Sample records for adaptive motor behavior

  1. Training adaptations in the behavior of human motor units.

    PubMed

    Duchateau, Jacques; Semmler, John G; Enoka, Roger M

    2006-12-01

    The purpose of this brief review is to examine the neural adaptations associated with training, by focusing on the behavior of single motor units. The review synthesizes current understanding on motor unit recruitment and rate coding during voluntary contractions, briefly describes the techniques used to record motor unit activity, and then evaluates the adaptations that have been observed in motor unit activity during maximal and submaximal contractions. Relatively few studies have directly compared motor unit behavior before and after training. Although some studies suggest that the voluntary activation of muscle can increase slightly with strength training, it is not known how the discharge of motor units changes to produce this increase in activation. The evidence indicates that the increase is not attributable to changes in motor unit synchronization. It has been demonstrated, however, that training can increase both the rate of torque development and the discharge rate of motor units. Furthermore, both strength training and practice of a force-matching task can evoke adaptations in the discharge characteristics of motor units. Because the variability in discharge rate has a significant influence on the fluctuations in force during submaximal contractions, the changes produced with training can influence motor performance during activities of daily living. Little is known, however, about the relative contributions of the descending drive, afferent feedback, spinal circuitry, and motor neuron properties to the observed adaptations in motor unit activity.

  2. Brain-wide neuronal dynamics during motor adaptation in zebrafish

    PubMed Central

    Ahrens, Misha B; Li, Jennifer M; Orger, Michael B; Robson, Drew N; Schier, Alexander F; Engert, Florian; Portugues, Ruben

    2013-01-01

    A fundamental question in neuroscience is how entire neural circuits generate behavior and adapt it to changes in sensory feedback. Here we use two-photon calcium imaging to record activity of large populations of neurons at the cellular level throughout the brain of larval zebrafish expressing a genetically-encoded calcium sensor, while the paralyzed animals interact fictively with a virtual environment and rapidly adapt their motor output to changes in visual feedback. We decompose the network dynamics involved in adaptive locomotion into four types of neural response properties, and provide anatomical maps of the corresponding sites. A subset of these signals occurred during behavioral adjustments and are candidates for the functional elements that drive motor learning. Lesions to the inferior olive indicate a specific functional role for olivocerebellar circuitry in adaptive locomotion. This study enables the analysis of brain-wide dynamics at single-cell resolution during behavior. PMID:22622571

  3. Neural correlates of the age-related changes in motor sequence learning and motor adaptation in older adults

    PubMed Central

    King, Bradley R.; Fogel, Stuart M.; Albouy, Geneviève; Doyon, Julien

    2013-01-01

    As the world's population ages, a deeper understanding of the relationship between aging and motor learning will become increasingly relevant in basic research and applied settings. In this context, this review aims to address the effects of age on motor sequence learning (MSL) and motor adaptation (MA) with respect to behavioral, neurological, and neuroimaging findings. Previous behavioral research investigating the influence of aging on motor learning has consistently reported the following results. First, the initial acquisition of motor sequences is not altered, except under conditions of increased task complexity. Second, older adults demonstrate deficits in motor sequence memory consolidation. And, third, although older adults demonstrate deficits during the exposure phase of MA paradigms, the aftereffects following removal of the sensorimotor perturbation are similar to young adults, suggesting that the adaptive ability of older adults is relatively intact. This paper will review the potential neural underpinnings of these behavioral results, with a particular emphasis on the influence of age-related dysfunctions in the cortico-striatal system on motor learning. PMID:23616757

  4. Visual adaptation dominates bimodal visual-motor action adaptation

    PubMed Central

    de la Rosa, Stephan; Ferstl, Ylva; Bülthoff, Heinrich H.

    2016-01-01

    A long standing debate revolves around the question whether visual action recognition primarily relies on visual or motor action information. Previous studies mainly examined the contribution of either visual or motor information to action recognition. Yet, the interaction of visual and motor action information is particularly important for understanding action recognition in social interactions, where humans often observe and execute actions at the same time. Here, we behaviourally examined the interaction of visual and motor action recognition processes when participants simultaneously observe and execute actions. We took advantage of behavioural action adaptation effects to investigate behavioural correlates of neural action recognition mechanisms. In line with previous results, we find that prolonged visual exposure (visual adaptation) and prolonged execution of the same action with closed eyes (non-visual motor adaptation) influence action recognition. However, when participants simultaneously adapted visually and motorically – akin to simultaneous execution and observation of actions in social interactions - adaptation effects were only modulated by visual but not motor adaptation. Action recognition, therefore, relies primarily on vision-based action recognition mechanisms in situations that require simultaneous action observation and execution, such as social interactions. The results suggest caution when associating social behaviour in social interactions with motor based information. PMID:27029781

  5. Investigation of the Association Between Motor Stereotypy Behavior With Fundamental Movement Skills, Adaptive Functioning, and Autistic Spectrum Disorder Symptomology in Children With Intellectual Disabilities.

    PubMed

    Powell, Joanne L; Pringle, Lydia; Greig, Matt

    2017-02-01

    Motor stereotypy behaviors are patterned, coordinated, repetitive behaviors that are particularly evident in those with an autistic spectrum disorder and intellectual disabilities. The extent to which motor stereotypy behavior severity is associated with motor skills and maladaptive behavior, measures of adaptive functioning, along with fundamental movement skills and degree of autistic spectrum disorder symptomology is assessed in this preliminary report. Twelve participants, aged 7 to 16 years, with a reported motor stereotypy behavior and either mild or severe intellectual disability comprising developmental or global delay took part in the study. Spearman rho correlational analysis showed that severity of motor stereotypy behavior was significantly positively correlated with autistic spectrum disorder symptomology ( P = .008) and maladaptive behavior ( P = .008) but not fundamental movement skills ( P > .05). An increase in fundamental movement skills score was associated with a decrease in autistic spectrum disorder symptomology ( P = .01) and an increase in motor skills ( P = .002). This study provides evidence showing a significant relationship between motor stereotypy behavior severity with degree of autistic spectrum disorder symptomology and maladaptive behavior.

  6. Brain representations for acquiring and recalling visual-motor adaptations

    PubMed Central

    Bédard, Patrick; Sanes, Jerome N.

    2014-01-01

    Humans readily learn and remember new motor skills, a process that likely underlies adaptation to changing environments. During adaptation, the brain develops new sensory-motor relationships, and if consolidation occurs, a memory of the adaptation can be retained for extended periods. Considerable evidence exists that multiple brain circuits participate in acquiring new sensory-motor memories, though the networks engaged in recalling these and whether the same brain circuits participate in their formation and recall has less clarity. To address these issues, we assessed brain activation with functional MRI while young healthy adults learned and recalled new sensory-motor skills by adapting to world-view rotations of visual feedback that guided hand movements. We found cerebellar activation related to adaptation rate, likely reflecting changes related to overall adjustments to the visual rotation. A set of parietal and frontal regions, including inferior and superior parietal lobules, premotor area, supplementary motor area and primary somatosensory cortex, exhibited non-linear learning-related activation that peaked in the middle of the adaptation phase. Activation in some of these areas, including the inferior parietal lobule, intra-parietal sulcus and somatosensory cortex, likely reflected actual learning, since the activation correlated with learning after-effects. Lastly, we identified several structures having recall-related activation, including the anterior cingulate and the posterior putamen, since the activation correlated with recall efficacy. These findings demonstrate dynamic aspects of brain activation patterns related to formation and recall of a sensory-motor skill, such that non-overlapping brain regions participate in distinctive behavioral events. PMID:25019676

  7. An Adapting Auditory-motor Feedback Loop Can Contribute to Generating Vocal Repetition

    PubMed Central

    Brainard, Michael S.; Jin, Dezhe Z.

    2015-01-01

    Consecutive repetition of actions is common in behavioral sequences. Although integration of sensory feedback with internal motor programs is important for sequence generation, if and how feedback contributes to repetitive actions is poorly understood. Here we study how auditory feedback contributes to generating repetitive syllable sequences in songbirds. We propose that auditory signals provide positive feedback to ongoing motor commands, but this influence decays as feedback weakens from response adaptation during syllable repetitions. Computational models show that this mechanism explains repeat distributions observed in Bengalese finch song. We experimentally confirmed two predictions of this mechanism in Bengalese finches: removal of auditory feedback by deafening reduces syllable repetitions; and neural responses to auditory playback of repeated syllable sequences gradually adapt in sensory-motor nucleus HVC. Together, our results implicate a positive auditory-feedback loop with adaptation in generating repetitive vocalizations, and suggest sensory adaptation is important for feedback control of motor sequences. PMID:26448054

  8. Adaptive Locomotor Behavior in Larval Zebrafish

    PubMed Central

    Portugues, Ruben; Engert, Florian

    2011-01-01

    In this study we report that larval zebrafish display adaptive locomotor output that can be driven by unexpected visual feedback. We develop a new assay that addresses visuomotor integration in restrained larval zebrafish. The assay involves a closed-loop environment in which the visual feedback a larva receives depends on its own motor output in a way that resembles freely swimming conditions. The experimenter can control the gain of this closed feedback loop, so that following a given motor output the larva experiences more or less visual feedback depending on whether the gain is high or low. We show that increases and decreases in this gain setting result in adaptive changes in behavior that lead to a generalized decrease or increase of motor output, respectively. Our behavioral analysis shows that both the duration and tail beat frequency of individual swim bouts can be modified, as well as the frequency with which bouts are elicited. These changes can be implemented rapidly, following an exposure to a new gain of just 175 ms. In addition, modifications in some behavioral parameters accumulate over tens of seconds and effects last for at least 30 s from trial to trial. These results suggest that larvae establish an internal representation of the visual feedback expected from a given motor output and that the behavioral modifications are driven by an error signal that arises from the discrepancy between this expectation and the actual visual feedback. The assay we develop presents a unique possibility for studying visuomotor integration using imaging techniques available in the larval zebrafish. PMID:21909325

  9. Adaptive locomotor behavior in larval zebrafish.

    PubMed

    Portugues, Ruben; Engert, Florian

    2011-01-01

    In this study we report that larval zebrafish display adaptive locomotor output that can be driven by unexpected visual feedback. We develop a new assay that addresses visuomotor integration in restrained larval zebrafish. The assay involves a closed-loop environment in which the visual feedback a larva receives depends on its own motor output in a way that resembles freely swimming conditions. The experimenter can control the gain of this closed feedback loop, so that following a given motor output the larva experiences more or less visual feedback depending on whether the gain is high or low. We show that increases and decreases in this gain setting result in adaptive changes in behavior that lead to a generalized decrease or increase of motor output, respectively. Our behavioral analysis shows that both the duration and tail beat frequency of individual swim bouts can be modified, as well as the frequency with which bouts are elicited. These changes can be implemented rapidly, following an exposure to a new gain of just 175 ms. In addition, modifications in some behavioral parameters accumulate over tens of seconds and effects last for at least 30 s from trial to trial. These results suggest that larvae establish an internal representation of the visual feedback expected from a given motor output and that the behavioral modifications are driven by an error signal that arises from the discrepancy between this expectation and the actual visual feedback. The assay we develop presents a unique possibility for studying visuomotor integration using imaging techniques available in the larval zebrafish.

  10. Neuromusculoskeletal models based on the muscle synergy hypothesis for the investigation of adaptive motor control in locomotion via sensory-motor coordination.

    PubMed

    Aoi, Shinya; Funato, Tetsuro

    2016-03-01

    Humans and animals walk adaptively in diverse situations by skillfully manipulating their complicated and redundant musculoskeletal systems. From an analysis of measured electromyographic (EMG) data, it appears that despite complicated spatiotemporal properties, muscle activation patterns can be explained by a low dimensional spatiotemporal structure. More specifically, they can be accounted for by the combination of a small number of basic activation patterns. The basic patterns and distribution weights indicate temporal and spatial structures, respectively, and the weights show the muscle sets that are activated synchronously. In addition, various locomotor behaviors have similar low dimensional structures and major differences appear in the basic patterns. These analysis results suggest that neural systems use muscle group combinations to solve motor control redundancy problems (muscle synergy hypothesis) and manipulate those basic patterns to create various locomotor functions. However, it remains unclear how the neural system controls such muscle groups and basic patterns through neuromechanical interactions in order to achieve adaptive locomotor behavior. This paper reviews simulation studies that explored adaptive motor control in locomotion via sensory-motor coordination using neuromusculoskeletal models based on the muscle synergy hypothesis. Herein, the neural mechanism in motor control related to the muscle synergy for adaptive locomotion and a potential muscle synergy analysis method including neuromusculoskeletal modeling for motor impairments and rehabilitation are discussed. Copyright © 2015 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  11. Dopamine-Dependent Compensation Maintains Motor Behavior in Mice with Developmental Ablation of Dopaminergic Neurons

    PubMed Central

    DeMaro, Joseph A.; Knoten, Amanda; Hoshi, Masato; Pehek, Elizabeth; Johnson, Eugene M.; Gereau, Robert W.

    2013-01-01

    The loss of dopaminergic neurons in the substantia nigra pars compacta (SNc) and consequent depletion of striatal dopamine are known to underlie the motor deficits observed in Parkinson's disease (PD). Adaptive changes in dopaminergic terminals and in postsynaptic striatal neurons can compensate for significant losses of striatal dopamine, resulting in preservation of motor behavior. In addition, compensatory changes independent of striatal dopamine have been proposed based on PD therapies that modulate nondopaminergic circuits within the basal ganglia. We used a genetic strategy to selectively destroy dopaminergic neurons in mice during development to determine the necessity of these neurons for the maintenance of normal motor behavior in adult and aged mice. We find that loss of 90% of SNc dopaminergic neurons and consequent depletion of >95% of striatal dopamine does not result in changes in motor behavior in young-adult or aged mice as evaluated by an extensive array of motor behavior tests. Treatment of aged mutant mice with the dopamine receptor antagonist haloperidol precipitated motor behavior deficits in aged mutant mice, indicating that <5% of striatal dopamine is sufficient to maintain motor function in these mice. We also found that mutant mice exhibit an exaggerated response to l-DOPA compared with control mice, suggesting that preservation of motor function involves sensitization of striatal dopamine receptors. Our results indicate that congenital loss of dopaminergic neurons induces remarkable adaptions in the nigrostriatal system where limited amounts of dopamine in the dorsal striatum can maintain normal motor function. PMID:24155314

  12. Links between motor control and classroom behaviors: Moderation by low birth weight

    PubMed Central

    Razza, Rachel A.; Martin, Anne; Brooks-Gunn, Jeanne

    2016-01-01

    It is unclear from past research on effortful control whether one of its components, motor control, independently contributes to adaptive classroom behaviors. The goal of this study was to identify associations between early motor control, measured by the walk-a-line task at age 3, and teacher-reported learning-related behaviors (approaches to learning and attention problems) and behavior problems in kindergarten classrooms. Models tested whether children who were vulnerable to poorer learning behaviors and more behavior problems due to having been born low birth weight benefited more, less, or the same as other children from better motor control. Data were drawn from the national Fragile Families and Child-Wellbeing Study (n = 751). Regression models indicated that motor control was significantly associated with better approaches to learning and fewer behavior problems. Children who were low birth weight benefitted more than normal birth weight children from better motor control with respect to their approaches to learning, but equally with respect to behavior problems. Additionally, for low but not normal birth weight children, better motor control predicted fewer attention problems. These findings suggest that motor control follows a compensatory model of development for low birth weight children and classroom behaviors. PMID:27594776

  13. Adaptive behaviour and motor skills in children with upper limb deficiency.

    PubMed

    Mano, Hiroshi; Fujiwara, Sayaka; Haga, Nobuhiko

    2018-04-01

    The dysfunction of individuals with upper limb deficiencies affects their daily lives and social participation. To clarify the adaptive behaviours and motor skills of children with upper limb deficiencies. Cross-sectional survey. The subjects were 10 children ranging from 1 to 6 years of age with unilateral upper limb deficiencies at the level distal to the elbow who were using only cosmetic or passive prostheses or none at all. To measure their adaptive behaviour and motor skills, the Vineland Adaptive Behavior Scales, Second Edition was used. They were evaluated on the domains of communication, daily living skills, socialization and motor skills. We also examined the relationship of the scores with age. There were no statistically significant scores for domains or subdomains. The domain standard score of motor skills was significantly lower than the median scores of the domains and was negatively correlated with age. Children with upper limb deficiencies have individual weaknesses in motor skill behaviours, and these weaknesses increase with age. It may be helpful in considering approaches to rehabilitation and the prescription of prostheses to consider the characteristics and course of children's motor skill behaviours. Clinical relevance Even if children with unilateral upper limb deficiencies seem to compensate well for their affected limb function, they have or will experience individual weaknesses in motor skills. We should take this into consideration to develop better strategies for rehabilitation and prostheses prescriptions.

  14. Study of adaptation to altered gravity through systems analysis of motor control.

    PubMed

    Fox, R A; Daunton, N G; Corcoran, M L

    1998-01-01

    Maintenance of posture and production of functional, coordinated movement demand integration of sensory feedback with spinal and supra-spinal circuitry to produce adaptive motor control in altered gravity (G). To investigate neuroplastic processes leading to optimal performance in altered G we have studied motor control in adult rats using a battery of motor function tests following chronic exposure to various treatments (hyper-G, hindlimb suspension, chemical distruction of hair cells, space flight). These treatments differentially affect muscle fibers, vestibular receptors, and behavioral compensations and, in consequence, differentially disrupt air righting, swimming, posture and gait. The time-course of recovery from these disruptions varies depending on the function tested and the duration and type of treatment. These studies, with others (e.g., D'Amelio et al. in this volume), indicate that adaptation to altered gravity involves alterations in multiple sensory-motor systems that change at different rates. We propose that the use of parallel studies under different altered G conditions will most efficiently lead to an understanding of the modifications in central (neural) and peripheral (sensory and neuromuscular) systems that underlie sensory-motor adaptation in active, intact individuals.

  15. Study of adaptation to altered gravity through systems analysis of motor control

    NASA Astrophysics Data System (ADS)

    Fox, R. A.; Daunton, N. G.; Corcoran, M. L.

    Maintenance of posture and production of functional, coordinated movement demand integration of sensory feedback with spinal and supra-spinal circuitry to produce adaptive motor control in altered gravity (G). To investigate neuroplastic processes leading to optimal performance in altered G we have studied motor control in adult rats using a battery of motor function tests following chronic exposure to various treatments (hyper-G, hindlimb suspension, chemical distruction of hair cells, space flight). These treatments differentially affect muscle fibers, vestibular receptors, and behavioral compensations and, in consequence, differentially disrupt air righting, swimming, posture and gait. The time-course of recovery from these disruptions varies depending on the function tested and the duration and type of treatment. These studies, with others (e.g., D'Amelio et al. in this volume), indicate that adaptation to altered gravity involves alterations in multiple sensory-motor systems that change at different rates. We propose that the use of parallel studies under different altered G conditions will most efficiently lead to an understanding of the modifications in central (neural) and peripheral (sensory and neuromuscular) systems that underlie sensory-motor adaptation in active, intact individuals.

  16. Disassociation between primary motor cortical activity and movement kinematics during adaptation to reach perturbations.

    PubMed

    Cai, X; Shimansky, Y P; Weber, D J; He, Jiping

    2004-01-01

    The relationship between movement kinematics and motor cortical activity was studied in monkeys performing a center-out reaching task during their adaptation to force perturbations applied to the wrist. The main feature of adaptive changes in movement kinematics was anticipatory deviation of hand paths in the direction opposite to that of the upcoming perturbation. We identified a group of neurons in the dorsal lateral portion of the primary motor cortex where a gradual buildup of spike activity immediately preceding the actual (in perturbation trials) or the "would-be" (in unperturbed/catch trials) perturbation onset was observed. These neurons were actively involved in the adaptation process, which was evident from the gradual increase in the amplitude of their movement-related modulation of spike activity from virtual zero and development of certain directional tuning pattern (DTP). However, the day-to-day dynamics of the kinematics adaptation was dramatically different from that of the neuronal activity. Hence, the adaptive modification of the motor cortical activity is more likely to reflect the development of the internal model of the perturbation dynamics, rather than motor instructions determining the adaptive behavior.

  17. Reward and punishment enhance motor adaptation in stroke.

    PubMed

    Quattrocchi, Graziella; Greenwood, Richard; Rothwell, John C; Galea, Joseph M; Bestmann, Sven

    2017-09-01

    The effects of motor learning, such as motor adaptation, in stroke rehabilitation are often transient, thus mandating approaches that enhance the amount of learning and retention. Previously, we showed in young individuals that reward and punishment feedback have dissociable effects on motor adaptation, with punishment improving adaptation and reward enhancing retention. If these findings were able to generalise to patients with stroke, they would provide a way to optimise motor learning in these patients. Therefore, we tested this in 45 patients with chronic stroke allocated in three groups. Patients performed reaching movements with their paretic arm with a robotic manipulandum. After training (day 1), day 2 involved adaptation to a novel force field. During the adaptation phase, patients received performance-based feedback according to the group they were allocated: reward, punishment or no feedback (neutral). On day 3, patients readapted to the force field but all groups now received neutral feedback. All patients adapted, with reward and punishment groups displaying greater adaptation and readaptation than the neutral group, irrespective of demographic, cognitive or functional differences. Remarkably, the reward and punishment groups adapted to similar degree as healthy controls. Finally, the reward group showed greater retention. This study provides, for the first time, evidence that reward and punishment can enhance motor adaptation in patients with stroke. Further research on reinforcement-based motor learning regimes is warranted to translate these promising results into clinical practice and improve motor rehabilitation outcomes in patients with stroke. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  18. The development of motor behavior

    PubMed Central

    Adolph, Karen E.; Franchak, John M.

    2016-01-01

    This article reviews research on the development of motor behavior from a developmental systems perspective. We focus on infancy when basic action systems are acquired. Posture provides a stable base for locomotion, manual actions, and facial actions. Experience facilitates improvements in motor behavior and infants accumulate immense amounts of experience with all of their basic action systems. At every point in development, perception guides motor behavior by providing feedback about the results of just prior movements and information about what to do next. Reciprocally, the development of motor behavior provides fodder for perception. More generally, motor development brings about new opportunities for acquiring knowledge about the world, and burgeoning motor skills can instigate cascades of developmental changes in perceptual, cognitive, and social domains. PMID:27906517

  19. Electroencephalographic identifiers of motor adaptation learning

    NASA Astrophysics Data System (ADS)

    Özdenizci, Ozan; Yalçın, Mustafa; Erdoğan, Ahmetcan; Patoğlu, Volkan; Grosse-Wentrup, Moritz; Çetin, Müjdat

    2017-08-01

    Objective. Recent brain-computer interface (BCI) assisted stroke rehabilitation protocols tend to focus on sensorimotor activity of the brain. Relying on evidence claiming that a variety of brain rhythms beyond sensorimotor areas are related to the extent of motor deficits, we propose to identify neural correlates of motor learning beyond sensorimotor areas spatially and spectrally for further use in novel BCI-assisted neurorehabilitation settings. Approach. Electroencephalographic (EEG) data were recorded from healthy subjects participating in a physical force-field adaptation task involving reaching movements through a robotic handle. EEG activity recorded during rest prior to the experiment and during pre-trial movement preparation was used as features to predict motor adaptation learning performance across subjects. Main results. Subjects learned to perform straight movements under the force-field at different adaptation rates. Both resting-state and pre-trial EEG features were predictive of individual adaptation rates with relevance of a broad network of beta activity. Beyond sensorimotor regions, a parieto-occipital cortical component observed across subjects was involved strongly in predictions and a fronto-parietal cortical component showed significant decrease in pre-trial beta-powers for users with higher adaptation rates and increase in pre-trial beta-powers for users with lower adaptation rates. Significance. Including sensorimotor areas, a large-scale network of beta activity is presented as predictive of motor learning. Strength of resting-state parieto-occipital beta activity or pre-trial fronto-parietal beta activity can be considered in BCI-assisted stroke rehabilitation protocols with neurofeedback training or volitional control of neural activity for brain-robot interfaces to induce plasticity.

  20. Distinct motor strategies underlying split-belt adaptation in human walking and running.

    PubMed

    Ogawa, Tetsuya; Kawashima, Noritaka; Obata, Hiroki; Kanosue, Kazuyuki; Nakazawa, Kimitaka

    2015-01-01

    The aim of the present study was to elucidate the adaptive and de-adaptive nature of human running on a split-belt treadmill. The degree of adaptation and de-adaptation was compared with those in walking by calculating the antero-posterior component of the ground reaction force (GRF). Adaptation to walking and running on a split-belt resulted in a prominent asymmetry in the movement pattern upon return to the normal belt condition, while the two components of the GRF showed different behaviors depending on the gaits. The anterior braking component showed prominent adaptive and de-adaptive behaviors in both gaits. The posterior propulsive component, on the other hand, exhibited such behavior only in running, while that in walking showed only short-term aftereffect (lasting less than 10 seconds) accompanied by largely reactive responses. These results demonstrate a possible difference in motor strategies (that is, the use of reactive feedback and adaptive feedforward control) by the central nervous system (CNS) for split-belt locomotor adaptation between walking and running. The present results provide basic knowledge on neural control of human walking and running as well as possible strategies for gait training in athletic and rehabilitation scenes.

  1. Distinct Motor Strategies Underlying Split-Belt Adaptation in Human Walking and Running

    PubMed Central

    Ogawa, Tetsuya; Kawashima, Noritaka; Obata, Hiroki; Kanosue, Kazuyuki; Nakazawa, Kimitaka

    2015-01-01

    The aim of the present study was to elucidate the adaptive and de-adaptive nature of human running on a split-belt treadmill. The degree of adaptation and de-adaptation was compared with those in walking by calculating the antero-posterior component of the ground reaction force (GRF). Adaptation to walking and running on a split-belt resulted in a prominent asymmetry in the movement pattern upon return to the normal belt condition, while the two components of the GRF showed different behaviors depending on the gaits. The anterior braking component showed prominent adaptive and de-adaptive behaviors in both gaits. The posterior propulsive component, on the other hand, exhibited such behavior only in running, while that in walking showed only short-term aftereffect (lasting less than 10 seconds) accompanied by largely reactive responses. These results demonstrate a possible difference in motor strategies (that is, the use of reactive feedback and adaptive feedforward control) by the central nervous system (CNS) for split-belt locomotor adaptation between walking and running. The present results provide basic knowledge on neural control of human walking and running as well as possible strategies for gait training in athletic and rehabilitation scenes. PMID:25775426

  2. Auditory-Perceptual Learning Improves Speech Motor Adaptation in Children

    PubMed Central

    Shiller, Douglas M.; Rochon, Marie-Lyne

    2015-01-01

    Auditory feedback plays an important role in children’s speech development by providing the child with information about speech outcomes that is used to learn and fine-tune speech motor plans. The use of auditory feedback in speech motor learning has been extensively studied in adults by examining oral motor responses to manipulations of auditory feedback during speech production. Children are also capable of adapting speech motor patterns to perceived changes in auditory feedback, however it is not known whether their capacity for motor learning is limited by immature auditory-perceptual abilities. Here, the link between speech perceptual ability and the capacity for motor learning was explored in two groups of 5–7-year-old children who underwent a period of auditory perceptual training followed by tests of speech motor adaptation to altered auditory feedback. One group received perceptual training on a speech acoustic property relevant to the motor task while a control group received perceptual training on an irrelevant speech contrast. Learned perceptual improvements led to an enhancement in speech motor adaptation (proportional to the perceptual change) only for the experimental group. The results indicate that children’s ability to perceive relevant speech acoustic properties has a direct influence on their capacity for sensory-based speech motor adaptation. PMID:24842067

  3. A Model for the Transfer of Perceptual-Motor Skill Learning in Human Behaviors

    ERIC Educational Resources Information Center

    Rosalie, Simon M.; Muller, Sean

    2012-01-01

    This paper presents a preliminary model that outlines the mechanisms underlying the transfer of perceptual-motor skill learning in sport and everyday tasks. Perceptual-motor behavior is motivated by performance demands and evolves over time to increase the probability of success through adaptation. Performance demands at the time of an event…

  4. The Feldenkrais Method: A Dynamic Approach to Changing Motor Behavior.

    ERIC Educational Resources Information Center

    Buchanan, Patricia A.; Ulrich, Beverly D.

    2001-01-01

    Describes the Feldenkrais Method of somatic education, noting parallels with a dynamic systems theory (DST) approach to motor behavior. Feldenkrais uses movement and perception to foster individualized improvement in function. DST explains that a human-environment system continually adapts to changing conditions and assembles behaviors…

  5. The compensatory interaction between motor unit firing behavior and muscle force during fatigue

    PubMed Central

    De Luca, Carlo J.; Kline, Joshua C.

    2016-01-01

    Throughout the literature, different observations of motor unit firing behavior during muscle fatigue have been reported and explained with varieties of conjectures. The disagreement amongst previous studies has resulted, in part, from the limited number of available motor units and from the misleading practice of grouping motor unit data across different subjects, contractions, and force levels. To establish a more clear understanding of motor unit control during fatigue, we investigated the firing behavior of motor units from the vastus lateralis muscle of individual subjects during a fatigue protocol of repeated voluntary constant force isometric contractions. Surface electromyographic decomposition technology provided the firings of 1,890 motor unit firing trains. These data revealed that to sustain the contraction force as the muscle fatigued, the following occurred: 1) motor unit firing rates increased; 2) new motor units were recruited; and 3) motor unit recruitment thresholds decreased. Although the degree of these adaptations was subject specific, the behavior was consistent in all subjects. When we compared our empirical observations with those obtained from simulation, we found that the fatigue-induced changes in motor unit firing behavior can be explained by increasing excitation to the motoneuron pool that compensates for the fatigue-induced decrease in muscle force twitch reported in empirical studies. Yet, the fundamental motor unit control scheme remains invariant throughout the development of fatigue. These findings indicate that the central nervous system regulates motor unit firing behavior by adjusting the operating point of the excitation to the motoneuron pool to sustain the contraction force as the muscle fatigues. PMID:27385798

  6. The compensatory interaction between motor unit firing behavior and muscle force during fatigue.

    PubMed

    Contessa, Paola; De Luca, Carlo J; Kline, Joshua C

    2016-10-01

    Throughout the literature, different observations of motor unit firing behavior during muscle fatigue have been reported and explained with varieties of conjectures. The disagreement amongst previous studies has resulted, in part, from the limited number of available motor units and from the misleading practice of grouping motor unit data across different subjects, contractions, and force levels. To establish a more clear understanding of motor unit control during fatigue, we investigated the firing behavior of motor units from the vastus lateralis muscle of individual subjects during a fatigue protocol of repeated voluntary constant force isometric contractions. Surface electromyographic decomposition technology provided the firings of 1,890 motor unit firing trains. These data revealed that to sustain the contraction force as the muscle fatigued, the following occurred: 1) motor unit firing rates increased; 2) new motor units were recruited; and 3) motor unit recruitment thresholds decreased. Although the degree of these adaptations was subject specific, the behavior was consistent in all subjects. When we compared our empirical observations with those obtained from simulation, we found that the fatigue-induced changes in motor unit firing behavior can be explained by increasing excitation to the motoneuron pool that compensates for the fatigue-induced decrease in muscle force twitch reported in empirical studies. Yet, the fundamental motor unit control scheme remains invariant throughout the development of fatigue. These findings indicate that the central nervous system regulates motor unit firing behavior by adjusting the operating point of the excitation to the motoneuron pool to sustain the contraction force as the muscle fatigues. Copyright © 2016 the American Physiological Society.

  7. Error Argumentation Enhance Adaptability in Adults With Low Motor Ability.

    PubMed

    Lee, Chi-Mei; Bo, Jin

    2016-01-01

    The authors focused on young adults with varying degrees of motor difficulties and examined their adaptability in a visuomotor adaptation task where the visual feedback of participants' movement error was presented with either 1:1 ratio (i.e., regular feedback schedule) or 1:2 ratio (i.e., enhanced feedback schedule). Within-subject design was used with two feedback schedules counter-balanced and separated for 10 days. Results revealed that participants with greater motor difficulties showed less adaptability than those with normal motor abilities in the regular feedback schedule; however, all participants demonstrated similar level of adaptability in the enhanced feedback schedule. The results suggest that error argumentation enhances adaptability in adults with low motor ability.

  8. The predictive roles of neural oscillations in speech motor adaptability.

    PubMed

    Sengupta, Ranit; Nasir, Sazzad M

    2016-06-01

    The human speech system exhibits a remarkable flexibility by adapting to alterations in speaking environments. While it is believed that speech motor adaptation under altered sensory feedback involves rapid reorganization of speech motor networks, the mechanisms by which different brain regions communicate and coordinate their activity to mediate adaptation remain unknown, and explanations of outcome differences in adaption remain largely elusive. In this study, under the paradigm of altered auditory feedback with continuous EEG recordings, the differential roles of oscillatory neural processes in motor speech adaptability were investigated. The predictive capacities of different EEG frequency bands were assessed, and it was found that theta-, beta-, and gamma-band activities during speech planning and production contained significant and reliable information about motor speech adaptability. It was further observed that these bands do not work independently but interact with each other suggesting an underlying brain network operating across hierarchically organized frequency bands to support motor speech adaptation. These results provide novel insights into both learning and disorders of speech using time frequency analysis of neural oscillations. Copyright © 2016 the American Physiological Society.

  9. The relationship of motor skills and adaptive behavior skills in young children with autism spectrum disorders.

    PubMed

    MacDonald, Megan; Lord, Catherine; Ulrich, Dale

    2013-11-01

    To determine the relationship of motor skills and the core behaviors of young children with autism, social affective skills and repetitive behaviors, as indicated through the calibrated autism severity scores. The univariate GLM tested the relationship of gross and fine motor skills measured by the gross motor scale and the fine motor scale of the MSEL with autism symptomology as measured by calibrated autism severity scores. Majority of the data collected took place in an autism clinic. A cohort of 159 young children with ASD (n=110), PDD-NOS (n=26) and non-ASD (developmental delay, n=23) between the ages of 12-33 months were recruited from early intervention studies and clinical referrals. Children with non-ASD (developmental delay) were included in this study to provide a range of scores indicted through calibrated autism severity. Not applicable. The primary outcome measures in this study were calibrated autism severity scores. Fine motor skills and gross motor skills significantly predicted calibrated autism severity (p < 0.01). Children with weaker motor skills displayed higher levels of calibrated autism severity. The fine and gross motor skills are significantly related to autism symptomology. There is more to focus on and new avenues to explore in the realm of discovering how to implement early intervention and rehabilitation for young children with autism and motor skills need to be a part of the discussion.

  10. Substantiation of Structure of Adaptive Control Systems for Motor Units

    NASA Astrophysics Data System (ADS)

    Ovsyannikov, S. I.

    2018-05-01

    The article describes the development of new electronic control systems, in particular motor units, for small-sized agricultural equipment. Based on the analysis of traffic control systems, the main course of development of the conceptual designs of motor units has been defined. The systems aimed to control the course motion of the motor unit in automatic mode using the adaptive systems have been developed. The article presents structural models of the conceptual motor units based on electrically controlled systems by the operation of drive motors and adaptive systems that make the motor units completely automated.

  11. Formation of model-free motor memories during motor adaptation depends on perturbation schedule

    PubMed Central

    Lefèvre, Philippe

    2015-01-01

    Motor adaptation to an external perturbation relies on several mechanisms such as model-based, model-free, strategic, or repetition-dependent learning. Depending on the experimental conditions, each of these mechanisms has more or less weight in the final adaptation state. Here we focused on the conditions that lead to the formation of a model-free motor memory (Huang VS, Haith AM, Mazzoni P, Krakauer JW. Neuron 70: 787–801, 2011), i.e., a memory that does not depend on an internal model or on the size or direction of the errors experienced during the learning. The formation of such model-free motor memory was hypothesized to depend on the schedule of the perturbation (Orban de Xivry JJ, Ahmadi-Pajouh MA, Harran MD, Salimpour Y, Shadmehr R. J Neurophysiol 109: 124–136, 2013). Here we built on this observation by directly testing the nature of the motor memory after abrupt or gradual introduction of a visuomotor rotation, in an experimental paradigm where the presence of model-free motor memory can be identified (Huang VS, Haith AM, Mazzoni P, Krakauer JW. Neuron 70: 787–801, 2011). We found that relearning was faster after abrupt than gradual perturbation, which suggests that model-free learning is reduced during gradual adaptation to a visuomotor rotation. In addition, the presence of savings after abrupt introduction of the perturbation but gradual extinction of the motor memory suggests that unexpected errors are necessary to induce a model-free motor memory. Overall, these data support the hypothesis that different perturbation schedules do not lead to a more or less stabilized motor memory but to distinct motor memories with different attributes and neural representations. PMID:25673736

  12. Visual Behaviors and Adaptations Associated with Cortical and Ocular Impairment in Children.

    ERIC Educational Resources Information Center

    Jan, J. E.; Groenveld, M.

    1993-01-01

    This article shows the usefulness of understanding visual behaviors in the diagnosis of various types of visual impairments that are due to ocular and cortical disorders. Behaviors discussed include nystagmus, ocular motor dyspraxia, head position, close viewing, field loss adaptations, mannerisms, photophobia, and abnormal color perception. (JDD)

  13. Unmasking the linear behaviour of slow motor adaptation to prolonged convergence.

    PubMed

    Erkelens, Ian M; Thompson, Benjamin; Bobier, William R

    2016-06-01

    Adaptation to changing environmental demands is central to maintaining optimal motor system function. Current theories suggest that adaptation in both the skeletal-motor and oculomotor systems involves a combination of fast (reflexive) and slow (recalibration) mechanisms. Here we used the oculomotor vergence system as a model to investigate the mechanisms underlying slow motor adaptation. Unlike reaching with the upper limbs, vergence is less susceptible to changes in cognitive strategy that can affect the behaviour of motor adaptation. We tested the hypothesis that mechanisms of slow motor adaptation reflect early neural processing by assessing the linearity of adaptive responses over a large range of stimuli. Using varied disparity stimuli in conflict with accommodation, the slow adaptation of tonic vergence was found to exhibit a linear response whereby the rate (R(2)  = 0.85, P < 0.0001) and amplitude (R(2)  = 0.65, P < 0.0001) of the adaptive effects increased proportionally with stimulus amplitude. These results suggest that this slow adaptive mechanism is an early neural process, implying a fundamental physiological nature that is potentially dominated by subcortical and cerebellar substrates. © 2016 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  14. The relationship of motor skills and adaptive behavior skills in young children with autism spectrum disorders

    PubMed Central

    MacDonald, Megan; Lord, Catherine; Ulrich, Dale

    2015-01-01

    Objective To determine the relationship of motor skills and the core behaviors of young children with autism, social affective skills and repetitive behaviors, as indicated through the calibrated autism severity scores. Design The univariate GLM tested the relationship of gross and fine motor skills measured by the gross motor scale and the fine motor scale of the MSEL with autism symptomology as measured by calibrated autism severity scores. Setting Majority of the data collected took place in an autism clinic. Participants A cohort of 159 young children with ASD (n=110), PDD-NOS (n=26) and non-ASD (developmental delay, n=23) between the ages of 12–33 months were recruited from early intervention studies and clinical referrals. Children with non-ASD (developmental delay) were included in this study to provide a range of scores indicted through calibrated autism severity. Interventions Not applicable. Main Outcome Measures The primary outcome measures in this study were calibrated autism severity scores. Results Fine motor skills and gross motor skills significantly predicted calibrated autism severity (p < 0.01). Children with weaker motor skills displayed higher levels of calibrated autism severity. Conclusions The fine and gross motor skills are significantly related to autism symptomology. There is more to focus on and new avenues to explore in the realm of discovering how to implement early intervention and rehabilitation for young children with autism and motor skills need to be a part of the discussion. PMID:25774214

  15. Formation of model-free motor memories during motor adaptation depends on perturbation schedule.

    PubMed

    Orban de Xivry, Jean-Jacques; Lefèvre, Philippe

    2015-04-01

    Motor adaptation to an external perturbation relies on several mechanisms such as model-based, model-free, strategic, or repetition-dependent learning. Depending on the experimental conditions, each of these mechanisms has more or less weight in the final adaptation state. Here we focused on the conditions that lead to the formation of a model-free motor memory (Huang VS, Haith AM, Mazzoni P, Krakauer JW. Neuron 70: 787-801, 2011), i.e., a memory that does not depend on an internal model or on the size or direction of the errors experienced during the learning. The formation of such model-free motor memory was hypothesized to depend on the schedule of the perturbation (Orban de Xivry JJ, Ahmadi-Pajouh MA, Harran MD, Salimpour Y, Shadmehr R. J Neurophysiol 109: 124-136, 2013). Here we built on this observation by directly testing the nature of the motor memory after abrupt or gradual introduction of a visuomotor rotation, in an experimental paradigm where the presence of model-free motor memory can be identified (Huang VS, Haith AM, Mazzoni P, Krakauer JW. Neuron 70: 787-801, 2011). We found that relearning was faster after abrupt than gradual perturbation, which suggests that model-free learning is reduced during gradual adaptation to a visuomotor rotation. In addition, the presence of savings after abrupt introduction of the perturbation but gradual extinction of the motor memory suggests that unexpected errors are necessary to induce a model-free motor memory. Overall, these data support the hypothesis that different perturbation schedules do not lead to a more or less stabilized motor memory but to distinct motor memories with different attributes and neural representations. Copyright © 2015 the American Physiological Society.

  16. Redistribution of neural phase coherence reflects establishment of feedforward map in speech motor adaptation

    PubMed Central

    Sengupta, Ranit

    2015-01-01

    Despite recent progress in our understanding of sensorimotor integration in speech learning, a comprehensive framework to investigate its neural basis is lacking at behaviorally relevant timescales. Structural and functional imaging studies in humans have helped us identify brain networks that support speech but fail to capture the precise spatiotemporal coordination within the networks that takes place during speech learning. Here we use neuronal oscillations to investigate interactions within speech motor networks in a paradigm of speech motor adaptation under altered feedback with continuous recording of EEG in which subjects adapted to the real-time auditory perturbation of a target vowel sound. As subjects adapted to the task, concurrent changes were observed in the theta-gamma phase coherence during speech planning at several distinct scalp regions that is consistent with the establishment of a feedforward map. In particular, there was an increase in coherence over the central region and a decrease over the fronto-temporal regions, revealing a redistribution of coherence over an interacting network of brain regions that could be a general feature of error-based motor learning in general. Our findings have implications for understanding the neural basis of speech motor learning and could elucidate how transient breakdown of neuronal communication within speech networks relates to speech disorders. PMID:25632078

  17. Amyotrophic Lateral Sclerosis: An Introduction to Psychosocial and Behavioral Adaptations.

    ERIC Educational Resources Information Center

    Hoffman, R. Leigh; Decker, Thomas W.

    1993-01-01

    Defines amyotrophic lateral sclerosis (ALS) as motor-neuron disease that is terminal. Discusses symptoms associated with ALS and identifies treatment options. Reviews psychological and behavioral adaptations in regard to ALS clients, their families, and professionals who work with them. Discusses support groups as method of reducing stress for ALS…

  18. The Binding of Learning to Action in Motor Adaptation

    PubMed Central

    Gonzalez Castro, Luis Nicolas; Monsen, Craig Bryant; Smith, Maurice A.

    2011-01-01

    In motor tasks, errors between planned and actual movements generally result in adaptive changes which reduce the occurrence of similar errors in the future. It has commonly been assumed that the motor adaptation arising from an error occurring on a particular movement is specifically associated with the motion that was planned. Here we show that this is not the case. Instead, we demonstrate the binding of the adaptation arising from an error on a particular trial to the motion experienced on that same trial. The formation of this association means that future movements planned to resemble the motion experienced on a given trial benefit maximally from the adaptation arising from it. This reflects the idea that actual rather than planned motions are assigned ‘credit’ for motor errors because, in a computational sense, the maximal adaptive response would be associated with the condition credited with the error. We studied this process by examining the patterns of generalization associated with motor adaptation to novel dynamic environments during reaching arm movements in humans. We found that these patterns consistently matched those predicted by adaptation associated with the actual rather than the planned motion, with maximal generalization observed where actual motions were clustered. We followed up these findings by showing that a novel training procedure designed to leverage this newfound understanding of the binding of learning to action, can improve adaptation rates by greater than 50%. Our results provide a mechanistic framework for understanding the effects of partial assistance and error augmentation during neurologic rehabilitation, and they suggest ways to optimize their use. PMID:21731476

  19. Older adults learn less, but still reduce metabolic cost, during motor adaptation

    PubMed Central

    Huang, Helen J.

    2013-01-01

    The ability to learn new movements and dynamics is important for maintaining independence with advancing age. Age-related sensorimotor changes and increased muscle coactivation likely alter the trial-and-error-based process of adapting to new movement demands (motor adaptation). Here, we asked, to what extent is motor adaptation to novel dynamics maintained in older adults (≥65 yr)? We hypothesized that older adults would adapt to the novel dynamics less well than young adults. Because older adults often use muscle coactivation, we expected older adults to use greater muscle coactivation during motor adaptation than young adults. Nevertheless, we predicted that older adults would reduce muscle activity and metabolic cost with motor adaptation, similar to young adults. Seated older (n = 11, 73.8 ± 5.6 yr) and young (n = 15, 23.8 ± 4.7 yr) adults made targeted reaching movements while grasping a robotic arm. We measured their metabolic rate continuously via expired gas analysis. A force field was used to add novel dynamics. Older adults had greater movement deviations and compensated for just 65% of the novel dynamics compared with 84% in young adults. As expected, older adults used greater muscle coactivation than young adults. Last, older adults reduced muscle activity with motor adaptation and had consistent reductions in metabolic cost later during motor adaptation, similar to young adults. These results suggest that despite increased muscle coactivation, older adults can adapt to the novel dynamics, albeit less accurately. These results also suggest that reductions in metabolic cost may be a fundamental feature of motor adaptation. PMID:24133222

  20. Properties of intermodal transfer after dual visuo- and auditory-motor adaptation.

    PubMed

    Schmitz, Gerd; Bock, Otmar L

    2017-10-01

    Previous work documented that sensorimotor adaptation transfers between sensory modalities: When subjects adapt with one arm to a visuomotor distortion while responding to visual targets, they also appear to be adapted when they are subsequently tested with auditory targets. Vice versa, when they adapt to an auditory-motor distortion while pointing to auditory targets, they appear to be adapted when they are subsequently tested with visual targets. Therefore, it was concluded that visuomotor as well as auditory-motor adaptation use the same adaptation mechanism. Furthermore, it has been proposed that sensory information from the trained modality is weighted larger than sensory information from an untrained one, because transfer between sensory modalities is incomplete. The present study tested these hypotheses for dual arm adaptation. One arm adapted to an auditory-motor distortion and the other either to an opposite directed auditory-motor or visuomotor distortion. We found that both arms adapted significantly. However, compared to reference data on single arm adaptation, adaptation in the dominant arm was reduced indicating interference from the non-dominant to the dominant arm. We further found that arm-specific aftereffects of adaptation, which reflect recalibration of sensorimotor transformation rules, were stronger or equally strong when targets were presented in the previously adapted compared to the non-adapted sensory modality, even when one arm adapted visually and the other auditorily. The findings are discussed with respect to a recently published schematic model on sensorimotor adaptation. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Non-motor tasks improve adaptive brain-computer interface performance in users with severe motor impairment

    PubMed Central

    Faller, Josef; Scherer, Reinhold; Friedrich, Elisabeth V. C.; Costa, Ursula; Opisso, Eloy; Medina, Josep; Müller-Putz, Gernot R.

    2014-01-01

    Individuals with severe motor impairment can use event-related desynchronization (ERD) based BCIs as assistive technology. Auto-calibrating and adaptive ERD-based BCIs that users control with motor imagery tasks (“SMR-AdBCI”) have proven effective for healthy users. We aim to find an improved configuration of such an adaptive ERD-based BCI for individuals with severe motor impairment as a result of spinal cord injury (SCI) or stroke. We hypothesized that an adaptive ERD-based BCI, that automatically selects a user specific class-combination from motor-related and non motor-related mental tasks during initial auto-calibration (“Auto-AdBCI”) could allow for higher control performance than a conventional SMR-AdBCI. To answer this question we performed offline analyses on two sessions (21 data sets total) of cue-guided, five-class electroencephalography (EEG) data recorded from individuals with SCI or stroke. On data from the twelve individuals in Session 1, we first identified three bipolar derivations for the SMR-AdBCI. In a similar way, we determined three bipolar derivations and four mental tasks for the Auto-AdBCI. We then simulated both, the SMR-AdBCI and the Auto-AdBCI configuration on the unseen data from the nine participants in Session 2 and compared the results. On the unseen data of Session 2 from individuals with SCI or stroke, we found that automatically selecting a user specific class-combination from motor-related and non motor-related mental tasks during initial auto-calibration (Auto-AdBCI) significantly (p < 0.01) improved classification performance compared to an adaptive ERD-based BCI that only used motor imagery tasks (SMR-AdBCI; average accuracy of 75.7 vs. 66.3%). PMID:25368546

  2. Multiple Concurrent Visual-Motor Mappings: Implications for Models of Adaptation

    NASA Technical Reports Server (NTRS)

    Cunningham, H. A.; Welch, Robert B.

    1994-01-01

    Previous research on adaptation to visual-motor rearrangement suggests that the central nervous system represents accurately only 1 visual-motor mapping at a time. This idea was examined in 3 experiments where subjects tracked a moving target under repeated alternations between 2 initially interfering mappings (the 'normal' mapping characteristic of computer input devices and a 108' rotation of the normal mapping). Alternation between the 2 mappings led to significant reduction in error under the rotated mapping and significant reduction in the adaptation aftereffect ordinarily caused by switching between mappings. Color as a discriminative cue, interference versus decay in adaptation aftereffect, and intermanual transfer were also examined. The results reveal a capacity for multiple concurrent visual-motor mappings, possibly controlled by a parametric process near the motor output stage of processing.

  3. Brief Report: Adaptive Behavior and Cognitive Skills for Toddlers on the Autism Spectrum

    ERIC Educational Resources Information Center

    Ray-Subramanian, Corey E.; Huai, Nan; Weismer, Susan Ellis

    2011-01-01

    This study examined adaptive behavior and cognitive skills for 125 toddlers on the autism spectrum using the recently updated Vineland-II and Bayley-III. Delays in adaptive skills were apparent at 2 years of age. As a group, toddlers on the autism spectrum had a profile of Vineland-II standard scores in which Motor Skills greater than Daily Living…

  4. Motor learning and cross-limb transfer rely upon distinct neural adaptation processes

    PubMed Central

    Carroll, Timothy J.; Summers, Jeffery J.; Hinder, Mark R.

    2016-01-01

    Performance benefits conferred in the untrained limb after unilateral motor practice are termed cross-limb transfer. Although the effect is robust, the neural mechanisms remain incompletely understood. In this study we used noninvasive brain stimulation to reveal that the neural adaptations that mediate motor learning in the trained limb are distinct from those that underlie cross-limb transfer to the opposite limb. Thirty-six participants practiced a ballistic motor task with their right index finger (150 trials), followed by intermittent theta-burst stimulation (iTBS) applied to the trained (contralateral) primary motor cortex (cM1 group), the untrained (ipsilateral) M1 (iM1 group), or the vertex (sham group). After stimulation, another 150 training trials were undertaken. Motor performance and corticospinal excitability were assessed before motor training, pre- and post-iTBS, and after the second training bout. For all groups, training significantly increased performance and excitability of the trained hand, and performance, but not excitability, of the untrained hand, indicating transfer at the level of task performance. The typical facilitatory effect of iTBS on MEPs was reversed for cM1, suggesting homeostatic metaplasticity, and prior performance gains in the trained hand were degraded, suggesting that iTBS interfered with learning. In stark contrast, iM1 iTBS facilitated both performance and excitability for the untrained hand. Importantly, the effects of cM1 and iM1 iTBS on behavior were exclusive to the hand contralateral to stimulation, suggesting that adaptations within the untrained M1 contribute to cross-limb transfer. However, the neural processes that mediate learning in the trained hemisphere vs. transfer in the untrained hemisphere appear distinct. PMID:27169508

  5. Natural descriptions of motor behavior: examples from E. coli and C. elegans.

    NASA Astrophysics Data System (ADS)

    Ryu, William

    2007-03-01

    E. coli has a natural behavioral variable - the direction of rotation of its flagellar rotorary motor. Monitoring this one-dimensional behavioral response in reaction to chemical perturbation has been instrumental in the understanding of how E. coli performs chemotaxis at the genetic, physiological, and computational level. Here we apply this experimental strategy to the study of bacterial thermotaxis - a sensory mode that is less well understood. We investigate bacterial thermosensation by studying the motor response of single cells subjected to impulses of heat produced by an IR laser. A simple temperature dependent modification to an existing chemotaxis model can explain the observed temperature response. Higher organisms may have a more complicated behavioral response due to the simple fact that their motions have more degrees of freedom. Here we provide a principled analysis of motor behavior of such an organism -- the roundworm C. elegans. Using tracking video-microscopy we capture a worm's image and extract the skeleton of the shape as a head-to-tail ordered collection of tangent angles sampled along the curve. Applying principal components analysis we show that the space of shapes is remarkably low dimensional, with four dimensions accounting for > 95% of the shape variance. We also show that these dimensions align with behaviorally relevant states. As an application of this analysis we study the thermal response of worms stimulated by laser heating. Our quantitative description of C. elegans movement should prove useful in a wide variety of contexts, from the linking of motor output with neural circuitry to the genetic basis of adaptive behavior.

  6. Adaptive behavior in young children with neurofibromatosis type 1.

    PubMed

    Klein-Tasman, Bonita P; Colon, Alina M; Brei, Natalie; van der Fluit, Faye; Casnar, Christina L; Janke, Kelly M; Basel, Donald; Siegel, Dawn H; Walker, Jasmine A

    2013-01-01

    Neurofibromatosis-1 is the most common single gene disorder affecting 1 in 3000. In children, it is associated not only with physical features but also with attention and learning problems. Research has identified a downward shift in intellectual functioning as well, but to date, there are no published studies about the everyday adaptive behavior of children with NF1. In this study, parental reports of adaptive behavior of 61 children with NF1 ages 3 through 8 were compared to an unaffected contrast group (n = 55) that comprised siblings and community members. Significant group differences in adaptive skills were evident and were largely related to group differences in intellectual functioning. In a subsample of children with average-range intellectual functioning, group differences in parent-reported motor skills were apparent even after controlling statistically for group differences in intellectual functioning. The implications of the findings for the care of children with NF1 are discussed.

  7. Separate neural substrates in the human cerebellum for sensory-motor adaptation of reactive and of scanning voluntary saccades.

    PubMed

    Alahyane, N; Fonteille, V; Urquizar, C; Salemme, R; Nighoghossian, N; Pelisson, D; Tilikete, C

    2008-01-01

    Sensory-motor adaptation processes are critically involved in maintaining accurate motor behavior throughout life. Yet their underlying neural substrates and task-dependency bases are still poorly understood. We address these issues here by studying adaptation of saccadic eye movements, a well-established model of sensory-motor plasticity. The cerebellum plays a major role in saccadic adaptation but it has not yet been investigated whether this role can account for the known specificity of adaptation to the saccade type (e.g., reactive versus voluntary). Two patients with focal lesions in different parts of the cerebellum were tested using the double-step target paradigm. Each patient was submitted to two separate sessions: one for reactive saccades (RS) triggered by the sudden appearance of a visual target and the second for scanning voluntary saccades (SVS) performed when exploring a more complex scene. We found that a medial cerebellar lesion impaired adaptation of reactive-but not of voluntary-saccades, whereas a lateral lesion affected adaptation of scanning voluntary saccades, but not of reactive saccades. These findings provide the first evidence of an involvement of the lateral cerebellum in saccadic adaptation, and extend the demonstrated role of the cerebellum in RS adaptation to adaptation of SVS. The double dissociation of adaptive abilities is also consistent with our previous hypothesis of the involvement in saccadic adaptation of partially separated cerebellar areas specific to the reactive or voluntary task (Alahyane et al. Brain Res 1135:107-121 (2007)).

  8. Mechanosensation and Adaptive Motor Control in Insects.

    PubMed

    Tuthill, John C; Wilson, Rachel I

    2016-10-24

    The ability of animals to flexibly navigate through complex environments depends on the integration of sensory information with motor commands. The sensory modality most tightly linked to motor control is mechanosensation. Adaptive motor control depends critically on an animal's ability to respond to mechanical forces generated both within and outside the body. The compact neural circuits of insects provide appealing systems to investigate how mechanical cues guide locomotion in rugged environments. Here, we review our current understanding of mechanosensation in insects and its role in adaptive motor control. We first examine the detection and encoding of mechanical forces by primary mechanoreceptor neurons. We then discuss how central circuits integrate and transform mechanosensory information to guide locomotion. Because most studies in this field have been performed in locusts, cockroaches, crickets, and stick insects, the examples we cite here are drawn mainly from these 'big insects'. However, we also pay particular attention to the tiny fruit fly, Drosophila, where new tools are creating new opportunities, particularly for understanding central circuits. Our aim is to show how studies of big insects have yielded fundamental insights relevant to mechanosensation in all animals, and also to point out how the Drosophila toolkit can contribute to future progress in understanding mechanosensory processing. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Motor learning and cross-limb transfer rely upon distinct neural adaptation processes.

    PubMed

    Stöckel, Tino; Carroll, Timothy J; Summers, Jeffery J; Hinder, Mark R

    2016-08-01

    Performance benefits conferred in the untrained limb after unilateral motor practice are termed cross-limb transfer. Although the effect is robust, the neural mechanisms remain incompletely understood. In this study we used noninvasive brain stimulation to reveal that the neural adaptations that mediate motor learning in the trained limb are distinct from those that underlie cross-limb transfer to the opposite limb. Thirty-six participants practiced a ballistic motor task with their right index finger (150 trials), followed by intermittent theta-burst stimulation (iTBS) applied to the trained (contralateral) primary motor cortex (cM1 group), the untrained (ipsilateral) M1 (iM1 group), or the vertex (sham group). After stimulation, another 150 training trials were undertaken. Motor performance and corticospinal excitability were assessed before motor training, pre- and post-iTBS, and after the second training bout. For all groups, training significantly increased performance and excitability of the trained hand, and performance, but not excitability, of the untrained hand, indicating transfer at the level of task performance. The typical facilitatory effect of iTBS on MEPs was reversed for cM1, suggesting homeostatic metaplasticity, and prior performance gains in the trained hand were degraded, suggesting that iTBS interfered with learning. In stark contrast, iM1 iTBS facilitated both performance and excitability for the untrained hand. Importantly, the effects of cM1 and iM1 iTBS on behavior were exclusive to the hand contralateral to stimulation, suggesting that adaptations within the untrained M1 contribute to cross-limb transfer. However, the neural processes that mediate learning in the trained hemisphere vs. transfer in the untrained hemisphere appear distinct. Copyright © 2016 the American Physiological Society.

  10. Dynamic range adaptation in primary motor cortical populations

    PubMed Central

    Rasmussen, Robert G; Schwartz, Andrew; Chase, Steven M

    2017-01-01

    Neural populations from various sensory regions demonstrate dynamic range adaptation in response to changes in the statistical distribution of their input stimuli. These adaptations help optimize the transmission of information about sensory inputs. Here, we show a similar effect in the firing rates of primary motor cortical cells. We trained monkeys to operate a brain-computer interface in both two- and three-dimensional virtual environments. We found that neurons in primary motor cortex exhibited a change in the amplitude of their directional tuning curves between the two tasks. We then leveraged the simultaneous nature of the recordings to test several hypotheses about the population-based mechanisms driving these changes and found that the results are most consistent with dynamic range adaptation. Our results demonstrate that dynamic range adaptation is neither limited to sensory regions nor to rescaling of monotonic stimulus intensity tuning curves, but may rather represent a canonical feature of neural encoding. DOI: http://dx.doi.org/10.7554/eLife.21409.001 PMID:28417848

  11. A Behavior Analytic Approach to Exploratory Motor Behavior: How Can Caregivers Teach EM Behavior to Infants with Down Syndrome?

    ERIC Educational Resources Information Center

    Bauer, Sara M.; Jones, Emily A.

    2014-01-01

    Impairment in exploratory motor (EM) behavior is part of the Down syndrome behavioral phenotype. Exploratory motor behavior may be a pivotal skill for early intervention with infants with Down syndrome. Exploratory motor impairments are often attributed to general delays in motor development in infants with Down syndrome. A behavior analytic…

  12. Motor functions and adaptive behaviour in children with childhood apraxia of speech.

    PubMed

    Tükel, Şermin; Björelius, Helena; Henningsson, Gunilla; McAllister, Anita; Eliasson, Ann Christin

    2015-01-01

    Undiagnosed motor and behavioural problems have been reported for children with childhood apraxia of speech (CAS). This study aims to understand the extent of these problems by determining the profile of and relationships between speech/non-speech oral, manual and overall body motor functions and adaptive behaviours in CAS. Eighteen children (five girls and 13 boys) with CAS, 4 years 4 months to 10 years 6 months old, participated in this study. The assessments used were the Verbal Motor Production Assessment for Children (VMPAC), Bruininks-Oseretsky Test of Motor Proficiency (BOT-2) and Adaptive Behaviour Assessment System (ABAS-II). Median result of speech/non-speech oral motor function was between -1 and -2 SD of the mean VMPAC norms. For BOT-2 and ABAS-II, the median result was between the mean and -1 SD of test norms. However, on an individual level, many children had co-occurring difficulties (below -1 SD of the mean) in overall and manual motor functions and in adaptive behaviour, despite few correlations between sub-tests. In addition to the impaired speech motor output, children displayed heterogeneous motor problems suggesting the presence of a global motor deficit. The complex relationship between motor functions and behaviour may partly explain the undiagnosed developmental difficulties in CAS.

