the genus Yersinia. Positive selection and horizontal gene transfer are the key factors of ompC diversification, and intraspecies recombination was revealed in two Yersinia species. The impact of recombination on ompC evolution was different from that of another major porin gene, ompF, possibly due to the emergence of additional functions and conservation of the basic transport function. The predicted antigenic determinants of OmpC were located in rapidly evolving regions, which may indicate the evolutionary mechanisms of Yersinia adaptation to the host immune system. PMID:27578962

  16. Molecular Evolution of the Yersinia Major Outer Membrane Protein C (OmpC)

    PubMed Central

    Stenkova, Anna M.; Bystritskaya, Evgeniya P.; Guzev, Konstantin V.; Rakin, Alexander V.; Isaeva, Marina P.

    2016-01-01

    The genus Yersinia includes species with a wide range of eukaryotic hosts (from fish, insects, and plants to mammals and humans). One of the major outer membrane proteins, the porin OmpC, is preferentially expressed in the host gut, where osmotic pressure, temperature, and the concentrations of nutrients and toxic products are relatively high. We consider here the molecular evolution and phylogeny of Yersinia ompC. The maximum likelihood gene tree reflects the macroevolution processes occurring within the genus Yersinia. Positive selection and horizontal gene transfer are the key factors of ompC diversification, and intraspecies recombination was revealed in two Yersinia species. The impact of recombination on ompC evolution was different from that of another major porin gene, ompF, possibly due to the emergence of additional functions and conservation of the basic transport function. The predicted antigenic determinants of OmpC were located in rapidly evolving regions, which may indicate the evolutionary mechanisms of Yersinia adaptation to the host immune system. PMID:27578962

  17. Molecular evolution of SRP cycle components: functional implications.

    PubMed Central

    Althoff, S; Selinger, D; Wise, J A

    1994-01-01

    Signal recognition particle (SRP) is a cytoplasmic ribonucleoprotein that targets a subset of nascent presecretory proteins to the endoplasmic reticulum membrane. We have considered the SRP cycle from the perspective of molecular evolution, using recently determined sequences of genes or cDNAs encoding homologs of SRP (7SL) RNA, the Srp54 protein (Srp54p), and the alpha subunit of the SRP receptor (SR alpha) from a broad spectrum of organisms, together with the remaining five polypeptides of mammalian SRP. Our analysis provides insight into the significance of structural variation in SRP RNA and identifies novel conserved motifs in protein components of this pathway. The lack of congruence between an established phylogenetic tree and size variation in 7SL homologs implies the occurrence of several independent events that eliminated more than half the sequence content of this RNA during bacterial evolution. The apparently non-essential structures are domain I, a tRNA-like element that is constant in archaea, varies in size among eucaryotes, and is generally missing in bacteria, and domain III, a tightly base-paired hairpin that is present in all eucaryotic and archeal SRP RNAs but is invariably absent in bacteria. Based on both structural and functional considerations, we propose that the conserved core of SRP consists minimally of the 54 kDa signal sequence-binding protein complexed with the loosely base-paired domain IV helix of SRP RNA, and is also likely to contain a homolog of the Srp68 protein. Comparative sequence analysis of the methionine-rich M domains from a diverse array of Srp54p homologs reveals an extended region of amino acid identity that resembles a recently identified RNA recognition motif. Multiple sequence alignment of the G domains of Srp54p and SR alpha homologs indicates that these two polypeptides exhibit significant similarity even outside the four GTPase consensus motifs, including a block of nine contiguous amino acids in a location

  18. MOLECULAR CLOUD EVOLUTION. III. ACCRETION VERSUS STELLAR FEEDBACK

    SciTech Connect

    Vazquez-Semadeni, Enrique; ColIn, Pedro; Gomez, Gilberto C.; Ballesteros-Paredes, Javier; Watson, Alan W. E-mail: p.colin@crya.unam.m E-mail: alan@astro.unam.m

    2010-06-01

    We numerically investigate the effect of feedback from the ionization heating from massive stars on the evolution of giant molecular clouds (GMCs) and their star formation efficiency (SFE), which we treat as an instantaneous, time-dependent quantity. We follow the GMCs' evolution from their formation to advanced star-forming stages. After an initial period of contraction, the collapsing clouds begin forming stars, whose feedback evaporates part of the clouds' mass, opposing the continuing accretion from the infalling gas. Our results are as follows: (1) in the presence of feedback, the clouds attain levels of the SFE that are consistent at all times with observational determinations for regions of comparable star formation rates. (2) However, the dense gas mass is larger in general in the presence of feedback, while the total mass (dense gas + stars) is nearly insensitive to the presence of feedback, suggesting that it is determined mainly by the accretion, while the feedback inhibits mainly the conversion of dense gas to stars, because it acts directly to reheat and disperse the gas that is directly on its way to forming stars. (3) The factor by which the SFE is reduced upon the inclusion of feedback is a decreasing function of the cloud's mass, for clouds of size {approx}10 pc. This naturally explains the larger observed SFEs of massive-star-forming regions. (4) The clouds may attain a pseudo-virialized state, with a value of the virial mass very similar to the actual cloud mass. However, this state differs from true virialization in that the clouds, rather than being equilibrium entities, are the centers of a larger-scale collapse, in which accretion replenishes the mass consumed by star formation. (5) The higher-density regions within the clouds are in a similar situation, accreting gas infalling from the less-dense, more extended regions of the clouds. (6) The density probability density functions of the regions containing the clouds in general exhibit a shape

  19. Comprehensive molecular characterization of Methylobacterium extorquens AM1 adapted for 1-butanol tolerance

    DOE PAGESBeta

    Hu, Bo; Yang, Yi -Ming; Beck, David A. C.; Wang, Qian -Wen; Chen, Wen -Jing; Yang, Jing; Lidstrom, Mary E.; Yang, Song

    2016-04-11

    In this study, the toxicity of alcohols is one of the major roadblocks of biological fermentation for biofuels production. Methylobacterium extorquens AM1, a facultative methylotrophic α-proteobacterium, has been engineered to generate 1-butanol from cheap carbon feedstocks through a synthetic metabolic pathway. However, M. extorquens AM1 is vulnerable to solvent stress, which impedes further development for 1-butanol production. Only a few studies have reported the general stress response of M. extorquens AM1 to solvent stress. Therefore, it is highly desirable to obtain a strain with ameliorated 1-butanol tolerance and elucidate the molecular mechanism of 1-butnaol tolerance in M. extorquens AM1 formore » future strain improvement. In this work, adaptive laboratory evolution was used as a tool to isolate mutants with 1-butanol tolerance up to 0.5 %. The evolved strains, BHBT3 and BHBT5, demonstrated increased growth rates and higher survival rates with the existence of 1-butanol. Whole genome sequencing revealed a SNP mutation at kefB in BHBT5, which was confirmed to be responsible for increasing 1-butanol tolerance through an allelic exchange experiment. Global metabolomic analysis further discovered that the pools of multiple key metabolites, including fatty acids, amino acids, and disaccharides, were increased in BHBT5 in response to 1-butanol stress. Additionally, the carotenoid synthesis pathway was significantly down-regulated in BHBT5. In conclusion, we successfully screened mutants resistant to 1-butanol and provided insights into the molecular mechanism of 1-butanol tolerance in M. extorquens AM1. This research will be useful for uncovering the mechanism of cellular response of M. extorquens AM1 to solvent stress, and will provide the genetic blueprint for the rational design of a strain of M. extorquens AM1 with increased 1-butanol tolerance in the future.« less

  20. Non-equilibrium physics and evolution--adaptation, extinction, and ecology: a key issues review.

    PubMed

    Kussell, E; Vucelja, M

    2014-10-01

    Evolutionary dynamics in nature constitute an immensely complex non-equilibrium process. We review the application of physical models of evolution, by focusing on adaptation, extinction, and ecology. In each case, we examine key concepts by working through examples. Adaptation is discussed in the context of bacterial evolution, with a view toward the relationship between growth rates, mutation rates, selection strength, and environmental changes. Extinction dynamics for an isolated population are reviewed, with emphasis on the relation between timescales of extinction, population size, and temporally correlated noise. Ecological models are discussed by focusing on the effect of spatial interspecies interactions on diversity. Connections between physical processes--such as diffusion, turbulence, and localization--and evolutionary phenomena are highlighted. PMID:25303141

  1. Adaptive evolution of an artificial RNA genome to a reduced ribosome environment.

    PubMed

    Mizuuchi, Ryo; Ichihashi, Norikazu; Usui, Kimihito; Kazuta, Yasuaki; Yomo, Tetsuya

    2015-03-20

    The reconstitution of an artificial system that has the same evolutionary ability as a living thing is a major challenge in the in vitro synthetic biology. In this study, we tested the adaptive evolutionary ability of an artificial RNA genome replication system, termed the translation-coupled RNA replication (TcRR) system. In a previous work, we performed a study of the long-term evolution of the genome with an excess amount of ribosome. In this study, we continued the evolution experiment in a reduced-ribosome environment and observed that the mutant genome compensated for the reduced ribosome concentration. This result demonstrated the ability of the TcRR system to adapt and may be a step toward generating living things with evolutionary ability. PMID:24933578

  2. [Molecular mechanisms of tissue hypoxia and organism adaptation].

    PubMed

    Luk'ianova, L D

    2003-01-01

    The mechanism for participation of aerobic energy metabolism in formation of urgent and long-term adaptation to hypoxia is under consideration. It is stated that changes in kinetic properties of mitochondrial enzyme complexes (MEC), primarily enzymes of the respiratory chain substrate region (MEC I), in response to oxygen shortage underlie diverse stages of bioenergetic (tissue) hypoxia. It was shown that economization of energy metabolism in adaptation to hypoxia occurs due to formation of a new mitochondrial population. The mitochondria possess lesser size and decreased content of cytochromes; however, they are characterized by higher activities of enzymes and lower affinity of the enzymes to their substrates as well as high efficiency of oxidative phosphorylation. Furthermore the amount of mitochondria increases in the cell. It was demonstrated that oxygen shortage can both directly affect the bioenergetic apparatus of cell and indirectly influence it via stress activation of the neuro-humoral system. The latter triggers a non-specific cascade of functional and metabolic responses and eventually disturbs oxygen delivery to cells, which also promotes bioenergetic hypoxia. Genotypically determined differences in kinetic properties of MEC are established, which play a leading role in formation of the functional and metabolic "portrait" of resistant and non-resistant to hypoxia animals and also in development of urgent and long-term mechanisms of adaptation to hypoxia. It was shown that these mechanisms can be used not only for development of the tactics and strategy for pharmacological correction of hypoxic states, but also for optimization of non-drug methods for enhancing the non-specific resistance of the organism. PMID:12918247

  3. Analysis of the Lactobacillus casei supragenome and its influence in species evolution and lifestyle adaptation

    PubMed Central

    2012-01-01

    Background The broad ecological distribution of L. casei makes it an insightful subject for research on genome evolution and lifestyle adaptation. To explore evolutionary mechanisms that determine genomic diversity of L. casei, we performed comparative analysis of 17 L. casei genomes representing strains collected from dairy, plant, and human sources. Results Differences in L. casei genome inventory revealed an open pan-genome comprised of 1,715 core and 4,220 accessory genes. Extrapolation of pan-genome data indicates L. casei has a supragenome approximately 3.2 times larger than the average genome of individual strains. Evidence suggests horizontal gene transfer from other bacterial species, particularly lactobacilli, has been important in adaptation of L. casei to new habitats and lifestyles, but evolution of dairy niche specialists also appears to involve gene decay. Conclusions Genome diversity in L. casei has evolved through gene acquisition and decay. Acquisition of foreign genomic islands likely confers a fitness benefit in specific habitats, notably plant-associated niches. Loss of unnecessary ancestral traits in strains collected from bacterial-ripened cheeses supports the hypothesis that gene decay contributes to enhanced fitness in that niche. This study gives the first evidence for a L. casei supragenome and provides valuable insights into mechanisms for genome evolution and lifestyle adaptation of this ecologically flexible and industrially important lactic acid bacterium. Additionally, our data confirm the Distributed Genome Hypothesis extends to non-pathogenic, ecologically flexible species like L. casei. PMID:23035691

  4. The red queen in the corn: agricultural weeds as models of rapid adaptive evolution

    PubMed Central

    Vigueira, C C; Olsen, K M; Caicedo, A L

    2013-01-01

    Weeds are among the greatest pests of agriculture, causing billions of dollars in crop losses each year. As crop field management practices have changed over the past 12 000 years, weeds have adapted in turn to evade human removal. This evolutionary change can be startlingly rapid, making weeds an appealing system to study evolutionary processes that occur over short periods of time. An understanding of how weeds originate and adapt is needed for successful management; however, relatively little emphasis has been placed on genetically characterizing these systems. Here, we review the current literature on agricultural weed origins and their mechanisms of adaptation. Where possible, we have included examples that have been genetically well characterized. Evidence for three possible, non-mutually exclusive weed origins (from wild species, crop-wild hybrids or directly from crops) is discussed with respect to what is known about the microevolutionary signatures that result from these processes. We also discuss what is known about the genetic basis of adaptive traits in weeds and the range of genetic mechanisms that are responsible. With a better understanding of genetic mechanisms underlying adaptation in weedy species, we can address the more general process of adaptive evolution and what can be expected as we continue to apply selective pressures in agroecosystems around the world. PMID:23188175

  5. The molecular evolution of four anti-malarial immune genes in the Anopheles gambiae species complex

    PubMed Central

    2008-01-01

    Background If the insect innate immune system is to be used as a potential blocking step in transmission of malaria, then it will require targeting one or a few genes with highest relevance and ease of manipulation. The problem is to identify and manipulate those of most importance to malaria infection without the risk of decreasing the mosquito's ability to stave off infections by microbes in general. Molecular evolution methodologies and concepts can help identify such genes. Within the setting of a comparative molecular population genetic and phylogenetic framework, involving six species of the Anopheles gambiae complex, we investigated whether a set of four pre-selected immunity genes (gambicin, NOS, Rel2 and FBN9) might have evolved under selection pressure imposed by the malaria parasite. Results We document varying levels of polymorphism within and divergence between the species, in all four genes. Introgression and the sharing of ancestral polymorphisms, two processes that have been documented in the past, were verified in this study in all four studied genes. These processes appear to affect each gene in different ways and to different degrees. However, there is no evidence of positive selection acting on these genes. Conclusion Considering the results presented here in concert with previous studies, genes that interact directly with the Plasmodium parasite, and play little or no role in defense against other microbes, are probably the most likely candidates for a specific adaptive response against P. falciparum. Furthermore, since it is hard to establish direct evidence linking the adaptation of any candidate gene to P. falciparum infection, a comparative framework allowing at least an indirect link should be provided. Such a framework could be achieved, if a similar approach like the one involved here, was applied to all other anopheline complexes that transmit P. falciparum malaria. PMID:18325105

  6. Molecular Evolution and Functional Divergence of Trace Amine–Associated Receptors

    PubMed Central

    Eyun, Seong-il; Moriyama, Hideaki; Hoffmann, Federico G.; Moriyama, Etsuko N.

    2016-01-01

    Trace amine-associated receptors (TAARs) are a member of the G-protein-coupled receptor superfamily and are known to be expressed in olfactory sensory neurons. A limited number of molecular evolutionary studies have been done for TAARs so far. To elucidate how lineage-specific evolution contributed to their functional divergence, we examined 30 metazoan genomes. In total, 493 TAAR gene candidates (including 84 pseudogenes) were identified from 26 vertebrate genomes. TAARs were not identified from non-vertebrate genomes. An ancestral-type TAAR-like gene appeared to have emerged in lamprey. We found four therian-specific TAAR subfamilies (one eutherian-specific and three metatherian-specific) in addition to previously known nine subfamilies. Many species-specific TAAR gene duplications and losses contributed to a large variation of TAAR gene numbers among mammals, ranging from 0 in dolphin to 26 in flying fox. TAARs are classified into two groups based on binding preferences for primary or tertiary amines as well as their sequence similarities. Primary amine-detecting TAARs (TAAR1-4) have emerged earlier, generally have single-copy orthologs (very few duplication or loss), and have evolved under strong functional constraints. In contrast, tertiary amine-detecting TAARs (TAAR5-9) have emerged more recently and the majority of them experienced higher rates of gene duplications. Protein members that belong to the tertiary amine-detecting TAAR group also showed the patterns of positive selection especially in the area surrounding the ligand-binding pocket, which could have affected ligand-binding activities and specificities. Expansions of the tertiary amine-detecting TAAR gene family may have played important roles in terrestrial adaptations of therian mammals. Molecular evolution of the TAAR gene family appears to be governed by a complex, species-specific, interplay between environmental and evolutionary factors. PMID:26963722

  7. Molecular Evolution and Functional Divergence of Trace Amine-Associated Receptors.

    PubMed

    Eyun, Seong-Il; Moriyama, Hideaki; Hoffmann, Federico G; Moriyama, Etsuko N

    2016-01-01

    Trace amine-associated receptors (TAARs) are a member of the G-protein-coupled receptor superfamily and are known to be expressed in olfactory sensory neurons. A limited number of molecular evolutionary studies have been done for TAARs so far. To elucidate how lineage-specific evolution contributed to their functional divergence, we examined 30 metazoan genomes. In total, 493 TAAR gene candidates (including 84 pseudogenes) were identified from 26 vertebrate genomes. TAARs were not identified from non-vertebrate genomes. An ancestral-type TAAR-like gene appeared to have emerged in lamprey. We found four therian-specific TAAR subfamilies (one eutherian-specific and three metatherian-specific) in addition to previously known nine subfamilies. Many species-specific TAAR gene duplications and losses contributed to a large variation of TAAR gene numbers among mammals, ranging from 0 in dolphin to 26 in flying fox. TAARs are classified into two groups based on binding preferences for primary or tertiary amines as well as their sequence similarities. Primary amine-detecting TAARs (TAAR1-4) have emerged earlier, generally have single-copy orthologs (very few duplication or loss), and have evolved under strong functional constraints. In contrast, tertiary amine-detecting TAARs (TAAR5-9) have emerged more recently and the majority of them experienced higher rates of gene duplications. Protein members that belong to the tertiary amine-detecting TAAR group also showed the patterns of positive selection especially in the area surrounding the ligand-binding pocket, which could have affected ligand-binding activities and specificities. Expansions of the tertiary amine-detecting TAAR gene family may have played important roles in terrestrial adaptations of therian mammals. Molecular evolution of the TAAR gene family appears to be governed by a complex, species-specific, interplay between environmental and evolutionary factors. PMID:26963722

  8. Evolution and Adaptation of Wild Emmer Wheat Populations to Biotic and Abiotic Stresses.

    PubMed

    Huang, Lin; Raats, Dina; Sela, Hanan; Klymiuk, Valentina; Lidzbarsky, Gabriel; Feng, Lihua; Krugman, Tamar; Fahima, Tzion

    2016-08-01

    The genetic bottlenecks associated with plant domestication and subsequent selection in man-made agroecosystems have limited the genetic diversity of modern crops and increased their vulnerability to environmental stresses. Wild emmer wheat, the tetraploid progenitor of domesticated wheat, distributed along a wide range of ecogeographical conditions in the Fertile Crescent, has valuable "left behind" adaptive diversity to multiple diseases and environmental stresses. The biotic and abiotic stress responses are conferred by series of genes and quantitative trait loci (QTLs) that control complex resistance pathways. The study of genetic diversity, genomic organization, expression profiles, protein structure and function of biotic and abiotic stress-resistance genes, and QTLs could shed light on the evolutionary history and adaptation mechanisms of wild emmer populations for their natural habitats. The continuous evolution and adaptation of wild emmer to the changing environment provide novel solutions that can contribute to safeguarding food for the rapidly growing human population. PMID:27296141

  9. The Elusive Nature of Adaptive Mitochondrial DNA Evolution of an Arctic Lineage Prone to Frequent Introgression

    PubMed Central

    Melo-Ferreira, José; Vilela, Joana; Fonseca, Miguel M.; da Fonseca, Rute R.; Boursot, Pierre; Alves, Paulo C.

    2014-01-01

    Mitochondria play a fundamental role in cellular metabolism, being responsible for most of the energy production of the cell in the oxidative phosphorylation (OXPHOS) pathway. Mitochondrial DNA (mtDNA) encodes for key components of this process, but its direct role in adaptation remains far from understood. Hares (Lepus spp.) are privileged models to study the impact of natural selection on mitogenomic evolution because 1) species are adapted to contrasting environments, including arctic, with different metabolic pressures, and 2) mtDNA introgression from arctic into temperate species is widespread. Here, we analyzed the sequences of 11 complete mitogenomes (ten newly obtained) of hares of temperate and arctic origins (including two of arctic origin introgressed into temperate species). The analysis of patterns of codon substitutions along the reconstructed phylogeny showed evidence for positive selection in several codons in genes of the OXPHOS complexes, most notably affecting the arctic lineage. However, using theoretical models, no predictable effect of these differences was found on the structure and physicochemical properties of the encoded proteins, suggesting that the focus of selection may lie on complex interactions with nuclear encoded peptides. Also, a cloverleaf structure was detected in the control region only from the arctic mtDNA lineage, which may influence mtDNA replication and transcription. These results suggest that adaptation impacted the evolution of hare mtDNA and may have influenced the occurrence and consequences of the many reported cases of massive mtDNA introgression. However, the origin of adaptation remains elusive. PMID:24696399

  10. Evolution of adaptive diversity and genetic connectivity in Arctic charr (Salvelinus alpinus) in Iceland

    PubMed Central

    Kapralova, K H; Morrissey, M B; Kristjánsson, B K; Ólafsdóttir, G Á; Snorrason, S S; Ferguson, M M

    2011-01-01

    The ecological theory of adaptive radiation predicts that the evolution of phenotypic diversity within species is generated by divergent natural selection arising from different environments and competition between species. Genetic connectivity among populations is likely also to have an important role in both the origin and maintenance of adaptive genetic diversity. Our goal was to evaluate the potential roles of genetic connectivity and natural selection in the maintenance of adaptive phenotypic differences among morphs of Arctic charr, Salvelinus alpinus, in Iceland. At a large spatial scale, we tested the predictive power of geographic structure and phenotypic variation for patterns of neutral genetic variation among populations throughout Iceland. At a smaller scale, we evaluated the genetic differentiation between two morphs in Lake Thingvallavatn relative to historically explicit, coalescent-based null models of the evolutionary history of these lineages. At the large spatial scale, populations are highly differentiated, but weakly structured, both geographically and with respect to patterns of phenotypic variation. At the intralacustrine scale, we observe modest genetic differentiation between two morphs, but this level of differentiation is nonetheless consistent with strong reproductive isolation throughout the Holocene. Rather than a result of the homogenizing effect of gene flow in a system at migration-drift equilibrium, the modest level of genetic differentiation could equally be a result of slow neutral divergence by drift in large populations. We conclude that contemporary and recent patterns of restricted gene flow have been highly conducive to the evolution and maintenance of adaptive genetic variation in Icelandic Arctic charr. PMID:21224880

  11. Using Experimental Evolution to Study Adaptations for Life within the Family

    PubMed Central

    Schrader, Matthew; Jarrett, Benjamin J. M.; Kilner, Rebecca M.

    2015-01-01

    Parents of many species provision their young, and the extent of parental provisioning constitutes a major component of the offspring’s social environment. Thus, a change in parental provisioning can alter selection on offspring, resulting in the coevolution of parental and offspring traits. Although this reasoning is central to our evolutionary understanding of family life, there is little direct evidence that selection by parents causes evolutionary change in their offspring. Here we use experimental evolution to examine how populations of burying beetles adapt to a change in posthatching parental provisioning. We measured the performance of larvae descended from lab populations that had been maintained with and without posthatching parental care (Full Care and No Care populations). We found that adaptation to the absence of posthatching care led to rapid and consistent changes in larval survival in the absence of care. Specifically, larvae from No Care populations had higher survival in the absence of care than larvae from Full Care populations. Other measures of larval performance, such as the ability of larvae to consume a breeding carcass and larval mass at dispersal, did not differ between the Full Care and No Care populations. Nevertheless, our results show that populations can adapt rapidly to a change in the extent of parental care and that experimental evolution can be used to study such adaptation. PMID:25905504

  12. Adaptive evolution in locomotor performance: How selective pressures and functional relationships produce diversity.

    PubMed

    Scales, Jeffrey A; Butler, Marguerite A

    2016-01-01

    Despite the complexity of nature, most comparative studies of phenotypic evolution consider selective pressures in isolation. When competing pressures operate on the same system, it is commonly expected that trade-offs will occur that will limit the evolution of phenotypic diversity, however, it is possible that interactions among selective pressures may promote diversity instead. We explored the evolution of locomotor performance in lizards in relation to possible selective pressures using the Ornstein-Uhlenbeck process. Here, we show that a combination of selection based on foraging mode and predator escape is required to explain variation in performance phenotypes. Surprisingly, habitat use contributed little explanatory power. We find that it is possible to evolve very different abilities in performance which were previously thought to be tightly correlated, supporting a growing literature that explores the many-to-one mapping of morphological design. Although we generally find the expected trade-off between maximal exertion and speed, this relationship surprisingly disappears when species experience selection for both performance types. We conclude that functional integration need not limit adaptive potential, and that an integrative approach considering multiple major influences on a phenotype allows a more complete understanding of adaptation and the evolution of diversity. PMID:26614565

  13. Evolution at a high imposed mutation rate: adaptation obscures the load in phage T7.

    PubMed

    Springman, R; Keller, T; Molineux, I J; Bull, J J

    2010-01-01

    Evolution at high mutation rates is expected to reduce population fitness deterministically by the accumulation of deleterious mutations. A high enough rate should even cause extinction (lethal mutagenesis), a principle motivating the clinical use of mutagenic drugs to treat viral infections. The impact of a high mutation rate on long-term viral fitness was tested here. A large population of the DNA bacteriophage T7 was grown with a mutagen, producing a genomic rate of 4 nonlethal mutations per generation, two to three orders of magnitude above the baseline rate. Fitness-viral growth rate in the mutagenic environment-was predicted to decline substantially; after 200 generations, fitness had increased, rejecting the model. A high mutation load was nonetheless evident from (i) many low- to moderate-frequency mutations in the population (averaging 245 per genome) and (ii) an 80% drop in average burst size. Twenty-eight mutations reached high frequency and were thus presumably adaptive, clustered mostly in DNA metabolism genes, chiefly DNA polymerase. Yet blocking DNA polymerase evolution failed to yield a fitness decrease after 100 generations. Although mutagenic drugs have caused viral extinction in vitro under some conditions, this study is the first to match theory and fitness evolution at a high mutation rate. Failure of the theory challenges the quantitative basis of lethal mutagenesis and highlights the potential for adaptive evolution at high mutation rates. PMID:19858285

  14. Reversible adapting layer produces robust single-crystal electrocatalyst for oxygen evolution

    NASA Astrophysics Data System (ADS)

    Tung, Ching-Wei; Hsu, Ying-Ya; Shen, Yen-Ping; Zheng, Yixin; Chan, Ting-Shan; Sheu, Hwo-Shuenn; Cheng, Yuan-Chung; Chen, Hao Ming

    2015-08-01

    Electrochemically converting water into oxygen/hydrogen gas is ideal for high-density renewable energy storage in which robust electrocatalysts for efficient oxygen evolution play crucial roles. To date, however, electrocatalysts with long-term stability have remained elusive. Here we report that single-crystal Co3O4 nanocube underlay with a thin CoO layer results in a high-performance and high-stability electrocatalyst in oxygen evolution reaction. An in situ X-ray diffraction method is developed to observe a strong correlation between the initialization of the oxygen evolution and the formation of active metal oxyhydroxide phase. The lattice of skin layer adapts to the structure of the active phase, which enables a reversible facile structural change that facilitates the chemical reactions without breaking the scaffold of the electrocatalysts. The single-crystal nanocube electrode exhibits stable, continuous oxygen evolution for >1,000 h. This robust stability is attributed to the complementary nature of defect-free single-crystal electrocatalyst and the reversible adapting layer.

