NASA Astrophysics Data System (ADS)
Zhang, Shijun; Jing, Zhongliang; Li, Jianxun
2005-01-01
The rotation invariant feature of the target is obtained using the multi-direction feature extraction property of the steerable filter. Combining the morphological operation top-hat transform with the self-organizing feature map neural network, the adaptive topological region is selected. Using the erosion operation, the topological region shrinkage is achieved. The steerable filter based morphological self-organizing feature map neural network is applied to automatic target recognition of binary standard patterns and real-world infrared sequence images. Compared with Hamming network and morphological shared-weight networks respectively, the higher recognition correct rate, robust adaptability, quick training, and better generalization of the proposed method are achieved.
Feature and contrast enhancement of mammographic image based on multiscale analysis and morphology.
Wu, Shibin; Yu, Shaode; Yang, Yuhan; Xie, Yaoqin
2013-01-01
A new algorithm for feature and contrast enhancement of mammographic images is proposed in this paper. The approach bases on multiscale transform and mathematical morphology. First of all, the Laplacian Gaussian pyramid operator is applied to transform the mammography into different scale subband images. In addition, the detail or high frequency subimages are equalized by contrast limited adaptive histogram equalization (CLAHE) and low-pass subimages are processed by mathematical morphology. Finally, the enhanced image of feature and contrast is reconstructed from the Laplacian Gaussian pyramid coefficients modified at one or more levels by contrast limited adaptive histogram equalization and mathematical morphology, respectively. The enhanced image is processed by global nonlinear operator. The experimental results show that the presented algorithm is effective for feature and contrast enhancement of mammogram. The performance evaluation of the proposed algorithm is measured by contrast evaluation criterion for image, signal-noise-ratio (SNR), and contrast improvement index (CII).
Feature and Contrast Enhancement of Mammographic Image Based on Multiscale Analysis and Morphology
Wu, Shibin; Xie, Yaoqin
2013-01-01
A new algorithm for feature and contrast enhancement of mammographic images is proposed in this paper. The approach bases on multiscale transform and mathematical morphology. First of all, the Laplacian Gaussian pyramid operator is applied to transform the mammography into different scale subband images. In addition, the detail or high frequency subimages are equalized by contrast limited adaptive histogram equalization (CLAHE) and low-pass subimages are processed by mathematical morphology. Finally, the enhanced image of feature and contrast is reconstructed from the Laplacian Gaussian pyramid coefficients modified at one or more levels by contrast limited adaptive histogram equalization and mathematical morphology, respectively. The enhanced image is processed by global nonlinear operator. The experimental results show that the presented algorithm is effective for feature and contrast enhancement of mammogram. The performance evaluation of the proposed algorithm is measured by contrast evaluation criterion for image, signal-noise-ratio (SNR), and contrast improvement index (CII). PMID:24416072
A novel murmur-based heart sound feature extraction technique using envelope-morphological analysis
NASA Astrophysics Data System (ADS)
Yao, Hao-Dong; Ma, Jia-Li; Fu, Bin-Bin; Wang, Hai-Yang; Dong, Ming-Chui
2015-07-01
Auscultation of heart sound (HS) signals serves as an important primary approach to diagnose cardiovascular diseases (CVDs) for centuries. Confronting the intrinsic drawbacks of traditional HS auscultation, computer-aided automatic HS auscultation based on feature extraction technique has witnessed explosive development. Yet, most existing HS feature extraction methods adopt acoustic or time-frequency features which exhibit poor relationship with diagnostic information, thus restricting the performance of further interpretation and analysis. Tackling such a bottleneck problem, this paper innovatively proposes a novel murmur-based HS feature extraction method since murmurs contain massive pathological information and are regarded as the first indications of pathological occurrences of heart valves. Adapting discrete wavelet transform (DWT) and Shannon envelope, the envelope-morphological characteristics of murmurs are obtained and three features are extracted accordingly. Validated by discriminating normal HS and 5 various abnormal HS signals with extracted features, the proposed method provides an attractive candidate in automatic HS auscultation.
Tan, Bingyao; Wong, Alexander; Bizheva, Kostadinka
2018-01-01
A novel image processing algorithm based on a modified Bayesian residual transform (MBRT) was developed for the enhancement of morphological and vascular features in optical coherence tomography (OCT) and OCT angiography (OCTA) images. The MBRT algorithm decomposes the original OCT image into multiple residual images, where each image presents information at a unique scale. Scale selective residual adaptation is used subsequently to enhance morphological features of interest, such as blood vessels and tissue layers, and to suppress irrelevant image features such as noise and motion artefacts. The performance of the proposed MBRT algorithm was tested on a series of cross-sectional and enface OCT and OCTA images of retina and brain tissue that were acquired in-vivo. Results show that the MBRT reduces speckle noise and motion-related imaging artefacts locally, thus improving significantly the contrast and visibility of morphological features in the OCT and OCTA images. PMID:29760996
Araki, Tadashi; Ikeda, Nobutaka; Shukla, Devarshi; Jain, Pankaj K; Londhe, Narendra D; Shrivastava, Vimal K; Banchhor, Sumit K; Saba, Luca; Nicolaides, Andrew; Shafique, Shoaib; Laird, John R; Suri, Jasjit S
2016-05-01
Percutaneous coronary interventional procedures need advance planning prior to stenting or an endarterectomy. Cardiologists use intravascular ultrasound (IVUS) for screening, risk assessment and stratification of coronary artery disease (CAD). We hypothesize that plaque components are vulnerable to rupture due to plaque progression. Currently, there are no standard grayscale IVUS tools for risk assessment of plaque rupture. This paper presents a novel strategy for risk stratification based on plaque morphology embedded with principal component analysis (PCA) for plaque feature dimensionality reduction and dominant feature selection technique. The risk assessment utilizes 56 grayscale coronary features in a machine learning framework while linking information from carotid and coronary plaque burdens due to their common genetic makeup. This system consists of a machine learning paradigm which uses a support vector machine (SVM) combined with PCA for optimal and dominant coronary artery morphological feature extraction. Carotid artery proven intima-media thickness (cIMT) biomarker is adapted as a gold standard during the training phase of the machine learning system. For the performance evaluation, K-fold cross validation protocol is adapted with 20 trials per fold. For choosing the dominant features out of the 56 grayscale features, a polling strategy of PCA is adapted where the original value of the features is unaltered. Different protocols are designed for establishing the stability and reliability criteria of the coronary risk assessment system (cRAS). Using the PCA-based machine learning paradigm and cross-validation protocol, a classification accuracy of 98.43% (AUC 0.98) with K=10 folds using an SVM radial basis function (RBF) kernel was achieved. A reliability index of 97.32% and machine learning stability criteria of 5% were met for the cRAS. This is the first Computer aided design (CADx) system of its kind that is able to demonstrate the ability of coronary risk assessment and stratification while demonstrating a successful design of the machine learning system based on our assumptions. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Li, Yongbo; Li, Guoyan; Yang, Yuantao; Liang, Xihui; Xu, Minqiang
2018-05-01
The fault diagnosis of planetary gearboxes is crucial to reduce the maintenance costs and economic losses. This paper proposes a novel fault diagnosis method based on adaptive multi-scale morphological filter (AMMF) and modified hierarchical permutation entropy (MHPE) to identify the different health conditions of planetary gearboxes. In this method, AMMF is firstly adopted to remove the fault-unrelated components and enhance the fault characteristics. Second, MHPE is utilized to extract the fault features from the denoised vibration signals. Third, Laplacian score (LS) approach is employed to refine the fault features. In the end, the obtained features are fed into the binary tree support vector machine (BT-SVM) to accomplish the fault pattern identification. The proposed method is numerically and experimentally demonstrated to be able to recognize the different fault categories of planetary gearboxes.
NASA Astrophysics Data System (ADS)
Deng, Feiyue; Yang, Shaopu; Tang, Guiji; Hao, Rujiang; Zhang, Mingliang
2017-04-01
Wheel bearings are essential mechanical components of trains, and fault detection of the wheel bearing is of great significant to avoid economic loss and casualty effectively. However, considering the operating conditions, detection and extraction of the fault features hidden in the heavy noise of the vibration signal have become a challenging task. Therefore, a novel method called adaptive multi-scale AVG-Hat morphology filter (MF) is proposed to solve it. The morphology AVG-Hat operator not only can suppress the interference of the strong background noise greatly, but also enhance the ability of extracting fault features. The improved envelope spectrum sparsity (IESS), as a new evaluation index, is proposed to select the optimal filtering signal processed by the multi-scale AVG-Hat MF. It can present a comprehensive evaluation about the intensity of fault impulse to the background noise. The weighted coefficients of the different scale structural elements (SEs) in the multi-scale MF are adaptively determined by the particle swarm optimization (PSO) algorithm. The effectiveness of the method is validated by analyzing the real wheel bearing fault vibration signal (e.g. outer race fault, inner race fault and rolling element fault). The results show that the proposed method could improve the performance in the extraction of fault features effectively compared with the multi-scale combined morphological filter (CMF) and multi-scale morphology gradient filter (MGF) methods.
Tripp, Erin A; Fatimah, Siti
2012-06-01
Anatomical and morphological features of Satanocrater were studied to test hypotheses of xeric adaptations in the genus, which is endemic to arid tropical Africa. These features, together with molecular data, were used to test the phylogenetic placement of Satanocrater within the large plant family Acanthaceae. We undertook a comparative study of four species of Satanocrater. Carbon isotope ratios were generated to test a hypothesis of C(4) photosynthesis. Molecular data from chloroplast (trnG-trnS, trnG-trnR, psbA-trnH) and nuclear (Eif3E) loci were used to test the placement of Satanocrater within Acanthaceae. Anatomical features reflecting xeric adaptations of species of Satanocrater included a thick-walled epidermis, thick cuticle, abundant trichomes and glandular scales, stomata overarched by subsidiary cells, tightly packed mesophyll cells, and well-developed palisade parenchyma on both leaf surfaces. Although two species had enlarged bundle sheath cells, a feature often implicated in C(4) photosynthesis, isotope ratios indicated all species of Satanocrater use the C(3) pathway. Molecular data resolved Satanocrater within tribe Ruellieae with strong support. Within Ruellieae, our data suggest that pollen morphology of Satanocrater may represent an intermediate stage in a transition series. Anatomical and morphological features of Satanocrater reflect adaptation to xeric environments and add new information about the biology of xerophytes. Morphological and molecular data place Satanocrater in the tribe Ruellieae with confidence. This study adds to our capacity to test hypotheses of broad evolutionary and ecological interest in a diverse and important family of flowering plants.
Handrigan, Gregory R; Wassersug, Richard J
2007-02-01
Anurans (frogs, toads, and their larvae) are among the most morphologically derived of vertebrates. While tightly conserved across the order, the anuran Bauplan (body plan) diverges widely from that of other vertebrates, particularly with respect to the skeleton. Here we address the adaptive, ontogenetic, and genetic bases of three such hallmark anuran features: (1) the absence of discrete caudal vertebrae, (2) a truncated axial skeleton, and (3) elongate hind limbs. We review the functional significance of each as it relates to the anuran lifestyle, which includes locomotor adaptations to both aquatic and terrestrial environments. We then shift our focus to the proximal origins of each feature, namely, ontogeny and its molecular regulation. Drawing on relatively limited data, we detail the development of each character and then, by extrapolating from comparative vertebrate data, propose molecular bases for these processes. Cast in this light, the divergent morphology of anurans emerges as a product of evolutionary modulation of the generalised vertebrate developmental machinery. Specifically, we hypothesise that: (1) the formation of caudal vertebrae is precluded due to a failure of sclerotomes to form cartilaginous condensations, perhaps resulting from altered expression of a suite of genes, including Pax1, Pax9, Msx1, Uncx-4.1, Sonic hedgehog, and noggin; (2) anteriorised Hox gene expression in the paraxial mesoderm has led to a rostral shift of morphological boundaries of the vertebral column; and, (3) spatial and temporal shifts in Hox expression may underlie the expanded tarsal elements of the anuran hind limb. Technology is currently in place to investigate each of these scenarios in the African clawed frog Xenopus. Experimental corroboration will further our understanding of the molecular regulation of the anuran Bauplan and provide insight into the origin of vertebrate morphological diversity as well as the role of development in evolution.
Saba, Luca; Jain, Pankaj K; Suri, Harman S; Ikeda, Nobutaka; Araki, Tadashi; Singh, Bikesh K; Nicolaides, Andrew; Shafique, Shoaib; Gupta, Ajay; Laird, John R; Suri, Jasjit S
2017-06-01
Severe atherosclerosis disease in carotid arteries causes stenosis which in turn leads to stroke. Machine learning systems have been previously developed for plaque wall risk assessment using morphology-based characterization. The fundamental assumption in such systems is the extraction of the grayscale features of the plaque region. Even though these systems have the ability to perform risk stratification, they lack the ability to achieve higher performance due their inability to select and retain dominant features. This paper introduces a polling-based principal component analysis (PCA) strategy embedded in the machine learning framework to select and retain dominant features, resulting in superior performance. This leads to more stability and reliability. The automated system uses offline image data along with the ground truth labels to generate the parameters, which are then used to transform the online grayscale features to predict the risk of stroke. A set of sixteen grayscale plaque features is computed. Utilizing the cross-validation protocol (K = 10), and the PCA cutoff of 0.995, the machine learning system is able to achieve an accuracy of 98.55 and 98.83%corresponding to the carotidfar wall and near wall plaques, respectively. The corresponding reliability of the system was 94.56 and 95.63%, respectively. The automated system was validated against the manual risk assessment system and the precision of merit for same cross-validation settings and PCA cutoffs are 98.28 and 93.92%for the far and the near wall, respectively.PCA-embedded morphology-based plaque characterization shows a powerful strategy for risk assessment and can be adapted in clinical settings.
The genome of Mesobuthus martensii reveals a unique adaptation model of arthropods
Cao, Zhijian; Yu, Yao; Wu, Yingliang; Hao, Pei; Di, Zhiyong; He, Yawen; Chen, Zongyun; Yang, Weishan; Shen, Zhiyong; He, Xiaohua; Sheng, Jia; Xu, Xiaobo; Pan, Bohu; Feng, Jing; Yang, Xiaojuan; Hong, Wei; Zhao, Wenjuan; Li, Zhongjie; Huang, Kai; Li, Tian; Kong, Yimeng; Liu, Hui; Jiang, Dahe; Zhang, Binyan; Hu, Jun; Hu, Youtian; Wang, Bin; Dai, Jianliang; Yuan, Bifeng; Feng, Yuqi; Huang, Wei; Xing, Xiaojing; Zhao, Guoping; Li, Xuan; Li, Yixue; Li, Wenxin
2013-01-01
Representing a basal branch of arachnids, scorpions are known as ‘living fossils’ that maintain an ancient anatomy and are adapted to have survived extreme climate changes. Here we report the genome sequence of Mesobuthus martensii, containing 32,016 protein-coding genes, the most among sequenced arthropods. Although M. martensii appears to evolve conservatively, it has a greater gene family turnover than the insects that have undergone diverse morphological and physiological changes, suggesting the decoupling of the molecular and morphological evolution in scorpions. Underlying the long-term adaptation of scorpions is the expansion of the gene families enriched in basic metabolic pathways, signalling pathways, neurotoxins and cytochrome P450, and the different dynamics of expansion between the shared and the scorpion lineage-specific gene families. Genomic and transcriptomic analyses further illustrate the important genetic features associated with prey, nocturnal behaviour, feeding and detoxification. The M. martensii genome reveals a unique adaptation model of arthropods, offering new insights into the genetic bases of the living fossils. PMID:24129506
Argot, Christine
2002-07-01
This article analyzes the adaptations of the hindlimb of two Early Paleocene marsupials, Mayulestes ferox and Pucadelphys andinus. This analysis is based on detailed comparisons with various extant marsupials, both South American and Australian. In the case of the South American opossums, original myological data were collected and osteological-myological associations were related to their locomotor behavior. The use of Australian genera helped to improve the appraisal of the locomotory habits of the fossil taxa. Several features are indicative of the ability of Mayulestes to climb or walk on uneven surfaces (e.g., very mobile hip joint, astragalocalcaneal joint pattern), and some other features emphasize a relative agility (e.g., strongly everted iliac blades, morphology of the distal epiphysis of the femur, medially stabilized cruroastragalar joint). Pucadelphys exhibits a hindlimb relatively similar morphologically to that of Mayulestes, but with features indicating slightly increased agility and a terrestrial component that is more emphasized than in Mayulestes. The Tiupampa fossils were therefore more agile than most living didelphids and resembled the condition observed in living dasyurids more. These conclusions complement a previous study performed on the forelimb of these fossils. Copyright 2002 Wiley-Liss, Inc.
Fault diagnosis of rolling element bearing using a new optimal scale morphology analysis method.
Yan, Xiaoan; Jia, Minping; Zhang, Wan; Zhu, Lin
2018-02-01
Periodic transient impulses are key indicators of rolling element bearing defects. Efficient acquisition of impact impulses concerned with the defects is of much concern to the precise detection of bearing defects. However, transient features of rolling element bearing are generally immersed in stochastic noise and harmonic interference. Therefore, in this paper, a new optimal scale morphology analysis method, named adaptive multiscale combination morphological filter-hat transform (AMCMFH), is proposed for rolling element bearing fault diagnosis, which can both reduce stochastic noise and reserve signal details. In this method, firstly, an adaptive selection strategy based on the feature energy factor (FEF) is introduced to determine the optimal structuring element (SE) scale of multiscale combination morphological filter-hat transform (MCMFH). Subsequently, MCMFH containing the optimal SE scale is applied to obtain the impulse components from the bearing vibration signal. Finally, fault types of bearing are confirmed by extracting the defective frequency from envelope spectrum of the impulse components. The validity of the proposed method is verified through the simulated analysis and bearing vibration data derived from the laboratory bench. Results indicate that the proposed method has a good capability to recognize localized faults appeared on rolling element bearing from vibration signal. The study supplies a novel technique for the detection of faulty bearing. Copyright © 2018. Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Maragos, Petros
The topics discussed at the conference include hierarchical image coding, motion analysis, feature extraction and image restoration, video coding, and morphological and related nonlinear filtering. Attention is also given to vector quantization, morphological image processing, fractals and wavelets, architectures for image and video processing, image segmentation, biomedical image processing, and model-based analysis. Papers are presented on affine models for motion and shape recovery, filters for directly detecting surface orientation in an image, tracking of unresolved targets in infrared imagery using a projection-based method, adaptive-neighborhood image processing, and regularized multichannel restoration of color images using cross-validation. (For individual items see A93-20945 to A93-20951)
The tarsal-metatarsal complex of caviomorph rodents: Anatomy and functional-adaptive analysis.
Candela, Adriana M; Muñoz, Nahuel A; García-Esponda, César M
2017-06-01
Caviomorph rodents represent a major adaptive radiation of Neotropical mammals. They occupy a variety of ecological niches, which is also reflected in their wide array of locomotor behaviors. It is expected that this radiation would be mirrored by an equivalent disparity of tarsal-metatarsal morphology. Here, the tarsal-metatarsal complex of Erethizontidae, Cuniculidae, Dasyproctidae, Caviidae, Chinchillidae, Octodontidae, Ctenomyidae, and Echimyidae was examined, in order to evaluate its anatomical variation and functional-adaptive relevance in relation to locomotor behaviors. A qualitative study in functional morphology and a geometric morphometric analysis were performed. We recognized two distinct tarsal-metatarsal patterns that represent the extremes of anatomical variation in the foot. The first, typically present in arboreal species, is characterized by features that facilitate movements at different levels of the tarsal-metatarsal complex. The second pattern, typically present in cursorial caviomorphs, has a set of features that act to stabilize the joints, improve the interlocking of the tarsal bones, and restrict movements to the parasagittal plane. The morphological disparity recognized in this study seems to result from specific locomotor adaptations to climb, dig, run, jump and swim, as well as phylogenetic effects within and among the groups studies. © 2017 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Jiang, Jie; Zhang, Shumei; Cao, Shixiang
2015-01-01
Multitemporal remote sensing images generally suffer from background variations, which significantly disrupt traditional region feature and descriptor abstracts, especially between pre and postdisasters, making registration by local features unreliable. Because shapes hold relatively stable information, a rotation and scale invariant shape context based on multiscale edge features is proposed. A multiscale morphological operator is adapted to detect edges of shapes, and an equivalent difference of Gaussian scale space is built to detect local scale invariant feature points along the detected edges. Then, a rotation invariant shape context with improved distance discrimination serves as a feature descriptor. For a distance shape context, a self-adaptive threshold (SAT) distance division coordinate system is proposed, which improves the discriminative property of the feature descriptor in mid-long pixel distances from the central point while maintaining it in shorter ones. To achieve rotation invariance, the magnitude of Fourier transform in one-dimension is applied to calculate angle shape context. Finally, the residual error is evaluated after obtaining thin-plate spline transformation between reference and sensed images. Experimental results demonstrate the robustness, efficiency, and accuracy of this automatic algorithm.
Cascade Classification with Adaptive Feature Extraction for Arrhythmia Detection.
Park, Juyoung; Kang, Mingon; Gao, Jean; Kim, Younghoon; Kang, Kyungtae
2017-01-01
Detecting arrhythmia from ECG data is now feasible on mobile devices, but in this environment it is necessary to trade computational efficiency against accuracy. We propose an adaptive strategy for feature extraction that only considers normalized beat morphology features when running in a resource-constrained environment; but in a high-performance environment it takes account of a wider range of ECG features. This process is augmented by a cascaded random forest classifier. Experiments on data from the MIT-BIH Arrhythmia Database showed classification accuracies from 96.59% to 98.51%, which are comparable to state-of-the art methods.
Accurate diagnosis of thyroid follicular lesions from nuclear morphology using supervised learning.
Ozolek, John A; Tosun, Akif Burak; Wang, Wei; Chen, Cheng; Kolouri, Soheil; Basu, Saurav; Huang, Hu; Rohde, Gustavo K
2014-07-01
Follicular lesions of the thyroid remain significant diagnostic challenges in surgical pathology and cytology. The diagnosis often requires considerable resources and ancillary tests including immunohistochemistry, molecular studies, and expert consultation. Visual analyses of nuclear morphological features, generally speaking, have not been helpful in distinguishing this group of lesions. Here we describe a method for distinguishing between follicular lesions of the thyroid based on nuclear morphology. The method utilizes an optimal transport-based linear embedding for segmented nuclei, together with an adaptation of existing classification methods. We show the method outputs assignments (classification results) which are near perfectly correlated with the clinical diagnosis of several lesion types' lesions utilizing a database of 94 patients in total. Experimental comparisons also show the new method can significantly outperform standard numerical feature-type methods in terms of agreement with the clinical diagnosis gold standard. In addition, the new method could potentially be used to derive insights into biologically meaningful nuclear morphology differences in these lesions. Our methods could be incorporated into a tool for pathologists to aid in distinguishing between follicular lesions of the thyroid. In addition, these results could potentially provide nuclear morphological correlates of biological behavior and reduce health care costs by decreasing histotechnician and pathologist time and obviating the need for ancillary testing. Copyright © 2014 Elsevier B.V. All rights reserved.
Roy, D; Docker, M F; Hehanussa, P; Heath, D D; Haffner, G D
2004-11-01
Adaptive radiation resulting from differential selection acting on functional features is believed to be an important source of biodiversity. In this study, morphometric measures and mitochondrial DNA are used to test for adaptive radiation within four fish genera (Glossogobius, Oryzias, Dermogenys and Telmatherina) endemic to an ancient island lake (Lake Matano, Sulawesi, Indonesia), using the framework proposed by Schluter (The Ecology of Adaptive Radiation, Oxford University Press, 2000). We demonstrate common ancestry and rapid divergence in one genus (Telmatherina) based on 560 bp of 16S sequence data. We found higher levels of variation in feeding-related traits (N = 8) for Telmatherina relative to the other genera, while no differences were found for sexual display traits (N = 8) or neutral morphological traits (N = 8). Telmatherina also had the highest number of distinct colouration patterns among the four genera. These data, combined with the very low productivity of the lake, are indicative of selection driving adaptive radiation. The morphometric divergence in the Telmatherina likely results from selection acting on feeding traits in this low productivity lake, leading to trophic specialization among closely related morphotypes. These results provide indirect but compelling data supporting the adaptive radiation of Telmatherina in this system.
Dubow, Michael; Pinhas, Alexander; Shah, Nishit; Cooper, Robert F.; Gan, Alexander; Gentile, Ronald C.; Hendrix, Vernon; Sulai, Yusufu N.; Carroll, Joseph; Chui, Toco Y. P.; Walsh, Joseph B.; Weitz, Rishard; Dubra, Alfredo; Rosen, Richard B.
2014-01-01
Purpose. Microaneurysms (MAs) are considered a hallmark of retinal vascular disease, yet what little is known about them is mostly based upon histology, not clinical observation. Here, we use the recently developed adaptive optics scanning light ophthalmoscope (AOSLO) fluorescein angiography (FA) to image human MAs in vivo and to expand on previously described MA morphologic classification schemes. Methods. Patients with vascular retinopathies (diabetic, hypertensive, and branch and central retinal vein occlusion) were imaged with reflectance AOSLO and AOSLO FA. Ninety-three MAs, from 14 eyes, were imaged and classified according to appearance into six morphologic groups: focal bulge, saccular, fusiform, mixed, pedunculated, and irregular. The MA perimeter, area, and feret maximum and minimum were correlated to morphology and retinal pathology. Select MAs were imaged longitudinally in two eyes. Results. Adaptive optics scanning light ophthalmoscope fluorescein angiography imaging revealed microscopic features of MAs not appreciated on conventional images. Saccular MAs were most prevalent (47%). No association was found between the type of retinal pathology and MA morphology (P = 0.44). Pedunculated and irregular MAs were among the largest MAs with average areas of 4188 and 4116 μm2, respectively. Focal hypofluorescent regions were noted in 30% of MAs and were more likely to be associated with larger MAs (3086 vs. 1448 μm2, P = 0.0001). Conclusions. Retinal MAs can be classified in vivo into six different morphologic types, according to the geometry of their two-dimensional (2D) en face view. Adaptive optics scanning light ophthalmoscope fluorescein angiography imaging of MAs offers the possibility of studying microvascular change on a histologic scale, which may help our understanding of disease progression and treatment response. PMID:24425852
Adaptive Morphological Feature-Based Object Classifier for a Color Imaging System
NASA Technical Reports Server (NTRS)
McDowell, Mark; Gray, Elizabeth
2009-01-01
Utilizing a Compact Color Microscope Imaging System (CCMIS), a unique algorithm has been developed that combines human intelligence along with machine vision techniques to produce an autonomous microscope tool for biomedical, industrial, and space applications. This technique is based on an adaptive, morphological, feature-based mapping function comprising 24 mutually inclusive feature metrics that are used to determine the metrics for complex cell/objects derived from color image analysis. Some of the features include: Area (total numbers of non-background pixels inside and including the perimeter), Bounding Box (smallest rectangle that bounds and object), centerX (x-coordinate of intensity-weighted, center-of-mass of an entire object or multi-object blob), centerY (y-coordinate of intensity-weighted, center-of-mass, of an entire object or multi-object blob), Circumference (a measure of circumference that takes into account whether neighboring pixels are diagonal, which is a longer distance than horizontally or vertically joined pixels), . Elongation (measure of particle elongation given as a number between 0 and 1. If equal to 1, the particle bounding box is square. As the elongation decreases from 1, the particle becomes more elongated), . Ext_vector (extremal vector), . Major Axis (the length of a major axis of a smallest ellipse encompassing an object), . Minor Axis (the length of a minor axis of a smallest ellipse encompassing an object), . Partial (indicates if the particle extends beyond the field of view), . Perimeter Points (points that make up a particle perimeter), . Roundness [(4(pi) x area)/perimeter(squared)) the result is a measure of object roundness, or compactness, given as a value between 0 and 1. The greater the ratio, the rounder the object.], . Thin in center (determines if an object becomes thin in the center, (figure-eight-shaped), . Theta (orientation of the major axis), . Smoothness and color metrics for each component (red, green, blue) the minimum, maximum, average, and standard deviation within the particle are tracked. These metrics can be used for autonomous analysis of color images from a microscope, video camera, or digital, still image. It can also automatically identify tumor morphology of stained images and has been used to detect stained cell phenomena (see figure).
Ford, Antonia G P; Rüber, Lukas; Newton, Jason; Dasmahapatra, Kanchon K; Balarin, John D; Bruun, Kristoffer; Day, Julia J
2016-12-01
Ecomorphological differentiation is a key feature of adaptive radiations, with a general trend for specialization and niche expansion following divergence. Ecological opportunity afforded by invasion of a new habitat is thought to act as an ecological release, facilitating divergence, and speciation. Here, we investigate trophic adaptive morphology and ecology of an endemic clade of oreochromine cichlid fishes (Alcolapia) that radiated along a herbivorous trophic axis following colonization of an isolated lacustrine environment, and demonstrate phenotype-environment correlation. Ecological and morphological divergence of the Alcolapia species flock are examined in a phylogenomic context, to infer ecological niche occupation within the radiation. Species divergence is observed in both ecology and morphology, supporting the importance of ecological speciation within the radiation. Comparison with an outgroup taxon reveals large-scale ecomorphological divergence but shallow genomic differentiation within the Alcolapia adaptive radiation. Ancestral morphological reconstruction suggests lake colonization by a generalist oreochromine phenotype that diverged in Lake Natron to varied herbivorous morphologies akin to specialist herbivores in Lakes Tanganyika and Malawi. © 2016 The Author(s). Evolution published by Wiley Periodicals, Inc. on behalf of The Society for the Study of Evolution.
[A research on real-time ventricular QRS classification methods for single-chip-microcomputers].
Peng, L; Yang, Z; Li, L; Chen, H; Chen, E; Lin, J
1997-05-01
Ventricular QRS classification is key technique of ventricular arrhythmias detection in single-chip-microcomputer based dynamic electrocardiogram real-time analyser. This paper adopts morphological feature vector including QRS amplitude, interval information to reveal QRS morphology. After studying the distribution of QRS morphology feature vector of MIT/BIH DB ventricular arrhythmia files, we use morphological feature vector cluster to classify multi-morphology QRS. Based on the method, morphological feature parameters changing method which is suitable to catch occasional ventricular arrhythmias is presented. Clinical experiments verify missed ventricular arrhythmia is less than 1% by this method.
Pan, Lei; Dumoncel, Jean; de Beer, Frikkie; Hoffman, Jakobus; Thackeray, John Francis; Duployer, Benjamin; Tenailleau, Christophe; Braga, José
2016-07-01
The appearance of the earliest members of the genus Homo in South Africa represents a key event in human evolution. Although enamel thickness and enamel dentine junction (EDJ) morphology preserve important information about hominin systematics and dietary adaptation, these features have not been sufficiently studied with regard to early Homo. We used micro-CT to compare enamel thickness and EDJ morphology among the mandibular postcanine dentitions of South African early hominins (N = 30) and extant Homo sapiens (N = 26), with special reference to early members of the genus Homo. We found that South African early Homo shows a similar enamel thickness distribution pattern to modern humans, although three-dimensional average and relative enamel thicknesses do not distinguish australopiths, early Homo, and modern humans particularly well. Based on enamel thickness distributions, our study suggests that a dietary shift occurred between australopiths and the origin of the Homo lineage. We also observed that South African early Homo postcanine EDJ combined primitive traits seen in australopith molars with derived features observed in modern human premolars. Our results confirm that some dental morphological patterns in later Homo actually occurred early in the Homo lineage, and highlight the taxonomic value of premolar EDJ morphology in hominin species. Copyright © 2016 Elsevier Ltd. All rights reserved.
Predicting Future Morphological Changes of Lesions from Radiotracer Uptake in 18F-FDG-PET Images
Bagci, Ulas; Yao, Jianhua; Miller-Jaster, Kirsten; Chen, Xinjian; Mollura, Daniel J.
2013-01-01
We introduce a novel computational framework to enable automated identification of texture and shape features of lesions on 18F-FDG-PET images through a graph-based image segmentation method. The proposed framework predicts future morphological changes of lesions with high accuracy. The presented methodology has several benefits over conventional qualitative and semi-quantitative methods, due to its fully quantitative nature and high accuracy in each step of (i) detection, (ii) segmentation, and (iii) feature extraction. To evaluate our proposed computational framework, thirty patients received 2 18F-FDG-PET scans (60 scans total), at two different time points. Metastatic papillary renal cell carcinoma, cerebellar hemongioblastoma, non-small cell lung cancer, neurofibroma, lymphomatoid granulomatosis, lung neoplasm, neuroendocrine tumor, soft tissue thoracic mass, nonnecrotizing granulomatous inflammation, renal cell carcinoma with papillary and cystic features, diffuse large B-cell lymphoma, metastatic alveolar soft part sarcoma, and small cell lung cancer were included in this analysis. The radiotracer accumulation in patients' scans was automatically detected and segmented by the proposed segmentation algorithm. Delineated regions were used to extract shape and textural features, with the proposed adaptive feature extraction framework, as well as standardized uptake values (SUV) of uptake regions, to conduct a broad quantitative analysis. Evaluation of segmentation results indicates that our proposed segmentation algorithm has a mean dice similarity coefficient of 85.75±1.75%. We found that 28 of 68 extracted imaging features were correlated well with SUVmax (p<0.05), and some of the textural features (such as entropy and maximum probability) were superior in predicting morphological changes of radiotracer uptake regions longitudinally, compared to single intensity feature such as SUVmax. We also found that integrating textural features with SUV measurements significantly improves the prediction accuracy of morphological changes (Spearman correlation coefficient = 0.8715, p<2e-16). PMID:23431398
Extreme climate, rather than population history, explains mid-facial morphology of Northern Asians.
Evteev, Andrej; Cardini, Andrea L; Morozova, Irina; O'Higgins, Paul
2014-03-01
Previous studies have examined mid-facial cold adaptation among either widely dispersed and genetically very diverse groups of humans isolated for tens of thousands of years, or among very closely related groups spread over climatically different regions. Here we present a study of one East Asian and seven North Asian populations in which we examine the evidence for convergent adaptations of the mid-face to a very cold climate. Our findings indicate that mid-facial morphology is strongly associated with climatic variables that contrast the temperate climate of East Asians and the very cold and dry climate of North Asians. This is also the case when either maxillary or nasal cavity measurements are considered alone. The association remains significant when mtDNA distances among populations are taken into account. The morphological contrasts between populations are consistent with physiological predictions and prior studies of mid-facial cold adaptation in more temperate regions, but among North Asians there appear to be some previously undescribed morphological features that might be considered as adaptive to extreme cold. To investigate this further, analyses of the seven North Asian populations alone suggest that mid-facial morphology remains strongly associated with climate, particularly winter precipitation, contrasting coastal Arctic and continental climates. However, the residual covariation among North Asian mid-facial morphology and climate when genetic distances are considered, is not significant. These findings point to modern adaptations to extreme climate that might be relevant to our understanding of the mid-facial morphology of fossil hominins that lived during glaciations. Copyright © 2013 Wiley Periodicals, Inc.
Morphological variation in salamanders and their potential response to climate change.
Ficetola, Gentile Francesco; Colleoni, Emiliano; Renaud, Julien; Scali, Stefano; Padoa-Schioppa, Emilio; Thuiller, Wilfried
2016-06-01
Despite the recognition that some species might quickly adapt to new conditions under climate change, demonstrating and predicting such a fundamental response is challenging. Morphological variations in response to climate may be caused by evolutionary changes or phenotypic plasticity, or both, but teasing apart these processes is difficult. Here, we built on the number of thoracic vertebrae (NTV) in ectothermic vertebrates, a known genetically based feature, to establish a link with body size and evaluate how climate change might affect the future morphological response of this group of species. First, we show that in old-world salamanders, NTV variation is strongly related to changes in body size. Secondly, using 22 salamander species as a case study, we found support for relationships between the spatial variation in selected bioclimatic variables and NTV for most of species. For 44% of species, precipitation and aridity were the predominant drivers of geographical variation of the NTV. Temperature features were dominant for 31% of species, while for 19% temperature and precipitation played a comparable role. This two-step analysis demonstrates that ectothermic vertebrates may evolve in response to climate change by modifying the number of thoracic vertebrae. These findings allow to develop scenarios for potential morphological evolution under future climate change and to identify areas and species in which the most marked evolutionary responses are expected. Resistance to climate change estimated from species distribution models was positively related to present-day species morphological response, suggesting that the ability of morphological evolution may play a role for species' persistence under climate change. The possibility that present-day capacity for local adaptation might help the resistance response to climate change can be integrated into analyses of the impact of global changes and should also be considered when planning management actions favouring species persistence. © 2016 John Wiley & Sons Ltd.
Freedman, Adam H; Buermann, Wolfgang; Mitchard, Edward T A; Defries, Ruth S; Smith, Thomas B
2010-09-30
Ecological gradients have long been recognized as important regions for diversification and speciation. However, little attention has been paid to the evolutionary consequences or conservation implications of human activities that fundamentally change the environmental features of such gradients. Here we show that recent deforestation in West Africa has homogenized the rainforest-savanna gradient, causing a loss of adaptive phenotypic diversity in a common rainforest bird, the little greenbul (Andropadus virens). Previously, this species was shown to exhibit morphological and song divergence along this gradient in Central Africa. Using satellite-based estimates of forest cover, recent morphological data, and historical data from museum specimens collected prior to widespread deforestation, we show that the gradient has become shallower in West Africa and that A. virens populations there have lost morphological variation in traits important to fitness. In contrast, we find no loss of morphological variation in Central Africa where there has been less deforestation and gradients have remained more intact. While rainforest deforestation is a leading cause of species extinction, the potential of deforestation to flatten gradients and inhibit rainforest diversification has not been previously recognized. More deforestation will likely lead to further flattening of the gradient and loss of diversity, and may limit the ability of species to persist under future environmental conditions.
Human Impacts Flatten Rainforest-Savanna Gradient and Reduce Adaptive Diversity in a Rainforest Bird
Freedman, Adam H.; Buermann, Wolfgang; Mitchard, Edward T. A.; DeFries, Ruth S.; Smith, Thomas B.
2010-01-01
Ecological gradients have long been recognized as important regions for diversification and speciation. However, little attention has been paid to the evolutionary consequences or conservation implications of human activities that fundamentally change the environmental features of such gradients. Here we show that recent deforestation in West Africa has homogenized the rainforest-savanna gradient, causing a loss of adaptive phenotypic diversity in a common rainforest bird, the little greenbul (Andropadus virens). Previously, this species was shown to exhibit morphological and song divergence along this gradient in Central Africa. Using satellite-based estimates of forest cover, recent morphological data, and historical data from museum specimens collected prior to widespread deforestation, we show that the gradient has become shallower in West Africa and that A. virens populations there have lost morphological variation in traits important to fitness. In contrast, we find no loss of morphological variation in Central Africa where there has been less deforestation and gradients have remained more intact. While rainforest deforestation is a leading cause of species extinction, the potential of deforestation to flatten gradients and inhibit rainforest diversification has not been previously recognized. More deforestation will likely lead to further flattening of the gradient and loss of diversity, and may limit the ability of species to persist under future environmental conditions. PMID:20941360
Average combination difference morphological filters for fault feature extraction of bearing
NASA Astrophysics Data System (ADS)
Lv, Jingxiang; Yu, Jianbo
2018-02-01
In order to extract impulse components from vibration signals with much noise and harmonics, a new morphological filter called average combination difference morphological filter (ACDIF) is proposed in this paper. ACDIF constructs firstly several new combination difference (CDIF) operators, and then integrates the best two CDIFs as the final morphological filter. This design scheme enables ACIDF to extract positive and negative impacts existing in vibration signals to enhance accuracy of bearing fault diagnosis. The length of structure element (SE) that affects the performance of ACDIF is determined adaptively by a new indicator called Teager energy kurtosis (TEK). TEK further improves the effectiveness of ACDIF for fault feature extraction. Experimental results on the simulation and bearing vibration signals demonstrate that ACDIF can effectively suppress noise and extract periodic impulses from bearing vibration signals.
Brazenor, Alexander K; Saunders, Richard J; Miller, Terrence L; Hutson, Kate S
2018-02-01
Intra-species morphological variation presents a considerable problem for species identification and can result in taxonomic confusion. This is particularly pertinent for species of Neobenedenia which are harmful agents in captive fish populations and have historically been identified almost entirely based on morphological characters. This study aimed to understand how the morphology of Neobenedenia girellae varies with host fish species and the environment. Standard morphological features of genetically indistinct parasites from various host fish species were measured under controlled temperatures and salinities. An initial field-based investigation found that parasite morphology significantly differed between genetically indistinct parasites infecting various host fish species. The majority of the morphological variation observed (60%) was attributed to features that assist in parasite attachment to the host (i.e. the posterior and anterior attachment organs and their accessory hooks) which are important characters in monogenean taxonomy. We then experimentally examined the effects of the interaction between host fish species and environmental factors (temperature and salinity) on the morphology of isogenic parasites derived from a single, isolated hermaphroditic N. girellae infecting barramundi, Lates calcarifer. Experimental infection of L. calcarifer and cobia, Rachycentron canadum, under controlled laboratory conditions did not confer host-mediated phenotypic plasticity in N. girellae, suggesting that measured morphological differences could be adaptive and only occur over multiple parasite generations. Subsequent experimental infection of a single host species, L. calcarifer, at various temperatures (22, 30 and 32 °C) and salinities (35 and 40‰) showed that in the cooler environments (22 °C) N. girellae body proportions were significantly smaller compared with warmer temperatures (30 and 32 °C; P < 0.0001), whereas salinity had no effect. This is evidence that temperature can drive phenotypic plasticity in key taxonomic characters of N. girellae under certain environmental conditions. Copyright © 2017. Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Shi, Wenzhong; Deng, Susu; Xu, Wenbing
2018-02-01
For automatic landslide detection, landslide morphological features should be quantitatively expressed and extracted. High-resolution Digital Elevation Models (DEMs) derived from airborne Light Detection and Ranging (LiDAR) data allow fine-scale morphological features to be extracted, but noise in DEMs influences morphological feature extraction, and the multi-scale nature of landslide features should be considered. This paper proposes a method to extract landslide morphological features characterized by homogeneous spatial patterns. Both profile and tangential curvature are utilized to quantify land surface morphology, and a local Gi* statistic is calculated for each cell to identify significant patterns of clustering of similar morphometric values. The method was tested on both synthetic surfaces simulating natural terrain and airborne LiDAR data acquired over an area dominated by shallow debris slides and flows. The test results of the synthetic data indicate that the concave and convex morphologies of the simulated terrain features at different scales and distinctness could be recognized using the proposed method, even when random noise was added to the synthetic data. In the test area, cells with large local Gi* values were extracted at a specified significance level from the profile and the tangential curvature image generated from the LiDAR-derived 1-m DEM. The morphologies of landslide main scarps, source areas and trails were clearly indicated, and the morphological features were represented by clusters of extracted cells. A comparison with the morphological feature extraction method based on curvature thresholds proved the proposed method's robustness to DEM noise. When verified against a landslide inventory, the morphological features of almost all recent (< 5 years) landslides and approximately 35% of historical (> 10 years) landslides were extracted. This finding indicates that the proposed method can facilitate landslide detection, although the cell clusters extracted from curvature images should be filtered using a filtering strategy based on supplementary information provided by expert knowledge or other data sources.
NASA Astrophysics Data System (ADS)
Harzsch, S.; Dawirs, R. R.
1993-02-01
We investigated the morphology of the central nervous system throughout the larval development of Carcinus maenas. For that purpose single larvae were reared in the laboratory from hatching through metamorphosis. Complete series of whole mout semithin sections were obtained from individuals of all successive larval stages and analysed with a light microscope. Morphological feature and spatial arrangement of discernable neural cell clusters, fibre tracts and neuropile are described and compared with the adult pattern. We found that most of the morphological features characterizing the adult nervous system are already present in the zoea-1. Nevertheless, there are marked differences with respect to the arrangement of nerve cell bodies, organization of cerebral neuropile, and disposition of ganglia in the ventral nerve cord. It appears that complexity of the central nervous neuropile is selectively altered during postmetamorphotic development, probably reflecting adaptive changes of sensory-motor integration in response to behavioural maturation. In contrast, during larval development there was little change in the overall structural organization of the central nervous system despite some considerable growth. However, the transition from zoea-4 to megalopa brings about multiple fundamental changes in larval morphology and behavioural pattern. Since central nervous integration should properly adapt to the altered behavioural repertoire of the megalopa, it seems necessary to ask in which respect synaptic rearrangement might characterize development of the central nervous system.
Mechanical implications of the mandibular coronoid process morphology in Neandertals.
Marom, Assaf; Rak, Yoel
2018-06-01
Among the diagnostic features of the Neandertal mandible are the broad base of the coronoid process and its straight posterior margin. The adaptive value of these (and other) anatomical features has been linked to the Neandertal's need to cope with a large gape. The present study aims to test this hypothesis with regard to the morphology of the coronoid process. This admittedly simple, intuitive hypothesis was tested here via a comparative finite-element study of the primitive versus modified state of the coronoid process, using two-dimensional models of the mandible. Our simulations demonstrate that a large gape has an unfavorable effect on the primitive state of the coronoid process: the diagonal, almost horizontal, component of the temporalis muscle resultant (relative to the long axis of the coronoid process) bends the process in the sagittal plane. Furthermore, we show that the modification of the coronoid process morphology alone reduces the process' bending in a wide gape increasing the compression to tension ratio. These results provide indirect evidence in support of the hypothesis that the modification of the coronoid process in Neandertals is necessary for enabling their mandible to cope with a large gape. © 2018 Wiley Periodicals, Inc.
Real-time seam tracking control system based on line laser visions
NASA Astrophysics Data System (ADS)
Zou, Yanbiao; Wang, Yanbo; Zhou, Weilin; Chen, Xiangzhi
2018-07-01
A set of six-degree-of-freedom robotic welding automatic tracking platform was designed in this study to realize the real-time tracking of weld seams. Moreover, the feature point tracking method and the adaptive fuzzy control algorithm in the welding process were studied and analyzed. A laser vision sensor and its measuring principle were designed and studied, respectively. Before welding, the initial coordinate values of the feature points were obtained using morphological methods. After welding, the target tracking method based on Gaussian kernel was used to extract the real-time feature points of the weld. An adaptive fuzzy controller was designed to input the deviation value of the feature points and the change rate of the deviation into the controller. The quantization factors, scale factor, and weight function were adjusted in real time. The input and output domains, fuzzy rules, and membership functions were constantly updated to generate a series of smooth bias robot voltage. Three groups of experiments were conducted on different types of curve welds in a strong arc and splash noise environment using the welding current of 120 A short-circuit Metal Active Gas (MAG) Arc Welding. The tracking error was less than 0.32 mm and the sensor's metrical frequency can be up to 20 Hz. The end of the torch run smooth during welding. Weld trajectory can be tracked accurately, thereby satisfying the requirements of welding applications.
Huttunen, Sanna; Olsson, Sanna; Buchbender, Volker; Enroth, Johannes; Hedenäs, Lars; Quandt, Dietmar
2012-01-01
Adaptive evolution has often been proposed to explain correlations between habitats and certain phenotypes. In mosses, a high frequency of species with specialized sporophytic traits in exposed or epiphytic habitats was, already 100 years ago, suggested as due to adaptation. We tested this hypothesis by contrasting phylogenetic and morphological data from two moss families, Neckeraceae and Lembophyllaceae, both of which show parallel shifts to a specialized morphology and to exposed epiphytic or epilithic habitats. Phylogeny-based tests for correlated evolution revealed that evolution of four sporophytic traits is correlated with a habitat shift. For three of them, evolutionary rates of dual character-state changes suggest that habitat shifts appear prior to changes in morphology. This suggests that they could have evolved as adaptations to new habitats. Regarding the fourth correlated trait the specialized morphology had already evolved before the habitat shift. In addition, several other specialized "epiphytic" traits show no correlation with a habitat shift. Besides adaptive diversification, other processes thus also affect the match between phenotype and environment. Several potential factors such as complex genetic and developmental pathways yielding the same phenotypes, differences in strength of selection, or constraints in phenotypic evolution may lead to an inability of phylogeny-based comparative methods to detect potential adaptations.
Segmentation of vessel-like patterns using mathematical morphology and curvature evaluation.
Zana, F; Klein, J C
2001-01-01
This paper presents an algorithm based on mathematical morphology and curvature evaluation for the detection of vessel-like patterns in a noisy environment. Such patterns are very common in medical images. Vessel detection is interesting for the computation of parameters related to blood flow. Its tree-like geometry makes it a usable feature for registration between images that can be of a different nature. In order to define vessel-like patterns, segmentation is performed with respect to a precise model. We define a vessel as a bright pattern, piece-wise connected, and locally linear, mathematical morphology is very well adapted to this description, however other patterns fit such a morphological description. In order to differentiate vessels from analogous background patterns, a cross-curvature evaluation is performed. They are separated out as they have a specific Gaussian-like profile whose curvature varies smoothly along the vessel. The detection algorithm that derives directly from this modeling is based on four steps: (1) noise reduction; (2) linear pattern with Gaussian-like profile improvement; (3) cross-curvature evaluation; (4) linear filtering. We present its theoretical background and illustrate it on real images of various natures, then evaluate its robustness and its accuracy with respect to noise.
Morphological adaptation influences the evolution of a mating signal.
Ballentine, Barbara
2006-09-01
Theory predicts that forces of natural selection can reduce the intensity of sexually selected traits. In this study, I investigate how morphological adaptation to feeding ecology influences a mating signal. In birds, changes in feeding ecology can cause rapid divergence in bill morphology. Because bills are also important for song production, feeding ecology may influence song divergence. During song, birds can rapidly change vocal tract resonance using bill movement, yet are constrained in rate and magnitude of bill movements resulting in a trade-off between trill rate and frequency bandwidth. Male swamp sparrows vary in their ability to produce rapid, broad-band trills and females prefer more physically demanding songs. Populations of swamp sparrows adapted to the feeding ecology of tidal marshes have larger bills than inland populations. Larger bills should increase the constraints of producing rapid, broad-band trills allowing for a test of how changes in feeding ecology affect a feature of song used in mate choice. I found significant differences in acoustic features of song consistent with the hypothesis that coastal males are less able to meet the physical demands of song production because of the constraints of having larger bills. As possible compensation for decreases in song performance, coastal populations exhibit an increase in song complexity. These changes support the current model of how motor constraints influence song production and suggest a mechanism by which feeding ecology can influence signal evolution.
Yu, Kaixin; Wang, Xuetong; Li, Qiongling; Zhang, Xiaohui; Li, Xinwei; Li, Shuyu
2018-01-01
Morphological brain network plays a key role in investigating abnormalities in neurological diseases such as mild cognitive impairment (MCI) and Alzheimer's disease (AD). However, most of the morphological brain network construction methods only considered a single morphological feature. Each type of morphological feature has specific neurological and genetic underpinnings. A combination of morphological features has been proven to have better diagnostic performance compared with a single feature, which suggests that an individual morphological brain network based on multiple morphological features would be beneficial in disease diagnosis. Here, we proposed a novel method to construct individual morphological brain networks for two datasets by calculating the exponential function of multivariate Euclidean distance as the evaluation of similarity between two regions. The first dataset included 24 healthy subjects who were scanned twice within a 3-month period. The topological properties of these brain networks were analyzed and compared with previous studies that used different methods and modalities. Small world property was observed in all of the subjects, and the high reproducibility indicated the robustness of our method. The second dataset included 170 patients with MCI (86 stable MCI and 84 progressive MCI cases) and 169 normal controls (NC). The edge features extracted from the individual morphological brain networks were used to distinguish MCI from NC and separate MCI subgroups (progressive vs. stable) through the support vector machine in order to validate our method. The results showed that our method achieved an accuracy of 79.65% (MCI vs. NC) and 70.59% (stable MCI vs. progressive MCI) in a one-dimension situation. In a multiple-dimension situation, our method improved the classification performance with an accuracy of 80.53% (MCI vs. NC) and 77.06% (stable MCI vs. progressive MCI) compared with the method using a single feature. The results indicated that our method could effectively construct an individual morphological brain network based on multiple morphological features and could accurately discriminate MCI from NC and stable MCI from progressive MCI, and may provide a valuable tool for the investigation of individual morphological brain networks.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gaschen, Brian Keith; Bloch, Jeffrey Joseph; Porter, Reid
Morphological signatures of bulk SNM materials have significant promise, but these potential signatures are not fully utilized. This document describes software tools, collectively called the MAMA (Morphological Analysis for Material Attribution) software that can help provide robust and accurate quantification of morphological features in bulk material microscopy images (Optical, SEM). Although many of the specific tools are not unique to Mama, the software package has been designed specifically for nuclear material morphological analysis, and is at a point where it can be easily adapted (by Los Alamos or by collaborators) in response to new, different, or changing forensics needs. Themore » current release of the MAMA software only includes the image quantification, descriptions, and annotation functionality. Only limited information on a sample, its pedigree, and its chemistry are recorded inside this part of the software. This was decision based on initial feedback and the fact that there are several analytical chemistry databases being developed within the community. Currently MAMA is a standalone program that can export quantification results in a basic text format that can be imported into other programs such as Excel and Access. There is also a basic report generating feature that produces HTML formatted pages of the same information. We will be working with collaborators to provide better integration of MAMA into their particular systems, databases and workflows.« less
Li, Zheng-Zhou; Chen, Jing; Hou, Qian; Fu, Hong-Xia; Dai, Zhen; Jin, Gang; Li, Ru-Zhang; Liu, Chang-Ju
2014-01-01
It is difficult for structural over-complete dictionaries such as the Gabor function and discriminative over-complete dictionary, which are learned offline and classified manually, to represent natural images with the goal of ideal sparseness and to enhance the difference between background clutter and target signals. This paper proposes an infrared dim target detection approach based on sparse representation on a discriminative over-complete dictionary. An adaptive morphological over-complete dictionary is trained and constructed online according to the content of infrared image by K-singular value decomposition (K-SVD) algorithm. Then the adaptive morphological over-complete dictionary is divided automatically into a target over-complete dictionary describing target signals, and a background over-complete dictionary embedding background by the criteria that the atoms in the target over-complete dictionary could be decomposed more sparsely based on a Gaussian over-complete dictionary than the one in the background over-complete dictionary. This discriminative over-complete dictionary can not only capture significant features of background clutter and dim targets better than a structural over-complete dictionary, but also strengthens the sparse feature difference between background and target more efficiently than a discriminative over-complete dictionary learned offline and classified manually. The target and background clutter can be sparsely decomposed over their corresponding over-complete dictionaries, yet couldn't be sparsely decomposed based on their opposite over-complete dictionary, so their residuals after reconstruction by the prescribed number of target and background atoms differ very visibly. Some experiments are included and the results show that this proposed approach could not only improve the sparsity more efficiently, but also enhance the performance of small target detection more effectively. PMID:24871988
Li, Zheng-Zhou; Chen, Jing; Hou, Qian; Fu, Hong-Xia; Dai, Zhen; Jin, Gang; Li, Ru-Zhang; Liu, Chang-Ju
2014-05-27
It is difficult for structural over-complete dictionaries such as the Gabor function and discriminative over-complete dictionary, which are learned offline and classified manually, to represent natural images with the goal of ideal sparseness and to enhance the difference between background clutter and target signals. This paper proposes an infrared dim target detection approach based on sparse representation on a discriminative over-complete dictionary. An adaptive morphological over-complete dictionary is trained and constructed online according to the content of infrared image by K-singular value decomposition (K-SVD) algorithm. Then the adaptive morphological over-complete dictionary is divided automatically into a target over-complete dictionary describing target signals, and a background over-complete dictionary embedding background by the criteria that the atoms in the target over-complete dictionary could be decomposed more sparsely based on a Gaussian over-complete dictionary than the one in the background over-complete dictionary. This discriminative over-complete dictionary can not only capture significant features of background clutter and dim targets better than a structural over-complete dictionary, but also strengthens the sparse feature difference between background and target more efficiently than a discriminative over-complete dictionary learned offline and classified manually. The target and background clutter can be sparsely decomposed over their corresponding over-complete dictionaries, yet couldn't be sparsely decomposed based on their opposite over-complete dictionary, so their residuals after reconstruction by the prescribed number of target and background atoms differ very visibly. Some experiments are included and the results show that this proposed approach could not only improve the sparsity more efficiently, but also enhance the performance of small target detection more effectively.
Piscivory limits diversification of feeding morphology in centrarchid fishes.
Collar, David C; O'Meara, Brian C; Wainwright, Peter C; Near, Thomas J
2009-06-01
Proximity to an adaptive peak influences a lineage's potential to diversify. We tested whether piscivory, a high quality but functionally demanding trophic strategy, represents an adaptive peak that limits morphological diversification in the teleost fish clade, Centrarchidae. We synthesized published diet data and applied a well-resolved, multilocus and time-calibrated phylogeny to reconstruct ancestral piscivory. We measured functional features of the skull and performed principal components analysis on species' values for these variables. To assess the role of piscivory on morphological diversification, we compared the fit of several models of evolution for each principal component (PC), where model parameters were allowed to vary between lineages that differed in degree of piscivory. According to the best-fitting model, two adaptive peaks influenced PC 1 evolution, one peak shared between highly and moderately piscivorous lineages and another for nonpiscivores. Brownian motion better fit PCs 2, 3, and 4, but the best Brownian models infer a slow rate of PC 2 evolution shared among all piscivores and a uniquely slow rate of PC 4 evolution in highly piscivorous lineages. These results suggest that piscivory limits feeding morphology diversification, but this effect is most severe in lineages that exhibit an extreme form of this diet.
Adaptive bill morphology for enhanced tool manipulation in New Caledonian crows
Matsui, Hiroshi; Hunt, Gavin R.; Oberhofer, Katja; Ogihara, Naomichi; McGowan, Kevin J.; Mithraratne, Kumar; Yamasaki, Takeshi; Gray, Russell D.; Izawa, Ei-Ichi
2016-01-01
Early increased sophistication of human tools is thought to be underpinned by adaptive morphology for efficient tool manipulation. Such adaptive specialisation is unknown in nonhuman primates but may have evolved in the New Caledonian crow, which has sophisticated tool manufacture. The straightness of its bill, for example, may be adaptive for enhanced visually-directed use of tools. Here, we examine in detail the shape and internal structure of the New Caledonian crow’s bill using Principal Components Analysis and Computed Tomography within a comparative framework. We found that the bill has a combination of interrelated shape and structural features unique within Corvus, and possibly birds generally. The upper mandible is relatively deep and short with a straight cutting edge, and the lower mandible is strengthened and upturned. These novel combined attributes would be functional for (i) counteracting the unique loading patterns acting on the bill when manipulating tools, (ii) a strong precision grip to hold tools securely, and (iii) enhanced visually-guided tool use. Our findings indicate that the New Caledonian crow’s innovative bill has been adapted for tool manipulation to at least some degree. Early increased sophistication of tools may require the co-evolution of morphology that provides improved manipulatory skills. PMID:26955788
Towards automated processing of clinical Finnish: sublanguage analysis and a rule-based parser.
Laippala, Veronika; Ginter, Filip; Pyysalo, Sampo; Salakoski, Tapio
2009-12-01
In this paper, we present steps taken towards more efficient automated processing of clinical Finnish, focusing on daily nursing notes in a Finnish Intensive Care Unit (ICU). First, we analyze ICU Finnish as a sublanguage, identifying its specific features facilitating, for example, the development of a specialized syntactic analyser. The identified features include frequent omission of finite verbs, limitations in allowed syntactic structures, and domain-specific vocabulary. Second, we develop a formal grammar and a parser for ICU Finnish, thus providing better tools for the development of further applications in the clinical domain. The grammar is implemented in the LKB system in a typed feature structure formalism. The lexicon is automatically generated based on the output of the FinTWOL morphological analyzer adapted to the clinical domain. As an additional experiment, we study the effect of using Finnish constraint grammar to reduce the size of the lexicon. The parser construction thus makes efficient use of existing resources for Finnish. The grammar currently covers 76.6% of ICU Finnish sentences, producing highly accurate best-parse analyzes with F-score of 91.1%. We find that building a parser for the highly specialized domain sublanguage is not only feasible, but also surprisingly efficient, given an existing morphological analyzer with broad vocabulary coverage. The resulting parser enables a deeper analysis of the text than was previously possible.
Adaptive significance of avian beak morphology for ectoparasite control
Clayton, Dale H; Moyer, Brett R; Bush, Sarah E; Jones, Tony G; Gardiner, David W; Rhodes, Barry B; Goller, Franz
2005-01-01
The beaks of Darwin's finches and other birds are among the best known examples of adaptive evolution. Beak morphology is usually interpreted in relation to its critical role in feeding. However, the beak also plays an important role in preening, which is the first line of defence against harmful ectoparasites such as feather lice, fleas, bugs, flies, ticks and feather mites. Here, we show a feature of the beak specifically adapted for ectoparasite control. Experimental trimming of the tiny (1–2 mm) maxillary overhang of rock pigeons (Columba livia) had no effect on feeding efficiency, yet triggered a dramatic increase in feather lice and the feather damage they cause. The overhang functions by generating a shearing force against the tip of the lower mandible, which moves forward remarkably quickly during preening, at up to 31 times per second. This force damages parasite exoskeletons, significantly enhancing the efficiency of preening for parasite control. Overhangs longer than the natural mean of 1.6 mm break significantly more often than short overhangs. Hence, stabilizing selection will favour overhangs of intermediate length. The adaptive radiation of beak morphology should be re-assessed with both feeding and preening in mind. PMID:15888414
An efficient cloud detection method for high resolution remote sensing panchromatic imagery
NASA Astrophysics Data System (ADS)
Li, Chaowei; Lin, Zaiping; Deng, Xinpu
2018-04-01
In order to increase the accuracy of cloud detection for remote sensing satellite imagery, we propose an efficient cloud detection method for remote sensing satellite panchromatic images. This method includes three main steps. First, an adaptive intensity threshold value combined with a median filter is adopted to extract the coarse cloud regions. Second, a guided filtering process is conducted to strengthen the textural features difference and then we conduct the detection process of texture via gray-level co-occurrence matrix based on the acquired texture detail image. Finally, the candidate cloud regions are extracted by the intersection of two coarse cloud regions above and we further adopt an adaptive morphological dilation to refine them for thin clouds in boundaries. The experimental results demonstrate the effectiveness of the proposed method.
Fission gas bubble identification using MATLAB's image processing toolbox
DOE Office of Scientific and Technical Information (OSTI.GOV)
Collette, R.; King, J.; Keiser, Jr., D.
Automated image processing routines have the potential to aid in the fuel performance evaluation process by eliminating bias in human judgment that may vary from person-to-person or sample-to-sample. In addition, this study presents several MATLAB based image analysis routines designed for fission gas void identification in post-irradiation examination of uranium molybdenum (U–Mo) monolithic-type plate fuels. Frequency domain filtration, enlisted as a pre-processing technique, can eliminate artifacts from the image without compromising the critical features of interest. This process is coupled with a bilateral filter, an edge-preserving noise removal technique aimed at preparing the image for optimal segmentation. Adaptive thresholding provedmore » to be the most consistent gray-level feature segmentation technique for U–Mo fuel microstructures. The Sauvola adaptive threshold technique segments the image based on histogram weighting factors in stable contrast regions and local statistics in variable contrast regions. Once all processing is complete, the algorithm outputs the total fission gas void count, the mean void size, and the average porosity. The final results demonstrate an ability to extract fission gas void morphological data faster, more consistently, and at least as accurately as manual segmentation methods.« less
Fission gas bubble identification using MATLAB's image processing toolbox
Collette, R.; King, J.; Keiser, Jr., D.; ...
2016-06-08
Automated image processing routines have the potential to aid in the fuel performance evaluation process by eliminating bias in human judgment that may vary from person-to-person or sample-to-sample. In addition, this study presents several MATLAB based image analysis routines designed for fission gas void identification in post-irradiation examination of uranium molybdenum (U–Mo) monolithic-type plate fuels. Frequency domain filtration, enlisted as a pre-processing technique, can eliminate artifacts from the image without compromising the critical features of interest. This process is coupled with a bilateral filter, an edge-preserving noise removal technique aimed at preparing the image for optimal segmentation. Adaptive thresholding provedmore » to be the most consistent gray-level feature segmentation technique for U–Mo fuel microstructures. The Sauvola adaptive threshold technique segments the image based on histogram weighting factors in stable contrast regions and local statistics in variable contrast regions. Once all processing is complete, the algorithm outputs the total fission gas void count, the mean void size, and the average porosity. The final results demonstrate an ability to extract fission gas void morphological data faster, more consistently, and at least as accurately as manual segmentation methods.« less
Morphological filtering and multiresolution fusion for mammographic microcalcification detection
NASA Astrophysics Data System (ADS)
Chen, Lulin; Chen, Chang W.; Parker, Kevin J.
1997-04-01
Mammographic images are often of relatively low contrast and poor sharpness with non-stationary background or clutter and are usually corrupted by noise. In this paper, we propose a new method for microcalcification detection using gray scale morphological filtering followed by multiresolution fusion and present a unified general filtering form called the local operating transformation for whitening filtering and adaptive thresholding. The gray scale morphological filters are used to remove all large areas that are considered as non-stationary background or clutter variations, i.e., to prewhiten images. The multiresolution fusion decision is based on matched filter theory. In addition to the normal matched filter, the Laplacian matched filter which is directly related through the wavelet transforms to multiresolution analysis is exploited for microcalcification feature detection. At the multiresolution fusion stage, the region growing techniques are used in each resolution level. The parent-child relations between resolution levels are adopted to make final detection decision. FROC is computed from test on the Nijmegen database.
Variation in tooth morphology of Gorilla gorilla.
Uchida, A
1998-01-01
Gorilla gorilla exemplifies a species that shows considerable variation in habitat, behaviour, genetic structure and morphology. This study examines variation of dental morphology in gorillas. Despite the marked size dimorphism, there are no significant shape differences between the sexes within subspecies. Differences in dental morphology, including tooth cusp proportions between the western G. g. gorilla and the eastern G. g. beringei are considerable. Although more similar to G. g. beringei than to the western G. g. gorilla, G. g. graueri also shows distinct morphological features. This indicates that the morphology of G. g. graueri is not merely intermediate, and genetic isolation between the two eastern subspecies could have had a substantial influence. Such extensive variation in dental morphology in Gorilla gorilla can be considered to be the result of an interesting combination of factors, including local dietary adaptations.
Glioma grading using cell nuclei morphologic features in digital pathology images
NASA Astrophysics Data System (ADS)
Reza, Syed M. S.; Iftekharuddin, Khan M.
2016-03-01
This work proposes a computationally efficient cell nuclei morphologic feature analysis technique to characterize the brain gliomas in tissue slide images. In this work, our contributions are two-fold: 1) obtain an optimized cell nuclei segmentation method based on the pros and cons of the existing techniques in literature, 2) extract representative features by k-mean clustering of nuclei morphologic features to include area, perimeter, eccentricity, and major axis length. This clustering based representative feature extraction avoids shortcomings of extensive tile [1] [2] and nuclear score [3] based methods for brain glioma grading in pathology images. Multilayer perceptron (MLP) is used to classify extracted features into two tumor types: glioblastoma multiforme (GBM) and low grade glioma (LGG). Quantitative scores such as precision, recall, and accuracy are obtained using 66 clinical patients' images from The Cancer Genome Atlas (TCGA) [4] dataset. On an average ~94% accuracy from 10 fold crossvalidation confirms the efficacy of the proposed method.
Nurzaman, Surya G.
2016-01-01
Sensor morphology, the morphology of a sensing mechanism which plays a role of shaping the desired response from physical stimuli from surroundings to generate signals usable as sensory information, is one of the key common aspects of sensing processes. This paper presents a structured review of researches on bioinspired sensor morphology implemented in robotic systems, and discusses the fundamental design principles. Based on literature review, we propose two key arguments: first, owing to its synthetic nature, biologically inspired robotics approach is a unique and powerful methodology to understand the role of sensor morphology and how it can evolve and adapt to its task and environment. Second, a consideration of an integrative view of perception by looking into multidisciplinary and overarching mechanisms of sensor morphology adaptation across biology and engineering enables us to extract relevant design principles that are important to extend our understanding of the unfinished concepts in sensing and perception. PMID:27499843
Anhydrobiosis in tardigrades--the last decade.
Wełnicz, Weronika; Grohme, Markus A; Kaczmarek, Lukasz; Schill, Ralph O; Frohme, Marcus
2011-05-01
The current state of knowledge about anhydrobiosis in tardigrades is presented. In response to adverse environmental conditions tardigrades arrest their metabolic activity and after complete dehydration enter the so-called "tun" state. In this ametabolic state they are able to tolerate exposure to various chemical and physical extremes. These micrometazoans have evolved various kinds of morphological, physiological and molecular adaptations to reduce the effects of desiccation. In this review we address behavioral adaptation, morphological features and molecules which determine the anhydrobiotic survival. The influence of the time spent in anhydrobiotic state on the lifespan and DNA and the role of the antioxidant defense system are also considered. Finally we summarize recent input from the "omics" sciences. Copyright © 2011 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Chen, Hai-Wen; McGurr, Mike
2016-05-01
We have developed a new way for detection and tracking of human full-body and body-parts with color (intensity) patch morphological segmentation and adaptive thresholding for security surveillance cameras. An adaptive threshold scheme has been developed for dealing with body size changes, illumination condition changes, and cross camera parameter changes. Tests with the PETS 2009 and 2014 datasets show that we can obtain high probability of detection and low probability of false alarm for full-body. Test results indicate that our human full-body detection method can considerably outperform the current state-of-the-art methods in both detection performance and computational complexity. Furthermore, in this paper, we have developed several methods using color features for detection and tracking of human body-parts (arms, legs, torso, and head, etc.). For example, we have developed a human skin color sub-patch segmentation algorithm by first conducting a RGB to YIQ transformation and then applying a Subtractive I/Q image Fusion with morphological operations. With this method, we can reliably detect and track human skin color related body-parts such as face, neck, arms, and legs. Reliable body-parts (e.g. head) detection allows us to continuously track the individual person even in the case that multiple closely spaced persons are merged. Accordingly, we have developed a new algorithm to split a merged detection blob back to individual detections based on the detected head positions. Detected body-parts also allow us to extract important local constellation features of the body-parts positions and angles related to the full-body. These features are useful for human walking gait pattern recognition and human pose (e.g. standing or falling down) estimation for potential abnormal behavior and accidental event detection, as evidenced with our experimental tests. Furthermore, based on the reliable head (face) tacking, we have applied a super-resolution algorithm to enhance the face resolution for improved human face recognition performance.
THE SKIN | Functional morphology of the integumentary system in fishes
Elliott, D.G.; Farrell, Anthony P.
2011-01-01
The integument that covers the outer surface of a fish’s body and fins is a multifunctional organ, with morphological features highly adapted to carry out these functions. The integument consists of two layers. The outer layer, the epidermis, is essentially cellular in structure, comprised of a multilayered epithelium that usually includes specialized cells. The inner layer, the dermis, is primarily a fibrous structure with relatively few cells, although it may contain scales, nerves, blood vessels, adipose tissue, and pigment cells.
Forested wetlands of the Southern United States: a bibliography
William H. Conner; Nicole L. Hill; Evander M. Whitehead; William S. Busbee; Marceau A. Ratard; Mehmet Ozalp; Darrel L. Smith; James P. Marshall
2001-01-01
The term forested wetland covers a variety of forest types including mangroves, cypress/tupelo swamps, bottomland hardwoods, pocosins and Carolina bays, flatwoods, and mountain fens. These forests are dominated by woody species that have morphological features, physiological adaptations, and/or reproductive strategies enabling them to achieve maturity and reproduce in...
Fractal branching organizations of Ediacaran rangeomorph fronds reveal a lost Proterozoic body plan.
Hoyal Cuthill, Jennifer F; Conway Morris, Simon
2014-09-09
The branching morphology of Ediacaran rangeomorph fronds has no exact counterpart in other complex macroorganisms. As such, these fossils pose major questions as to growth patterns, functional morphology, modes of feeding, and adaptive optimality. Here, using parametric Lindenmayer systems, a formal model of rangeomorph morphologies reveals a fractal body plan characterized by self-similar, axial, apical, alternate branching. Consequent morphological reconstruction for 11 taxa demonstrates an adaptive radiation based on 3D space-filling strategies. The fractal body plan of rangeomorphs is shown to maximize surface area, consistent with diffusive nutrient uptake from the water column (osmotrophy). The enigmas of rangeomorph morphology, evolution, and extinction are resolved by the realization that they were adaptively optimized for unique ecological and geochemical conditions in the late Proterozoic. Changes in ocean conditions associated with the Cambrian explosion sealed their fate.
Cirujeda, Pol; Muller, Henning; Rubin, Daniel; Aguilera, Todd A; Loo, Billy W; Diehn, Maximilian; Binefa, Xavier; Depeursinge, Adrien
2015-01-01
In this paper we present a novel technique for characterizing and classifying 3D textured volumes belonging to different lung tissue types in 3D CT images. We build a volume-based 3D descriptor, robust to changes of size, rigid spatial transformations and texture variability, thanks to the integration of Riesz-wavelet features within a Covariance-based descriptor formulation. 3D Riesz features characterize the morphology of tissue density due to their response to changes in intensity in CT images. These features are encoded in a Covariance-based descriptor formulation: this provides a compact and flexible representation thanks to the use of feature variations rather than dense features themselves and adds robustness to spatial changes. Furthermore, the particular symmetric definite positive matrix form of these descriptors causes them to lay in a Riemannian manifold. Thus, descriptors can be compared with analytical measures, and accurate techniques from machine learning and clustering can be adapted to their spatial domain. Additionally we present a classification model following a "Bag of Covariance Descriptors" paradigm in order to distinguish three different nodule tissue types in CT: solid, ground-glass opacity, and healthy lung. The method is evaluated on top of an acquired dataset of 95 patients with manually delineated ground truth by radiation oncology specialists in 3D, and quantitative sensitivity and specificity values are presented.
A new hero emerges: another exceptional mammalian spine and its potential adaptive significance.
Stanley, William T; Robbins, Lynn W; Malekani, Jean M; Mbalitini, Sylvestre Gambalemoke; Migurimu, Dudu Akaibe; Mukinzi, Jean Claude; Hulselmans, Jan; Prévot, Vanya; Verheyen, Erik; Hutterer, Rainer; Doty, Jeffrey B; Monroe, Benjamin P; Nakazawa, Yoshinori J; Braden, Zachary; Carroll, Darin; Peterhans, Julian C Kerbis; Bates, John M; Esselstyn, Jacob A
2013-10-23
The hero shrew's (Scutisorex somereni) massive interlocking lumbar vertebrae represent the most extreme modification of the vertebral column known in mammals. No intermediate form of this remarkable morphology is known, nor is there any convincing theory to explain its functional significance. We document a new species in the heretofore monotypic genus Scutisorex; the new species possesses cranial and vertebral features representing intermediate character states between S. somereni and other shrews. Phylogenetic analyses of DNA sequences support a sister relationship between the new species and S. somereni. While the function of the unusual spine in Scutisorex is unknown, it gives these small animals incredible vertebral strength. Based on field observations, we hypothesize that the unique vertebral column is an adaptation allowing these shrews to lever heavy or compressive objects to access concentrated food resources inaccessible to other animals.
NASA Astrophysics Data System (ADS)
Monteys, X.; Guinan, J.; Green, S.; Gafeira, J.; Dove, D.; Baeten, N. J.; Thorsnes, T.
2017-12-01
Marine geomorphological mapping is an effective means of characterising and understanding the seabed and its features with direct relevance to; offshore infrastructure placement, benthic habitat mapping, conservation & policy, marine spatial planning, fisheries management and pure research. Advancements in acoustic survey techniques and data processing methods resulting in the availability of high-resolution marine datasets e.g. multibeam echosounder bathymetry and shallow seismic mean that geological interpretations can be greatly improved by combining with geomorphological maps. Since December 2015, representatives from the national seabed mapping programmes of Norway (MAREANO), Ireland (INFOMAR) and the United Kingdom (MAREMAP) have collaborated and established the MIM geomorphology working group) with the common aim of advancing best practice for geological mapping in their adjoining sea areas in north-west Europe. A recently developed two-part classification system for Seabed Geomorphology (`Morphology' and Geomorphology') has been established as a result of an initiative led by the British Geological Survey (BGS) with contributions from the MIM group (Dove et al. 2016). To support the scheme, existing BGS GIS tools (SIGMA) have been adapted to apply this two-part classification system and here we present on the tools effectiveness in mapping geomorphological features, along with progress in harmonising the classification and feature nomenclature. Recognising that manual mapping of seabed features can be time-consuming and subjective, semi-automated approaches for mapping seabed features and improving mapping efficiency is being developed using Arc-GIS based tools. These methods recognise, spatially delineate and morphologically describe seabed features such as pockmarks (Gafeira et al., 2012) and cold-water coral mounds. Such tools utilise multibeam echosounder data or any other bathymetric dataset (e.g. 3D seismic, Geldof et al., 2014) that can produce a depth digital model. The tools have the capability to capture an extensive list of morphological attributes. The MIM geomorphology working group's strategy to develop methods for more efficient marine geomorphological mapping is presented with data examples and case studies showing the latest results.