  13. Catch trials in force field learning influence adaptation and consolidation of human motor memory

    PubMed Central

    Stockinger, Christian; Focke, Anne; Stein, Thorsten

    2014-01-01

    Force field studies are a common tool to investigate motor adaptation and consolidation. Thereby, subjects usually adapt their reaching movements to force field perturbations induced by a robotic device. In this context, so-called catch trials, in which the disturbing forces are randomly turned off, are commonly used to detect after-effects of motor adaptation. However, catch trials also produce sudden large motor errors that might influence the motor adaptation and the consolidation process. Yet, the detailed influence of catch trials is far from clear. Thus, the aim of this study was to investigate the influence of catch trials on motor adaptation and consolidation in force field experiments. Therefore, 105 subjects adapted their reaching movements to robot-generated force fields. The test groups adapted their reaching movements to a force field A followed by learning a second interfering force field B before retest of A (ABA). The control groups were not exposed to force field B (AA). To examine the influence of diverse catch trial ratios, subjects received catch trials during force field adaptation with a probability of either 0, 10, 20, 30, or 40%, depending on the group. First, the results on motor adaptation revealed significant differences between the diverse catch trial ratio groups. With increasing amount of catch trials, the subjects' motor performance decreased and subjects' ability to accurately predict the force field—and therefore internal model formation—was impaired. Second, our results revealed that adapting with catch trials can influence the following consolidation process as indicated by a partial reduction to interference. Here, the optimal catch trial ratio was 30%. However, detection of consolidation seems to be biased by the applied measure of performance. PMID:24795598

  14. Motor-Behavioral Episodes in REM Sleep Behavior Disorder and Phasic Events During REM Sleep

    PubMed Central

    Manni, Raffaele; Terzaghi, Michele; Glorioso, Margaret

    2009-01-01

    Study Objectives: To investigate if sudden-onset motor-behavioral episodes in REM sleep behavior disorder (RBD) are associated with phasic events of REM sleep, and to explore the potential meaning of such an association. Design: Observational review analysis. Setting: Tertiary sleep center. Patients: Twelve individuals (11 males; mean age 67.6 ± 7.4 years) affected by idiopathic RBD, displaying a total of 978 motor-behavioral episodes during nocturnal in-laboratory video-PSG. Interventions: N/A Measurements and Results: The motor activity displayed was primitive in 69.1% and purposeful/semi-purposeful in 30.9% of the motor-behavioral episodes recorded. Sleeptalking was significantly more associated with purposeful/semi-purposeful motor activity than crying and/or incomprehensible muttering (71.0% versus 21.4%, P < 0.005). In 58.2% of the motor-behavioral episodes, phasic EEG-EOG events (rapid eye movements [REMs], α bursts, or sawtooth waves [STWs]) occurred simultaneously. Each variable (REMs, STWs, α bursts) was associated more with purposeful/semi-purposeful than with primitive movements (P < 0.05). Conclusions: Motor-behavioral episodes in RBD were significantly more likely to occur in association with phasic than with tonic periods of REM sleep. The presence of REMs, α bursts and STWs was found to be more frequent in more complex episodes. We hypothesize that motor-behavioral episodes in RBD are likely to occur when the brain, during REM sleep, is in a state of increased instability (presence of α bursts) and experiencing stronger stimulation of visual areas (REMs). Citation: Manni R; Terzaghi M; Glorioso M. Motor-behavioral episodes in REM sleep behavior disorder and phasic events during REM sleep. SLEEP 2009;32(2):241–245. PMID:19238811

  15. Differential genetic regulation of motor activity and anxiety-related behaviors in mice using an automated home cage task.

    PubMed

    Kas, Martien J H; de Mooij-van Malsen, Annetrude J G; Olivier, Berend; Spruijt, Berry M; van Ree, Jan M

    2008-08-01

    Traditional behavioral tests, such as the open field test, measure an animal's responsiveness to a novel environment. However, it is generally difficult to assess whether the behavioral response obtained from these tests relates to the expression level of motor activity and/or to avoidance of anxiogenic areas. Here, an automated home cage environment for mice was designed to obtain independent measures of motor activity levels and of sheltered feeding preference during three consecutive days. Chronic treatment with the anxiolytic drug chlordiazepoxide (5 and 10 mg/kg/day) in C57BL/6J mice reduced sheltered feeding preference without altering motor activity levels. Furthermore, two distinct chromosome substitution strains, derived from C57BL/6J (host strain) and A/J (donor strain) inbred strains, expressed either increased sheltering preference in females (chromosome 15) or reduced motor activity levels in females and males (chromosome 1) when compared to C57BL/6J. Longitudinal behavioral monitoring revealed that these phenotypic differences maintained after adaptation to the home cage. Thus, by using new automated behavioral phenotyping approaches, behavior can be dissociated into distinct behavioral domains (e.g., anxiety-related and motor activity domains) with different underlying genetic origin and pharmacological responsiveness.

  16. Brain-wide neuronal dynamics during motor adaptation in zebrafish.

    PubMed

    Ahrens, Misha B; Li, Jennifer M; Orger, Michael B; Robson, Drew N; Schier, Alexander F; Engert, Florian; Portugues, Ruben

    2012-05-09

    A fundamental question in neuroscience is how entire neural circuits generate behaviour and adapt it to changes in sensory feedback. Here we use two-photon calcium imaging to record the activity of large populations of neurons at the cellular level, throughout the brain of larval zebrafish expressing a genetically encoded calcium sensor, while the paralysed animals interact fictively with a virtual environment and rapidly adapt their motor output to changes in visual feedback. We decompose the network dynamics involved in adaptive locomotion into four types of neuronal response properties, and provide anatomical maps of the corresponding sites. A subset of these signals occurred during behavioural adjustments and are candidates for the functional elements that drive motor learning. Lesions to the inferior olive indicate a specific functional role for olivocerebellar circuitry in adaptive locomotion. This study enables the analysis of brain-wide dynamics at single-cell resolution during behaviour.

  17. A model for the transfer of perceptual-motor skill learning in human behaviors.

    PubMed

    Rosalie, Simon M; Müller, Sean

    2012-09-01

    This paper presents a preliminary model that outlines the mechanisms underlying the transfer of perceptual-motor skill learning in sport and everyday tasks. Perceptual-motor behavior is motivated by performance demands and evolves over time to increase the probability of success through adaptation. Performance demands at the time of an event create a unique transfer domain that specifies a range of potentially successful actions. Transfer comprises anticipatory subconscious and conscious mechanisms. The model also outlines how transfer occurs across a continuum, which depends on the individual's expertise and contextual variables occurring at the incidence of transfer

  18. Trial-by-Trial Motor Cortical Correlates of a Rapidly Adapting Visuomotor Internal Model.

    PubMed

    Stavisky, Sergey D; Kao, Jonathan C; Ryu, Stephen I; Shenoy, Krishna V

    2017-02-15

    Accurate motor control is mediated by internal models of how neural activity generates movement. We examined neural correlates of an adapting internal model of visuomotor gain in motor cortex while two macaques performed a reaching task in which the gain scaling between the hand and a presented cursor was varied. Previous studies of cortical changes during visuomotor adaptation focused on preparatory and perimovement epochs and analyzed trial-averaged neural data. Here, we recorded simultaneous neural population activity using multielectrode arrays and focused our analysis on neural differences in the period before the target appeared. We found that we could estimate the monkey's internal model of the gain using the neural population state during this pretarget epoch. This neural correlate depended on the gain experienced during recent trials and it predicted the speed of the subsequent reach. To explore the utility of this internal model estimate for brain-machine interfaces, we performed an offline analysis showing that it can be used to compensate for upcoming reach extent errors. Together, these results demonstrate that pretarget neural activity in motor cortex reflects the monkey's internal model of visuomotor gain on single trials and can potentially be used to improve neural prostheses. SIGNIFICANCE STATEMENT When generating movement commands, the brain is believed to use internal models of the relationship between neural activity and the body's movement. Visuomotor adaptation tasks have revealed neural correlates of these computations in multiple brain areas during movement preparation and execution. Here, we describe motor cortical changes in a visuomotor gain change task even before a specific movement is cued. We were able to estimate the gain internal model from these pretarget neural correlates and relate it to single-trial behavior. This is an important step toward understanding the sensorimotor system's algorithms for updating its internal models

  19. Trial-by-Trial Motor Cortical Correlates of a Rapidly Adapting Visuomotor Internal Model

    PubMed Central

    Ryu, Stephen I.

    2017-01-01

    Accurate motor control is mediated by internal models of how neural activity generates movement. We examined neural correlates of an adapting internal model of visuomotor gain in motor cortex while two macaques performed a reaching task in which the gain scaling between the hand and a presented cursor was varied. Previous studies of cortical changes during visuomotor adaptation focused on preparatory and perimovement epochs and analyzed trial-averaged neural data. Here, we recorded simultaneous neural population activity using multielectrode arrays and focused our analysis on neural differences in the period before the target appeared. We found that we could estimate the monkey's internal model of the gain using the neural population state during this pretarget epoch. This neural correlate depended on the gain experienced during recent trials and it predicted the speed of the subsequent reach. To explore the utility of this internal model estimate for brain–machine interfaces, we performed an offline analysis showing that it can be used to compensate for upcoming reach extent errors. Together, these results demonstrate that pretarget neural activity in motor cortex reflects the monkey's internal model of visuomotor gain on single trials and can potentially be used to improve neural prostheses. SIGNIFICANCE STATEMENT When generating movement commands, the brain is believed to use internal models of the relationship between neural activity and the body's movement. Visuomotor adaptation tasks have revealed neural correlates of these computations in multiple brain areas during movement preparation and execution. Here, we describe motor cortical changes in a visuomotor gain change task even before a specific movement is cued. We were able to estimate the gain internal model from these pretarget neural correlates and relate it to single-trial behavior. This is an important step toward understanding the sensorimotor system's algorithms for updating its internal models

  20. Motor Experts Care about Consistency and Are Reluctant to Change Motor Outcome.

    PubMed

    Kast, Volker; Leukel, Christian

    2016-01-01

    Thousands of hours of physical practice substantially change the way movements are performed. The mechanisms underlying altered behavior in highly-trained individuals are so far little understood. We studied experts (handballers) and untrained individuals (novices) in visuomotor adaptation of free throws, where subjects had to adapt their throwing direction to a visual displacement induced by prismatic glasses. Before visual displacement, experts expressed lower variability of motor errors than novices. Experts adapted and de-adapted slower, and also forgot the adaptation slower than novices. The variability during baseline was correlated with the learning rate during adaptation. Subjects adapted faster when variability was higher. Our results indicate that experts produced higher consistency of motor outcome. They were still susceptible to the sensory feedback informing about motor error, but made smaller adjustments than novices. The findings of our study relate to previous investigations emphasizing the importance of action exploration, expressed in terms of outcome variability, to facilitate learning.

  1. Lateralized hyperkinetic motor behavior.

    PubMed

    Krishnaiah, Balaji; Acharya, Jayant; Ahmed, Aiesha

    2018-01-01

    Seizures are followed by a post-ictal period, which is characterized by usual slowing of brain activity. This case report describes a 68-year old woman who presented with right-sided rhythmic, non-voluntary, semi-purposeful motor behavior that started 2 days after an episode of generalized seizure. Her initial electroencephalogram (EEG) showed beta activity with no evidence of epileptiform discharges. Computed tomography scan showed hypodensity in the left parieto-occipital region. Magnetic resonance imaging (MRI) showed restricted diffusion/fluid-attenuated inversion recovery hyperintensities in the left precentral and post-central gyrus. Unilateral compulsive motor behavior during the post-ictal state should be considered, and not confused with partial status epilepticus to avoid unnecessary treatment. Abnormal magnetic resonance imaging (MRI) findings, which are reversible, can help with the diagnostic and therapeutic approach.

  2. Linear hypergeneralization of learned dynamics across movement speeds reveals anisotropic, gain-encoding primitives for motor adaptation.

    PubMed

    Joiner, Wilsaan M; Ajayi, Obafunso; Sing, Gary C; Smith, Maurice A

    2011-01-01

    The ability to generalize learned motor actions to new contexts is a key feature of the motor system. For example, the ability to ride a bicycle or swing a racket is often first developed at lower speeds and later applied to faster velocities. A number of previous studies have examined the generalization of motor adaptation across movement directions and found that the learned adaptation decays in a pattern consistent with the existence of motor primitives that display narrow Gaussian tuning. However, few studies have examined the generalization of motor adaptation across movement speeds. Following adaptation to linear velocity-dependent dynamics during point-to-point reaching arm movements at one speed, we tested the ability of subjects to transfer this adaptation to short-duration higher-speed movements aimed at the same target. We found near-perfect linear extrapolation of the trained adaptation with respect to both the magnitude and the time course of the velocity profiles associated with the high-speed movements: a 69% increase in movement speed corresponded to a 74% extrapolation of the trained adaptation. The close match between the increase in movement speed and the corresponding increase in adaptation beyond what was trained indicates linear hypergeneralization. Computational modeling shows that this pattern of linear hypergeneralization across movement speeds is not compatible with previous models of adaptation in which motor primitives display isotropic Gaussian tuning of motor output around their preferred velocities. Instead, we show that this generalization pattern indicates that the primitives involved in the adaptation to viscous dynamics display anisotropic tuning in velocity space and encode the gain between motor output and motion state rather than motor output itself.

  3. Optimality, stochasticity, and variability in motor behavior

    PubMed Central

    Guigon, Emmanuel; Baraduc, Pierre; Desmurget, Michel

    2008-01-01

    Recent theories of motor control have proposed that the nervous system acts as a stochastically optimal controller, i.e. it plans and executes motor behaviors taking into account the nature and statistics of noise. Detrimental effects of noise are converted into a principled way of controlling movements. Attractive aspects of such theories are their ability to explain not only characteristic features of single motor acts, but also statistical properties of repeated actions. Here, we present a critical analysis of stochastic optimality in motor control which reveals several difficulties with this hypothesis. We show that stochastic control may not be necessary to explain the stochastic nature of motor behavior, and we propose an alternative framework, based on the action of a deterministic controller coupled with an optimal state estimator, which relieves drawbacks of stochastic optimality and appropriately explains movement variability. PMID:18202922

  4. Perceptual-Motor Behavior and Educational Processes.

    ERIC Educational Resources Information Center

    Cratty, Bryant J.

    Addressed to elementary school and special class teachers, the text presents research-based information on perceptual-motor behavior and education, including movement and the human personality, research guidelines, and movement activities in general education. Special education is considered and perceptual motor abilities are discussed with…

  5. Examining impairment of adaptive compensation for stabilizing motor repetitions in stroke survivors.

    PubMed

    Kim, Yushin; Koh, Kyung; Yoon, BumChul; Kim, Woo-Sub; Shin, Joon-Ho; Park, Hyung-Soon; Shim, Jae Kun

    2017-12-01

    The hand, one of the most versatile but mechanically redundant parts of the human body, suffers more and longer than other body parts after stroke. One of the rehabilitation paradigms, task-oriented rehabilitation, encourages motor repeatability, the ability to produce similar motor performance over repetitions through compensatory strategies while taking advantage of the motor system's redundancy. The previous studies showed that stroke survivors inconsistently performed a given motor task with limited motor solutions. We hypothesized that stroke survivors would exhibit deficits in motor repeatability and adaptive compensation compared to healthy controls in during repetitive force-pulse (RFP) production tasks using multiple fingers. Seventeen hemiparetic stroke survivors and seven healthy controls were asked to repeatedly press force sensors as fast as possible using the four fingers of each hand. The hierarchical variability decomposition model was employed to compute motor repeatability and adaptive compensation across finger-force impulses, respectively. Stroke survivors showed decreased repeatability and adaptive compensation of force impulses between individual fingers as compared to the control (p < 0.05). The stroke survivors also showed decreased pulse frequency and greater peak-to-peak time variance than the control (p < 0.05). Force-related variables, such as mean peak force and peak force interval variability, demonstrated no significant difference between groups. Our findings indicate that stroke-induced brain injury negatively affects their ability to exploit their redundant or abundant motor system in an RFP task.

  6. Sleep benefits consolidation of visuo-motor adaptation learning in older adults.

    PubMed

    Mantua, Janna; Baran, Bengi; Spencer, Rebecca M C

    2016-02-01

    Sleep is beneficial for performance across a range of memory tasks in young adults, but whether memories are similarly consolidated in older adults is less clear. Performance benefits have been observed following sleep in older adults for declarative learning tasks, but this benefit may be reduced for non-declarative, motor skill learning tasks. To date, studies of sleep-dependent consolidation of motor learning in older adults are limited to motor sequence tasks. To examine whether reduced sleep-dependent consolidation in older adults is generalizable to other forms of motor skill learning, we examined performance changes over intervals of sleep and wake in young (n = 62) and older adults (n = 61) using a mirror-tracing task, which assesses visuo-motor adaptation learning. Participants learned the task either in the morning or in evening, and performance was assessed following a 12-h interval containing overnight sleep or daytime wake. Contrary to our prediction, both young adults and older adults exhibited sleep-dependent gains in visuo-motor adaptation. There was a correlation between performance improvement over sleep and percent of the night in non-REM stage 2 sleep. These results indicate that motor skill consolidation remains intact with increasing age although this relationship may be limited to specific forms of motor skill learning.

  7. Recruitment of rat diaphragm motor units across motor behaviors with different levels of diaphragm activation.

    PubMed

    Seven, Yasin B; Mantilla, Carlos B; Sieck, Gary C

    2014-12-01

    Phrenic motor neurons are recruited across a range of motor behaviors to generate varying levels of diaphragm muscle (DIAm) force. We hypothesized that DIAm motor units are recruited in a fixed order across a range of motor behaviors of varying force levels, consistent with the Henneman Size Principle. Single motor unit action potentials and compound DIAm EMG activities were recorded in anesthetized, neurally intact rats across different motor behaviors, i.e., eupnea, hypoxia-hypercapnia (10% O2 and 5% CO2), deep breaths, sustained airway occlusion, and sneezing. Central drive [estimated by root-mean-squared (RMS) EMG value 75 ms after the onset of EMG activity (RMS75)], recruitment delay, and onset discharge frequencies were similar during eupnea and hypoxia-hypercapnia. Compared with eupnea, central drive increased (∼25%) during deep breaths, and motor units were recruited ∼12 ms earlier (P < 0.01). During airway occlusion, central drive was ∼3 times greater, motor units were recruited ∼30 ms earlier (P < 0.01), and motor unit onset discharge frequencies were significantly higher (P < 0.01). Recruitment order of motor unit pairs observed during eupnea was maintained for 98%, 87%, and 84% of the same pairs recorded during hypoxia-hypercapnia, deep breaths, and airway occlusion, respectively. Reversals in motor unit recruitment order were observed primarily if motor unit pairs were recruited <20 ms apart. These results are consistent with DIAm motor unit recruitment order being determined primarily by the intrinsic size-dependent electrophysiological properties of phrenic motor neurons. Copyright © 2014 the American Physiological Society.

  8. Recruitment of rat diaphragm motor units across motor behaviors with different levels of diaphragm activation

    PubMed Central

    Seven, Yasin B.; Mantilla, Carlos B.

    2014-01-01

    Phrenic motor neurons are recruited across a range of motor behaviors to generate varying levels of diaphragm muscle (DIAm) force. We hypothesized that DIAm motor units are recruited in a fixed order across a range of motor behaviors of varying force levels, consistent with the Henneman Size Principle. Single motor unit action potentials and compound DIAm EMG activities were recorded in anesthetized, neurally intact rats across different motor behaviors, i.e., eupnea, hypoxia-hypercapnia (10% O2 and 5% CO2), deep breaths, sustained airway occlusion, and sneezing. Central drive [estimated by root-mean-squared (RMS) EMG value 75 ms after the onset of EMG activity (RMS75)], recruitment delay, and onset discharge frequencies were similar during eupnea and hypoxia-hypercapnia. Compared with eupnea, central drive increased (∼25%) during deep breaths, and motor units were recruited ∼12 ms earlier (P < 0.01). During airway occlusion, central drive was ∼3 times greater, motor units were recruited ∼30 ms earlier (P < 0.01), and motor unit onset discharge frequencies were significantly higher (P < 0.01). Recruitment order of motor unit pairs observed during eupnea was maintained for 98%, 87%, and 84% of the same pairs recorded during hypoxia-hypercapnia, deep breaths, and airway occlusion, respectively. Reversals in motor unit recruitment order were observed primarily if motor unit pairs were recruited <20 ms apart. These results are consistent with DIAm motor unit recruitment order being determined primarily by the intrinsic size-dependent electrophysiological properties of phrenic motor neurons. PMID:25257864

  9. Item response theory and the measurement of motor behavior.

    PubMed

    Safrit, M J; Cohen, A S; Costa, M G

    1989-12-01

    Item response theory (IRT) has been the focus of intense research and development activity in educational and psychological measurement during the past decade. Because this theory can provide more precise information about test items than other theories usually used in measuring motor behavior, the application of IRT in physical education and exercise science merits investigation. In IRT, the difficulty level of each item (e.g., trial or task) can be estimated and placed on the same scale as the ability of the examinee. Using this information, the test developer can determine the ability levels at which the test functions best. Equating the scores of individuals on two or more items or tests can be handled efficiently by applying IRT. The precision of the identification of performance standards in a mastery test context can be enhanced, as can adaptive testing procedures. In this tutorial, several potential benefits of applying IRT to the measurement of motor behavior were described. An example is provided using bowling data and applying the graded-response form of the Rasch IRT model. The data were calibrated and the goodness of fit was examined. This analysis is described in a step-by-step approach. Limitations to using an IRT model with a test consisting of repeated measures were noted.

  10. Adaptation to sensory-motor reflex perturbations is blind to the source of errors.

    PubMed

    Hudson, Todd E; Landy, Michael S

    2012-01-06

    In the study of visual-motor control, perhaps the most familiar findings involve adaptation to externally imposed movement errors. Theories of visual-motor adaptation based on optimal information processing suppose that the nervous system identifies the sources of errors to effect the most efficient adaptive response. We report two experiments using a novel perturbation based on stimulating a visually induced reflex in the reaching arm. Unlike adaptation to an external force, our method induces a perturbing reflex within the motor system itself, i.e., perturbing forces are self-generated. This novel method allows a test of the theory that error source information is used to generate an optimal adaptive response. If the self-generated source of the visually induced reflex perturbation is identified, the optimal response will be via reflex gain control. If the source is not identified, a compensatory force should be generated to counteract the reflex. Gain control is the optimal response to reflex perturbation, both because energy cost and movement errors are minimized. Energy is conserved because neither reflex-induced nor compensatory forces are generated. Precision is maximized because endpoint variance is proportional to force production. We find evidence against source-identified adaptation in both experiments, suggesting that sensory-motor information processing is not always optimal.

  11. What drives the perceptual change resulting from speech motor adaptation? Evaluation of hypotheses in a Bayesian modeling framework

    PubMed Central

    Perrier, Pascal; Schwartz, Jean-Luc; Diard, Julien

    2018-01-01

    Shifts in perceptual boundaries resulting from speech motor learning induced by perturbations of the auditory feedback were taken as evidence for the involvement of motor functions in auditory speech perception. Beyond this general statement, the precise mechanisms underlying this involvement are not yet fully understood. In this paper we propose a quantitative evaluation of some hypotheses concerning the motor and auditory updates that could result from motor learning, in the context of various assumptions about the roles of the auditory and somatosensory pathways in speech perception. This analysis was made possible thanks to the use of a Bayesian model that implements these hypotheses by expressing the relationships between speech production and speech perception in a joint probability distribution. The evaluation focuses on how the hypotheses can (1) predict the location of perceptual boundary shifts once the perturbation has been removed, (2) account for the magnitude of the compensation in presence of the perturbation, and (3) describe the correlation between these two behavioral characteristics. Experimental findings about changes in speech perception following adaptation to auditory feedback perturbations serve as reference. Simulations suggest that they are compatible with a framework in which motor adaptation updates both the auditory-motor internal model and the auditory characterization of the perturbed phoneme, and where perception involves both auditory and somatosensory pathways. PMID:29357357

  12. The Neural Mechanism Exploration of Adaptive Motor Control: Dynamical Economic Cell Allocation in the Primary Motor Cortex.

    PubMed

    Li, Wei; Guo, Yangyang; Fan, Jing; Ma, Chaolin; Ma, Xuan; Chen, Xi; He, Jiping

    2017-05-01

    Adaptive flexibility is of significance for the smooth and efficient movements in goal attainment. However, the underlying work mechanism of the cerebral cortex in adaptive motor control still remains unclear. How does the cerebral cortex organize and coordinate the activity of a large population of cells in the implementation of various motor strategies? To explore this issue, single-unit activities from the M1 region and kinematic data were recorded simultaneously in monkeys performing 3D reach-to-grasp tasks with different perturbations. Varying motor control strategies were employed and achieved in different perturbed tasks, via the dynamic allocation of cells to modulate specific movement parameters. An economic principle was proposed for the first time to describe a basic rule for cell allocation in the primary motor cortex. This principle, defined as the Dynamic Economic Cell Allocation Mechanism (DECAM), guarantees benefit maximization in cell allocation under limited neuronal resources, and avoids committing resources to uneconomic investments for unreliable factors with no or little revenue. That is to say, the cells recruited are always preferentially allocated to those factors with reliable return; otherwise, the cells are dispatched to respond to other factors about task. The findings of this study might partially reveal the working mechanisms underlying the role of the cerebral cortex in adaptive motor control, wherein is also of significance for the design of future intelligent brain-machine interfaces and rehabilitation device.

  13. Adaptive optimal training of animal behavior

    NASA Astrophysics Data System (ADS)

    Bak, Ji Hyun; Choi, Jung Yoon; Akrami, Athena; Witten, Ilana; Pillow, Jonathan

    Neuroscience experiments often require training animals to perform tasks designed to elicit various sensory, cognitive, and motor behaviors. Training typically involves a series of gradual adjustments of stimulus conditions and rewards in order to bring about learning. However, training protocols are usually hand-designed, and often require weeks or months to achieve a desired level of task performance. Here we combine ideas from reinforcement learning and adaptive optimal experimental design to formulate methods for efficient training of animal behavior. Our work addresses two intriguing problems at once: first, it seeks to infer the learning rules underlying an animal's behavioral changes during training; second, it seeks to exploit these rules to select stimuli that will maximize the rate of learning toward a desired objective. We develop and test these methods using data collected from rats during training on a two-interval sensory discrimination task. We show that we can accurately infer the parameters of a learning algorithm that describes how the animal's internal model of the task evolves over the course of training. We also demonstrate by simulation that our method can provide a substantial speedup over standard training methods.

  14. Associations of Gross Motor Delay, Behavior, and Quality of Life in Young Children With Autism Spectrum Disorder.

    PubMed

    Hedgecock, James B; Dannemiller, Lisa A; Shui, Amy M; Rapport, Mary Jane; Katz, Terry

    2018-04-01

    Young children with autism spectrum disorder (ASD) often have gross motor delays that may accentuate problem daytime behavior and health-related quality of life (QoL). The objective of this study was to describe the degree of gross motor delays in young children with ASD and associations of gross motor delays with problem daytime behavior and QoL. The primary hypothesis was that Gross motor delays significantly modifies the associations between internalizing or externalizing problem daytime behavior and QoL. This study used a cross-sectional, retrospective analysis. Data from 3253 children who were 2 to 6 years old and who had ASD were obtained from the Autism Speaks Autism Treatment Network and analyzed using unadjusted and adjusted linear regression. Measures included the Vineland Adaptive Behavior Scales, 2nd edition, gross motor v-scale score (VABS-GM) (for Gross motor delays), the Child Behavior Checklist (CBCL) (for Problem daytime behavior), and the Pediatric Quality of Life Inventory (PedsQL) (for QoL). The mean VABS-GM was 12.12 (SD = 2.2), representing performance at or below the 16th percentile. After adjustment for covariates, the internalizing CBCL t score decreased with increasing VABS-GM (β = - 0.64 SE = 0.12). Total and subscale PedsQL scores increased with increasing VABS-GM (for total score: β = 1.79 SE = 0.17; for subscale score: β = 0.9-2.66 SE = 0.17-0.25). CBCL internalizing and externalizing t scores decreased with increasing PedsQL total score (β = - 0.39 SE = 0.01; β = - 0.36 SE = 0.01). The associations between CBCL internalizing or externalizing t scores and PedsQL were significantly modified by VABSGM (β = - 0.026 SE = 0.005]; β = - 0.019 SE = 0.007). The study lacked ethnic and socioeconomic diversity. Measures were collected via parent report without accompanying clinical assessment. Cross motor delay was independently associated with Problem daytime behavior and QoL in children with ASD. Gross

  15. Engagement of the Rat Hindlimb Motor Cortex across Natural Locomotor Behaviors.

    PubMed

    DiGiovanna, Jack; Dominici, Nadia; Friedli, Lucia; Rigosa, Jacopo; Duis, Simone; Kreider, Julie; Beauparlant, Janine; van den Brand, Rubia; Schieppati, Marco; Micera, Silvestro; Courtine, Grégoire

    2016-10-05

    Contrary to cats and primates, cortical contribution to hindlimb locomotor movements is not critical in rats. However, the importance of the motor cortex to regain locomotion after neurological disorders in rats suggests that cortical engagement in hindlimb motor control may depend on the behavioral context. To investigate this possibility, we recorded whole-body kinematics, muscle synergies, and hindlimb motor cortex modulation in freely moving rats performing a range of natural locomotor procedures. We found that the activation of hindlimb motor cortex preceded gait initiation. During overground locomotion, the motor cortex exhibited consistent neuronal population responses that were synchronized with the spatiotemporal activation of hindlimb motoneurons. Behaviors requiring enhanced muscle activity or skilled paw placement correlated with substantial adjustment in neuronal population responses. In contrast, all rats exhibited a reduction of cortical activity during more automated behavior, such as stepping on a treadmill. Despite the facultative role of the motor cortex in the production of locomotion in rats, these results show that the encoding of hindlimb features in motor cortex dynamics is comparable in rats and cats. However, the extent of motor cortex modulations appears linked to the degree of volitional engagement and complexity of the task, reemphasizing the importance of goal-directed behaviors for motor control studies, rehabilitation, and neuroprosthetics. We mapped the neuronal population responses in the hindlimb motor cortex to hindlimb kinematics and hindlimb muscle synergies across a spectrum of natural locomotion behaviors. Robust task-specific neuronal population responses revealed that the rat motor cortex displays similar modulation as other mammals during locomotion. However, the reduced motor cortex activity during more automated behaviors suggests a relationship between the degree of engagement and task complexity. This relationship

  16. Children with behavioral problems and motor problems have a worse neurological condition than children with behavioral problems only.

    PubMed

    Peters, Lieke H J; Maathuis, Carel G B; Hadders-Algra, Mijna

    2014-12-01

    Some evidence suggests that children with specific behavioral problems are at risk for motor problems. It is unclear whether neurological condition plays a role in the propensity of children with behavioral problems to develop motor problems. To examine the relation between behavioral problems, motor performance and neurological condition in school-aged children. Cross-sectional study. 174 children (95 boys) receiving mainstream education and 106 children (82 boys) receiving special education aged 6 to 13 years (mean 9 y 7 m, SD 1 y 10 m). Behavior was assessed with questionnaires: the parental Child Behavior Checklist (CBCL) and Teacher's Report Form (TRF). Motor performance was assessed with the Movement Assessment Battery for Children (MABC). MABC-scores ≥5th percentile were considered as age-adequate and scores <5th percentile indicated definite motor problems. Neurological condition was assessed in terms of Minor Neurological Dysfunction (MND). The majority of specific behavioral problems were associated with definite motor problems, except somatic complaints and rule breaking behavior. Children with externalizing problems, according to the CBCL or TRF, and motor problems had more often MND than children with externalizing problems only. The same holds true for internalizing problems according to the CBCL. The present study demonstrated that various forms of behavioral problems were associated with motor problems. Especially children with motor and behavioral problems showed MND. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Behavior of an adaptive bio-inspired spider web

    NASA Astrophysics Data System (ADS)

    Zheng, Lingyue; Behrooz, Majid; Huie, Andrew; Hartman, Alex; Gordaninejad, Faramarz

    2015-03-01

    The goal of this study is to demonstrate the feasibility of an artificial adaptive spider web with comparable behavior to a real spider web. First, the natural frequency and energy absorption ability of a passive web is studied. Next, a control system that consists of stepper motors, load cells and an Arduino, is constructed to mimic a spider's ability to control the tension of radial strings in the web. The energy related characteristics in the artificial spider web is examined while the pre-tension of the radial strings are varied. Various mechanical properties of a damaged spider web are adjusted to study their effect on the behavior of the web. It is demonstrated that the pre-tension and stiffness of the web's radial strings can significantly affect the natural frequency and the total energy of the full and damaged webs.

  18. Obsessive-compulsive disorder: a disorder of pessimal (non-functional) motor behavior.

    PubMed

    Zor, R; Keren, H; Hermesh, H; Szechtman, H; Mort, J; Eilam, D

    2009-10-01

    To determine whether in addition to repetitiveness, the motor rituals of patients with obsessive-compulsive disorder (OCD) involve reduced functionality due to numerous and measurable acts that are irrelevant and unnecessary for task completion. Comparing motor rituals of OCD patients with behavior of non-patient control individuals who were instructed to perform the same motor task. Obsessive-compulsive disorder behavior comprises abundant acts that were not performed by the controls. These acts seem unnecessary or even irrelevant for the task that the patients were performing, and therefore are termed 'non-functional'. Non-functional acts comprise some 60% of OCD motor behavior. Moreover, OCD behavior consists of short chains of functional acts bounded by long chains of non-functional acts. The abundance of irrelevant or unnecessary acts in OCD motor rituals represents reduced functionality in terms of task completion, typifying OCD rituals as pessimal behavior (antonym of optimal behavior).

  19. Complex adaptive behavior and dexterous action

    PubMed Central

    Harrison, Steven J.; Stergiou, Nicholas

    2016-01-01

    Dexterous action, as conceptualized by Bernstein in his influential ecological analysis of human behavior, is revealed in the ability to flexibly generate behaviors that are adaptively tailored to the demands of the context in which they are embedded. Conceived as complex adaptive behavior, dexterity depends upon the qualities of robustness and degeneracy, and is supported by the functional complexity of the agent-environment system. Using Bernstein’s and Gibson’s ecological analyses of behavior situated in natural environments as conceptual touchstones, we consider the hypothesis that complex adaptive behavior capitalizes upon general principles of self-organization. Here, we outline a perspective in which the complex interactivity of nervous-system, body, and environment is revealed as an essential resource for adaptive behavior. From this perspective, we consider the implications for interpreting the functionality and dysfunctionality of human behavior. This paper demonstrates that, optimal variability, the topic of this special issue, is a logical consequence of interpreting the functionality of human behavior as complex adaptive behavior. PMID:26375932

  20. Neonatal stroke causes poor midline motor behaviors and poor fine and gross motor skills during early infancy.

    PubMed

    Chen, Chao-Ying; Lo, Warren D; Heathcock, Jill C

    2013-03-01

    Upper extremity movements, midline behaviors, fine, and gross motor skills are frequently impaired in hemiparesis and cerebral palsy. We investigated midline toy exploration and fine and gross motor skills in infants at risk for hemiplegic cerebral palsy. Eight infants with neonatal stroke (NS) and thirteen infants with typical development (TD) were assessed from 2 to 7 months of age. The following variables were analyzed: percentage of time in midline and fine and gross motor scores on the Bayley Scales of Infant Development (BSID-III). Infants with neonatal stroke demonstrated poor performance in midline behaviors and fine and gross motor scores on the BSID-III. These results suggest that infants with NS have poor midline behaviors and motor skill development early in infancy. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Motor neuronal activity varies least among individuals when it matters most for behavior

    PubMed Central

    Cullins, Miranda J.; Shaw, Kendrick M.; Gill, Jeffrey P.

    2014-01-01

    How does motor neuronal variability affect behavior? To explore this question, we quantified activity of multiple individual identified motor neurons mediating biting and swallowing in intact, behaving Aplysia californica by recording from the protractor muscle and the three nerves containing the majority of motor neurons controlling the feeding musculature. We measured multiple motor components: duration of the activity of identified motor neurons as well as their relative timing. At the same time, we measured behavioral efficacy: amplitude of grasping movement during biting and amplitude of net inward food movement during swallowing. We observed that the total duration of the behaviors varied: Within animals, biting duration shortened from the first to the second and third bites; between animals, biting and swallowing durations varied. To study other sources of variation, motor components were divided by behavior duration (i.e., normalized). Even after normalization, distributions of motor component durations could distinguish animals as unique individuals. However, the degree to which a motor component varied among individuals depended on the role of that motor component in a behavior. Motor neuronal activity that was essential for the expression of biting or swallowing was similar among animals, whereas motor neuronal activity that was not essential for that behavior varied more from individual to individual. These results suggest that motor neuronal activity that matters most for the expression of a particular behavior may vary least from individual to individual. Shaping individual variability to ensure behavioral efficacy may be a general principle for the operation of motor systems. PMID:25411463

  2. Early Brain Damage and the Development of Motor Behavior in Children: Clues for Therapeutic Intervention?

    PubMed Central

    Hadders-Algra, Mijna

    2001-01-01

    The Neuronal Group Selection Theory (NGST) could offer new insights into the mechanisms directing motor disorders, such as cerebral palsy and developmental coordination disorder. According to NGST, normal motor development is characterized by two phases of variability. Variation is not at random but determined by criteria set by genetic information. Development starts with the phase of primary variability,during which variation in motor behavior is not geared to external conditions. At function-specific ages secondary variability starts, during which motor performance can be adapted to specific situations. In both forms, of variability, selection on the basis of afferent information plays a significant role. From the NGST point of view, children with pre- or perinatally acquired brain damage, such as children with cerebral palsy and part of the children with developmental coordination disorder, suffer from stereotyped motor behavior, produced by a limited repertoire or primary (sub)cortical neuronal networks. These children also have roblems in selecting the most efficient neuronal activity, due to deficits in the processing of sensory information. Therefore, NGST suggests that intervention in these children at early age should aim at an enlargement of the primary neuronal networks. With increasing age, the emphasis of intervention could shift to the provision of ample opportunities for active practice, which might form a compensation for the impaired selection. PMID:11530887

  3. Energy-saving technology of vector controlled induction motor based on the adaptive neuro-controller

    NASA Astrophysics Data System (ADS)

    Engel, E.; Kovalev, I. V.; Karandeev, D.

    2015-10-01

    The ongoing evolution of the power system towards a Smart Grid implies an important role of intelligent technologies, but poses strict requirements on their control schemes to preserve stability and controllability. This paper presents the adaptive neuro-controller for the vector control of induction motor within Smart Gird. The validity and effectiveness of the proposed energy-saving technology of vector controlled induction motor based on adaptive neuro-controller are verified by simulation results at different operating conditions over a wide speed range of induction motor.

  4. Fast but fleeting: adaptive motor learning processes associated with aging and cognitive decline.

    PubMed

    Trewartha, Kevin M; Garcia, Angeles; Wolpert, Daniel M; Flanagan, J Randall

    2014-10-01

    Motor learning has been shown to depend on multiple interacting learning processes. For example, learning to adapt when moving grasped objects with novel dynamics involves a fast process that adapts and decays quickly-and that has been linked to explicit memory-and a slower process that adapts and decays more gradually. Each process is characterized by a learning rate that controls how strongly motor memory is updated based on experienced errors and a retention factor determining the movement-to-movement decay in motor memory. Here we examined whether fast and slow motor learning processes involved in learning novel dynamics differ between younger and older adults. In addition, we investigated how age-related decline in explicit memory performance influences learning and retention parameters. Although the groups adapted equally well, they did so with markedly different underlying processes. Whereas the groups had similar fast processes, they had different slow processes. Specifically, the older adults exhibited decreased retention in their slow process compared with younger adults. Within the older group, who exhibited considerable variation in explicit memory performance, we found that poor explicit memory was associated with reduced retention in the fast process, as well as the slow process. These findings suggest that explicit memory resources are a determining factor in impairments in the both the fast and slow processes for motor learning but that aging effects on the slow process are independent of explicit memory declines. Copyright © 2014 the authors 0270-6474/14/3413411-11$15.00/0.

  5. The Role of Motor Learning in Spatial Adaptation near a Tool

    PubMed Central

    Brown, Liana E.; Doole, Robert; Malfait, Nicole

    2011-01-01

    Some visual-tactile (bimodal) cells have visual receptive fields (vRFs) that overlap and extend moderately beyond the skin of the hand. Neurophysiological evidence suggests, however, that a vRF will grow to encompass a hand-held tool following active tool use but not after passive holding. Why does active tool use, and not passive holding, lead to spatial adaptation near a tool? We asked whether spatial adaptation could be the result of motor or visual experience with the tool, and we distinguished between these alternatives by isolating motor from visual experience with the tool. Participants learned to use a novel, weighted tool. The active training group received both motor and visual experience with the tool, the passive training group received visual experience with the tool, but no motor experience, and finally, a no-training control group received neither visual nor motor experience using the tool. After training, we used a cueing paradigm to measure how quickly participants detected targets, varying whether the tool was placed near or far from the target display. Only the active training group detected targets more quickly when the tool was placed near, rather than far, from the target display. This effect of tool location was not present for either the passive-training or control groups. These results suggest that motor learning influences how visual space around the tool is represented. PMID:22174944

  6. Estimating the Relevance of World Disturbances to Explain Savings, Interference and Long-Term Motor Adaptation Effects

    PubMed Central

    Berniker, Max; Kording, Konrad P.

    2011-01-01

    Recent studies suggest that motor adaptation is the result of multiple, perhaps linear processes each with distinct time scales. While these models are consistent with some motor phenomena, they can neither explain the relatively fast re-adaptation after a long washout period, nor savings on a subsequent day. Here we examined if these effects can be explained if we assume that the CNS stores and retrieves movement parameters based on their possible relevance. We formalize this idea with a model that infers not only the sources of potential motor errors, but also their relevance to the current motor circumstances. In our model adaptation is the process of re-estimating parameters that represent the body and the world. The likelihood of a world parameter being relevant is then based on the mismatch between an observed movement and that predicted when not compensating for the estimated world disturbance. As such, adapting to large motor errors in a laboratory setting should alert subjects that disturbances are being imposed on them, even after motor performance has returned to baseline. Estimates of this external disturbance should be relevant both now and in future laboratory settings. Estimated properties of our bodies on the other hand should always be relevant. Our model demonstrates savings, interference, spontaneous rebound and differences between adaptation to sudden and gradual disturbances. We suggest that many issues concerning savings and interference can be understood when adaptation is conditioned on the relevance of parameters. PMID:21998574

  7. Effect of the home environment on motor and cognitive behavior of infants.

    PubMed

    Miquelote, Audrei F; Santos, Denise C C; Caçola, Priscila M; Montebelo, Maria Imaculada de L; Gabbard, Carl

    2012-06-01

    Although information is sparse, research suggests that affordances in the home provide essential resources that promote motor and cognitive skills in young children. The present study assessed over time, the association between motor affordances in the home and infant motor and cognitive behavior. Thirty-two (32) infants were assessed for characteristics of their home using the Affordances in the Home Environment for Motor Development--Infant Scale and motor and cognitive behavior with the Bayley Scales of Infant and Toddler Development--III. Infant's home and motor behavior were assessed at age 9 months and 6 months later with the inclusion of cognitive ability. Results for motor ability indicated that there was an overall improvement in performance from the 1st to the 2nd assessment. We found significant positive correlations between the dimensions of the home (daily activities and play materials) and global motor performance (1st assessment) and fine-motor performance on the 2nd assessment. In regard to cognitive performance (2nd assessment), results indicated a positive association with fine-motor performance. Our results suggest that motor affordances can have a positive impact on future motor ability and speculatively, later cognitive behavior in infants. Copyright © 2012 Elsevier Inc. All rights reserved.

  8. Behavioral and Neural Adaptation in Approach Behavior.

    PubMed

    Wang, Shuo; Falvello, Virginia; Porter, Jenny; Said, Christopher P; Todorov, Alexander

    2018-06-01

    People often make approachability decisions based on perceived facial trustworthiness. However, it remains unclear how people learn trustworthiness from a population of faces and whether this learning influences their approachability decisions. Here we investigated the neural underpinning of approach behavior and tested two important hypotheses: whether the amygdala adapts to different trustworthiness ranges and whether the amygdala is modulated by task instructions and evaluative goals. We showed that participants adapted to the stimulus range of perceived trustworthiness when making approach decisions and that these decisions were further modulated by the social context. The right amygdala showed both linear response and quadratic response to trustworthiness level, as observed in prior studies. Notably, the amygdala's response to trustworthiness was not modulated by stimulus range or social context, a possible neural dynamic adaptation. Together, our data have revealed a robust behavioral adaptation to different trustworthiness ranges as well as a neural substrate underlying approach behavior based on perceived facial trustworthiness.

  9. Temporal recalibration of motor and visual potentials in lag adaptation in voluntary movement.

    PubMed

    Cai, Chang; Ogawa, Kenji; Kochiyama, Takanori; Tanaka, Hirokazu; Imamizu, Hiroshi

    2018-05-15

    Adaptively recalibrating motor-sensory asynchrony is critical for animals to perceive self-produced action consequences. It is controversial whether motor- or sensory-related neural circuits recalibrate this asynchrony. By combining magnetoencephalography (MEG) and functional MRI (fMRI), we investigate the temporal changes in brain activities caused by repeated exposure to a 150-ms delay inserted between a button-press action and a subsequent flash. We found that readiness potentials significantly shift later in the motor system, especially in parietal regions (average: 219.9 ms), while visually evoked potentials significantly shift earlier in occipital regions (average: 49.7 ms) in the delay condition compared to the no-delay condition. Moreover, the shift in readiness potentials, but not in visually evoked potentials, was significantly correlated with the psychophysical measure of motor-sensory adaptation. These results suggest that although both motor and sensory processes contribute to the recalibration, the motor process plays the major role, given the magnitudes of shift and the correlation with the psychophysical measure. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  10. Adaptive Behavior and Problem Behavior in Young Children with Williams Syndrome

    ERIC Educational Resources Information Center

    Hahn, Laura J.; Fidler, Deborah J.; Hepburn, Susan L.

    2014-01-01

    The present study compares the adaptive behavior profile of 18 young children with Williams syndrome (WS) and a developmentally matched group of 19 children with developmental disabilities and examines the relationship between adaptive behavior and problem behaviors in WS. Parents completed the Vineland Adaptive Behavioral Scales--Interview…

  11. Cross-species assessments of Motor and Exploratory Behavior related to Bipolar Disorder

    PubMed Central

    Henry, Brook L.; Minassian, Arpi; Young, Jared W.; Paulus, Martin P.; Geyer, Mark A.; Perry, William

    2010-01-01

    Alterations in exploratory behavior are a fundamental feature of bipolar mania, typically characterized as motor hyperactivity and increased goal-directed behavior in response to environmental cues. In contrast, abnormal exploration associated with schizophrenia and depression can manifest as prominent withdrawal, limited motor activity, and inattention to the environment. While motor abnormalities are cited frequently as clinical manifestations of these disorders, relatively few empirical studies have quantified human exploratory behavior. This article reviews the literature characterizing motor and exploratory behavior associated with bipolar disorder and genetic and pharmacological animal models of the illness. Despite sophisticated assessment of exploratory behavior in rodents, objective quantification of human motor activity has been limited primarily to actigraphy studies with poor cross-species translational value. Furthermore, symptoms that reflect the cardinal features of bipolar disorder have proven difficult to establish in putative animal models of this illness. Recently, however, novel tools such as the Human Behavioral Pattern Monitor provide multivariate translational measures of motor and exploratory activity, enabling improved understanding of the neurobiology underlying psychiatric disorders. PMID:20398694

  12. Cross-species assessments of motor and exploratory behavior related to bipolar disorder.

    PubMed

    Henry, Brook L; Minassian, Arpi; Young, Jared W; Paulus, Martin P; Geyer, Mark A; Perry, William

    2010-07-01

    Alterations in exploratory behavior are a fundamental feature of bipolar mania, typically characterized as motor hyperactivity and increased goal-directed behavior in response to environmental cues. In contrast, abnormal exploration associated with schizophrenia and depression can manifest as prominent withdrawal, limited motor activity, and inattention to the environment. While motor abnormalities are cited frequently as clinical manifestations of these disorders, relatively few empirical studies have quantified human exploratory behavior. This article reviews the literature characterizing motor and exploratory behavior associated with bipolar disorder and genetic and pharmacological animal models of the illness. Despite sophisticated assessment of exploratory behavior in rodents, objective quantification of human motor activity has been limited primarily to actigraphy studies with poor cross-species translational value. Furthermore, symptoms that reflect the cardinal features of bipolar disorder have proven difficult to establish in putative animal models of this illness. Recently, however, novel tools such as the human behavioral pattern monitor provide multivariate translational measures of motor and exploratory activity, enabling improved understanding of the neurobiology underlying psychiatric disorders.

  13. Children with Multiple Disabilities and Minimal Motor Behavior Using Chin Movements to Operate Microswitches to Obtain Environmental Stimulation

    ERIC Educational Resources Information Center

    Lancioni, Giulio E.; O'Reilly, Mark F.; Singh, Nirbhay N.; Sigafoos, Jeff; Tota, Alessia; Antonucci, Massimo; Oliva, Doretta

    2006-01-01

    In these two studies, two children with multiple disabilities and minimal motor behavior were assessed to see if they could use chin movements to operate microswitches to obtain environmental stimulation. In Study I, we applied an adapted version of a recently introduced electronic microswitch [Lancioni, G. E., O'Reilly, M. F., Singh, N. N.,…

  14. Predicting Adaptive Behavior in the Environment from Central Nervous System Dynamics

    PubMed Central

    Proekt, Alex; Wong, Jane; Zhurov, Yuriy; Kozlova, Nataliya; Weiss, Klaudiusz R.; Brezina, Vladimir

    2008-01-01

    To generate adaptive behavior, the nervous system is coupled to the environment. The coupling constrains the dynamical properties that the nervous system and the environment must have relative to each other if adaptive behavior is to be produced. In previous computational studies, such constraints have been used to evolve controllers or artificial agents to perform a behavioral task in a given environment. Often, however, we already know the controller, the real nervous system, and its dynamics. Here we propose that the constraints can also be used to solve the inverse problem—to predict from the dynamics of the nervous system the environment to which they are adapted, and so reconstruct the production of the adaptive behavior by the entire coupled system. We illustrate how this can be done in the feeding system of the sea slug Aplysia. At the core of this system is a central pattern generator (CPG) that, with dynamics on both fast and slow time scales, integrates incoming sensory stimuli to produce ingestive and egestive motor programs. We run models embodying these CPG dynamics—in effect, autonomous Aplysia agents—in various feeding environments and analyze the performance of the entire system in a realistic feeding task. We find that the dynamics of the system are tuned for optimal performance in a narrow range of environments that correspond well to those that Aplysia encounter in the wild. In these environments, the slow CPG dynamics implement efficient ingestion of edible seaweed strips with minimal sensory information about them. The fast dynamics then implement a switch to a different behavioral mode in which the system ignores the sensory information completely and follows an internal “goal,” emergent from the dynamics, to egest again a strip that proves to be inedible. Key predictions of this reconstruction are confirmed in real feeding animals. PMID:18989362

  15. The decay of motor adaptation to novel movement dynamics reveals an asymmetry in the stability of motion state-dependent learning

    PubMed Central

    Hosseini, Eghbal A.; Nguyen, Katrina P.; Joiner, Wilsaan M.

    2017-01-01

    Motor adaptation paradigms provide a quantitative method to study short-term modification of motor commands. Despite the growing understanding of the role motion states (e.g., velocity) play in this form of motor learning, there is little information on the relative stability of memories based on these movement characteristics, especially in comparison to the initial adaptation. Here, we trained subjects to make reaching movements perturbed by force patterns dependent upon either limb position or velocity. Following training, subjects were exposed to a series of error-clamp trials to measure the temporal characteristics of the feedforward motor output during the decay of learning. The compensatory force patterns were largely based on the perturbation kinematic (e.g., velocity), but also showed a small contribution from the other motion kinematic (e.g., position). However, the velocity contribution in response to the position-based perturbation decayed at a slower rate than the position contribution to velocity-based training, suggesting a difference in stability. Next, we modified a previous model of motor adaptation to reflect this difference and simulated the behavior for different learning goals. We were interested in the stability of learning when the perturbations were based on different combinations of limb position or velocity that subsequently resulted in biased amounts of motion-based learning. We trained additional subjects on these combined motion-state perturbations and confirmed the predictions of the model. Specifically, we show that (1) there is a significant separation between the observed gain-space trajectories for the learning and decay of adaptation and (2) for combined motion-state perturbations, the gain associated to changes in limb position decayed at a faster rate than the velocity-dependent gain, even when the position-dependent gain at the end of training was significantly greater. Collectively, these results suggest that the state

  16. Contribution from motor unit firing adaptations and muscle co-activation during fatigue.

    PubMed

    Contessa, Paola; Letizi, John; De Luca, Gianluca; Kline, Joshua C

    2018-03-14

    The control of motor unit firing behavior during fatigue is still debated in the literature. Most studies agree that the central nervous system increases the excitation to the motoneuron pool to compensate for decreased force contributions of individual motor units and sustain muscle force output during fatigue. However, some studies claim that motor units may decrease their firing rates despite increased excitation, contradicting the direct relationship between firing rates and excitation that governs the voluntary control of motor units. To investigate whether the control of motor units in fact changes with fatigue, we measured motor unit firing behavior during repeated contractions of the first dorsal interosseous (FDI) muscle while concurrently monitoring the activation of surrounding muscles - including the flexor carpi radialis, extensor carpi radialis, and pronator teres. Across all subjects, we observed an overall increase in FDI activation and motor unit firing rates by the end of the fatigue task. However, in some subjects we observed increases in FDI activation and motor unit firing rates only during the initial phase of the fatigue task, followed by subsequent decreases during the late phase of the fatigue task while the co-activation of surrounding muscles increased. These findings indicate that the strategy for sustaining force output may occasionally change leading to increases in the relative activation of surrounding muscles while the excitation to the fatiguing muscle decreases. Importantly, irrespective of changes in the strategy for sustaining force output, the control properties regulating motor unit firing behavior remain unchanged during fatigue.

  17. Context-aware adaptive spelling in motor imagery BCI.

    PubMed

    Perdikis, S; Leeb, R; Millán, J D R

    2016-06-01

    This work presents a first motor imagery-based, adaptive brain-computer interface (BCI) speller, which is able to exploit application-derived context for improved, simultaneous classifier adaptation and spelling. Online spelling experiments with ten able-bodied users evaluate the ability of our scheme, first, to alleviate non-stationarity of brain signals for restoring the subject's performances, second, to guide naive users into BCI control avoiding initial offline BCI calibration and, third, to outperform regular unsupervised adaptation. Our co-adaptive framework combines the BrainTree speller with smooth-batch linear discriminant analysis adaptation. The latter enjoys contextual assistance through BrainTree's language model to improve online expectation-maximization maximum-likelihood estimation. Our results verify the possibility to restore single-sample classification and BCI command accuracy, as well as spelling speed for expert users. Most importantly, context-aware adaptation performs significantly better than its unsupervised equivalent and similar to the supervised one. Although no significant differences are found with respect to the state-of-the-art PMean approach, the proposed algorithm is shown to be advantageous for 30% of the users. We demonstrate the possibility to circumvent supervised BCI recalibration, saving time without compromising the adaptation quality. On the other hand, we show that this type of classifier adaptation is not as efficient for BCI training purposes.

  18. Trial-to-trial Adaptation: Parsing out the Roles of Cerebellum and BG in Predictive Motor Timing.

    PubMed

    Lungu, Ovidiu V; Bares, Martin; Liu, Tao; Gomez, Christopher M; Cechova, Ivica; Ashe, James

    2016-07-01

    We previously demonstrated that predictive motor timing (i.e., timing requiring visuomotor coordination in anticipation of a future event, such as catching or batting a ball) is impaired in patients with spinocerebellar ataxia (SCA) types 6 and 8 relative to healthy controls. Specifically, SCA patients had difficulties postponing their motor response while estimating the target kinematics. This behavioral difference relied on the activation of both cerebellum and striatum in healthy controls, but not in cerebellar patients, despite both groups activating certain parts of cerebellum during the task. However, the role of these two key structures in the dynamic adaptation of the motor timing to target kinematic properties remained unexplored. In the current paper, we analyzed these data with the aim of characterizing the trial-by-trial changes in brain activation. We found that in healthy controls alone, and in comparison with SCA patients, the activation in bilateral striatum was exclusively associated with past successes and that in the left putamen, with maintaining a successful performance across successive trials. In healthy controls, relative to SCA patients, a larger network was involved in maintaining a successful trial-by-trial strategy; this included cerebellum and fronto-parieto-temporo-occipital regions that are typically part of attentional network and action monitoring. Cerebellum was also part of a network of regions activated when healthy participants postponed their motor response from one trial to the next; SCA patients showed reduced activation relative to healthy controls in both cerebellum and striatum in the same contrast. These findings support the idea that cerebellum and striatum play complementary roles in the trial-by-trial adaptation in predictive motor timing. In addition to expanding our knowledge of brain structures involved in time processing, our results have implications for the understanding of BG disorders, such as Parkinson disease

  19. Octopus arm movements under constrained conditions: adaptation, modification and plasticity of motor primitives.

    PubMed

    Richter, Jonas N; Hochner, Binyamin; Kuba, Michael J

    2015-04-01

    The motor control of the eight highly flexible arms of the common octopus (Octopus vulgaris) has been the focus of several recent studies. Our study is the first to manage to introduce a physical constraint to an octopus arm and investigate the adaptability of stereotypical bend propagation in reaching movements and the pseudo-limb articulation during fetching. Subjects (N=6) were placed inside a transparent Perspex box with a hole at the center that allowed the insertion of a single arm. Animals had to reach out through the hole toward a target, to retrieve a food reward and fetch it. All subjects successfully adjusted their movements to the constraint without an adaptation phase. During reaching tasks, the animals showed two movement strategies: stereotypical bend propagation reachings, which were established at the hole of the Perspex box and variant waving-like movements that showed no bend propagations. During fetching movements, no complete pseudo-joint fetching was observed outside the box and subjects pulled their arms through the hole in a pull-in like movement. Our findings show that there is some flexibility in the octopus motor system to adapt to a novel situation. However, at present, it seems that these changes are more an effect of random choices between different alternative motor programs, without showing clear learning effects in the choice between the alternatives. Interestingly, animals were able to adapt the fetching movements to the physical constraint, or as an alternative explanation, they could switch the motor primitive fetching to a different motor primitive 'arm pulling'. © 2015. Published by The Company of Biologists Ltd.

  20. Two is better than one: Physical interactions improve motor performance in humans

    NASA Astrophysics Data System (ADS)

    Ganesh, G.; Takagi, A.; Osu, R.; Yoshioka, T.; Kawato, M.; Burdet, E.

    2014-01-01

    How do physical interactions with others change our own motor behavior? Utilizing a novel motor learning paradigm in which the hands of two - individuals are physically connected without their conscious awareness, we investigated how the interaction forces from a partner adapt the motor behavior in physically interacting humans. We observed the motor adaptations during physical interactions to be mutually beneficial such that both the worse and better of the interacting partners improve motor performance during and after interactive practice. We show that these benefits cannot be explained by multi-sensory integration by an individual, but require physical interaction with a reactive partner. Furthermore, the benefits are determined by both the interacting partner's performance and similarity of the partner's behavior to one's own. Our results demonstrate the fundamental neural processes underlying human physical interactions and suggest advantages of interactive paradigms for sport-training and physical rehabilitation.

  1. Two Children with Multiple Disabilities Increase Adaptive Object Manipulation and Reduce Inappropriate Behavior via a Technology-Assisted Program

    ERIC Educational Resources Information Center

    Lancioni, Giulio E.; O'Reilly, Mark F.; Singh, Nirbhay N.; Sigafoos, Jeff; Didden, Robert; Oliva, Doretta; Campodonico, Francesca

    2010-01-01

    Persons with severe to profound multiple disabilities, such as intellectual, visual, and motor disabilities, may be characterized by low levels of adaptive engagement with the environment. They may also display forms of inappropriate, stereotypical behavior (like hand mouthing, that is, putting their fingers into or over their mouths) or…

  2. A framework to describe, analyze and generate interactive motor behaviors.

    PubMed

    Jarrassé, Nathanaël; Charalambous, Themistoklis; Burdet, Etienne

    2012-01-01

    While motor interaction between a robot and a human, or between humans, has important implications for society as well as promising applications, little research has been devoted to its investigation. In particular, it is important to understand the different ways two agents can interact and generate suitable interactive behaviors. Towards this end, this paper introduces a framework for the description and implementation of interactive behaviors of two agents performing a joint motor task. A taxonomy of interactive behaviors is introduced, which can classify tasks and cost functions that represent the way each agent interacts. The role of an agent interacting during a motor task can be directly explained from the cost function this agent is minimizing and the task constraints. The novel framework is used to interpret and classify previous works on human-robot motor interaction. Its implementation power is demonstrated by simulating representative interactions of two humans. It also enables us to interpret and explain the role distribution and switching between roles when performing joint motor tasks.

  3. A Framework to Describe, Analyze and Generate Interactive Motor Behaviors

    PubMed Central

    Jarrassé, Nathanaël; Charalambous, Themistoklis; Burdet, Etienne

    2012-01-01

    While motor interaction between a robot and a human, or between humans, has important implications for society as well as promising applications, little research has been devoted to its investigation. In particular, it is important to understand the different ways two agents can interact and generate suitable interactive behaviors. Towards this end, this paper introduces a framework for the description and implementation of interactive behaviors of two agents performing a joint motor task. A taxonomy of interactive behaviors is introduced, which can classify tasks and cost functions that represent the way each agent interacts. The role of an agent interacting during a motor task can be directly explained from the cost function this agent is minimizing and the task constraints. The novel framework is used to interpret and classify previous works on human-robot motor interaction. Its implementation power is demonstrated by simulating representative interactions of two humans. It also enables us to interpret and explain the role distribution and switching between roles when performing joint motor tasks. PMID:23226231

  4. Improving the utility of the fine motor skills subscale of the comprehensive developmental inventory for infants and toddlers: a computerized adaptive test.

    PubMed

    Huang, Chien-Yu; Tung, Li-Chen; Chou, Yeh-Tai; Chou, Willy; Chen, Kuan-Lin; Hsieh, Ching-Lin

    2017-07-27

    This study aimed at improving the utility of the fine motor subscale of the comprehensive developmental inventory for infants and toddlers (CDIIT) by developing a computerized adaptive test of fine motor skills. We built an item bank for the computerized adaptive test of fine motor skills using the fine motor subscale of the CDIIT items fitting the Rasch model. We also examined the psychometric properties and efficiency of the computerized adaptive test of fine motor skills with simulated computerized adaptive tests. Data from 1742 children with suspected developmental delays were retrieved. The mean scores of the fine motor subscale of the CDIIT increased along with age groups (mean scores = 1.36-36.97). The computerized adaptive test of fine motor skills contains 31 items meeting the Rasch model's assumptions (infit mean square = 0.57-1.21, outfit mean square = 0.11-1.17). For children of 6-71 months, the computerized adaptive test of fine motor skills had high Rasch person reliability (average reliability >0.90), high concurrent validity (rs = 0.67-0.99), adequate to excellent diagnostic accuracy (area under receiver operating characteristic = 0.71-1.00), and large responsiveness (effect size = 1.05-3.93). The computerized adaptive test of fine motor skills used 48-84% fewer items than the fine motor subscale of the CDIIT. The computerized adaptive test of fine motor skills used fewer items for assessment but was as reliable and valid as the fine motor subscale of the CDIIT. Implications for Rehabilitation We developed a computerized adaptive test based on the comprehensive developmental inventory for infants and toddlers (CDIIT) for assessing fine motor skills. The computerized adaptive test has been shown to be efficient because it uses fewer items than the original measure and automatically presents the results right after the test is completed. The computerized adaptive test is as reliable and valid as the CDIIT.