  15. Reversible adapting layer produces robust single-crystal electrocatalyst for oxygen evolution

    PubMed Central

    Tung, Ching-Wei; Hsu, Ying-Ya; Shen, Yen-Ping; Zheng, Yixin; Chan, Ting-Shan; Sheu, Hwo-Shuenn; Cheng, Yuan-Chung; Chen, Hao Ming

    2015-01-01

    Electrochemically converting water into oxygen/hydrogen gas is ideal for high-density renewable energy storage in which robust electrocatalysts for efficient oxygen evolution play crucial roles. To date, however, electrocatalysts with long-term stability have remained elusive. Here we report that single-crystal Co3O4 nanocube underlay with a thin CoO layer results in a high-performance and high-stability electrocatalyst in oxygen evolution reaction. An in situ X-ray diffraction method is developed to observe a strong correlation between the initialization of the oxygen evolution and the formation of active metal oxyhydroxide phase. The lattice of skin layer adapts to the structure of the active phase, which enables a reversible facile structural change that facilitates the chemical reactions without breaking the scaffold of the electrocatalysts. The single-crystal nanocube electrode exhibits stable, continuous oxygen evolution for >1,000 h. This robust stability is attributed to the complementary nature of defect-free single-crystal electrocatalyst and the reversible adapting layer. PMID:26315066

  16. Microevolutionary, macroevolutionary, ecological and taxonomical implications of punctuational theories of adaptive evolution

    PubMed Central

    2013-01-01

    Abstract Punctuational theories of evolution suggest that adaptive evolution proceeds mostly, or even entirely, in the distinct periods of existence of a particular species. The mechanisms of this punctuated nature of evolution suggested by the various theories differ. Therefore the predictions of particular theories concerning various evolutionary phenomena also differ. Punctuational theories can be subdivided into five classes, which differ in their mechanism and their evolutionary and ecological implications. For example, the transilience model of Templeton (class III), genetic revolution model of Mayr (class IV) or the frozen plasticity theory of Flegr (class V), suggests that adaptive evolution in sexual species is operative shortly after the emergence of a species by peripatric speciation – while it is evolutionary plastic. To a major degree, i.e. throughout 98-99% of their existence, sexual species are evolutionarily frozen (class III) or elastic (class IV and V) on a microevolutionary time scale and evolutionarily frozen on a macroevolutionary time scale and can only wait for extinction, or the highly improbable return of a population segment to the plastic state due to peripatric speciation. The punctuational theories have many evolutionary and ecological implications. Most of these predictions could be tested empirically, and should be analyzed in greater depth theoretically. The punctuational theories offer many new predictions that need to be tested, but also provide explanations for a much broader spectrum of known biological phenomena than classical gradualistic evolutionary theories. Reviewers This article was reviewed by Claus Wilke, Pierre Pantarotti and David Penny (nominated by Anthony Poole). PMID:23324625

  17. Analysis of Adaptive Evolution in Lyssavirus Genomes Reveals Pervasive Diversifying Selection during Species Diversification

    PubMed Central

    Voloch, Carolina M.; Capellão, Renata T.; Mello, Beatriz; Schrago, Carlos G.

    2014-01-01

    Lyssavirus is a diverse genus of viruses that infect a variety of mammalian hosts, typically causing encephalitis. The evolution of this lineage, particularly the rabies virus, has been a focus of research because of the extensive occurrence of cross-species transmission, and the distinctive geographical patterns present throughout the diversification of these viruses. Although numerous studies have examined pattern-related questions concerning Lyssavirus evolution, analyses of the evolutionary processes acting on Lyssavirus diversification are scarce. To clarify the relevance of positive natural selection in Lyssavirus diversification, we conducted a comprehensive scan for episodic diversifying selection across all lineages and codon sites of the five coding regions in lyssavirus genomes. Although the genomes of these viruses are generally conserved, the glycoprotein (G), RNA-dependent RNA polymerase (L) and polymerase (P) genes were frequently targets of adaptive evolution during the diversification of the genus. Adaptive evolution is particularly manifest in the glycoprotein gene, which was inferred to have experienced the highest density of positively selected codon sites along branches. Substitutions in the L gene were found to be associated with the early diversification of phylogroups. A comparison between the number of positively selected sites inferred along the branches of RABV population branches and Lyssavirus intespecies branches suggested that the occurrence of positive selection was similar on the five coding regions of the genome in both groups. PMID:25415197

  18. Evolution of regulatory networks towards adaptability and stability in a changing environment

    NASA Astrophysics Data System (ADS)

    Lee, Deok-Sun

    2014-11-01

    Diverse biological networks exhibit universal features distinguished from those of random networks, calling much attention to their origins and implications. Here we propose a minimal evolution model of Boolean regulatory networks, which evolve by selectively rewiring links towards enhancing adaptability to a changing environment and stability against dynamical perturbations. We find that sparse and heterogeneous connectivity patterns emerge, which show qualitative agreement with real transcriptional regulatory networks and metabolic networks. The characteristic scaling behavior of stability reflects the balance between robustness and flexibility. The scaling of fluctuation in the perturbation spread shows a dynamic crossover, which is analyzed by investigating separately the stochasticity of internal dynamics and the network structure differences depending on the evolution pathways. Our study delineates how the ambivalent pressure of evolution shapes biological networks, which can be helpful for studying general complex systems interacting with environments.

  19. Choosing the right molecular genetic markers for studying biodiversity: from molecular evolution to practical aspects.

    PubMed

    Chenuil, Anne; Anne, Chenuil

    2006-05-01

    The use of molecular genetic markers (MGMs) has become widespread among evolutionary biologists, and the methods of analysis of genetic data improve rapidly, yet an organized framework in which scientists can work is lacking. Elements of molecular evolution are summarized to explain the origin of variation at the DNA level, its measures, and the relationships linking genetic variability to the biological parameters of the studied organisms. MGM are defined by two components: the DNA region(s) screened, and the technique used to reveal its variation. Criteria of choice belong to three categories: (1) the level of variability, (2) the nature of the information (e.g. dominance vs. codominance, ploidy, ... ) which must be determined according to the biological question and (3) some practical criteria which mainly depend on the equipment of the laboratory and experience of the scientist. A three-step procedure is proposed for drawing up MGMs suitable to answer given biological questions, and compiled data are organized to guide the choice at each step: (1) choice, determined by the biological question, of the level of variability and of the criteria of the nature of information, (2) choice of the DNA region and (3) choice of the technique. PMID:16850217

  20. Historical Contingency in a Multigene Family Facilitates Adaptive Evolution of Toxin Resistance.

    PubMed

    McGlothlin, Joel W; Kobiela, Megan E; Feldman, Chris R; Castoe, Todd A; Geffeney, Shana L; Hanifin, Charles T; Toledo, Gabriela; Vonk, Freek J; Richardson, Michael K; Brodie, Edmund D; Pfrender, Michael E; Brodie, Edmund D

    2016-06-20

    Novel adaptations must originate and function within an already established genome [1]. As a result, the ability of a species to adapt to new environmental challenges is predicted to be highly contingent on the evolutionary history of its lineage [2-6]. Despite a growing appreciation of the importance of historical contingency in the adaptive evolution of single proteins [7-11], we know surprisingly little about its role in shaping complex adaptations that require evolutionary change in multiple genes. One such adaptation, extreme resistance to tetrodotoxin (TTX), has arisen in several species of snakes through coevolutionary arms races with toxic amphibian prey, which select for TTX-resistant voltage-gated sodium channels (Nav) [12-16]. Here, we show that the relatively recent origins of extreme toxin resistance, which involve the skeletal muscle channel Nav1.4, were facilitated by ancient evolutionary changes in two other members of the same gene family. A substitution conferring TTX resistance to Nav1.7, a channel found in small peripheral neurons, arose in lizards ∼170 million years ago (mya) and was present in the common ancestor of all snakes. A second channel found in larger myelinated neurons, Nav1.6, subsequently evolved resistance in four different snake lineages beginning ∼38 mya. Extreme TTX resistance has evolved at least five times within the past 12 million years via changes in Nav1.4, but only within lineages that previously evolved resistant Nav1.6 and Nav1.7. Our results show that adaptive protein evolution may be contingent upon enabling substitutions elsewhere in the genome, in this case, in paralogs of the same gene family. PMID:27291053

  1. Molecular networks of human muscle adaptation to exercise and age.

    PubMed

    Phillips, Bethan E; Williams, John P; Gustafsson, Thomas; Bouchard, Claude; Rankinen, Tuomo; Knudsen, Steen; Smith, Kenneth; Timmons, James A; Atherton, Philip J

    2013-03-01

    Physical activity and molecular ageing presumably interact to precipitate musculoskeletal decline in humans with age. Herein, we have delineated molecular networks for these two major components of sarcopenic risk using multiple independent clinical cohorts. We generated genome-wide transcript profiles from individuals (n = 44) who then undertook 20 weeks of supervised resistance-exercise training (RET). Expectedly, our subjects exhibited a marked range of hypertrophic responses (3% to +28%), and when applying Ingenuity Pathway Analysis (IPA) up-stream analysis to ~580 genes that co-varied with gain in lean mass, we identified rapamycin (mTOR) signaling associating with growth (P = 1.4 × 10(-30)). Paradoxically, those displaying most hypertrophy exhibited an inhibited mTOR activation signature, including the striking down-regulation of 70 rRNAs. Differential analysis found networks mimicking developmental processes (activated all-trans-retinoic acid (ATRA, Z-score = 4.5; P = 6 × 10(-13)) and inhibited aryl-hydrocarbon receptor signaling (AhR, Z-score = -2.3; P = 3 × 10(-7))) with RET. Intriguingly, as ATRA and AhR gene-sets were also a feature of endurance exercise training (EET), they appear to represent "generic" physical activity responsive gene-networks. For age, we found that differential gene-expression methods do not produce consistent molecular differences between young versus old individuals. Instead, utilizing two independent cohorts (n = 45 and n = 52), with a continuum of subject ages (18-78 y), the first reproducible set of age-related transcripts in human muscle was identified. This analysis identified ~500 genes highly enriched in post-transcriptional processes (P = 1 × 10(-6)) and with negligible links to the aforementioned generic exercise regulated gene-sets and some overlap with ribosomal genes. The RNA signatures from multiple compounds all targeting serotonin, DNA topoisomerase antagonism, and RXR activation were significantly related to

  2. Molecular Networks of Human Muscle Adaptation to Exercise and Age

    PubMed Central

    Phillips, Bethan E.; Williams, John P.; Gustafsson, Thomas; Bouchard, Claude; Rankinen, Tuomo; Knudsen, Steen; Smith, Kenneth

    2013-01-01

    Physical activity and molecular ageing presumably interact to precipitate musculoskeletal decline in humans with age. Herein, we have delineated molecular networks for these two major components of sarcopenic risk using multiple independent clinical cohorts. We generated genome-wide transcript profiles from individuals (n = 44) who then undertook 20 weeks of supervised resistance-exercise training (RET). Expectedly, our subjects exhibited a marked range of hypertrophic responses (3% to +28%), and when applying Ingenuity Pathway Analysis (IPA) up-stream analysis to ∼580 genes that co-varied with gain in lean mass, we identified rapamycin (mTOR) signaling associating with growth (P = 1.4×10−30). Paradoxically, those displaying most hypertrophy exhibited an inhibited mTOR activation signature, including the striking down-regulation of 70 rRNAs. Differential analysis found networks mimicking developmental processes (activated all-trans-retinoic acid (ATRA, Z-score = 4.5; P = 6×10−13) and inhibited aryl-hydrocarbon receptor signaling (AhR, Z-score = −2.3; P = 3×10−7)) with RET. Intriguingly, as ATRA and AhR gene-sets were also a feature of endurance exercise training (EET), they appear to represent “generic” physical activity responsive gene-networks. For age, we found that differential gene-expression methods do not produce consistent molecular differences between young versus old individuals. Instead, utilizing two independent cohorts (n = 45 and n = 52), with a continuum of subject ages (18–78 y), the first reproducible set of age-related transcripts in human muscle was identified. This analysis identified ∼500 genes highly enriched in post-transcriptional processes (P = 1×10−6) and with negligible links to the aforementioned generic exercise regulated gene-sets and some overlap with ribosomal genes. The RNA signatures from multiple compounds all targeting serotonin, DNA topoisomerase antagonism, and RXR

  3. A Fast Variational Method for the Construction of Resolution Adaptive C-Smooth Molecular Surfaces.

    PubMed

    Bajaj, Chandrajit L; Xu, Guoliang; Zhang, Qin

    2009-05-01

    We present a variational approach to smooth molecular (proteins, nucleic acids) surface constructions, starting from atomic coordinates, as available from the protein and nucleic-acid data banks. Molecular dynamics (MD) simulations traditionally used in understanding protein and nucleic-acid folding processes, are based on molecular force fields, and require smooth models of these molecular surfaces. To accelerate MD simulations, a popular methodology is to employ coarse grained molecular models, which represent clusters of atoms with similar physical properties by psuedo- atoms, resulting in coarser resolution molecular surfaces. We consider generation of these mixed-resolution or adaptive molecular surfaces. Our approach starts from deriving a general form second order geometric partial differential equation in the level-set formulation, by minimizing a first order energy functional which additionally includes a regularization term to minimize the occurrence of chemically infeasible molecular surface pockets or tunnel-like artifacts. To achieve even higher computational efficiency, a fast cubic B-spline C(2) interpolation algorithm is also utilized. A narrow band, tri-cubic B-spline level-set method is then used to provide C(2) smooth and resolution adaptive molecular surfaces. PMID:19802355

  4. Patterns of molecular evolution of RNAi genes in social and socially parasitic bumblebees.

    PubMed

    Helbing, Sophie; Lattorff, H Michael G

    2016-08-01

    The high frequency of interactions amongst closely related individuals in social insect colonies enhances pathogen transmission. Group-mediated behavior supporting immune defenses tends to decrease selection acting on immune genes. Along with low effective population sizes this might result in relaxed constraint and rapid evolution of immune system genes. Here, we show that antiviral siRNA genes show high rates of molecular evolution with argonaute 2, armitage and maelstrom evolving faster in social bumblebees compared to their socially parasitic cuckoo bumblebees that lack a worker caste. RNAi genes show frequent positive selection at the codon level additionally supported by the occurrence of parallel evolution. Their evolutionary rate is linked to their pathway specific position with genes directly interacting with viruses showing the highest rates of molecular evolution. We suggest that higher pathogen load in social insects indeed drives the molecular evolution of immune genes including antiviral siRNA, if not compensated by behavior. PMID:27117935

  5. A molecular description of the evolution of resistance

    NASA Technical Reports Server (NTRS)

    Ordoukhanian, P.; Joyce, G. F.

    1999-01-01

    BACKGROUND: In vitro evolution has been used to obtain nucleic acid molecules with interesting functional properties. The evolution process usually is carried out in a stepwise manner, involving successive rounds of selection, amplification and mutation. Recently, a continuous in vitro evolution system was devised for RNAs that catalyze the ligation of oligonucleotide substrates, allowing the evolution of catalytic function to be studied in real time. RESULTS: Continuous in vitro evolution of an RNA ligase ribozyme was carried out in the presence of a DNA enzyme that was capable of cleaving, and thereby inactivating, the ribozyme. The DNA concentration was increased steadily over 33.5 hours of evolution, reaching a final concentration that would have been sufficient to inactivate the starting population in one second. The evolved population of ribozymes developed resistance to the DNA enzyme, reducing their vulnerability to cleavage by 2000-fold but retaining their own catalytic function. Based on sequencing and kinetic analysis of the ribozymes, two mechanisms are proposed for this resistance. One involves three nucleotide substitutions, together with two compensatory mutations, that alter the site at which the DNA enzyme binds the ribozyme. The other involves enhancement of the ribozyme's ability to bind its own substrate in a way that protects it from cleavage by the DNA enzyme. CONCLUSIONS: The ability to direct the evolution of an enzyme's biochemical properties in response to the behavior of another macromolecule provides insight into the evolution of resistance and may be useful in developing enzymes with novel or enhanced function.

  6. Molecular diversity and functional evolution of scorpion potassium channel toxins.

    PubMed

    Zhu, Shunyi; Peigneur, Steve; Gao, Bin; Luo, Lan; Jin, Di; Zhao, Yong; Tytgat, Jan

    2011-02-01

    Scorpion toxins affecting K(+) channels (KTxs) represent important pharmacological tools and potential drug candidates. Here, we report molecular characterization of seven new KTxs in the scorpion Mesobuthus eupeus by cDNA cloning combined with biochemical approaches. Comparative modeling supports that all these KTxs share a conserved cysteine-stabilized α-helix/β-sheet structural motif despite the differences in protein sequence and size. We investigated functional diversification of two orthologous α-KTxs (MeuTXKα1 from M. eupeus and BmP01 from Mesobuthus martensii) by comparing their K(+) channel-blocking activities. Pharmacologically, MeuTXKα1 selectively blocked Kv1.3 channel with nanomolar affinity (IC(50), 2.36 ± 0.9 nM), whereas only 35% of Kv1.1 currents were inhibited at 3 μM concentration, showing more than 1271-fold selectivity for Kv1.3 over Kv1.1. This peptide displayed a weak effect on Drosophila Shaker channel and no activity on Kv1.2, Kv1.4, Kv1.5, Kv1.6, and human ether-a-go-go-related gene (hERG) K(+) channels. Although BmB01 and MeuTXKα1 have a similar channel spectrum, their affinity and selectivity for these channels largely varies. In comparison with MeuTXKα1, BmP01 only exhibits a submicromolar affinity (IC(50), 133.72 ± 10.98 nM) for Kv1.3, showing 57-fold less activity than MeuTXKα1. Moreover, it lacks the ability to distinguish between Kv1.1 and Kv1.3. We also found that MeuTXKα1 inhibited the proliferation of activated T cells induced by phorbol myristate acetate and ionomycin at micromolar concentrations. Our results demonstrate that accelerated evolution drives affinity variations of orthologous α-KTxs on Kv channels and indicate that MeuTXKα1 is a promising candidate to develop an immune modulation agent for human autoimmune diseases. PMID:20889474

  7. The role of macromolecular crowding in the evolution of lens crystallins with high molecular refractive index

    NASA Astrophysics Data System (ADS)

    Zhao, Huaying; Magone, M. Teresa; Schuck, Peter

    2011-08-01

    Crystallins are present in the lens at extremely high concentrations in order to provide transparency and generate a high refractive power of the lens. The crystallin families prevalent in the highest density lens tissues are γ-crystallins in vertebrates and S-crystallins in cephalopods. As shown elsewhere, in parallel evolution, both have evolved molecular refractive index increments 5-10% above those of most proteins. Although this is a small increase, it is statistically very significant and can be achieved only by very unusual amino acid compositions. In contrast, such a molecular adaptation to aid in the refractive function of the lens did not occur in crystallins that are preferentially located in lower density lens tissues, such as vertebrate α-crystallin and taxon-specific crystallins. In the current work, we apply a model of non-interacting hard spheres to examine the thermodynamic contributions of volume exclusion at lenticular protein concentrations. We show that the small concentration decrease afforded by the higher molecular refractive index increment of crystallins can amplify nonlinearly to produce order of magnitude differences in chemical activities, and lead to reduced osmotic pressure and the reduced propensity for protein aggregation. Quantitatively, this amplification sets in only at protein concentrations as high as those found in hard lenses or the nucleus of soft lenses, in good correspondence to the observed crystallin properties in different tissues and different species. This suggests that volume exclusion effects provide the evolutionary driving force for the unusual refractive properties and the unusual amino acid compositions of γ-crystallins and S-crystallins.

  8. Towards the adaptive optimization of field-free molecular alignment

    NASA Astrophysics Data System (ADS)

    Rouzée, Arnaud; Hertz, Edouard; Lavorel, Bruno; Faucher, Olivier

    2008-04-01

    We theoretically report the optimization of field-free molecular alignment by spectral phase shaping of femtosecond laser pulses. Optimal pulse shapes are designed iteratively by an evolutionary algorithm in conjunction with a non-perturbative regime calculation. The investigation is conducted in O2 and N2 under realistic conditions of intensity, temperature and pulse shaping. We demonstrate that specific tailored pulses can provide significant maximization of field-free alignment compared to the Fourier transform limited pulses of the same energy. The underlying control mechanism is discussed. The effect of pulse energy and temperature is analysed leading to the identification of a general criteria for a successful optimization. Finally, the optimal spectral phase learned from the algorithm is rather smooth and can be described by a representation in terms of a sigmoidal function. We show that the use of a low-dimensional parametrization of the phase yields an efficient optimization of the alignment within a highly reduced convergence time.

  9. Adaptive Evolution of Cooperation through Darwinian Dynamics in Public Goods Games

    PubMed Central

    Deng, Kuiying; Chu, Tianguang

    2011-01-01

    The linear or threshold Public Goods game (PGG) is extensively accepted as a paradigmatic model to approach the evolution of cooperation in social dilemmas. Here we explore the significant effect of nonlinearity of the structures of public goods on the evolution of cooperation within the well-mixed population by adopting Darwinian dynamics, which simultaneously consider the evolution of populations and strategies on a continuous adaptive landscape, and extend the concept of evolutionarily stable strategy (ESS) as a coalition of strategies that is both convergent-stable and resistant to invasion. Results show (i) that in the linear PGG contributing nothing is an ESS, which contradicts experimental data, (ii) that in the threshold PGG contributing the threshold value is a fragile ESS, which cannot resist the invasion of contributing nothing, and (iii) that there exists a robust ESS of contributing more than half in the sigmoid PGG if the return rate is relatively high. This work reveals the significant effect of the nonlinearity of the structures of public goods on the evolution of cooperation, and suggests that, compared with the linear or threshold PGG, the sigmoid PGG might be a more proper model for the evolution of cooperation within the well-mixed population. PMID:22046240

  10. Liking the good guys: amplifying local adaptation via the evolution of condition-dependent mate choice.

    PubMed

    Veen, T; Otto, S P

    2015-10-01

    Local adaptation can be strengthened through a diversity of mechanisms that reduce gene flow between contrasting environments. Recent work revealed that mate choice could enhance local adaptation when females preferentially mate with locally adapted males and that such female preferences readily evolve, but the opposing effects of recombination, migration and costs of female preferences remain relatively unexplored. To investigate these effects, we develop a two-patch model with two genes, one influencing an ecological trait and one influencing female preferences, where both male signals and female preferences are allowed to depend on the match between an individual's ecological trait and the local environment (condition). Because trait variation is limited when migration is rare and the benefits of preferential mating are short-lived when migration is frequent, we find that female preferences for males in high condition spread most rapidly with intermediate levels of migration. Surprisingly, we find that preferences for locally adapted males spread fastest with higher recombination rates, which contrasts with earlier studies. This is because a stronger preference allele for locally adapted males can only get uncoupled from maladapted ecological alleles following migration through recombination. The effects of migration and recombination depend strongly on the condition of the males being chosen by females, but only weakly on the condition of the females doing the choosing, except when it comes to the costs of preference. Although costs always impede the spread of female preferences for locally adapted males, the impact is substantially lessened if costs are borne primarily by females in poor condition. The abundance of empirical examples of condition-dependent mate choice combined with our theoretical results suggests that the evolution of mate choice could commonly facilitate local adaptation in nature. PMID:26189918

  11. Emergence of host-adapted Salmonella Enteritidis through rapid evolution in an immunocompromised host.

    PubMed

    Klemm, Elizabeth J; Gkrania-Klotsas, Effrossyni; Hadfield, James; Forbester, Jessica L; Harris, Simon R; Hale, Christine; Heath, Jennifer N; Wileman, Thomas; Clare, Simon; Kane, Leanne; Goulding, David; Otto, Thomas D; Kay, Sally; Doffinger, Rainer; Cooke, Fiona J; Carmichael, Andrew; Lever, Andrew M L; Parkhill, Julian; MacLennan, Calman A; Kumararatne, Dinakantha; Dougan, Gordon; Kingsley, Robert A

    2016-01-01

    Host adaptation is a key factor contributing to the emergence of new bacterial, viral and parasitic pathogens. Many pathogens are considered promiscuous because they cause disease across a range of host species, while others are host-adapted, infecting particular hosts(1). Host adaptation can potentially progress to host restriction, where the pathogen is strictly limited to a single host species and is frequently associated with more severe symptoms. Host-adapted and host-restricted bacterial clades evolve from within a broader host-promiscuous species and sometimes target different niches within their specialist hosts, such as adapting from a mucosal to a systemic lifestyle. Genome degradation, marked by gene inactivation and deletion, is a key feature of host adaptation, although the triggers initiating genome degradation are not well understood. Here, we show that a chronic systemic non-typhoidal Salmonella infection in an immunocompromised human patient resulted in genome degradation targeting genes that are expendable for a systemic lifestyle. We present a genome-based investigation of a recurrent blood-borne Salmonella enterica serotype Enteritidis (S. Enteritidis) infection covering 15 years in an interleukin-12 β1 receptor-deficient individual that developed into an asymptomatic chronic infection. The infecting S. Enteritidis harboured a mutation in the mismatch repair gene mutS that accelerated the genomic mutation rate. Phylogenetic analysis and phenotyping of multiple patient isolates provides evidence for a remarkable level of within-host evolution that parallels genome changes present in successful host-restricted bacterial pathogens but never before observed on this timescale. Our analysis identifies common pathways of host adaptation and demonstrates the role that immunocompromised individuals can play in this process. PMID:27572160

  12. Emergence of host-adapted Salmonella Enteritidis through rapid evolution in an immunocompromised host

    PubMed Central

    Klemm, Elizabeth J; Gkrania-Klotsas, Effrossyni; Hadfield, James; Forbester, Jessica L; Harris, Simon R; Hale, Christine; Heath, Jennifer N; Wileman, Thomas; Clare, Simon; Kane, Leanne; Goulding, David; Otto, Thomas D; Kay, Sally; Doffinger, Rainer; Cooke, Fiona J; Carmichael, Andrew; Lever, Andrew ML; Parkhill, Julian; MacLennan, Calman A; Kumararatne, Dinakantha

    2016-01-01

    Summary Host adaptation is a key factor contributing to the emergence of new bacterial, viral and parasitic pathogens. Many pathogens are considered promiscuous because they cause disease across a range of host species, while others are host-adapted, infecting particular hosts1. Host adaptation can potentially progress to host restriction where the pathogen is strictly limited to a single host species and is frequently associated with more severe symptoms. Host-adapted and host-restricted bacterial clades evolve from within a broader host-promiscuous species and sometimes target different niches within their specialist hosts, such as adapting from a mucosal to a systemic lifestyle. Genome degradation, marked by gene inactivation and deletion, is a key feature of host adaptation, although the triggers initiating genome degradation are not well understood. Here, we show that a chronic systemic non-typhoidal Salmonella infection in an immunocompromised human patient resulted in genome degradation targeting genes that are expendable for a systemic lifestyle. We present a genome-based investigation of a recurrent blood-borne Salmonella enterica serotype Enteritidis (S. Enteritidis) infection covering 15 years in an interleukin (IL)-12 β-1 receptor-deficient individual that developed into an asymptomatic chronic infection. The infecting S. Enteritidis harbored a mutation in the mismatch repair gene mutS that accelerated the genomic mutation rate. Phylogenetic analysis and phenotyping of multiple patient isolates provides evidence for a remarkable level of within-host evolution that parallels genome changes present in successful host-restricted bacterial pathogens but never before observed on this timescale. Our analysis identifies common pathways of host adaptation and demonstrates the role that immunocompromised individuals can play in this process. PMID:27127642

  13. Faster Adaptation in Smaller Populations: Counterintuitive Evolution of HIV during Childhood Infection.

    PubMed

    Raghwani, Jayna; Bhatt, Samir; Pybus, Oliver G

    2016-01-01

    Analysis of HIV-1 gene sequences sampled longitudinally from infected individuals can reveal the evolutionary dynamics that underlie associations between disease outcome and viral genetic diversity and divergence. Here we extend a statistical framework to estimate rates of viral molecular adaptation by considering sampling error when computing nucleotide site-frequencies. This is particularly beneficial when analyzing viral sequences from within-host viral infections if the number of sequences per time point is limited. To demonstrate the utility of this approach, we apply our method to a cohort of 24 patients infected with HIV-1 at birth. Our approach finds that viral adaptation arising from recurrent positive natural selection is associated with the rate of HIV-1 disease progression, in contrast to previous analyses of these data that found no significant association. Most surprisingly, we discover a strong negative correlation between viral population size and the rate of viral adaptation, the opposite of that predicted by standard molecular evolutionary theory. We argue that this observation is most likely due to the existence of a confounding third variable, namely variation in selective pressure among hosts. A conceptual non-linear model of virus adaptation that incorporates the two opposing effects of host immunity on the virus population can explain this counterintuitive result. PMID:26741359

  14. Faster Adaptation in Smaller Populations: Counterintuitive Evolution of HIV during Childhood Infection

    PubMed Central

    Raghwani, Jayna; Bhatt, Samir; Pybus, Oliver G.