Klijn, Marieke E; Hubbuch, Jürgen
2018-04-27
Protein phase diagrams are a tool to investigate cause and consequence of solution conditions on protein phase behavior. The effects are scored according to aggregation morphologies such as crystals or amorphous precipitates. Solution conditions affect morphological features, such as crystal size, as well as kinetic features, such as crystal growth time. Common used data visualization techniques include individual line graphs or symbols-based phase diagrams. These techniques have limitations in terms of handling large datasets, comprehensiveness or completeness. To eliminate these limitations, morphological and kinetic features obtained from crystallization images generated with high throughput microbatch experiments have been visualized with radar charts in combination with the empirical phase diagram (EPD) method. Morphological features (crystal size, shape, and number, as well as precipitate size) and kinetic features (crystal and precipitate onset and growth time) are extracted for 768 solutions with varying chicken egg white lysozyme concentration, salt type, ionic strength and pH. Image-based aggregation morphology and kinetic features were compiled into a single and easily interpretable figure, thereby showing that the EPD method can support high throughput crystallization experiments in its data amount as well as its data complexity. Copyright © 2018. Published by Elsevier Inc.
Messu Mandeng, Françoise D; Bilong Bilong, Charles F; Pariselle, Antoine; Vanhove, Maarten P M; Bitja Nyom, Arnold R; Agnèse, Jean-François
2015-11-10
Parasite switches to new host species are of fundamental scientific interest and may be considered an important speciation mechanism. For numerous monogenean fish parasites, infecting different hosts is associated with morphological adaptations, in particular of the attachment organ (haptor). However, haptoral morphology in Cichlidogyrus spp. (Monogenea, Dactylogyridea), parasites of African cichlids, has been mainly linked to phylogenetic rather than to host constraints. Here we determined the position of Cichlidogyrus amieti, a parasite of species of Aphyosemion (Cyprinodontiformes, Nothobranchiidae) in the phylogeny of its congeners in order to infer its origin and assess the morphological changes associated with host-switching events. The DNA of specimens of C. amieti isolated from Aphyosemion cameronense in Cameroon was sequenced and analyzed together with that of Cichlidogyrus spp. from cichlid hosts. In order to highlight the influence of the lateral transfer of C. amieti on the haptoral sclerotised parts we performed a Principal Component Analysis (PCA) to compare the attachment organ structure of C. amieti to that of congeners infecting cichlids. Cichlidogyrus amieti was found to be nested within a strongly supported clade of species described from Hemichromis spp. (i.e. C. longicirrus and C. dracolemma). This clade is located at a derived position of the tree, suggesting that C. amieti transferred from cichlids to Cyprinodontiformes and not inversely. The morphological similarity between features of their copulatory organs suggested that C. amieti shares a recent ancestor with C. dracolemma. It also indicates that in this case, these organs do not seem subjected to strong divergent selection pressure. On the other hand, there are substantial differences in haptoral morphology between C. amieti and all of its closely related congeners described from Hemichromis spp.. Our study provides new evidence supporting the hypothesis of the adaptive nature of haptor morphology. It demonstrates this adaptive component for the first time within Cichlidogyrus, the attachment organs of which were usually considered to be mainly phylogenetically constrained.
Measurements of Cuspal Slope Inclination Angles in Palaeoanthropological Applications
NASA Astrophysics Data System (ADS)
Gaboutchian, A. V.; Knyaz, V. A.; Leybova, N. A.
2017-05-01
Tooth crown morphological features, studied in palaeoanthropology, provide valuable information about human evolution and development of civilization. Tooth crown morphology represents biological and historical data of high taxonomical value as it characterizes genetically conditioned tooth relief features averse to substantial changes under environmental factors during lifetime. Palaeoanthropological studies are still based mainly on descriptive techniques and manual measurements of limited number of morphological parameters. Feature evaluation and measurement result analysis are expert-based. Development of new methods and techniques in 3D imaging creates a background provides for better value of palaeoanthropological data processing, analysis and distribution. The goals of the presented research are to propose new features for automated odontometry and to explore their applicability to paleoanthropological studies. A technique for automated measuring of given morphological tooth parameters needed for anthropological study is developed. It is based on using original photogrammetric system as a teeth 3D models acquisition device and on a set of algorithms for given tooth parameters estimation.
NASA Astrophysics Data System (ADS)
Chitchian, Shahab; Vincent, Kathleen L.; Vargas, Gracie; Motamedi, Massoud
2012-11-01
We have explored the use of optical coherence tomography (OCT) as a noninvasive tool for assessing the toxicity of topical microbicides, products used to prevent HIV, by monitoring the integrity of the vaginal epithelium. A novel feature-based segmentation algorithm using a nearest-neighbor classifier was developed to monitor changes in the morphology of vaginal epithelium. The two-step automated algorithm yielded OCT images with a clearly defined epithelial layer, enabling differentiation of normal and damaged tissue. The algorithm was robust in that it was able to discriminate the epithelial layer from underlying stroma as well as residual microbicide product on the surface. This segmentation technique for OCT images has the potential to be readily adaptable to the clinical setting for noninvasively defining the boundaries of the epithelium, enabling quantifiable assessment of microbicide-induced damage in vaginal tissue.
Content-based cell pathology image retrieval by combining different features
NASA Astrophysics Data System (ADS)
Zhou, Guangquan; Jiang, Lu; Luo, Limin; Bao, Xudong; Shu, Huazhong
2004-04-01
Content Based Color Cell Pathology Image Retrieval is one of the newest computer image processing applications in medicine. Recently, some algorithms have been developed to achieve this goal. Because of the particularity of cell pathology images, the result of the image retrieval based on single characteristic is not satisfactory. A new method for pathology image retrieval by combining color, texture and morphologic features to search cell images is proposed. Firstly, nucleus regions of leukocytes in images are automatically segmented by K-mean clustering method. Then single leukocyte region is detected by utilizing thresholding algorithm segmentation and mathematics morphology. The features that include color, texture and morphologic features are extracted from single leukocyte to represent main attribute in the search query. The features are then normalized because the numerical value range and physical meaning of extracted features are different. Finally, the relevance feedback system is introduced. So that the system can automatically adjust the weights of different features and improve the results of retrieval system according to the feedback information. Retrieval results using the proposed method fit closely with human perception and are better than those obtained with the methods based on single feature.
Tokita, Masayoshi; Yano, Wataru; James, Helen F.
2017-01-01
Adaptive radiation is the rapid evolution of morphologically and ecologically diverse species from a single ancestor. The two classic examples of adaptive radiation are Darwin's finches and the Hawaiian honeycreepers, which evolved remarkable levels of adaptive cranial morphological variation. To gain new insights into the nature of their diversification, we performed comparative three-dimensional geometric morphometric analyses based on X-ray microcomputed tomography (µCT) scanning of dried cranial skeletons. We show that cranial shapes in both Hawaiian honeycreepers and Coerebinae (Darwin's finches and their close relatives) are much more diverse than in their respective outgroups, but Hawaiian honeycreepers as a group display the highest diversity and disparity of all other bird groups studied. We also report a significant contribution of allometry to skull shape variation, and distinct patterns of evolutionary change in skull morphology in the two lineages of songbirds that underwent adaptive radiation on oceanic islands. These findings help to better understand the nature of adaptive radiations in general and provide a foundation for future investigations on the developmental and molecular mechanisms underlying diversification of these morphologically distinguished groups of birds. This article is part of the themed issue ‘Evo-devo in the genomics era, and the origins of morphological diversity’. PMID:27994122
Selby, Michael S; Simpson, Scott W; Lovejoy, C Owen
2016-05-01
Previously, we described several features of the carpometacarpal joints in extant large-bodied apes that are likely adaptations to the functional demands of vertical climbing and suspension. We observed that all hominids, including modern humans and the 4.4-million-year-old hominid Ardipithecus ramidus, lacked these features. Here, we assess the uniqueness of these features in a large sample of monkey, ape, and human hands. These new data provide additional insights into the functional adaptations and evolution of the anthropoid hand. Our survey highlights a series of anatomical adaptations that restrict motion between the second and third metacarpals (MC2 and MC3) and their associated carpals in extant apes, achieved via joint reorganization and novel energy dissipation mechanisms. Their hamate-MC4 and -MC5 joint surface morphologies suggest limited mobility, at least in Pan. Gibbons and spider monkeys have several characters (angled MC3, complex capitate-MC3 joint topography, variably present capitate-MC3 ligaments) that suggest functional convergence in response to suspensory locomotion. Baboons have carpometacarpal morphology suggesting flexion/extension at these joints beyond that observed in most other Old World monkeys, probably as an energy dissipating mechanism minimizing collision forces during terrestrial locomotion. All hominids lack these specializations of the extant great apes, suggesting that vertical climbing was never a central feature of our ancestral locomotor repertoire. Furthermore, the reinforced carpometacarpus of vertically climbing African apes was likely appropriated for knuckle-walking in concert with other novel potential energy dissipating mechanisms. The most parsimonious explanation of the structural similarity of these carpometacarpal specializations in great apes is that they evolved independently. © 2016 Wiley Periodicals, Inc.
Alba, David M.; Almécija, Sergio; Casanovas-Vilar, Isaac; Méndez, Josep M.; Moyà-Solà, Salvador
2012-01-01
The extinct dryopithecine Hispanopithecus (Primates: Hominidae), from the Late Miocene of Europe, is the oldest fossil great ape displaying an orthograde body plan coupled with unambiguous suspensory adaptations. On the basis of hand morphology, Hispanopithecus laietanus has been considered to primitively retain adaptations to above-branch quadrupedalism–thus displaying a locomotor repertoire unknown among extant or fossil hominoids, which has been considered unlikely by some researchers. Here we describe a partial skeleton of H. laietanus from the Vallesian (MN9) locality of Can Feu 1 (Vallès-Penedès Basin, NE Iberian Peninsula), with an estimated age of 10.0-9.7 Ma. It includes dentognathic and postcranial remains of a single, female adult individual, with an estimated body mass of 22–25 kg. The postcranial remains of the rib cage, shoulder girdle and forelimb show a mixture of monkey-like and modern-hominoid-like features. In turn, the proximal morphology of the ulna–most completely preserved in the Can Feu skeleton than among previously-available remains–indicates the possession of an elbow complex suitable for preserving stability along the full range of flexion/extension and enabling a broad range of pronation/supination. Such features, suitable for suspensory behaviors, are however combined with an olecranon morphology that is functionally related to quadrupedalism. Overall, when all the available postcranial evidence for H. laietanus is considered, it emerges that this taxon displayed a locomotor repertoire currently unknown among other apes (extant or extinct alike), uniquely combining suspensory-related features with primitively-retained adaptations to above-branch palmigrady. Despite phylogenetic uncertainties, Hispanopithecus is invariably considered an extinct member of the great-ape-and-human clade. Therefore, the combination of quadrupedal and suspensory adaptations in this Miocene crown hominoid clearly evidences the mosaic nature of locomotor evolution in the Hominoidea, as well as the impossibility to reconstruct the ancestral locomotor repertoires for crown hominoid subclades on the basis of extant taxa alone. PMID:22761844
[About the signs of malignant pheochromocytoma].
Simonenko, V B; Makanin, M A; Dulin, P A; Vasilchenko, M I; Lesovik, V S
2012-01-01
Morphological criteria for malignant pheochromocytoma remain to be developed According to the WHO recommendations, the sole absolute criteria is the presence of metastases in the organs normally containing no chromaffin tissue. Such signs as cellular and nuclear polymorphism, mytotic activity, vascular invasion, capsular ingrowth are not sufficient to describe a pheochromocytoma as malignant. It is equally dfficult to differentiate between malignant and benign tumours based on histological data since histologically mature neoplasms can produce metastases. Based on the results of original studies, the authors believe that such histological features as vascular and capsular invasion do not necessarily suggest unfavourable prognosis. Therefore, the conclusion of malignancy based on such features can not be regarded as absolute. Probably such neoplasms should be called "pheochromocytomas with morphological signs of malignant growths". They should be referred to the tumours with uncertain malignancy potential based on the known discrepancy between morphological structure and biological activity of neoplasms. Comparative studies of clinical and morphological features of pheochromocytomas showed that their histological type (alveolar; solid, dyscomplexed, trabecular) and morphological signs of malignant growth influence both the clinical picture and arterial hypertension. There are no significant relationship between the above morphological signs, timour mass and clinical manifestations of pheochromocytomas.
Who wins in the weaning process? Juvenile feeding morphology of two freshwater mussel species.
Araujo, Rafael; Campos, Miquel; Feo, Carles; Varela, Catuxa; Soler, Joaquín; Ondina, Paz
2018-01-01
The global decline of freshwater mussels can be partially attributed to their complex life cycle. Their survival from glochidium to adulthood is like a long obstacle race, with juvenile mortality as a key critical point. Mass mortality shortly after entering into a juvenile state has been reported in both wild and captive populations, thus weakening the effective bivalve population. A similar phenomenon occurs during metamorphosis in natural and hatchery populations of juvenile marine bivalves. Based on a morphological analysis using scanning electron microscopy of newly formed juveniles of the freshwater species Margaritifera margaritifera (L.) (Margaritiferidae) and Unio mancus Lamarck (Unionidae), we show that a second metamorphosis, consisting of drastic morphological changes, occurs that leads to suspension feeding in place of deposit feeding by the ciliated foot. We hypothesize that suspension feeding in these two species improves due to a gradual development of several morphological features including the contact between cilia of the inner gill posterior filaments, the inner gill reflection, the appearance of the ctenidial ventral groove and the formation of the pedal palps. Regardless of the presence of available food, a suspension feeding mode replaces deposit feeding, and juveniles unable to successfully transition morphologically or adapt to the feeding changes likely perish. © 2017 Wiley Periodicals, Inc.
FUN3D Grid Refinement and Adaptation Studies for the Ares Launch Vehicle
NASA Technical Reports Server (NTRS)
Bartels, Robert E.; Vasta, Veer; Carlson, Jan-Renee; Park, Mike; Mineck, Raymond E.
2010-01-01
This paper presents grid refinement and adaptation studies performed in conjunction with computational aeroelastic analyses of the Ares crew launch vehicle (CLV). The unstructured grids used in this analysis were created with GridTool and VGRID while the adaptation was performed using the Computational Fluid Dynamic (CFD) code FUN3D with a feature based adaptation software tool. GridTool was developed by ViGYAN, Inc. while the last three software suites were developed by NASA Langley Research Center. The feature based adaptation software used here operates by aligning control volumes with shock and Mach line structures and by refining/de-refining where necessary. It does not redistribute node points on the surface. This paper assesses the sensitivity of the complex flow field about a launch vehicle to grid refinement. It also assesses the potential of feature based grid adaptation to improve the accuracy of CFD analysis for a complex launch vehicle configuration. The feature based adaptation shows the potential to improve the resolution of shocks and shear layers. Further development of the capability to adapt the boundary layer and surface grids of a tetrahedral grid is required for significant improvements in modeling the flow field.
NASA Astrophysics Data System (ADS)
Li, Yifan; Liang, Xihui; Lin, Jianhui; Chen, Yuejian; Liu, Jianxin
2018-02-01
This paper presents a novel signal processing scheme, feature selection based multi-scale morphological filter (MMF), for train axle bearing fault detection. In this scheme, more than 30 feature indicators of vibration signals are calculated for axle bearings with different conditions and the features which can reflect fault characteristics more effectively and representatively are selected using the max-relevance and min-redundancy principle. Then, a filtering scale selection approach for MMF based on feature selection and grey relational analysis is proposed. The feature selection based MMF method is tested on diagnosis of artificially created damages of rolling bearings of railway trains. Experimental results show that the proposed method has a superior performance in extracting fault features of defective train axle bearings. In addition, comparisons are performed with the kurtosis criterion based MMF and the spectral kurtosis criterion based MMF. The proposed feature selection based MMF method outperforms these two methods in detection of train axle bearing faults.
An Interpreted Language and System for the Visualization of Unstructured Meshes
NASA Technical Reports Server (NTRS)
Moran, Patrick J.; Gerald-Yamasaki, Michael (Technical Monitor)
1998-01-01
We present an interpreted language and system supporting the visualization of unstructured meshes and the manipulation of shapes defined in terms of mesh subsets. The language features primitives inspired by geometric modeling, mathematical morphology and algebraic topology. The adaptation of the topology ideas to an interpreted environment, along with support for programming constructs such, as user function definition, provide a flexible system for analyzing a mesh and for calculating with shapes defined in terms of the mesh. We present results demonstrating some of the capabilities of the language, based on an implementation called the Shape Calculator, for tetrahedral meshes in R^3.
Moody, K N; Hunter, S N; Childress, M J; Blob, R W; Schoenfuss, H L; Blum, M J; Ptacek, M B
2015-02-01
Environmental heterogeneity can promote the emergence of locally adapted phenotypes among subpopulations of a species, whereas gene flow can result in phenotypic and genotypic homogenization. For organisms like amphidromous fishes that change habitats during their life history, the balance between selection and migration can shift through ontogeny, making the likelihood of local adaptation difficult to predict. In Hawaiian waterfall-climbing gobies, it has been hypothesized that larval mixing during oceanic dispersal counters local adaptation to contrasting topographic features of streams, like slope gradient, that can select for predator avoidance or climbing ability in juvenile recruits. To test this hypothesis, we used morphological traits and neutral genetic markers to compare phenotypic and genotypic distributions in recruiting juveniles and adult subpopulations of the waterfall-climbing amphidromous goby, Sicyopterus stimpsoni, from the islands of Hawai'i and Kaua'i. We found that body shape is significantly different between adult subpopulations from streams with contrasting slopes and that trait divergence in recruiting juveniles tracked stream topography more so than morphological measures of adult subpopulation differentiation. Although no evidence of population genetic differentiation was observed among adult subpopulations, we observed low but significant levels of spatially and temporally variable genetic differentiation among juvenile cohorts, which correlated with morphological divergence. Such a pattern of genetic differentiation is consistent with chaotic genetic patchiness arising from variable sources of recruits to different streams. Thus, at least in S. stimpsoni, the combination of variation in settlement cohorts in space and time coupled with strong postsettlement selection on juveniles as they migrate upstream to adult habitats provides the opportunity for morphological adaptation to local stream environments despite high gene flow. © 2014 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Schmitt, R. J.; Bernardi, D.; Bizzi, S.; Castelletti, A.; Soncini-Sessa, R.
2013-12-01
During the last 30 years, the delta of the Red River (Song Hong) in northern Vietnam experienced grave morphologic degradation processes which severely impact economic activities and endanger region-wide livelihoods. Rapidly progressing river bed incision, for example, threatens the irrigation of the delta's paddy rice crops which constitute 20% of Vietnam's annual rice production. Morphologic alteration is related to a drastically changed sediment balance due to major upstream impoundments, sediment mining and land use changes, further aggravated by changing hydro-meteorological conditions. Despite the severe impacts, river morphology was so far not included into the current efforts to optimize basin wide water resource planning for a lack of suitable, not overly resource demanding modeling strategies. This paper assesses the suitability of data-driven models to provide insights into complex hydromorphologic processes and to complement and enrich physically-based modeling strategies. Hence, to identify key drivers of morphological change while evaluating impacts of future socio-economic, management and climate scenarios on river morphology and the resulting effects on key social needs (e.g. water supply, energy production and flood mitigation). Most relevant drivers and time-scales for the considered processes (e.g. incision) - from days to decades - were identified from hydrologic and sedimentologic time-series using a feature ranking algorithm based on random trees. The feature ranking pointed out bimodal response characteristics, with important contributions of long-to-medium (5 - 15 yrs.) and rather short (10d - 6 months) timescales. An artificial neural network (ANN), built from identified variables, subsequently quantified in detail how these temporal components control long term trends, inter-seasonal fluctuations and day to day variations in morphologic processes. Whereas the general trajectory of incision relates, for example, to the overall regional sediment balance over an extended time-horizon (>15 yrs.), upstream impoundments induce a much more rapid adaptation (1-5 yrs.). The applicability of the ANN as predictive model was evaluated by comparing its results with a traditional, 1D bed evolution model. The next decade's morphologic evolution under an ensemble of scenarios, considering uncertainties in climatic change, socio-economic development and upstream reservoir release policies was derived from both models. The ANN greatly outperforms the 1D model in computational requirements and presents a powerful tool for effective assessment of scenario ensembles and quantification of uncertainties in river hydro-morphology. In contrast, the processes-based model provides detailed, spatio-temporally distributed outputs and validation of the ANN's results for selected scenarios. We conclude that the application of both approaches constitutes a mutually enriching strategy for modern, quantitative catchment management. We argue that physically based modeling can have specific spatial and temporal constrains (e.g. in terms of identifying key drivers and associated temporal and spatial domains) and that linking physically-based with data-driven approaches largely increases the potential for including hydro-morphology into basin-scale water resource management.
Pattern Recognition Approaches for Breast Cancer DCE-MRI Classification: A Systematic Review.
Fusco, Roberta; Sansone, Mario; Filice, Salvatore; Carone, Guglielmo; Amato, Daniela Maria; Sansone, Carlo; Petrillo, Antonella
2016-01-01
We performed a systematic review of several pattern analysis approaches for classifying breast lesions using dynamic, morphological, and textural features in dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI). Several machine learning approaches, namely artificial neural networks (ANN), support vector machines (SVM), linear discriminant analysis (LDA), tree-based classifiers (TC), and Bayesian classifiers (BC), and features used for classification are described. The findings of a systematic review of 26 studies are presented. The sensitivity and specificity are respectively 91 and 83 % for ANN, 85 and 82 % for SVM, 96 and 85 % for LDA, 92 and 87 % for TC, and 82 and 85 % for BC. The sensitivity and specificity are respectively 82 and 74 % for dynamic features, 93 and 60 % for morphological features, 88 and 81 % for textural features, 95 and 86 % for a combination of dynamic and morphological features, and 88 and 84 % for a combination of dynamic, morphological, and other features. LDA and TC have the best performance. A combination of dynamic and morphological features gives the best performance.
Large-scale Exploration of Neuronal Morphologies Using Deep Learning and Augmented Reality.
Li, Zhongyu; Butler, Erik; Li, Kang; Lu, Aidong; Ji, Shuiwang; Zhang, Shaoting
2018-02-12
Recently released large-scale neuron morphological data has greatly facilitated the research in neuroinformatics. However, the sheer volume and complexity of these data pose significant challenges for efficient and accurate neuron exploration. In this paper, we propose an effective retrieval framework to address these problems, based on frontier techniques of deep learning and binary coding. For the first time, we develop a deep learning based feature representation method for the neuron morphological data, where the 3D neurons are first projected into binary images and then learned features using an unsupervised deep neural network, i.e., stacked convolutional autoencoders (SCAEs). The deep features are subsequently fused with the hand-crafted features for more accurate representation. Considering the exhaustive search is usually very time-consuming in large-scale databases, we employ a novel binary coding method to compress feature vectors into short binary codes. Our framework is validated on a public data set including 58,000 neurons, showing promising retrieval precision and efficiency compared with state-of-the-art methods. In addition, we develop a novel neuron visualization program based on the techniques of augmented reality (AR), which can help users take a deep exploration of neuron morphologies in an interactive and immersive manner.
Salter, Caroline E; O'Donnell, Kerry; Sutton, Deanna A; Marancik, David P; Knowles, Susan; Clauss, Tonya M; Berliner, Aimee L; Camus, Alvin C
2012-10-10
During a 4 mo epizootic, 100% of 152 lined seahorses Hippocampus erectus in 3 separate groups died while in quarantine following shipment to a public aquarium. Twelve animals with skin depigmentation and ulceration were received by the Aquatic Pathology Service, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA, for diagnostic evaluation. Microscopically, lesions in 11 seahorses included multifocal epithelial necrosis and ulceration associated with 2 to 7 µm diameter, branching, septate fungal hyphae, typically accompanied by deeper infiltration into underlying skeletal muscle. Angioinvasion, with vascular thrombosis and tissue infarction, was a prominent feature in multiple animals. Fungal invasion of one or more internal organs was observed in 4 animals. Hyphae appeared to course freely through tissues and elicited little or no inflammatory response. Fusariosis has been reported sporadically in fish and other aquatic organisms, but identification has often been limited to the genus level based solely on morphologic features. Morphologic characteristics of the fungus isolated from this case were consistent with the Fusarium solani species complex (FSSC), which includes over 50 members that can only be identified definitively using DNA sequence data. A 3-locus typing scheme identified the isolate as a distinct species/haplotype, designated FSSC 12-a, belonging to a specific lineage that appears adapted to aquatic environments and disease in marine animals. Empirical treatment with itraconazole failed to stop mortalities, and subsequent in vitro antifungal susceptibility data explained a lack of clinical efficacy for this agent. Effective treatment in human medicine has similarly been limited by poor susceptibility to several classes of antifungal compounds.
Wang, Gang; Wang, Yalin
2017-02-15
In this paper, we propose a heat kernel based regional shape descriptor that may be capable of better exploiting volumetric morphological information than other available methods, thereby improving statistical power on brain magnetic resonance imaging (MRI) analysis. The mechanism of our analysis is driven by the graph spectrum and the heat kernel theory, to capture the volumetric geometry information in the constructed tetrahedral meshes. In order to capture profound brain grey matter shape changes, we first use the volumetric Laplace-Beltrami operator to determine the point pair correspondence between white-grey matter and CSF-grey matter boundary surfaces by computing the streamlines in a tetrahedral mesh. Secondly, we propose multi-scale grey matter morphology signatures to describe the transition probability by random walk between the point pairs, which reflects the inherent geometric characteristics. Thirdly, a point distribution model is applied to reduce the dimensionality of the grey matter morphology signatures and generate the internal structure features. With the sparse linear discriminant analysis, we select a concise morphology feature set with improved classification accuracies. In our experiments, the proposed work outperformed the cortical thickness features computed by FreeSurfer software in the classification of Alzheimer's disease and its prodromal stage, i.e., mild cognitive impairment, on publicly available data from the Alzheimer's Disease Neuroimaging Initiative. The multi-scale and physics based volumetric structure feature may bring stronger statistical power than some traditional methods for MRI-based grey matter morphology analysis. Copyright © 2016 Elsevier Inc. All rights reserved.
Hyperspectral feature mapping classification based on mathematical morphology
NASA Astrophysics Data System (ADS)
Liu, Chang; Li, Junwei; Wang, Guangping; Wu, Jingli
2016-03-01
This paper proposed a hyperspectral feature mapping classification algorithm based on mathematical morphology. Without the priori information such as spectral library etc., the spectral and spatial information can be used to realize the hyperspectral feature mapping classification. The mathematical morphological erosion and dilation operations are performed respectively to extract endmembers. The spectral feature mapping algorithm is used to carry on hyperspectral image classification. The hyperspectral image collected by AVIRIS is applied to evaluate the proposed algorithm. The proposed algorithm is compared with minimum Euclidean distance mapping algorithm, minimum Mahalanobis distance mapping algorithm, SAM algorithm and binary encoding mapping algorithm. From the results of the experiments, it is illuminated that the proposed algorithm's performance is better than that of the other algorithms under the same condition and has higher classification accuracy.
[Supernumerary chromosomes in the karyotype of the Siberian spruce, P. obovata].
Muratova, E N; Vladimirova, O S
2001-01-01
Results of karyological study of ornamental forms of Picea obovata Ledeb. are presented. Typical chromosome number (2n) is 24, but some trees have one or two additional chromosomes (2n = 24 + 1B; 2n = 24 + 2B). Heritability of additional chromosomes, pollen fertility, morphological features of cones, and seed quality in trees with and without additional chromosomes were studied. System of B-chromosomes is of importance for population and species adaptation and possibly plays a role in adaptation of P. obovata under introduction.
Bayes Forest: a data-intensive generator of morphological tree clones
Järvenpää, Marko; Åkerblom, Markku; Raumonen, Pasi; Kaasalainen, Mikko
2017-01-01
Abstract Detailed and realistic tree form generators have numerous applications in ecology and forestry. For example, the varying morphology of trees contributes differently to formation of landscapes, natural habitats of species, and eco-physiological characteristics of the biosphere. Here, we present an algorithm for generating morphological tree “clones” based on the detailed reconstruction of the laser scanning data, statistical measure of similarity, and a plant growth model with simple stochastic rules. The algorithm is designed to produce tree forms, i.e., morphological clones, similar (and not identical) in respect to tree-level structure, but varying in fine-scale structural detail. Although we opted for certain choices in our algorithm, individual parts may vary depending on the application, making it a general adaptable pipeline. Namely, we showed that a specific multipurpose procedural stochastic growth model can be algorithmically adjusted to produce the morphological clones replicated from the target experimentally measured tree. For this, we developed a statistical measure of similarity (structural distance) between any given pair of trees, which allows for the comprehensive comparing of the tree morphologies by means of empirical distributions describing the geometrical and topological features of a tree. Finally, we developed a programmable interface to manipulate data required by the algorithm. Our algorithm can be used in a variety of applications for exploration of the morphological potential of the growth models (both theoretical and experimental), arising in all sectors of plant science research. PMID:29020742
NASA Astrophysics Data System (ADS)
McClinton, J. T.; White, S. M.; Sinton, J. M.; Rubin, K. H.; Bowles, J. A.
2010-12-01
Differences in axial lava morphology along the Galapagos Spreading Center (GSC) can indicate variations in magma supply and emplacement dynamics due to the influence of the adjacent Galapagos hot spot. Unfortunately, the ability to discriminate fine-scale lava morphology has historically been limited to observations of the small coverage areas of towed camera surveys and submersible operations. This research presents a neuro-fuzzy approach to automated seafloor classification using spatially coincident, high-resolution bathymetry and backscatter data. The classification method implements a Sugeno-type fuzzy inference system trained by a multi-layered adaptive neural network and is capable of rapidly classifying seafloor morphology based on attributes of surface geometry and texture. The system has been applied to the 92°W segment of the western GSC in order to quantify coverage areas and distributions of pillow, lobate, and sheet lava morphology. An accuracy assessment has been performed on the classification results. The resulting classified maps provide a high-resolution view of GSC axial morphology and indicate the study area terrain is approximately 40% pillow flows, 40% lobate and sheet flows, and 10% fissured or faulted area, with about 10% of the study area unclassifiable. Fine-scale features such as eruptive fissures, tumuli, and individual pillowed lava flow fronts are also visible. Although this system has been applied to lava morphology, its design and implementation are applicable to other undersea mapping applications.
Boumans, Louis; Hogner, Silje; Brittain, John; Johnsen, Arild
2017-03-01
Stream dwelling invertebrates are ideal candidates for the study of ecological speciation as they are often adapted to particular environmental conditions within a stream and inhabit only certain reaches of a drainage basin, separated by unsuitable habitat. We studied an atypical population of the stonefly Leuctra hippopus at a site in central Norway, the Isterfoss rapids, in relation to three nearby and two remote conspecific populations. Adults of this population emerge about a month earlier than those of nearby populations, live on large boulders emerging from the rapids, and are short-lived. This population also has distinct morphological features and was studied earlier during the period 1975-1990. We reassessed morphological distinctness with new measurements and added several analyses of genetic distinctness based on mitochondrial and nuclear sequence markers, as well as AFLP fingerprinting and SNPs mined from RAD sequences. The Isterfoss population is shown to be most closely related to its geographical neighbors, yet clearly morphologically and genetically distinct and homogeneous. We conclude that this population is in the process of sympatric speciation, with temporal isolation being the most important direct barrier to gene flow. The shift in reproductive season results from the particular temperature and water level regime in the Isterfoss rapids. The distinct adult body shape and loss of flight are hypothesized to be an adaptation to the unusual habitat. Ecological diversification on small spatial and temporal scales is one of the likely causes of the high diversity of aquatic insects.
Comprehensive Computational Pathological Image Analysis Predicts Lung Cancer Prognosis.
Luo, Xin; Zang, Xiao; Yang, Lin; Huang, Junzhou; Liang, Faming; Rodriguez-Canales, Jaime; Wistuba, Ignacio I; Gazdar, Adi; Xie, Yang; Xiao, Guanghua
2017-03-01
Pathological examination of histopathological slides is a routine clinical procedure for lung cancer diagnosis and prognosis. Although the classification of lung cancer has been updated to become more specific, only a small subset of the total morphological features are taken into consideration. The vast majority of the detailed morphological features of tumor tissues, particularly tumor cells' surrounding microenvironment, are not fully analyzed. The heterogeneity of tumor cells and close interactions between tumor cells and their microenvironments are closely related to tumor development and progression. The goal of this study is to develop morphological feature-based prediction models for the prognosis of patients with lung cancer. We developed objective and quantitative computational approaches to analyze the morphological features of pathological images for patients with NSCLC. Tissue pathological images were analyzed for 523 patients with adenocarcinoma (ADC) and 511 patients with squamous cell carcinoma (SCC) from The Cancer Genome Atlas lung cancer cohorts. The features extracted from the pathological images were used to develop statistical models that predict patients' survival outcomes in ADC and SCC, respectively. We extracted 943 morphological features from pathological images of hematoxylin and eosin-stained tissue and identified morphological features that are significantly associated with prognosis in ADC and SCC, respectively. Statistical models based on these extracted features stratified NSCLC patients into high-risk and low-risk groups. The models were developed from training sets and validated in independent testing sets: a predicted high-risk group versus a predicted low-risk group (for patients with ADC: hazard ratio = 2.34, 95% confidence interval: 1.12-4.91, p = 0.024; for patients with SCC: hazard ratio = 2.22, 95% confidence interval: 1.15-4.27, p = 0.017) after adjustment for age, sex, smoking status, and pathologic tumor stage. The results suggest that the quantitative morphological features of tumor pathological images predict prognosis in patients with lung cancer. Copyright © 2016 International Association for the Study of Lung Cancer. Published by Elsevier Inc. All rights reserved.
Using Inquiry and Phylogeny: To Teach Comparative Morphology
ERIC Educational Resources Information Center
Giese, Alan R.
2005-01-01
A description on inquiry-based approach to teaching comparative vertebrate, skeletal morphology is presented that could be easily adapted to teach comparative morphology for any discipline, provided that sufficient physical models are available. This approach requires students to probe the material world for evidence that would allow them to…
Hussain, Lal; Ahmed, Adeel; Saeed, Sharjil; Rathore, Saima; Awan, Imtiaz Ahmed; Shah, Saeed Arif; Majid, Abdul; Idris, Adnan; Awan, Anees Ahmed
2018-02-06
Prostate is a second leading causes of cancer deaths among men. Early detection of cancer can effectively reduce the rate of mortality caused by Prostate cancer. Due to high and multiresolution of MRIs from prostate cancer require a proper diagnostic systems and tools. In the past researchers developed Computer aided diagnosis (CAD) systems that help the radiologist to detect the abnormalities. In this research paper, we have employed novel Machine learning techniques such as Bayesian approach, Support vector machine (SVM) kernels: polynomial, radial base function (RBF) and Gaussian and Decision Tree for detecting prostate cancer. Moreover, different features extracting strategies are proposed to improve the detection performance. The features extracting strategies are based on texture, morphological, scale invariant feature transform (SIFT), and elliptic Fourier descriptors (EFDs) features. The performance was evaluated based on single as well as combination of features using Machine Learning Classification techniques. The Cross validation (Jack-knife k-fold) was performed and performance was evaluated in term of receiver operating curve (ROC) and specificity, sensitivity, Positive predictive value (PPV), negative predictive value (NPV), false positive rate (FPR). Based on single features extracting strategies, SVM Gaussian Kernel gives the highest accuracy of 98.34% with AUC of 0.999. While, using combination of features extracting strategies, SVM Gaussian kernel with texture + morphological, and EFDs + morphological features give the highest accuracy of 99.71% and AUC of 1.00.
NASA Astrophysics Data System (ADS)
Sultana, Maryam; Bhatti, Naeem; Javed, Sajid; Jung, Soon Ki
2017-09-01
Facial expression recognition (FER) is an important task for various computer vision applications. The task becomes challenging when it requires the detection and encoding of macro- and micropatterns of facial expressions. We present a two-stage texture feature extraction framework based on the local binary pattern (LBP) variants and evaluate its significance in recognizing posed and nonposed facial expressions. We focus on the parametric limitations of the LBP variants and investigate their effects for optimal FER. The size of the local neighborhood is an important parameter of the LBP technique for its extraction in images. To make the LBP adaptive, we exploit the granulometric information of the facial images to find the local neighborhood size for the extraction of center-symmetric LBP (CS-LBP) features. Our two-stage texture representations consist of an LBP variant and the adaptive CS-LBP features. Among the presented two-stage texture feature extractions, the binarized statistical image features and adaptive CS-LBP features were found showing high FER rates. Evaluation of the adaptive texture features shows competitive and higher performance than the nonadaptive features and other state-of-the-art approaches, respectively.
Significance of MPEG-7 textural features for improved mass detection in mammography.
Eltonsy, Nevine H; Tourassi, Georgia D; Fadeev, Aleksey; Elmaghraby, Adel S
2006-01-01
The purpose of the study is to investigate the significance of MPEG-7 textural features for improving the detection of masses in screening mammograms. The detection scheme was originally based on morphological directional neighborhood features extracted from mammographic regions of interest (ROIs). Receiver Operating Characteristics (ROC) was performed to evaluate the performance of each set of features independently and merged into a back-propagation artificial neural network (BPANN) using the leave-one-out sampling scheme (LOOSS). The study was based on a database of 668 mammographic ROIs (340 depicting cancer regions and 328 depicting normal parenchyma). Overall, the ROC area index of the BPANN using the directional morphological features was Az=0.85+/-0.01. The MPEG-7 edge histogram descriptor-based BPNN showed an ROC area index of Az=0.71+/-0.01 while homogeneous textural descriptors using 30 and 120 channels helped the BPNN achieve similar ROC area indexes of Az=0.882+/-0.02 and Az=0.877+/-0.01 respectively. After merging the MPEG-7 homogeneous textural features with the directional neighborhood features the performance of the BPANN increased providing an ROC area index of Az=0.91+/-0.01. MPEG-7 homogeneous textural descriptor significantly improved the morphology-based detection scheme.
Enhancement of ELDA Tracker Based on CNN Features and Adaptive Model Update.
Gao, Changxin; Shi, Huizhang; Yu, Jin-Gang; Sang, Nong
2016-04-15
Appearance representation and the observation model are the most important components in designing a robust visual tracking algorithm for video-based sensors. Additionally, the exemplar-based linear discriminant analysis (ELDA) model has shown good performance in object tracking. Based on that, we improve the ELDA tracking algorithm by deep convolutional neural network (CNN) features and adaptive model update. Deep CNN features have been successfully used in various computer vision tasks. Extracting CNN features on all of the candidate windows is time consuming. To address this problem, a two-step CNN feature extraction method is proposed by separately computing convolutional layers and fully-connected layers. Due to the strong discriminative ability of CNN features and the exemplar-based model, we update both object and background models to improve their adaptivity and to deal with the tradeoff between discriminative ability and adaptivity. An object updating method is proposed to select the "good" models (detectors), which are quite discriminative and uncorrelated to other selected models. Meanwhile, we build the background model as a Gaussian mixture model (GMM) to adapt to complex scenes, which is initialized offline and updated online. The proposed tracker is evaluated on a benchmark dataset of 50 video sequences with various challenges. It achieves the best overall performance among the compared state-of-the-art trackers, which demonstrates the effectiveness and robustness of our tracking algorithm.
Enhancement of ELDA Tracker Based on CNN Features and Adaptive Model Update
Gao, Changxin; Shi, Huizhang; Yu, Jin-Gang; Sang, Nong
2016-01-01
Appearance representation and the observation model are the most important components in designing a robust visual tracking algorithm for video-based sensors. Additionally, the exemplar-based linear discriminant analysis (ELDA) model has shown good performance in object tracking. Based on that, we improve the ELDA tracking algorithm by deep convolutional neural network (CNN) features and adaptive model update. Deep CNN features have been successfully used in various computer vision tasks. Extracting CNN features on all of the candidate windows is time consuming. To address this problem, a two-step CNN feature extraction method is proposed by separately computing convolutional layers and fully-connected layers. Due to the strong discriminative ability of CNN features and the exemplar-based model, we update both object and background models to improve their adaptivity and to deal with the tradeoff between discriminative ability and adaptivity. An object updating method is proposed to select the “good” models (detectors), which are quite discriminative and uncorrelated to other selected models. Meanwhile, we build the background model as a Gaussian mixture model (GMM) to adapt to complex scenes, which is initialized offline and updated online. The proposed tracker is evaluated on a benchmark dataset of 50 video sequences with various challenges. It achieves the best overall performance among the compared state-of-the-art trackers, which demonstrates the effectiveness and robustness of our tracking algorithm. PMID:27092505
Leubner, Fanny; Bradler, Sven; Wipfler, Benjamin
2017-07-01
Schizodactylidae, splay-footed or dune crickets, represents a distinct lineage among the highly diverse orthopteran subgroup Ensifera (crickets, katydids and allies). Only two extant genera belong to the Schizodactylidae: the winged Eurasian genus Schizodactylus, whose ecology and morphology is well documented, and the wingless South African Comicus, for which hardly any studies providing morphological descriptions have been conducted since its taxonomic description in 1888. Based on the first in-depth study of the skeletomuscular system of the thorax of Comicus calcaris Irish 1986, we provide information on some unique characteristics of this character complex in Schizodactylidae. They include a rigid connection of prospinasternite and mesosternum, a T-shaped mesospina, and a fused meso- and metasternum. Although Schizodactylidae is mainly characterized by group-specific anatomical traits of the thorax, its bifurcated profuca supports a closer relationship to the tettigonioid ensiferans, like katydids, wetas, and hump-winged crickets. Some specific features of the thoracic musculature of Comicus seem to be correlated to the skeletal morphology, e.g., due to the rigid connection of the tergites and pleurites in the pterothorax not a single direct flight muscle is developed. We show that many of the thoracic adaptations in these insects are directly related to their psammophilous way of life. These include a characteristic setation of thoracic sclerites that prevent sand grains from intrusion into vulnerable membranous areas, the striking decrease in size of the thoracic spiracles that reduces the respirational water loss, and a general trend towards a fusion of sclerites in the thorax. Copyright © 2017 Elsevier Ltd. All rights reserved.
Fission gas bubble identification using MATLAB's image processing toolbox
DOE Office of Scientific and Technical Information (OSTI.GOV)
Collette, R.
Automated image processing routines have the potential to aid in the fuel performance evaluation process by eliminating bias in human judgment that may vary from person-to-person or sample-to-sample. This study presents several MATLAB based image analysis routines designed for fission gas void identification in post-irradiation examination of uranium molybdenum (U–Mo) monolithic-type plate fuels. Frequency domain filtration, enlisted as a pre-processing technique, can eliminate artifacts from the image without compromising the critical features of interest. This process is coupled with a bilateral filter, an edge-preserving noise removal technique aimed at preparing the image for optimal segmentation. Adaptive thresholding proved to bemore » the most consistent gray-level feature segmentation technique for U–Mo fuel microstructures. The Sauvola adaptive threshold technique segments the image based on histogram weighting factors in stable contrast regions and local statistics in variable contrast regions. Once all processing is complete, the algorithm outputs the total fission gas void count, the mean void size, and the average porosity. The final results demonstrate an ability to extract fission gas void morphological data faster, more consistently, and at least as accurately as manual segmentation methods. - Highlights: •Automated image processing can aid in the fuel qualification process. •Routines are developed to characterize fission gas bubbles in irradiated U–Mo fuel. •Frequency domain filtration effectively eliminates FIB curtaining artifacts. •Adaptive thresholding proved to be the most accurate segmentation method. •The techniques established are ready to be applied to large scale data extraction testing.« less
NASA Astrophysics Data System (ADS)
Ulerich, J.; Göktepe, S.; Kuhl, E.
This manuscript presents a continuum approach towards cardiac growth and remodeling that is capable to predict chronic maladaptation of the heart in response to changes in mechanical loading. It is based on the multiplicative decomposition of the deformation gradient into and elastic and a growth part. Motivated by morphological changes in cardiomyocyte geometry, we introduce an anisotropic growth tensor that can capture both hypertrophic wall thickening and ventricular dilation within one generic concept. In agreement with clinical observations, we propose wall thickening to be a stress-driven phenomenon whereas dilation is introduced as a strain-driven process. The features of the proposed approach are illustrated in terms of the adaptation of thin heart slices and in terms overload-induced dilation in a generic bi-ventricular heart model.
Zoroquiain, Pablo; Mayo-Goldberg, Erin; Alghamdi, Sarah; Alhumaid, Sulaiman; Perlmann, Eduardo; Barros, Paulo; Mayo, Nancy; Burnier, Miguel N
2016-12-01
The cutoff presented in the current classification of canine melanocytic lesions by Wilcock and Pfeiffer is based on the clinical outcome rather than morphological concepts. Classification of tumors based on morphology or molecular signatures is the key to identifying new therapies or prognostic factors. Therefore, the aim of this study was to analyze morphological findings in canine melanocytic lesions based on classic malignant morphologic principles of neoplasia and to compare these features with human uveal melanoma (HUM) samples. In total, 64 canine and 111 human morphologically malignant melanocytic lesions were classified into two groups (melanocytoma-like or classic melanoma) based on the presence or absence of M cells, respectively. Histopathological characteristics were compared between the two groups using the χ-test, t-test, and multivariate discriminant analysis. Among the 64 canine tumors, 28 (43.7%) were classic and 36 (56.3%) were melanocytoma-like melanomas. Smaller tumor size, a higher degree of pigmentation, and lower mitotic activity distinguished melanocytoma-like from classic tumors with an accuracy of 100% for melanocytoma-like lesions. From the human series, only one case showed melanocytoma-like features and had a low risk for metastasis characteristics. Canine uveal melanoma showed a morphological spectrum with features similar to the HUM counterpart (classic melanoma) and overlapped features between uveal melanoma and melanocytoma (melanocytoma-like melanoma). Recognition that the subgroup of melanocytoma-like melanoma may represent the missing link between benign and malignant lesions could help explain the progression of uveal melanoma in dogs; these findings can potentially be translated to HUM.
NASA Astrophysics Data System (ADS)
Tan, Maxine; Aghaei, Faranak; Wang, Yunzhi; Qian, Wei; Zheng, Bin
2016-03-01
Current commercialized CAD schemes have high false-positive (FP) detection rates and also have high correlations in positive lesion detection with radiologists. Thus, we recently investigated a new approach to improve the efficacy of applying CAD to assist radiologists in reading and interpreting screening mammograms. Namely, we developed a new global feature based CAD approach/scheme that can cue the warning sign on the cases with high risk of being positive. In this study, we investigate the possibility of fusing global feature or case-based scores with the local or lesion-based CAD scores using an adaptive cueing method. We hypothesize that the information from the global feature extraction (features extracted from the whole breast regions) are different from and can provide supplementary information to the locally-extracted features (computed from the segmented lesion regions only). On a large and diverse full-field digital mammography (FFDM) testing dataset with 785 cases (347 negative and 438 cancer cases with masses only), we ran our lesion-based and case-based CAD schemes "as is" on the whole dataset. To assess the supplementary information provided by the global features, we used an adaptive cueing method to adaptively adjust the original CAD-generated detection scores (Sorg) of a detected suspicious mass region based on the computed case-based score (Scase) of the case associated with this detected region. Using the adaptive cueing method, better sensitivity results were obtained at lower FP rates (<= 1 FP per image). Namely, increases of sensitivities (in the FROC curves) of up to 6.7% and 8.2% were obtained for the ROI and Case-based results, respectively.
CN Morphology Studies of Comet 103P/Hartley 2
NASA Astrophysics Data System (ADS)
Knight, Matthew M.; Schleicher, David G.
2011-06-01
We report on narrowband CN imaging of Comet 103P/Hartley 2 obtained at Lowell Observatory on 39 nights from 2010 July until 2011 January. We observed two features, one generally to the north and the other generally to the south. The CN morphology varied during the apparition: no morphology was seen in July; in August and September, the northern feature dominated and appeared as a mostly face-on spiral; in October, November, and December, the northern and southern features were roughly equal in brightness and looked like more side-on corkscrews; in January, the southern feature was dominant but the morphology was indistinct due to very low signal. The morphology changed smoothly during each night and similar morphology was seen from night to night. However, the morphology did not exactly repeat each rotation cycle, suggesting that there is a small non-principal axis rotation. Based on the repetition of the morphology, we find evidence that the fundamental rotation period was increasing: 16.7 hr from August 13 to 17, 17.2 hr from September 10 to 13, 18.2 hr from October 12 to 19, and 18.7 hr from October 31 to November 7. We conducted Monte Carlo jet modeling to constrain the pole orientation and locations of the active regions based on the observed morphology. Our preliminary, self-consistent pole solution has an obliquity of 10° relative to the comet's orbital plane (i.e., it is centered near R.A. = 257° and decl. = +67° with an uncertainty around this position of about 15°) and has two mid-latitude sources, one in each hemisphere.
Fault detection method for railway wheel flat using an adaptive multiscale morphological filter
NASA Astrophysics Data System (ADS)
Li, Yifan; Zuo, Ming J.; Lin, Jianhui; Liu, Jianxin
2017-02-01
This study explores the capacity of the morphology analysis for railway wheel flat fault detection. A dynamic model of vehicle systems with 56 degrees of freedom was set up along with a wheel flat model to calculate the dynamic responses of axle box. The vehicle axle box vibration signal is complicated because it not only contains the information of wheel defect, but also includes track condition information. Thus, how to extract the influential features of wheels from strong background noise effectively is a typical key issue for railway wheel fault detection. In this paper, an algorithm for adaptive multiscale morphological filtering (AMMF) was proposed, and its effect was evaluated by a simulated signal. And then this algorithm was employed to study the axle box vibration caused by wheel flats, as well as the influence of track irregularity and vehicle running speed on diagnosis results. Finally, the effectiveness of the proposed method was verified by bench testing. Research results demonstrate that the AMMF extracts the influential characteristic of axle box vibration signals effectively and can diagnose wheel flat faults in real time.
The method for froth floatation condition recognition based on adaptive feature weighted
NASA Astrophysics Data System (ADS)
Wang, Jieran; Zhang, Jun; Tian, Jinwen; Zhang, Daimeng; Liu, Xiaomao
2018-03-01
The fusion of foam characteristics can play a complementary role in expressing the content of foam image. The weight of foam characteristics is the key to make full use of the relationship between the different features. In this paper, an Adaptive Feature Weighted Method For Froth Floatation Condition Recognition is proposed. Foam features without and with weights are both classified by using support vector machine (SVM).The classification accuracy and optimal equaling algorithm under the each ore grade are regarded as the result of the adaptive feature weighting algorithm. At the same time the effectiveness of adaptive weighted method is demonstrated.
Spering, Miriam; Carrasco, Marisa
2012-01-01
Feature-based attention enhances visual processing and improves perception, even for visual features that we are not aware of. Does feature-based attention also modulate motor behavior in response to visual information that does or does not reach awareness? Here we compare the effect of feature-based attention on motion perception and smooth pursuit eye movements in response to moving dichoptic plaids–stimuli composed of two orthogonally-drifting gratings, presented separately to each eye–in human observers. Monocular adaptation to one grating prior to the presentation of both gratings renders the adapted grating perceptually weaker than the unadapted grating and decreases the level of awareness. Feature-based attention was directed to either the adapted or the unadapted grating’s motion direction or to both (neutral condition). We show that observers were better in detecting a speed change in the attended than the unattended motion direction, indicating that they had successfully attended to one grating. Speed change detection was also better when the change occurred in the unadapted than the adapted grating, indicating that the adapted grating was perceptually weaker. In neutral conditions, perception and pursuit in response to plaid motion were dissociated: While perception followed one grating’s motion direction almost exclusively (component motion), the eyes tracked the average of both gratings (pattern motion). In attention conditions, perception and pursuit were shifted towards the attended component. These results suggest that attention affects perception and pursuit similarly even though only the former reflects awareness. The eyes can track an attended feature even if observers do not perceive it. PMID:22649238
Spering, Miriam; Carrasco, Marisa
2012-05-30
Feature-based attention enhances visual processing and improves perception, even for visual features that we are not aware of. Does feature-based attention also modulate motor behavior in response to visual information that does or does not reach awareness? Here we compare the effect of feature-based attention on motion perception and smooth-pursuit eye movements in response to moving dichoptic plaids--stimuli composed of two orthogonally drifting gratings, presented separately to each eye--in human observers. Monocular adaptation to one grating before the presentation of both gratings renders the adapted grating perceptually weaker than the unadapted grating and decreases the level of awareness. Feature-based attention was directed to either the adapted or the unadapted grating's motion direction or to both (neutral condition). We show that observers were better at detecting a speed change in the attended than the unattended motion direction, indicating that they had successfully attended to one grating. Speed change detection was also better when the change occurred in the unadapted than the adapted grating, indicating that the adapted grating was perceptually weaker. In neutral conditions, perception and pursuit in response to plaid motion were dissociated: While perception followed one grating's motion direction almost exclusively (component motion), the eyes tracked the average of both gratings (pattern motion). In attention conditions, perception and pursuit were shifted toward the attended component. These results suggest that attention affects perception and pursuit similarly even though only the former reflects awareness. The eyes can track an attended feature even if observers do not perceive it.
NASA Astrophysics Data System (ADS)
Werdiningsih, Indah; Zaman, Badrus; Nuqoba, Barry
2017-08-01
This paper presents classification of brain cancer using wavelet transformation and Adaptive Neighborhood Based Modified Backpropagation (ANMBP). Three stages of the processes, namely features extraction, features reduction, and classification process. Wavelet transformation is used for feature extraction and ANMBP is used for classification process. The result of features extraction is feature vectors. Features reduction used 100 energy values per feature and 10 energy values per feature. Classifications of brain cancer are normal, alzheimer, glioma, and carcinoma. Based on simulation results, 10 energy values per feature can be used to classify brain cancer correctly. The correct classification rate of proposed system is 95 %. This research demonstrated that wavelet transformation can be used for features extraction and ANMBP can be used for classification of brain cancer.
Sparsity-aware tight frame learning with adaptive subspace recognition for multiple fault diagnosis
NASA Astrophysics Data System (ADS)
Zhang, Han; Chen, Xuefeng; Du, Zhaohui; Yang, Boyuan
2017-09-01
It is a challenging problem to design excellent dictionaries to sparsely represent diverse fault information and simultaneously discriminate different fault sources. Therefore, this paper describes and analyzes a novel multiple feature recognition framework which incorporates the tight frame learning technique with an adaptive subspace recognition strategy. The proposed framework consists of four stages. Firstly, by introducing the tight frame constraint into the popular dictionary learning model, the proposed tight frame learning model could be formulated as a nonconvex optimization problem which can be solved by alternatively implementing hard thresholding operation and singular value decomposition. Secondly, the noises are effectively eliminated through transform sparse coding techniques. Thirdly, the denoised signal is decoupled into discriminative feature subspaces by each tight frame filter. Finally, in guidance of elaborately designed fault related sensitive indexes, latent fault feature subspaces can be adaptively recognized and multiple faults are diagnosed simultaneously. Extensive numerical experiments are sequently implemented to investigate the sparsifying capability of the learned tight frame as well as its comprehensive denoising performance. Most importantly, the feasibility and superiority of the proposed framework is verified through performing multiple fault diagnosis of motor bearings. Compared with the state-of-the-art fault detection techniques, some important advantages have been observed: firstly, the proposed framework incorporates the physical prior with the data-driven strategy and naturally multiple fault feature with similar oscillation morphology can be adaptively decoupled. Secondly, the tight frame dictionary directly learned from the noisy observation can significantly promote the sparsity of fault features compared to analytical tight frames. Thirdly, a satisfactory complete signal space description property is guaranteed and thus weak feature leakage problem is avoided compared to typical learning methods.
Ono, Sayaka; Morimoto, Norihito; Korenaga, Masataka; Kumazawa, Hideo; Komatsu, Yutaka; Kuge, Itsu; Higashidani, Yoshihumi; Ogura, Katsumi; Sugiura, Tetsuro
2010-11-01
Identification of Diphyllobothrium species has been carried out based on their morphology, especially sexual organs. In addition to these criteria, PCR-based identification methods have been developed recently. A 20 year-old Japanese living in Kochi Prefecture passed tapeworm. He was successfully treated with single dose of gastrografin. We examined the morphologic features of the proglottids and eggs using histology and scanning electron microscope. We also analyzed mitochondrial cytochrome c oxidase subunit 1 (cox1) gene of the proglottids. The causative tapeworm species was identified as D. nihonkaiense based on the results of morphologic features and genetic analysis. We discussed the advantage of PCR-based identification methods of Diphyllobothrium species using cox1 sequence in the clinical laboratory.
Neglect dyslexia: a review of the neuropsychological literature.
Vallar, Giuseppe; Burani, Cristina; Arduino, Lisa S
2010-10-01
Neglect dyslexia (ND) is reviewed, based on published single-patient and group studies. ND is frequently associated with right hemispheric damage and unilateral spatial neglect (USN), and typically involves the left side of the letter string. Left-brain-damaged patients showing ND, ipsilateral (left) or contralateral (right) to the side of the left-sided hemispheric lesion, have also been reported, as well as a few patients with bilateral damage, with more frequently left than right ND. As USN, ND is temporarily ameliorated by lateralized stimulations (vestibular caloric, visual prism adaptation). ND may occur independent of USN, suggesting the damage to specific visuospatial representational/attentional systems, supporting reading. ND errors comprise omission, substitution, and, less frequently, addition of letters on one side of the stimulus, resulting in words or nonwords, also with reference to the stimulus' linguistic features. Patients with ND may show preserved lexical-morphological effects and implicit processing, up to the semantic level, of the misread string. This preserved processing is a feature of ND, shared with the USN syndrome. The mechanisms modulating error type and lexical-morphological effects are partly independent of each other. Different levels of representation of the letter string may be affected, giving rise to egocentric, stimulus-centred, and word-centred patterns of impairment. The anatomical correlates of ND include the temporo-parieto-occipital regions.
Bashir, Mohamed Ezzeldin A; Lee, Dong Gyu; Li, Meijing; Bae, Jang-Whan; Shon, Ho Sun; Cho, Myung Chan; Ryu, Keun Ho
2012-07-01
Coronary heart disease is being identified as the largest single cause of death along the world. The aim of a cardiac clinical information system is to achieve the best possible diagnosis of cardiac arrhythmias by electronic data processing. Cardiac information system that is designed to offer remote monitoring of patient who needed continues follow up is demanding. However, intra- and interpatient electrocardiogram (ECG) morphological descriptors are varying through the time as well as the computational limits pose significant challenges for practical implementations. The former requires that the classification model be adjusted continuously, and the latter requires a reduction in the number and types of ECG features, and thus, the computational burden, necessary to classify different arrhythmias. We propose the use of adaptive learning to automatically train the classifier on up-to-date ECG data, and employ adaptive feature selection to define unique feature subsets pertinent to different types of arrhythmia. Experimental results show that this hybrid technique outperforms conventional approaches and is, therefore, a promising new intelligent diagnostic tool.
Jurmu, Michael C
2002-12-01
Twelve morphological features from research on alluvial streams are compared in four narrow, low-gradient wetland streams located in different geographic regions (Connecticut, Indiana, and Wisconsin, USA). All four reaches differed in morphological characteristics in five of the features compared (consistent bend width, bend cross-sectional shape, riffle width compared to pool width, greatest width directly downstream of riffles, and thalweg location), while three reaches differed in two comparisons (mean radius of curvature to width ratio and axial wavelength to width ratio). The remaining five features compared had at least one reach where different characteristics existed. This indicates the possibility of varying morphology for streams traversing wetland areas further supporting the concept that the unique qualities of wetland environments might also influence the controls on fluvial dynamics and the development of streams. If certain morphological features found in streams traversing wetland areas differ from current fluvial principles, then these varying features should be incorporated into future wetland stream design and creation projects. The results warrant further research on other streams traversing wetlands to determine if streams in these environments contain unique morphology and further investigation of the impact of low-energy fluvial processes on morphological development. Possible explanations for the morphology deviations in the study streams and some suggestions for stream design in wetland areas based upon the results and field observations are also presented.
Self-assembled peptide nanostructures for functional materials
NASA Astrophysics Data System (ADS)
Sardan Ekiz, Melis; Cinar, Goksu; Aref Khalily, Mohammad; Guler, Mustafa O.
2016-10-01
Nature is an important inspirational source for scientists, and presents complex and elegant examples of adaptive and intelligent systems created by self-assembly. Significant effort has been devoted to understanding these sophisticated systems. The self-assembly process enables us to create supramolecular nanostructures with high order and complexity, and peptide-based self-assembling building blocks can serve as suitable platforms to construct nanostructures showing diverse features and applications. In this review, peptide-based supramolecular assemblies will be discussed in terms of their synthesis, design, characterization and application. Peptide nanostructures are categorized based on their chemical and physical properties and will be examined by rationalizing the influence of peptide design on the resulting morphology and the methods employed to characterize these high order complex systems. Moreover, the application of self-assembled peptide nanomaterials as functional materials in information technologies and environmental sciences will be reviewed by providing examples from recently published high-impact studies.
Repeated adaptive divergence of microhabitat specialization in avian feather lice.
Johnson, Kevin P; Shreve, Scott M; Smith, Vincent S
2012-06-20
Repeated adaptive radiations are evident when phenotypic divergence occurs within lineages, but this divergence into different forms is convergent when compared across lineages. Classic examples of such repeated adaptive divergence occur in island (for example, Caribbean Anolis lizards) and lake systems (for example, African cichlids). Host-parasite systems in many respects are analogous to island systems, where host species represent isolated islands for parasites whose life cycle is highly tied to that of their hosts. Thus, host-parasite systems might exhibit interesting cases of repeated adaptive divergence as seen in island and lake systems.The feather lice of birds spend their entire life cycle on the body of the host and occupy distinct microhabitats on the host: head, wing, body and generalist. These microhabitat specialists show pronounced morphological differences corresponding to how they escape from host preening. We tested whether these different microhabitat specialists were a case of repeated adaptive divergence by constructing both morphological and molecular phylogenies for a diversity of avian feather lice, including many examples of head, wing, body and generalist forms. Morphological and molecular based phylogenies were highly incongruent, which could be explained by rampant convergence in morphology related to microhabitat specialization on the host. In many cases lice from different microhabitat specializations, but from the same group of birds, were sister taxa. This pattern indicates a process of repeated adaptive divergence of these parasites within host group, but convergence when comparing parasites across host groups. These results suggest that host-parasite systems might be another case in which repeated adaptive radiations could be relatively common, but potentially overlooked, because morphological convergence can obscure evolutionary relationships.
Repeated adaptive divergence of microhabitat specialization in avian feather lice
2012-01-01
Background Repeated adaptive radiations are evident when phenotypic divergence occurs within lineages, but this divergence into different forms is convergent when compared across lineages. Classic examples of such repeated adaptive divergence occur in island (for example, Caribbean Anolis lizards) and lake systems (for example, African cichlids). Host-parasite systems in many respects are analogous to island systems, where host species represent isolated islands for parasites whose life cycle is highly tied to that of their hosts. Thus, host-parasite systems might exhibit interesting cases of repeated adaptive divergence as seen in island and lake systems. The feather lice of birds spend their entire life cycle on the body of the host and occupy distinct microhabitats on the host: head, wing, body and generalist. These microhabitat specialists show pronounced morphological differences corresponding to how they escape from host preening. We tested whether these different microhabitat specialists were a case of repeated adaptive divergence by constructing both morphological and molecular phylogenies for a diversity of avian feather lice, including many examples of head, wing, body and generalist forms. Results Morphological and molecular based phylogenies were highly incongruent, which could be explained by rampant convergence in morphology related to microhabitat specialization on the host. In many cases lice from different microhabitat specializations, but from the same group of birds, were sister taxa. Conclusions This pattern indicates a process of repeated adaptive divergence of these parasites within host group, but convergence when comparing parasites across host groups. These results suggest that host-parasite systems might be another case in which repeated adaptive radiations could be relatively common, but potentially overlooked, because morphological convergence can obscure evolutionary relationships. PMID:22717002
Adaptation to suspensory locomotion in Australopithecus sediba.
Rein, Thomas R; Harrison, Terry; Carlson, Kristian J; Harvati, Katerina
2017-03-01
Australopithecus sediba is represented by well-preserved fossilized remains from the locality of Malapa, South Africa. Recent work has shown that the combination of features in the limb skeleton of A. sediba was distinct from that of earlier species of Australopithecus, perhaps indicating that this species moved differently. The bones of the arm and forearm indicate that A. sediba was adapted to suspensory and climbing behaviors. We used a geometric morphometric approach to examine ulnar shape, potentially identifying adaptations to forelimb suspensory locomotion in A. sediba. Results indicated suspensory capabilities in this species and a stronger forelimb suspensory signal than has been documented in Australopithecus afarensis. Our study confirms the adaptive significance of functional morphological traits for arboreal movements in the locomotor repertoire of A. sediba and provides important insight into the diversity and mosaic nature of locomotor adaptations among early hominins. Copyright © 2017 Elsevier Ltd. All rights reserved.
Klinker, Matthew W.; Marklein, Ross A.; Lo Surdo, Jessica L.; Wei, Cheng-Hong
2017-01-01
Human mesenchymal stromal cell (MSC) lines can vary significantly in their functional characteristics, and the effectiveness of MSC-based therapeutics may be realized by finding predictive features associated with MSC function. To identify features associated with immunosuppressive capacity in MSCs, we developed a robust in vitro assay that uses principal-component analysis to integrate multidimensional flow cytometry data into a single measurement of MSC-mediated inhibition of T-cell activation. We used this assay to correlate single-cell morphological data with overall immunosuppressive capacity in a cohort of MSC lines derived from different donors and manufacturing conditions. MSC morphology after IFN-γ stimulation significantly correlated with immunosuppressive capacity and accurately predicted the immunosuppressive capacity of MSC lines in a validation cohort. IFN-γ enhanced the immunosuppressive capacity of all MSC lines, and morphology predicted the magnitude of IFN-γ–enhanced immunosuppressive activity. Together, these data identify MSC morphology as a predictive feature of MSC immunosuppressive function. PMID:28283659
Craniofacial variation and dietary adaptations of African colobines.
Koyabu, Daisuke B; Endo, Hideki
2009-06-01
African colobine monkeys show considerable craniofacial variation among species, although the evolutionary causes of this diversity are unclear. In light of growing evidence that diet varies considerably among colobine species, we investigated whether colobine craniofacial morphology varies as a function of their diet. We compared craniofacial morphology among five African species: Colobus angolensis, C. guereza, C. polykomos, Piliocolobus badius, and P. verus. Matrix correlation analysis indicated a significant correlation between species-specific morphological distance and dietary distance matrices. The mechanical advantage of the masseter muscle was higher in seed-eaters (C. angolensis and C. polykomos) and lower in those that eat mainly young leaves (C. guereza, P. badius, and P. verus). Canonical correspondence analysis revealed that the durophagous colobines possess relatively wider bigonial breadths, anteroposteriorly shorter faces, shorter postcanine tooth rows, more medially positioned dental batteries, wider bizygomatic arches, and anteroposteriorly longer zygomatic arches. Under the constrained lever model, these morphological features suggest that durophagous colobines have the capacity to generate relatively greater maximum bite forces. However, no consistent relationship was observed between diet and variation in the mandibular corpus and symphysis, implying that robust mandibles are not necessarily adaptations for stress resistance. Factors that may influence mandibular robusticity include allometry of symphyseal curvature and canine tooth support. Finally, linear measures of mandibular robusticity may suffer from error.
CN MORPHOLOGY STUDIES OF COMET 103P/HARTLEY 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Knight, Matthew M.; Schleicher, David G., E-mail: knight@lowell.edu
2011-06-15
We report on narrowband CN imaging of Comet 103P/Hartley 2 obtained at Lowell Observatory on 39 nights from 2010 July until 2011 January. We observed two features, one generally to the north and the other generally to the south. The CN morphology varied during the apparition: no morphology was seen in July; in August and September, the northern feature dominated and appeared as a mostly face-on spiral; in October, November, and December, the northern and southern features were roughly equal in brightness and looked like more side-on corkscrews; in January, the southern feature was dominant but the morphology was indistinctmore » due to very low signal. The morphology changed smoothly during each night and similar morphology was seen from night to night. However, the morphology did not exactly repeat each rotation cycle, suggesting that there is a small non-principal axis rotation. Based on the repetition of the morphology, we find evidence that the fundamental rotation period was increasing: 16.7 hr from August 13 to 17, 17.2 hr from September 10 to 13, 18.2 hr from October 12 to 19, and 18.7 hr from October 31 to November 7. We conducted Monte Carlo jet modeling to constrain the pole orientation and locations of the active regions based on the observed morphology. Our preliminary, self-consistent pole solution has an obliquity of 10{sup 0} relative to the comet's orbital plane (i.e., it is centered near R.A. = 257{sup 0} and decl. = +67{sup 0} with an uncertainty around this position of about 15{sup 0}) and has two mid-latitude sources, one in each hemisphere.« less
An adaptive morphological gradient lifting wavelet for detecting bearing defects
NASA Astrophysics Data System (ADS)
Li, Bing; Zhang, Pei-lin; Mi, Shuang-shan; Hu, Ren-xi; Liu, Dong-sheng
2012-05-01
This paper presents a novel wavelet decomposition scheme, named adaptive morphological gradient lifting wavelet (AMGLW), for detecting bearing defects. The adaptability of the AMGLW consists in that the scheme can select between two filters, mean the average filter and morphological gradient filter, to update the approximation signal based on the local gradient of the analyzed signal. Both a simulated signal and vibration signals acquired from bearing are employed to evaluate and compare the proposed AMGLW scheme with the traditional linear wavelet transform (LWT) and another adaptive lifting wavelet (ALW) developed in literature. Experimental results reveal that the AMGLW outperforms the LW and ALW obviously for detecting bearing defects. The impulsive components can be enhanced and the noise can be depressed simultaneously by the presented AMGLW scheme. Thus the fault characteristic frequencies of bearing can be clearly identified. Furthermore, the AMGLW gets an advantage over LW in computation efficiency. It is quite suitable for online condition monitoring of bearings and other rotating machineries.
Mathematical morphology-based shape feature analysis for Chinese character recognition systems
NASA Astrophysics Data System (ADS)
Pai, Tun-Wen; Shyu, Keh-Hwa; Chen, Ling-Fan; Tai, Gwo-Chin
1995-04-01
This paper proposes an efficient technique of shape feature extraction based on the application of mathematical morphology theory. A new shape complexity index for preclassification of machine printed Chinese Character Recognition (CCR) is also proposed. For characters represented in different fonts/sizes or in a low resolution environment, a more stable local feature such as shape structure is preferred for character recognition. Morphological valley extraction filters are applied to extract the protrusive strokes from four sides of an input Chinese character. The number of extracted local strokes reflects the shape complexity of each side. These shape features of characters are encoded as corresponding shape complexity indices. Based on the shape complexity index, data base is able to be classified into 16 groups prior to recognition procedures. The performance of associating with shape feature analysis reclaims several characters from misrecognized character sets and results in an average of 3.3% improvement of recognition rate from an existing recognition system. In addition to enhance the recognition performance, the extracted stroke information can be further analyzed and classified its own stroke type. Therefore, the combination of extracted strokes from each side provides a means for data base clustering based on radical or subword components. It is one of the best solutions for recognizing high complexity characters such as Chinese characters which are divided into more than 200 different categories and consist more than 13,000 characters.
Planetary geological studies. [MARS crater morphology and ejecta deposit topography
NASA Technical Reports Server (NTRS)
Blasius, K. R.
1981-01-01
A global data base was assembled for the study of Mars crater ejecta morphology. The craters were classified as to morhology using individual photographic prints of Viking orbiter frames. Positional and scale information were derived by fitting digitized mosaic coordinates to lattitude-longitude coordinates of surface features from the Mars geodetic control net and feature coordinates from the U.S.G.S. series of 1:5,00,000 scale shaded relief maps. Crater morphology characteristics recorded are of two classes - attributes of each ejecta deposit and other crater charactersitics. Preliminary efforts to check the data base with findings of other workers are described.
Filtering Airborne LIDAR Data by AN Improved Morphological Method Based on Multi-Gradient Analysis
NASA Astrophysics Data System (ADS)
Li, Y.
2013-05-01
The technology of airborne Light Detection And Ranging (LIDAR) is capable of acquiring dense and accurate 3D geospatial data. Although many related efforts have been made by a lot of researchers in the last few years, LIDAR data filtering is still a challenging task, especially for area with high relief or hybrid geographic features. In order to address the bare-ground extraction from LIDAR point clouds of complex landscapes, a novel morphological filtering algorithm is proposed based on multi-gradient analysis in terms of the characteristic of LIDAR data distribution in this paper. Firstly, point clouds are organized by an index mesh. Then, the multigradient of each point is calculated using the morphological method. And, objects are removed gradually by choosing some points to carry on an improved opening operation constrained by multi-gradient iteratively. 15 sample data provided by ISPRS Working Group III/3 are employed to test the filtering algorithm proposed. These sample data include those environments that may lead to filtering difficulty. Experimental results show that filtering algorithm proposed by this paper is of high adaptability to various scenes including urban and rural areas. Omission error, commission error and total error can be simultaneously controlled in a relatively small interval. This algorithm can efficiently remove object points while preserves ground points to a great degree.
Liu, Bo; Wu, Huayi; Wang, Yandong; Liu, Wenming
2015-01-01
Main road features extracted from remotely sensed imagery play an important role in many civilian and military applications, such as updating Geographic Information System (GIS) databases, urban structure analysis, spatial data matching and road navigation. Current methods for road feature extraction from high-resolution imagery are typically based on threshold value segmentation. It is difficult however, to completely separate road features from the background. We present a new method for extracting main roads from high-resolution grayscale imagery based on directional mathematical morphology and prior knowledge obtained from the Volunteered Geographic Information found in the OpenStreetMap. The two salient steps in this strategy are: (1) using directional mathematical morphology to enhance the contrast between roads and non-roads; (2) using OpenStreetMap roads as prior knowledge to segment the remotely sensed imagery. Experiments were conducted on two ZiYuan-3 images and one QuickBird high-resolution grayscale image to compare our proposed method to other commonly used techniques for road feature extraction. The results demonstrated the validity and better performance of the proposed method for urban main road feature extraction. PMID:26397832
Functional constraints on tooth morphology in carnivorous mammals
2012-01-01
Background The range of potential morphologies resulting from evolution is limited by complex interacting processes, ranging from development to function. Quantifying these interactions is important for understanding adaptation and convergent evolution. Using three-dimensional reconstructions of carnivoran and dasyuromorph tooth rows, we compared statistical models of the relationship between tooth row shape and the opposing tooth row, a static feature, as well as measures of mandibular motion during chewing (occlusion), which are kinetic features. This is a new approach to quantifying functional integration because we use measures of movement and displacement, such as the amount the mandible translates laterally during occlusion, as opposed to conventional morphological measures, such as mandible length and geometric landmarks. By sampling two distantly related groups of ecologically similar mammals, we study carnivorous mammals in general rather than a specific group of mammals. Results Statistical model comparisons demonstrate that the best performing models always include some measure of mandibular motion, indicating that functional and statistical models of tooth shape as purely a function of the opposing tooth row are too simple and that increased model complexity provides a better understanding of tooth form. The predictors of the best performing models always included the opposing tooth row shape and a relative linear measure of mandibular motion. Conclusions Our results provide quantitative support of long-standing hypotheses of tooth row shape as being influenced by mandibular motion in addition to the opposing tooth row. Additionally, this study illustrates the utility and necessity of including kinetic features in analyses of morphological integration. PMID:22899809
New Features for Neuron Classification.
Hernández-Pérez, Leonardo A; Delgado-Castillo, Duniel; Martín-Pérez, Rainer; Orozco-Morales, Rubén; Lorenzo-Ginori, Juan V
2018-04-28
This paper addresses the problem of obtaining new neuron features capable of improving results of neuron classification. Most studies on neuron classification using morphological features have been based on Euclidean geometry. Here three one-dimensional (1D) time series are derived from the three-dimensional (3D) structure of neuron instead, and afterwards a spatial time series is finally constructed from which the features are calculated. Digitally reconstructed neurons were separated into control and pathological sets, which are related to three categories of alterations caused by epilepsy, Alzheimer's disease (long and local projections), and ischemia. These neuron sets were then subjected to supervised classification and the results were compared considering three sets of features: morphological, features obtained from the time series and a combination of both. The best results were obtained using features from the time series, which outperformed the classification using only morphological features, showing higher correct classification rates with differences of 5.15, 3.75, 5.33% for epilepsy and Alzheimer's disease (long and local projections) respectively. The morphological features were better for the ischemia set with a difference of 3.05%. Features like variance, Spearman auto-correlation, partial auto-correlation, mutual information, local minima and maxima, all related to the time series, exhibited the best performance. Also we compared different evaluators, among which ReliefF was the best ranked.
Automated Image Registration Using Morphological Region of Interest Feature Extraction
NASA Technical Reports Server (NTRS)
Plaza, Antonio; LeMoigne, Jacqueline; Netanyahu, Nathan S.