  5. Feedback of mechanical effectiveness induces adaptations in motor modules during cycling

    PubMed Central

    De Marchis, Cristiano; Schmid, Maurizio; Bibbo, Daniele; Castronovo, Anna Margherita; D'Alessio, Tommaso; Conforto, Silvia

    2013-01-01

    Recent studies have reported evidence that the motor system may rely on a modular organization, even if this behavior has yet to be confirmed during motor adaptation. The aim of the present study is to investigate the modular motor control mechanisms underlying the execution of pedaling by untrained subjects in different biomechanical conditions. We use the muscle synergies framework to characterize the muscle coordination of 11 subjects pedaling under two different conditions. The first one consists of a pedaling exercise with a strategy freely chosen by the subjects (Preferred Pedaling Technique, PPT), while the second condition constrains the gesture by means of a real time visual feedback of mechanical effectiveness (Effective Pedaling Technique, EPT). Pedal forces, recorded using a pair of instrumented pedals, were used to calculate the Index of Effectiveness (IE). EMG signals were recorded from eight muscles of the dominant leg and Non-negative Matrix Factorization (NMF) was applied for the extraction of muscle synergies. All the synergy vectors, extracted cycle by cycle for each subject, were pooled across subjects and conditions and underwent a 2-dimensional Sammon's non-linear mapping. Seven representative clusters were identified on the Sammon's projection, and the corresponding eight-dimensional synergy vectors were used to reconstruct the repertoire of muscle activation for all subjects and all pedaling conditions (VAF > 0.8 for each individual muscle pattern). Only 5 out of the 7 identified modules were used by the subjects during the PPT pedaling condition, while 2 additional modules were found specific for the pedaling condition EPT. The temporal recruitment of three identified modules was highly correlated with IE. The structure of the identified modules was found similar to that extracted in other studies of human walking, partly confirming the existence of shared and task specific muscle synergies, and providing further evidence on the modularity

  6. Changes in Motor Vehicle Buyer Attitudes and Market Behavior

    DOT National Transportation Integrated Search

    1980-12-01

    An analysis is made of the impact of fuel-efficient motor vehicle design changes on the attitudes and market behavior of buyers of new motor vehicles. Car buyer profiles for selected makes of automobiles describe demographic characteristics, owner sa...

  7. Context-aware adaptive spelling in motor imagery BCI

    NASA Astrophysics Data System (ADS)

    Perdikis, S.; Leeb, R.; Millán, J. d. R.

    2016-06-01

    Objective. This work presents a first motor imagery-based, adaptive brain-computer interface (BCI) speller, which is able to exploit application-derived context for improved, simultaneous classifier adaptation and spelling. Online spelling experiments with ten able-bodied users evaluate the ability of our scheme, first, to alleviate non-stationarity of brain signals for restoring the subject’s performances, second, to guide naive users into BCI control avoiding initial offline BCI calibration and, third, to outperform regular unsupervised adaptation. Approach. Our co-adaptive framework combines the BrainTree speller with smooth-batch linear discriminant analysis adaptation. The latter enjoys contextual assistance through BrainTree’s language model to improve online expectation-maximization maximum-likelihood estimation. Main results. Our results verify the possibility to restore single-sample classification and BCI command accuracy, as well as spelling speed for expert users. Most importantly, context-aware adaptation performs significantly better than its unsupervised equivalent and similar to the supervised one. Although no significant differences are found with respect to the state-of-the-art PMean approach, the proposed algorithm is shown to be advantageous for 30% of the users. Significance. We demonstrate the possibility to circumvent supervised BCI recalibration, saving time without compromising the adaptation quality. On the other hand, we show that this type of classifier adaptation is not as efficient for BCI training purposes.

  8. Locomotor adaptation is modulated by observing the actions of others

    PubMed Central

    Patel, Mitesh; Roberts, R. Edward; Riyaz, Mohammed U.; Ahmed, Maroof; Buckwell, David; Bunday, Karen; Ahmad, Hena; Kaski, Diego; Arshad, Qadeer

    2015-01-01

    Observing the motor actions of another person could facilitate compensatory motor behavior in the passive observer. Here we explored whether action observation alone can induce automatic locomotor adaptation in humans. To explore this possibility, we used the “broken escalator” paradigm. Conventionally this involves stepping upon a stationary sled after having previously experienced it actually moving (Moving trials). This history of motion produces a locomotor aftereffect when subsequently stepping onto a stationary sled. We found that viewing an actor perform the Moving trials was sufficient to generate a locomotor aftereffect in the observer, the size of which was significantly correlated with the size of the movement (postural sway) observed. Crucially, the effect is specific to watching the task being performed, as no motor adaptation occurs after simply viewing the sled move in isolation. These findings demonstrate that locomotor adaptation in humans can be driven purely by action observation, with the brain adapting motor plans in response to the size of the observed individual's motion. This mechanism may be mediated by a mirror neuron system that automatically adapts behavior to minimize movement errors and improve motor skills through social cues, although further neurophysiological studies are required to support this theory. These data suggest that merely observing the gait of another person in a challenging environment is sufficient to generate appropriate postural countermeasures, implying the existence of an automatic mechanism for adapting locomotor behavior. PMID:26156386

  9. A Critical Period for Postnatal Adaptive Plasticity in a Model of Motor Axon Miswiring

    PubMed Central

    Castiblanco-Urbina, Maria A.; Winzeck, Stefan; Sundermeier, Julia; Theis, Fabian J.; Fouad, Karim; Huber, Andrea B.

    2015-01-01

    The correct wiring of neuronal circuits is of crucial importance for precise neuromuscular functionality. Therefore, guidance cues provide tight spatiotemporal control of axon growth and guidance. Mice lacking the guidance cue Semaphorin 3F (Sema3F) display very specific axon wiring deficits of motor neurons in the medial aspect of the lateral motor column (LMCm). While these deficits have been investigated extensively during embryonic development, it remained unclear how Sema3F mutant mice cope with these errors postnatally. We therefore investigated whether these animals provide a suitable model for the exploration of adaptive plasticity in a system of miswired neuronal circuitry. We show that the embryonically developed wiring deficits in Sema3F mutants persist until adulthood. As a consequence, these mutants display impairments in motor coordination that improve during normal postnatal development, but never reach wildtype levels. These improvements in motor coordination were boosted to wildtype levels by housing the animals in an enriched environment starting at birth. In contrast, a delayed start of enriched environment housing, at 4 weeks after birth, did not similarly affect motor performance of Sema3F mutants. These results, which are corroborated by neuroanatomical analyses, suggest a critical period for adaptive plasticity in neuromuscular circuitry. Interestingly, the formation of perineuronal nets, which are known to close the critical period for plastic changes in other systems, was not altered between the different housing groups. However, we found significant changes in the number of excitatory synapses on limb innervating motor neurons. Thus, we propose that during the early postnatal phase, when perineuronal nets have not yet been formed around spinal motor neurons, housing in enriched environment conditions induces adaptive plasticity in the motor system by the formation of additional synaptic contacts, in order to compensate for coordination

  10. Oxidative Stress, Motor Abilities, and Behavioral Adjustment in Children Treated for Acute Lymphoblastic Leukemia.

    PubMed

    Hockenberry, Marilyn J; Krull, Kevin R; Insel, Kathleen C; Harris, Lynnette L; Gundy, Patricia M; Adkins, Kristin B; Pasvogel, Alice E; Taylor, Olga A; Koerner, Kari M; Montgomery, David W; Ross, Adam K; Hill, Adam; Moore, Ida M

    2015-09-01

    To examine associations among oxidative stress, fine and visual-motor abilities, and behavioral adjustment in children receiving chemotherapy for acute lymphoblastic leukemia (ALL)
. A prospective, repeated-measures design
. Two pediatric oncology settings in the southwestern United States. 89 children with ALL were followed from diagnosis to the end of chemotherapy. Serial cerebrospinal fluid samples were collected during scheduled lumbar punctures and analyzed for oxidative stress biomarkers. Children completed fine motor dexterity, visual processing speed, and visual-motor integration measures at three time points. Parents completed child behavior ratings at the same times. Oxidative stress, fine motor dexterity, visual processing, visual-motor integration, and behavioral adjustment
. Children with ALL had below-average fine motor dexterity, visual processing speed, and visual-motor integration following the induction phase of ALL therapy. By end of therapy, visual processing speed normalized, and fine motor dexterity and visual-motor integration remained below average. Oxidative stress measures correlated with fine motor dexterity and visual-motor integration. Decreased motor functioning was associated with increased hyperactivity and anxiety
. Oxidative stress occurs following chemo-therapy for childhood ALL and is related to impaired fine motor skills and visual symptoms
. Early intervention should be considered to prevent fine motor and visual-spatial deficits, as well as behavioral problems.

  11. Auditory skills, language development, and adaptive behavior of children with cochlear implants and additional disabilities

    PubMed Central

    Beer, Jessica; Harris, Michael S.; Kronenberger, William G.; Holt, Rachael Frush; Pisoni, David B.

    2012-01-01

    Objective The objective of this study was to evaluate the development of functional auditory skills, language, and adaptive behavior in deaf children with cochlear implants (CI) who also have additional disabilities (AD). Design A two-group, pre-test versus post-test design was used. Study sample Comparisons were made between 23 children with CIs and ADs, and an age-matched comparison group of 23 children with CIs without ADs (No-AD). Assessments were obtained pre-CI and within 12 months post-CI. Results All but two deaf children with ADs improved in auditory skills using the IT-MAIS. Most deaf children in the AD group made progress in receptive but not expressive language using the Preschool Language Scale, but their language quotients were lower than the No-AD group. Five of eight children with ADs made progress in daily living skills and socialization skills; two made progress in motor skills. Children with ADs who did not make progress in language, did show progress in adaptive behavior. Conclusions Children with deafness and ADs made progress in functional auditory skills, receptive language, and adaptive behavior. Expanded assessment that includes adaptive functioning and multi-center collaboration is recommended to best determine benefits of implantation in areas of expected growth in this clinical population. PMID:22509948

  12. Strain Mediated Adaptation Is Key for Myosin Mechanochemistry: Discovering General Rules for Motor Activity.

    PubMed

    Jana, Biman; Onuchic, José N

    2016-08-01

    A structure-based model of myosin motor is built in the same spirit of our early work for kinesin-1 and Ncd towards physical understanding of its mechanochemical cycle. We find a structural adaptation of the motor head domain in post-powerstroke state that signals faster ADP release from it compared to the same from the motor head in the pre-powerstroke state. For dimeric myosin, an additional forward strain on the trailing head, originating from the postponed powerstroke state of the leading head in the waiting state of myosin, further increases the rate of ADP release. This coordination between the two heads is the essence of the processivity of the cycle. Our model provides a structural description of the powerstroke step of the cycle as an allosteric transition of the converter domain in response to the Pi release. Additionally, the variation in structural elements peripheral to catalytic motor domain is the deciding factor behind diverse directionalities of myosin motors (myosin V & VI). Finally, we observe that there are general rules for functional molecular motors across the different families. Allosteric structural adaptation of the catalytic motor head in different nucleotide states is crucial for mechanochemistry. Strain-mediated coordination between motor heads is essential for processivity and the variation of peripheral structural elements is essential for their diverse functionalities.

  13. Strain Mediated Adaptation Is Key for Myosin Mechanochemistry: Discovering General Rules for Motor Activity

    PubMed Central

    Jana, Biman; Onuchic, José N.

    2016-01-01

    A structure-based model of myosin motor is built in the same spirit of our early work for kinesin-1 and Ncd towards physical understanding of its mechanochemical cycle. We find a structural adaptation of the motor head domain in post-powerstroke state that signals faster ADP release from it compared to the same from the motor head in the pre-powerstroke state. For dimeric myosin, an additional forward strain on the trailing head, originating from the postponed powerstroke state of the leading head in the waiting state of myosin, further increases the rate of ADP release. This coordination between the two heads is the essence of the processivity of the cycle. Our model provides a structural description of the powerstroke step of the cycle as an allosteric transition of the converter domain in response to the Pi release. Additionally, the variation in structural elements peripheral to catalytic motor domain is the deciding factor behind diverse directionalities of myosin motors (myosin V & VI). Finally, we observe that there are general rules for functional molecular motors across the different families. Allosteric structural adaptation of the catalytic motor head in different nucleotide states is crucial for mechanochemistry. Strain-mediated coordination between motor heads is essential for processivity and the variation of peripheral structural elements is essential for their diverse functionalities. PMID:27494025

  14. Sensorimotor adaptation of speech in Parkinson's disease.

    PubMed

    Mollaei, Fatemeh; Shiller, Douglas M; Gracco, Vincent L

    2013-10-01

    The basal ganglia are involved in establishing motor plans for a wide range of behaviors. Parkinson's disease (PD) is a manifestation of basal ganglia dysfunction associated with a deficit in sensorimotor integration and difficulty in acquiring new motor sequences, thereby affecting motor learning. Previous studies of sensorimotor integration and sensorimotor adaptation in PD have focused on limb movements using visual and force-field alterations. Here, we report the results from a sensorimotor adaptation experiment investigating the ability of PD patients to make speech motor adjustments to a constant and predictable auditory feedback manipulation. Participants produced speech while their auditory feedback was altered and maintained in a manner consistent with a change in tongue position. The degree of adaptation was associated with the severity of motor symptoms. The patients with PD exhibited adaptation to the induced sensory error; however, the degree of adaptation was reduced compared with healthy, age-matched control participants. The reduced capacity to adapt to a change in auditory feedback is consistent with reduced gain in the sensorimotor system for speech and with previous studies demonstrating limitations in the adaptation of limb movements after changes in visual feedback among patients with PD. © 2013 Movement Disorder Society.

  15. Anxiety dissociates the adaptive functions of sensory and motor response enhancements to social threats

    PubMed Central

    El Zein, Marwa; Wyart, Valentin; Grèzes, Julie

    2015-01-01

    Efficient detection and reaction to negative signals in the environment is essential for survival. In social situations, these signals are often ambiguous and can imply different levels of threat for the observer, thereby making their recognition susceptible to contextual cues – such as gaze direction when judging facial displays of emotion. However, the mechanisms underlying such contextual effects remain poorly understood. By computational modeling of human behavior and electrical brain activity, we demonstrate that gaze direction enhances the perceptual sensitivity to threat-signaling emotions – anger paired with direct gaze, and fear paired with averted gaze. This effect arises simultaneously in ventral face-selective and dorsal motor cortices at 200 ms following face presentation, dissociates across individuals as a function of anxiety, and does not reflect increased attention to threat-signaling emotions. These findings reveal that threat tunes neural processing in fast, selective, yet attention-independent fashion in sensory and motor systems, for different adaptive purposes. DOI: http://dx.doi.org/10.7554/eLife.10274.001 PMID:26712157

  16. Force adaptation transfers to untrained workspace regions in children: evidence for developing inverse dynamic motor models.

    PubMed

    Jansen-Osmann, Petra; Richter, Stefanie; Konczak, Jürgen; Kalveram, Karl-Theodor

    2002-03-01

    When humans perform goal-directed arm movements under the influence of an external damping force, they learn to adapt to these external dynamics. After removal of the external force field, they reveal kinematic aftereffects that are indicative of a neural controller that still compensates the no longer existing force. Such behavior suggests that the adult human nervous system uses a neural representation of inverse arm dynamics to control upper-extremity motion. Central to the notion of an inverse dynamic model (IDM) is that learning generalizes. Consequently, aftereffects should be observable even in untrained workspace regions. Adults have shown such behavior, but the ontogenetic development of this process remains unclear. This study examines the adaptive behavior of children and investigates whether learning a force field in one hemifield of the right arm workspace has an effect on force adaptation in the other hemifield. Thirty children (aged 6-10 years) and ten adults performed 30 degrees elbow flexion movements under two conditions of external damping (negative and null). We found that learning to compensate an external damping force transferred to the opposite hemifield, which indicates that a model of the limb dynamics rather than an association of visited space and experienced force was acquired. Aftereffects were more pronounced in the younger children and readaptation to a null-force condition was prolonged. This finding is consistent with the view that IDMs in children are imprecise neural representations of the actual arm dynamics. It indicates that the acquisition of IDMs is a developmental achievement and that the human motor system is inherently flexible enough to adapt to any novel force within the limits of the organism's biomechanics.

  17. Individual differences in implicit motor learning: task specificity in sensorimotor adaptation and sequence learning.

    PubMed

    Stark-Inbar, Alit; Raza, Meher; Taylor, Jordan A; Ivry, Richard B

    2017-01-01

    In standard taxonomies, motor skills are typically treated as representative of implicit or procedural memory. We examined two emblematic tasks of implicit motor learning, sensorimotor adaptation and sequence learning, asking whether individual differences in learning are correlated between these tasks, as well as how individual differences within each task are related to different performance variables. As a prerequisite, it was essential to establish the reliability of learning measures for each task. Participants were tested twice on a visuomotor adaptation task and on a sequence learning task, either the serial reaction time task or the alternating reaction time task. Learning was evident in all tasks at the group level and reliable at the individual level in visuomotor adaptation and the alternating reaction time task but not in the serial reaction time task. Performance variability was predictive of learning in both domains, yet the relationship was in the opposite direction for adaptation and sequence learning. For the former, faster learning was associated with lower variability, consistent with models of sensorimotor adaptation in which learning rates are sensitive to noise. For the latter, greater learning was associated with higher variability and slower reaction times, factors that may facilitate the spread of activation required to form predictive, sequential associations. Interestingly, learning measures of the different tasks were not correlated. Together, these results oppose a shared process for implicit learning in sensorimotor adaptation and sequence learning and provide insight into the factors that account for individual differences in learning within each task domain. We investigated individual differences in the ability to implicitly learn motor skills. As a prerequisite, we assessed whether individual differences were reliable across test sessions. We found that two commonly used tasks of implicit learning, visuomotor adaptation and the

  18. Individual differences in implicit motor learning: task specificity in sensorimotor adaptation and sequence learning

    PubMed Central

    Raza, Meher; Ivry, Richard B.

    2016-01-01

    In standard taxonomies, motor skills are typically treated as representative of implicit or procedural memory. We examined two emblematic tasks of implicit motor learning, sensorimotor adaptation and sequence learning, asking whether individual differences in learning are correlated between these tasks, as well as how individual differences within each task are related to different performance variables. As a prerequisite, it was essential to establish the reliability of learning measures for each task. Participants were tested twice on a visuomotor adaptation task and on a sequence learning task, either the serial reaction time task or the alternating reaction time task. Learning was evident in all tasks at the group level and reliable at the individual level in visuomotor adaptation and the alternating reaction time task but not in the serial reaction time task. Performance variability was predictive of learning in both domains, yet the relationship was in the opposite direction for adaptation and sequence learning. For the former, faster learning was associated with lower variability, consistent with models of sensorimotor adaptation in which learning rates are sensitive to noise. For the latter, greater learning was associated with higher variability and slower reaction times, factors that may facilitate the spread of activation required to form predictive, sequential associations. Interestingly, learning measures of the different tasks were not correlated. Together, these results oppose a shared process for implicit learning in sensorimotor adaptation and sequence learning and provide insight into the factors that account for individual differences in learning within each task domain. NEW & NOTEWORTHY We investigated individual differences in the ability to implicitly learn motor skills. As a prerequisite, we assessed whether individual differences were reliable across test sessions. We found that two commonly used tasks of implicit learning, visuomotor

  19. Adaptation and Retention of a Perceptual-Motor Task in Children: Effects of a Single Bout of Intense Endurance Exercise.

    PubMed

    Ferrer-Uris, Blai; Busquets, Albert; Angulo-Barroso, Rosa

    2018-02-01

    We assessed the effect of an acute intense exercise bout on the adaptation and consolidation of a visuomotor adaptation task in children. We also sought to assess if exercise and learning task presentation order could affect task consolidation. Thirty-three children were randomly assigned to one of three groups: (a) exercise before the learning task, (b) exercise after the learning task, and (c) only learning task. Baseline performance was assessed by practicing the learning task in a 0° rotation condition. Afterward, a 60° rotation-adaptation set was applied followed by three rotated retention sets after 1 hr, 24 hr, and 7 days. For the exercise groups, exercise was presented before or after the motor adaptation. Results showed no group differences during the motor adaptation while exercise seemed to enhance motor consolidation. Greater consolidation enhancement was found in participants who exercised before the learning task. Our data support the importance of exercise to improve motor-memory consolidation in children.

  20. Transgenerational effects of environmental enrichment on repetitive motor behavior development.

    PubMed

    Bechard, Allison R; Lewis, Mark H

    2016-07-01

    The favorable consequences of environmental enrichment (EE) on brain and behavior development are well documented. Much less is known, however, about transgenerational benefits of EE on non-enriched offspring. We explored whether transgenerational effects of EE might extend to the development of repetitive motor behaviors in deer mice. Repetitive motor behaviors are invariant patterns of movement that, across species, can be reduced by EE. We found that EE not only attenuated the development of repetitive behavior in dams, but also in their non-enriched offspring. Moreover, maternal behavior did not seem to mediate the transgenerational effect we found, although repetitive behavior was affected by reproductive experience. These data support a beneficial transgenerational effect of EE on repetitive behavior development and suggest a novel benefit of reproductive experience. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Neuromodulation during motor development and behavior.

    PubMed

    Pflüger, H J

    1999-12-01

    Important recent advances have been made in understanding the role of aminergic modulation during the maturation of Xenopus larvae swimming rhythms, including effects on particular ion channel types of component neurons, and the role of peptidergic modulation during development of adult central patterns generators in the stomatogastric ganglion of crustaceans. By recording from octopaminergic neuromodulatory neurons during ongoing motor behavior in the locust, new insights into the role of this peripheral neuromodulatory mechanism have been gained. In particular, it is now clear that the octopaminergic neuromodulatory system is automatically activated in parallel to the motor systems, and that both excitation and inhibition play important functional roles.

  2. Quantitative evaluation of human cerebellum-dependent motor learning through prism adaptation of hand-reaching movement.

    PubMed

    Hashimoto, Yuji; Honda, Takeru; Matsumura, Ken; Nakao, Makoto; Soga, Kazumasa; Katano, Kazuhiko; Yokota, Takanori; Mizusawa, Hidehiro; Nagao, Soichi; Ishikawa, Kinya

    2015-01-01

    The cerebellum plays important roles in motor coordination and learning. However, motor learning has not been quantitatively evaluated clinically. It thus remains unclear how motor learning is influenced by cerebellar diseases or aging, and is related with incoordination. Here, we present a new application for testing human cerebellum-dependent motor learning using prism adaptation. In our paradigm, the participant wearing prism-equipped goggles touches their index finger to the target presented on a touchscreen in every trial. The whole test consisted of three consecutive sessions: (1) 50 trials with normal vision (BASELINE), (2) 100 trials wearing the prism that shifts the visual field 25° rightward (PRISM), and (3) 50 trials without the prism (REMOVAL). In healthy subjects, the prism-induced finger-touch error, i.e., the distance between touch and target positions, was decreased gradually by motor learning through repetition of trials. We found that such motor learning could be quantified using the "adaptability index (AI)", which was calculated by multiplying each probability of [acquisition in the last 10 trials of PRISM], [retention in the initial five trials of REMOVAL], and [extinction in the last 10 trials of REMOVAL]. The AI of cerebellar patients less than 70 years old (mean, 0.227; n = 62) was lower than that of age-matched healthy subjects (0.867, n = 21; p < 0.0001). While AI did not correlate with the magnitude of dysmetria in ataxic patients, it declined in parallel with disease progression, suggesting a close correlation between the impaired cerebellar motor leaning and the dysmetria. Furthermore, AI decreased with aging in the healthy subjects over 70 years old compared with that in the healthy subjects less than 70 years old. We suggest that our paradigm of prism adaptation may allow us to quantitatively assess cerebellar motor learning in both normal and diseased conditions.

  3. Quantitative Evaluation of Human Cerebellum-Dependent Motor Learning through Prism Adaptation of Hand-Reaching Movement

    PubMed Central

    Hashimoto, Yuji; Honda, Takeru; Matsumura, Ken; Nakao, Makoto; Soga, Kazumasa; Katano, Kazuhiko; Yokota, Takanori; Mizusawa, Hidehiro; Nagao, Soichi; Ishikawa, Kinya

    2015-01-01

    The cerebellum plays important roles in motor coordination and learning. However, motor learning has not been quantitatively evaluated clinically. It thus remains unclear how motor learning is influenced by cerebellar diseases or aging, and is related with incoordination. Here, we present a new application for testing human cerebellum-dependent motor learning using prism adaptation. In our paradigm, the participant wearing prism-equipped goggles touches their index finger to the target presented on a touchscreen in every trial. The whole test consisted of three consecutive sessions: (1) 50 trials with normal vision (BASELINE), (2) 100 trials wearing the prism that shifts the visual field 25° rightward (PRISM), and (3) 50 trials without the prism (REMOVAL). In healthy subjects, the prism-induced finger-touch error, i.e., the distance between touch and target positions, was decreased gradually by motor learning through repetition of trials. We found that such motor learning could be quantified using the “adaptability index (AI)”, which was calculated by multiplying each probability of [acquisition in the last 10 trials of PRISM], [retention in the initial five trials of REMOVAL], and [extinction in the last 10 trials of REMOVAL]. The AI of cerebellar patients less than 70 years old (mean, 0.227; n = 62) was lower than that of age-matched healthy subjects (0.867, n = 21; p < 0.0001). While AI did not correlate with the magnitude of dysmetria in ataxic patients, it declined in parallel with disease progression, suggesting a close correlation between the impaired cerebellar motor leaning and the dysmetria. Furthermore, AI decreased with aging in the healthy subjects over 70 years old compared with that in the healthy subjects less than 70 years old. We suggest that our paradigm of prism adaptation may allow us to quantitatively assess cerebellar motor learning in both normal and diseased conditions. PMID:25785588

  4. Tandem internal models execute motor learning in the cerebellum.

    PubMed

    Honda, Takeru; Nagao, Soichi; Hashimoto, Yuji; Ishikawa, Kinya; Yokota, Takanori; Mizusawa, Hidehiro; Ito, Masao

    2018-06-25

    In performing skillful movement, humans use predictions from internal models formed by repetition learning. However, the computational organization of internal models in the brain remains unknown. Here, we demonstrate that a computational architecture employing a tandem configuration of forward and inverse internal models enables efficient motor learning in the cerebellum. The model predicted learning adaptations observed in hand-reaching experiments in humans wearing a prism lens and explained the kinetic components of these behavioral adaptations. The tandem system also predicted a form of subliminal motor learning that was experimentally validated after training intentional misses of hand targets. Patients with cerebellar degeneration disease showed behavioral impairments consistent with tandemly arranged internal models. These findings validate computational tandemization of internal models in motor control and its potential uses in more complex forms of learning and cognition. Copyright © 2018 the Author(s). Published by PNAS.

  5. Patient-Centeredness as Physician Behavioral Adaptability to Patient Preferences.

    PubMed

    Carrard, Valérie; Schmid Mast, Marianne; Jaunin-Stalder, Nicole; Junod Perron, Noëlle; Sommer, Johanna

    2018-05-01

    A physician who communicates in a patient-centered way is a physician who adapts his or her communication style to what each patient needs. In order to do so, the physician has to (1) accurately assess each patient's states and traits (interpersonal accuracy) and (2) possess a behavioral repertoire to choose from in order to actually adapt his or her behavior to different patients (behavioral adaptability). Physician behavioral adaptability describes the change in verbal or nonverbal behavior a physician shows when interacting with patients who have different preferences in terms of how the physician should interact with them. We hypothesized that physician behavioral adaptability to their patients' preferences would lead to better patient outcomes and that physician interpersonal accuracy was positively related to behavioral adaptability. To test these hypotheses, we recruited 61 physicians who completed an interpersonal accuracy test before being videotaped during four consultations with different patients. The 244 participating patients indicated their preferences for their physician's interaction style prior to the consultation and filled in a consultation outcomes questionnaire directly after the consultation. We coded the physician's verbal and nonverbal behavior for each of the consultations and compared it to the patients' preferences to obtain a measure of physician behavioral adaptability. Results partially confirmed our hypotheses in that female physicians who adapted their nonverbal (but not their verbal) behavior had patients who reported more positive consultation outcomes. Moreover, the more female physicians were accurate interpersonally, the more they showed verbal and nonverbal behavioral adaptability. For male physicians, more interpersonal accuracy was linked to less nonverbal adaptability.

  6. Effects of normal aging on visuo-motor plasticity

    NASA Technical Reports Server (NTRS)

    Roller, Carrie A.; Cohen, Helen S.; Kimball, Kay T.; Bloomberg, Jacob J.

    2002-01-01

    Normal aging is associated with declines in neurologic function. Uncompensated visual and vestibular problems may have dire consequences including dangerous falls. Visuo-motor plasticity is a form of behavioral neural plasticity, which is important in the process of adapting to visual or vestibular alteration, including those changes due to pathology, pharmacotherapy, surgery or even entry into microgravity or an underwater environment. To determine the effects of aging on visuo-motor plasticity, we chose the simple and easily measured paradigm of visual-motor rearrangement created by using visual displacement prisms while throwing small balls at a target. Subjects threw balls before, during and after wearing a set of prisms which displace the visual scene by twenty degrees to the right. Data obtained during adaptation were modeled using multilevel modeling techniques for 73 subjects, aged 20 to 80 years. We found no statistically significant difference in measures of visuo-motor plasticity with advancing age. Further studies are underway examining variable practice training as a potential mechanism for enhancing this form of behavioral neural plasticity.

  7. A θ-γ oscillation code for neuronal coordination during motor behavior.

    PubMed

    Igarashi, Jun; Isomura, Yoshikazu; Arai, Kensuke; Harukuni, Rie; Fukai, Tomoki

    2013-11-20

    Sequential motor behavior requires a progression of discrete preparation and execution states. However, the organization of state-dependent activity in neuronal ensembles of motor cortex is poorly understood. Here, we recorded neuronal spiking and local field potential activity from rat motor cortex during reward-motivated movement and observed robust behavioral state-dependent coordination between neuronal spiking, γ oscillations, and θ oscillations. Slow and fast γ oscillations appeared during distinct movement states and entrained neuronal firing. γ oscillations, in turn, were coupled to θ oscillations, and neurons encoding different behavioral states fired at distinct phases of θ in a highly layer-dependent manner. These findings indicate that θ and nested dual band γ oscillations serve as the temporal structure for the selection of a conserved set of functional channels in motor cortical layer activity during animal movement. Furthermore, these results also suggest that cross-frequency couplings between oscillatory neuronal ensemble activities are part of the general coding mechanism in cortex.

  8. A New Type of Motor: Pneumatic Step Motor

    PubMed Central

    Stoianovici, Dan; Patriciu, Alexandru; Petrisor, Doru; Mazilu, Dumitru; Kavoussi, Louis

    2011-01-01

    This paper presents a new type of pneumatic motor, a pneumatic step motor (PneuStep). Directional rotary motion of discrete displacement is achieved by sequentially pressurizing the three ports of the motor. Pulsed pressure waves are generated by a remote pneumatic distributor. The motor assembly includes a motor, gearhead, and incremental position encoder in a compact, central bore construction. A special electronic driver is used to control the new motor with electric stepper indexers and standard motion control cards. The motor accepts open-loop step operation as well as closed-loop control with position feedback from the enclosed sensor. A special control feature is implemented to adapt classic control algorithms to the new motor, and is experimentally validated. The speed performance of the motor degrades with the length of the pneumatic hoses between the distributor and motor. Experimental results are presented to reveal this behavior and set the expectation level. Nevertheless, the stepper achieves easily controllable precise motion unlike other pneumatic motors. The motor was designed to be compatible with magnetic resonance medical imaging equipment, for actuating an image-guided intervention robot, for medical applications. For this reason, the motors were entirely made of nonmagnetic and dielectric materials such as plastics, ceramics, and rubbers. Encoding was performed with fiber optics, so that the motors are electricity free, exclusively using pressure and light. PneuStep is readily applicable to other pneumatic or hydraulic precision-motion applications. PMID:21528106

  9. Mean deviation coupling synchronous control for multiple motors via second-order adaptive sliding mode control.

    PubMed

    Li, Lebao; Sun, Lingling; Zhang, Shengzhou

    2016-05-01

    A new mean deviation coupling synchronization control strategy is developed for multiple motor control systems, which can guarantee the synchronization performance of multiple motor control systems and reduce complexity of the control structure with the increasing number of motors. The mean deviation coupling synchronization control architecture combining second-order adaptive sliding mode control (SOASMC) approach is proposed, which can improve synchronization control precision of multiple motor control systems and make speed tracking errors, mean speed errors of each motor and speed synchronization errors converge to zero rapidly. The proposed control scheme is robustness to parameter variations and random external disturbances and can alleviate the chattering phenomena. Moreover, an adaptive law is employed to estimate the unknown bound of uncertainty, which is obtained in the sense of Lyapunov stability theorem to minimize the control effort. Performance comparisons with master-slave control, relative coupling control, ring coupling control, conventional PI control and SMC are investigated on a four-motor synchronization control system. Extensive comparative results are given to shown the good performance of the proposed control scheme. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  10. Transformation of Context-dependent Sensory Dynamics into Motor Behavior

    PubMed Central

    Latorre, Roberto; Levi, Rafael; Varona, Pablo

    2013-01-01

    The intrinsic dynamics of sensory networks play an important role in the sensory-motor transformation. In this paper we use conductance based models and electrophysiological recordings to address the study of the dual role of a sensory network to organize two behavioral context-dependent motor programs in the mollusk Clione limacina. We show that: (i) a winner take-all dynamics in the gravimetric sensory network model drives the typical repetitive rhythm in the wing central pattern generator (CPG) during routine swimming; (ii) the winnerless competition dynamics of the same sensory network organizes the irregular pattern observed in the wing CPG during hunting behavior. Our model also shows that although the timing of the activity is irregular, the sequence of the switching among the sensory cells is preserved whenever the same set of neurons are activated in a given time window. These activation phase locks in the sensory signals are transformed into specific events in the motor activity. The activation phase locks can play an important role in motor coordination driven by the intrinsic dynamics of a multifunctional sensory organ. PMID:23459114

  11. Monoaminergic Modulation of Motor Cortex Function

    PubMed Central

    Vitrac, Clément; Benoit-Marand, Marianne

    2017-01-01

    Elaboration of appropriate responses to behavioral situations rests on the ability of selecting appropriate motor outcomes in accordance to specific environmental inputs. To this end, the primary motor cortex (M1) is a key structure for the control of voluntary movements and motor skills learning. Subcortical loops regulate the activity of the motor cortex and thus contribute to the selection of appropriate motor plans. Monoamines are key mediators of arousal, attention and motivation. Their firing pattern enables a direct encoding of different states thus promoting or repressing the selection of actions adapted to the behavioral context. Monoaminergic modulation of motor systems has been extensively studied in subcortical circuits. Despite evidence of converging projections of multiple neurotransmitters systems in the motor cortex pointing to a direct modulation of local circuits, their contribution to the execution and learning of motor skills is still poorly understood. Monoaminergic dysregulation leads to impaired plasticity and motor function in several neurological and psychiatric conditions, thus it is critical to better understand how monoamines modulate neural activity in the motor cortex. This review aims to provide an update of our current understanding on the monoaminergic modulation of the motor cortex with an emphasis on motor skill learning and execution under physiological conditions. PMID:29062274

  12. Development and Standardization of the Diagnostic Adaptive Behavior Scale: Application of Item Response Theory to the Assessment of Adaptive Behavior.

    PubMed

    Tassé, Marc J; Schalock, Robert L; Thissen, David; Balboni, Giulia; Bersani, Henry Hank; Borthwick-Duffy, Sharon A; Spreat, Scott; Widaman, Keith F; Zhang, Dalun; Navas, Patricia

    2016-03-01

    The Diagnostic Adaptive Behavior Scale (DABS) was developed using item response theory (IRT) methods and was constructed to provide the most precise and valid adaptive behavior information at or near the cutoff point of making a decision regarding a diagnosis of intellectual disability. The DABS initial item pool consisted of 260 items. Using IRT modeling and a nationally representative standardization sample, the item set was reduced to 75 items that provide the most precise adaptive behavior information at the cutoff area determining the presence or not of significant adaptive behavior deficits across conceptual, social, and practical skills. The standardization of the DABS is described and discussed.

  13. Speed tracking and synchronization of multiple motors using ring coupling control and adaptive sliding mode control.

    PubMed

    Li, Le-Bao; Sun, Ling-Ling; Zhang, Sheng-Zhou; Yang, Qing-Quan

    2015-09-01

    A new control approach for speed tracking and synchronization of multiple motors is developed, by incorporating an adaptive sliding mode control (ASMC) technique into a ring coupling synchronization control structure. This control approach can stabilize speed tracking of each motor and synchronize its motion with other motors' motion so that speed tracking errors and synchronization errors converge to zero. Moreover, an adaptive law is exploited to estimate the unknown bound of uncertainty, which is obtained in the sense of Lyapunov stability theorem to minimize the control effort and attenuate chattering. Performance comparisons with parallel control, relative coupling control and conventional PI control are investigated on a four-motor synchronization control system. Extensive simulation results show the effectiveness of the proposed control scheme. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  14. Adult-onset stereotypical motor behaviors.

    PubMed

    Maltête, D

    Stereotypies have been defined as non-goal-directed movement patterns repeated continuously for a period of time in the same form and on multiple occasions, and which are typically distractible. Stereotypical motor behaviors are a common clinical feature of a variety of neurological conditions that affect cortical and subcortical functions, including autism, tardive dyskinesia, excessive dopaminergic treatment of Parkinson's disease and frontotemporal dementia. The main differential diagnosis of stereotypies includes tic disorders, motor mannerisms, compulsion and habit. The pathophysiology of stereotypies may involve the corticostriatal pathways, especially the orbitofrontal and anterior cingulated cortices. Because antipsychotics have long been used to manage stereotypical behaviours in mental retardation, stereotypies that present in isolation tend not to warrant pharmacological intervention, as the benefit-to-risk ratio is not great enough. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  15. Adaptive fuzzy dynamic surface control for the chaotic permanent magnet synchronous motor using Nussbaum gain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo, Shaohua

    This paper is concerned with the problem of adaptive fuzzy dynamic surface control (DSC) for the permanent magnet synchronous motor (PMSM) system with chaotic behavior, disturbance and unknown control gain and parameters. Nussbaum gain is adopted to cope with the situation that the control gain is unknown. And the unknown items can be estimated by fuzzy logic system. The proposed controller guarantees that all the signals in the closed-loop system are bounded and the system output eventually converges to a small neighborhood of the desired reference signal. Finally, the numerical simulations indicate that the proposed scheme can suppress the chaosmore » of PMSM and show the effectiveness and robustness of the proposed method.« less

  16. Adaptive fuzzy dynamic surface control for the chaotic permanent magnet synchronous motor using Nussbaum gain.

    PubMed

    Luo, Shaohua

    2014-09-01

    This paper is concerned with the problem of adaptive fuzzy dynamic surface control (DSC) for the permanent magnet synchronous motor (PMSM) system with chaotic behavior, disturbance and unknown control gain and parameters. Nussbaum gain is adopted to cope with the situation that the control gain is unknown. And the unknown items can be estimated by fuzzy logic system. The proposed controller guarantees that all the signals in the closed-loop system are bounded and the system output eventually converges to a small neighborhood of the desired reference signal. Finally, the numerical simulations indicate that the proposed scheme can suppress the chaos of PMSM and show the effectiveness and robustness of the proposed method.

  17. Motor skill changes and neurophysiologic adaptation to recovery-oriented virtual rehabilitation of hand function in a person with subacute stroke: a case study.

    PubMed

    Fluet, Gerard G; Patel, Jigna; Qiu, Qinyin; Yarossi, Matthew; Massood, Supriya; Adamovich, Sergei V; Tunik, Eugene; Merians, Alma S

    2017-07-01

    The complexity of upper extremity (UE) behavior requires recovery of near normal neuromuscular function to minimize residual disability following a stroke. This requirement places a premium on spontaneous recovery and neuroplastic adaptation to rehabilitation by the lesioned hemisphere. Motor skill learning is frequently cited as a requirement for neuroplasticity. Studies examining the links between training, motor learning, neuroplasticity, and improvements in hand motor function are indicated. This case study describes a patient with slow recovering hand and finger movement (Total Upper Extremity Fugl-Meyer examination score = 25/66, Wrist and Hand items = 2/24 on poststroke day 37) following a stroke. The patient received an intensive eight-session intervention utilizing simulated activities that focused on the recovery of finger extension, finger individuation, and pinch-grasp force modulation. Over the eight sessions, the patient demonstrated improvements on untrained transfer tasks, which suggest that motor learning had occurred, as well a dramatic increase in hand function and corresponding expansion of the cortical motor map area representing several key muscles of the paretic hand. Recovery of hand function and motor map expansion continued after discharge through the three-month retention testing. This case study describes a neuroplasticity based intervention for UE hemiparesis and a model for examining the relationship between training, motor skill acquisition, neuroplasticity, and motor function changes. Implications for rehabilitation Intensive hand and finger rehabilitation activities can be added to an in-patient rehabilitation program for persons with subacute stroke. Targeted training of the thumb may have an impact on activity level function in persons with upper extremity hemiparesis. Untrained transfer tasks can be utilized to confirm that training tasks have elicited motor learning. Changes in cortical motor maps can be used to document

  18. Visuomotor learning by passive motor experience

    PubMed Central

    Sakamoto, Takashi; Kondo, Toshiyuki

    2015-01-01

    Humans can adapt to unfamiliar dynamic and/or kinematic transformations through the active motor experience. Recent studies of neurorehabilitation using robots or brain-computer interface (BCI) technology suggest that passive motor experience would play a measurable role in motor recovery, however our knowledge of passive motor learning is limited. To clarify the effects of passive motor experience on human motor learning, we performed arm reaching experiments guided by a robotic manipulandum. The results showed that the passive motor experience had an anterograde transfer effect on the subsequent motor execution, whereas no retrograde interference was confirmed in the ABA paradigm experiment. This suggests that the passive experience of the error between visual and proprioceptive sensations leads to the limited but actual compensation of behavior, although it is fragile and cannot be consolidated as a persistent motor memory. PMID:26029091

  19. Trained, Generalized, and Collateral Behavior Changes of Preschool Children Receiving Gross-Motor Skills Training.

    ERIC Educational Resources Information Center

    Kirby, Kimberly C.; Holborn, Stephen W.

    1986-01-01

    Three preschool children participated in a behavioral training program to improve their gross-motor skills. Results indicated that the program improved the 10 targeted gross-motor skills and that improvements sometimes generalized to other settings. The program did not produce changes in fine-motor skills or social behaviors. Implications are…

  20. Steering by hearing: a bat's acoustic gaze is linked to its flight motor output by a delayed, adaptive linear law.

    PubMed

    Ghose, Kaushik; Moss, Cynthia F

    2006-02-08

    Adaptive behaviors require sensorimotor computations that convert information represented initially in sensory coordinates to commands for action in motor coordinates. Fundamental to these computations is the relationship between the region of the environment sensed by the animal (gaze) and the animal's locomotor plan. Studies of visually guided animals have revealed an anticipatory relationship between gaze direction and the locomotor plan during target-directed locomotion. Here, we study an acoustically guided animal, an echolocating bat, and relate acoustic gaze (direction of the sonar beam) to flight planning as the bat searches for and intercepts insect prey. We show differences in the relationship between gaze and locomotion as the bat progresses through different phases of insect pursuit. We define acoustic gaze angle, theta(gaze), to be the angle between the sonar beam axis and the bat's flight path. We show that there is a strong linear linkage between acoustic gaze angle at time t [theta(gaze)(t)] and flight turn rate at time t + tau into the future [theta(flight) (t + tau)], which can be expressed by the formula theta(flight) (t + tau) = ktheta(gaze)(t). The gain, k, of this linkage depends on the bat's behavioral state, which is indexed by its sonar pulse rate. For high pulse rates, associated with insect attacking behavior, k is twice as high compared with low pulse rates, associated with searching behavior. We suggest that this adjustable linkage between acoustic gaze and motor output in a flying echolocating bat simplifies the transformation of auditory information to flight motor commands.

  1. Development of oral motor behavior related to the skill assisted spoon feeding.

    PubMed

    van den Engel-Hoek, Lenie; van Hulst, Karen C M; van Gerven, Marjo H J C; van Haaften, Leenke; de Groot, Sandra A F

    2014-05-01

    Milestones in the typical development of eating skills are considered to be nippling (breast or bottle), eating from a spoon, drinking from a cup, biting and chewing. The purpose of this research was to study the development and consolidation of oral motor behavior related to the skill assisted spoon feeding in young infants. The present study longitudinally investigated the development of this skill in 39 healthy children from the start of spoon feeding until the skill was acquired. The Observation List Spoon Feeding with 7 observation items for oral motor behavior and 6 items for abnormal behavior was used. Results showed that infants between 4 and 8 months of age needed 5.7 weeks (SD 2.1), with a range of 8 weeks (from 2 to 10 weeks) to acquire this skill. No significant correlation (p=.109) between age at start spoon feeding and weeks needed to develop the skill was found. During this period oral motor behavior consolidated and abnormal behavior diminished. With this study it is shown that the period in weeks needed to acquire the oral motor behavior for the skill assisted spoon feeding is important in case of feeding problems. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Unique characteristics of motor adaptation during walking in young children.

    PubMed

    Musselman, Kristin E; Patrick, Susan K; Vasudevan, Erin V L; Bastian, Amy J; Yang, Jaynie F

    2011-05-01

    Children show precocious ability in the learning of languages; is this the case with motor learning? We used split-belt walking to probe motor adaptation (a form of motor learning) in children. Data from 27 children (ages 8-36 mo) were compared with those from 10 adults. Children walked with the treadmill belts at the same speed (tied belt), followed by walking with the belts moving at different speeds (split belt) for 8-10 min, followed again by tied-belt walking (postsplit). Initial asymmetries in temporal coordination (i.e., double support time) induced by split-belt walking were slowly reduced, with most children showing an aftereffect (i.e., asymmetry in the opposite direction to the initial) in the early postsplit period, indicative of learning. In contrast, asymmetries in spatial coordination (i.e., center of oscillation) persisted during split-belt walking and no aftereffect was seen. Step length, a measure of both spatial and temporal coordination, showed intermediate effects. The time course of learning in double support and step length was slower in children than in adults. Moreover, there was a significant negative correlation between the size of the initial asymmetry during early split-belt walking (called error) and the aftereffect for step length. Hence, children may have more difficulty learning when the errors are large. The findings further suggest that the mechanisms controlling temporal and spatial adaptation are different and mature at different times.

  3. Video analysis of motor events in REM sleep behavior disorder.

    PubMed

    Frauscher, Birgit; Gschliesser, Viola; Brandauer, Elisabeth; Ulmer, Hanno; Peralta, Cecilia M; Müller, Jörg; Poewe, Werner; Högl, Birgit

    2007-07-30

    In REM sleep behavior disorder (RBD), several studies focused on electromyographic characterization of motor activity, whereas video analysis has remained more general. The aim of this study was to undertake a detailed and systematic video analysis. Nine polysomnographic records from 5 Parkinson patients with RBD were analyzed and compared with sex- and age-matched controls. Each motor event in the video during REM sleep was classified according to duration, type of movement, and topographical distribution. In RBD, a mean of 54 +/- 23.2 events/10 minutes of REM sleep (total 1392) were identified and visually analyzed. Seventy-five percent of all motor events lasted <2 seconds. Of these events, 1,155 (83.0%) were classified as elementary, 188 (13.5%) as complex behaviors, 50 (3.6%) as violent, and 146 (10.5%) as vocalizations. In the control group, 3.6 +/- 2.3 events/10 minutes (total 264) of predominantly elementary simple character (n = 240, 90.9%) were identified. Number and types of motor events differed significantly between patients and controls (P < 0.05). This study shows a very high number and great variety of motor events during REM sleep in symptomatic RBD. However, most motor events are minor, and violent episodes represent only a small fraction. Copyright 2007 Movement Disorder Society

  4. Motor modules during adaptation to walking in a powered ankle exoskeleton.

    PubMed

    Jacobs, Daniel A; Koller, Jeffrey R; Steele, Katherine M; Ferris, Daniel P

    2018-01-03

    Modules of muscle recruitment can be extracted from electromyography (EMG) during motions, such as walking, running, and swimming, to identify key features of muscle coordination. These features may provide insight into gait adaptation as a result of powered assistance. The aim of this study was to investigate the changes (module size, module timing and weighting patterns) of surface EMG data during assisted and unassisted walking in an powered, myoelectric, ankle-foot orthosis (ankle exoskeleton). Eight healthy subjects wore bilateral ankle exoskeletons and walked at 1.2 m/s on a treadmill. In three training sessions, subjects walked for 40 min in two conditions: unpowered (10 min) and powered (30 min). During each session, we extracted modules of muscle recruitment via nonnegative matrix factorization (NNMF) from the surface EMG signals of ten muscles in the lower limb. We evaluated reconstruction quality for each muscle individually using R 2 and normalized root mean squared error (NRMSE). We hypothesized that the number of modules needed to reconstruct muscle data would be the same between conditions and that there would be greater similarity in module timings than weightings. Across subjects, we found that six modules were sufficient to reconstruct the muscle data for both conditions, suggesting that the number of modules was preserved. The similarity of module timings and weightings between conditions was greater then random chance, indicating that muscle coordination was also preserved. Motor adaptation during walking in the exoskeleton was dominated by changes in the module timings rather than module weightings. The segment number and the session number were significant fixed effects in a linear mixed-effect model for the increase in R 2 with time. Our results show that subjects walking in a exoskeleton preserved the number of modules and the coordination of muscles within the modules across conditions. Training (motor adaptation within the session and

  5. Neonatal Stroke Causes Poor Midline Motor Behaviors and Poor Fine and Gross Motor Skills during Early Infancy

    ERIC Educational Resources Information Center

    Chen, Chao-Ying; Lo, Warren D.; Heathcock, Jill C.

    2013-01-01

    Upper extremity movements, midline behaviors, fine, and gross motor skills are frequently impaired in hemiparesis and cerebral palsy. We investigated midline toy exploration and fine and gross motor skills in infants at risk for hemiplegic cerebral palsy. Eight infants with neonatal stroke (NS) and thirteen infants with typical development (TD)…

  6. Promoting Adaptive Behavior in Persons with Acquired Brain Injury, Extensive Motor and Communication Disabilities, and Consciousness Disorders

    ERIC Educational Resources Information Center

    Lancioni, Giulio E.; Singh, Nirbhay N.; O'Reilly, Mark F.; Sigafoos, Jeff; Belardinelli, Marta Olivetti; Buonocunto, Francesca; Sacco, Valentina; Navarro, Jorge; Lanzilotti, Crocifissa; De Tommaso, Marina; Megna, Marisa; Badagliacca, Francesco

    2012-01-01

    These two studies extended the evidence on the use of technology-based intervention packages to promote adaptive behavior in persons with acquired brain injury and multiple disabilities. Study I involved five participants in a minimally conscious state who were provided with intervention packages based on specific arrangements of optic, tilt, or…

  7. Adaptive Behavior of Children and Adolescents with Visual Impairments

    ERIC Educational Resources Information Center

    Papadopoulos, Konstantinos; Metsiou, Katerina; Agaliotis, Ioannis

    2011-01-01

    The present study explored the total adaptive behavior of children and adolescents with visual impairments, as well as their adaptive behavior in each of the domains of Communication, Daily Living Skills, and Socialization. Moreover, the predictors of the performance and developmental delay in adaptive behavior were investigated. Instrumentation…

  8. Does Speech Emerge from Earlier Appearing Oral Motor Behaviors?.

    ERIC Educational Resources Information Center

    Moore, Christopher A.; Ruark, Jacki L.

    1996-01-01

    This study of the oral motor behaviors of seven toddlers (age 15 months) may be interpreted to indicate that: (1) mandibular coordination follows a developmental continuum from earlier emerging behaviors, such as chewing and sucking, through babbling, to speech, or (2) unique task demands give rise to distinct mandibular coordinative constraints…

  9. Visuomotor coordination and cortical connectivity of modular motor learning.

    PubMed

    Burgos, Pablo I; Mariman, Juan J; Makeig, Scott; Rivera-Lillo, Gonzalo; Maldonado, Pedro E

    2018-05-15

    The ability to transfer sensorimotor skill components to new actions and the capacity to use skill components from whole actions are characteristic of the adaptability of the human sensorimotor system. However, behavioral evidence suggests complex limitations for transfer after combined or modular learning of motor adaptations. Also, to date, only behavioral analysis of the consequences of the modular learning has been reported, with little understanding of the sensorimotor mechanisms of control and the interaction between cortical areas. We programmed a video game with distorted kinematic and dynamic features to test the ability to combine sensorimotor skill components learned modularly (composition) and the capacity to use separate sensorimotor skill components learned in combination (decomposition). We examined motor performance, eye-hand coordination, and EEG connectivity. When tested for integrated learning, we found that combined practice initially performed better than separated practice, but differences disappeared after integrated practice. Separate learning promotes fewer anticipatory control mechanisms (depending more on feedback control), evidenced in a lower gaze leading behavior and in higher connectivity between visual and premotor domains, in comparison with the combined practice. The sensorimotor system can acquire motor modules in a separated or integrated manner. However, the system appears to require integrated practice to coordinate the adaptations with the skill learning and the networks involved in the integrated behavior. This integration seems to be related to the acquisition of anticipatory mechanism of control and with the decrement of feedback control. © 2018 Wiley Periodicals, Inc.

  10. Remembering forward: Neural correlates of memory and prediction in human motor adaptation

    PubMed Central

    Scheidt, Robert A; Zimbelman, Janice L; Salowitz, Nicole M G; Suminski, Aaron J; Mosier, Kristine M; Houk, James; Simo, Lucia

    2011-01-01

    We used functional MR imaging (FMRI), a robotic manipulandum and systems identification techniques to examine neural correlates of predictive compensation for spring-like loads during goal-directed wrist movements in neurologically-intact humans. Although load changed unpredictably from one trial to the next, subjects nevertheless used sensorimotor memories from recent movements to predict and compensate upcoming loads. Prediction enabled subjects to adapt performance so that the task was accomplished with minimum effort. Population analyses of functional images revealed a distributed, bilateral network of cortical and subcortical activity supporting predictive load compensation during visual target capture. Cortical regions - including prefrontal, parietal and hippocampal cortices - exhibited trial-by-trial fluctuations in BOLD signal consistent with the storage and recall of sensorimotor memories or “states” important for spatial working memory. Bilateral activations in associative regions of the striatum demonstrated temporal correlation with the magnitude of kinematic performance error (a signal that could drive reward-optimizing reinforcement learning and the prospective scaling of previously learned motor programs). BOLD signal correlations with load prediction were observed in the cerebellar cortex and red nuclei (consistent with the idea that these structures generate adaptive fusimotor signals facilitating cancellation of expected proprioceptive feedback, as required for conditional feedback adjustments to ongoing motor commands and feedback error learning). Analysis of single subject images revealed that predictive activity was at least as likely to be observed in more than one of these neural systems as in just one. We conclude therefore that motor adaptation is mediated by predictive compensations supported by multiple, distributed, cortical and subcortical structures. PMID:21840405

  11. The Effects of Sensory Manipulations on Motor Behavior: From Basic Science to Clinical Rehabilitation.

    PubMed

    Sugiyama, Taisei; Liew, Sook-Lei

    2017-01-01

    Modifying sensory aspects of the learning environment can influence motor behavior. Although the effects of sensory manipulations on motor behavior have been widely studied, there still remains a great deal of variability across the field in terms of how sensory information has been manipulated or applied. Here, the authors briefly review and integrate the literature from each sensory modality to gain a better understanding of how sensory manipulations can best be used to enhance motor behavior. Then, they discuss 2 emerging themes from this literature that are important for translating sensory manipulation research into effective interventions. Finally, the authors provide future research directions that may lead to enhanced efficacy of sensory manipulations for motor learning and rehabilitation.

  12. The development of behavioral abnormalities in the motor neuron degeneration (mnd) mouse.

    PubMed

    Bolivar, Valerie J; Scott Ganus, J; Messer, Anne

    2002-05-24

    The motor neuron degeneration (mnd) mouse, which has widespread abnormal accumulating lipoprotein and neuronal degeneration, has a mutation in CLN8, the gene for human progressive epilepsy with mental retardation (EPMR). EPMR is one of the neuronal ceroid lipofuscinoses (NCLs), a group of neurological disorders characterized by autofluorescent lipopigment accumulation, blindness, seizures, motor deterioration, and dementia. The human phenotype of EPMR suggests that, in addition to the motor symptoms previously categorized, various types of progressive behavioral abnormalities would be expected in mnd mice. We have therefore examined exploratory behavior, fear conditioning, and aggression in 2-3 month and 4-5 month old male mnd mice and age-matched C57BL/6 (B6) controls. The mnd mice displayed increased activity with decreased habituation in the activity monitor, poor contextual and cued memory, and heightened aggression relative to B6 controls. These behavioral deficits were most prominent at 4-5 months of age, which is prior to the onset of gross motor symptoms at 6 months. Our results provide a link from the mutation via pathology to a quantifiable multidimensional behavioral phenotype of this naturally occurring mouse model of NCL.

  13. Physiological markers of motor inhibition during human behavior

    PubMed Central

    Duque, Julie; Greenhouse, Ian; Labruna, Ludovica; Ivry, Richard B.

    2017-01-01

    Transcranial magnetic stimulation (TMS) studies in humans have shown that many behaviors engage processes that suppress excitability within the corticospinal tract. Inhibition of the motor output pathway has been extensively studied in the context of action stopping, where a planned movement needs to be abruptly aborted. Recent TMS work has also revealed markers of motor inhibition during the preparation of movement. Here, we review the evidence for motor inhibition during action stopping and action preparation, focusing on studies that have used TMS to monitor changes in the excitability of the corticospinal pathway. We discuss how these physiological results have motivated theoretical models of how the brain selects actions, regulates movement initiation and execution, and switches from one state to another. PMID:28341235

  14. The relationship between the behavior problems and motor skills of students with intellectual disability.

    PubMed

    Lee, Yangchool; Jeoung, Bogja

    2016-12-01

    The purpose of this study was to determine the relationship between the motor skills and the behavior problems of students with intellectual disabilities. The study participants were 117 students with intellectual disabilities who were between 7 and 25 years old (male, n=79; female, n=38) and attending special education schools in South Korea. Motor skill abilities were assessed by using the second version of the Bruininks-Oseretsky test of motor proficiency, which includes subtests in fine motor control, manual coordination, body coordination, strength, and agility. Data were analyzed with SPSS IBM 21 by using correlation and regression analyses, and the significance level was set at P <0.05. The results showed that fine motor precision and integration had a statistically significant influence on aggressive behavior. Manual dexterity showed a statistically significant influence on somatic complaint and anxiety/depression, and bilateral coordination had a statistically significant influence on social problems, attention problem, and aggressive behavior. Our results showed that balance had a statistically significant influence on social problems and aggressive behavior, and speed and agility had a statistically significant influence on social problems and aggressive behavior. Upper limb coordination and strength had a statistically significant influence on social problems.

  15. BEHAVIORAL AND LEARNING DISABILITIES ASSOCIATED WITH COGNITIVE-MOTOR DYSFUNCTION. INTERIM REPORT.

    ERIC Educational Resources Information Center

    BRAUN, JEAN S.; RUBIN, ELI Z.

    THIS REPORT EXAMINES THE RELATIONSHIP BETWEEN BEHAVIORAL AND ACADEMIC DISABILITIES AND COGNITIVE-MOTOR DYSFUNCTION AS REVEALED BY DATA ON 400 ELEMENTARY SCHOOL CHILDREN. THE BEHAVIOR CHECKLIST WAS USED AS A BASIS FOR SAMPLE SELECTION. BEHAVIOR CLUSTERS REFLECTING BOTH ANTI-SOCIAL TENDENCIES AND UNASSERTIVE, WITHDRAWN BEHAVIOR WERE IDENTIFIED. A…

  16. Motor Behavior: From Telegraph Keys and Twins to Linear Slides and Stepping

    ERIC Educational Resources Information Center

    Thomas, Jerry R.

    2006-01-01

    Motor behavior is a significant area of scholarship with 64 Fellows from the American Academy of Kinesiology and Physical Education engaged in that work since 1930. This paper provides a brief overview of the history of research in motor development and motor control/learning, particularly noting the contributions to scholarship of Academy…

  17. MOVEMENT BEHAVIOR AND MOTOR LEARNING. SECOND EDITION.

    ERIC Educational Resources Information Center

    CRATTY, BRYANT J.

    TO BRING TOGETHER DATA RELEVANT TO THE UNDERSTANDING OF HUMAN MOVEMENT WITH PARTICULAR REFERENCE TO LEARNING, THE TEXT SURVEYS THE CONCERN OF SEVERAL DISCIPLINES WITH MOTOR BEHAVIOR AND LEARNING. WORDS AND DEFINITIONS ARE ESTABLISHED, AND THE EVOLUTION OF THE HUMAN ACTION SYSTEM IS DISCUSSED. A CONSIDERATION OF PERCEPTION TREATS THE PROCESS OF…

  18. Chaos control of the brushless direct current motor using adaptive dynamic surface control based on neural network with the minimum weights.

    PubMed

    Luo, Shaohua; Wu, Songli; Gao, Ruizhen

    2015-07-01

    This paper investigates chaos control for the brushless DC motor (BLDCM) system by adaptive dynamic surface approach based on neural network with the minimum weights. The BLDCM system contains parameter perturbation, chaotic behavior, and uncertainty. With the help of radial basis function (RBF) neural network to approximate the unknown nonlinear functions, the adaptive law is established to overcome uncertainty of the control gain. By introducing the RBF neural network and adaptive technology into the dynamic surface control design, a robust chaos control scheme is developed. It is proved that the proposed control approach can guarantee that all signals in the closed-loop system are globally uniformly bounded, and the tracking error converges to a small neighborhood of the origin. Simulation results are provided to show that the proposed approach works well in suppressing chaos and parameter perturbation.

  19. Chaos control of the brushless direct current motor using adaptive dynamic surface control based on neural network with the minimum weights

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo, Shaohua; Department of Mechanical Engineering, Chongqing Aerospace Polytechnic, Chongqing, 400021; Wu, Songli

    2015-07-15

    This paper investigates chaos control for the brushless DC motor (BLDCM) system by adaptive dynamic surface approach based on neural network with the minimum weights. The BLDCM system contains parameter perturbation, chaotic behavior, and uncertainty. With the help of radial basis function (RBF) neural network to approximate the unknown nonlinear functions, the adaptive law is established to overcome uncertainty of the control gain. By introducing the RBF neural network and adaptive technology into the dynamic surface control design, a robust chaos control scheme is developed. It is proved that the proposed control approach can guarantee that all signals in themore » closed-loop system are globally uniformly bounded, and the tracking error converges to a small neighborhood of the origin. Simulation results are provided to show that the proposed approach works well in suppressing chaos and parameter perturbation.« less

  20. Neural network-based adaptive dynamic surface control for permanent magnet synchronous motors.

    PubMed

    Yu, Jinpeng; Shi, Peng; Dong, Wenjie; Chen, Bing; Lin, Chong

    2015-03-01

    This brief considers the problem of neural networks (NNs)-based adaptive dynamic surface control (DSC) for permanent magnet synchronous motors (PMSMs) with parameter uncertainties and load torque disturbance. First, NNs are used to approximate the unknown and nonlinear functions of PMSM drive system and a novel adaptive DSC is constructed to avoid the explosion of complexity in the backstepping design. Next, under the proposed adaptive neural DSC, the number of adaptive parameters required is reduced to only one, and the designed neural controllers structure is much simpler than some existing results in literature, which can guarantee that the tracking error converges to a small neighborhood of the origin. Then, simulations are given to illustrate the effectiveness and potential of the new design technique.