    2016-01-01

    Analysis of HIV-1 gene sequences sampled longitudinally from infected individuals can reveal the evolutionary dynamics that underlie associations between disease outcome and viral genetic diversity and divergence. Here we extend a statistical framework to estimate rates of viral molecular adaptation by considering sampling error when computing nucleotide site-frequencies. This is particularly beneficial when analyzing viral sequences from within-host viral infections if the number of sequences per time point is limited. To demonstrate the utility of this approach, we apply our method to a cohort of 24 patients infected with HIV-1 at birth. Our approach finds that viral adaptation arising from recurrent positive natural selection is associated with the rate of HIV-1 disease progression, in contrast to previous analyses of these data that found no significant association. Most surprisingly, we discover a strong negative correlation between viral population size and the rate of viral adaptation, the opposite of that predicted by standard molecular evolutionary theory. We argue that this observation is most likely due to the existence of a confounding third variable, namely variation in selective pressure among hosts. A conceptual non-linear model of virus adaptation that incorporates the two opposing effects of host immunity on the virus population can explain this counterintuitive result. PMID:26741359

  15. Niche evolution and adaptive radiation: Testing the order of trait divergence

    USGS Publications Warehouse

    Ackerly, D.D.; Schwilk, D.W.; Webb, C.O.

    2006-01-01

    In the course of an adaptive radiation, the evolution of niche parameters is of particular interest for understanding modes of speciation and the consequences for coexistence of related species within communities. We pose a general question: In the course of an evolutionary radiation, do traits related to within-community niche differences (?? niche) evolve before or after differentiation of macrohabitat affinity or climatic tolerances (?? niche)? Here we introduce a new test to address this question, based on a modification of the method of independent contrasts. The divergence order test (DOT) is based on the average age of the nodes on a tree, weighted by the absolute magnitude of the contrast at each node for a particular trait. The comparison of these weighted averages reveals whether large divergences for one trait have occurred earlier or later in the course of diversification, relative to a second trait; significance is determined by bootstrapping from maximum-likelihood ancestral state reconstructions. The method is applied to the evolution of Ceanothus, a woody plant group in California, in which co-occurring species exhibit significant differences in a key leaf trait (specific leaf area) associated with contrasting physiological and life history strategies. Co-occurring species differ more for this trait than expected under a null model of community assembly. This ?? niche difference evolved early in the divergence of two major subclades within Ceanothus, whereas climatic distributions (?? niche traits) diversified later within each of the subclades. However, rapid evolution of climate parameters makes inferences of early divergence events highly uncertain, and differentiation of the ?? niche might have taken place throughout the evolution of the group, without leaving a clear phylogenetic signal. Similar patterns observed in several plant and animal groups suggest that early divergence of ?? niche traits might be a common feature of niche evolution in

  16. Flexibility and enzymatic cold-adaptation: a comparative molecular dynamics investigation of the elastase family.

    PubMed

    Papaleo, Elena; Riccardi, Laura; Villa, Chiara; Fantucci, Piercarlo; De Gioia, Luca

    2006-08-01

    Molecular dynamics simulations of representative mesophilic and psycrophilic elastases have been carried out at different temperatures to explore the molecular basis of cold adaptation inside a specific enzymatic family. The molecular dynamics trajectories have been compared and analyzed in terms of secondary structure, molecular flexibility, intramolecular and protein-solvent interactions, unravelling molecular features relevant to rationalize the efficient catalytic activity of psychrophilic elastases at low temperature. The comparative molecular dynamics investigation reveals that modulation of the number of protein-solvent interactions is not the evolutionary strategy followed by the psycrophilic elastase to enhance catalytic activity at low temperature. In addition, flexibility and solvent accessibility of the residues forming the catalytic triad and the specificity pocket are comparable in the cold- and warm-adapted enzymes. Instead, loop regions with different amino acid composition in the two enzymes, and clustered around the active site or the specificity pocket, are characterized by enhanced flexibility in the cold-adapted enzyme. Remarkably, the psycrophilic elastase is characterized by reduced flexibility, when compared to the mesophilic counterpart, in some scattered regions distant from the functional sites, in agreement with hypothesis suggesting that local rigidity in regions far from functional sites can be beneficial for the catalytic activity of psychrophilic enzymes. PMID:16920043

  17. A resurrection study reveals rapid adaptive evolution within populations of an invasive plant

    PubMed Central

    Sultan, Sonia E; Horgan-Kobelski, Tim; Nichols, Lauren M; Riggs, Charlotte E; Waples, Ryan K

    2013-01-01

    The future spread and impact of an introduced species will depend on how it adapts to the abiotic and biotic conditions encountered in its new range, so the potential for rapid evolution subsequent to species introduction is a critical, evolutionary dimension of invasion biology. Using a resurrection approach, we provide a direct test for change over time within populations in a species' introduced range, in the Asian shade annual Polygonum cespitosum. We document, over an 11-year period, the evolution of increased reproductive output as well as greater physiological and root-allocational plasticity in response to the more open, sunny conditions found in the North American range in which the species has become invasive. These findings show that extremely rapid adaptive modifications to ecologically-important traits and plastic expression patterns can evolve subsequent to a species' introduction, within populations established in its introduced range. This study is one of the first to directly document evolutionary change in adaptive plasticity. Such rapid evolutionary changes can facilitate the spread of introduced species into novel habitats and hence contribute to their invasive success in a new range. The data also reveal how evolutionary trajectories can differ among populations in ways that can influence invasion dynamics. PMID:23798976

  18. Accelerating Markov chain Monte Carlo simulation by differential evolution with self-adaptive randomized subspace sampling

    SciTech Connect

    Vrugt, Jasper A; Hyman, James M; Robinson, Bruce A; Higdon, Dave; Ter Braak, Cajo J F; Diks, Cees G H

    2008-01-01

    Markov chain Monte Carlo (MCMC) methods have found widespread use in many fields of study to estimate the average properties of complex systems, and for posterior inference in a Bayesian framework. Existing theory and experiments prove convergence of well constructed MCMC schemes to the appropriate limiting distribution under a variety of different conditions. In practice, however this convergence is often observed to be disturbingly slow. This is frequently caused by an inappropriate selection of the proposal distribution used to generate trial moves in the Markov Chain. Here we show that significant improvements to the efficiency of MCMC simulation can be made by using a self-adaptive Differential Evolution learning strategy within a population-based evolutionary framework. This scheme, entitled DiffeRential Evolution Adaptive Metropolis or DREAM, runs multiple different chains simultaneously for global exploration, and automatically tunes the scale and orientation of the proposal distribution in randomized subspaces during the search. Ergodicity of the algorithm is proved, and various examples involving nonlinearity, high-dimensionality, and multimodality show that DREAM is generally superior to other adaptive MCMC sampling approaches. The DREAM scheme significantly enhances the applicability of MCMC simulation to complex, multi-modal search problems.

  19. Online evolution for a self-adapting robotic navigation system using evolvable hardware.

    PubMed

    Keymeulen, D; Iwata, M; Kuniyoshi, Y; Higuchi, T

    1998-01-01

    Great interest has been shown in the application of the principles of artificial life to physically embedded systems such as mobile robots, computer networks, home devices able continuously and autonomously to adapt their behavior to changes of the environments. At the same time researchers have been working on the development of evolvable hardware, and new integrated circuits that are able to adapt their hardware autonomously and in real time in a changing environment. This article describes the navigation task for a real mobile robot and its implementation on evolvable hardware. The robot must track a colored ball, while avoiding obstacles in an environment that is unknown and dynamic. Although a model-free evolution method is not feasible for real-world applications due to the sheer number of possible interactions with the environment, we show that a model-based evolution can reduce these interactions by two orders of magnitude, even when some of the robot's sensors are blinded, thus allowing us to apply evolutionary processes online to obtain a self-adaptive tracking system in the real world, when the implementation is accelerated by the utilization of evolvable hardware. PMID:10352238

  20. Engineering stress tolerance of Escherichia coli by stress-induced mutagenesis (SIM)-based adaptive evolution.

    PubMed

    Zhu, Linjiang; Cai, Zhen; Zhang, Yanping; Li, Yin

    2014-01-01

    Microbial tolerance to toxic products and biomass hydrolysates is a challenge for the production of fuels and chemicals from renewable resources. To improve cellular tolerance to these environmental stresses, a novel adaptive evolutionary strategy based on stress-induced mutagenesis (SIM) was developed using non-dividing cells. The concept of this method was proved using Escherichia coli FC40 as a model strain, which was used to quantitatively evaluate the rate of SIM. By deleting either the mutL or mutS gene to disturb the mismatch repair activity of the host cells, the SIM rate under stressful conditions increased by 92- and 57-fold, respectively. A periodic SIMbased adaptive evolution procedure, which synchronized the mutagenesis and the selection process in a single plate-incubation step, was then developed using the mutL-deleted mutant. E. coli mutants tolerant to high concentrations of butanol (13 g/L), NaCl (95 g/L), and high temperature (50°C) were obtained. These results indicate that stress-induced adaptive evolution in non-dividing cells is an effective approach that can improve microbial tolerance against various stresses and generate robust microbial strains suitable for production of fuels and chemicals. PMID:24106039

  1. Evolution dynamics of a model for gene duplication under adaptive conflict

    NASA Astrophysics Data System (ADS)

    Ancliff, Mark; Park, Jeong-Man

    2014-06-01

    We present and solve the dynamics of a model for gene duplication showing escape from adaptive conflict. We use a Crow-Kimura quasispecies model of evolution where the fitness landscape is a function of Hamming distances from two reference sequences, which are assumed to optimize two different gene functions, to describe the dynamics of a mixed population of individuals with single and double copies of a pleiotropic gene. The evolution equations are solved through a spin coherent state path integral, and we find two phases: one is an escape from an adaptive conflict phase, where each copy of a duplicated gene evolves toward subfunctionalization, and the other is a duplication loss of function phase, where one copy maintains its pleiotropic form and the other copy undergoes neutral mutation. The phase is determined by a competition between the fitness benefits of subfunctionalization and the greater mutational load associated with maintaining two gene copies. In the escape phase, we find a dynamics of an initial population of single gene sequences only which escape adaptive conflict through gene duplication and find that there are two time regimes: until a time t* single gene sequences dominate, and after t* double gene sequences outgrow single gene sequences. The time t* is identified as the time necessary for subfunctionalization to evolve and spread throughout the double gene sequences, and we show that there is an optimum mutation rate which minimizes this time scale.

  2. Water adaptation strategy in anuran amphibians: molecular diversity of aquaporin.

    PubMed

    Ogushi, Yuji; Akabane, Gen; Hasegawa, Takahiro; Mochida, Hiroshi; Matsuda, Manabu; Suzuki, Masakazu; Tanaka, Shigeyasu

    2010-01-01

    Most adult anuran amphibians except for the aquatic species absorb water across the ventral pelvic skin and reabsorb it from urine in the urinary bladder. Many terrestrial and arboreal species use a region in the posterior or pelvic region of the ventral skin that is specialized for rapid rehydration from shallow water sources or moist substrates. Periods of terrestrial activity can be prolonged by reabsorption of dilute urine from the urinary bladder. Aquaporin (AQP), a water channel protein, plays a fundamental role in these water absorption/reabsorption processes, which are regulated by antidiuretic hormone. Characterization of AQPs from various anurans revealed that the unique water homeostasis is basically mediated by two types of anuran-specific AQPs, i.e. ventral pelvic skin and urinary bladder type, respectively. The bladder-type AQP is further expressed in the pelvic skin of terrestrial and arboreal species, together with the pelvic skin-type AQP. In contrast, the pelvic skin-type AQP (AQP-x3) of the aquatic Xenopus has lost the ability of efficient protein production. The extra C-terminal tail in AQP-x3 consisting of 33 nucleotides within the coding region appears to participate in the posttranscriptional regulation of AQP-x3 gene expression by attenuating protein expression. The positive transcriptional regulation of bladder-type AQP in the pelvic skin and negative posttranscriptional regulation of pelvic skin-type AQP provide flexibility in the water regulation mechanisms, which might have contributed to the evolutionary adaptation of anurans to a wide variety of water environments. PMID:19854867

  3. Compensatory mutations, antibiotic resistance and the population genetics of adaptive evolution in bacteria.

    PubMed Central

    Levin, B R; Perrot, V; Walker, N

    2000-01-01

    In the absence of the selecting drugs, chromosomal mutations for resistance to antibiotics and other chemotheraputic agents commonly engender a cost in the fitness of microorganisms. Recent in vivo and in vitro experimental studies of the adaptation to these "costs of resistance" in Escherichia coli, HIV, and Salmonella typhimurium found that evolution in the absence of these drugs commonly results in the ascent of mutations that ameliorate these costs, rather than higher-fitness, drug-sensitive revertants. To ascertain the conditions under which this compensatory evolution, rather than reversion, will occur, we did computer simulations, in vitro experiments, and DNA sequencing studies with low-fitness rpsL (streptomycin-resistant) mutants of E. coli with and without mutations that compensate for the fitness costs of these ribosomal protein mutations. The results of our investigation support the hypothesis that in these experiments, the ascent of intermediate-fitness compensatory mutants, rather than high-fitness revertants, can be attributed to higher rates of compensatory mutations relative to that of reversion and to the numerical bottlenecks associated with serial passage. We argue that these bottlenecks are intrinsic to the population dynamics of parasitic and commensal microbes and discuss the implications of these results to the problem of drug resistance and adaptive evolution in parasitic and commmensal microorganisms in general. PMID:10757748

  4. Genomics of Rapid Adaptation to Antibiotics: Convergent Evolution and Scalable Sequence Amplification

    PubMed Central

    Laehnemann, David; Peña-Miller, Rafael; Rosenstiel, Philip; Beardmore, Robert; Jansen, Gunther; Schulenburg, Hinrich

    2014-01-01

    Evolutionary adaptation can be extremely fast, especially in response to high selection intensities. A prime example is the surge of antibiotic resistance in bacteria. The genomic underpinnings of such rapid changes may provide information on the genetic processes that enhance fast responses and the particular trait functions under selection. Here, we use experimentally evolved Escherichia coli for a detailed dissection of the genomics of rapid antibiotic resistance evolution. Our new analyses demonstrate that amplification of a sequence region containing several known antibiotic resistance genes represents a fast genomic response mechanism under high antibiotic stress, here exerted by drug combination. In particular, higher dosage of such antibiotic combinations coincided with higher copy number of the sequence region. The amplification appears to be evolutionarily costly, because amplification levels rapidly dropped after removal of the drugs. Our results suggest that amplification is a scalable process, as copy number rapidly changes in response to the selective pressure encountered. Moreover, repeated patterns of convergent evolution were found across the experimentally evolved bacterial populations, including those with lower antibiotic selection intensities. Intriguingly, convergent evolution was identified on different organizational levels, ranging from the above sequence amplification, high variant frequencies in specific genes, prevalence of individual nonsynonymous mutations to the unusual repeated occurrence of a particular synonymous mutation in Glycine codons. We conclude that constrained evolutionary trajectories underlie rapid adaptation to antibiotics. Of the identified genomic changes, sequence amplification seems to represent the most potent, albeit costly genomic response mechanism to high antibiotic stress. PMID:24850796

  5. The Eyes Have It: A Problem-Based Learning Exercise in Molecular Evolution

    ERIC Educational Resources Information Center

    White, Harold B.

    2007-01-01

    Molecular evolution provides an interesting context in which to use problem-based learning because it integrates a variety of topics in biology, biochemistry, and molecular biology. This three-stage problem for advanced students deals with the structure, multiple functions, and properties of lactate dehydrogenase isozymes, and the related…

  6. Rapid birth-and-death evolution of the xenobiotic metabolizing NAT gene family in vertebrates with evidence of adaptive selection

    PubMed Central

    2013-01-01

    Background The arylamine N-acetyltransferases (NATs) are a unique family of enzymes widely distributed in nature that play a crucial role in the detoxification of aromatic amine xenobiotics. Considering the temporal changes in the levels and toxicity of environmentally available chemicals, the metabolic function of NATs is likely to be under adaptive evolution to broaden or change substrate specificity over time, making NATs a promising subject for evolutionary analyses. In this study, we trace the molecular evolutionary history of the NAT gene family during the last ~450 million years of vertebrate evolution and define the likely role of gene duplication, gene conversion and positive selection in the evolutionary dynamics of this family. Results A phylogenetic analysis of 77 NAT sequences from 38 vertebrate species retrieved from public genomic databases shows that NATs are phylogenetically unstable genes, characterized by frequent gene duplications and losses even among closely related species, and that concerted evolution only played a minor role in the patterns of sequence divergence. Local signals of positive selection are detected in several lineages, probably reflecting response to changes in xenobiotic exposure. We then put a special emphasis on the study of the last ~85 million years of primate NAT evolution by determining the NAT homologous sequences in 13 additional primate species. Our phylogenetic analysis supports the view that the three human NAT genes emerged from a first duplication event in the common ancestor of Simiiformes, yielding NAT1 and an ancestral NAT gene which in turn, duplicated in the common ancestor of Catarrhini, giving rise to NAT2 and the NATP pseudogene. Our analysis suggests a main role of purifying selection in NAT1 protein evolution, whereas NAT2 was predicted to mostly evolve under positive selection to change its amino acid sequence over time. These findings are consistent with a differential role of the two human isoenzymes

  7. A density-based adaptive quantum mechanical/molecular mechanical method.

    PubMed

    Waller, Mark P; Kumbhar, Sadhana; Yang, Jack

    2014-10-20

    We present a density-based adaptive quantum mechanical/molecular mechanical (DBA-QM/MM) method, whereby molecules can switch layers from the QM to the MM region and vice versa. The adaptive partitioning of the molecular system ensures that the layer assignment can change during the optimization procedure, that is, on the fly. The switch from a QM molecule to a MM molecule is determined if there is an absence of noncovalent interactions to any atom of the QM core region. The presence/absence of noncovalent interactions is determined by analysis of the reduced density gradient. Therefore, the location of the QM/MM boundary is based on physical arguments, and this neatly removes some empiricism inherent in previous adaptive QM/MM partitioning schemes. The DBA-QM/MM method is validated by using a water-in-water setup and an explicitly solvated L-alanyl-L-alanine dipeptide. PMID:24954803

  8. Real-Time Molecular Monitoring of Chemical Environment in ObligateAnaerobes during Oxygen Adaptive Response

    SciTech Connect

    Holman, Hoi-Ying N.; Wozei, Eleanor; Lin, Zhang; Comolli, Luis R.; Ball, David. A.; Borglin, Sharon; Fields, Matthew W.; Hazen, Terry C.; Downing, Kenneth H.

    2009-02-25

    Determining the transient chemical properties of the intracellular environment canelucidate the paths through which a biological system adapts to changes in its environment, for example, the mechanisms which enable some obligate anaerobic bacteria to survive a sudden exposure to oxygen. Here we used high-resolution Fourier Transform Infrared (FTIR) spectromicroscopy to continuously follow cellular chemistry within living obligate anaerobes by monitoring hydrogen bonding in their cellular water. We observed a sequence of wellorchestrated molecular events that correspond to changes in cellular processes in those cells that survive, but only accumulation of radicals in those that do not. We thereby can interpret the adaptive response in terms of transient intracellular chemistry and link it to oxygen stress and survival. This ability to monitor chemical changes at the molecular level can yield important insights into a wide range of adaptive responses.

  9. Phylogenomic analyses reveal convergent patterns of adaptive evolution in elephant and human ancestries.

    PubMed

    Goodman, Morris; Sterner, Kirstin N; Islam, Munirul; Uddin, Monica; Sherwood, Chet C; Hof, Patrick R; Hou, Zhuo-Cheng; Lipovich, Leonard; Jia, Hui; Grossman, Lawrence I; Wildman, Derek E

    2009-12-01

    Specific sets of brain-expressed genes, such as aerobic energy metabolism genes, evolved adaptively in the ancestry of humans and may have evolved adaptively in the ancestry of other large-brained mammals. The recent addition of genomes from two afrotherians (elephant and tenrec) to the expanding set of publically available sequenced mammalian genomes provided an opportunity to test this hypothesis. Elephants resemble humans by having large brains and long life spans; tenrecs, in contrast, have small brains and short life spans. Thus, we investigated whether the phylogenomic patterns of adaptive evolution are more similar between elephant and human than between either elephant and tenrec lineages or human and mouse lineages, and whether aerobic energy metabolism genes are especially well represented in the elephant and human patterns. Our analyses encompassed approximately 6,000 genes in each of these lineages with each gene yielding extensive coding sequence matches in interordinal comparisons. Each gene's nonsynonymous and synonymous nucleotide substitution rates and dN/dS ratios were determined. Then, from gene ontology information on genes with the higher dN/dS ratios, we identified the more prevalent sets of genes that belong to specific functional categories and that evolved adaptively. Elephant and human lineages showed much slower nucleotide substitution rates than tenrec and mouse lineages but more adaptively evolved genes. In correlation with absolute brain size and brain oxygen consumption being largest in elephants and next largest in humans, adaptively evolved aerobic energy metabolism genes were most evident in the elephant lineage and next most evident in the human lineage. PMID:19926857

  10. Co-evolution of Hormone Metabolism and Signaling Networks Expands Plant Adaptive Plasticity.

    PubMed

    Weng, Jing-Ke; Ye, Mingli; Li, Bin; Noel, Joseph P

    2016-08-11

    Classically, hormones elicit specific cellular responses by activating dedicated receptors. Nevertheless, the biosynthesis and turnover of many of these hormone molecules also produce chemically related metabolites. These molecules may also possess hormonal activities; therefore, one or more may contribute to the adaptive plasticity of signaling outcomes in host organisms. Here, we show that a catabolite of the plant hormone abscisic acid (ABA), namely phaseic acid (PA), likely emerged in seed plants as a signaling molecule that fine-tunes plant physiology, environmental adaptation, and development. This trait was facilitated by both the emergence-selection of a PA reductase that modulates PA concentrations and by the functional diversification of the ABA receptor family to perceive and respond to PA. Our results suggest that PA serves as a hormone in seed plants through activation of a subset of ABA receptors. This study demonstrates that the co-evolution of hormone metabolism and signaling networks can expand organismal resilience. PMID:27518563

  11. Genetic Adaptation to Salt Stress in Experimental Evolution of Desulfovibrio vulgaris Hildenborough

    SciTech Connect

    Zhou, Aifen; Hillesland, Kristina; He, Zhili; Joachimiak, Marcin; Zane, Grant; Dehal, Paramvir; Arkin, Adam; Stahl, David; Wall, Judy; Hazen, Terry; Zhou, Jizhong; Baidoo, Edward; Benke, Peter; Mukhopadhyay, Aindrila

    2010-05-17

    High salinity is one of the most common environmental stressors. In order to understand how environmental organisms adapt to salty environment, an experiment evolution with sulfate reducing bacteria Desulfovibrio vugaris Hildenborough was conducted. Control lines and salt-stressed lines (6 lines each) grown in minimal medium LS4D or LS4D + 100 mM NaCl were transferred for 1200 generations. The salt tolerance was tested with LS4D supplemented with 250 mM NaCl. Statistical analysis of the growth data suggested that all lines adapted to their evolutionary environment. In addition, the control lines performed better than the ancestor with faster growth rate, higher biomass yield and shorter lag phase under salty environment they did not evolve in. However, the salt-adapted lines performed better than the control lines on measures of growth rate and yield under salty environment, suggesting that the salt?evolved lines acquired mutations specific to having extra salt in LS4D. Growth data and gene transcription data suggested that populations tended to improve till 1000 generations and active mutations tended to be fixed at the stage of 1000 generations. Point mutations and insertion/deletions were identified in isolated colonies from salt-adapted and control lines via whole genome sequencing. Glu, Gln and Ala appears to be the major osmoprotectant in evolved salt-stressed line. Ongoing studies are now characterizing the contribution of specific mutations identified in the salt-evolved D. vulgaris.

  12. Thermotolerant yeasts selected by adaptive evolution express heat stress response at 30 °C

    PubMed Central

    Caspeta, Luis; Chen, Yun; Nielsen, Jens

    2016-01-01

    Exposure to long-term environmental changes across >100s of generations results in adapted phenotypes, but little is known about how metabolic and transcriptional responses are optimized in these processes. Here, we show that thermotolerant yeast strains selected by adaptive laboratory evolution to grow at increased temperature, activated a constitutive heat stress response when grown at the optimal ancestral temperature, and that this is associated with a reduced growth rate. This preventive response was perfected by additional transcriptional changes activated when the cultivation temperature is increased. Remarkably, the sum of global transcriptional changes activated in the thermotolerant strains when transferred from the optimal to the high temperature, corresponded, in magnitude and direction, to the global changes observed in the ancestral strain exposed to the same transition. This demonstrates robustness of the yeast transcriptional program when exposed to heat, and that the thermotolerant strains streamlined their path to rapidly and optimally reach post-stress transcriptional and metabolic levels. Thus, long-term adaptation to heat improved yeasts ability to rapidly adapt to increased temperatures, but this also causes a trade-off in the growth rate at the optimal ancestral temperature. PMID:27229477

  13. Thermotolerant yeasts selected by adaptive evolution express heat stress response at 30 °C.

    PubMed

    Caspeta, Luis; Chen, Yun; Nielsen, Jens

    2016-01-01

    Exposure to long-term environmental changes across >100s of generations results in adapted phenotypes, but little is known about how metabolic and transcriptional responses are optimized in these processes. Here, we show that thermotolerant yeast strains selected by adaptive laboratory evolution to grow at increased temperature, activated a constitutive heat stress response when grown at the optimal ancestral temperature, and that this is associated with a reduced growth rate. This preventive response was perfected by additional transcriptional changes activated when the cultivation temperature is increased. Remarkably, the sum of global transcriptional changes activated in the thermotolerant strains when transferred from the optimal to the high temperature, corresponded, in magnitude and direction, to the global changes observed in the ancestral strain exposed to the same transition. This demonstrates robustness of the yeast transcriptional program when exposed to heat, and that the thermotolerant strains streamlined their path to rapidly and optimally reach post-stress transcriptional and metabolic levels. Thus, long-term adaptation to heat improved yeasts ability to rapidly adapt to increased temperatures, but this also causes a trade-off in the growth rate at the optimal ancestral temperature. PMID:27229477

  14. Adaptive potential of genomic structural variation in human and mammalian evolution.

    PubMed

    Radke, David W; Lee, Charles

    2015-09-01

    Because phenotypic innovations must be genetically heritable for biological evolution to proceed, it is natural to consider new mutation events as well as standing genetic variation as sources for their birth. Previous research has identified a number of single-nucleotide polymorphisms that underlie a subset of adaptive traits in organisms. However, another well-known class of variation, genomic structural variation, could have even greater potential to produce adaptive phenotypes, due to the variety of possible types of alterations (deletions, insertions, duplications, among others) at different genomic positions and with variable lengths. It is from these dramatic genomic alterations, and selection on their phenotypic consequences, that adaptations leading to biological diversification could be derived. In this review, using studies in humans and other mammals, we highlight examples of how phenotypic variation from structural variants might become adaptive in populations and potentially enable biological diversification. Phenotypic change arising from structural variants will be described according to their immediate effect on organismal metabolic processes, immunological response and physical features. Study of population dynamics of segregating structural variation can therefore provide a window into understanding current and historical biological diversification. PMID:26003631

  15. Epigenetic resolution of the ‘curse of complexity’ in adaptive evolution of complex traits

    PubMed Central

    Badyaev, Alexander V

    2014-01-01

    The age of most genes exceeds the longevity of their genomic and physiological associations by many orders of magnitude. Such transient contexts modulate the expression of ancient genes to produce currently appropriate and often highly distinct developmental and functional outcomes. The efficacy of such adaptive modulation is diminished by the high dimensionality of complex organisms and associated vast areas of neutrality in their genotypic and developmental networks (and, thus, weak natural selection). Here I explore whether epigenetic effects facilitate adaptive modulation of complex phenotypes by effectively reducing the dimensionality of their deterministic networks and thus delineating their developmental and evolutionary trajectories even under weak selection. Epigenetic effects that link unconnected or widely dispersed elements of genotype space in ecologically relevant time could account for the rapid appearance of functionally integrated adaptive modifications. On an organismal time scale, conceptually similar processes occur during recurrent epigenetic reprogramming of somatic stem cells to produce, recurrently and reversibly, a bewildering array of differentiated and persistent cell lineages, all sharing identical genomic sequences despite strongly distinct phenotypes. I discuss whether close dependency of onset, scope and duration of epigenetic effects on cellular and genomic context in stem cells could provide insights into contingent modulation of conserved genomic material on a much longer evolutionary time scale. I review potential empirical examples of epigenetic bridges that reduce phenotype dimensionality and accomplish rapid adaptive modulation in the evolution of novelties, expression of behavioural types, and stress-induced ossification schedules. PMID:24882810

  16. Fixed-Structure H∞ Controller Synthesis Based on the Covariance Matrix Adaptation Evolution Strategy

    NASA Astrophysics Data System (ADS)

    Wakasa, Yuji; Kanagawa, Shinji; Tanaka, Kanya; Nishimura, Yuki

    This paper provides a design method of fixed-structure controllers satisfying multiple H∞ norm specifications by using the covariance matrix adaptation evolution strategy (CMA-ES). The CMA-ES is a kind of stochastic optimization such as particle swarm optimization (PSO), and has been shown to have a good performance for nonconvex optimization problems. However, there are few control applications of the CMA-ES, and therefore, its superiority is not clear in control problems. The effectiveness of the proposed method is demonstrated through numerical examples in comparison with the PSO-based method that has recently been proposed as a good approach.