2005-01-01
With the recent explosion in the amount of remotely sensed imagery and the corresponding interest in temporal change detection and modeling, image registration has become increasingly important as a necessary first step in the integration of multi-temporal and multi-sensor data for applications such as the analysis of seasonal and annual global climate changes, as well as land use/cover changes. The task of image registration can be divided into two major components: (1) the extraction of control points or features from images; and (2) the search among the extracted features for the matching pairs that represent the same feature in the images to be matched. Manual control feature extraction can be subjective and extremely time consuming, and often results in few usable points. Automated feature extraction is a solution to this problem, where desired target features are invariant, and represent evenly distributed landmarks such as edges, corners and line intersections. In this paper, we develop a novel automated registration approach based on the following steps. First, a mathematical morphology (MM)-based method is used to obtain a scale-orientation morphological profile at each image pixel. Next, a spectral dissimilarity metric such as the spectral information divergence is applied for automated extraction of landmark chips, followed by an initial approximate matching. This initial condition is then refined using a hierarchical robust feature matching (RFM) procedure. Experimental results reveal that the proposed registration technique offers a robust solution in the presence of seasonal changes and other interfering factors. Keywords-Automated image registration, multi-temporal imagery, mathematical morphology, robust feature matching.
Wakui, Takashi; Matsumoto, Tsuyoshi; Matsubara, Kenta; Kawasaki, Tomoyuki; Yamaguchi, Hiroshi; Akutsu, Hidenori
2017-10-01
We propose an image analysis method for quality evaluation of human pluripotent stem cells based on biologically interpretable features. It is important to maintain the undifferentiated state of induced pluripotent stem cells (iPSCs) while culturing the cells during propagation. Cell culture experts visually select good quality cells exhibiting the morphological features characteristic of undifferentiated cells. Experts have empirically determined that these features comprise prominent and abundant nucleoli, less intercellular spacing, and fewer differentiating cellular nuclei. We quantified these features based on experts' visual inspection of phase contrast images of iPSCs and found that these features are effective for evaluating iPSC quality. We then developed an iPSC quality evaluation method using an image analysis technique. The method allowed accurate classification, equivalent to visual inspection by experts, of three iPSC cell lines.
Palanisamy, Vinupritha; Mariamichael, Anburajan
2016-10-01
Background and Aim: Diabetes mellitus is a metabolic disorder characterized by varying hyperglycemias either due to insufficient secretion of insulin by the pancreas or improper utilization of glucose. The study was aimed to investigate the association of morphological features of erythrocytes among normal and diabetic subjects and its gender-based changes and thereby to develop a computer aided tool to diagnose diabetes using features extracted from RBC. Materials and Methods: The study involved 138 normal and 144 diabetic subjects. The blood was drawn from the subjects and the blood smear prepared was digitized using Zeiss fluorescent microscope. The digitized images were pre-processed and texture segmentation was performed to extract the various morphological features. The Pearson correlation test was performed and subsequently, classification of subjects as normal and diabetes was carried out by a neural network classifier based on the features that demonstrated significance at the level of P <0.05. Result: The proposed system demonstrated an overall accuracy, sensitivity, specificity, positive predictive value and negative predictive value of 93.3, 93.71, 92.8, 93.1 and 93.5% respectively. Conclusion: The morphological features exhibited a statistically significant difference (P<0.01) between the normal and diabetic cells, suggesting that it could be helpful in the diagnosis of Diabetes mellitus using a computer aided system. © Georg Thieme Verlag KG Stuttgart · New York.
Robust Tomato Recognition for Robotic Harvesting Using Feature Images Fusion
Zhao, Yuanshen; Gong, Liang; Huang, Yixiang; Liu, Chengliang
2016-01-01
Automatic recognition of mature fruits in a complex agricultural environment is still a challenge for an autonomous harvesting robot due to various disturbances existing in the background of the image. The bottleneck to robust fruit recognition is reducing influence from two main disturbances: illumination and overlapping. In order to recognize the tomato in the tree canopy using a low-cost camera, a robust tomato recognition algorithm based on multiple feature images and image fusion was studied in this paper. Firstly, two novel feature images, the a*-component image and the I-component image, were extracted from the L*a*b* color space and luminance, in-phase, quadrature-phase (YIQ) color space, respectively. Secondly, wavelet transformation was adopted to fuse the two feature images at the pixel level, which combined the feature information of the two source images. Thirdly, in order to segment the target tomato from the background, an adaptive threshold algorithm was used to get the optimal threshold. The final segmentation result was processed by morphology operation to reduce a small amount of noise. In the detection tests, 93% target tomatoes were recognized out of 200 overall samples. It indicates that the proposed tomato recognition method is available for robotic tomato harvesting in the uncontrolled environment with low cost. PMID:26840313
Relation between brain architecture and mathematical ability in children: a DBM study.
Han, Zhaoying; Davis, Nicole; Fuchs, Lynn; Anderson, Adam W; Gore, John C; Dawant, Benoit M
2013-12-01
Population-based studies indicate that between 5 and 9 percent of US children exhibit significant deficits in mathematical reasoning, yet little is understood about the brain morphological features related to mathematical performances. In this work, deformation-based morphometry (DBM) analyses have been performed on magnetic resonance images of the brains of 79 third graders to investigate whether there is a correlation between brain morphological features and mathematical proficiency. Group comparison was also performed between Math Difficulties (MD-worst math performers) and Normal Controls (NC), where each subgroup consists of 20 age and gender matched subjects. DBM analysis is based on the analysis of the deformation fields generated by non-rigid registration algorithms, which warp the individual volumes to a common space. To evaluate the effect of registration algorithms on DBM results, five nonrigid registration algorithms have been used: (1) the Adaptive Bases Algorithm (ABA); (2) the Image Registration Toolkit (IRTK); (3) the FSL Nonlinear Image Registration Tool; (4) the Automatic Registration Tool (ART); and (5) the normalization algorithm available in SPM8. The deformation field magnitude (DFM) was used to measure the displacement at each voxel, and the Jacobian determinant (JAC) was used to quantify local volumetric changes. Results show there are no statistically significant volumetric differences between the NC and the MD groups using JAC. However, DBM analysis using DFM found statistically significant anatomical variations between the two groups around the left occipital-temporal cortex, left orbital-frontal cortex, and right insular cortex. Regions of agreement between at least two algorithms based on voxel-wise analysis were used to define Regions of Interest (ROIs) to perform an ROI-based correlation analysis on all 79 volumes. Correlations between average DFM values and standard mathematical scores over these regions were found to be significant. We also found that the choice of registration algorithm has an impact on DBM-based results, so we recommend using more than one algorithm when conducting DBM studies. To the best of our knowledge, this is the first study that uses DBM to investigate brain anatomical features related to mathematical performance in a relatively large population of children. © 2013.
Different Cranial Ontogeny in Europeans and Southern Africans
Sardi, Marina L.; Ramírez Rozzi, Fernando V.
2012-01-01
Modern human populations differ in developmental processes and in several phenotypic traits. However, the link between ontogenetic variation and human diversification has not been frequently addressed. Here, we analysed craniofacial ontogenies by means of geometric-morphometrics of Europeans and Southern Africans, according to dental and chronological ages. Results suggest that different adult cranial morphologies between Southern Africans and Europeans arise by a combination of processes that involve traits modified during the prenatal life and others that diverge during early postnatal ontogeny. Main craniofacial changes indicate that Europeans differ from Southern Africans by increasing facial developmental rates and extending the attainment of adult size and shape. Since other studies have suggested that native subsaharan populations attain adulthood earlier than Europeans, it is probable that facial ontogeny is linked with other developmental mechanisms that control the timing of maturation in other variables. Southern Africans appear as retaining young features in adulthood. Facial ontogeny in Europeans produces taller and narrower noses, which seems as an adaptation to colder environments. The lack of these morphological traits in Neanderthals, who lived in cold environments, seems a paradox, but it is probably the consequence of a warm-adapted faces together with precocious maturation. When modern Homo sapiens migrated into Asia and Europe, colder environments might establish pressures that constrained facial growth and development in order to depart from the warm-adapted morphology. Our results provide some answers about how cranial growth and development occur in two human populations and when developmental shifts take place providing a better adaptation to environmental constraints. PMID:22558270
Ecomorphological convergence in planktivorous surgeonfishes.
Friedman, S T; Price, S A; Hoey, A S; Wainwright, P C
2016-05-01
Morphological convergence plays a central role in the study of evolution. Often induced by shared ecological specialization, homoplasy hints at underlying selective pressures and adaptive constraints that deterministically shape the diversification of life. Although midwater zooplanktivory has arisen in adult surgeonfishes (family Acanthuridae) at least four independent times, it represents a clearly specialized state, requiring the capacity to swiftly swim in midwater locating and sucking small prey items. Whereas this diet has commonly been associated with specific functional adaptations in fishes, acanthurids present an interesting case study as all nonplanktivorous species feed by grazing on benthic algae and detritus, requiring a vastly different functional morphology that emphasizes biting behaviours. We examined the feeding morphology in 30 acanthurid species and, combined with a pre-existing phylogenetic tree, compared the fit of evolutionary models across two diet regimes: zooplanktivores and nonzooplanktivorous grazers. Accounting for phylogenetic relationships, the best-fitting model indicates that zooplanktivorous species are converging on a separate adaptive peak from their grazing relatives. Driving this bimodal landscape, zooplanktivorous acanthurids tend to develop a slender body, reduced facial features, smaller teeth and weakened jaw adductor muscles. However, despite these phenotypic changes, model fitting suggests that lineages have not yet reached the adaptive peak associated with plankton feeding even though some transitions appear to be over 10 million years old. These findings demonstrate that the selective demands of pelagic feeding promote repeated - albeit very gradual - ecomorphological convergence within surgeonfishes, while allowing local divergences between closely related species, contributing to the overall diversity of the clade. © 2016 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2016 European Society For Evolutionary Biology.
Analyzing Sub-Classifications of Glaucoma via SOM Based Clustering of Optic Nerve Images.
Yan, Sanjun; Abidi, Syed Sibte Raza; Artes, Paul Habib
2005-01-01
We present a data mining framework to cluster optic nerve images obtained by Confocal Scanning Laser Tomography (CSLT) in normal subjects and patients with glaucoma. We use self-organizing maps and expectation maximization methods to partition the data into clusters that provide insights into potential sub-classification of glaucoma based on morphological features. We conclude that our approach provides a first step towards a better understanding of morphological features in optic nerve images obtained from glaucoma patients and healthy controls.
Giraffe genome sequence reveals clues to its unique morphology and physiology
Agaba, Morris; Ishengoma, Edson; Miller, Webb C.; McGrath, Barbara C.; Hudson, Chelsea N.; Bedoya Reina, Oscar C.; Ratan, Aakrosh; Burhans, Rico; Chikhi, Rayan; Medvedev, Paul; Praul, Craig A.; Wu-Cavener, Lan; Wood, Brendan; Robertson, Heather; Penfold, Linda; Cavener, Douglas R.
2016-01-01
The origins of giraffe's imposing stature and associated cardiovascular adaptations are unknown. Okapi, which lacks these unique features, is giraffe's closest relative and provides a useful comparison, to identify genetic variation underlying giraffe's long neck and cardiovascular system. The genomes of giraffe and okapi were sequenced, and through comparative analyses genes and pathways were identified that exhibit unique genetic changes and likely contribute to giraffe's unique features. Some of these genes are in the HOX, NOTCH and FGF signalling pathways, which regulate both skeletal and cardiovascular development, suggesting that giraffe's stature and cardiovascular adaptations evolved in parallel through changes in a small number of genes. Mitochondrial metabolism and volatile fatty acids transport genes are also evolutionarily diverged in giraffe and may be related to its unusual diet that includes toxic plants. Unexpectedly, substantial evolutionary changes have occurred in giraffe and okapi in double-strand break repair and centrosome functions. PMID:27187213
2012-01-01
Background The marine environment is comprised of numerous divergent organisms living under similar selective pressures, often resulting in the evolution of convergent structures such as the fusiform body shape of pelagic squids, fishes, and some marine mammals. However, little is known about the frequency of, and circumstances leading to, convergent evolution in the open ocean. Here, we present a comparative study of the molluscan class Cephalopoda, a marine group known to occupy habitats from the intertidal to the deep sea. Several lineages bear features that may coincide with a benthic or pelagic existence, making this a valuable group for testing hypotheses of correlated evolution. To test for convergence and correlation, we generate the most taxonomically comprehensive multi-gene phylogeny of cephalopods to date. We then create a character matrix of habitat type and morphological characters, which we use to infer ancestral character states and test for correlation between habitat and morphology. Results Our study utilizes a taxonomically well-sampled phylogeny to show convergent evolution in all six morphological characters we analyzed. Three of these characters also correlate with habitat. The presence of an autogenic photophore (those relying upon autonomous enzymatic light reactions) is correlated with a pelagic habitat, while the cornea and accessory nidamental gland correlate with a benthic lifestyle. Here, we present the first statistical tests for correlation between convergent traits and habitat in cephalopods to better understand the evolutionary history of characters that are adaptive in benthic or pelagic environments, respectively. Discussion Our study supports the hypothesis that habitat has influenced convergent evolution in the marine environment: benthic organisms tend to exhibit similar characteristics that confer protection from invasion by other benthic taxa, while pelagic organisms possess features that facilitate crypsis and communication in an environment lacking physical refuges. Features that have originated multiple times in distantly related lineages are likely adaptive for the organisms inhabiting a particular environment: studying the frequency and evolutionary history of such convergent characters can increase understanding of the underlying forces driving ecological and evolutionary transitions in the marine environment. PMID:22839506
Exploring Eucladoceros ecomorphology using geometric morphometrics.
Curran, Sabrina C
2015-01-01
An increasingly common method for reconstructing paleoenvironmental parameters of hominin sites is ecological functional morphology (ecomorphology). This study provides a geometric morphometric study of cervid rearlimb morphology as it relates to phylogeny, size, and ecomorphology. These methods are then applied to an extinct Pleistocene cervid, Eucladoceros, which is found in some of the earliest hominin-occupied sites in Eurasia. Variation in cervid postcranial functional morphology associated with different habitats can be summarized as trade-offs between joint stability versus mobility and rapid movement versus power-generation. Cervids in open habitats emphasize limb stability to avoid joint dislocation during rapid flight from predators. Closed-adapted cervids require more joint mobility to rapidly switch directions in complex habitats. Two skeletal features (of the tibia and calcaneus) have significant phylogenetic signals, while two (the femur and third phalanx) do not. Additionally, morphology of two of these features (tibia and third phalanx) were correlated with body size. For the tibial analysis (but not the third phalanx) this correlation was ameliorated when phylogeny was taken into account. Eucladoceros specimens from France and Romania fall on the more open side of the habitat continuum, a result that is at odds with reconstructions of their diet as browsers, suggesting that they may have had a behavioral regime unlike any extant cervid. © 2014 Wiley Periodicals, Inc.
Monitoring and Morphologic Classification of Pediatric Cataract Using Slit-Lamp-Adapted Photography.
Long, Erping; Lin, Zhuoling; Chen, Jingjing; Liu, Zhenzhen; Cao, Qianzhong; Lin, Haotian; Chen, Weirong; Liu, Yizhi
2017-11-01
To investigate the feasibility of pediatric cataract monitoring and morphologic classification using slit lamp-adapted anterior segmental photography in a large cohort that included uncooperative children. Patients registered in the Childhood Cataract Program of the Chinese Ministry of Health were prospectively selected. Eligible patients underwent slit-lamp adapted anterior segmental photography to record and monitor the morphology of their cataractous lenses. A set of assistance techniques for slit lamp-adapted photography was developed to instruct the parents of uncooperative children how to help maintain the child's head position and keep the eyes open after sleep aid administration. Briefly, slit lamp-adapted photography was completed for all 438 children, including 260 (59.4%) uncooperative children with our assistance techniques. All 746 images of 438 patients successfully confirmed the diagnoses and classifications. Considering the lesion location, pediatric cataract morphologies could be objectively classified into the seven following types: total; nuclear; polar, including two subtypes (anterior and posterior); lamellar; nuclear combined with cortical, including three subtypes (coral-like, dust-like, and blue-dot); cortical; and Y suture. The top three types of unilateral cataracts were polar (55, 42.3%), total (42, 32.3%), and nuclear (23, 17.7%); and the top three types of bilateral cataracts were nuclear (110, 35.8%), total (102, 33.2%), and lamellar (34, 11.1%). Slit lamp-adapted anterior segmental photography is applicable for monitoring and classifying the morphologies of pediatric cataracts and is even safe and feasible for uncooperative children with assistance techniques and sleep aid administration. This study proposes a novel strategy for the preoperative evaluation and evidence-based management of pediatric ophthalmology (Clinical Trials.gov, NCT02748031).
Quantitative Analysis of Intracellular Motility Based on Optical Flow Model
Li, Heng
2017-01-01
Analysis of cell mobility is a key issue for abnormality identification and classification in cell biology research. However, since cell deformation induced by various biological processes is random and cell protrusion is irregular, it is difficult to measure cell morphology and motility in microscopic images. To address this dilemma, we propose an improved variation optical flow model for quantitative analysis of intracellular motility, which not only extracts intracellular motion fields effectively but also deals with optical flow computation problem at the border by taking advantages of the formulation based on L1 and L2 norm, respectively. In the energy functional of our proposed optical flow model, the data term is in the form of L2 norm; the smoothness of the data changes with regional features through an adaptive parameter, using L1 norm near the edge of the cell and L2 norm away from the edge. We further extract histograms of oriented optical flow (HOOF) after optical flow field of intracellular motion is computed. Then distances of different HOOFs are calculated as the intracellular motion features to grade the intracellular motion. Experimental results show that the features extracted from HOOFs provide new insights into the relationship between the cell motility and the special pathological conditions. PMID:29065574
Jill A. Smedstad; Hannah Gosnell
2013-01-01
Adaptive comanagement (ACM) is a novel approach to environmental governance that combines the dynamic learning features of adaptive management with the linking and network features of collaborative management. There is growing interest in the potential for ACM to resolve conflicts around natural resource management and contribute to greater social and ecological...
Jeong, Sunho; Song, Hae Chun; Lee, Won Woo; Lee, Sun Sook; Choi, Youngmin; Son, Wonil; Kim, Eui Duk; Paik, Choon Hoon; Oh, Seok Heon; Ryu, Beyong-Hwan
2011-03-15
With the aim of inkjet printing highly conductive and well-defined Cu features on plastic substrates, aqueous based Cu ink is prepared for the first time using water-soluble Cu nanoparticles with a very thin surface oxide layer. Owing to the specific properties, high surface tension and low boiling point, of water, the aqueous based Cu ink endows a variety of advantages over conventional Cu inks based on organic solvents in printing narrow conductive patterns without irregular morphologies. It is demonstrated how the design of aqueous based ink affects the basic properties of printed conductive features such as surface morphology, microstructure, conductivity, and line width. The long-term stability of aqueous based Cu ink against oxidation is analyzed through an X-ray photoelectron spectroscopy (XPS) based investigation on the evolution of the surface oxide layer in the aqueous based ink.
NASA Astrophysics Data System (ADS)
Luther, Ed; Mendes, Livia; Pan, Jiayi; Costa, Daniel; Sarisozen, Can; Torchilin, Vladimir
2018-02-01
We rely on in vitro cellular cultures to evaluate the effects of the components of multifunctional nano-based formulations under development. We employ an incubator-adapted, label-free holographic imaging cytometer HoloMonitor M4® (Phase Holographic Imaging, Lund, Sweden) to obtain multi-day time-lapse sequences at 5- minute intervals. An automated stage allows hand-free acquisition of multiple fields of view. Our system is based on the Mach-Zehnder interferometry principle to create interference patterns which are deconvolved to produce images of the optical thickness of the field of view. These images are automatically segmented resulting in a full complement of quantitative morphological features, such as optical volume, thickness, and area amongst many others. Precise XY cell locations and the time of acquisition are also recorded. Visualization is best achieved by novel 4-Dimensional plots, where XY position is plotted overtime time (Z-directions) and cell-thickness is coded as color or gray scale brightness. Fundamental events of interest, i.e., cells undergoing mitosis or mitotic dysfunction, cell death, cell-to-cell interactions, motility are discernable. We use both 2D and 3D models of the tumor microenvironment. We report our new analysis method to track feature changes over time based on a 4-sample version of the Kolmogorov-Smirnov test. Feature A is compared to Control A, and Feature B is compared to Control B to give a 2D probability plot of the feature changes over time. As a result, we efficiently obtain vectors quantifying feature changes over time in various sample conditions, i.e., changing compound concentrations or multi-compound combinations.
Banisadr, Seyedali; Chen, Jian
2017-12-13
Cephalopods, such as cuttlefish, demonstrate remarkable adaptability to the coloration and texture of their surroundings by modulating their skin color and surface morphology simultaneously, for the purpose of adaptive camouflage and signal communication. Inspired by this unique feature of cuttlefish skins, we present a general approach to remote-controlled, smart films that undergo simultaneous changes of surface color and morphology upon infrared (IR) actuation. The smart film has a reconfigurable laminated structure that comprises an IR-responsive nanocomposite actuator layer and a mechanochromic elastomeric photonic crystal layer. Upon global or localized IR irradiation, the actuator layer exhibits fast, large, and reversible strain in the irradiated region, which causes a synergistically coupled change in the shape of the laminated film and color of the mechanochromic elastomeric photonic crystal layer in the same region. Bending and twisting deformations can be created under IR irradiation, through modulating the strain direction in the actuator layer of the laminated film. Furthermore, the laminated film has been used in a remote-controlled inchworm walker that can directly couple a color-changing skin with the robotic movements. Such remote-controlled, smart films may open up new application possibilities in soft robotics and wearable devices.
Electrocardiogram ST-Segment Morphology Delineation Method Using Orthogonal Transformations
2016-01-01
Differentiation between ischaemic and non-ischaemic transient ST segment events of long term ambulatory electrocardiograms is a persisting weakness in present ischaemia detection systems. Traditional ST segment level measuring is not a sufficiently precise technique due to the single point of measurement and severe noise which is often present. We developed a robust noise resistant orthogonal-transformation based delineation method, which allows tracing the shape of transient ST segment morphology changes from the entire ST segment in terms of diagnostic and morphologic feature-vector time series, and also allows further analysis. For these purposes, we developed a new Legendre Polynomials based Transformation (LPT) of ST segment. Its basis functions have similar shapes to typical transient changes of ST segment morphology categories during myocardial ischaemia (level, slope and scooping), thus providing direct insight into the types of time domain morphology changes through the LPT feature-vector space. We also generated new Karhunen and Lo ève Transformation (KLT) ST segment basis functions using a robust covariance matrix constructed from the ST segment pattern vectors derived from the Long Term ST Database (LTST DB). As for the delineation of significant transient ischaemic and non-ischaemic ST segment episodes, we present a study on the representation of transient ST segment morphology categories, and an evaluation study on the classification power of the KLT- and LPT-based feature vectors to classify between ischaemic and non-ischaemic ST segment episodes of the LTST DB. Classification accuracy using the KLT and LPT feature vectors was 90% and 82%, respectively, when using the k-Nearest Neighbors (k = 3) classifier and 10-fold cross-validation. New sets of feature-vector time series for both transformations were derived for the records of the LTST DB which is freely available on the PhysioNet website and were contributed to the LTST DB. The KLT and LPT present new possibilities for human-expert diagnostics, and for automated ischaemia detection. PMID:26863140
Jiang, Wen Jun; Wittek, Peter; Zhao, Li; Gao, Shi Chao
2014-01-01
Photoplethysmogram (PPG) signals acquired by smartphone cameras are weaker than those acquired by dedicated pulse oximeters. Furthermore, the signals have lower sampling rates, have notches in the waveform and are more severely affected by baseline drift, leading to specific morphological characteristics. This paper introduces a new feature, the inverted triangular area, to address these specific characteristics. The new feature enables real-time adaptive waveform detection using an algorithm of linear time complexity. It can also recognize notches in the waveform and it is inherently robust to baseline drift. An implementation of the algorithm on Android is available for free download. We collected data from 24 volunteers and compared our algorithm in peak detection with two competing algorithms designed for PPG signals, Incremental-Merge Segmentation (IMS) and Adaptive Thresholding (ADT). A sensitivity of 98.0% and a positive predictive value of 98.8% were obtained, which were 7.7% higher than the IMS algorithm in sensitivity, and 8.3% higher than the ADT algorithm in positive predictive value. The experimental results confirmed the applicability of the proposed method.
Computational Modeling of Morphological Effects in Bangla Visual Word Recognition.
Dasgupta, Tirthankar; Sinha, Manjira; Basu, Anupam
2015-10-01
In this paper we aim to model the organization and processing of Bangla polymorphemic words in the mental lexicon. Our objective is to determine whether the mental lexicon accesses a polymorphemic word as a whole or decomposes the word into its constituent morphemes and then recognize them accordingly. To address this issue, we adopted two different strategies. First, we conduct a masked priming experiment over native speakers. Analysis of reaction time (RT) and error rates indicates that in general, morphologically derived words are accessed via decomposition process. Next, based on the collected RT data we have developed a computational model that can explain the processing phenomena of the access and representation of Bangla derivationally suffixed words. In order to do so, we first explored the individual roles of different linguistic features of a Bangla morphologically complex word and observed that processing of Bangla morphologically complex words depends upon several factors like, the base and surface word frequency, suffix type/token ratio, suffix family size and suffix productivity. Accordingly, we have proposed different feature models. Finally, we combine these feature models together and came up with a new model that takes the advantage of the individual feature models and successfully explain the processing phenomena of most of the Bangla morphologically derived words. Our proposed model shows an accuracy of around 80% which outperforms the other related frequency models.
Nielsen, Birgitte; Hveem, Tarjei Sveinsgjerd; Kildal, Wanja; Abeler, Vera M; Kristensen, Gunnar B; Albregtsen, Fritz; Danielsen, Håvard E; Rohde, Gustavo K
2015-01-01
Nuclear texture analysis measures the spatial arrangement of the pixel gray levels in a digitized microscopic nuclear image and is a promising quantitative tool for prognosis of cancer. The aim of this study was to evaluate the prognostic value of entropy-based adaptive nuclear texture features in a total population of 354 uterine sarcomas. Isolated nuclei (monolayers) were prepared from 50 µm tissue sections and stained with Feulgen-Schiff. Local gray level entropy was measured within small windows of each nuclear image and stored in gray level entropy matrices, and two superior adaptive texture features were calculated from each matrix. The 5-year crude survival was significantly higher (P < 0.001) for patients with high texture feature values (72%) than for patients with low feature values (36%). When combining DNA ploidy classification (diploid/nondiploid) and texture (high/low feature value), the patients could be stratified into three risk groups with 5-year crude survival of 77, 57, and 34% (Hazard Ratios (HR) of 1, 2.3, and 4.1, P < 0.001). Entropy-based adaptive nuclear texture was an independent prognostic marker for crude survival in multivariate analysis including relevant clinicopathological features (HR = 2.1, P = 0.001), and should therefore be considered as a potential prognostic marker in uterine sarcomas. © The Authors. Published 2014 International Society for Advancement of Cytometry PMID:25483227
Role of multidetector computed tomography in evaluating incidentally detected breast lesions.
Moschetta, Marco; Scardapane, Arnaldo; Lorusso, Valentina; Rella, Leonarda; Telegrafo, Michele; Serio, Gabriella; Angelelli, Giuseppe; Ianora, Amato Antonio Stabile
2015-01-01
Computed tomography (CT) does not represent the primary method for the evaluation of breast lesions; however, it can detect breast abnormalities, even when performed for other reasons related to thoracic structures. The aim of this study is to evaluate the potential benefits of 320-row multidetector CT (MDCT) in evaluating and differentiating incidentally detected breast lesions by using vessel probe and 3D analysis software with net enhancement value. Sixty-two breast lesions in 46 patients who underwent 320-row chest CT examination were retrospectively evaluated. CT scans were assessed searching for the presence, location, number, morphological features, and density of breast nodules. Net enhancement was calculated by subtracting precontrast density from the density obtained by postcontrast values. The sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and diagnostic accuracy of CT were calculated for morphological features and net enhancement. Thirty of 62 lesions were found to be malignant at histological examination and 32 were found to be benign. When morphological features were considered, the sensitivity, specificity, accuracy, PPV, and NPV of CT were 87%, 100%, 88%, 100%, and 50%, respectively. Based on net enhancement, CT reached a sensitivity, specificity, accuracy, PPV, and NPV of 100%, 94%, 97%, 94%, and 100%, respectively. MDCT allows to recognize and characterize breast lesions based on morphological features. Net enhancement can be proposed as an additional accurate feature of CT.
NASA Astrophysics Data System (ADS)
Argyropoulou, Evangelia
2015-04-01
The current study was focused on the seafloor morphology of the North Aegean Basin in Greece, through Object Based Image Analysis (OBIA) using a Digital Elevation Model. The goal was the automatic extraction of morphologic and morphotectonic features, resulting into fault surface extraction. An Object Based Image Analysis approach was developed based on the bathymetric data and the extracted features, based on morphological criteria, were compared with the corresponding landforms derived through tectonic analysis. A digital elevation model of 150 meters spatial resolution was used. At first, slope, profile curvature, and percentile were extracted from this bathymetry grid. The OBIA approach was developed within the eCognition environment. Four segmentation levels were created having as a target "level 4". At level 4, the final classes of geomorphological features were classified: discontinuities, fault-like features and fault surfaces. On previous levels, additional landforms were also classified, such as continental platform and continental slope. The results of the developed approach were evaluated by two methods. At first, classification stability measures were computed within eCognition. Then, qualitative and quantitative comparison of the results took place with a reference tectonic map which has been created manually based on the analysis of seismic profiles. The results of this comparison were satisfactory, a fact which determines the correctness of the developed OBIA approach.
Jia, Peng-Fei; Li, Hong-Ju; Yang, Wei-Cai
2017-01-01
Peroxisome is an essential single-membrane bound organelle in most eukaryotic cells and functions in diverse cellular processes. De novo formation, division, and turnover of peroxisomes contribute to its biogenesis, morphology, and population regulation. In plants, peroxisome plays multiple roles, including metabolism, development, and stress response. Defective peroxisome biogenesis and development retard plant growth, adaption, and reproduction. Through tracing the subcellular localization of fluorescent reporter tagged matrix protein of peroxisome, fluorescence microscopy is a reliable and fast way to detect peroxisome biogenesis. Further fine-structural observation of peroxisome by TEM enables researchers to observe the detailed ultrastructure of its morphology and spatial contact with other organelles. Pollen grain is a specialized structure where two small sperm cells are enclosed in the cytoplasm of a large vegetative cell. Two features make pollen grain a good system to study peroxisome biogenesis: indispensable requirement of peroxisome for germination on the stigma and homogeneity. Here, we describe the methods of studying peroxisome biogenesis in Arabidopsis pollen grains by fluorescent live-imaging with confocal laser scanning microscopy (CLSM) and by DAB-staining based transmission electron microscopy (TEM).
Janneck, Robby; Pilet, Nicolas; Bommanaboyena, Satya Prakash; Watts, Benjamin; Heremans, Paul; Genoe, Jan; Rolin, Cedric
2017-11-01
Highly crystalline thin films of organic semiconductors offer great potential for fundamental material studies as well as for realizing high-performance, low-cost flexible electronics. The fabrication of these films directly on inert substrates is typically done by meniscus-guided coating techniques. The resulting layers show morphological defects that hinder charge transport and induce large device-to-device variability. Here, a double-step method for organic semiconductor layers combining a solution-processed templating layer and a lateral homo-epitaxial growth by a thermal evaporation step is reported. The epitaxial regrowth repairs most of the morphological defects inherent to meniscus-guided coatings. The resulting film is highly crystalline and features a mobility increased by a factor of three and a relative spread in device characteristics improved by almost half an order of magnitude. This method is easily adaptable to other coating techniques and offers a route toward the fabrication of high-performance, large-area electronics based on highly crystalline thin films of organic semiconductors. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Nowaczewska, Wioletta; Dabrowski, Paweł; Kuźmiński, Łukasz
2011-09-01
The aim of this study is to investigate whether the variation in breadth of the cranial base among modern human populations that inhabit different regions of the world is linked with climatic adaptation. This work provides an examination of two hypotheses. The first hypothesis is that the correlation between basicranial breadth and ambient temperature is stronger than the correlation between temperature and other neurocranial variables, such as maximum cranial breadth, maximum neurocranial length, and the endocranial volume. The second hypothesis is that the correlation between the breadth of the cranial base and the ambient temperature is significant even when other neurocranial features used in this study (including the size of the neurocranium) are constant. For the sake of this research, the necessary neurocranial variables for fourteen human populations living in diverse environments were obtained from Howells' data (except for endocranial volume which was obtained by means of estimation). The ambient temperature (more precisely, the mean yearly temperature) of the environments inhabited by these populations was used as a major climatic factor. Data were analysed using Pearson correlation coefficients, linear regression and partial correlation analyses. The results supported the two hypotheses, thus suggesting that ambient temperature may contribute to the observed differences in the breadth of the cranial base in the studied modern humans.
Shape and Color Features for Object Recognition Search
NASA Technical Reports Server (NTRS)
Duong, Tuan A.; Duong, Vu A.; Stubberud, Allen R.
2012-01-01
A bio-inspired shape feature of an object of interest emulates the integration of the saccadic eye movement and horizontal layer in vertebrate retina for object recognition search where a single object can be used one at a time. The optimal computational model for shape-extraction-based principal component analysis (PCA) was also developed to reduce processing time and enable the real-time adaptive system capability. A color feature of the object is employed as color segmentation to empower the shape feature recognition to solve the object recognition in the heterogeneous environment where a single technique - shape or color - may expose its difficulties. To enable the effective system, an adaptive architecture and autonomous mechanism were developed to recognize and adapt the shape and color feature of the moving object. The bio-inspired object recognition based on bio-inspired shape and color can be effective to recognize a person of interest in the heterogeneous environment where the single technique exposed its difficulties to perform effective recognition. Moreover, this work also demonstrates the mechanism and architecture of the autonomous adaptive system to enable the realistic system for the practical use in the future.
Imhoff, Carolina; Giri, Federico; Siroski, Pablo; Amavet, Patricia
2018-04-01
The heterogeneity of biotic and abiotic factors influencing fitness produce selective pressures that promote local adaptation and divergence among different populations of the same species. In order for adaptations to be maintained through evolutionary time, heritable genetic variation controlling the expression of the morphological features under selection is necessary. Here we compare morphological shape variability and size of the cephalic region of Salvator merianae specimens from undisturbed environments to those of individuals from disturbed environments, and estimated heritability for shape and size using geometric morphometric and quantitative genetics tools. The results of these analyzes indicated that there are statistically significant differences in shape and size between populations from the two environments. Possibly, one of the main determinants of cephalic shape and size is adaptation to the characteristics of the environment and to the trophic niche. Individuals from disturbed environments have a cephalic region with less shape variation and also have a larger centroid size when compared to individuals from undisturbed environments. The high heritability values obtained for shape and size in dorsal view and right side view indicate that these phenotypic characters have a great capacity to respond to the selection pressures to which they are subjected. Data obtained here could be used as an important tool when establishing guidelines for plans for the sustainable use and conservation of S. merianae and other species living in disturbed areas. Copyright © 2018 Elsevier GmbH. All rights reserved.
Should the parameters of a BCI translation algorithm be continually adapted?
McFarland, Dennis J; Sarnacki, William A; Wolpaw, Jonathan R
2011-07-15
People with or without motor disabilities can learn to control sensorimotor rhythms (SMRs) recorded from the scalp to move a computer cursor in one or more dimensions or can use the P300 event-related potential as a control signal to make discrete selections. Data collected from individuals using an SMR-based or P300-based BCI were evaluated offline to estimate the impact on performance of continually adapting the parameters of the translation algorithm during BCI operation. The performance of the SMR-based BCI was enhanced by adaptive updating of the feature weights or adaptive normalization of the features. In contrast, P300 performance did not benefit from either of these procedures. Copyright © 2011 Elsevier B.V. All rights reserved.
Morphometry, geometry, function, and the future.
Mcnulty, Kieran P; Vinyard, Christopher J
2015-01-01
The proliferation of geometric morphometrics (GM) in biological anthropology and more broadly throughout the biological sciences has resulted in a multitude of studies that adopt landmark-based approaches for addressing a variety of questions in evolutionary morphology. In some cases, particularly in the realm of systematics, the fit between research question and analytical design is quite good. Functional-adaptive studies, however, do not readily conform to the methods available in the GM toolkit. The symposium organized by Terhune and Cooke entitled "Assessing function via shape: What is the place of GM in functional morphology?" held at the 2013 meetings of the American Association of Physical Anthropologists was designed specifically to explore this relationship between landmark-based methods and analyses of functional morphology, and the articles in this special issue, which stem in large part from this symposium, provide numerous examples of how the two approaches can complement and contrast each other. Here, we underscore some of the major difficulties in interpreting GM results within a functional regime. In combination with other contributions in this issue, we identify emerging areas of research that will help bridge the gap between multivariate morphometry and functional-adaptive analysis. Ultimately, neither geometric nor functional morphometric approaches is sufficient to elaborate the adaptive pathways that explain morphological evolution through natural selection. These perspectives must be further integrated with research from physiology, developmental biology, genomics, and ecology. © 2014 Wiley Periodicals, Inc.
Wollenberg Valero, Katharina C.; Garcia-Porta, Joan; Rodríguez, Ariel; Arias, Mónica; Shah, Abhijeet; Randrianiaina, Roger Daniel; Brown, Jason L.; Glaw, Frank; Amat, Felix; Künzel, Sven; Metzler, Dirk; Isokpehi, Raphael D.; Vences, Miguel
2017-01-01
Anuran amphibians undergo major morphological transitions during development, but the contribution of their markedly different life-history phases to macroevolution has rarely been analysed. Here we generate testable predictions for coupling versus uncoupling of phenotypic evolution of tadpole and adult life-history phases, and for the underlying expression of genes related to morphological feature formation. We test these predictions by combining evidence from gene expression in two distantly related frogs, Xenopus laevis and Mantidactylus betsileanus, with patterns of morphological evolution in the entire radiation of Madagascan mantellid frogs. Genes linked to morphological structure formation are expressed in a highly phase-specific pattern, suggesting uncoupling of phenotypic evolution across life-history phases. This gene expression pattern agrees with uncoupled rates of trait evolution among life-history phases in the mantellids, which we show to have undergone an adaptive radiation. Our results validate a prevalence of uncoupling in the evolution of tadpole and adult phenotypes of frogs. PMID:28504275
Konuma, Junji; Yamamoto, Satoshi; Sota, Teiji
2014-12-01
The snail-feeding carabid beetle Damaster blaptoides exhibits diverse head and thorax morphologies, and these morphotypes are linked with two alternative feeding behaviours. Stout-shaped beetles feed on snails by crushing the shells, whereas slender-shaped beetles consume snails by inserting their heads into the shells. A trade-off exists between these feeding strategies. Because intermediate-shaped beetles are less proficient in these two behaviours, stout-slender morphological divergence occurs between related species feeding on land snails. To examine the genetic basis of these morphotypes, we conducted morphological analyses and quantitative trait locus (QTL) mapping using backcross offspring between the stout and slender subspecies. The morphological analyses showed that the width and length of the beetle body parts were correlated with each other; in particular, the head width (HW) and thorax length (TL) were strongly negatively correlated. QTL mapping showed that QTLs for HW and TL are located in close proximity to one another on the longest linkage group and that they have positive and negative additive genetic effects. Our results suggest that the adaptive phenotypic sets of a wide head and short thorax and a narrow head and long thorax are based on the closeness of these QTLs. Morphological integration between the head and thorax may play an important role in the adaptive divergence of these beetles. © 2014 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Li, S.; Zhang, S.; Yang, D.
2017-09-01
Remote sensing images are particularly well suited for analysis of land cover change. In this paper, we present a new framework for detection of changing land cover using satellite imagery. Morphological features and a multi-index are used to extract typical objects from the imagery, including vegetation, water, bare land, buildings, and roads. Our method, based on connected domains, is different from traditional methods; it uses image segmentation to extract morphological features, while the enhanced vegetation index (EVI), the differential water index (NDWI) are used to extract vegetation and water, and a fragmentation index is used to the correct extraction results of water. HSV transformation and threshold segmentation extract and remove the effects of shadows on extraction results. Change detection is performed on these results. One of the advantages of the proposed framework is that semantic information is extracted automatically using low-level morphological features and indexes. Another advantage is that the proposed method detects specific types of change without any training samples. A test on ZY-3 images demonstrates that our framework has a promising capability to detect change.
NASA Astrophysics Data System (ADS)
Metusala, D.; Supriatna, J.; Nisyawati, Sopandie, D.
2017-07-01
Dendrobium capra and Dendrobium arcuatum are closely related in phylogeny, but they have very contrasting vegetative morphology and habitats. D. capra is known as a species that is well-adapted to dry lowland teak forest habitat in East Java, where most trees drop their leaves in summer, while D. arcuatum has adapted to mid or high land moist forest at elevation up to 800 m dpl. In order to investigate their potential adaptation to drought stress in the climate change era, we have compared and analyzed the leaf and root anatomical characteristics of both species. Transversal sections were made using hand mini microtome, dehydrated in graded alcohol series and stained with safranin 1 % and fastgreen 1 %. Leaf scraping technique has been used to prepare paradermal sections, and then dehydrated in graded alcohol series and stained with safranin 1 %. Quantitative anatomical characteristics between D. capra and D. arcuatum have been compared using a t-test. The result showed that there were significant differences on anatomical characters between both species. Compared to D. arcuatum, D. capra shows more developed anatomical features for adapting to drought and dry condition. These anatomical features were a thicker cuticle, thicker epidermis, presence of hypodermis, thicker mesophyll, broader primary vascular bundle, well developed xylem's sclerenchyma, lower stomatal density, thicker and high proportion of velamen.
Zhang, Jianhua; Yin, Zhong; Wang, Rubin
2017-01-01
This paper developed a cognitive task-load (CTL) classification algorithm and allocation strategy to sustain the optimal operator CTL levels over time in safety-critical human-machine integrated systems. An adaptive human-machine system is designed based on a non-linear dynamic CTL classifier, which maps a set of electroencephalogram (EEG) and electrocardiogram (ECG) related features to a few CTL classes. The least-squares support vector machine (LSSVM) is used as dynamic pattern classifier. A series of electrophysiological and performance data acquisition experiments were performed on seven volunteer participants under a simulated process control task environment. The participant-specific dynamic LSSVM model is constructed to classify the instantaneous CTL into five classes at each time instant. The initial feature set, comprising 56 EEG and ECG related features, is reduced to a set of 12 salient features (including 11 EEG-related features) by using the locality preserving projection (LPP) technique. An overall correct classification rate of about 80% is achieved for the 5-class CTL classification problem. Then the predicted CTL is used to adaptively allocate the number of process control tasks between operator and computer-based controller. Simulation results showed that the overall performance of the human-machine system can be improved by using the adaptive automation strategy proposed.
Inductive Approaches to Improving Diagnosis and Design for Diagnosability
NASA Technical Reports Server (NTRS)
Fisher, Douglas H. (Principal Investigator)
1995-01-01
The first research area under this grant addresses the problem of classifying time series according to their morphological features in the time domain. A supervised learning system called CALCHAS, which induces a classification procedure for signatures from preclassified examples, was developed. For each of several signature classes, the system infers a model that captures the class's morphological features using Bayesian model induction and the minimum message length approach to assign priors. After induction, a time series (signature) is classified in one of the classes when there is enough evidence to support that decision. Time series with sufficiently novel features, belonging to classes not present in the training set, are recognized as such. A second area of research assumes two sources of information about a system: a model or domain theory that encodes aspects of the system under study and data from actual system operations over time. A model, when it exists, represents strong prior expectations about how a system will perform. Our work with a diagnostic model of the RCS (Reaction Control System) of the Space Shuttle motivated the development of SIG, a system which combines information from a model (or domain theory) and data. As it tracks RCS behavior, the model computes quantitative and qualitative values. Induction is then performed over the data represented by both the 'raw' features and the model-computed high-level features. Finally, work on clustering for operating mode discovery motivated some important extensions to the clustering strategy we had used. One modification appends an iterative optimization technique onto the clustering system; this optimization strategy appears to be novel in the clustering literature. A second modification improves the noise tolerance of the clustering system. In particular, we adapt resampling-based pruning strategies used by supervised learning systems to the task of simplifying hierarchical clusterings, thus making post-clustering analysis easier.
Santos-Filho, Carlos; de Lima, Camila M; Fôro, César A R; de Oliveira, Marcus A; Magalhães, Nara G M; Guerreiro-Diniz, Cristovam; Diniz, Daniel G; Vasconcelos, Pedro F da C; Diniz, Cristovam W P
2014-11-01
We investigated whether the morphology of microglia in the molecular layer of the dentate gyrus (DG-Mol) or in the lacunosum molecular layer of CA1 (CA1-LMol) was correlated with spatial learning and memory in the capuchin monkey (Cebus apella). Learning and memory was tested in 4 monkeys with visuo-spatial, paired associated learning (PAL) tasks from the Cambridge battery of neuropsychological tests. After testing, monkeys were sacrificed, and hippocampi were sectioned. We specifically immunolabeled microglia with an antibody against the adapter binding, ionized calcium protein. Microglia were selected from the middle and outer thirds of the DG-Mol (n=268) and the CA1-LMol (n=185) for three-dimensional reconstructions created with Neurolucida and Neuroexplorer software. Cluster and discriminant analyses, based on microglial morphometric parameters, identified two major morphological microglia phenotypes (types I and II) found in both the CA1-LMol and DG-Mol of all individuals. Compared to type II, type I microglia were significantly smaller, thinner, more tortuous and ramified, and less complex (lower fractal dimensions). PAL performance was both linearly and non-linearly correlated with type I microglial morphological features from the rostral and caudal DG-Mol, but not with microglia from the CA1-LMol. These differences in microglial morphology and correlations with PAL performance were consistent with previous proposals of hippocampal regional contributions for spatial learning and memory. Our results suggested that at least two morphological microglial phenotypes provided distinct physiological roles to learning-associated activity in the rostral and caudal DG-Mol of the monkey brain. Copyright © 2014 Elsevier B.V. All rights reserved.
Garcia-Cantero, Juan J; Brito, Juan P; Mata, Susana; Bayona, Sofia; Pastor, Luis
2017-01-01
Gaining a better understanding of the human brain continues to be one of the greatest challenges for science, largely because of the overwhelming complexity of the brain and the difficulty of analyzing the features and behavior of dense neural networks. Regarding analysis, 3D visualization has proven to be a useful tool for the evaluation of complex systems. However, the large number of neurons in non-trivial circuits, together with their intricate geometry, makes the visualization of a neuronal scenario an extremely challenging computational problem. Previous work in this area dealt with the generation of 3D polygonal meshes that approximated the cells' overall anatomy but did not attempt to deal with the extremely high storage and computational cost required to manage a complex scene. This paper presents NeuroTessMesh, a tool specifically designed to cope with many of the problems associated with the visualization of neural circuits that are comprised of large numbers of cells. In addition, this method facilitates the recovery and visualization of the 3D geometry of cells included in databases, such as NeuroMorpho, and provides the tools needed to approximate missing information such as the soma's morphology. This method takes as its only input the available compact, yet incomplete, morphological tracings of the cells as acquired by neuroscientists. It uses a multiresolution approach that combines an initial, coarse mesh generation with subsequent on-the-fly adaptive mesh refinement stages using tessellation shaders. For the coarse mesh generation, a novel approach, based on the Finite Element Method, allows approximation of the 3D shape of the soma from its incomplete description. Subsequently, the adaptive refinement process performed in the graphic card generates meshes that provide good visual quality geometries at a reasonable computational cost, both in terms of memory and rendering time. All the described techniques have been integrated into NeuroTessMesh, available to the scientific community, to generate, visualize, and save the adaptive resolution meshes.
Automatic lumen segmentation in IVOCT images using binary morphological reconstruction
2013-01-01
Background Atherosclerosis causes millions of deaths, annually yielding billions in expenses round the world. Intravascular Optical Coherence Tomography (IVOCT) is a medical imaging modality, which displays high resolution images of coronary cross-section. Nonetheless, quantitative information can only be obtained with segmentation; consequently, more adequate diagnostics, therapies and interventions can be provided. Since it is a relatively new modality, many different segmentation methods, available in the literature for other modalities, could be successfully applied to IVOCT images, improving accuracies and uses. Method An automatic lumen segmentation approach, based on Wavelet Transform and Mathematical Morphology, is presented. The methodology is divided into three main parts. First, the preprocessing stage attenuates and enhances undesirable and important information, respectively. Second, in the feature extraction block, wavelet is associated with an adapted version of Otsu threshold; hence, tissue information is discriminated and binarized. Finally, binary morphological reconstruction improves the binary information and constructs the binary lumen object. Results The evaluation was carried out by segmenting 290 challenging images from human and pig coronaries, and rabbit iliac arteries; the outcomes were compared with the gold standards made by experts. The resultant accuracy was obtained: True Positive (%) = 99.29 ± 2.96, False Positive (%) = 3.69 ± 2.88, False Negative (%) = 0.71 ± 2.96, Max False Positive Distance (mm) = 0.1 ± 0.07, Max False Negative Distance (mm) = 0.06 ± 0.1. Conclusions In conclusion, by segmenting a number of IVOCT images with various features, the proposed technique showed to be robust and more accurate than published studies; in addition, the method is completely automatic, providing a new tool for IVOCT segmentation. PMID:23937790
Skeleton-based tracing of curved fibers from 3D X-ray microtomographic imaging
NASA Astrophysics Data System (ADS)
Huang, Xiang; Wen, Donghui; Zhao, Yanwei; Wang, Qinghui; Zhou, Wei; Deng, Daxiang
A skeleton-based fiber tracing algorithm is described and applied on a specific fibrous material, porous metal fiber sintered sheet (PMFSS), featuring high porosity and curved fibers. The skeleton segments are firstly categorized according to the connectivity of the skeleton paths. Spurious segments like fiber bonds are detected making extensive use of the distance transform (DT) values. Single fibers are then traced and reconstructed by consecutively choosing the connecting skeleton segment pairs that show the most similar orientations and radius. Moreover, to reduce the misconnection due to the tracing orders, a multilevel tracing strategy is proposed. The fibrous network is finally reconstructed by dilating single fibers according to the DT values. Based on the traced single fibers, various morphology information regarding fiber length, radius, orientation, and tortuosity are quantitatively analyzed and compared with our previous results (Wang et al., 2013). Moreover, the number of bonds per fibers are firstly accessed. The methodology described in this paper can be expanded to other fibrous materials with adapted parameters.
Functional coupling constrains craniofacial diversification in Lake Tanganyika cichlids
Tsuboi, Masahito; Gonzalez-Voyer, Alejandro; Kolm, Niclas
2015-01-01
Functional coupling, where a single morphological trait performs multiple functions, is a universal feature of organismal design. Theory suggests that functional coupling may constrain the rate of phenotypic evolution, yet empirical tests of this hypothesis are rare. In fish, the evolutionary transition from guarding the eggs on a sandy/rocky substrate (i.e. substrate guarding) to mouthbrooding introduces a novel function to the craniofacial system and offers an ideal opportunity to test the functional coupling hypothesis. Using a combination of geometric morphometrics and a recently developed phylogenetic comparative method, we found that head morphology evolution was 43% faster in substrate guarding species than in mouthbrooding species. Furthermore, for species in which females were solely responsible for mouthbrooding the males had a higher rate of head morphology evolution than in those with bi-parental mouthbrooding. Our results support the hypothesis that adaptations resulting in functional coupling constrain phenotypic evolution. PMID:25948565
Functional coupling constrains craniofacial diversification in Lake Tanganyika cichlids.
Tsuboi, Masahito; Gonzalez-Voyer, Alejandro; Kolm, Niclas
2015-05-01
Functional coupling, where a single morphological trait performs multiple functions, is a universal feature of organismal design. Theory suggests that functional coupling may constrain the rate of phenotypic evolution, yet empirical tests of this hypothesis are rare. In fish, the evolutionary transition from guarding the eggs on a sandy/rocky substrate (i.e. substrate guarding) to mouthbrooding introduces a novel function to the craniofacial system and offers an ideal opportunity to test the functional coupling hypothesis. Using a combination of geometric morphometrics and a recently developed phylogenetic comparative method, we found that head morphology evolution was 43% faster in substrate guarding species than in mouthbrooding species. Furthermore, for species in which females were solely responsible for mouthbrooding the males had a higher rate of head morphology evolution than in those with bi-parental mouthbrooding. Our results support the hypothesis that adaptations resulting in functional coupling constrain phenotypic evolution.
Brain shape convergence in the adaptive radiation of New World monkeys
Aristide, Leandro; dos Reis, Sergio Furtado; Machado, Alessandra C.; Lima, Inaya; Lopes, Ricardo T.; Perez, S. Ivan
2016-01-01
Primates constitute one of the most diverse mammalian clades, and a notable feature of their diversification is the evolution of brain morphology. However, the evolutionary processes and ecological factors behind these changes are largely unknown. In this work, we investigate brain shape diversification of New World monkeys during their adaptive radiation in relation to different ecological dimensions. Our results reveal that brain diversification in this clade can be explained by invoking a model of adaptive peak shifts to unique and shared optima, defined by a multidimensional ecological niche hypothesis. Particularly, we show that the evolution of convergent brain phenotypes may be related to ecological factors associated with group size (e.g., social complexity). Together, our results highlight the complexity of brain evolution and the ecological significance of brain shape changes during the evolutionary diversification of a primate clade. PMID:26858427
Cranial base evolution within the hominin clade
Nevell, L; Wood, B
2008-01-01
The base of the cranium (i.e. the basioccipital, the sphenoid and the temporal bones) is of particular interest because it undergoes significant morphological change within the hominin clade, and because basicranial morphology features in several hominin species diagnoses. We use a parsimony analysis of published cranial and dental data to predict the cranial base morphology expected in the hypothetical last common ancestor of the Pan–Homo clade. We also predict the primitive condition of the cranial base for the hominin clade, and document the evolution of the cranial base within the major subclades within the hominin clade. This analysis suggests that cranial base morphology has continued to evolve in the hominin clade, both before and after the emergence of the genus Homo. PMID:18380865
Dabbah, M A; Graham, J; Petropoulos, I N; Tavakoli, M; Malik, R A
2011-10-01
Diabetic peripheral neuropathy (DPN) is one of the most common long term complications of diabetes. Corneal confocal microscopy (CCM) image analysis is a novel non-invasive technique which quantifies corneal nerve fibre damage and enables diagnosis of DPN. This paper presents an automatic analysis and classification system for detecting nerve fibres in CCM images based on a multi-scale adaptive dual-model detection algorithm. The algorithm exploits the curvilinear structure of the nerve fibres and adapts itself to the local image information. Detected nerve fibres are then quantified and used as feature vectors for classification using random forest (RF) and neural networks (NNT) classifiers. We show, in a comparative study with other well known curvilinear detectors, that the best performance is achieved by the multi-scale dual model in conjunction with the NNT classifier. An evaluation of clinical effectiveness shows that the performance of the automated system matches that of ground-truth defined by expert manual annotation. Copyright © 2011 Elsevier B.V. All rights reserved.
Oberhummer, Evelyne; Barten, Catherin; Schweizer, Manuel; Das, Indraneil; Haas, Alexander; Hertwig, Stefan T
2014-07-09
The megophryid frogs Leptobrachella brevicrus, Leptolalax dringi and Megophrys dringi are species exclusively known from highly localised areas in isolated mountain ranges on Borneo. The tadpoles and adults in this study were collected at the shared type locality for the three species in Gunung Mulu National Park, Sarawak, Malaysia (Borneo). The species identities of larvae were determined via comparison to syntopic adults using DNA barcoding techniques based on partial 16S rRNA mitochondrial gene sequences. The genetic data supported the status of the three taxa as valid species. Descriptions of colouration in life and after preservation, external morphological features, morphometric measurements and ecological notes in comparison to congeneric species are supplied. The tadpoles of L. brevicrus and L. dringi show similar adaptations to a fossorial lifestyle. These include an elongated, vermiform body, a relatively long tail and small eyes. Both were found in the gravel beds of a small mountain stream. In contrast, the larvae of M. dringi are adapted to occupying and feeding at the surface of pools within the stream.
Zhang, Wei; Zhang, Xiaolong; Qiang, Yan; Tian, Qi; Tang, Xiaoxian
2017-01-01
The fast and accurate segmentation of lung nodule image sequences is the basis of subsequent processing and diagnostic analyses. However, previous research investigating nodule segmentation algorithms cannot entirely segment cavitary nodules, and the segmentation of juxta-vascular nodules is inaccurate and inefficient. To solve these problems, we propose a new method for the segmentation of lung nodule image sequences based on superpixels and density-based spatial clustering of applications with noise (DBSCAN). First, our method uses three-dimensional computed tomography image features of the average intensity projection combined with multi-scale dot enhancement for preprocessing. Hexagonal clustering and morphological optimized sequential linear iterative clustering (HMSLIC) for sequence image oversegmentation is then proposed to obtain superpixel blocks. The adaptive weight coefficient is then constructed to calculate the distance required between superpixels to achieve precise lung nodules positioning and to obtain the subsequent clustering starting block. Moreover, by fitting the distance and detecting the change in slope, an accurate clustering threshold is obtained. Thereafter, a fast DBSCAN superpixel sequence clustering algorithm, which is optimized by the strategy of only clustering the lung nodules and adaptive threshold, is then used to obtain lung nodule mask sequences. Finally, the lung nodule image sequences are obtained. The experimental results show that our method rapidly, completely and accurately segments various types of lung nodule image sequences. PMID:28880916
Automatic exudate detection by fusing multiple active contours and regionwise classification.
Harangi, Balazs; Hajdu, Andras
2014-11-01
In this paper, we propose a method for the automatic detection of exudates in digital fundus images. Our approach can be divided into three stages: candidate extraction, precise contour segmentation and the labeling of candidates as true or false exudates. For candidate detection, we borrow a grayscale morphology-based method to identify possible regions containing these bright lesions. Then, to extract the precise boundary of the candidates, we introduce a complex active contour-based method. Namely, to increase the accuracy of segmentation, we extract additional possible contours by taking advantage of the diverse behavior of different pre-processing methods. After selecting an appropriate combination of the extracted contours, a region-wise classifier is applied to remove the false exudate candidates. For this task, we consider several region-based features, and extract an appropriate feature subset to train a Naïve-Bayes classifier optimized further by an adaptive boosting technique. Regarding experimental studies, the method was tested on publicly available databases both to measure the accuracy of the segmentation of exudate regions and to recognize their presence at image-level. In a proper quantitative evaluation on publicly available datasets the proposed approach outperformed several state-of-the-art exudate detector algorithms. Copyright © 2014 Elsevier Ltd. All rights reserved.
Retinal status analysis method based on feature extraction and quantitative grading in OCT images.
Fu, Dongmei; Tong, Hejun; Zheng, Shuang; Luo, Ling; Gao, Fulin; Minar, Jiri
2016-07-22
Optical coherence tomography (OCT) is widely used in ophthalmology for viewing the morphology of the retina, which is important for disease detection and assessing therapeutic effect. The diagnosis of retinal diseases is based primarily on the subjective analysis of OCT images by trained ophthalmologists. This paper describes an OCT images automatic analysis method for computer-aided disease diagnosis and it is a critical part of the eye fundus diagnosis. This study analyzed 300 OCT images acquired by Optovue Avanti RTVue XR (Optovue Corp., Fremont, CA). Firstly, the normal retinal reference model based on retinal boundaries was presented. Subsequently, two kinds of quantitative methods based on geometric features and morphological features were proposed. This paper put forward a retinal abnormal grading decision-making method which was used in actual analysis and evaluation of multiple OCT images. This paper showed detailed analysis process by four retinal OCT images with different abnormal degrees. The final grading results verified that the analysis method can distinguish abnormal severity and lesion regions. This paper presented the simulation of the 150 test images, where the results of analysis of retinal status showed that the sensitivity was 0.94 and specificity was 0.92.The proposed method can speed up diagnostic process and objectively evaluate the retinal status. This paper aims on studies of retinal status automatic analysis method based on feature extraction and quantitative grading in OCT images. The proposed method can obtain the parameters and the features that are associated with retinal morphology. Quantitative analysis and evaluation of these features are combined with reference model which can realize the target image abnormal judgment and provide a reference for disease diagnosis.
Qiu, Zhi-Jing; Lu, Yuan-Xue; Li, Chao-Qun; Dong, Yang; Smith, James F; Wang, Yin-Zheng
2015-07-03
Petrocosmea Oliver (Gesneriaceae) currently comprises 38 species with four non-nominate varieties, nearly all of which have been described solely from herbarium specimens. However, the dried specimens have obscured the full range of extremely diverse morphological variation that exists in the genus and has resulted in a poor subgeneric classification system that does not reflect the evolutionary history of this group. It is important to develop innovative methods to find new morphological traits and reexamine and reevaluate the traditionally used morphological data based on new hypothesis. In addition, Petrocosmea is a mid-sized genus but exhibits extreme diverse floral variants. This makes the genus of particular interest in addressing the question whether there are any key factors that is specifically associated with their evolution and diversification. Here we present the first phylogenetic analyses of the genus based on dense taxonomic sampling and multiple genes combined with a comprehensive morphological investigation. Maximum-parsimony, maximum likelihood and Bayesian analyses of molecular data from two nuclear DNA and six cpDNA regions support the monophyly of Petrocosmea and recover five major clades within the genus, which is strongly corroborated by the reconstruction of ancestral states for twelve new morphological characters directly observed from living material. Ancestral area reconstruction shows that its most common ancestor was likely located east and southeast of the Himalaya-Tibetan plateau. The origin of Petrocosmea from a potentially Raphiocarpus-like ancestor might have involved a series of morphological modifications from caulescent to acaulescent habit as well as from a tetrandrous flower with a long corolla-tube to a diandrous flower with a short corolla-tube, also evident in the vestigial caulescent habit and transitional floral form in clade A that is sister to the remainder of the genus. Among the five clades in Petrocosmea, the patterns of floral morphological differentiation are consistent with discontinuous lineage-associated morphotypes as a repeated adaptive response to alternative environments. Our results suggest that the lineage-specific morphological differentiations reflected in the upper lip, a functional organ for insect pollination, are likely adaptive responses to pollinator shifts. We further recognize that the floral morphological diversification in Petrocosmea involves several evolutionary phenomena, i.e. evolutionary successive specialization, reversals, parallel evolution, and convergent evolution, which are probably associated with adaptation to pollination against the background of heterogeneous abiotic and biotic environments in the eastern wing regions of Himalaya-Tibetan plateau.
Modeling Adaptive Educational Methods with IMS Learning Design
ERIC Educational Resources Information Center
Specht, Marcus; Burgos, Daniel
2007-01-01
The paper describes a classification system for adaptive methods developed in the area of adaptive educational hypermedia based on four dimensions: What components of the educational system are adapted? To what features of the user and the current context does the system adapt? Why does the system adapt? How does the system get the necessary…
DETECTION OF SHARP SYMMETRIC FEATURES IN THE CIRCUMBINARY DISK AROUND AK Sco
DOE Office of Scientific and Technical Information (OSTI.GOV)
Janson, Markus; Asensio-Torres, Ruben; Thalmann, Christian
The Search for Planets Orbiting Two Stars survey aims to study the formation and distribution of planets in binary systems by detecting and characterizing circumbinary planets and their formation environments through direct imaging. With the SPHERE Extreme Adaptive Optics instrument, a good contrast can be achieved even at small (<300 mas) separations from bright stars, which enables studies of planets and disks in a separation range that was previously inaccessible. Here, we report the discovery of resolved scattered light emission from the circumbinary disk around the well-studied young double star AK Sco, at projected separations in the ∼13–40 AU range. Themore » sharp morphology of the imaged feature is surprising, given the smooth appearance of the disk in its spectral energy distribution. We show that the observed morphology can be represented either as a highly eccentric ring around AK Sco, or as two separate spiral arms in the disk, wound in opposite directions. The relative merits of these interpretations are discussed, as well as whether these features may have been caused by one or several circumbinary planets interacting with the disk.« less
Evolutionary stasis in Euphorbiaceae pollen: selection and constraints.
Matamoro-Vidal, A; Furness, C A; Gouyon, P-H; Wurdack, K J; Albert, B
2012-06-01
Although much attention has been paid to the role of stabilizing selection, empirical analyses testing the role of developmental constraints in evolutionary stasis remain rare, particularly for plants. This topic is studied here with a focus on the evolution of a pollen ontogenetic feature, the last points of callose deposition (LPCD) pattern, involved in the determination of an adaptive morphological pollen character (aperture pattern). The LPCD pattern exhibits a low level of evolution in eudicots, as compared to the evolution observed in monocots. Stasis in this pattern might be explained by developmental constraints expressed during male meiosis (microsporogenesis) or by selective pressures expressed through the adaptive role of the aperture pattern. Here, we demonstrate that the LPCD pattern is conserved in Euphorbiaceae s.s. and that this conservatism is primarily due to selective pressures. A phylogenetic association was found between the putative removal of selective pressures on pollen morphology after the origin of inaperturate pollen, and the appearance of variation in microsporogenesis and in the resulting LPCD pattern, suggesting that stasis was due to these selective pressures. However, even in a neutral context, variation in microsporogenesis was biased. This should therefore favour the appearance of some developmental and morphological phenotypes rather than others. © 2012 The Authors. Journal of Evolutionary Biology © 2012 European Society For Evolutionary Biology.
Tyagi, Neelam; Sutton, Elizabeth; Hunt, Margie; Zhang, Jing; Oh, Jung Hun; Apte, Aditya; Mechalakos, James; Wilgucki, Molly; Gelb, Emily; Mehrara, Babak; Matros, Evan; Ho, Alice
2017-02-01
Capsular contracture (CC) is a serious complication in patients receiving implant-based reconstruction for breast cancer. Currently, no objective methods are available for assessing CC. The goal of the present study was to identify image-based surrogates of CC using magnetic resonance imaging (MRI). We analyzed a retrospective data set of 50 patients who had undergone both a diagnostic MRI scan and a plastic surgeon's evaluation of the CC score (Baker's score) within a 6-month period after mastectomy and reconstructive surgery. The MRI scans were assessed for morphologic shape features of the implant and histogram features of the pectoralis muscle. The shape features, such as roundness, eccentricity, solidity, extent, and ratio length for the implant, were compared with the Baker score. For the pectoralis muscle, the muscle width and median, skewness, and kurtosis of the intensity were compared with the Baker score. Univariate analysis (UVA) using a Wilcoxon rank-sum test and multivariate analysis with the least absolute shrinkage and selection operator logistic regression was performed to determine significant differences in these features between the patient groups categorized according to their Baker's scores. UVA showed statistically significant differences between grade 1 and grade ≥2 for morphologic shape features and histogram features, except for volume and skewness. Only eccentricity, ratio length, and volume were borderline significant in differentiating grade ≤2 and grade ≥3. Features with P<.1 on UVA were used in the multivariate least absolute shrinkage and selection operator logistic regression analysis. Multivariate analysis showed a good level of predictive power for grade 1 versus grade ≥2 CC (area under the receiver operating characteristic curve 0.78, sensitivity 0.78, and specificity 0.82) and for grade ≤2 versus grade ≥3 CC (area under the receiver operating characteristic curve 0.75, sensitivity 0.75, and specificity 0.79). The morphologic shape features described on MR images were associated with the severity of CC. MRI has the potential to further improve the diagnostic ability of the Baker score in breast cancer patients who undergo implant reconstruction. Copyright © 2016 Elsevier Inc. All rights reserved.
Morphological and wavelet features towards sonographic thyroid nodules evaluation.
Tsantis, Stavros; Dimitropoulos, Nikos; Cavouras, Dionisis; Nikiforidis, George
2009-03-01
This paper presents a computer-based classification scheme that utilized various morphological and novel wavelet-based features towards malignancy risk evaluation of thyroid nodules in ultrasonography. The study comprised 85 ultrasound images-patients that were cytological confirmed (54 low-risk and 31 high-risk). A set of 20 features (12 based on nodules boundary shape and 8 based on wavelet local maxima located within each nodule) has been generated. Two powerful pattern recognition algorithms (support vector machines and probabilistic neural networks) have been designed and developed in order to quantify the power of differentiation of the introduced features. A comparative study has also been held, in order to estimate the impact speckle had onto the classification procedure. The diagnostic sensitivity and specificity of both classifiers was made by means of receiver operating characteristics (ROC) analysis. In the speckle-free feature set, the area under the ROC curve was 0.96 for the support vector machines classifier whereas for the probabilistic neural networks was 0.91. In the feature set with speckle, the corresponding areas under the ROC curves were 0.88 and 0.86 respectively for the two classifiers. The proposed features can increase the classification accuracy and decrease the rate of missing and misdiagnosis in thyroid cancer control.
Viewpoints: diet and dietary adaptations in early hominins: the hard food perspective.
Strait, David S; Constantino, Paul; Lucas, Peter W; Richmond, Brian G; Spencer, Mark A; Dechow, Paul C; Ross, Callum F; Grosse, Ian R; Wright, Barth W; Wood, Bernard A; Weber, Gerhard W; Wang, Qian; Byron, Craig; Slice, Dennis E; Chalk, Janine; Smith, Amanda L; Smith, Leslie C; Wood, Sarah; Berthaume, Michael; Benazzi, Stefano; Dzialo, Christine; Tamvada, Kelli; Ledogar, Justin A
2013-07-01
Recent biomechanical analyses examining the feeding adaptations of early hominins have yielded results consistent with the hypothesis that hard foods exerted a selection pressure that influenced the evolution of australopith morphology. However, this hypothesis appears inconsistent with recent reconstructions of early hominin diet based on dental microwear and stable isotopes. Thus, it is likely that either the diets of some australopiths included a high proportion of foods these taxa were poorly adapted to consume (i.e., foods that they would not have processed efficiently), or that aspects of what we thought we knew about the functional morphology of teeth must be wrong. Evaluation of these possibilities requires a recognition that analyses based on microwear, isotopes, finite element modeling, and enamel chips and cracks each test different types of hypotheses and allow different types of inferences. Microwear and isotopic analyses are best suited to reconstructing broad dietary patterns, but are limited in their ability to falsify specific hypotheses about morphological adaptation. Conversely, finite element analysis is a tool for evaluating the mechanical basis of form-function relationships, but says little about the frequency with which specific behaviors were performed or the particular types of food that were consumed. Enamel chip and crack analyses are means of both reconstructing diet and examining biomechanics. We suggest that current evidence is consistent with the hypothesis that certain derived australopith traits are adaptations for consuming hard foods, but that australopiths had generalized diets that could include high proportions of foods that were both compliant and tough. Copyright © 2013 Wiley Periodicals, Inc.
Qin, Lei; Snoussi, Hichem; Abdallah, Fahed
2014-01-01
We propose a novel approach for tracking an arbitrary object in video sequences for visual surveillance. The first contribution of this work is an automatic feature extraction method that is able to extract compact discriminative features from a feature pool before computing the region covariance descriptor. As the feature extraction method is adaptive to a specific object of interest, we refer to the region covariance descriptor computed using the extracted features as the adaptive covariance descriptor. The second contribution is to propose a weakly supervised method for updating the object appearance model during tracking. The method performs a mean-shift clustering procedure among the tracking result samples accumulated during a period of time and selects a group of reliable samples for updating the object appearance model. As such, the object appearance model is kept up-to-date and is prevented from contamination even in case of tracking mistakes. We conducted comparing experiments on real-world video sequences, which confirmed the effectiveness of the proposed approaches. The tracking system that integrates the adaptive covariance descriptor and the clustering-based model updating method accomplished stable object tracking on challenging video sequences. PMID:24865883
Line fitting based feature extraction for object recognition
NASA Astrophysics Data System (ADS)
Li, Bing
2014-06-01
Image feature extraction plays a significant role in image based pattern applications. In this paper, we propose a new approach to generate hierarchical features. This new approach applies line fitting to adaptively divide regions based upon the amount of information and creates line fitting features for each subsequent region. It overcomes the feature wasting drawback of the wavelet based approach and demonstrates high performance in real applications. For gray scale images, we propose a diffusion equation approach to map information-rich pixels (pixels near edges and ridge pixels) into high values, and pixels in homogeneous regions into small values near zero that form energy map images. After the energy map images are generated, we propose a line fitting approach to divide regions recursively and create features for each region simultaneously. This new feature extraction approach is similar to wavelet based hierarchical feature extraction in which high layer features represent global characteristics and low layer features represent local characteristics. However, the new approach uses line fitting to adaptively focus on information-rich regions so that we avoid the feature waste problems of the wavelet approach in homogeneous regions. Finally, the experiments for handwriting word recognition show that the new method provides higher performance than the regular handwriting word recognition approach.
Lam, Johnny; Marklein, Ross A; Jimenez-Torres, Jose A; Beebe, David J; Bauer, Steven R; Sung, Kyung E
2017-12-01
Multipotent stromal cells (MSCs, often called mesenchymal stem cells) have garnered significant attention within the field of regenerative medicine because of their purported ability to differentiate down musculoskeletal lineages. Given the inherent heterogeneity of MSC populations, recent studies have suggested that cell morphology may be indicative of MSC differentiation potential. Toward improving current methods and developing simple yet effective approaches for the morphological evaluation of MSCs, we combined passive pumping microfluidic technology with high-dimensional morphological characterization to produce robust tools for standardized high-throughput analysis. Using ultraviolet (UV) light as a modality for reproducible polystyrene substrate modification, we show that MSCs seeded on microfluidic straight channel devices incorporating UV-exposed substrates exhibited morphological changes that responded accordingly to the degree of substrate modification. Substrate modification also effected greater morphological changes in MSCs seeded at a lower rather than higher density within microfluidic channels. Despite largely comparable trends in morphology, MSCs seeded in microscale as opposed to traditional macroscale platforms displayed much higher sensitivity to changes in substrate properties. In summary, we adapted and qualified microfluidic cell culture platforms comprising simple straight channel arrays as a viable and robust tool for high-throughput quantitative morphological analysis to study cell-material interactions.
Li, Songfeng; Wei, Jun; Chan, Heang-Ping; Helvie, Mark A; Roubidoux, Marilyn A; Lu, Yao; Zhou, Chuan; Hadjiiski, Lubomir M; Samala, Ravi K
2018-01-09
Breast density is one of the most significant factors that is associated with cancer risk. In this study, our purpose was to develop a supervised deep learning approach for automated estimation of percentage density (PD) on digital mammograms (DMs). The input 'for processing' DMs was first log-transformed, enhanced by a multi-resolution preprocessing scheme, and subsampled to a pixel size of 800 µm × 800 µm from 100 µm × 100 µm. A deep convolutional neural network (DCNN) was trained to estimate a probability map of breast density (PMD) by using a domain adaptation resampling method. The PD was estimated as the ratio of the dense area to the breast area based on the PMD. The DCNN approach was compared to a feature-based statistical learning approach. Gray level, texture and morphological features were extracted and a least absolute shrinkage and selection operator was used to combine the features into a feature-based PMD. With approval of the Institutional Review Board, we retrospectively collected a training set of 478 DMs and an independent test set of 183 DMs from patient files in our institution. Two experienced mammography quality standards act radiologists interactively segmented PD as the reference standard. Ten-fold cross-validation was used for model selection and evaluation with the training set. With cross-validation, DCNN obtained a Dice's coefficient (DC) of 0.79 ± 0.13 and Pearson's correlation (r) of 0.97, whereas feature-based learning obtained DC = 0.72 ± 0.18 and r = 0.85. For the independent test set, DCNN achieved DC = 0.76 ± 0.09 and r = 0.94, while feature-based learning achieved DC = 0.62 ± 0.21 and r = 0.75. Our DCNN approach was significantly better and more robust than the feature-based learning approach for automated PD estimation on DMs, demonstrating its potential use for automated density reporting as well as for model-based risk prediction.
NASA Astrophysics Data System (ADS)
Li, Songfeng; Wei, Jun; Chan, Heang-Ping; Helvie, Mark A.; Roubidoux, Marilyn A.; Lu, Yao; Zhou, Chuan; Hadjiiski, Lubomir M.; Samala, Ravi K.
2018-01-01
Breast density is one of the most significant factors that is associated with cancer risk. In this study, our purpose was to develop a supervised deep learning approach for automated estimation of percentage density (PD) on digital mammograms (DMs). The input ‘for processing’ DMs was first log-transformed, enhanced by a multi-resolution preprocessing scheme, and subsampled to a pixel size of 800 µm × 800 µm from 100 µm × 100 µm. A deep convolutional neural network (DCNN) was trained to estimate a probability map of breast density (PMD) by using a domain adaptation resampling method. The PD was estimated as the ratio of the dense area to the breast area based on the PMD. The DCNN approach was compared to a feature-based statistical learning approach. Gray level, texture and morphological features were extracted and a least absolute shrinkage and selection operator was used to combine the features into a feature-based PMD. With approval of the Institutional Review Board, we retrospectively collected a training set of 478 DMs and an independent test set of 183 DMs from patient files in our institution. Two experienced mammography quality standards act radiologists interactively segmented PD as the reference standard. Ten-fold cross-validation was used for model selection and evaluation with the training set. With cross-validation, DCNN obtained a Dice’s coefficient (DC) of 0.79 ± 0.13 and Pearson’s correlation (r) of 0.97, whereas feature-based learning obtained DC = 0.72 ± 0.18 and r = 0.85. For the independent test set, DCNN achieved DC = 0.76 ± 0.09 and r = 0.94, while feature-based learning achieved DC = 0.62 ± 0.21 and r = 0.75. Our DCNN approach was significantly better and more robust than the feature-based learning approach for automated PD estimation on DMs, demonstrating its potential use for automated density reporting as well as for model-based risk prediction.
Adaptive feature selection using v-shaped binary particle swarm optimization.