  1. Neural Dynamics of Autistic Repetitive Behaviors and Fragile X Syndrome: Basal Ganglia Movement Gating and mGluR-Modulated Adaptively Timed Learning.

    PubMed

    Grossberg, Stephen; Kishnan, Devika

    2018-01-01

    This article develops the iSTART neural model that proposes how specific imbalances in cognitive, emotional, timing, and motor processes that involve brain regions like prefrontal cortex, temporal cortex, amygdala, hypothalamus, hippocampus, and cerebellum may interact together to cause behavioral symptoms of autism. These imbalances include underaroused emotional depression in the amygdala/hypothalamus, learning of hyperspecific recognition categories that help to cause narrowly focused attention in temporal and prefrontal cortices, and breakdowns of adaptively timed motivated attention and motor circuits in the hippocampus and cerebellum. The article expands the model's explanatory range by, first, explaining recent data about Fragile X syndrome (FXS), mGluR, and trace conditioning; and, second, by explaining distinct causes of stereotyped behaviors in individuals with autism. Some of these stereotyped behaviors, such as an insistence on sameness and circumscribed interests, may result from imbalances in the cognitive and emotional circuits that iSTART models. These behaviors may be ameliorated by operant conditioning methods. Other stereotyped behaviors, such as repetitive motor behaviors, may result from imbalances in how the direct and indirect pathways of the basal ganglia open or close movement gates, respectively. These repetitive behaviors may be ameliorated by drugs that augment D2 dopamine receptor responses or reduce D1 dopamine receptor responses. The article also notes the ubiquitous role of gating by basal ganglia loops in regulating all the functions that iSTART models.

  2. Motor Behavior Activates Bergmann Glial Networks

    PubMed Central

    Nimmerjahn, Axel; Mukamel, Eran A.; Schnitzer, Mark J.

    2010-01-01

    SUMMARY Although it is firmly established neuronal activity is a prime determinant of animal behavior, relationships between astrocytic excitation and animal behavior have remained opaque. Cerebellar Bergmann glia are radial astrocytes that are implicated in motor behavior and exhibit Ca2+-excitation. However, Ca2+-excitation in these cells has not previously been studied in behaving animals. Using two-photon microscopy we found that Bergmann glia exhibit three forms of Ca2+-excitation in awake behaving mice. Two of these are ongoing within the cerebellar vermis. During locomotor performance concerted Ca2+-excitation arises in networks of at least hundreds of Bergmann glia extending across several hundred microns or more. Concerted Ca2+-excitation was abolished by anesthesia or blockade of either neural activity or glutamatergic transmission. Thus, large networks of Bergmann glia can be activated by specific animal behaviors and undergo excitation of sufficient magnitude to potentially initiate macroscopic changes in brain dynamics or blood flow. PMID:19447095

  3. Development and Initial Validation of the Preschooler Gross Motor Quality Scale

    ERIC Educational Resources Information Center

    Sun, Shih-Heng; Zhu, Yi-Ching; Shih, Ching-Lin; Lin, Chien-Hui; Wu, Sheng K.

    2010-01-01

    Motor skills have great impact on children in adapting to an environment and developing interpersonal interaction, cognition, and social behavior. Understanding what children can do and how they perform it is essential. Most motor tests seldom contain quality evaluation in the items or criteria. The purpose of this study was to develop and…

  4. Physiological Markers of Motor Inhibition during Human Behavior.

    PubMed

    Duque, Julie; Greenhouse, Ian; Labruna, Ludovica; Ivry, Richard B

    2017-04-01

    Transcranial magnetic stimulation (TMS) studies in humans have shown that many behaviors engage processes that suppress excitability within the corticospinal tract. Inhibition of the motor output pathway has been extensively studied in the context of action stopping, where a planned movement needs to be abruptly aborted. Recent TMS work has also revealed markers of motor inhibition during the preparation of movement. Here, we review the evidence for motor inhibition during action stopping and action preparation, focusing on studies that have used TMS to monitor changes in the excitability of the corticospinal pathway. We discuss how these physiological results have motivated theoretical models of how the brain selects actions, regulates movement initiation and execution, and switches from one state to another. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Image Understanding by Image-Seeking Adaptive Networks (ISAN).

    DTIC Science & Technology

    1987-08-10

    our reserch on adaptive neural networks in the visual and sensory-motor cortex of cats. We demonstrate that, under certain conditions, plasticity is...understanding in organisms proceeds directly from adaptively seeking whole images and not via a preliminary analysis of elementary features, followed by object...empirical reserch has always been that ultimately any neural system has to serve behavior and that behavior serves survival. Evolutionary selection makes it

  6. Motor skill changes and neurophysiologic adaptation to recovery-oriented virtual rehabilitation of hand function in a person with subacute stroke: a case study

    PubMed Central

    Fluet, Gerard G.; Patel, Jigna; Qiu, Qinyin; Yarossi, Matthew; Massood, Supriya; Adamovich, Sergei V.; Tunik, Eugene; Merians, Alma S.

    2016-01-01

    Purpose The complexity of upper extremity (UE) behavior requires recovery of near normal neuromuscular function to minimize residual disability following a stroke. This requirement places a premium on spontaneous recovery and neuroplastic adaptation to rehabilitation by the lesioned hemisphere. Motor skill learning is frequently cited as a requirement for neuroplasticity. Studies examining the links between training, motor learning, neuroplasticity, and improvements in hand motor function are indicated. Methods This case study describes a patient with slow recovering hand and finger movement (Total Upper Extremity Fugl–Meyer examination score = 25/66, Wrist and Hand items = 2/24 on poststroke day 37) following a stroke. The patient received an intensive eight-session intervention utilizing simulated activities that focused on the recovery of finger extension, finger individuation, and pinch-grasp force modulation. Results Over the eight sessions, the patient demonstrated improvements on untrained transfer tasks, which suggest that motor learning had occurred, as well a dramatic increase in hand function and corresponding expansion of the cortical motor map area representing several key muscles of the paretic hand. Recovery of hand function and motor map expansion continued after discharge through the three-month retention testing. Conclusion This case study describes a neuroplasticity based intervention for UE hemiparesis and a model for examining the relationship between training, motor skill acquisition, neuroplasticity, and motor function changes. PMID:27669997

  7. Odor-identity dependent motor programs underlie behavioral responses to odors

    PubMed Central

    Jung, Seung-Hye; Hueston, Catherine; Bhandawat, Vikas

    2015-01-01

    All animals use olfactory information to perform tasks essential to their survival. Odors typically activate multiple olfactory receptor neuron (ORN) classes and are therefore represented by the patterns of active ORNs. How the patterns of active ORN classes are decoded to drive behavior is under intense investigation. In this study, using Drosophila as a model system, we investigate the logic by which odors modulate locomotion. We designed a novel behavioral arena in which we could examine a fly’s locomotion under precisely controlled stimulus condition. In this arena, in response to similarly attractive odors, flies modulate their locomotion differently implying that odors have a more diverse effect on locomotion than was anticipated. Three features underlie odor-guided locomotion: First, in response to odors, flies modulate a surprisingly large number of motor parameters. Second, similarly attractive odors elicit changes in different motor programs. Third, different ORN classes modulate different subset of motor parameters. DOI: http://dx.doi.org/10.7554/eLife.11092.001 PMID:26439011

  8. Early communicative behaviors and their relationship to motor skills in extremely preterm infants.

    PubMed

    Benassi, Erika; Savini, Silvia; Iverson, Jana M; Guarini, Annalisa; Caselli, Maria Cristina; Alessandroni, Rosina; Faldella, Giacomo; Sansavini, Alessandra

    2016-01-01

    Despite the predictive value of early spontaneous communication for identifying risk for later language concerns, very little research has focused on these behaviors in extremely low-gestational-age infants (ELGA<28 weeks) or on their relationship with motor development. In this study, communicative behaviors (gestures, vocal utterances and their coordination) were evaluated during mother-infant play interactions in 20 ELGA infants and 20 full-term infants (FT) at 12 months (corrected age for ELGA infants). Relationships between gestures and motor skills, evaluated using the Bayley-III Scales were also examined. ELGA infants, compared with FT infants, showed less advanced communicative, motor, and cognitive skills. Giving and representational gestures were produced at a lower rate by ELGA infants. In addition, pointing gestures and words were produced by a lower percentage of ELGA infants. Significant positive correlations between gestures (pointing and representational gestures) and fine motor skills were found in the ELGA group. We discuss the relevance of examining spontaneous communicative behaviors and motor skills as potential indices of early development that may be useful for clinical assessment and intervention with ELGA infants. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Patterns of Adaptive Behavior in Very Young Children with Autism.

    ERIC Educational Resources Information Center

    Stone, Wendy L.; Ousley, Opal Y.; Hepburn, Susan L.; Hogan, Kerry L.; Brown, Christia S.

    1999-01-01

    A study used the Vineland Adaptive Behavior Scales to investigate patterns of adaptive behavior in 30 children with autism who were under 3 years. Relative to controls, participants demonstrated weaker socialization and communication skills and greater discrepancies between adaptive behavior and mental age. The utility of the scales is discussed.…

  10. Comparison of the Vineland Adaptive Behavior Scales, Second Edition, and the Bayley Scales of Infant and Toddler Development, Third Edition.

    PubMed

    Scattone, Dorothy; Raggio, Donald J; May, Warren

    2011-10-01

    The Vineland Adaptive Behavior Scales, Second Edition (Vineland-II), and Bayley Scales of Infant and Toddler Development, Third Edition (Bayley-III) were administered to 65 children between the ages of 12 and 42 months referred for developmental delays. Standard scores and age equivalents were compared across instruments. Analyses showed no statistical difference between Vineland-II ABC standard scores and cognitive levels obtained from the Bayley-III. However, Vineland-II Communication and Motor domain standard scores were significantly higher than corresponding scores on the Bayley-III. In addition, age equivalent scores were significantly higher on the Vineland-II for the fine motor subdomain. Implications for early intervention are discussed.

  11. Extracting an evaluative feedback from the brain for adaptation of motor neuroprosthetic decoders.

    PubMed

    Mahmoudi, Babak; Principe, Jose C; Sanchez, Justin C

    2010-01-01

    The design of Brain-Machine Interface (BMI) neural decoders that have robust performance in changing environments encountered in daily life activity is a challenging problem. One solution to this problem is the design of neural decoders that are able to assist and adapt to the user by participating in their perception-action-reward cycle (PARC). Using inspiration both from artificial intelligence and neurobiology reinforcement learning theories, we have designed a novel decoding architecture that enables a symbiotic relationship between the user and an Intelligent Assistant (IA). By tapping into the motor and reward centers in the brain, the IA adapts the process of decoding neural motor commands into prosthetic actions based on the user's goals. The focus of this paper is on extraction of goal information directly from the brain and making it accessible to the IA as an evaluative feedback for adaptation. We have recorded the neural activity of the Nucleus Accumbens in behaving rats during a reaching task. The peri-event time histograms demonstrate a rich representation of the reward prediction in this subcortical structure that can be modeled on a single trial basis as a scalar evaluative feedback with high precision.

  12. [Cognitive, linguistic, motoric, and social deficits in schoolstarters with behavioral disorders].

    PubMed

    Korsch, Franziska; Petermann, Ulrike; Schmidt, Sören; Petermann, Franz

    2013-01-01

    Studies show that ADHD, conduct disorders, and anxiety disorders are clinical disorders mostly diagnosed in schoolstarters. The preschool medical examination in Bremen was therefore extended by behavioral screenings. Based on their screening results from the SEU (health examination for school entry) 2011 in Bremen, 67 preschoolers were tested for behavioral disorders. Subsequently, children with behavioral or emotional symptoms (N = 56) were compared to symptomfree controls (N = 52) for their cognitive, motoric, linguistic, and social-emotional development. Psychosocial health was obtained through external assessment by the parents and kindergarten teachers. Results of the WPPSI-III, M-ABC-2, and ET 6-6 were included in the analysis. 32 children met the criteria for behavioral disorders. Children with behavioral or emotional symptoms showed significant lower scores on tests measuring cognitive, motoric, linguistic and emotional development compared to controls. Results suggest that there is necessity to screen all preschoolers for behavioral disorders before entering school. Because children with clinical or subclinical behavioral disorders showed major developmental deficits compared to children without behavioral symptoms, it is essential to conduct a multiple assessment on children with suspected behavioral disorders to ensure early developmental support and adequate interventional programs.

  13. Executive Function and Adaptive Behavior in Muenke Syndrome.

    PubMed

    Yarnell, Colin M P; Addissie, Yonit A; Hadley, Donald W; Guillen Sacoto, Maria J; Agochukwu, Nneamaka B; Hart, Rachel A; Wiggs, Edythe A; Platte, Petra; Paelecke, Yvonne; Collmann, Hartmut; Schweitzer, Tilmann; Kruszka, Paul; Muenke, Maximilian

    2015-08-01

    To investigate executive function and adaptive behavior in individuals with Muenke syndrome using validated instruments with a normative population and unaffected siblings as controls. Participants in this cross-sectional study included individuals with Muenke syndrome (P250R mutation in FGFR3) and their mutation-negative siblings. Participants completed validated assessments of executive functioning (Behavior Rating Inventory of Executive Function [BRIEF]) and adaptive behavior skills (Adaptive Behavior Assessment System, Second Edition [ABAS-II]). Forty-four with a positive FGFR3 mutation, median age 9 years, range 7 months to 52 years were enrolled. In addition, 10 unaffected siblings served as controls (5 males, 5 females; median age, 13 years; range, 3-18 years). For the General Executive Composite scale of the BRIEF, 32.1% of the cohort had scores greater than +1.5 SD, signifying potential clinical significance. For the General Adaptive Composite of the ABAS-II, 28.2% of affected individuals scored in the 3rd-8th percentile of the normative population, and 56.4% were below the average category (<25th percentile). Multiple regression analysis did not identify craniosynostosis as a predictor of BRIEF (P = .70) or ABAS-II scores (P = .70). In the sibling pair analysis, affected siblings performed significantly poorer on the BRIEF General Executive Composite and the ABAS-II General Adaptive Composite. Individuals with Muenke syndrome are at an increased risk for developing adaptive and executive function behavioral changes compared with a normative population and unaffected siblings. Published by Elsevier Inc.

  14. Development and Standardization of the Diagnostic Adaptive Behavior Scale: Application of Item Response Theory to the Assessment of Adaptive Behavior

    ERIC Educational Resources Information Center

    Tassé, Marc J.; Schalock, Robert L.; Thissen, David; Balboni, Giulia; Bersani, Henry, Jr.; Borthwick-Duffy, Sharon A.; Spreat, Scott; Widaman, Keith F.; Zhang, Dalun; Navas, Patricia

    2016-01-01

    The Diagnostic Adaptive Behavior Scale (DABS) was developed using item response theory (IRT) methods and was constructed to provide the most precise and valid adaptive behavior information at or near the cutoff point of making a decision regarding a diagnosis of intellectual disability. The DABS initial item pool consisted of 260 items. Using IRT…

  15. The impact of diurnal sleep on the consolidation of a complex gross motor adaptation task

    PubMed Central

    Hoedlmoser, Kerstin; Birklbauer, Juergen; Schabus, Manuel; Eibenberger, Patrick; Rigler, Sandra; Mueller, Erich

    2015-01-01

    Diurnal sleep effects on consolidation of a complex, ecological valid gross motor adaptation task were examined using a bicycle with an inverse steering device. We tested 24 male subjects aged between 20 and 29 years using a between-subjects design. Participants were trained to adapt to the inverse steering bicycle during 45 min. Performance was tested before (TEST1) and after (TEST2) training, as well as after a 2 h retention interval (TEST3). During retention, participants either slept or remained awake. To assess gross motor performance, subjects had to ride the inverse steering bicycle 3 × 30 m straight-line and 3 × 30 m through a slalom. Beyond riding time, we sophisticatedly measured performance accuracy (standard deviation of steering angle) in both conditions using a rotatory potentiometer. A significant decrease of accuracy during straight-line riding after nap and wakefulness was shown. Accuracy during slalom riding remained stable after wakefulness but was reduced after sleep. We found that the duration of rapid eye movement sleep as well as sleep spindle activity are negatively related with gross motor performance changes over sleep. Together these findings suggest that the consolidation of adaptation to a new steering device does not benefit from a 2 h midday nap. We speculate that in case of strongly overlearned motor patterns such as normal cycling, diurnal sleep spindles and rapid eye movement sleep might even help to protect everyday needed skills, and to rapidly forget newly acquired, interfering and irrelevant material. PMID:25256866

  16. Divergence of fine and gross motor skills in prelingually deaf children: implications for cochlear implantation.

    PubMed

    Horn, David L; Pisoni, David B; Miyamoto, Richard T

    2006-08-01

    The objective of this study was to assess relations between fine and gross motor development and spoken language processing skills in pediatric cochlear implant users. The authors conducted a retrospective analysis of longitudinal data. Prelingually deaf children who received a cochlear implant before age 5 and had no known developmental delay or cognitive impairment were included in the study. Fine and gross motor development were assessed before implantation using the Vineland Adaptive Behavioral Scales, a standardized parental report of adaptive behavior. Fine and gross motor scores reflected a given child's motor functioning with respect to a normative sample of typically developing, normal-hearing children. Relations between these preimplant scores and postimplant spoken language outcomes were assessed. In general, gross motor scores were found to be positively related to chronologic age, whereas the opposite trend was observed for fine motor scores. Fine motor scores were more strongly correlated with postimplant expressive and receptive language scores than gross motor scores. Our findings suggest a disassociation between fine and gross motor development in prelingually deaf children: fine motor skills, in contrast to gross motor skills, tend to be delayed as the prelingually deaf children get older. These findings provide new knowledge about the links between motor and spoken language development and suggest that auditory deprivation may lead to atypical development of certain motor and language skills that share common cortical processing resources.

  17. Longitudinal Profiles of Adaptive Behavior in Fragile X Syndrome

    PubMed Central

    Quintin, Eve-Marie; Jo, Booil; Lightbody, Amy A.; Hazlett, Heather Cody; Piven, Joseph; Hall, Scott S.; Reiss, Allan L.

    2014-01-01

    OBJECTIVE: To examine longitudinally the adaptive behavior patterns in fragile X syndrome. METHOD: Caregivers of 275 children and adolescents with fragile X syndrome and 225 typically developing children and adolescents (2–18 years) were interviewed with the Vineland Adaptive Behavior Scales every 2 to 4 years as part of a prospective longitudinal study. RESULTS: Standard scores of adaptive behavior in people with fragile X syndrome are marked by a significant decline over time in all domains for males and in communication for females. Socialization skills are a relative strength as compared with the other domains for males with fragile X syndrome. Females with fragile X syndrome did not show a discernible pattern of developmental strengths and weaknesses. CONCLUSIONS: This is the first large-scale longitudinal study to show that the acquisition of adaptive behavior slows as individuals with fragile X syndrome age. It is imperative to ensure that assessments of adaptive behavior skills are part of intervention programs focusing on childhood and adolescence in this condition. PMID:25070318

  18. Long-Lasting Modifications of Saccadic Eye Movements Following Adaptation Induced in the Double-Step Target Paradigm

    ERIC Educational Resources Information Center

    Alahyane, Nadia; Pelisson, Denis

    2005-01-01

    The adaptation of saccadic eye movements to environmental changes occurring throughout life is a good model of motor learning and motor memory. Numerous studies have analyzed the behavioral properties and neural substrate of oculomotor learning in short-term saccadic adaptation protocols, but to our knowledge, none have tested the persistence of…

  19. Neural Dynamics of Autistic Repetitive Behaviors and Fragile X Syndrome: Basal Ganglia Movement Gating and mGluR-Modulated Adaptively Timed Learning

    PubMed Central

    Grossberg, Stephen; Kishnan, Devika

    2018-01-01

    This article develops the iSTART neural model that proposes how specific imbalances in cognitive, emotional, timing, and motor processes that involve brain regions like prefrontal cortex, temporal cortex, amygdala, hypothalamus, hippocampus, and cerebellum may interact together to cause behavioral symptoms of autism. These imbalances include underaroused emotional depression in the amygdala/hypothalamus, learning of hyperspecific recognition categories that help to cause narrowly focused attention in temporal and prefrontal cortices, and breakdowns of adaptively timed motivated attention and motor circuits in the hippocampus and cerebellum. The article expands the model’s explanatory range by, first, explaining recent data about Fragile X syndrome (FXS), mGluR, and trace conditioning; and, second, by explaining distinct causes of stereotyped behaviors in individuals with autism. Some of these stereotyped behaviors, such as an insistence on sameness and circumscribed interests, may result from imbalances in the cognitive and emotional circuits that iSTART models. These behaviors may be ameliorated by operant conditioning methods. Other stereotyped behaviors, such as repetitive motor behaviors, may result from imbalances in how the direct and indirect pathways of the basal ganglia open or close movement gates, respectively. These repetitive behaviors may be ameliorated by drugs that augment D2 dopamine receptor responses or reduce D1 dopamine receptor responses. The article also notes the ubiquitous role of gating by basal ganglia loops in regulating all the functions that iSTART models. PMID:29593596

  20. Fast social-like learning of complex behaviors based on motor motifs.

    PubMed

    Calvo Tapia, Carlos; Tyukin, Ivan Y; Makarov, Valeri A

    2018-05-01

    Social learning is widely observed in many species. Less experienced agents copy successful behaviors exhibited by more experienced individuals. Nevertheless, the dynamical mechanisms behind this process remain largely unknown. Here we assume that a complex behavior can be decomposed into a sequence of n motor motifs. Then a neural network capable of activating motor motifs in a given sequence can drive an agent. To account for (n-1)! possible sequences of motifs in a neural network, we employ the winnerless competition approach. We then consider a teacher-learner situation: one agent exhibits a complex movement, while another one aims at mimicking the teacher's behavior. Despite the huge variety of possible motif sequences we show that the learner, equipped with the provided learning model, can rewire "on the fly" its synaptic couplings in no more than (n-1) learning cycles and converge exponentially to the durations of the teacher's motifs. We validate the learning model on mobile robots. Experimental results show that the learner is indeed capable of copying the teacher's behavior composed of six motor motifs in a few learning cycles. The reported mechanism of learning is general and can be used for replicating different functions, including, for example, sound patterns or speech.

  1. Fast social-like learning of complex behaviors based on motor motifs

    NASA Astrophysics Data System (ADS)

    Calvo Tapia, Carlos; Tyukin, Ivan Y.; Makarov, Valeri A.

    2018-05-01

    Social learning is widely observed in many species. Less experienced agents copy successful behaviors exhibited by more experienced individuals. Nevertheless, the dynamical mechanisms behind this process remain largely unknown. Here we assume that a complex behavior can be decomposed into a sequence of n motor motifs. Then a neural network capable of activating motor motifs in a given sequence can drive an agent. To account for (n -1 )! possible sequences of motifs in a neural network, we employ the winnerless competition approach. We then consider a teacher-learner situation: one agent exhibits a complex movement, while another one aims at mimicking the teacher's behavior. Despite the huge variety of possible motif sequences we show that the learner, equipped with the provided learning model, can rewire "on the fly" its synaptic couplings in no more than (n -1 ) learning cycles and converge exponentially to the durations of the teacher's motifs. We validate the learning model on mobile robots. Experimental results show that the learner is indeed capable of copying the teacher's behavior composed of six motor motifs in a few learning cycles. The reported mechanism of learning is general and can be used for replicating different functions, including, for example, sound patterns or speech.

  2. Functional connectivity between somatosensory and motor brain areas predicts individual differences in motor learning by observing.

    PubMed

    McGregor, Heather R; Gribble, Paul L

    2017-08-01

    Action observation can facilitate the acquisition of novel motor skills; however, there is considerable individual variability in the extent to which observation promotes motor learning. Here we tested the hypothesis that individual differences in brain function or structure can predict subsequent observation-related gains in motor learning. Subjects underwent an anatomical MRI scan and resting-state fMRI scans to assess preobservation gray matter volume and preobservation resting-state functional connectivity (FC), respectively. On the following day, subjects observed a video of a tutor adapting her reaches to a novel force field. After observation, subjects performed reaches in a force field as a behavioral assessment of gains in motor learning resulting from observation. We found that individual differences in resting-state FC, but not gray matter volume, predicted postobservation gains in motor learning. Preobservation resting-state FC between left primary somatosensory cortex and bilateral dorsal premotor cortex, primary motor cortex, and primary somatosensory cortex and left superior parietal lobule was positively correlated with behavioral measures of postobservation motor learning. Sensory-motor resting-state FC can thus predict the extent to which observation will promote subsequent motor learning. NEW & NOTEWORTHY We show that individual differences in preobservation brain function can predict subsequent observation-related gains in motor learning. Preobservation resting-state functional connectivity within a sensory-motor network may be used as a biomarker for the extent to which observation promotes motor learning. This kind of information may be useful if observation is to be used as a way to boost neuroplasticity and sensory-motor recovery for patients undergoing rehabilitation for diseases that impair movement such as stroke. Copyright © 2017 the American Physiological Society.

  3. Prismatic Adaptation Modulates Oscillatory EEG Correlates of Motor Preparation but Not Visual Attention in Healthy Participants

    PubMed Central

    Veniero, Domenica; Oliveri, Massimiliano

    2018-01-01

    Prismatic adaption (PA) has been proposed as a tool to induce neural plasticity and is used to help neglect rehabilitation. It leads to a recalibration of visuomotor coordination during pointing as well as to aftereffects on a number of sensorimotor and attention tasks, but whether these effects originate at a motor or attentional level remains a matter of debate. Our aim was to further characterize PA aftereffects by using an approach that allows distinguishing between effects on attentional and motor processes. We recorded EEG in healthy human participants (9 females and 7 males) while performing a new double step, anticipatory attention/motor preparation paradigm before and after adaptation to rightward-shifting prisms, with neutral lenses as a control. We then examined PA aftereffects through changes in known oscillatory EEG signatures of spatial attention orienting and motor preparation in the alpha and beta frequency bands. Our results were twofold. First, we found PA to rightward-shifting prisms to selectively affect EEG signatures of motor but not attentional processes. More specifically, PA modulated preparatory motor EEG activity over central electrodes in the right hemisphere, contralateral to the PA-induced, compensatory leftward shift in pointing movements. No effects were found on EEG signatures of spatial attention orienting over occipitoparietal sites. Second, we found the PA effect on preparatory motor EEG activity to dominate in the beta frequency band. We conclude that changes to intentional visuomotor, rather than attentional visuospatial, processes underlie the PA aftereffect of rightward-deviating prisms in healthy participants. SIGNIFICANCE STATEMENT Prismatic adaptation (PA) has been proposed as a tool to induce neural plasticity in both healthy participants and patients, due to its aftereffect impacting on a number of visuospatial and visuomotor functions. However, the neural mechanisms underlying PA aftereffects are poorly understood as

  4. Cross-National Assessment of Adaptive Behavior in Three Countries

    ERIC Educational Resources Information Center

    Oakland, Thomas; Iliescu, Dragos; Chen, Hsin-Yi; Chen, Juliet Honglei

    2013-01-01

    Measures of adaptive behaviors provide an important tool in the repertoire of clinical and school/educational psychologists. Measures that assess adaptive behaviors typically have been built in Western cultures and developed in light of behaviors common to them. Nevertheless, these measures are used elsewhere despite a paucity of data that examine…

  5. Model reference adaptive control (MRAC)-based parameter identification applied to surface-mounted permanent magnet synchronous motor

    NASA Astrophysics Data System (ADS)

    Zhong, Chongquan; Lin, Yaoyao

    2017-11-01

    In this work, a model reference adaptive control-based estimated algorithm is proposed for online multi-parameter identification of surface-mounted permanent magnet synchronous machines. By taking the dq-axis equations of a practical motor as the reference model and the dq-axis estimation equations as the adjustable model, a standard model-reference-adaptive-system-based estimator was established. Additionally, the Popov hyperstability principle was used in the design of the adaptive law to guarantee accurate convergence. In order to reduce the oscillation of identification result, this work introduces a first-order low-pass digital filter to improve precision regarding the parameter estimation. The proposed scheme was then applied to an SPM synchronous motor control system without any additional circuits and implemented using a DSP TMS320LF2812. For analysis, the experimental results reveal the effectiveness of the proposed method.

  6. Phrenic Motor Unit Recruitment during Ventilatory and Non-Ventilatory Behaviors

    PubMed Central

    Mantilla, Carlos B.; Sieck, Gary C.

    2011-01-01

    Phrenic motoneurons are located in the cervical spinal cord and innervate the diaphragm muscle, the main inspiratory muscle in mammals. Similar to other skeletal muscles, phrenic motoneurons and diaphragm muscle fibers form motor units which are the final element of neuromotor control. In addition to their role in sustaining ventilation, phrenic motor units are active in other non-ventilatory behaviors important for airway clearance such as coughing or sneezing. Diaphragm muscle fibers comprise all fiber types and are commonly classified based on expression of contractile proteins including myosin heavy chain isoforms. Although there are differences in contractile and fatigue properties across motor units, there is a matching of properties for the motor neuron and muscle fibers within a motor unit. Motor units are generally recruited in order such that fatigue-resistant motor units are recruited earlier and more often than more fatigable motor units. Thus, in sustaining ventilation, fatigue-resistant motor units are likely required. Based on a series of studies in cats, hamsters and rats, an orderly model of motor unit recruitment was proposed that takes into consideration the maximum forces generated by single type-identified diaphragm muscle fibers as well as the proportion of the different motor unit types. Using this model, eupnea can be accomplished by activation of only slow-twitch diaphragm motor units and only a subset of fast-twitch, fatigue-resistant units. Activation of fast-twitch fatigable motor units only becomes necessary when accomplishing tasks that require greater force generation by the diaphragm muscle, e.g., sneezing and coughing. PMID:21763470

  7. Phrenic motor unit recruitment during ventilatory and non-ventilatory behaviors.

    PubMed

    Mantilla, Carlos B; Sieck, Gary C

    2011-10-15

    Phrenic motoneurons are located in the cervical spinal cord and innervate the diaphragm muscle, the main inspiratory muscle in mammals. Similar to other skeletal muscles, phrenic motoneurons and diaphragm muscle fibers form motor units which are the final element of neuromotor control. In addition to their role in sustaining ventilation, phrenic motor units are active in other non-ventilatory behaviors important for airway clearance such as coughing or sneezing. Diaphragm muscle fibers comprise all fiber types and are commonly classified based on expression of contractile proteins including myosin heavy chain isoforms. Although there are differences in contractile and fatigue properties across motor units, there is a matching of properties for the motor neuron and muscle fibers within a motor unit. Motor units are generally recruited in order such that fatigue-resistant motor units are recruited earlier and more often than more fatigable motor units. Thus, in sustaining ventilation, fatigue-resistant motor units are likely required. Based on a series of studies in cats, hamsters and rats, an orderly model of motor unit recruitment was proposed that takes into consideration the maximum forces generated by single type-identified diaphragm muscle fibers as well as the proportion of the different motor unit types. Using this model, eupnea can be accomplished by activation of only slow-twitch diaphragm motor units and only a subset of fast-twitch, fatigue-resistant units. Activation of fast-twitch fatigable motor units only becomes necessary when accomplishing tasks that require greater force generation by the diaphragm muscle, e.g., sneezing and coughing. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. Adaptive PI control strategy for flat permanent magnet linear synchronous motor vibration suppression

    NASA Astrophysics Data System (ADS)

    Meng, Fanwei; Liu, Chengying; Li, Zhijun; Wang, Liping

    2013-01-01

    Due to low damping ratio, flat permanent magnet linear synchronous motor's vibration is difficult to be damped and the accuracy is limited. The vibration suppressing results are not good enough in the existing research because only the longitudinal direction vibration is considered while the normal direction vibration is neglected. The parameters of the direct-axis current controller are set to be the same as those of the quadrature-axis current controller commonly. This causes contradiction between signal noise and response. To suppress the vibration, the electromagnetic force model of the flat permanent magnet synchronous linear motor is formulated first. Through the analysis of the effect that direct-axis current noise and quadrature-axis current noise have on both direction vibration, it can be declared that the conclusion that longitudinal direction vibration is only related to the quadrature-axis current noise while the normal direction vibration is related to both the quadrature-axis current noise and direct-axis current noise. Then, the simulation test on current loop with a low-pass filter is conducted and the results show that the low-pass filter can not suppress the vibration but makes the vibration more severe. So a vibration suppressing strategy that the proportional gain of direct-axis current controller adapted according to quadrature-axis reference current is proposed. This control strategy can suppress motor vibration by suppressing direct-axis current noise. The experiments results about the effect of K p and T i on normal direction vibration, longitudinal vibration and the position step response show that this strategy suppresses vibration effectively while the motor's motion performance is not affected. The maximum reduction of vibration can be up to 40%. In addition, current test under rated load condition is also conducted and the results show that the control strategy can avoid the conflict between the direct-axis current and the quadrature

  9. Sema4D/CD100 deficiency leads to superior performance in mouse motor behavior.

    PubMed

    Yukawa, Kazunori; Tanaka, Tetsuji; Takeuchi, Noriko; Iso, Hiroyuki; Li, Li; Kohsaka, Akira; Waki, Hidefumi; Miyajima, Masayasu; Maeda, Masanobu; Kikutani, Hitoshi; Kumanogoh, Atsushi

    2009-05-01

    Sema4D/CD100 is a type of class 4 semaphorin, exhibiting crucial roles in growth cone guidance in developing neurons. Sema4D is widely expressed throughout the central nervous system in embryonic mouse brain, and is selectively localized to oligodendrocytes and myelin in the postnatal brain. However, direct evidence of the actual involvement of Sema4D in the neuronal network development crucial for neurobehavioral performance is still lacking. The present study therefore examined whether Sema4D deficiency leads to abnormal behavioral development. Both wild-type and Sema4D-deficient mice were subjected to behavioral analyses including open-field, adhesive tape removal, rotarod tests and a water maze task. Open-field tests revealed increased locomotor activity in Sema4D-deficient mice with less percentage of time spent in the center of the field. In both the adhesive tape removal and rotarod tests, which examine motor coordination and balance, Sema4D-deficient mice showed significantly superior performance, suggesting facilitated motor behavior. Both Sema4D-deficient and wild-type mice successfully learnt the water maze task, locating a hidden escape platform, and also showed precise memory for the platform position in probe tests. However, the swimming speed of Sema4D-deficient mice was significantly faster than that of wild-type mice, providing further evidence of their accelerated motor behavior. Our mouse behavioral analyses revealed enhanced motor activity in Sema4D-deficient mice, suggesting the crucial involvement of Sema4D in the neurodevelopmental processes of the central structures mediating motor behavior in mice.

  10. Industry Cluster's Adaptive Co-competition Behavior Modeling Inspired by Swarm Intelligence

    NASA Astrophysics Data System (ADS)

    Xiang, Wei; Ye, Feifan

    Adaptation helps the individual enterprise to adjust its behavior to uncertainties in environment and hence determines a healthy growth of both the individuals and the whole industry cluster as well. This paper is focused on the study on co-competition adaptation behavior of industry cluster, which is inspired by swarm intelligence mechanisms. By referencing to ant cooperative transportation and ant foraging behavior and their related swarm intelligence approaches, the cooperative adaptation and competitive adaptation behavior are studied and relevant models are proposed. Those adaptive co-competition behaviors model can be integrated to the multi-agent system of industry cluster to make the industry cluster model more realistic.

  11. Effects of practice schedule and task specificity on the adaptive process of motor learning.

    PubMed

    Barros, João Augusto de Camargo; Tani, Go; Corrêa, Umberto Cesar

    2017-10-01

    This study investigated the effects of practice schedule and task specificity based on the perspective of adaptive process of motor learning. For this purpose, tasks with temporal and force control learning requirements were manipulated in experiments 1 and 2, respectively. Specifically, the task consisted of touching with the dominant hand the three sequential targets with specific movement time or force for each touch. Participants were children (N=120), both boys and girls, with an average age of 11.2years (SD=1.0). The design in both experiments involved four practice groups (constant, random, constant-random, and random-constant) and two phases (stabilisation and adaptation). The dependent variables included measures related to the task goal (accuracy and variability of error of the overall movement and force patterns) and movement pattern (macro- and microstructures). Results revealed a similar error of the overall patterns for all groups in both experiments and that they adapted themselves differently in terms of the macro- and microstructures of movement patterns. The study concludes that the effects of practice schedules on the adaptive process of motor learning were both general and specific to the task. That is, they were general to the task goal performance and specific regarding the movement pattern. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Effectiveness of a fundamental motor skill intervention for 4-year-old children with autism spectrum disorder: A pilot study.

    PubMed

    Bremer, Emily; Balogh, Robert; Lloyd, Meghann

    2015-11-01

    A wait-list control experimental design was employed to investigate the effectiveness of a fundamental motor skill intervention at improving the motor skills, adaptive behavior, and social skills of 4-year-old children with autism spectrum disorder (experimental n = 5, control n = 4); the impact of intervention intensity was also explored. The experimental group significantly improved their object manipulation and overall motor scores from pre- to post-intervention. The wait-list control design revealed no group-by-time interactions; however, with the groups combined time was a significant factor for all motor variables. There were no significant changes in adaptive behavior and social skills. These preliminary findings suggest that a fundamental motor skill intervention may benefit young children with autism spectrum disorder. Future research with larger samples is warranted. © The Author(s) 2014.

  13. [Non-motor symptoms in Parkinson's disease: cognition and behavior].

    PubMed

    Bonnet, Anne Marie; Czernecki, Virginie

    2013-09-01

    Although the diagnosis of Parkinson disease is based on motor symptoms, it is now well known that non-motor symptoms are an integral part of this pathology, involving in fact multiple systems. These non-motor symptoms affect large population of patients and can appear sometimes before the motor disorders. The non-motor symptoms include mainly neuropsychological difficulties, neuropsychiatric symptoms, and autonomic disorders, but involve also pain and sleep disturbances for example. Depression may occur at any stage of the disease, and consists in major depressive disorder, minor depressive disorder, and dysthymia. During the course of the disease, 50% of patients experience anxiety. Apathy is present in up to 30-40% of patients, due to loss of motivation, appearing in emotional, intellectual and behavioral domains. Dopamine dysregulation syndrome and impulse control disorders are not rare, and in relation with dopaminergic therapies. Impulse control disorders include pathological gambling, hyper sexuality, compulsive shopping, and eating disorder. Visual hallucinations can occur in 30% of patients, mostly induced by dopaminergic therapies. Often, they have deeper impact on the quality of life than the motor symptoms themselves, which stay the focus of attention during consulting. Identifying those can help in providing better care with a positive impact on the quality of life of the patients.

  14. Development of a Computerized Adaptive Test of Children's Gross Motor Skills.

    PubMed

    Huang, Chien-Yu; Tung, Li-Chen; Chou, Yeh-Tai; Wu, Hing-Man; Chen, Kuan-Lin; Hsieh, Ching-Lin

    2018-03-01

    To (1) develop a computerized adaptive test for gross motor skills (GM-CAT) as a diagnostic test and an outcome measure, using the gross motor skills subscale of the Comprehensive Developmental Inventory for Infants and Toddlers (CDIIT-GM) as the candidate item bank; and (2) examine the psychometric properties and the efficiency of the GM-CAT. Retrospective study. A developmental center of a medical center. Children with and without developmental delay (N=1738). Not applicable. The CDIIT-GM contains 56 universal items on gross motor skills assessing children's antigravity control, locomotion, and body movement coordination. The item bank of the GM-CAT had 44 items that met the dichotomous Rasch model's assumptions. High Rasch person reliabilities were found for each estimated gross motor skill for the GM-CAT (Rasch person reliabilities =.940-.995, SE=.68-2.43). For children aged 6 to 71 months, the GM-CAT had good concurrent validity (r values =.97-.98), adequate to excellent diagnostic accuracy (area under receiver operating characteristics curve =.80-.98), and moderate to large responsiveness (effect size =.65-5.82). The averages of items administered for the GM-CAT were 7 to 11, depending on the age group. The results of this study support the use of the GM-CAT as a diagnostic and outcome measure to estimate children's gross motor skills in both research and clinical settings. Copyright © 2017 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  15. Enhanced Muscle Afferent Signals during Motor Learning in Humans.

    PubMed

    Dimitriou, Michael

    2016-04-25

    Much has been revealed concerning human motor learning at the behavioral level [1, 2], but less is known about changes in the involved neural circuits and signals. By examining muscle spindle responses during a classic visuomotor adaptation task [3-6] performed by fully alert humans, I found substantial modulation of sensory afferent signals as a function of adaptation state. Specifically, spindle control was independent of concurrent muscle activity but was specific to movement direction (representing muscle lengthening versus shortening) and to different stages of learning. Increased spindle afferent responses to muscle stretch occurring early during learning reflected individual error size and were negatively related to subsequent antagonist activity (i.e., 60-80 ms thereafter). Relative increases in tonic afferent output early during learning were predictive of the subjects' adaptation rate. I also found that independent spindle control during sensory realignment (the "washout" stage) induced afferent signal "linearization" with respect to muscle length (i.e., signals were more tuned to hand position). The results demonstrate for the first time that motor learning also involves independent and state-related modulation of sensory mechanoreceptor signals. The current findings suggest that adaptive motor performance also relies on the independent control of sensors, not just of muscles. I propose that the "γ" motor system innervating spindles acts to facilitate the acquisition and extraction of task-relevant information at the early stages of sensorimotor adaptation. This designates a more active and targeted role for the human proprioceptive system during motor learning. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Motor adaptation in complex sports - the influence of visual context information on the adaptation of the three-point shot to altered task demands in expert basketball players.

    PubMed

    Stöckel, Tino; Fries, Udo

    2013-01-01

    We examined the influence of visual context information on skilled motor behaviour and motor adaptation in basketball. The rules of basketball in Europe have recently changed, such that that the distance for three-point shots increased from 6.25 m to 6.75 m. As such, we tested the extent to which basketball experts can adapt to the longer distance when a) only the unfamiliar, new three-point line was provided as floor markings (NL group), or b) the familiar, old three-point line was provided in addition to the new floor markings (OL group). In the present study 20 expert basketball players performed 40 three-point shots from 6.25 m and 40 shots from 6.75 m. We assessed the percentage of hits and analysed the landing position of the ball. Results showed better adaptation of throwing performance to the longer distance when the old three-point line was provided as a visual landmark, compared to when only the new three-point line was provided. We hypothesise that the three-point line delivered relevant information needed to successfully adapt to the greater distance in the OL group, whereas it disturbed performance and ability to adapt in the NL group. The importance of visual landmarks on motor adaptation in basketball throwing is discussed relative to the influence of other information sources (i.e. angle of elevation relative to the basket) and sport practice.

  17. Behavioral and neural Darwinism: selectionist function and mechanism in adaptive behavior dynamics.

    PubMed

    McDowell, J J

    2010-05-01

    An evolutionary theory of behavior dynamics and a theory of neuronal group selection share a common selectionist framework. The theory of behavior dynamics instantiates abstractly the idea that behavior is selected by its consequences. It implements Darwinian principles of selection, reproduction, and mutation to generate adaptive behavior in virtual organisms. The behavior generated by the theory has been shown to be quantitatively indistinguishable from that of live organisms. The theory of neuronal group selection suggests a mechanism whereby the abstract principles of the evolutionary theory may be implemented in the nervous systems of biological organisms. According to this theory, groups of neurons subserving behavior may be selected by synaptic modifications that occur when the consequences of behavior activate value systems in the brain. Together, these theories constitute a framework for a comprehensive account of adaptive behavior that extends from brain function to the behavior of whole organisms in quantitative detail. Copyright (c) 2009 Elsevier B.V. All rights reserved.

  18. The impact of diurnal sleep on the consolidation of a complex gross motor adaptation task.

    PubMed

    Hoedlmoser, Kerstin; Birklbauer, Juergen; Schabus, Manuel; Eibenberger, Patrick; Rigler, Sandra; Mueller, Erich

    2015-02-01

    Diurnal sleep effects on consolidation of a complex, ecological valid gross motor adaptation task were examined using a bicycle with an inverse steering device. We tested 24 male subjects aged between 20 and 29 years using a between-subjects design. Participants were trained to adapt to the inverse steering bicycle during 45 min. Performance was tested before (TEST1) and after (TEST2) training, as well as after a 2 h retention interval (TEST3). During retention, participants either slept or remained awake. To assess gross motor performance, subjects had to ride the inverse steering bicycle 3 × 30 m straight-line and 3 × 30 m through a slalom. Beyond riding time, we sophisticatedly measured performance accuracy (standard deviation of steering angle) in both conditions using a rotatory potentiometer. A significant decrease of accuracy during straight-line riding after nap and wakefulness was shown. Accuracy during slalom riding remained stable after wakefulness but was reduced after sleep. We found that the duration of rapid eye movement sleep as well as sleep spindle activity are negatively related with gross motor performance changes over sleep. Together these findings suggest that the consolidation of adaptation to a new steering device does not benefit from a 2 h midday nap. We speculate that in case of strongly overlearned motor patterns such as normal cycling, diurnal sleep spindles and rapid eye movement sleep might even help to protect everyday needed skills, and to rapidly forget newly acquired, interfering and irrelevant material. © 2014 The Authors. Journal of Sleep Research published by John Wiley & Sons Ltd on behalf of European Sleep Research Society.

  19. An adaptive nonlinear internal-model control for the speed control of homopolar salient-pole BLDC motor

    NASA Astrophysics Data System (ADS)

    CheshmehBeigi, Hassan Moradi

    2018-05-01

    In this paper, a novel speed control method for Homopolar Brushless DC (HBLDC) motor based on the adaptive nonlinear internal-model control (ANIMC) is presented. Rotor position information is obtained online by the Hall-Effect sensors placed on the motor's shaft, and is used to calculate the accurate model and accurate inverse model of the HBLDC motor. The online inverse model of the motor is used in the controller structure. To suppress the reference ? error, the negative feedback of difference between the motor speed and its model output ? is applied in the proposed controller. An appropriate signal is the output of the controller, which drives the power switches to converge the motor speed to the constant desired speed. Simulations and experiments are carried out on a ? three-phase HBLDC motor. The proposed drive system operates well in the speed response and has good robustness with respect to the disturbances. To validate the theoretical analysis, several experimental results are discussed in this paper.

  20. Synaptic plasticity in a recurrent neural network for versatile and adaptive behaviors of a walking robot.

    PubMed

    Grinke, Eduard; Tetzlaff, Christian; Wörgötter, Florentin; Manoonpong, Poramate

    2015-01-01

    Walking animals, like insects, with little neural computing can effectively perform complex behaviors. For example, they can walk around their environment, escape from corners/deadlocks, and avoid or climb over obstacles. While performing all these behaviors, they can also adapt their movements to deal with an unknown situation. As a consequence, they successfully navigate through their complex environment. The versatile and adaptive abilities are the result of an integration of several ingredients embedded in their sensorimotor loop. Biological studies reveal that the ingredients include neural dynamics, plasticity, sensory feedback, and biomechanics. Generating such versatile and adaptive behaviors for a many degrees-of-freedom (DOFs) walking robot is a challenging task. Thus, in this study, we present a bio-inspired approach to solve this task. Specifically, the approach combines neural mechanisms with plasticity, exteroceptive sensory feedback, and biomechanics. The neural mechanisms consist of adaptive neural sensory processing and modular neural locomotion control. The sensory processing is based on a small recurrent neural network consisting of two fully connected neurons. Online correlation-based learning with synaptic scaling is applied to adequately change the connections of the network. By doing so, we can effectively exploit neural dynamics (i.e., hysteresis effects and single attractors) in the network to generate different turning angles with short-term memory for a walking robot. The turning information is transmitted as descending steering signals to the neural locomotion control which translates the signals into motor actions. As a result, the robot can walk around and adapt its turning angle for avoiding obstacles in different situations. The adaptation also enables the robot to effectively escape from sharp corners or deadlocks. Using backbone joint control embedded in the the locomotion control allows the robot to climb over small obstacles

  1. Synaptic plasticity in a recurrent neural network for versatile and adaptive behaviors of a walking robot

    PubMed Central

    Grinke, Eduard; Tetzlaff, Christian; Wörgötter, Florentin; Manoonpong, Poramate

    2015-01-01

    Walking animals, like insects, with little neural computing can effectively perform complex behaviors. For example, they can walk around their environment, escape from corners/deadlocks, and avoid or climb over obstacles. While performing all these behaviors, they can also adapt their movements to deal with an unknown situation. As a consequence, they successfully navigate through their complex environment. The versatile and adaptive abilities are the result of an integration of several ingredients embedded in their sensorimotor loop. Biological studies reveal that the ingredients include neural dynamics, plasticity, sensory feedback, and biomechanics. Generating such versatile and adaptive behaviors for a many degrees-of-freedom (DOFs) walking robot is a challenging task. Thus, in this study, we present a bio-inspired approach to solve this task. Specifically, the approach combines neural mechanisms with plasticity, exteroceptive sensory feedback, and biomechanics. The neural mechanisms consist of adaptive neural sensory processing and modular neural locomotion control. The sensory processing is based on a small recurrent neural network consisting of two fully connected neurons. Online correlation-based learning with synaptic scaling is applied to adequately change the connections of the network. By doing so, we can effectively exploit neural dynamics (i.e., hysteresis effects and single attractors) in the network to generate different turning angles with short-term memory for a walking robot. The turning information is transmitted as descending steering signals to the neural locomotion control which translates the signals into motor actions. As a result, the robot can walk around and adapt its turning angle for avoiding obstacles in different situations. The adaptation also enables the robot to effectively escape from sharp corners or deadlocks. Using backbone joint control embedded in the the locomotion control allows the robot to climb over small obstacles

  2. Effects of diet and behavior therapy on social and motor behavior of retarded phenylketonuric adults: an experimental analysis.

    PubMed

    Marholin, D; Pohl, R E; Stewart, R M; Touchette, P E; Townsend, N M; Kolodny, E H

    1978-03-01

    The effects of a low phenylalanine diet on six retarded phenylketonuric adults were assessed. An ABA individual-subject design was used in experiment I to assess the effects of a low phenylalanine diet on social and motor behavior. Following a baseline during which the subjects ingested a normal phenylalanine diet (phase A), a low phenylalanine diet (phase B) was administered in a double blind fashion. Finally, the baseline condition (phase A) was reinstated (normal diet). The low phenylalanine diet resulted in few significant behavioral changes for those subjects with which proper methodologic controls were employed. However, for two of six subjects motor behavior, including stereotypy and tremor, seem to have ameliorated. In experiment II, applied behavior analysis techniques, including differential reinforcement of other behavior and time out, were combined to radically reduce the frequency of stereotypy and self-abuse exhibited by one of the six subjects of experiment I.

  3. Adaptive Behavior of Young Urban Children with Developmental Disabilities.

    ERIC Educational Resources Information Center

    Vig, Susan; Jedrysek, Eleonora

    1995-01-01

    Assessment of 497 urban preschool children with developmental disabilities using the Vineland Adaptive Behavior Scales indicated a strong positive relationship between adaptive behavior and intelligence if measured globally. When Vineland domains were assessed separately, this relationship varied across domains and disability groups. With…

  4. Adaptive Controller Effects on Pilot Behavior

    NASA Technical Reports Server (NTRS)

    Trujillo, Anna C.; Gregory, Irene M.; Hempley, Lucas E.

    2014-01-01

    Adaptive control provides robustness and resilience for highly uncertain, and potentially unpredictable, flight dynamics characteristic. Some of the recent flight experiences of pilot-in-the-loop with an adaptive controller have exhibited unpredicted interactions. In retrospect, this is not surprising once it is realized that there are now two adaptive controllers interacting, the software adaptive control system and the pilot. An experiment was conducted to categorize these interactions on the pilot with an adaptive controller during control surface failures. One of the objectives of this experiment was to determine how the adaptation time of the controller affects pilots. The pitch and roll errors, and stick input increased for increasing adaptation time and during the segment when the adaptive controller was adapting. Not surprisingly, altitude, cross track and angle deviations, and vertical velocity also increase during the failure and then slowly return to pre-failure levels. Subjects may change their behavior even as an adaptive controller is adapting with additional stick inputs. Therefore, the adaptive controller should adapt as fast as possible to minimize flight track errors. This will minimize undesirable interactions between the pilot and the adaptive controller and maintain maneuvering precision.

  5. Assessing heat-adaptive behaviors among older, urban-dwelling adults

    PubMed Central

    White-Newsome, Jalonne L.; Sánchez, Brisa N.; Parker, Edith A.; Dvonch, J. Timothy; Zhang, Zhenzhen; O’Neill, Marie S.

    2015-01-01

    Objectives Health studies have shown that the elderly are at a greater risk to extreme heat. The frequency and intensity of summer heat waves will continue to increase as a result of climate change. It is important that we understand the environmental and structural factors that increase heat vulnerability, as well as examine the behaviors used by the elderly to adapt to hot indoor temperatures. Study design From June 1 to August 31, 2009, residents in 29 homes in Detroit, MI, kept an hourly log of eight heat-adaptive behaviors: opening windows/doors, turning fans or the air conditioner on, changing clothes, taking a shower, going to the basement, the porch/yard, or leaving the house. Percentages of hourly behavior were calculated, overall and stratified by housing type and percent surface imperviousness. The frequency of behavior use, as a result of indoor and outdoor predetermined temperature intervals was compared to a reference temperature range of 21.1–23.8 °C. Results The use of all adaptive behaviors, except going to the porch or yard, was significantly associated with indoor temperature. Non-mechanical adaptations such as changing clothes, taking showers, and going outside or to the basement were rarely used. Residents living in high-rises and highly impervious areas reported a higher use of adaptive behaviors. The odds of leaving the house significantly increased as outdoor temperature increased. Conclusions These findings suggest that the full range of heat adaptation measures may be underused by the elderly and public health interventions need to focus on outreach to these populations. PMID:21782363

  6. Object-adapted trapping and shape-tracking to probe a bacterial protein chain motor

    NASA Astrophysics Data System (ADS)

    Roth, Julian; Koch, Matthias; Rohrbach, Alexander

    2015-03-01

    The helical bacterium Spiroplasma is a motile plant and anthropod pathogen which swims by propagating pairs of kinks along its cell body. As a well suited model system for bacterial locomotion, understanding the cell's molecular motor is of vital interest also regarding the combat of bacterial diseases. The extensive deformations related to these kinks are caused by a contractile cytoskeletal protein ribbon representing a linear motor in contrast to common rotary motors as, e.g., flagella. We present new insights into the working of this motor through experiments with object-adapted optical traps and shape-tracking techniques. We use the given laser irradiation from the optical trap to hinder bacterial energy (ATP) production through the production of O2 radicals. The results are compared with experiments performed under the influence of an O2-Scavenger and ATP inhibitors, respectively. Our results show clear dependences of the kinking properties on the ATP concentration inside the bacterium. The experiments are supported by a theoretical model which we developed to describe the switching of the ribbon's protein subunits.

  7. Behavioral evidence for left-hemisphere specialization of motor planning

    PubMed Central

    Meulenbroek, Ruud G. J.; Steenbergen, Bert

    2010-01-01

    Recent studies suggest that the left hemisphere is dominant for the planning of motor actions. This left-hemisphere specialization hypothesis was proposed in various lines of research, including patient studies, motor imagery studies, and studies involving neurophysiological techniques. However, most of these studies are primarily based on experiments involving right-hand-dominant participants. Here, we present the results of a behavioral study with left-hand-dominant participants, which follows up previous work in right-hand-dominant participants. In our experiment, participants grasped CD casings and replaced them in a different, pre-cued orientation. Task performance was measured by the end-state comfort effect, i.e., the anticipated degree of physical comfort associated with the posture that is planned to be adopted at movement completion. Both left- and right-handed participants showed stronger end-state comfort effects for their right hand compared to their left hand. These results lend behavioral support to the left-hemisphere-dominance motion-planning hypothesis. PMID:21184219

  8. Linking Individual and Collective Behavior in Adaptive Social Networks

    NASA Astrophysics Data System (ADS)

    Pinheiro, Flávio L.; Santos, Francisco C.; Pacheco, Jorge M.

    2016-03-01

    Adaptive social structures are known to promote the evolution of cooperation. However, up to now the characterization of the collective, population-wide dynamics resulting from the self-organization of individual strategies on a coevolving, adaptive network has remained unfeasible. Here we establish a (reversible) link between individual (micro)behavior and collective (macro)behavior for coevolutionary processes. We demonstrate that an adaptive network transforms a two-person social dilemma locally faced by individuals into a collective dynamics that resembles that associated with an N -person coordination game, whose characterization depends sensitively on the relative time scales between the entangled behavioral and network evolutions. In particular, we show that the faster the relative rate of adaptation of the network, the smaller the critical fraction of cooperators required for cooperation to prevail, thus establishing a direct link between network adaptation and the evolution of cooperation. The framework developed here is general and may be readily applied to other dynamical processes occurring on adaptive networks, notably, the spreading of contagious diseases or the diffusion of innovations.

  9. Deprivation and Recovery of Sleep in Succession Enhances Reflexive Motor Behavior

    PubMed Central

    Sprenger, Andreas; Weber, Frederik D.; Machner, Bjoern; Talamo, Silke; Scheffelmeier, Sabine; Bethke, Judith; Helmchen, Christoph; Gais, Steffen; Kimmig, Hubert; Born, Jan

    2015-01-01

    Sleep deprivation impairs inhibitory control over reflexive behavior, and this impairment is commonly assumed to dissipate after recovery sleep. Contrary to this belief, here we show that fast reflexive behaviors, when practiced during sleep deprivation, is consolidated across recovery sleep and, thereby, becomes preserved. As a model for the study of sleep effects on prefrontal cortex-mediated inhibitory control in humans, we examined reflexive saccadic eye movements (express saccades), as well as speeded 2-choice finger motor responses. Different groups of subjects were trained on a standard prosaccade gap paradigm before periods of nocturnal sleep and sleep deprivation. Saccade performance was retested in the next morning and again 24 h later. The rate of express saccades was not affected by sleep after training, but slightly increased after sleep deprivation. Surprisingly, this increase augmented even further after recovery sleep and was still present 4 weeks later. Additional experiments revealed that the short testing after sleep deprivation was sufficient to increase express saccades across recovery sleep. An increase in speeded responses across recovery sleep was likewise found for finger motor responses. Our findings indicate that recovery sleep can consolidate motor disinhibition for behaviors practiced during prior sleep deprivation, thereby persistently enhancing response automatization. PMID:26048955

  10. Deprivation and Recovery of Sleep in Succession Enhances Reflexive Motor Behavior.

    PubMed

    Sprenger, Andreas; Weber, Frederik D; Machner, Bjoern; Talamo, Silke; Scheffelmeier, Sabine; Bethke, Judith; Helmchen, Christoph; Gais, Steffen; Kimmig, Hubert; Born, Jan

    2015-11-01

    Sleep deprivation impairs inhibitory control over reflexive behavior, and this impairment is commonly assumed to dissipate after recovery sleep. Contrary to this belief, here we show that fast reflexive behaviors, when practiced during sleep deprivation, is consolidated across recovery sleep and, thereby, becomes preserved. As a model for the study of sleep effects on prefrontal cortex-mediated inhibitory control in humans, we examined reflexive saccadic eye movements (express saccades), as well as speeded 2-choice finger motor responses. Different groups of subjects were trained on a standard prosaccade gap paradigm before periods of nocturnal sleep and sleep deprivation. Saccade performance was retested in the next morning and again 24 h later. The rate of express saccades was not affected by sleep after training, but slightly increased after sleep deprivation. Surprisingly, this increase augmented even further after recovery sleep and was still present 4 weeks later. Additional experiments revealed that the short testing after sleep deprivation was sufficient to increase express saccades across recovery sleep. An increase in speeded responses across recovery sleep was likewise found for finger motor responses. Our findings indicate that recovery sleep can consolidate motor disinhibition for behaviors practiced during prior sleep deprivation, thereby persistently enhancing response automatization. © The Author 2015. Published by Oxford University Press.

  11. A Bayesian Account of Vocal Adaptation to Pitch-Shifted Auditory Feedback

    PubMed Central

    Hahnloser, Richard H. R.

    2017-01-01

    Motor systems are highly adaptive. Both birds and humans compensate for synthetically induced shifts in the pitch (fundamental frequency) of auditory feedback stemming from their vocalizations. Pitch-shift compensation is partial in the sense that large shifts lead to smaller relative compensatory adjustments of vocal pitch than small shifts. Also, compensation is larger in subjects with high motor variability. To formulate a mechanistic description of these findings, we adapt a Bayesian model of error relevance. We assume that vocal-auditory feedback loops in the brain cope optimally with known sensory and motor variability. Based on measurements of motor variability, optimal compensatory responses in our model provide accurate fits to published experimental data. Optimal compensation correctly predicts sensory acuity, which has been estimated in psychophysical experiments as just-noticeable pitch differences. Our model extends the utility of Bayesian approaches to adaptive vocal behaviors. PMID:28135267

  12. Brief Report: Developmental Trajectories of Adaptive Behavior in Children and Adolescents with ASD.

    PubMed

    Meyer, Allison T; Powell, Patrick S; Butera, Nicole; Klinger, Mark R; Klinger, Laura G

    2018-03-17

    Research suggests that individuals with autism spectrum disorder (ASD) have significant difficulties with adaptive behavior skills including daily living and functional communication skills. Few studies have examined the developmental trajectory of adaptive behavior across childhood and adolescence. The present study examined longitudinal trajectories of adaptive behavior in a community-based clinic sample of 186 individuals with ASD. The overall pattern indicated an initial increase in adaptive behavior during early childhood followed by a plateau in skills during adolescence for individuals of all IQ groups. Given the importance of adaptive behavior for employment and quality of life, this study emphasizes the importance of targeting adaptive behavior during adolescence to insure continued gains.

  13. Adaptive downhill skiing in children with cerebral palsy: effect on gross motor function.

    PubMed

    Sterba, John A

    2006-01-01

    The study was designed to examine the effect of adaptive downhill skiing (ADS) on gross motor function in children with spastic cerebral palsy. One girl and four boys participated (mean age = eight years, five months). All were ambulatory. Participants' Gross Motor Function Measure (GMFM) classifications were: Level I (n = 2); Level II (n = 2); Level III (n = 1). ADS was conducted for a 10-week period at one ski resort. Each participant had the same ski instructor. GMFM was obtained every five weeks: beginning five weeks before ADS instruction and continuing to 10 weeks after ADS instruction. After 10 weeks of ADS GMFM-D, and GMFM-Total Score increased 5.4% (p = 0.022) and 3.2% (p = 0.035), respectively, and remained increased 10 weeks after ADS. ADS could be recommended by clinicians as a recreational activity for the gross motor rehabilitation of ambulatory children with spastic cerebral palsy.