  17. PID Controller Tuning Based on the Covariance Matrix Adaptation Evolution Strategy

    NASA Astrophysics Data System (ADS)

    Wakasa, Yuji; Kanagawa, Shinji; Tanaka, Kanya; Nishimura, Yuki

    The covariance matrix adaptation evolution strategy (CMA-ES) is a kind of stochastic optimization such as particle swarm optimization (PSO), and has been shown to have a good performance. However, there are few control applications of the CMA-ES except for only one paper. This paper deals with a PID control problem with constraints on sensitivity and complementary sensitivity functions, and proposes a PID controller tuning method based on the CMA-ES. Numerical examples are given to show the effectiveness of the proposed method in comparison with the recently proposed PSO-based method.

  18. The eunuch phenomenon: adaptive evolution of genital emasculation in sexually dimorphic spiders.

    PubMed

    Kuntner, Matjaž; Agnarsson, Ingi; Li, Daiqin

    2015-02-01

    Under natural and sexual selection traits often evolve that secure paternity or maternity through self-sacrifice to predators, rivals, offspring, or partners. Emasculation-males removing their genitals-is an unusual example of such behaviours. Known only in insects and spiders, the phenomenon's adaptiveness is difficult to explain, yet its repeated origins and association with sexual size dimorphism (SSD) and sexual cannibalism suggest an adaptive significance. In spiders, emasculation of paired male sperm-transferring organs - secondary genitals - (hereafter, palps), results in 'eunuchs'. This behaviour has been hypothesized to be adaptive because (i) males plug female genitals with their severed palps (plugging hypothesis), (ii) males remove their palps to become better fighters in male-male contests (better-fighter hypothesis), perhaps reaching higher agility due to reduced total body mass (gloves-off hypothesis), and (iii) males achieve prolonged sperm transfer through severed genitals (remote-copulation hypothesis). Prior research has provided evidence in support of these hypotheses in some orb-weaving spiders but these explanations are far from general. Seeking broad macroevolutionary patterns of spider emasculation, we review the known occurrences, weigh the evidence in support of the hypotheses in each known case, and redefine more precisely the particular cases of emasculation depending on its timing in relation to maturation and mating: 'pre-maturation', 'mating', and 'post-mating'. We use a genus-level spider phylogeny to explore emasculation evolution and to investigate potential evolutionary linkage between emasculation, SSD, lesser genital damage (embolic breakage), and sexual cannibalism (females consuming their mates). We find a complex pattern of spider emasculation evolution, all cases confined to Araneoidea: emasculation evolved at least five and up to 11 times, was lost at least four times, and became further modified at least once. We also find

  19. Adaptive Evolution of the Venom-Targeted vWF Protein in Opossums that Eat Pitvipers

    PubMed Central

    Jansa, Sharon A.; Voss, Robert S.

    2011-01-01

    The rapid evolution of venom toxin genes is often explained as the result of a biochemical arms race between venomous animals and their prey. However, it is not clear that an arms race analogy is appropriate in this context because there is no published evidence for rapid evolution in genes that might confer toxin resistance among routinely envenomed species. Here we report such evidence from an unusual predator-prey relationship between opossums (Marsupialia: Didelphidae) and pitvipers (Serpentes: Crotalinae). In particular, we found high ratios of replacement to silent substitutions in the gene encoding von Willebrand Factor (vWF), a venom-targeted hemostatic blood protein, in a clade of opossums known to eat pitvipers and to be resistant to their hemorrhagic venom. Observed amino-acid substitutions in venom-resistant opossums include changes in net charge and hydrophobicity that are hypothesized to weaken the bond between vWF and one of its toxic snake-venom ligands, the C-type lectin-like protein botrocetin. Our results provide the first example of rapid adaptive evolution in any venom-targeted molecule, and they support the notion that an evolutionary arms race might be driving the rapid evolution of snake venoms. However, in the arms race implied by our results, venomous snakes are prey, and their venom has a correspondingly defensive function in addition to its usual trophic role. PMID:21731638

  20. Helicobacter pylori Evolution: Lineage- Specific Adaptations in Homologs of Eukaryotic Sel1-Like Genes

    PubMed Central

    Mittl, Peer R. E; Lee, Hae-Kyung; Dailide, Geidrius; Tan, Shumin; Ito, Yoshiyuki; Secka, Ousman; Dailidiene, Daiva; Putty, Kalyani; Berg, Douglas E; Kalia, Awdhesh

    2007-01-01

    Geographic partitioning is postulated to foster divergence of Helicobacter pylori populations as an adaptive response to local differences in predominant host physiology. H. pylori's ability to establish persistent infection despite host inflammatory responses likely involves active management of host defenses using bacterial proteins that may themselves be targets for adaptive evolution. Sequenced H. pylori genomes encode a family of eight or nine secreted proteins containing repeat motifs that are characteristic of the eukaryotic Sel1 regulatory protein, whereas the related Campylobacter and Wolinella genomes each contain only one or two such “Sel1-like repeat” (SLR) genes (“slr genes”). Signatures of positive selection (ratio of nonsynonymous to synonymous mutations, dN/dS = ω > 1) were evident in the evolutionary history of H. pylori slr gene family expansion. Sequence analysis of six of these slr genes (hp0160, hp0211, hp0235, hp0519, hp0628, and hp1117) from representative East Asian, European, and African H. pylori strains revealed that all but hp0628 had undergone positive selection, with different amino acids often selected in different regions. Most striking was a divergence of Japanese and Korean alleles of hp0519, with Japanese alleles having undergone particularly strong positive selection (ωJ > 25), whereas alleles of other genes from these populations were intermingled. Homology-based structural modeling localized most residues under positive selection to SLR protein surfaces. Rapid evolution of certain slr genes in specific H. pylori lineages suggests a model of adaptive change driven by selection for fine-tuning of host responses, and facilitated by geographic isolation. Characterization of such local adaptations should help elucidate how H. pylori manages persistent infection, and potentially lead to interventions tailored to diverse human populations. PMID:17696605

  1. Within-Host Evolution of Pseudomonas aeruginosa Reveals Adaptation toward Iron Acquisition from Hemoglobin

    PubMed Central

    Marvig, Rasmus Lykke; Damkiær, Søren; Khademi, S. M. Hossein; Markussen, Trine M.; Molin, Søren

    2014-01-01

    ABSTRACT Pseudomonas aeruginosa airway infections are a major cause of mortality and morbidity of cystic fibrosis (CF) patients. In order to persist, P. aeruginosa depends on acquiring iron from its host, and multiple different iron acquisition systems may be active during infection. This includes the pyoverdine siderophore and the Pseudomonas heme utilization (phu) system. While the regulation and mechanisms of several iron-scavenging systems are well described, it is not clear whether such systems are targets for selection during adaptation of P. aeruginosa to the host environment. Here we investigated the within-host evolution of the transmissible P. aeruginosa DK2 lineage. We found positive selection for promoter mutations leading to increased expression of the phu system. By mimicking conditions of the CF airways in vitro, we experimentally demonstrate that increased expression of phuR confers a growth advantage in the presence of hemoglobin, thus suggesting that P. aeruginosa evolves toward iron acquisition from hemoglobin. To rule out that this adaptive trait is specific to the DK2 lineage, we inspected the genomes of additional P. aeruginosa lineages isolated from CF airways and found similar adaptive evolution in two distinct lineages (DK1 and PA clone C). Furthermore, in all three lineages, phuR promoter mutations coincided with the loss of pyoverdine production, suggesting that within-host adaptation toward heme utilization is triggered by the loss of pyoverdine production. Targeting heme utilization might therefore be a promising strategy for the treatment of P. aeruginosa infections in CF patients. PMID:24803516

  2. Within-host evolution of Pseudomonas aeruginosa reveals adaptation toward iron acquisition from hemoglobin.

    PubMed

    Marvig, Rasmus Lykke; Damkiær, Søren; Khademi, S M Hossein; Markussen, Trine M; Molin, Søren; Jelsbak, Lars

    2014-01-01

    ABSTRACT Pseudomonas aeruginosa airway infections are a major cause of mortality and morbidity of cystic fibrosis (CF) patients. In order to persist, P. aeruginosa depends on acquiring iron from its host, and multiple different iron acquisition systems may be active during infection. This includes the pyoverdine siderophore and the Pseudomonas heme utilization (phu) system. While the regulation and mechanisms of several iron-scavenging systems are well described, it is not clear whether such systems are targets for selection during adaptation of P. aeruginosa to the host environment. Here we investigated the within-host evolution of the transmissible P. aeruginosa DK2 lineage. We found positive selection for promoter mutations leading to increased expression of the phu system. By mimicking conditions of the CF airways in vitro, we experimentally demonstrate that increased expression of phuR confers a growth advantage in the presence of hemoglobin, thus suggesting that P. aeruginosa evolves toward iron acquisition from hemoglobin. To rule out that this adaptive trait is specific to the DK2 lineage, we inspected the genomes of additional P. aeruginosa lineages isolated from CF airways and found similar adaptive evolution in two distinct lineages (DK1 and PA clone C). Furthermore, in all three lineages, phuR promoter mutations coincided with the loss of pyoverdine production, suggesting that within-host adaptation toward heme utilization is triggered by the loss of pyoverdine production. Targeting heme utilization might therefore be a promising strategy for the treatment of P. aeruginosa infections in CF patients. IMPORTANCE Most bacterial pathogens depend on scavenging iron within their hosts, which makes the battle for iron between pathogens and hosts a hallmark of infection. Accordingly, the ability of the opportunistic pathogen Pseudomonas aeruginosa to cause chronic infections in cystic fibrosis (CF) patients also depends on iron-scavenging systems. While

  3. "Eve" in Africa: Human Evolution Meets Molecular Biology.

    ERIC Educational Resources Information Center

    Seager, Robert D.

    1990-01-01

    Presented is a discussion of recent evidence on the evolution of human forms on earth gathered and evaluated using mitochondrial DNA techniques. Theories regarding the possibility that a common female ancestor existed in Africa about 200,000 years ago are discussed. A list of teaching aids is provided. (CW)

  4. MOLECULAR PHYLOGENY AND EVOLUTION OF MOSQUITO PARASTIC MICROSPORIDIA (MICROSPORIDIA: AMBLYOSPORIDAE)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Amblyospora and related species were isolated from mosquitoes, black flies and copepods and the small subunit ribosomal DNA gene was sequenced. The comparative phylogenetic analysis for this study shows co-evolution agreement between the mosquito host genera and Amblyospora parasite species with a ...

  5. On the Stability and Evolution of Isolated Molecular Clouds

    NASA Technical Reports Server (NTRS)

    Langer, W.; Nelson, R.

    1998-01-01

    We present the results of three dimensional hydrodynamic models of evolving, isolated, low mass, quiescent clouds and Bok gobules, where the interstellar radiation field plays an important role in the thermal and chemical evolution, and thermal pressure provides dominant support against gravitational collapse.

  6. Copy-number changes in evolution: rates, fitness effects and adaptive significance

    PubMed Central

    Katju, Vaishali; Bergthorsson, Ulfar

    2013-01-01

    Gene copy-number differences due to gene duplications and deletions are rampant in natural populations and play a crucial role in the evolution of genome complexity. Per-locus analyses of gene duplication rates in the pre-genomic era revealed that gene duplication rates are much higher than the per nucleotide substitution rate. Analyses of gene duplication and deletion rates in mutation accumulation lines of model organisms have revealed that these high rates of copy-number mutations occur at a genome-wide scale. Furthermore, comparisons of the spontaneous duplication and deletion rates to copy-number polymorphism data and bioinformatic-based estimates of duplication rates from sequenced genomes suggest that the vast majority of gene duplications are detrimental and removed by natural selection. The rate at which new gene copies appear in populations greatly influences their evolutionary dynamics and standing gene copy-number variation in populations. The opportunity for mutations that result in the maintenance of duplicate copies, either through neofunctionalization or subfunctionalization, also depends on the equilibrium frequency of additional gene copies in the population, and hence on the spontaneous gene duplication (and loss) rate. The duplication rate may therefore have profound effects on the role of adaptation in the evolution of duplicated genes as well as important consequences for the evolutionary potential of organisms. We further discuss the broad ramifications of this standing gene copy-number variation on fitness and adaptive potential from a population-genetic and genome-wide perspective. PMID:24368910

  7. Evolution of cooperation facilitated by reinforcement learning with adaptive aspiration levels.

    PubMed

    Tanabe, Shoma; Masuda, Naoki

    2012-01-21

    Repeated interaction between individuals is the main mechanism for maintaining cooperation in social dilemma situations. Variants of tit-for-tat (repeating the previous action of the opponent) and the win-stay lose-shift strategy are known as strong competitors in iterated social dilemma games. On the other hand, real repeated interaction generally allows plasticity (i.e., learning) of individuals based on the experience of the past. Although plasticity is relevant to various biological phenomena, its role in repeated social dilemma games is relatively unexplored. In particular, if experience-based learning plays a key role in promotion and maintenance of cooperation, learners should evolve in the contest with nonlearners under selection pressure. By modeling players using a simple reinforcement learning model, we numerically show that learning enables the evolution of cooperation. We also show that numerically estimated adaptive dynamics appositely predict the outcome of evolutionary simulations. The analysis of the adaptive dynamics enables us to capture the obtained results as an affirmative example of the Baldwin effect, where learning accelerates the evolution to optimality. PMID:22037063

  8. Adaptive evolution of multicolored fluorescent proteins in reef-building corals.

    PubMed

    Field, Steven F; Bulina, Maria Y; Kelmanson, Ilya V; Bielawski, Joseph P; Matz, Mikhail V

    2006-03-01

    Here we investigate the evolutionary scenarios that led to the appearance of fluorescent color diversity in reef-building corals. We show that the mutations that have been responsible for the generation of new cyan and red phenotypes from the ancestral green were fixed with the help of positive natural selection. This fact strongly suggests that the color diversity is a product of adaptive evolution. An unexpected finding was a set of residues arranged as an intermolecular binding interface, which was also identified as a target of positive selection but is nevertheless not related to color diversification. We hypothesize that multicolored fluorescent proteins evolved as part of a mechanism regulating the relationships between the coral and its algal endosymbionts (zooxanthellae). We envision that the effect of the proteins' fluorescence on algal physiology may be achieved not only through photosynthesis modulation, but also through regulatory photosensors analogous to phytochromes and cryptochromes of higher plants. Such a regulation would require relatively subtle, but spectrally precise, modifications of the light field. Evolution of such a mechanism would explain both the adaptive diversification of colors and the coevolutionary chase at the putative algae-protein binding interface in coral fluorescent proteins. PMID:16474984

  9. Adaptive responses and invasion: the role of plasticity and evolution in snail shell morphology

    PubMed Central

    Kistner, Erica J; Dybdahl, Mark F

    2013-01-01

    Invasive species often exhibit either evolved or plastic adaptations in response to spatially varying environmental conditions. We investigated whether evolved or plastic adaptation was driving variation in shell morphology among invasive populations of the New Zealand mud snail (Potamopyrgus antipodarum) in the western United States. We found that invasive populations exhibit considerable shell shape variation and inhabit a variety of flow velocity habitats. We investigated the importance of evolution and plasticity by examining variation in shell morphological traits 1) between the parental and F1 generations for each population and 2) among populations of the first lab generation (F1) in a common garden, full-sib design using Canonical Variate Analyses (CVA). We compared the F1 generation to the parental lineages and found significant differences in overall shell shape indicating a plastic response. However, when examining differences among the F1 populations, we found that they maintained among-population shell shape differences, indicating a genetic response. The F1 generation exhibited a smaller shell morph more suited to the low-flow common garden environment within a single generation. Our results suggest that phenotypic plasticity in conjunction with evolution may be driving variation in shell morphology of this widespread invasive snail. PMID:23467920

  10. GNBP domain of Anopheles darlingi: are polymorphic inversions and gene variation related to adaptive evolution?

    PubMed

    Bridi, L C; Rafael, M S

    2016-02-01

    Anopheles darlingi is the main malaria vector in humans in South America. In the Amazon basin, it lives along the banks of rivers and lakes, which responds to the annual hydrological cycle (dry season and rainy season). In these breeding sites, the larvae of this mosquito feed on decomposing organic and microorganisms, which can be pathogenic and trigger the activation of innate immune system pathways, such as proteins Gram-negative binding protein (GNBP). Such environmental changes affect the occurrence of polymorphic inversions especially at the heterozygote frequency, which confer adaptative advantage compared to homozygous inversions. We mapped the GNBP probe to the An. darlingi 2Rd inversion by fluorescent in situ hybridization (FISH), which was a good indicator of the GNBP immune response related to the chromosomal polymorphic inversions and adaptative evolution. To better understand the evolutionary relations and time of divergence of the GNBP of An. darlingi, we compared it with nine other mosquito GNBPs. The results of the phylogenetic analysis of the GNBP sequence between the species of mosquitoes demonstrated three clades. Clade I and II included the GNBPB5 sequence, and clade III the sequence of GNBPB1. Most of these sequences of GNBP analyzed were homologous with that of subfamily B, including that of An. gambiae (87 %), therefore suggesting that GNBP of An. darling belongs to subfamily B. This work helps us understand the role of inversion polymorphism in evolution of An. darlingi. PMID:26767379

  11. Chewing on the trees: Constraints and adaptation in the evolution of the primate mandible.

    PubMed

    Meloro, Carlo; Cáceres, Nilton Carlos; Carotenuto, Francesco; Sponchiado, Jonas; Melo, Geruza Leal; Passaro, Federico; Raia, Pasquale

    2015-07-01

    Chewing on different food types is a demanding biological function. The classic assumption in studying the shape of feeding apparatuses is that animals are what they eat, meaning that adaptation to different food items accounts for most of their interspecific variation. Yet, a growing body of evidence points against this concept. We use the primate mandible as a model structure to investigate the complex interplay among shape, size, diet, and phylogeny. We find a weak but significant impact of diet on mandible shape variation in primates as a whole but not in anthropoids and catarrhines as tested in isolation. These clades mainly exhibit allometric shape changes, which are unrelated to diet. Diet is an important factor in the diversification of strepsirrhines and platyrrhines and a phylogenetic signal is detected in all primate clades. Peaks in morphological disparity occur during the Oligocene (between 37 and 25 Ma) supporting the notion that an adaptive radiation characterized the evolution of South American monkeys. In all primate clades, the evolution of mandible size is faster than its shape pointing to a strong effect of allometry on ecomorphological diversification in this group. PMID:26095445

  12. Temporal scaling of molecular evolution in primates and other mammals.

    PubMed

    Gingerich, P D

    1986-05-01

    Molecular clocks are routinely tested for linearity using a relative rate test and routinely calibrated against the geological time scale using a single or average paleontologically determined time of divergence between living taxa. The relative rate test is a test of parallel rate equality, not a test of rate constancy. Temporal scaling provides a test of rates, where scaling coefficients of 1.0 (isochrony) represent stochastic rate constancy. The fossil record of primates and other mammals is now known in sufficient detail to provide several independent divergence times for major taxonomic groups. Molecular difference should scale negatively or isochronically (scaling coefficients less than 1.0) with divergence time: where two or more divergence times are available, molecular difference appears to scale positively (scaling coefficient greater than 1.0). A minimum of four divergence times are required for adequate statistical power in testing the linear model: scaling is significantly nonlinear and positive in six of 11 published investigations meeting this criterion. All groups studied show some slowdown in rates of molecular change over Cenozoic time. The break from constant or increasing rates during the Mesozoic to decreasing rates during the Cenozoic appears to coincide with extraordinary diversification of placental mammals at the beginning of this era. High rates of selectively neutral molecular change may be concentrated in such discrete events of evolutionary diversification. PMID:3444400

  13. Extracellular Matrix Molecular Remodeling in Human Liver Fibrosis Evolution

    PubMed Central

    Baiocchini, Andrea; Montaldo, Claudia; Conigliaro, Alice; Grimaldi, Alessio; Correani, Virginia; Mura, Francesco; Ciccosanti, Fabiola; Rotiroti, Nicolina; Brenna, Alessia; Montalbano, Marzia; D’Offizi, Gianpiero; Capobianchi, Maria Rosaria; Alessandro, Riccardo; Piacentini, Mauro; Schininà, Maria Eugenia; Maras, Bruno; Del Nonno, Franca; Tripodi, Marco; Mancone, Carmine

    2016-01-01

    Chronic liver damage leads to pathological accumulation of ECM proteins (liver fibrosis). Comprehensive characterization of the human ECM molecular composition is essential for gaining insights into the mechanisms of liver disease. To date, studies of ECM remodeling in human liver diseases have been hampered by the unavailability of purified ECM. Here, we developed a decellularization method to purify ECM scaffolds from human liver tissues. Histological and electron microscopy analyses demonstrated that the ECM scaffolds, devoid of plasma and cellular components, preserved the three-dimensional ECM structure and zonal distribution of ECM components. This method has been then applied on 57 liver biopsies of HCV-infected patients at different stages of liver fibrosis according to METAVIR classification. Label-free nLC-MS/MS proteomics and computation biology were performed to analyze the ECM molecular composition in liver fibrosis progression, thus unveiling protein expression signatures specific for the HCV-related liver fibrotic stages. In particular, the ECM molecular composition of liver fibrosis was found to involve dynamic changes in matrix stiffness, flexibility and density related to the dysregulation of predominant collagen, elastic fibers and minor components with both structural and signaling properties. This study contributes to the understanding of the molecular bases underlying ECM remodeling in liver fibrosis and suggests new molecular targets for fibrolytic strategies. PMID:26998606

  14. Implications of prion adaptation and evolution paradigm for human neurodegenerative diseases.

    PubMed

    Kabir, M Enamul; Safar, Jiri G

    2014-01-01

    There is a growing body of evidence indicating that number of human neurodegenerative diseases, including Alzheimer disease, Parkinson disease, fronto-temporal dementias, and amyotrophic lateral sclerosis, propagate in the brain via prion-like intercellular induction of protein misfolding. Prions cause lethal neurodegenerative diseases in humans, the most prevalent being sporadic Creutzfeldt-Jakob disease (sCJD); they self-replicate and spread by converting the cellular form of prion protein (PrP(C)) to a misfolded pathogenic conformer (PrP(Sc)). The extensive phenotypic heterogeneity of human prion diseases is determined by polymorphisms in the prion protein gene, and by prion strain-specific conformation of PrP(Sc). Remarkably, even though informative nucleic acid is absent, prions may undergo rapid adaptation and evolution in cloned cells and upon crossing the species barrier. In the course of our investigation of this process, we isolated distinct populations of PrP(Sc) particles that frequently co-exist in sCJD. The human prion particles replicate independently and undergo competitive selection of those with lower initial conformational stability. Exposed to mutant substrate, the winning PrP(Sc) conformers are subject to further evolution by natural selection of the subpopulation with the highest replication rate due to the lowest stability. Thus, the evolution and adaptation of human prions is enabled by a dynamic collection of distinct populations of particles, whose evolution is governed by the selection of progressively less stable, faster replicating PrP(Sc) conformers. This fundamental biological mechanism may explain the drug resistance that some prions gained after exposure to compounds targeting PrP(Sc). Whether the phenotypic heterogeneity of other neurodegenerative diseases caused by protein misfolding is determined by the spectrum of misfolded conformers (strains) remains to be established. However, the prospect that these conformers may evolve and

  15. Evolution and Molecular Control of Hybrid Incompatibility in Plants.

    PubMed

    Chen, Chen; E, Zhiguo; Lin, Hong-Xuan

    2016-01-01

    Postzygotic reproductive isolation (RI) plays an important role in speciation. According to the stage at which it functions and the symptoms it displays, postzygotic RI can be called hybrid inviability, hybrid weakness or necrosis, hybrid sterility, or hybrid breakdown. In this review, we summarized new findings about hybrid incompatibilities in plants, most of which are from studies on Arabidopsis and rice. Recent progress suggests that hybrid incompatibility is a by-product of co-evolution either with "parasitic" selfish elements in the genome or with invasive microbes in the natural environment. We discuss the environmental influences on the expression of hybrid incompatibility and the possible effects of environment-dependent hybrid incompatibility on sympatric speciation. We also discuss the role of domestication on the evolution of hybrid incompatibilities. PMID:27563306

  16. Evolution and Molecular Control of Hybrid Incompatibility in Plants

    PubMed Central

    Chen, Chen; E, Zhiguo; Lin, Hong-Xuan

    2016-01-01

    Postzygotic reproductive isolation (RI) plays an important role in speciation. According to the stage at which it functions and the symptoms it displays, postzygotic RI can be called hybrid inviability, hybrid weakness or necrosis, hybrid sterility, or hybrid breakdown. In this review, we summarized new findings about hybrid incompatibilities in plants, most of which are from studies on Arabidopsis and rice. Recent progress suggests that hybrid incompatibility is a by-product of co-evolution either with “parasitic” selfish elements in the genome or with invasive microbes in the natural environment. We discuss the environmental influences on the expression of hybrid incompatibility and the possible effects of environment-dependent hybrid incompatibility on sympatric speciation. We also discuss the role of domestication on the evolution of hybrid incompatibilities. PMID:27563306