Teng, Xuyang; Dong, Hongbin; Zhou, Xiurong
2017-01-01
Feature selection is an important preprocessing method in machine learning and data mining. This process can be used not only to reduce the amount of data to be analyzed but also to build models with stronger interpretability based on fewer features. Traditional feature selection methods evaluate the dependency and redundancy of features separately, which leads to a lack of measurement of their combined effect. Moreover, a greedy search considers only the optimization of the current round and thus cannot be a global search. To evaluate the combined effect of different subsets in the entire feature space, an adaptive feature selection method based on V-shaped binary particle swarm optimization is proposed. In this method, the fitness function is constructed using the correlation information entropy. Feature subsets are regarded as individuals in a population, and the feature space is searched using V-shaped binary particle swarm optimization. The above procedure overcomes the hard constraint on the number of features, enables the combined evaluation of each subset as a whole, and improves the search ability of conventional binary particle swarm optimization. The proposed algorithm is an adaptive method with respect to the number of feature subsets. The experimental results show the advantages of optimizing the feature subsets using the V-shaped transfer function and confirm the effectiveness and efficiency of the feature subsets obtained under different classifiers.
Adaptive feature selection using v-shaped binary particle swarm optimization
Dong, Hongbin; Zhou, Xiurong
2017-01-01
Feature selection is an important preprocessing method in machine learning and data mining. This process can be used not only to reduce the amount of data to be analyzed but also to build models with stronger interpretability based on fewer features. Traditional feature selection methods evaluate the dependency and redundancy of features separately, which leads to a lack of measurement of their combined effect. Moreover, a greedy search considers only the optimization of the current round and thus cannot be a global search. To evaluate the combined effect of different subsets in the entire feature space, an adaptive feature selection method based on V-shaped binary particle swarm optimization is proposed. In this method, the fitness function is constructed using the correlation information entropy. Feature subsets are regarded as individuals in a population, and the feature space is searched using V-shaped binary particle swarm optimization. The above procedure overcomes the hard constraint on the number of features, enables the combined evaluation of each subset as a whole, and improves the search ability of conventional binary particle swarm optimization. The proposed algorithm is an adaptive method with respect to the number of feature subsets. The experimental results show the advantages of optimizing the feature subsets using the V-shaped transfer function and confirm the effectiveness and efficiency of the feature subsets obtained under different classifiers. PMID:28358850
NASA Astrophysics Data System (ADS)
Lawi, Armin; Adhitya, Yudhi
2018-03-01
The objective of this research is to determine the quality of cocoa beans through morphology of their digital images. Samples of cocoa beans were scattered on a bright white paper under a controlled lighting condition. A compact digital camera was used to capture the images. The images were then processed to extract their morphological parameters. Classification process begins with an analysis of cocoa beans image based on morphological feature extraction. Parameters for extraction of morphological or physical feature parameters, i.e., Area, Perimeter, Major Axis Length, Minor Axis Length, Aspect Ratio, Circularity, Roundness, Ferret Diameter. The cocoa beans are classified into 4 groups, i.e.: Normal Beans, Broken Beans, Fractured Beans, and Skin Damaged Beans. The model of classification used in this paper is the Multiclass Ensemble Least-Squares Support Vector Machine (MELS-SVM), a proposed improvement model of SVM using ensemble method in which the separate hyperplanes are obtained by least square approach and the multiclass procedure uses One-Against- All method. The result of our proposed model showed that the classification with morphological feature input parameters were accurately as 99.705% for the four classes, respectively.
Morphological features to distinguish the larval stage of invasive Ruffe from native fish species
Larval fish surveys are used in a variety of research and monitoring activities, including identification of nursery habitat and invasive species early detection. Morphologically-based taxonomic identification of larvae collected from these surveys, however, is often challenging....
MacLaren, Jamie A; Nauwelaerts, Sandra
2017-11-01
The distal forelimb (autopodium) of quadrupedal mammals is a key morphological unit involved in locomotion, body support, and interaction with the substrate. The manus of the tapir (Perissodactyla: Tapirus) is unique within modern perissodactyls, as it retains the plesiomorphic tetradactyl (four-toed) condition also exhibited by basal equids and rhinoceroses. Tapirs are known to exhibit anatomical mesaxonic symmetry in the manus, although interspecific differences and biomechanical mesaxony have yet to be rigorously tested. Here, we investigate variation in the manus morphology of four modern tapir species (Tapirus indicus, Tapirus bairdii, Tapirus pinchaque, and Tapirus terrestris) using a geometric morphometric approach. Autopodial bones were laser scanned to capture surface shape and morphology was quantified using 3D-landmark analysis. Landmarks were aligned using Generalised Procrustes Analysis, with discriminant function and partial least square analyses performed on aligned coordinate data to identify features that significantly separate tapir species. Overall, our results support the previously held hypothesis that T. indicus is morphologically separate from neotropical tapirs; however, previous conclusions regarding function from morphological differences are shown to require reassessment. We find evidence indicating that T. bairdii exhibits reduced reliance on the lateral fifth digit compared to other tapirs. Morphometric assessment of the metacarpophalangeal joint and the morphology of the distal facets of the lunate lend evidence toward high loading on the lateral digits of both the large T. indicus (large body mass) and the small, long limbed T. pinchaque (ground impact). Our results support other recent studies on T. pinchaque, suggesting subtle but important adaptations to a compliant but inclined habitat. In conclusion, we demonstrate further evidence that the modern tapir forelimb is a variable locomotor unit with a range of interspecific features tailored to habitual and biomechanical needs of each species. © 2017 Wiley Periodicals, Inc.
Trigo, Tatiane C; Tirelli, Flávia P; de Freitas, Thales R O; Eizirik, Eduardo
2014-01-01
Increased attention towards the Neotropical cats Leopardus guttulus and L. geoffroyi was prompted after genetic studies identified the occurrence of extensive hybridization between them at their geographic contact zone in southern Brazil. This is a region where two biomes intersect, each of which is associated with one of the hybridizing species (Atlantic Forest with L. guttulus and Pampas with L. geoffroyi). In this study, we conducted in-depth analyses of multiple molecular markers aiming to characterize the magnitude and spatial structure of this hybrid zone. We also performed a morphological assessment of these species, aiming to test their phenotypic differentiation at the contact zone, as well as the correlation between morphological features and the admixture status of the individuals. We found strong evidence for extensive and complex hybridization, with at least 40% of the individuals sampled in Rio Grande do Sul state (southernmost Brazil) identified as hybrids resulting from post-F1 generations. Despite such a high level of hybridization, samples collected in this state still comprised two recognizable clusters (genetically and morphologically). Genetically pure individuals were sampled mainly in regions farther from the contact zone, while hybrids concentrated in a central region (exactly at the interface between the two biomes). The morphological data set also revealed a strong spatial structure, which was correlated with the molecular results but displayed an even more marked separation between the clusters. Hybrids often did not present intermediate body sizes and could not be clearly distinguished morphologically from the parental forms. This observation suggests that some selective pressure may be acting on the hybrids, limiting their dispersal away from the hybrid zone and perhaps favoring genomic combinations that maintain adaptive phenotypic features of one or the other parental species.
Trigo, Tatiane C.; Tirelli, Flávia P.; de Freitas, Thales R. O.; Eizirik, Eduardo
2014-01-01
Increased attention towards the Neotropical cats Leopardus guttulus and L. geoffroyi was prompted after genetic studies identified the occurrence of extensive hybridization between them at their geographic contact zone in southern Brazil. This is a region where two biomes intersect, each of which is associated with one of the hybridizing species (Atlantic Forest with L. guttulus and Pampas with L. geoffroyi). In this study, we conducted in-depth analyses of multiple molecular markers aiming to characterize the magnitude and spatial structure of this hybrid zone. We also performed a morphological assessment of these species, aiming to test their phenotypic differentiation at the contact zone, as well as the correlation between morphological features and the admixture status of the individuals. We found strong evidence for extensive and complex hybridization, with at least 40% of the individuals sampled in Rio Grande do Sul state (southernmost Brazil) identified as hybrids resulting from post-F1 generations. Despite such a high level of hybridization, samples collected in this state still comprised two recognizable clusters (genetically and morphologically). Genetically pure individuals were sampled mainly in regions farther from the contact zone, while hybrids concentrated in a central region (exactly at the interface between the two biomes). The morphological data set also revealed a strong spatial structure, which was correlated with the molecular results but displayed an even more marked separation between the clusters. Hybrids often did not present intermediate body sizes and could not be clearly distinguished morphologically from the parental forms. This observation suggests that some selective pressure may be acting on the hybrids, limiting their dispersal away from the hybrid zone and perhaps favoring genomic combinations that maintain adaptive phenotypic features of one or the other parental species. PMID:25250657
An adaptive multi-feature segmentation model for infrared image
NASA Astrophysics Data System (ADS)
Zhang, Tingting; Han, Jin; Zhang, Yi; Bai, Lianfa
2016-04-01
Active contour models (ACM) have been extensively applied to image segmentation, conventional region-based active contour models only utilize global or local single feature information to minimize the energy functional to drive the contour evolution. Considering the limitations of original ACMs, an adaptive multi-feature segmentation model is proposed to handle infrared images with blurred boundaries and low contrast. In the proposed model, several essential local statistic features are introduced to construct a multi-feature signed pressure function (MFSPF). In addition, we draw upon the adaptive weight coefficient to modify the level set formulation, which is formed by integrating MFSPF with local statistic features and signed pressure function with global information. Experimental results demonstrate that the proposed method can make up for the inadequacy of the original method and get desirable results in segmenting infrared images.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yock, A; UT Graduate School of Biomedical Sciences, Houston, TX; Rao, A
2014-06-15
Purpose: To generate, evaluate, and compare models that predict longitudinal changes in tumor morphology throughout the course of radiation therapy. Methods: Two morphology feature vectors were used to describe the size, shape, and position of 35 oropharyngeal GTVs at each treatment fraction during intensity-modulated radiation therapy. The feature vectors comprised the coordinates of the GTV centroids and one of two shape descriptors. One shape descriptor was based on radial distances between the GTV centroid and 614 GTV surface landmarks. The other was based on a spherical harmonic decomposition of these distances. Feature vectors over the course of therapy were describedmore » using static, linear, and mean models. The error of these models in forecasting GTV morphology was evaluated with leave-one-out cross-validation, and their accuracy was compared using Wilcoxon signed-rank tests. The effect of adjusting model parameters at 1, 2, 3, or 5 time points (adjustment points) was also evaluated. Results: The addition of a single adjustment point to the static model decreased the median error in forecasting the position of GTV surface landmarks by 1.2 mm (p<0.001). Additional adjustment points further decreased forecast error by about 0.4 mm each. The linear model decreased forecast error compared to the static model for feature vectors based on both shape descriptors (0.2 mm), while the mean model did so only for those based on the inter-landmark distances (0.2 mm). The decrease in forecast error due to adding adjustment points was greater than that due to model selection. Both effects diminished with subsequent adjustment points. Conclusion: Models of tumor morphology that include information from prior patients and/or prior treatment fractions are able to predict the tumor surface at each treatment fraction during radiation therapy. The predicted tumor morphology can be compared with patient anatomy or dose distributions, opening the possibility of anticipatory re-planning. American Legion Auxiliary Fellowship; The University of Texas Graduate School of Biomedical Sciences at Houston.« less
[Three-dimensional morphological modeling and visualization of wheat root system].
Tan, Feng; Tang, Liang; Hu, Jun-Cheng; Jiang, Hai-Yan; Cao, Wei-Xing; Zhu, Yan
2011-01-01
Crop three-dimensional (3D) morphological modeling and visualization is an important part of digital plant study. This paper aimed to develop a 3D morphological model of wheat root system based on the parameters of wheat root morphological features, and to realize the visualization of wheat root growth. According to the framework of visualization technology for wheat root growth, a 3D visualization model of wheat root axis, including root axis growth model, branch geometric model, and root axis curve model, was developed firstly. Then, by integrating root topology, the corresponding pixel was determined, and the whole wheat root system was three-dimensionally re-constructed by using the morphological feature parameters in the root morphological model. Finally, based on the platform of OpenGL, and by integrating the technologies of texture mapping, lighting rendering, and collision detection, the 3D visualization of wheat root growth was realized. The 3D output of wheat root system from the model was vivid, which could realize the 3D root system visualization of different wheat cultivars under different water regimes and nitrogen application rates. This study could lay a technical foundation for further development of an integral visualization system of wheat plant.
Tseng, Z. Jack; Flynn, John J.
2015-01-01
Morphology serves as a ubiquitous proxy in macroevolutionary studies to identify potential adaptive processes and patterns. Inferences of functional significance of phenotypes or their evolution are overwhelmingly based on data from living taxa. Yet, correspondence between form and function has been tested in only a few model species, and those linkages are highly complex. The lack of explicit methodologies to integrate form and function analyses within a deep-time and phylogenetic context weakens inferences of adaptive morphological evolution, by invoking but not testing form–function linkages. Here, we provide a novel approach to test mechanical properties at reconstructed ancestral nodes/taxa and the strength and direction of evolutionary pathways in feeding biomechanics, in a case study of carnivorous mammals. Using biomechanical profile comparisons that provide functional signals for the separation of feeding morphologies, we demonstrate, using experimental optimization criteria on estimation of strength and direction of functional changes on a phylogeny, that convergence in mechanical properties and degree of evolutionary optimization can be decoupled. This integrative approach is broadly applicable to other clades, by using quantitative data and model-based tests to evaluate interpretations of function from morphology and functional explanations for observed macroevolutionary pathways. PMID:25994295
A framework for modeling scenario-based barrier island storm impacts
Mickey, Rangley; Long, Joseph W.; Dalyander, P. Soupy; Plant, Nathaniel G.; Thompson, David M.
2018-01-01
Methods for investigating the vulnerability of existing or proposed coastal features to storm impacts often rely on simplified parametric models or one-dimensional process-based modeling studies that focus on changes to a profile across a dune or barrier island. These simple studies tend to neglect the impacts to curvilinear or alongshore varying island planforms, influence of non-uniform nearshore hydrodynamics and sediment transport, irregular morphology of the offshore bathymetry, and impacts from low magnitude wave events (e.g. cold fronts). Presented here is a framework for simulating regionally specific, low and high magnitude scenario-based storm impacts to assess the alongshore variable vulnerabilities of a coastal feature. Storm scenarios based on historic hydrodynamic conditions were derived and simulated using the process-based morphologic evolution model XBeach. Model results show that the scenarios predicted similar patterns of erosion and overwash when compared to observed qualitative morphologic changes from recent storm events that were not included in the dataset used to build the scenarios. The framework model simulations were capable of predicting specific areas of vulnerability in the existing feature and the results illustrate how this storm vulnerability simulation framework could be used as a tool to help inform the decision-making process for scientists, engineers, and stakeholders involved in coastal zone management or restoration projects.
Fast Image Texture Classification Using Decision Trees
NASA Technical Reports Server (NTRS)
Thompson, David R.
2011-01-01
Texture analysis would permit improved autonomous, onboard science data interpretation for adaptive navigation, sampling, and downlink decisions. These analyses would assist with terrain analysis and instrument placement in both macroscopic and microscopic image data products. Unfortunately, most state-of-the-art texture analysis demands computationally expensive convolutions of filters involving many floating-point operations. This makes them infeasible for radiation- hardened computers and spaceflight hardware. A new method approximates traditional texture classification of each image pixel with a fast decision-tree classifier. The classifier uses image features derived from simple filtering operations involving integer arithmetic. The texture analysis method is therefore amenable to implementation on FPGA (field-programmable gate array) hardware. Image features based on the "integral image" transform produce descriptive and efficient texture descriptors. Training the decision tree on a set of training data yields a classification scheme that produces reasonable approximations of optimal "texton" analysis at a fraction of the computational cost. A decision-tree learning algorithm employing the traditional k-means criterion of inter-cluster variance is used to learn tree structure from training data. The result is an efficient and accurate summary of surface morphology in images. This work is an evolutionary advance that unites several previous algorithms (k-means clustering, integral images, decision trees) and applies them to a new problem domain (morphology analysis for autonomous science during remote exploration). Advantages include order-of-magnitude improvements in runtime, feasibility for FPGA hardware, and significant improvements in texture classification accuracy.
NASA Astrophysics Data System (ADS)
Ma, Chuang; Bao, Zhong-Kui; Zhang, Hai-Feng
2017-10-01
So far, many network-structure-based link prediction methods have been proposed. However, these methods only highlight one or two structural features of networks, and then use the methods to predict missing links in different networks. The performances of these existing methods are not always satisfied in all cases since each network has its unique underlying structural features. In this paper, by analyzing different real networks, we find that the structural features of different networks are remarkably different. In particular, even in the same network, their inner structural features are utterly different. Therefore, more structural features should be considered. However, owing to the remarkably different structural features, the contributions of different features are hard to be given in advance. Inspired by these facts, an adaptive fusion model regarding link prediction is proposed to incorporate multiple structural features. In the model, a logistic function combing multiple structural features is defined, then the weight of each feature in the logistic function is adaptively determined by exploiting the known structure information. Last, we use the "learnt" logistic function to predict the connection probabilities of missing links. According to our experimental results, we find that the performance of our adaptive fusion model is better than many similarity indices.
Cruz-Roa, Angel; Díaz, Gloria; Romero, Eduardo; González, Fabio A.
2011-01-01
Histopathological images are an important resource for clinical diagnosis and biomedical research. From an image understanding point of view, the automatic annotation of these images is a challenging problem. This paper presents a new method for automatic histopathological image annotation based on three complementary strategies, first, a part-based image representation, called the bag of features, which takes advantage of the natural redundancy of histopathological images for capturing the fundamental patterns of biological structures, second, a latent topic model, based on non-negative matrix factorization, which captures the high-level visual patterns hidden in the image, and, third, a probabilistic annotation model that links visual appearance of morphological and architectural features associated to 10 histopathological image annotations. The method was evaluated using 1,604 annotated images of skin tissues, which included normal and pathological architectural and morphological features, obtaining a recall of 74% and a precision of 50%, which improved a baseline annotation method based on support vector machines in a 64% and 24%, respectively. PMID:22811960
NASA Astrophysics Data System (ADS)
Chan, Kwai H.; Lau, Rynson W.
1996-09-01
Image warping concerns about transforming an image from one spatial coordinate to another. It is widely used for the vidual effect of deforming and morphing images in the film industry. A number of warping techniques have been introduced, which are mainly based on the corresponding pair mapping of feature points, feature vectors or feature patches (mostly triangular or quadrilateral). However, very often warping of an image object with an arbitrary shape is required. This requires a warping technique which is based on boundary contour instead of feature points or feature line-vectors. In addition, when feature point or feature vector based techniques are used, approximation of the object boundary by using point or vectors is required. In this case, the matching process of the corresponding pairs will be very time consuming if a fine approximation is required. In this paper, we propose a contour-based warping technique for warping image objects with arbitrary shapes. The novel idea of the new method is the introduction of mathematical morphology to allow a more flexible control of image warping. Two morphological operators are used as contour determinators. The erosion operator is used to warp image contents which are inside a user specified contour while the dilation operation is used to warp image contents which are outside of the contour. This new method is proposed to assist further development of a semi-automatic motion morphing system when accompanied with robust feature extractors such as deformable template or active contour model.
Larval fish surveys are used in a variety of research and monitoring activities, including identification of nursery habitat and invasive species early detection. Morphologically-based taxonomic identification of larvae collected from these surveys, however, is often challenging....
Utilizing feedback in adaptive SAR ATR systems
NASA Astrophysics Data System (ADS)
Horsfield, Owen; Blacknell, David
2009-05-01
Existing SAR ATR systems are usually trained off-line with samples of target imagery or CAD models, prior to conducting a mission. If the training data is not representative of mission conditions, then poor performance may result. In addition, it is difficult to acquire suitable training data for the many target types of interest. The Adaptive SAR ATR Problem Set (AdaptSAPS) program provides a MATLAB framework and image database for developing systems that adapt to mission conditions, meaning less reliance on accurate training data. A key function of an adaptive system is the ability to utilise truth feedback to improve performance, and it is this feature which AdaptSAPS is intended to exploit. This paper presents a new method for SAR ATR that does not use training data, based on supervised learning. This is achieved by using feature-based classification, and several new shadow features have been developed for this purpose. These features allow discrimination of vehicles from clutter, and classification of vehicles into two classes: targets, comprising military combat types, and non-targets, comprising bulldozers and trucks. The performance of the system is assessed using three baseline missions provided with AdaptSAPS, as well as three additional missions. All performance metrics indicate a distinct learning trend over the course of a mission, with most third and fourth quartile performance levels exceeding 85% correct classification. It has been demonstrated that these performance levels can be maintained even when truth feedback rates are reduced by up to 55% over the course of a mission.
Novel method to predict body weight in children based on age and morphological facial features.
Huang, Ziyin; Barrett, Jeffrey S; Barrett, Kyle; Barrett, Ryan; Ng, Chee M
2015-04-01
A new and novel approach of predicting the body weight of children based on age and morphological facial features using a three-layer feed-forward artificial neural network (ANN) model is reported. The model takes in four parameters, including age-based CDC-inferred median body weight and three facial feature distances measured from digital facial images. In this study, thirty-nine volunteer subjects with age ranging from 6-18 years old and BW ranging from 18.6-96.4 kg were used for model development and validation. The final model has a mean prediction error of 0.48, a mean squared error of 18.43, and a coefficient of correlation of 0.94. The model shows significant improvement in prediction accuracy over several age-based body weight prediction methods. Combining with a facial recognition algorithm that can detect, extract and measure the facial features used in this study, mobile applications that incorporate this body weight prediction method may be developed for clinical investigations where access to scales is limited. © 2014, The American College of Clinical Pharmacology.
Tomescu, Alexandru M. F.
2017-01-01
Abstract Background and Aims Fossil plants are found as fragmentary remains and understanding them as natural species requires assembly of whole-organism concepts that integrate different plant parts. Such concepts are essential for incorporating fossils in hypotheses of plant evolution and phylogeny. Plants of the Early Devonian are crucial to reconstructing the initial radiation of tracheophytes, yet few are understood as whole organisms. Methods This study assembles a whole-plant concept for the Early Devonian lycophyte Sengelia radicans gen. et sp. nov., based on morphometric data and taphonomic observations from >1000 specimens collected in the Beartooth Butte Formation (Wyoming, USA). Key Results Sengelia radicans occupies a key position between stem-group and derived lycophyte lineages. Sengelia had a rooting system of downward-growing root-bearing stems, formed dense monotypic mats of prostrate shoots in areas that experienced periodic flooding, and was characterized by a life-history strategy adapted for survival after floods, dominated by clonality, and featuring infrequent sexual reproduction. Conclusions Sengelia radicans is the oldest among the very few early tracheophytes for which a detailed, rigorous whole-plant concept integrates morphology, growth habit, life history and growth environment. This plant adds to the diversity of body plans documented among lycophytes and may help elucidate patterns of morphological evolution in the clade. PMID:28334100
ERIC Educational Resources Information Center
Yang, Tzu-Chi; Hwang, Gwo-Jen; Yang, Stephen Jen-Hwa
2013-01-01
In this study, an adaptive learning system is developed by taking multiple dimensions of personalized features into account. A personalized presentation module is proposed for developing adaptive learning systems based on the field dependent/independent cognitive style model and the eight dimensions of Felder-Silverman's learning style. An…
FPGA implementation of a configurable neuromorphic CPG-based locomotion controller.
Barron-Zambrano, Jose Hugo; Torres-Huitzil, Cesar
2013-09-01
Neuromorphic engineering is a discipline devoted to the design and development of computational hardware that mimics the characteristics and capabilities of neuro-biological systems. In recent years, neuromorphic hardware systems have been implemented using a hybrid approach incorporating digital hardware so as to provide flexibility and scalability at the cost of power efficiency and some biological realism. This paper proposes an FPGA-based neuromorphic-like embedded system on a chip to generate locomotion patterns of periodic rhythmic movements inspired by Central Pattern Generators (CPGs). The proposed implementation follows a top-down approach where modularity and hierarchy are two desirable features. The locomotion controller is based on CPG models to produce rhythmic locomotion patterns or gaits for legged robots such as quadrupeds and hexapods. The architecture is configurable and scalable for robots with either different morphologies or different degrees of freedom (DOFs). Experiments performed on a real robot are presented and discussed. The obtained results demonstrate that the CPG-based controller provides the necessary flexibility to generate different rhythmic patterns at run-time suitable for adaptable locomotion. Copyright © 2013 Elsevier Ltd. All rights reserved.
Histogram-based adaptive gray level scaling for texture feature classification of colorectal polyps
NASA Astrophysics Data System (ADS)
Pomeroy, Marc; Lu, Hongbing; Pickhardt, Perry J.; Liang, Zhengrong
2018-02-01
Texture features have played an ever increasing role in computer aided detection (CADe) and diagnosis (CADx) methods since their inception. Texture features are often used as a method of false positive reduction for CADe packages, especially for detecting colorectal polyps and distinguishing them from falsely tagged residual stool and healthy colon wall folds. While texture features have shown great success there, the performance of texture features for CADx have lagged behind primarily because of the more similar features among different polyps types. In this paper, we present an adaptive gray level scaling and compare it to the conventional equal-spacing of gray level bins. We use a dataset taken from computed tomography colonography patients, with 392 polyp regions of interest (ROIs) identified and have a confirmed diagnosis through pathology. Using the histogram information from the entire ROI dataset, we generate the gray level bins such that each bin contains roughly the same number of voxels Each image ROI is the scaled down to two different numbers of gray levels, using both an equal spacing of Hounsfield units for each bin, and our adaptive method. We compute a set of texture features from the scaled images including 30 gray level co-occurrence matrix (GLCM) features and 11 gray level run length matrix (GLRLM) features. Using a random forest classifier to distinguish between hyperplastic polyps and all others (adenomas and adenocarcinomas), we find that the adaptive gray level scaling can improve performance based on the area under the receiver operating characteristic curve by up to 4.6%.
Spatial features of synaptic adaptation affecting learning performance.
Berger, Damian L; de Arcangelis, Lucilla; Herrmann, Hans J
2017-09-08
Recent studies have proposed that the diffusion of messenger molecules, such as monoamines, can mediate the plastic adaptation of synapses in supervised learning of neural networks. Based on these findings we developed a model for neural learning, where the signal for plastic adaptation is assumed to propagate through the extracellular space. We investigate the conditions allowing learning of Boolean rules in a neural network. Even fully excitatory networks show very good learning performances. Moreover, the investigation of the plastic adaptation features optimizing the performance suggests that learning is very sensitive to the extent of the plastic adaptation and the spatial range of synaptic connections.
Tokiwa, Toshihiro; Harunari, Tsunehito; Tanikawa, Tsutomu; Akao, Nobuaki; Ohta, Nobuo
2011-09-01
We collected 24 brown rats, Rattus norvegicus, in Kanagawa Prefecture in Japan and found one rat harboring a dioctophymatid nematode. A single male and a female worm were recovered from the abdominal cavity and were identified as Dioctophyme renale based on morphologic features and a BLAST DNA sequence analysis. We describe the morphological features of the adult worms and eggs from this extremely rare case of D. renale infection in a brown rat. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
An adaptive clustering algorithm for image matching based on corner feature
NASA Astrophysics Data System (ADS)
Wang, Zhe; Dong, Min; Mu, Xiaomin; Wang, Song
2018-04-01
The traditional image matching algorithm always can not balance the real-time and accuracy better, to solve the problem, an adaptive clustering algorithm for image matching based on corner feature is proposed in this paper. The method is based on the similarity of the matching pairs of vector pairs, and the adaptive clustering is performed on the matching point pairs. Harris corner detection is carried out first, the feature points of the reference image and the perceived image are extracted, and the feature points of the two images are first matched by Normalized Cross Correlation (NCC) function. Then, using the improved algorithm proposed in this paper, the matching results are clustered to reduce the ineffective operation and improve the matching speed and robustness. Finally, the Random Sample Consensus (RANSAC) algorithm is used to match the matching points after clustering. The experimental results show that the proposed algorithm can effectively eliminate the most wrong matching points while the correct matching points are retained, and improve the accuracy of RANSAC matching, reduce the computation load of whole matching process at the same time.
Incipient fault feature extraction of rolling bearings based on the MVMD and Teager energy operator.
Ma, Jun; Wu, Jiande; Wang, Xiaodong
2018-06-04
Aiming at the problems that the incipient fault of rolling bearings is difficult to recognize and the number of intrinsic mode functions (IMFs) decomposed by variational mode decomposition (VMD) must be set in advance and can not be adaptively selected, taking full advantages of the adaptive segmentation of scale spectrum and Teager energy operator (TEO) demodulation, a new method for early fault feature extraction of rolling bearings based on the modified VMD and Teager energy operator (MVMD-TEO) is proposed. Firstly, the vibration signal of rolling bearings is analyzed by adaptive scale space spectrum segmentation to obtain the spectrum segmentation support boundary, and then the number K of IMFs decomposed by VMD is adaptively determined. Secondly, the original vibration signal is adaptively decomposed into K IMFs, and the effective IMF components are extracted based on the correlation coefficient criterion. Finally, the Teager energy spectrum of the reconstructed signal of the effective IMF components is calculated by the TEO, and then the early fault features of rolling bearings are extracted to realize the fault identification and location. Comparative experiments of the proposed method and the existing fault feature extraction method based on Local Mean Decomposition and Teager energy operator (LMD-TEO) have been implemented using experimental data-sets and a measured data-set. The results of comparative experiments in three application cases show that the presented method can achieve a fairly or slightly better performance than LMD-TEO method, and the validity and feasibility of the proposed method are proved. Copyright © 2018. Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Hernandez-Contreras, D.; Peregrina-Barreto, H.; Rangel-Magdaleno, J.; Ramirez-Cortes, J.; Renero-Carrillo, F.
2015-11-01
This paper presents a novel approach to characterize and identify patterns of temperature in thermographic images of the human foot plant in support of early diagnosis and follow-up of diabetic patients. Composed feature vectors based on 3D morphological pattern spectrum (pecstrum) and relative position, allow the system to quantitatively characterize and discriminate non-diabetic (control) and diabetic (DM) groups. Non-linear classification using neural networks is used for that purpose. A classification rate of 94.33% in average was obtained with the composed feature extraction process proposed in this paper. Performance evaluation and obtained results are presented.
Comparison of organs' shapes with geometric and Zernike 3D moments.
Broggio, D; Moignier, A; Ben Brahim, K; Gardumi, A; Grandgirard, N; Pierrat, N; Chea, M; Derreumaux, S; Desbrée, A; Boisserie, G; Aubert, B; Mazeron, J-J; Franck, D
2013-09-01
The morphological similarity of organs is studied with feature vectors based on geometric and Zernike 3D moments. It is particularly investigated if outliers and average models can be identified. For this purpose, the relative proximity to the mean feature vector is defined, principal coordinate and clustering analyses are also performed. To study the consistency and usefulness of this approach, 17 livers and 76 hearts voxel models from several sources are considered. In the liver case, models with similar morphological feature are identified. For the limited amount of studied cases, the liver of the ICRP male voxel model is identified as a better surrogate than the female one. For hearts, the clustering analysis shows that three heart shapes represent about 80% of the morphological variations. The relative proximity and clustering analysis rather consistently identify outliers and average models. For the two cases, identification of outliers and surrogate of average models is rather robust. However, deeper classification of morphological feature is subject to caution and can only be performed after cross analysis of at least two kinds of feature vectors. Finally, the Zernike moments contain all the information needed to re-construct the studied objects and thus appear as a promising tool to derive statistical organ shapes. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Schallek, Jesse; Geng, Ying; Nguyen, HoanVu; Williams, David R.
2013-01-01
Purpose. To noninvasively image retinal pericytes in the living eye and characterize NG2-positive cell topography and morphology in the adult mouse retina. Methods. Transgenic mice expressing fluorescent pericytes (NG2, DsRed) were imaged using a two-channel, adaptive optics scanning laser ophthalmoscope (AOSLO). One channel imaged vascular perfusion with near infrared light. A second channel simultaneously imaged fluorescent retinal pericytes. Mice were also imaged using wide-field ophthalmoscopy. To confirm in vivo imaging, five eyes were enucleated and imaged in flat mount with conventional fluorescent microscopy. Cell topography was quantified relative to the optic disc. Results. We observed strong DsRed fluorescence from NG2-positive cells. AOSLO revealed fluorescent vascular mural cells enveloping all vessels in the living retina. Cells were stellate on larger venules, and showed banded morphology on arterioles. NG2-positive cells indicative of pericytes were found on the smallest capillaries of the retinal circulation. Wide-field SLO enabled quick assessment of NG2-positive distribution, but provided insufficient resolution for cell counts. Ex vivo microscopy showed relatively even topography of NG2-positive capillary pericytes at eccentricities more than 0.3 mm from the optic disc (515 ± 94 cells/mm2 of retinal area). Conclusions. We provide the first high-resolution images of retinal pericytes in the living animal. Subcellular resolution enabled morphological identification of NG2-positive cells on capillaries showing classic features and topography of retinal pericytes. This report provides foundational basis for future studies that will track and quantify pericyte topography, morphology, and function in the living retina over time, especially in the progression of microvascular disease. PMID:24150762
NASA Astrophysics Data System (ADS)
Lankin, Yuliy
As a methodological matter, all modern conceptions of life development can be subdivided into the substrate (S), the energetic (E) and the informational (I). The S-conception is based on biochemical, genetic and morphological ideas. The E-conception deals with an idea of development of complicated open systems (COS) which are characterized by energy getting constantly from the outside, by improvement of substance cycles and as speeding-up and increasing of "power" of them as well, and by increasing of energy intensity transformation by the each structure of COS. The I-conception has been developing so far in the main within the frameworks of the traditional both cybernetic ideas and information theory that are convenient for many technical applications but are deficient for investigation of ecoand bio-systems. Situation was changed when the conception of adaptive systems (CAS) based on the ideas of ecology, biology and neurocybernetic (neuroinforamtic) had offered. As a consequence of this, the I-conception based on the CAS well accords with the S- and the E-conceptions and allows to hope to their combine into one the S + E + I conception that will include all virtues of the S-, the E-, and the I-conceptions and eliminate of their limitations. Thanks to relative easiness of hierarchic adaptive nonlinear models making using of the CAS, it is possible overcome effectively both of the problems as the "dimensionality problem" and the "loss of stability" as well for complicated models of ecosystems (CME). Optimization of energy and substance consumption process and adaptation of the CME to changes of current conditions are well realized in ranges given by goal function. A use adaptive networks (including neural nets) in frames of the CAS allows to realize any continuous function in control loops and at information processing. The considered features of the S + E + I proposed approach based on the CAS make it perspective for construction as biosphere models and artificial ecosystems as well for space and earth applications.
Single and Multiple Object Tracking Using a Multi-Feature Joint Sparse Representation.
Hu, Weiming; Li, Wei; Zhang, Xiaoqin; Maybank, Stephen
2015-04-01
In this paper, we propose a tracking algorithm based on a multi-feature joint sparse representation. The templates for the sparse representation can include pixel values, textures, and edges. In the multi-feature joint optimization, noise or occlusion is dealt with using a set of trivial templates. A sparse weight constraint is introduced to dynamically select the relevant templates from the full set of templates. A variance ratio measure is adopted to adaptively adjust the weights of different features. The multi-feature template set is updated adaptively. We further propose an algorithm for tracking multi-objects with occlusion handling based on the multi-feature joint sparse reconstruction. The observation model based on sparse reconstruction automatically focuses on the visible parts of an occluded object by using the information in the trivial templates. The multi-object tracking is simplified into a joint Bayesian inference. The experimental results show the superiority of our algorithm over several state-of-the-art tracking algorithms.
3D geometric morphometric analysis of the proximal epiphysis of the hominoid humerus
Arias-Martorell, Julia; Potau, Josep Maria; Bello-Hellegouarch, Gaëlle; Pastor, Juan Francisco; Pérez-Pérez, Alejandro
2012-01-01
In this study we perform a three-dimensional geometric morphometric (3D GM) analysis of the proximal epiphysis of the humerus in extant great apes, including humans, in order to accurately describe the functional anatomical differences between these taxa. In addition, a fossil hominin specimen of Australopithecus afarensis was included in a multivariate GM analysis in order to test the potential of this methodological approach for making locomotor inferences from fossil remains. The results obtained show significant differences in proximal humeral morphology among the taxa studied, which had thus far largely remained unnoticed. Based on morphofunctional considerations, these anatomical differences can be correlated to differences in the locomotor repertoires of the taxa, thus confirming that the proximal humerus is suitable for constructing paleobiological inferences about locomotion. Modern humans display markedly divergent features, which set them apart from both the extant great apes and the fossil hominin A. afarensis. The morphology of the proximal epiphysis of the humerus of the latter more closely resembles that of the orangutans, thus suggesting that despite hindlimb adaptations to bipedalism, the forelimb of this taxon was still functionally involved in arboreal behaviors, such as climbing or suspension. PMID:22946496
Ship detection from high-resolution imagery based on land masking and cloud filtering
NASA Astrophysics Data System (ADS)
Jin, Tianming; Zhang, Junping
2015-12-01
High resolution satellite images play an important role in target detection application presently. This article focuses on the ship target detection from the high resolution panchromatic images. Taking advantage of geographic information such as the coastline vector data provided by NOAA Medium Resolution Coastline program, the land region is masked which is a main noise source in ship detection process. After that, the algorithm tries to deal with the cloud noise which appears frequently in the ocean satellite images, which is another reason for false alarm. Based on the analysis of cloud noise's feature in frequency domain, we introduce a windowed noise filter to get rid of the cloud noise. With the help of morphological processing algorithms adapted to target detection, we are able to acquire ship targets in fine shapes. In addition, we display the extracted information such as length and width of ship targets in a user-friendly way i.e. a KML file interpreted by Google Earth.
Genetic dissection of adaptive form and function in rapidly speciating cichlid fishes.
Henning, Frederico; Machado-Schiaffino, Gonzalo; Baumgarten, Lukas; Meyer, Axel
2017-05-01
Genes of major phenotypic effects and strong genetic correlations can facilitate adaptation, direct selective responses, and potentially lead to phenotypic convergence. However, the preponderance of this type of genetic architecture in repeatedly evolved adaptations remains unknown. Using hybrids between Haplochromis chilotes (thick-lipped) and Pundamilia nyererei (thin-lipped) we investigated the genetics underlying hypertrophied lips and elongated heads, traits that evolved repeatedly in cichlids. At least 25 loci of small-to-moderate and mainly additive effects were detected. Phenotypic variation in lip and head morphology was largely independent. Although several QTL overlapped for lip and head morphology traits, they were often of opposite effects. The distribution of effect signs suggests strong selection on lips. The fitness implications of several detected loci were demonstrated using a laboratory assay testing for the association between genotype and variation in foraging performance. The persistence of low fitness alleles in head morphology appears to be maintained through antagonistic pleiotropy/close linkage with positive-effect lip morphology alleles. Rather than being based on few major loci with strong positive genetic correlations, our results indicate that the evolution of the Lake Victoria thick-lipped ecomorph is the result of selection on numerous loci distributed throughout the genome. © 2017 The Author(s). Evolution © 2017 The Society for the Study of Evolution.
Association between ICP pulse waveform morphology and ICP B waves.
Kasprowicz, Magdalena; Bergsneider, Marvin; Czosnyka, Marek; Hu, Xiao
2012-01-01
The study aimed to investigate changes in the shape of ICP pulses associated with different patterns of the ICP slow waves (0.5-2.0 cycles/min) during ICP overnight monitoring in hydrocephalus. Four patterns of ICP slow waves were characterized in 44 overnight ICP recordings (no waves - NW, slow symmetrical waves - SW, slow asymmetrical waves - AS, slow waves with plateau phase - PW). The morphological clustering and analysis of ICP pulse (MOCAIP) algorithm was utilized to calculate a set of metrics describing ICP pulse morphology based on the location of three sub-peaks in an ICP pulse: systolic peak (P(1)), tidal peak (P(2)) and dicrotic peak (P(3)). Step-wise discriminant analysis was applied to select the most characteristic morphological features to distinguish between different ICP slow waves. Based on relative changes in variability of amplitudes of P(2) and P(3) we were able to distinguish between the combined groups NW + SW and AS + PW (p < 0.000001). The AS pattern can be differentiated from PW based on respective changes in the mean curvature of P(2) and P(3) (p < 0.000001); however, none of the MOCAIP feature separates between NW and SW. The investigation of ICP pulse morphology associated with different ICP B waves may provide additional information for analysing recordings of overnight ICP.
[Multifocal tubulopapillary tumors of the kidney. Morphologic features and prognosis. Three cases].
Abdelmoula, N B; Boudawara, T; Bahloul, A; Hmida, M B; Hachicha, J; Rebai, T; Mhiri, N; Jlidi, R
1999-01-01
Tubulopapillary tumors of the kidney represent a particular group of renal tumors characterized by their less aggressive behavior. These tumors are distinguished from non papillary tumors by their morphologic, cytochemical and genotypic features. They correspond to a continuous spectrum of tumors ranging from papillary renal cell adenoma to papillary renal cell carcinoma. These TTPR show multifocal, bilateral development and chronic lesions of the kidney parenchyma in nearly all cases. The authors report three cases of multifocal TTPR, including one bilateral case. Based on analysis of these cases and a review of the literature, they discuss the histogenetic features and prognosis of TTPR.
The molecular basis of breast cancer pathological phenotypes.
Heng, Yujing J; Lester, Susan C; Tse, Gary Mk; Factor, Rachel E; Allison, Kimberly H; Collins, Laura C; Chen, Yunn-Yi; Jensen, Kristin C; Johnson, Nicole B; Jeong, Jong Cheol; Punjabi, Rahi; Shin, Sandra J; Singh, Kamaljeet; Krings, Gregor; Eberhard, David A; Tan, Puay Hoon; Korski, Konstanty; Waldman, Frederic M; Gutman, David A; Sanders, Melinda; Reis-Filho, Jorge S; Flanagan, Sydney R; Gendoo, Deena Ma; Chen, Gregory M; Haibe-Kains, Benjamin; Ciriello, Giovanni; Hoadley, Katherine A; Perou, Charles M; Beck, Andrew H
2017-02-01
The histopathological evaluation of morphological features in breast tumours provides prognostic information to guide therapy. Adjunct molecular analyses provide further diagnostic, prognostic and predictive information. However, there is limited knowledge of the molecular basis of morphological phenotypes in invasive breast cancer. This study integrated genomic, transcriptomic and protein data to provide a comprehensive molecular profiling of morphological features in breast cancer. Fifteen pathologists assessed 850 invasive breast cancer cases from The Cancer Genome Atlas (TCGA). Morphological features were significantly associated with genomic alteration, DNA methylation subtype, PAM50 and microRNA subtypes, proliferation scores, gene expression and/or reverse-phase protein assay subtype. Marked nuclear pleomorphism, necrosis, inflammation and a high mitotic count were associated with the basal-like subtype, and had a similar molecular basis. Omics-based signatures were constructed to predict morphological features. The association of morphology transcriptome signatures with overall survival in oestrogen receptor (ER)-positive and ER-negative breast cancer was first assessed by use of the Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) dataset; signatures that remained prognostic in the METABRIC multivariate analysis were further evaluated in five additional datasets. The transcriptomic signature of poorly differentiated epithelial tubules was prognostic in ER-positive breast cancer. No signature was prognostic in ER-negative breast cancer. This study provided new insights into the molecular basis of breast cancer morphological phenotypes. The integration of morphological with molecular data has the potential to refine breast cancer classification, predict response to therapy, enhance our understanding of breast cancer biology, and improve clinical management. This work is publicly accessible at www.dx.ai/tcga_breast. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Sousa, Ana Margarida; Pereira, Maria Olívia; Lourenço, Anália
2015-06-01
One of the major concerns of the biomedical community is the increasing prevalence of antimicrobial resistant microorganisms. Recent findings show that the diversification of colony morphology may be indicative of the expression of virulence factors and increased resistance to antibiotic therapeutics. To transform these findings, and upcoming results, into a valuable clinical decision making tool, colony morphology characterisation should be standardised. Notably, it is important to establish the minimum experimental information necessary to contextualise the environment that originated the colony morphology, and describe the main morphological features associated unambiguously. This paper presents MorphoCol, a new ontology-based tool for the standardised, consistent and machine-interpretable description of the morphology of colonies formed by human pathogenic bacteria. The Colony Morphology Ontology (CMO) is the first controlled vocabulary addressing the specificities of the morphology of clinically significant bacteria, whereas the MorphoCol publicly Web-accessible knowledgebase is an end-user means to search and compare CMO annotated colony morphotypes. Its ultimate aim is to help correlate the morphological alterations manifested by colony-forming bacteria during infection with their response to the antimicrobial treatments administered. MorphoCol is the first tool to address bacterial colony morphotyping systematically and deliver a free of charge resource to the community. Hopefully, it may introduce interesting features of analysis on pathogenic behaviour and play a significant role in clinical decision making. http://morphocol.org. Copyright © 2015 Elsevier Inc. All rights reserved.
Bassity, Elizabeth; Clark, Theodore G.
2012-01-01
Dendritic cells are specialized antigen presenting cells that bridge innate and adaptive immunity in mammals. This link between the ancient innate immune system and the more evolutionarily recent adaptive immune system is of particular interest in fish, the oldest vertebrates to have both innate and adaptive immunity. It is unknown whether dendritic cells co-evolved with the adaptive response, or if the connection between innate and adaptive immunity relied on a fundamentally different cell type early in evolution. We approached this question using the teleost model organism, rainbow trout (Oncorhynchus mykiss), with the aim of identifying dendritic cells based on their ability to stimulate naïve T cells. Adapting mammalian protocols for the generation of dendritic cells, we established a method of culturing highly motile, non-adherent cells from trout hematopoietic tissue that had irregular membrane processes and expressed surface MHCII. When side-by-side mixed leukocyte reactions were performed, these cells stimulated greater proliferation than B cells or macrophages, demonstrating their specialized ability to present antigen and therefore their functional homology to mammalian dendritic cells. Trout dendritic cells were then further analyzed to determine if they exhibited other features of mammalian dendritic cells. Trout dendritic cells were found to have many of the hallmarks of mammalian DCs including tree-like morphology, the expression of dendritic cell markers, the ability to phagocytose small particles, activation by toll-like receptor-ligands, and the ability to migrate in vivo. As in mammals, trout dendritic cells could be isolated directly from the spleen, or larger numbers could be derived from hematopoietic tissue and peripheral blood mononuclear cells in vitro. PMID:22427987
Extraction of ECG signal with adaptive filter for hearth abnormalities detection
NASA Astrophysics Data System (ADS)
Turnip, Mardi; Saragih, Rijois. I. E.; Dharma, Abdi; Esti Kusumandari, Dwi; Turnip, Arjon; Sitanggang, Delima; Aisyah, Siti
2018-04-01
This paper demonstrates an adaptive filter method for extraction ofelectrocardiogram (ECG) feature in hearth abnormalities detection. In particular, electrocardiogram (ECG) is a recording of the heart's electrical activity by capturing a tracingof cardiac electrical impulse as it moves from the atrium to the ventricles. The applied algorithm is to evaluate and analyze ECG signals for abnormalities detection based on P, Q, R and S peaks. In the first phase, the real-time ECG data is acquired and pre-processed. In the second phase, the procured ECG signal is subjected to feature extraction process. The extracted features detect abnormal peaks present in the waveform. Thus the normal and abnormal ECG signal could be differentiated based on the features extracted.
NASA Astrophysics Data System (ADS)
Lin, Yang-Hsien; Huang, Shin-Shyang; Wu, Shang-Ju; Sung, Kung-Bin
2017-11-01
Complete blood count is the most common test to detect anemia, but it is unable to obtain the abnormal shape of erythrocytes, which highly correlates with the hematologic function. Tomographic diffractive microscopy (TDM) is an emerging technique capable of quantifying three-dimensional (3-D) refractive index (RI) distributions of erythrocytes without labeling. TDM was used to characterize optical and morphological properties of 172 erythrocytes from healthy volunteers and 419 erythrocytes from thalassemic patients. To efficiently extract and analyze the properties of erythrocytes, we developed an adaptive region-growing method for automatically delineating erythrocytes from 3-D RI maps. The thalassemic erythrocytes not only contained lower hemoglobin content but also showed doughnut shape and significantly lower volume, surface area, effective radius, and average thickness. A multi-indices prediction model achieved perfect accuracy of diagnosing thalassemia using four features, including the optical volume, surface-area-to-volume ratio, sphericity index, and surface area. The results demonstrate the ability of TDM to provide quantitative, hematologic measurements and to assess morphological features of erythrocytes to distinguish healthy and thalassemic erythrocytes.
Skeletal and dental morphology supports diphyletic origin of baboons and mandrills
Fleagle, John G.; McGraw, W. Scott
1999-01-01
Numerous biomolecular studies from the past 20 years have indicated that the large African monkeys Papio, Theropithecus, and Mandrillus have a diphyletic relationship with different species groups of mangabeys. According to the results of these studies, mandrills and drills (Mandrillus) are most closely related to the torquatus–galeritus group of mangabeys placed in the genus Cercocebus, whereas baboons (Papio) and geladas (Theropithecus) are most closely related to the albigena–aterrimus mangabeys, now commonly placed in the genus Lophocebus. However, there has been very little morphological evidence linking mandrills on the one hand and baboons and geladas on the other with different groups of mangabeys. In a study of mangabey locomotion and skeletal anatomy, we have identified features of the postcranial skeleton and the dentition that support the molecular phylogeny and clearly link mandrills with Cercocebus and Papio with Lophocebus. Moreover, the features linking Cercocebus and Mandrillus accord with ecological studies of these species indicating that these two genera are a cryptic clade characterized by unique adaptations for gleaning insects, hard nuts, and seeds from the forest floor. PMID:9927710
3D morphology-based clustering and simulation of human pyramidal cell dendritic spines.
Luengo-Sanchez, Sergio; Fernaud-Espinosa, Isabel; Bielza, Concha; Benavides-Piccione, Ruth; Larrañaga, Pedro; DeFelipe, Javier
2018-06-13
The dendritic spines of pyramidal neurons are the targets of most excitatory synapses in the cerebral cortex. They have a wide variety of morphologies, and their morphology appears to be critical from the functional point of view. To further characterize dendritic spine geometry, we used in this paper over 7,000 individually 3D reconstructed dendritic spines from human cortical pyramidal neurons to group dendritic spines using model-based clustering. This approach uncovered six separate groups of human dendritic spines. To better understand the differences between these groups, the discriminative characteristics of each group were identified as a set of rules. Model-based clustering was also useful for simulating accurate 3D virtual representations of spines that matched the morphological definitions of each cluster. This mathematical approach could provide a useful tool for theoretical predictions on the functional features of human pyramidal neurons based on the morphology of dendritic spines.
Phylogeny and systematics of deep-sea precious corals (Anthozoa: Octocorallia: Coralliidae).
Tu, Tzu-Hsuan; Dai, Chang-Feng; Jeng, Ming-Shiou
2015-03-01
The phylogeny of Coralliidae is being increasingly studied to elucidate their evolutionary history and species delimitation due to global concerns about their conservation. Previous studies on phylogenetic relationships within Coralliidae have pointed out that the two currently recognized genera are not monophyletic and the Coralliidae should be divided into three genera. In order to provide a comprehensive revision of the taxonomy of Coralliidae, we documented 110 specimens using eight mitochondrial and one nuclear loci to reconstruct their phylogeny. The morphological features of 27 type specimens were also examined. Phylogenetic relationships based on both mitochondrial and nuclear markers revealed two reciprocally monophyletic clades of Coralliidae. One of the clades was further split into two subclades with respect to sequence variation and observable morphological features. Based on the results of genealogical analyses and distinctive morphological features, the three genera classification of Coralliidae proposed by Gray (1867) was redefined. In this revised taxonomic system, Corallium, Hemicorallium, and Pleurocorallium consist of 7, 16 and 14 species, respectively. Our results also showed that the cosmopolitan Hemicorallium laauense is a species complex containing a cryptic species. Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Wang, G. H.; Wang, H. B.; Fan, W. F.; Liu, Y.; Chen, C.
2018-04-01
In view of the traditional change detection algorithm mainly depends on the spectral information image spot, failed to effectively mining and fusion of multi-image feature detection advantage, the article borrows the ideas of object oriented analysis proposed a multi feature fusion of remote sensing image change detection algorithm. First by the multi-scale segmentation of image objects based; then calculate the various objects of color histogram and linear gradient histogram; utilizes the color distance and edge line feature distance between EMD statistical operator in different periods of the object, using the adaptive weighted method, the color feature distance and edge in a straight line distance of combination is constructed object heterogeneity. Finally, the curvature histogram analysis image spot change detection results. The experimental results show that the method can fully fuse the color and edge line features, thus improving the accuracy of the change detection.
Chen, Hui-Xia; Ju, Hui-Dong; Li, Yang; Li, Liang
2017-12-20
In the present study, light and scanning electron microscopy (SEM) were used to further study the detailed morphology of Physaloptera clausa Rudolphi, 1819, based on the material collected from the Amur hedgehog E. amurensis Schrenk in China. The results revealed a few previously unreported morphological features and some morphological and morphometric variability between our specimens and the previous studies. The present supplementary morphological characters and morphometric data could help us to recognize this species more accurately.
Topics in Mocho' Phonology and Morphology
ERIC Educational Resources Information Center
Palosaari, Naomi Elizabeth
2011-01-01
This dissertation is a grammatical description of several features of the morphology and phonology of the Mocho' language. Mocho' (Motozintleco) is a moribund Mayan language spoken in the Chiapas region of Mexico near the border of Guatemala. This dissertation, based on data collected during several field trips and supplemented with unpublished…
Estimating Position of Mobile Robots From Omnidirectional Vision Using an Adaptive Algorithm.
Li, Luyang; Liu, Yun-Hui; Wang, Kai; Fang, Mu
2015-08-01
This paper presents a novel and simple adaptive algorithm for estimating the position of a mobile robot with high accuracy in an unknown and unstructured environment by fusing images of an omnidirectional vision system with measurements of odometry and inertial sensors. Based on a new derivation where the omnidirectional projection can be linearly parameterized by the positions of the robot and natural feature points, we propose a novel adaptive algorithm, which is similar to the Slotine-Li algorithm in model-based adaptive control, to estimate the robot's position by using the tracked feature points in image sequence, the robot's velocity, and orientation angles measured by odometry and inertial sensors. It is proved that the adaptive algorithm leads to global exponential convergence of the position estimation errors to zero. Simulations and real-world experiments are performed to demonstrate the performance of the proposed algorithm.
NASA Astrophysics Data System (ADS)
Chang, Kuo-Jen; Chan, Yu-Chang; Chen, Rou-Fei; Hsieh, Yu-Chung
2018-03-01
Several remote sensing techniques, namely traditional aerial photographs, an unmanned aircraft system (UAS), and airborne lidar, were used in this study to decipher the morphological features of obscure landslides in volcanic regions and how the observed features may be used for understanding landslide occurrence and potential hazard. A morphological reconstruction method was proposed to assess landslide morphology based on the dome-shaped topography of the volcanic edifice and the nature of its morphological evolution. Two large-scale landslides in the Tatun volcano group in northern Taiwan were targeted to more accurately characterize the landslide morphology through airborne lidar and UAS-derived digital terrain models and images. With the proposed reconstruction method, the depleted volume of the two landslides was estimated to be at least 820 ± 20 × 106 m3. Normal faulting in the region likely played a role in triggering the two landslides, because there are extensive geological and historical records of an active normal fault in this region. The subsequent geomorphological evolution of the two landslides is thus inferred to account for the observed morphological and tectonic features that are indicative of resulting in large and life-threatening landslides, as characterized using the recent remote sensing techniques.
Sánchez-Gómez, David; Valladares, Fernando; Zavala, Miguel A
2006-11-01
We investigated the differential roles of physiological and morphological features on seedling survivorship along an experimental irradiance gradient in four dominant species of cool temperate-Mediterranean forests (Quercus robur L., Quercus pyrenaica Willd., Pinus sylvestris L. and Pinus pinaster Ait.). The lowest photochemical efficiency (F(v)/F(m) in dark-adapted leaves) was reached in deep shade (1% of full sunlight) in all species except Q. robur, which had the lowest photochemical efficiency in both deep shade and 100% of full sunlight. Species differed significantly in their survival in 1% of full sunlight but exhibited similar survivorship in 6, 20 and 100% of full sunlight. Shade-tolerant oaks had lower leaf area ratios, shoot to root ratios, foliage allocation ratios and higher rates of allocation to structural biomass (stem plus thick roots) than shade-intolerant pines. Overall phenotypic plasticity for each species, estimated as the difference between the minimum and the maximum mean values of the ecophysiological variables studied at the various irradiances divided by the maximum mean value of those variables, was inversely correlated with shade tolerance. Observed morphology, allocation and plasticity conformed to a conservative resource-use strategy, although observed differences in specific leaf area, which was higher in shade-tolerant species, supported a carbon gain maximization strategy. Lack of a congruent suite of traits underlying shade tolerance in the studied species provides evidence of adaptation to multiple selective forces. Although the study was based on only four species, the importance of ecophysiological variables as determinants of interspecific differences in survival in limiting light was demonstrated.
An Adaptive Unstructured Grid Method by Grid Subdivision, Local Remeshing, and Grid Movement
NASA Technical Reports Server (NTRS)
Pirzadeh, Shahyar Z.
1999-01-01
An unstructured grid adaptation technique has been developed and successfully applied to several three dimensional inviscid flow test cases. The approach is based on a combination of grid subdivision, local remeshing, and grid movement. For solution adaptive grids, the surface triangulation is locally refined by grid subdivision, and the tetrahedral grid in the field is partially remeshed at locations of dominant flow features. A grid redistribution strategy is employed for geometric adaptation of volume grids to moving or deforming surfaces. The method is automatic and fast and is designed for modular coupling with different solvers. Several steady state test cases with different inviscid flow features were tested for grid/solution adaptation. In all cases, the dominant flow features, such as shocks and vortices, were accurately and efficiently predicted with the present approach. A new and robust method of moving tetrahedral "viscous" grids is also presented and demonstrated on a three-dimensional example.
Spatiotopic updating of visual feature information.
Zimmermann, Eckart; Weidner, Ralph; Fink, Gereon R
2017-10-01
Saccades shift the retina with high-speed motion. In order to compensate for the sudden displacement, the visuomotor system needs to combine saccade-related information and visual metrics. Many neurons in oculomotor but also in visual areas shift their receptive field shortly before the execution of a saccade (Duhamel, Colby, & Goldberg, 1992; Nakamura & Colby, 2002). These shifts supposedly enable the binding of information from before and after the saccade. It is a matter of current debate whether these shifts are merely location based (i.e., involve remapping of abstract spatial coordinates) or also comprise information about visual features. We have recently presented fMRI evidence for a feature-based remapping mechanism in visual areas V3, V4, and VO (Zimmermann, Weidner, Abdollahi, & Fink, 2016). In particular, we found fMRI adaptation in cortical regions representing a stimulus' retinotopic as well as its spatiotopic position. Here, we asked whether spatiotopic adaptation exists independently from retinotopic adaptation and which type of information is behaviorally more relevant after saccade execution. We first adapted at the saccade target location only and found a spatiotopic tilt aftereffect. Then, we simultaneously adapted both the fixation and the saccade target location but with opposite tilt orientations. As a result, adaptation from the fixation location was carried retinotopically to the saccade target position. The opposite tilt orientation at the retinotopic location altered the effects induced by spatiotopic adaptation. More precisely, it cancelled out spatiotopic adaptation at the saccade target location. We conclude that retinotopic and spatiotopic visual adaptation are independent effects.
Ovipositor morphology correlates with life history evolution in agaonid fig wasps
NASA Astrophysics Data System (ADS)
Elias, Larissa Galante; Kjellberg, Finn; Farache, Fernando Henrique Antoniolli; Almeida, Eduardo A. B.; Rasplus, Jean-Yves; Cruaud, Astrid; Peng, Yan-Qiong; Yang, Da-Rong; Pereira, Rodrigo Augusto Santinelo
2018-07-01
The high adaptive success of parasitic Hymenoptera might be related to the use of different oviposition sites, allowing niche partitioning among co-occurring species resulting in life history specialization and diversification. In this scenario, evolutionary changes in life history and resources for oviposition can be associated with changes in ovipositor structure, allowing exploitation of different substrates for oviposition. We used a formal phylogenetic framework to investigate the evolution of ovipositor morphology and life history in agaonid wasps. We sampled 24 species with different life histories belonging to all main clades of Agaonidae including representatives of all described genera of non-pollinating fig wasps (NPFW). Our results show an overall correlation between ovipositor morphology and life history in agaonid fig wasps. Ovipositor morphologies seem to be related to constraints imposed by features of the oviposition sites since ovipositor morphology has experienced convergent evolution at least four times in Sycophaginae (Agaonidae) according to the resource used. Non-galling species have more distantly spaced teeth with uneven spacing, as opposed to the observed morphology of galling species. Our results suggest that the ancestral condition for ovipositor morphology was most likely the presence of one or two apical teeth. Regarding life history, ovary galling species that oviposit in receptive figs possibly represent the ancestral condition. Different ovipositor characteristics allow exploitation of new niches and may be related to resource partitioning and species co-existence in the fig-fig wasp system.
Dynamic adaptive learning for decision-making supporting systems
NASA Astrophysics Data System (ADS)
He, Haibo; Cao, Yuan; Chen, Sheng; Desai, Sachi; Hohil, Myron E.
2008-03-01
This paper proposes a novel adaptive learning method for data mining in support of decision-making systems. Due to the inherent characteristics of information ambiguity/uncertainty, high dimensionality and noisy in many homeland security and defense applications, such as surveillances, monitoring, net-centric battlefield, and others, it is critical to develop autonomous learning methods to efficiently learn useful information from raw data to help the decision making process. The proposed method is based on a dynamic learning principle in the feature spaces. Generally speaking, conventional approaches of learning from high dimensional data sets include various feature extraction (principal component analysis, wavelet transform, and others) and feature selection (embedded approach, wrapper approach, filter approach, and others) methods. However, very limited understandings of adaptive learning from different feature spaces have been achieved. We propose an integrative approach that takes advantages of feature selection and hypothesis ensemble techniques to achieve our goal. Based on the training data distributions, a feature score function is used to provide a measurement of the importance of different features for learning purpose. Then multiple hypotheses are iteratively developed in different feature spaces according to their learning capabilities. Unlike the pre-set iteration steps in many of the existing ensemble learning approaches, such as adaptive boosting (AdaBoost) method, the iterative learning process will automatically stop when the intelligent system can not provide a better understanding than a random guess in that particular subset of feature spaces. Finally, a voting algorithm is used to combine all the decisions from different hypotheses to provide the final prediction results. Simulation analyses of the proposed method on classification of different US military aircraft databases show the effectiveness of this method.
Leubner, Fanny; Hörnschemeyer, Thomas; Bradler, Sven
2016-02-18
Secondary winglessness is a common phenomenon found among neopteran insects. With an estimated age of at least 140 million years, the cave crickets (Rhaphidophoridae) form the oldest exclusively wingless lineage within the long-horned grasshoppers (Ensifera). With respect to their morphology, cave crickets are generally considered to represent a `primitive' group of Ensifera, for which no apomorphic character has been reported so far. We present the first detailed investigation and description of the thoracic skeletal and muscular anatomy of the East Mediterranean cave cricket Troglophilus neglectus (Ensifera: Rhaphidophoridae). T. neglectus possesses sternopleural muscles that are not yet reported from other neopteran insects. Cave crickets in general exhibit some unique features with respect to their thoracic skeletal anatomy: an externally reduced prospinasternum, a narrow median sclerite situated between the meso- and metathorax, a star-shaped prospina, and a triramous metafurca. The thoracic muscle equipment of T. neglectus compared to that of the bush cricket Conocephalus maculatus (Ensifera: Tettigoniidae) and the house cricket Acheta domesticus (Ensifera: Gryllidae) reveals a number of potentially synapomorphic characters between these lineages. Based on the observed morphology we favor a closer relationship of Rhaphidophoridae to Tettigoniidae rather than to Gryllidae. In addition, the comparison of the thoracic morphology of T. neglectus to that of other wingless Polyneoptera allows reliable conclusions about anatomical adaptations correlated with secondary winglessness. The anatomy in apterous Ensifera, viz. the reduction of discrete direct and indirect flight muscles as well as the strengthening of specific leg muscles, largely resembles the condition found in wingless stick insects (Euphasmatodea), but is strikingly different from that of other related wingless insects, e.g. heel walkers (Mantophasmatodea), ice crawlers (Grylloblattodea), and certain grasshoppers (Caelifera). The composition of direct flight muscles largely follows similar patterns in winged respectively wingless species within major polyneopteran lineages, but it is highly heterogeneous between those lineages.
Moving target detection method based on improved Gaussian mixture model
NASA Astrophysics Data System (ADS)
Ma, J. Y.; Jie, F. R.; Hu, Y. J.
2017-07-01
Gaussian Mixture Model is often employed to build background model in background difference methods for moving target detection. This paper puts forward an adaptive moving target detection algorithm based on improved Gaussian Mixture Model. According to the graylevel convergence for each pixel, adaptively choose the number of Gaussian distribution to learn and update background model. Morphological reconstruction method is adopted to eliminate the shadow.. Experiment proved that the proposed method not only has good robustness and detection effect, but also has good adaptability. Even for the special cases when the grayscale changes greatly and so on, the proposed method can also make outstanding performance.
Sun, Minglei; Yang, Shaobao; Jiang, Jinling; Wang, Qiwei
2015-01-01
Pelger-Huet anomaly (PHA) and Pseudo Pelger-Huet anomaly (PPHA) are neutrophil with abnormal morphology. They have the bilobed or unilobed nucleus and excessive clumping chromatin. Currently, detection of this kind of cell mainly depends on the manual microscopic examination by a clinician, thus, the quality of detection is limited by the efficiency and a certain subjective consciousness of the clinician. In this paper, a detection method for PHA and PPHA is proposed based on karyomorphism and chromatin distribution features. Firstly, the skeleton of the nucleus is extracted using an augmented Fast Marching Method (AFMM) and width distribution is obtained through distance transform. Then, caryoplastin in the nucleus is extracted based on Speeded Up Robust Features (SURF) and a K-nearest-neighbor (KNN) classifier is constructed to analyze the features. Experiment shows that the sensitivity and specificity of this method achieved 87.5% and 83.33%, which means that the detection accuracy of PHA is acceptable. Meanwhile, the detection method should be helpful to the automatic morphological classification of blood cells.
Many Specialists for Suppressing Cortical Excitation
Burkhalter, Andreas
2008-01-01
Cortical computations are critically dependent on GABA-releasing neurons for dynamically balancing excitation with inhibition that is proportional to the overall level of activity. Although it is widely accepted that there are multiple types of interneurons, defining their identities based on qualitative descriptions of morphological, molecular and physiological features has failed to produce a universally accepted ‘parts list’, which is needed to understand the roles that interneurons play in cortical processing. A list of features has been published by the Petilla Interneurons Nomenclature Group, which represents an important step toward an unbiased classification of interneurons. To this end some essential features have recently been studied quantitatively and their association was examined using multidimensional cluster analyses. These studies revealed at least 3 distinct electrophysiological, 6 morphological and 15 molecular phenotypes. This is a conservative estimate of the number of interneuron types, which almost certainly will be revised as more quantitative studies will be performed and similarities will be defined objectively. It is clear that interneurons are organized with physiological attributes representing the most general, molecular characteristics the most detailed and morphological features occupying the middle ground. By themselves, none of these features are sufficient to define classes of interneurons. The challenge will be to determine which features belong together and how cell type-specific feature combinations are genetically specified. PMID:19225588
MacLaren, Jamie A; Nauwelaerts, Sandra
2016-11-01
Forelimb morphology is an indicator for terrestrial locomotor ecology. The limb morphology of the enigmatic tapir (Perissodactyla: Tapirus) has often been compared to that of basal perissodactyls, despite the lack of quantitative studies comparing forelimb variation in modern tapirs. Here, we present a quantitative assessment of tapir upper forelimb osteology using three-dimensional geometric morphometrics to test whether the four modern tapir species are monomorphic in their forelimb skeleton. The shape of the upper forelimb bones across four species (T. indicus; T. bairdii; T. terrestris; T. pinchaque) was investigated. Bones were laser scanned to capture surface morphology and 3D landmark analysis was used to quantify shape. Discriminant function analyses were performed to reveal features which could be used for interspecific discrimination. Overall our results show that the appendicular skeleton contains notable interspecific differences. We demonstrate that upper forelimb bones can be used to discriminate between species (>91% accuracy), with the scapula proving the most diagnostic bone (100% accuracy). Features that most successfully discriminate between the four species include the placement of the cranial angle of the scapula, depth of the humeral condyle, and the caudal deflection of the olecranon. Previous studies comparing the limbs of T. indicus and T. terrestris are corroborated by our quantitative findings. Moreover, the mountain tapir T. pinchaque consistently exhibited the greatest divergence in morphology from the other three species. Despite previous studies describing tapirs as functionally mediportal in their locomotor style, we find osteological evidence suggesting a spectrum of locomotor adaptations in the tapirs. We conclude that modern tapir forelimbs are neither monomorphic nor are tapirs as conserved in their locomotor habits as previously described. J. Morphol. 277:1469-1485, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Yang, Gongping; Zhou, Guang-Tong; Yin, Yilong; Yang, Xiukun
2010-12-01
A critical step in an automatic fingerprint recognition system is the segmentation of fingerprint images. Existing methods are usually designed to segment fingerprint images originated from a certain sensor. Thus their performances are significantly affected when dealing with fingerprints collected by different sensors. This work studies the sensor interoperability of fingerprint segmentation algorithms, which refers to the algorithm's ability to adapt to the raw fingerprints obtained from different sensors. We empirically analyze the sensor interoperability problem, and effectively address the issue by proposing a [InlineEquation not available: see fulltext.]-means based segmentation method called SKI. SKI clusters foreground and background blocks of a fingerprint image based on the [InlineEquation not available: see fulltext.]-means algorithm, where a fingerprint block is represented by a 3-dimensional feature vector consisting of block-wise coherence, mean, and variance (abbreviated as CMV). SKI also employs morphological postprocessing to achieve favorable segmentation results. We perform SKI on each fingerprint to ensure sensor interoperability. The interoperability and robustness of our method are validated by experiments performed on a number of fingerprint databases which are obtained from various sensors.
Shanir, P P Muhammed; Khan, Kashif Ahmad; Khan, Yusuf Uzzaman; Farooq, Omar; Adeli, Hojjat
2017-12-01
Epileptic neurological disorder of the brain is widely diagnosed using the electroencephalography (EEG) technique. EEG signals are nonstationary in nature and show abnormal neural activity during the ictal period. Seizures can be identified by analyzing and obtaining features of EEG signal that can detect these abnormal activities. The present work proposes a novel morphological feature extraction technique based on the local binary pattern (LBP) operator. LBP provides a unique decimal value to a sample point by weighing the binary outcomes after thresholding the neighboring samples with the present sample point. These LBP values assist in capturing the rising and falling edges of the EEG signal, thus providing a morphologically featured discriminating pattern for epilepsy detection. In the present work, the variability in the LBP values is measured by calculating the sum of absolute difference of the consecutive LBP values. Interquartile range is calculated over the preprocessed EEG signal to provide dispersion measure in the signal. For classification purpose, K-nearest neighbor classifier is used, and the performance is evaluated on 896.9 hours of data from CHB-MIT continuous EEG database. Mean accuracy of 99.7% and mean specificity of 99.8% is obtained with average false detection rate of 0.47/h and sensitivity of 99.2% for 136 seizures.
Gekko japonicus genome reveals evolution of adhesive toe pads and tail regeneration
Liu, Yan; Zhou, Qian; Wang, Yongjun; Luo, Longhai; Yang, Jian; Yang, Linfeng; Liu, Mei; Li, Yingrui; Qian, Tianmei; Zheng, Yuan; Li, Meiyuan; Li, Jiang; Gu, Yun; Han, Zujing; Xu, Man; Wang, Yingjie; Zhu, Changlai; Yu, Bin; Yang, Yumin; Ding, Fei; Jiang, Jianping; Yang, Huanming; Gu, Xiaosong
2015-01-01
Reptiles are the most morphologically and physiologically diverse tetrapods, and have undergone 300 million years of adaptive evolution. Within the reptilian tetrapods, geckos possess several interesting features, including the ability to regenerate autotomized tails and to climb on smooth surfaces. Here we sequence the genome of Gekko japonicus (Schlegel's Japanese Gecko) and investigate genetic elements related to its physiology. We obtain a draft G. japonicus genome sequence of 2.55 Gb and annotated 22,487 genes. Comparative genomic analysis reveals specific gene family expansions or reductions that are associated with the formation of adhesive setae, nocturnal vision and tail regeneration, as well as the diversification of olfactory sensation. The obtained genomic data provide robust genetic evidence of adaptive evolution in reptiles. PMID:26598231
Ultrastructural basis for the efficiency of an ileal orthotopic neobladder 27 years after surgery.
Orlandini, G; Guizzardi, S; Ferretti, S; Simonazzi, M; Bucci, G; Gatti, R
2002-01-01
The morphological and functional basis of the excellent clinical outcome of ileal orthotopic neobladders are largely unknown. Only long-term follow-up studies will provide an adequate answer to this unsettled question. We have studied a patient who underwent this type of surgery over 27 years ago. Besides an important secretive adaptation we have found, at the ultrastructural level, that the monolayered epithelium does not show signs of true metaplasia and that changes had occurred in the intercellular junctions, namely that desmosomes are significantly increased. Although limited to a single case, these features, if confirmed by further observations, suggest a working hypothesis for the understanding of the definitive phenotypic adaptation of the ileal epithelium to the new aggressive environment. Copyright 2002 S. Karger AG, Basel
Hydrodynamic role of longitudinal dorsal ridges in a leatherback turtle swimming
NASA Astrophysics Data System (ADS)
Bang, Kyeongtae; Kim, Jooha; Lee, Sang-Im; Choi, Haecheon
2016-10-01
Leatherback sea turtles (Dermochelys coriacea) are known to have a superior diving ability and be highly adapted to pelagic swimming. They have five longitudinal ridges on their carapace. Although it was conjectured that these ridges might be an adaptation for flow control, no rigorous study has been performed to understand their hydrodynamic roles. Here we show that these ridges are slightly misaligned to the streamlines around the body to generate streamwise vortices, and suppress or delay flow separation on the carapace, resulting in enhanced hydrodynamic performances during different modes of swimming. Our results suggest that shapes of some morphological features of living creatures, like the longitudinal ridges of the leatherback turtles, need not be streamlined for excellent hydro- or aerodynamic performances, contrary to our common physical intuition.
Hydrodynamic role of longitudinal dorsal ridges in a leatherback turtle swimming
Bang, Kyeongtae; Kim, Jooha; Lee, Sang-Im; Choi, Haecheon
2016-01-01
Leatherback sea turtles (Dermochelys coriacea) are known to have a superior diving ability and be highly adapted to pelagic swimming. They have five longitudinal ridges on their carapace. Although it was conjectured that these ridges might be an adaptation for flow control, no rigorous study has been performed to understand their hydrodynamic roles. Here we show that these ridges are slightly misaligned to the streamlines around the body to generate streamwise vortices, and suppress or delay flow separation on the carapace, resulting in enhanced hydrodynamic performances during different modes of swimming. Our results suggest that shapes of some morphological features of living creatures, like the longitudinal ridges of the leatherback turtles, need not be streamlined for excellent hydro- or aerodynamic performances, contrary to our common physical intuition. PMID:27694826
The role of behaviour in adaptive morphological evolution of African proboscideans.
Lister, Adrian M
2013-08-15
The fossil record richly illustrates the origin of morphological adaptation through time. However, our understanding of the selective forces responsible in a given case, and the role of behaviour in the process, is hindered by assumptions of synchrony between environmental change, behavioural innovation and morphological response. Here I show, from independent proxy data through a 20-million-year sequence of fossil proboscideans in East Africa, that changes in environment, diet and morphology are often significantly offset chronologically, allowing dissection of the roles of behaviour and different selective drivers. These findings point the way to hypothesis-driven testing of the interplay between habitat change, behaviour and morphological adaptation with the use of independent proxies in the fossil record.
Harcourt-Smith, W E H; Throckmorton, Z; Congdon, K A; Zipfel, B; Deane, A S; Drapeau, M S M; Churchill, S E; Berger, L R; DeSilva, J M
2015-10-06
Modern humans are characterized by a highly specialized foot that reflects our obligate bipedalism. Our understanding of hominin foot evolution is, although, hindered by a paucity of well-associated remains. Here we describe the foot of Homo naledi from Dinaledi Chamber, South Africa, using 107 pedal elements, including one nearly-complete adult foot. The H. naledi foot is predominantly modern human-like in morphology and inferred function, with an adducted hallux, an elongated tarsus, and derived ankle and calcaneocuboid joints. In combination, these features indicate a foot well adapted for striding bipedalism. However, the H. naledi foot differs from modern humans in having more curved proximal pedal phalanges, and features suggestive of a reduced medial longitudinal arch. Within the context of primitive features found elsewhere in the skeleton, these findings suggest a unique locomotor repertoire for H. naledi, thus providing further evidence of locomotor diversity within both the hominin clade and the genus Homo.