  14. Increased gamma band power during movement planning coincides with motor memory retrieval.

    PubMed

    Thürer, Benjamin; Stockinger, Christian; Focke, Anne; Putze, Felix; Schultz, Tanja; Stein, Thorsten

    2016-01-15

    The retrieval of motor memory requires a previous memory encoding and subsequent consolidation of the specific motor memory. Previous work showed that motor memory seems to rely on different memory components (e.g., implicit, explicit). However, it is still unknown if explicit components contribute to the retrieval of motor memories formed by dynamic adaptation tasks and which neural correlates are linked to memory retrieval. We investigated the lower and higher gamma bands of subjects' electroencephalography during encoding and retrieval of a dynamic adaptation task. A total of 24 subjects were randomly assigned to a treatment and control group. Both groups adapted to a force field A on day 1 and were re-exposed to the same force field A on day 3 of the experiment. On day 2, treatment group learned an interfering force field B whereas control group had a day rest. Kinematic analyses showed that control group improved their initial motor performance from day 1 to day 3 but treatment group did not. This behavioral result coincided with an increased higher gamma band power in the electrodes over prefrontal areas on the initial trials of day 3 for control but not treatment group. Intriguingly, this effect vanished with the subsequent re-adaptation on day 3. We suggest that improved re-test performance in a dynamic motor adaptation task is contributed by explicit memory and that gamma bands in the electrodes over the prefrontal cortex are linked to these explicit components. Furthermore, we suggest that the contribution of explicit memory vanishes with the subsequent re-adaptation while task automaticity increases. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. [Effects of family cohesion and adaptability on behavioral problems in preschool children].

    PubMed

    Wang, Yan-Ni; Xue, Hong-Li; Chen, Qian

    2016-05-01

    To investigate the effects of family cohesion and adaptability on behavioral problems in preschool children. The stratified cluster multistage sampling method was used to perform a questionnaire survey in the parents of 1 284 children aged 3-6 years in the urban area of Lanzhou, China. The general status questionnaire, Conners Child Behavior Checklist (Parent Symptom Question), and Family Adaptability and Cohesion Scale, Second edition, Chinese version (FACESII-CV) were used to investigate behavioral problems and family cohesion and adaptability. The overall detection rate of behavioral problems in preschool children was 17.13%. The children with different types of family cohesion had different detection rates of behavioral problems, and those with free-type family cohesion showed the highest detection rate of behavioral problems (40.2%). The children with different types of family adaptability also had different detection rates of behavioral problems, and those with stiffness type showed the highest detection rate of behavioral problems (25.1%). The behavioral problems in preschool children were negatively correlated with family cohesion and adaptability. During the growth of preschool children, family cohesion and adaptability have certain effects on the mental development of preschool children.

  16. Cellular mechanisms underlying behavioral state-dependent bidirectional modulation of motor cortex output.

    PubMed

    Schiemann, Julia; Puggioni, Paolo; Dacre, Joshua; Pelko, Miha; Domanski, Aleksander; van Rossum, Mark C W; Duguid, Ian

    2015-05-26

    Neuronal activity in primary motor cortex (M1) correlates with behavioral state, but the cellular mechanisms underpinning behavioral state-dependent modulation of M1 output remain largely unresolved. Here, we performed in vivo patch-clamp recordings from layer 5B (L5B) pyramidal neurons in awake mice during quiet wakefulness and self-paced, voluntary movement. We show that L5B output neurons display bidirectional (i.e., enhanced or suppressed) firing rate changes during movement, mediated via two opposing subthreshold mechanisms: (1) a global decrease in membrane potential variability that reduced L5B firing rates (L5Bsuppressed neurons), and (2) a coincident noradrenaline-mediated increase in excitatory drive to a subpopulation of L5B neurons (L5Benhanced neurons) that elevated firing rates. Blocking noradrenergic receptors in forelimb M1 abolished the bidirectional modulation of M1 output during movement and selectively impaired contralateral forelimb motor coordination. Together, our results provide a mechanism for how noradrenergic neuromodulation and network-driven input changes bidirectionally modulate M1 output during motor behavior. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  17. Continuously Adaptive vs. Discrete Changes of Task Difficulty in the Training of a Complex Perceptual-Motor Task.

    ERIC Educational Resources Information Center

    Wood, Milton E.

    The purpose of the effort was to determine the benefits to be derived from the adaptive training technique of automatically adjusting task difficulty as a function of a student skill during early learning of a complex perceptual motor task. A digital computer provided the task dynamics, scoring, and adaptive control of a second-order, two-axis,…

  18. Fast and slow transitions in frontal ensemble activity during flexible sensorimotor behavior.

    PubMed

    Siniscalchi, Michael J; Phoumthipphavong, Victoria; Ali, Farhan; Lozano, Marc; Kwan, Alex C

    2016-09-01

    The ability to shift between repetitive and goal-directed actions is a hallmark of cognitive control. Previous studies have reported that adaptive shifts in behavior are accompanied by changes of neural activity in frontal cortex. However, neural and behavioral adaptations can occur at multiple time scales, and their relationship remains poorly defined. Here we developed an adaptive sensorimotor decision-making task for head-fixed mice, requiring them to shift flexibly between multiple auditory-motor mappings. Two-photon calcium imaging of secondary motor cortex (M2) revealed different ensemble activity states for each mapping. When adapting to a conditional mapping, transitions in ensemble activity were abrupt and occurred before the recovery of behavioral performance. By contrast, gradual and delayed transitions accompanied shifts toward repetitive responding. These results demonstrate distinct ensemble signatures associated with the start versus end of sensory-guided behavior and suggest that M2 leads in engaging goal-directed response strategies that require sensorimotor associations.

  19. Longitudinal development of manual motor ability in autism spectrum disorder from childhood to mid-adulthood relates to adaptive daily living skills.

    PubMed

    Travers, Brittany G; Bigler, Erin D; Duffield, Tyler C; Prigge, Molly D B; Froehlich, Alyson L; Lange, Nicholas; Alexander, Andrew L; Lainhart, Janet E

    2017-07-01

    Many individuals with autism spectrum disorder (ASD) exhibit motor difficulties, but it is unknown whether manual motor skills improve, plateau, or decline in ASD in the transition from childhood into adulthood. Atypical development of manual motor skills could impact the ability to learn and perform daily activities across the life span. This study examined longitudinal grip strength and finger tapping development in individuals with ASD (n = 90) compared to individuals with typical development (n = 56), ages 5 to 40 years old. We further examined manual motor performance as a possible correlate of current and future daily living skills. The group with ASD demonstrated atypical motor development, characterized by similar performance during childhood but increasingly poorer performance from adolescence into adulthood. Grip strength was correlated with current adaptive daily living skills, and Time 1 grip strength predicted daily living skills eight years into the future. These results suggest that individuals with ASD may experience increasingly more pronounced motor difficulties from adolescence into adulthood and that manual motor performance in ASD is related to adaptive daily living skills. © 2016 John Wiley & Sons Ltd.

  20. Motor characteristics determine the rheological behavior of a suspension of microswimmers

    NASA Astrophysics Data System (ADS)

    Karmakar, Richa; Gulvady, Ranjit; Tirumkudulu, Mahesh S.; Venkatesh, K. V.

    2014-07-01

    A suspension of motile cells exhibits complex rheological properties due to their collective motion. We measure the shear viscosity of a suspension of Escherichia coli strains varying in motor characteristics such as duration of run and tumble. At low cell densities, all strains irrespective of their motor characteristics exhibit a linear increase in viscosity with cell density suggesting that the cells behave as a suspension of passive rods with an effective aspect ratio set by the motor characteristics of the bacteria. As the cell density is increased beyond a critical value, the viscosity drops sharply signaling the presence of strongly coordinated motion among bacteria. The critical density depends not only on the magnitude of shear but also the motor characteristics of individual cells. High shear rate disrupts the coordinated motion reducing its behavior, once again, to a suspension of inactive particles.

  1. Common medial frontal mechanisms of adaptive control in humans and rodents

    PubMed Central

    Frank, Michael J.; Laubach, Mark

    2013-01-01

    In this report, we describe how common brain networks within the medial frontal cortex facilitate adaptive behavioral control in rodents and humans. We demonstrate that low frequency oscillations below 12 Hz are dramatically modulated after errors in humans over mid-frontal cortex and in rats within prelimbic and anterior cingulate regions of medial frontal cortex. These oscillations were phase-locked between medial frontal cortex and motor areas in both rats and humans. In rats, single neurons that encoded prior behavioral outcomes were phase-coherent with low-frequency field oscillations particularly after errors. Inactivating medial frontal regions in rats led to impaired behavioral adjustments after errors, eliminated the differential expression of low frequency oscillations after errors, and increased low-frequency spike-field coupling within motor cortex. Our results describe a novel mechanism for behavioral adaptation via low-frequency oscillations and elucidate how medial frontal networks synchronize brain activity to guide performance. PMID:24141310

  2. Interindividual differences in motor network connectivity and behavioral response to iTBS in stroke patients.

    PubMed

    Diekhoff-Krebs, Svenja; Pool, Eva-Maria; Sarfeld, Anna-Sophia; Rehme, Anne K; Eickhoff, Simon B; Fink, Gereon R; Grefkes, Christian

    2017-01-01

    Cerebral plasticity-inducing approaches like repetitive transcranial magnetic stimulation (rTMS) are of high interest in situations where reorganization of neural networks can be observed, e.g., after stroke. However, an increasing number of studies suggest that improvements in motor performance of the stroke-affected hand following modulation of primary motor cortex (M1) excitability by rTMS shows a high interindividual variability. We here tested the hypothesis that in stroke patients the interindividual variability of behavioral response to excitatory rTMS is related to interindividual differences in network connectivity of the stimulated region. Chronic stroke patients ( n  = 14) and healthy controls ( n  = 12) were scanned with functional magnetic resonance imaging (fMRI) while performing a simple hand motor task. Dynamic causal modeling (DCM) was used to investigate effective connectivity of key motor regions. On two different days after the fMRI experiment, patients received either intermittent theta-burst stimulation (iTBS) over ipsilesional M1 or control stimulation over the parieto-occipital cortex. Motor performance and TMS parameters of cortical excitability were measured before and after iTBS. Our results revealed that patients with better motor performance of the affected hand showed stronger endogenous coupling between supplemental motor area (SMA) and M1 before starting the iTBS intervention. Applying iTBS to ipsilesional M1 significantly increased ipsilesional M1 excitability and decreased contralesional M1 excitability as compared to control stimulation. Individual behavioral improvements following iTBS specifically correlated with neural coupling strengths in the stimulated hemisphere prior to stimulation, especially for connections targeting the stimulated M1. Combining endogenous connectivity and behavioral parameters explained 82% of the variance in hand motor performance observed after iTBS. In conclusion, the data suggest that the

  3. Family behavior, adaptation, and treatment adherence of pediatric nephrology patients.

    PubMed

    Davis, M C; Tucker, C M; Fennell, R S

    1996-04-01

    In this exploratory study we investigated the relationships among family behavior variables (e.g., family expressiveness), adaptive functioning skills, maladaptive behavior, and adherence to treatment in pediatric renal failure patients. The study included 22 pediatric outpatients with renal failure who had not yet received dialysis or transplantation (RF) and their parents, and 12 pediatric outpatients with kidney transplants (TX) and their parents. For the RF patients, significant correlations were found between some of their adaptive functioning skills and measures of their medication adherence, diet adherence, and clinic appointment adherence; however, for the TX patients significant correlations were found only between some of their adaptive functioning skills and measures of their medication adherence. For the RF patients only, some measures of their family behavior were significantly correlated with measures of their medication adherence and diet adherence. Additionally, some measures of the RF patients' family behavior were significantly related to their communication skills, socialization skills, overall adaptive functioning skills, and maladaptive behavior. For the TX patients, only their socialization skill level was significantly correlated with one measure of their family behavior. It is concluded that facilitation of adaptive and physical functioning among renal pediatric patients likely requires multidimensional training and/or counselling interventions with the children and their families, and that some of the content and/or emphasis of this training likely needs to differ for RF patients versus TX patients.

  4. FGF-2 induces behavioral recovery after early adolescent injury to the motor cortex of rats.

    PubMed

    Nemati, Farshad; Kolb, Bryan

    2011-11-20

    Motor cortex injuries in adulthood lead to poor performance in behavioral tasks sensitive to limb movements in the rat. We have shown previously that motor cortex injury on day 10 or day 55 allow significant spontaneous recovery but not injury in early adolescence (postnatal day 35 "P35"). Previous studies have indicated that injection of basic fibroblast growth factor (FGF-2) enhances behavioral recovery after neonatal cortical injury but such effect has not been studied following motor cortex lesions in early adolescence. The present study undertook to investigate the possibility of such behavioral recovery. Rats with unilateral motor cortex lesions were assigned to two groups in which they received FGF-2 or bovine serum albumin (BSA) and were tested in a number of behavioral tests (postural asymmetry, skilled reaching, sunflower seed manipulation, forepaw inhibition in swimming). Golgi-Cox analysis was used to examine the dendritic structure of pyramidal cells in the animals' parietal (layer III) and forelimb (layer V) area of the cortex. The results indicated that rats injected with FGF-2 (but not BSA) showed significant behavioral recovery that was associated with increased dendritic length and spine density. The present study suggests a role for FGF-2 in the recovery of function following injury during early adolescence. Copyright © 2011 Elsevier B.V. All rights reserved.

  5. Motor behaviors in the sheep evoked by electrical stimulation of the subthalamic nucleus.

    PubMed

    Lentz, Linnea; Zhao, Yan; Kelly, Matthew T; Schindeldecker, William; Goetz, Steven; Nelson, Dwight E; Raike, Robert S

    2015-11-01

    Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is used to treat movement disorders, including advanced Parkinson's disease (PD). The pathogenesis of PD and the therapeutic mechanisms of DBS are not well understood. Large animal models are essential for investigating the mechanisms of PD and DBS. The purpose of this study was to develop a novel sheep model of STN DBS and quantify the stimulation-evoked motor behaviors. To do so, a large sample of animals was chronically-implanted with commercial DBS systems. Neuroimaging and histology revealed that the DBS leads were implanted accurately relative to the neurosurgical plan and also precisely relative to the STN. It was also possible to repeatedly conduct controlled evaluations of stimulation-evoked motor behavior in the awake-state. The evoked motor responses depended on the neuroanatomical location of the electrode contact selected for stimulation, as contacts proximal to the STN evoked movements at significantly lower voltages. Tissue stimulation modeling demonstrated that selecting any of the contacts stimulated the STN, whereas selecting the relatively distal contacts often also stimulated thalamus but only the distal-most contact stimulated internal capsule. The types of evoked motor behaviors were specific to the stimulation frequency, as low but not high frequencies consistently evoked movements resembling human tremor or dyskinesia. Electromyography confirmed that the muscle activity underlying the tremor-like movements in the sheep was consistent with human tremor. Overall, this work establishes that the sheep is a viable a large-animal platform for controlled testing of STN DBS with objective motor outcomes. Moreover, the results support the hypothesis that exaggerated low-frequency activity within individual nodes of the motor network can drive symptoms of human movement disorders, including tremor and dyskinesia. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Adaptive behaviors in multi-agent source localization using passive sensing.

    PubMed

    Shaukat, Mansoor; Chitre, Mandar

    2016-12-01

    In this paper, the role of adaptive group cohesion in a cooperative multi-agent source localization problem is investigated. A distributed source localization algorithm is presented for a homogeneous team of simple agents. An agent uses a single sensor to sense the gradient and two sensors to sense its neighbors. The algorithm is a set of individualistic and social behaviors where the individualistic behavior is as simple as an agent keeping its previous heading and is not self-sufficient in localizing the source. Source localization is achieved as an emergent property through agent's adaptive interactions with the neighbors and the environment. Given a single agent is incapable of localizing the source, maintaining team connectivity at all times is crucial. Two simple temporal sampling behaviors, intensity-based-adaptation and connectivity-based-adaptation, ensure an efficient localization strategy with minimal agent breakaways. The agent behaviors are simultaneously optimized using a two phase evolutionary optimization process. The optimized behaviors are estimated with analytical models and the resulting collective behavior is validated against the agent's sensor and actuator noise, strong multi-path interference due to environment variability, initialization distance sensitivity and loss of source signal.

  7. tDCS-induced alterations in GABA concentration within primary motor cortex predict motor learning and motor memory: a 7 T magnetic resonance spectroscopy study.

    PubMed

    Kim, Soyoung; Stephenson, Mary C; Morris, Peter G; Jackson, Stephen R

    2014-10-01

    Transcranial direct current stimulation (tDCS) is a non-invasive brain stimulation technique that alters cortical excitability in a polarity specific manner and has been shown to influence learning and memory. tDCS may have both on-line and after-effects on learning and memory, and the latter are thought to be based upon tDCS-induced alterations in neurochemistry and synaptic function. We used ultra-high-field (7 T) magnetic resonance spectroscopy (MRS), together with a robotic force adaptation and de-adaptation task, to investigate whether tDCS-induced alterations in GABA and Glutamate within motor cortex predict motor learning and memory. Note that adaptation to a robot-induced force field has long been considered to be a form of model-based learning that is closely associated with the computation and 'supervised' learning of internal 'forward' models within the cerebellum. Importantly, previous studies have shown that on-line tDCS to the cerebellum, but not to motor cortex, enhances model-based motor learning. Here we demonstrate that anodal tDCS delivered to the hand area of the left primary motor cortex induces a significant reduction in GABA concentration. This effect was specific to GABA, localised to the left motor cortex, and was polarity specific insofar as it was not observed following either cathodal or sham stimulation. Importantly, we show that the magnitude of tDCS-induced alterations in GABA concentration within motor cortex predicts individual differences in both motor learning and motor memory on the robotic force adaptation and de-adaptation task. Copyright © 2014. Published by Elsevier Inc.

  8. Motor adaptation capacity as a function of age in carrying out a repetitive assembly task at imposed work paces.

    PubMed

    Gilles, Martine Annie; Guélin, Jean-Charles; Desbrosses, Kévin; Wild, Pascal

    2017-10-01

    The working population is getting older. Workers must adapt to changing conditions to respond to the efforts required by the tasks they have to perform. In this laboratory-based study, we investigated the capacities of motor adaptation as a function of age and work pace. Two phases were identified in the task performed: a collection phase, involving dominant use of the lower limbs; and an assembly phase, involving bi-manual motor skills. Results showed that senior workers were mainly limited during the collection phase, whereas they had less difficulty completing the assembly phase. However, senior workers did increase the vertical force applied while assembling parts, whatever the work pace. In younger and middle-aged subjects, vertical force was increased only for the faster pace. Older workers could adapt to perform repetitive tasks under different time constraints, but adaptation required greater effort than for younger workers. These results point towards a higher risk of developing musculoskeletal disorders among seniors. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Motor System Development Depends on Experience: A Microgravity Study of Rats

    NASA Technical Reports Server (NTRS)

    Walton, Kerry D.; Llinas, Rodolfo R.; Kalb, Robert; Hillman, Dean; DeFelipe, Javier; Garcia-Segura, Luis Miguel

    2003-01-01

    Animals move about their environment by sensing their surroundings and making adjustments according to need. All animals take the force of gravity into account when the brain and spinal cord undertake the planning and execution of movements. To what extent must animals learn to factor in the force of gravity when making neural calculations about movement? Are animals born knowing how to respond to gravity, or must the young nervous system learn to enter gravity into the equation? To study this issue, young rats were reared in two different gravitational environments (the one-G of Earth and the microgravity of low Earth orbit) that necessitated two different types of motor operations (movements) for optimal behavior. We inquired whether those portions of the young nervous system involved in movement, the motor system, can adapt to different gravitational levels and, if so, the cellular basis for this phenomenon. We studied two groups of rats that had been raised for 16 days in microgravity (eight or 14 days old at launch) and compared their walking and righting (ability to go from upside down to upright) and brain structure to those of control rats that developed on Earth. Flight rats were easily distinguished from the age-matched ground control rats in terms of both motor function and central nervous system structure. Mature surface righting predominated in control rats on the day of landing (R+O), while immature righting predominated in the flight rats on landing day and 30 days after landing. Some of these changes appear to be permanent. Several conclusions can be drawn from these studies: (1) Many aspects of motor behavior are preprogrammed into the young nervous system. In addition, several aspects of motor behavior are acquired as a function of the interaction of the developing organism and the rearing environment; (2) Widespread neuroanatomical differences between one-G- and microgravity-reared rats indicate that there is a structural basis for the adaptation

  10. Torque ripple reduction of brushless DC motor based on adaptive input-output feedback linearization.

    PubMed

    Shirvani Boroujeni, M; Markadeh, G R Arab; Soltani, J

    2017-09-01

    Torque ripple reduction of Brushless DC Motors (BLDCs) is an interesting subject in variable speed AC drives. In this paper at first, a mathematical expression for torque ripple harmonics is obtained. Then for a non-ideal BLDC motor with known harmonic contents of back-EMF, calculation of desired reference current amplitudes, which are required to eliminate some selected harmonics of torque ripple, are reviewed. In order to inject the reference harmonic currents to the motor windings, an Adaptive Input-Output Feedback Linearization (AIOFBL) control is proposed, which generates the reference voltages for three phases voltage source inverter in stationary reference frame. Experimental results are presented to show the capability and validity of the proposed control method and are compared with the vector control in Multi-Reference Frame (MRF) and Pseudo-Vector Control (P-VC) method results. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  11. Gross motor function in children with spastic Cerebral Palsy and Cerebral Visual Impairment: A comparison between outcomes of the original and the Cerebral Visual Impairment adapted Gross Motor Function Measure-88 (GMFM-88-CVI).

    PubMed

    Salavati, M; Rameckers, E A A; Waninge, A; Krijnen, W P; Steenbergen, B; van der Schans, C P

    2017-01-01

    To investigate whether the adapted version of the Gross Motor Function Measure-88 (GMFM-88) for children with Cerebral Palsy (CP) and Cerebral Visual Impairment (CVI) results in higher scores. This is most likely to be a reflection of their gross motor function, however it may be the result of a better comprehension of the instruction of the adapted version. The scores of the original and adapted GMFM-88 were compared in the same group of children (n=21 boys and n=16 girls), mean (SD) age 113 (30) months with CP and CVI, within a time span of two weeks. A paediatric physical therapist familiar with the child assessed both tests in random order. The GMFCS level, mental development and age at testing were also collected. The Wilcoxon signed-rank test was used to compare two different measurements (the original and adapted GMFM-88) on a single sample, (the same child with CP and CVI; p<0.05). The comparison between scores on the original and adapted GMFM-88 in all children with CP and CVI showed a positive difference in percentage score on at least one of the five dimensions and positive percentage scores for the two versions differed on all five dimensions for fourteen children. For six children a difference was seen in four dimensions and in 10 children difference was present in three dimensions (GMFM dimension A, B& C or C, D & E) (p<0.001). The adapted GMFM-88 provides a better estimate of gross motor function per se in children with CP and CVI that is not adversely impacted bytheir visual problems. On the basis of these findings, we recommend using the adapted GMFM-88 to measure gross motor functioning in children with CP and CVI. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Causal Role of Motor Simulation in Turn-Taking Behavior.

    PubMed

    Hadley, Lauren V; Novembre, Giacomo; Keller, Peter E; Pickering, Martin J

    2015-12-16

    Overlap between sensory and motor representations has been documented for a range of human actions, from grasping (Rizzolatti et al., 1996b) to playing a musical instrument (Novembre and Keller, 2014). Such overlap suggests that individuals use motor simulation to predict the outcome of observed actions (Wolpert, 1997). Here we investigate motor simulation as a basis of human communication. Using a musical turn-taking task, we show that pianists call on motor representations of their partner's part to predict when to come in for their own turn. Pianists played alternating solos with a videoed partner, and double-pulse transcranial magnetic stimulation was applied around the turn-switch to temporarily disrupt processing in two cortical regions implicated previously in different forms of motor simulation: (1) the dorsal premotor cortex (dPMC), associated with automatic motor resonance during passive observation of hand actions, especially when the actions are familiar (Lahav et al., 2007); and (2) the supplementary motor area (SMA), involved in active motor imagery, especially when the actions are familiar (Baumann et al., 2007). Stimulation of the right dPMC decreased the temporal accuracy of pianists' (right-hand) entries relative to sham when the partner's (left-hand) part had been rehearsed previously. This effect did not occur for dPMC stimulation without rehearsal or for SMA stimulation. These findings support the role of the dPMC in predicting the time course of observed actions via resonance-based motor simulation during turn-taking. Because turn-taking spans multiple modes of human interaction, we suggest that simulation is a foundational mechanism underlying the temporal dynamics of joint action. Even during passive observation, seeing or hearing somebody execute an action from within our repertoire activates motor cortices of our brain. But what is the functional relevance of such "motor simulation"? By combining a musical duet task with a real

  13. Concurrent silent strokes impair motor function by limiting behavioral compensation.

    PubMed

    Faraji, Jamshid; Kurio, Kristyn; Metz, Gerlinde A

    2012-08-01

    Silent strokes occur more frequently than classic strokes; however, symptoms may go unreported in spite of lasting tissue damage. A silent stroke may indicate elevated susceptibility to recurrent stroke, which may eventually result in apparent and lasting impairments. Here we investigated if multiple silent strokes to the motor system challenge the compensatory capacity of the brain to cumulatively result in permanent functional deficits. Adult male rats with focal ischemia received single focal ischemic mini-lesions in the sensorimotor cortex (SMC) or the dorsolateral striatum (DLS), or multiple lesions affecting both SMC and DLS. The time course and outcome of motor compensation and recovery were determined by quantitative and qualitative assessment of skilled reaching and skilled walking. Rats with SMC or DLS lesion alone did not show behavioral deficits in either task. However, the combination of focal ischemic lesions in SMC and DLS perturbed skilled reaching accuracy and disrupted forelimb placement in the ladder rung walking task. These observations suggest that multiple focal infarcts, each resembling a silent stroke, gradually compromise the plastic capacity of the motor system to cause permanent motor deficits. Moreover, these findings support the notion that cortical and subcortical motor systems cooperate when adopting beneficial compensatory movement strategies. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. Physician behavioral adaptability: A model to outstrip a "one size fits all" approach.

    PubMed

    Carrard, Valérie; Schmid Mast, Marianne

    2015-10-01

    Based on a literature review, we propose a model of physician behavioral adaptability (PBA) with the goal of inspiring new research. PBA means that the physician adapts his or her behavior according to patients' different preferences. The PBA model shows how physicians infer patients' preferences and adapt their interaction behavior from one patient to the other. We claim that patients will benefit from better outcomes if their physicians show behavioral adaptability rather than a "one size fits all" approach. This literature review is based on a literature search of the PsycINFO(®) and MEDLINE(®) databases. The literature review and first results stemming from the authors' research support the validity and viability of parts of the PBA model. There is evidence suggesting that physicians are able to show behavioral flexibility when interacting with their different patients, that a match between patients' preferences and physician behavior is related to better consultation outcomes, and that physician behavioral adaptability is related to better consultation outcomes. Training of physicians' behavioral flexibility and their ability to infer patients' preferences can facilitate physician behavioral adaptability and positive patient outcomes. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  15. Cultural ethology as a new approach of interplanetary crew's behavior

    NASA Astrophysics Data System (ADS)

    Tafforin, Carole; Giner Abati, Francisco

    2017-10-01

    From an evolutionary perspective, during short-term and medium-term orbital flights, human beings developed new spatial and motor behaviors to compensate for the lack of terrestrial gravity. Past space ethological studies have shown adaptive strategies to the tri-dimensional environment, with the goal of optimizing relationships between the astronaut and unusual sensorial-motor conditions. During a long-term interplanetary journey, crewmembers will have to develop new individual and social behaviors to adapt, far from earth, to isolation and confinement and as a result to extreme conditions of living and working together. Recent space psychological studies pointed out that heterogeneity is a feature of interplanetary crews, based on personality, gender mixing, internationality and diversity of backgrounds. Intercultural issues could arise between space voyagers. As a new approach we propose to emphasize the behavioral strategies of human groups' adaptation to this new multicultural dimension of the environment.

  16. Magnetothermal genetic deep brain stimulation of motor behaviors in awake, freely moving mice

    PubMed Central

    Zhang, Qian; Castellanos Rubio, Idoia; del Pino, Pablo

    2017-01-01

    Establishing how neurocircuit activation causes particular behaviors requires modulating the activity of specific neurons. Here, we demonstrate that magnetothermal genetic stimulation provides tetherless deep brain activation sufficient to evoke motor behavior in awake mice. The approach uses alternating magnetic fields to heat superparamagnetic nanoparticles on the neuronal membrane. Neurons, heat-sensitized by expressing TRPV1 are activated with magnetic field application. Magnetothermal genetic stimulation in the motor cortex evoked ambulation, deep brain stimulation in the striatum caused rotation around the body-axis, and stimulation near the ridge between ventral and dorsal striatum caused freezing-of-gait. The duration of the behavior correlated tightly with field application. This approach provides genetically and spatially targetable, repeatable and temporarily precise activation of deep-brain circuits without the need for surgical implantation of any device. PMID:28826470

  17. Subcortical Contributions to Motor Speech: Phylogenetic, Developmental, Clinical.

    PubMed

    Ziegler, W; Ackermann, H

    2017-08-01

    Vocal learning is an exclusively human trait among primates. However, songbirds demonstrate behavioral features resembling human speech learning. Two circuits have a preeminent role in this human behavior; namely, the corticostriatal and the cerebrocerebellar motor loops. While the striatal contribution can be traced back to the avian anterior forebrain pathway (AFP), the sensorimotor adaptation functions of the cerebellum appear to be human specific in acoustic communication. This review contributes to an ongoing discussion on how birdsong translates into human speech. While earlier approaches were focused on higher linguistic functions, we place the motor aspects of speaking at center stage. Genetic data are brought together with clinical and developmental evidence to outline the role of cerebrocerebellar and corticostriatal interactions in human speech. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Distinct motor impairments of dopamine D1 and D2 receptor knockout mice revealed by three types of motor behavior.

    PubMed

    Nakamura, Toru; Sato, Asako; Kitsukawa, Takashi; Momiyama, Toshihiko; Yamamori, Tetsuo; Sasaoka, Toshikuni

    2014-01-01

    Both D1R and D2R knock out (KO) mice of the major dopamine receptors show significant motor impairments. However, there are some discrepant reports, which may be due to the differences in genetic background and experimental procedures. In addition, only few studies directly compared the motor performance of D1R and D2R KO mice. In this paper, we examined the behavioral difference among N10 congenic D1R and D2R KO, and wild type (WT) mice. First, we examined spontaneous motor activity in the home cage environment for consecutive 5 days. Second, we examined motor performance using the rota-rod task, a standard motor task in rodents. Third, we examined motor ability with the Step-Wheel task in which mice were trained to run in a motor-driven turning wheel adjusting their steps on foothold pegs to drink water. The results showed clear differences among the mice of three genotypes in three different types of behavior. In monitoring spontaneous motor activities, D1R and D2R KO mice showed higher and lower 24 h activities, respectively, than WT mice. In the rota-rod tasks, at a low speed, D1R KO mice showed poor performance but later improved, whereas D2R KO mice showed a good performance at early days without further improvement. When first subjected to a high speed task, the D2R KO mice showed poorer rota-rod performance at a low speed than the D1R KO mice. In the Step-Wheel task, across daily sessions, D2R KO mice increased the duration that mice run sufficiently close to the spout to drink water, and decreased time to touch the floor due to missing the peg steps and number of times the wheel was stopped, which performance was much better than that of D1R KO mice. These incongruent results between the two tasks for D1R and D2R KO mice may be due to the differences in the motivation for the rota-rod and Step-Wheel tasks, aversion- and reward-driven, respectively. The Step-Wheel system may become a useful tool for assessing the motor ability of WT and mutant mice.

  19. Plasticity in One Hemisphere, Control From Two: Adaptation in Descending Motor Pathways After Unilateral Corticospinal Injury in Neonatal Rats

    PubMed Central

    Wen, Tong-Chun; Lall, Sophia; Pagnotta, Corey; Markward, James; Gupta, Disha; Ratnadurai-Giridharan, Shivakeshavan; Bucci, Jacqueline; Greenwald, Lucy; Klugman, Madelyne; Hill, N. Jeremy; Carmel, Jason B.

    2018-01-01

    After injury to the corticospinal tract (CST) in early development there is large-scale adaptation of descending motor pathways. Some studies suggest the uninjured hemisphere controls the impaired forelimb, while others suggest that the injured hemisphere does; these pathways have never been compared directly. We tested the contribution of each motor cortex to the recovery forelimb function after neonatal injury of the CST. We cut the left pyramid (pyramidotomy) of postnatal day 7 rats, which caused a measurable impairment of the right forelimb. We used pharmacological inactivation of each motor cortex to test its contribution to a skilled reach and supination task. Rats with neonatal pyramidotomy were further impaired by inactivation of motor cortex in both the injured and the uninjured hemispheres, while the forelimb of uninjured rats was impaired only from the contralateral motor cortex. Thus, inactivation demonstrated motor control from each motor cortex. In contrast, physiological and anatomical interrogation of these pathways support adaptations only in the uninjured hemisphere. Intracortical microstimulation of motor cortex in the uninjured hemisphere of rats with neonatal pyramidotomy produced responses from both forelimbs, while stimulation of the injured hemisphere did not elicit responses from either forelimb. Both anterograde and retrograde tracers were used to label corticofugal pathways. There was no increased plasticity from the injured hemisphere, either from cortex to the red nucleus or the red nucleus to the spinal cord. In contrast, there were very strong CST connections to both halves of the spinal cord from the uninjured motor cortex. Retrograde tracing produced maps of each forelimb within the uninjured hemisphere, and these were partly segregated. This suggests that the uninjured hemisphere may encode separate control of the unimpaired and the impaired forelimbs of rats with neonatal pyramidotomy. PMID:29706871

  20. Plasticity in One Hemisphere, Control From Two: Adaptation in Descending Motor Pathways After Unilateral Corticospinal Injury in Neonatal Rats.

    PubMed

    Wen, Tong-Chun; Lall, Sophia; Pagnotta, Corey; Markward, James; Gupta, Disha; Ratnadurai-Giridharan, Shivakeshavan; Bucci, Jacqueline; Greenwald, Lucy; Klugman, Madelyne; Hill, N Jeremy; Carmel, Jason B

    2018-01-01

    After injury to the corticospinal tract (CST) in early development there is large-scale adaptation of descending motor pathways. Some studies suggest the uninjured hemisphere controls the impaired forelimb, while others suggest that the injured hemisphere does; these pathways have never been compared directly. We tested the contribution of each motor cortex to the recovery forelimb function after neonatal injury of the CST. We cut the left pyramid (pyramidotomy) of postnatal day 7 rats, which caused a measurable impairment of the right forelimb. We used pharmacological inactivation of each motor cortex to test its contribution to a skilled reach and supination task. Rats with neonatal pyramidotomy were further impaired by inactivation of motor cortex in both the injured and the uninjured hemispheres, while the forelimb of uninjured rats was impaired only from the contralateral motor cortex. Thus, inactivation demonstrated motor control from each motor cortex. In contrast, physiological and anatomical interrogation of these pathways support adaptations only in the uninjured hemisphere. Intracortical microstimulation of motor cortex in the uninjured hemisphere of rats with neonatal pyramidotomy produced responses from both forelimbs, while stimulation of the injured hemisphere did not elicit responses from either forelimb. Both anterograde and retrograde tracers were used to label corticofugal pathways. There was no increased plasticity from the injured hemisphere, either from cortex to the red nucleus or the red nucleus to the spinal cord. In contrast, there were very strong CST connections to both halves of the spinal cord from the uninjured motor cortex. Retrograde tracing produced maps of each forelimb within the uninjured hemisphere, and these were partly segregated. This suggests that the uninjured hemisphere may encode separate control of the unimpaired and the impaired forelimbs of rats with neonatal pyramidotomy.

  1. Computational model for behavior shaping as an adaptive health intervention strategy.

    PubMed

    Berardi, Vincent; Carretero-González, Ricardo; Klepeis, Neil E; Ghanipoor Machiani, Sahar; Jahangiri, Arash; Bellettiere, John; Hovell, Melbourne

    2018-03-01

    Adaptive behavioral interventions that automatically adjust in real-time to participants' changing behavior, environmental contexts, and individual history are becoming more feasible as the use of real-time sensing technology expands. This development is expected to improve shortcomings associated with traditional behavioral interventions, such as the reliance on imprecise intervention procedures and limited/short-lived effects. JITAI adaptation strategies often lack a theoretical foundation. Increasing the theoretical fidelity of a trial has been shown to increase effectiveness. This research explores the use of shaping, a well-known process from behavioral theory for engendering or maintaining a target behavior, as a JITAI adaptation strategy. A computational model of behavior dynamics and operant conditioning was modified to incorporate the construct of behavior shaping by adding the ability to vary, over time, the range of behaviors that were reinforced when emitted. Digital experiments were performed with this updated model for a range of parameters in order to identify the behavior shaping features that optimally generated target behavior. Narrowing the range of reinforced behaviors continuously in time led to better outcomes compared with a discrete narrowing of the reinforcement window. Rapid narrowing followed by more moderate decreases in window size was more effective in generating target behavior than the inverse scenario. The computational shaping model represents an effective tool for investigating JITAI adaptation strategies. Model parameters must now be translated from the digital domain to real-world experiments so that model findings can be validated.

  2. The advantage of flexible neuronal tunings in neural network models for motor learning

    PubMed Central

    Marongelli, Ellisha N.; Thoroughman, Kurt A.

    2013-01-01

    Human motor adaptation to novel environments is often modeled by a basis function network that transforms desired movement properties into estimated forces. This network employs a layer of nodes that have fixed broad tunings that generalize across the input domain. Learning is achieved by updating the weights of these nodes in response to training experience. This conventional model is unable to account for rapid flexibility observed in human spatial generalization during motor adaptation. However, added plasticity in the widths of the basis function tunings can achieve this flexibility, and several neurophysiological experiments have revealed flexibility in tunings of sensorimotor neurons. We found a model, Locally Weighted Projection Regression (LWPR), which uniquely possesses the structure of a basis function network in which both the weights and tuning widths of the nodes are updated incrementally during adaptation. We presented this LWPR model with training functions of different spatial complexities and monitored incremental updates to receptive field widths. An inverse pattern of dependence of receptive field adaptation on experienced error became evident, underlying both a relationship between generalization and complexity, and a unique behavior in which generalization always narrows after a sudden switch in environmental complexity. These results implicate a model that is flexible in both basis function widths and weights, like LWPR, as a viable alternative model for human motor adaptation that can account for previously observed plasticity in spatial generalization. This theory can be tested by using the behaviors observed in our experiments as novel hypotheses in human studies. PMID:23888141

  3. Motor unit recruitment strategies are altered during deep-tissue pain.

    PubMed

    Tucker, Kylie; Butler, Jane; Graven-Nielsen, Thomas; Riek, Stephan; Hodges, Paul

    2009-09-02

    Muscle pain is associated with decreased motor unit discharge rate during constant force contractions. As discharge rate is a determinant of force, other adaptations in strategy must explain force maintenance during pain. Our aim was to determine whether motor unit recruitment strategies are altered during pain to maintain force despite reduced discharge rate. Motor unit discharge behavior was recorded in two muscles, one with (quadriceps) and one without [flexor pollicis longus (FPL)] synergists. Motor units were recruited during matched low-force contractions with and without experimentally induced pain, and at higher force without pain. A total of 52 and 34 units were recorded in quadriceps and FPL, respectively, during low-force contractions with and without pain. Of these, 20 quadriceps and 9 FPL units were identified during both trials. The discharge rate of these units reduced during pain in both muscles [quadriceps: 8.7 (1.5) to 7.5 (1.3) Hz, p < 0.001; FPL: 11.9 (1.5) to 10.0 (1.7) Hz, p < 0.001]. All remaining units discharged only with or without pain, but not in both conditions. Only one-third of the additional units recruited during pain (quadriceps n = 7/19, FPL n = 3/15) were those expected given orderly recruitment of the motor unit pool as determined during higher-force contractions. We conclude that reduced motor unit discharge rate with pain is accompanied by changes in the population of units used to maintain force. The recruitment of new units is partly inconsistent with generalized inhibition of the motoneuron pool predicted by the "pain adaptation" theory, and provides the basis for a new mechanism of motor adaptation with pain.

  4. Behavioral ecology of captive species: using behavioral adaptations to assess and enhance welfare of nonhuman zoo animals.

    PubMed

    Koene, Paul

    2013-01-01

    This project aimed to estimate a species' adaptations in nature and in captivity, assess welfare, suggest environmental changes, and find species characteristics that underlie welfare problems in nonhuman animals in the zoo. First, the current status of zoo animal welfare assessment was reviewed, and the behavioral ecology approach was outlined. In this approach, databases of species characteristics were developed using (a) literature of natural behavior and (b) captive behavior. Species characteristics were grouped in 8 functional behavioral ecological fitness-related categories: space, time, metabolic, safety, reproductive, comfort, social, and information adaptations. Assessments of the strength of behavioral adaptations in relation to environmental demands were made based on the results available from the literature. The databases with literature at the species level were coupled with databases of (c) behavioral observations and (d) welfare assessments under captive conditions. Observation and welfare assessment methods were adapted from the animal on the farm realm and applied to zoo species. It was expected that the comparison of the repertoire of behaviors in natural and captive environments would highlight welfare problems, provide solutions to welfare problems by environmental changes, and identify species characteristics underlying zoo animal welfare problems.

  5. Motion makes sense: an adaptive motor-sensory strategy underlies the perception of object location in rats.

    PubMed

    Saraf-Sinik, Inbar; Assa, Eldad; Ahissar, Ehud

    2015-06-10

    Tactile perception is obtained by coordinated motor-sensory processes. We studied the processes underlying the perception of object location in freely moving rats. We trained rats to identify the relative location of two vertical poles placed in front of them and measured at high resolution the motor and sensory variables (19 and 2 variables, respectively) associated with this whiskers-based perceptual process. We found that the rats developed stereotypic head and whisker movements to solve this task, in a manner that can be described by several distinct behavioral phases. During two of these phases, the rats' whiskers coded object position by first temporal and then angular coding schemes. We then introduced wind (in two opposite directions) and remeasured their perceptual performance and motor-sensory variables. Our rats continued to perceive object location in a consistent manner under wind perturbations while maintaining all behavioral phases and relatively constant sensory coding. Constant sensory coding was achieved by keeping one group of motor variables (the "controlled variables") constant, despite the perturbing wind, at the cost of strongly modulating another group of motor variables (the "modulated variables"). The controlled variables included coding-relevant variables, such as head azimuth and whisker velocity. These results indicate that consistent perception of location in the rat is obtained actively, via a selective control of perception-relevant motor variables. Copyright © 2015 the authors 0270-6474/15/358777-13$15.00/0.

  6. Investigation of Perceptual-Motor Behavior Across the Expert Athlete to Disabled Patient Skill Continuum can Advance Theory and Practical Application.

    PubMed

    Müller, Sean; Vallence, Ann-Maree; Winstein, Carolee

    2017-12-14

    A framework is presented of how theoretical predictions can be tested across the expert athlete to disabled patient skill continuum. Common-coding theory is used as the exemplar to discuss sensory and motor system contributions to perceptual-motor behavior. Behavioral and neural studies investigating expert athletes and patients recovering from cerebral stroke are reviewed. They provide evidence of bi-directional contributions of visual and motor systems to perceptual-motor behavior. Majority of this research is focused on perceptual-motor performance or learning, with less on transfer. The field is ripe for research designed to test theoretical predictions across the expert athlete to disabled patient skill continuum. Our view has implications for theory and practice in sports science, physical education, and rehabilitation.

  7. Risky behaviors associated with pediatric pedestrians and bicyclists struck by motor vehicles.

    PubMed

    Glass, Nina E; Frangos, Spiros G; Simon, Ronald J; Bholat, Omar S; Todd, S Rob; Wilson, Chad; Jacko, Sally; Slaughter, Dekeya; Foltin, George; Levine, Deborah A

    2014-06-01

    Road safety constitutes a crisis with important health and economic impacts. In 2010, 11,000 pedestrians and 3500 bicyclists were injured by motor vehicles in New York City (NYC). Motor vehicle injuries represent the second leading cause of injury-related deaths in NYC children aged 5 to 14 years. To better target injury prevention strategies, we evaluated demographics, behaviors, environmental factors, injuries, and outcomes of pediatric pedestrians and bicyclists struck by motor vehicles in NYC. Pediatric data were extracted from a prospectively collected database of pedestrians and bicyclists struck by motor vehicles and treated at a level I regional trauma center between December 2008 and June 2011. Patients, guardians, and first responders were interviewed and medical records were reviewed. Institutional review board approval was granted and verbal consent was obtained. Of the 1457 patients, 168 (12%) were younger than 18 years. Compared with injured adults, children were more likely to be in male sex (69% vs 53%), to have minor injuries (83% vs 73% for injury severity scores of <9), and to be discharged without admission (69% vs 67%). Midblock crossings were more common in children pedestrians than in adults (37% vs 19%), often despite supervision (48%). Electronic device use among teenagers aged 13 to 17 years was nearly 3 times that of adults (28% vs 11%). Risky behaviors are common among pediatric pedestrians and bicyclists injured by motor vehicles. Road safety education and prevention strategies must stress compliance with traffic laws, readdress the importance of supervision, and reinforce avoidance of common distractors including electronic devices.

  8. Relations of Preschoolers’ Visual Motor and Object Manipulation Skills with Executive Function and Social Behavior

    PubMed Central

    MacDonald, Megan; Lipscomb, Shannon; McClelland, Megan M.; Duncan, Rob; Becker, Derek; Anderson, Kim; Kile, Molly

    2017-01-01

    Purpose The purpose was to examine specific linkages between early visual-motor integration skills and executive function, as well as between early object manipulation skills and social behaviors in the classroom over the preschool year. Method 92 children between the ages of 3–5 years old (mean age 4.31 years) were recruited to participate. Comprehensive measures of visual motor integration skills, object manipulation skills, executive function and social behaviors were administered in the fall and spring of the preschool year. Results Our findings indicated that children who had better visual-motor integration skills in the fall had better executive function scores, (B = .47 [.20], p < .05, β = .27) in the spring of the preschool year after controlling for age, gender, Head-Start status, and site location, but not after controlling for children’s baseline levels of executive function. In addition, children who demonstrated better object-manipulation skills in the fall showed significantly stronger social behavior in their classrooms (as rated by teachers) in the spring, including more self-control, (B −.03 [.00], p < .05, β = .40), more cooperation, (B = .02 [.01], p < .05, β = .28), and less externalizing/hyperactivity, (B = −.02 [.01], p < .05, β = −.28) after controlling for social behavior in the fall and other covariates. Conclusion Children’s visual motor integration and object manipulation skills in the fall have modest to moderate relations with executive function and social behaviors later in the preschool year. These findings have implications for early learning initiatives and school readiness. PMID:27732149

  9. Behavioral Prescription Guide. Manual IIb: Motor. Parent/Child Home Stimulation 'The Marshalltown Project.'

    ERIC Educational Resources Information Center

    Keiser, Arlene F.; And Others

    Presented is the Marshalltown Behavioral Prescription Guide for motor development which consists of incremental behavioral objectives and strategies to aid parents in the prescriptive teaching of handicapped and culturally deprived infants and preschool children. The guide is intended for use prior to a weekly home visit resulting in a weekly…

  10. Panel V: Adaptive Health Behaviors Among Ethnic Minorities

    PubMed Central

    Bagley, Shirley P.; Angel, Ronald; Dilworth-Anderson, Peggye; Liu, William; Schinke, Steven

    2006-01-01

    Race, ethnicity, and cultural attitudes and practices are among the variables that influence health behaviors, including adaptive health behaviors. The following discussions highlight the important role of social conditions in shaping health behaviors and the central role of family in promoting health across the Asian, Hispanic, Native American, and African American ethnic groups. Factors that may lead to health-damaging behaviors are also discussed. The need for additional research that identifies correlations among physiological, social, and behavioral factors and health behaviors, as well as underlying mechanisms, is called for. PMID:8654341

  11. Multi-optimization Criteria-based Robot Behavioral Adaptability and Motion Planning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pin, Francois G.

    2002-06-01

    Robotic tasks are typically defined in Task Space (e.g., the 3-D World), whereas robots are controlled in Joint Space (motors). The transformation from Task Space to Joint Space must consider the task objectives (e.g., high precision, strength optimization, torque optimization), the task constraints (e.g., obstacles, joint limits, non-holonomic constraints, contact or tool task constraints), and the robot kinematics configuration (e.g., tools, type of joints, mobile platform, manipulator, modular additions, locked joints). Commercially available robots are optimized for a specific set of tasks, objectives and constraints and, therefore, their control codes are extremely specific to a particular set of conditions. Thus,more » there exist a multiplicity of codes, each handling a particular set of conditions, but none suitable for use on robots with widely varying tasks, objectives, constraints, or environments. On the other hand, most DOE missions and tasks are typically ''batches of one''. Attempting to use commercial codes for such work requires significant personnel and schedule costs for re-programming or adding code to the robots whenever a change in task objective, robot configuration, number and type of constraint, etc. occurs. The objective of our project is to develop a ''generic code'' to implement this Task-space to Joint-Space transformation that would allow robot behavior adaptation, in real time (at loop rate), to changes in task objectives, number and type of constraints, modes of controls, kinematics configuration (e.g., new tools, added module). Our specific goal is to develop a single code for the general solution of under-specified systems of algebraic equations that is suitable for solving the inverse kinematics of robots, is useable for all types of robots (mobile robots, manipulators, mobile manipulators, etc.) with no limitation on the number of joints and the number of controlled Task-Space variables, can adapt to real time changes in number

  12. Adaptive Effects on Locomotion Performance Following Exposure to a Rotating Virtual Environment

    NASA Technical Reports Server (NTRS)

    Mulavara, A. P.; Richards, J. T.; Marshburn, A. M.; Bucello, R.; Bloomberg, J. J.

    2003-01-01

    During long-duration spaceflight, astronauts experience alterations in vestibular and somatosensory cues that result in adaptive disturbances in balance and coordination upon return to Earth. These changes can pose a risk to crew safety and to mission objectives if nominal or emergency vehicle egress is required immediately following long-duration spaceflight. At present, no operational countermeasure is available to mitigate the adaptive sensorimotor component underlying the locomotor disturbances that occur after spaceflight. Therefore, the goal of this study is to develop an inflight training regimen that facilitates recovery of locomotor function after long-duration spaceflight. The countermeasure we are proposing is based on the concept of adaptive generalization. During this type of training the subject gains experience producing the appropriate adaptive motor behavior under a variety of sensory conditions and response constraints. As a result of this training a subject learns to solve a class of motor problems, rather than a specific motor solution to one problem, i.e., the subject learns response generalizability or the ability to "learn to learn." under a variety of environmental constraints. We are developing an inflight countermeasure built around treadmill exercise activities. By manipulating the sensory conditions of exercise by varying visual flow patterns, body load and speed we will systematically and repeatedly promote adaptive change in locomotor behavior. It has been shown that variable practice training increases adaptability to novel visuo-motor situations. While walking over ground in a stereoscopic virtual environment that oscillated in roll, subjects have shown compensatory torso rotation in the direction of scene rotation that resulted in positional variation away from a desired linear path. Thus, postural sway and locomotor stability in 1-g can be modulated by visual flow patterns and used during inflight treadmill training to promote

  13. Cathodal Transcranial Direct Current Stimulation (tDCS) to the Right Cerebellar Hemisphere Affects Motor Adaptation During Gait.

    PubMed

    Fernandez, Lara; Albein-Urios, Natalia; Kirkovski, Melissa; McGinley, Jennifer L; Murphy, Anna T; Hyde, Christian; Stokes, Mark A; Rinehart, Nicole J; Enticott, Peter G

    2017-02-01

    The cerebellum appears to play a key role in the development of internal rules that allow fast, predictive adjustments to novel stimuli. This is crucial for adaptive motor processes, such as those involved in walking, where cerebellar dysfunction has been found to increase variability in gait parameters. Motor adaptation is a process that results in a progressive reduction in errors as movements are adjusted to meet demands, and within the cerebellum, this seems to be localised primarily within the right hemisphere. To examine the role of the right cerebellar hemisphere in adaptive gait, cathodal transcranial direct current stimulation (tDCS) was administered to the right cerebellar hemisphere of 14 healthy adults in a randomised, double-blind, crossover study. Adaptation to a series of distinct spatial and temporal templates was assessed across tDCS condition via a pressure-sensitive gait mat (ProtoKinetics Zeno walkway), on which participants walked with an induced 'limp' at a non-preferred pace. Variability was assessed across key spatial-temporal gait parameters. It was hypothesised that cathodal tDCS to the right cerebellar hemisphere would disrupt adaptation to the templates, reflected in a failure to reduce variability following stimulation. In partial support, adaptation was disrupted following tDCS on one of the four spatial-temporal templates used. However, there was no evidence for general effects on either the spatial or temporal domain. This suggests, under specific conditions, a coupling of spatial and temporal processing in the right cerebellar hemisphere and highlights the potential importance of task complexity in cerebellar function.

  14. Effectiveness of a Fundamental Motor Skill Intervention for 4-Year-Old Children with Autism Spectrum Disorder: A Pilot Study

    ERIC Educational Resources Information Center

    Bremer, Emily; Balogh, Robert; Lloyd, Meghann

    2015-01-01

    A wait-list control experimental design was employed to investigate the effectiveness of a fundamental motor skill intervention at improving the motor skills, adaptive behavior, and social skills of 4-year-old children with autism spectrum disorder (experimental n?=?5, control n?=?4); the impact of intervention intensity was also explored. The…

  15. Distinct motor impairments of dopamine D1 and D2 receptor knockout mice revealed by three types of motor behavior

    PubMed Central

    Nakamura, Toru; Sato, Asako; Kitsukawa, Takashi; Momiyama, Toshihiko; Yamamori, Tetsuo; Sasaoka, Toshikuni

    2014-01-01

    Both D1R and D2R knock out (KO) mice of the major dopamine receptors show significant motor impairments. However, there are some discrepant reports, which may be due to the differences in genetic background and experimental procedures. In addition, only few studies directly compared the motor performance of D1R and D2R KO mice. In this paper, we examined the behavioral difference among N10 congenic D1R and D2R KO, and wild type (WT) mice. First, we examined spontaneous motor activity in the home cage environment for consecutive 5 days. Second, we examined motor performance using the rota-rod task, a standard motor task in rodents. Third, we examined motor ability with the Step-Wheel task in which mice were trained to run in a motor-driven turning wheel adjusting their steps on foothold pegs to drink water. The results showed clear differences among the mice of three genotypes in three different types of behavior. In monitoring spontaneous motor activities, D1R and D2R KO mice showed higher and lower 24 h activities, respectively, than WT mice. In the rota-rod tasks, at a low speed, D1R KO mice showed poor performance but later improved, whereas D2R KO mice showed a good performance at early days without further improvement. When first subjected to a high speed task, the D2R KO mice showed poorer rota-rod performance at a low speed than the D1R KO mice. In the Step-Wheel task, across daily sessions, D2R KO mice increased the duration that mice run sufficiently close to the spout to drink water, and decreased time to touch the floor due to missing the peg steps and number of times the wheel was stopped, which performance was much better than that of D1R KO mice. These incongruent results between the two tasks for D1R and D2R KO mice may be due to the differences in the motivation for the rota-rod and Step-Wheel tasks, aversion- and reward-driven, respectively. The Step-Wheel system may become a useful tool for assessing the motor ability of WT and mutant mice. PMID

  16. Variable practice with lenses improves visuo-motor plasticity

    NASA Technical Reports Server (NTRS)

    Roller, C. A.; Cohen, H. S.; Kimball, K. T.; Bloomberg, J. J.

    2001-01-01

    Novel sensorimotor situations present a unique challenge to an individual's adaptive ability. Using the simple and easily measured paradigm of visual-motor rearrangement created by the use of visual displacement lenses, we sought to determine whether an individual's ability to adapt to visuo-motor discordance could be improved through training. Subjects threw small balls at a stationary target during a 3-week practice regimen involving repeated exposure to one set of lenses in block practice (x 2.0 magnifying lenses), multiple sets of lenses in variable practice (x 2.0 magnifying, x 0.5 minifying and up-down reversing lenses) or sham lenses. At the end of training, adaptation to a novel visuo-motor situation (20-degree right shift lenses) was tested. We found that (1) training with variable practice can increase adaptability to a novel visuo-motor situation, (2) increased adaptability is retained for at least 1 month and is transferable to further novel visuo-motor permutations and (3) variable practice improves performance of a simple motor task even in the undisturbed state. These results have implications for the design of clinical rehabilitation programs and countermeasures to enhance astronaut adaptability, facilitating adaptive transitions between gravitational environments.

  17. Self-reported risk-taking behaviors and hospitalization for motor vehicle injury among active duty army personnel.

    PubMed

    Bell, N S; Amoroso, P J; Yore, M M; Smith, G S; Jones, B H

    2000-04-01

    Motor vehicle crashes are a leading cause of injury in the Army. Behaviors increasing risk for motor vehicle crashes are also prevalent, but research has not linked these behaviors directly to injury outcomes (e.g., hospitalizations). To evaluate the relationship between behavior and motor vehicle crash injuries, 99, 981 Army personnel who completed Health Risk Appraisal surveys in 1992 were followed for up to 6 years. Cox proportional hazards modeling was used to evaluate speeding, seat belt use, drinking patterns, and demographics. A total of 429 soldiers were hospitalized for motor vehicle injury. Unadjusted analyses revealed that heavy drinking, drinking and driving, speeding, low seat belt use, younger age, minority race/ethnicity, and enlisted rank were significantly associated with motor vehicle injury, but neither smoking nor gender was. Multivariate models showed a significant trend of increasing injury risk with younger ages. Soldiers under age 21 were injured almost five times more often than those over age 40 (HR 4.89, 2.56-9.33). Also associated with risk for hospitalizations were minority race (HR 1.78, 1.46-2.18), heaviest drinkers versus abstainers (HR 1.81, 1.11-2.94), and seat belt use of 50% or less versus 100% (HR 1.40, 1.07-1.85). Although nonsignificant, there was evidence of an age-drinking interaction where the difference in injury risk between those older and those younger than 21 was greatest at low alcohol consumption levels. Modifiable risk factors associated with motor vehicle injuries include heavy drinking and low seat belt use. Programs targeting these behaviors that meet the needs of young and minority soldiers are needed. The high density of young, at-risk soldiers residing in base housing may provide a unique opportunity for a residential intervention program.

  18. The Relation Between Intellectual Functioning and Adaptive Behavior in the Diagnosis of Intellectual Disability.

    PubMed

    Tassé, Marc J; Luckasson, Ruth; Schalock, Robert L

    2016-12-01

    Intellectual disability originates during the developmental period and is characterized by significant limitations both in intellectual functioning and in adaptive behavior as expressed in conceptual, social, and practical adaptive skills. In this article, we present a brief history of the diagnostic criteria of intellectual disability for both the DSM-5 and AAIDD. The article also (a) provides an update of the understanding of adaptive behavior, (b) dispels two thinking errors regarding mistaken temporal or causal link between intellectual functioning and adaptive behavior, (c) explains that there is a strong correlational, but no causative, relation between intellectual functioning and adaptive behavior, and (d) asserts that once a question of determining intellectual disability is raised, both intellectual functioning and adaptive behavior are assessed and considered jointly and weighed equally in the diagnosis of intellectual disability. We discuss the problems created by an inaccurate statement that appears in the DSM-5 regarding a causal link between deficits in intellectual functioning and adaptive behavior and propose an immediate revision to remove this erroneous and confounding statement.

  19. Adaptive Behavior of Primary School Students with Visual Impairments: The Impact of Educational Settings

    ERIC Educational Resources Information Center

    Metsiou, Katerina; Papadopoulos, Konstantinos; Agaliotis, Ioannis

    2011-01-01

    This study explored the adaptive behavior of primary school students with visual impairments, as well as the impact of educational setting on their adaptive behavior. Instrumentation included an informal questionnaire and the Vineland Adaptive Behavior Scales. Participants were 36 primary school students with visual impairments. The educational…

  20. A novel adaptive control method for induction motor based on Backstepping approach using dSpace DS 1104 control board

    NASA Astrophysics Data System (ADS)

    Ben Regaya, Chiheb; Farhani, Fethi; Zaafouri, Abderrahmen; Chaari, Abdelkader

    2018-02-01

    This paper presents a new adaptive Backstepping technique to handle the induction motor (IM) rotor resistance tracking problem. The proposed solution leads to improve the robustness of the control system. Given the presence of static error when estimating the rotor resistance with classical methods, and the sensitivity to the load torque variation at low speed, a new Backstepping observer enhanced with an integral action of the tracking errors is presented, which can be established in two steps. The first one consists to estimate the rotor flux using a Backstepping observer. The second step, defines the adaptation mechanism of the rotor resistance based on the estimated rotor-flux. The asymptotic stability of the observer is proven by Lyapunov theory. To validate the proposed solution, a simulation and experimental benchmarking of a 3 kW induction motor are presented and analyzed. The obtained results show the effectiveness of the proposed solution compared to the model reference adaptive system (MRAS) rotor resistance observer presented in other recent works.

  1. Cultural Adaptations of Behavioral Health Interventions: A Progress Report

    PubMed Central

    Barrera, Manuel

    2014-01-01

    Objective To reduce health disparities, behavioral health interventions must reach subcultural groups and demonstrate effectiveness in improving their health behaviors and outcomes. One approach to developing such health interventions is to culturally adapt original evidence-based interventions. The goals of the paper are to (a) describe consensus on the stages involved in developing cultural adaptations, (b) identify common elements in cultural adaptations, (c) examine evidence on the effectiveness of culturally enhanced interventions for various health conditions, and (d) pose questions for future research. Method Influential literature from the past decade was examined to identify points of consensus. Results There is agreement that cultural adaptation can be organized into five stages: information gathering, preliminary design, preliminary testing, refinement, and final trial. With few exceptions, reviews of several health conditions (e.g., AIDS, asthma, diabetes) concluded that culturally enhanced interventions are more effective in improving health outcomes than usual care or other control conditions. Conclusion Progress has been made in establishing methods for conducting cultural adaptations and providing evidence of their effectiveness. Future research should include evaluations of cultural adaptations developed in stages, tests to determine the effectiveness of cultural adaptations relative to the original versions, and studies that advance our understanding of cultural constructs’ contributions to intervention engagement and efficacy. PMID:22289132

  2. Relations of Preschoolers' Visual-Motor and Object Manipulation Skills With Executive Function and Social Behavior.

    PubMed

    MacDonald, Megan; Lipscomb, Shannon; McClelland, Megan M; Duncan, Rob; Becker, Derek; Anderson, Kim; Kile, Molly

    2016-12-01

    The purpose of this article was to examine specific linkages between early visual-motor integration skills and executive function, as well as between early object manipulation skills and social behaviors in the classroom during the preschool year. Ninety-two children aged 3 to 5 years old (M age  = 4.31 years) were recruited to participate. Comprehensive measures of visual-motor integration skills, object manipulation skills, executive function, and social behaviors were administered in the fall and spring of the preschool year. Our findings indicated that children who had better visual-motor integration skills in the fall had better executive function scores (B = 0.47 [0.20], p < .05, β = .27) in the spring of the preschool year after controlling for age, gender, Head Start status, and site location, but not after controlling for children's baseline levels of executive function. In addition, children who demonstrated better object manipulation skills in the fall showed significantly stronger social behavior in their classrooms (as rated by teachers) in the spring, including more self-control (B - 0.03 [0.00], p < .05, β = .40), more cooperation (B = 0.02 [0.01], p < .05, β = .28), and less externalizing/hyperactivity (B = - 0.02 [0.01], p < .05, β = - .28) after controlling for social behavior in the fall and other covariates. Children's visual-motor integration and object manipulation skills in the fall have modest to moderate relations with executive function and social behaviors later in the preschool year. These findings have implications for early learning initiatives and school readiness.