  17. Structural limits for evolutive capacities in complex molecular systems.

    PubMed

    Bergareche, A M; Ostolaza, J F

    1990-01-01

    The possibilities of evolution for a system with and without a code of translation from nucleic acids into proteins are evaluated. Our interest is mainly centred on the enzymatic RNA case since this molecule has, at the same time, reproductive and functional properties. After scanning the evolutive capacities of the enzymatic RNAs, including the possibility to play the role of "synthetase" which would match nucleic acids with amino acids as a transition step towards a code, we will try to show that due to their own functional limitative factors, the matching system (code) is necessary. This would be the only way to transform the formal complexity--complexity which has not entered into action before the translation process--into functional information to drive the instructive self-reproductive process. Once this stage is reached, the system could evolve without a limit. PMID:1707552

  18. Evidence for adaptive evolution of olfactory receptor genes in 9 bird species.

    PubMed

    Steiger, Silke S; Fidler, Andrew E; Mueller, Jakob C; Kempenaers, Bart

    2010-01-01

    It has been suggested that positive selection, in particular selection favoring a change in the protein sequence, plays a role in the evolution of olfactory receptor (OR) gene repertoires in fish and mammals. ORs are 7-transmembrane domain (TM) proteins, members of the G-protein-coupled receptor superfamily in vertebrate genomes, and responsible for odorant binding and discrimination. OR gene repertoires in birds are surprisingly large and diverse, suggesting that birds have a keen olfactory sense. The aim of this study is to investigate signatures of positive selection in an expanded OR clade (group-gamma-c) that seems to be a characteristic of avian genomes. Using maximum-likelihood methods that estimate the d(N)/d(S) ratios and account for the effects of recombination, we show here that there is evidence for positive selection in group-gamma-c partial OR coding sequences of 9 bird species that are likely to have different olfactory abilities: the blue tit (Cyanistes caeruleus), the black coucal (Centropus grillii), the brown kiwi (Apteryx australis), the canary (Serinus canaria), the galah (Eolophus roseicapillus), the kakapo (Strigops habroptilus), the mallard (Anas platyrhynchos), the red jungle fowl (Gallus gallus), and the snow petrel (Pagodroma nivea). Positively selected codons were predominantly located in TMs, which in other vertebrates are involved in odorant binding. Our data suggest that 1) at least some avian OR genes have been subjected to adaptive evolution, 2) the extent of such adaptive evolution differs between bird species, and 3) positive selective pressures may have been stronger on the group-gamma-c OR genes of species that have well-developed olfactory abilities. PMID:19965911

  19. Genetic Diversity and Molecular Evolution of Chinese Waxy Maize Germplasm

    PubMed Central

    Zheng, Hongjian; Wang, Hui; Yang, Hua; Wu, Jinhong; Shi, Biao; Cai, Run; Xu, Yunbi; Wu, Aizhong; Luo, Lijun

    2013-01-01

    Waxy maize (Zea mays L. var. certaina Kulesh), with many excellent characters in terms of starch composition and economic value, has grown in China for a long history and its production has increased dramatically in recent decades. However, the evolution and origin of waxy maize still remains unclear. We studied the genetic diversity of Chinese waxy maize including typical landraces and inbred lines by SSR analysis and the results showed a wide genetic diversity in the Chinese waxy maize germplasm. We analyzed the origin and evolution of waxy maize by sequencing 108 samples, and downloading 52 sequences from GenBank for the waxy locus in a number of accessions from genus Zea. A sharp reduction of nucleotide diversity and significant neutrality tests (Tajima’s D and Fu and Li’s F*) were observed at the waxy locus in Chinese waxy maize but not in nonglutinous maize. Phylogenetic analysis indicated that Chinese waxy maize originated from the cultivated flint maize and most of the modern waxy maize inbred lines showed a distinct independent origin and evolution process compared with the germplasm from Southwest China. The results indicated that an agronomic trait can be quickly improved to meet production demand by selection. PMID:23818949

  20. Rapid adaptive evolution of colour vision in the threespine stickleback radiation.

    PubMed

    Rennison, Diana J; Owens, Gregory L; Heckman, Nancy; Schluter, Dolph; Veen, Thor

    2016-05-11

    Vision is a sensory modality of fundamental importance for many animals, aiding in foraging, detection of predators and mate choice. Adaptation to local ambient light conditions is thought to be commonplace, and a match between spectral sensitivity and light spectrum is predicted. We use opsin gene expression to test for local adaptation and matching of spectral sensitivity in multiple independent lake populations of threespine stickleback populations derived since the last ice age from an ancestral marine form. We show that sensitivity across the visual spectrum is shifted repeatedly towards longer wavelengths in freshwater compared with the ancestral marine form. Laboratory rearing suggests that this shift is largely genetically based. Using a new metric, we found that the magnitude of shift in spectral sensitivity in each population corresponds strongly to the transition in the availability of different wavelengths of light between the marine and lake environments. We also found evidence of local adaptation by sympatric benthic and limnetic ecotypes to different light environments within lakes. Our findings indicate rapid parallel evolution of the visual system to altered light conditions. The changes have not, however, yielded a close matching of spectrum-wide sensitivity to wavelength availability, for reasons we discuss. PMID:27147098

  1. Evolution of increased adult longevity in Drosophila melanogaster populations selected for adaptation to larval crowding.

    PubMed

    Shenoi, V N; Ali, S Z; Prasad, N G

    2016-02-01

    In holometabolous animals such as Drosophila melanogaster, larval crowding can affect a wide range of larval and adult traits. Adults emerging from high larval density cultures have smaller body size and increased mean life span compared to flies emerging from low larval density cultures. Therefore, adaptation to larval crowding could potentially affect adult longevity as a correlated response. We addressed this issue by studying a set of large, outbred populations of D. melanogaster, experimentally evolved for adaptation to larval crowding for 83 generations. We assayed longevity of adult flies from both selected (MCUs) and control populations (MBs) after growing them at different larval densities. We found that MCUs have evolved increased mean longevity compared to MBs at all larval densities. The interaction between selection regime and larval density was not significant, indicating that the density dependence of mean longevity had not evolved in the MCU populations. The increase in longevity in MCUs can be partially attributed to their lower rates of ageing. It is also noteworthy that reaction norm of dry body weight, a trait probably under direct selection in our populations, has indeed evolved in MCU populations. To the best of our knowledge, this is the first report of the evolution of adult longevity as a correlated response of adaptation to larval crowding. PMID:26575793

  2. The king cobra genome reveals dynamic gene evolution and adaptation in the snake venom system

    PubMed Central

    Vonk, Freek J.; Casewell, Nicholas R.; Henkel, Christiaan V.; Heimberg, Alysha M.; Jansen, Hans J.; McCleary, Ryan J. R.; Kerkkamp, Harald M. E.; Vos, Rutger A.; Guerreiro, Isabel; Calvete, Juan J.; Wüster, Wolfgang; Woods, Anthony E.; Logan, Jessica M.; Harrison, Robert A.; Castoe, Todd A.; de Koning, A. P. Jason; Pollock, David D.; Yandell, Mark; Calderon, Diego; Renjifo, Camila; Currier, Rachel B.; Salgado, David; Pla, Davinia; Sanz, Libia; Hyder, Asad S.; Ribeiro, José M. C.; Arntzen, Jan W.; van den Thillart, Guido E. E. J. M.; Boetzer, Marten; Pirovano, Walter; Dirks, Ron P.; Spaink, Herman P.; Duboule, Denis; McGlinn, Edwina; Kini, R. Manjunatha; Richardson, Michael K.

    2013-01-01

    Snakes are limbless predators, and many species use venom to help overpower relatively large, agile prey. Snake venoms are complex protein mixtures encoded by several multilocus gene families that function synergistically to cause incapacitation. To examine venom evolution, we sequenced and interrogated the genome of a venomous snake, the king cobra (Ophiophagus hannah), and compared it, together with our unique transcriptome, microRNA, and proteome datasets from this species, with data from other vertebrates. In contrast to the platypus, the only other venomous vertebrate with a sequenced genome, we find that snake toxin genes evolve through several distinct co-option mechanisms and exhibit surprisingly variable levels of gene duplication and directional selection that correlate with their functional importance in prey capture. The enigmatic accessory venom gland shows a very different pattern of toxin gene expression from the main venom gland and seems to have recruited toxin-like lectin genes repeatedly for new nontoxic functions. In addition, tissue-specific microRNA analyses suggested the co-option of core genetic regulatory components of the venom secretory system from a pancreatic origin. Although the king cobra is limbless, we recovered coding sequences for all Hox genes involved in amniote limb development, with the exception of Hoxd12. Our results provide a unique view of the origin and evolution of snake venom and reveal multiple genome-level adaptive responses to natural selection in this complex biological weapon system. More generally, they provide insight into mechanisms of protein evolution under strong selection. PMID:24297900

  3. Biosensor-driven adaptive laboratory evolution of l-valine production in Corynebacterium glutamicum.

    PubMed

    Mahr, Regina; Gätgens, Cornelia; Gätgens, Jochem; Polen, Tino; Kalinowski, Jörn; Frunzke, Julia

    2015-11-01

    Adaptive laboratory evolution has proven a valuable strategy for metabolic engineering. Here, we established an experimental evolution approach for improving microbial metabolite production by imposing an artificial selective pressure on the fluorescent output of a biosensor using fluorescence-activated cell sorting. Cells showing the highest fluorescent output were iteratively isolated and (re-)cultivated. The L-valine producer Corynebacterium glutamicum ΔaceE was equipped with an L-valine-responsive sensor based on the transcriptional regulator Lrp of C. glutamicum. Evolved strains featured a significantly higher growth rate, increased L-valine titers (~25%) and a 3-4-fold reduction of by-product formation. Genome sequencing resulted in the identification of a loss-of-function mutation (UreD-E188*) in the gene ureD (urease accessory protein), which was shown to increase L-valine production by up to 100%. Furthermore, decreased L-alanine formation was attributed to a mutation in the global regulator GlxR. These results emphasize biosensor-driven evolution as a straightforward approach to improve growth and productivity of microbial production strains. PMID:26453945

  4. The king cobra genome reveals dynamic gene evolution and adaptation in the snake venom system.

    PubMed

    Vonk, Freek J; Casewell, Nicholas R; Henkel, Christiaan V; Heimberg, Alysha M; Jansen, Hans J; McCleary, Ryan J R; Kerkkamp, Harald M E; Vos, Rutger A; Guerreiro, Isabel; Calvete, Juan J; Wüster, Wolfgang; Woods, Anthony E; Logan, Jessica M; Harrison, Robert A; Castoe, Todd A; de Koning, A P Jason; Pollock, David D; Yandell, Mark; Calderon, Diego; Renjifo, Camila; Currier, Rachel B; Salgado, David; Pla, Davinia; Sanz, Libia; Hyder, Asad S; Ribeiro, José M C; Arntzen, Jan W; van den Thillart, Guido E E J M; Boetzer, Marten; Pirovano, Walter; Dirks, Ron P; Spaink, Herman P; Duboule, Denis; McGlinn, Edwina; Kini, R Manjunatha; Richardson, Michael K

    2013-12-17

    Snakes are limbless predators, and many species use venom to help overpower relatively large, agile prey. Snake venoms are complex protein mixtures encoded by several multilocus gene families that function synergistically to cause incapacitation. To examine venom evolution, we sequenced and interrogated the genome of a venomous snake, the king cobra (Ophiophagus hannah), and compared it, together with our unique transcriptome, microRNA, and proteome datasets from this species, with data from other vertebrates. In contrast to the platypus, the only other venomous vertebrate with a sequenced genome, we find that snake toxin genes evolve through several distinct co-option mechanisms and exhibit surprisingly variable levels of gene duplication and directional selection that correlate with their functional importance in prey capture. The enigmatic accessory venom gland shows a very different pattern of toxin gene expression from the main venom gland and seems to have recruited toxin-like lectin genes repeatedly for new nontoxic functions. In addition, tissue-specific microRNA analyses suggested the co-option of core genetic regulatory components of the venom secretory system from a pancreatic origin. Although the king cobra is limbless, we recovered coding sequences for all Hox genes involved in amniote limb development, with the exception of Hoxd12. Our results provide a unique view of the origin and evolution of snake venom and reveal multiple genome-level adaptive responses to natural selection in this complex biological weapon system. More generally, they provide insight into mechanisms of protein evolution under strong selection. PMID:24297900

  5. Molecular Evolution of the Plant SLT Protein Family

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The products of the sodium/lithium tolerance (Slt) genes are proteins that have molecular chaperone activity in vitro. The results from extensive database analyses indicate that SLT-orthologous proteins are present only in seed plants (Spermatopsida). Herein we describe the sequence analysis of th...

  6. Evolution & Phylogenetic Analysis: Classroom Activities for Investigating Molecular & Morphological Concepts

    ERIC Educational Resources Information Center

    Franklin, Wilfred A.

    2010-01-01

    In a flexible multisession laboratory, students investigate concepts of phylogenetic analysis at both the molecular and the morphological level. Students finish by conducting their own analysis on a collection of skeletons representing the major phyla of vertebrates, a collection of primate skulls, or a collection of hominid skulls.

  7. Molecular characterization of an adaptive response to alkylating agents in the opportunistic pathogen Aspergillus fumigatus

    PubMed Central

    O’Hanlon, Karen A.; Margison, Geoffrey P.; Hatch, Amy; Fitzpatrick, David A.; Owens, Rebecca A.; Doyle, Sean; Jones, Gary W.

    2012-01-01

    An adaptive response to alkylating agents based upon the conformational change of a methylphosphotriester (MPT) DNA repair protein to a transcriptional activator has been demonstrated in a number of bacterial species, but this mechanism appears largely absent from eukaryotes. Here, we demonstrate that the human pathogen Aspergillus fumigatus elicits an adaptive response to sub-lethal doses of the mono-functional alkylating agent N-methyl-N′-nitro-N-nitrosoguanidine (MNNG). We have identified genes that encode MPT and O6-alkylguanine DNA alkyltransferase (AGT) DNA repair proteins; deletions of either of these genes abolish the adaptive response and sensitize the organism to MNNG. In vitro DNA repair assays confirm the ability of MPT and AGT to repair methylphosphotriester and O6-methylguanine lesions respectively. In eukaryotes, the MPT protein is confined to a select group of fungal species, some of which are major mammalian and plant pathogens. The evolutionary origin of the adaptive response is bacterial and rooted within the Firmicutes phylum. Inter-kingdom horizontal gene transfer between Firmicutes and Ascomycete ancestors introduced the adaptive response into the Fungal kingdom. Our data constitute the first detailed characterization of the molecular mechanism of the adaptive response in a lower eukaryote and has applications for development of novel fungal therapeutics targeting this DNA repair system. PMID:22669901

  8. Determining the Energetics of Small β-Sheet Peptides using Adaptive Steered Molecular Dynamics.

    PubMed

    Bureau, Hailey R; Hershkovits, Eli; Quirk, Stephen; Hernandez, Rigoberto

    2016-04-12

    Mechanically driven unfolding is a useful computational tool for extracting the energetics and stretching pathway of peptides. In this work, two representative β-hairpin peptides, chignolin (PDB: 1UAO ) and trpzip1 (PDB: 1LE0 ), were investigated using an adaptive variant of the original steered molecular dynamics method called adaptive steered molecular dynamics (ASMD). The ASMD method makes it possible to perform energetic calculations on increasingly complex biological systems. Although the two peptides are similar in length and have similar secondary structures, their unfolding energetics are quite different. The hydrogen bonding profile and specific residue pair interaction energies provide insight into the differing stabilities of these peptides and reveal which of the pairs provides the most significant stabilization. PMID:26930270

  9. Symmetry-adapted non-equilibrium molecular dynamics of chiral carbon nanotubes under tensile loading

    NASA Astrophysics Data System (ADS)

    Aghaei, Amin; Dayal, Kaushik

    2011-06-01

    We report on non-equilibrium molecular dynamics calculations of chiral single-wall carbon nanotubes using the framework of Objective Structures. This enables us to adapt molecular dynamics to the symmetry of chiral nanotubes and efficiently simulate these systems with small unit cells. We outline the method and the adaptation of a conventional thermostat and barostat to this setting. We then apply the method in order to examine the behavior of nanotubes with various chiralities subject to a constant extensional strain rate. We examine the effects of temperature, strain rate, and pre-compression/pre-tension. We find a range of failure mechanisms, including the formation of Stone-Wales defects, the opening of voids, and the motion of atoms out of the cross-section.

  10. Trade-offs and evolution of thermal adaptation in the Irish potato famine pathogen Phytophthora infestans.

    PubMed

    Yang, Li-Na; Zhu, Wen; Wu, E-Jiao; Yang, Ce; Thrall, Peter H; Burdon, Jeremy J; Jin, Li-Ping; Shang, Li-Ping; Zhan, Jiasui

    2016-08-01

    Temperature is one of the most important environmental parameters with crucial impacts on nearly all biological processes. Due to anthropogenic activity, average air temperatures are expected to increase by a few degrees in coming decades, accompanied by an increased occurrence of extreme temperature events. Such global trends are likely to have various major impacts on human society through their influence on natural ecosystems, food production and biotic interactions, including diseases. In this study, we used a combination of statistical genetics, experimental evolution and common garden experiments to investigate the evolutionary potential for thermal adaptation in the potato late blight pathogen, Phytophthora infestans, and infer its likely response to changing temperatures. We found a trade-off associated with thermal adaptation to heterogeneous environments in P. infestans, with the degree of the trade-off peaking approximately at the pathogen's optimum growth temperature. A genetic trade-off in thermal adaptation was also evidenced by the negative association between a strain's growth rate and its thermal range for growth, and warm climates selecting for a low pathogen growth rate. We also found a mirror effect of phenotypic plasticity and genetic adaptation on growth rate. At below the optimum, phenotypic plasticity enhances pathogen's growth rate but nature selects for slower growing genotypes when temperature increases. At above the optimum, phenotypic plasticity reduces pathogen's growth rate but natural selection favours for faster growing genotypes when temperature increases further. We conclude from these findings that the growth rate of P. infestans will only be marginally affected by global warming. PMID:27288627

  11. Adaptive evolution of voltage-gated sodium channels: The first 800 million years

    PubMed Central

    Zakon, Harold H.

    2012-01-01

    Voltage-gated Na+-permeable (Nav) channels form the basis for electrical excitability in animals. Nav channels evolved from Ca2+ channels and were present in the common ancestor of choanoflagellates and animals, although this channel was likely permeable to both Na+ and Ca2+. Thus, like many other neuronal channels and receptors, Nav channels predated neurons. Invertebrates possess two Nav channels (Nav1 and Nav2), whereas vertebrate Nav channels are of the Nav1 family. Approximately 500 Mya in early chordates Nav channels evolved a motif that allowed them to cluster at axon initial segments, 50 million years later with the evolution of myelin, Nav channels “capitalized” on this property and clustered at nodes of Ranvier. The enhancement of conduction velocity along with the evolution of jaws likely made early gnathostomes fierce predators and the dominant vertebrates in the ocean. Later in vertebrate evolution, the Nav channel gene family expanded in parallel in tetrapods and teleosts (∼9 to 10 genes in amniotes, 8 in teleosts). This expansion occurred during or after the late Devonian extinction, when teleosts and tetrapods each diversified in their respective habitats, and coincided with an increase in the number of telencephalic nuclei in both groups. The expansion of Nav channels may have allowed for more sophisticated neural computation and tailoring of Nav channel kinetics with potassium channel kinetics to enhance energy savings. Nav channels show adaptive sequence evolution for increasing diversity in communication signals (electric fish), in protection against lethal Nav channel toxins (snakes, newts, pufferfish, insects), and in specialized habitats (naked mole rats). PMID:22723361

  12. Molecular dynamics modelling of mechanical properties of polymers for adaptive aerospace structures

    NASA Astrophysics Data System (ADS)

    Papanikolaou, Michail; Drikakis, Dimitris; Asproulis, Nikolaos

    2015-02-01

    The features of adaptive structures depend on the properties of the supporting materials. For example, morphing wing structures require wing skin materials, such as rubbers that can withstand the forces imposed by the internal mechanism while maintaining the required aerodynamic properties of the aircraft. In this study, Molecular Dynamics and Minimization simulations are being used to establish well-equilibrated models of Ethylene-Propylene-Diene Monomer (EPDM) elastomer systems and investigate their mechanical properties.

  13. Molecular and cellular neurocardiology: development, and cellular and molecular adaptations to heart disease.

    PubMed

    Habecker, Beth A; Anderson, Mark E; Birren, Susan J; Fukuda, Keiichi; Herring, Neil; Hoover, Donald B; Kanazawa, Hideaki; Paterson, David J; Ripplinger, Crystal M

    2016-07-15

    The nervous system and cardiovascular system develop in concert and are functionally interconnected in both health and disease. This white paper focuses on the cellular and molecular mechanisms that underlie neural-cardiac interactions during development, during normal physiological function in the mature system, and during pathological remodelling in cardiovascular disease. The content on each subject was contributed by experts, and we hope that this will provide a useful resource for newcomers to neurocardiology as well as aficionados. PMID:27060296

  14. Molecular Phylogeny Supports Repeated Adaptation to Burrowing within Small-Eared Shrews Genus of Cryptotis (Eulipotyphla, Soricidae)

    PubMed Central

    He, Kai; Woodman, Neal; Boaglio, Sean; Roberts, Mariel; Supekar, Sunjana; Maldonado, Jesús E.

    2015-01-01

    Small-eared shrews of the New World genus Cryptotis (Eulipotyphla, Soricidae) comprise at least 42 species that traditionally have been partitioned among four or more species groups based on morphological characters. The Cryptotis mexicana species group is of particular interest, because its member species inhibit a subtly graded series of forelimb adaptations that appear to correspond to locomotory behaviors that range from more ambulatory to more fossorial. Unfortunately, the evolutionary relationships both among species in the C. mexicana group and among the species groups remain unclear. To better understand the phylogeny of this group of shrews, we sequenced two mitochondrial and two nuclear genes. To help interpret the pattern and direction of morphological changes, we also generated a matrix of morphological characters focused on the evolutionarily plastic humerus. We found significant discordant between the resulting molecular and morphological trees, suggesting considerable convergence in the evolution of the humerus. Our results indicate that adaptations for increased burrowing ability evolved repeatedly within the genus Cryptotis. PMID:26489020

  15. Molecular Phylogeny Supports Repeated Adaptation to Burrowing within Small-Eared Shrews Genus of Cryptotis (Eulipotyphla, Soricidae).

    PubMed

    He, Kai; Woodman, Neal; Boaglio, Sean; Roberts, Mariel; Supekar, Sunjana; Maldonado, Jesús E

    2015-01-01

    Small-eared shrews of the New World genus Cryptotis (Eulipotyphla, Soricidae) comprise at least 42 species that traditionally have been partitioned among four or more species groups based on morphological characters. The Cryptotis mexicana species group is of particular interest, because its member species inhibit a subtly graded series of forelimb adaptations that appear to correspond to locomotory behaviors that range from more ambulatory to more fossorial. Unfortunately, the evolutionary relationships both among species in the C. mexicana group and among the species groups remain unclear. To better understand the phylogeny of this group of shrews, we sequenced two mitochondrial and two nuclear genes. To help interpret the pattern and direction of morphological changes, we also generated a matrix of morphological characters focused on the evolutionarily plastic humerus. We found significant discordant between the resulting molecular and morphological trees, suggesting considerable convergence in the evolution of the humerus. Our results indicate that adaptations for increased burrowing ability evolved repeatedly within the genus Cryptotis. PMID:26489020

  16. Molecular cytogenetic dissection of human chromosomes 3 and 21 evolution

    PubMed Central

    Müller, S.; Stanyon, R.; Finelli, P.; Archidiacono, N.; Wienberg, J.

    2000-01-01

    Chromosome painting in placental mammalians illustrates that genome evolution is marked by chromosomal synteny conservation and that the association of chromosomes 3 and 21 may be the largest widely conserved syntenic block known for mammals. We studied intrachromosomal rearrangements of the syntenic block 3/21 by using probes derived from chromosomal subregions with a resolution of up to 10–15 Mbp. We demonstrate that the rearrangements visualized by chromosome painting, mostly translocations, are only a fraction of the actual chromosomal changes that have occurred during evolution. The ancestral segment order for both primates and carnivores is still found in some species in both orders. From the ancestral primate/carnivore condition an inversion is needed to derive the pig homolog, and a fission of chromosome 21 and a pericentric inversion is needed to derive the Bornean orangutan condition. Two overlapping inversions in the chromosome 3 homolog then would lead to the chromosome form found in humans and African apes. This reconstruction of the origin of human chromosome 3 contrasts with the generally accepted scenario derived from chromosome banding in which it was proposed that only one pericentric inversion was needed. From the ancestral form for Old World primates (now found in the Bornean orangutan) a pericentric inversion and centromere shift leads to the chromosome ancestral for all Old World monkeys. Intrachromosomal rearrangements, as shown here, make up a set of potentially plentiful and informative markers that can be used for phylogenetic reconstruction and a more refined comparative mapping of the genome. PMID:10618396

  17. 'Molecules and monkeys': George Gaylord Simpson and the challenge of molecular evolution.

    PubMed

    Aronson, Jay D

    2002-01-01

    In this paper, I analyze George Gaylord Simpson's response to the molecularization of evolutionary biology from his unique perspective as a paleontologist. I do so by exploring his views on early attempts to reconstruct phylogenetic relationships among primates using molecular data. Particular attention is paid to Simpson's role in the evolutionary synthesis of the 1930s and 1940s, as well as his concerns about the rise of molecular biology as a powerful discipline and world-view in the 1960s. I argue that Simpson's belief in the supremacy of natural selection as the primary driving force of evolution, as well as his view that biology was a historical science that seeks ultimate causes and highlights contingency, prevented him from acknowledging that the study of molecular evolution was an inherently valuable part of the life sciences. PMID:15045833

  18. Polyphyletic origins of schizothoracine fish (Cyprinidae, Osteichthyes) and adaptive evolution in their mitochondrial genomes.

    PubMed

    Yonezawa, Takahiro; Hasegawa, Masami; Zhong, Yang

    2014-01-01

    The schizothoracine fish, also called snow trout, are members of the Cyprinidae, and are the most diversified teleost fish in the Qinghai-Tibetan Plateau (QTP). Clarifying the evolutionary history of the schizothoracine fish is therefore important for better understanding the biodiversity of the QTP. Although morphological and molecular phylogenetic studies have supported the monophyly of the Schizothoracinae, a recent molecular phylogenetic study based on the mitochondrial genome questioned the monophyly of this taxon. However, the phylogenetic analysis of that study was on the basis of only three schizothoracine species, and the support values were low. In this report, we inferred the phylogenetic tree on the basis of mitochondrial genome data including 21 schizothoracine species and five closely related species, and the polyphyletic origins of the Schizothoracinae were strongly supported. The tree further suggests that the Schizothoracinae consists of two clades, namely the "morphologically specialized clade" and the "morphologically primitive clade", and that these two clades migrated independently of each other to the QTP and adapted to high altitude. We also detected in their mitochondrial genomes strong signals of positive selection, which probably represent evidence of high-altitude adaptation. In the case of the morphologically specialized clade, positive selection mainly occurred during the Late Paleocene to the Early Oligocene. Its migration also seems to have occurred in the Early Eocene, and this timing is consistent with the drastic uplifting of the QTP. On the other hand, positive selection in the morphologically primitive clade has mainly occurred since the Late Miocene. Because its members are thought to have migrated to the QTP recently, it is possible that they are now undergoing high-altitude adaptation. PMID:25747043

  19. Ancestral Protein Reconstruction Yields Insights into Adaptive Evolution of Binding Specificity in Solute-Binding Proteins.