Harcourt-Smith, W. E. H.; Throckmorton, Z.; Congdon, K. A.; Zipfel, B.; Deane, A. S.; Drapeau, M. S. M.; Churchill, S. E.; Berger, L. R.; DeSilva, J. M.
2015-01-01
Modern humans are characterized by a highly specialized foot that reflects our obligate bipedalism. Our understanding of hominin foot evolution is, although, hindered by a paucity of well-associated remains. Here we describe the foot of Homo naledi from Dinaledi Chamber, South Africa, using 107 pedal elements, including one nearly-complete adult foot. The H. naledi foot is predominantly modern human-like in morphology and inferred function, with an adducted hallux, an elongated tarsus, and derived ankle and calcaneocuboid joints. In combination, these features indicate a foot well adapted for striding bipedalism. However, the H. naledi foot differs from modern humans in having more curved proximal pedal phalanges, and features suggestive of a reduced medial longitudinal arch. Within the context of primitive features found elsewhere in the skeleton, these findings suggest a unique locomotor repertoire for H. naledi, thus providing further evidence of locomotor diversity within both the hominin clade and the genus Homo. PMID:26439101
Li, Cai; Zhang, Yong; Li, Jianwen; Kong, Lesheng; Hu, Haofu; Pan, Hailin; Xu, Luohao; Deng, Yuan; Li, Qiye; Jin, Lijun; Yu, Hao; Chen, Yan; Liu, Binghang; Yang, Linfeng; Liu, Shiping; Zhang, Yan; Lang, Yongshan; Xia, Jinquan; He, Weiming; Shi, Qiong; Subramanian, Sankar; Millar, Craig D; Meader, Stephen; Rands, Chris M; Fujita, Matthew K; Greenwold, Matthew J; Castoe, Todd A; Pollock, David D; Gu, Wanjun; Nam, Kiwoong; Ellegren, Hans; Ho, Simon Yw; Burt, David W; Ponting, Chris P; Jarvis, Erich D; Gilbert, M Thomas P; Yang, Huanming; Wang, Jian; Lambert, David M; Wang, Jun; Zhang, Guojie
2014-01-01
Penguins are flightless aquatic birds widely distributed in the Southern Hemisphere. The distinctive morphological and physiological features of penguins allow them to live an aquatic life, and some of them have successfully adapted to the hostile environments in Antarctica. To study the phylogenetic and population history of penguins and the molecular basis of their adaptations to Antarctica, we sequenced the genomes of the two Antarctic dwelling penguin species, the Adélie penguin [Pygoscelis adeliae] and emperor penguin [Aptenodytes forsteri]. Phylogenetic dating suggests that early penguins arose ~60 million years ago, coinciding with a period of global warming. Analysis of effective population sizes reveals that the two penguin species experienced population expansions from ~1 million years ago to ~100 thousand years ago, but responded differently to the climatic cooling of the last glacial period. Comparative genomic analyses with other available avian genomes identified molecular changes in genes related to epidermal structure, phototransduction, lipid metabolism, and forelimb morphology. Our sequencing and initial analyses of the first two penguin genomes provide insights into the timing of penguin origin, fluctuations in effective population sizes of the two penguin species over the past 10 million years, and the potential associations between these biological patterns and global climate change. The molecular changes compared with other avian genomes reflect both shared and diverse adaptations of the two penguin species to the Antarctic environment.
SVAS3: Strain Vector Aided Sensorization of Soft Structures.
Culha, Utku; Nurzaman, Surya G; Clemens, Frank; Iida, Fumiya
2014-07-17
Soft material structures exhibit high deformability and conformability which can be useful for many engineering applications such as robots adapting to unstructured and dynamic environments. However, the fact that they have almost infinite degrees of freedom challenges conventional sensory systems and sensorization approaches due to the difficulties in adapting to soft structure deformations. In this paper, we address this challenge by proposing a novel method which designs flexible sensor morphologies to sense soft material deformations by using a functional material called conductive thermoplastic elastomer (CTPE). This model-based design method, called Strain Vector Aided Sensorization of Soft Structures (SVAS3), provides a simulation platform which analyzes soft body deformations and automatically finds suitable locations for CTPE-based strain gauge sensors to gather strain information which best characterizes the deformation. Our chosen sensor material CTPE exhibits a set of unique behaviors in terms of strain length electrical conductivity, elasticity, and shape adaptability, allowing us to flexibly design sensor morphology that can best capture strain distributions in a given soft structure. We evaluate the performance of our approach by both simulated and real-world experiments and discuss the potential and limitations.
Predicting mesh density for adaptive modelling of the global atmosphere.
Weller, Hilary
2009-11-28
The shallow water equations are solved using a mesh of polygons on the sphere, which adapts infrequently to the predicted future solution. Infrequent mesh adaptation reduces the cost of adaptation and load-balancing and will thus allow for more accurate mapping on adaptation. We simulate the growth of a barotropically unstable jet adapting the mesh every 12 h. Using an adaptation criterion based largely on the gradient of the vorticity leads to a mesh with around 20 per cent of the cells of a uniform mesh that gives equivalent results. This is a similar proportion to previous studies of the same test case with mesh adaptation every 1-20 min. The prediction of the mesh density involves solving the shallow water equations on a coarse mesh in advance of the locally refined mesh in order to estimate where features requiring higher resolution will grow, decay or move to. The adaptation criterion consists of two parts: that resolved on the coarse mesh, and that which is not resolved and so is passively advected on the coarse mesh. This combination leads to a balance between resolving features controlled by the large-scale dynamics and maintaining fine-scale features.
Aquatic prey capture in snakes: the link between morphology, behavior and hydrodynamics
NASA Astrophysics Data System (ADS)
Segall, Marion; Herrel, Anthony; Godoy-Diana, Ramiro; Funevol Team; Pmmh Team
2017-11-01
Natural selection favors animals that are the most successful in their fitness-related behaviors, such as foraging. Secondary adaptations pose the problem of re-adapting an already 'hypothetically optimized' phenotype to new constraints. When animals forage underwater, they face strong physical constraints, particularly when capturing a prey. The capture requires the predator to be fast and to generate a high acceleration to catch the prey. This involves two main constraints due to the surrounding fluid: drag and added mass. Both of these constraints are related to the shape of the animal. We experimentally explore the relationship between shape and performance in the context of an aquatic strike. As a model, we use 3D-printed snake heads of different shapes and frontal strike kinematics based on in vivo observations. By using direct force measurements, we compare the drag and added mass generated by aquatic and non-aquatic snake models during a strike. Our results show that drag is optimized in aquatic snakes. Added mass appears less important than drag for snakes during an aquatic strike. The flow features associated to the hydrodynamic forces measured allows us to propose a mechanism rendering the shape of the head of aquatic snakes well adapted to catch prey underwater. Region Ile de France and the doctoral school Frontieres du Vivant (FdV) - Programme Bettencourt.
Recognition of Similar Shaped Handwritten Marathi Characters Using Artificial Neural Network
NASA Astrophysics Data System (ADS)
Jane, Archana P.; Pund, Mukesh A.
2012-03-01
The growing need have handwritten Marathi character recognition in Indian offices such as passport, railways etc has made it vital area of a research. Similar shape characters are more prone to misclassification. In this paper a novel method is provided to recognize handwritten Marathi characters based on their features extraction and adaptive smoothing technique. Feature selections methods avoid unnecessary patterns in an image whereas adaptive smoothing technique form smooth shape of charecters.Combination of both these approaches leads to the better results. Previous study shows that, no one technique achieves 100% accuracy in handwritten character recognition area. This approach of combining both adaptive smoothing & feature extraction gives better results (approximately 75-100) and expected outcomes.
Conflicts of thermal adaptation and fever--a cybernetic approach based on physiological experiments.
Werner, J; Beckmann, U
1998-01-01
Cold adaptation aims primarily at a better economy, i.e., preservation of energy often at the cost of a lower mean body temperature during cold stress, whereas heat adaptation whether achieved by exposure to a hot environment or by endogenous heat produced by muscle exercise, often brings about a higher efficiency of control, i.e., a lower mean body temperature during heat stress, at the cost of a higher water loss. While cold adaptation is beneficial in a cold environment, it may constitute a detrimental factor for exposure to a hot environment, mainly because of morphological adaptation. Heat adaptation may be maladaptive for cold exposure, mainly because of functional adaptation. Heat adaptation clearly is best suited to avoid higher body temperatures in fever, no matter which environmental conditions prevail. On the other hand, cold adaptation is detrimental for coping with fever in hot environment. Yet, in the cold, preceding cold adaptation may, because of reduced metabolic heat production, result in lower febrile increase of body temperature. Apparently controversial effects and results may be analyzed in the framework of a cybernetic approach to the main mechanisms of thermal adaptation and fever. Morphological adaptations alter the properties of the heat transfer characteristics of the body ("passive system"), whereas functional adaptation and fever concern the subsystems of control, namely sensors, integrative centers and effectors. In a closed control-loop the two types of adaptation have totally different consequences. It is shown that the experimental results are consistent with the predictions of such an approach.
Li, Cai; Lowe, Robert; Ziemke, Tom
2014-01-01
In this article, we propose an architecture of a bio-inspired controller that addresses the problem of learning different locomotion gaits for different robot morphologies. The modeling objective is split into two: baseline motion modeling and dynamics adaptation. Baseline motion modeling aims to achieve fundamental functions of a certain type of locomotion and dynamics adaptation provides a "reshaping" function for adapting the baseline motion to desired motion. Based on this assumption, a three-layer architecture is developed using central pattern generators (CPGs, a bio-inspired locomotor center for the baseline motion) and dynamic motor primitives (DMPs, a model with universal "reshaping" functions). In this article, we use this architecture with the actor-critic algorithms for finding a good "reshaping" function. In order to demonstrate the learning power of the actor-critic based architecture, we tested it on two experiments: (1) learning to crawl on a humanoid and, (2) learning to gallop on a puppy robot. Two types of actor-critic algorithms (policy search and policy gradient) are compared in order to evaluate the advantages and disadvantages of different actor-critic based learning algorithms for different morphologies. Finally, based on the analysis of the experimental results, a generic view/architecture for locomotion learning is discussed in the conclusion.
Li, Cai; Lowe, Robert; Ziemke, Tom
2014-01-01
In this article, we propose an architecture of a bio-inspired controller that addresses the problem of learning different locomotion gaits for different robot morphologies. The modeling objective is split into two: baseline motion modeling and dynamics adaptation. Baseline motion modeling aims to achieve fundamental functions of a certain type of locomotion and dynamics adaptation provides a “reshaping” function for adapting the baseline motion to desired motion. Based on this assumption, a three-layer architecture is developed using central pattern generators (CPGs, a bio-inspired locomotor center for the baseline motion) and dynamic motor primitives (DMPs, a model with universal “reshaping” functions). In this article, we use this architecture with the actor-critic algorithms for finding a good “reshaping” function. In order to demonstrate the learning power of the actor-critic based architecture, we tested it on two experiments: (1) learning to crawl on a humanoid and, (2) learning to gallop on a puppy robot. Two types of actor-critic algorithms (policy search and policy gradient) are compared in order to evaluate the advantages and disadvantages of different actor-critic based learning algorithms for different morphologies. Finally, based on the analysis of the experimental results, a generic view/architecture for locomotion learning is discussed in the conclusion. PMID:25324773
NASA Technical Reports Server (NTRS)
Collins, A.; de Wet, A.; Bleacher, J.; Schierl, Z.; Schwans, B.
2012-01-01
The origin of sinuous channels on the flanks of the Tharsis volcanoes on Mars is debated among planetary scientists. Some argue a volcanic genesis [1] while others have suggested a fluvial basis [2-4]. The majority of the studies thus far have focused on channels on the rift apron of Ascraeus Mons. Here, however, we broadly examine the channels on the rift apron of Pavonis Mons and compare them with those studied channels around Ascraeus. We compare the morphologies of features from both of these volcanoes with similar features of known volcanic origin on the island of Hawai i. We show that the morphologies between these two volcanoes in the Tharsis province are very similar and were likely formed by comparable processes, as previous authors have suggested [5]. We show that, although the morphologies of many of the channels around these volcanoes show some parallels to terrestrial fluvial systems, these morphologies can also be formed by volcanic processes. The context of these features suggests that volcanic processes were the more likely cause of these channels.
Evolution of the hominoid vertebral column: The long and the short of it.
Williams, Scott A; Russo, Gabrielle A
2015-01-01
The postcranial axial skeleton exhibits considerable morphological and functional diversity among living primates. Particularly striking are the derived features in hominoids that distinguish them from most other primates and mammals. In contrast to the primitive catarrhine morphotype, which presumably possessed an external (protruding) tail and emphasized more pronograde trunk posture, all living hominoids are characterized by the absence of an external tail and adaptations to orthograde trunk posture. Moreover, modern humans evolved unique vertebral features that satisfy the demands of balancing an upright torso over the hind limbs during habitual terrestrial bipedalism. Our ability to identify the evolutionary timing and understand the functional and phylogenetic significance of these fundamental changes in postcranial axial skeletal anatomy in the hominoid fossil record is key to reconstructing ancestral hominoid patterns and retracing the evolutionary pathways that led to living apes and modern humans. Here, we provide an overview of what is known about evolution of the hominoid vertebral column, focusing on the currently available anatomical evidence of three major transitions: tail loss and adaptations to orthograde posture and bipedal locomotion. © 2015 Wiley Periodicals, Inc.
Golovatch, Sergei; Wesener, Thomas; Tian, Mingyi
2017-01-01
Animal life in caves has fascinated researchers and the public alike because of the unusual and sometimes bizarre morphological adaptations observed in numerous troglobitic species. Despite their worldwide diversity, the adaptations of cave millipedes (Diplopoda) to a troglobitic lifestyle have rarely been examined. In this study, morphological characters were analyzed in species belonging to four different orders (Glomerida, Polydesmida, Chordeumatida, and Spirostreptida) and six different families (Glomeridae, Paradoxosomatidae, Polydesmidae, Haplodesmidae, Megalotylidae, and Cambalopsidae) that represent the taxonomic diversity of class Diplopoda. We focused on the recently discovered millipede fauna of caves in southern China. Thirty different characters were used to compare cave troglobites and epigean species within the same genera. A character matrix was created to analyze convergent evolution of cave adaptations. Males and females were analyzed independently to examine sex differences in cave adaptations. While 10 characters only occurred in a few phylogenetic groups, 20 characters were scored for in all families. Of these, four characters were discovered to have evolved convergently in all troglobitic millipedes. The characters that represented potential morphological cave adaptations in troglobitic species were: (1) a longer body; (2) a lighter body color; (3) elongation of the femora; and (4) elongation of the tarsi of walking legs. Surprisingly, female, but not male, antennae were more elongated in troglobites than in epigean species. Our study clearly shows that morphological adaptations have evolved convergently in different, unrelated millipede orders and families, most likely as a direct adaptation to cave life. PMID:28178274
Liu, Weixin; Golovatch, Sergei; Wesener, Thomas; Tian, Mingyi
2017-01-01
Animal life in caves has fascinated researchers and the public alike because of the unusual and sometimes bizarre morphological adaptations observed in numerous troglobitic species. Despite their worldwide diversity, the adaptations of cave millipedes (Diplopoda) to a troglobitic lifestyle have rarely been examined. In this study, morphological characters were analyzed in species belonging to four different orders (Glomerida, Polydesmida, Chordeumatida, and Spirostreptida) and six different families (Glomeridae, Paradoxosomatidae, Polydesmidae, Haplodesmidae, Megalotylidae, and Cambalopsidae) that represent the taxonomic diversity of class Diplopoda. We focused on the recently discovered millipede fauna of caves in southern China. Thirty different characters were used to compare cave troglobites and epigean species within the same genera. A character matrix was created to analyze convergent evolution of cave adaptations. Males and females were analyzed independently to examine sex differences in cave adaptations. While 10 characters only occurred in a few phylogenetic groups, 20 characters were scored for in all families. Of these, four characters were discovered to have evolved convergently in all troglobitic millipedes. The characters that represented potential morphological cave adaptations in troglobitic species were: (1) a longer body; (2) a lighter body color; (3) elongation of the femora; and (4) elongation of the tarsi of walking legs. Surprisingly, female, but not male, antennae were more elongated in troglobites than in epigean species. Our study clearly shows that morphological adaptations have evolved convergently in different, unrelated millipede orders and families, most likely as a direct adaptation to cave life.
Spann, Marisa N; Bansal, Ravi; Rosen, Tove S; Peterson, Bradley S
2014-09-01
Knowledge of the role of brain maturation in the development of cognitive abilities derives primarily from studies of school-age children to adults. Little is known about the morphological features of the neonatal brain that support the subsequent development of abilities in early childhood, when maturation of the brain and these abilities are the most dynamic. The goal of our study was to determine whether brain morphology during the neonatal period supports early cognitive development through 2 years of age. We correlated morphological features of the cerebral surface assessed using deformation-based measures (surface distances) of high-resolution MRI scans for 33 healthy neonates, scanned between the first to sixth week of postmenstrual life, with subsequent measures of their motor, language, and cognitive abilities at ages 6, 12, 18, and 24 months. We found that morphological features of the cerebral surface of the frontal, mesial prefrontal, temporal, and occipital regions correlated with subsequent motor scores, posterior parietal regions correlated with subsequent language scores, and temporal and occipital regions correlated with subsequent cognitive scores. Measures of the anterior and middle portions of the cingulate gyrus correlated with scores across all three domains of ability. Most of the significant findings were inverse correlations located bilaterally in the brain. The inverse correlations may suggest either that a more protracted morphological maturation or smaller local volumes of neonatal brain tissue supports better performance on measures of subsequent motor, language, and cognitive abilities throughout the first 2 years of postnatal life. The correlations of morphological measures of the cingulate with measures of performance across all domains of ability suggest that the cingulate supports a broad range of skills in infancy and early childhood, similar to its functions in older children and adults. Copyright © 2014 Wiley Periodicals, Inc.
Bray, Mark-Anthony; Singh, Shantanu; Han, Han; Davis, Chadwick T.; Borgeson, Blake; Hartland, Cathy; Kost-Alimova, Maria; Gustafsdottir, Sigrun M.; Gibson, Christopher C.; Carpenter, Anne E.
2016-01-01
In morphological profiling, quantitative data are extracted from microscopy images of cells to identify biologically relevant similarities and differences among samples based on these profiles. This protocol describes the design and execution of experiments using Cell Painting, a morphological profiling assay multiplexing six fluorescent dyes imaged in five channels, to reveal eight broadly relevant cellular components or organelles. Cells are plated in multi-well plates, perturbed with the treatments to be tested, stained, fixed, and imaged on a high-throughput microscope. Then, automated image analysis software identifies individual cells and measures ~1,500 morphological features (various measures of size, shape, texture, intensity, etc.) to produce a rich profile suitable for detecting subtle phenotypes. Profiles of cell populations treated with different experimental perturbations can be compared to suit many goals, such as identifying the phenotypic impact of chemical or genetic perturbations, grouping compounds and/or genes into functional pathways, and identifying signatures of disease. Cell culture and image acquisition takes two weeks; feature extraction and data analysis take an additional 1-2 weeks. PMID:27560178
2015-09-01
Discontinuous Element-Based Galerkin Methods on Dynamically Adaptive Grids with Application to Atmospheric Simulations 5a. CONTRACT NUMBER 5b. GRANT NUMBER...Discontinuous Element-Based Galerkin Methods on Dynamically Adaptive Grids with Application to Atmospheric Simulations. Michal A. Koperaa,∗, Francis X...mass conservation, as it is an important feature for many atmospheric applications . We believe this is a good metric because, for smooth solutions
Garcia-Cantero, Juan J.; Brito, Juan P.; Mata, Susana; Bayona, Sofia; Pastor, Luis
2017-01-01
Gaining a better understanding of the human brain continues to be one of the greatest challenges for science, largely because of the overwhelming complexity of the brain and the difficulty of analyzing the features and behavior of dense neural networks. Regarding analysis, 3D visualization has proven to be a useful tool for the evaluation of complex systems. However, the large number of neurons in non-trivial circuits, together with their intricate geometry, makes the visualization of a neuronal scenario an extremely challenging computational problem. Previous work in this area dealt with the generation of 3D polygonal meshes that approximated the cells’ overall anatomy but did not attempt to deal with the extremely high storage and computational cost required to manage a complex scene. This paper presents NeuroTessMesh, a tool specifically designed to cope with many of the problems associated with the visualization of neural circuits that are comprised of large numbers of cells. In addition, this method facilitates the recovery and visualization of the 3D geometry of cells included in databases, such as NeuroMorpho, and provides the tools needed to approximate missing information such as the soma’s morphology. This method takes as its only input the available compact, yet incomplete, morphological tracings of the cells as acquired by neuroscientists. It uses a multiresolution approach that combines an initial, coarse mesh generation with subsequent on-the-fly adaptive mesh refinement stages using tessellation shaders. For the coarse mesh generation, a novel approach, based on the Finite Element Method, allows approximation of the 3D shape of the soma from its incomplete description. Subsequently, the adaptive refinement process performed in the graphic card generates meshes that provide good visual quality geometries at a reasonable computational cost, both in terms of memory and rendering time. All the described techniques have been integrated into NeuroTessMesh, available to the scientific community, to generate, visualize, and save the adaptive resolution meshes. PMID:28690511
A generalized adaptive mathematical morphological filter for LIDAR data
NASA Astrophysics Data System (ADS)
Cui, Zheng
Airborne Light Detection and Ranging (LIDAR) technology has become the primary method to derive high-resolution Digital Terrain Models (DTMs), which are essential for studying Earth's surface processes, such as flooding and landslides. The critical step in generating a DTM is to separate ground and non-ground measurements in a voluminous point LIDAR dataset, using a filter, because the DTM is created by interpolating ground points. As one of widely used filtering methods, the progressive morphological (PM) filter has the advantages of classifying the LIDAR data at the point level, a linear computational complexity, and preserving the geometric shapes of terrain features. The filter works well in an urban setting with a gentle slope and a mixture of vegetation and buildings. However, the PM filter often removes ground measurements incorrectly at the topographic high area, along with large sizes of non-ground objects, because it uses a constant threshold slope, resulting in "cut-off" errors. A novel cluster analysis method was developed in this study and incorporated into the PM filter to prevent the removal of the ground measurements at topographic highs. Furthermore, to obtain the optimal filtering results for an area with undulating terrain, a trend analysis method was developed to adaptively estimate the slope-related thresholds of the PM filter based on changes of topographic slopes and the characteristics of non-terrain objects. The comparison of the PM and generalized adaptive PM (GAPM) filters for selected study areas indicates that the GAPM filter preserves the most "cut-off" points removed incorrectly by the PM filter. The application of the GAPM filter to seven ISPRS benchmark datasets shows that the GAPM filter reduces the filtering error by 20% on average, compared with the method used by the popular commercial software TerraScan. The combination of the cluster method, adaptive trend analysis, and the PM filter allows users without much experience in processing LIDAR data to effectively and efficiently identify ground measurements for the complex terrains in a large LIDAR data set. The GAPM filter is highly automatic and requires little human input. Therefore, it can significantly reduce the effort of manually processing voluminous LIDAR measurements.
Approach to the problem of the parameters optimization of the shooting system
NASA Astrophysics Data System (ADS)
Demidova, L. A.; Sablina, V. A.; Sokolova, Y. S.
2018-02-01
The problem of the objects identification on the base of their hyperspectral features has been considered. It is offered to use the SVM classifiers’ ensembles, adapted to specifics of the problem of the objects identification on the base of their hyperspectral features. The results of the objects identification on the base of their hyperspectral features with using of the SVM classifiers have been presented.
An Application Development Platform for Neuromorphic Computing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dean, Mark; Chan, Jason; Daffron, Christopher
2016-01-01
Dynamic Adaptive Neural Network Arrays (DANNAs) are neuromorphic computing systems developed as a hardware based approach to the implementation of neural networks. They feature highly adaptive and programmable structural elements, which model arti cial neural networks with spiking behavior. We design them to solve problems using evolutionary optimization. In this paper, we highlight the current hardware and software implementations of DANNA, including their features, functionalities and performance. We then describe the development of an Application Development Platform (ADP) to support efficient application implementation and testing of DANNA based solutions. We conclude with future directions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fried, D; Zhang, L; Fave, X
Purpose: Determine the impact of morphologic characteristics (e.g. necrosis, vascular enhancement, and cavitation) on radiomic features from contrast enhanced CT (CE-CT) in primary lung tumors. Methods: We developed an auto-segmentation algorithm to separate lung tumors on contrast-enhanced CT into cavitation (air), necrosis, tissue, and enhancing vessels using a combination of thresholding and region-growing. An auto-segmentation algorithm was also designed to identify necrosis on FDG-PET scans. Wilcoxon rank-sum tests were used to determine if significant differences existed in radiomics features (histogram-uniformity and Laplacian-of-Gaussian average) from 249 patients, found to prognostic in previous work, based on the presence/absence of morphologic features. Featuremore » values were also compared between the original tumor contours and contours excluding a specific morphologic feature. Comparison of necrosis segmentation on CE-CT versus FDG-PET was performed in 78 patients to assess for agreement using the concordance correlation coefficient (CCC). Results: Tumors with cavitation and enhancing vasculature had lower uniformity values (p = 0.001 and p = 0.03, respectively). Tumors with enhancing vasculature and necrosis had higher Laplacian-of-Gaussian average values (measure of “edges” within the tumor) (p < 0.001). Removing these tissue types from regions-of-interest did not drastically alter either radiomic feature value (all scenarios had R{sup 2} > 0.8). This suggests there may be interactions between morphologic characteristics and the radiomic feature value of tumor tissue. Comparison of necrosis volume and percent necrosis volume of tumor were found to have CCC values of 0.85 and 0.76, respectively between CE-CT and FDG-PET segmentation methods. Conclusions: Tumors with enhancing vasculature, necrosis, and cavitation have higher radiomic feature values that are associated with poor prognosis than tumors without these features. Removing these tissue types from quantitative assessment did not drastically impact radiomic feature values. High reproducibility of CE-CT segmented necrosis compared to FDG-PET segmented necrosis provides a reasonable validation of segmentation accuracy on CE-CT.« less
Ye, Wenwu; Wang, Yang; Shen, Danyu; Li, Delong; Pu, Tianhuizi; Jiang, Zide; Zhang, Zhengguang; Zheng, Xiaobo; Tyler, Brett M; Wang, Yuanchao
2016-07-01
On the basis of its downy mildew-like morphology, the litchi downy blight pathogen was previously named Peronophythora litchii. Recently, however, it was proposed to transfer this pathogen to Phytophthora clade 4. To better characterize this unusual oomycete species and important fruit pathogen, we obtained the genome sequence of Phytophthora litchii and compared it to those from other oomycete species. P. litchii has a small genome with tightly spaced genes. On the basis of a multilocus phylogenetic analysis, the placement of P. litchii in the genus Phytophthora is strongly supported. Effector proteins predicted included 245 RxLR, 30 necrosis-and-ethylene-inducing protein-like, and 14 crinkler proteins. The typical motifs, phylogenies, and activities of these effectors were typical for a Phytophthora species. However, like the genome features of the analyzed downy mildews, P. litchii exhibited a streamlined genome with a relatively small number of genes in both core and species-specific protein families. The low GC content and slight codon preferences of P. litchii sequences were similar to those of the analyzed downy mildews and a subset of Phytophthora species. Taken together, these observations suggest that P. litchii is a Phytophthora pathogen that is in the process of acquiring downy mildew-like genomic and morphological features. Thus P. litchii may provide a novel model for investigating morphological development and genomic adaptation in oomycete pathogens.
NASA Astrophysics Data System (ADS)
Zhang, Ka; Sheng, Yehua; Gong, Zhijun; Ye, Chun; Li, Yongqiang; Liang, Cheng
2007-06-01
As an important sub-system in intelligent transportation system (ITS), the detection and recognition of traffic signs from mobile images is becoming one of the hot spots in the international research field of ITS. Considering the problem of traffic sign automatic detection in motion images, a new self-adaptive algorithm for traffic sign detection based on color and shape features is proposed in this paper. Firstly, global statistical color features of different images are computed based on statistics theory. Secondly, some self-adaptive thresholds and special segmentation rules for image segmentation are designed according to these global color features. Then, for red, yellow and blue traffic signs, the color image is segmented to three binary images by these thresholds and rules. Thirdly, if the number of white pixels in the segmented binary image exceeds the filtering threshold, the binary image should be further filtered. Fourthly, the method of gray-value projection is used to confirm top, bottom, left and right boundaries for candidate regions of traffic signs in the segmented binary image. Lastly, if the shape feature of candidate region satisfies the need of real traffic sign, this candidate region is confirmed as the detected traffic sign region. The new algorithm is applied to actual motion images of natural scenes taken by a CCD camera of the mobile photogrammetry system in Nanjing at different time. The experimental results show that the algorithm is not only simple, robust and more adaptive to natural scene images, but also reliable and high-speed on real traffic sign detection.
A Hybrid Neuro-Fuzzy Model For Integrating Large Earth-Science Datasets
NASA Astrophysics Data System (ADS)
Porwal, A.; Carranza, J.; Hale, M.
2004-12-01
A GIS-based hybrid neuro-fuzzy approach to integration of large earth-science datasets for mineral prospectivity mapping is described. It implements a Takagi-Sugeno type fuzzy inference system in the framework of a four-layered feed-forward adaptive neural network. Each unique combination of the datasets is considered a feature vector whose components are derived by knowledge-based ordinal encoding of the constituent datasets. A subset of feature vectors with a known output target vector (i.e., unique conditions known to be associated with either a mineralized or a barren location) is used for the training of an adaptive neuro-fuzzy inference system. Training involves iterative adjustment of parameters of the adaptive neuro-fuzzy inference system using a hybrid learning procedure for mapping each training vector to its output target vector with minimum sum of squared error. The trained adaptive neuro-fuzzy inference system is used to process all feature vectors. The output for each feature vector is a value that indicates the extent to which a feature vector belongs to the mineralized class or the barren class. These values are used to generate a prospectivity map. The procedure is demonstrated by an application to regional-scale base metal prospectivity mapping in a study area located in the Aravalli metallogenic province (western India). A comparison of the hybrid neuro-fuzzy approach with pure knowledge-driven fuzzy and pure data-driven neural network approaches indicates that the former offers a superior method for integrating large earth-science datasets for predictive spatial mathematical modelling.
Argot, C
2001-01-01
An attempt to determine the locomotor activities of Mayulestes ferox (Borhyaenoidea) and Pucadelphys andinus (Didelphoidea) from the early Paleocene site of Tiupampa (Bolivia) is presented. The functional anatomy of the forelimbs of these South American marsupials is compared to that of some living didelphids: Caluromys philander, Micoureus demerarae, Marmosa murina, Didelphis marsupialis, Monodelphis brevicaudata and Metachirus nudicaudatus. Deductions from bone morphology to myology and locomotor behavior in the fossils are inferred from the comparisons with living forms. Some features of the postcranial skeleton, indicative of arboreal adaptations, are found in the extinct marsupials: anteriorly projected acromion, hemispherical head of the humerus, extended humeral lateral epicondylar ridge, medially protruding humeral entepicondyle, proximal ulnar posterior convexity, and deep flexor fossa on the medial side of the ulna. But other features are related to a more terrestrial pattern: the well-developed tubercles of the humeral head, the elongated olecranon process of the ulna, and the oval shape of the radial head. Mayulestes had clear arboreal abilities, but, as a predaceous mammal, probably hunted on the ground. Pucadelphys was less specialized, close to the living Monodelphis, a terrestrial insectivorous form with some skeletal features related to arboreal locomotion that are probably plesiomorphic for marsupials. Copyright 2001 Wiley-Liss, Inc.
The Feeding Biomechanics and Dietary Ecology of Paranthropus boisei
Smith, Amanda L.; Benazzi, Stefano; Ledogar, Justin A.; Tamvada, Kelli; Pryor Smith, Leslie C.; Weber, Gerhard W.; Spencer, Mark A.; Lucas, Peter W.; Michael, Shaji; Shekeban, Ali; Al-Fadhalah, Khaled; Almusallam, Abdulwahab S.; Dechow, Paul C.; Grosse, Ian R.; Ross, Callum F.; Madden, Richard H.; Richmond, Brian G.; Wright, Barth W.; Wang, Qian; Byron, Craig; Slice, Dennis E.; Wood, Sarah; Dzialo, Christine; Berthaume, Michael A.; Casteren, Adam Van; Strait, David S.
2015-01-01
The African Plio-Pleistocene hominins known as australopiths evolved derived craniodental features frequently interpreted as adaptations for feeding on either hard, or compliant/tough foods. Among australopiths, Paranthropus boisei is the most robust form, exhibiting traits traditionally hypothesized to produce high bite forces efficiently and strengthen the face against feeding stresses. However, recent mechanical analyses imply that P. boisei may not have been an efficient producer of bite force and that robust morphology in primates is not necessarily strong. Here we use an engineering method, finite element analysis, to show that the facial skeleton of P. boisei is structurally strong, exhibits a strain pattern different from that in chimpanzees (Pan troglodytes) and Australopithecus africanus, and efficiently produces high bite force. It has been suggested that P. boisei consumed a diet of compliant/tough foods like grass blades and sedge pith. However, the blunt occlusal topography of this and other species suggests that australopiths are adapted to consume hard foods, perhaps including grass and sedge seeds. A consideration of evolutionary trends in morphology relating to feeding mechanics suggests that food processing behaviors in gracile australopiths evidently were disrupted by environmental change, perhaps contributing to the eventual evolution of Homo and Paranthropus. PMID:25529240
Building a Relationship between Elements of Product Form Features and Vocabulary Assessment Models
ERIC Educational Resources Information Center
Lo, Chi-Hung
2016-01-01
Based on the characteristic feature parameterization and the superiority evaluation method (SEM) in extension engineering, a product-shape design method was proposed in this study. The first step of this method is to decompose the basic feature components of a product. After that, the morphological chart method is used to segregate the ideas so as…
Cellular neural network-based hybrid approach toward automatic image registration
NASA Astrophysics Data System (ADS)
Arun, Pattathal VijayaKumar; Katiyar, Sunil Kumar
2013-01-01
Image registration is a key component of various image processing operations that involve the analysis of different image data sets. Automatic image registration domains have witnessed the application of many intelligent methodologies over the past decade; however, inability to properly model object shape as well as contextual information has limited the attainable accuracy. A framework for accurate feature shape modeling and adaptive resampling using advanced techniques such as vector machines, cellular neural network (CNN), scale invariant feature transform (SIFT), coreset, and cellular automata is proposed. CNN has been found to be effective in improving feature matching as well as resampling stages of registration and complexity of the approach has been considerably reduced using coreset optimization. The salient features of this work are cellular neural network approach-based SIFT feature point optimization, adaptive resampling, and intelligent object modelling. Developed methodology has been compared with contemporary methods using different statistical measures. Investigations over various satellite images revealed that considerable success was achieved with the approach. This system has dynamically used spectral and spatial information for representing contextual knowledge using CNN-prolog approach. This methodology is also illustrated to be effective in providing intelligent interpretation and adaptive resampling.
Rose, Emily; Masonjones, Heather D; Jones, Adam G
2016-11-01
Isolated populations provide special opportunities to study local adaptation and incipient speciation. In some cases, however, morphological evolution can obscure the taxonomic status of recently founded populations. Here, we use molecular markers to show that an anchialine-lake-restricted population of seahorses, originally identified as Hippocampus reidi, appears on the basis of DNA data to be Hippocampus erectus We collected seahorses from Sweetings Pond, on Eleuthera Island, Bahamas, during the summer of 2014. We measured morphological traits and sequenced 2 genes, cytochrome b and ribosomal protein S7, from 19 seahorses in our sample. On the basis of morphology, Sweetings Pond seahorses could not be assigned definitively to either of the 2 species of seahorse, H. reidi and H. erectus, that occur in marine waters surrounding the Bahamas. However, our DNA-based phylogenetic analysis showed that the Sweetings Pond fish were firmly nested within the H. erectus clade with a Bayesian posterior probability greater than 0.99. Thus, Sweetings Pond seahorses most recently shared a common ancestor with H. erectus populations from the Western Atlantic. Interestingly, the seahorses from Sweetings Pond differ morphologically from other marine populations of H. erectus in having a more even torso to tail length ratio. The substantial habitat differences between Sweetings Pond and the surrounding coastal habitat make Sweetings Pond seahorses particularly interesting from the perspectives of conservation, local adaptation, and incipient speciation. © The American Genetic Association 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Peculiar macrophagous adaptations in a new Cretaceous pliosaurid
Arkhangelsky, Maxim S.; Stenshin, Ilya M.; Uspensky, Gleb N.; Zverkov, Nikolay G.
2015-01-01
During the Middle and Late Jurassic, pliosaurid plesiosaurs evolved gigantic body size and a series of craniodental adaptations that have been linked to the occupation of an apex predator niche. Cretaceous pliosaurids (i.e. Brachaucheninae) depart from this morphology, being slightly smaller and lacking the macrophagous adaptations seen in earlier forms. However, the fossil record of Early Cretaceous pliosaurids is poor, concealing the evolution and ecological diversity of the group. Here, we report a new pliosaurid from the Late Hauterivian (Early Cretaceous) of Russia. Phylogenetic analyses using reduced consensus methods recover it as the basalmost brachauchenine. This pliosaurid is smaller than other derived pliosaurids, has tooth alveoli clustered in pairs and possesses trihedral teeth with complex serrated carinae. Maximum-likelihood ancestral state reconstruction suggests early brachauchenines retained trihedral teeth from their ancestors, but modified this feature in a unique way, convergent with macrophagous archosaurs or sphenacodontoids. Our findings indicate that Early Cretaceous marine reptile teeth with serrated carinae cannot be unequivocally assigned to metriorhynchoid crocodylomorphs. Furthermore, they extend the known diversity of dental adaptations seen in Sauropterygia, the longest lived clade of marine tetrapods. PMID:27019740
Image processing and machine learning in the morphological analysis of blood cells.
Rodellar, J; Alférez, S; Acevedo, A; Molina, A; Merino, A
2018-05-01
This review focuses on how image processing and machine learning can be useful for the morphological characterization and automatic recognition of cell images captured from peripheral blood smears. The basics of the 3 core elements (segmentation, quantitative features, and classification) are outlined, and recent literature is discussed. Although red blood cells are a significant part of this context, this study focuses on malignant lymphoid cells and blast cells. There is no doubt that these technologies may help the cytologist to perform efficient, objective, and fast morphological analysis of blood cells. They may also help in the interpretation of some morphological features and may serve as learning and survey tools. Although research is still needed, it is important to define screening strategies to exploit the potential of image-based automatic recognition systems integrated in the daily routine of laboratories along with other analysis methodologies. © 2018 John Wiley & Sons Ltd.
McMenamin, Sarah K.; Parichy, David M.
2017-01-01
Teleosts are the largest and most diverse group of vertebrates, and many species undergo morphological, physiological, and behavioral transitions, “metamorphoses,” as they progress between morphologically divergent life stages. The larval metamorphosis that generally occurs as teleosts mature from larva to juvenile involves the loss of embryo-specific features, the development of new adult features, major remodeling of different organ systems, and changes in physical proportions and overall phenotype. Yet, in contrast to anuran amphibians, for example, teleost metamorphosis can entail morphological change that is either sudden and profound, or relatively gradual and subtle. Here, we review the definition of metamorphosis in teleosts, the diversity of teleost metamorphic strategies and the transitions they involve, and what is known of their underlying endocrine and genetic bases. We suggest that teleost metamorphosis offers an outstanding opportunity for integrating our understanding of endocrine mechanisms, cellular processes of morphogenesis and differentiation, and the evolution of diverse morphologies and life histories. PMID:23347518
Invariant-feature-based adaptive automatic target recognition in obscured 3D point clouds
NASA Astrophysics Data System (ADS)
Khuon, Timothy; Kershner, Charles; Mattei, Enrico; Alverio, Arnel; Rand, Robert
2014-06-01
Target recognition and classification in a 3D point cloud is a non-trivial process due to the nature of the data collected from a sensor system. The signal can be corrupted by noise from the environment, electronic system, A/D converter, etc. Therefore, an adaptive system with a desired tolerance is required to perform classification and recognition optimally. The feature-based pattern recognition algorithm architecture as described below is particularly devised for solving a single-sensor classification non-parametrically. Feature set is extracted from an input point cloud, normalized, and classifier a neural network classifier. For instance, automatic target recognition in an urban area would require different feature sets from one in a dense foliage area. The figure above (see manuscript) illustrates the architecture of the feature based adaptive signature extraction of 3D point cloud including LIDAR, RADAR, and electro-optical data. This network takes a 3D cluster and classifies it into a specific class. The algorithm is a supervised and adaptive classifier with two modes: the training mode and the performing mode. For the training mode, a number of novel patterns are selected from actual or artificial data. A particular 3D cluster is input to the network as shown above for the decision class output. The network consists of three sequential functional modules. The first module is for feature extraction that extracts the input cluster into a set of singular value features or feature vector. Then the feature vector is input into the feature normalization module to normalize and balance it before being fed to the neural net classifier for the classification. The neural net can be trained by actual or artificial novel data until each trained output reaches the declared output within the defined tolerance. In case new novel data is added after the neural net has been learned, the training is then resumed until the neural net has incrementally learned with the new novel data. The associative memory capability of the neural net enables the incremental learning. The back propagation algorithm or support vector machine can be utilized for the classification and recognition.
Diet and morphology of extant and recently extinct northern bears
Mattson, David J.
1998-01-01
I examined the relationship of diets to skull morphology of extant northern bears and used this information to speculate on diets of the recently extinct cave (Ursus spelaeus) and short-faced (Arctodus simus) bears. Analyses relied upon published skull measurements and food habits of Asiatic (U. thibetanus) and American (U. americanus) black bears, polar bears (U. maritimus), various subspecies of brown bears (U. arctos), and the giant panda (Ailuropoda melanoleuca). Principal components analysis showed major trends in skull morphology related to size, crushing force, and snout shape. Giant pandas, short-faced bears, cave bears, and polar bears exhibited extreme features along these gradients. Diets of brown bears in colder, often non-forested environments were distinguished by large volumes of roots, foliage, and vertebrates, while diets of the 2 black bear species and brown bears occupying broadleaf forests contained greater volumes of mast and invertebrates and overlapped considerably. Fractions of fibrous foods in feces (foliage and roots) were strongly related to skull morphology (R2=0.97)">(R2=0.97). Based on this relationship, feces of cave and short-faced bears were predicted to consist almost wholly of foliage, roots, or both. I hypothesized that cave bears specialized in root grubbing. In contrast, based upon body proportions and features of the ursid digestive tract, I hypothesized that skull features associated with crushing force facilitated a carnivorous rather than herbivorous diet for short-faced bears.
Matsunaga, Kelly K S; Tomescu, Alexandru M F
2017-05-01
Fossil plants are found as fragmentary remains and understanding them as natural species requires assembly of whole-organism concepts that integrate different plant parts. Such concepts are essential for incorporating fossils in hypotheses of plant evolution and phylogeny. Plants of the Early Devonian are crucial to reconstructing the initial radiation of tracheophytes, yet few are understood as whole organisms. This study assembles a whole-plant concept for the Early Devonian lycophyte Sengelia radicans gen. et sp. nov., based on morphometric data and taphonomic observations from >1000 specimens collected in the Beartooth Butte Formation (Wyoming, USA). Sengelia radicans occupies a key position between stem-group and derived lycophyte lineages. Sengelia had a rooting system of downward-growing root-bearing stems, formed dense monotypic mats of prostrate shoots in areas that experienced periodic flooding, and was characterized by a life-history strategy adapted for survival after floods, dominated by clonality, and featuring infrequent sexual reproduction. Sengelia radicans is the oldest among the very few early tracheophytes for which a detailed, rigorous whole-plant concept integrates morphology, growth habit, life history and growth environment. This plant adds to the diversity of body plans documented among lycophytes and may help elucidate patterns of morphological evolution in the clade. © The Author 2017. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com
NASA Astrophysics Data System (ADS)
Zheng, Xianwei; Xiong, Hanjiang; Gong, Jianya; Yue, Linwei
2017-07-01
Virtual globes play an important role in representing three-dimensional models of the Earth. To extend the functioning of a virtual globe beyond that of a "geobrowser", the accuracy of the geospatial data in the processing and representation should be of special concern for the scientific analysis and evaluation. In this study, we propose a method for the processing of large-scale terrain data for virtual globe visualization and analysis. The proposed method aims to construct a morphologically preserved multi-resolution triangulated irregular network (TIN) pyramid for virtual globes to accurately represent the landscape surface and simultaneously satisfy the demands of applications at different scales. By introducing cartographic principles, the TIN model in each layer is controlled with a data quality standard to formulize its level of detail generation. A point-additive algorithm is used to iteratively construct the multi-resolution TIN pyramid. The extracted landscape features are also incorporated to constrain the TIN structure, thus preserving the basic morphological shapes of the terrain surface at different levels. During the iterative construction process, the TIN in each layer is seamlessly partitioned based on a virtual node structure, and tiled with a global quadtree structure. Finally, an adaptive tessellation approach is adopted to eliminate terrain cracks in the real-time out-of-core spherical terrain rendering. The experiments undertaken in this study confirmed that the proposed method performs well in multi-resolution terrain representation, and produces high-quality underlying data that satisfy the demands of scientific analysis and evaluation.
Object Recognition using Feature- and Color-Based Methods
NASA Technical Reports Server (NTRS)
Duong, Tuan; Duong, Vu; Stubberud, Allen
2008-01-01
An improved adaptive method of processing image data in an artificial neural network has been developed to enable automated, real-time recognition of possibly moving objects under changing (including suddenly changing) conditions of illumination and perspective. The method involves a combination of two prior object-recognition methods one based on adaptive detection of shape features and one based on adaptive color segmentation to enable recognition in situations in which either prior method by itself may be inadequate. The chosen prior feature-based method is known as adaptive principal-component analysis (APCA); the chosen prior color-based method is known as adaptive color segmentation (ACOSE). These methods are made to interact with each other in a closed-loop system to obtain an optimal solution of the object-recognition problem in a dynamic environment. One of the results of the interaction is to increase, beyond what would otherwise be possible, the accuracy of the determination of a region of interest (containing an object that one seeks to recognize) within an image. Another result is to provide a minimized adaptive step that can be used to update the results obtained by the two component methods when changes of color and apparent shape occur. The net effect is to enable the neural network to update its recognition output and improve its recognition capability via an adaptive learning sequence. In principle, the improved method could readily be implemented in integrated circuitry to make a compact, low-power, real-time object-recognition system. It has been proposed to demonstrate the feasibility of such a system by integrating a 256-by-256 active-pixel sensor with APCA, ACOSE, and neural processing circuitry on a single chip. It has been estimated that such a system on a chip would have a volume no larger than a few cubic centimeters, could operate at a rate as high as 1,000 frames per second, and would consume in the order of milliwatts of power.
Grismer, L Lee; Wood, Perry L; Anuar, Shahrul; Grismer, Marta S; Quah, Evan S H; Murdoch, Matthew L; Muin, Mohd Abdul; Davis, Hayden R; Aguilar, César; Klabacka, Randy; Cobos, Anthony J; Aowphol, Anchalee; Sites, Jack W
2016-04-25
A new species of limestone cave-adapted gecko of the Cyrtodactylus pulchellus complex, C. hidupselamanya sp. nov., is described from an isolated karst formation at Felda Chiku 7, Kelantan, Peninsular Malaysia. This formation is scheduled to be completely quarried for its mineral content. From what we know about the life history of C. hidupselamanya sp. nov., this will result in its extinction. A new limestone forest-adapted species, C. lenggongensis sp. nov., from the Lenggong Valley, Perak was previously considered to be conspecific with C. bintangrendah but a re-evaluation of morphological, color pattern, molecular, and habitat preference indicates that it too is a unique lineage worthy of specific recognition. Fortunately C. lenggongensis sp. nov. is not facing extinction because its habitat is protected by the UNESCO Archaeological Heritage of the Lenggong Valley due to the archaeological significance of that region. Both new species can be distinguished from all other species of Cyrtodactylus based on molecular evidence from the mitochondrial gene ND2 and its flanking tRNAs as well as having unique combinations of morphological and color pattern characteristics. Using a time-calibrated BEAST analysis we inferred that the evolution of a limestone habitat preference and its apparently attendant morphological and color pattern adaptations evolved independently at least four times in the C. pulchellus complex between 26.1 and 0.78 mya.
Taxonomic evaluation of selected Ganoderma species and database sequence validation
Jargalmaa, Suldbold; Eimes, John A.; Park, Myung Soo; Park, Jae Young; Oh, Seung-Yoon
2017-01-01
Species in the genus Ganoderma include several ecologically important and pathogenic fungal species whose medicinal and economic value is substantial. Due to the highly similar morphological features within the Ganoderma, identification of species has relied heavily on DNA sequencing using BLAST searches, which are only reliable if the GenBank submissions are accurately labeled. In this study, we examined 113 specimens collected from 1969 to 2016 from various regions in Korea using morphological features and multigene analysis (internal transcribed spacer, translation elongation factor 1-α, and the second largest subunit of RNA polymerase II). These specimens were identified as four Ganoderma species: G. sichuanense, G. cf. adspersum, G. cf. applanatum, and G. cf. gibbosum. With the exception of G. sichuanense, these species were difficult to distinguish based solely on morphological features. However, phylogenetic analysis at three different loci yielded concordant phylogenetic information, and supported the four species distinctions with high bootstrap support. A survey of over 600 Ganoderma sequences available on GenBank revealed that 65% of sequences were either misidentified or ambiguously labeled. Here, we suggest corrected annotations for GenBank sequences based on our phylogenetic validation and provide updated global distribution patterns for these Ganoderma species. PMID:28761785
NASA Astrophysics Data System (ADS)
Xu, Z.; Guan, K.; Peng, B.; Casler, N. P.; Wang, S. W.
2017-12-01
Landscape has complex three-dimensional features. These 3D features are difficult to extract using conventional methods. Small-footprint LiDAR provides an ideal way for capturing these features. Existing approaches, however, have been relegated to raster or metric-based (two-dimensional) feature extraction from the upper or bottom layer, and thus are not suitable for resolving morphological and intensity features that could be important to fine-scale land cover mapping. Therefore, this research combines airborne LiDAR and multi-temporal Landsat imagery to classify land cover types of Williamson County, Illinois that has diverse and mixed landscape features. Specifically, we applied a 3D convolutional neural network (CNN) method to extract features from LiDAR point clouds by (1) creating occupancy grid, intensity grid at 1-meter resolution, and then (2) normalizing and incorporating data into a 3D CNN feature extractor for many epochs of learning. The learned features (e.g., morphological features, intensity features, etc) were combined with multi-temporal spectral data to enhance the performance of land cover classification based on a Support Vector Machine classifier. We used photo interpretation for training and testing data generation. The classification results show that our approach outperforms traditional methods using LiDAR derived feature maps, and promises to serve as an effective methodology for creating high-quality land cover maps through fusion of complementary types of remote sensing data.
Dimitriadis, S I; Liparas, Dimitris; Tsolaki, Magda N
2018-05-15
In the era of computer-assisted diagnostic tools for various brain diseases, Alzheimer's disease (AD) covers a large percentage of neuroimaging research, with the main scope being its use in daily practice. However, there has been no study attempting to simultaneously discriminate among Healthy Controls (HC), early mild cognitive impairment (MCI), late MCI (cMCI) and stable AD, using features derived from a single modality, namely MRI. Based on preprocessed MRI images from the organizers of a neuroimaging challenge, 3 we attempted to quantify the prediction accuracy of multiple morphological MRI features to simultaneously discriminate among HC, MCI, cMCI and AD. We explored the efficacy of a novel scheme that includes multiple feature selections via Random Forest from subsets of the whole set of features (e.g. whole set, left/right hemisphere etc.), Random Forest classification using a fusion approach and ensemble classification via majority voting. From the ADNI database, 60 HC, 60 MCI, 60 cMCI and 60 CE were used as a training set with known labels. An extra dataset of 160 subjects (HC: 40, MCI: 40, cMCI: 40 and AD: 40) was used as an external blind validation dataset to evaluate the proposed machine learning scheme. In the second blind dataset, we succeeded in a four-class classification of 61.9% by combining MRI-based features with a Random Forest-based Ensemble Strategy. We achieved the best classification accuracy of all teams that participated in this neuroimaging competition. The results demonstrate the effectiveness of the proposed scheme to simultaneously discriminate among four groups using morphological MRI features for the very first time in the literature. Hence, the proposed machine learning scheme can be used to define single and multi-modal biomarkers for AD. Copyright © 2017 Elsevier B.V. All rights reserved.
Cranial base morphology and temporal bone pneumatization in Asian Homo erectus.
Balzeau, Antoine; Grimaud-Hervé, Dominique
2006-10-01
The external morphological features of the temporal bone are used frequently to determine taxonomic affinities of fossils of the genus Homo. Temporal bone pneumatization has been widely studied in great apes and in early hominids. However, this feature is rarely examined in the later hominids, particularly in Asian Homo erectus. We provide a comparative morphological and quantitative analysis of Asian Homo erectus from the sites of Ngandong, Sambungmacan, and Zhoukoudian, and of Neandertals and anatomically modern Homo sapiens in order to discuss causes and modalities of temporal bone pneumatization during hominid evolution. The evolution of temporal bone pneumatization in the genus Homo is more complex than previously described. Indeed, the Zhoukoudian fossils have a unique pattern of temporal bone pneumatization, whereas Ngandong and Sambungmacan fossils, as well as the Neandertals, more closely resemble the modern human pattern. Moreover, these Chinese fossils are characterized by a wide midvault and a relatively narrow occipital bone. Our results support the point of view that cell development does not play an active role in determining cranial base morphology. Instead, pneumatization is related to available space and to temporal bone morphology, and its development is related to correlated morphology and the relative disposition of the bones and cerebral lobes. Because variation in pneumatization is extensive within the same species, the phyletic implications of pneumatization are limited in the taxa considered here.
No Effect of Featural Attention on Body Size Aftereffects
Stephen, Ian D.; Bickersteth, Chloe; Mond, Jonathan; Stevenson, Richard J.; Brooks, Kevin R.
2016-01-01
Prolonged exposure to images of narrow bodies has been shown to induce a perceptual aftereffect, such that observers’ point of subjective normality (PSN) for bodies shifts toward narrower bodies. The converse effect is shown for adaptation to wide bodies. In low-level stimuli, object attention (attention directed to the object) and spatial attention (attention directed to the location of the object) have been shown to increase the magnitude of visual aftereffects, while object-based attention enhances the adaptation effect in faces. It is not known whether featural attention (attention directed to a specific aspect of the object) affects the magnitude of adaptation effects in body stimuli. Here, we manipulate the attention of Caucasian observers to different featural information in body images, by asking them to rate the fatness or sex typicality of male and female bodies manipulated to appear fatter or thinner than average. PSNs for body fatness were taken at baseline and after adaptation, and a change in PSN (ΔPSN) was calculated. A body size adaptation effect was found, with observers who viewed fat bodies showing an increased PSN, and those exposed to thin bodies showing a reduced PSN. However, manipulations of featural attention to body fatness or sex typicality produced equivalent results, suggesting that featural attention may not affect the strength of the body size aftereffect. PMID:27597835
No Effect of Featural Attention on Body Size Aftereffects.
Stephen, Ian D; Bickersteth, Chloe; Mond, Jonathan; Stevenson, Richard J; Brooks, Kevin R
2016-01-01
Prolonged exposure to images of narrow bodies has been shown to induce a perceptual aftereffect, such that observers' point of subjective normality (PSN) for bodies shifts toward narrower bodies. The converse effect is shown for adaptation to wide bodies. In low-level stimuli, object attention (attention directed to the object) and spatial attention (attention directed to the location of the object) have been shown to increase the magnitude of visual aftereffects, while object-based attention enhances the adaptation effect in faces. It is not known whether featural attention (attention directed to a specific aspect of the object) affects the magnitude of adaptation effects in body stimuli. Here, we manipulate the attention of Caucasian observers to different featural information in body images, by asking them to rate the fatness or sex typicality of male and female bodies manipulated to appear fatter or thinner than average. PSNs for body fatness were taken at baseline and after adaptation, and a change in PSN (ΔPSN) was calculated. A body size adaptation effect was found, with observers who viewed fat bodies showing an increased PSN, and those exposed to thin bodies showing a reduced PSN. However, manipulations of featural attention to body fatness or sex typicality produced equivalent results, suggesting that featural attention may not affect the strength of the body size aftereffect.
Batalle, Dafnis; Muñoz-Moreno, Emma; Figueras, Francesc; Bargallo, Nuria; Eixarch, Elisenda; Gratacos, Eduard
2013-12-01
Obtaining individual biomarkers for the prediction of altered neurological outcome is a challenge of modern medicine and neuroscience. Connectomics based on magnetic resonance imaging (MRI) stands as a good candidate to exhaustively extract information from MRI by integrating the information obtained in a few network features that can be used as individual biomarkers of neurological outcome. However, this approach typically requires the use of diffusion and/or functional MRI to extract individual brain networks, which require high acquisition times and present an extreme sensitivity to motion artifacts, critical problems when scanning fetuses and infants. Extraction of individual networks based on morphological similarity from gray matter is a new approach that benefits from the power of graph theory analysis to describe gray matter morphology as a large-scale morphological network from a typical clinical anatomic acquisition such as T1-weighted MRI. In the present paper we propose a methodology to normalize these large-scale morphological networks to a brain network with standardized size based on a parcellation scheme. The proposed methodology was applied to reconstruct individual brain networks of 63 one-year-old infants, 41 infants with intrauterine growth restriction (IUGR) and 22 controls, showing altered network features in the IUGR group, and their association with neurodevelopmental outcome at two years of age by means of ordinal regression analysis of the network features obtained with Bayley Scale for Infant and Toddler Development, third edition. Although it must be more widely assessed, this methodology stands as a good candidate for the development of biomarkers for altered neurodevelopment in the pediatric population. © 2013 Elsevier Inc. All rights reserved.
Wu, Howard G.
2013-01-01
The planning of goal-directed movements is highly adaptable; however, the basic mechanisms underlying this adaptability are not well understood. Even the features of movement that drive adaptation are hotly debated, with some studies suggesting remapping of goal locations and others suggesting remapping of the movement vectors leading to goal locations. However, several previous motor learning studies and the multiplicity of the neural coding underlying visually guided reaching movements stand in contrast to this either/or debate on the modes of motor planning and adaptation. Here we hypothesize that, during visuomotor learning, the target location and movement vector of trained movements are separately remapped, and we propose a novel computational model for how motor plans based on these remappings are combined during the control of visually guided reaching in humans. To test this hypothesis, we designed a set of experimental manipulations that effectively dissociated the effects of remapping goal location and movement vector by examining the transfer of visuomotor adaptation to untrained movements and movement sequences throughout the workspace. The results reveal that (1) motor adaptation differentially remaps goal locations and movement vectors, and (2) separate motor plans based on these features are effectively averaged during motor execution. We then show that, without any free parameters, the computational model we developed for combining movement-vector-based and goal-location-based planning predicts nearly 90% of the variance in novel movement sequences, even when multiple attributes are simultaneously adapted, demonstrating for the first time the ability to predict how motor adaptation affects movement sequence planning. PMID:23804099
An Adaptive Evaluation Structure for Computer-Based Instruction.
ERIC Educational Resources Information Center
Welsh, William A.
Adaptive Evaluation Structure (AES) is a set of linked computer programs designed to increase the effectiveness of interactive computer-assisted instruction at the college level. The package has four major features, the first of which is based on a prior cognitive inventory and on the accuracy and pace of student responses. AES adjusts materials…
Liao, Weiqi; Long, Xiaojing; Jiang, Chunxiang; Diao, Yanjun; Liu, Xin; Zheng, Hairong; Zhang, Lijuan
2014-05-01
Differentiating mild cognitive impairment (MCI) and Alzheimer Disease (AD) from healthy aging remains challenging. This study aimed to explore the cerebral structural alterations of subjects with MCI or AD as compared to healthy elderly based on the individual and collective effects of cerebral morphologic indices using univariate and multivariate analyses. T1-weighted images (T1WIs) were retrieved from Alzheimer Disease Neuroimaging Initiative database for 116 subjects who were categorized into groups of healthy aging, MCI, and AD. Analysis of covariance (ANCOVA) and multivariate analysis of covariance (MANCOVA) were performed to explore the intergroup morphologic alterations indexed by surface area, curvature index, cortical thickness, and subjacent white matter volume with age and sex controlled as covariates, in 34 parcellated gyri regions of interest (ROIs) for both cerebral hemispheres based on the T1WI. Statistical parameters were mapped on the anatomic images to facilitate visual inspection. Global rather than region-specific structural alterations were revealed in groups of MCI and AD relative to healthy elderly using MANCOVA. ANCOVA revealed that the cortical thickness decreased more prominently in entorhinal, temporal, and cingulate cortices and was positively correlated with patients' cognitive performance in AD group but not in MCI. The temporal lobe features marked atrophy of white matter during the disease dynamics. Significant intercorrelations were observed among the morphologic indices with univariate analysis for given ROIs. Significant global structural alterations were identified in MCI and AD based on MANCOVA model with improved sensitivity. The intercorrelation among the morphologic indices may dampen the use of individual morphological parameter in featuring cerebral structural alterations. Decrease in cortical thickness is not reflective of the cognitive performance at the early stage of AD. Copyright © 2014 AUR. Published by Elsevier Inc. All rights reserved.
Liang, Li; Xu, Jun; Liang, Zhi-Tao; Dong, Xiao-Ping; Chen, Hu-Biao; Zhao, Zhong-Zhen
2018-05-08
In commercial herbal markets, Polygoni Multiflori Radix (PMR, the tuberous roots of Polygonum multiflorum Thunb.), a commonly-used Chinese medicinal material, is divided into different grades based on morphological features of size and weight. While more weight and larger size command a higher price, there is no scientific data confirming that the more expensive roots are in fact of better quality. To assess the inherent quality of various grades and of various tissues in PMR and to find reliable morphological indicators of quality, a method combining laser microdissection (LMD) and ultra-performance liquid chromatography triple-quadrupole mass spectrometry (UPLC-QqQ-MS/MS) was applied. Twelve major chemical components were quantitatively determined in both whole material and different tissues of PMR. Determination of the whole material revealed that traditional commercial grades based on size and weight of PRM did not correspond to any significant differences in chemical content. Instead, tissue-specific analysis indicated that the morphological features could be linked with quality in a new way. That is, PMR with broader cork and phloem, as seen in a transverse section, were typically of better quality as these parts are where the bioactive components accumulate. The tissue-specific analysis of secondary metabolites creates a reliable morphological criterion for quality grading of PMR.
Robustness of Ability Estimation to Multidimensionality in CAST with Implications to Test Assembly
ERIC Educational Resources Information Center
Zhang, Yanwei; Nandakumar, Ratna
2006-01-01
Computer Adaptive Sequential Testing (CAST) is a test delivery model that combines features of the traditional conventional paper-and-pencil testing and item-based computerized adaptive testing (CAT). The basic structure of CAST is a panel composed of multiple testlets adaptively administered to examinees at different stages. Current applications…
Molecular identification of hard ticks (Ixodes sp.) infesting rodents in Selangor, Malaysia
NASA Astrophysics Data System (ADS)
Ishak, Siti Nabilah; Shiang, Lim Fang; Taib, Farah Shafawati Mohd; Jing, Khoo Jing; Nor, Shukor Md; Yusof, Muhammad Afif; Sah, Shahrul Anuar Mohd; Sitam, Frankie Thomas; Japning, Jeffrine Rovie Ryan
2018-04-01
This study aims to identify hard ticks (Ixodes sp.) infesting rodents in three different sites in Selangor, Malaysia using a molecular approach. A total of 11 individual ticks infesting four different host species (Rattus tiomanicus, Rattus ratus, Maxomys surifer and Sundamys muelleri) were examined based on its morphological features, followed by molecular identification using mitochondrial 16S rDNA gene. Confirmation of the species identity was accomplished by using BLAST program. Clustering analysis based on 16S rDNA sequences was carried out by constructing Neighbour-joining (NJ) and Maximum parsimony (MP) tree using MEGA 7 to clarify the genetic identity of Ixodes sp. Based on morphological features, all individual ticks were only able to be identified up to genus level as most of the samples were fully engorged, damaged and lacked morphological characters. However, molecular analysis of samples revealed 99% similarity with Ixodes granulatus from the GenBank database. Thus, the result of this study showed that all these ticks (Ixodes granulatus) were genetically affiliated to a monophyletic group with highly homogenous sequences.
Mars and earth - Comparison of cold-climate features
NASA Technical Reports Server (NTRS)
Lucchitta, B. K.
1981-01-01
On earth, glacial and periglacial features are common in areas of cold climate. On Mars, the temperature of the present-day surface is appropriate for permafrost, and the presence of water is suspected from data relating to the outgassing of the planet, from remote-sensing measurements over the polar caps and elsewhere on the Martian surface, and from recognition of fluvial morphological features such as channels. These observations and the possibility that ice could be in equilibrium with the high latitudes north and south of + or - 40 deg latitude suggest that glacial and periglacial features should exist on the planet. Morphological studies based mainly on Viking pictures indicate many features that can be attributed to the action of ice. Among these features are extensive talus aprons; debris avalanches; flows that resemble glaciers or rock glaciers; ridges that look like moraines; various types of patterned ground, scalloped scarps, and chaotically collapsed terrain that could be attributed to thermokarst processes; and landforms that may reflect the interaction of volcanism and ice.
How the environment shapes animal signals: a test of the acoustic adaptation hypothesis in frogs.
Goutte, S; Dubois, A; Howard, S D; Márquez, R; Rowley, J J L; Dehling, J M; Grandcolas, P; Xiong, R C; Legendre, F
2018-01-01
Long-distance acoustic signals are widely used in animal communication systems and, in many cases, are essential for reproduction. The acoustic adaptation hypothesis (AAH) implies that acoustic signals should be selected for further transmission and better content integrity under the acoustic constraints of the habitat in which they are produced. In this study, we test predictions derived from the AAH in frogs. Specifically, we focus on the difference between torrent frogs and frogs calling in less noisy habitats. Torrents produce sounds that can mask frog vocalizations and constitute a major acoustic constraint on call evolution. We combine data collected in the field, material from scientific collections and the literature for a total of 79 primarily Asian species, of the families Ranidae, Rhacophoridae, Dicroglossidae and Microhylidae. Using phylogenetic comparative methods and including morphological and environmental potential confounding factors, we investigate putatively adaptive call features in torrent frogs. We use broad habitat categories as well as fine-scale habitat measurements and test their correlation with six call characteristics. We find mixed support for the AAH. Spectral features of torrent frog calls are different from those of frogs calling in other habitats and are related to ambient noise levels, as predicted by the AAH. However, temporal call features do not seem to be shaped by the frogs' calling habitats. Our results underline both the complexity of call evolution and the need to consider multiple factors when investigating this issue. © 2017 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2017 European Society For Evolutionary Biology.
Miocene actinommid Radiolaria from the equatorial Pacific
Blueford, J.R.
1982-01-01
Actinommids (spumellarian Radiolaria) are a group of microfossils in which taxonomy and phylogeny hitherto have been based on features of morphology that change with the growth of individuals. To make Miocene actinommids from the equatorial Pacific useful in biostratigraphy, paleocenography, and paleoecology, ontogenetically invariant morphological features can be analyzed by methods of numerical taxonomy to group the specimens into genera, which are further subdivided into species by visual comparison. According to these criteria, 31 species, 18 of which are new, are recognized in the Late Miocene section of DSDP Sites 77 and 289, and an informal revision of actinommid higher taxa is tentatively proposed.
Yock, Adam D.; Rao, Arvind; Dong, Lei; Beadle, Beth M.; Garden, Adam S.; Kudchadker, Rajat J.; Court, Laurence E.
2014-01-01
Purpose: To create models that forecast longitudinal trends in changing tumor morphology and to evaluate and compare their predictive potential throughout the course of radiation therapy. Methods: Two morphology feature vectors were used to describe 35 gross tumor volumes (GTVs) throughout the course of intensity-modulated radiation therapy for oropharyngeal tumors. The feature vectors comprised the coordinates of the GTV centroids and a description of GTV shape using either interlandmark distances or a spherical harmonic decomposition of these distances. The change in the morphology feature vector observed at 33 time points throughout the course of treatment was described using static, linear, and mean models. Models were adjusted at 0, 1, 2, 3, or 5 different time points (adjustment points) to improve prediction accuracy. The potential of these models to forecast GTV morphology was evaluated using leave-one-out cross-validation, and the accuracy of the models was compared using Wilcoxon signed-rank tests. Results: Adding a single adjustment point to the static model without any adjustment points decreased the median error in forecasting the position of GTV surface landmarks by the largest amount (1.2 mm). Additional adjustment points further decreased the forecast error by about 0.4 mm each. Selection of the linear model decreased the forecast error for both the distance-based and spherical harmonic morphology descriptors (0.2 mm), while the mean model decreased the forecast error for the distance-based descriptor only (0.2 mm). The magnitude and statistical significance of these improvements decreased with each additional adjustment point, and the effect from model selection was not as large as that from adding the initial points. Conclusions: The authors present models that anticipate longitudinal changes in tumor morphology using various models and model adjustment schemes. The accuracy of these models depended on their form, and the utility of these models includes the characterization of patient-specific response with implications for treatment management and research study design. PMID:25086518
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yock, Adam D.; Kudchadker, Rajat J.; Rao, Arvind
2014-08-15
Purpose: To create models that forecast longitudinal trends in changing tumor morphology and to evaluate and compare their predictive potential throughout the course of radiation therapy. Methods: Two morphology feature vectors were used to describe 35 gross tumor volumes (GTVs) throughout the course of intensity-modulated radiation therapy for oropharyngeal tumors. The feature vectors comprised the coordinates of the GTV centroids and a description of GTV shape using either interlandmark distances or a spherical harmonic decomposition of these distances. The change in the morphology feature vector observed at 33 time points throughout the course of treatment was described using static, linear,more » and mean models. Models were adjusted at 0, 1, 2, 3, or 5 different time points (adjustment points) to improve prediction accuracy. The potential of these models to forecast GTV morphology was evaluated using leave-one-out cross-validation, and the accuracy of the models was compared using Wilcoxon signed-rank tests. Results: Adding a single adjustment point to the static model without any adjustment points decreased the median error in forecasting the position of GTV surface landmarks by the largest amount (1.2 mm). Additional adjustment points further decreased the forecast error by about 0.4 mm each. Selection of the linear model decreased the forecast error for both the distance-based and spherical harmonic morphology descriptors (0.2 mm), while the mean model decreased the forecast error for the distance-based descriptor only (0.2 mm). The magnitude and statistical significance of these improvements decreased with each additional adjustment point, and the effect from model selection was not as large as that from adding the initial points. Conclusions: The authors present models that anticipate longitudinal changes in tumor morphology using various models and model adjustment schemes. The accuracy of these models depended on their form, and the utility of these models includes the characterization of patient-specific response with implications for treatment management and research study design.« less
Asseln, Malte; Hänisch, Christoph; Schick, Fabian; Radermacher, Klaus
2018-05-14
Morphological differences between female and male knees have been reported in the literature, which led to the development of so-called gender-specific implants. However, detailed morphological descriptions covering the entire joint are rare and little is known regarding whether gender differences are real sexual dimorphisms or can be explained by overall differences in size. We comprehensively analysed knee morphology using 33 features of the femur and 21 features of the tibia to quantify knee shape. The landmark recognition and feature extraction based on three-dimensional surface data were fully automatically applied to 412 pathological (248 female and 164 male) knees undergoing total knee arthroplasty. Subsequently, an exploratory statistical analysis was performed and linear correlation analysis was used to investigate normalization factors and gender-specific differences. Statistically significant differences between genders were observed. These were pronounced for distance measurements and negligible for angular (relative) measurements. Female knees were significantly narrower at the same depth compared to male knees. The correlation analysis showed that linear correlations were higher for distance measurements defined in the same direction. After normalizing the distance features according to overall dimensions in the direction of their definition, gender-specific differences disappeared or were smaller than the related confidence intervals. Implants should not be linearly scaled according to one dimension. Instead, features in medial/lateral and anterior/posterior directions should be normalized separately (non-isotropic scaling). However, large inter-individual variations of the features remain after normalization, suggesting that patient-specific design solutions are required for an improved implant design, regardless of gender. Copyright © 2018 Elsevier B.V. All rights reserved.
Mapping evolutionary process: a multi-taxa approach to conservation prioritization
Thomassen, Henri A; Fuller, Trevon; Buermann, Wolfgang; Milá, Borja; Kieswetter, Charles M; Jarrín-V, Pablo; Cameron, Susan E; Mason, Eliza; Schweizer, Rena; Schlunegger, Jasmin; Chan, Janice; Wang, Ophelia; Peralvo, Manuel; Schneider, Christopher J; Graham, Catherine H; Pollinger, John P; Saatchi, Sassan; Wayne, Robert K; Smith, Thomas B
2011-01-01
Human-induced land use changes are causing extensive habitat fragmentation. As a result, many species are not able to shift their ranges in response to climate change and will likely need to adapt in situ to changing climate conditions. Consequently, a prudent strategy to maintain the ability of populations to adapt is to focus conservation efforts on areas where levels of intraspecific variation are high. By doing so, the potential for an evolutionary response to environmental change is maximized. Here, we use modeling approaches in conjunction with environmental variables to model species distributions and patterns of genetic and morphological variation in seven Ecuadorian amphibian, bird, and mammal species. We then used reserve selection software to prioritize areas for conservation based on intraspecific variation or species-level diversity. Reserves selected using species richness and complementarity showed little overlap with those based on genetic and morphological variation. Priority areas for intraspecific variation were mainly located along the slopes of the Andes and were largely concordant among species, but were not well represented in existing reserves. Our results imply that in order to maximize representation of intraspecific variation in reserves, genetic and morphological variation should be included in conservation prioritization. PMID:25567981
Mapping evolutionary process: a multi-taxa approach to conservation prioritization.
Thomassen, Henri A; Fuller, Trevon; Buermann, Wolfgang; Milá, Borja; Kieswetter, Charles M; Jarrín-V, Pablo; Cameron, Susan E; Mason, Eliza; Schweizer, Rena; Schlunegger, Jasmin; Chan, Janice; Wang, Ophelia; Peralvo, Manuel; Schneider, Christopher J; Graham, Catherine H; Pollinger, John P; Saatchi, Sassan; Wayne, Robert K; Smith, Thomas B
2011-03-01
Human-induced land use changes are causing extensive habitat fragmentation. As a result, many species are not able to shift their ranges in response to climate change and will likely need to adapt in situ to changing climate conditions. Consequently, a prudent strategy to maintain the ability of populations to adapt is to focus conservation efforts on areas where levels of intraspecific variation are high. By doing so, the potential for an evolutionary response to environmental change is maximized. Here, we use modeling approaches in conjunction with environmental variables to model species distributions and patterns of genetic and morphological variation in seven Ecuadorian amphibian, bird, and mammal species. We then used reserve selection software to prioritize areas for conservation based on intraspecific variation or species-level diversity. Reserves selected using species richness and complementarity showed little overlap with those based on genetic and morphological variation. Priority areas for intraspecific variation were mainly located along the slopes of the Andes and were largely concordant among species, but were not well represented in existing reserves. Our results imply that in order to maximize representation of intraspecific variation in reserves, genetic and morphological variation should be included in conservation prioritization.
Fast spacecraft adaptive attitude tracking control through immersion and invariance design
NASA Astrophysics Data System (ADS)
Wen, Haowei; Yue, Xiaokui; Li, Peng; Yuan, Jianping
2017-10-01
This paper presents a novel non-certainty-equivalence adaptive control method for the attitude tracking control problem of spacecraft with inertia uncertainties. The proposed immersion and invariance (I&I) based adaptation law provides a more direct and flexible approach to circumvent the limitations of the basic I&I method without employing any filter signal. By virtue of the adaptation high-gain equivalence property derived from the proposed adaptive method, the closed-loop adaptive system with a low adaptation gain could recover the high adaptation gain performance of the filter-based I&I method, and the resulting control torque demands during the initial transient has been significantly reduced. A special feature of this method is that the convergence of the parameter estimation error has been observably improved by utilizing an adaptation gain matrix instead of a single adaptation gain value. Numerical simulations are presented to highlight the various benefits of the proposed method compared with the certainty-equivalence-based control method and filter-based I&I control schemes.
Leysen, Heleen; Jouk, Philippe; Brunain, Marleen; Christiaens, Joachim; Adriaens, Dominique
2010-03-01
The long snout of pipefishes and seahorses (Syngnathidae, Gasterosteiformes) is formed as an elongation of the ethmoid region. This is in contrast to many other teleosts with elongate snouts (e.g., butterflyfishes) in which the snout is formed as an extension of the jaws. Syngnathid fishes perform very fast suction feeding, accomplished by powerful neurocranial elevation and hyoid retraction. Clearly, suction through a long and narrow tube and its hydrodynamic implications can be expected to require certain adaptations in the cranium, especially in musculoskeletal elements of the feeding apparatus. Not much is known about which skeletal elements actually support the snout and what the effect of elongation is on related structures. Here, we give a detailed morphological description of the cartilaginous and bony feeding apparatus in both juvenile and adult Syngnathus rostellatus and Hippocampus capensis. Our results are compared with previous morphological studies of a generalized teleost, Gasterosteus aculeatus. We found that the ethmoid region is elongated early during development, with the ethmoid plate, the hyosymplectic, and the basihyal cartilage being extended in the chondrocranium. In the juveniles of both species almost all bones are forming, although only as a very thin layer. The elongation of the vomeral, mesethmoid, quadrate, metapterygoid, symplectic, and preopercular bones is already present. Probably, because of the long and specialized parental care which releases advanced developmental stages from the brooding pouch, morphology of the feeding apparatus of juveniles is already very similar to that of the adults. We describe morphological features related to snout elongation that may be considered adaptations for suction feeding; e.g. the peculiar shape of the interhyal bone and its saddle-shaped articulation with the posterior ceratohyal bone might aid in explosive hyoid retraction by reducing the risk of hyoid dislocation.