  3. Between-Trial Forgetting Due to Interference and Time in Motor Adaptation.

    PubMed

    Kim, Sungshin; Oh, Youngmin; Schweighofer, Nicolas

    2015-01-01

    Learning a motor task with temporally spaced presentations or with other tasks intermixed between presentations reduces performance during training, but can enhance retention post training. These two effects are known as the spacing and contextual interference effect, respectively. Here, we aimed at testing a unifying hypothesis of the spacing and contextual interference effects in visuomotor adaptation, according to which forgetting between trials due to either spaced presentations or interference by another task will promote between-trial forgetting, which will depress performance during acquisition, but will promote retention. We first performed an experiment with three visuomotor adaptation conditions: a short inter-trial-interval (ITI) condition (SHORT-ITI); a long ITI condition (LONG-ITI); and an alternating condition with two alternated opposite tasks (ALT), with the same single-task ITI as in LONG-ITI. In the SHORT-ITI condition, there was fastest increase in performance during training and largest immediate forgetting in the retention tests. In contrast, in the ALT condition, there was slowest increase in performance during training and little immediate forgetting in the retention tests. Compared to these two conditions, in the LONG-ITI, we found intermediate increase in performance during training and intermediate immediate forgetting. To account for these results, we fitted to the data six possible adaptation models with one or two time scales, and with interference in the fast, or in the slow, or in both time scales. Model comparison confirmed that two time scales and some degree of interferences in either time scale are needed to account for our experimental results. In summary, our results suggest that retention following adaptation is modulated by the degree of between-trial forgetting, which is due to time-based decay in single adaptation task and interferences in multiple adaptation tasks.

  4. Exploring the Structure of Adaptive Behavior: Project Report Number 87-1.

    ERIC Educational Resources Information Center

    Bruininks, Robert H.; McGrew, Kevin

    This report presents results from three research studies that were designed to explore both the definition and the structure of the adaptive behavior construct. The first study investigated the structure of adaptive behavior as a function of age, developmental level, and type of handicap through an exploratory factor analysis of both the…

  5. Efficacy of parent-delivered behavioral therapy for primary complex motor stereotypies.

    PubMed

    Specht, Matthew W; Mahone, E Mark; Kline, Tina; Waranch, Richard; Brabson, Laurel; Thompson, Carol B; Singer, Harvey S

    2017-02-01

    Primary complex motor stereotypies (CMS) are persistent, patterned, repetitive, rhythmic movements in young people with typical development. This study evaluated the efficacy of an instructional DVD as a home-based, parent-administered, behavioral therapy for primary CMS. Eighty-one children with primary CMS were enrolled. Primary outcome measures included the Stereotypy Severity Scale (SSS) - Motor and Impairment scores, and Stereotypy Linear Analog Scale (SLAS). Mean CMS onset was 13.4 months (SD 13.1). Eligibility required observed CMS. Psychiatric disorders were not exclusionary and a stable medication regimen was required. Intellectual disability, neurological disorder, autism spectrum disorder, and tics were exclusionary. Initial assessments were completed via REDCap before receipt of the DVD. Fifty-four of the 81 children (34 male, 20 female; mean age 8y 2mo, SD 1.42, range 7-14y) completed assessments at 1, 2, or 3 months after receiving the DVD. Reductions (baseline to last assessment) in SSS Motor, SSS Impairment, and SLAS scores (all p<0.001) represented change ratios of -15%, -24%, and a -20% respectively. Greatest relative treatment benefit was observed by younger children (ages 7-8y), and by 1 month after receipt of DVD, while a parent global assessment scale showed progressive improvement throughout the study. An instructional DVD for parent-delivered behavioral therapy was a safe, effective intervention for primary CMS. © 2016 Mac Keith Press.

  6. A Decision-Theoretic Examination of the Usefulness of Two Motor Performance Tests in Identifying Children for Assignment to Adapted Physical Education.

    ERIC Educational Resources Information Center

    King, Harry A.; Aufsesser, Peter M.

    Data from administration of the Bruininks-Oseretsky Test of Motor Proficiency and the Cornish Test of Motor Planning were taken on 120 children (5-13 years old), 60 of whom had been classified learning disabled (LD). Thirty of the LD Ss had been assigned to adapted physical education. The study sought to do two things: (1) determine whether the…

  7. Sensory motor remapping of space in human–machine interfaces

    PubMed Central

    Mussa-Ivaldi, Ferdinando A.; Casadio, Maura; Danziger, Zachary C.; Mosier, Kristine M.; Scheidt, Robert A.

    2012-01-01

    Studies of adaptation to patterns of deterministic forces have revealed the ability of the motor control system to form and use predictive representations of the environment. These studies have also pointed out that adaptation to novel dynamics is aimed at preserving the trajectories of a controlled endpoint, either the hand of a subject or a transported object. We review some of these experiments and present more recent studies aimed at understanding how the motor system forms representations of the physical space in which actions take place. An extensive line of investigations in visual information processing has dealt with the issue of how the Euclidean properties of space are recovered from visual signals that do not appear to possess these properties. The same question is addressed here in the context of motor behavior and motor learning by observing how people remap hand gestures and body motions that control the state of an external device. We present some theoretical considerations and experimental evidence about the ability of the nervous system to create novel patterns of coordination that are consistent with the representation of extrapersonal space. We also discuss the perspective of endowing human–machine interfaces with learning algorithms that, combined with human learning, may facilitate the control of powered wheelchairs and other assistive devices. PMID:21741543

  8. The role of urgency, frequency, and nocturia in defining overactive bladder adaptive behavior.

    PubMed

    Minassian, Vatche; Stewart, Walter; Hirsch, Annemarie; Kolodner, Ken; Fitzgerald, Mary; Burgio, Kathryn; Cundiff, Geoffrey; Blaivas, Jerry; Newman, Diane; Dilley, Anne

    2011-03-01

    To determine the relation between urgency alone, or in combination with frequency and nocturia, and adaptive behavior in overactive bladder (OAB) syndrome. We used survey data from the General Longitudinal Overactive Bladder Evaluation (GLOBE) of primary care patients over 40. Participants (n=2,752: 1,557 females; 1,195 males) completed the same survey at two time points, 6 months apart. Questions assessed OAB symptoms and adaptive behavior. We estimated correlation coefficients (R(2)) between urgency, frequency, and nocturia symptom scores (alone and in combination) and adaptive behavior measures at baseline and change in symptom scores and behavioral measures from baseline to 6 months. At baseline, urgency was the dominant predictor of all behavioral measures for females (R(2)=0.19-0.48) and males (R(2)=0.15-0.39). Lower R(2) values were observed for the change in measures from baseline to 6 months, but again change in urgency was the strongest predictor of change in adaptive behavior (R(2)=0.04-0.13 in females, and 0.02-0.08 in males). The correlation between symptoms and measures of adaptive behavior was almost completely explained by the urgency score. Frequency and nocturia did not substantially improve the overall correlation. The relation between measures of OAB symptoms and adaptive behavior at baseline and over time are largely explained by urgency, not by frequency and nocturia. Copyright © 2011 Wiley-Liss, Inc.

  9. Klinefelter syndrome has increased brain responses to auditory stimuli and motor output, but not to visual stimuli or Stroop adaptation

    PubMed Central

    Wallentin, Mikkel; Skakkebæk, Anne; Bojesen, Anders; Fedder, Jens; Laurberg, Peter; Østergaard, John R.; Hertz, Jens Michael; Pedersen, Anders Degn; Gravholt, Claus Højbjerg

    2016-01-01

    Klinefelter syndrome (47, XXY) (KS) is a genetic syndrome characterized by the presence of an extra X chromosome and low level of testosterone, resulting in a number of neurocognitive abnormalities, yet little is known about brain function. This study investigated the fMRI-BOLD response from KS relative to a group of Controls to basic motor, perceptual, executive and adaptation tasks. Participants (N: KS = 49; Controls = 49) responded to whether the words “GREEN” or “RED” were displayed in green or red (incongruent versus congruent colors). One of the colors was presented three times as often as the other, making it possible to study both congruency and adaptation effects independently. Auditory stimuli saying “GREEN” or “RED” had the same distribution, making it possible to study effects of perceptual modality as well as Frequency effects across modalities. We found that KS had an increased response to motor output in primary motor cortex and an increased response to auditory stimuli in auditory cortices, but no difference in primary visual cortices. KS displayed a diminished response to written visual stimuli in secondary visual regions near the Visual Word Form Area, consistent with the widespread dyslexia in the group. No neural differences were found in inhibitory control (Stroop) or in adaptation to differences in stimulus frequencies. Across groups we found a strong positive correlation between age and BOLD response in the brain's motor network with no difference between groups. No effects of testosterone level or brain volume were found. In sum, the present findings suggest that auditory and motor systems in KS are selectively affected, perhaps as a compensatory strategy, and that this is not a systemic effect as it is not seen in the visual system. PMID:26958463

  10. Klinefelter syndrome has increased brain responses to auditory stimuli and motor output, but not to visual stimuli or Stroop adaptation.

    PubMed

    Wallentin, Mikkel; Skakkebæk, Anne; Bojesen, Anders; Fedder, Jens; Laurberg, Peter; Østergaard, John R; Hertz, Jens Michael; Pedersen, Anders Degn; Gravholt, Claus Højbjerg

    2016-01-01

    Klinefelter syndrome (47, XXY) (KS) is a genetic syndrome characterized by the presence of an extra X chromosome and low level of testosterone, resulting in a number of neurocognitive abnormalities, yet little is known about brain function. This study investigated the fMRI-BOLD response from KS relative to a group of Controls to basic motor, perceptual, executive and adaptation tasks. Participants (N: KS = 49; Controls = 49) responded to whether the words "GREEN" or "RED" were displayed in green or red (incongruent versus congruent colors). One of the colors was presented three times as often as the other, making it possible to study both congruency and adaptation effects independently. Auditory stimuli saying "GREEN" or "RED" had the same distribution, making it possible to study effects of perceptual modality as well as Frequency effects across modalities. We found that KS had an increased response to motor output in primary motor cortex and an increased response to auditory stimuli in auditory cortices, but no difference in primary visual cortices. KS displayed a diminished response to written visual stimuli in secondary visual regions near the Visual Word Form Area, consistent with the widespread dyslexia in the group. No neural differences were found in inhibitory control (Stroop) or in adaptation to differences in stimulus frequencies. Across groups we found a strong positive correlation between age and BOLD response in the brain's motor network with no difference between groups. No effects of testosterone level or brain volume were found. In sum, the present findings suggest that auditory and motor systems in KS are selectively affected, perhaps as a compensatory strategy, and that this is not a systemic effect as it is not seen in the visual system.

  11. Adaptive behavior in Chinese children with Williams syndrome

    PubMed Central

    2014-01-01

    Background Williams syndrome (WS) is a neurodevelopmental disease characterized by compelling psychological phenotypes. The symptoms span multiple cognitive domains and include a distinctive pattern of social behavior. The goal of this study was to explore adaptive behavior in WS patients in China. Methods We conducted a structured interview including the Infants-Junior Middle School Students Social-life Abilities Scale in three participant groups: children with WS (n = 26), normally-developing children matched for mental age (MA, n = 30), and normally-developing children matched for chronological age (CA, n = 40). We compared the mean scores for each domain between the three groups. Results Children with WS had more siblings than children in the two control groups. The educational level of the caregivers of WS children was lower than that of the control children. We found no differences in locomotion, work skill, socialization, or self-management between the WS and MA groups. WS children obtained higher scores of self-dependence (df = 54, Z = −2.379, p = 0.017) and had better communication skills (df = 54, Z = −2.222, p = 0.026) compared with MA children. The CA children achieved higher scores than the WS children for all dimensions of adaptive behavior. Conclusions WS children have better adaptive behavior skills regarding communication and self-dependence than normal children matched for mental age. Targeted intervention techniques should be designed to promote social development in this population. PMID:24708693

  12. Distributed effects of biological sex define sex-typical motor behavior in Caenorhabditis elegans.

    PubMed

    Mowrey, William R; Bennett, Jessica R; Portman, Douglas S

    2014-01-29

    Sex differences in shared behaviors (for example, locomotion and feeding) are a nearly universal feature of animal biology. Though these behaviors may share underlying neural programs, their kinematics can exhibit robust differences between males and females. The neural underpinnings of these differences are poorly understood because of the often-untested assumption that they are determined by sex-specific body morphology. Here, we address this issue in the nematode Caenorhabditis elegans, which features two sexes with distinct body morphologies but similar locomotor circuitry and body muscle. Quantitative behavioral analysis shows that C. elegans and related nematodes exhibit significant sex differences in the dynamics and geometry of locomotor body waves, such that the male is generally faster. Using a recently proposed model of locomotor wave propagation, we show that sex differences in both body mechanics and the intrinsic dynamics of the motor system can contribute to kinematic differences in distinct mechanical contexts. By genetically sex-reversing the properties of specific tissues and cells, however, we find that sex-specific locomotor frequency in C. elegans is determined primarily by the functional modification of shared sensory neurons. Further, we find that sexual modification of body wall muscle together with the nervous system is required to alter body wave speed. Thus, rather than relying on a single focus of modification, sex differences in motor dynamics require independent modifications to multiple tissue types. Our results suggest shared motor behaviors may be sex-specifically optimized though distributed modifications to several aspects of morphology and physiology.

  13. Distributed Effects of Biological Sex Define Sex-Typical Motor Behavior in Caenorhabditis elegans

    PubMed Central

    Mowrey, William R.; Bennett, Jessica R.

    2014-01-01

    Sex differences in shared behaviors (for example, locomotion and feeding) are a nearly universal feature of animal biology. Though these behaviors may share underlying neural programs, their kinematics can exhibit robust differences between males and females. The neural underpinnings of these differences are poorly understood because of the often-untested assumption that they are determined by sex-specific body morphology. Here, we address this issue in the nematode Caenorhabditis elegans, which features two sexes with distinct body morphologies but similar locomotor circuitry and body muscle. Quantitative behavioral analysis shows that C. elegans and related nematodes exhibit significant sex differences in the dynamics and geometry of locomotor body waves, such that the male is generally faster. Using a recently proposed model of locomotor wave propagation, we show that sex differences in both body mechanics and the intrinsic dynamics of the motor system can contribute to kinematic differences in distinct mechanical contexts. By genetically sex-reversing the properties of specific tissues and cells, however, we find that sex-specific locomotor frequency in C. elegans is determined primarily by the functional modification of shared sensory neurons. Further, we find that sexual modification of body wall muscle together with the nervous system is required to alter body wave speed. Thus, rather than relying on a single focus of modification, sex differences in motor dynamics require independent modifications to multiple tissue types. Our results suggest shared motor behaviors may be sex-specifically optimized though distributed modifications to several aspects of morphology and physiology. PMID:24478342

  14. Application of persuasion and health behavior theories for behavior change counseling: design of the ADAPT (Avoiding Diabetes Thru Action Plan Targeting) program.

    PubMed

    Lin, Jenny J; Mann, Devin M

    2012-09-01

    Diabetes incidence is increasing worldwide and providers often do not feel they can effectively counsel about preventive lifestyle changes. The goal of this paper is to describe the development and initial feasibility testing of the Avoiding Diabetes Thru Action Plan Targeting (ADAPT) program to enhance counseling about behavior change for patients with pre-diabetes. Primary care providers and patients were interviewed about their perspectives on lifestyle changes to prevent diabetes. A multidisciplinary design team incorporated this data to translate elements from behavior change theories to create the ADAPT program. The ADAPT program was pilot tested to evaluate feasibility. Leveraging elements from health behavior theories and persuasion literature, the ADAPT program comprises a shared goal-setting module, implementation intentions exercise, and tailored reminders to encourage behavior change. Feasibility data demonstrate that patients were able to use the program to achieve their behavior change goals. Initial findings show that the ADAPT program is feasible for helping improve primary care providers' counseling for behavior change in patients with pre-diabetes. If successful, the ADAPT program may represent an adaptable and scalable behavior change tool for providers to encourage lifestyle changes to prevent diabetes. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  15. Examination of Poststroke Alteration in Motor Unit Firing Behavior Using High-Density Surface EMG Decomposition.

    PubMed

    Li, Xiaoyan; Holobar, Ales; Gazzoni, Marco; Merletti, Roberto; Rymer, William Zev; Zhou, Ping

    2015-05-01

    Recent advances in high-density surface electromyogram (EMG) decomposition have made it a feasible task to discriminate single motor unit activity from surface EMG interference patterns, thus providing a noninvasive approach for examination of motor unit control properties. In the current study, we applied high-density surface EMG recording and decomposition techniques to assess motor unit firing behavior alterations poststroke. Surface EMG signals were collected using a 64-channel 2-D electrode array from the paretic and contralateral first dorsal interosseous (FDI) muscles of nine hemiparetic stroke subjects at different isometric discrete contraction levels between 2 to 10 N with a 2 N increment step. Motor unit firing rates were extracted through decomposition of the high-density surface EMG signals and compared between paretic and contralateral muscles. Across the nine tested subjects, paretic FDI muscles showed decreased motor unit firing rates compared with contralateral muscles at different contraction levels. Regression analysis indicated a linear relation between the mean motor unit firing rate and the muscle contraction level for both paretic and contralateral muscles (p < 0.001), with the former demonstrating a lower increment rate (0.32 pulses per second (pps)/N) compared with the latter (0.67 pps/N). The coefficient of variation (averaged over the contraction levels) of the motor unit firing rates for the paretic muscles (0.21 ± 0.012) was significantly higher than for the contralateral muscles (0.17 ± 0.014) (p < 0.05). This study provides direct evidence of motor unit firing behavior alterations poststroke using surface EMG, which can be an important factor contributing to hemiparetic muscle weakness.

  16. Communicating to Farmers about Skin Cancer: The Behavior Adaptation Model.

    ERIC Educational Resources Information Center

    Parrott, Roxanne; Monahan, Jennifer; Ainsworth, Stuart; Steiner, Carol

    1998-01-01

    States health campaign messages designed to encourage behavior adaptation have greater likelihood of success than campaigns promoting avoidance of at-risk behaviors that cannot be avoided. Tests a model of health risk behavior using four different behaviors in a communication campaign aimed at reducing farmers' risk for skin cancer--questions…

  17. Cognitive-motor interactions of the basal ganglia in development

    PubMed Central

    Leisman, Gerry; Braun-Benjamin, Orit; Melillo, Robert

    2014-01-01

    Neural circuits linking activity in anatomically segregated populations of neurons in subcortical structures and the neocortex throughout the human brain regulate complex behaviors such as walking, talking, language comprehension, and other cognitive functions associated with frontal lobes. The basal ganglia, which regulate motor control, are also crucial elements in the circuits that confer human reasoning and adaptive function. The basal ganglia are key elements in the control of reward-based learning, sequencing, discrete elements that constitute a complete motor act, and cognitive function. Imaging studies of intact human subjects and electrophysiologic and tracer studies of the brains and behavior of other species confirm these findings. We know that the relation between the basal ganglia and the cerebral cortical region allows for connections organized into discrete circuits. Rather than serving as a means for widespread cortical areas to gain access to the motor system, these loops reciprocally interconnect a large and diverse set of cerebral cortical areas with the basal ganglia. Neuronal activity within the basal ganglia associated with motor areas of the cerebral cortex is highly correlated with parameters of movement. Neuronal activity within the basal ganglia and cerebellar loops associated with the prefrontal cortex is related to the aspects of cognitive function. Thus, individual loops appear to be involved in distinct behavioral functions. Damage to the basal ganglia of circuits with motor areas of the cortex leads to motor symptoms, whereas damage to the subcortical components of circuits with non-motor areas of the cortex causes higher-order deficits. In this report, we review some of the anatomic, physiologic, and behavioral findings that have contributed to a reappraisal of function concerning the basal ganglia and cerebellar loops with the cerebral cortex and apply it in clinical applications to attention deficit/hyperactivity disorder (ADHD

  18. Reliability and Validity of the Vietnamese Vineland Adaptive Behavior Scales with Preschool-Age Children

    ERIC Educational Resources Information Center

    Goldberg, Michael R.; Dill, Charles A.; Shin, Jin Y.; Nhan, Nguyen Viet

    2009-01-01

    This study was conducted to examine an adaptation of the Vineland Adaptive Behavior Scale (VABS) [Sparrow, S. S., Balla, D. A., & Cicchetti, D. V. (1984). "The Vineland Adaptive Behavior Scales." Circle Pines, MN: America Guidance Service; Sparrow, S. S., Balla, D. A., & Cicchetti, D. V. (2005). "Vineland Adaptive Behavior…

  19. Change the Collective Behaviors of Colloidal Motors by Tuning Electrohydrodynamic Flow at the Subparticle Level.

    PubMed

    Yang, Xingfu; Wu, Ning

    2018-01-23

    As demonstrated in biological systems, breaking the symmetry of surrounding hydrodynamic flow is the key to achieve autonomous locomotion of microscopic objects. In recent years, a variety of synthetic motors have been developed based on different propulsion mechanisms. Most work, however, focuses on the propulsion of individual motors. Here, we study the collective behaviors of colloidal dimers actuated by a perpendicularly applied AC electric field, which controls the electrohydrodynamic flow at subparticle levels. Although these motors experience strong dipolar repulsion from each other and are highly active, surprisingly, they assemble into a family of stable planar clusters with handedness. We show that this type of unusual structure arises from the contractile hydrodynamic flow around small lobes but extensile flow around the large lobes. We further reveal that the collective behavior, assembled structure, and assembly dynamics of these motors all depend on the specific directions of electrohydrodynamic flow surrounding each lobe of the dimers. By fine-tuning the surface charge asymmetry on particles and salt concentration in solution, we demonstrate the ability to control their collective behaviors on demand. This novel type of active assembly via hydrodynamic interactions has the potential to grow monodisperse clusters in a self-limiting fashion. The underlying concept revealed in this work should also apply to other types of active and asymmetric particles.

  20. Incremental Adaptive Fuzzy Control for Sensorless Stroke Control of A Halbach-type Linear Oscillatory Motor

    NASA Astrophysics Data System (ADS)

    Lei, Meizhen; Wang, Liqiang

    2018-01-01

    The halbach-type linear oscillatory motor (HT-LOM) is multi-variable, highly coupled, nonlinear and uncertain, and difficult to get a satisfied result by conventional PID control. An incremental adaptive fuzzy controller (IAFC) for stroke tracking was presented, which combined the merits of PID control, the fuzzy inference mechanism and the adaptive algorithm. The integral-operation is added to the conventional fuzzy control algorithm. The fuzzy scale factor can be online tuned according to the load force and stroke command. The simulation results indicate that the proposed control scheme can achieve satisfied stroke tracking performance and is robust with respect to parameter variations and external disturbance.

  1. Factors Influencing Maternal Behavioral Adaptability: Maternal Depressive Symptoms and Child Negative Affect.

    PubMed

    Hummel, Alexandra C; Kiel, Elizabeth J

    2016-01-01

    In early childhood, parents play an important role in children's socioemotional development. As such, parent training is a central component of many psychological interventions for young children (Reyno & McGrath, 2006). Maternal depressive symptoms have consistently been linked to maladaptive parenting behaviors (e.g., disengagement, intrusiveness), as well as to lower parent training efficacy in the context of child psychological intervention, suggesting that mothers with higher symptomatology may be less able to be adapt their behavior according to situational demands. The goal of the current study was to examine both maternal and child factors that may influence maternal behavioral adaptability. Ninety-one mothers and their toddlers ( M = 23.93 months, 59% male) participated in a laboratory visit during which children engaged in a variety of novelty episodes designed to elicit individual differences in fear/withdrawal behaviors. Mothers also completed a questionnaire battery. Maternal behavioral adaptability was operationalized as the difference in scores for maternal involvement, comforting, and protective behavior between episodes in which mothers were instructed to refrain from interaction and those in which they were instructed to act naturally. Results indicated that when children displayed high levels of negative affect in the restricted episodes, mothers with higher levels of depressive symptoms were less able to adapt their involved behavior because they exhibited low rates of involvement across episodes regardless of instruction given. The current study serves as an intermediary step in understanding how maternal depressive symptoms may influence daily interactions with their children as well as treatment implementation and outcomes, and provides initial evidence that maternal internalizing symptoms may contribute to lower behavioral adaptability in the context of certain child behaviors due to consistent low involvement.

  2. Cerebellar Influence on Motor Cortex Plasticity: Behavioral Implications for Parkinson’s Disease

    PubMed Central

    Kishore, Asha; Meunier, Sabine; Popa, Traian

    2014-01-01

    Normal motor behavior involves the creation of appropriate activity patterns across motor networks, enabling firing synchrony, synaptic integration, and normal functioning of these networks. Strong topography-specific connections among the basal ganglia, cerebellum, and their projections to overlapping areas in the motor cortices suggest that these networks could influence each other’s plastic responses and functions. The defective striatal signaling in Parkinson’s disease (PD) could therefore lead to abnormal oscillatory activity and aberrant plasticity at multiple levels within the interlinked motor networks. Normal striatal dopaminergic signaling and cerebellar sensory processing functions influence the scaling and topographic specificity of M1 plasticity. Both these functions are abnormal in PD and appear to contribute to the abnormal M1 plasticity. Defective motor map plasticity and topographic specificity within M1 could lead to incorrect muscle synergies, which could manifest as abnormal or undesired movements, and as abnormal motor learning in PD. We propose that the loss of M1 plasticity in PD reflects a loss of co-ordination among the basal ganglia, cerebellar, and cortical inputs which translates to an abnormal plasticity of motor maps within M1 and eventually to some of the motor signs of PD. The initial benefits of dopamine replacement therapy on M1 plasticity and motor signs are lost during the progressive course of disease. Levodopa-induced dyskinesias in patients with advanced PD is linked to a loss of M1 sensorimotor plasticity and the attenuation of dyskinesias by cerebellar inhibitory stimulation is associated with restoration of M1 plasticity. Complimentary interventions should target reestablishing physiological communication between the striatal and cerebellar circuits, and within striato-cerebellar loop. This may facilitate correct motor synergies and reduce abnormal movements in PD. PMID:24834063

  3. Direction-Specific Adaptation in Neuronal and Behavioral Responses of an Insect Mechanosensory System.

    PubMed

    Ogawa, Hiroto; Oka, Kotaro

    2015-08-19

    Stimulus-specific adaptation (SSA) is considered to be the neural underpinning of habituation to frequent stimuli and novelty detection. However, neither the cellular mechanism underlying SSA nor the link between SSA-like neuronal plasticity and behavioral modulation is well understood. The wind-detection system in crickets is one of the best models for investigating the neural basis of SSA. We found that crickets exhibit stimulus-direction-specific adaptation in wind-elicited avoidance behavior. Repetitive air currents inducing this behavioral adaptation reduced firings to the stimulus and the amplitude of excitatory synaptic potentials in wind-sensitive giant interneurons (GIs) related to the avoidance behavior. Injection of a Ca(2+) chelator into GIs diminished both the attenuation of firings and the synaptic depression induced by the repetitive stimulation, suggesting that adaptation of GIs induced by this stimulation results in Ca(2+)-mediated modulation of postsynaptic responses, including postsynaptic short-term depression. Some types of GIs showed specific adaptation to the direction of repetitive stimuli, resulting in an alteration of their directional tuning curves. The types of GIs for which directional tuning was altered displayed heterogeneous direction selectivity in their Ca(2+) dynamics that was restricted to a specific area of dendrites. In contrast, other types of GIs with constant directionality exhibited direction-independent global Ca(2+) elevation throughout the dendritic arbor. These results suggest that depression induced by local Ca(2+) accumulation at repetitively activated synapses of key neurons underlies direction-specific behavioral adaptation. This input-selective depression mediated by heterogeneous Ca(2+) dynamics could confer the ability to detect novelty at the earliest stages of sensory processing in crickets. Stimulus-specific adaptation (SSA) is considered to be the neural underpinning of habituation and novelty detection. We

  4. An embodied biologically constrained model of foraging: from classical and operant conditioning to adaptive real-world behavior in DAC-X.

    PubMed

    Maffei, Giovanni; Santos-Pata, Diogo; Marcos, Encarni; Sánchez-Fibla, Marti; Verschure, Paul F M J

    2015-12-01

    Animals successfully forage within new environments by learning, simulating and adapting to their surroundings. The functions behind such goal-oriented behavior can be decomposed into 5 top-level objectives: 'how', 'why', 'what', 'where', 'when' (H4W). The paradigms of classical and operant conditioning describe some of the behavioral aspects found in foraging. However, it remains unclear how the organization of their underlying neural principles account for these complex behaviors. We address this problem from the perspective of the Distributed Adaptive Control theory of mind and brain (DAC) that interprets these two paradigms as expressing properties of core functional subsystems of a layered architecture. In particular, we propose DAC-X, a novel cognitive architecture that unifies the theoretical principles of DAC with biologically constrained computational models of several areas of the mammalian brain. DAC-X supports complex foraging strategies through the progressive acquisition, retention and expression of task-dependent information and associated shaping of action, from exploration to goal-oriented deliberation. We benchmark DAC-X using a robot-based hoarding task including the main perceptual and cognitive aspects of animal foraging. We show that efficient goal-oriented behavior results from the interaction of parallel learning mechanisms accounting for motor adaptation, spatial encoding and decision-making. Together, our results suggest that the H4W problem can be solved by DAC-X building on the insights from the study of classical and operant conditioning. Finally, we discuss the advantages and limitations of the proposed biologically constrained and embodied approach towards the study of cognition and the relation of DAC-X to other cognitive architectures. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Bacterial surface adaptation

    NASA Astrophysics Data System (ADS)

    Utada, Andrew

    2014-03-01

    Biofilms are structured multi-cellular communities that are fundamental to the biology and ecology of bacteria. Parasitic bacterial biofilms can cause lethal infections and biofouling, but commensal bacterial biofilms, such as those found in the gut, can break down otherwise indigestible plant polysaccharides and allow us to enjoy vegetables. The first step in biofilm formation, adaptation to life on a surface, requires a working knowledge of low Reynolds number fluid physics, and the coordination of biochemical signaling, polysaccharide production, and molecular motility motors. These crucial early stages of biofilm formation are at present poorly understood. By adapting methods from soft matter physics, we dissect bacterial social behavior at the single cell level for several prototypical bacterial species, including Pseudomonas aeruginosa and Vibrio cholerae.

  6. Improvement in motor and exploratory behavior in Rett syndrome mice with restricted ketogenic and standard diets.

    PubMed

    Mantis, John G; Fritz, Christie L; Marsh, Jeremy; Heinrichs, Stephen C; Seyfried, Thomas N

    2009-06-01

    Rett syndrome (RTT) is a rare X-linked autistic-spectrum neurological disorder associated with impaired energy metabolism, seizure susceptibility, progressive social behavioral regression, and motor impairment primarily in young girls. The objective of this study was to examine the influence of restricted diets, including a ketogenic diet (KD) and a standard rodent chow diet (SD), on behavior in male Mecp2(308/y) mice, a model of RTT. The KD is a high-fat, low-carbohydrate diet that has anticonvulsant efficacy in children with intractable epilepsy and may be therapeutic in children with RTT. Following an 11-day pretrial period, adult wild-type and mutant Rett mice were separated into groups that were fed either an SD in unrestricted or restricted amounts or a ketogenic diet (KetoCal) in restricted amounts for a total of 30 days. The restricted diets were administered to reduce mouse body weight by 20-23% compared to the body weight of each mouse before the initiation of the diet. All mice were subjected to a battery of behavioral tests to determine the influence of the diet on the RTT phenotype. We found that performance in tests of motor behavior and anxiety was significantly worse in male RTT mice compared to wild-type mice and that restriction of either the KD or the SD improved motor behavior and reduced anxiety. We conclude that although both restricted diets increased the tendency of Rett mice to explore a novel environment, the beneficial effects of the KD were due more to calorie restriction than to the composition of the diet. Our findings suggest that calorically restricted diets could be effective in reducing the anxiety and in improving motor behavior in girls with RTT.

  7. An Adaptive Supervisory Sliding Fuzzy Cerebellar Model Articulation Controller for Sensorless Vector-Controlled Induction Motor Drive Systems

    PubMed Central

    Wang, Shun-Yuan; Tseng, Chwan-Lu; Lin, Shou-Chuang; Chiu, Chun-Jung; Chou, Jen-Hsiang

    2015-01-01

    This paper presents the implementation of an adaptive supervisory sliding fuzzy cerebellar model articulation controller (FCMAC) in the speed sensorless vector control of an induction motor (IM) drive system. The proposed adaptive supervisory sliding FCMAC comprised a supervisory controller, integral sliding surface, and an adaptive FCMAC. The integral sliding surface was employed to eliminate steady-state errors and enhance the responsiveness of the system. The adaptive FCMAC incorporated an FCMAC with a compensating controller to perform a desired control action. The proposed controller was derived using the Lyapunov approach, which guarantees learning-error convergence. The implementation of three intelligent control schemes—the adaptive supervisory sliding FCMAC, adaptive sliding FCMAC, and adaptive sliding CMAC—were experimentally investigated under various conditions in a realistic sensorless vector-controlled IM drive system. The root mean square error (RMSE) was used as a performance index to evaluate the experimental results of each control scheme. The analysis results indicated that the proposed adaptive supervisory sliding FCMAC substantially improved the system performance compared with the other control schemes. PMID:25815450

  8. An adaptive supervisory sliding fuzzy cerebellar model articulation controller for sensorless vector-controlled induction motor drive systems.

    PubMed

    Wang, Shun-Yuan; Tseng, Chwan-Lu; Lin, Shou-Chuang; Chiu, Chun-Jung; Chou, Jen-Hsiang

    2015-03-25

    This paper presents the implementation of an adaptive supervisory sliding fuzzy cerebellar model articulation controller (FCMAC) in the speed sensorless vector control of an induction motor (IM) drive system. The proposed adaptive supervisory sliding FCMAC comprised a supervisory controller, integral sliding surface, and an adaptive FCMAC. The integral sliding surface was employed to eliminate steady-state errors and enhance the responsiveness of the system. The adaptive FCMAC incorporated an FCMAC with a compensating controller to perform a desired control action. The proposed controller was derived using the Lyapunov approach, which guarantees learning-error convergence. The implementation of three intelligent control schemes--the adaptive supervisory sliding FCMAC, adaptive sliding FCMAC, and adaptive sliding CMAC--were experimentally investigated under various conditions in a realistic sensorless vector-controlled IM drive system. The root mean square error (RMSE) was used as a performance index to evaluate the experimental results of each control scheme. The analysis results indicated that the proposed adaptive supervisory sliding FCMAC substantially improved the system performance compared with the other control schemes.

  9. Gestational exposure to perfluorooctanoic acid (PFOA): alterations in motor related behaviors

    PubMed Central

    Goulding, David R.; White, Sally S.; McBride, Sandra J.; Fenton, Suzanne E.; Harry, G. Jean

    2016-01-01

    Perfluoroalkyl and polyfluoroalkyl substances are used in commercial applications and developmental exposure has been implicated in alterations in neurobehavioral functioning. While associations between developmental perfluorooctanoic acid (PFOA) exposure and human outcomes have been inconsistent, studies in experimental animals suggest alterations in motor related behaviors. To examine a dose-response pattern of neurobehavioral effects following gestational exposure to PFOA, pregnant CD-1 mice received PFOA (0, 0.1, 0.3, 1.0 mg/kg/day) via oral gavage from gestational day 1–17 and the male offspring examined. Motor activity assessments on postnatal day (PND)18, 19, and 20 indicated a shift in the developmental pattern with an elevated activity level observed in the 1.0 mg/kg/day dose group on PND18. In the adult, no alterations were observed in body weights, activity levels, diurnal pattern of running wheel activity, startle response, or pre-pulse startle inhibition. In response to a subcutaneous injection of saline or nicotine (80 µg/kg), all animals displayed a transient increase in activity likely associated with handling with no differences observed across dose groups. Inhibition of motor activity over 18 days of 400µg/kg nicotine injection was not significantly different across dose groups. Hyperactivity induced by 2mg/kg (+)-methamphetamine hydrochloride intraperitoneal injection was significantly lower in the 1.0 mg/kg/day PFOA dose group as compared to controls. Taken together, these data suggest that the effects on motor-related behaviors with gestational PFOA exposure do not mimic those reported for acute postnatal exposure. Changes were not observed at dose level under 1.0 mg/kg/day PFOA. Further examination of pathways associated with methamphetamine-induced activity is warranted. PMID:27888120

  10. Model-free adaptive speed control on travelling wave ultrasonic motor

    NASA Astrophysics Data System (ADS)

    Di, Sisi; Li, Huafeng

    2018-01-01

    This paper introduced a new data-driven control (DDC) method for the speed control of ultrasonic motor (USM). The model-free adaptive control (MFAC) strategy was presented in terms of its principles, algorithms, and parameter selection. To verify the efficiency of the proposed method, a speed-frequency-time model, which contained all the measurable nonlinearity and uncertainties based on experimental data was established for simulation to mimic the USM operation system. Furthermore, the model was identified using particle swarm optimization (PSO) method. Then, the control of the simulated system using MFAC was evaluated under different expectations in terms of overshoot, rise time and steady-state error. Finally, the MFAC results were compared with that of proportion iteration differentiation (PID) to demonstrate its advantages in controlling general random system.

  11. Why New Spinal Cord Plasticity Does Not Disrupt Old Motor Behaviors.

    PubMed

    Chen, Yi; Chen, Lu; Wang, Yu; Chen, Xiang Yang; Wolpaw, Jonathan R

    2017-08-23

    When new motor learning changes the spinal cord, old behaviors are not impaired; their key features are preserved by additional compensatory plasticity. To explore the mechanisms responsible for this compensatory plasticity, we transected the spinal dorsal ascending tract before or after female rats acquired a new behavior-operantly conditioned increase or decrease in the right soleus H-reflex-and examined an old behavior-locomotion. Neither spinal dorsal ascending tract transection nor H-reflex conditioning alone impaired locomotion. Nevertheless, when spinal dorsal ascending tract transection and H-reflex conditioning were combined, the rats developed a limp and a tilted posture that correlated in direction and magnitude with the H-reflex change. When the right H-reflex was increased by conditioning, the right step lasted longer than the left and the right hip was higher than the left; when the right H-reflex was decreased by conditioning, the opposite occurred. These results indicate that ascending sensory input guides the compensatory plasticity that normally prevents the plasticity underlying H-reflex change from impairing locomotion. They support the concept of the state of the spinal cord as a negotiated equilibrium that reflects the concurrent influences of all the behaviors in an individual's repertoire; and they support the new therapeutic strategies this concept introduces. SIGNIFICANCE STATEMENT The spinal cord provides a reliable final common pathway for motor behaviors throughout life. Until recently, its reliability was explained by the assumption that it is hardwired; but it is now clear that the spinal cord changes continually as new behaviors are acquired. Nevertheless, old behaviors are preserved. This study shows that their preservation depends on sensory feedback from the spinal cord to the brain: if feedback is removed, the acquisition of a new behavior may disrupt an old behavior. In sum, when a new behavior changes the spinal cord, sensory

  12. Automated extraction of temporal motor activity signals from video recordings of neonatal seizures based on adaptive block matching.

    PubMed

    Karayiannis, Nicolaos B; Sami, Abdul; Frost, James D; Wise, Merrill S; Mizrahi, Eli M

    2005-04-01

    This paper presents an automated procedure developed to extract quantitative information from video recordings of neonatal seizures in the form of motor activity signals. This procedure relies on optical flow computation to select anatomical sites located on the infants' body parts. Motor activity signals are extracted by tracking selected anatomical sites during the seizure using adaptive block matching. A block of pixels is tracked throughout a sequence of frames by searching for the most similar block of pixels in subsequent frames; this search is facilitated by employing various update strategies to account for the changing appearance of the block. The proposed procedure is used to extract temporal motor activity signals from video recordings of neonatal seizures and other events not associated with seizures.

  13. Factors Influencing Maternal Behavioral Adaptability: Maternal Depressive Symptoms and Child Negative Affect

    PubMed Central

    Hummel, Alexandra C.; Kiel, Elizabeth J.

    2017-01-01

    In early childhood, parents play an important role in children’s socioemotional development. As such, parent training is a central component of many psychological interventions for young children (Reyno & McGrath, 2006). Maternal depressive symptoms have consistently been linked to maladaptive parenting behaviors (e.g., disengagement, intrusiveness), as well as to lower parent training efficacy in the context of child psychological intervention, suggesting that mothers with higher symptomatology may be less able to be adapt their behavior according to situational demands. The goal of the current study was to examine both maternal and child factors that may influence maternal behavioral adaptability. Ninety-one mothers and their toddlers (M =23.93 months, 59% male) participated in a laboratory visit during which children engaged in a variety of novelty episodes designed to elicit individual differences in fear/withdrawal behaviors. Mothers also completed a questionnaire battery. Maternal behavioral adaptability was operationalized as the difference in scores for maternal involvement, comforting, and protective behavior between episodes in which mothers were instructed to refrain from interaction and those in which they were instructed to act naturally. Results indicated that when children displayed high levels of negative affect in the restricted episodes, mothers with higher levels of depressive symptoms were less able to adapt their involved behavior because they exhibited low rates of involvement across episodes regardless of instruction given. The current study serves as an intermediary step in understanding how maternal depressive symptoms may influence daily interactions with their children as well as treatment implementation and outcomes, and provides initial evidence that maternal internalizing symptoms may contribute to lower behavioral adaptability in the context of certain child behaviors due to consistent low involvement. PMID:29576864

  14. Efficacy of parent-delivered behavioral therapy for primary complex motor stereotypies

    PubMed Central

    Specht, Matthew W; Mahone, E Mark; Kline, Tina; Waranch, Richard; Brabson, Laurel; Thompson, Carol B; Singer, Harvey S

    2016-01-01

    Aim ‘Primary’ complex motor stereotypies (CMS) are persistent, patterned, repetitive, rhythmic movements in young people with typical development. This study evaluated the efficacy of an instructional DVD as a home-based, parent-administered, behavioral therapy for primary CMS. Method Eighty-one children with primary CMS were enrolled. Primary outcome measures included the Stereotypy Severity Scale (SSS) – Motor and Impairment scores, and Stereotypy Linear Analog Scale (SLAS). Mean CMS onset was 13.4 months (SD 13.1). Eligibility required observed CMS. Psychiatric disorders were not exclusionary and a stable medication regimen was required. Intellectual disability, neurological disorder, autism spectrum disorder, and tics were exclusionary. Initial assessments were completed via REDCap before receipt of the DVD. Fifty-four of the 81 children (34 male, 20 female; mean age 8y 2mo, SD 1.42, range 7–14y) completed assessments at 1, 2, or 3 months after receiving the DVD. Results Reductions (baseline to last assessment) in SSS Motor, SSS Impairment, and SLAS scores (all p<0.001) represented change ratios of –15%, –24%, and a –20%, respectively. Greatest relative treatment benefit was observed by younger children (ages 7–8y), and by one month after receipt of DVD, while a parent global assessment scale showed progressive improvement throughout the study. Interpretation An instructional DVD for parent-delivered behavioral therapy was a safe, effective intervention for primary CMS. PMID:27259464

  15. Inducible Nitric Oxide Inhibitors Block NMDA Antagonist-Stimulated Motoric Behaviors and Medial Prefrontal Cortical Glutamate Efflux

    PubMed Central

    Bergstrom, Hadley C.; Darvesh, Altaf S.; Berger, S. P.

    2015-01-01

    Nitric oxide (NO) plays a critical role in the motoric and glutamate releasing action of N-methyl-D-aspartate (NMDA)-antagonist stimulants. Earlier studies utilized neuronal nitric oxide synthase inhibitors (nNOS) for studying the neurobehavioral effects of non-competitive NMDA-antagonist stimulants such as dizocilpine (MK-801) and phencyclidine (PCP). This study explores the role of the inducible nitric oxide synthase inhibitors (iNOS) aminoguanidine (AG) and (-)-epigallocatechin-3-gallate (EGCG) in NMDA-antagonist induced motoric behavior and prefrontal cortical glutamate efflux. Adult male rats were administered a dose range of AG, EGCG, or vehicle prior to receiving NMDA antagonists MK-801, PCP, or a conventional psychostimulant (cocaine) and tested for motoric behavior in an open arena. Glutamate in the medial prefrontal cortex (mPFC) was measured using in vivo microdialysis after a combination of AG or EGCG prior to MK-801. Acute administration of AG or EGCG dose-dependently attenuated the locomotor and ataxic properties of MK-801 and PCP. Both AG and EGCG were unable to block the motoric effects of cocaine, indicating the acute pharmacologic action of AG and EGCG is specific to NMDA antagonism and not generalizable to all stimulant class drugs. AG and EGCG normalized MK-801-stimulated mPFC glutamate efflux. These data demonstrate that AG and EGCG attenuates NMDA antagonist-stimulated motoric behavior and cortical glutamate efflux. Our results suggest that EGCG-like polyphenol nutraceuticals (contained in “green tea” and chocolate) may be clinically useful in protecting against the adverse behavioral dissociative and cortical glutamate stimulating effects of NMDA antagonists. Medications that interfere with NMDA antagonists such as MK-801 and PCP have been proposed as treatments for schizophrenia. PMID:26696891

  16. Effects of Interventions Based in Behavior Analysis on Motor Skill Acquisition: A Meta-Analysis

    ERIC Educational Resources Information Center

    Alstot, Andrew E.; Kang, Minsoo; Alstot, Crystal D.

    2013-01-01

    Techniques based in applied behavior analysis (ABA) have been shown to be useful across a variety of settings to improve numerous behaviors. Specifically within physical activity settings, several studies have examined the effect of interventions based in ABA on a variety of motor skills, but the overall effects of these interventions are unknown.…

  17. To transfer or not to transfer? Kinematics and laterality quotient predict interlimb transfer of motor learning

    PubMed Central

    Lefumat, Hannah Z.; Vercher, Jean-Louis; Miall, R. Chris; Cole, Jonathan; Buloup, Frank; Bringoux, Lionel; Bourdin, Christophe

    2015-01-01

    Humans can remarkably adapt their motor behavior to novel environmental conditions, yet it remains unclear which factors enable us to transfer what we have learned with one limb to the other. Here we tested the hypothesis that interlimb transfer of sensorimotor adaptation is determined by environmental conditions but also by individual characteristics. We specifically examined the adaptation of unconstrained reaching movements to a novel Coriolis, velocity-dependent force field. Right-handed subjects sat at the center of a rotating platform and performed forward reaching movements with the upper limb toward flashed visual targets in prerotation, per-rotation (i.e., adaptation), and postrotation tests. Here only the dominant arm was used during adaptation and interlimb transfer was assessed by comparing performance of the nondominant arm before and after dominant-arm adaptation. Vision and no-vision conditions did not significantly influence interlimb transfer of trajectory adaptation, which on average was significant but limited. We uncovered a substantial heterogeneity of interlimb transfer across subjects and found that interlimb transfer can be qualitatively and quantitatively predicted for each healthy young individual. A classifier showed that in our study, interlimb transfer could be predicted based on the subject's task performance, most notably motor variability during learning, and his or her laterality quotient. Positive correlations suggested that variability of motor performance and lateralization of arm movement control facilitate interlimb transfer. We further show that these individual characteristics can predict the presence and the magnitude of interlimb transfer of left-handers. Overall, this study suggests that individual characteristics shape the way the nervous system can generalize motor learning. PMID:26334018

  18. SPEEDY babies: A putative new behavioral syndrome of unbalanced motor-speech development

    PubMed Central

    Haapanen, Marja-Leena; Aro, Tuomo; Isotalo, Elina

    2008-01-01

    Even though difficulties in motor development in children with speech and language disorders are widely known, hardly any attention is paid to the association between atypically rapidly occurring unassisted walking and delayed speech development. The four children described here presented with a developmental behavioral triad: 1) atypically speedy motor development, 2) impaired expressive speech, and 3) tongue carriage dysfunction resulting in related misarticulations. Those characteristics might be phenotypically or genetically clustered. These children didn’t have impaired cognition, neurological or mental disease, defective sense organs, craniofacial dysmorphology or susceptibility to upper respiratory infections, particularly recurrent otitis media. Attention should be paid on discordant and unbalanced achievement of developmental milestones. Present children are termed SPEEDY babies, where SPEEDY refers to rapid independent walking, SPEE and DY to dyspractic or dysfunctional speech development and lingual dysfunction resulting in linguoalveolar misarticulations. SPEEDY babies require health care that recognizes and respects their motor skills and supports their needs for motor activities and on the other hand include treatment for impaired speech. The parents may need advice and support with these children. PMID:19337462

  19. COMMUNICATION: On variability and use of rat primary motor cortex responses in behavioral task discrimination

    NASA Astrophysics Data System (ADS)

    Jensen, Winnie; Rousche, Patrick J.

    2006-03-01

    The success of a cortical motor neuroprosthetic system will rely on the system's ability to effectively execute complex motor tasks in a changing environment. Invasive, intra-cortical electrodes have been successfully used to predict joint movement and grip force of a robotic arm/hand with a non-human primate (Chapin J K, Moxon K A, Markowitz R S and Nicolelis M A L 1999 Real-time control of a robotic arm using simultaneously recorded neurons in the motor cortex Nat. Neurosci. 2 664-70). It is well known that cortical encoding occurs with a high degree of cortical plasticity and depends on both the functional and behavioral context. Questions on the expected robustness of future motor prosthesis systems therefore still remain. The objective of the present work was to study the effect of minor changes in functional movement strategies on the M1 encoding. We compared the M1 encoding in freely moving, non-constrained animals that performed two similar behavioral tasks with the same end-goal, and investigated if these behavioral tasks could be discriminated based on the M1 recordings. The rats depressed a response paddle either with a set of restrictive bars ('WB') or without the bars ('WOB') placed in front of the paddle. The WB task required changes in the motor strategy to complete the paddle press and resulted in highly stereotyped movements, whereas in the WOB task the movement strategy was not restricted. Neural population activity was recorded from 16-channel micro-wire arrays and data up to 200 ms before a paddle hit were analyzed off-line. The analysis showed a significant neural firing difference between the two similar WB and WOB tasks, and using principal component analysis it was possible to distinguish between the two tasks with a best classification at 76.6%. While the results are dependent upon a small, randomly sampled neural population, they indicate that information about similar behavioral tasks may be extracted from M1 based on relatively few

  20. Stimulation of subterritories of the subthalamic nucleus reveals its role in the integration of the emotional and motor aspects of behavior

    PubMed Central

    Mallet, Luc; Schüpbach, Michael; N'Diaye, Karim; Remy, Philippe; Bardinet, Eric; Czernecki, Virginie; Welter, Marie-Laure; Pelissolo, Antoine; Ruberg, Merle; Agid, Yves; Yelnik, Jérôme

    2007-01-01

    Two parkinsonian patients who experienced transient hypomanic states when the subthalamic nucleus (STN) was stimulated during postoperative adjustment of the electrical parameters for antiparkinsonian therapy agreed to have the mood disorder reproduced, in conjunction with motor, cognitive, and behavioral evaluations and concomitant functional neuroimaging. During the experiment, STN stimulation again induced a hypomanic state concomitant with activation of cortical and thalamic regions known to process limbic and associative information. This observation suggests that the STN plays a role in the control of a complex behavior that includes emotional as well as cognitive and motor components. The localization of the four contacts of the quadripolar electrode was determined precisely with an interactive brain atlas. The results showed that (i) the hypomanic state was caused only by stimulation through one contact localized in the anteromedial STN; (ii) both this contact and the contact immediately dorsal to it improved the parkinsonian motor state; (iii) the most dorsal and ventral contacts, located at the boundaries of the STN, neither induced the behavioral disorder nor improved motor performance. Detailed analysis of these data led us to consider a model in which the three functional modalities, emotional, cognitive, and motor, are not processed in a segregated manner but can be subtly combined in the small volume of the STN. This nucleus would thus serve as a nexus that integrates the motor, cognitive, and emotional components of behavior and might consequently be an effective target for the treatment of behavioral disorders that combine emotional, cognitive, and motor impairment. PMID:17556546

  1. LTD, RP, and Motor Learning.

    PubMed

    Hirano, Tomoo; Yamazaki, Yoshito; Nakamura, Yoji

    2016-02-01

    Long-term depression (LTD) at excitatory synapses between parallel fibers and a Purkinje cell has been regarded as a critical cellular mechanism for motor learning. However, it was demonstrated that normal motor learning occurs under LTD suppression, suggesting that cerebellar plasticity mechanisms other than LTD also contribute to motor learning. One candidate for such plasticity is rebound potentiation (RP), which is long-term potentiation at inhibitory synapses between a stellate cell and a Purkinje cell. Both LTD and RP are induced by the increase in postsynaptic Ca(2+) concentration, and work to suppress the activity of a Purkinje cell. Thus, LTD and RP might work synergistically, and one might compensate defects of the other. RP induction is dependent on the interaction between GABAA receptor and GABAA receptor binding protein (GABARAP). Transgenic mice expressing a peptide which inhibits binding of GABARAP and GABAA receptor only in Purkinje cells show defects in both RP and adaptation of vestibulo-ocular reflex (VOR), a motor learning paradigm. However, another example of motor learning, adaptation of optokinetic response (OKR), is normal in the transgenic mice. Both VOR and OKR are reflex eye movements suppressing the slip of visual image on the retina during head movement. Previously, we reported that delphilin knockout mice show facilitated LTD induction and enhanced OKR adaptation, but we recently found that VOR adaptation was not enhanced in the knockout mice. These results together suggest that animals might use LTD and RP differently depending on motor learning tasks.

  2. Psychopathological manifestations of children with intellectual disabilities according to their cognitive and adaptive behavior profile.

    PubMed

    Tremblay, Karine N; Richer, Louis; Lachance, Lise; Côté, Alain

    2010-01-01

    Children with intellectual disabilities show deficits in cognitive abilities and adaptive behavior which increase the risk of psychopathological disorders. This exploratory study aims at delineating profiles of children based on their cognitive functioning and adaptive behaviors, and to compare them on psychopathological manifestations. A cognitive assessment and an evaluation of adaptive behaviors are conducted with 52 school-age children receiving services from a rehabilitation center for people with intellectual disabilities. Adaptive behaviors are evaluated by a special educator and a questionnaire concerning psychopathology is filled out by a parent and a teacher. Cluster analyses highlight three profiles among children: Performing, Uncooperative and Non-performing. They differ on cognitive functions, collaboration and in terms of practical abilities of adaptive behaviors. Chi-square tests show significant differences in social competences, but not in problematic behaviors, according to the viewpoint of parents and teachers. Potential explanations are provided to understand the absence of significant differences in problematic behaviors between the three profiles.

  3. Lack of GPR88 enhances medium spiny neuron activity and alters motor- and cue-dependent behaviors.

    PubMed

    Quintana, Albert; Sanz, Elisenda; Wang, Wengang; Storey, Granville P; Güler, Ali D; Wanat, Matthew J; Roller, Bryan A; La Torre, Anna; Amieux, Paul S; McKnight, G Stanley; Bamford, Nigel S; Palmiter, Richard D

    2012-11-01

    The striatum regulates motor control, reward and learning. Abnormal function of striatal GABAergic medium spiny neurons (MSNs) is believed to contribute to the deficits in these processes that are observed in many neuropsychiatric diseases. The orphan G protein-coupled receptor GPR88 is robustly expressed in MSNs and is regulated by neuropharmacological drugs, but its contribution to MSN physiology and behavior is unclear. We found that, in the absence of GPR88, MSNs showed increased glutamatergic excitation and reduced GABAergic inhibition, which promoted enhanced firing rates in vivo, resulting in hyperactivity, poor motor coordination and impaired cue-based learning in mice. Targeted viral expression of GPR88 in MSNs rescued the molecular and electrophysiological properties and normalized behavior, suggesting that aberrant MSN activation in the absence of GPR88 underlies behavioral deficits and its dysfunction may contribute to behaviors observed in neuropsychiatric disease.

  4. A shared resource between declarative memory and motor memory.

    PubMed

    Keisler, Aysha; Shadmehr, Reza

    2010-11-03

    The neural systems that support motor adaptation in humans are thought to be distinct from those that support the declarative system. Yet, during motor adaptation changes in motor commands are supported by a fast adaptive process that has important properties (rapid learning, fast decay) that are usually associated with the declarative system. The fast process can be contrasted to a slow adaptive process that also supports motor memory, but learns gradually and shows resistance to forgetting. Here we show that after people stop performing a motor task, the fast motor memory can be disrupted by a task that engages declarative memory, but the slow motor memory is immune from this interference. Furthermore, we find that the fast/declarative component plays a major role in the consolidation of the slow motor memory. Because of the competitive nature of declarative and nondeclarative memory during consolidation, impairment of the fast/declarative component leads to improvements in the slow/nondeclarative component. Therefore, the fast process that supports formation of motor memory is not only neurally distinct from the slow process, but it shares critical resources with the declarative memory system.

  5. A shared resource between declarative memory and motor memory

    PubMed Central

    Keisler, Aysha; Shadmehr, Reza

    2010-01-01

    The neural systems that support motor adaptation in humans are thought to be distinct from those that support the declarative system. Yet, during motor adaptation changes in motor commands are supported by a fast adaptive process that has important properties (rapid learning, fast decay) that are usually associated with the declarative system. The fast process can be contrasted to a slow adaptive process that also supports motor memory, but learns gradually and shows resistance to forgetting. Here we show that after people stop performing a motor task, the fast motor memory can be disrupted by a task that engages declarative memory, but the slow motor memory is immune from this interference. Furthermore, we find that the fast/declarative component plays a major role in the consolidation of the slow motor memory. Because of the competitive nature of declarative and non-declarative memory during consolidation, impairment of the fast/declarative component leads to improvements in the slow/non-declarative component. Therefore, the fast process that supports formation of motor memory is not only neurally distinct from the slow process, but it shares critical resources with the declarative memory system. PMID:21048140

  6. Graphonomics and its contribution to the field of motor behavior: A position statement.

    PubMed

    Van Gemmert, Arend W A; Contreras-Vidal, Jose L

    2015-10-01

    The term graphonomics was conceived in the early 1980s; it defined a multidisciplinary emerging field focused on handwriting and drawing movements. Researchers in the field of graphonomics have made important contribution to the field of motor behavior by developing models aimed to conceptualize the production of fine motor movements using graphical tools. Although skeptics have argued that recent technological advancements would reduce the impact of graphonomic research, a shift of focus within in the field of graphonomics into fine motor tasks in general proves the resilience of the field. Moreover, it has been suggested that the use of fine motor movements due to technological advances has increased in importance in everyday life. It is concluded that the International Graphonomics Society can have a leading role in fostering collaborative multidisciplinary efforts and can help with the dissemination of findings contributing to the field of human movement sciences to a larger public. Copyright © 2015. Published by Elsevier B.V.

  7. How does environmental enrichment reduce repetitive motor behaviors? Neuronal activation and dendritic morphology in the indirect basal ganglia pathway of a mouse model

    PubMed Central

    Bechard, Allison R.; Cacodcar, Nadia; King, Michael A.; Lewis, Mark H.

    2015-01-01

    Repetitive motor behaviors are observed in many neurodevelopmental and neurological disorders (e.g. autism spectrum disorders, Tourette syndrome, fronto-temporal dementia). Despite their clinical importance, the neurobiology underlying these highly stereotyped, apparently functionless behaviors is poorly understood. Identification of mechanisms that mediate the development of repetitive behaviors will aid in the discovery of new therapeutic targets and treatment development. Using a deer mouse model, we have shown that decreased indirect basal ganglia pathway activity is associated with high levels of repetitive behavior. Environmental enrichment (EE) markedly attenuates the development of such aberrant behaviors in mice, although mechanisms driving this effect are unknown. We hypothesized that EE would reduce repetitive motor behaviors by increasing indirect basal ganglia pathway function. We assessed neuronal activation and dendritic spine density in basal ganglia of adult deer mice reared in EE and standard housing. Significant increases in neuronal activation and dendritic spine densities were observed only in the subthalamic nucleus (STN) and globus pallidus (GP), and only for those mice that exhibited an EE-induced decrease in repetitive motor behavior. As the STN and GP lie within the indirect pathway, these data suggest that EE-induced attenuation of repetitive motor behaviors is associated with increased functional activation of the indirect basal ganglia pathway. These results are consistent with our other findings highlighting the importance of the indirect pathway in mediating repetitive motor behaviors. PMID:26620495

  8. A high performance sensorimotor beta rhythm-based brain computer interface associated with human natural motor behavior

    NASA Astrophysics Data System (ADS)

    Bai, Ou; Lin, Peter; Vorbach, Sherry; Floeter, Mary Kay; Hattori, Noriaki; Hallett, Mark

    2008-03-01

    To explore the reliability of a high performance brain-computer interface (BCI) using non-invasive EEG signals associated with human natural motor behavior does not require extensive training. We propose a new BCI method, where users perform either sustaining or stopping a motor task with time locking to a predefined time window. Nine healthy volunteers, one stroke survivor with right-sided hemiparesis and one patient with amyotrophic lateral sclerosis (ALS) participated in this study. Subjects did not receive BCI training before participating in this study. We investigated tasks of both physical movement and motor imagery. The surface Laplacian derivation was used for enhancing EEG spatial resolution. A model-free threshold setting method was used for the classification of motor intentions. The performance of the proposed BCI was validated by an online sequential binary-cursor-control game for two-dimensional cursor movement. Event-related desynchronization and synchronization were observed when subjects sustained or stopped either motor execution or motor imagery. Feature analysis showed that EEG beta band activity over sensorimotor area provided the largest discrimination. With simple model-free classification of beta band EEG activity from a single electrode (with surface Laplacian derivation), the online classifications of the EEG activity with motor execution/motor imagery were: >90%/~80% for six healthy volunteers, >80%/~80% for the stroke patient and ~90%/~80% for the ALS patient. The EEG activities of the other three healthy volunteers were not classifiable. The sensorimotor beta rhythm of EEG associated with human natural motor behavior can be used for a reliable and high performance BCI for both healthy subjects and patients with neurological disorders. Significance: The proposed new non-invasive BCI method highlights a practical BCI for clinical applications, where the user does not require extensive training.