    PubMed

    Clifton, Ben E; Jackson, Colin J

    2016-02-18

    The promiscuous functions of proteins are an important reservoir of functional novelty in protein evolution, but the molecular basis for binding promiscuity remains elusive. We used ancestral protein reconstruction to experimentally characterize evolutionary intermediates in the functional expansion of the polar amino acid-binding protein family, which has evolved to bind a variety of amino acids with high affinity and specificity. High-resolution crystal structures of an ancestral arginine-binding protein in complex with l-arginine and l-glutamine show that the promiscuous binding of l-glutamine is enabled by multi-scale conformational plasticity, water-mediated interactions, and selection of an alternative conformational substate productive for l-glutamine binding. Evolution of specialized glutamine-binding proteins from this ancestral protein was achieved by displacement of water molecules from the protein-ligand interface, reducing the entropic penalty associated with the promiscuous interaction. These results provide a structural and thermodynamic basis for the co-option of a promiscuous interaction in the evolution of binding specificity. PMID:26853627

  20. Introgressive Hybridization and the Evolution of Lake-Adapted Catostomid Fishes

    PubMed Central

    Dowling, Thomas E.; Markle, Douglas F.; Tranah, Greg J.; Carson, Evan W.; Wagman, David W.; May, Bernard P.

    2016-01-01

    Hybridization has been identified as a significant factor in the evolution of plants as groups of interbreeding species retain their phenotypic integrity despite gene exchange among forms. Recent studies have identified similar interactions in animals; however, the role of hybridization in the evolution of animals has been contested. Here we examine patterns of gene flow among four species of catostomid fishes from the Klamath and Rogue rivers using molecular and morphological traits. Catostomus rimiculus from the Rogue and Klamath basins represent a monophyletic group for nuclear and morphological traits; however, the Klamath form shares mtDNA lineages with other Klamath Basin species (C. snyderi, Chasmistes brevirostris, Deltistes luxatus). Within other Klamath Basin taxa, D. luxatus was largely fixed for alternate nuclear alleles relative to C. rimiculus, while Ch. brevirostris and C. snyderi exhibited a mixture of these alleles. Deltistes luxatus was the only Klamath Basin species that exhibited consistent covariation of nuclear and mitochondrial traits and was the primary source of mismatched mtDNA in Ch. brevirostris and C. snyderi, suggesting asymmetrical introgression into the latter species. In Upper Klamath Lake, D. luxatus spawning was more likely to overlap spatially and temporally with C. snyderi and Ch. brevirostris than either of those two with each other. The latter two species could not be distinguished with any molecular markers but were morphologically diagnosable in Upper Klamath Lake, where they were largely spatially and temporally segregated during spawning. We examine parallel evolution and syngameon hypotheses and conclude that observed patterns are most easily explained by introgressive hybridization among Klamath Basin catostomids. PMID:26959681

  1. Introgressive Hybridization and the Evolution of Lake-Adapted Catostomid Fishes.

    PubMed

    Dowling, Thomas E; Markle, Douglas F; Tranah, Greg J; Carson, Evan W; Wagman, David W; May, Bernard P

    2016-01-01

    Hybridization has been identified as a significant factor in the evolution of plants as groups of interbreeding species retain their phenotypic integrity despite gene exchange among forms. Recent studies have identified similar interactions in animals; however, the role of hybridization in the evolution of animals has been contested. Here we examine patterns of gene flow among four species of catostomid fishes from the Klamath and Rogue rivers using molecular and morphological traits. Catostomus rimiculus from the Rogue and Klamath basins represent a monophyletic group for nuclear and morphological traits; however, the Klamath form shares mtDNA lineages with other Klamath Basin species (C. snyderi, Chasmistes brevirostris, Deltistes luxatus). Within other Klamath Basin taxa, D. luxatus was largely fixed for alternate nuclear alleles relative to C. rimiculus, while Ch. brevirostris and C. snyderi exhibited a mixture of these alleles. Deltistes luxatus was the only Klamath Basin species that exhibited consistent covariation of nuclear and mitochondrial traits and was the primary source of mismatched mtDNA in Ch. brevirostris and C. snyderi, suggesting asymmetrical introgression into the latter species. In Upper Klamath Lake, D. luxatus spawning was more likely to overlap spatially and temporally with C. snyderi and Ch. brevirostris than either of those two with each other. The latter two species could not be distinguished with any molecular markers but were morphologically diagnosable in Upper Klamath Lake, where they were largely spatially and temporally segregated during spawning. We examine parallel evolution and syngameon hypotheses and conclude that observed patterns are most easily explained by introgressive hybridization among Klamath Basin catostomids. PMID:26959681

  2. Molecular Imaging and Contrast Agent Database (MICAD): Evolution and Progress

    PubMed Central

    Chopra, Arvind; Shan, Liang; Eckelman, W. C.; Leung, Kam; Latterner, Martin; Bryant, Stephen H.; Menkens, Anne

    2011-01-01

    The purpose of writing this review is to showcase the Molecular Imaging and Contrast Agent Database (MICAD; www.micad.nlm.nih.gov) to students, researchers and clinical investigators interested in the different aspects of molecular imaging. This database provides freely accessible, current, online scientific information regarding molecular imaging (MI) probes and contrast agents (CA) used for positron emission tomography, single-photon emission computed tomography, magnetic resonance imaging, x-ray/computed tomography, optical imaging and ultrasound imaging. Detailed information on >1000 agents in MICAD is provided in a chapter format and can be accessed through PubMed. Lists containing >4250 unique MI probes and CAs published in peer-reviewed journals and agents approved by the United States Food and Drug Administration (FDA) as well as a CSV file summarizing all chapters in the database can be downloaded from the MICAD homepage. Users can search for agents in MICAD on the basis of imaging modality, source of signal/contrast, agent or target category, preclinical or clinical studies, and text words. Chapters in MICAD describe the chemical characteristics (structures linked to PubChem), the in vitro and in vivo activities and other relevant information regarding an imaging agent. All references in the chapters have links to PubMed. A Supplemental Information Section in each chapter is available to share unpublished information regarding an agent. A Guest Author Program is available to facilitate rapid expansion of the database. Members of the imaging community registered with MICAD periodically receive an e-mail announcement (eAnnouncement) that lists new chapters uploaded to the database. Users of MICAD are encouraged to provide feedback, comments or suggestions for further improvement of the database by writing to the editors at: micad@nlm.nih.gov PMID:21989943

  3. Molecular genetics and the evolution of ultraviolet vision in vertebrates

    PubMed Central

    Shi, Yongsheng; Radlwimmer, F. Bernhard; Yokoyama, Shozo

    2001-01-01

    Despite the biological importance of UV vision, its molecular bases are not well understood. Here, we present evidence that UV vision in vertebrates is determined by eight specific amino acids in the UV pigments. Amino acid sequence analyses show that contemporary UV pigments inherited their UV sensitivities from the vertebrate ancestor by retaining most of these eight amino acids. In the avian lineage, the ancestral pigment lost UV sensitivity, but some descendants regained it by one amino acid change. Our results also strongly support the hypothesis that UV pigments have an unprotonated Schiff base-linked chromophore. PMID:11573008

  4. Molecular networks and the evolution of human cognitive specializations

    PubMed Central

    Fontenot, Miles; Konopka, Genevieve

    2014-01-01

    Inroads into elucidating the origins of human cognitive specializations have taken many forms, including genetic, genomic, anatomical, and behavioral assays that typically compare humans to non-human primates. While the integration of all of these approaches is essential for ultimately understanding human cognition, here, we review the usefulness of coexpression network analysis for specifically addressing this question. An increasing number of studies have incorporated coexpression networks into brain expression studies comparing species, disease versus control tissue, brain regions, or developmental time periods. A clearer picture has emerged of the key genes driving brain evolution, as well as the developmental and regional contributions of gene expression patterns important for normal brain development and those misregulated in cognitive diseases. PMID:25212263

  5. Gibberellin Receptor GID1: Gibberellin Recognition and Molecular Evolution

    NASA Astrophysics Data System (ADS)

    Kato, Hiroaki; Sato, Tomomi; Ueguchi-Tanaka, Miyako

    Gibberellins (GAs) are phytohormones essential for many developmental processes in plants. We analyzed the crystal structure of a nuclear GA receptor, GIBBERELLIN INSENSITIVE DWARF 1 (GID1) from Oryza sativa. As it was proposed from the sequence similarity, the overall structure of GID1 shows an α/β-hydrolase fold similar to that of the hormone-sensitive lipases (HSLs) except for an amino-terminal lid. The GA-binding site corresponds to the substrate-binding site of HSLs. Almost residues assigned for GA binding showed very little or no activity when they were replaced with Ala. The substitution of the residues corresponding to those of the lycophyte GID1s caused an increase in the binding affinity for GA34, a 2β-hydroxylated GA4. These findings indicate that GID1 originated from HSL and was tinkered to have the specificity for bioactive GAs in the course of plant evolution.

  6. Glutamine synthetase gene evolution: a good molecular clock.

    PubMed Central

    Pesole, G; Bozzetti, M P; Lanave, C; Preparata, G; Saccone, C

    1991-01-01

    Glutamine synthetase (EC 6.3.1.2) gene evolution in various animals, plants, and bacteria was evaluated by a general stationary Markov model. The evolutionary process proved to be unexpectedly regular even for a time span as long as that between the divergence of prokaryotes from eukaryotes. This enabled us to draw phylogenetic trees for species whose phylogeny cannot be easily reconstructed from the fossil record. Our calculation of the times of divergence of the various organelle-specific enzymes led us to hypothesize that the pea and bean chloroplast genes for these enzymes originated from the duplication of nuclear genes as a result of the different metabolic needs of the various species. Our data indicate that the duplication of plastid glutamine synthetase genes occurred long after the endosymbiotic events that produced the organelles themselves. PMID:1671172

  7. [Molecular Mechanism and Malignant Clonal Evolution of Multiple Myeloma].

    PubMed

    Ding, Fei; Zhu, Ping; Wu, Xue-Qiang

    2015-10-01

    Almost all patients with multiple myeloma (MM) have chromosomal translocation which can result in genetic variation. There are mainly five types of chromosomal translocations, involving the IGH gene translocation to 11q13 (CCND1), 4p16 (FGFR/MMSET), 16q23 (MAF), 6p21 (CCND3) and 20q11 (MAFB). It is possible that all IGH translocations converge on a common cell cycle signal pathway. Some MM develops through a multistep transformation from monoclonal gammopathy of undetermined significance (MGUS) to smoldering MM (SMM) and eventually to MM and plasma cell leukemia (PCL). Similarly to what Darwin proposed in the mid-19th century-random genetic variation and natural selection in the context of limited resources, MM clonal evolution follow branching and nonlinear mode. The failure of MM treatment is usually related with the minimal subclone which is hardly found at newlydiagnosed. PMID:26524068

  8. Molecular evolution and phylogeny of dengue-4 viruses.

    PubMed

    Lanciotti, R S; Gubler, D J; Trent, D W

    1997-09-01

    Nucleotide sequences of the envelope protein genes of 19 geographically and temporally distinct dengue (DEN)-4 viruses were determined. Nucleic acid sequence comparison revealed that the identity among the DEN-4 viruses was greater than 92%. Similarity among deduced amino acids was between 96 and 100%; in most cases identical amino acid substitutions occurred among viruses from similar geographical regions. Alignment of nucleic acid sequences followed by parsimony analysis generated phylogenetic trees, which indicated that geographically independent evolution of DEN-4 viruses had occurred. DEN-4 viruses were separated into two genetically distinct subtypes (genotypes). Genotype-1 contains viruses from the Philippines, Thailand and Sri Lanka; genotype-2 consists of viruses from Indonesia, Tahiti, the Caribbean Islands (Puerto Rico, Dominica) and Central and South America. PMID:9292015

  9. Adaptive laboratory evolution of Escherichia coli K-12 MG1655 for growth at high hydrostatic pressure

    PubMed Central

    Marietou, Angeliki; Nguyen, Alice T. T.; Allen, Eric E.; Bartlett, Douglas H.

    2015-01-01

    Much of microbial life on Earth grows and reproduces under the elevated hydrostatic pressure conditions that exist in deep-ocean and deep-subsurface environments. In this study adaptive laboratory evolution (ALE) experiments were conducted to investigate the possible modification of the piezosensitive Escherichia coli for improved growth at high pressure. After approximately 500 generations of selection, a strain was isolated that acquired the ability to grow at pressure non-permissive for the parental strain. Remarkably, this strain displayed growth properties and changes in the proportion and regulation of unsaturated fatty acids that indicated the acquisition of multiple piezotolerant properties. These changes developed concomitantly with a change in the gene encoding the acyl carrier protein, which is required for fatty acid synthesis. PMID:25610434

  10. Recent advances in ecological genomics: from phenotypic plasticity to convergent and adaptive evolution and speciation.

    PubMed

    Landry, Christian R; Aubin-Horth, Nadia

    2014-01-01

    Biological diversity emerges from the interaction between genomes and their environment. Recent conceptual and technological developments allow dissecting these interactions over short and long time-scales. The 16 contributions to this book by leaders in the field cover major recent progresses in the field of Ecological Genomics. Altogether, they illustrate the interplay between the life-history and genomic architecture of organisms, how the interaction of the environment and the genome is shaping phenotypic variation through phenotypic plasticity, how the process of adaptation may be constrained and fueled by internal and external features of organisms and finally, how species formation is the result of intricate interactions between genomes and the ecological conditions. These contributions also show how fundamental questions in biology transcend the boundaries of kingdoms, species and environments and illustrate how integrative approaches are powerful means to answer the most important and challenging questions in ecology and evolution. PMID:24277292

  11. CRISPR-Cas: evolution of an RNA-based adaptive immunity system in prokaryotes.

    PubMed

    Koonin, Eugene V; Makarova, Kira S

    2013-05-01

    The CRISPR-Cas (clustered regularly interspaced short palindromic repeats, CRISPR-associated genes) is an adaptive immunity system in bacteria and archaea that functions via a distinct self-non-self recognition mechanism that is partially analogous to the mechanism of eukaryotic RNA interference (RNAi). The CRISPR-Cas system incorporates fragments of virus or plasmid DNA into the CRISPR repeat cassettes and employs the processed transcripts of these spacers as guide RNAs to cleave the cognate foreign DNA or RNA. The Cas proteins, however, are not homologous to the proteins involved in RNAi and comprise numerous, highly diverged families. The majority of the Cas proteins contain diverse variants of the RNA recognition motif (RRM), a widespread RNA-binding domain. Despite the fast evolution that is typical of the cas genes, the presence of diverse versions of the RRM in most Cas proteins provides for a simple scenario for the evolution of the three distinct types of CRISPR-cas systems. In addition to several proteins that are directly implicated in the immune response, the cas genes encode a variety of proteins that are homologous to prokaryotic toxins that typically possess nuclease activity. The predicted toxins associated with CRISPR-Cas systems include the essential Cas2 protein, proteins of COG1517 that, in addition to a ligand-binding domain and a helix-turn-helix domain, typically contain different nuclease domains and several other predicted nucleases. The tight association of the CRISPR-Cas immunity systems with predicted toxins that, upon activation, would induce dormancy or cell death suggests that adaptive immunity and dormancy/suicide response are functionally coupled. Such coupling could manifest in the persistence state being induced and potentially providing conditions for more effective action of the immune system or in cell death being triggered when immunity fails. PMID:23439366

  12. The appearance of the thymus and the integrated evolution of adaptive immune and neuroendocrine systems.

    PubMed

    Geenen, V

    2012-01-01

    The immune system may be considered as a sensory organ able to respond to different kinds of danger signals that are not detected by nervous cells. The immune response is not autonomous but also regulated by the central and peripheral nervous system, as well as by neuropeptides, vitamin D and neuroendocrine axes such as the corticotrope, somatotrope, thyrotrope and gonadotrope axes. During evolution, the thymus emerged concomitantly with recombinase-dependent adaptive immunity as an'immune brain' or a'master class' highly specialized in the orchestration of central immunological self-tolerance. This was an absolute requirement for survival of species because of the high risk of autotoxicity inherent to the stochastic generation of extreme diversity characterizing this novel adaptive type of immune defenses against non-self. The thymus now appears to be an obligatory intersection for the integrated evolution of the major systems of cell-to-cell signalling, the nervous, endocrine and immune systems. The presentation of many self-peptides by thymic major histocompatibility complex (MHC) proteins is controlled by the autoimmune regulator (AIRE) gene/protein and is responsible for the clonal deletion of self-reactive T cells. In the same time, by still unexplained mechanisms, MHC presentation of the same self-peptides in the thymus promotes the generation of self-specific FOXP3+ CD4+CD25+ natural regulatory T cells (nTreg) that are able to inhibit in periphery self-reactive CD4+ and CD8+ T cells having escaped the thymus censorship. Moreover, a thymus dysfunction is more and more established as the primary event driving the development of organ-specific autoimmunity, which is the tribute paid, mainly by mankind, for the preservation of self against non-self. Our novel knowledge about thymus physiology and physiopathology already serves as the basis for the development of various innovative and efficient immunomodulating strategies in pharmacology. PMID:22897070

  13. DiffeRential Evolution Adaptive Metropolis with Sampling From Past States

    NASA Astrophysics Data System (ADS)

    Vrugt, J. A.; Laloy, E.; Ter Braak, C.

    2010-12-01

    Markov chain Monte Carlo (MCMC) methods have found widespread use in many fields of study to estimate the average properties of complex systems, and for posterior inference in a Bayesian framework. Existing theory and experiments prove convergence of well constructed MCMC schemes to the appropriate limiting distribution under a variety of different conditions. In practice, however this convergence is often observed to be disturbingly slow. This is frequently caused by an inappropriate selection of the proposal distribution used to generate trial moves in the Markov Chain. In a previous paper te{vrugt_1} we have presented the {D}iffe{R}ential {E}volution {A}daptive {M}etropolis (DREAM) MCMC scheme that automatically tunes the scale and orientation of the proposal distribution during evolution to the posterior target distribution. In the same paper, detailed balance and ergodicity of DREAM have been proved, and various examples involving nonlinearity, high-dimensionality, and multimodality have shown that DREAM is generally superior to other adaptive MCMC sampling approaches. Standard DREAM requires at least N = d chains to be run in parallel, where d is the dimensionality of the posterior. Unfortunately, running many parallel chains is a potential source of inefficiency, as each individual chain must travel to high density region of the posterior. The lower the number of parallel chains required, the greater the practical applicability of DREAM for computationally demanding problems. This paper extends DREAM with a snooker updater and shows by simulation and real examples that DREAM can work for d up to 50-100 with far fewer parallel chains (e.g. N = 3) by generating jumps using differences of pairs of past states

  14. Structure, molecular evolution, and hydrolytic specificities of largemouth bass pepsins.

    PubMed

    Miura, Yoko; Suzuki-Matsubara, Mieko; Kageyama, Takashi; Moriyama, Akihiko

    2016-02-01

    The nucleotide sequences of largemouth bass pepsinogens (PG1, 2 and 3) were determined after molecular cloning of the respective cDNAs. Encoded PG1, 2 and 3 were classified as fish pepsinogens A1, A2 and C, respectively. Molecular evolutionary analyses show that vertebrate pepsinogens are classified into seven monophyletic groups, i.e. pepsinogens A, F, Y (prochymosins), C, B, and fish pepsinogens A and C. Regarding the primary structures, extensive deletion was obvious in S'1 loop residues in fish pepsin A as well as tetrapod pepsin Y. This deletion resulted in a decrease in hydrophobic residues in the S'1 site. Hydrolytic specificities of bass pepsins A1 and A2 were investigated with a pepsin substrate and its variants. Bass pepsins preferred both hydrophobic/aromatic residues and charged residues at the P'1 sites of substrates, showing the dual character of S'1 sites. Thermodynamic analyses of bass pepsin A2 showed that its activation Gibbs energy change (∆G(‡)) was lower than that of porcine pepsin A. Several sites of bass pepsin A2 moiety were found to be under positive selection, and most of them are located on the surface of the molecule, where they are involved in conformational flexibility. The broad S'1 specificity and flexible structure of bass pepsin A2 are thought to cause its high proteolytic activity. PMID:26627128

  15. Multiple cellular origins and molecular evolution of intrahepatic cholangiocarcinoma.

    PubMed

    Wei, Miaoyan; Lü, Lisheng; Lin, Peiyi; Chen, Zhisheng; Quan, Zhiwei; Tang, Zhaohui

    2016-09-01

    Intrahepatic cholangiocarcinoma (ICC) is an aggressive malignancy associated with unfavorable prognosis and for which no effective treatments are available. Its molecular pathogenesis is poorly understood. Genome-wide sequencing and high-throughput technologies have provided critical insights into the molecular basis of ICC while sparking a heated debate on the cellular origin. Cancer exhibits variabilities in origin, progression and cell biology. Recent evidence suggests that ICC has multiple cellular origins, including differentiated hepatocytes; intrahepatic biliary epithelial cells (IBECs)/cholangiocytes; pluripotent stem cells, such as hepatic stem/progenitor cells (HPCs) and biliary tree stem/progenitor cells (BTSCs); and peribiliary gland (PBG). However, both somatic mutagenesis and epigenomic features are highly cell type-specific. Multiple cellular origins may have profoundly different genomic landscapes and key signaling pathways, driving phenotypic variation and thereby posing significant challenges to personalized medicine in terms of achieving the optimal drug response and patient outcome. Considering this information, we have summarized the latest experimental evidence and relevant literature to provide an up-to-date view of the cellular origin of ICC, which will contribute to establishment of a hierarchical model of carcinogenesis and allow for improvement of the anatomical-based classification of ICC. These new insights have important implications for both the diagnosis and treatment of ICC patients. PMID:26940139

  16. Molecular tools in understanding the evolution of Vibrio cholerae

    PubMed Central

    Rahaman, Md. Habibur; Islam, Tarequl; Colwell, Rita R.; Alam, Munirul

    2015-01-01

    Vibrio cholerae, the etiological agent of cholera, has been a scourge for centuries. Cholera remains a serious health threat for developing countries and has been responsible for millions of deaths globally over the past 200 years. Identification of V. cholerae has been accomplished using a variety of methods, ranging from phenotypic strategies to DNA based molecular typing and currently whole genomic approaches. This array of methods has been adopted in epidemiological investigations, either singly or in the aggregate, and more recently for evolutionary analyses of V. cholerae. Because the new technologies have been developed at an ever increasing pace, this review of the range of fingerprinting strategies, their relative advantages and limitations, and cholera case studies was undertaken. The task was challenging, considering the vast amount of the information available. To assist the study, key references representative of several areas of research are provided with the intent to provide readers with a comprehensive view of recent advances in the molecular epidemiology of V. cholerae. Suggestions for ways to obviate many of the current limitations of typing techniques are also provided. In summary, a comparative report has been prepared that includes the range from traditional typing to whole genomic strategies. PMID:26500613

  17. Adaptation to the sky: Defining the feather with integument fossils from Mesozoic China and experimental evidence from molecular laboratories

    PubMed Central

    Chuong, Cheng-Ming; Wu, Ping; Zhang, Fu-Cheng; Xu, Xing; Yu, Minke; Widelitz, Randall B.; Jiang, Ting-Xin; Hou, Lianhai

    2015-01-01

    In this special issue of Evo-Devo of the amniote integument, Alibardi has discussed the adaptation of the integument to the land. Here we will discuss the adaptation to the sky. We first review a series of fossil discoveries representing intermediate forms of feathers or feather-like appendages from dinosaurs and Mesozoic birds from the Jehol Biota of China. We then discuss results from the molecular and developmental biological experiments using chicken integument as the model. Feather forms can be modulated using retrovirus mediated gene mis-expression that mimics those found in nature today and in the evolutionary past. The molecular conversions among different types of integument appendages (feather, scale, tooth) are discussed. From these evidences, we recognize that not all organisms with feathers are birds, and that not all skin appendages with hierarchical branches are feathers. We develop a set of criteria for true avian feathers: 1) possessing actively proliferating cells in the proximal follicle for a proximo – distal growth mode; 2) forming hierarchical branches of rachis, barbs and barbules, with barbs shaped by differential cell death into either bilaterally or radially symmetric structures; 3) having a follicle structure, with a mesenchyme core during development; 4) maturing into a structure consisting of epithelia without a mesenchyme core with two sides of the vane facing the previous basal and supra-basal layer, respectively; and 5) having stem cells and dermal papilla in the follicle and hence the ability to molt and regenerate. A model of feather evolution from feather bud → barbs → barbules → rachis is presented, which is opposite to the old view of scale plate → rachis → barbs → barbules. PMID:12949768

  18. Molecular Analysis of a Leprosy Immunotherapeutic Bacillus Provides Insights into Mycobacterium Evolution

    PubMed Central

    Raghuvanshi, Saurabh; Khurana, Jitendra P.; Tyagi, Akhilesh K.; Tyagi, Anil K.; Hasnain, Seyed E.

    2007-01-01

    Background Evolutionary dynamics plays a central role in facilitating the mechanisms of species divergence among pathogenic and saprophytic mycobacteria. The ability of mycobacteria to colonize hosts, to proliferate and to cause diseases has evolved due to its predisposition to various evolutionary forces acting over a period of time. Mycobacterium indicus pranii (MIP), a taxonomically unknown ‘generalist’ mycobacterium, acts as an immunotherapeutic against leprosy and is approved for use as a vaccine against it. The large-scale field trials of this MIP based leprosy vaccine coupled with its demonstrated immunomodulatory and adjuvant property has led to human clinical evaluations of MIP in interventions against HIV-AIDS, psoriasis and bladder cancer. MIP, commercially available as ‘Immuvac’, is currently the focus of advanced phase III clinical trials for its antituberculosis efficacy. Thus a comprehensive analysis of MIP vis-à-vis evolutionary path, underpinning its immanent immunomodulating properties is of the highest desiderata. Principal Findings Genome wide comparisons together with molecular phylogenetic analyses by fluorescent amplified fragment length polymorphism (FAFLP), enterobacterial repetitive intergenic consensus (ERIC) based genotyping and candidate orthologues sequencing revealed that MIP has been the predecessor of highly pathogenic Mycobacterium avium intracellulare complex (MAIC) that did not resort to parasitic adaptation by reductional gene evolution and therefore, preferred a free living life-style. Further analysis suggested a shared aquatic phase of MAIC bacilli with the early pathogenic forms of Mycobacterium, well before the latter diverged as ‘specialists’. Conclusions/Significance This evolutionary paradigm possibly affirms to marshal our understanding about the acquisition and optimization of virulence in mycobacteria and determinants of boundaries therein. PMID:17912347

  19. Molecular Evolution of Multiple-Level Control of Heme Biosynthesis Pathway in Animal Kingdom

    PubMed Central

    Tzou, Wen-Shyong; Chu, Ying; Lin, Tzung-Yi; Hu, Chin-Hwa; Pai, Tun-Wen; Liu, Hsin-Fu; Lin, Han-Jia; Cases, Ildeofonso; Rojas, Ana; Sanchez, Mayka; You, Zong-Ye; Hsu, Ming-Wei

    2014-01-01

    Adaptation of enzymes in a metabolic pathway can occur not only through changes in amino acid sequences but also through variations in transcriptional activation, mRNA splicing and mRNA translation. The heme biosynthesis pathway, a linear pathway comprised of eight consecutive enzymes in animals, provides researchers with ample information for multiple types of evolutionary analyses performed with respect to the position of each enzyme in the pathway. Through bioinformatics analysis, we found that the protein-coding sequences of all enzymes in this pathway are under strong purifying selection, from cnidarians to mammals. However, loose evolutionary constraints are observed for enzymes in which self-catalysis occurs. Through comparative genomics, we found that in animals, the first intron of the enzyme-encoding genes has been co-opted for transcriptional activation of the genes in this pathway. Organisms sense the cellular content of iron, and through iron-responsive elements in the 5′ untranslated regions of mRNAs and the intron-exon boundary regions of pathway genes, translational inhibition and exon choice in enzymes may be enabled, respectively. Pathway product (heme)-mediated negative feedback control can affect the transport of pathway enzymes into the mitochondria as well as the ubiquitin-mediated stability of enzymes. Remarkably, the positions of these controls on pathway activity are not ubiquitous but are biased towards the enzymes in the upstream portion of the pathway. We revealed that multiple-level controls on the activity of the heme biosynthesis pathway depend on the linear depth of the enzymes in the pathway, indicating a new strategy for discovering the molecular constraints that shape the evolution of a metabolic pathway. PMID:24489775

  20. The ALICE-HMPID Detector Control System: Its evolution towards an expert and adaptive system

    NASA Astrophysics Data System (ADS)

    De Cataldo, G.; Franco, A.; Pastore, C.; Sgura, I.; Volpe, G.