Morphological Feature Extraction for Automatic Registration of Multispectral Images
NASA Technical Reports Server (NTRS)
Plaza, Antonio; LeMoigne, Jacqueline; Netanyahu, Nathan S.
2007-01-01
The task of image registration can be divided into two major components, i.e., the extraction of control points or features from images, and the search among the extracted features for the matching pairs that represent the same feature in the images to be matched. Manual extraction of control features can be subjective and extremely time consuming, and often results in few usable points. On the other hand, automated feature extraction allows using invariant target features such as edges, corners, and line intersections as relevant landmarks for registration purposes. In this paper, we present an extension of a recently developed morphological approach for automatic extraction of landmark chips and corresponding windows in a fully unsupervised manner for the registration of multispectral images. Once a set of chip-window pairs is obtained, a (hierarchical) robust feature matching procedure, based on a multiresolution overcomplete wavelet decomposition scheme, is used for registration purposes. The proposed method is validated on a pair of remotely sensed scenes acquired by the Advanced Land Imager (ALI) multispectral instrument and the Hyperion hyperspectral instrument aboard NASA's Earth Observing-1 satellite.
Morphology of a Wetland Stream
Jurmu; Andrle
1997-11-01
/ Little attention has been paid to wetland stream morphology in the geomorphological and environmental literature, and in the recently expanding wetland reconstruction field, stream design has been based primarily on stream morphologies typical of nonwetland alluvial environments. Field investigation of a wetland reach of Roaring Brook, Stafford, Connecticut, USA, revealed several significant differences between the morphology of this stream and the typical morphology of nonwetland alluvial streams. Six morphological features of the study reach were examined: bankfull flow, meanders, pools and riffles, thalweg location, straight reaches, and cross-sectional shape. It was found that bankfull flow definitions originating from streams in nonwetland environments did not apply. Unusual features observed in the wetland reach include tight bends and a large axial wavelength to width ratio. A lengthy straight reach exists that exceeds what is typically found in nonwetland alluvial streams. The lack of convex bank point bars in the bends, a greater channel width at riffle locations, an unusual thalweg location, and small form ratios (a deep and narrow channel) were also differences identified. Further study is needed on wetland streams of various regions to determine if differences in morphology between alluvial and wetland environments can be applied in order to improve future designs of wetland channels.KEY WORDS: Stream morphology; Wetland restoration; Wetland creation; Bankfull; Pools and riffles; Meanders; Thalweg
Morphometry Based on Effective and Accurate Correspondences of Localized Patterns (MEACOLP)
Wang, Hu; Ren, Yanshuang; Bai, Lijun; Zhang, Wensheng; Tian, Jie
2012-01-01
Local features in volumetric images have been used to identify correspondences of localized anatomical structures for brain morphometry. However, the correspondences are often sparse thus ineffective in reflecting the underlying structures, making it unreliable to evaluate specific morphological differences. This paper presents a morphometry method (MEACOLP) based on correspondences with improved effectiveness and accuracy. A novel two-level scale-invariant feature transform is used to enhance the detection repeatability of local features and to recall the correspondences that might be missed in previous studies. Template patterns whose correspondences could be commonly identified in each group are constructed to serve as the basis for morphometric analysis. A matching algorithm is developed to reduce the identification errors by comparing neighboring local features and rejecting unreliable matches. The two-sample t-test is finally adopted to analyze specific properties of the template patterns. Experiments are performed on the public OASIS database to clinically analyze brain images of Alzheimer's disease (AD) and normal controls (NC). MEACOLP automatically identifies known morphological differences between AD and NC brains, and characterizes the differences well as the scaling and translation of underlying structures. Most of the significant differences are identified in only a single hemisphere, indicating that AD-related structures are characterized by strong anatomical asymmetry. In addition, classification trials to differentiate AD subjects from NC confirm that the morphological differences are reliably related to the groups of interest. PMID:22540000
Dey, Susmita; Sarkar, Ripon; Chatterjee, Kabita; Datta, Pallab; Barui, Ananya; Maity, Santi P
2017-04-01
Habitual smokers are known to be at higher risk for developing oral cancer, which is increasing at an alarming rate globally. Conventionally, oral cancer is associated with high mortality rates, although recent reports show the improved survival outcomes by early diagnosis of disease. An effective prediction system which will enable to identify the probability of cancer development amongst the habitual smokers, is thus expected to benefit sizable number of populations. Present work describes a non-invasive, integrated method for early detection of cellular abnormalities based on analysis of different cyto-morphological features of exfoliative oral epithelial cells. Differential interference contrast (DIC) microscopy provides a potential optical tool as this mode provides a pseudo three dimensional (3-D) image with detailed morphological and textural features obtained from noninvasive, label free epithelial cells. For segmentation of DIC images, gradient vector flow snake model active contour process has been adopted. To evaluate cellular abnormalities amongst habitual smokers, the selected morphological and textural features of epithelial cells are compared with the non-smoker (-ve control group) group and clinically diagnosed pre-cancer patients (+ve control group) using support vector machine (SVM) classifier. Accuracy of the developed SVM based classification has been found to be 86% with 80% sensitivity and 89% specificity in classifying the features from the volunteers having smoking habit. Copyright © 2017 Elsevier Ltd. All rights reserved.
Automated classification of cell morphology by coherence-controlled holographic microscopy
NASA Astrophysics Data System (ADS)
Strbkova, Lenka; Zicha, Daniel; Vesely, Pavel; Chmelik, Radim
2017-08-01
In the last few years, classification of cells by machine learning has become frequently used in biology. However, most of the approaches are based on morphometric (MO) features, which are not quantitative in terms of cell mass. This may result in poor classification accuracy. Here, we study the potential contribution of coherence-controlled holographic microscopy enabling quantitative phase imaging for the classification of cell morphologies. We compare our approach with the commonly used method based on MO features. We tested both classification approaches in an experiment with nutritionally deprived cancer tissue cells, while employing several supervised machine learning algorithms. Most of the classifiers provided higher performance when quantitative phase features were employed. Based on the results, it can be concluded that the quantitative phase features played an important role in improving the performance of the classification. The methodology could be valuable help in refining the monitoring of live cells in an automated fashion. We believe that coherence-controlled holographic microscopy, as a tool for quantitative phase imaging, offers all preconditions for the accurate automated analysis of live cell behavior while enabling noninvasive label-free imaging with sufficient contrast and high-spatiotemporal phase sensitivity.
Automated classification of cell morphology by coherence-controlled holographic microscopy.
Strbkova, Lenka; Zicha, Daniel; Vesely, Pavel; Chmelik, Radim
2017-08-01
In the last few years, classification of cells by machine learning has become frequently used in biology. However, most of the approaches are based on morphometric (MO) features, which are not quantitative in terms of cell mass. This may result in poor classification accuracy. Here, we study the potential contribution of coherence-controlled holographic microscopy enabling quantitative phase imaging for the classification of cell morphologies. We compare our approach with the commonly used method based on MO features. We tested both classification approaches in an experiment with nutritionally deprived cancer tissue cells, while employing several supervised machine learning algorithms. Most of the classifiers provided higher performance when quantitative phase features were employed. Based on the results, it can be concluded that the quantitative phase features played an important role in improving the performance of the classification. The methodology could be valuable help in refining the monitoring of live cells in an automated fashion. We believe that coherence-controlled holographic microscopy, as a tool for quantitative phase imaging, offers all preconditions for the accurate automated analysis of live cell behavior while enabling noninvasive label-free imaging with sufficient contrast and high-spatiotemporal phase sensitivity. (2017) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).
Phylogeny of Selaginellaceae: There is value in morphology after all!
Weststrand, Stina; Korall, Petra
2016-12-01
The cosmopolitan lycophyte family Selaginellaceae, dating back to the Late Devonian-Early Carboniferous, is notorious for its many species with a seemingly undifferentiated gross morphology. This morphological stasis has for a long time hampered our understanding of the evolutionary history of the single genus Selaginella. Here we present a large-scale phylogenetic analysis of Selaginella, and based on the resulting phylogeny, we discuss morphological evolution in the group. We sampled about one-third of the approximately 750 recognized Selaginella species. Evolutionary relationships were inferred from both chloroplast (rbcL) and single-copy nuclear gene data (pgiC and SQD1) using a Bayesian inference approach. The morphology of the group was studied and important features mapped onto the phylogeny. We present an overall well-supported phylogeny of Selaginella, and the phylogenetic positions of some previously problematic taxa (i.e., S. sinensis and allies) are now resolved with strong support. We show that even though the evolution of most morphological characters involves reversals and/or parallelisms, several characters are phylogenetically informative. Seven major clades are identified, which each can be uniquely diagnosed by a suite of morphological features. There is value in morphology after all! Our hypothesis of the evolutionary relationships of Selaginella is well founded based on DNA sequence data, as well as morphology, and is in line with previous findings. It will serve as a firm basis for further studies on Selaginella with respect to, e.g., the poorly known alpha taxonomy, as well as evolutionary questions such as historical biogeographic reconstructions. © 2016 Weststrand and Korall. Published by the Botanical Society of America. This work is licensed under a Creative Commons Attribution License (CC-BY 4.0).
Milet-Pinheiro, Paulo; Schlindwein, Clemens
2010-07-01
The close relationship between distylic Cordia leucocephala and the bee Ceblurgus longipalpis, both endemic to the Caatinga, north-east Brazil, was investigated, emphasizing reproductive dependence, morphological adaptations of the partners, and pollen flow. In the municipality of Pedra, in the Caatinga of Pernambuco, the breeding system and reproductive success of C. leucocephala, its interaction with flower visitors and inter- and intramorph pollen flow were determined. The bee Ceblurgus longipalpis, the unique flower visitor and effective pollinator of self-incompatible Cordia leucocephala, presents morphological features adapted to exploit hidden pollen and nectar in the long and narrow corolla tubes. Pollen of low-level anthers is collected with hairs on prolonged mouthparts and pollen of high-level anthers with clypeus, mandibles, and labrum, showing pollen removal from both levels with the same effectiveness. In both morphs, this results in similar legitimate, i.e. intermorph cross-pollen flow. Illegitimate pollen flow to stigmas of pin flowers, however, was much higher than to stigmas of thrum flowers. Moreover, more illegitimate pollen was transported to stigmas of pin and less to those of thrum flowers when compared with legitimate pollen flow. The study reveals a one-to-one reproductive inter-dependence between both partners. Data indicate that this relationship between bee species and plant species is one of the rare cases of monolecty among bees. Monotypic Ceblurgus longipalpis, the only rophitine species of Brazil, evolved prolonged mouthparts rare among short-tongued bees that enable them to access pollen from flowers with short-level anthers hidden for bees of other species, and nectar at the base of the flower tube.
Milet-Pinheiro, Paulo; Schlindwein, Clemens
2010-01-01
Background and Aims The close relationship between distylic Cordia leucocephala and the bee Ceblurgus longipalpis, both endemic to the Caatinga, north-east Brazil, was investigated, emphasizing reproductive dependence, morphological adaptations of the partners, and pollen flow. Methods In the municipality of Pedra, in the Caatinga of Pernambuco, the breeding system and reproductive success of C. leucocephala, its interaction with flower visitors and inter- and intramorph pollen flow were determined. Key Results The bee Ceblurgus longipalpis, the unique flower visitor and effective pollinator of self-incompatible Cordia leucocephala, presents morphological features adapted to exploit hidden pollen and nectar in the long and narrow corolla tubes. Pollen of low-level anthers is collected with hairs on prolonged mouthparts and pollen of high-level anthers with clypeus, mandibles, and labrum, showing pollen removal from both levels with the same effectiveness. In both morphs, this results in similar legitimate, i.e. intermorph cross-pollen flow. Illegitimate pollen flow to stigmas of pin flowers, however, was much higher than to stigmas of thrum flowers. Moreover, more illegitimate pollen was transported to stigmas of pin and less to those of thrum flowers when compared with legitimate pollen flow. Conclusions The study reveals a one-to-one reproductive inter-dependence between both partners. Data indicate that this relationship between bee species and plant species is one of the rare cases of monolecty among bees. Monotypic Ceblurgus longipalpis, the only rophitine species of Brazil, evolved prolonged mouthparts rare among short-tongued bees that enable them to access pollen from flowers with short-level anthers hidden for bees of other species, and nectar at the base of the flower tube. PMID:20400457
Li, Chun; Wu, Xiao-Chun; Zhao, Li-Jun; Nesbitt, Sterling J; Stocker, Michelle R; Wang, Li-Ting
2016-12-01
Reptiles have a long history of transitioning from terrestrial to semi-aquatic or aquatic environments that stretches back at least 250 million years. Within Archosauria, both living crocodylians and birds have semi-aquatic members. Closer to the root of Archosauria and within the closest relatives of the clade, there is a growing body of evidence that early members of those clades had a semi-aquatic lifestyle. However, the morphological adaptations to a semi-aquatic environment remain equivocal in most cases. Here, we introduce a new Middle Triassic (245-235 Ma) archosauriform, Litorosuchus somnii, gen. et sp. nov., based on a nearly complete skeleton from the Zhuganpo Member (Ladinian [241-235 Ma]) of the Falang Formation, Yunnan, China. Our phylogenetic analyses suggest that Litorosuchus is a stem archosaur closely related to the aberrant Vancleavea just outside of Archosauria. The well-preserved skeleton of L. somnii bears a number of morphological characters consistent with other aquatic-adapted tetrapods including: a dorsally directed external naris, tall neural spines and elongate chevrons in an elongated tail, a short and broad scapula, webbed feet, long cervical vertebrae with long slender ribs, and an elongated rostrum with long and pointed teeth. Together these features represent one of the best-supported cases of a semi-aquatic mode of life for a stem archosaur. Together with Vancleavea campi, the discovery of L. somnii demonstrates a growing body of evidence that there was much more diversity in mode of life outside Archosauria. Furthermore, L. somnii helps interpret other possible character states consistent with a semi-aquatic mode of life for archosauriforms, including archosaurs.
NASA Astrophysics Data System (ADS)
Li, Chun; Wu, Xiao-chun; Zhao, Li-jun; Nesbitt, Sterling J.; Stocker, Michelle R.; Wang, Li-Ting
2016-12-01
Reptiles have a long history of transitioning from terrestrial to semi-aquatic or aquatic environments that stretches back at least 250 million years. Within Archosauria, both living crocodylians and birds have semi-aquatic members. Closer to the root of Archosauria and within the closest relatives of the clade, there is a growing body of evidence that early members of those clades had a semi-aquatic lifestyle. However, the morphological adaptations to a semi-aquatic environment remain equivocal in most cases. Here, we introduce a new Middle Triassic (245-235 Ma) archosauriform, Litorosuchus somnii, gen. et sp. nov., based on a nearly complete skeleton from the Zhuganpo Member (Ladinian [241-235 Ma]) of the Falang Formation, Yunnan, China. Our phylogenetic analyses suggest that Litorosuchus is a stem archosaur closely related to the aberrant Vancleavea just outside of Archosauria. The well-preserved skeleton of L. somnii bears a number of morphological characters consistent with other aquatic-adapted tetrapods including: a dorsally directed external naris, tall neural spines and elongate chevrons in an elongated tail, a short and broad scapula, webbed feet, long cervical vertebrae with long slender ribs, and an elongated rostrum with long and pointed teeth. Together these features represent one of the best-supported cases of a semi-aquatic mode of life for a stem archosaur. Together with Vancleavea campi, the discovery of L. somnii demonstrates a growing body of evidence that there was much more diversity in mode of life outside Archosauria. Furthermore, L. somnii helps interpret other possible character states consistent with a semi-aquatic mode of life for archosauriforms, including archosaurs.
Astronomical image data compression by morphological skeleton transformation
NASA Astrophysics Data System (ADS)
Huang, L.; Bijaoui, A.
A compression method adapted for exact restoring of the detected objects and based on the morphological skeleton transformation is presented. The morphological skeleton provides a complete and compact description of an object and gives an efficient compression rate. The flexibility of choosing a structuring element adapted to different images and the simplicity of the implementation are considered to be advantages of the method. The experiment was carried out on three typical astronomical images. The first two images were obtained by digitizing a Palomar Schmidt photographic plate in a coma field with the PDS microdensitometer at Nice Observatory. The third image was obtained by CCD camera at the Pic du Midi Observatory. Each pixel was coded by 16 bits and stored at a computer system (VAX785) with STII format. Each image is characterized by 256 x 256 pixels. It is found that first image represents a stellar field, the second represents a set of galaxies in the Coma, and the third image contains an elliptical galaxy.
Adaptive Failure Compensation for Aircraft Tracking Control Using Engine Differential Based Model
NASA Technical Reports Server (NTRS)
Liu, Yu; Tang, Xidong; Tao, Gang; Joshi, Suresh M.
2006-01-01
An aircraft model that incorporates independently adjustable engine throttles and ailerons is employed to develop an adaptive control scheme in the presence of actuator failures. This model captures the key features of aircraft flight dynamics when in the engine differential mode. Based on this model an adaptive feedback control scheme for asymptotic state tracking is developed and applied to a transport aircraft model in the presence of two types of failures during operation, rudder failure and aileron failure. Simulation results are presented to demonstrate the adaptive failure compensation scheme.
A global analysis of adaptive evolution of operons in cyanobacteria.
Memon, Danish; Singh, Abhay K; Pakrasi, Himadri B; Wangikar, Pramod P
2013-02-01
Operons are an important feature of prokaryotic genomes. Evolution of operons is hypothesized to be adaptive and has contributed significantly towards coordinated optimization of functions. Two conflicting theories, based on (i) in situ formation to achieve co-regulation and (ii) horizontal gene transfer of functionally linked gene clusters, are generally considered to explain why and how operons have evolved. Furthermore, effects of operon evolution on genomic traits such as intergenic spacing, operon size and co-regulation are relatively less explored. Based on the conservation level in a set of diverse prokaryotes, we categorize the operonic gene pair associations and in turn the operons as ancient and recently formed. This allowed us to perform a detailed analysis of operonic structure in cyanobacteria, a morphologically and physiologically diverse group of photoautotrophs. Clustering based on operon conservation showed significant similarity with the 16S rRNA-based phylogeny, which groups the cyanobacterial strains into three clades. Clade C, dominated by strains that are believed to have undergone genome reduction, shows a larger fraction of operonic genes that are tightly packed in larger sized operons. Ancient operons are in general larger, more tightly packed, better optimized for co-regulation and part of key cellular processes. A sub-clade within Clade B, which includes Synechocystis sp. PCC 6803, shows a reverse trend in intergenic spacing. Our results suggest that while in situ formation and vertical descent may be a dominant mechanism of operon evolution in cyanobacteria, optimization of intergenic spacing and co-regulation are part of an ongoing process in the life-cycle of operons.
NASA Astrophysics Data System (ADS)
Gad, Gunnar
2004-02-01
A new genus and species of Nanaloricidae (Loricifera), Phoeniciloricus simplidigitatus, is described inhabiting fine sand covered by a layer of volcanic ash at a water depth of 1,813 m in the New Ireland Basin near the Kilinailau Trench (north of Papua New Guinea). The described specimen is a postlarva enclosed in a larval exuvium. This is the first report of a species belonging to the Nanaloricidae from the deep sea. This occurrence is surprising, because Nanaloricidae are typical inhabitants of coarse sands in the intertidal or littoral zone. Preference for these shallow water habitats is reflected in many morphological features which characterize the Nanaloricidae, and are not normally found in Loricifera inhabiting fine-grained, clayish, deep-sea bottoms. The postlarva of the new species is characterized by a long narrow mouth tube, an urn-shaped lorica divided into ten plates, and 13 small lorica spikes. Distinguishing features of the Higgins-larva include short spinose toes lacking mucros but having small and slightly enlarged bases, short scalids on the introvert, many thoracic plates arranged in 6-8 rows, numerous small papillate flosculi in the collar and caudal regions, and three pairs of filiform, short locomotory appendages on the ventral side. Some features of the new species, especially of the Higgins-larva, are discussed as adaptations to the deep-sea environment.
Jing, Luyang; Wang, Taiyong; Zhao, Ming; Wang, Peng
2017-01-01
A fault diagnosis approach based on multi-sensor data fusion is a promising tool to deal with complicated damage detection problems of mechanical systems. Nevertheless, this approach suffers from two challenges, which are (1) the feature extraction from various types of sensory data and (2) the selection of a suitable fusion level. It is usually difficult to choose an optimal feature or fusion level for a specific fault diagnosis task, and extensive domain expertise and human labor are also highly required during these selections. To address these two challenges, we propose an adaptive multi-sensor data fusion method based on deep convolutional neural networks (DCNN) for fault diagnosis. The proposed method can learn features from raw data and optimize a combination of different fusion levels adaptively to satisfy the requirements of any fault diagnosis task. The proposed method is tested through a planetary gearbox test rig. Handcraft features, manual-selected fusion levels, single sensory data, and two traditional intelligent models, back-propagation neural networks (BPNN) and a support vector machine (SVM), are used as comparisons in the experiment. The results demonstrate that the proposed method is able to detect the conditions of the planetary gearbox effectively with the best diagnosis accuracy among all comparative methods in the experiment. PMID:28230767
Roscito, Juliana G; Rodrigues, Miguel T
2010-11-01
Squamates (lizards, snakes and amphisbaenians) are represented by a large number of species distributed among a wide variety of habitats. Changes in body plan related to a fossorial habit are a frequent trend within the group and many morphological adaptations to this particular lifestyle evolved convergently in nonrelated species, reflecting adaptations to a similar habitat. The fossorial lifestyle requires an optimal morphological organization for an effective use of the available resources. Skeleton arrangement in fossorial squamates reflects adaptations to the burrowing activity, and different degrees of fossoriality can be inferred through an analysis of skull morphology. Here, we provide a detailed description of the skull morphology of three fossorial gymnophthalmid species: Calyptommatus nicterus, Scriptosaura catimbau, and Nothobachia ablephara.
Shape Adaptive, Robust Iris Feature Extraction from Noisy Iris Images
Ghodrati, Hamed; Dehghani, Mohammad Javad; Danyali, Habibolah
2013-01-01
In the current iris recognition systems, noise removing step is only used to detect noisy parts of the iris region and features extracted from there will be excluded in matching step. Whereas depending on the filter structure used in feature extraction, the noisy parts may influence relevant features. To the best of our knowledge, the effect of noise factors on feature extraction has not been considered in the previous works. This paper investigates the effect of shape adaptive wavelet transform and shape adaptive Gabor-wavelet for feature extraction on the iris recognition performance. In addition, an effective noise-removing approach is proposed in this paper. The contribution is to detect eyelashes and reflections by calculating appropriate thresholds by a procedure called statistical decision making. The eyelids are segmented by parabolic Hough transform in normalized iris image to decrease computational burden through omitting rotation term. The iris is localized by an accurate and fast algorithm based on coarse-to-fine strategy. The principle of mask code generation is to assign the noisy bits in an iris code in order to exclude them in matching step is presented in details. An experimental result shows that by using the shape adaptive Gabor-wavelet technique there is an improvement on the accuracy of recognition rate. PMID:24696801
Shape adaptive, robust iris feature extraction from noisy iris images.
Ghodrati, Hamed; Dehghani, Mohammad Javad; Danyali, Habibolah
2013-10-01
In the current iris recognition systems, noise removing step is only used to detect noisy parts of the iris region and features extracted from there will be excluded in matching step. Whereas depending on the filter structure used in feature extraction, the noisy parts may influence relevant features. To the best of our knowledge, the effect of noise factors on feature extraction has not been considered in the previous works. This paper investigates the effect of shape adaptive wavelet transform and shape adaptive Gabor-wavelet for feature extraction on the iris recognition performance. In addition, an effective noise-removing approach is proposed in this paper. The contribution is to detect eyelashes and reflections by calculating appropriate thresholds by a procedure called statistical decision making. The eyelids are segmented by parabolic Hough transform in normalized iris image to decrease computational burden through omitting rotation term. The iris is localized by an accurate and fast algorithm based on coarse-to-fine strategy. The principle of mask code generation is to assign the noisy bits in an iris code in order to exclude them in matching step is presented in details. An experimental result shows that by using the shape adaptive Gabor-wavelet technique there is an improvement on the accuracy of recognition rate.
Application of optimized multiscale mathematical morphology for bearing fault diagnosis
NASA Astrophysics Data System (ADS)
Gong, Tingkai; Yuan, Yanbin; Yuan, Xiaohui; Wu, Xiaotao
2017-04-01
In order to suppress noise effectively and extract the impulsive features in the vibration signals of faulty rolling element bearings, an optimized multiscale morphology (OMM) based on conventional multiscale morphology (CMM) and iterative morphology (IM) is presented in this paper. Firstly, the operator used in the IM method must be non-idempotent; therefore, an optimized difference (ODIF) operator has been designed. Furthermore, in the iterative process the current operation is performed on the basis of the previous one. This means that if a larger scale is employed, more fault features are inhibited. Thereby, a unit scale is proposed as the structuring element (SE) scale in IM. According to the above definitions, the IM method is implemented on the results over different scales obtained by CMM. The validity of the proposed method is first evaluated by a simulated signal. Subsequently, aimed at an outer race fault two vibration signals sampled by different accelerometers are analyzed by OMM and CMM, respectively. The same is done for an inner race fault. The results show that the optimized method is effective in diagnosing the two bearing faults. Compared with the CMM method, the OMM method can extract much more fault features under strong noise background.
Carnacina, Iacopo; Larrarte, Frédérique; Leonardi, Nicoletta
2017-04-01
The performance of sewer networks has important consequences from an environmental and social point of view. Poor functioning can result in flood risk and pollution at a large scale. Sediment deposits forming in sewer trunks might severely compromise the sewer line by affecting the flow field, reducing cross-sectional areas, and increasing roughness coefficients. In spite of numerous efforts, the morphological features of these depositional environments remain poorly understood. The interface between water and sediment remains inefficiently identified and the estimation of the stock of deposit is frequently inaccurate. In part, this is due to technical issues connected to difficulties in collecting accurate field measurements without disrupting existing morphologies. In this paper, results from an extensive field campaign are presented; during the campaign a new survey methodology based on acoustic techniques has been tested. Furthermore, a new algorithm for the detection of the soil-water interface, and therefore for the correct esteem of sediment stocks is proposed. Finally, results in regard to bed topography, and morphological features at two different field sites are presented and reveal that a large variability in bed forms is present along sewer networks. Copyright © 2017 Elsevier Ltd. All rights reserved.
Morphological operators for enhanced polarimetric image target detection
NASA Astrophysics Data System (ADS)
Romano, João. M.; Rosario, Dalton S.
2015-09-01
We introduce an algorithm based on morphological filters with the Stokes parameters that augments the daytime and nighttime detection of weak-signal manmade objects immersed in a predominant natural background scene. The approach features a tailored sequence of signal-enhancing filters, consisting of core morphological operators (dilation, erosion) and higher level morphological operations (e.g., spatial gradient, opening, closing) to achieve a desired overarching goal. Using representative data from the SPICE database, the results show that the approach was able to automatically and persistently detect with a high confidence level the presence of three mobile military howitzer surrogates (targets) in natural clutter.
Systematic evaluation of deep learning based detection frameworks for aerial imagery
NASA Astrophysics Data System (ADS)
Sommer, Lars; Steinmann, Lucas; Schumann, Arne; Beyerer, Jürgen
2018-04-01
Object detection in aerial imagery is crucial for many applications in the civil and military domain. In recent years, deep learning based object detection frameworks significantly outperformed conventional approaches based on hand-crafted features on several datasets. However, these detection frameworks are generally designed and optimized for common benchmark datasets, which considerably differ from aerial imagery especially in object sizes. As already demonstrated for Faster R-CNN, several adaptations are necessary to account for these differences. In this work, we adapt several state-of-the-art detection frameworks including Faster R-CNN, R-FCN, and Single Shot MultiBox Detector (SSD) to aerial imagery. We discuss adaptations that mainly improve the detection accuracy of all frameworks in detail. As the output of deeper convolutional layers comprise more semantic information, these layers are generally used in detection frameworks as feature map to locate and classify objects. However, the resolution of these feature maps is insufficient for handling small object instances, which results in an inaccurate localization or incorrect classification of small objects. Furthermore, state-of-the-art detection frameworks perform bounding box regression to predict the exact object location. Therefore, so called anchor or default boxes are used as reference. We demonstrate how an appropriate choice of anchor box sizes can considerably improve detection performance. Furthermore, we evaluate the impact of the performed adaptations on two publicly available datasets to account for various ground sampling distances or differing backgrounds. The presented adaptations can be used as guideline for further datasets or detection frameworks.
SVAS3: Strain Vector Aided Sensorization of Soft Structures
Culha, Utku; Nurzaman, Surya G.; Clemens, Frank; Iida, Fumiya
2014-01-01
Soft material structures exhibit high deformability and conformability which can be useful for many engineering applications such as robots adapting to unstructured and dynamic environments. However, the fact that they have almost infinite degrees of freedom challenges conventional sensory systems and sensorization approaches due to the difficulties in adapting to soft structure deformations. In this paper, we address this challenge by proposing a novel method which designs flexible sensor morphologies to sense soft material deformations by using a functional material called conductive thermoplastic elastomer (CTPE). This model-based design method, called Strain Vector Aided Sensorization of Soft Structures (SVAS3), provides a simulation platform which analyzes soft body deformations and automatically finds suitable locations for CTPE-based strain gauge sensors to gather strain information which best characterizes the deformation. Our chosen sensor material CTPE exhibits a set of unique behaviors in terms of strain length electrical conductivity, elasticity, and shape adaptability, allowing us to flexibly design sensor morphology that can best capture strain distributions in a given soft structure. We evaluate the performance of our approach by both simulated and real-world experiments and discuss the potential and limitations. PMID:25036332
Thomas, W. Kelley; Vida, J. T.; Frisse, Linda M.; Mundo, Manuel; Baldwin, James G.
1997-01-01
To effectively integrate DNA sequence analysis and classical nematode taxonomy, we must be able to obtain DNA sequences from formalin-fixed specimens. Microdissected sections of nematodes were removed from specimens fixed in formalin, using standard protocols and without destroying morphological features. The fixed sections provided sufficient template for multiple polymerase chain reaction-based DNA sequence analyses. PMID:19274156
Syntactic methods of shape feature description and its application in analysis of medical images
NASA Astrophysics Data System (ADS)
Ogiela, Marek R.; Tadeusiewicz, Ryszard
2000-02-01
The paper presents specialist algorithms of morphologic analysis of shapes of selected organs of abdominal cavity proposed in order to diagnose disease symptoms occurring in the main pancreatic ducts and upper segments of ureters. Analysis of the correct morphology of these structures has been conducted with the use of syntactic methods of pattern recognition. Its main objective is computer-aided support to early diagnosis of neoplastic lesions and pancreatitis based on images taken in the course of examination with the endoscopic retrograde cholangiopancreatography (ERCP) method and a diagnosis of morphological lesions in ureter based on kidney radiogram analysis. In the analysis of ERCP images, the main objective is to recognize morphological lesions in pancreas ducts characteristic for carcinoma and chronic pancreatitis. In the case of kidney radiogram analysis the aim is to diagnose local irregularity of ureter lumen. Diagnosing the above mentioned lesion has been conducted with the use of syntactic methods of pattern recognition, in particular the languages of shape features description and context-free attributed grammars. These methods allow to recognize and describe in a very efficient way the aforementioned lesions on images obtained as a result of initial image processing into diagrams of widths of the examined structures.
[Morphological and biochemical adaptations to feeding in some herbivorous gastropods].
Aliakrinskaia, O I
2005-01-01
Diet and feeding modes as well as morphological and biochemical adaptations to feeding are analyzed in herbivorous mollusks. The content of hemoglobin in radular tissues and weight properties of the radula are evaluated for different modes of feeding.
Mokuwa, Alfred; Nuijten, Edwin; Okry, Florent; Teeken, Béla; Maat, Harro; Richards, Paul; Struik, Paul C
2014-01-01
We assessed the interplay of artificial and natural selection in rice adaptation in low-input farming systems in West Africa. Using 20 morphological traits and 176 molecular markers, 182 farmer varieties of rice (Oryza spp.) from 6 West African countries were characterized. Principal component analysis showed that the four botanical groups (Oryza sativa ssp. indica, O. sativa ssp. japonica, O. glaberrima, and interspecific farmer hybrids) exhibited different patterns of morphological diversity. Regarding O. glaberrima, morphological and molecular data were in greater conformity than for the other botanical groups. A clear difference in morphological features was observed between O. glaberrima rices from the Togo hills and those from the Upper Guinea Coast, and among O. glaberrima rices from the Upper Guinea Coast. For the other three groups such clear patterns were not observed. We argue that this is because genetic diversity is shaped by different environmental and socio-cultural selection pressures. For O. glaberrima, recent socio-cultural selection pressures seemed to restrict genetic diversity while this was not observed for the other botanical groups. We also show that O. glaberrima still plays an important role in the selection practices of farmers and resulting variety development pathways. This is particularly apparent in the case of interspecific farmer hybrids where a relationship was found between pericarp colour, panicle attitude and genetic diversity. Farmer varieties are the product of long and complex trajectories of selection governed by local human agency. In effect, rice varieties have emerged that are adapted to West African farming conditions through genotype × environment × society interactions. The diversity farmers maintain in their rice varieties is understood to be part of a risk-spreading strategy that also facilitates successful and often serendipitous variety innovations. We advocate, therefore, that farmers and farmer varieties should be more effectively involved in crop development.
Maat, Harro; Richards, Paul; Struik, Paul C.
2014-01-01
We assessed the interplay of artificial and natural selection in rice adaptation in low-input farming systems in West Africa. Using 20 morphological traits and 176 molecular markers, 182 farmer varieties of rice (Oryza spp.) from 6 West African countries were characterized. Principal component analysis showed that the four botanical groups (Oryza sativa ssp. indica, O. sativa ssp. japonica, O. glaberrima, and interspecific farmer hybrids) exhibited different patterns of morphological diversity. Regarding O. glaberrima, morphological and molecular data were in greater conformity than for the other botanical groups. A clear difference in morphological features was observed between O. glaberrima rices from the Togo hills and those from the Upper Guinea Coast, and among O. glaberrima rices from the Upper Guinea Coast. For the other three groups such clear patterns were not observed. We argue that this is because genetic diversity is shaped by different environmental and socio-cultural selection pressures. For O. glaberrima, recent socio-cultural selection pressures seemed to restrict genetic diversity while this was not observed for the other botanical groups. We also show that O. glaberrima still plays an important role in the selection practices of farmers and resulting variety development pathways. This is particularly apparent in the case of interspecific farmer hybrids where a relationship was found between pericarp colour, panicle attitude and genetic diversity. Farmer varieties are the product of long and complex trajectories of selection governed by local human agency. In effect, rice varieties have emerged that are adapted to West African farming conditions through genotype × environment × society interactions. The diversity farmers maintain in their rice varieties is understood to be part of a risk-spreading strategy that also facilitates successful and often serendipitous variety innovations. We advocate, therefore, that farmers and farmer varieties should be more effectively involved in crop development. PMID:24465809
DeepPap: Deep Convolutional Networks for Cervical Cell Classification.
Zhang, Ling; Le Lu; Nogues, Isabella; Summers, Ronald M; Liu, Shaoxiong; Yao, Jianhua
2017-11-01
Automation-assisted cervical screening via Pap smear or liquid-based cytology (LBC) is a highly effective cell imaging based cancer detection tool, where cells are partitioned into "abnormal" and "normal" categories. However, the success of most traditional classification methods relies on the presence of accurate cell segmentations. Despite sixty years of research in this field, accurate segmentation remains a challenge in the presence of cell clusters and pathologies. Moreover, previous classification methods are only built upon the extraction of hand-crafted features, such as morphology and texture. This paper addresses these limitations by proposing a method to directly classify cervical cells-without prior segmentation-based on deep features, using convolutional neural networks (ConvNets). First, the ConvNet is pretrained on a natural image dataset. It is subsequently fine-tuned on a cervical cell dataset consisting of adaptively resampled image patches coarsely centered on the nuclei. In the testing phase, aggregation is used to average the prediction scores of a similar set of image patches. The proposed method is evaluated on both Pap smear and LBC datasets. Results show that our method outperforms previous algorithms in classification accuracy (98.3%), area under the curve (0.99) values, and especially specificity (98.3%), when applied to the Herlev benchmark Pap smear dataset and evaluated using five-fold cross validation. Similar superior performances are also achieved on the HEMLBC (H&E stained manual LBC) dataset. Our method is promising for the development of automation-assisted reading systems in primary cervical screening.
Tan, Maxine; Aghaei, Faranak; Wang, Yunzhi; Zheng, Bin
2017-01-01
The purpose of this study is to evaluate a new method to improve performance of computer-aided detection (CAD) schemes of screening mammograms with two approaches. In the first approach, we developed a new case based CAD scheme using a set of optimally selected global mammographic density, texture, spiculation, and structural similarity features computed from all four full-field digital mammography (FFDM) images of the craniocaudal (CC) and mediolateral oblique (MLO) views by using a modified fast and accurate sequential floating forward selection feature selection algorithm. Selected features were then applied to a “scoring fusion” artificial neural network (ANN) classification scheme to produce a final case based risk score. In the second approach, we combined the case based risk score with the conventional lesion based scores of a conventional lesion based CAD scheme using a new adaptive cueing method that is integrated with the case based risk scores. We evaluated our methods using a ten-fold cross-validation scheme on 924 cases (476 cancer and 448 recalled or negative), whereby each case had all four images from the CC and MLO views. The area under the receiver operating characteristic curve was AUC = 0.793±0.015 and the odds ratio monotonically increased from 1 to 37.21 as CAD-generated case based detection scores increased. Using the new adaptive cueing method, the region based and case based sensitivities of the conventional CAD scheme at a false positive rate of 0.71 per image increased by 2.4% and 0.8%, respectively. The study demonstrated that supplementary information can be derived by computing global mammographic density image features to improve CAD-cueing performance on the suspicious mammographic lesions. PMID:27997380
A phylogenetic test for adaptive convergence in rock-dwelling lizards.
Revell, Liam J; Johnson, Michele A; Schulte, James A; Kolbe, Jason J; Losos, Jonathan B
2007-12-01
Phenotypic similarity of species occupying similar habitats has long been taken as strong evidence of adaptation, but this approach implicitly assumes that similarity is evolutionarily derived. However, even derived similarities may not represent convergent adaptation if the similarities did not evolve as a result of the same selection pressures; an alternative possibility is that the similar features evolved for different reasons, but subsequently allowed the species to occupy the same habitat, in which case the convergent evolution of the same feature by species occupying similar habitats would be the result of exaptation. Many lizard lineages have evolved to occupy vertical rock surfaces, a habitat that places strong functional and ecological demands on lizards. We examined four clades in which species that use vertical rock surfaces exhibit long hindlimbs and flattened bodies. Morphological change on the phylogenetic branches leading to the rock-dwelling species in the four clades differed from change on other branches of the phylogeny; evolutionary transitions to rock-dwelling generally were associated with increases in limb length and decreases in head depth. Examination of particular characters revealed several different patterns of evolutionary change. Rock-dwelling lizards exhibited similarities in head depth as a result of both adaptation and exaptation. Moreover, even though rock-dwelling species generally had longer limbs than their close relatives, clade-level differences in limb length led to an overall lack of difference between rock- and non-rock-dwelling lizards. These results indicate that evolutionary change in the same direction in independent lineages does not necessarily produce convergence, and that the existence of similar advantageous structures among species independently occupying the same environment may not indicate adaptation.
Ferrito, Venera; Mauceri, Angela; Minniti, Franco; Isaja, Manuela; Maisano, Maria; Tigano, Concetta
2007-01-01
Two species of Blennies--Salaria fluviatilis, which lives in freshwaters, and Salaria pavo, which lives in the sea--are considered to be phylogenetically related. Due to the interesting feature of one species having a freshwater and one having a marine habitat, and because of the paucity of studies on the intraspecific and interspecific variability of skeletal characters, in the study reported here, several populations of S. fluviatilis and S. pavo were compared. The intraspecific and interspecific morphology of the cranial characteristics, as well as the branchial epithelium, was studied in relationship to the adaptation of the two species to different environments. Osteological results confirmed the intraspecific variability already found in S. fluviatilis and showed a notable interspecific differentiation between S. pavo and S. fluviatilis. Histological studies indicate that the two species have morphological differences, which are the result of the diversity of the environments in which they live. The results from the two approaches, taken together, are in agreement with the hypothesis of the origin of these two species being from a common marine ancestor.
ActiveTutor: Towards More Adaptive Features in an E-Learning Framework
ERIC Educational Resources Information Center
Fournier, Jean-Pierre; Sansonnet, Jean-Paul
2008-01-01
Purpose: This paper aims to sketch the emerging notion of auto-adaptive software when applied to e-learning software. Design/methodology/approach: The study and the implementation of the auto-adaptive architecture are based on the operational framework "ActiveTutor" that is used for teaching the topic of computer science programming in first-grade…
Woźniak, Natalia Joanna; Sicard, Adrien
2018-07-01
Flowers represent a key innovation during plant evolution. Driven by reproductive optimization, evolution of flower morphology has been central in boosting species diversification. In most cases, this has happened through specialized interactions with animal pollinators and subsequent reduction of gene flow between specialized morphs. While radiation has led to an enormous variability in flower forms and sizes, recurrent evolutionary patterns can be observed. Here, we discuss the targets of selection involved in major trends of pollinator-driven flower evolution. We review recent findings on their adaptive values, developmental grounds and genetic bases, in an attempt to better understand the repeated nature of pollinator-driven flower evolution. This analysis highlights how structural innovation can provide flexibility in phenotypic evolution, adaptation and speciation. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Sanchez-Guillamón, O.; Vázquez, J. T.; Palomino, D.; Medialdea, T.; Fernández-Salas, L. M.; León, R.; Somoza, L.
2018-07-01
The increasing volume of high-resolution multibeam bathymetry data collected along continental margins and adjacent deep seafloor regions is providing further opportunities to study new morphological seafloor features in deep water environments. In this paper, seafloor mounds have been imaged in detail with multibeam echosounders and parametric sub-bottom profilers in the deep central area of the Canary Basin ( 350-550 km west off El Hierro Island) between 4800 and 5200 mbsl. These features have circular to elongated shapes with heights of 10 to 250 m, diameters of 2-24 km and with flank slopes of 2-50°. Based on their morphological features and the subsurface structures these mounds have been classified into five different types of mounds that follow a linear correlation between height and slope but not between height and size. The first, second (Subgroup A), and third mound-types show heights lower than 80 m and maximum slopes of 35° with extension ranging from 2 to 400 km2 and correspond to domes formed at the surface created by intrusions located at depth that have not outcropped yet. The second (Subgroup B), fourth, and fifth mound-types show higher heights up to 250 m high, maximum slopes of 47° and sizes between 10 and 20 km2 and are related to the expulsion of hot and hydrothermal fluids and/or volcanics from extrusive deep-seated systems. Based on the constraints on their morphological and structural analyses, we suggest that morphostructural types of mounds are intimately linked to a specific origin that leaves its footprint in the morphology of the mounds. We propose a growth model for the five morphostructural types of mounds where different intrusive and extrusive phenomena represent the dominant mechanisms for mound growth evolution. These structures are also affected by tectonics (bulge-like structures clearly deformed by faulting) and mass movements (slide scars and mass transport deposits). In this work, we report how intrusive and extrusive processes may affect the seafloor morphology, identifying a new type of geomorphological feature as 'intrusive' domes that have, to date, only been reported in fossil environments but might extend to other oceanic areas.
Predictive Value of Morphological Features in Patients with Autism versus Normal Controls
ERIC Educational Resources Information Center
Ozgen, H.; Hellemann, G. S.; de Jonge, M. V.; Beemer, F. A.; van Engeland, H.
2013-01-01
We investigated the predictive power of morphological features in 224 autistic patients and 224 matched-pairs controls. To assess the relationship between the morphological features and autism, we used the receiver operator curves (ROC). In addition, we used recursive partitioning (RP) to determine a specific pattern of abnormalities that is…
Cell type dependent morphological adaptation in polyelectrolyte hydrogels governs chondrogenic fate.
Raghothaman, Deepak; Leong, Meng Fatt; Lim, Tze Chiun; Wan, Andrew C A; Ser, Zheng; Lee, Eng Hin; Yang, Zheng
2016-04-04
Repair of critical-size articular cartilage defects typically involves delivery of cells in biodegradable, 3D matrices. Differences in the developmental status of mesenchymal stem cells (MSCs) and terminally differentiated mature chondrocytes might be a critical factor in engineering appropriate 3D matrices for articular cartilage tissue engineering. This study examined the relationship between material-driven early cell morphological adaptations and chondrogenic outcomes, by studying the influence of aligned collagen type I (Col I) presentation on chondrocytes and MSC in interfacial polyelectrolyte complexation (IPC)-based hydrogels. In the absence of Col I, both chondrocytes and MSCs adopted rounded cell morphology and formed clusters, with chondrocyte clusters favoring the maintenance of hyaline phenotype, while MSC clusters differentiated to fibro-superficial zone-like chondrocytes. Encapsulated chondrocytes in IPC-Col I hydrogel adopted a fibroblastic morphology forming fibro-superficial zone-like phenotype, which could be reversed by inhibiting actin polymerization using cytochalasin D (CytD). In contrast, adoption of fibroblastic morphology by encapsulated MSCs in IPC-Col I facilitated superior chondrogenesis, generating a mature, hyaline neocartilage tissue. CytD treatment abrogated the elongation of MSCs and brought about a single cell-like state, resulting in insignificant chondrogenic differentiation, underscoring the essential requirement of providing matrix environments that are amenable to cell-cell interactions for robust MSC chondrogenic differentiation. Our study demonstrates that MSCs and culture-expanded chondrocytes favour differential microenvironmental niches and emphasizes the importance of designing biomaterials that meet cell type-specific requirements, in adopting chondrocyte or MSC-based approaches for regenerating hyaline, articular cartilage.
Gandomkar, Ziba; Brennan, Patrick C.; Mello-Thoms, Claudia
2017-01-01
Context: Previous studies showed that the agreement among pathologists in recognition of mitoses in breast slides is fairly modest. Aims: Determining the significantly different quantitative features among easily identifiable mitoses, challenging mitoses, and miscounted nonmitoses within breast slides and identifying which color spaces capture the difference among groups better than others. Materials and Methods: The dataset contained 453 mitoses and 265 miscounted objects in breast slides. The mitoses were grouped into three categories based on the confidence degree of three pathologists who annotated them. The mitoses annotated as “probably a mitosis” by the majority of pathologists were considered as the challenging category. The miscounted objects were recognized as a mitosis or probably a mitosis by only one of the pathologists. The mitoses were segmented using k-means clustering, followed by morphological operations. Morphological, intensity-based, and textural features were extracted from the segmented area and also the image patch of 63 × 63 pixels in different channels of eight color spaces. Holistic features describing the mitoses' surrounding cells of each image were also extracted. Statistical Analysis Used: The Kruskal–Wallis H-test followed by the Tukey-Kramer test was used to identify significantly different features. Results: The results indicated that challenging mitoses were smaller and rounder compared to other mitoses. Among different features, the Gabor textural features differed more than others between challenging mitoses and the easily identifiable ones. Sizes of the non-mitoses were similar to easily identifiable mitoses, but nonmitoses were rounder. The intensity-based features from chromatin channels were the most discriminative features between the easily identifiable mitoses and the miscounted objects. Conclusions: Quantitative features can be used to describe the characteristics of challenging mitoses and miscounted nonmitotic objects. PMID:28966834
Martín-Subero, José I; Kreuz, Markus; Bibikova, Marina; Bentink, Stefan; Ammerpohl, Ole; Wickham-Garcia, Eliza; Rosolowski, Maciej; Richter, Julia; Lopez-Serra, Lidia; Ballestar, Esteban; Berger, Hilmar; Agirre, Xabier; Bernd, Heinz-Wolfram; Calvanese, Vincenzo; Cogliatti, Sergio B; Drexler, Hans G; Fan, Jian-Bing; Fraga, Mario F; Hansmann, Martin L; Hummel, Michael; Klapper, Wolfram; Korn, Bernhard; Küppers, Ralf; Macleod, Roderick A F; Möller, Peter; Ott, German; Pott, Christiane; Prosper, Felipe; Rosenwald, Andreas; Schwaenen, Carsten; Schübeler, Dirk; Seifert, Marc; Stürzenhofecker, Benjamin; Weber, Michael; Wessendorf, Swen; Loeffler, Markus; Trümper, Lorenz; Stein, Harald; Spang, Rainer; Esteller, Manel; Barker, David; Hasenclever, Dirk; Siebert, Reiner
2009-03-12
Lymphomas are assumed to originate at different stages of lymphocyte development through chromosomal aberrations. Thus, different lymphomas resemble lymphocytes at distinct differentiation stages and show characteristic morphologic, genetic, and transcriptional features. Here, we have performed a microarray-based DNA methylation profiling of 83 mature aggressive B-cell non-Hodgkin lymphomas (maB-NHLs) characterized for their morphologic, genetic, and transcriptional features, including molecular Burkitt lymphomas and diffuse large B-cell lymphomas. Hierarchic clustering indicated that methylation patterns in maB-NHLs were not strictly associated with morphologic, genetic, or transcriptional features. By supervised analyses, we identified 56 genes de novo methylated in all lymphoma subtypes studied and 22 methylated in a lymphoma subtype-specific manner. Remarkably, the group of genes de novo methylated in all lymphoma subtypes was significantly enriched for polycomb targets in embryonic stem cells. De novo methylated genes in all maB-NHLs studied were expressed at low levels in lymphomas and normal hematopoietic tissues but not in nonhematopoietic tissues. These findings, especially the enrichment for polycomb targets in stem cells, indicate that maB-NHLs with different morphologic, genetic, and transcriptional background share a similar stem cell-like epigenetic pattern. This suggests that maB-NHLs originate from cells with stem cell features or that stemness was acquired during lymphomagenesis by epigenetic remodeling.
Karlsson, Dave; Ronquist, Fredrik
2012-01-01
The Braconidae, a family of parasitic wasps, constitute a major taxonomic challenge with an estimated diversity of 40,000 to 120,000 species worldwide, only 18,000 of which have been described to date. The skeletal morphology of braconids is still not adequately understood and the terminology is partly idiosyncratic, despite the fact that anatomical features form the basis for most taxonomic work on the group. To help address this problem, we describe the external skeletal morphology of Opius dissitus Muesebeck 1963 and Biosteres carbonarius Nees 1834, two diverse representatives of one of the least known and most diverse braconid subfamilies, the Opiinae. We review the terminology used to describe skeletal features in the Ichneumonoidea in general and the Opiinae in particular, and identify a list of recommend terms, which are linked to the online Hymenoptera Anatomy Ontology. The morphology of the studied species is illustrated with SEM-micrographs, photos and line drawings. Based on the examined species, we discuss intraspecific and interspecific morphological variation in the Opiinae and point out character complexes that merit further study. PMID:22558068
Karlsson, Dave; Ronquist, Fredrik
2012-01-01
The Braconidae, a family of parasitic wasps, constitute a major taxonomic challenge with an estimated diversity of 40,000 to 120,000 species worldwide, only 18,000 of which have been described to date. The skeletal morphology of braconids is still not adequately understood and the terminology is partly idiosyncratic, despite the fact that anatomical features form the basis for most taxonomic work on the group. To help address this problem, we describe the external skeletal morphology of Opius dissitus Muesebeck 1963 and Biosteres carbonarius Nees 1834, two diverse representatives of one of the least known and most diverse braconid subfamilies, the Opiinae. We review the terminology used to describe skeletal features in the Ichneumonoidea in general and the Opiinae in particular, and identify a list of recommend terms, which are linked to the online Hymenoptera Anatomy Ontology. The morphology of the studied species is illustrated with SEM-micrographs, photos and line drawings. Based on the examined species, we discuss intraspecific and interspecific morphological variation in the Opiinae and point out character complexes that merit further study.
Bubble structure evaluation method of sponge cake by using image morphology
NASA Astrophysics Data System (ADS)
Kato, Kunihito; Yamamoto, Kazuhiko; Nonaka, Masahiko; Katsuta, Yukiyo; Kasamatsu, Chinatsu
2007-01-01
Nowadays, many evaluation methods for food industry by using image processing are proposed. These methods are becoming new evaluation method besides the sensory test and the solid-state measurement that have been used for the quality evaluation recently. The goal of our research is structure evaluation of sponge cake by using the image processing. In this paper, we propose a feature extraction method of the bobble structure in the sponge cake. Analysis of the bubble structure is one of the important properties to understand characteristics of the cake from the image. In order to take the cake image, first we cut cakes and measured that's surface by using the CIS scanner, because the depth of field of this type scanner is very shallow. Therefore the bubble region of the surface has low gray scale value, and it has a feature that is blur. We extracted bubble regions from the surface images based on these features. The input image is binarized, and the feature of bubble is extracted by the morphology analysis. In order to evaluate the result of feature extraction, we compared correlation with "Size of the bubble" of the sensory test result. From a result, the bubble extraction by using morphology analysis gives good correlation. It is shown that our method is as well as the subjectivity evaluation.
Mander, Luke; Li, Mao; Mio, Washington; Fowlkes, Charless C; Punyasena, Surangi W
2013-11-07
Taxonomic identification of pollen and spores uses inherently qualitative descriptions of morphology. Consequently, identifications are restricted to categories that can be reliably classified by multiple analysts, resulting in the coarse taxonomic resolution of the pollen and spore record. Grass pollen represents an archetypal example; it is not routinely identified below family level. To address this issue, we developed quantitative morphometric methods to characterize surface ornamentation and classify grass pollen grains. This produces a means of quantifying morphological features that are traditionally described qualitatively. We used scanning electron microscopy to image 240 specimens of pollen from 12 species within the grass family (Poaceae). We classified these species by developing algorithmic features that quantify the size and density of sculptural elements on the pollen surface, and measure the complexity of the ornamentation they form. These features yielded a classification accuracy of 77.5%. In comparison, a texture descriptor based on modelling the statistical distribution of brightness values in image patches yielded a classification accuracy of 85.8%, and seven human subjects achieved accuracies between 68.33 and 81.67%. The algorithmic features we developed directly relate to biologically meaningful features of grass pollen morphology, and could facilitate direct interpretation of unsupervised classification results from fossil material.
Hyodo, Susumu; Kakumura, Keigo; Takagi, Wataru; Hasegawa, Kumi; Yamaguchi, Yoko
2014-12-15
For adaptation to high-salinity marine environments, cartilaginous fishes (sharks, skates, rays, and chimaeras) adopt a unique urea-based osmoregulation strategy. Their kidneys reabsorb nearly all filtered urea from the primary urine, and this is an essential component of urea retention in their body fluid. Anatomical investigations have revealed the extraordinarily elaborate nephron system in the kidney of cartilaginous fishes, e.g., the four-loop configuration of each nephron, the occurrence of distinct sinus and bundle zones, and the sac-like peritubular sheath in the bundle zone, in which the nephron segments are arranged in a countercurrent fashion. These anatomical and morphological characteristics have been considered to be important for urea reabsorption; however, a mechanism for urea reabsorption is still largely unknown. This review focuses on recent progress in the identification and mapping of various pumps, channels, and transporters on the nephron segments in the kidney of cartilaginous fishes. The molecules include urea transporters, Na(+)/K(+)-ATPase, Na(+)-K(+)-Cl(-) cotransporters, and aquaporins, which most probably all contribute to the urea reabsorption process. Although research is still in progress, a possible model for urea reabsorption in the kidney of cartilaginous fishes is discussed based on the anatomical features of nephron segments and vascular systems and on the results of molecular mapping. The molecular anatomical approach thus provides a powerful tool for understanding the physiological processes that take place in the highly elaborate kidney of cartilaginous fishes. Copyright © 2014 the American Physiological Society.
Adaptive runtime for a multiprocessing API
Antao, Samuel F.; Bertolli, Carlo; Eichenberger, Alexandre E.; O'Brien, John K.
2016-11-15
A computer-implemented method includes selecting a runtime for executing a program. The runtime includes a first combination of feature implementations, where each feature implementation implements a feature of an application programming interface (API). Execution of the program is monitored, and the execution uses the runtime. Monitor data is generated based on the monitoring. A second combination of feature implementations are selected, by a computer processor, where the selection is based at least in part on the monitor data. The runtime is modified by activating the second combination of feature implementations to replace the first combination of feature implementations.
Adaptive runtime for a multiprocessing API
Antao, Samuel F.; Bertolli, Carlo; Eichenberger, Alexandre E.; O'Brien, John K.
2016-10-11
A computer-implemented method includes selecting a runtime for executing a program. The runtime includes a first combination of feature implementations, where each feature implementation implements a feature of an application programming interface (API). Execution of the program is monitored, and the execution uses the runtime. Monitor data is generated based on the monitoring. A second combination of feature implementations are selected, by a computer processor, where the selection is based at least in part on the monitor data. The runtime is modified by activating the second combination of feature implementations to replace the first combination of feature implementations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tyagi, N; Sutton, E; Hunt, M
Purpose: Capsular contracture (CC) is a serious complication in patients receiving implant-based reconstruction for breast cancer. The goal of this study was to identify image-based correlates of CC using MRI imaging in breast cancer patients who received both MRI and clinical evaluation following reconstructive surgery. Methods: We analyzed a retrospective dataset of 50 patients who had both a diagnostic MR and a plastic surgeon’s evaluations of CC score (Baker’s score) within a six month period following mastectomy and reconstructive surgery. T2w sagittal MRIs (TR/TE = 3500/102 ms, slice thickness = 4 mm) were used for morphological shape features (roundness, eccentricity,more » solidity, extent and ratio-length) and histogram features (median, skewness and kurtosis) of the implant and the pectoralis muscle overlying the implant. Implant and pectoralis muscles were segmented in 3D using Computation Environment for Radiological Research (CERR) and shape and histogram features were calculated as a function of Baker’s score. Results: Shape features such as roundness and eccentricity were statistically significant in differentiating grade 1 and grade 2 (p = 0.009; p = 0.06) as well as grade 1 and grade 3 CC (p = 0.001; p = 0.006). Solidity and extent were statistically significant in differentiating grade 1 and grade 3 CC (p = 0.04; p = 0.04). Ratio-length was statistically significant in differentiating all grades of CC except grade 2 and grade 3 that showed borderline significance (p = 0.06). The muscle thickness, median intensity and kurtosis were significant in differentiating between grade 1 and grade 3 (p = 0.02), grade 1 and grade 2 (p = 0.03) and grade 1 and grade 3 (p = 0.01) respectively. Conclusion: Morphological shape features described on MR images were associated with the severity of CC. MRI may be important in objectively evaluating outcomes in breast cancer patients who undergo implant reconstruction.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Song, J; Pollom, E; Durkee, B
2015-06-15
Purpose: To predict response to radiation treatment using computational FDG-PET and CT images in locally advanced head and neck cancer (HNC). Methods: 68 patients with State III-IVB HNC treated with chemoradiation were included in this retrospective study. For each patient, we analyzed primary tumor and lymph nodes on PET and CT scans acquired both prior to and during radiation treatment, which led to 8 combinations of image datasets. From each image set, we extracted high-throughput, radiomic features of the following types: statistical, morphological, textural, histogram, and wavelet, resulting in a total of 437 features. We then performed unsupervised redundancy removalmore » and stability test on these features. To avoid over-fitting, we trained a logistic regression model with simultaneous feature selection based on least absolute shrinkage and selection operator (LASSO). To objectively evaluate the prediction ability, we performed 5-fold cross validation (CV) with 50 random repeats of stratified bootstrapping. Feature selection and model training was solely conducted on the training set and independently validated on the holdout test set. Receiver operating characteristic (ROC) curve of the pooled Result and the area under the ROC curve (AUC) was calculated as figure of merit. Results: For predicting local-regional recurrence, our model built on pre-treatment PET of lymph nodes achieved the best performance (AUC=0.762) on 5-fold CV, which compared favorably with node volume and SUVmax (AUC=0.704 and 0.449, p<0.001). Wavelet coefficients turned out to be the most predictive features. Prediction of distant recurrence showed a similar trend, in which pre-treatment PET features of lymph nodes had the highest AUC of 0.705. Conclusion: The radiomics approach identified novel imaging features that are predictive to radiation treatment response. If prospectively validated in larger cohorts, they could aid in risk-adaptive treatment of HNC.« less
Local-Scale Simulations of Nucleate Boiling on Micrometer Featured Surfaces: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sitaraman, Hariswaran; Moreno, Gilberto; Narumanchi, Sreekant V
2017-08-03
A high-fidelity computational fluid dynamics (CFD)-based model for bubble nucleation of the refrigerant HFE7100 on micrometer-featured surfaces is presented in this work. The single-fluid incompressible Navier-Stokes equations, along with energy transport and natural convection effects are solved on a featured surface resolved grid. An a priori cavity detection method is employed to convert raw profilometer data of a surface into well-defined cavities. The cavity information and surface morphology are represented in the CFD model by geometric mesh deformations. Surface morphology is observed to initiate buoyancy-driven convection in the liquid phase, which in turn results in faster nucleation of cavities. Simulationsmore » pertaining to a generic rough surface show a trend where smaller size cavities nucleate with higher wall superheat. This local-scale model will serve as a self-consistent connection to larger device scale continuum models where local feature representation is not possible.« less
Local-Scale Simulations of Nucleate Boiling on Micrometer-Featured Surfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sitaraman, Hariswaran; Moreno, Gilberto; Narumanchi, Sreekant V
2017-07-12
A high-fidelity computational fluid dynamics (CFD)-based model for bubble nucleation of the refrigerant HFE7100 on micrometer-featured surfaces is presented in this work. The single-fluid incompressible Navier-Stokes equations, along with energy transport and natural convection effects are solved on a featured surface resolved grid. An a priori cavity detection method is employed to convert raw profilometer data of a surface into well-defined cavities. The cavity information and surface morphology are represented in the CFD model by geometric mesh deformations. Surface morphology is observed to initiate buoyancy-driven convection in the liquid phase, which in turn results in faster nucleation of cavities. Simulationsmore » pertaining to a generic rough surface show a trend where smaller size cavities nucleate with higher wall superheat. This local-scale model will serve as a self-consistent connection to larger device scale continuum models where local feature representation is not possible.« less
Thiery, Ghislain; Guy, Franck; Lazzari, Vincent
2017-06-01
Although conveying an indisputable morphological and behavioral signal, traditional dietary categories such as frugivorous or folivorous tend to group a wide range of food mechanical properties together. Because food/tooth interactions are mostly mechanical, it seems relevant to investigate the dental morphology of primates based on mechanical categories. However, existing mechanical categories classify food by its properties but cannot be used as factors to classify primate dietary habits. This comes from the fact that one primate species might be adapted to a wide range of food mechanical properties. To tackle this issue, what follows is an original framework based on action-related categories. The proposal here is to classify extant primates based on the range of food mechanical properties they can process through one given action. The resulting categories can be used as factors to investigate the dental tools available to primates. Furthermore, cracking, grinding, and shearing categories assigned depending on the hardness and the toughness of food are shown to be supported by morphological data (3D relative enamel thickness) and topographic data (relief index, occlusal complexity, and Dirichlet normal energy). Inferring food mechanical properties from dental morphology is especially relevant for the study of extinct primates, which are mainly documented by dental remains. Hence, we use action-related categories to investigate the molar morphology of an extinct colobine monkey Mesopithecus pentelicus from the Miocene of Pikermi, Greece. Action-related categories show contrasting results compared with classical categories and give us new insights into the dietary adaptations of this extinct primate. Finally, we provide some possible directions for future research aiming to test action-related categories. In particular, we suggest acquiring more data on mechanically challenging fallback foods and advocate the use of other food mechanical properties such as abrasiveness. The development of new action-related dental metrics is also crucial for primate dental studies. © 2017 Wiley Periodicals, Inc.
Dedifferentiated Liposarcoma With Epithelioid/Epithelial Features.
Makise, Naohiro; Yoshida, Akihiko; Komiyama, Motokiyo; Nakatani, Fumihiko; Yonemori, Kan; Kawai, Akira; Fukayama, Masashi; Hiraoka, Nobuyoshi
2017-11-01
Dedifferentiated liposarcoma (DDLPS) demonstrates a variety of growth patterns, and their histologic resemblance to other spindle cell mesenchymal tumors has been widely recognized. However, epithelioid morphology in DDLPS has only rarely been documented. Here, we report 6 cases of DDLPS with striking epithelioid/epithelial features. The patients were 5 men and 1 woman with a median age of 61 years. All tumors were located in the internal trunk. During follow-up of 1 to 41 months, local recurrence, distant metastases, and tumor-related death occurred in 4, 2, and 4 patients, respectively. Beside well-differentiated liposarcoma component and conventional high-grade spindle cell morphology, all tumors focally exhibited growth comprising small or large epithelioid cells in diffuse or sheet-like proliferation. Rhabdoid cells were present in 2 cases. All 5 tumors tested harbored MDM2 amplification. Cytokeratin and/or epithelial membrane antigen were at least focally positive in all 5 tumors tested. One case contained a small focus of novel heterologous epithelial differentiation with acinar structures, wherein cytokeratin, MOC31, and claudin-4 were diffusely expressed and H3K27me3 expression was lost. DDLPS with epithelioid/epithelial features may lead to misdiagnosis of carcinoma or mesothelioma, and their diagnosis should be based on correlation with clinicopathologic and molecular findings. The epithelioid morphology in DDLPS may suggest an aggressive behavior based on this small series. In addition, we document 2 cases of MDM2-amplified undifferentiated neoplasm with epithelioid features in the internal trunk that lacked association with well-differentiated liposarcoma histology and showed rapid clinical course. Whether these latter tumors belong to DDLPS with epithelioid features requires further study.
Morphological similarity and ecological overlap in two rotifer species.
Gabaldón, Carmen; Montero-Pau, Javier; Serra, Manuel; Carmona, María José
2013-01-01
Co-occurrence of cryptic species raises theoretically relevant questions regarding their coexistence and ecological similarity. Given their great morphological similitude and close phylogenetic relationship (i.e., niche retention), these species will have similar ecological requirements and are expected to have strong competitive interactions. This raises the problem of finding the mechanisms that may explain the coexistence of cryptic species and challenges the conventional view of coexistence based on niche differentiation. The cryptic species complex of the rotifer Brachionus plicatilis is an excellent model to study these questions and to test hypotheses regarding ecological differentiation. Rotifer species within this complex are filtering zooplankters commonly found inhabiting the same ponds across the Iberian Peninsula and exhibit an extremely similar morphology-some of them being even virtually identical. Here, we explore whether subtle differences in body size and morphology translate into ecological differentiation by comparing two extremely morphologically similar species belonging to this complex: B. plicatilis and B. manjavacas. We focus on three key ecological features related to body size: (1) functional response, expressed by clearance rates; (2) tolerance to starvation, measured by growth and reproduction; and (3) vulnerability to copepod predation, measured by the number of preyed upon neonates. No major differences between B. plicatilis and B. manjavacas were found in the response to these features. Our results demonstrate the existence of a substantial niche overlap, suggesting that the subtle size differences between these two cryptic species are not sufficient to explain their coexistence. This lack of evidence for ecological differentiation in the studied biotic niche features is in agreement with the phylogenetic limiting similarity hypothesis but requires a mechanistic explanation of the coexistence of these species not based on differentiation related to biotic niche axes.
Multiscale characterization and analysis of shapes
Prasad, Lakshman; Rao, Ramana
2002-01-01
An adaptive multiscale method approximates shapes with continuous or uniformly and densely sampled contours, with the purpose of sparsely and nonuniformly discretizing the boundaries of shapes at any prescribed resolution, while at the same time retaining the salient shape features at that resolution. In another aspect, a fundamental geometric filtering scheme using the Constrained Delaunay Triangulation (CDT) of polygonized shapes creates an efficient parsing of shapes into components that have semantic significance dependent only on the shapes' structure and not on their representations per se. A shape skeletonization process generalizes to sparsely discretized shapes, with the additional benefit of prunability to filter out irrelevant and morphologically insignificant features. The skeletal representation of characters of varying thickness and the elimination of insignificant and noisy spurs and branches from the skeleton greatly increases the robustness, reliability and recognition rates of character recognition algorithms.
Parallel, Gradient-Based Anisotropic Mesh Adaptation for Re-entry Vehicle Configurations
NASA Technical Reports Server (NTRS)
Bibb, Karen L.; Gnoffo, Peter A.; Park, Michael A.; Jones, William T.
2006-01-01
Two gradient-based adaptation methodologies have been implemented into the Fun3d refine GridEx infrastructure. A spring-analogy adaptation which provides for nodal movement to cluster mesh nodes in the vicinity of strong shocks has been extended for general use within Fun3d, and is demonstrated for a 70 sphere cone at Mach 2. A more general feature-based adaptation metric has been developed for use with the adaptation mechanics available in Fun3d, and is applicable to any unstructured, tetrahedral, flow solver. The basic functionality of general adaptation is explored through a case of flow over the forebody of a 70 sphere cone at Mach 6. A practical application of Mach 10 flow over an Apollo capsule, computed with the Felisa flow solver, is given to compare the adaptive mesh refinement with uniform mesh refinement. The examples of the paper demonstrate that the gradient-based adaptation capability as implemented can give an improvement in solution quality.
NASA Technical Reports Server (NTRS)
Samarasinha, Nalin H.
2000-01-01
We show that the circular character of continuum structures observed in the coma of comet Hale-Bopp around the perihelion passage is most likely due to a dust jet from a large extended active region on the surface. Coma morphology due to a wide jet is different from that due to a narrow jet. The latter shows foreshortening effects due to observing geometry, wider jet produces more circular features. This circularization effect provides a self-consistent explanation for the evolution of near-perihelion coma morphology. No changes in the direction of the rotational angular momentum vector are required during this period in contrast to the models of Schleicher et al. This circularization effect also enables us to produce near-circular coma features in the S-E quadrant during 1997 late February and therefore questions the basic premise on which Sekanina bases his morphological arguments for a gravitationally bound satellite nucleus.
Shen, Simon; Syal, Karan; Tao, Nongjian; Wang, Shaopeng
2015-12-01
We present a Single-Cell Motion Characterization System (SiCMoCS) to automatically extract bacterial cell morphological features from microscope images and use those features to automatically classify cell motion for rod shaped motile bacterial cells. In some imaging based studies, bacteria cells need to be attached to the surface for time-lapse observation of cellular processes such as cell membrane-protein interactions and membrane elasticity. These studies often generate large volumes of images. Extracting accurate bacterial cell morphology features from these images is critical for quantitative assessment. Using SiCMoCS, we demonstrated simultaneous and automated motion tracking and classification of hundreds of individual cells in an image sequence of several hundred frames. This is a significant improvement from traditional manual and semi-automated approaches to segmenting bacterial cells based on empirical thresholds, and a first attempt to automatically classify bacterial motion types for motile rod shaped bacterial cells, which enables rapid and quantitative analysis of various types of bacterial motion.
NASA Astrophysics Data System (ADS)
Badalamenti, Fabio; Alagna, Adriana; Fici, Silvio
2015-03-01
Posidonia oceanica meadows are acknowledged as one of the most valuable ecosystems of the Mediterranean Sea. P. oceanica has been historically described as a species typically growing on mobile substrates whose development requires precursor communities. Here we document for the first time the extensive presence of sticky hairs covering P. oceanica seedling roots. Adhesive root hairs allow the seedlings to firmly anchor to rocky substrates with anchorage strength values up to 5.23 N, regardless of the presence of algal cover and to colonise bare rock without the need for precursor assemblages to facilitate settlement. Adhesive root hairs are a morphological trait common on plants living on rocks in high-energy habitats, such as the riverweed Podostemaceae and the seagrass Phyllospadix scouleri. The presence of adhesive root hairs in P. oceanica juveniles suggests a preference of this species for hard substrates. Such an adaptation leads to hypothesize a new microsite driven bottleneck in P. oceanica seedling survival linked to substrate features. The mechanism described can favour plant establishment on rocky substrates, in contrast with traditional paradigms. This feature may have strongly influenced P. oceanica pattern of colonisation through sexual propagules in both the past and present.
An Automated Baseline Correction Method Based on Iterative Morphological Operations.
Chen, Yunliang; Dai, Liankui
2018-05-01
Raman spectra usually suffer from baseline drift caused by fluorescence or other reasons. Therefore, baseline correction is a necessary and crucial step that must be performed before subsequent processing and analysis of Raman spectra. An automated baseline correction method based on iterative morphological operations is proposed in this work. The method can adaptively determine the structuring element first and then gradually remove the spectral peaks during iteration to get an estimated baseline. Experiments on simulated data and real-world Raman data show that the proposed method is accurate, fast, and flexible for handling different kinds of baselines in various practical situations. The comparison of the proposed method with some state-of-the-art baseline correction methods demonstrates its advantages over the existing methods in terms of accuracy, adaptability, and flexibility. Although only Raman spectra are investigated in this paper, the proposed method is hopefully to be used for the baseline correction of other analytical instrumental signals, such as IR spectra and chromatograms.
An adaptive deep Q-learning strategy for handwritten digit recognition.
Qiao, Junfei; Wang, Gongming; Li, Wenjing; Chen, Min
2018-02-22
Handwritten digits recognition is a challenging problem in recent years. Although many deep learning-based classification algorithms are studied for handwritten digits recognition, the recognition accuracy and running time still need to be further improved. In this paper, an adaptive deep Q-learning strategy is proposed to improve accuracy and shorten running time for handwritten digit recognition. The adaptive deep Q-learning strategy combines the feature-extracting capability of deep learning and the decision-making of reinforcement learning to form an adaptive Q-learning deep belief network (Q-ADBN). First, Q-ADBN extracts the features of original images using an adaptive deep auto-encoder (ADAE), and the extracted features are considered as the current states of Q-learning algorithm. Second, Q-ADBN receives Q-function (reward signal) during recognition of the current states, and the final handwritten digits recognition is implemented by maximizing the Q-function using Q-learning algorithm. Finally, experimental results from the well-known MNIST dataset show that the proposed Q-ADBN has a superiority to other similar methods in terms of accuracy and running time. Copyright © 2018 Elsevier Ltd. All rights reserved.
Paiva, Joana S.; Dias, Duarte
2017-01-01
In recent years, safer and more reliable biometric methods have been developed. Apart from the need for enhanced security, the media and entertainment sectors have also been applying biometrics in the emerging market of user-adaptable objects/systems to make these systems more user-friendly. However, the complexity of some state-of-the-art biometric systems (e.g., iris recognition) or their high false rejection rate (e.g., fingerprint recognition) is neither compatible with the simple hardware architecture required by reduced-size devices nor the new trend of implementing smart objects within the dynamic market of the Internet of Things (IoT). It was recently shown that an individual can be recognized by extracting features from their electrocardiogram (ECG). However, most current ECG-based biometric algorithms are computationally demanding and/or rely on relatively large (several seconds) ECG samples, which are incompatible with the aforementioned application fields. Here, we present a computationally low-cost method (patent pending), including simple mathematical operations, for identifying a person using only three ECG morphology-based characteristics from a single heartbeat. The algorithm was trained/tested using ECG signals of different duration from the Physionet database on more than 60 different training/test datasets. The proposed method achieved maximal averaged accuracy of 97.450% in distinguishing each subject from a ten-subject set and false acceptance and rejection rates (FAR and FRR) of 5.710±1.900% and 3.440±1.980%, respectively, placing Beat-ID in a very competitive position in terms of the FRR/FAR among state-of-the-art methods. Furthermore, the proposed method can identify a person using an average of 1.020 heartbeats. It therefore has FRR/FAR behavior similar to obtaining a fingerprint, yet it is simpler and requires less expensive hardware. This method targets low-computational/energy-cost scenarios, such as tiny wearable devices (e.g., a smart object that automatically adapts its configuration to the user). A hardware proof-of-concept implementation is presented as an annex to this paper. PMID:28719614
Paiva, Joana S; Dias, Duarte; Cunha, João P S
2017-01-01
In recent years, safer and more reliable biometric methods have been developed. Apart from the need for enhanced security, the media and entertainment sectors have also been applying biometrics in the emerging market of user-adaptable objects/systems to make these systems more user-friendly. However, the complexity of some state-of-the-art biometric systems (e.g., iris recognition) or their high false rejection rate (e.g., fingerprint recognition) is neither compatible with the simple hardware architecture required by reduced-size devices nor the new trend of implementing smart objects within the dynamic market of the Internet of Things (IoT). It was recently shown that an individual can be recognized by extracting features from their electrocardiogram (ECG). However, most current ECG-based biometric algorithms are computationally demanding and/or rely on relatively large (several seconds) ECG samples, which are incompatible with the aforementioned application fields. Here, we present a computationally low-cost method (patent pending), including simple mathematical operations, for identifying a person using only three ECG morphology-based characteristics from a single heartbeat. The algorithm was trained/tested using ECG signals of different duration from the Physionet database on more than 60 different training/test datasets. The proposed method achieved maximal averaged accuracy of 97.450% in distinguishing each subject from a ten-subject set and false acceptance and rejection rates (FAR and FRR) of 5.710±1.900% and 3.440±1.980%, respectively, placing Beat-ID in a very competitive position in terms of the FRR/FAR among state-of-the-art methods. Furthermore, the proposed method can identify a person using an average of 1.020 heartbeats. It therefore has FRR/FAR behavior similar to obtaining a fingerprint, yet it is simpler and requires less expensive hardware. This method targets low-computational/energy-cost scenarios, such as tiny wearable devices (e.g., a smart object that automatically adapts its configuration to the user). A hardware proof-of-concept implementation is presented as an annex to this paper.