  9. Modules in the brain stem and spinal cord underlying motor behaviors

    PubMed Central

    Cheung, Vincent C. K.; Bizzi, Emilio

    2011-01-01

    Previous studies using intact and spinalized animals have suggested that coordinated movements can be generated by appropriate combinations of muscle synergies controlled by the central nervous system (CNS). However, which CNS regions are responsible for expressing muscle synergies remains an open question. We address whether the brain stem and spinal cord are involved in expressing muscle synergies used for executing a range of natural movements. We analyzed the electromyographic (EMG) data recorded from frog leg muscles before and after transection at different levels of the neuraxis—rostral midbrain (brain stem preparations), rostral medulla (medullary preparations), and the spinal-medullary junction (spinal preparations). Brain stem frogs could jump, swim, kick, and step, while medullary frogs could perform only a partial repertoire of movements. In spinal frogs, cutaneous reflexes could be elicited. Systematic EMG analysis found two different synergy types: 1) synergies shared between pre- and posttransection states and 2) synergies specific to individual states. Almost all synergies found in natural movements persisted after transection at rostral midbrain or medulla but not at the spinal-medullary junction for swim and step. Some pretransection- and posttransection-specific synergies for a certain behavior appeared as shared synergies for other motor behaviors of the same animal. These results suggest that the medulla and spinal cord are sufficient for the expression of most muscle synergies in frog behaviors. Overall, this study provides further evidence supporting the idea that motor behaviors may be constructed by muscle synergies organized within the brain stem and spinal cord and activated by descending commands from supraspinal areas. PMID:21653716

  10. Housing conditions influence motor functions and exploratory behavior following focal damage of the rat brain.

    PubMed

    Gornicka-Pawlak, Elzbieta; Jabłońska, Anna; Chyliński, Andrzej; Domańska-Janik, Krystyna

    2009-01-01

    The present study investigated influence of housing conditions on motor functions recovery and exploratory behavior following ouabain focal brain lesion in the rat. During 30 days post-surgery period rats were housed individually in standard cages (IS) or in groups in enriched environment (EE) and behaviorally tested. The EE lesioned rats showed enhanced recovery from motor impairments in walking beam task, comparing with IS animals. Contrarily, in the open field IS rats (both lesioned and control) traveled a longer distance, showed less habituation and spent less time resting at the home base than the EE animals. Unlike the EE lesioned animals, the lesioned IS rats, presented a tendency to hyperactivity in postinjury period. Turning tendency was significantly affected by unilateral brain lesion only in the EE rats. We can conclude that housing conditions distinctly affected the rat's behavior in classical laboratory tests.

  11. Someone has to give in: theta oscillations correlate with adaptive behavior in social bargaining.

    PubMed

    Billeke, Pablo; Zamorano, Francisco; López, Tamara; Rodriguez, Carlos; Cosmelli, Diego; Aboitiz, Francisco

    2014-12-01

    During social bargain, one has to both figure out the others' intentions and behave strategically in such a way that the others' behaviors will be consistent with one's expectations. To understand the neurobiological mechanisms underlying these behaviors, we used electroencephalography while subjects played as proposers in a repeated ultimatum game. We found that subjects adapted their offers to obtain more acceptances in the last round and that this adaptation correlated negatively with prefrontal theta oscillations. People with higher prefrontal theta activity related to a rejection did not adapt their offers along the game to maximize their earning. Moreover, between-subject variation in posterior theta oscillations correlated positively with how individual theta activity influenced the change of offer after a rejection, reflecting a process of behavioral adaptation to the others' demands. Interestingly, people adapted better their offers when they knew that they where playing against a computer, although the behavioral adaptation did not correlate with prefrontal theta oscillation. Behavioral changes between human and computer games correlated with prefrontal theta activity, suggesting that low adaptation in human games could be a strategy. Taken together, these results provide evidence for specific roles of prefrontal and posterior theta oscillations in social bargaining. © The Author (2014). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  12. Someone has to give in: theta oscillations correlate with adaptive behavior in social bargaining

    PubMed Central

    Zamorano, Francisco; López, Tamara; Rodriguez, Carlos; Cosmelli, Diego; Aboitiz, Francisco

    2014-01-01

    During social bargain, one has to both figure out the others’ intentions and behave strategically in such a way that the others’ behaviors will be consistent with one’s expectations. To understand the neurobiological mechanisms underlying these behaviors, we used electroencephalography while subjects played as proposers in a repeated ultimatum game. We found that subjects adapted their offers to obtain more acceptances in the last round and that this adaptation correlated negatively with prefrontal theta oscillations. People with higher prefrontal theta activity related to a rejection did not adapt their offers along the game to maximize their earning. Moreover, between-subject variation in posterior theta oscillations correlated positively with how individual theta activity influenced the change of offer after a rejection, reflecting a process of behavioral adaptation to the others’ demands. Interestingly, people adapted better their offers when they knew that they where playing against a computer, although the behavioral adaptation did not correlate with prefrontal theta oscillation. Behavioral changes between human and computer games correlated with prefrontal theta activity, suggesting that low adaptation in human games could be a strategy. Taken together, these results provide evidence for specific roles of prefrontal and posterior theta oscillations in social bargaining. PMID:24493841

  13. Tio2-dopamine complex implanted unilaterally in the caudate nucleus improves motor activity and behavior function of rats with induced hemiparkinsonism.

    PubMed

    Vergara-Aragón, Patricia; Domínguez-Marrufo, Leonardo Eduardo; Ibarra-Guerrero, Patricia; Hernandez-Ramírez, Heidi; Hernández-Téllez, Beatriz; López-Martínez, Irma Elena; Sánchez-Cervantes, Ivonne; Santiago-Jacinto, Patricia; García-Macedo, Jorge Alberto; Valverde-Aguilar, Guadalupe; Santiago, Julio

    2011-01-01

    Parkinson's disease (PD) is characterized by malfunction of dopaminergic systems, and the current symptomatic treatment is to replace lost dopamine. For investigating mechanisms of pathogenesis and alternative treatments to compensate lack of dopamine (DA) activity in PD, the 6-hydroxydopamine (6-OHDA)-lesioned rat model of PD has been useful, these animals display apomorphine-induced contralateral rotational behavior, when they are examined after lesion. The purpose of this study was to assess Titania-dopamine (TiO2-DA) complexes implanted on the caudate nucleus for diminishing motor behavior alterations of the 6-OHDA rat model. Rats with 6-OHDA unilateral lesions received TiO2 alone or TiO2-DA implants, and were tested for open field (OF) gross motor crossing and rearing behaviors, and apomorphine-induced rotation (G) behavior. TiO2 complex have no effects on rearing OF and G behaviors, and a significant reducing effect on crossing motor behavior of normal rats compared to control non-treated rats throughout 56 days of observation. Interestingly, TiO2-DA treatment significant recovered motor crossing and rearing behaviors in 6-OHDA-lesioned rats, and diminished the G behaviors during 56 days of examination. Additionally, in the 6-OHDA-lesioned rats TiO2 treatment had a moderate recovering effect only on crossing behavior compared to lesioned non treated rats. Our results suggest that continuous release of dopamine in the caudate nucleus from TiO2-DA complex is capable of reversing gross motor deficits observed in the 6-OHDA-lesioned rat model of PD. Thistype of delivery system of DA represents a promising therapy for PD in humans.

  14. Examination of Post-stroke Alteration in Motor Unit Firing Behavior Using High Density Surface EMG Decomposition

    PubMed Central

    Li, Xiaoyan; Holobar, Aleš; Gazzoni, Marco; Merletti, Roberto; Rymer, William Z.; Zhou, Ping

    2014-01-01

    Recent advances in high density surface electromyogram (EMG) decomposition have made it a feasible task to discriminate single motor unit activity from surface EMG interference patterns, thus providing a noninvasive approach for examination of motor unit control properties. In the current study we applied high density surface EMG recording and decomposition techniques to assess motor unit firing behavior alterations post-stroke. Surface EMG signals were collected using a 64-channel 2-dimensional electrode array from the paretic and contralateral first dorsal interosseous (FDI) muscles of nine hemiparetic stroke subjects at different isometric discrete contraction levels between 2 N to 10 N with a 2 N increment step. Motor unit firing rates were extracted through decomposition of the high density surface EMG signals, and compared between paretic and contralateral muscles. Across the nine tested subjects, paretic FDI muscles showed decreased motor unit firing rates compared with contralateral muscles at different contraction levels. Regression analysis indicated a linear relation between the mean motor unit firing rate and the muscle contraction level for both paretic and contralateral muscles (p < 0.001), with the former demonstrating a lower increment rate (0.32 pulses per second (pps)/N) compared with the latter (0.67 pps/N). The coefficient of variation (CoV, averaged over the contraction levels) of the motor unit firing rates for the paretic muscles (0.21 ± 0.012) was significantly higher than for the contralateral muscles (0.17 ± 0.014) (p < 0.05). This study provides direct evidence of motor unit firing behavior alterations post-stroke using surface EMG, which can be an important factor contributing to hemiparetic muscle weakness. PMID:25389239

  15. A theory of cerebellar cortex and adaptive motor control based on two types of universal function approximation capability.

    PubMed

    Fujita, Masahiko

    2016-03-01

    Lesions of the cerebellum result in large errors in movements. The cerebellum adaptively controls the strength and timing of motor command signals depending on the internal and external environments of movements. The present theory describes how the cerebellar cortex can control signals for accurate and timed movements. A model network of the cerebellar Golgi and granule cells is shown to be equivalent to a multiple-input (from mossy fibers) hierarchical neural network with a single hidden layer of threshold units (granule cells) that receive a common recurrent inhibition (from a Golgi cell). The weighted sum of the hidden unit signals (Purkinje cell output) is theoretically analyzed regarding the capability of the network to perform two types of universal function approximation. The hidden units begin firing as the excitatory inputs exceed the recurrent inhibition. This simple threshold feature leads to the first approximation theory, and the network final output can be any continuous function of the multiple inputs. When the input is constant, this output becomes stationary. However, when the recurrent unit activity is triggered to decrease or the recurrent inhibition is triggered to increase through a certain mechanism (metabotropic modulation or extrasynaptic spillover), the network can generate any continuous signals for a prolonged period of change in the activity of recurrent signals, as the second approximation theory shows. By incorporating the cerebellar capability of two such types of approximations to a motor system, in which learning proceeds through repeated movement trials with accompanying corrections, accurate and timed responses for reaching the target can be adaptively acquired. Simple models of motor control can solve the motor error vs. sensory error problem, as well as the structural aspects of credit (or error) assignment problem. Two physiological experiments are proposed for examining the delay and trace conditioning of eyelid responses, as

  16. Multiple systems for motor skill learning.

    PubMed

    Clark, Dav; Ivry, Richard B

    2010-07-01

    Motor learning is a ubiquitous feature of human competence. This review focuses on two particular classes of model tasks for studying skill acquisition. The serial reaction time (SRT) task is used to probe how people learn sequences of actions, while adaptation in the context of visuomotor or force field perturbations serves to illustrate how preexisting movements are recalibrated in novel environments. These tasks highlight important issues regarding the representational changes that occur during the course of motor learning. One important theme is that distinct mechanisms vary in their information processing costs during learning and performance. Fast learning processes may require few trials to produce large changes in performance but impose demands on cognitive resources. Slower processes are limited in their ability to integrate complex information but minimally demanding in terms of attention or processing resources. The representations derived from fast systems may be accessible to conscious processing and provide a relatively greater measure of flexibility, while the representations derived from slower systems are more inflexible and automatic in their behavior. In exploring these issues, we focus on how multiple neural systems may interact and compete during the acquisition and consolidation of new behaviors. Copyright © 2010 John Wiley & Sons, Ltd. This article is categorized under: Psychology > Motor Skill and Performance. Copyright © 2010 John Wiley & Sons, Ltd.

  17. Prism adaptation and spatial neglect: the need for dose-finding studies.

    PubMed

    Goedert, Kelly M; Zhang, Jeffrey Y; Barrett, A M

    2015-01-01

    Spatial neglect is a devastating disorder in 50-70% of right-brain stroke survivors, who have problems attending to, or making movements towards, left-sided stimuli, and experience a high risk of chronic dependence. Prism adaptation is a promising treatment for neglect that involves brief, daily visuo-motor training sessions while wearing optical prisms. Its benefits extend to functional behaviors such as dressing, with effects lasting 6 months or longer. Because one to two sessions of prism adaptation induce adaptive changes in both spatial-motor behavior (Fortis et al., 2011) and brain function (Saj et al., 2013), it is possible stroke patients may benefit from treatment periods shorter than the standard, intensive protocol of ten sessions over two weeks-a protocol that is impractical for either US inpatient or outpatient rehabilitation. Demonstrating the effectiveness of a lower dose will maximize the availability of neglect treatment. We present preliminary data suggesting that four to six sessions of prism treatment may induce a large treatment effect, maintained three to four weeks post-treatment. We call for a systematic, randomized clinical trial to establish the minimal effective dose suitable for stroke intervention.

  18. Prism adaptation and spatial neglect: the need for dose-finding studies

    PubMed Central

    Goedert, Kelly M.; Zhang, Jeffrey Y.; Barrett, A. M.

    2015-01-01

    Spatial neglect is a devastating disorder in 50–70% of right-brain stroke survivors, who have problems attending to, or making movements towards, left-sided stimuli, and experience a high risk of chronic dependence. Prism adaptation is a promising treatment for neglect that involves brief, daily visuo-motor training sessions while wearing optical prisms. Its benefits extend to functional behaviors such as dressing, with effects lasting 6 months or longer. Because one to two sessions of prism adaptation induce adaptive changes in both spatial-motor behavior (Fortis et al., 2011) and brain function (Saj et al., 2013), it is possible stroke patients may benefit from treatment periods shorter than the standard, intensive protocol of ten sessions over two weeks—a protocol that is impractical for either US inpatient or outpatient rehabilitation. Demonstrating the effectiveness of a lower dose will maximize the availability of neglect treatment. We present preliminary data suggesting that four to six sessions of prism treatment may induce a large treatment effect, maintained three to four weeks post-treatment. We call for a systematic, randomized clinical trial to establish the minimal effective dose suitable for stroke intervention. PMID:25983688

  19. The role of strategies in motor learning

    PubMed Central

    Taylor, Jordan A.; Ivry, Richard B.

    2015-01-01

    There has been renewed interest in the role of strategies in sensorimotor learning. The combination of new behavioral methods and computational methods has begun to unravel the interaction between processes related to strategic control and processes related to motor adaptation. These processes may operate on very different error signals. Strategy learning is sensitive to goal-based performance error. In contrast, adaptation is sensitive to prediction errors between the desired and actual consequences of a planned movement. The former guides what the desired movement should be, whereas the latter guides how to implement the desired movement. Whereas traditional approaches have favored serial models in which an initial strategy-based phase gives way to more automatized forms of control, it now seems that strategic and adaptive processes operate with considerable independence throughout learning, although the relative weight given the two processes will shift with changes in performance. As such, skill acquisition involves the synergistic engagement of strategic and adaptive processes. PMID:22329960

  20. Acute ethanol ingestion produces dose-dependent effects on motor behavior in the honey bee (Apis mellifera).

    PubMed

    Maze, Ian S; Wright, Geraldine A; Mustard, Julie A

    2006-01-01

    Ethanol consumption produces characteristic behavioral states in animals that include sedation, disorientation, and disruption of motor function. Using individual honey bees, we assessed the effects of ethanol ingestion on motor function via continuous observations of their behavior. Consumption of 1 M sucrose solutions containing a range of ethanol doses led to hemolymph ethanol levels of approximately 40-100 mM. Using ethanol doses in this range, we observed time and dose-dependent effects of ethanol on the percent of time our subjects spent walking, stopped, or upside down, and on the duration and frequency of bouts of behavior. The effects on grooming and flying behavior were more complex. Behavioral recovery from ethanol treatment was both time and ethanol dose dependent, occurring between 12 and 24 h post-ingestion for low doses and at 24-48 h for higher doses. Furthermore, the amount of ethanol measured in honey bee hemolymph appeared to correlate with recovery. We predict that the honey bee will prove to be an excellent model system for studying the influence of ethanol on the neural mechanisms underlying behavior.

  1. Stepper motor

    NASA Technical Reports Server (NTRS)

    Dekramer, Cornelis

    1994-01-01

    The purpose of this document is to describe the more commonly used permanent magnet stepper motors for spaceflight. It will discuss the mechanical and electrical aspects of the devices, their torque behavior, those parameters which need to be controlled and measured, and test methods to be employed. It will also discuss torque margins, compare these to the existing margin requirements, and determine the applicability of these requirements. Finally it will attempt to generate a set of requirements which will be used in any stepper motor procurement and will fully characterize the stepper motor behavior in a consistent and repeatable fashion.

  2. Assessment Position Affects Problem-Solving Behaviors in a Child With Motor Impairments.

    PubMed

    OʼGrady, Michael G; Dusing, Stacey C

    2016-01-01

    The purpose of this report was to examine problem-solving behaviors of a child with significant motor impairments in positions she could maintain independently, in supine and prone positions, as well as a position that required support, sitting. The child was a 22-month-old girl who could not sit independently and had limited independent mobility. Her problem-solving behaviors were assessed using the Early Problem Solving Indicator, while she was placed in supine or prone position, and again in manually supported sitting position. In manually supported sitting position, the subject demonstrated a higher frequency of problem-solving behaviors and her most developmentally advanced problem-solving behavior. Because a child's position may affect cognitive test results, position should be documented at the time of testing.

  3. Longitudinal Examination of Adaptive Behavior in Autism Spectrum Disorders: Influence of Executive Function

    ERIC Educational Resources Information Center

    Pugliese, Cara E.; Anthony, Laura Gutermuth; Strang, John F.; Dudley, Katerina; Wallace, Gregory L.; Naiman, Daniel Q.; Kenworthy, Lauren

    2016-01-01

    This study characterizes longitudinal change in adaptive behavior in 64 children and adolescents with autism spectrum disorder (ASD) without intellectual disability evaluated on multiple occasions, and examines whether prior estimate of executive function (EF) problems predicts future adaptive behavior scores. Compared to standardized estimates…

  4. Behavior and adaptive functioning in adolescents with Down syndrome: specifying targets for intervention.

    PubMed

    Jacola, Lisa M; Hickey, Francis; Howe, Steven R; Esbensen, Anna; Shear, Paula K

    2014-01-01

    Research suggests that adolescents with Down syndrome experience increased behavior problems as compared to age matched peers; however, few studies have examined how these problems relate to adaptive functioning. The primary aim of this study was to characterize behavior in a sample of adolescents with Down syndrome using two widely-used caregiver reports: the Behavioral Assessment System for Children, 2 nd Edition (BASC-2) and Child Behavioral Checklist (CBCL). The clinical utility of the BASC-2 as a measure of behavior and adaptive functioning in adolescents with Down syndrome was also examined. Fifty-two adolescents with Down syndrome between the ages of 12 and 18 (24 males) completed the Peabody Picture Vocabulary Test, 4 th Edition (PPVT-IV) as an estimate of cognitive ability. Caregivers completed the BASC-2 and the CBCL for each participant. A significant proportion of the sample was reported to demonstrate behavior problems, particularly related to attention and social participation. The profile of adaptive function was variable, with caregivers most frequently rating impairment in skills related to activities of daily living and functional communication. Caregiver ratings did not differ by gender and were not related to age or estimated cognitive ability. Caregiver ratings of attention problems on the BASC-2 accounted for a significant proportion of variance in Activities of Daily Living ( Adj R 2 = 0.30) , Leadership ( Adj R 2 = 0.30) Functional Communication ( Adj R 2 = 0.28, Adaptability ( Adj R 2 = 0.29), and Social Skills ( Adj R 2 = 0.17). Higher frequencies of symptoms related to social withdrawal added incremental predictive validity for Functional Communication, Leadership, and Social Skills. Convergent validity between the CBCL and BASC-2 was poor when compared with expectations based on the normative sample. Our results confirm and extend previous findings by describing relationships between specific behavior problems and targeted areas of

  5. Behavior and adaptive functioning in adolescents with Down syndrome: specifying targets for intervention

    PubMed Central

    Jacola, Lisa M.; Hickey, Francis; Howe, Steven R.; Esbensen, Anna; Shear, Paula K.

    2016-01-01

    Background Research suggests that adolescents with Down syndrome experience increased behavior problems as compared to age matched peers; however, few studies have examined how these problems relate to adaptive functioning. The primary aim of this study was to characterize behavior in a sample of adolescents with Down syndrome using two widely-used caregiver reports: the Behavioral Assessment System for Children, 2nd Edition (BASC-2) and Child Behavioral Checklist (CBCL). The clinical utility of the BASC-2 as a measure of behavior and adaptive functioning in adolescents with Down syndrome was also examined. Methods Fifty-two adolescents with Down syndrome between the ages of 12 and 18 (24 males) completed the Peabody Picture Vocabulary Test, 4th Edition (PPVT-IV) as an estimate of cognitive ability. Caregivers completed the BASC-2 and the CBCL for each participant. Results A significant proportion of the sample was reported to demonstrate behavior problems, particularly related to attention and social participation. The profile of adaptive function was variable, with caregivers most frequently rating impairment in skills related to activities of daily living and functional communication. Caregiver ratings did not differ by gender and were not related to age or estimated cognitive ability. Caregiver ratings of attention problems on the BASC-2 accounted for a significant proportion of variance in Activities of Daily Living (Adj R2 = 0.30), Leadership (Adj R2 = 0.30) Functional Communication (Adj R2 = 0.28, Adaptability (Adj R2 = 0.29), and Social Skills (Adj R2 = 0.17). Higher frequencies of symptoms related to social withdrawal added incremental predictive validity for Functional Communication, Leadership, and Social Skills. Convergent validity between the CBCL and BASC-2 was poor when compared with expectations based on the normative sample. Conclusion Our results confirm and extend previous findings by describing relationships between specific behavior problems

  6. The dissociable effects of punishment and reward on motor learning.

    PubMed

    Galea, Joseph M; Mallia, Elizabeth; Rothwell, John; Diedrichsen, Jörn

    2015-04-01

    A common assumption regarding error-based motor learning (motor adaptation) in humans is that its underlying mechanism is automatic and insensitive to reward- or punishment-based feedback. Contrary to this hypothesis, we show in a double dissociation that the two have independent effects on the learning and retention components of motor adaptation. Negative feedback, whether graded or binary, accelerated learning. While it was not necessary for the negative feedback to be coupled to monetary loss, it had to be clearly related to the actual performance on the preceding movement. Positive feedback did not speed up learning, but it increased retention of the motor memory when performance feedback was withdrawn. These findings reinforce the view that independent mechanisms underpin learning and retention in motor adaptation, reject the assumption that motor adaptation is independent of motivational feedback, and raise new questions regarding the neural basis of negative and positive motivational feedback in motor learning.

  7. Adaptive categorization of ART networks in robot behavior learning using game-theoretic formulation.

    PubMed

    Fung, Wai-keung; Liu, Yun-hui

    2003-12-01

    Adaptive Resonance Theory (ART) networks are employed in robot behavior learning. Two of the difficulties in online robot behavior learning, namely, (1) exponential memory increases with time, (2) difficulty for operators to specify learning tasks accuracy and control learning attention before learning. In order to remedy the aforementioned difficulties, an adaptive categorization mechanism is introduced in ART networks for perceptual and action patterns categorization in this paper. A game-theoretic formulation of adaptive categorization for ART networks is proposed for vigilance parameter adaptation for category size control on the categories formed. The proposed vigilance parameter update rule can help improving categorization performance in the aspect of category number stability and solve the problem of selecting initial vigilance parameter prior to pattern categorization in traditional ART networks. Behavior learning using physical robot is conducted to demonstrate the effectiveness of the proposed adaptive categorization mechanism in ART networks.

  8. To transfer or not to transfer? Kinematics and laterality quotient predict interlimb transfer of motor learning.

    PubMed

    Lefumat, Hannah Z; Vercher, Jean-Louis; Miall, R Chris; Cole, Jonathan; Buloup, Frank; Bringoux, Lionel; Bourdin, Christophe; Sarlegna, Fabrice R

    2015-11-01

    Humans can remarkably adapt their motor behavior to novel environmental conditions, yet it remains unclear which factors enable us to transfer what we have learned with one limb to the other. Here we tested the hypothesis that interlimb transfer of sensorimotor adaptation is determined by environmental conditions but also by individual characteristics. We specifically examined the adaptation of unconstrained reaching movements to a novel Coriolis, velocity-dependent force field. Right-handed subjects sat at the center of a rotating platform and performed forward reaching movements with the upper limb toward flashed visual targets in prerotation, per-rotation (i.e., adaptation), and postrotation tests. Here only the dominant arm was used during adaptation and interlimb transfer was assessed by comparing performance of the nondominant arm before and after dominant-arm adaptation. Vision and no-vision conditions did not significantly influence interlimb transfer of trajectory adaptation, which on average was significant but limited. We uncovered a substantial heterogeneity of interlimb transfer across subjects and found that interlimb transfer can be qualitatively and quantitatively predicted for each healthy young individual. A classifier showed that in our study, interlimb transfer could be predicted based on the subject's task performance, most notably motor variability during learning, and his or her laterality quotient. Positive correlations suggested that variability of motor performance and lateralization of arm movement control facilitate interlimb transfer. We further show that these individual characteristics can predict the presence and the magnitude of interlimb transfer of left-handers. Overall, this study suggests that individual characteristics shape the way the nervous system can generalize motor learning. Copyright © 2015 the American Physiological Society.

  9. Bimanual coupling paradigm as an effective tool to investigate productive behaviors in motor and body awareness impairments.

    PubMed

    Garbarini, Francesca; Pia, Lorenzo

    2013-11-05

    When humans move simultaneously both hands strong coupling effects arise and neither of the two hands is able to perform independent actions. It has been suggested that such motor constraints are tightly linked to action representation rather than to movement execution. Hence, bimanual tasks can represent an ideal experimental tool to investigate internal motor representations in those neurological conditions in which the movement of one hand is impaired. Indeed, any effect on the "moving" (healthy) hand would be caused by the constraints imposed by the ongoing motor program of the 'impaired' hand. Here, we review recent studies that successfully utilized the above-mentioned paradigms to investigate some types of productive motor behaviors in stroke patients. Specifically, bimanual tasks have been employed in left hemiplegic patients who report illusory movements of their contralesional limbs (anosognosia for hemiplegia). They have also been administered to patients affected by a specific monothematic delusion of body ownership, namely the belief that another person's arm and his/her voluntary action belong to them. In summary, the reviewed studies show that bimanual tasks are a simple and valuable experimental method apt to reveal information about the motor programs of a paralyzed limb. Therefore, it can be used to objectively examine the cognitive processes underpinning motor programming in patients with different delusions of motor behavior. Additionally, it also sheds light on the mechanisms subserving bimanual coordination in the intact brain suggesting that action representation might be sufficient to produce these effects.

  10. Brain–Computer Interface Training after Stroke Affects Patterns of Brain–Behavior Relationships in Corticospinal Motor Fibers

    PubMed Central

    Young, Brittany M.; Stamm, Julie M.; Song, Jie; Remsik, Alexander B.; Nair, Veena A.; Tyler, Mitchell E.; Edwards, Dorothy F.; Caldera, Kristin; Sattin, Justin A.; Williams, Justin C.; Prabhakaran, Vivek

    2016-01-01

    Background: Brain–computer interface (BCI) devices are being investigated for their application in stroke rehabilitation, but little is known about how structural changes in the motor system relate to behavioral measures with the use of these systems. Objective: This study examined relationships among diffusion tensor imaging (DTI)-derived metrics and with behavioral changes in stroke patients with and without BCI training. Methods: Stroke patients (n = 19) with upper extremity motor impairment were assessed using Stroke Impact Scale (SIS), Action Research Arm Test (ARAT), Nine-Hole Peg Test (9-HPT), and DTI scans. Ten subjects completed four assessments over a control period during which no training was administered. Seventeen subjects, including eight who completed the control period, completed four assessments over an experimental period during which subjects received interventional BCI training. Fractional anisotropy (FA) values were extracted from each corticospinal tract (CST) and transcallosal motor fibers for each scan. Results: No significant group by time interactions were identified at the group level in DTI or behavioral measures. During the control period, increases in contralesional CST FA and in asymmetric FA (aFA) correlated with poorer scores on SIS and 9-HPT. During the experimental period (with BCI training), increases in contralesional CST FA were correlated with improvements in 9-HPT while increases in aFA correlated with improvements in ARAT but with worsening 9-HPT performance; changes in transcallosal motor fibers positively correlated with those in the contralesional CST. All correlations p < 0.05 corrected. Conclusion: These findings suggest that the integrity of the contralesional CST may be used to track individual behavioral changes observed with BCI training after stroke. PMID:27695404

  11. Adaptive Tracking Control for Robots With an Interneural Computing Scheme.

    PubMed

    Tsai, Feng-Sheng; Hsu, Sheng-Yi; Shih, Mau-Hsiang

    2018-04-01

    Adaptive tracking control of mobile robots requires the ability to follow a trajectory generated by a moving target. The conventional analysis of adaptive tracking uses energy minimization to study the convergence and robustness of the tracking error when the mobile robot follows a desired trajectory. However, in the case that the moving target generates trajectories with uncertainties, a common Lyapunov-like function for energy minimization may be extremely difficult to determine. Here, to solve the adaptive tracking problem with uncertainties, we wish to implement an interneural computing scheme in the design of a mobile robot for behavior-based navigation. The behavior-based navigation adopts an adaptive plan of behavior patterns learning from the uncertainties of the environment. The characteristic feature of the interneural computing scheme is the use of neural path pruning with rewards and punishment interacting with the environment. On this basis, the mobile robot can be exploited to change its coupling weights in paths of neural connections systematically, which can then inhibit or enhance the effect of flow elimination in the dynamics of the evolutionary neural network. Such dynamical flow translation ultimately leads to robust sensory-to-motor transformations adapting to the uncertainties of the environment. A simulation result shows that the mobile robot with the interneural computing scheme can perform fault-tolerant behavior of tracking by maintaining suitable behavior patterns at high frequency levels.

  12. Compensatory Expressive Behavior for Facial Paralysis: Adaptation to Congenital or Acquired Disability

    PubMed Central

    Bogart, Kathleen R.; Tickle-Degnen, Linda; Ambady, Nalini

    2015-01-01

    Purpose/Objective Although there has been little research on the adaptive behavior of people with congenital compared to acquired disability, there is reason to predict that people with congenital conditions may be better adapted because they have lived with their conditions for their entire lives (Smart, 2008). We examined whether people with congenital facial paralysis (FP), compared to people with acquired FP, compensate more for impoverished facial expression by using alternative channels of expression (i.e. voice and body). Research Method/Design Participants with congenital (n = 13) and acquired (n = 14) FP were videotaped while recalling emotional events. Main Outcome Measures Expressive verbal behavior was measured using the Linguistic Inquiry Word Count (Pennebaker, Booth & Francis, 2007). Nonverbal behavior and FP severity were rated by trained coders. Results People with congenital FP, compared to acquired FP, used more compensatory expressive verbal and nonverbal behavior in their language, voices, and bodies. The extent of FP severity had little effect on compensatory expressivity. Conclusions/Implications This study provides the first behavioral evidence that people with congenital FP use more adaptations to express themselves than people with acquired FP. These behaviors could inform social functioning interventions for people with FP. PMID:22369116

  13. Compensatory expressive behavior for facial paralysis: adaptation to congenital or acquired disability.

    PubMed

    Bogart, Kathleen R; Tickle-Degnen, Linda; Ambady, Nalini

    2012-02-01

    Although there has been little research on the adaptive behavior of people with congenital compared to acquired disability, there is reason to predict that people with congenital conditions may be better adapted because they have lived with their conditions for their entire lives (Smart, 2008). We examined whether people with congenital facial paralysis (FP), compared to people with acquired FP, compensate more for impoverished facial expression by using alternative channels of expression (i.e., voice and body). Participants with congenital (n = 13) and acquired (n = 14) FP were videotaped while recalling emotional events. Expressive verbal behavior was measured using the Linguistic Inquiry Word Count (Pennebaker, Booth, & Francis, 2007). Nonverbal behavior and FP severity were rated by trained coders. People with congenital FP, compared to acquired FP, used more compensatory expressive verbal and nonverbal behavior in their language, voices, and bodies. The extent of FP severity had little effect on compensatory expressivity. This study provides the first behavioral evidence that people with congenital FP use more adaptations to express themselves than people with acquired FP. These behaviors could inform social functioning interventions for people with FP.

  14. Toll-like receptor 9 deficiency impacts sensory and motor behaviors.

    PubMed

    Khariv, Veronika; Pang, Kevin; Servatius, Richard J; David, Brian T; Goodus, Matthew T; Beck, Kevin D; Heary, Robert F; Elkabes, Stella

    2013-08-01

    Toll-like receptors (TLRs) mediate the induction of the innate immune system in response to pathogens, injury and disease. However, they also play non-immune roles and are expressed in the central nervous system (CNS) during prenatal and postnatal stages including adulthood. Little is known about their roles in the CNS in the absence of pathology. Several members of the TLR family have been implicated in the development of neural and cognitive function although the contribution of TLR9 to these processes has not been well defined. The current studies were undertaken to determine whether developmental TLR9 deficiency affects motor, sensory or cognitive functions. We report that TLR9 deficient (TLR9(-/-)) mice show a hyper-responsive sensory and motor phenotype compared to wild type (TLR9(+/+)) controls. This is indicated by hypersensitivity to thermal stimuli in the hot plate paw withdrawal test, enhanced motor-responsivity under anxious conditions in the open field test and greater sensorimotor reactivity in the acoustic startle response. Prepulse inhibition (PPI) of the acoustic startle response was also enhanced, which indicates abnormal sensorimotor gating. In addition, subtle, but significant, gait abnormalities were noted in the TLR9(-/-) mice on the horizontal balance beam test with higher foot slip numbers than TLR9(+/+) controls. In contrast, spatial learning and memory, assessed by the Morris water maze, was similar in the TLR9(-/-) and TLR9(+/+) mice. These findings support the notion that TLR9 is important for the appropriate development of sensory and motor behaviors. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. Similarities in error processing establish a link between saccade prediction at baseline and adaptation performance.

    PubMed

    Wong, Aaron L; Shelhamer, Mark

    2014-05-01

    Adaptive processes are crucial in maintaining the accuracy of body movements and rely on error storage and processing mechanisms. Although classically studied with adaptation paradigms, evidence of these ongoing error-correction mechanisms should also be detectable in other movements. Despite this connection, current adaptation models are challenged when forecasting adaptation ability with measures of baseline behavior. On the other hand, we have previously identified an error-correction process present in a particular form of baseline behavior, the generation of predictive saccades. This process exhibits long-term intertrial correlations that decay gradually (as a power law) and are best characterized with the tools of fractal time series analysis. Since this baseline task and adaptation both involve error storage and processing, we sought to find a link between the intertrial correlations of the error-correction process in predictive saccades and the ability of subjects to alter their saccade amplitudes during an adaptation task. Here we find just such a relationship: the stronger the intertrial correlations during prediction, the more rapid the acquisition of adaptation. This reinforces the links found previously between prediction and adaptation in motor control and suggests that current adaptation models are inadequate to capture the complete dynamics of these error-correction processes. A better understanding of the similarities in error processing between prediction and adaptation might provide the means to forecast adaptation ability with a baseline task. This would have many potential uses in physical therapy and the general design of paradigms of motor adaptation. Copyright © 2014 the American Physiological Society.

  16. Transport behaviors of locally fractional coupled Brownian motors with fluctuating interactions

    NASA Astrophysics Data System (ADS)

    Wang, Huiqi; Ni, Feixiang; Lin, Lifeng; Lv, Wangyong; Zhu, Hongqiang

    2018-09-01

    In some complex viscoelastic mediums, it is ubiquitous that absorbing and desorbing surrounding Brownian particles randomly occur in coupled systems. The conventional method is to model a variable-mass system driven by both multiplicative and additive noises. In this paper, an improved mathematical model is created based on generalized Langevin equations (GLE) to characterize the random interaction with locally fluctuating number of coupled particles in the elastically coupled factional Brownian motors (FBM). By the numerical simulations, the effect of fluctuating interactions on collective transport behaviors is investigated, and some abnormal phenomena, such as cooperative behaviors, stochastic resonance (SR) and anomalous transport, are observed in the regime of sub-diffusion.

  17. Vibrissa motor cortex activity suppresses contralateral whisking behavior.

    PubMed

    Ebbesen, Christian Laut; Doron, Guy; Lenschow, Constanze; Brecht, Michael

    2017-01-01

    Anatomical, stimulation and lesion data implicate vibrissa motor cortex in whisker motor control. Work on motor cortex has focused on movement generation, but correlations between vibrissa motor cortex activity and whisking are weak. The exact role of vibrissa motor cortex remains unknown. We recorded vibrissa motor cortex neurons during various forms of vibrissal touch, which were invariably associated with whisker protraction and movement. Free whisking, object palpation and social touch all resulted in decreased cortical activity. To understand this activity decrease, we performed juxtacellular recordings, nanostimulation and in vivo whole-cell recordings. Social touch resulted in decreased spiking activity, decreased cell excitability and membrane hyperpolarization. Activation of vibrissa motor cortex by intracortical microstimulation elicited whisker retraction, as if to abort vibrissal touch. Various vibrissa motor cortex inactivation protocols resulted in contralateral protraction and increased whisker movements. These data collectively point to movement suppression as a prime function of vibrissa motor cortex activity.

  18. Variability in Adaptive Behavior in Autism: Evidence for the Importance of Family History

    ERIC Educational Resources Information Center

    Mazefsky, Carla A.; Williams, Diane L.; Minshew, Nancy J.

    2008-01-01

    Adaptive behavior in autism is highly variable and strongly related to prognosis. This study explored family history as a potential source of variability in adaptive behavior in autism. Participants included 77 individuals (mean age = 18) with average or better intellectual ability and autism. Parents completed the Family History Interview about…

  19. Static aeroelastic behavior of an adaptive laminated piezoelectric composite wing

    NASA Technical Reports Server (NTRS)

    Weisshaar, T. A.; Ehlers, S. M.

    1990-01-01

    The effect of using an adaptive material to modify the static aeroelastic behavior of a uniform wing is examined. The wing structure is idealized as a laminated sandwich structure with piezoelectric layers in the upper and lower skins. A feedback system that senses the wing root loads applies a constant electric field to the piezoelectric actuator. Modification of pure torsional deformaton behavior and pure bending deformation are investigated, as is the case of an anisotropic composite swept wing. The use of piezoelectric actuators to create an adaptive structure is found to alter static aeroelastic behavior in that the proper choice of the feedback gain can increase or decrease the aeroelastic divergence speed. This concept also may be used to actively change the lift effectiveness of a wing. The ability to modify static aeroelastic behavior is limited by physical limitations of the piezoelectric material and the manner in which it is integrated into the parent structure.

  20. Co-occurring motor, language and emotional-behavioral problems in children 3-6 years of age.

    PubMed

    King-Dowling, Sara; Missiuna, Cheryl; Rodriguez, M Christine; Greenway, Matt; Cairney, John

    2015-02-01

    Developmental Coordination Disorder (DCD) has been shown to co-occur with behavioral and language problems in school-aged children, but little is known as to when these problems begin to emerge, or if they are inherent in children with DCD. The purpose of this study was to determine if deficits in language and emotional-behavioral problems are apparent in preschool-aged children with movement difficulties. Two hundred and fourteen children (mean age 4years 11months, SD 9.8months, 103 male) performed the Movement Assessment Battery for Children 2nd Edition (MABC-2). Children falling at or below the 16th percentile were classified as being at risk for movement difficulties (MD risk). Auditory comprehension and expressive communication were examined using the Preschool Language Scales 4th Edition (PLS-4). Parent-reported emotional and behavioral problems were assessed using the Child Behavior Checklist (CBCL). Preschool children with diminished motor coordination (n=37) were found to have lower language scores, higher externalizing behaviors in the form of increased aggression, as well as increased withdrawn and other behavior symptoms compared with their typically developing peers. Motor coordination, language and emotional-behavioral difficulties tend to co-occur in young children aged 3-6years. These results highlight the need for early intervention. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Remote control for motor vehicle

    NASA Technical Reports Server (NTRS)

    Johnson, Dale R. (Inventor); Ciciora, John A. (Inventor)

    1984-01-01

    A remote controller is disclosed for controlling the throttle, brake and steering mechanism of a conventional motor vehicle, with the remote controller being particularly advantageous for use by severely handicapped individuals. The controller includes a remote manipulator which controls a plurality of actuators through interfacing electronics. The remote manipulator is a two-axis joystick which controls a pair of linear actuators and a rotary actuator, with the actuators being powered by electric motors to effect throttle, brake and steering control of a motor vehicle adapted to include the controller. The controller enables the driver to control the adapted vehicle from anywhere in the vehicle with one hand with minimal control force and range of motion. In addition, even though a conventional vehicle is adapted for use with the remote controller, the vehicle may still be operated in the normal manner.

  2. Acute ethanol ingestion produces dose-dependent effects on motor behavior in the honey bee (Apis mellifera)

    PubMed Central

    Maze, Ian S.; Wright, Geraldine A.; Mustard, Julie A.

    2006-01-01

    Ethanol consumption produces characteristic behavioral states in animals that include sedation, disorientation, and disruption of motor function. Using individual honey bees, we assessed the effects of ethanol ingestion on motor function via continuous observations of their behavior. Consumption of 1 M sucrose solutions containing a range of ethanol doses lead to hemolymph ethanol levels of approximately 40 to 100 mM. Using ethanol doses in this range, we observed time and dose-dependent effects of ethanol on the percent of time our subjects spent walking, stopped, or upside down, and on the duration and frequency of bouts of behavior. The effects on grooming and flying behavior were more complex. Behavioral recovery from ethanol treatment was both time and ethanol dose dependent, occurring between 12 and 24 hr post-ingestion for low doses and at 24 to 48 hours for higher doses. Furthermore, the amount of ethanol measured in honey bee hemolymph appeared to correlate with recovery. We predict that the honey bee will prove to be an excellent model system for studying the influence of ethanol on the neural mechanisms underlying behavior. PMID:17070538

  3. Contrarian behavior in a complex adaptive system

    NASA Astrophysics Data System (ADS)

    Liang, Y.; An, K. N.; Yang, G.; Huang, J. P.

    2013-01-01

    Contrarian behavior is a kind of self-organization in complex adaptive systems (CASs). Here we report the existence of a transition point in a model resource-allocation CAS with contrarian behavior by using human experiments, computer simulations, and theoretical analysis. The resource ratio and system predictability serve as the tuning parameter and order parameter, respectively. The transition point helps to reveal the positive or negative role of contrarian behavior. This finding is in contrast to the common belief that contrarian behavior always has a positive role in resource allocation, say, stabilizing resource allocation by shrinking the redundancy or the lack of resources. It is further shown that resource allocation can be optimized at the transition point by adding an appropriate size of contrarians. This work is also expected to be of value to some other fields ranging from management and social science to ecology and evolution.

  4. Polyphasic Temporal Behavior of Finger-Tapping Performance: A Measure of Motor Skills and Fatigue.

    PubMed

    Aydin, Leyla; Kiziltan, Erhan; Gundogan, Nimet Unay

    2016-01-01

    Successive voluntary motor movement involves a number of physiological mechanisms and may reflect motor skill development and neuromuscular fatigue. In this study, the temporal behavior of finger tapping was investigated in relation to motor skills and fatigue by using a long-term computer-based test. The finger-tapping performances of 29 healthy male volunteers were analyzed using linear and nonlinear regression models established for inter-tapping interval. The results suggest that finger-tapping performance exhibits a polyphasic nature, and has several characteristic time points, which may be directly related to muscle dynamics and energy consumption. In conclusion, we believe that future studies evaluating the polyphasic nature of the maximal voluntary movement will lead to the definition of objective scales that can be used in the follow up of some neuromuscular diseases, as well as, the determination of motor skills, individual ability, and peripheral fatigue through the use of a low cost, easy-to-use computer-based finger-tapping test.

  5. Piezoelectric self-sensing actuator for active vibration control of motorized spindle based on adaptive signal separation

    NASA Astrophysics Data System (ADS)

    He, Ye; Chen, Xiaoan; Liu, Zhi; Qin, Yi

    2018-06-01

    The motorized spindle is the core component of CNC machine tools, and the vibration of it reduces the machining precision and service life of the machine tools. Owing to the fast response, large output force, and displacement of the piezoelectric stack, it is often used as the actuator in the active vibration control of the spindle. A piezoelectric self-sensing actuator (SSA) can reduce the cost of the active vibration control system and simplify the structure by eliminating the use of a sensor, because a SSA can have both actuating and sensing functions at the same time. The signal separation method of a SSA based on a bridge circuit is widely applied because of its simple principle and easy implementation. However, it is difficult to maintain dynamic balance of the circuit. Prior research has used adaptive algorithm to balance of the bridge circuit on the flexible beam dynamically, but those algorithms need no correlation between sensing and control voltage, which limit the applications of SSA in the vibration control of the rotor-bearing system. Here, the electromechanical coupling model of the piezoelectric stack is established, followed by establishment of the dynamic model of the spindle system. Next, a new adaptive signal separation method based on the bridge circuit is proposed, which can separate relative small sensing voltage from related mixed voltage adaptively. The experimental results show that when the self-sensing signal obtained from the proposed method is used as a displacement signal, the vibration of the motorized spindle can be suppressed effectively through a linear quadratic Gaussian (LQG) algorithm.

  6. Rethinking energy in parkinsonian motor symptoms: a potential role for neural metabolic deficits

    PubMed Central

    Amano, Shinichi; Kegelmeyer, Deborah; Hong, S. Lee

    2015-01-01

    Parkinson’s disease (PD) is characterized as a chronic and progressive neurodegenerative disorder that results in a variety of debilitating symptoms, including bradykinesia, resting tremor, rigidity, and postural instability. Research spanning several decades has emphasized basal ganglia dysfunction, predominantly resulting from dopaminergic (DA) cell loss, as the primarily cause of the aforementioned parkinsonian features. But, why those particular features manifest themselves remains an enigma. The goal of this paper is to develop a theoretical framework that parkinsonian motor features are behavioral consequence of a long-term adaptation to their inability (inflexibility or lack of capacity) to meet energetic demands, due to neural metabolic deficits arising from mitochondrial dysfunction associated with PD. Here, we discuss neurophysiological changes that are generally associated with PD, such as selective degeneration of DA neurons in the substantia nigra pars compacta (SNc), in conjunction with metabolic and mitochondrial dysfunction. We then characterize the cardinal motor symptoms of PD, bradykinesia, resting tremor, rigidity and gait disturbance, reviewing literature to demonstrate how these motor patterns are actually energy efficient from a metabolic perspective. We will also develop three testable hypotheses: (1) neural metabolic deficits precede the increased rate of neurodegeneration and onset of behavioral symptoms in PD; (2) motor behavior of persons with PD are more sensitive to changes in metabolic/bioenergetic state; and (3) improvement of metabolic function could lead to better motor performance in persons with PD. These hypotheses are designed to introduce a novel viewpoint that can elucidate the connections between metabolic, neural and motor function in PD. PMID:25610377

  7. Adaptive spline autoregression threshold method in forecasting Mitsubishi car sales volume at PT Srikandi Diamond Motors

    NASA Astrophysics Data System (ADS)

    Susanti, D.; Hartini, E.; Permana, A.

    2017-01-01

    Sale and purchase of the growing competition between companies in Indonesian, make every company should have a proper planning in order to win the competition with other companies. One of the things that can be done to design the plan is to make car sales forecast for the next few periods, it’s required that the amount of inventory of cars that will be sold in proportion to the number of cars needed. While to get the correct forecasting, on of the methods that can be used is the method of Adaptive Spline Threshold Autoregression (ASTAR). Therefore, this time the discussion will focus on the use of Adaptive Spline Threshold Autoregression (ASTAR) method in forecasting the volume of car sales in PT.Srikandi Diamond Motors using time series data.In the discussion of this research, forecasting using the method of forecasting value Adaptive Spline Threshold Autoregression (ASTAR) produce approximately correct.

  8. Passive or simulated displacement of one arm (but not its mirror reflection) modulates the involuntary motor behavior of the other arm.

    PubMed

    Brun, C; Metral, M; Chancel, M; Kavounoudias, A; Luyat, M; Guerraz, M

    2015-01-29

    Recent studies of both healthy and patient populations have cast doubt on the mirror paradigm's beneficial effect on motor behavior. Indeed, the voluntary arm displacement that accompanies reflection in the mirror may be the determining factor in terms of the motor behavior of the contralateral arm. The objective of the present study was to assess the respective effects of mirror reflection and arm displacement (whether real or simulated) on involuntary motor behavior of the contralateral arm following sustained, isometric contraction (Kohnstamm phenomenon). Our results revealed that (i) passive displacement of one arm (displacement of the left arm via a motorized manipulandum moving at 4°/s) influenced the velocity of the Kohnstamm phenomenon (forearm flexion occurring shortly after the cessation of muscle contraction) in the contralateral arm and (ii) mirror vision had no effect. Indeed, the velocity of the Kohnstamm phenomenon tended to be adjusted to match the velocity of the passive displacement of the other arm. In a second experiment, arm displacement was simulated by vibrating the triceps at 25, 50 or 75 Hz. Results showed that the velocity of the Kohnstamm phenomenon in one arm increased with the vibration frequency applied to the other arm. Our results revealed the occurrence of bimanual coupling because involuntary displacement of one arm was regulated by muscle-related information generated by the actual or simulated displacement of the other arm. In line with the literature data on voluntary motor behavior, our study failed to evidence an additional impact of mirror vision on involuntary motor behavior. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.

  9. An Item Response Analysis of the Motor and Behavioral Subscales of the Unified Huntington's Disease Rating Scale in Huntington Disease Gene Expansion Carriers

    PubMed Central

    Vaccarino, Anthony L.; Anderson, Karen; Borowsky, Beth; Duff, Kevin; Giuliano, Joseph; Guttman, Mark; Ho, Aileen K.; Orth, Michael; Paulsen, Jane S.; Sills, Terrence; van Kammen, Daniel P.; Evans, Kenneth R.

    2011-01-01

    Although the Unified Huntington's Disease Rating Scale (UHDRS) is widely used in the assessment of Huntington disease (HD), the ability of individual items to discriminate individual differences in motor or behavioral manifestations has not been extensively studied in HD gene expansion carriers without a motor-defined clinical diagnosis (i.e., prodromal-HD or prHD). To elucidate the relationship between scores on individual motor and behavioral UHDRS items and total score for each subscale, a non-parametric item response analysis was performed on retrospective data from two multicentre, longitudinal studies. Motor and Behavioral assessments were supplied for 737 prHD individuals with data from 2114 visits (PREDICT-HD) and 686 HD individuals with data from 1482 visits (REGISTRY). Option characteristic curves were generated for UHDRS subscale items in relation to their subscale score. In prHD, overall severity of motor signs was low and participants had scores of 2 or above on very few items. In HD, motor items that assessed ocular pursuit, saccade initiation, finger tapping, tandem walking, and to a lesser extent saccade velocity, dysarthia, tongue protrusion, pronation/supination, Luria, bradykinesia, choreas, gait and balance on the retropulsion test were found to discriminate individual differences across a broad range of motor severity. In prHD, depressed mood, anxiety, and irritable behavior demonstrated good discriminative properties. In HD, depressed mood demonstrated a good relationship with the overall behavioral score. These data suggest that at least some UHDRS items appear to have utility across a broad range of severity, although many items demonstrate problematic features. PMID:21370269

  10. An item response analysis of the motor and behavioral subscales of the unified Huntington's disease rating scale in huntington disease gene expansion carriers.

    PubMed

    Vaccarino, Anthony L; Anderson, Karen; Borowsky, Beth; Duff, Kevin; Giuliano, Joseph; Guttman, Mark; Ho, Aileen K; Orth, Michael; Paulsen, Jane S; Sills, Terrence; van Kammen, Daniel P; Evans, Kenneth R

    2011-04-01

    Although the Unified Huntington's Disease Rating Scale (UHDRS) is widely used in the assessment of Huntington disease (HD), the ability of individual items to discriminate individual differences in motor or behavioral manifestations has not been extensively studied in HD gene expansion carriers without a motor-defined clinical diagnosis (ie, prodromal-HD or prHD). To elucidate the relationship between scores on individual motor and behavioral UHDRS items and total score for each subscale, a nonparametric item response analysis was performed on retrospective data from 2 multicenter longitudinal studies. Motor and behavioral assessments were supplied for 737 prHD individuals with data from 2114 visits (PREDICT-HD) and 686 HD individuals with data from 1482 visits (REGISTRY). Option characteristic curves were generated for UHDRS subscale items in relation to their subscale score. In prHD, overall severity of motor signs was low, and participants had scores of 2 or above on very few items. In HD, motor items that assessed ocular pursuit, saccade initiation, finger tapping, tandem walking, and to a lesser extent, saccade velocity, dysarthria, tongue protrusion, pronation/supination, Luria, bradykinesia, choreas, gait, and balance on the retropulsion test were found to discriminate individual differences across a broad range of motor severity. In prHD, depressed mood, anxiety, and irritable behavior demonstrated good discriminative properties. In HD, depressed mood demonstrated a good relationship with the overall behavioral score. These data suggest that at least some UHDRS items appear to have utility across a broad range of severity, although many items demonstrate problematic features. Copyright © 2011 Movement Disorder Society.

  11. Generalization in Adaptation to Stable and Unstable Dynamics

    PubMed Central

    Kadiallah, Abdelhamid; Franklin, David W.; Burdet, Etienne

    2012-01-01

    Humans skillfully manipulate objects and tools despite the inherent instability. In order to succeed at these tasks, the sensorimotor control system must build an internal representation of both the force and mechanical impedance. As it is not practical to either learn or store motor commands for every possible future action, the sensorimotor control system generalizes a control strategy for a range of movements based on learning performed over a set of movements. Here, we introduce a computational model for this learning and generalization, which specifies how to learn feedforward muscle activity in a function of the state space. Specifically, by incorporating co-activation as a function of error into the feedback command, we are able to derive an algorithm from a gradient descent minimization of motion error and effort, subject to maintaining a stability margin. This algorithm can be used to learn to coordinate any of a variety of motor primitives such as force fields, muscle synergies, physical models or artificial neural networks. This model for human learning and generalization is able to adapt to both stable and unstable dynamics, and provides a controller for generating efficient adaptive motor behavior in robots. Simulation results exhibit predictions consistent with all experiments on learning of novel dynamics requiring adaptation of force and impedance, and enable us to re-examine some of the previous interpretations of experiments on generalization. PMID:23056191

  12. Cognitive and adaptive behavior profiles in Smith-Magenis syndrome.

    PubMed

    Madduri, Niru; Peters, Sarika U; Voigt, Robert G; Llorente, Antolin M; Lupski, James R; Potocki, Lorraine

    2006-06-01

    Smith-Magenis syndrome (SMS) is a multiple congenital anomalies and mental retardation syndrome associated with an interstitial deletion of chromosome 17 band p11.2. The incidence of this microdeletion syndrome is estimated to be 1 in 25,000 individuals. Persons with SMS have a distinctive neurobehavioral phenotype that is characterized by aggressive and self-injurious behaviors and significant sleep disturbances. From December 1990 through September 1999, 58 persons with SMS were enrolled in a 5-day multidisciplinary clinical protocol. Developmental assessments consisting of cognitive level and adaptive behavior were completed in 57 persons. Most patients functioned in the mild-to-moderate range of mental retardation. In addition, we report that patients with SMS have low adaptive functioning with relative strengths in socialization and relative weakness in daily living skills. These data were analyzed in light of the molecular extent of the microdeletion within 17p11.2. We found that the level of cognitive and adaptive functioning does depend on deletion size, and that a small percentage of SMS patients have cognitive function in the borderline range.

  13. Adaptive Control Responses to Behavioral Perturbation Based Upon the Insect

    DTIC Science & Technology

    2006-11-01

    the legs. Visual Sensors Antennal Mechanosensors Antennal Chemosensors Descending Interneurons Controlling Yaw...animals, the antenna were moved back and forth several times with servo motors to identify units that respond to antennal movement in either direction or...role of antennal postures and movements in plume tracking behavior. To date, results have shown that male moths tracking plumes in different wind

  14. Caregiver Behaviors and Adaptive Behavior Development of Very Young Children in Home Care and Daycare.

    ERIC Educational Resources Information Center

    Altman, Jennifer Schroer; Mills, Belen Collantes

    The purpose of this study was to determine the effect of home-mother care and day care caregiver behaviors on the adaptive behavior development of infants between 18 and 24 months of age. Other variables under investigation included two indices of socioeconomic status: occupation and education of parents. The sample consisted of 72 children.…

  15. Divergent Hox Coding and Evasion of Retinoid Signaling Specifies Motor Neurons Innervating Digit Muscles

    PubMed Central

    Mendelsohn, Alana I.; Dasen, Jeremy S.; Jessell, Thomas M.

    2017-01-01

    Summary The establishment of spinal motor neuron subclass diversity is achieved through developmental programs that are aligned with the organization of muscle targets in the limb. The evolutionary emergence of digits represents a specialized adaptation of limb morphology, yet it remains unclear how the specification of digit-innervating motor neuron subtypes parallels the elaboration of digits. We show that digit-innervating motor neurons can be defined by selective gene markers and distinguished from other LMC neurons by the expression of a variant Hox gene repertoire and by the failure to express a key enzyme involved in retinoic acid synthesis. This divergent developmental program is sufficient to induce the specification of digit-innervating motor neurons, emphasizing the specialized status of digit control in the evolution of skilled motor behaviors. Our findings suggest that the emergence of digits in the limb is matched by distinct mechanisms for specifying motor neurons that innervate digit muscles. PMID:28190640

  16. Brain-behavioral adaptability predicts response to cognitive behavioral therapy for emotional disorders: A person-centered event-related potential study.

    PubMed

    Stange, Jonathan P; MacNamara, Annmarie; Kennedy, Amy E; Hajcak, Greg; Phan, K Luan; Klumpp, Heide

    2017-06-23

    Single-trial-level analyses afford the ability to link neural indices of elaborative attention (such as the late positive potential [LPP], an event-related potential) with downstream markers of attentional processing (such as reaction time [RT]). This approach can provide useful information about individual differences in information processing, such as the ability to adapt behavior based on attentional demands ("brain-behavioral adaptability"). Anxiety and depression are associated with maladaptive information processing implicating aberrant cognition-emotion interactions, but whether brain-behavioral adaptability predicts response to psychotherapy is not known. We used a novel person-centered, trial-level analysis approach to link neural indices of stimulus processing to behavioral responses and to predict treatment outcome. Thirty-nine patients with anxiety and/or depression received 12 weeks of cognitive behavioral therapy (CBT). Prior to treatment, patients performed a speeded reaction-time task involving briefly-presented pairs of aversive and neutral pictures while electroencephalography was recorded. Multilevel modeling demonstrated that larger LPPs predicted slower responses on subsequent trials, suggesting that increased attention to the task-irrelevant nature of pictures interfered with reaction time on subsequent trials. Whereas using LPP and RT averages did not distinguish CBT responders from nonresponders, in trial-level analyses individuals who demonstrated greater ability to benefit behaviorally (i.e., faster RT) from smaller LPPs on the previous trial (greater brain-behavioral adaptability) were more likely to respond to treatment and showed greater improvements in depressive symptoms. These results highlight the utility of trial-level analyses to elucidate variability in within-subjects, brain-behavioral attentional coupling in the context of emotion processing, in predicting response to CBT for emotional disorders. Copyright © 2017 Elsevier Ltd

  17. Behavioral flexibility in an invasive bird is independent of other behaviors

    PubMed Central

    2016-01-01

    Behavioral flexibility is considered important for a species to adapt to environmental change. However, it is unclear how behavioral flexibility works: it relates to problem solving ability and speed in unpredictable ways, which leaves an open question of whether behavioral flexibility varies with differences in other behaviors. If present, such correlations would mask which behavior causes individuals to vary. I investigated whether behavioral flexibility (reversal learning) performances were linked with other behaviors in great-tailed grackles, an invasive bird. I found that behavioral flexibility did not significantly correlate with neophobia, exploration, risk aversion, persistence, or motor diversity. This suggests that great-tailed grackle performance in behavioral flexibility tasks reflects a distinct source of individual variation. Maintaining multiple distinct sources of individual variation, and particularly variation in behavioral flexibility, may be a mechanism for coping with the diversity of novel elements in their environments and facilitate this species’ invasion success. PMID:27478705

  18. A Cultural Adaptation of Dialectical Behavior Therapy in Nepal

    PubMed Central

    Ramaiya, Megan K.; Fiorillo, Devika; Regmi, Upasana; Robins, Clive J.; Kohrt, Brandon A.

    2017-01-01

    Growing evidence exists on the potential for adapting evidence-based interventions for low- and-middle-income countries (LMIC). One opportunity that has received limited attention is the adaptation of psychotherapies developed in high-income countries (HIC) based on principles from LMIC cultural groups. Dialectical behavior therapy (DBT) is one such treatment with significant potential for acceptability in South Asian settings with high suicide rates. We describe a tri-phasic approach to adapt DBT in Nepal that consists of qualitative interviews with major Nepali mental health stakeholders (Study 1), an adaptation workshop with 15 Nepali counselors (Study 2), and a small-scale treatment pilot with eligible clients in one rural district (Study 3). Due to low literacy levels, distinct conceptualizations of mind and body, and program adherence barriers, numerous adaptations were required. DBT concepts attributable to Asian belief systems were least comprehensible to clients. However, the 82% program completion rate suggests utility of a structured, skills-based treatment. This adaptation process informs future research regarding the effectiveness of culturally adapted DBT in South Asia. PMID:29056846

  19. Construction of a Computerized Adaptive Testing Version of the Quebec Adaptive Behavior Scale.

    ERIC Educational Resources Information Center

    Tasse, Marc J.; And Others

    Multilog (Thissen, 1991) was used to estimate parameters of 225 items from the Quebec Adaptive Behavior Scale (QABS). A database containing actual data from 2,439 subjects was used for the parameterization procedures. The two-parameter-logistic model was used in estimating item parameters and in the testing strategy. MicroCAT (Assessment Systems…

  20. Adolescent adaptive behavior profiles in Williams-Beuren syndrome, Down syndrome, and autism spectrum disorder.

    PubMed

    Del Cole, Carolina Grego; Caetano, Sheila Cavalcante; Ribeiro, Wagner; Kümmer, Arthur Melo E E; Jackowski, Andrea Parolin

    2017-01-01

    Adaptive behavior can be impaired in different neurodevelopmental disorders and may be influenced by confounding factors, such as intelligence quotient (IQ) and socioeconomic classification. Our main objective was to verify whether adaptive behavior profiles differ in three conditions-Williams Beuren syndrome (WBS), Down syndrome (DS), and autism spectrum disorder (ASD), as compared with healthy controls (HC) and with each other. Although the literature points towards each disorder having a characteristic profile, no study has compared profiles to establish the specificity of each one. A secondary objective was to explore potential interactions between the conditions and socioeconomic status, and whether this had any effect on adaptive behavior profiles. One hundred and five adolescents were included in the study. All adolescents underwent the following evaluations: the Vineland Adaptive Behavior Scale (VABS), the Wechsler Intelligence Scale for Children (WISC), and the Brazilian Economic Classification Criteria. Our results demonstrated that the WBS group performed better than the DS group in the communication domain, β = -15.08, t(3.45), p = .005, and better than the ASD group in the socialization domain, β = 8.92, t(-2.08), p = .013. The DS group also performed better than the ASD group in socialization, β = 16.98, t(-2.32), p = .024. IQ was an important confounding factor, and socioeconomic status had an important effect on the adaptive behavior of all groups. There is a heterogeneity regarding adaptive behavior profiles in WBS, DS, and ASD. These data are important to better design specific strategies related to the health and social care of each particular group.