    2011-05-01

    The High Momentum Particle IDentification (HMPID) detector is a proximity focusing Ring Imaging Cherenkov (RICH) for charged hadron identification. The HMPID is based on liquid C 6F 14 as the radiator medium and on a 10 m 2 CsI coated, pad segmented photocathode of MWPCs for UV Cherenkov photon detection. To ensure full remote control, the HMPID is equipped with a detector control system (DCS) responding to industrial standards for robustness and reliability. It has been implemented using PVSS as Slow Control And Data Acquisition (SCADA) environment, Programmable Logic Controller as control devices and Finite State Machines for modular and automatic command execution. In the perspective of reducing human presence at the experiment site, this paper focuses on DCS evolution towards an expert and adaptive control system, providing, respectively, automatic error recovery and stable detector performance. HAL9000, the first prototype of the HMPID expert system, is then presented. Finally an analysis of the possible application of the adaptive features is provided.

  1. Evidence of Convergent Evolution in Humans and Macaques Supports an Adaptive Role for Copy Number Variation of the β-Defensin-2 Gene

    PubMed Central

    Ottolini, Barbara; Hornsby, Michael J.; Abujaber, Razan; MacArthur, Jacqueline A.L.; Badge, Richard M.; Schwarzacher, Trude; Albertson, Donna G.; Bevins, Charles L.; Solnick, Jay V.; Hollox, Edward J.

    2014-01-01

    β-defensins are a family of important peptides of innate immunity, involved in host defense, immunomodulation, reproduction, and pigmentation. Genes encoding β-defensins show evidence of birth-and-death evolution, adaptation by amino acid sequence changes, and extensive copy number variation (CNV) within humans and other species. The role of CNV in the adaptation of β-defensins to new functions remains unclear, as does the adaptive role of CNV in general. Here, we fine-map CNV of a cluster of β-defensins in humans and rhesus macaques. Remarkably, we found that the structure of the CNV is different between primates, with distinct mutational origins and CNV boundaries defined by retroviral long terminal repeat elements. Although the human β-defensin CNV region is 322 kb and encompasses several genes, including β-defensins, a long noncoding RNA gene, and testes-specific zinc-finger transcription factors, the orthologous region in the rhesus macaque shows CNV of a 20-kb region, containing only a single gene, the ortholog of the human β-defensin-2 gene. Despite its independent origins, the range of gene copy numbers in the rhesus macaque is similar to humans. In addition, the rhesus macaque gene has been subject to divergent positive selection at the amino acid level following its initial duplication event between 3 and 9.5 Ma, suggesting adaptation of this gene as the macaque successfully colonized novel environments outside Africa. Therefore, the molecular phenotype of β-defensin-2 CNV has undergone convergent evolution, and this gene shows evidence of adaptation at the amino acid level in rhesus macaques. PMID:25349268

  2. Evidence of convergent evolution in humans and macaques supports an adaptive role for copy number variation of the β-defensin-2 gene.

    PubMed

    Ottolini, Barbara; Hornsby, Michael J; Abujaber, Razan; MacArthur, Jacqueline A L; Badge, Richard M; Schwarzacher, Trude; Albertson, Donna G; Bevins, Charles L; Solnick, Jay V; Hollox, Edward J

    2014-01-01

    β-defensins are a family of important peptides of innate immunity, involved in host defense, immunomodulation, reproduction, and pigmentation. Genes encoding β-defensins show evidence of birth-and-death evolution, adaptation by amino acid sequence changes, and extensive copy number variation (CNV) within humans and other species. The role of CNV in the adaptation of β-defensins to new functions remains unclear, as does the adaptive role of CNV in general. Here, we fine-map CNV of a cluster of β-defensins in humans and rhesus macaques. Remarkably, we found that the structure of the CNV is different between primates, with distinct mutational origins and CNV boundaries defined by retroviral long terminal repeat elements. Although the human β-defensin CNV region is 322 kb and encompasses several genes, including β-defensins, a long noncoding RNA gene, and testes-specific zinc-finger transcription factors, the orthologous region in the rhesus macaque shows CNV of a 20-kb region, containing only a single gene, the ortholog of the human β-defensin-2 gene. Despite its independent origins, the range of gene copy numbers in the rhesus macaque is similar to humans. In addition, the rhesus macaque gene has been subject to divergent positive selection at the amino acid level following its initial duplication event between 3 and 9.5 Ma, suggesting adaptation of this gene as the macaque successfully colonized novel environments outside Africa. Therefore, the molecular phenotype of β-defensin-2 CNV has undergone convergent evolution, and this gene shows evidence of adaptation at the amino acid level in rhesus macaques. PMID:25349268

  3. Optimization of reactor network design problem using Jumping Gene Adaptation of Differential Evolution

    NASA Astrophysics Data System (ADS)

    Gujarathi, Ashish M.; Purohit, S.; Srikanth, B.

    2015-06-01

    Detailed working principle of jumping gene adaptation of differential evolution (DE-JGa) is presented. The performance of the DE-JGa algorithm is compared with the performance of differential evolution (DE) and modified DE (MDE) by applying these algorithms on industrial problems. In this study Reactor network design (RND) problem is solved using DE, MDE, and DE-JGa algorithms: These industrial processes are highly nonlinear and complex with reference to optimal operating conditions with many equality and inequality constraints. Extensive computational comparisons have been made for all the chemical engineering problems considered. The results obtained in the present study show that DE-JGa algorithm outperforms the other algorithms (DE and MDE). Several comparisons are made among the algorithms with regard to the number of function evaluations (NFE)/CPU- time required to find the global optimum. The standard deviation and the variance values obtained using DE-JGa, DE and MDE algorithms also show that the DE-JGa algorithm gives consistent set of results for the majority of the test problems and the industrial real world problems.

  4. Adaptations to sexual selection and sexual conflict: insights from experimental evolution and artificial selection.

    PubMed

    Edward, Dominic A; Fricke, Claudia; Chapman, Tracey

    2010-08-27

    Artificial selection and experimental evolution document natural selection under controlled conditions. Collectively, these techniques are continuing to provide fresh and important insights into the genetic basis of evolutionary change, and are now being employed to investigate mating behaviour. Here, we focus on how selection techniques can reveal the genetic basis of post-mating adaptations to sexual selection and sexual conflict. Alteration of the operational sex ratio of adult Drosophila over just a few tens of generations can lead to altered ejaculate allocation patterns and the evolution of resistance in females to the costly effects of elevated mating rates. We provide new data to show how male responses to the presence of rivals can evolve. For several traits, the way in which males responded to rivals was opposite in lines selected for male-biased, as opposed to female-biased, adult sex ratio. This shows that the manipulation of the relative intensity of intra- and inter-sexual selection can lead to replicable and repeatable effects on mating systems, and reveals the potential for significant contemporary evolutionary change. Such studies, with important safeguards, have potential utility for understanding sexual selection and sexual conflict across many taxa. We discuss how artificial selection studies combined with genomics will continue to deepen our knowledge of the evolutionary principles first laid down by Darwin 150 years ago. PMID:20643744

  5. Directional selection for flowering time leads to adaptive evolution in Raphanus raphanistrum (Wild radish).

    PubMed

    Ashworth, Michael B; Walsh, Michael J; Flower, Ken C; Vila-Aiub, Martin M; Powles, Stephen B

    2016-04-01

    Herbicides have been the primary tool for controlling large populations of yield depleting weeds from agro-ecosystems, resulting in the evolution of widespread herbicide resistance. In response, nonherbicidal techniques have been developed which intercept weed seeds at harvest before they enter the soil seed bank. However, the efficiency of these techniques allows an intense selection for any trait that enables weeds to evade collection, with early-flowering ecotypes considered likely to result in early seed shedding. Using a field-collected wild radish population, five recurrent generations were selected for early maturity and three generations for late maturity. Phenology associated with flowering time and growth traits were measured. Our results demonstrate the adaptive capacity of wild radish to halve its time to flowering following five generations of early-flowering selection. Early-maturing phenotypes had reduced height and biomass at maturity, leading to less competitive, more prostrate growth forms. Following three generations of late-flowering selection, wild radish doubled its time to flowering time leading to increased biomass and flowering height at maturity. This study demonstrates the potential for the rapid evolution in growth traits in response to highly effective seed collection techniques that imposed a selection on weed populations within agro-ecosystems at harvest. PMID:27099626

  6. Molecular characterization of mammalian-adapted Korean-type avian H9N2 virus and evaluation of its virulence in mice.

    PubMed

    Park, Kuk Jin; Song, Min-Suk; Kim, Eun-Ha; Kwon, Hyeok-Il; Baek, Yun Hee; Choi, Eun-Hye; Park, Su-Jin; Kim, Se Mi; Kim, Young-Il; Choi, Won-Suk; Yoo, Dae-Won; Kim, Chul-Joong; Choi, Young Ki

    2015-08-01

    Avian influenza A virus (AIV) is commonly isolated from domestic poultry and wild migratory birds, and the H9N2 subtype is the most prevalent and the major cause of severe disease in poultry in Korea. In addition to the veterinary concerns regarding the H9N2 subtype, it is also considered to be the next potential human pandemic strain due to its rapid evolution and interspecies transmission. In this study, we utilize serial lung-to-lung passage of a low pathogenic avian influenza virus (LPAI) H9N2 (A/Ck/Korea/163/04, WT163) (Y439-lineage) in mice to increase pathogenicity and investigate the potential virulence marker. Mouse-adapted H9N2 virus obtained high virulence (100% mortality) in mice after 98 serial passages. Sequence results show that the mouse adaptation (ma163) possesses several mutations within seven gene segments (PB2, PA, HA, NP, NA, M, and NS) relative to the wild-type strain. The HA gene showed the most mutations (at least 11) with one resulting in the loss of an N-glycosylation site (at amino acid 166). Moreover, reverse genetic studies established that an E627K substitution in PB2 and the loss of the N-glycosylation site in the HA protein (aa166) are critical virulence markers in the mouse-adapted H9N2 virus. Thus, these results add to the increasing body of mutational analysis data defining the function of the viral polymerase and HA genes and their roles in mammalian host adaptation. To our knowledge, this is first report of the generation of a mammalian-adapted Korea H9N2 virus (Y493-lineages). Therefore, this study offers valuable insights into the molecular evolution of the LPAI Korean H9N2 in a new host and adds to the current knowledge of the molecular markers associated with increased virulence. PMID:26224460

  7. Molecular Evolution of the Oxygen-Binding Hemerythrin Domain

    PubMed Central

    Alvarez-Carreño, Claudia; Becerra, Arturo; Lazcano, Antonio

    2016-01-01

    Background The evolution of oxygenic photosynthesis during Precambrian times entailed the diversification of strategies minimizing reactive oxygen species-associated damage. Four families of oxygen-carrier proteins (hemoglobin, hemerythrin and the two non-homologous families of arthropodan and molluscan hemocyanins) are known to have evolved independently the capacity to bind oxygen reversibly, providing cells with strategies to cope with the evolutionary pressure of oxygen accumulation. Oxygen-binding hemerythrin was first studied in marine invertebrates but further research has made it clear that it is present in the three domains of life, strongly suggesting that its origin predated the emergence of eukaryotes. Results Oxygen-binding hemerythrins are a monophyletic sub-group of the hemerythrin/HHE (histidine, histidine, glutamic acid) cation-binding domain. Oxygen-binding hemerythrin homologs were unambiguously identified in 367/2236 bacterial, 21/150 archaeal and 4/135 eukaryotic genomes. Overall, oxygen-binding hemerythrin homologues were found in the same proportion as single-domain and as long protein sequences. The associated functions of protein domains in long hemerythrin sequences can be classified in three major groups: signal transduction, phosphorelay response regulation, and protein binding. This suggests that in many organisms the reversible oxygen-binding capacity was incorporated in signaling pathways. A maximum-likelihood tree of oxygen-binding hemerythrin homologues revealed a complex evolutionary history in which lateral gene transfer, duplications and gene losses appear to have played an important role. Conclusions Hemerythrin is an ancient protein domain with a complex evolutionary history. The distinctive iron-binding coordination site of oxygen-binding hemerythrins evolved first in prokaryotes, very likely prior to the divergence of Firmicutes and Proteobacteria, and spread into many bacterial, archaeal and eukaryotic species. The later

  8. Decoding the molecular evolution of human cognition using comparative genomics

    PubMed Central

    Usui, Noriyoshi; Co, Marissa; Konopka, Genevieve

    2014-01-01

    Identification of genetic and molecular factors responsible for the specialized cognitive abilities of humans is expected to provide important insights into the mechanisms responsible for disorders of cognition such as autism, schizophrenia, and Alzheimer’s disease. Here, we discuss the use of comparative genomics for identifying salient genes and gene networks that may underlie cognition. We focus on the comparison of human and non-human primate brain gene expression and the utility of building gene co-expression networks for prioritizing hundreds of genes that differ in expression among the species queried. We also discuss the importance and methods for functional studies of individual genes identified. Together, this integration of comparative genomics with cellular and animal models should provide improved systems for developing effective therapeutics for disorders of cognition. PMID:25247723

  9. Molecular evolution and in vitro characterization of Botryllus histocompatibility factor.

    PubMed

    Taketa, Daryl A; Nydam, Marie L; Langenbacher, Adam D; Rodriguez, Delany; Sanders, Erin; De Tomaso, Anthony W

    2015-10-01

    Botryllus schlosseri is a colonial ascidian with a natural ability to anastomose with another colony to form a vascular and hematopoietic chimera. In order to fuse, two individuals must share at least one allele at the highly polymorphic fuhc locus. Otherwise, a blood-based inflammatory response will occur resulting in a melanin scar at the sites of interaction. The single-locus genetic control of allorecognition makes B. schlosseri an attractive model to study the underlying molecular mechanisms. Over the past decade, several candidate genes involved in allorecognition have been identified, but how they ultimately contribute to allorecognition outcome remains poorly understood. Here, we report our initial molecular characterization of a recently identified candidate allodeterminant called Botryllus histocompatibility factor (bhf). bhf, both on a DNA and protein level, is the least polymorphic protein in the fuhc locus studied so far and, unlike other known allorecognition determinants, does not appear to be under any form of balancing or directional selection. Additionally, we identified a second isoform through mRNA-Seq and an EST assembly library which is missing exon 3, resulting in a C-terminally truncated form. We report via whole-mount fluorescent in situ hybridization that a subset of cells co-express bhf and cfuhc(sec). Finally, we observed BHF's localization in HEK293T at the cytoplasmic side of the plasma membrane in addition to the nucleus via a nuclear localization signal. Given the localization data thus far, we hypothesize that BHF may function as a scaffolding protein in a complex with other Botryllus proteins, rather than functioning as an allorecognition determinant. PMID:26359175

  10. Adaptive evolution of simian immunodeficiency viruses isolated from two conventional progressor macaques with neuroaids

    SciTech Connect

    Foley, Brian T; Korber, Bette T

    2008-01-01

    Simian immunodeficiency virus infection of macaques may result in neuroAIDS, a feature more commonly observed in macaques with rapid progressive disease than in those with conventional disease. This is the first report of two conventional progressors (H631 and H636) with encephalitis in rhesus macaques inoculated with a derivative of SIVsmES43-3. Phylogenetic analyses of viruses isolated from the cerebral spinal fluid (CSF) and plasma from both animals demonstrated tissue compartmentalization. Additionally, virus from the central nervous system (CNS) was able to infect primary macaque monocyte-derived macrophages more efficiently than virus from plasma. Conversely, virus isolated from plasma was able to replicate better in peripheral blood mononuclear cells than virus from CNS. We speculate that these viruses were under different selective pressures in their separate compartments. Furthermore, these viruses appear to have undergone adaptive evolution to preferentially replicate in their respective cell targets. Analysis of the number of potential N-linked glycosylation sites (PNGS) in gp160 showed that there was a statistically significant loss of PNGS in viruses isolated from CNS in both macaques compared to SIVsmE543-3. Moreover, virus isolated from the brain in H631, had statistically significant loss of PNGS compared to virus isolated from CSF and plasma of the same animal. It is possible that the brain isolate may have adapted to decrease the number of PNGS given that humoral immune selection pressure is less likely to be encountered in the brain. These viruses provide a relevant model to study the adaptations required for SIV to induce encephalitis.

  11. Adaptive Evolution of Genes Duplicated from the Drosophila pseudoobscura neo-X Chromosome

    PubMed Central

    Meisel, Richard P.; Hilldorfer, Benedict B.; Koch, Jessica L.; Lockton, Steven; Schaeffer, Stephen W.

    2010-01-01

    Drosophila X chromosomes are disproportionate sources of duplicated genes, and these duplications are usually the result of retrotransposition of X-linked genes to the autosomes. The excess duplication is thought to be driven by natural selection for two reasons: X chromosomes are inactivated during spermatogenesis, and the derived copies of retroposed duplications tend to be testis expressed. Therefore, autosomal derived copies of retroposed genes provide a mechanism for their X-linked paralogs to “escape” X inactivation. Once these duplications have fixed, they may then be selected for male-specific functions. Throughout the evolution of the Drosophila genus, autosomes have fused with X chromosomes along multiple lineages giving rise to neo-X chromosomes. There has also been excess duplication from the two independent neo-X chromosomes that have been examined—one that occurred prior to the common ancestor of the willistoni species group and another that occurred along the lineage leading to Drosophila pseudoobscura. To determine what role natural selection plays in the evolution of genes duplicated from the D. pseudoobscura neo-X chromosome, we analyzed DNA sequence divergence between paralogs, polymorphism within each copy, and the expression profiles of these duplicated genes. We found that the derived copies of all duplicated genes have elevated nonsynonymous polymorphism, suggesting that they are under relaxed selective constraints. The derived copies also tend to have testis- or male-biased expression profiles regardless of their chromosome of origin. Genes duplicated from the neo-X chromosome appear to be under less constraints than those duplicated from other chromosome arms. We also find more evidence for historical adaptive evolution in genes duplicated from the neo-X chromosome, suggesting that they are under a unique selection regime in which elevated nonsynonymous polymorphism provides a large reservoir of functional variants, some of which are

  12. Vibration-mediated Kondo transport in molecular junctions: conductance evolution during mechanical stretching

    PubMed Central

    Rakhmilevitch, David

    2015-01-01

    Summary The vibration-mediated Kondo effect attracted considerable theoretical interest during the last decade. However, due to lack of extensive experimental demonstrations, the fine details of the phenomenon were not addressed. Here, we analyze the evolution of vibration-mediated Kondo effect in molecular junctions during mechanical stretching. The described analysis reveals the different contributions of Kondo and inelastic transport. PMID:26734532

  13. Modification of pancreatic lipase properties by directed molecular evolution.

    PubMed

    Colin, Damien Yann; Deprez-Beauclair, Paule; Silva, Noella; Infantes, Lourdes; Kerfelec, Brigitte

    2010-05-01

    Cystic fibrosis is associated with pancreatic insufficiency and acidic intraluminal conditions that limit the action of pancreatic enzyme replacement therapy, especially that of lipase. Directed evolution combined with rational design was used in the aim of improving the performances of the human pancreatic lipase at acidic pH. We set up a method for screening thousands of lipase variants for activity at low pH. A single round of random mutagenesis yielded one lipase variant with an activity at acidic pH enhanced by approximately 50% on medium- and long-chain triglycerides. Sequence analysis revealed two substitutions (E179G/N406S) located in specific regions, the hydrophobic groove accommodating the sn-1 chain of the triglyceride (E179G) and the surface loop that is likely to mediate lipase/colipase interaction in the presence of lipids (N406S). Interestingly, these two substitutions shifted the chain-length specificity of lipase toward medium- and long-chain triglycerides. Combination of those two mutations with a promising one at the entrance of the catalytic cavity (K80E) negatively affected the lipase activity at neutral pH but not that at acidic pH. Our results provide a basis for the design of improved lipase at acidic pH and identify for the first time key residues associated with chain-length specificity. PMID:20150178

  14. Epistasis and the Dynamics of Reversion in Molecular Evolution.

    PubMed

    McCandlish, David M; Shah, Premal; Plotkin, Joshua B

    2016-07-01

    Recent studies of protein evolution contend that the longer an amino acid substitution is present at a site, the less likely it is to revert to the amino acid previously occupying that site. Here we study this phenomenon of decreasing reversion rates rigorously and in a much more general context. We show that, under weak mutation and for arbitrary fitness landscapes, reversion rates decrease with time for any site that is involved in at least one epistatic interaction. Specifically, we prove that, at stationarity, the hazard function of the distribution of waiting times until reversion is strictly decreasing for any such site. Thus, in the presence of epistasis, the longer a particular character has been absent from a site, the less likely the site will revert to its prior state. We also explore several examples of this general result, which share a common pattern whereby the probability of having reverted increases rapidly at short times to some substantial value before becoming almost flat after a few substitutions at other sites. This pattern indicates a characteristic tendency for reversion to occur either almost immediately after the initial substitution or only after a very long time. PMID:27194749

  15. Karyotypic evolution in the Galliformes: an examination of the process of karyotypic evolution by comparison of the molecular cytogenetic findings with the molecular phylogeny.

    PubMed

    Shibusawa, M; Nishibori, M; Nishida-Umehara, C; Tsudzuki, M; Masabanda, J; Griffin, D K; Matsuda, Y

    2004-01-01

    To define the process of karyotypic evolution in the Galliformes on a molecular basis, we conducted genome-wide comparative chromosome painting for eight species, i.e. silver pheasant (Lophura nycthemera), Lady Amherst's pheasant (Chrysolophus amherstiae), ring-necked pheasant (Phasianus colchicus), turkey (Meleagris gallopavo), Western capercaillie (Tetrao urogallus), Chinese bamboo-partridge (Bambusicola thoracica) and common peafowl (Pavo cristatus) of the Phasianidae, and plain chachalaca (Ortalis vetula) of the Cracidae, with chicken DNA probes of chromosomes 1-9 and Z. Including our previous data from five other species, chicken (Gallus gallus), Japanese quail (Coturnix japonica) and blue-breasted quail (Coturnix chinensis) of the Phasianidae, guinea fowl (Numida meleagris) of the Numididae and California quail (Callipepla californica) of the Odontophoridae, we represented the evolutionary changes of karyotypes in the 13 species of the Galliformes. In addition, we compared the cytogenetic data with the molecular phylogeny of the 13 species constructed with the nucleotide sequences of the mitochondrial cytochrome b gene, and discussed the process of karyotypic evolution in the Galliformes. Comparative chromosome painting confirmed the previous data on chromosome rearrangements obtained by G-banding analysis, and identified several novel chromosome rearrangements. The process of the evolutionary changes of macrochromosomes in the 13 species was in good accordance with the molecular phylogeny, and the ancestral karyotype of the Galliformes is represented. PMID:15218250

  16. Are Molecular Alphabets Universal Enabling Factors for the Evolution of Complex Life?

    NASA Astrophysics Data System (ADS)

    Dunn, Ian S.

    2013-12-01

    Terrestrial biosystems depend on macromolecules, and this feature is often considered as a likely universal aspect of life. While opinions differ regarding the importance of small-molecule systems in abiogenesis, escalating biological functional demands are linked with increasing complexity in key molecules participating in biosystem operations, and many such requirements cannot be efficiently mediated by relatively small compounds. It has long been recognized that known life is associated with the evolution of two distinct molecular alphabets (nucleic acid and protein), specific sequence combinations of which serve as informational and functional polymers. In contrast, much less detailed focus has been directed towards the potential universal need for molecular alphabets in constituting complex chemically-based life, and the implications of such a requirement. To analyze this, emphasis here is placed on the generalizable replicative and functional characteristics of molecular alphabets and their concatenates. A primary replicative alphabet based on the simplest possible molecular complementarity can potentially enable evolutionary processes to occur, including the encoding of secondarily functional alphabets. Very large uniquely specified (`non-alphabetic') molecules cannot feasibly underlie systems capable of the replicative and evolutionary properties which characterize complex biosystems. Transitions in the molecular evolution of alphabets can be related to progressive bridging of barriers which enable higher levels of biosystem organization. It is thus highly probable that molecular alphabets are an obligatory requirement for complex chemically-based life anywhere in the universe. In turn, reference to molecular alphabets should be usefully applied in current definitions of life.

  17. Are molecular alphabets universal enabling factors for the evolution of complex life?

    PubMed

    Dunn, Ian S

    2013-12-01

    Terrestrial biosystems depend on macromolecules, and this feature is often considered as a likely universal aspect of life. While opinions differ regarding the importance of small-molecule systems in abiogenesis, escalating biological functional demands are linked with increasing complexity in key molecules participating in biosystem operations, and many such requirements cannot be efficiently mediated by relatively small compounds. It has long been recognized that known life is associated with the evolution of two distinct molecular alphabets (nucleic acid and protein), specific sequence combinations of which serve as informational and functional polymers. In contrast, much less detailed focus has been directed towards the potential universal need for molecular alphabets in constituting complex chemically-based life, and the implications of such a requirement. To analyze this, emphasis here is placed on the generalizable replicative and functional characteristics of molecular alphabets and their concatenates. A primary replicative alphabet based on the simplest possible molecular complementarity can potentially enable evolutionary processes to occur, including the encoding of secondarily functional alphabets. Very large uniquely specified ('non-alphabetic') molecules cannot feasibly underlie systems capable of the replicative and evolutionary properties which characterize complex biosystems. Transitions in the molecular evolution of alphabets can be related to progressive bridging of barriers which enable higher levels of biosystem organization. It is thus highly probable that molecular alphabets are an obligatory requirement for complex chemically-based life anywhere in the universe. In turn, reference to molecular alphabets should be usefully applied in current definitions of life. PMID:24510462

  18. Distribution and molecular evolution of bacillus anthracis genotypes in Namibia.

    PubMed

    Beyer, Wolfgang; Bellan, Steve; Eberle, Gisela; Ganz, Holly H; Getz, Wayne M; Haumacher, Renate; Hilss, Karen A; Kilian, Werner; Lazak, Judith; Turner, Wendy C; Turnbull, Peter C B

    2012-01-01

    The recent development of genetic markers for Bacillus anthracis has made it possible to monitor the spread and distribution of this pathogen during and between anthrax outbreaks. In Namibia, anthrax outbreaks occur annually in the Etosha National Park (ENP) and on private game and livestock farms. We genotyped 384 B. anthracis isolates collected between 1983-2010 to identify the possible epidemiological correlations of anthrax outbreaks within and outside the ENP and to analyze genetic relationships between isolates from domestic and wild animals. The isolates came from 20 animal species and from the environment and were genotyped using a 31-marker multi-locus-VNTR-analysis (MLVA) and, in part, by twelve single nucleotide polymorphism (SNP) markers and four single nucleotide repeat (SNR) markers. A total of 37 genotypes (GT) were identified by MLVA, belonging to four SNP-groups. All GTs belonged to the A-branch in the cluster- and SNP-analyses. Thirteen GTs were found only outside the ENP, 18 only within the ENP and 6 both inside and outside. Genetic distances between isolates increased with increasing time between isolations. However, genetic distance between isolates at the beginning and end of the study period was relatively small, indicating that while the majority of GTs were only found sporadically, three genetically close GTs, accounting for more than four fifths of all the ENP isolates, appeared dominant throughout the study period. Genetic distances among isolates were significantly greater for isolates from different host species, but this effect was small, suggesting that while species-specific ecological factors may affect exposure processes, transmission cycles in different host species are still highly interrelated. The MLVA data were further used to establish a model of the probable evolution of GTs within the endemic region of the ENP. SNR-analysis was helpful in correlating an isolate with its source but did not elucidate epidemiological

  19. Molecular evolution of GPCRs: Melanocortin/melanocortin receptors.

    PubMed

    Dores, Robert M; Londraville, Richard L; Prokop, Jeremy; Davis, Perry; Dewey, Nathan; Lesinski, Natalie

    2014-06-01

    The melanocortin receptors (MCRs) are a family of G protein-coupled receptors that are activated by melanocortin ligands derived from the proprotein, proopiomelanocortin (POMC). During the radiation of the gnathostomes, the five receptors have become functionally segregated (i.e. melanocortin 1 receptor (MC1R), pigmentation regulation; MC2R, glucocorticoid synthesis; MC3R and MC4R, energy homeostasis; and MC5R, exocrine gland physiology). A focus of this review is the role that ligand selectivity plays in the hypothalamus/pituitary/adrenal-interrenal (HPA-I) axis of teleosts and tetrapods as a result of the exclusive ligand selectivity of MC2R for the ligand ACTH. A second focal point of this review is the roles that the accessory proteins melanocortin 2 receptor accessory protein 1 (MRAP1) and MRAP2 are playing in, respectively, the HPA-I axis (MC2R) and the regulation of energy homeostasis by neurons in the hypothalamus (MC4R) of teleosts and tetrapods. In addition, observations are presented on trends in the ligand selectivity parameters of cartilaginous fish, teleost, and tetrapod MC1R, MC3R, MC4R, and MC5R paralogs, and the modeling of the HFRW motif of ACTH(1-24) when compared with α-MSH. The radiation of the MCRs during the evolution of the gnathostomes provides examples of how the physiology of endocrine and neuronal circuits can be shaped by ligand selectivity, the intersession of reverse agonists (agouti-related peptides (AGRPs)), and interactions with accessory proteins (MRAPs). PMID:24868105

  20. Molecular and Metabolic Adaptations of Lactococcus lactis at Near-Zero Growth Rates

    PubMed Central

    Ercan, Onur; Wels, Michiel; Smid, Eddy J.