NASA Astrophysics Data System (ADS)
Lo, Joseph Y.; Gavrielides, Marios A.; Markey, Mia K.; Jesneck, Jonathan L.
2003-05-01
We developed an ensemble classifier for the task of computer-aided diagnosis of breast microcalcification clusters,which are very challenging to characterize for radiologists and computer models alike. The purpose of this study is to help radiologists identify whether suspicious calcification clusters are benign vs. malignant, such that they may potentially recommend fewer unnecessary biopsies for actually benign lesions. The data consists of mammographic features extracted by automated image processing algorithms as well as manually interpreted by radiologists according to a standardized lexicon. We used 292 cases from a publicly available mammography database. From each cases, we extracted 22 image processing features pertaining to lesion morphology, 5 radiologist features also pertaining to morphology, and the patient age. Linear discriminant analysis (LDA) models were designed using each of the three data types. Each local model performed poorly; the best was one based upon image processing features which yielded ROC area index AZ of 0.59 +/- 0.03 and partial AZ above 90% sensitivity of 0.08 +/- 0.03. We then developed ensemble models using different combinations of those data types, and these models all improved performance compared to the local models. The final ensemble model was based upon 5 features selected by stepwise LDA from all 28 available features. This ensemble performed with AZ of 0.69 +/- 0.03 and partial AZ of 0.21 +/- 0.04, which was statistically significantly better than the model based on the image processing features alone (p<0.001 and p=0.01 for full and partial AZ respectively). This demonstrated the value of the radiologist-extracted features as a source of information for this task. It also suggested there is potential for improved performance using this ensemble classifier approach to combine different sources of currently available data.
Automated detection of tuberculosis on sputum smeared slides using stepwise classification
NASA Astrophysics Data System (ADS)
Divekar, Ajay; Pangilinan, Corina; Coetzee, Gerrit; Sondh, Tarlochan; Lure, Fleming Y. M.; Kennedy, Sean
2012-03-01
Routine visual slide screening for identification of tuberculosis (TB) bacilli in stained sputum slides under microscope system is a tedious labor-intensive task and can miss up to 50% of TB. Based on the Shannon cofactor expansion on Boolean function for classification, a stepwise classification (SWC) algorithm is developed to remove different types of false positives, one type at a time, and to increase the detection of TB bacilli at different concentrations. Both bacilli and non-bacilli objects are first analyzed and classified into several different categories including scanty positive, high concentration positive, and several non-bacilli categories: small bright objects, beaded, dim elongated objects, etc. The morphological and contrast features are extracted based on aprior clinical knowledge. The SWC is composed of several individual classifiers. Individual classifier to increase the bacilli counts utilizes an adaptive algorithm based on a microbiologist's statistical heuristic decision process. Individual classifier to reduce false positive is developed through minimization from a binary decision tree to classify different types of true and false positive based on feature vectors. Finally, the detection algorithm is was tested on 102 independent confirmed negative and 74 positive cases. A multi-class task analysis shows high accordance rate for negative, scanty, and high-concentration as 88.24%, 56.00%, and 97.96%, respectively. A binary-class task analysis using a receiver operating characteristics method with the area under the curve (Az) is also utilized to analyze the performance of this detection algorithm, showing the superior detection performance on the high-concentration cases (Az=0.913) and cases mixed with high-concentration and scanty cases (Az=0.878).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Desseroit, M; Cheze Le Rest, C; Tixier, F
2014-06-15
Purpose: Previous studies have shown that CT or 18F-FDG PET intratumor heterogeneity features computed using texture analysis may have prognostic value in Non-Small Cell Lung Cancer (NSCLC), but have been mostly investigated separately. The purpose of this study was to evaluate the potential added value with respect to prognosis regarding the combination of non-enhanced CT and 18F-FDG PET heterogeneity textural features on primary NSCLC tumors. Methods: One hundred patients with non-metastatic NSCLC (stage I–III), treated with surgery and/or (chemo)radiotherapy, that underwent staging 18F-FDG PET/CT images, were retrospectively included. Morphological tumor volumes were semi-automatically delineated on non-enhanced CT using 3D SlicerTM.more » Metabolically active tumor volumes (MATV) were automatically delineated on PET using the Fuzzy Locally Adaptive Bayesian (FLAB) method. Intratumoral tissue density and FDG uptake heterogeneities were quantified using texture parameters calculated from co-occurrence, difference, and run-length matrices. In addition to these textural features, first order histogram-derived metrics were computed on the whole morphological CT tumor volume, as well as on sub-volumes corresponding to fine, medium or coarse textures determined through various levels of LoG-filtering. Association with survival regarding all extracted features was assessed using Cox regression for both univariate and multivariate analysis. Results: Several PET and CT heterogeneity features were prognostic factors of overall survival in the univariate analysis. CT histogram-derived kurtosis and uniformity, as well as Low Grey-level High Run Emphasis (LGHRE), and PET local entropy were independent prognostic factors. Combined with stage and MATV, they led to a powerful prognostic model (p<0.0001), with median survival of 49 vs. 12.6 months and a hazard ratio of 3.5. Conclusion: Intratumoral heterogeneity quantified through textural features extracted from both CT and FDG PET images have complementary and independent prognostic value in NSCLC.« less
Cold-Temperature Plastic Resin Embedding of Liver for DNA- and RNA-Based Genotyping
Finkelstein, Sydney D.; Dhir, Rajiv; Rabinovitz, Mordechai; Bischeglia, Michelle; Swalsky, Patricia A.; DeFlavia, Petrina; Woods, Jeffrey; Bakker, Anke; Becich, Michael
1999-01-01
The standard practice of tissue fixation in 10% formalin followed by embedding in paraffin wax preserves cellular morphology at the expense of availability and quality of DNA and RNA. The negative effect on cellular constituents results from a combination of extensive cross-linking and strand scission of DNA, RNA, and proteins induced by formaldehyde as well as RNA loss secondary to ubiquitous RNase activity and negative effects of high temperature exposure during paraffin melting, microscopic section collection, and tissue adherence to glass slides. An effective strategy to correlate cellular phenotype with molecular genotype involves microdissection of tissue sections based on specific histopathological features followed by genotyping of minute representative samples for specific underlying molecular alterations. Currently, this approach is limited to short-length polymerase chain reaction amplification (<250 bp) of DNA, due to the negative effects of standard tissue fixation and processing. To overcome this obstacle and permit both cellular morphology and nucleic acid content to be preserved to the fullest extent, we instituted a system of cold-temperature plastic resin embedding based on the use of the water-miscible methyl methacrylate polymer known as Immunobed (Polysciences, Warminster, PA). The system is simple, easy to adapt to clinical practice, and cost-effective. Immunobed tissue sections demonstrate a cellular appearance equivalent or even superior to that of standard tissue sections. Moreover, thin sectioning (0.5–1.0 μm thickness) renders ultrastructural evaluation feasible on plastic-embedded blocks. Tissue microdissection is readily performed, yielding high levels of long DNA and RNA for genomic and transcription-based correlative molecular analysis. We recommend the use of Immunobed or similar products for use in molecular anatomical pathology. PMID:11272904
López-Fernández, Hernán; Winemiller, Kirk O.; Montaña, Carmen; Honeycutt, Rodney L.
2012-01-01
Genera within the South American cichlid tribe Geophagini display specialized feeding and reproductive strategies, with some taxa specialized for both substrate-sifting and mouth brooding. Several lineages within the clade also possess an epibranchial lobe (EBL), a unique pharyngeal structure that has been proposed to have a function in feeding and/or mouth brooding. A recently published genus-level phylogeny of Neotropical cichlids was used as the evolutionary framework for investigating the evolution of morphological features presumably correlated with diet and mouth brooding in the tribe Geophagini. We tested for possible associations between the geophagine epibranchial lobe and benthic feeding and mouth brooding. We also addressed whether the EBL may be associated with unique patterns of diversification in certain geophagine clades. Tests of binary character correlations revealed the EBL was significantly associated with mouth brooding. We also tested for a relationship between diet and morphology. We analyzed stomach contents and morphometric variation among 21 species, with data for two additional species obtained from the literature. Principal Components Analysis revealed axes of morphological variation significantly correlated with piscivory and benthivory, and both morphology and diet were significantly associated with phylogeny. These results suggest that the EBL could be an adaptation for either feeding or mouth brooding. The EBL, however, was not associated with species richness or accelerated rates of phyletic diversification. PMID:22485154
Flowe, Heather D.
2012-01-01
Background This study tested whether the 2D face evaluation model proposed by Oosterhof and Todorov can parsimoniously account for why some faces are perceived as more criminal-looking than others. The 2D model proposes that trust and dominance are spontaneously evaluated from features of faces. These evaluations have adaptive significance from an evolutionary standpoint because they indicate whether someone should be approached or avoided. Method Participants rated the emotional state, personality traits, and criminal appearance of faces shown in photographs. The photographs were of males and females taken under naturalistic conditions (i.e., police mugshots) and highly controlled conditions. In the controlled photographs, the emotion display of the actor was systematically varied (happy expression, emotionally neutral expression, or angry expression). Results Both male and female faces rated high in criminal appearance were perceived as less trustworthy and more dominant in police mugshots as well as in photographs taken under highly controlled conditions. Additionally, emotionally neutral faces were deemed as less trustworthy if they were perceived as angry, and more dominant if they were morphologically mature. Systematically varying emotion displays also affected criminality ratings, with angry faces perceived as the most criminal, followed by neutral faces and then happy faces. Conclusion The 2D model parsimoniously accounts for criminality perceptions. This study extends past research by demonstrating that morphological features that signal high dominance and low trustworthiness can also signal high criminality. Spontaneous evaluations regarding criminal propensity may have adaptive value in that they may help us to avoid someone who is physically threatening. On the other hand, such evaluations could inappropriately influence decision making in criminal identification lineups. Hence, additional research is needed to discover whether and how people can avoid making evaluations regarding criminality from a person’s facial appearance. PMID:22675479
Flowe, Heather D
2012-01-01
This study tested whether the 2D face evaluation model proposed by Oosterhof and Todorov can parsimoniously account for why some faces are perceived as more criminal-looking than others. The 2D model proposes that trust and dominance are spontaneously evaluated from features of faces. These evaluations have adaptive significance from an evolutionary standpoint because they indicate whether someone should be approached or avoided. Participants rated the emotional state, personality traits, and criminal appearance of faces shown in photographs. The photographs were of males and females taken under naturalistic conditions (i.e., police mugshots) and highly controlled conditions. In the controlled photographs, the emotion display of the actor was systematically varied (happy expression, emotionally neutral expression, or angry expression). Both male and female faces rated high in criminal appearance were perceived as less trustworthy and more dominant in police mugshots as well as in photographs taken under highly controlled conditions. Additionally, emotionally neutral faces were deemed as less trustworthy if they were perceived as angry, and more dominant if they were morphologically mature. Systematically varying emotion displays also affected criminality ratings, with angry faces perceived as the most criminal, followed by neutral faces and then happy faces. The 2D model parsimoniously accounts for criminality perceptions. This study extends past research by demonstrating that morphological features that signal high dominance and low trustworthiness can also signal high criminality. Spontaneous evaluations regarding criminal propensity may have adaptive value in that they may help us to avoid someone who is physically threatening. On the other hand, such evaluations could inappropriately influence decision making in criminal identification lineups. Hence, additional research is needed to discover whether and how people can avoid making evaluations regarding criminality from a person's facial appearance.
Nanoscale Morphology of PTB7 Based Organic Photovoltaics as a Function of Fullerene Size
Roehling, John D.; Baran, Derya; Sit, Joseph; ...
2016-08-08
High efficiency polymer:fullerene photovoltaic device layers self-assemble with hierarchical features from ångströms to 100’s of nanometers. The feature size, shape, composition, orientation, and order all contribute to device efficiency and are simultaneously difficult to study due to poor contrast between carbon based materials. This study seeks to increase device efficiency and simplify morphology measurements by replacing the typical fullerene acceptor with endohedral fullerene Lu 3N@PC 80BEH. The metal atoms give excellent scattering contrast for electron beam and x-ray experiments. Additionally, Lu 3N@PC 80BEH has a lower electron affinity than standard fullerenes, which can raise the open circuit voltage of photovoltaicmore » devices. Electron microscopy techniques are used to produce a detailed account of morphology evolution in mixtures of Lu 3N@PC 80BEH with the record breaking donor polymer, PTB7 and coated using solvent mixtures. We demonstrate that common solvent additives like 1,8-diiodooctane or chloronapthalene do not improve the morphology of endohedral fullerene devices as expected. The poor device performance is attributed to the lack of mutual miscibility between this particular polymer:fullerene combination and to co-crystallization of Lu 3N@PC 80BEH with 1,8-diiodooctane. This negative result explains why solvent additives mixtures are not necessarily a morphology cure-all.« less
Nanoscale Morphology of PTB7 Based Organic Photovoltaics as a Function of Fullerene Size
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roehling, John D.; Baran, Derya; Sit, Joseph
High efficiency polymer:fullerene photovoltaic device layers self-assemble with hierarchical features from ångströms to 100’s of nanometers. The feature size, shape, composition, orientation, and order all contribute to device efficiency and are simultaneously difficult to study due to poor contrast between carbon based materials. This study seeks to increase device efficiency and simplify morphology measurements by replacing the typical fullerene acceptor with endohedral fullerene Lu 3N@PC 80BEH. The metal atoms give excellent scattering contrast for electron beam and x-ray experiments. Additionally, Lu 3N@PC 80BEH has a lower electron affinity than standard fullerenes, which can raise the open circuit voltage of photovoltaicmore » devices. Electron microscopy techniques are used to produce a detailed account of morphology evolution in mixtures of Lu 3N@PC 80BEH with the record breaking donor polymer, PTB7 and coated using solvent mixtures. We demonstrate that common solvent additives like 1,8-diiodooctane or chloronapthalene do not improve the morphology of endohedral fullerene devices as expected. The poor device performance is attributed to the lack of mutual miscibility between this particular polymer:fullerene combination and to co-crystallization of Lu 3N@PC 80BEH with 1,8-diiodooctane. This negative result explains why solvent additives mixtures are not necessarily a morphology cure-all.« less
Benítez-Benítez, Carmen; Fernández-Mazuecos, Mario; Martín-Bravo, Santiago
2017-01-01
Plants growing in high-mountain environments may share common morphological features through convergent evolution resulting from an adaptative response to similar ecological conditions. The Carex flava species complex (sect. Ceratocystis, Cyperaceae) includes four dwarf morphotypes from Circum-Mediterranean mountains whose taxonomic status has remained obscure due to their apparent morphological resemblance. In this study we investigate whether these dwarf mountain morphotypes result from convergent evolution or common ancestry, and whether there are ecological differences promoting differentiation between the dwarf morphotypes and their taxonomically related large, well-developed counterparts. We used phylogenetic analyses of nrDNA (ITS) and ptDNA (rps16 and 5’trnK) sequences, ancestral state reconstruction, multivariate analyses of macro- and micromorphological data, and species distribution modeling. Dwarf morphotype populations were found to belong to three different genetic lineages, and several morphotype shifts from well-developed to dwarf were suggested by ancestral state reconstructions. Distribution modeling supported differences in climatic niche at regional scale between the large forms, mainly from lowland, and the dwarf mountain morphotypes. Our results suggest that dwarf mountain morphotypes within this sedge group are small forms of different lineages that have recurrently adapted to mountain habitats through convergent evolution. PMID:29281689
Han, Te; Jiang, Dongxiang; Zhang, Xiaochen; Sun, Yankui
2017-03-27
Rotating machinery is widely used in industrial applications. With the trend towards more precise and more critical operating conditions, mechanical failures may easily occur. Condition monitoring and fault diagnosis (CMFD) technology is an effective tool to enhance the reliability and security of rotating machinery. In this paper, an intelligent fault diagnosis method based on dictionary learning and singular value decomposition (SVD) is proposed. First, the dictionary learning scheme is capable of generating an adaptive dictionary whose atoms reveal the underlying structure of raw signals. Essentially, dictionary learning is employed as an adaptive feature extraction method regardless of any prior knowledge. Second, the singular value sequence of learned dictionary matrix is served to extract feature vector. Generally, since the vector is of high dimensionality, a simple and practical principal component analysis (PCA) is applied to reduce dimensionality. Finally, the K -nearest neighbor (KNN) algorithm is adopted for identification and classification of fault patterns automatically. Two experimental case studies are investigated to corroborate the effectiveness of the proposed method in intelligent diagnosis of rotating machinery faults. The comparison analysis validates that the dictionary learning-based matrix construction approach outperforms the mode decomposition-based methods in terms of capacity and adaptability for feature extraction.
Liu, Po C; Lee, Yi T; Wang, Chun Y; Yang, Ya-Tang
2016-09-27
We describe a low cost, configurable morbidostat for characterizing the evolutionary pathway of antibiotic resistance. The morbidostat is a bacterial culture device that continuously monitors bacterial growth and dynamically adjusts the drug concentration to constantly challenge the bacteria as they evolve to acquire drug resistance. The device features a working volume of ~10 ml and is fully automated and equipped with optical density measurement and micro-pumps for medium and drug delivery. To validate the platform, we measured the stepwise acquisition of trimethoprim resistance in Escherichia coli MG 1655, and integrated the device with a multiplexed microfluidic platform to investigate cell morphology and antibiotic susceptibility. The approach can be up-scaled to laboratory studies of antibiotic drug resistance, and is extendible to adaptive evolution for strain improvements in metabolic engineering and other bacterial culture experiments.
Grid adaption using Chimera composite overlapping meshes
NASA Technical Reports Server (NTRS)
Kao, Kai-Hsiung; Liou, Meng-Sing; Chow, Chuen-Yen
1993-01-01
The objective of this paper is to perform grid adaptation using composite over-lapping meshes in regions of large gradient to capture the salient features accurately during computation. The Chimera grid scheme, a multiple overset mesh technique, is used in combination with a Navier-Stokes solver. The numerical solution is first converged to a steady state based on an initial coarse mesh. Solution-adaptive enhancement is then performed by using a secondary fine grid system which oversets on top of the base grid in the high-gradient region, but without requiring the mesh boundaries to join in any special way. Communications through boundary interfaces between those separated grids are carried out using tri-linear interpolation. Applications to the Euler equations for shock reflections and to a shock wave/boundary layer interaction problem are tested. With the present method, the salient features are well resolved.
Scale-adaptive compressive tracking with feature integration
NASA Astrophysics Data System (ADS)
Liu, Wei; Li, Jicheng; Chen, Xiao; Li, Shuxin
2016-05-01
Numerous tracking-by-detection methods have been proposed for robust visual tracking, among which compressive tracking (CT) has obtained some promising results. A scale-adaptive CT method based on multifeature integration is presented to improve the robustness and accuracy of CT. We introduce a keypoint-based model to achieve the accurate scale estimation, which can additionally give a prior location of the target. Furthermore, by the high efficiency of data-independent random projection matrix, multiple features are integrated into an effective appearance model to construct the naïve Bayes classifier. At last, an adaptive update scheme is proposed to update the classifier conservatively. Experiments on various challenging sequences demonstrate substantial improvements by our proposed tracker over CT and other state-of-the-art trackers in terms of dealing with scale variation, abrupt motion, deformation, and illumination changes.
Grid adaptation using chimera composite overlapping meshes
NASA Technical Reports Server (NTRS)
Kao, Kai-Hsiung; Liou, Meng-Sing; Chow, Chuen-Yen
1994-01-01
The objective of this paper is to perform grid adaptation using composite overlapping meshes in regions of large gradient to accurately capture the salient features during computation. The chimera grid scheme, a multiple overset mesh technique, is used in combination with a Navier-Stokes solver. The numerical solution is first converged to a steady state based on an initial coarse mesh. Solution-adaptive enhancement is then performed by using a secondary fine grid system which oversets on top of the base grid in the high-gradient region, but without requiring the mesh boundaries to join in any special way. Communications through boundary interfaces between those separated grids are carried out using trilinear interpolation. Application to the Euler equations for shock reflections and to shock wave/boundary layer interaction problem are tested. With the present method, the salient features are well-resolved.
Grid adaptation using Chimera composite overlapping meshes
NASA Technical Reports Server (NTRS)
Kao, Kai-Hsiung; Liou, Meng-Sing; Chow, Chuen-Yen
1993-01-01
The objective of this paper is to perform grid adaptation using composite over-lapping meshes in regions of large gradient to capture the salient features accurately during computation. The Chimera grid scheme, a multiple overset mesh technique, is used in combination with a Navier-Stokes solver. The numerical solution is first converged to a steady state based on an initial coarse mesh. Solution-adaptive enhancement is then performed by using a secondary fine grid system which oversets on top of the base grid in the high-gradient region, but without requiring the mesh boundaries to join in any special way. Communications through boundary interfaces between those separated grids are carried out using tri-linear interpolation. Applications to the Euler equations for shock reflections and to a shock wave/boundary layer interaction problem are tested. With the present method, the salient features are well resolved.
Stripping Away the Forest; Sweden's Glacially Streamlined Landscape Evaluated through Lidar
NASA Astrophysics Data System (ADS)
Dowling, T.; Spagnolo, M.; Moller, P.
2014-12-01
The newly available Swedish National Height Model (SNHM) is a 2.0 m horizontal, and 0.1 m vertical resolution digital elevation model (DEM) that is free at the point of use for researchers based at Swedish institutions. With coverage currently at ~80% of the country and due to be completed by 2015 this spatially extensive, high resolution dataset has opened up new avenues of research for Quaternary geology in the country. The work presented here utilises the SNHM to map and evaluate more than 10,000 glacially streamlined landforms in the south-east of Sweden. The subsequently extracted morphological variables of length, width and height are then used to investiagte three areas; to test recent conclusions drawn from the glacially streamlined landscapes of Great Britain and North America/Canada, to assess the impact of different core types on the morphological expression of said features and to attempt to calculate which morphological variable best accounts for the variability seen in the dataset. It is found that in common with drumlins found in the British Isles, and elsewhere, their characteristics can be described by a log-normal distribution. However the long tail of the features characteristic distributions can cause problems for many of the commonly applied statistical methods of evaluation. Furthermore a re-appraisal of some conclusions drawn by previous works as to the presence of a fundamental scaling law in streamlined feature elongation is necessary due to evidence gathered here. Additionally; based on a limited sample size it has been found that it is not possible to differentiate a streamlined landform's core type based on their morphological characteristics alone. Larger 'known'-core data sets may be able to do so, based upon the length of a feature for example, however the sample size here was not sufficient to allow significant differences to come to the fore should they exist. And lastly, the extracted variable 'height' was found to account for the vast majoirty of the variance seen in the dataset when subject to a principle component analysis (PCA).
Coated substrate apparatus and method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bao, Zhenan; Diao, Ying; Mannsfeld, Stefan Christian Bernhardt
A coated substrate is formed with aligned objects such as small molecules, macromolecules and nanoscale particulates, such as inorganic, organic or inorganic/organic hybrid materials. In accordance with one or more embodiments, an apparatus or method involves an applicator having at least one surface patterned with protruded or indented features, and a coated substrate including a solution-based layer of objects having features and morphology attributes arranged as a function of the protruded or indented features.
Complex Environmental Data Modelling Using Adaptive General Regression Neural Networks
NASA Astrophysics Data System (ADS)
Kanevski, Mikhail
2015-04-01
The research deals with an adaptation and application of Adaptive General Regression Neural Networks (GRNN) to high dimensional environmental data. GRNN [1,2,3] are efficient modelling tools both for spatial and temporal data and are based on nonparametric kernel methods closely related to classical Nadaraya-Watson estimator. Adaptive GRNN, using anisotropic kernels, can be also applied for features selection tasks when working with high dimensional data [1,3]. In the present research Adaptive GRNN are used to study geospatial data predictability and relevant feature selection using both simulated and real data case studies. The original raw data were either three dimensional monthly precipitation data or monthly wind speeds embedded into 13 dimensional space constructed by geographical coordinates and geo-features calculated from digital elevation model. GRNN were applied in two different ways: 1) adaptive GRNN with the resulting list of features ordered according to their relevancy; and 2) adaptive GRNN applied to evaluate all possible models N [in case of wind fields N=(2^13 -1)=8191] and rank them according to the cross-validation error. In both cases training were carried out applying leave-one-out procedure. An important result of the study is that the set of the most relevant features depends on the month (strong seasonal effect) and year. The predictabilities of precipitation and wind field patterns, estimated using the cross-validation and testing errors of raw and shuffled data, were studied in detail. The results of both approaches were qualitatively and quantitatively compared. In conclusion, Adaptive GRNN with their ability to select features and efficient modelling of complex high dimensional data can be widely used in automatic/on-line mapping and as an integrated part of environmental decision support systems. 1. Kanevski M., Pozdnoukhov A., Timonin V. Machine Learning for Spatial Environmental Data. Theory, applications and software. EPFL Press. With a CD: data, software, guides. (2009). 2. Kanevski M. Spatial Predictions of Soil Contamination Using General Regression Neural Networks. Systems Research and Information Systems, Volume 8, number 4, 1999. 3. Robert S., Foresti L., Kanevski M. Spatial prediction of monthly wind speeds in complex terrain with adaptive general regression neural networks. International Journal of Climatology, 33 pp. 1793-1804, 2013.
Morphology and microstructure of composite materials
NASA Technical Reports Server (NTRS)
Tiwari, S. N.; Srinivansan, K.
1991-01-01
Lightweight continuous carbon fiber based polymeric composites are currently enjoying increasing acceptance as structural materials capable of replacing metals and alloys in load bearing applications. As with most new materials, these composites are undergoing trials with several competing processing techniques aimed at cost effectively producing void free consolidations with good mechanical properties. As metallic materials have been in use for several centuries, a considerable database exists on their morphology - microstructure; and the interrelationships between structure and properties have been well documented. Numerous studies on composites have established the crucial relationship between microstructure - morphology and properties. The various microstructural and morphological features of composite materials, particularly those accompanying different processing routes, are documented.
Peatmoss (Sphagnum) diversification associated with Miocene Northern Hemisphere climatic cooling?
Shaw, A Jonathan; Devos, Nicolas; Cox, Cymon J; Boles, Sandra B; Shaw, Blanka; Buchanan, Alex M; Cave, Lynette; Seppelt, Rodney
2010-06-01
Global climate changes sometimes spark biological radiations that can feed back to effect significant ecological impacts. Northern Hemisphere peatlands dominated by living and dead peatmosses (Sphagnum) harbor almost 30% of the global soil carbon pool and have functioned as a net carbon sink throughout the Holocene, and probably since the late Tertiary. Before that time, northern latitudes were dominated by tropical and temperate plant groups and ecosystems. Phylogenetic analyses of mosses (phylum Bryophyta) based on nucleotide sequences from the plastid, mitochondrial, and nuclear genomes indicate that most species of Sphagnum are of recent origin (ca. <20 Ma). Sphagnum species are not only well-adapted to boreal peatlands, they create the conditions that promote development of peatlands. The recent radiation that gave rise to extant diversity of peatmosses is temporally associated with Miocene climatic cooling in the Northern Hemisphere. The evolution of Sphagnum has had profound influences on global biogeochemistry because of the unique biochemical, physiological, and morphological features of these plants, both while alive and after death. 2010 Elsevier Inc. All rights reserved.
An Automated Classification Technique for Detecting Defects in Battery Cells
NASA Technical Reports Server (NTRS)
McDowell, Mark; Gray, Elizabeth
2006-01-01
Battery cell defect classification is primarily done manually by a human conducting a visual inspection to determine if the battery cell is acceptable for a particular use or device. Human visual inspection is a time consuming task when compared to an inspection process conducted by a machine vision system. Human inspection is also subject to human error and fatigue over time. We present a machine vision technique that can be used to automatically identify defective sections of battery cells via a morphological feature-based classifier using an adaptive two-dimensional fast Fourier transformation technique. The initial area of interest is automatically classified as either an anode or cathode cell view as well as classified as an acceptable or a defective battery cell. Each battery cell is labeled and cataloged for comparison and analysis. The result is the implementation of an automated machine vision technique that provides a highly repeatable and reproducible method of identifying and quantifying defects in battery cells.
NASA Astrophysics Data System (ADS)
Gersch, Alan M.; A’Hearn, Michael F.; Feaga, Lori M.
2018-04-01
We have applied our asymmetric spherical adaptation of Coupled Escape Probability to the modeling of optically thick cometary comae. Expanding on our previously published work, here we present models including asymmetric comae. Near-nucleus observations from the Deep Impact mission have been modeled, including observed coma morphology features. We present results for two primary volatile species of interest, H2O and CO2, for comet 9P/Tempel 1. Production rates calculated using our best-fit models are notably greater than those derived from the Deep Impact data based on the assumption of optically thin conditions, both for H2O and CO2 but more so for CO2, and fall between the Deep Impact values and the global pre-impact production rates measured at other observatories and published by Schleicher et al. (2006), Mumma et al. (2005), and Mäkinen et al. (2007).
Systematic significance of leaf epidermal features in holcoglossum (orchidaceae).
Fan, Jie; He, Runli; Zhang, Yinbo; Jin, Xiaohua
2014-01-01
Determining the generic delimitations within Aeridinae has been a significant issue in the taxonomy of Orchidaceae, and Holcoglossum is a typical case. We investigated the phylogenetic utility of the morphological traits of leaf epidermis in the taxonomy of Holcoglossum s.l. by using light and scanning electron microscopy to analyze 38 samples representing 12 species of Holcoglossum, with five species from five closely related genera, such as Ascocentrum, Luisia, Papilionanthe, Rhynchostylis and Vanda. Our results indicated that Holcoglossum can be distinguished from the related genera based on cuticular wax characteristics, and the inclusion of Holcoglossum himalaicum in Holcoglossum is supported by the epidermis characteristics found by LM and SEM. The percentage of the tetracytic, brachyparacytic, and laterocytic stomata types as well as the stomata index and certain combinations of special wax types support infrageneric clades and phylogenetic relationships that have been inferred from molecular data. Laterocytic and polarcytic stomata are perhaps ecological adaptations to the strong winds and ample rains in the alpine region of the Hengduanshan Mountains.
Systematic Significance of Leaf Epidermal Features in Holcoglossum (Orchidaceae)
Fan, Jie; He, Runli; Zhang, Yinbo; Jin, Xiaohua
2014-01-01
Determining the generic delimitations within Aeridinae has been a significant issue in the taxonomy of Orchidaceae, and Holcoglossum is a typical case. We investigated the phylogenetic utility of the morphological traits of leaf epidermis in the taxonomy of Holcoglossum s.l. by using light and scanning electron microscopy to analyze 38 samples representing 12 species of Holcoglossum, with five species from five closely related genera, such as Ascocentrum, Luisia, Papilionanthe, Rhynchostylis and Vanda. Our results indicated that Holcoglossum can be distinguished from the related genera based on cuticular wax characteristics, and the inclusion of Holcoglossum himalaicum in Holcoglossum is supported by the epidermis characteristics found by LM and SEM. The percentage of the tetracytic, brachyparacytic, and laterocytic stomata types as well as the stomata index and certain combinations of special wax types support infrageneric clades and phylogenetic relationships that have been inferred from molecular data. Laterocytic and polarcytic stomata are perhaps ecological adaptations to the strong winds and ample rains in the alpine region of the Hengduanshan Mountains. PMID:24983996
A Solution Adaptive Technique Using Tetrahedral Unstructured Grids
NASA Technical Reports Server (NTRS)
Pirzadeh, Shahyar Z.
2000-01-01
An adaptive unstructured grid refinement technique has been developed and successfully applied to several three dimensional inviscid flow test cases. The method is based on a combination of surface mesh subdivision and local remeshing of the volume grid Simple functions of flow quantities are employed to detect dominant features of the flowfield The method is designed for modular coupling with various error/feature analyzers and flow solvers. Several steady-state, inviscid flow test cases are presented to demonstrate the applicability of the method for solving practical three-dimensional problems. In all cases, accurate solutions featuring complex, nonlinear flow phenomena such as shock waves and vortices have been generated automatically and efficiently.
Qi, Delin; Chao, Yan; Guo, Songchang; Zhao, Lanying; Li, Taiping; Wei, Fulei; Zhao, Xinquan
2012-01-01
Schizothoracine fishes distributed in the water system of the Qinghai-Tibetan plateau (QTP) and adjacent areas are characterized by being highly adaptive to the cold and hypoxic environment of the plateau, as well as by a high degree of diversity in trophic morphology due to resource polymorphisms. Although convergent and parallel evolution are prevalent in the organisms of the QTP, it remains unknown whether similar evolutionary patterns have occurred in the schizothoracine fishes. Here, we constructed for the first time a tentative molecular phylogeny of the schizothoracine fishes based on the complete sequences of the cytochrome b gene. We employed this molecular phylogenetic framework to examine the evolution of trophic morphologies. We used Pagel's maximum likelihood method to estimate the evolutionary associations of trophic morphologies and food resource use. Our results showed that the molecular and published morphological phylogenies of Schizothoracinae are partially incongruent with respect to some intergeneric relationships. The phylogenetic results revealed that four character states of five trophic morphologies and of food resource use evolved at least twice during the diversification of the subfamily. State transitions are the result of evolutionary patterns including either convergence or parallelism or both. Furthermore, our analyses indicate that some characters of trophic morphologies in the Schizothoracinae have undergone correlated evolution, which are somewhat correlated with different food resource uses. Collectively, our results reveal new examples of convergent and parallel evolution in the organisms of the QTP. The adaptation to different trophic niches through the modification of trophic morphologies and feeding behaviour as found in the schizothoracine fishes may account for the formation and maintenance of the high degree of diversity and radiations in fish communities endemic to QTP. PMID:22470515
Woodman, Neal; Stabile, Frank A.
2015-01-01
Myosoricinae is a small clade of shrews (Mammalia, Eulipotyphla, Soricidae) that is currently restricted to the African continent. Individual species have limited distributions that are often associated with higher elevations. Although the majority of species in the subfamily are considered ambulatory in their locomotory behavior, species of the myosoricine genus Surdisorex are known to be semifossorial. To better characterize variation in locomotory behaviors among myosoricines, we calculated 32 morphological indices from skeletal measurements from nine species representing all three genera that comprise the subfamily (i.e., Congosorex, Myosorex, Surdisorex) and compared them to indices calculated for two species with well-documented locomotory behaviors: the ambulatory talpid Uropsilus soricipes and the semifossorial talpid Neurotrichus gibbsii. We summarized the 22 most complete morphological variables by 1) calculating a mean percentile rank for each species and 2) using the first principal component from principal component analysis of the indices. The two methods yielded similar results and indicate grades of adaptations reflecting a range of potential locomotory behaviors from ambulatory to semifossorial that exceeds the range represented by the two talpids. Morphological variation reflecting grades of increased semifossoriality among myosoricine shrews is similar in many respects to that seen for soricines, but some features are unique to the Myosoricinae.
Wu, Yan; Deng, Tao; Hu, Yaowu; Ma, Jiao; Zhou, Xinying; Mao, Limi; Zhang, Hanwen; Ye, Jie; Wang, Shi-Qi
2018-05-16
Feeding preference of fossil herbivorous mammals, concerning the coevolution of mammalian and floral ecosystems, has become of key research interest. In this paper, phytoliths in dental calculus from two gomphotheriid proboscideans of the middle Miocene Junggar Basin, Central Asia, have been identified, suggesting that Gomphotherium connexum was a mixed feeder, while the phytoliths from G. steinheimense indicates grazing preference. This is the earliest-known proboscidean with a predominantly grazing habit. These results are further confirmed by microwear and isotope analyses. Pollen record reveals an open steppic environment with few trees, indicating an early aridity phase in the Asian interior during the Mid-Miocene Climate Optimum, which might urge a diet remodeling of G. steinheimense. Morphological and cladistic analyses show that G. steinheimense comprises the sister taxon of tetralophodont gomphotheres, which were believed to be the general ancestral stock of derived "true elephantids"; whereas G. connexum represents a more conservative lineage in both feeding behavior and tooth morphology, which subsequently became completely extinct. Therefore, grazing by G. steinheimense may have acted as a behavior preadaptive for aridity, and allowing its lineage evolving new morphological features for surviving later in time. This study displays an interesting example of behavioral adaptation prior to morphological modification.
Different evolutionary pathways underlie the morphology of wrist bones in hominoids
2013-01-01
Background The hominoid wrist has been a focus of numerous morphological analyses that aim to better understand long-standing questions about the evolution of human and hominoid hand use. However, these same analyses also suggest various scenarios of complex and mosaic patterns of morphological evolution within the wrist and potentially multiple instances of homoplasy that would benefit from require formal analysis within a phylogenetic context. We identify morphological features that principally characterize primate – and, in particular, hominoid (apes, including humans) - wrist evolution and reveal the rate, process and evolutionary timing of patterns of morphological change on individual branches of the primate tree of life. Linear morphological variables of five wrist bones – the scaphoid, lunate, triquetrum, capitate and hamate – are analyzed in a diverse sample of extant hominoids (12 species, 332 specimens), Old World (8 species, 43 specimens) and New World (4 species, 26 specimens) monkeys, fossil Miocene apes (8 species, 20 specimens) and Plio-Pleistocene hominins (8 species, 18 specimens). Result Results reveal a combination of parallel and synapomorphic morphology within haplorrhines, and especially within hominoids, across individual wrist bones. Similar morphology of some wrist bones reflects locomotor behaviour shared between clades (scaphoid, triquetrum and capitate) while others (lunate and hamate) indicate clade-specific synapomorphic morphology. Overall, hominoids show increased variation in wrist bone morphology compared with other primate clades, supporting previous analyses, and demonstrate several occurrences of parallel evolution, particularly between orangutans and hylobatids, and among hominines (extant African apes, humans and fossil hominins). Conclusions Our analyses indicate that different evolutionary processes can underlie the evolution of a single anatomical unit (the wrist) to produce diversity in functional and morphological adaptations across individual wrist bones. These results exemplify a degree of evolutionary and functional independence across different wrist bones, the potential evolvability of skeletal morphology, and help to contextualize the postcranial mosaicism observed in the hominin fossil record. PMID:24148262
Pollen morphology of Rhizophora L. in Peninsular Malaysia
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mohd-Arrabe', A. B.; Noraini, Talip Noraini
Rhizophora L. are common mangrove genus in Peninsular Malaysia, it contains 3 species and 1 hybrid (R. apiculata Blume, R. mucronata Lam., R. stylosa Griff., R. x lamarckii Montrouz). This genus has some unique adaptation towards extreme environment. Rhizophora has looping aerial stilt-root and uniformly viviparous. The aim of this study is to investigate the variation in the pollen morphology of Rhizophora that can be related to their habitat. Methods include in this study is pollen observation under light and acetolysis method under scanning electron microscope. Pollen type of Rhizophora species studied except hybrid species is classified tricolporate, shape spheroidalmore » based on ratio of length polar axis/ length of equatorial axis (1.03 - 1.09). The exine ornamentation is perforate-reticulate for R. apiculata and R. mucronata, while R. stylosa is perforate. For the only hybrid in Peninsular Malaysia, R. x lamarckii (R. apiculata x R. stylosa) differs from others, tricolpate with the absence of porate, shape is subprolate and exine ornamentation is reticulate and striate in equatorial region. Pollenkitt is present due to the salty and extreme environment. This may enhance the volume of pollenkitt present surrounding the pollen grains in Rhizophora for protection and adaptation purposes. Based on these findings, it is evident that pollen morphology is somehow related to its natural habitat.« less
Pollen morphology of Rhizophora L. in Peninsular Malaysia
NASA Astrophysics Data System (ADS)
Mohd-Arrabe', A. B.; Noraini, Talip Noraini
2013-11-01
Rhizophora L. are common mangrove genus in Peninsular Malaysia, it contains 3 species and 1 hybrid (R. apiculata Blume, R. mucronata Lam., R. stylosa Griff., R. x lamarckii Montrouz). This genus has some unique adaptation towards extreme environment. Rhizophora has looping aerial stilt-root and uniformly viviparous. The aim of this study is to investigate the variation in the pollen morphology of Rhizophora that can be related to their habitat. Methods include in this study is pollen observation under light and acetolysis method under scanning electron microscope. Pollen type of Rhizophora species studied except hybrid species is classified tricolporate, shape spheroidal based on ratio of length polar axis/ length of equatorial axis (1.03 - 1.09). The exine ornamentation is perforate-reticulate for R. apiculata and R. mucronata, while R. stylosa is perforate. For the only hybrid in Peninsular Malaysia, R. x lamarckii (R. apiculata x R. stylosa) differs from others, tricolpate with the absence of porate, shape is subprolate and exine ornamentation is reticulate and striate in equatorial region. Pollenkitt is present due to the salty and extreme environment. This may enhance the volume of pollenkitt present surrounding the pollen grains in Rhizophora for protection and adaptation purposes. Based on these findings, it is evident that pollen morphology is somehow related to its natural habitat.
Turbulent Output-Based Anisotropic Adaptation
NASA Technical Reports Server (NTRS)
Park, Michael A.; Carlson, Jan-Renee
2010-01-01
Controlling discretization error is a remaining challenge for computational fluid dynamics simulation. Grid adaptation is applied to reduce estimated discretization error in drag or pressure integral output functions. To enable application to high O(10(exp 7)) Reynolds number turbulent flows, a hybrid approach is utilized that freezes the near-wall boundary layer grids and adapts the grid away from the no slip boundaries. The hybrid approach is not applicable to problems with under resolved initial boundary layer grids, but is a powerful technique for problems with important off-body anisotropic features. Supersonic nozzle plume, turbulent flat plate, and shock-boundary layer interaction examples are presented with comparisons to experimental measurements of pressure and velocity. Adapted grids are produced that resolve off-body features in locations that are not known a priori.
Action recognition in depth video from RGB perspective: A knowledge transfer manner
NASA Astrophysics Data System (ADS)
Chen, Jun; Xiao, Yang; Cao, Zhiguo; Fang, Zhiwen
2018-03-01
Different video modal for human action recognition has becoming a highly promising trend in the video analysis. In this paper, we propose a method for human action recognition from RGB video to Depth video using domain adaptation, where we use learned feature from RGB videos to do action recognition for depth videos. More specifically, we make three steps for solving this problem in this paper. First, different from image, video is more complex as it has both spatial and temporal information, in order to better encode this information, dynamic image method is used to represent each RGB or Depth video to one image, based on this, most methods for extracting feature in image can be used in video. Secondly, as video can be represented as image, so standard CNN model can be used for training and testing for videos, beside, CNN model can be also used for feature extracting as its powerful feature expressing ability. Thirdly, as RGB videos and Depth videos are belong to two different domains, in order to make two different feature domains has more similarity, domain adaptation is firstly used for solving this problem between RGB and Depth video, based on this, the learned feature from RGB video model can be directly used for Depth video classification. We evaluate the proposed method on one complex RGB-D action dataset (NTU RGB-D), and our method can have more than 2% accuracy improvement using domain adaptation from RGB to Depth action recognition.
Learning-induced Dependence of Neuronal Activity in Primary Motor Cortex on Motor Task Condition.
Cai, X; Shimansky, Y; He, Jiping
2005-01-01
A brain-computer interface (BCI) system such as a cortically controlled robotic arm must have a capacity of adjusting its function to a specific environmental condition. We studied this capacity in non-human primates based on chronic multi-electrode recording from the primary motor cortex of a monkey during the animal's performance of a center-out 3D reaching task and adaptation to external force perturbations. The main condition-related feature of motor cortical activity observed before the onset of force perturbation was a phasic raise of activity immediately before the perturbation onset. This feature was observed during a series of perturbation trials, but were absent under no perturbations. After adaptation has been completed, it usually was taking the subject only one trial to recognize a change in the condition to switch the neuronal activity accordingly. These condition-dependent features of neuronal activity can be used by a BCI for recognizing a change in the environmental condition and making corresponding adjustments, which requires that the BCI-based control system possess such advanced properties of the neural motor control system as capacity to learn and adapt.
Ragsdale, Erik J.; Baldwin, James G.
2010-01-01
Modern morphology-based systematics, including questions of incongruence with molecular data, emphasizes analysis over similarity criteria to assess homology. Yet detailed examination of a few key characters, using new tools and processes such as computerized, three-dimensional ultrastructural reconstruction of cell complexes, can resolve apparent incongruence by re-examining primary homologies. In nematodes of Tylenchomorpha, a parasitic feeding phenotype is thus reconciled with immediate free-living outgroups. Closer inspection of morphology reveals phenotypes congruent with molecular-based phylogeny and points to a new locus of homology in mouthparts. In nematode models, the study of individually homologous cells reveals a conserved modality of evolution among dissimilar feeding apparati adapted to divergent lifestyles. Conservatism of cellular components, consistent with that of other body systems, allows meaningful comparative morphology in difficult groups of microscopic organisms. The advent of phylogenomics is synergistic with morphology in systematics, providing an honest test of homology in the evolution of phenotype. PMID:20106846
Pfaff, Cathrin; Nagel, Doris; Gunnell, Gregg; Weber, Gerhard W; Kriwet, Jürgen; Morlo, Michael; Bastl, Katharina
2017-02-01
Species of the extinct genus Hyaenodon were among the largest carnivorous mammals from the Late Eocene through Early Miocene in North America, Europe and Asia. The origin, phylogeny and palaeobiology of Hyaenodonta are still ambiguous. Most previous studies focused on teeth and dental function in these highly adapted species, which might be influenced by convergent morphologies. The anatomy of the bony labyrinth in vertebrates is generally quite conservative and, additionally, was used in functional-morphological studies. This study provides the first anatomical description of the bony labyrinth of the extinct European species Hyaenodon exiguus in comparison to selected extant carnivoran taxa discussed from a functional-morphological perspective. Hyaenodon exiguus may have occupied a hyaena-like dietary niche with a semi-arboreal lifestyle, based on the relative height, width and length of the semicircular canals of the inner ear. However, this contradicts previous functional-morphological studies focusing on the diameter of the canals, which presumably represent the signal of locomotion mode. © 2016 Anatomical Society.
Petrin, Zlatko; Schilling, Emily Gaenzle; Loftin, Cyndy; Johansson, Frank
2010-01-01
Predators strongly influence species assemblages and shape morphological defenses of prey. Interestingly, adaptations that constitute effective defenses against one type of predator may render the prey susceptible to other types of predators. Hence, prey may evolve different strategies to escape predation, which may facilitate adaptive radiation of prey organisms. Larvae of different species in the dragonfly genus Leucorrhinia have various morphological defenses. We studied the distribution of these larvae in relation to the presence of predatory fish. In addition, we examined the variation in morphological defenses within species with respect to the occurrence of fish. We found that well-defended species, those with more and longer spines, were more closely associated with habitats inhabited by predatory fish and that species with weakly developed morphological defenses were more abundant in habitats without fish. The species predominantly connected to lakes with or without fish, respectively, were not restricted to a single clade in the phylogeny of the genus. Our data is suggestive of phenotypic plasticity in morphological defense in three of the studied species since these species showed longer spines in lakes with fish. We suggest that adaptive phenotypic plasticity may have broadened the range of habitats accessible to Leucorrhinia. It may have facilitated colonization of new habitats with different types of predators, and ultimately, speciation through adaptive radiation.
Extraction and Classification of Human Gait Features
NASA Astrophysics Data System (ADS)
Ng, Hu; Tan, Wooi-Haw; Tong, Hau-Lee; Abdullah, Junaidi; Komiya, Ryoichi
In this paper, a new approach is proposed for extracting human gait features from a walking human based on the silhouette images. The approach consists of six stages: clearing the background noise of image by morphological opening; measuring of the width and height of the human silhouette; dividing the enhanced human silhouette into six body segments based on anatomical knowledge; applying morphological skeleton to obtain the body skeleton; applying Hough transform to obtain the joint angles from the body segment skeletons; and measuring the distance between the bottom of right leg and left leg from the body segment skeletons. The angles of joints, step-size together with the height and width of the human silhouette are collected and used for gait analysis. The experimental results have demonstrated that the proposed system is feasible and achieved satisfactory results.
Effects of face feature and contour crowding in facial expression adaptation.
Liu, Pan; Montaser-Kouhsari, Leila; Xu, Hong
2014-12-01
Prolonged exposure to a visual stimulus, such as a happy face, biases the perception of subsequently presented neutral face toward sad perception, the known face adaptation. Face adaptation is affected by visibility or awareness of the adapting face. However, whether it is affected by discriminability of the adapting face is largely unknown. In the current study, we used crowding to manipulate discriminability of the adapting face and test its effect on face adaptation. Instead of presenting flanking faces near the target face, we shortened the distance between facial features (internal feature crowding), and reduced the size of face contour (external contour crowding), to introduce crowding. We are interested in whether internal feature crowding or external contour crowding is more effective in inducing crowding effect in our first experiment. We found that combining internal feature and external contour crowding, but not either of them alone, induced significant crowding effect. In Experiment 2, we went on further to investigate its effect on adaptation. We found that both internal feature crowding and external contour crowding reduced its facial expression aftereffect (FEA) significantly. However, we did not find a significant correlation between discriminability of the adapting face and its FEA. Interestingly, we found a significant correlation between discriminabilities of the adapting and test faces. Experiment 3 found that the reduced adaptation aftereffect in combined crowding by the external face contour and the internal facial features cannot be decomposed into the effects from the face contour and facial features linearly. It thus suggested a nonlinear integration between facial features and face contour in face adaptation.
Jones, Katrina E; Smaers, Jeroen B; Goswami, Anjali
2015-02-04
Which factors influence the distribution patterns of morphological diversity among clades? The adaptive radiation model predicts that a clade entering new ecological niche will experience high rates of evolution early in its history, followed by a gradual slowing. Here we measure disparity and rates of evolution in Carnivora, specifically focusing on the terrestrial-aquatic transition in Pinnipedia. We analyze fissiped (mostly terrestrial, arboreal, and semi-arboreal, but also including the semi-aquatic otter) and pinniped (secondarily aquatic) carnivorans as a case study of an extreme ecological transition. We used 3D geometric morphometrics to quantify cranial shape in 151 carnivoran specimens (64 fissiped, 87 pinniped) and five exceptionally-preserved fossil pinnipeds, including the stem-pinniped Enaliarctos emlongi. Range-based and variance-based disparity measures were compared between pinnipeds and fissipeds. To distinguish between evolutionary modes, a Brownian motion model was compared to selective regime shifts associated with the terrestrial-aquatic transition and at the base of Pinnipedia. Further, evolutionary patterns were estimated on individual branches using both Ornstein-Uhlenbeck and Independent Evolution models, to examine the origin of pinniped diversity. Pinnipeds exhibit greater cranial disparity than fissipeds, even though they are less taxonomically diverse and, as a clade nested within fissipeds, phylogenetically younger. Despite this, there is no increase in the rate of morphological evolution at the base of Pinnipedia, as would be predicted by an adaptive radiation model, and a Brownian motion model of evolution is supported. Instead basal pinnipeds populated new areas of morphospace via low to moderate rates of evolution in new directions, followed by later bursts within the crown-group, potentially associated with ecological diversification within the marine realm. The transition to an aquatic habitat in carnivorans resulted in a shift in cranial morphology without an increase in rate in the stem lineage, contra to the adaptive radiation model. Instead these data suggest a release from evolutionary constraint model, followed by aquatic diversifications within crown families.
Fully implicit adaptive mesh refinement MHD algorithm
NASA Astrophysics Data System (ADS)
Philip, Bobby
2005-10-01
In the macroscopic simulation of plasmas, the numerical modeler is faced with the challenge of dealing with multiple time and length scales. The former results in stiffness due to the presence of very fast waves. The latter requires one to resolve the localized features that the system develops. Traditional approaches based on explicit time integration techniques and fixed meshes are not suitable for this challenge, as such approaches prevent the modeler from using realistic plasma parameters to keep the computation feasible. We propose here a novel approach, based on implicit methods and structured adaptive mesh refinement (SAMR). Our emphasis is on both accuracy and scalability with the number of degrees of freedom. To our knowledge, a scalable, fully implicit AMR algorithm has not been accomplished before for MHD. As a proof-of-principle, we focus on the reduced resistive MHD model as a basic MHD model paradigm, which is truly multiscale. The approach taken here is to adapt mature physics-based technologyootnotetextL. Chac'on et al., J. Comput. Phys. 178 (1), 15- 36 (2002) to AMR grids, and employ AMR-aware multilevel techniques (such as fast adaptive composite --FAC-- algorithms) for scalability. We will demonstrate that the concept is indeed feasible, featuring optimal scalability under grid refinement. Results of fully-implicit, dynamically-adaptive AMR simulations will be presented on a variety of problems.
Morphological and niche divergence of pinyon pines.
Ortiz-Medrano, Alejandra; Scantlebury, Daniel Patrick; Vázquez-Lobo, Alejandra; Mastretta-Yanes, Alicia; Piñero, Daniel
2016-05-01
The environmental variables that define a species ecological niche should be associated with the evolutionary patterns present in the adaptations that resulted from living in these conditions. Thus, when comparing across species, we can expect to find an association between phylogenetically independent phenotypic characters and ecological niche evolution. Few studies have evaluated how organismal phenotypes might mirror patterns of niche evolution if these phenotypes reflect adaptations. Doing so could contribute on the understanding of the origin and maintenance of phenotypic diversity observed in nature. Here, we show the pattern of niche evolution of the pinyon pine lineage (Pinus subsection Cembroides); then, we suggest morphological adaptations possibly related to niche divergence, and finally, we test for correlation between ecological niche and morphology. We demonstrate that niche divergence is the general pattern within the clade and that it is positively correlated with adaptation.
Early Generalized Overgrowth in Boys With Autism
Chawarska, Katarzyna; Campbell, Daniel; Chen, Lisha; Shic, Frederick; Klin, Ami; Chang, Joseph
2016-01-01
Context Multiple studies have reported an overgrowth in head circumference (HC) in the first year of life in autism. However, it is unclear whether this phenomenon is independent of overall body growth and whether it is associated with specific social or cognitive features. Objectives To examine the trajectory of early HC growth in autism compared with control groups; to assess whether HC growth in autism is independent of height and weight growth during infancy; and to examine HC growth from birth to 24 months in relationship to social, verbal, cognitive, and adaptive functioning levels. Design Retrospective study. Setting A specialized university-based clinic. Participants Boys diagnosed as having autistic disorder (n=64), pervasive developmental disorder–not otherwise specified (n=34), global developmental delay (n=13), and other developmental problems (n=18) and typically developing boys (n=55). Main Outcome Measures Age-related changes in HC, height, and weight between birth and age 24 months; measures of social, verbal, and cognitive functioning at age 2 years. Results Compared with typically developing controls, boys with autism were significantly longer by age 4.8 months, had a larger HC by age 9.5 months, and weighed more by age 11.4 months (P=.05 for all). None of the other clinical groups showed a similar overgrowth pattern. Boys with autism who were in the top 10% of overall physical size in infancy exhibited greater severity of social deficits (P=.009) and lower adaptive functioning (P=.03). Conclusions Boys with autism experienced accelerated HC growth in the first year of life. However, this phenomenon reflected a generalized process affecting other morphologic features, including height and weight. The study highlights the importance of studying factors that influence not only neuronal development but also skeletal growth in autism. PMID:21969460
NASA Astrophysics Data System (ADS)
Bunte, M. K.; Tanaka, K. L.; Doggett, T.; Figueredo, P. H.; Lin, Y.; Greeley, R.; Saripalli, S.; Bell, J. F.
2013-12-01
Europa's extremely young surface age, evidence for extensive resurfacing, and indications of a sub-surface ocean elevate its astrobiological potential for habitable environments and make it a compelling focus for study. Knowledge of the global distribution and timing of Europan geologic units is a key step in understanding the history of the satellite and for identifying areas relevant for exploration. I have produced a 1:15M scale global geologic map of Europa which represents a proportionate distribution of four unit types and associated features: plains, linea, chaos, and crater materials. Mapping techniques differ somewhat from other planetary maps but do provide a method to establish stratigraphic markers and to illustrate the surface history through four periods of formation as a function of framework lineament cross-cutting relationships. Correlations of observed features on Europa with Earth analogs enforce a multi-process theory for formation rather than the typical reliance on the principle of parsimony. Lenticulae and microchaos are genetically similar and most likely form by diapirism. Platy and blocky chaos units, endmembers of archetypical chaos, are best explained by brine mobilization. Ridges account for the majority of lineaments and may form by a number of methods indicative of local conditions; most form by either tidal pumping or shear heating. The variety of morphologies exhibited by bands indicates that multiple formation mechanisms apply once fracturing of the brittle surface over a ductile subsurface is initiated. Mapping results support the interpretation that Europa's shell has thickened over time resulting in changes in the style and intensity of deformation. Mapping serves as an index for change detection and classification, aids in pre-encounter targeting, and supports the selection of potential landing sites. Highest priority target areas are those which indicate geophysical activity by the presence of volcanic plumes, outgassing, or disrupted surface morphologies. Areas of high interest include lineaments and chaos margins. The limitations on detecting activity at these locations are approximated by studying similar observed conditions on other bodies. By adapting machine learning and data mining techniques to signatures of plumes and morphology, I have demonstrated autonomous rule-based detection of known features using edge-detection and supervised classification methods. These methods successfully detect ≤94% of known volcanic plumes or jets at Io, Enceladus, and comets. They also allow recognition of multiple feature types. Applying these results to conditions expected for Europa enables a prediction of the potential for detection of similar features and enables recommendations for mission concepts to increase the science return and efficiency of future missions to observe Europa. This post-Galileo view of Europa provides a synthesis of the overall history of this unique icy satellite and will be a useful frame of reference for future exploration of the jovian system and other potentially active outer solar system bodies.
Sarah Wilkinson; Jerome Ogee; Jean-Christophe Domec; Mark Rayment; Lisa Wingate
2015-01-01
Process-based models that link seasonally varying environmental signals to morphological features within tree rings are essential tools to predict tree growth response and commercially important wood quality traits under future climate scenarios. This study evaluated model portrayal of radial growth and wood anatomy observations within a mature maritime pine (Pinus...
NASA Astrophysics Data System (ADS)
Tatebe, Hironobu; Kato, Kunihito; Yamamoto, Kazuhiko; Katsuta, Yukio; Nonaka, Masahiko
2005-12-01
Now a day, many evaluation methods for the food industry by using image processing are proposed. These methods are becoming new evaluation method besides the sensory test and the solid-state measurement that are using for the quality evaluation. An advantage of the image processing is to be able to evaluate objectively. The goal of our research is structure evaluation of sponge cake by using image processing. In this paper, we propose a feature extraction method of the bobble structure in the sponge cake. Analysis of the bubble structure is one of the important properties to understand characteristics of the cake from the image. In order to take the cake image, first we cut cakes and measured that's surface by using the CIS scanner. Because the depth of field of this type scanner is very shallow, the bubble region of the surface has low gray scale values, and it has a feature that is blur. We extracted bubble regions from the surface images based on these features. First, input image is binarized, and the feature of bubble is extracted by the morphology analysis. In order to evaluate the result of feature extraction, we compared correlation with "Size of the bubble" of the sensory test result. From a result, the bubble extraction by using morphology analysis gives good correlation. It is shown that our method is as well as the subjectivity evaluation.
2013-01-01
Introduction Many mammals have evolved highly adapted hearing associated with ecological specialisation. Of these, bats possess the widest frequency range of vocalisations and associated hearing sensitivities, with frequencies of above 200 kHz in some lineages that use laryngeal echolocation. High frequency hearing in bats appears to have evolved via structural modifications of the inner ear, however, studying these minute features presents considerable challenges and hitherto few such attempts have been made. To understand these adaptations more fully, as well as gain insights into the evolutionary origins of ultrasonic hearing and echolocation in bats, we undertook micro-computed tomography (μCT) scans of the cochleae of representative bat species from 16 families, encompassing their broad range of ecological diversity. To characterise cochlear gross morphology, we measured the relative basilar membrane length and number of turns, and compared these values between echolocating and non-echolocating bats, as well as other mammals. Results We found that hearing and echolocation call frequencies in bats correlated with both measures of cochlear morphology. In particular, relative basilar membrane length was typically longer in echolocating species, and also correlated positively with the number of cochlear turns. Ancestral reconstructions of these parameters suggested that the common ancestor of all extant bats was probably capable of ultrasonic hearing; however, we also found evidence of a significant decrease in the rate of morphological evolution of the basilar membrane in multiple ancestral branches within the Yangochiroptera suborder. Within the echolocating Yinpterochiroptera, there was some evidence of an increase in the rate of basilar membrane evolution in some tips of the tree, possibly associated with reported shifts in call frequency associated with recent speciation events. Conclusions The two main groups of echolocating bat were found to display highly variable inner ear morphologies. Ancestral reconstructions and rate shift analyses of ear morphology point to a complex evolutionary history, with the former supporting ultrasonic hearing in the common bat ancestor but the latter suggesting that morphological changes associated with echolocation might have occurred later. These findings are consistent with theories that sophisticated laryngeal echolocation, as seen in modern lineages, evolved following the divergence of the two main suborders. PMID:23360746
A Modeling Approach for Burn Scar Assessment Using Natural Features and Elastic Property
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsap, L V; Zhang, Y; Goldgof, D B
2004-04-02
A modeling approach is presented for quantitative burn scar assessment. Emphases are given to: (1) constructing a finite element model from natural image features with an adaptive mesh, and (2) quantifying the Young's modulus of scars using the finite element model and the regularization method. A set of natural point features is extracted from the images of burn patients. A Delaunay triangle mesh is then generated that adapts to the point features. A 3D finite element model is built on top of the mesh with the aid of range images providing the depth information. The Young's modulus of scars ismore » quantified with a simplified regularization functional, assuming that the knowledge of scar's geometry is available. The consistency between the Relative Elasticity Index and the physician's rating based on the Vancouver Scale (a relative scale used to rate burn scars) indicates that the proposed modeling approach has high potentials for image-based quantitative burn scar assessment.« less
Sun, Wei; Zhang, Xiaorui; Peeta, Srinivas; He, Xiaozheng; Li, Yongfu; Zhu, Senlai
2015-01-01
To improve the effectiveness and robustness of fatigue driving recognition, a self-adaptive dynamic recognition model is proposed that incorporates information from multiple sources and involves two sequential levels of fusion, constructed at the feature level and the decision level. Compared with existing models, the proposed model introduces a dynamic basic probability assignment (BPA) to the decision-level fusion such that the weight of each feature source can change dynamically with the real-time fatigue feature measurements. Further, the proposed model can combine the fatigue state at the previous time step in the decision-level fusion to improve the robustness of the fatigue driving recognition. An improved correction strategy of the BPA is also proposed to accommodate the decision conflict caused by external disturbances. Results from field experiments demonstrate that the effectiveness and robustness of the proposed model are better than those of models based on a single fatigue feature and/or single-source information fusion, especially when the most effective fatigue features are used in the proposed model. PMID:26393615
Cara, Nicolás; Marfil, Carlos F; Masuelli, Ricardo W
2013-01-01
Interspecific hybridization is known for triggering genetic and epigenetic changes, such as modifications on DNA methylation patterns and impact on phenotypic plasticity and ecological adaptation. Wild potatoes (Solanum, section Petota) are adapted to multiple habitats along the Andes, and natural hybridizations have proven to be a common feature among species of this group. Solanum × rechei, a recently formed hybrid that grows sympatrically with the parental species S. kurtzianum and S. microdontum, represents an ideal model for studying the ecologically and evolutionary importance of hybridization in generating of epigenetic variability. Genetic and epigenetic variability and their correlation with morphological variation were investigated in wild and ex situ conserved populations of these three wild potato species using amplified fragment length polymorphism (AFLP) and methylation-sensitive amplified polymorphism (MSAP) techniques. We observed that novel methylation patterns doubled the number of novel genetic patterns in the hybrid and that the morphological variability measured on 30 characters had a higher correlation with the epigenetic than with the genetic variability. Statistical comparison of methylation levels suggested that the interspecific hybridization induces genome demethylation in the hybrids. A Bayesian analysis of the genetic data reveled the hybrid nature of S. × rechei, with genotypes displaying high levels of admixture with the parental species, while the epigenetic information assigned S. × rechei to its own cluster with low admixture. These findings suggested that after the hybridization event, a novel epigenetic pattern was rapidly established, which might influence the phenotypic plasticity and adaptation of the hybrid to new environments. PMID:24198938
Leong, Siow Hoo; Ong, Seng Huat
2017-01-01
This paper considers three crucial issues in processing scaled down image, the representation of partial image, similarity measure and domain adaptation. Two Gaussian mixture model based algorithms are proposed to effectively preserve image details and avoids image degradation. Multiple partial images are clustered separately through Gaussian mixture model clustering with a scan and select procedure to enhance the inclusion of small image details. The local image features, represented by maximum likelihood estimates of the mixture components, are classified by using the modified Bayes factor (MBF) as a similarity measure. The detection of novel local features from MBF will suggest domain adaptation, which is changing the number of components of the Gaussian mixture model. The performance of the proposed algorithms are evaluated with simulated data and real images and it is shown to perform much better than existing Gaussian mixture model based algorithms in reproducing images with higher structural similarity index.
Leong, Siow Hoo
2017-01-01
This paper considers three crucial issues in processing scaled down image, the representation of partial image, similarity measure and domain adaptation. Two Gaussian mixture model based algorithms are proposed to effectively preserve image details and avoids image degradation. Multiple partial images are clustered separately through Gaussian mixture model clustering with a scan and select procedure to enhance the inclusion of small image details. The local image features, represented by maximum likelihood estimates of the mixture components, are classified by using the modified Bayes factor (MBF) as a similarity measure. The detection of novel local features from MBF will suggest domain adaptation, which is changing the number of components of the Gaussian mixture model. The performance of the proposed algorithms are evaluated with simulated data and real images and it is shown to perform much better than existing Gaussian mixture model based algorithms in reproducing images with higher structural similarity index. PMID:28686634
Krembs, Christopher; Eicken, Hajo; Deming, Jody W.
2011-01-01
The physical properties of Arctic sea ice determine its habitability. Whether ice-dwelling organisms can change those properties has rarely been addressed. Following discovery that sea ice contains an abundance of gelatinous extracellular polymeric substances (EPS), we examined the effects of algal EPS on the microstructure and salt retention of ice grown from saline solutions containing EPS from a culture of the sea-ice diatom, Melosira arctica. We also experimented with xanthan gum and with EPS from a culture of the cold-adapted bacterium Colwellia psychrerythraea strain 34H. Quantitative microscopic analyses of the artificial ice containing Melosira EPS revealed convoluted ice-pore morphologies of high fractal dimension, mimicking features found in EPS-rich coastal sea ice, whereas EPS-free (control) ice featured much simpler pore geometries. A heat-sensitive glycoprotein fraction of Melosira EPS accounted for complex pore morphologies. Although all tested forms of EPS increased bulk ice salinity (by 11–59%) above the controls, ice containing native Melosira EPS retained the most salt. EPS effects on ice and pore microstructure improve sea ice habitability, survivability, and potential for increased primary productivity, even as they may alter the persistence and biogeochemical imprint of sea ice on the surface ocean in a warming climate. PMID:21368216
Krembs, Christopher; Eicken, Hajo; Deming, Jody W
2011-03-01
The physical properties of Arctic sea ice determine its habitability. Whether ice-dwelling organisms can change those properties has rarely been addressed. Following discovery that sea ice contains an abundance of gelatinous extracellular polymeric substances (EPS), we examined the effects of algal EPS on the microstructure and salt retention of ice grown from saline solutions containing EPS from a culture of the sea-ice diatom, Melosira arctica. We also experimented with xanthan gum and with EPS from a culture of the cold-adapted bacterium Colwellia psychrerythraea strain 34H. Quantitative microscopic analyses of the artificial ice containing Melosira EPS revealed convoluted ice-pore morphologies of high fractal dimension, mimicking features found in EPS-rich coastal sea ice, whereas EPS-free (control) ice featured much simpler pore geometries. A heat-sensitive glycoprotein fraction of Melosira EPS accounted for complex pore morphologies. Although all tested forms of EPS increased bulk ice salinity (by 11-59%) above the controls, ice containing native Melosira EPS retained the most salt. EPS effects on ice and pore microstructure improve sea ice habitability, survivability, and potential for increased primary productivity, even as they may alter the persistence and biogeochemical imprint of sea ice on the surface ocean in a warming climate.
NASA Technical Reports Server (NTRS)
Campbell, Stefan F.; Kaneshige, John T.
2010-01-01
Presented here is a Predictor-Based Model Reference Adaptive Control (PMRAC) architecture for a generic transport aircraft. At its core, this architecture features a three-axis, non-linear, dynamic-inversion controller. Command inputs for this baseline controller are provided by pilot roll-rate, pitch-rate, and sideslip commands. This paper will first thoroughly present the baseline controller followed by a description of the PMRAC adaptive augmentation to this control system. Results are presented via a full-scale, nonlinear simulation of NASA s Generic Transport Model (GTM).
Tempo and mode in human evolution.
McHenry, H M
1994-01-01
The quickening pace of paleontological discovery is matched by rapid developments in geochronology. These new data show that the pattern of morphological change in the hominid lineage was mosaic. Adaptations essential to bipedalism appeared early, but some locomotor features changed much later. Relative to the highly derived postcrania of the earliest hominids, the craniodental complex was quite primitive (i.e., like the reconstructed last common ancestor with the African great apes). The pattern of craniodental change among successively younger species of Hominidae implies extensive parallel evolution between at least two lineages in features related to mastication. Relative brain size increased slightly among successively younger species of Australopithecus, expanded significantly with the appearance of Homo, but within early Homo remained at about half the size of Homo sapiens for almost a million years. Many apparent trends in human evolution may actually be due to the accumulation of relatively rapid shifts in successive species. PMID:8041697
Particle systems for adaptive, isotropic meshing of CAD models
Levine, Joshua A.; Whitaker, Ross T.
2012-01-01
We present a particle-based approach for generating adaptive triangular surface and tetrahedral volume meshes from computer-aided design models. Input shapes are treated as a collection of smooth, parametric surface patches that can meet non-smoothly on boundaries. Our approach uses a hierarchical sampling scheme that places particles on features in order of increasing dimensionality. These particles reach a good distribution by minimizing an energy computed in 3D world space, with movements occurring in the parametric space of each surface patch. Rather than using a pre-computed measure of feature size, our system automatically adapts to both curvature as well as a notion of topological separation. It also enforces a measure of smoothness on these constraints to construct a sizing field that acts as a proxy to piecewise-smooth feature size. We evaluate our technique with comparisons against other popular triangular meshing techniques for this domain. PMID:23162181
Glazoff, Michael V.; Dufek, Eric J.; Shalashnikov, Egor V.
2016-09-15
Morphological analysis and synthesis operations were employed for analysis of electrode microstructure transformations and evolution accompanying the application of charge/discharge cycles to electrochemical storage systems (batteries). Using state-of-the-art morphological algorithms, it was possible to predict microstructure evolution in porous Si electrodes for Li-ion batteries with sufficient accuracy. Algorithms for image analyses (segmentation, feature extraction, and 3D-reconstructions using 2D-images) were also developed. Altogether, these techniques could be considered supplementary to phase-field mesoscopic approach to microstructure evolution that is based upon clear and definitive changes in the appearance of microstructure. However, unlike in phase-field, the governing equations for morphological approach are geometry-,more » not physics-based. Similar non-physics based approach to understanding different phenomena was attempted with the introduction of cellular automata. It is anticipated that morphological synthesis and analysis will represent a useful supplementary tool to phase-field and will render assistance to unraveling the underlying microstructure-property relationships. The paper contains data on electrochemical characterization of different electrode materials that was conducted in parallel to morphological study.« less
Okumura, Hiroki
2017-01-01
An ovulated egg of vertebrates is surrounded by unique extracellular matrix, the egg coat or zona pellucida, playing important roles in fertilization and early development. The vertebrate egg coat is composed of two to six zona pellucida (ZP) glycoproteins that are characterized by the evolutionarily conserved ZP-domain module and classified into six subfamilies based on phylogenetic analyses. Interestingly, investigations of biochemical and functional features of the ZP glycoproteins show that the roles of each ZP-glycoprotein family member in the egg-coat formation and the egg-sperm interactions seemingly vary across vertebrates. This might be one reason why comprehensive understandings of the molecular basis of either architecture or physiological functions of egg coat still remain elusive despite more than 3 decades of intensive investigations. In this chapter, an overview of avian egg focusing on the oogenesis are provided in the first section, and unique features of avian egg coat, i.e., perivitelline layer, including the morphology, biogenesis pathway, and physiological functions are discussed mainly on chicken and quail in terms of the characteristics of ZP glycoproteins in the following sections. In addition, these features of avian egg coat are compared to mammalian zona pellucida, from the viewpoint that the structural and functional varieties of ZP glycoproteins might be associated with the evolutionary adaptation to their reproductive strategies. By comparing the egg coat of birds and mammals whose reproductive strategies are largely different, new insights into the molecular mechanisms of vertebrate egg-sperm interactions might be provided.
Liu, Yu-fang; Chen, Shuang-lin; Li Ying-chun; Guo, Zi-wu; Li, Ying-chun; Yang, Qing-ping
2015-12-01
The research was to approach the growth strategy of rhizome and roots based on the morphology, biomass and nutrient in Phyllostachys rivalis under long-term waterlogged conditions, and provided a theoretical basis for its application for vegetation restoration in wetland and water-level fluctuation belts. The morphological characteristics, physiological and biochemical indexes of annual bamboo rhizome and roots were investigated with an experiment using individually potted P. rivalis which was treated by artificial water-logging for 3, 6, and 12 months. Accordingly the morphological characteristics, biomass allocation, nutrient absorption and balance in rhizome and roots of P. rivalis were analyzed. The results showed that there was no obvious impact of long-term water-logging on the length and diameter of rhizomes, diameter of roots in P. rivalis. The morphological characteristics of rhizome had been less affected generally under water-logging for 3 months. And less rhizomes were submerged, while the growth of roots was inhibited to some extent. Furthermore, with waterlogging time extended, submerged roots and rhizomes grew abundantly, and the roots and rhizomes in soil were promoted. Moreover for ratios of rhizome biomass in soil and water, there were no obvious variations, the same for the root biomass in soil to total biomass. The ratio of root biomass in water to total biomass and the ratio of root biomass in water to root biomass in soil both increased significantly. The results indicated that P. rivalis could adapt to waterlogged conditions gradually through growth regulation and reasonable biomass distribution. However, the activity of rhizome roots in soil decreased and the nutrient absorption was inhibited by long-term water-logging, although it had no effect on stoichiometric ratios of root nutrient in soil. The activity of rhizome root in water increased and the stoichiometric ratios adjusted adaptively to waterlogged conditions, the ratio of N/P increased, while N/K and P/K decreased, which implied that roots in water absorbed oxygen and nutrients could help P. rivalis adapt to long-term waterlogged environment effectively.
Mayer, Werner; Pavlicev, Mihaela
2007-09-01
The family Lacertidae encompasses more than 250 species distributed in the Palearctis, Ethiopis and Orientalis. Lacertids have been subjected in the past to several morphological and molecular studies to establish their phylogeny. However, the problems of convergent adaptation in morphology and of excessively variable molecular markers have hampered the establishment of well supported deeper phylogenetic relationships. Particularly the adaptations to xeric environments have often been used to establish a scenario for the origin and radiation of major lineages within lacertids. Here we present a molecular phylogenetic study based on two nuclear marker genes and representatives of 37 lacertid genera and distinct species groups (as in the case of the collective genus Lacerta). Roughly 1600 bp of the nuclear rag1 and c-mos genes were sequenced and analyzed. While the results provide good support to the hitherto suggested main subfamilies of Gallotiinae (Gallotia and Psammodromus), Eremiainae and Lacertinae [Harris, D.J., Arnold, E.N., Thomas, R.H., 1998. Relationships of lacertid lizards (Reptilia: Lacertidae) estimated from mitochondrial DNA sequences and morphology. Proc. R. Soc. Lond. B 265, 1939-1948], they also suggest unexpected relationships. In particular, the oriental genus Takydromus, previously considered the sister-group to the three subfamilies, is nested within Lacertinae. Moreover, the genera within the Eremiainae are further divided into two groups, roughly corresponding to their respective geographical distributions in the Ethiopian and the Saharo-Eurasian ranges. The results support an independent origin of adaptations to xeric conditions in different subfamilies. The relationships within the subfamily Lacertinae could not be resolved with the markers used. The species groups of the collective genus Lacerta show a bush-like topology in the inferred Bayesian tree, suggesting rapid radiation. The composition of the subfamilies Eremiainae and Lacertinae as well as their phylogeography are discussed.
The birdlike raptor Sinornithosaurus was venomous
Gong, Enpu; Martin, Larry D.; Burnham, David A.; Falk, Amanda R.
2009-01-01
We suggest that some of the most avian dromaeosaurs, such as Sinornithosaurus, were venomous, and propose an ecological model for that taxon based on its unusual dentition and other cranial features including grooved teeth, a possible pocket for venom glands, and a groove leading from that pocket to the exposed bases of the teeth. These features are all analogous to the venomous morphology of lizards. Sinornithosaurus and related dromaeosaurs probably fed on the abundant birds of the Jehol forests during the Early Cretaceous in northeastern China. PMID:20080749
Ceccarelli, F Sara; Mongiardino Koch, Nicolás; Soto, Eduardo M; Barone, Mariana L; Arnedo, Miquel A; Ramírez, Martín J
2018-04-14
While grasslands, one of Earth's major biomes, are known for their close evolutionary ties with ungulate grazers, these habitats are also paramount to the origins and diversification of other animals. Within the primarily South American spider subfamily Amaurobioidinae (Anyphaenidae), several species are found living in the continent's grasslands, with some displaying putative morphological adaptations to dwelling unnoticed in the grass blades. Here, a dated molecular phylogeny provides the backbone for analyses revealing the ecological and morphological processes behind these spiders' grassland adaptations. The multiple switches from Patagonian forests to open habitats coincide with the expansion of South America's grasslands during the Miocene, while the specialized morphology of several grass-dwelling spiders originated at least three independent times and is best described as the result of different selective regimes operating on macroevolutionary timescales. Although grass-adapted lineages evolved towards different peaks in adaptive landscape, they all share one characteristic: an anterior narrowing of the prosoma allowing spiders to extend the first two pairs of legs, thus maintaining a slender resting posture in the grass blade. By combining phylogenetic, morphological, and biogeographic perspectives we disentangle multiple factors determining the evolution of a clade of terrestrial invertebrate predators alongside their biomes.
Evolution of nectarivory in phyllostomid bats (Phyllostomidae Gray, 1825, Chiroptera: Mammalia).
Datzmann, Thomas; von Helversen, Otto; Mayer, Frieder
2010-06-04
Bats of the family Phyllostomidae show a unique diversity in feeding specializations. This taxon includes species that are highly specialized on insects, blood, small vertebrates, fruits or nectar, and pollen. Feeding specialization is accompanied by morphological, physiological and behavioural adaptations. Several attempts were made to resolve the phylogenetic relationships within this family in order to reconstruct the evolutionary transitions accompanied by nutritional specialization. Nevertheless, the evolution of nectarivory remained equivocal. Phylogenetic reconstructions, based on a concatenated nuclear-and mitochondrial data set, revealed a paraphyletic relationship of nectarivorous phyllostomid bats. Our phylogenetic reconstructions indicate that the nectarivorous genera Lonchophylla and Lionycteris are closer related to mainly frugivorous phyllostomids of the subfamilies Rhinophyllinae, Stenodermatinae, Carolliinae, and the insectivorous Glyphonycterinae rather than to nectarivorous bats of the Glossophaginae. This suggests an independent origin of morphological adaptations to a nectarivorous lifestyle within Lonchophyllinae and Glossophaginae. Molecular clock analysis revealed a relatively short time frame of about ten million years for the divergence of subfamilies. Our study provides strong support for diphyly of nectarivorous phyllostomids. This is remarkable, since their morphological adaptations to nutrition, like elongated rostrums and tongues, reduced teeth and the ability to use hovering flight while ingestion, closely resemble each other. However, more precise examinations of their tongues (e.g. type and structure of papillae and muscular innervation) revealed levels of difference in line with an independent evolution of nectarivory in these bats.
Slater, Graham J
2015-04-21
A long-standing hypothesis in adaptive radiation theory is that ecological opportunity constrains rates of phenotypic evolution, generating a burst of morphological disparity early in clade history. Empirical support for the early burst model is rare in comparative data, however. One possible reason for this lack of support is that most phylogenetic tests have focused on extant clades, neglecting information from fossil taxa. Here, I test for the expected signature of adaptive radiation using the outstanding 40-My fossil record of North American canids. Models implying time- and diversity-dependent rates of morphological evolution are strongly rejected for two ecologically important traits, body size and grinding area of the molar teeth. Instead, Ornstein-Uhlenbeck processes implying repeated, and sometimes rapid, attraction to distinct dietary adaptive peaks receive substantial support. Diversity-dependent rates of morphological evolution seem uncommon in clades, such as canids, that exhibit a pattern of replicated adaptive radiation. Instead, these clades might best be thought of as deterministic radiations in constrained Simpsonian subzones of a major adaptive zone. Support for adaptive peak models may be diagnostic of subzonal radiations. It remains to be seen whether early burst or ecological opportunity models can explain broader adaptive radiations, such as the evolution of higher taxa.
NASA Astrophysics Data System (ADS)
Slater, Graham J.
2015-04-01
A long-standing hypothesis in adaptive radiation theory is that ecological opportunity constrains rates of phenotypic evolution, generating a burst of morphological disparity early in clade history. Empirical support for the early burst model is rare in comparative data, however. One possible reason for this lack of support is that most phylogenetic tests have focused on extant clades, neglecting information from fossil taxa. Here, I test for the expected signature of adaptive radiation using the outstanding 40-My fossil record of North American canids. Models implying time- and diversity-dependent rates of morphological evolution are strongly rejected for two ecologically important traits, body size and grinding area of the molar teeth. Instead, Ornstein-Uhlenbeck processes implying repeated, and sometimes rapid, attraction to distinct dietary adaptive peaks receive substantial support. Diversity-dependent rates of morphological evolution seem uncommon in clades, such as canids, that exhibit a pattern of replicated adaptive radiation. Instead, these clades might best be thought of as deterministic radiations in constrained Simpsonian subzones of a major adaptive zone. Support for adaptive peak models may be diagnostic of subzonal radiations. It remains to be seen whether early burst or ecological opportunity models can explain broader adaptive radiations, such as the evolution of higher taxa.
Constructing an Online Test Framework, Using the Example of a Sign Language Receptive Skills Test
ERIC Educational Resources Information Center
Haug, Tobias; Herman, Rosalind; Woll, Bencie
2015-01-01
This paper presents the features of an online test framework for a receptive skills test that has been adapted, based on a British template, into different sign languages. The online test includes features that meet the needs of the different sign language versions. Features such as usability of the test, automatic saving of scores, and score…
Image segmentation-based robust feature extraction for color image watermarking
NASA Astrophysics Data System (ADS)
Li, Mianjie; Deng, Zeyu; Yuan, Xiaochen
2018-04-01
This paper proposes a local digital image watermarking method based on Robust Feature Extraction. The segmentation is achieved by Simple Linear Iterative Clustering (SLIC) based on which an Image Segmentation-based Robust Feature Extraction (ISRFE) method is proposed for feature extraction. Our method can adaptively extract feature regions from the blocks segmented by SLIC. This novel method can extract the most robust feature region in every segmented image. Each feature region is decomposed into low-frequency domain and high-frequency domain by Discrete Cosine Transform (DCT). Watermark images are then embedded into the coefficients in the low-frequency domain. The Distortion-Compensated Dither Modulation (DC-DM) algorithm is chosen as the quantization method for embedding. The experimental results indicate that the method has good performance under various attacks. Furthermore, the proposed method can obtain a trade-off between high robustness and good image quality.
2014-01-01
Background The role of tectonic uplift in stimulating speciation in South Africa’s only alpine zone, the Drakensberg, has not been explicitly examined. Tectonic processes may influence speciation both through the creation of novel habitats and by physically isolating plant populations. We use the Afrotemperate endemic daisy genus Macowania to explore the timing and mode (geographic versus adaptive) of speciation in this region. Between sister species pairs we expect high morphological divergence where speciation has happened in sympatry (adaptive) while with geographic (vicariant) speciation we may expect to find less morphological divergence and a greater degree of allopatry. A dated molecular phylogenetic hypothesis for Macowania elucidates species’ relationships and is used to address the potential impact of uplift on diversification. Morphological divergence of a small sample of reproductive and vegetative characters, used as a proxy for adaptive divergence, is measured against species’ range distributions to estimate mode of speciation across two subclades in the genus. Results The Macowania crown age is consistent with the hypothesis of post-uplift diversification, and we find evidence for both vicariant and adaptive speciation between the two subclades within Macowania. Both subclades exhibit strong signals of range allopatry, suggesting that geographic isolation was important in speciation. One subclade, associated with dry, rocky environments at high altitudes, shows very little morphological and ecological differentiation but high range allopatry. The other subclade occupies a greater variety of habitats and exhibits far greater morphological differentiation, but contains species with overlapping distribution ranges. Conclusions Species in Macowania are likely to have diversified in response to tectonic uplift, and we invoke uplift and uplift-mediated erosion as the main drivers of speciation. The greater relative morphological divergence in sympatric species of Macowania indicates that speciation in the non-sympatric taxa may not have required obvious adaptive differences, implying that simple geographic isolation was the driving force for speciation (‘neutral speciation’). PMID:24524661
Costa-Pereira, R; Araújo, M S; Paiva, F; Tavares, L E R
2016-08-01
This study investigated whether the body morphology of the tetra fish Astyanax lacustris (previously Astyanax asuncionensis) varied between populations inhabiting one lagoon (a lentic, shallow environment, with great habitat complexity created by aquatic macrophytes) and an adjacent river (a deeper, lotic environment where aquatic macrophytes are scarce) in a seasonally flooded wetland, despite population mixing during the wet season. Morphological differences matched a priori predictions of the theory relating functional body morphology and swimming performance in fishes between lagoon and river habitats. Observed morphological variation could have resulted from adaptive habitat choice by tetras, predation by piscivores and adaptive phenotypic plasticity during development. © 2016 The Fisheries Society of the British Isles.
Asynchronous evolution of physiology and morphology in Anolis lizards.
Hertz, Paul E; Arima, Yuzo; Harrison, Alexis; Huey, Raymond B; Losos, Jonathan B; Glor, Richard E
2013-07-01
Species-rich adaptive radiations typically diversify along several distinct ecological axes, each characterized by morphological, physiological, and behavioral adaptations. We test here whether different types of adaptive traits share similar patterns of evolution within a radiation by investigating patterns of evolution of morphological traits associated with microhabitat specialization and of physiological traits associated with thermal biology in Anolis lizards. Previous studies of anoles suggest that close relatives share the same "structural niche" (i.e., use the same types of perches) and are similar in body size and shape, but live in different "climatic niches" (i.e., use habitats with different insolation and temperature profiles). Because morphology is closely tied to structural niche and field active body temperatures are tied to climatic niches in Anolis, we expected phylogenetic analyses to show that morphology is more evolutionarily conservative than thermal physiology. In support of this hypothesis, we find (1) that thermal biology exhibits more divergence among recently diverged Anolis taxa than does morphology; and (2) diversification of thermal biology among all species often follows diversification in morphology. These conclusions are remarkably consistent with predictions made by anole biologists in the 1960s and 1970s. © 2013 The Author(s). Evolution © 2013 The Society for the Study of Evolution.
Gimli: open source and high-performance biomedical name recognition
2013-01-01
Background Automatic recognition of biomedical names is an essential task in biomedical information extraction, presenting several complex and unsolved challenges. In recent years, various solutions have been implemented to tackle this problem. However, limitations regarding system characteristics, customization and usability still hinder their wider application outside text mining research. Results We present Gimli, an open-source, state-of-the-art tool for automatic recognition of biomedical names. Gimli includes an extended set of implemented and user-selectable features, such as orthographic, morphological, linguistic-based, conjunctions and dictionary-based. A simple and fast method to combine different trained models is also provided. Gimli achieves an F-measure of 87.17% on GENETAG and 72.23% on JNLPBA corpus, significantly outperforming existing open-source solutions. Conclusions Gimli is an off-the-shelf, ready to use tool for named-entity recognition, providing trained and optimized models for recognition of biomedical entities from scientific text. It can be used as a command line tool, offering full functionality, including training of new models and customization of the feature set and model parameters through a configuration file. Advanced users can integrate Gimli in their text mining workflows through the provided library, and extend or adapt its functionalities. Based on the underlying system characteristics and functionality, both for final users and developers, and on the reported performance results, we believe that Gimli is a state-of-the-art solution for biomedical NER, contributing to faster and better research in the field. Gimli is freely available at http://bioinformatics.ua.pt/gimli. PMID:23413997
Soleymani, Ali; Pennekamp, Frank; Petchey, Owen L.; Weibel, Robert
2015-01-01
Recent advances in tracking technologies such as GPS or video tracking systems describe the movement paths of individuals in unprecedented details and are increasingly used in different fields, including ecology. However, extracting information from raw movement data requires advanced analysis techniques, for instance to infer behaviors expressed during a certain period of the recorded trajectory, or gender or species identity in case data is obtained from remote tracking. In this paper, we address how different movement features affect the ability to automatically classify the species identity, using a dataset of unicellular microbes (i.e., ciliates). Previously, morphological attributes and simple movement metrics, such as speed, were used for classifying ciliate species. Here, we demonstrate that adding advanced movement features, in particular such based on discrete wavelet transform, to morphological features can improve classification. These results may have practical applications in automated monitoring of waste water facilities as well as environmental monitoring of aquatic systems. PMID:26680591
Automated noninvasive classification of renal cancer on multiphase CT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Linguraru, Marius George; Wang, Shijun; Shah, Furhawn
2011-10-15
Purpose: To explore the added value of the shape of renal lesions for classifying renal neoplasms. To investigate the potential of computer-aided analysis of contrast-enhanced computed-tomography (CT) to quantify and classify renal lesions. Methods: A computer-aided clinical tool based on adaptive level sets was employed to analyze 125 renal lesions from contrast-enhanced abdominal CT studies of 43 patients. There were 47 cysts and 78 neoplasms: 22 Von Hippel-Lindau (VHL), 16 Birt-Hogg-Dube (BHD), 19 hereditary papillary renal carcinomas (HPRC), and 21 hereditary leiomyomatosis and renal cell cancers (HLRCC). The technique quantified the three-dimensional size and enhancement of lesions. Intrapatient and interphasemore » registration facilitated the study of lesion serial enhancement. The histograms of curvature-related features were used to classify the lesion types. The areas under the curve (AUC) were calculated for receiver operating characteristic curves. Results: Tumors were robustly segmented with 0.80 overlap (0.98 correlation) between manual and semi-automated quantifications. The method further identified morphological discrepancies between the types of lesions. The classification based on lesion appearance, enhancement and morphology between cysts and cancers showed AUC = 0.98; for BHD + VHL (solid cancers) vs. HPRC + HLRCC AUC = 0.99; for VHL vs. BHD AUC = 0.82; and for HPRC vs. HLRCC AUC = 0.84. All semi-automated classifications were statistically significant (p < 0.05) and superior to the analyses based solely on serial enhancement. Conclusions: The computer-aided clinical tool allowed the accurate quantification of cystic, solid, and mixed renal tumors. Cancer types were classified into four categories using their shape and enhancement. Comprehensive imaging biomarkers of renal neoplasms on abdominal CT may facilitate their noninvasive classification, guide clinical management, and monitor responses to drugs or interventions.« less
Near-Infrared Imaging Polarimetry of the GG Tauri Circumbinary Ring
NASA Astrophysics Data System (ADS)
Silber, Joel; Gledhill, Tim; Duchêne, Gaspard; Ménard, François
2000-06-01
We present 1 μm Hubble Space Telescope/near-infrared camera and multiobject spectrometer resolved imaging polarimetry of the GG Tau circumbinary ring. We find that the ring displays east-west asymmetries in surface brightness as well as several pronounced irregularities but is smoother than suggested by ground-based adaptive optics observations. The data are consistent with a 37° system inclination and a projected rotational axis at a position angle of 7° east of north, determined from millimeter imaging. The ring is strongly polarized, up to ~50%, which is indicative of Rayleigh-like scattering from submicron dust grains. Although the polarization pattern is broadly centrosymmetric and clearly results from illumination of the ring by the central stars, departures from true centrosymmetry and the irregular flux suggest that binary illumination, scattering through unresolved circumstellar disks, and shading by these disks may all be factors influencing the observed morphology. We confirm a ~0.25" shift between the inner edges of the near-infrared and millimeter images and find that the global morphology of the ring and the polarimetry provide strong evidence for a geometrically thick ring. A simple Monte Carlo scattering simulation is presented that reproduces these features and supports the thick-ring hypothesis. We cannot confirm filamentary streaming from the binary to the ring, also observed in the ground-based images, although it is possible that there is material inside the dynamically cleared region that might contribute to filamentary deconvolution artifacts. Finally, we find a faint fifth point source in the GG Tau field that, if it is associated with the system, is almost certainly a brown dwarf. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by AURA, Inc., under NASA contract NAS5-26555.
Nosil, P; Crespi, B J
2004-01-01
Population differentiation often reflects a balance between divergent natural selection and the opportunity for homogenizing gene flow to erode the effects of selection. However, during ecological speciation, trait divergence results in reproductive isolation and becomes a cause, rather than a consequence, of reductions in gene flow. To assess both the causes and the reproductive consequences of morphological differentiation, we examined morphological divergence and sexual isolation among 17 populations of Timema cristinae walking-sticks. Individuals from populations adapted to using Adenostoma as a host plant tended to exhibit smaller overall body size, wide heads, and short legs relative to individuals using Ceonothus as a host. However, there was also significant variation in morphology among populations within host-plant species. Mean trait values for each single population could be reliably predicted based upon host-plant used and the potential for homogenizing gene flow, inferred from the size of the neighboring population using the alternate host and mitochondrial DNA estimates of gene flow. Morphology did not influence the probability of copulation in between-population mating trials. Thus, morphological divergence is facilitated by reductions in gene flow, but does not cause reductions in gene flow via the evolution of sexual isolation. Combined with rearing data indicating that size and shape have a partial genetic basis, evidence for parallel origins of the host-associated forms, and inferences from functional morphology, these results indicate that morphological divergence in T. cristinae reflects a balance between the effects of host-specific natural selection and gene flow. Our findings illustrate how data on mating preferences can help determine the causal associations between trait divergence and levels of gene flow.
Sánchez-Baracaldo, Patricia; Thomas, Gavin H.
2014-01-01
The recent uplift of the tropical Andes (since the late Pliocene or early Pleistocene) provided extensive ecological opportunity for evolutionary radiations. We test for phylogenetic and morphological evidence of adaptive radiation and convergent evolution to novel habitats (exposed, high-altitude páramo habitats) in the Andean fern genera Jamesonia and Eriosorus. We construct time-calibrated phylogenies for the Jamesonia-Eriosorus clade. We then use recent phylogenetic comparative methods to test for evolutionary transitions among habitats, associations between habitat and leaf morphology, and ecologically driven variation in the rate of morphological evolution. Páramo species (Jamesonia) display morphological adaptations consistent with convergent evolution in response to the demands of a highly exposed environment but these adaptations are associated with microhabitat use rather than the páramo per se. Species that are associated with exposed microhabitats (including Jamesonia and Eriorsorus) are characterized by many but short pinnae per frond whereas species occupying sheltered microhabitats (primarily Eriosorus) have few but long pinnae per frond. Pinnae length declines more rapidly with altitude in sheltered species. Rates of speciation are significantly higher among páramo than non-páramo lineages supporting the hypothesis of adaptation and divergence in the unique Páramo biodiversity hotspot. PMID:25340770
Sánchez-Baracaldo, Patricia; Thomas, Gavin H
2014-01-01
The recent uplift of the tropical Andes (since the late Pliocene or early Pleistocene) provided extensive ecological opportunity for evolutionary radiations. We test for phylogenetic and morphological evidence of adaptive radiation and convergent evolution to novel habitats (exposed, high-altitude páramo habitats) in the Andean fern genera Jamesonia and Eriosorus. We construct time-calibrated phylogenies for the Jamesonia-Eriosorus clade. We then use recent phylogenetic comparative methods to test for evolutionary transitions among habitats, associations between habitat and leaf morphology, and ecologically driven variation in the rate of morphological evolution. Páramo species (Jamesonia) display morphological adaptations consistent with convergent evolution in response to the demands of a highly exposed environment but these adaptations are associated with microhabitat use rather than the páramo per se. Species that are associated with exposed microhabitats (including Jamesonia and Eriorsorus) are characterized by many but short pinnae per frond whereas species occupying sheltered microhabitats (primarily Eriosorus) have few but long pinnae per frond. Pinnae length declines more rapidly with altitude in sheltered species. Rates of speciation are significantly higher among páramo than non-páramo lineages supporting the hypothesis of adaptation and divergence in the unique Páramo biodiversity hotspot.
Conservatism and Adaptability during Squirrel Radiation: What Is Mandible Shape Telling Us?
Casanovas-Vilar, Isaac; van Dam, Jan
2013-01-01
Both functional adaptation and phylogeny shape the morphology of taxa within clades. Herein we explore these two factors in an integrated way by analyzing shape and size variation in the mandible of extant squirrels using landmark-based geometric morphometrics in combination with a comparative phylogenetic analysis. Dietary specialization and locomotion were found to be reliable predictors of mandible shape, with the prediction by locomotion probably reflecting the underlying diet. In addition a weak but significant allometric effect could be demonstrated. Our results found a strong phylogenetic signal in the family as a whole as well as in the main clades, which is in agreement with the general notion of squirrels being a conservative group. This fact does not preclude functional explanations for mandible shape, but rather indicates that ancient adaptations kept a prominent role, with most genera having diverged little from their ancestral clade morphologies. Nevertheless, certain groups have evolved conspicuous adaptations that allow them to specialize on unique dietary resources. Such adaptations mostly occurred in the Callosciurinae and probably reflect their radiation into the numerous ecological niches of the tropical and subtropical forests of Southeastern Asia. Our dietary reconstruction for the oldest known fossil squirrels (Eocene, 36 million years ago) show a specialization on nuts and seeds, implying that the development from protrogomorphous to sciuromorphous skulls was not necessarily related to a change in diet. PMID:23593456
Bai, Juan; Xiao, Xue; Xue, Yuan-Yuan; Jiang, Jia-Xing; Zeng, Jing-Hui; Li, Xi-Fei; Chen, Yu
2018-06-13
Rationally designing and manipulating composition and morphology of precious metal-based bimetallic nanostructures can markedly enhance their electrocatalytic performance, including selectivity, activity, and durability. We herein report the synthesis of bimetallic PtRh alloy nanodendrites (ANDs) with tunable composition by a facile complex-reduction synthetic method under hydrothermal conditions. The structural/morphologic features, formation mechanism, and electrocatalytic performance of PtRh ANDs are investigated thoroughly by various physical characterization and electrochemical methods. The preformed Rh crystal nuclei effectively catalyze the reduction of Pt 2+ precursor, resulting in PtRh alloy generation due to the catalytic growth and atoms interdiffusion process. The Pt atoms deposition distinctly interferes in Rh atoms deposition on Rh crystal nuclei, resulting in dendritic morphology of PtRh ANDs. For the ethanol oxidation reaction (EOR), PtRh ANDs display the chemical composition and solution pH co-dependent electrocatalytic activity. Because of the alloy effect and particular morphologic feature, Pt 1 Rh 1 ANDs with optimized composition exhibit better reactivity and stability for the EOR than commercial Pt nanocrystals electrocatalyst.
Artificial evolution of the morphology and kinematics in a flapping-wing mini-UAV.
de Margerie, E; Mouret, J B; Doncieux, S; Meyer, J-A
2007-12-01
Birds demonstrate that flapping-wing flight (FWF) is a versatile flight mode, compatible with hovering, forward flight and gliding to save energy. This extended flight domain would be especially useful on mini-UAVs. However, design is challenging because aerodynamic efficiency is conditioned by complex movements of the wings, and because many interactions exist between morphological (wing area, aspect ratio) and kinematic parameters (flapping frequency, stroke amplitude, wing unfolding). Here we used artificial evolution to optimize these morpho-kinematic features on a simulated 1 kg UAV, equipped with wings articulated at the shoulder and wrist. Flight tests were conducted in a dedicated steady aerodynamics simulator. Parameters generating horizontal flight for minimal mechanical power were retained. Results showed that flight at medium speed (10-12 m s(-1)) can be obtained for reasonable mechanical power (20 W kg(-1)), while flight at higher speed (16-20 m s(-1)) implied increased power (30-50 W kg(-1)). Flight at low speed (6-8 m s(-1)) necessitated unrealistic power levels (70-500 W kg(-1)), probably because our simulator neglected unsteady aerodynamics. The underlying adaptation of morphology and kinematics to varying flight speed were compared to available biological data on the flight of birds.
Water transparency drives intra-population divergence in Eurasian Perch (Perca fluviatilis).
Bartels, Pia; Hirsch, Philipp E; Svanbäck, Richard; Eklöv, Peter
2012-01-01
Trait combinations that lead to a higher efficiency in resource utilization are important drivers of divergent natural selection and adaptive radiation. However, variation in environmental features might constrain foraging in complex ways and therefore impede the exploitation of critical resources. We tested the effect of water transparency on intra-population divergence in morphology of Eurasian perch (Perca fluviatilis) across seven lakes in central Sweden. Morphological divergence between near-shore littoral and open-water pelagic perch substantially increased with increasing water transparency. Reliance on littoral resources increased strongly with increasing water transparency in littoral populations, whereas littoral reliance was not affected by water transparency in pelagic populations. Despite the similar reliance on pelagic resources in pelagic populations along the water transparency gradient, the utilization of particular pelagic prey items differed with variation in water transparency in pelagic populations. Pelagic perch utilized cladocerans in lakes with high water transparency and copepods in lakes with low water transparency. We suggest that under impaired visual conditions low utilization of littoral resources by littoral perch and utilization of evasive copepods by pelagic perch may lead to changes in morphology. Our findings indicate that visual conditions can affect population divergence in predator populations through their effects on resource utilization.
ATF6α regulates morphological changes associated with senescence in human fibroblasts
Martin, Nathalie; Saas, Laure; Cormenier, Johanna; Malaquin, Nicolas; Huot, Ludovic; Slomianny, Christian; Bouali, Fatima; Vercamer, Chantal; Hot, David; Pourtier, Albin; Chevet, Eric; Abbadie, Corinne; Pluquet, Olivier
2016-01-01
Cellular senescence is known as an anti-tumor barrier and is characterized by a number of determinants including cell cycle arrest, senescence associated β-galactosidase activity and secretion of pro-inflammatory mediators. Senescent cells are also subjected to enlargement, cytoskeleton-mediated shape changes and organelle alterations. However, the underlying molecular mechanisms responsible for these last changes remain still uncharacterized. Herein, we have identified the Unfolded Protein Response (UPR) as a player controlling some morphological aspects of the senescent phenotype. We show that senescent fibroblasts exhibit ER expansion and mild UPR activation, but conserve an ER stress adaptive capacity similar to that of exponentially growing cells. By genetically invalidating the three UPR sensors in senescent fibroblasts, we demonstrated that ATF6α signaling dictates senescence-associated cell shape modifications. We also show that ER expansion and increased secretion of the pro-inflammatory mediator IL6 were partly reversed by silencing ATF6α in senescent cells. Moreover, ATF6α drives the increase of senescence associated-β-galactosidase activity. Collectively, these findings unveil a novel and central role for ATF6α in the establishment of morphological features of senescence in normal human primary fibroblasts. PMID:27563820
ATF6α regulates morphological changes associated with senescence in human fibroblasts.
Druelle, Clémentine; Drullion, Claire; Deslé, Julie; Martin, Nathalie; Saas, Laure; Cormenier, Johanna; Malaquin, Nicolas; Huot, Ludovic; Slomianny, Christian; Bouali, Fatima; Vercamer, Chantal; Hot, David; Pourtier, Albin; Chevet, Eric; Abbadie, Corinne; Pluquet, Olivier
2016-10-18
Cellular senescence is known as an anti-tumor barrier and is characterized by a number of determinants including cell cycle arrest, senescence associated β-galactosidase activity and secretion of pro-inflammatory mediators. Senescent cells are also subjected to enlargement, cytoskeleton-mediated shape changes and organelle alterations. However, the underlying molecular mechanisms responsible for these last changes remain still uncharacterized. Herein, we have identified the Unfolded Protein Response (UPR) as a player controlling some morphological aspects of the senescent phenotype. We show that senescent fibroblasts exhibit ER expansion and mild UPR activation, but conserve an ER stress adaptive capacity similar to that of exponentially growing cells. By genetically invalidating the three UPR sensors in senescent fibroblasts, we demonstrated that ATF6α signaling dictates senescence-associated cell shape modifications. We also show that ER expansion and increased secretion of the pro-inflammatory mediator IL6 were partly reversed by silencing ATF6α in senescent cells. Moreover, ATF6α drives the increase of senescence associated-β-galactosidase activity. Collectively, these findings unveil a novel and central role for ATF6α in the establishment of morphological features of senescence in normal human primary fibroblasts.
Mechanical instability driven self-assembly and architecturing of 2D materials
NASA Astrophysics Data System (ADS)
Cai Wang, Michael; Leem, Juyoung; Kang, Pilgyu; Choi, Jonghyun; Knapp, Peter; Yong, Keong; Nam, SungWoo
2017-06-01
Two-dimensional (2D) materials have been well studied for their diverse and impressive properties and superlative mechanical strength. Their atomic thinness and weak van der Waals interaction, while fascinating and unique, dictate their tendency to exhibit out of plane morphologies such as bending, buckling, folding, rippling, scrolling, and wrinkling, etc. In this review, we discuss the mechanisms behind these instability driven morphologies and the resultant phenomena that arise. We then survey methods to manipulate them especially in a scalable manner, and elucidate some interesting applications uniquely enabled by these structures. Contrary to conventional wisdom, the deterministic control of these features has great implications for the local and overall material properties due to heterogeneous distribution of stresses and strains. The introduction of deformable and shape memory substrates especially allow for facile and large scale synthesis of various types of out of plane morphologies. We show that a variety of exciting phenomena and applications arise, including tunable surfaces and coatings, robust devices and electronics, adaptive optoelectronics, material toughening, energy storage, and chemical sensing. This new perspective on these otherwise nuisance thin-film phenomena enable new tools for future materials discovery, design, and synthesis with the ever growing library of 2D atomically thin materials.
Tejo Riquelme, Patricia A; Diaz Isenrath, Gabriela B; Andino, Natalia; Borghi, Carlos E
2014-07-01
Mammals that live in arid and semi-arid environments in South America present physiological mechanisms that enable them to conserve water. Body water is lost through the kidneys, lungs, skin, and intestines. Regarding renal adaptation for water conservation, several indices have been used to estimate the capacity of the kidneys to produce a maximum urine concentration. Most studies were conducted at an inter-specific level, with only few performed at the intraspecific level. In this work, we compare renal function and morphology among five populations of Southern mountain cavy, Microcavia australis, present along an aridity gradient. We hypothesized that individuals from drier zones would present morphological and functional renal modifications that imply a greater capability to conserve body water. These features were studied considering the classical indices (RMT, PMT, PMA, and RMA) and three new indices that consider area measurements; the latter showed to be more adequate to reflect intraspecific differences. Our results suggest that the morphological modifications of kidneys, that is, the greater areas of renal inner medulla, would be related to the aridity gradient where populations of Southern mountain cavy occur. © 2014 Wiley Periodicals, Inc.
Almeida, F; Oliveira, F; Neves, R; Siqueira, N; Rodrigues-Silva, R; Daipert-Garcia, D; Machado-Silva, J R
2015-07-01
Polycystic echinococcosis, caused by the larval stage (metacestode) of the small-sized tapeworm, Echinococcus vogeli, is an emerging parasitic zoonosis of great public health concern in the humid tropical rainforests of South and Central America. Because morphological and morphometric characteristics of the metacestode are not well known, hydatid cysts from the liver and the mesentery were examined from patients following surgical procedures. Whole mounts of protoscoleces with rostellar hooks were examined under light and confocal laser scanning microscopy. Measurements were made of both large and small hooks, including the total area, total length, total width, blade area, blade length, blade width, handle area, handle length and handle width. The results confirmed the 1:1 arrangement of hooks in the rostellar pad and indicated, for the first time, that the morphometry of large and small rostellar hooks varies depending upon the site of infection. Light and confocal microscopy images displayed clusters of calcareous corpuscles in the protoscoleces. In conclusion, morphological features of large and small rostellar hooks of E. vogeli are adapted to a varied environment within the vertebrate host and such morphological changes in calcareous corpuscles occur at different stages in the maturation of metacestodes.
García-Esponda, César M; Candela, Adriana M
2016-03-01
The caviomorph species Hydrochoerus hydrochaeris (Cavioidea), or capybara, is the largest living rodent. This species is widely distributed, from northern South America to Uruguay and eastern Argentina, inhabiting in a wide variety of densely vegetated lowlands habitats in the proximity of water. Hydrochoerus hydrochaeris not only runs with agility, like other members of the Cavioidea, but it can also swim and dive easily. For these reasons, it has been classified as a cursorial as well as semiaquatic species. However, comprehensive anatomical descriptions of the osteology and myology of the capybara are not available in the literature and analyses on its swimming abilities are still required. We hypothesize that some of the characters of the hindlimb of H. hydrochaeris could reveal a unique morphological arrangement associated with swimming abilities. In this study, an anatomical description of the hindlimb musculature of H. hydrochaeris, and a discussion of the possible functional significance of the main muscles is provided. In addition, we explore the evolution of some myological and osteological characters of the capybara in the context of the cavioids. We concluded that most of the muscular and osteological features of the hindlimb of H. hydrochaeris are neither adaptations to a specialized cursoriality, nor major modifications for an aquatic mode of life. Hydrochoerus hydrochaeris share several features with other cavioids, being a generalized cursorial species in the context of this clade. However, it shows some adaptations of the hindlimb for enhancing propulsion through water, of which the most notable seems to be the shortening of the leg, short tendons of most muscles of the leg, and a well-developed soleus muscle. These adaptations to a semiaquatic mode of life could have been acquired during the most recent evolutionary history of the hydrochoerids. © 2015 Wiley Periodicals, Inc.
De Groote, Isabelle
2011-10-01
Neanderthal forearms have been described as being very powerful. Different individual features in the lower arm bones have been described to distinguish Neanderthals from modern humans. In this study, the overall morphology of the radius and ulna is considered, and morphological differences among Neanderthals, Upper Paleolithic Homo sapiens and recent H. sapiens are described. Comparisons among populations were made using a combination of 3D geometric morphometrics and standard multivariate methods. Comparative material included all available complete radii and ulnae from Neanderthals, early H. sapiens and archaeological and recent human populations, representing a wide geographical and lifestyle range. There are few differences among the populations when features are considered individually. Neanderthals and early H. sapiens fell within the range of modern human variation. When the suite of measurements and shapes were analyzed, differences and similarities became apparent. The Neanderthal radius is more laterally curved, has a more medially placed radial tuberosity, a longer radial neck, a more antero-posteriorly ovoid head and a well-developed proximal interosseous crest. The Neanderthal ulna has a more anterior facing trochlear notch, a lower M. brachialis insertion, larger relative mid-shaft size and a more medio-lateral and antero-posterior sinusoidal shaft. The Neanderthal lower arm morphology reflects a strong cold-adapted short forearm. The forearms of H. sapiens are less powerful in pronation and supination. Many differences between Neanderthals and H. sapiens can be explained as a secondary consequence of the hyper-polar body proportions of the Neanderthals, but also as retentions of the primitive condition of other hominoids. Copyright © 2011 Elsevier Ltd. All rights reserved.
IMMAN: free software for information theory-based chemometric analysis.
Urias, Ricardo W Pino; Barigye, Stephen J; Marrero-Ponce, Yovani; García-Jacas, César R; Valdes-Martiní, José R; Perez-Gimenez, Facundo
2015-05-01
The features and theoretical background of a new and free computational program for chemometric analysis denominated IMMAN (acronym for Information theory-based CheMoMetrics ANalysis) are presented. This is multi-platform software developed in the Java programming language, designed with a remarkably user-friendly graphical interface for the computation of a collection of information-theoretic functions adapted for rank-based unsupervised and supervised feature selection tasks. A total of 20 feature selection parameters are presented, with the unsupervised and supervised frameworks represented by 10 approaches in each case. Several information-theoretic parameters traditionally used as molecular descriptors (MDs) are adapted for use as unsupervised rank-based feature selection methods. On the other hand, a generalization scheme for the previously defined differential Shannon's entropy is discussed, as well as the introduction of Jeffreys information measure for supervised feature selection. Moreover, well-known information-theoretic feature selection parameters, such as information gain, gain ratio, and symmetrical uncertainty are incorporated to the IMMAN software ( http://mobiosd-hub.com/imman-soft/ ), following an equal-interval discretization approach. IMMAN offers data pre-processing functionalities, such as missing values processing, dataset partitioning, and browsing. Moreover, single parameter or ensemble (multi-criteria) ranking options are provided. Consequently, this software is suitable for tasks like dimensionality reduction, feature ranking, as well as comparative diversity analysis of data matrices. Simple examples of applications performed with this program are presented. A comparative study between IMMAN and WEKA feature selection tools using the Arcene dataset was performed, demonstrating similar behavior. In addition, it is revealed that the use of IMMAN unsupervised feature selection methods improves the performance of both IMMAN and WEKA supervised algorithms. Graphic representation for Shannon's distribution of MD calculating software.
Chiba, Satoshi
1999-04-01
An endemic land snail genus Mandarina of the oceanic Bonin (Ogasawara) Islands shows exceptionally rapid evolution not only of morphological and ecological traits, but of DNA sequence. A phylogenetic relationship based on mitochondrial DNA (mtDNA) sequences suggests that morphological differences equivalent to the differences between families were produced between Mandarina and its ancestor during the Pleistocene. The inferred phylogeny shows that species with similar morphologies and life habitats appeared repeatedly and independently in different lineages and islands at different times. Sequential adaptive radiations occurred in different islands of the Bonin Islands and species occupying arboreal, semiarboreal, and terrestrial habitat arose independently in each island. Because of a close relationship between shell morphology and life habitat, independent evolution of the same life habitat in different islands created species possesing the same shell morphology in different islands and lineages. This rapid evolution produced some incongruences between phylogenetic relationship and species taxonomy. Levels of sequence divergence of mtDNA among the species of Mandarina is extremely high. The maximum level of sequence divergence at 16S and 12S ribosomal RNA sequence within Mandarina are 18.7% and 17.7%, respectively, and this suggests that evolution of mtDNA of Mandarina is extremely rapid, more than 20 times faster than the standard rate in other animals. The present examination reveals that evolution of morphological and ecological traits occurs at extremely high rates in the time of adaptive radiation, especially in fragmented environments. © 1999 The Society for the Study of Evolution.
170 Years of “Lock-and-Key”: Genital Morphology and Reproductive Isolation
Masly, John P.
2012-01-01
The divergent genital morphology observed among closely related animal species has long been posited as a mechanism of reproductive isolation. Despite the intuitive appeal that rapidly evolving genitalia might cause speciation, evidence for its importance—or even its potential—in reproductive isolation is mixed. Most tests of genital structural isolation between species often fail to find convincing evidence that differences in morphology prevent copulation or insemination between species. However, recent work suggests that differences in genital morphology might contribute to reproductive isolation in less obvious ways through interactions with sensory mechanisms that result in lowered reproductive fitness in heterospecific matings. In this paper, I present a brief history of the “lock-and-key” hypothesis, summarize the evidence for the involvement of genital morphology in different mechanisms of reproductive isolation, discuss progress in identifying the molecular and genetic bases of species differences in genital morphology, and discuss prospects for future work on the role of genitalia in speciation. L'armure copulatrice est un organe ou mieux un instrument ingénieusement compliqué, destiné à s'adapter aux parties sexuelles externes de la femelle pour l'accomplissement de l'acte copulatif; elle est la garantie de la conservation des types, la sauvegarde de la légitimité de l'espèce. [The copulation armor is an organ or better an instrument ingeniously complicated, destined to adapt to sexual parts external to the female for the completion of copulation; it is the guarantee of the preservation of the standards, the safeguard of the legitimacy of the species.] L. Dufour, 1844 PMID:22263116
Han, Te; Jiang, Dongxiang; Zhang, Xiaochen; Sun, Yankui
2017-01-01
Rotating machinery is widely used in industrial applications. With the trend towards more precise and more critical operating conditions, mechanical failures may easily occur. Condition monitoring and fault diagnosis (CMFD) technology is an effective tool to enhance the reliability and security of rotating machinery. In this paper, an intelligent fault diagnosis method based on dictionary learning and singular value decomposition (SVD) is proposed. First, the dictionary learning scheme is capable of generating an adaptive dictionary whose atoms reveal the underlying structure of raw signals. Essentially, dictionary learning is employed as an adaptive feature extraction method regardless of any prior knowledge. Second, the singular value sequence of learned dictionary matrix is served to extract feature vector. Generally, since the vector is of high dimensionality, a simple and practical principal component analysis (PCA) is applied to reduce dimensionality. Finally, the K-nearest neighbor (KNN) algorithm is adopted for identification and classification of fault patterns automatically. Two experimental case studies are investigated to corroborate the effectiveness of the proposed method in intelligent diagnosis of rotating machinery faults. The comparison analysis validates that the dictionary learning-based matrix construction approach outperforms the mode decomposition-based methods in terms of capacity and adaptability for feature extraction. PMID:28346385
Khan, Arif Ul Maula; Torelli, Angelo; Wolf, Ivo; Gretz, Norbert
2018-05-08
In biological assays, automated cell/colony segmentation and counting is imperative owing to huge image sets. Problems occurring due to drifting image acquisition conditions, background noise and high variation in colony features in experiments demand a user-friendly, adaptive and robust image processing/analysis method. We present AutoCellSeg (based on MATLAB) that implements a supervised automatic and robust image segmentation method. AutoCellSeg utilizes multi-thresholding aided by a feedback-based watershed algorithm taking segmentation plausibility criteria into account. It is usable in different operation modes and intuitively enables the user to select object features interactively for supervised image segmentation method. It allows the user to correct results with a graphical interface. This publicly available tool outperforms tools like OpenCFU and CellProfiler in terms of accuracy and provides many additional useful features for end-users.
Naumenko, Sergey A; Logacheva, Maria D; Popova, Nina V; Klepikova, Anna V; Penin, Aleksey A; Bazykin, Georgii A; Etingova, Anna E; Mugue, Nikolai S; Kondrashov, Alexey S; Yampolsky, Lev Y
2017-01-01
Endemic species flocks inhabiting ancient lakes, oceanic islands and other long-lived isolated habitats are often interpreted as adaptive radiations. Yet molecular evidence for directional selection during species flocks radiation is scarce. Using partial transcriptomes of 64 species of Lake Baikal (Siberia, Russia) endemic amphipods and two nonendemic outgroups, we report a revised phylogeny of this species flock and analyse evidence for positive selection within the endemic lineages. We confirm two independent invasions of amphipods into Baikal and demonstrate that several morphological features of Baikal amphipods, such as body armour and reduction in appendages and sensory organs, evolved in several lineages in parallel. Radiation of Baikal amphipods has been characterized by short phylogenetic branches and frequent episodes of positive selection which tended to be more frequent in the early phase of the second invasion of amphipods into Baikal when the most intensive diversification occurred. Notably, signatures of positive selection are frequent in genes encoding mitochondrial membrane proteins with electron transfer chain and ATP synthesis functionality. In particular, subunits of both the membrane and substrate-level ATP synthases show evidence of positive selection in the plankton species Macrohectopus branickii, possibly indicating adaptation to active plankton lifestyle and to survival under conditions of low temperature and high hydrostatic pressures known to affect membranes functioning. Other functional categories represented among genes likely to be under positive selection include Ca-binding muscle-related proteins, possibly indicating adaptation to Ca-deficient low mineralization Baikal waters. © 2016 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Han, Sheng; Xi, Shi-qiong; Geng, Wei-dong
2017-11-01
In order to solve the problem of low recognition rate of traditional feature extraction operators under low-resolution images, a novel algorithm of expression recognition is proposed, named central oblique average center-symmetric local binary pattern (CS-LBP) with adaptive threshold (ATCS-LBP). Firstly, the features of face images can be extracted by the proposed operator after pretreatment. Secondly, the obtained feature image is divided into blocks. Thirdly, the histogram of each block is computed independently and all histograms can be connected serially to create a final feature vector. Finally, expression classification is achieved by using support vector machine (SVM) classifier. Experimental results on Japanese female facial expression (JAFFE) database show that the proposed algorithm can achieve a recognition rate of 81.9% when the resolution is as low as 16×16, which is much better than that of the traditional feature extraction operators.
Takayama, Koji; Crawford, Daniel J; López-Sepúlveda, Patricio; Greimler, Josef; Stuessy, Tod F
2018-05-01
Adaptive radiation is a common evolutionary phenomenon in oceanic islands. From one successful immigrant population, dispersal into different island environments and directional selection can rapidly yield a series of morphologically distinct species, each adapted to its own particular environment. Not all island immigrants, however, follow this evolutionary pathway. Others successfully arrive and establish viable populations, but they remain in the same ecological zone and only slowly diverge over millions of years. This transformational speciation, or anagenesis, is also common in oceanic archipelagos. The critical question is why do some groups radiate adaptively and others not? The Juan Fernández Islands contain 105 endemic taxa of angiosperms, 49% of which have originated by adaptive radiation (cladogenesis) and 51% by anagenesis, hence providing an opportunity to examine characteristics of taxa that have undergone both types of speciation in the same general island environment. Life form, dispersal mode, and total number of species in progenitors (genera) of endemic angiosperms in the archipelago were investigated from literature sources and compared with modes of speciation (cladogenesis vs. anagenesis). It is suggested that immigrants tending to undergo adaptive radiation are herbaceous perennial herbs, with leaky self-incompatible breeding systems, good intra-island dispersal capabilities, and flexible structural and physiological systems. Perhaps more importantly, the progenitors of adaptively radiated groups in islands are those that have already been successful in adaptations to different environments in source areas, and which have also undergone eco-geographic speciation. Evolutionary success via adaptive radiation in oceanic islands, therefore, is less a novel feature of island lineages but rather a continuation of tendency for successful adaptive speciation in lineages of continental source regions.
NASA Astrophysics Data System (ADS)
Ebrahimi-Kahrizsangi, Reza; Nasiri-Tabrizi, Bahman; Chami, Akbar
2010-09-01
In this paper, synthesis of bionanocomposite of fluorapatite-titania (FAp-TiO 2) was studied by using one step mechanochemical process. Characterization of the products was accomplished by X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, energy dispersive X-ray spectroscopy (EDX), scanning electron microscopy (SEM), and transmission electron microscopy (TEM) techniques. Based on XRD patterns and FT-IR spectroscopy, correlation between the structural features of the nanostructured FAp-TiO 2 and the process conditions was discussed. Variations in crystallite size, lattice strain, and volume fraction of grain boundary were investigated during milling and the following heat treatment. Crystallization of the nanocomposite occurred after thermal treatment at 650 °C. Morphological features of powders were influenced by the milling time. The resulting FAp-20 wt.%TiO 2 nanocomposite powder exhibited an average particle size of 15 nm after 20 h of milling. The results show that the one step mechanosynthesis technique is an effective route to prepare FAp-based nanocomposites with excellent morphological and structural features.
Constance I. Millar; Robert D. Westfall
2008-01-01
Rock glaciers and related periglacial rock-ice features (RIFs) are abundant yet overlooked landforms in the Sierra Nevada, California, where they occur in diverse forms. We mapped 421 RIFs from field surveys, and grouped these into six classes based on morphology and location. These categories comprise a greater range of frozen-ground features than are commonly...
Lunar volcanism in space and time
DOE Office of Scientific and Technical Information (OSTI.GOV)
Head, J.W. III
1976-05-01
Data obtained from lunar orbit and earth-based observations were used to extend the detailed characterizations derived from Apollo and Luna sample return missions to other parts of the moon. Lunar mare and highland volcanism are described including the distribution, volcanic features, the relation of mare morphologic features to the style of volcanic eruption, the characteristics and ages of other mare deposits, and sample results. (JFP)
Pekár, Stano; Sobotník, Jan; Lubin, Yael
2011-07-01
In a predator-prey system where both intervenients come from the same taxon, one can expect a strong selection on behavioural and morphological traits involved in prey capture. For example, in specialised snake-eating snakes, the predator is unaffetced by the venom of the prey. We predicted that similar adaptations should have evolved in spider-eating (araneophagous) spiders. We investigated potential and actual prey of two Palpimanus spiders (P. gibbulus, P. orientalis) to support the prediction that these are araneophagous predators. Specific behavioural adaptations were investigated using a high-speed camera during staged encounters with prey, while morphological adaptations were investigated using electron microscopy. Both Palpimanus species captured a wide assortment of spider species from various guilds but also a few insect species. Analysis of the potential prey suggested that Palpimanus is a retreat-invading predator that actively searches for spiders that hide in a retreat. Behavioural capture adaptations include a slow, stealthy approach to the prey followed by a very fast attack. Morphological capture adaptations include scopulae on forelegs used in grabbing prey body parts, stout forelegs to hold the prey firmly, and an extremely thick cuticle all over the body preventing injury from a counter bite of the prey. Palpimanus overwhelmed prey that was more than 200% larger than itself. In trials with another araneophagous spider, Cyrba algerina (Salticidae), Palpimanus captured C. algerina in more than 90% of cases independent of the size ratio between the spiders. Evidence indicates that both Palpimanus species possesses remarkable adaptations that increase its efficiency in capturing spider prey.
Arbour, J H; López-Fernández, H
2014-11-01
Morphological, lineage and ecological diversity can vary substantially even among closely related lineages. Factors that influence morphological diversification, especially in functionally relevant traits, can help to explain the modern distribution of disparity across phylogenies and communities. Multivariate axes of feeding functional morphology from 75 species of Neotropical cichlid and a stepwise-AIC algorithm were used to estimate the adaptive landscape of functional morphospace in Cichlinae. Adaptive landscape complexity and convergence, as well as the functional diversity of Cichlinae, were compared with expectations under null evolutionary models. Neotropical cichlid feeding function varied primarily between traits associated with ram feeding vs. suction feeding/biting and secondarily with oral jaw muscle size and pharyngeal crushing capacity. The number of changes in selective regimes and the amount of convergence between lineages was higher than expected under a null model of evolution, but convergence was not higher than expected under a similarly complex adaptive landscape. Functional disparity was compatible with an adaptive landscape model, whereas the distribution of evolutionary change through morphospace corresponded with a process of evolution towards a single adaptive peak. The continentally distributed Neotropical cichlids have evolved relatively rapidly towards a number of adaptive peaks in functional trait space. Selection in Cichlinae functional morphospace is more complex than expected under null evolutionary models. The complexity of selective constraints in feeding morphology has likely been a significant contributor to the diversity of feeding ecology in this clade. © 2014 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2014 European Society For Evolutionary Biology.
NASA Astrophysics Data System (ADS)
Pekár, Stano; Šobotník, Jan; Lubin, Yael
2011-07-01
In a predator-prey system where both intervenients come from the same taxon, one can expect a strong selection on behavioural and morphological traits involved in prey capture. For example, in specialised snake-eating snakes, the predator is unaffetced by the venom of the prey. We predicted that similar adaptations should have evolved in spider-eating (araneophagous) spiders. We investigated potential and actual prey of two Palpimanus spiders ( P. gibbulus, P. orientalis) to support the prediction that these are araneophagous predators. Specific behavioural adaptations were investigated using a high-speed camera during staged encounters with prey, while morphological adaptations were investigated using electron microscopy. Both Palpimanus species captured a wide assortment of spider species from various guilds but also a few insect species. Analysis of the potential prey suggested that Palpimanus is a retreat-invading predator that actively searches for spiders that hide in a retreat. Behavioural capture adaptations include a slow, stealthy approach to the prey followed by a very fast attack. Morphological capture adaptations include scopulae on forelegs used in grabbing prey body parts, stout forelegs to hold the prey firmly, and an extremely thick cuticle all over the body preventing injury from a counter bite of the prey. Palpimanus overwhelmed prey that was more than 200% larger than itself. In trials with another araneophagous spider, Cyrba algerina (Salticidae), Palpimanus captured C. algerina in more than 90% of cases independent of the size ratio between the spiders. Evidence indicates that both Palpimanus species possesses remarkable adaptations that increase its efficiency in capturing spider prey.
Research on feature extraction techniques of Hainan Li brocade pattern
NASA Astrophysics Data System (ADS)
Zhou, Yuping; Chen, Fuqiang; Zhou, Yuhua
2016-03-01
Hainan Li brocade skills has been listed as world non-material cultural heritage preservation, therefore, the research on Hainan Li brocade patterns plays an important role in Li brocade culture inheritance. The meaning of Li brocade patterns was analyzed and the shape feature extraction techniques to original Li brocade patterns were advanced in this paper, based on the contour tracking algorithm. First, edge detection was made on the design patterns, and then the morphological closing operation was used to smooth the image, and finally contour tracking was used to extract the outer contours of Li brocade patterns. The extracted contour features were processed by means of morphology, and digital characteristics of contours are obtained by invariant moments. At last, different patterns of Li brocade design are briefly analyzed according to the digital characteristics. The results showed that the pattern extraction method to Li brocade pattern shapes is feasible and effective according to above method.
NASA Astrophysics Data System (ADS)
Qarib, Hossein; Adeli, Hojjat
2015-12-01
In this paper authors introduce a new adaptive signal processing technique for feature extraction and parameter estimation in noisy exponentially damped signals. The iterative 3-stage method is based on the adroit integration of the strengths of parametric and nonparametric methods such as multiple signal categorization, matrix pencil, and empirical mode decomposition algorithms. The first stage is a new adaptive filtration or noise removal scheme. The second stage is a hybrid parametric-nonparametric signal parameter estimation technique based on an output-only system identification technique. The third stage is optimization of estimated parameters using a combination of the primal-dual path-following interior point algorithm and genetic algorithm. The methodology is evaluated using a synthetic signal and a signal obtained experimentally from transverse vibrations of a steel cantilever beam. The method is successful in estimating the frequencies accurately. Further, it estimates the damping exponents. The proposed adaptive filtration method does not include any frequency domain manipulation. Consequently, the time domain signal is not affected as a result of frequency domain and inverse transformations.
Rosati, Giovanna; Modeo, Letizia; Melai, Michele; Petroni, Giulio; Verni, Franco
2004-01-01
This study represents the first extended report on a species of the ciliate genus Peritromus, widespread in marine biotopes, characterized by a dorso-ventral differentiation peculiar among Heterotrichea. Morphological observations (live, stained, scanning, and transmission electron microscope) were combined with behavioral and molecular data. On the basis of the whole body of observations, the species was recognized as Peritromus kahli. Scanning and transmission electron microscopy have revealed a number of features such as peculiar chalice-like structures external to the dorsal surface, two types of extrusomes, and differences between dorsal and ventral somatic ciliature. The almost complete SSrDNA gene sequence was also determined. A molecular phylogenetic analysis indicated that Peritromus diverged early from other members of the Class Heterotrichea. The dorso-ventral differentiation that certainly influences the behavior of P. kahli (e.g. preference for crawling and thigmotaxis) may have been selected as an adaptation to the constraints of the interstitial habitat.
Brewster, Ciarán; Meiklejohn, Christopher; von Cramon-Taubadel, Noreen; Pinhasi, Ron
2014-01-01
The Last Glacial Maximum (LGM) represents the most significant climatic event since the emergence of anatomically modern humans (AMH). In Europe, the LGM may have played a role in changing morphological features as a result of adaptive and stochastic processes. We use craniometric data to examine morphological diversity in pre- and post-LGM specimens. Craniometric variation is assessed across four periods—pre-LGM, late glacial, Early Holocene and Middle Holocene—using a large, well-dated, dataset. Our results show significant differences across the four periods, using a MANOVA on size-adjusted cranial measurements. A discriminant function analysis shows separation between pre-LGM and later groups. Analyses repeated on a subsample, controlled for time and location, yield similar results. The results are largely influenced by facial measurements and are most consistent with neutral demographic processes. These findings suggest that the LGM had a major impact on AMH populations in Europe prior to the Neolithic. PMID:24912847
Vieira, Leandro M; Stampar, Sergio N
2014-03-21
A new species of cheilostome bryozoan, Fenestrulina commensalis n. sp., was collected in December 2008 by scuba at 5-10 meters depth at Guaibura Beach, Guarapari, Espírito Santo state, southeastern Brazil. The specimen was found associated with tubes of the cerianthid Pachycerianthus sp., representing the first commensal association between a bryozoan and a tube-dwelling anemone. Fenestrulina commensalis n. sp. is the third species of the genus found in Brazilian waters; it is distinguished from other Atlantic species of Fenestrulina by its small angular orificial condyles, a single oral spine and basal anchoring rhizoids arising from abfrontal pore chambers. Morphological adaptations to encrust the tubes of cerianthids include anchoring rootlets and weakly contiguous zooids. These morphological features allow the colony the flexibility to grow around the tube and feed relatively undisturbed by silt and detritus, being raised well above the soft-sediment substratum in which the tube-anemone grows.
Mendeley: Creating Communities of Scholarly Inquiry through Research Collaboration
ERIC Educational Resources Information Center
Zaugg, Holt; West, Richard E.; Tateishi, Isaku; Randall, Daniel L.
2010-01-01
Mendeley is a free, web-based tool for organizing research citations and annotating their accompanying PDF articles. Adapting Web 2.0 principles for academic scholarship, Mendeley integrates the management of the research articles with features for collaborating with researchers locally and worldwide. In this article the features of Mendeley are…
Araki, Tadashi; Jain, Pankaj K; Suri, Harman S; Londhe, Narendra D; Ikeda, Nobutaka; El-Baz, Ayman; Shrivastava, Vimal K; Saba, Luca; Nicolaides, Andrew; Shafique, Shoaib; Laird, John R; Gupta, Ajay; Suri, Jasjit S
2017-01-01
Stroke risk stratification based on grayscale morphology of the ultrasound carotid wall has recently been shown to have a promise in classification of high risk versus low risk plaque or symptomatic versus asymptomatic plaques. In previous studies, this stratification has been mainly based on analysis of the far wall of the carotid artery. Due to the multifocal nature of atherosclerotic disease, the plaque growth is not restricted to the far wall alone. This paper presents a new approach for stroke risk assessment by integrating assessment of both the near and far walls of the carotid artery using grayscale morphology of the plaque. Further, this paper presents a scientific validation system for stroke risk assessment. Both these innovations have never been presented before. The methodology consists of an automated segmentation system of the near wall and far wall regions in grayscale carotid B-mode ultrasound scans. Sixteen grayscale texture features are computed, and fed into the machine learning system. The training system utilizes the lumen diameter to create ground truth labels for the stratification of stroke risk. The cross-validation procedure is adapted in order to obtain the machine learning testing classification accuracy through the use of three sets of partition protocols: (5, 10, and Jack Knife). The mean classification accuracy over all the sets of partition protocols for the automated system in the far and near walls is 95.08% and 93.47%, respectively. The corresponding accuracies for the manual system are 94.06% and 92.02%, respectively. The precision of merit of the automated machine learning system when compared against manual risk assessment system are 98.05% and 97.53% for the far and near walls, respectively. The ROC of the risk assessment system for the far and near walls is close to 1.0 demonstrating high accuracy. Copyright © 2016 Elsevier Ltd. All rights reserved.
Managing multi-ungulate systems in disturbance-adapted forest ecosystems in North America
Martin Vavra; Robert A. Riggs
2010-01-01
Understanding how interactions among ungulate populations and their environmental dynamics play out across scales of time and space is a principal obstacle to managing ungulates in western North America. Morphological similarity, forage-base homogeneity and increasing animal density each enhance the likelihood of competitive interactions among sympatric populations....
Adaptive gamma correction-based expert system for nonuniform illumination face enhancement
NASA Astrophysics Data System (ADS)
Abdelhamid, Iratni; Mustapha, Aouache; Adel, Oulefki
2018-03-01
The image quality of a face recognition system suffers under severe lighting conditions. Thus, this study aims to develop an approach for nonuniform illumination adjustment based on an adaptive gamma correction (AdaptGC) filter that can solve the aforementioned issue. An approach for adaptive gain factor prediction was developed via neural network model-based cross-validation (NN-CV). To achieve this objective, a gamma correction function and its effects on the face image quality with different gain values were examined first. Second, an orientation histogram (OH) algorithm was assessed as a face's feature descriptor. Subsequently, a density histogram module was developed for face label generation. During the NN-CV construction, the model was assessed to recognize the OH descriptor and predict the face label. The performance of the NN-CV model was evaluated by examining the statistical measures of root mean square error and coefficient of efficiency. Third, to evaluate the AdaptGC enhancement approach, an image quality metric was adopted using enhancement by entropy, contrast per pixel, second-derivative-like measure of enhancement, and sharpness, then supported by visual inspection. The experiment results were examined using five face's databases, namely, extended Yale-B, Carnegie Mellon University-Pose, Illumination, and Expression, Mobio, FERET, and Oulu-CASIA-NIR-VIS. The final results prove that AdaptGC filter implementation compared with state-of-the-art methods is the best choice in terms of contrast and nonuniform illumination adjustment. In summary, the benefits attained prove that AdaptGC is driven by a profitable enhancement rate, which provides satisfying features for high rate face recognition systems.
A P2P Botnet detection scheme based on decision tree and adaptive multilayer neural networks.
Alauthaman, Mohammad; Aslam, Nauman; Zhang, Li; Alasem, Rafe; Hossain, M A
2018-01-01
In recent years, Botnets have been adopted as a popular method to carry and spread many malicious codes on the Internet. These malicious codes pave the way to execute many fraudulent activities including spam mail, distributed denial-of-service attacks and click fraud. While many Botnets are set up using centralized communication architecture, the peer-to-peer (P2P) Botnets can adopt a decentralized architecture using an overlay network for exchanging command and control data making their detection even more difficult. This work presents a method of P2P Bot detection based on an adaptive multilayer feed-forward neural network in cooperation with decision trees. A classification and regression tree is applied as a feature selection technique to select relevant features. With these features, a multilayer feed-forward neural network training model is created using a resilient back-propagation learning algorithm. A comparison of feature set selection based on the decision tree, principal component analysis and the ReliefF algorithm indicated that the neural network model with features selection based on decision tree has a better identification accuracy along with lower rates of false positives. The usefulness of the proposed approach is demonstrated by conducting experiments on real network traffic datasets. In these experiments, an average detection rate of 99.08 % with false positive rate of 0.75 % was observed.
NASA Astrophysics Data System (ADS)
Kongjandtre, N.; Ridgway, T.; Cook, L. G.; Huelsken, T.; Budd, A. F.; Hoegh-Guldberg, O.
2012-06-01
While Faviidae is a widely and uniformly distributed coral family throughout the Indo-Pacific, the extensive phenotypic plasticity of colony surface and corallite features often confounds the use of macromorphological characters in species identification, and contributes to conflict between traditional classification and molecular analyses of the group. Recent advances in morphological and molecular techniques now provide a suite of methods to re-address coral taxonomy in complex groups, such as that represented by the Faviidae. This study combines morphologic measurements including "3D coordinates landmarks" data with phylogenetic assessments of nuclear (ITS) and mitochondrial (COI-trnM) DNA to assess species boundaries in nine species of Faviidae with para-septothecal walls from Thailand. Strong concordance was found between morphological features and a priori groupings based on both morphospecies and genetically defined groups (ITS and COI-trnM). Favia truncatus was the most well-defined species based on morphological analyses, and it was also shown to be monophyletic using phylogenetic analyses. Besides F. truncatus, the only other species that was found to be monophyletic in analyses of both genes was F. cf. helianthoides, but its skeletal morphology overlapped with the F. favus species complex (comprised of F. favus, F. speciosa, F. matthaii and F. rotumana). Although not genetically monophyletic, the F. favus species complex and F. pallida were fairly well delineated morphologically. Morphospecies within the F. favus species complex are therefore possibly a result of genetic drift and/or stable polymorphisms driven by divergent selection. These results represent a first step toward a taxonomic revision of the Indo-Pacific Favia, which will integrate morphological methods with the study of type material, genetic information, reproductive data, and tests of phenotypic plasticity—given that multiple lines of evidence are needed to resolve ambiguous species and assign species names.
Susanna, Ivette; Alba, David M; Almécija, Sergio; Moyà-Solà, Salvador
2014-08-01
Here we describe the vertebral fragments from the partial skeleton IPS18800 of the fossil great ape Hispanopithecus laietanus (Hominidae: Dryopithecinae) from the late Miocene (9.6 Ma) of Can Llobateres 2 (Vallès-Penedès Basin, Catalonia, Spain). The eight specimens (IPS18800.5-IPS18800.12) include a fragment of thoracic vertebral body, three partial bodies and four neural arch fragments of lumbar vertebrae. Despite the retention of primitive features (moderately long lumbar vertebral bodies with slightly concave ventrolateral sides), these specimens display a suite of derived, modern hominoid-like features: thoracic vertebrae with dorsally-situated costal foveae; lumbar vertebrae with non-ventrally-oriented transverse processes originating from a robust pedicle, caudally-long laminae with caudally-oriented spinous process, elliptical end-plates, and moderately stout bodies reduced in length and with no ventral keel. These features, functionally related to orthograde behaviors, are indicative of a broad and shallow thorax with a moderately short and stiff lumbar region in Hispanopithecus. Despite its large body mass (ca. 39-40 kg), its vertebral morphology is more comparable to that of hylobatids and Ateles than to extant great apes. This is confirmed by our morphometric analyses, also indicating that Hispanopithecus most closely resembles Pierolapithecus and Morotopithecus among Miocene apes, whereas Proconsul and Nacholapithecus resemble pronograde monkeys. Only in a few features (craniocaudally short and transversely wide pedicles, transverse processes situated on the pedicle, and slight ventral wedging), Hispanopithecus is more derived towards the extant great ape condition than other Miocene apes. Overall, the vertebral morphology of Hispanopithecus supports previous inferences of an orthograde body plan with suspensory and climbing adaptations. However, given similarities with Ateles and the retention of a longer and more flexible spine than in extant great apes, the Hispanopithecus morphology is also consistent with some degree of above-branch quadrupedalism, as previously inferred from other anatomical regions. Copyright © 2014 Elsevier Ltd. All rights reserved.
Shivali, B.; S., Kataria; Chandramouleeswari, K.; Anita, S.
2013-01-01
Myofibroblastoma (MFB) is a rare mesenchymal tumour, derived from mammary stromal fibro-myofibroblasts, with diverse biological and morphological behaviour. Large and cellular myofibroblastomas, especially those with epitheliod like cells, can mimic various spindle cell lesions and metaplastic carcinomas, thus posing diagnostic challenge. A 50–year woman presented with slow growing, painless lump in the left breast. Fine Needle Aspiration (FNA) smears showed predominant atypical spindle cell population, pleomorphic epithelial like cells and giant cells. Cytodiagnosis of atypical spindle cell lesion with the possibility of metaplastic carcinoma was suggested. Histopathological examination showed fascicles of spindle cell population admixed with epithelial like cells, atypical cells and tumour giant cells, thus raising differential diagnosis of metaplastic carcinoma, low grade spindle cell sarcoma and myofibroblastic tumour. Lymph nodes were negative for metastatic deposits. Immunohistochemistry revealed variable coexpression of markers for vimentin, fibronectin, CD34, SMA (smooth muscle actin), but negative expression for , S-100, CD99, CK7 (cytokeratin 7), HMWK (high molecular weight keratin), ER (oestrogen receptor) and PR(progesterone receptors). Diagnosis of cellular myofibroblastoma with mixed unusual morphological features was defined, based on both histological and immunohistochemical features. MFB may cause a potential diagnostic pitfall while interpreting FNA and histopathological sections due to its wide differential diagnosis. The distinction of MFB from its cytohistological mimics of malignancy is crucial to avoid unnecessary extensive procedures. The case report emphasizes the role of immunohistochemistry as gold standard in diagnosis of MFB. The case is also being presented because of its large size and rare mixed unusual morphological features. PMID:24298520
Badalamenti, Fabio; Alagna, Adriana; Fici, Silvio
2015-01-01
Posidonia oceanica meadows are acknowledged as one of the most valuable ecosystems of the Mediterranean Sea. P. oceanica has been historically described as a species typically growing on mobile substrates whose development requires precursor communities. Here we document for the first time the extensive presence of sticky hairs covering P. oceanica seedling roots. Adhesive root hairs allow the seedlings to firmly anchor to rocky substrates with anchorage strength values up to 5.23 N, regardless of the presence of algal cover and to colonise bare rock without the need for precursor assemblages to facilitate settlement. Adhesive root hairs are a morphological trait common on plants living on rocks in high-energy habitats, such as the riverweed Podostemaceae and the seagrass Phyllospadix scouleri. The presence of adhesive root hairs in P. oceanica juveniles suggests a preference of this species for hard substrates. Such an adaptation leads to hypothesize a new microsite driven bottleneck in P. oceanica seedling survival linked to substrate features. The mechanism described can favour plant establishment on rocky substrates, in contrast with traditional paradigms. This feature may have strongly influenced P. oceanica pattern of colonisation through sexual propagules in both the past and present. PMID:25740176
Real-Time Optical Monitoring of Pt Catalyst Under the Potentiodynamic Conditions
NASA Astrophysics Data System (ADS)
Song, Hyeon Don; Lee, Minzae; Kim, Gil-Pyo; Choi, Inhee; Yi, Jongheop
2016-12-01
In situ monitoring of electrode materials reveals detailed physicochemical transition in electrochemical device. The key challenge is to explore the localized features of electrode surfaces, since the performance of an electrochemical device is determined by the summation of local architecture of the electrode material. Adaptive in situ techniques have been developed for numerous investigations; however, they require restricted measurement environments and provide limited information, which has impeded their widespread application. In this study, we realised an optics-based electrochemical in situ monitoring system by combining a dark-field micro/spectroscopy with an electrochemical workstation to investigate the physicochemical behaviours of Pt catalyst. We found that the localized plasmonic trait of a Pt-decorated Au nanoparticle as a model system varied in terms of its intensity and wavelength during the iterations of a cyclic voltammetry test. Furthermore, we show that morphological and compositional changes of the Pt catalyst can be traced in real time using changes in quantified plasmonic characteristics, which is a distinct advantage over the conventional electrochemistry-based in situ monitoring systems. These results indicate the substantial promise of online operando observation in a wide range of electrical energy conversion systems and electrochemical sensing areas.
[Glossary of terms used by radiologists in image processing].
Rolland, Y; Collorec, R; Bruno, A; Ramée, A; Morcet, N; Haigron, P
1995-01-01
We give the definition of 166 words used in image processing. Adaptivity, aliazing, analog-digital converter, analysis, approximation, arc, artifact, artificial intelligence, attribute, autocorrelation, bandwidth, boundary, brightness, calibration, class, classification, classify, centre, cluster, coding, color, compression, contrast, connectivity, convolution, correlation, data base, decision, decomposition, deconvolution, deduction, descriptor, detection, digitization, dilation, discontinuity, discretization, discrimination, disparity, display, distance, distorsion, distribution dynamic, edge, energy, enhancement, entropy, erosion, estimation, event, extrapolation, feature, file, filter, filter floaters, fitting, Fourier transform, frequency, fusion, fuzzy, Gaussian, gradient, graph, gray level, group, growing, histogram, Hough transform, Houndsfield, image, impulse response, inertia, intensity, interpolation, interpretation, invariance, isotropy, iterative, JPEG, knowledge base, label, laplacian, learning, least squares, likelihood, matching, Markov field, mask, matching, mathematical morphology, merge (to), MIP, median, minimization, model, moiré, moment, MPEG, neural network, neuron, node, noise, norm, normal, operator, optical system, optimization, orthogonal, parametric, pattern recognition, periodicity, photometry, pixel, polygon, polynomial, prediction, pulsation, pyramidal, quantization, raster, reconstruction, recursive, region, rendering, representation space, resolution, restoration, robustness, ROC, thinning, transform, sampling, saturation, scene analysis, segmentation, separable function, sequential, smoothing, spline, split (to), shape, threshold, tree, signal, speckle, spectrum, spline, stationarity, statistical, stochastic, structuring element, support, syntaxic, synthesis, texture, truncation, variance, vision, voxel, windowing.
Grismer, L Lee; Wood, Perry L; Mohamed, Maketab; Chan, Kin Onn; Heinz, Heather M; Sumarli, Alex S-I; Chan, Jacob A; Loredo, Ariel I
2013-12-12
A new species of karst-adapted gekkonid lizard of the genus Cnemaspis Strauch is described from Gua Gunting and Gua Goyang in a karst region of Merapoh, Pahang, Peninsular Malaysia whose unique limestone formations are in immediate danger of being quarried. The new species differs from all other species of Cnemaspis based on its unique suite of morphological and color pattern characters. Its discovery underscores the unique biodiversity endemic to karst regions and adds to a growing list of karst-adapted reptiles from Peninsular Malaysia. We posit that new karst-adapted species endemic to limestone forests will continue to be discovered and these regions will harbor a significant percentage of Peninsular Malaysia's biodiversity and thusly should be conserved rather than quarried.
Elleithy, Khaled; Elleithy, Abdelrahman
2018-01-01
Eye exam can be as efficacious as physical one in determining health concerns. Retina screening can be the very first clue for detecting a variety of hidden health issues including pre-diabetes and diabetes. Through the process of clinical diagnosis and prognosis; ophthalmologists rely heavily on the binary segmented version of retina fundus image; where the accuracy of segmented vessels, optic disc, and abnormal lesions extremely affects the diagnosis accuracy which in turn affect the subsequent clinical treatment steps. This paper proposes an automated retinal fundus image segmentation system composed of three segmentation subsystems follow same core segmentation algorithm. Despite of broad difference in features and characteristics; retinal vessels, optic disc, and exudate lesions are extracted by each subsystem without the need for texture analysis or synthesis. For sake of compact diagnosis and complete clinical insight, our proposed system can detect these anatomical structures in one session with high accuracy even in pathological retina images. The proposed system uses a robust hybrid segmentation algorithm combines adaptive fuzzy thresholding and mathematical morphology. The proposed system is validated using four benchmark datasets: DRIVE and STARE (vessels), DRISHTI-GS (optic disc), and DIARETDB1 (exudates lesions). Competitive segmentation performance is achieved, outperforming a variety of up-to-date systems and demonstrating the capacity to deal with other heterogeneous anatomical structures. PMID:29888146
Morphological Similarity and Ecological Overlap in Two Rotifer Species
Gabaldón, Carmen; Montero-Pau, Javier; Serra, Manuel; Carmona, María José
2013-01-01
Co-occurrence of cryptic species raises theoretically relevant questions regarding their coexistence and ecological similarity. Given their great morphological similitude and close phylogenetic relationship (i.e., niche retention), these species will have similar ecological requirements and are expected to have strong competitive interactions. This raises the problem of finding the mechanisms that may explain the coexistence of cryptic species and challenges the conventional view of coexistence based on niche differentiation. The cryptic species complex of the rotifer Brachionus plicatilis is an excellent model to study these questions and to test hypotheses regarding ecological differentiation. Rotifer species within this complex are filtering zooplankters commonly found inhabiting the same ponds across the Iberian Peninsula and exhibit an extremely similar morphology—some of them being even virtually identical. Here, we explore whether subtle differences in body size and morphology translate into ecological differentiation by comparing two extremely morphologically similar species belonging to this complex: B. plicatilis and B. manjavacas. We focus on three key ecological features related to body size: (1) functional response, expressed by clearance rates; (2) tolerance to starvation, measured by growth and reproduction; and (3) vulnerability to copepod predation, measured by the number of preyed upon neonates. No major differences between B. plicatilis and B. manjavacas were found in the response to these features. Our results demonstrate the existence of a substantial niche overlap, suggesting that the subtle size differences between these two cryptic species are not sufficient to explain their coexistence. This lack of evidence for ecological differentiation in the studied biotic niche features is in agreement with the phylogenetic limiting similarity hypothesis but requires a mechanistic explanation of the coexistence of these species not based on differentiation related to biotic niche axes. PMID:23451154
Extent of QTL Reuse During Repeated Phenotypic Divergence of Sympatric Threespine Stickleback.
Conte, Gina L; Arnegard, Matthew E; Best, Jacob; Chan, Yingguang Frank; Jones, Felicity C; Kingsley, David M; Schluter, Dolph; Peichel, Catherine L
2015-11-01
How predictable is the genetic basis of phenotypic adaptation? Answering this question begins by estimating the repeatability of adaptation at the genetic level. Here, we provide a comprehensive estimate of the repeatability of the genetic basis of adaptive phenotypic evolution in a natural system. We used quantitative trait locus (QTL) mapping to discover genomic regions controlling a large number of morphological traits that have diverged in parallel between pairs of threespine stickleback (Gasterosteus aculeatus species complex) in Paxton and Priest lakes, British Columbia. We found that nearly half of QTL affected the same traits in the same direction in both species pairs. Another 40% influenced a parallel phenotypic trait in one lake but not the other. The remaining 10% of QTL had phenotypic effects in opposite directions in the two species pairs. Similarity in the proportional contributions of all QTL to parallel trait differences was about 0.4. Surprisingly, QTL reuse was unrelated to phenotypic effect size. Our results indicate that repeated use of the same genomic regions is a pervasive feature of parallel phenotypic adaptation, at least in sticklebacks. Identifying the causes of this pattern would aid prediction of the genetic basis of phenotypic evolution. Copyright © 2015 by the Genetics Society of America.