    2014-01-01

    This paper describes the molecular and metabolic adaptations of Lactococcus lactis during the transition from a growing to a near-zero growth state by using carbon-limited retentostat cultivation. Transcriptomic analyses revealed that metabolic patterns shifted between lactic- and mixed-acid fermentations during retentostat cultivation, which appeared to be controlled at the level of transcription of the corresponding pyruvate dissipation-encoding genes. During retentostat cultivation, cells continued to consume several amino acids but also produced specific amino acids, which may derive from the conversion of glycolytic intermediates. We identify a novel motif containing CTGTCAG in the upstream regions of several genes related to amino acid conversion, which we propose to be the target site for CodY in L. lactis KF147. Finally, under extremely low carbon availability, carbon catabolite repression was progressively relieved and alternative catabolic functions were found to be highly expressed, which was confirmed by enhanced initial acidification rates on various sugars in cells obtained from near-zero-growth cultures. The present integrated transcriptome and metabolite (amino acids and previously reported fermentation end products) study provides molecular understanding of the adaptation of L. lactis to conditions supporting low growth rates and expands our earlier analysis of the quantitative physiology of this bacterium at near-zero growth rates toward gene regulation patterns involved in zero-growth adaptation. PMID:25344239

  1. The Molecular Basis of High-Altitude Adaptation in Deer Mice

    PubMed Central

    Storz, Jay F; Sabatino, Stephen J; Hoffmann, Federico G; Gering, Eben J; Moriyama, Hideaki; Ferrand, Nuno; Monteiro, Bruno; Nachman, Michael W

    2007-01-01

    Elucidating genetic mechanisms of adaptation is a goal of central importance in evolutionary biology, yet few empirical studies have succeeded in documenting causal links between molecular variation and organismal fitness in natural populations. Here we report a population genetic analysis of a two-locus α-globin polymorphism that underlies physiological adaptation to high-altitude hypoxia in natural populations of deer mice, Peromyscus maniculatus. This system provides a rare opportunity to examine the molecular underpinnings of fitness-related variation in protein function that can be related to a well-defined selection pressure. We surveyed DNA sequence variation in the duplicated α-globin genes of P. maniculatus from high- and low-altitude localities (i) to identify the specific mutations that may be responsible for the divergent fine-tuning of hemoglobin function and (ii) to test whether the genes exhibit the expected signature of diversifying selection between populations that inhabit different elevational zones. Results demonstrate that functionally distinct protein alleles are maintained as a long-term balanced polymorphism and that adaptive modifications of hemoglobin function are produced by the independent or joint effects of five amino acid mutations that modulate oxygen-binding affinity. PMID:17397259

  2. Adaptive tolerance to a pathogenic fungus drives major histocompatibility complex evolution in natural amphibian populations

    PubMed Central

    Savage, Anna E.; Zamudio, Kelly R.

    2016-01-01

    Amphibians have been affected globally by the disease chytridiomycosis, caused by the fungus Batrachochytrium dendrobatidis (Bd), and we are just now beginning to understand how immunogenetic variability contributes to disease susceptibility. Lineages of an expressed major histocompatibility complex (MHC) class II locus involved in acquired immunity are associated with chytridiomycosis susceptibility in controlled laboratory challenge assays. Here, we extend these findings to natural populations that vary both in exposure and response to Bd. We find that MHC alleles and supertypes associated with Bd survival in the field show a molecular signal of positive selection, while those associated with susceptibility do not, supporting the hypothesis that heritable Bd tolerance is rapidly evolving. We compare MHC supertypes to neutral loci to demonstrate where selection versus demography is shaping MHC variability. One population with Bd tolerance in nature shows a significant signal of directional selection for the same allele (allele Q) that was significantly associated with survival in an earlier laboratory study. Our findings indicate that selective pressure for Bd survival drives rapid immunogenetic adaptation in some natural populations, despite differences in environment and demography. Our field-based analysis of immunogenetic variation confirms that natural amphibian populations have the evolutionary potential to adapt to chytridiomycosis. PMID:27009220

  3. Adaptive tolerance to a pathogenic fungus drives major histocompatibility complex evolution in natural amphibian populations.

    PubMed

    Savage, Anna E; Zamudio, Kelly R

    2016-03-30

    Amphibians have been affected globally by the disease chytridiomycosis, caused by the fungus Batrachochytrium dendrobatidis (Bd), and we are just now beginning to understand how immunogenetic variability contributes to disease susceptibility. Lineages of an expressed major histocompatibility complex (MHC) class II locus involved in acquired immunity are associated with chytridiomycosis susceptibility in controlled laboratory challenge assays. Here, we extend these findings to natural populations that vary both in exposure and response to Bd We find that MHC alleles and supertypes associated with Bd survival in the field show a molecular signal of positive selection, while those associated with susceptibility do not, supporting the hypothesis that heritable Bd tolerance is rapidly evolving. We compare MHC supertypes to neutral loci to demonstrate where selection versus demography is shaping MHC variability. One population with Bd tolerance in nature shows a significant signal of directional selection for the same allele (allele Q) that was significantly associated with survival in an earlier laboratory study. Our findings indicate that selective pressure for Bd survival drives rapid immunogenetic adaptation in some natural populations, despite differences in environment and demography. Our field-based analysis of immunogenetic variation confirms that natural amphibian populations have the evolutionary potential to adapt to chytridiomycosis. PMID:27009220

  4. Adaptive evolution of Desulfovibrio alaskensis G20 for developing resistance to perchlorate

    NASA Astrophysics Data System (ADS)

    Mehta-Kolte, M. G.; Youngblut, M.; Redford, S.; Gregoire, P.; Carlson, H. K.; Coates, J. D.

    2015-12-01

    resistance to perchlorate and suggest that adaptive evolution is a valuable tool to understand potential responses of microorganism to any environmental perturbations imposed during oil production.

  5. Molecular evolution of HR, a gene that regulates the postnatal cycle of the hair follicle

    PubMed Central

    Abbasi, Amir Ali

    2011-01-01

    Hair is a unique mammalian trait that is absent in all other animal forms. Hairlessness is rare in mammals and humans are exceptional among primates in lacking dense layer of hair covering. HR was the first gene identified to be implicated in hair-cycle regulation. Point mutations in HR lead to congenital human hair loss, which results in the complete loss of body and scalp hairs. HR functions are indispensable for initiation of postnatal hair follicular cycling. This study investigates the phylogenetic history and analyzes the protein evolutionary rate to provide useful insight into the molecular evolution of HR. The data demonstrates an acceleration of HR sequence evolution in human branch and suggests that the ability of HR protein to mediate postnatal hair-cycling has been altered in the course of human evolution. In particular those residues were pinpointed which should be regarded as target of positive Darwinian selection during human evolution. PMID:22355551

  6. Molecular activities, biosynthesis and evolution of triterpenoid saponins.

    PubMed

    Augustin, Jörg M; Kuzina, Vera; Andersen, Sven B; Bak, Søren

    2011-04-01

    Saponins are bioactive compounds generally considered to be produced by plants to counteract pathogens and herbivores. Besides their role in plant defense, saponins are of growing interest for drug research as they are active constituents of several folk medicines and provide valuable pharmacological properties. Accordingly, much effort has been put into unraveling the modes of action of saponins, as well as in exploration of their potential for industrial processes and pharmacology. However, the exploitation of saponins for bioengineering crop plants with improved resistances against pests as well as circumvention of laborious and uneconomical extraction procedures for industrial production from plants is hampered by the lack of knowledge and availability of genes in saponin biosynthesis. Although the ability to produce saponins is rather widespread among plants, a complete synthetic pathway has not been elucidated in any single species. Current conceptions consider saponins to be derived from intermediates of the phytosterol pathway, and predominantly enzymes belonging to the multigene families of oxidosqualene cyclases (OSCs), cytochromes P450 (P450s) and family 1 UDP-glycosyltransferases (UGTs) are thought to be involved in their biosynthesis. Formation of unique structural features involves additional biosynthetical enzymes of diverse phylogenetic background. As an example of this, a serine carboxypeptidase-like acyltransferase (SCPL) was recently found to be involved in synthesis of triterpenoid saponins in oats. However, the total number of identified genes in saponin biosynthesis remains low as the complexity and diversity of these multigene families impede gene discovery based on sequence analysis and phylogeny. This review summarizes current knowledge of triterpenoid saponin biosynthesis in plants, molecular activities, evolutionary aspects and perspectives for further gene discovery. PMID:21333312

  7. Molecular systematics and evolution of the Cyanocorax jays.

    PubMed

    Bonaccorso, Elisa; Peterson, A Townsend; Navarro-Sigüenza, Adolfo G; Fleischer, Robert C

    2010-03-01

    Phylogenetic relationships were studied in the genus Cyanocorax (Aves: Corvidae) and related genera, Psilorhinus and Calocitta, a diverse group of New World jays distributed from the southern United States south to Argentina. Although the ecology and behavior of some species in the group have been studied extensively, lack of a molecular phylogeny has precluded rigorous interpretations in an evolutionary framework. Given the diverse combinations of plumage coloration, size, and morphology, the taxonomy of the group has been inconsistent and understanding of biogeographic patterns problematic. Moreover, plumage similarity between two geographically disjuct species, the Tufted jay (Cyanocorax dickeyi) from western Mexico and the White-tailed jay (C. mystacalis) from western Ecuador and Peru, has puzzled ornithologists for decades. Here, a phylogeny of all species in the three genera is presented, based on study of two mitochondrial and three nuclear genes. Phylogenetic trees revealed the non-monophyly of Cyanocorax, and the division of the whole assemblage in two groups: "Clade A" containing Psilorhinus morio, both species in Calocitta,Cyanocorax violaceus, C. caeruleus, C. cristatellus, and C. cyanomelas, and "Clade B" consisting of the remaining species in Cyanocorax. Relationships among species in Clade A were ambiguous and, in general, not well resolved. Within Clade B, analyses revealed the monophyly of the "Cissilopha" jays and showed no evidence for a sister relationship between C. mystacalis and C. dickeyi. The phylogenetic complexity of lineages in the group suggests several complications for the understanding biogeographic patterns, as well as for proposing a taxonomy that is consistent with morphological variation. Although multiple taxonomic arrangements are possible, recommendations are for recognizing only one genus, Cyanocorax, with Psilorhinus and Calocitta as synonyms. PMID:19931623

  8. Reconstructing web evolution and spider diversification in the molecular era

    PubMed Central

    Blackledge, Todd A.; Scharff, Nikolaj; Coddington, Jonathan A.; Szüts, Tamas; Wenzel, John W.; Hayashi, Cheryl Y.; Agnarsson, Ingi

    2009-01-01

    The evolutionary diversification of spiders is attributed to spectacular innovations in silk. Spiders are unique in synthesizing many different kinds of silk, and using silk for a variety of ecological functions throughout their lives, particularly to make prey-catching webs. Here, we construct a broad higher-level phylogeny of spiders combining molecular data with traditional morphological and behavioral characters. We use this phylogeny to test the hypothesis that the spider orb web evolved only once. We then examine spider diversification in relation to different web architectures and silk use. We find strong support for a single origin of orb webs, implying a major shift in the spinning of capture silk and repeated loss or transformation of orb webs. We show that abandonment of costly cribellate capture silk correlates with the 2 major diversification events in spiders (1). Replacement of cribellate silk by aqueous silk glue may explain the greater diversity of modern orb-weaving spiders (Araneoidea) compared with cribellate orb-weaving spiders (Deinopoidea) (2). Within the “RTA clade,” which is the sister group to orb-weaving spiders and contains half of all spider diversity, >90% of species richness is associated with repeated loss of cribellate silk and abandonment of prey capture webs. Accompanying cribellum loss in both groups is a release from substrate-constrained webs, whether by aerially suspended webs, or by abandoning webs altogether. These behavioral shifts in silk and web production by spiders thus likely played a key role in the dramatic evolutionary success and ecological dominance of spiders as predators of insects. PMID:19289848

  9. Parasitic plants have increased rates of molecular evolution across all three genomes

    PubMed Central

    2013-01-01

    Background Theoretical models and experimental evidence suggest that rates of molecular evolution could be raised in parasitic organisms compared to non-parasitic taxa. Parasitic plants provide an ideal test for these predictions, as there are at least a dozen independent origins of the parasitic lifestyle in angiosperms. Studies of a number of parasitic plant lineages have suggested faster rates of molecular evolution, but the results of some studies have been mixed. Comparative analysis of all parasitic plant lineages, including sequences from all three genomes, is needed to examine the generality of the relationship between rates of molecular evolution and parasitism in plants. Results We analysed DNA sequence data from the mitochondrial, nuclear and chloroplast genomes for 12 independent evolutionary origins of parasitism in angiosperms. We demonstrated that parasitic lineages have a faster rate of molecular evolution than their non-parasitic relatives in sequences for all three genomes, for both synonymous and nonsynonymous substitutions. Conclusions Our results prove that raised rates of molecular evolution are a general feature of parasitic plants, not confined to a few taxa or specific genes. We discuss possible causes for this relationship, including increased positive selection associated with host-parasite arms races, relaxed selection, reduced population size or repeated bottlenecks, increased mutation rates, and indirect causal links with generation time and body size. We find no evidence that faster rates are due to smaller effective populations sizes or changes in selection pressure. Instead, our results suggest that parasitic plants have a higher mutation rate than their close non-parasitic relatives. This may be due to a direct connection, where some aspect of the parasitic lifestyle drives the evolution of raised mutation rates. Alternatively, this pattern may be driven by an indirect connection between rates and parasitism: for example, parasitic

  10. Experimental Evolution under Fluctuating Thermal Conditions Does Not Reproduce Patterns of Adaptive Clinal Differentiation in Drosophila melanogaster.

    PubMed

    Kellermann, Vanessa; Hoffmann, Ary A; Kristensen, Torsten Nygaard; Moghadam, Neda Nasiri; Loeschcke, Volker

    2015-11-01

    Experimental evolution can be a useful tool for testing the impact of environmental factors on adaptive changes in populations, and this approach is being increasingly used to understand the potential for evolutionary responses in populations under changing climates. However, selective factors will often be more complex in natural populations than in laboratory environments and produce different patterns of adaptive differentiation. Here we test the ability of laboratory experimental evolution under different temperature cycles to reproduce well-known patterns of clinal variation in Drosophila melanogaster. Six fluctuating thermal regimes mimicking the natural temperature conditions along the east coast of Australia were initiated. Contrary to expectations, on the basis of field patterns there was no evidence for adaptation to thermal regimes as reflected by changes in cold and heat resistance after 1-3 years of laboratory natural selection. While laboratory evolution led to changes in starvation resistance, development time, and body size, patterns were not consistent with those seen in natural populations. These findings highlight the complexity of factors affecting trait evolution in natural populations and indicate that caution is required when inferring likely evolutionary responses from the outcome of experimental evolution studies. PMID:26655772

  11. Adaptation.

    PubMed

    Broom, Donald M

    2006-01-01

    The term adaptation is used in biology in three different ways. It may refer to changes which occur at the cell and organ level, or at the individual level, or at the level of gene action and evolutionary processes. Adaptation by cells, especially nerve cells helps in: communication within the body, the distinguishing of stimuli, the avoidance of overload and the conservation of energy. The time course and complexity of these mechanisms varies. Adaptive characters of organisms, including adaptive behaviours, increase fitness so this adaptation is evolutionary. The major part of this paper concerns adaptation by individuals and its relationships to welfare. In complex animals, feed forward control is widely used. Individuals predict problems and adapt by acting before the environmental effect is substantial. Much of adaptation involves brain control and animals have a set of needs, located in the brain and acting largely via motivational mechanisms, to regulate life. Needs may be for resources but are also for actions and stimuli which are part of the mechanism which has evolved to obtain the resources. Hence pigs do not just need food but need to be able to carry out actions like rooting in earth or manipulating materials which are part of foraging behaviour. The welfare of an individual is its state as regards its attempts to cope with its environment. This state includes various adaptive mechanisms including feelings and those which cope with disease. The part of welfare which is concerned with coping with pathology is health. Disease, which implies some significant effect of pathology, always results in poor welfare. Welfare varies over a range from very good, when adaptation is effective and there are feelings of pleasure or contentment, to very poor. A key point concerning the concept of individual adaptation in relation to welfare is that welfare may be good or poor while adaptation is occurring. Some adaptation is very easy and energetically cheap and

  12. A Simple, General Result for the Variance of Substitution Number in Molecular Evolution

    PubMed Central

    Houchmandzadeh, Bahram; Vallade, Marcel

    2016-01-01

    The number of substitutions (of nucleotides, amino acids, etc.) that take place during the evolution of a sequence is a stochastic variable of fundamental importance in the field of molecular evolution. Although the mean number of substitutions during molecular evolution of a sequence can be estimated for a given substitution model, no simple solution exists for the variance of this random variable. We show in this article that the computation of the variance is as simple as that of the mean number of substitutions for both short and long times. Apart from its fundamental importance, this result can be used to investigate the dispersion index R, that is, the ratio of the variance to the mean substitution number, which is of prime importance in the neutral theory of molecular evolution. By investigating large classes of substitution models, we demonstrate that although R≥1, to obtain R significantly larger than unity necessitates in general additional hypotheses on the structure of the substitution model. PMID:27189545

  13. The molecular symmetry adapted non - adiabatic coupling terms and diabatic Hamiltonian matrix

    NASA Astrophysics Data System (ADS)

    Mukherjee, Saikat; Bandyopadhyay, Sudip; Paul, Amit Kumar; Adhikari, Satrajit

    2013-04-01

    We calculate the adiabatic Potential Energy Surfaces (PESs) and the Non - Adiabatic Coupling Terms (NACTs) for the excited electronic states (22 E' and 12 A'1) of Na3 cluster at the MRCI level by using ab initio quantum chemistry package (MOLPRO), where the NACTs are adapted with Molecular Symmetry (MS) by employing appropriate Irreducible Representations (IREPs). Such terms are incorporated into the Adiabatic to Diabatic Transformation (ADT) equations to obtain the ADT angles to construct the continuous, single - valued, symmetric and smooth 3 × 3 diabatic Hamiltonian matrix.

  14. Free energy landscapes of short peptide chains using adaptively biased molecular dynamics

    NASA Astrophysics Data System (ADS)

    Karpusenka, Vadzim; Babin, Volodymyr; Roland, Christopher; Sagui, Celeste

    2009-03-01

    We present the results of a computational study of the free energy landscapes of short polypeptide chains, as a function of several reaction coordinates meant to distinguish between several known types of helices. The free energy landscapes were calculated using the recently developed adaptively biased molecular dynamics method followed up with equilibrium ``umbrella correction'' runs. Specific polypeptides investigated include small chains of pure and mixed alanine, glutamate, leucine, lysine and methionine (all amino acids with strong helix-forming propensities), as well as glycine, proline(having a low helix forming propensities), tyrosine, serine and arginine. Our results are consistent with the existing experimental and other theoretical evidence.

  15. Modelling the chemical evolution of molecular clouds as a function of metallicity

    NASA Astrophysics Data System (ADS)

    Penteado, E. M.; Cuppen, H. M.; Rocha-Pinto, H. J.

    2014-04-01

    The Galaxy is in continuous elemental evolution. Since new elements produced by dying stars are delivered to the interstellar medium, the formation of new generations of stars and planetary systems is influenced by this metal enrichment. We aim to study the role of the metallicity on the gas phase chemistry of the interstellar medium. Using a system of coupled ordinary differential equations to model the chemical reactions, we simulate the evolution of the abundance of molecules in the gas phase for different initial interstellar elemental compositions. These varying initial elemental compositions consider the change in the `elemental abundances' predicted by a self-consistent model of the elemental evolution of the Galaxy. As far as we are aware, this is the first attempt to combine elemental evolution of the Galaxy and chemical evolution of molecular clouds. The metallicity was found to have a strong effect on the overall gas phase composition. With decreasing metallicity, the number of long carbon chains was found to increase, the time-scale on which small molecular species are increases, and the main form of oxygen changed from O and CO to O2. These effects were found to be mainly due to the change in electron, H_3^+, and atomic oxygen abundance.

  16. Evolution of motion uncertainty in rectal cancer: implications for adaptive radiotherapy

    NASA Astrophysics Data System (ADS)

    Kleijnen, Jean-Paul J. E.; van Asselen, Bram; Burbach, Johannes P. M.; Intven, Martijn; Philippens, Marielle E. P.; Reerink, Onne; Lagendijk, Jan J. W.; Raaymakers, Bas W.

    2016-01-01

    Reduction of motion uncertainty by applying adaptive radiotherapy strategies depends largely on the temporal behavior of this motion. To fully optimize adaptive strategies, insight into target motion is needed. The purpose of this study was to analyze stability and evolution in time of motion uncertainty of both the gross tumor volume (GTV) and clinical target volume (CTV) for patients with rectal cancer. We scanned 16 patients daily during one week, on a 1.5 T MRI scanner in treatment position, prior to each radiotherapy fraction. Single slice sagittal cine MRIs were made at the beginning, middle, and end of each scan session, for one minute at 2 Hz temporal resolution. GTV and CTV motion were determined by registering a delineated reference frame to time-points later in time. The 95th percentile of observed motion (dist95%) was taken as a measure of motion. The stability of motion in time was evaluated within each cine-MRI separately. The evolution of motion was investigated between the reference frame and the cine-MRIs of a single scan session and between the reference frame and the cine-MRIs of several days later in the course of treatment. This observed motion was then converted into a PTV-margin estimate. Within a one minute cine-MRI scan, motion was found to be stable and small. Independent of the time-point within the scan session, the average dist95% remains below 3.6 mm and 2.3 mm for CTV and GTV, respectively 90% of the time. We found similar motion over time intervals from 18 min to 4 days. When reducing the time interval from 18 min to 1 min, a large reduction in motion uncertainty is observed. A reduction in motion uncertainty, and thus the PTV-margin estimate, of 71% and 75% for CTV and tumor was observed, respectively. Time intervals of 15 and 30 s yield no further reduction in motion uncertainty compared to a 1 min time interval.

  17. Grand-Canonical Adaptive Resolution Centroid Molecular Dynamics: Implementation and application

    NASA Astrophysics Data System (ADS)

    Agarwal, Animesh; Delle Site, Luigi

    2016-09-01

    We have implemented the Centroid Molecular Dynamics scheme (CMD) into the Grand Canonical-like version of the Adaptive Resolution Simulation Molecular Dynamics (GC-AdResS) method. We have tested the implementation on two different systems, liquid parahydrogen at extreme thermodynamic conditions and liquid water at ambient conditions; the reproduction of structural as well as dynamical results of reference systems are highly satisfactory. The capability of performing GC-AdResS CMD simulations allows for the treatment of a system characterized by some quantum features and open boundaries. This latter characteristic not only is of computational convenience, allowing for equivalent results of much larger and computationally more expensive systems, but also suggests a tool of analysis so far not explored, that is the unambiguous identification of the essential degrees of freedom required for a given property.

  18. Non-equilibrium molecular dynamics simulation of nanojet injection with adaptive-spatial decomposition parallel algorithm.

    PubMed

    Shin, Hyun-Ho; Yoon, Woong-Sup

    2008-07-01

    An Adaptive-Spatial Decomposition parallel algorithm was developed to increase computation efficiency for molecular dynamics simulations of nano-fluids. Injection of a liquid argon jet with a scale of 17.6 molecular diameters was investigated. A solid annular platinum injector was also solved simultaneously with the liquid injectant by adopting a solid modeling technique which incorporates phantom atoms. The viscous heat was naturally discharged through the solids so the liquid boiling problem was avoided with no separate use of temperature controlling methods. Parametric investigations of injection speed, wall temperature, and injector length were made. A sudden pressure drop at the orifice exit causes flash boiling of the liquid departing the nozzle exit with strong evaporation on the surface of the liquids, while rendering a slender jet. The elevation of the injection speed and the wall temperature causes an activation of the surface evaporation concurrent with reduction in the jet breakup length and the drop size. PMID:19051924

  19. Effects of molecular complexity and reservoir conditions on the discharge coefficient of adapted planar nozzles

    NASA Astrophysics Data System (ADS)

    Guardone, Alberto

    2015-09-01

    The transonic flow at throat section of a convergent-divergent nozzle is studied in adapted conditions to assess the influence of the fluid molecular complexity and total thermodynamic state on the discharge coefficient. The standard Sauer method is applied to solve the transonic perturbation potential equation in the vicinity of the nozzle throat. An analytic expression is derived that allows one to compute the discharge coefficient in terms of the nozzle curvature at the throat section and of the value of the fundamental derivative of gasdynamics at sonic conditions, which depends on the fluid molecular complexity and on the thermodynamic state in the reservoir. A linear dependence of the discharge coefficient on the sonic value of the fundamental derivative of gasdynamics is exposed.

  20. Adaptive evolution of a derived radius morphology in manakins (Aves, Pipridae) to support acrobatic display behavior.

    PubMed

    Friscia, Anthony; Sanin, Gloria D; Lindsay, Willow R; Day, Lainy B; Schlinger, Barney A; Tan, Josh; Fuxjager, Matthew J

    2016-06-01

    The morphology of the avian skeleton is often studied in the context of adaptations for powered flight. The effects of other evolutionary forces, such as sexual selection, on avian skeletal design are unclear, even though birds produce diverse behaviors that undoubtedly require a variety of osteological modifications. Here, we investigate this issue in a family of passerine birds called manakins (Pipridae), which have evolved physically unusual and elaborate courtship displays. We report that, in species within the genus Manacus, the shaft of the radius is heavily flattened and shows substantial solidification. Past work anecdotally notes this morphology and attributes it to the species' ability to hit their wings together above their heads to produce loud mechanical sonations. Our results show that this feature is unique to Manacus compared to the other species in our study, including a variety of taxa that produce other sonations through alternate wing mechanisms. At the same time, our data reveal striking similarities across species in total radius volume and solidification. Together, this suggests that supposedly adaptive alterations in radial morphology occur within a conserved framework of a set radius volume and solidness, which in turn is likely determined by natural selection. Further allometric analyses imply that the radius is less constrained by body size and the structural demands that underlie powered flight, compared to other forelimb bones that are mostly unmodified across taxa. These results are consistent with the idea that the radius is more susceptible to selective modification by sexual selection. Overall, this study provides some of the first insight into the osteological evolution of passerine birds, as well as the way in which opposing selective forces can shape skeletal design in these species. J. Morphol. 277:766-775, 2016. © 2016 Wiley Periodicals, Inc. PMID:27027525