  1. Differentiating children with attention-deficit/hyperactivity disorder, conduct disorder, learning disabilities and autistic spectrum disorders by means of their motor behavior characteristics.

    PubMed

    Efstratopoulou, Maria; Janssen, Rianne; Simons, Johan

    2012-01-01

    The study was designed to investigate the discriminant validity of the Motor Behavior Checklist (MBC) for distinguishing four group of children independently classified with Attention-Deficit/Hyperactivity Disorder, (ADHD; N=22), Conduct Disorder (CD; N=17), Learning Disabilities (LD; N=24) and Autistic Spectrum Disorders (ASD; N=20). Physical education teachers used the MBC for children to rate their pupils based on their motor related behaviors. A multivariate analysis revealed significant differences among the groups on different problem scales. The results indicated that the MBC for children may be effective in discriminating children with similar disruptive behaviors (e.g., ADHD, CD) and autistic disorders, based on their motor behavior characteristics, but not children with Learning Disabilities (LD), when used by physical education teachers in school settings. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Parent-child interaction in motor speech therapy.

    PubMed

    Namasivayam, Aravind Kumar; Jethava, Vibhuti; Pukonen, Margit; Huynh, Anna; Goshulak, Debra; Kroll, Robert; van Lieshout, Pascal

    2018-01-01

    This study measures the reliability and sensitivity of a modified Parent-Child Interaction Observation scale (PCIOs) used to monitor the quality of parent-child interaction. The scale is part of a home-training program employed with direct motor speech intervention for children with speech sound disorders. Eighty-four preschool age children with speech sound disorders were provided either high- (2×/week/10 weeks) or low-intensity (1×/week/10 weeks) motor speech intervention. Clinicians completed the PCIOs at the beginning, middle, and end of treatment. Inter-rater reliability (Kappa scores) was determined by an independent speech-language pathologist who assessed videotaped sessions at the midpoint of the treatment block. Intervention sensitivity of the scale was evaluated using a Friedman test for each item and then followed up with Wilcoxon pairwise comparisons where appropriate. We obtained fair-to-good inter-rater reliability (Kappa = 0.33-0.64) for the PCIOs using only video-based scoring. Child-related items were more strongly influenced by differences in treatment intensity than parent-related items, where a greater number of sessions positively influenced parent learning of treatment skills and child behaviors. The adapted PCIOs is reliable and sensitive to monitor the quality of parent-child interactions in a 10-week block of motor speech intervention with adjunct home therapy. Implications for rehabilitation Parent-centered therapy is considered a cost effective method of speech and language service delivery. However, parent-centered models may be difficult to implement for treatments such as developmental motor speech interventions that require a high degree of skill and training. For children with speech sound disorders and motor speech difficulties, a translated and adapted version of the parent-child observation scale was found to be sufficiently reliable and sensitive to assess changes in the quality of the parent-child interactions during

  3. The Influence of Auditory Acuity on Acoustic Variability and the Use of Motor Equivalence during Adaptation to a Perturbation

    ERIC Educational Resources Information Center

    Brunner, Jana; Ghosh, Satrajit; Hoole, Philip; Matthies, Melanie; Tiede, Mark; Perkell, Joseph

    2011-01-01

    Purpose: The aim of this study was to relate speakers' auditory acuity for the sibilant contrast, their use of motor equivalent trading relationships in producing the sibilant /[esh]/, and their produced acoustic distance between the sibilants /s/ and /[esh]/. Specifically, the study tested the hypotheses that during adaptation to a perturbation…

  4. Relationship between Family Adaptability, Cohesion and Adolescent Problem Behaviors: Curvilinearity of Circumplex Model.

    PubMed

    Joh, Ju Youn; Kim, Sun; Park, Jun Li; Kim, Yeon Pyo

    2013-05-01

    The Family Adaptability and Cohesion Evaluation Scale (FACES) III using the circumplex model has been widely used in investigating family function. However, the criticism of the curvilinear hypothesis of the circumplex model has always been from an empirical point of view. This study examined the relationship between adolescent adaptability, cohesion, and adolescent problem behaviors, and especially testing the consistency of the curvilinear hypotheses with FACES III. We used the data from 398 adolescent participants who were in middle school. A self-reported questionnaire was used to evaluate the FACES III and Youth Self Report. According to the level of family adaptability, significant differences were evident in internalizing problems (P = 0.014). But, in externalizing problems, the results were not significant (P = 0.305). Also, according to the level of family cohesion, significant differences were in internalizing problems (P = 0.002) and externalizing problems (P = 0.004). The relationship between the dimensions of adaptability, cohesion and adolescent problem behaviors was not curvilinear. In other words, adolescents with high adaptability and high cohesion showed low problem behaviors.

  5. Relationship between Family Adaptability, Cohesion and Adolescent Problem Behaviors: Curvilinearity of Circumplex Model

    PubMed Central

    Joh, Ju Youn; Kim, Sun; Park, Jun Li

    2013-01-01

    Background The Family Adaptability and Cohesion Evaluation Scale (FACES) III using the circumplex model has been widely used in investigating family function. However, the criticism of the curvilinear hypothesis of the circumplex model has always been from an empirical point of view. This study examined the relationship between adolescent adaptability, cohesion, and adolescent problem behaviors, and especially testing the consistency of the curvilinear hypotheses with FACES III. Methods We used the data from 398 adolescent participants who were in middle school. A self-reported questionnaire was used to evaluate the FACES III and Youth Self Report. Results According to the level of family adaptability, significant differences were evident in internalizing problems (P = 0.014). But, in externalizing problems, the results were not significant (P = 0.305). Also, according to the level of family cohesion, significant differences were in internalizing problems (P = 0.002) and externalizing problems (P = 0.004). Conclusion The relationship between the dimensions of adaptability, cohesion and adolescent problem behaviors was not curvilinear. In other words, adolescents with high adaptability and high cohesion showed low problem behaviors. PMID:23730484

  6. Social stratification, classroom climate, and the behavioral adaptation of kindergarten children

    PubMed Central

    Boyce, W. Thomas; Obradović, Jelena; Bush, Nicole R.; Stamperdahl, Juliet; Kim, Young Shin; Adler, Nancy

    2012-01-01

    Socioeconomic status (SES) is the single most potent determinant of health within human populations, from infancy through old age. Although the social stratification of health is nearly universal, there is persistent uncertainty regarding the dimensions of SES that effect such inequalities and thus little clarity about the principles of intervention by which inequalities might be abated. Guided by animal models of hierarchical organization and the health correlates of subordination, this prospective study examined the partitioning of children's adaptive behavioral development by their positions within kindergarten classroom hierarchies. A sample of 338 5-y-old children was recruited from 29 Berkeley, California public school classrooms. A naturalistic observational measure of social position, parent-reported family SES, and child-reported classroom climate were used in estimating multilevel, random-effects models of children's adaptive behavior at the end of the kindergarten year. Children occupying subordinate positions had significantly more maladaptive behavioral outcomes than their dominant peers. Further, interaction terms revealed that low family SES and female sex magnified, and teachers’ child-centered pedagogical practices diminished, the adverse influences of social subordination. Taken together, results suggest that, even within early childhood groups, social stratification is associated with a partitioning of adaptive behavioral outcomes and that the character of larger societal and school structures in which such groups are nested can moderate rank–behavior associations. PMID:23045637

  7. Social stratification, classroom climate, and the behavioral adaptation of kindergarten children.

    PubMed

    Boyce, W Thomas; Obradovic, Jelena; Bush, Nicole R; Stamperdahl, Juliet; Kim, Young Shin; Adler, Nancy

    2012-10-16

    Socioeconomic status (SES) is the single most potent determinant of health within human populations, from infancy through old age. Although the social stratification of health is nearly universal, there is persistent uncertainty regarding the dimensions of SES that effect such inequalities and thus little clarity about the principles of intervention by which inequalities might be abated. Guided by animal models of hierarchical organization and the health correlates of subordination, this prospective study examined the partitioning of children's adaptive behavioral development by their positions within kindergarten classroom hierarchies. A sample of 338 5-y-old children was recruited from 29 Berkeley, California public school classrooms. A naturalistic observational measure of social position, parent-reported family SES, and child-reported classroom climate were used in estimating multilevel, random-effects models of children's adaptive behavior at the end of the kindergarten year. Children occupying subordinate positions had significantly more maladaptive behavioral outcomes than their dominant peers. Further, interaction terms revealed that low family SES and female sex magnified, and teachers' child-centered pedagogical practices diminished, the adverse influences of social subordination. Taken together, results suggest that, even within early childhood groups, social stratification is associated with a partitioning of adaptive behavioral outcomes and that the character of larger societal and school structures in which such groups are nested can moderate rank-behavior associations.

  8. Organizational Adaptative Behavior: The Complex Perspective of Individuals-Tasks Interaction

    NASA Astrophysics Data System (ADS)

    Wu, Jiang; Sun, Duoyong; Hu, Bin; Zhang, Yu

    Organizations with different organizational structures have different organizational behaviors when responding environmental changes. In this paper, we use a computational model to examine organizational adaptation on four dimensions: Agility, Robustness, Resilience, and Survivability. We analyze the dynamics of organizational adaptation by a simulation study from a complex perspective of the interaction between tasks and individuals in a sales enterprise. The simulation studies in different scenarios show that more flexible communication between employees and less hierarchy level with the suitable centralization can improve organizational adaptation.

  9. Behavioral and neural effects of congruency of visual feedback during short-term motor learning.

    PubMed

    Ossmy, Ori; Mukamel, Roy

    2018-05-15

    Visual feedback can facilitate or interfere with movement execution. Here, we describe behavioral and neural mechanisms by which the congruency of visual feedback during physical practice of a motor skill modulates subsequent performance gains. 18 healthy subjects learned to execute rapid sequences of right hand finger movements during fMRI scans either with or without visual feedback. Feedback consisted of a real-time, movement-based display of virtual hands that was either congruent (right virtual hand movement), or incongruent (left virtual hand movement yoked to the executing right hand). At the group level, right hand performance gains following training with congruent visual feedback were significantly higher relative to training without visual feedback. Conversely, performance gains following training with incongruent visual feedback were significantly lower. Interestingly, across individual subjects these opposite effects correlated. Activation in the Supplementary Motor Area (SMA) during training corresponded to individual differences in subsequent performance gains. Furthermore, functional coupling of SMA with visual cortices predicted individual differences in behavior. Our results demonstrate that some individuals are more sensitive than others to congruency of visual feedback during short-term motor learning and that neural activation in SMA correlates with such inter-individual differences. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Telepresence, time delay, and adaptation

    NASA Technical Reports Server (NTRS)

    Held, Richard; Durlach, Nathaniel

    1989-01-01

    Displays are now being used extensively throughout the society. More and more time is spent watching television, movies, computer screens, etc. Furthermore, in an increasing number of cases, the observer interacts with the display and plays the role of operator as well as observer. To a large extent, the normal behavior in the normal environment can also be thought of in these same terms. Taking liberties with Shakespeare, it might be said, all the world's a display and all the individuals in it are operators in and on the display. Within this general context of interactive display systems, a discussion is began with a conceptual overview of a particular class of such systems, namely, teleoperator systems. The notion is considered of telepresence and the factors that limit telepresence, including decorrelation between the: (1) motor output of the teleoperator as sensed directly via the kinesthetic/tactual system, and (2) the motor output of the teleoperator as sensed indirectly via feedback from the slave robot, i.e., via a visual display of the motor actions of the slave robot. Finally, the deleterious effect of time delay (a particular decorrelation) on sensory-motor adaptation (an important phenomenon related to telepresence) is examined.

  11. Changes in Simple Spike Activity of some Purkinje cells in the Oculomotor Vermis during Saccade Adaptation are Appropriate to Participate in Motor Learning

    PubMed Central

    Kojima, Yoshiko; Soetedjo, Robijanto; Fuchs, Albert F.

    2010-01-01

    Adaptation of saccadic eye movements provides an excellent motor learning model to study theories of neuronal plasticity. When primates make saccades to a jumping target, a backward step of the target during the saccade can make it appear to overshoot. If this deception continues for many trials, saccades gradually decrease in amplitude to go directly to the back-stepped target location. We used this adaptation paradigm to evaluate the Marr-Albus hypothesis that such motor learning occurs at the Purkinje (P-) cell of the cerebellum. We recorded the activity of identified P-cells in the oculomotor vermis, lobules VIc and VII. After determining the on and off error directions of a P-cell’s complex spike activity, we determined whether its saccade-related simple spike (SS) activity changed during saccade adaptation in those two directions. Before adaptation, 57 of 61 P-cells exhibited a clear burst, pause or a combination of both for saccades in one or both directions. Sixty-two percent of all cells, including 2 of the 4 initially unresponsive ones, behaved differently for saccades whose size changed because of adaptation than for saccades of similar sizes gathered before adaptation. In at least 42% of these, the changes were appropriate to decrease saccade amplitude based on our current knowledge of cerebellum and brain stem saccade circuitry. Changes in activity during adaptation were not compensating for the potential fatigue associated with performing many saccades. Therefore, many P-cells in the oculomotor vermis exhibit changes in SS activity specific to adapted saccades and therefore appropriate to induce adaptation. PMID:20220005

  12. Stable adaptive PI control for permanent magnet synchronous motor drive based on improved JITL technique.

    PubMed

    Zheng, Shiqi; Tang, Xiaoqi; Song, Bao; Lu, Shaowu; Ye, Bosheng

    2013-07-01

    In this paper, a stable adaptive PI control strategy based on the improved just-in-time learning (IJITL) technique is proposed for permanent magnet synchronous motor (PMSM) drive. Firstly, the traditional JITL technique is improved. The new IJITL technique has less computational burden and is more suitable for online identification of the PMSM drive system which is highly real-time compared to traditional JITL. In this way, the PMSM drive system is identified by IJITL technique, which provides information to an adaptive PI controller. Secondly, the adaptive PI controller is designed in discrete time domain which is composed of a PI controller and a supervisory controller. The PI controller is capable of automatically online tuning the control gains based on the gradient descent method and the supervisory controller is developed to eliminate the effect of the approximation error introduced by the PI controller upon the system stability in the Lyapunov sense. Finally, experimental results on the PMSM drive system show accurate identification and favorable tracking performance. Copyright © 2013 ISA. Published by Elsevier Ltd. All rights reserved.

  13. A Co-Adaptive Brain-Computer Interface for End Users with Severe Motor Impairment

    PubMed Central

    Faller, Josef; Scherer, Reinhold; Costa, Ursula; Opisso, Eloy; Medina, Josep; Müller-Putz, Gernot R.

    2014-01-01

    Co-adaptive training paradigms for event-related desynchronization (ERD) based brain-computer interfaces (BCI) have proven effective for healthy users. As of yet, it is not clear whether co-adaptive training paradigms can also benefit users with severe motor impairment. The primary goal of our paper was to evaluate a novel cue-guided, co-adaptive BCI training paradigm with severely impaired volunteers. The co-adaptive BCI supports a non-control state, which is an important step toward intuitive, self-paced control. A secondary aim was to have the same participants operate a specifically designed self-paced BCI training paradigm based on the auto-calibrated classifier. The co-adaptive BCI analyzed the electroencephalogram from three bipolar derivations (C3, Cz, and C4) online, while the 22 end users alternately performed right hand movement imagery (MI), left hand MI and relax with eyes open (non-control state). After less than five minutes, the BCI auto-calibrated and proceeded to provide visual feedback for the MI task that could be classified better against the non-control state. The BCI continued to regularly recalibrate. In every calibration step, the system performed trial-based outlier rejection and trained a linear discriminant analysis classifier based on one auto-selected logarithmic band-power feature. In 24 minutes of training, the co-adaptive BCI worked significantly (p = 0.01) better than chance for 18 of 22 end users. The self-paced BCI training paradigm worked significantly (p = 0.01) better than chance in 11 of 20 end users. The presented co-adaptive BCI complements existing approaches in that it supports a non-control state, requires very little setup time, requires no BCI expert and works online based on only two electrodes. The preliminary results from the self-paced BCI paradigm compare favorably to previous studies and the collected data will allow to further improve self-paced BCI systems for disabled users. PMID:25014055

  14. Stimulating the cerebellum affects visuomotor adaptation but not intermanual transfer of learning.

    PubMed

    Block, Hannah; Celnik, Pablo

    2013-12-01

    When systematic movement errors occur, the brain responds with a systematic change in motor behavior. This type of adaptive motor learning can transfer intermanually; adaptation of movements of the right hand in response to training with a perturbed visual signal (visuomotor adaptation) may carry over to the left hand. While visuomotor adaptation has been studied extensively, it is unclear whether the cerebellum, a structure involved in adaptation, is important for intermanual transfer as well. We addressed this question with three experiments in which subjects reached with their right hands as a 30° visuomotor rotation was introduced. Subjects received anodal or sham transcranial direct current stimulation on the trained (experiment 1) or untrained (experiment 2) hemisphere of the cerebellum, or, for comparison, motor cortex (M1). After the training period, subjects reached with their left hand, without visual feedback, to assess intermanual transfer of learning aftereffects. Stimulation of the right cerebellum caused faster adaptation, but none of the stimulation sites affected transfer. To ascertain whether cerebellar stimulation would increase transfer if subjects learned faster as well as a larger amount, in experiment 3 anodal and sham cerebellar groups experienced a shortened training block such that the anodal group learned more than sham. Despite the difference in adaptation magnitude, transfer was similar across these groups, although smaller than in experiment 1. Our results suggest that intermanual transfer of visuomotor learning does not depend on cerebellar activity and that the number of movements performed at plateau is an important predictor of transfer.

  15. Stimulating the cerebellum affects visuomotor adaptation but not intermanual transfer of learning

    PubMed Central

    Block, Hannah; Celnik, Pablo

    2013-01-01

    When systematic movement errors occur, the brain responds with a systematic change in motor behavior. This type of adaptive motor learning can transfer intermanually; adaptation of movements of the right hand in response to training with a perturbed visual signal (visuomotor adaptation) may carry over to the left hand. While visuomotor adaptation has been studied extensively, it is unclear whether the cerebellum, a structure involved in adaptation, is important for intermanual transfer as well. We addressed this question with three experiments in which subjects reached with their right hands as a 30° visuomotor rotation was introduced. Subjects received anodal or sham transcranial direct current stimulation (tDCS) on the trained (Experiment 1) or untrained (Experiment 2) hemisphere of the cerebellum, or, for comparison, motor cortex (M1). After the training period, subjects reached with their left hand, without visual feedback, to assess intermanual transfer of learning aftereffects. Stimulation of the right cerebellum caused faster adaptation, but none of the stimulation sites affected transfer. To ascertain whether cerebellar stimulation would increase transfer if subjects learned faster as well as a larger amount, in Experiment 3 anodal and sham cerebellar groups experienced a shortened training block such that the anodal group learned more than sham. Despite the difference in adaptation magnitude, transfer was similar across these groups, although smaller than in Experiment 1. Our results suggest that intermanual transfer of visuomotor learning does not depend on cerebellar activity, and that the number of movements performed at plateau is an important predictor of transfer. PMID:23625383

  16. Teacher Report versus Adaptive Behavior Scale in Assessment of Mental Retardation.

    ERIC Educational Resources Information Center

    Al-Ansari, Ahmed

    1993-01-01

    This study assessed the degree of agreement between teacher report and an adapted Adaptive Behavior Scale in the identification of mental retardation and associated learning difficulties in 257 young Bahraini school children. Findings indicated that the instrument is sensitive in identification of children with mental retardation and exhibits high…

  17. Offsetting Behavior and Adaptation: How Students Respond to Hard Professors

    ERIC Educational Resources Information Center

    Stanley, Laura E.; Delmontagne, Emma M.; Wood, William C.

    2016-01-01

    Do students engage in offsetting behavior, adapting their study effort to the difficulty of learning? The authors present the results of survey research intended to test for the presence of offsetting behavior at a regional university. Instead of trying to determine whether students study less when learning is easier, we check to see whether…

  18. Biologically-inspired adaptive obstacle negotiation behavior of hexapod robots

    PubMed Central

    Goldschmidt, Dennis; Wörgötter, Florentin; Manoonpong, Poramate

    2014-01-01

    Neurobiological studies have shown that insects are able to adapt leg movements and posture for obstacle negotiation in changing environments. Moreover, the distance to an obstacle where an insect begins to climb is found to be a major parameter for successful obstacle negotiation. Inspired by these findings, we present an adaptive neural control mechanism for obstacle negotiation behavior in hexapod robots. It combines locomotion control, backbone joint control, local leg reflexes, and neural learning. While the first three components generate locomotion including walking and climbing, the neural learning mechanism allows the robot to adapt its behavior for obstacle negotiation with respect to changing conditions, e.g., variable obstacle heights and different walking gaits. By successfully learning the association of an early, predictive signal (conditioned stimulus, CS) and a late, reflex signal (unconditioned stimulus, UCS), both provided by ultrasonic sensors at the front of the robot, the robot can autonomously find an appropriate distance from an obstacle to initiate climbing. The adaptive neural control was developed and tested first on a physical robot simulation, and was then successfully transferred to a real hexapod robot, called AMOS II. The results show that the robot can efficiently negotiate obstacles with a height up to 85% of the robot's leg length in simulation and 75% in a real environment. PMID:24523694

  19. Adaptive eye-gaze tracking using neural-network-based user profiles to assist people with motor disability.

    PubMed

    Sesin, Anaelis; Adjouadi, Malek; Cabrerizo, Mercedes; Ayala, Melvin; Barreto, Armando

    2008-01-01

    This study developed an adaptive real-time human-computer interface (HCI) that serves as an assistive technology tool for people with severe motor disability. The proposed HCI design uses eye gaze as the primary computer input device. Controlling the mouse cursor with raw eye coordinates results in sporadic motion of the pointer because of the saccadic nature of the eye. Even though eye movements are subtle and completely imperceptible under normal circumstances, they considerably affect the accuracy of an eye-gaze-based HCI. The proposed HCI system is novel because it adapts to each specific user's different and potentially changing jitter characteristics through the configuration and training of an artificial neural network (ANN) that is structured to minimize the mouse jitter. This task is based on feeding the ANN a user's initially recorded eye-gaze behavior through a short training session. The ANN finds the relationship between the gaze coordinates and the mouse cursor position based on the multilayer perceptron model. An embedded graphical interface is used during the training session to generate user profiles that make up these unique ANN configurations. The results with 12 subjects in test 1, which involved following a moving target, showed an average jitter reduction of 35%; the results with 9 subjects in test 2, which involved following the contour of a square object, showed an average jitter reduction of 53%. For both results, the outcomes led to trajectories that were significantly smoother and apt at reaching fixed or moving targets with relative ease and within a 5% error margin or deviation from desired trajectories. The positive effects of such jitter reduction are presented graphically for visual appreciation.

  20. Motor-Skill Learning in an Insect Inspired Neuro-Computational Control System

    PubMed Central

    Arena, Eleonora; Arena, Paolo; Strauss, Roland; Patané, Luca

    2017-01-01

    In nature, insects show impressive adaptation and learning capabilities. The proposed computational model takes inspiration from specific structures of the insect brain: after proposing key hypotheses on the direct involvement of the mushroom bodies (MBs) and on their neural organization, we developed a new architecture for motor learning to be applied in insect-like walking robots. The proposed model is a nonlinear control system based on spiking neurons. MBs are modeled as a nonlinear recurrent spiking neural network (SNN) with novel characteristics, able to memorize time evolutions of key parameters of the neural motor controller, so that existing motor primitives can be improved. The adopted control scheme enables the structure to efficiently cope with goal-oriented behavioral motor tasks. Here, a six-legged structure, showing a steady-state exponentially stable locomotion pattern, is exposed to the need of learning new motor skills: moving through the environment, the structure is able to modulate motor commands and implements an obstacle climbing procedure. Experimental results on a simulated hexapod robot are reported; they are obtained in a dynamic simulation environment and the robot mimicks the structures of Drosophila melanogaster. PMID:28337138

  1. Matched Behavioral and Neural Adaptations for Low Sound Level Echolocation in a Gleaning Bat, Antrozous pallidus.

    PubMed

    Measor, Kevin R; Leavell, Brian C; Brewton, Dustin H; Rumschlag, Jeffrey; Barber, Jesse R; Razak, Khaleel A

    2017-01-01

    In active sensing, animals make motor adjustments to match sensory inputs to specialized neural circuitry. Here, we describe an active sensing system for sound level processing. The pallid bat uses downward frequency-modulated (FM) sweeps as echolocation calls for general orientation and obstacle avoidance. The bat's auditory cortex contains a region selective for these FM sweeps (FM sweep-selective region, FMSR). We show that the vast majority of FMSR neurons are sensitive and strongly selective for relatively low levels (30-60 dB SPL). Behavioral testing shows that when a flying bat approaches a target, it reduces output call levels to keep echo levels between ∼30 and 55 dB SPL. Thus, the pallid bat behaviorally matches echo levels to an optimized neural representation of sound levels. FMSR neurons are more selective for sound levels of FM sweeps than tones, suggesting that across-frequency integration enhances level tuning. Level-dependent timing of high-frequency sideband inhibition in the receptive field shapes increased level selectivity for FM sweeps. Together with previous studies, these data indicate that the same receptive field properties shape multiple filters (sweep direction, rate, and level) for FM sweeps, a sound common in multiple vocalizations, including human speech. The matched behavioral and neural adaptations for low-intensity echolocation in the pallid bat will facilitate foraging with reduced probability of acoustic detection by prey.

  2. Matched Behavioral and Neural Adaptations for Low Sound Level Echolocation in a Gleaning Bat, Antrozous pallidus

    PubMed Central

    Measor, Kevin R.; Leavell, Brian C.; Brewton, Dustin H.; Rumschlag, Jeffrey; Barber, Jesse R.

    2017-01-01

    Abstract In active sensing, animals make motor adjustments to match sensory inputs to specialized neural circuitry. Here, we describe an active sensing system for sound level processing. The pallid bat uses downward frequency-modulated (FM) sweeps as echolocation calls for general orientation and obstacle avoidance. The bat’s auditory cortex contains a region selective for these FM sweeps (FM sweep-selective region, FMSR). We show that the vast majority of FMSR neurons are sensitive and strongly selective for relatively low levels (30-60 dB SPL). Behavioral testing shows that when a flying bat approaches a target, it reduces output call levels to keep echo levels between ∼30 and 55 dB SPL. Thus, the pallid bat behaviorally matches echo levels to an optimized neural representation of sound levels. FMSR neurons are more selective for sound levels of FM sweeps than tones, suggesting that across-frequency integration enhances level tuning. Level-dependent timing of high-frequency sideband inhibition in the receptive field shapes increased level selectivity for FM sweeps. Together with previous studies, these data indicate that the same receptive field properties shape multiple filters (sweep direction, rate, and level) for FM sweeps, a sound common in multiple vocalizations, including human speech. The matched behavioral and neural adaptations for low-intensity echolocation in the pallid bat will facilitate foraging with reduced probability of acoustic detection by prey. PMID:28275715

  3. Tris (2-butoxyethyl) phosphate affects motor behavior and axonal growth in zebrafish (Danio rerio) larvae.

    PubMed

    Jiang, Fan; Liu, Jue; Zeng, Xinyue; Yu, Liqin; Liu, Chunsheng; Wang, Jianghua

    2018-05-01

    Tris (2-butoxyethyl) phosphate (TBOEP) is an environmental contaminant that poses serious risks to aquatic organisms and their associated ecosystem. Recently, the reproductive and developmental toxicology of TBOEP has been reported. However, fewer studies have assessed the neurotoxic effects in zebrafish (Danio rerio) larvae. In this study, zebrafish embryos were subjected to waterborne exposure of TBOEP at 0, 50, 500, 1500 and 2500 μg/L from 2 to 144-h post-fertilization (hpf). Behavioral measurements showed that TBOEP exposure reduced embryonic spontaneous movement and decreased swimming speed of larvae in response to dark stimulation. In accordance with these motor effects, TBOEP treatment reduced neuron-specific GFP expression in transgenic Tg (HuC-GFP) zebrafish larvae and inhibited the growth of secondary motoneurons, as well as decreased expression of marker genes related to central nervous system development in TBOEP treated group. Furthermore, increased concentrations of reactive oxygen species (ROS) and malondialdehyde (MDA), as well as reduction of SOD activity were detected in TBOEP exposure group. The present results showed that the alteration in motor neuron and oxidative stress could together lead to the motor behavior alterations induced by TBOEP. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. [Motor behavior of human fetuses during the second trimester of gestation: a longitudinal ultrasound study].

    PubMed

    Reynoso, C; Crespo-Eguílaz, N; Alcázar, J L; Narbona, J

    2015-03-01

    The aim of this research is to contribute to knowledge of the normal spontaneous motor behavior of the human fetus during the second trimester of pregnancy. This study focuses on five patterns of spontaneous fetal movement: startle (S), axo-rhizomelic rhythmia (ARR), axial stretching (AS), general movement (GM), and diaphragmatic contraction (DC). A cohort of 13 subjects was followed up using 2D obstetrical ultrasound images at 12, 16, 20, and 24 weeks of gestation. As inclusion criteria, neonatal neurological examination and general movements after eutocic delivery at term were normal in all of the subjects, and their neuromotor and cognitive development until the end of pre-school age were also normal. All these five motor patterns are present at the beginning of the 2(nd) gestational trimester, but their quantitative and qualitative traits are diverse according to gestational ages. The phasic, isolated or rhythmically repeated movements, S and ARR, are prominent at 12 and 16 weeks of gestation, and then their presence gradually diminishes. By contrast, tonic and complex AS and GM movements increase their presence and quality at 20 and 24 weeks. RAR constitute a particular periodic motor pattern not described in previous literature. Moreover, the incidence of DC is progressive throughout the trimester, in clusters of 2-6 arrhythmic and irregular beats. Fetal heart rate increases during fetal motor active periods. All five normal behavioral patterns observed in the ultrasounds reflect the progressive tuning of motor generators in human nervous system during mid-pregnancy. Copyright © 2014 Asociación Española de Pediatría. Published by Elsevier España, S.L.U. All rights reserved.

  5. Rotor Position Sensorless Control and Its Parameter Sensitivity of Permanent Magnet Motor Based on Model Reference Adaptive System

    NASA Astrophysics Data System (ADS)

    Ohara, Masaki; Noguchi, Toshihiko

    This paper describes a new method for a rotor position sensorless control of a surface permanent magnet synchronous motor based on a model reference adaptive system (MRAS). This method features the MRAS in a current control loop to estimate a rotor speed and position by using only current sensors. This method as well as almost all the conventional methods incorporates a mathematical model of the motor, which consists of parameters such as winding resistances, inductances, and an induced voltage constant. Hence, the important thing is to investigate how the deviation of these parameters affects the estimated rotor position. First, this paper proposes a structure of the sensorless control applied in the current control loop. Next, it proves the stability of the proposed method when motor parameters deviate from the nominal values, and derives the relationship between the estimated position and the deviation of the parameters in a steady state. Finally, some experimental results are presented to show performance and effectiveness of the proposed method.

  6. Generation of Adaptive Gait Patterns for Quadruped Robot with CPG Network including Motor Dynamic Model

    NASA Astrophysics Data System (ADS)

    Son, Yurak; Kamano, Takuya; Yasuno, Takashi; Suzuki, Takayuki; Harada, Hironobu

    This paper describes the generation of adaptive gait patterns using new Central Pattern Generators (CPGs) including motor dynamic models for a quadruped robot under various environment. The CPGs act as the flexible oscillators of the joints and make the desired angle of the joints. The CPGs are mutually connected each other, and the sets of their coupling parameters are adjusted by genetic algorithm so that the quadruped robot can realize the stable and adequate gait patterns. As a result of generation, the suitable CPG networks for not only a walking straight gait pattern but also rotation gait patterns are obtained. Experimental results demonstrate that the proposed CPG networks are effective to automatically adjust the adaptive gait patterns for the tested quadruped robot under various environment. Furthermore, the target tracking control based on image processing is achieved by combining the generated gait patterns.

  7. Enduring effects of post-weaning rearing condition on depressive- and anxiety-like behaviors and motor activity in male rats.

    PubMed

    Mosaferi, Belal; Babri, Shirin; Ebrahimi, Hadi; Mohaddes, Gisou

    2015-04-01

    Environmental manipulation at early critical periods could have long-lasting effects. In spite of the great interest in the biological effects of the environmental condition so far, its long-lasting effects are less documented. This study looks at the enduring effects of rearing condition on tasks that measure affective responses and exploratory behavior in male Wistar rats. The animals were reared from weaning to adulthood in an enriched environment, standard laboratory condition, or isolated condition. Then, all rats were housed in standard laboratory cages to provide a common environment, and successively exposed to different tests between 0 and 11 weeks post-manipulation. The open field test indicated a more efficient exploratory behavior in the enriched group, and an enhanced spontaneous motor activity in both standard and isolated groups. In addition, rats reared in standard condition showed heightened motor activity in forced swimming test and elevated plus maze. Forced swimming test showed an antidepressive-like effect in the enriched environment group by increased climbing behavior. In respect to the anxiety behavior, environmental enrichment improved threat detection ability. It is concluded that rearing condition from weaning to adulthood has important and long-lasting effects on depressive- and anxiety-like and exploratory behaviors as well as motor activity. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Differential roles of nonsynaptic and synaptic plasticity in operant reward learning-induced compulsive behavior.

    PubMed

    Sieling, Fred; Bédécarrats, Alexis; Simmers, John; Prinz, Astrid A; Nargeot, Romuald

    2014-05-05

    Rewarding stimuli in associative learning can transform the irregularly and infrequently generated motor patterns underlying motivated behaviors into output for accelerated and stereotyped repetitive action. This transition to compulsive behavioral expression is associated with modified synaptic and membrane properties of central neurons, but establishing the causal relationships between cellular plasticity and motor adaptation has remained a challenge. We found previously that changes in the intrinsic excitability and electrical synapses of identified neurons in Aplysia's central pattern-generating network for feeding are correlated with a switch to compulsive-like motor output expression induced by in vivo operant conditioning. Here, we used specific computer-simulated ionic currents in vitro to selectively replicate or suppress the membrane and synaptic plasticity resulting from this learning. In naive in vitro preparations, such experimental manipulation of neuronal membrane properties alone increased the frequency but not the regularity of feeding motor output found in preparations from operantly trained animals. On the other hand, changes in synaptic strength alone switched the regularity but not the frequency of feeding output from naive to trained states. However, simultaneously imposed changes in both membrane and synaptic properties reproduced both major aspects of the motor plasticity. Conversely, in preparations from trained animals, experimental suppression of the membrane and synaptic plasticity abolished the increase in frequency and regularity of the learned motor output expression. These data establish direct causality for the contributions of distinct synaptic and nonsynaptic adaptive processes to complementary facets of a compulsive behavior resulting from operant reward learning. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. The Small GTP-Binding Protein Rhes Influences Nigrostriatal-Dependent Motor Behavior During Aging.

    PubMed

    Pinna, Annalisa; Napolitano, Francesco; Pelosi, Barbara; Di Maio, Anna; Wardas, Jadwiga; Casu, Maria Antonietta; Costa, Giulia; Migliarini, Sara; Calabresi, Paolo; Pasqualetti, Massimo; Morelli, Micaela; Usiello, Alessandro

    2016-04-01

    Here we aimed to evaluate: (1) Rhes mRNA expression in mouse midbrain, (2) the effect of Rhes deletion on the number of dopamine neurons, (3) nigrostriatal-sensitive behavior during aging in knockout mice. Radioactive in situ hybridization was assessed in adult mice. The beam-walking test was executed in 3-, 6- and 12-month-old mice. Immunohistochemistry of midbrain tyrosine hydroxylase (TH)-positive neurons was performed in 6- and 12-month-old mice. Rhes mRNA is expressed in TH-positive neurons of SNpc and the ventral tegmental area. Moreover, lack of Rhes leads to roughly a 20% loss of nigral TH-positive neurons in both 6- and 12-month-old mutants, when compared with their age-matched controls. Finally, lack of Rhes triggers subtle alterations in motor performance and coordination during aging. Our findings indicate a fine-tuning role of Rhes in regulating the number of TH-positive neurons of the substantia nigra and nigrostriatal-sensitive motor behavior during aging. © 2016 International Parkinson and Movement Disorder Society.

  10. Adaptation of community health worker-delivered behavioral activation for torture survivors in Kurdistan, Iraq.

    PubMed

    Magidson, J F; Lejuez, C W; Kamal, T; Blevins, E J; Murray, L K; Bass, J K; Bolton, P; Pagoto, S

    2015-12-01

    Growing evidence supports the use of Western therapies for the treatment of depression, trauma, and stress delivered by community health workers (CHWs) in conflict-affected, resource-limited countries. A recent randomized controlled trial (Bolton et al . 2014 a ) supported the efficacy of two CHW-delivered interventions, cognitive processing therapy (CPT) and brief behavioral activation treatment for depression (BATD), for reducing depressive symptoms and functional impairment among torture survivors in the Kurdish region of Iraq. This study describes the adaptation of the CHW-delivered BATD approach delivered in this trial (Bolton et al .2014 a ), informed by the Assessment-Decision-Administration-Production-Topical experts-Integration-Training-Testing (ADAPT-ITT) framework for intervention adaptation (Wingood & DiClemente, 2008). Cultural modifications, adaptations for low-literacy, and tailored training and supervision for non-specialist CHWs are presented, along with two clinical case examples to illustrate delivery of the adapted intervention in this setting. Eleven CHWs, a study psychiatrist, and the CHW clinical supervisor were trained in BATD. The adaptation process followed the ADAPT-ITT framework and was iterative with significant input from the on-site supervisor and CHWs. Modifications were made to fit Kurdish culture, including culturally relevant analogies, use of stickers for behavior monitoring, cultural modifications to behavioral contracts, and including telephone-delivered sessions to enhance feasibility. BATD was delivered by CHWs in a resource-poor, conflict-affected area in Kurdistan, Iraq, with some important modifications, including low-literacy adaptations, increased cultural relevancy of clinical materials, and tailored training and supervision for CHWs. Barriers to implementation, lessons learned, and recommendations for future efforts to adapt behavioral therapies for resource-limited, conflict-affected areas are discussed.

  11. Perturbation schedule does not alter retention of a locomotor adaptation across days.

    PubMed

    Hussain, Sara J; Morton, Susanne M

    2014-06-15

    Motor adaptation in response to gradual vs. abrupt perturbation schedules may involve different neural mechanisms, potentially leading to different levels of motor memory. However, no study has investigated whether perturbation schedules alter memory of a locomotor adaptation across days. We measured adaptation and retention (memory) of altered interlimb symmetry during walking in two groups of participants over 2 days. On day 1, participants adapted to either a single, large perturbation (abrupt schedule) or a series of small perturbations that increased in size over time (gradual schedule). Retention was examined on day 2. On day 1, initial swing time and foot placement symmetry error sizes differed between groups but overall adaptation magnitudes were similar. On day 2, participants in both groups showed similar retention, readaptation, and aftereffect sizes, although there were some trends for improved memory in the abrupt group. These results conflict with previous data but are consistent with newer studies reporting no behavioral differences following adaptation using abrupt vs. gradual schedules. Although memory levels were very similar between groups, we cannot rule out the possibility that the neural mechanisms underlying this memory storage differ. Overall, it appears that adaptation of locomotor patterns via abrupt and gradual perturbation schedules produces similar expression of locomotor memories across days. Copyright © 2014 the American Physiological Society.

  12. Motor control is decision-making.

    PubMed

    Wolpert, Daniel M; Landy, Michael S

    2012-12-01

    Motor behavior may be viewed as a problem of maximizing the utility of movement outcome in the face of sensory, motor and task uncertainty. Viewed in this way, and allowing for the availability of prior knowledge in the form of a probability distribution over possible states of the world, the choice of a movement plan and strategy for motor control becomes an application of statistical decision theory. This point of view has proven successful in recent years in accounting for movement under risk, inferring the loss function used in motor tasks, and explaining motor behavior in a wide variety of circumstances. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Spatiotemporal Spike Coding of Behavioral Adaptation in the Dorsal Anterior Cingulate Cortex

    PubMed Central

    Logiaco, Laureline; Quilodran, René; Procyk, Emmanuel; Arleo, Angelo

    2015-01-01

    The frontal cortex controls behavioral adaptation in environments governed by complex rules. Many studies have established the relevance of firing rate modulation after informative events signaling whether and how to update the behavioral policy. However, whether the spatiotemporal features of these neuronal activities contribute to encoding imminent behavioral updates remains unclear. We investigated this issue in the dorsal anterior cingulate cortex (dACC) of monkeys while they adapted their behavior based on their memory of feedback from past choices. We analyzed spike trains of both single units and pairs of simultaneously recorded neurons using an algorithm that emulates different biologically plausible decoding circuits. This method permits the assessment of the performance of both spike-count and spike-timing sensitive decoders. In response to the feedback, single neurons emitted stereotypical spike trains whose temporal structure identified informative events with higher accuracy than mere spike count. The optimal decoding time scale was in the range of 70–200 ms, which is significantly shorter than the memory time scale required by the behavioral task. Importantly, the temporal spiking patterns of single units were predictive of the monkeys’ behavioral response time. Furthermore, some features of these spiking patterns often varied between jointly recorded neurons. All together, our results suggest that dACC drives behavioral adaptation through complex spatiotemporal spike coding. They also indicate that downstream networks, which decode dACC feedback signals, are unlikely to act as mere neural integrators. PMID:26266537

  14. Boldness behavior and stress physiology in a novel urban environment suggest rapid correlated evolutionary adaptation.

    PubMed

    Atwell, Jonathan W; Cardoso, Gonçalo C; Whittaker, Danielle J; Campbell-Nelson, Samuel; Robertson, Kyle W; Ketterson, Ellen D

    2012-09-01

    Novel or changing environments expose animals to diverse stressors that likely require coordinated hormonal and behavioral adaptations. Predicted adaptations to urban environments include attenuated physiological responses to stressors and bolder exploratory behaviors, but few studies to date have evaluated the impact of urban life on codivergence of these hormonal and behavioral traits in natural systems. Here, we demonstrate rapid adaptive shifts in both stress physiology and correlated boldness behaviors in a songbird, the dark-eyed junco, following its colonization of a novel urban environment. We compared elevation in corticosterone (CORT) in response to handling and flight initiation distances in birds from a recently established urban population in San Diego, California to birds from a nearby wildland population in the species' ancestral montane breeding range. We also measured CORT and exploratory behavior in birds raised from early life in a captive common garden study. We found persistent population differences for both reduced CORT responses and bolder exploratory behavior in birds from the colonist population, as well as significant negative covariation between maximum CORT and exploratory behavior. Although early developmental effects cannot be ruled out, these results suggest contemporary adaptive evolution of correlated hormonal and behavioral traits associated with colonization of an urban habitat.

  15. Boldness behavior and stress physiology in a novel urban environment suggest rapid correlated evolutionary adaptation

    PubMed Central

    Cardoso, Gonçalo C.; Whittaker, Danielle J.; Campbell-Nelson, Samuel; Robertson, Kyle W.; Ketterson, Ellen D.

    2012-01-01

    Novel or changing environments expose animals to diverse stressors that likely require coordinated hormonal and behavioral adaptations. Predicted adaptations to urban environments include attenuated physiological responses to stressors and bolder exploratory behaviors, but few studies to date have evaluated the impact of urban life on codivergence of these hormonal and behavioral traits in natural systems. Here, we demonstrate rapid adaptive shifts in both stress physiology and correlated boldness behaviors in a songbird, the dark-eyed junco, following its colonization of a novel urban environment. We compared elevation in corticosterone (CORT) in response to handling and flight initiation distances in birds from a recently established urban population in San Diego, California to birds from a nearby wildland population in the species' ancestral montane breeding range. We also measured CORT and exploratory behavior in birds raised from early life in a captive common garden study. We found persistent population differences for both reduced CORT responses and bolder exploratory behavior in birds from the colonist population, as well as significant negative covariation between maximum CORT and exploratory behavior. Although early developmental effects cannot be ruled out, these results suggest contemporary adaptive evolution of correlated hormonal and behavioral traits associated with colonization of an urban habitat. PMID:22936840

  16. Performing a reaching task with one arm while adapting to a visuomotor rotation with the other can lead to complete transfer of motor learning across the arms

    PubMed Central

    Lei, Yuming; Binder, Jeffrey R.

    2015-01-01

    The extent to which motor learning is generalized across the limbs is typically very limited. Here, we investigated how two motor learning hypotheses could be used to enhance the extent of interlimb transfer. According to one hypothesis, we predicted that reinforcement of successful actions by providing binary error feedback regarding task success or failure, in addition to terminal error feedback, during initial training would increase the extent of interlimb transfer following visuomotor adaptation (experiment 1). According to the other hypothesis, we predicted that performing a reaching task repeatedly with one arm without providing performance feedback (which prevented learning the task with this arm), while concurrently adapting to a visuomotor rotation with the other arm, would increase the extent of transfer (experiment 2). Results indicate that providing binary error feedback, compared with continuous visual feedback that provided movement direction and amplitude information, had no influence on the extent of transfer. In contrast, repeatedly performing (but not learning) a specific task with one arm while visuomotor adaptation occurred with the other arm led to nearly complete transfer. This suggests that the absence of motor instances associated with specific effectors and task conditions is the major reason for limited interlimb transfer and that reinforcement of successful actions during initial training is not beneficial for interlimb transfer. These findings indicate crucial contributions of effector- and task-specific motor instances, which are thought to underlie (a type of) model-free learning, to optimal motor learning and interlimb transfer. PMID:25632082

  17. Comparison of psychopathological dimensions between major depressive disorder and schizophrenia spectrum disorders focusing on language, affectivity and motor behavior.

    PubMed

    Steinau, Sarah; Stegmayer, Katharina; Lang, Fabian U; Jäger, Markus; Strik, Werner; Walther, Sebastian

    2017-04-01

    This study tested whether patients with major depressive disorder (MDD) and schizophrenia spectrum disorders would differ in three dimensions of psychopathology (language, affectivity and motor behavior) as assessed by the Bern Psychopathology Scale (BPS) in a cohort of 58 patients with MDD and 146 patients with schizophrenia spectrum disorders. The overall estimation of severity of each of the three dimensions was rated on a seven-point Likert scale from severely inhibited to severely disinhibited. Here, more than half of the patients endorsed ratings that showed normal or mildly (dis-)inhibited behavior. At group level more pronounced negative ratings of affect were seen in MDD. Group comparisons of the severity ratings on language or motor behavior yielded no differences between schizophrenia spectrum disorders and MDD. At the individuals' levels, extreme ratings in the language and motor dimensions were more frequent in schizophrenia spectrum disorders and in the affectivity dimension more frequent in MDD. Shared psychopathological features could be seen across diagnoses, supporting a dimensional approach to psychopathology in endogenous psychoses. However, the groups differ in the severity of affect ratings as well as in the distribution of language, affectivity and motor ratings with more variance among the group of schizophrenia spectrum disorders. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.

  18. The Longitudinal Effects of Parenting on Adaptive Behavior in Children with Fragile X Syndrome

    ERIC Educational Resources Information Center

    Warren, Steven F.; Brady, Nancy; Fleming, Kandace K.; Hahn, Laura J.

    2017-01-01

    Several studies have reported declines in adaptive behavior amongst children with fragile X syndrome (FXS) starting in middle childhood. We examined the effects of maternal responsivity on adaptive behavior in 55 children with FXS visited 5-6 times in their homes from early through middle childhood. Our analyses indicated that sustained maternal…

  19. Perceptual-Cognitive Changes During Motor Learning: The Influence of Mental and Physical Practice on Mental Representation, Gaze Behavior, and Performance of a Complex Action

    PubMed Central

    Frank, Cornelia; Land, William M.; Schack, Thomas

    2016-01-01

    Despite the wealth of research on differences between experts and novices with respect to their perceptual-cognitive background (e.g., mental representations, gaze behavior), little is known about the change of these perceptual-cognitive components over the course of motor learning. In the present study, changes in one’s mental representation, quiet eye behavior, and outcome performance were examined over the course of skill acquisition as it related to physical and mental practice. Novices (N = 45) were assigned to one of three conditions: physical practice, combined physical plus mental practice, and no practice. Participants in the practice groups trained on a golf putting task over the course of 3 days, either by repeatedly executing the putt, or by both executing and imaging the putt. Findings revealed improvements in putting performance across both practice conditions. Regarding the perceptual-cognitive changes, participants practicing mentally and physically revealed longer quiet eye durations as well as more elaborate representation structures in comparison to the control group, while this was not the case for participants who underwent physical practice only. Thus, in the present study, combined mental and physical practice led to both formation of mental representations in long-term memory and longer quiet eye durations. Interestingly, the length of the quiet eye directly related to the degree of elaborateness of the underlying mental representation, supporting the notion that the quiet eye reflects cognitive processing. This study is the first to show that the quiet eye becomes longer in novices practicing a motor action. Moreover, the findings of the present study suggest that perceptual and cognitive adaptations co-occur over the course of motor learning. PMID:26779089

  20. Monkey motor stimulation and altered social behavior during chronic methadone administration.

    PubMed

    Crowley, T J; Hydinger, M; Stynes, A J; Feiger, A

    1975-08-21

    To assess the effects of chronic methadone administration on locomotor, social, and eating behavior od drug-native individuals under circumstances approximating those of methadone "maintenance" clinics, we gave single, daily oral doses of methadone to 5 Macaca radiata monkeys living in a social group. We obtained motor activity counts automatically during 6 weeks of baseline, 10 weeks of drug administration, and 3 weeks of post-drug abstinence. Social behaviors of association, dominance, submission, and sexuality were counted 5 days per week, and animal weights, food eaten and food-reinforced work were recorded. Plasma methadone levels were near those achieved in mechadone clincs. Methadone produced mixed stimulation and sedation in the daytime, with stimulation predominating for 4 hrs following administration. At night the subjects moved less while taking the drug. Associative behaviors were reduced by methadone, but dominance, submission, and sexual behaviors were not altered. The monkeys ate less while taking the drug, losing weight and working less for food. In these primates methadone had significant stimulant properties, impaired important social behaviors, and reduced the potency of food as a reinforcer of work. The results are compared with methadone's effects upon humans.

  1. Role of the flocculus of the cerebellum in motor learning of the vestibulo-ocular reflex

    NASA Technical Reports Server (NTRS)

    Highstein, S. M.

    1998-01-01

    Structure-function studies at the systems level are an effective method for understanding the relationship of the central nervous system to behavior. Motor learning or adaptation of the vestibulo-ocular reflex is a clear example wherein this approach has been productive. During a vestibulo-ocular reflex the brain converts a head velocity signal, transduced through the vestibular semicircular canals, into an eye movement command delivered to the extraocular muscles. If the viewed target remains on the fovea of the retina, the reflex is compensatory, and its gain, eye velocity/head velocity, is one. When the image of the viewed object slips across the retina, visual acuity decreases, and the gain of the reflex, which is no longer one, is plastically adapted or adjusted until retinal stability is restored. The anatomic substrate for this plasticity thus involves brain structures in which visual-vestibular interaction can potentially occur, as well as vestibular and visual sensory and oculomotor motor structures. Further, it has been known for many years that removal of the flocculus of the cerebellum permanently precludes further vestibulo-ocular reflex adaptation, demonstrating the involvement of the cerebellum in this behavior. Maekawa and Simpson (J Neurophysiol 1973;36: 649-66) discovered that one visual input to the flocculus involved the accessory optic system and the inferior olive. Ensuing work has demonstrated that the visual signals used to adapt the vestibulo-ocular reflex are transmitted by this accessory optic system to the flocculus and subsequently to brain stem structures involved in vestibulo-ocular reflex plasticity. Presently the inclusive list of anatomic sites involved in vestibulo-ocular reflex circuitry and its adaptive plasticity is small. Our laboratory continues to believe that this behavior should be caused by interactions within this small class of neurons. By studying each class of identified neuron and its interactions with others within

  2. Sensory-Motor Adaptation to Space Flight: Human Balance Control and Artificial Gravity

    NASA Technical Reports Server (NTRS)

    Paloski, William H.

    2004-01-01

    Gravity, which is sensed directly by the otolith organs and indirectly by proprioceptors and exteroceptors, provides the CNS a fundamental reference for estimating spatial orientation and coordinating movements in the terrestrial environment. The sustained absence of gravity during orbital space flight creates a unique environment that cannot be reproduced on Earth. Loss of this fundamental CNS reference upon insertion into orbit triggers neuro-adaptive processes that optimize performance for the microgravity environment, while its reintroduction upon return to Earth triggers neuro-adaptive processes that return performance to terrestrial norms. Five pioneering symposia on The Role of the Vestibular Organs in the Exploration of Space were convened between 1965 and 1970. These innovative meetings brought together the top physicians, physiologists, and engineers in the vestibular field to discuss and debate the challenges associated with human vestibular system adaptation to the then novel environment of space flight. These highly successful symposia addressed the perplexing problem of how to understand and ameliorate the adverse physiological effects on humans resulting from the reduction of gravitational stimulation of the vestibular receptors in space. The series resumed in 2002 with the Sixth Symposium, which focused on the microgravity environment as an essential tool for the study of fundamental vestibular functions. The three day meeting included presentations on historical perspectives, vestibular neurobiology, neurophysiology, neuroanatomy, neurotransmitter systems, theoretical considerations, spatial orientation, psychophysics, motor integration, adaptation, autonomic function, space motion sickness, clinical issues, countermeasures, and rehabilitation. Scientists and clinicians entered into lively exchanges on how to design and perform mutually productive research and countermeasure development projects in the future. The problems posed by long duration

  3. Adaptive Characteristics and Suicidal Behavior: A Gender Comparison of Young Adults

    ERIC Educational Resources Information Center

    Ellis, Jon B.; Lamis, Dorian A.

    2007-01-01

    Differences in suicidal behavior and adaptive characteristics were examined in college students with a particular emphasis on gender differences. Participants consisted of 344 undergraduate students who were administered a revised version of the Suicide Behaviors Questionnaire (SBQ), the Expanded Reasons for Living Inventory (RFL), and a…

  4. Motor cortex inhibition

    PubMed Central

    Isaacs, K.M.; Augusta, M.; MacNeil, L.K.; Mostofsky, S.H.

    2011-01-01

    Objective: Attention-deficit/hyperactivity disorder (ADHD) is a childhood-onset behavioral diagnosis in which children often fail to meet age norms in development of motor control, particularly timed repetitive and sequential movements, motor overflow, and balance. The neural substrate of this motor delay may include mechanisms of synaptic inhibition in or adjacent to the motor cortex. The primary objective of this study was to determine whether transcranial magnetic stimulation (TMS)–evoked measures, particularly short interval cortical inhibition (SICI), in motor cortex correlate with the presence and severity of ADHD in childhood as well as with commonly observed delays in motor control. Methods: In this case-control study, behavioral ratings, motor skills, and motor cortex physiology were evaluated in 49 children with ADHD (mean age 10.6 years, 30 boys) and 49 typically developing children (mean age 10.5 years, 30 boys), all right-handed, aged 8–12 years. Motor skills were evaluated with the Physical and Neurological Examination for Subtle Signs (PANESS) and the Motor Assessment Battery for Children version 2. SICI and other physiologic measures were obtained using TMS in the left motor cortex. Results: In children with ADHD, mean SICI was reduced by 40% (p < 0.0001) and less SICI correlated with higher ADHD severity (r = −0.52; p = 0.002). Mean PANESS motor development scores were 59% worse in children with ADHD (p < 0.0001). Worse PANESS scores correlated modestly with less SICI (r = −.30; p = 0.01). Conclusion: Reduced TMS-evoked SICI correlates with ADHD diagnosis and symptom severity and also reflects motor skill development in children. PMID:21321335

  5. Walking in School-Aged Children in a Dual-Task Paradigm Is Related to Age But Not to Cognition, Motor Behavior, Injuries, or Psychosocial Functioning

    PubMed Central

    Hagmann-von Arx, Priska; Manicolo, Olivia; Lemola, Sakari; Grob, Alexander

    2016-01-01

    Age-dependent gait characteristics and associations with cognition, motor behavior, injuries, and psychosocial functioning were investigated in 138 typically developing children aged 6.7–13.2 years (M = 10.0 years). Gait velocity, normalized velocity, and variability were measured using the walkway system GAITRite without an additional task (single task) and while performing a motor or cognitive task (dual task). Assessment of children’s cognition included tests for intelligence and executive functions; parents reported on their child’s motor behavior, injuries, and psychosocial functioning. Gait variability (an index of gait regularity) decreased with increasing age in both single- and dual-task walking. Dual-task gait decrements were stronger when children walked in the motor compared to the cognitive dual-task condition and decreased with increasing age in both dual-task conditions. Gait alterations from single- to dual-task conditions were not related to children’s cognition, motor behavior, injuries, or psychosocial functioning. PMID:27014158

  6. Triphasic behavioral response of motor units to submaximal fatiguing exercise.

    PubMed

    Dorfman, L J; Howard, J E; McGill, K C

    1990-07-01

    We have measured the firing rate and amplitude of 4551 motor unit action potentials (MUAPs) recorded with concentric needle electrodes from the brachial biceps muscles of 10 healthy young adults before, during, and after 45 minutes of intermittent isometric exercise at 20% of maximum voluntary contraction (MVC), using an automatic method for decomposition of electromyographic activity (ADEMG). During and after exercise, MUAPs derived from contractions of 30% MVC showed progressive increase in mean firing rate (P less than or equal to .01) and amplitude (P less than or equal to .05). The firing rate increase preceded the rise in mean amplitude, and was evident prior to the development of fatigue, defined as reduction of MVC. Analysis of individual potentials revealed that the increase in firing rate and in amplitude reflected different MUAP subpopulations. A short-term (less than 1 minute) reduction in MUAP firing rates (P less than or equal to .05) was also observed at the onset of each test contraction. These findings suggest that motor units exhibit a triphasic behavioral response to prolonged submaximal exercise: (1) short-term decline and stabilization of onset firing rates, followed by (2) gradual and progressive increase in firing rates and firing variability, and then by (3) recruitment of additional (larger) motor units. The (2) and (3) components presumably compensate for loss of force-generating capacity in the exercising muscle, and give rise jointly to the well-known increase in total surface EMG which accompanies muscle fatigue.

  7. Behavior and Adaptive Functioning in Adolescents with Down Syndrome: Specifying Targets for Intervention

    ERIC Educational Resources Information Center

    Jacola, Lisa M.; Hickey, Francis; Howe, Steven R.; Esbensen, Anna; Shear, Paula K.

    2014-01-01

    Adolescents with Down syndrome can demonstrate increased behavior problems as compared with typical peers. Few studies have explored whether behavior impacts adaptive functioning. Caregiver report from the Behavioral Assessment System for Children, 2nd Edition (BASC-2; Reynolds & Kamphaus, 2004) and the Child Behavioral Checklist (CBCL;…

  8. Cultural Adaptations of Cognitive Behavioral Therapy.

    PubMed

    Hinton, Devon E; Patel, Anushka

    2017-12-01

    In increasingly multicultural societies, cognitive behavioral therapy (CBT) must be made appropriate for diverse groups. This article examines cultural adaptations of CBT, focusing on anxiety and depressive disorders. The article presents a culturally informed, transdiagnostic model of how anxious-depressive distress is generated and culturally shaped. Guided by this model, it discusses how interventions can be designed to decrease anxiety-type and depressive-type psychopathology in a culturally sensitive way. It describes such concepts as explanatory model bridging, cultural grounding, and contextual sensitivity. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Online adaptation and over-trial learning in macaque visuomotor control.

    PubMed

    Braun, Daniel A; Aertsen, Ad; Paz, Rony; Vaadia, Eilon; Rotter, Stefan; Mehring, Carsten

    2011-01-01

    When faced with unpredictable environments, the human motor system has been shown to develop optimized adaptation strategies that allow for online adaptation during the control process. Such online adaptation is to be contrasted to slower over-trial learning that corresponds to a trial-by-trial update of the movement plan. Here we investigate the interplay of both processes, i.e., online adaptation and over-trial learning, in a visuomotor experiment performed by macaques. We show that simple non-adaptive control schemes fail to perform in this task, but that a previously suggested adaptive optimal feedback control model can explain the observed behavior. We also show that over-trial learning as seen in learning and aftereffect curves can be explained by learning in a radial basis function network. Our results suggest that both the process of over-trial learning and the process of online adaptation are crucial to understand visuomotor learning.

  10. Behavioral phenotypes of genetic syndromes with intellectual disability: comparison of adaptive profiles.

    PubMed

    Di Nuovo, Santo; Buono, Serafino

    2011-10-30

    The study of distinctive and consistent behaviors in the most common genetic syndromes with intellectual disability is useful to explain abnormalities or associated psychiatric disorders. The behavioral phenotypes revealed outcomes totally or partially specific for each syndrome. The aim of our study was to compare similarities and differences in the adaptive profiles of the five most frequent genetic syndromes, i.e. Down syndrome, Williams syndrome, Angelman syndrome, Prader-Willi syndrome, and Fragile-X syndrome (fully mutated), taking into account the relation with chronological age and the overall IQ level. The research was carried out using the Vineland Adaptive Behavior Scale (beside the Wechsler Intelligence scales to obtain IQ) with a sample of 181 persons (107 males and 74 females) showing genetic syndromes and mental retardation. Syndrome-based groups were matched for chronological age and mental age (excluding the Angelman group, presenting with severe mental retardation). Similarities and differences in the adaptive profiles are described, relating them to IQs and maladaptive behaviors. The results might be useful in obtaining a global index of adjustment for the assessment of intellectual disability level as well as for educational guidance and rehabilitative plans. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  11. Altered synaptic phospholipid signaling in PRG-1 deficient mice induces exploratory behavior and motor hyperactivity resembling psychiatric disorders.

    PubMed

    Schneider, Patrick; Petzold, Sandra; Sommer, Angela; Nitsch, Robert; Schwegler, Herbert; Vogt, Johannes; Roskoden, Thomas

    2018-01-15

    Plasticity related gene 1 (PRG-1) is a neuron specific membrane protein located at the postsynaptic density of glutamatergic synapses. PRG-1 modulates signaling pathways of phosphorylated lipid substrates such as lysophosphatidic acid (LPA). Deletion of PRG-1 increases presynaptic glutamate release probability leading to neuronal over-excitation. However, due to its cortical expression, PRG-1 deficiency leading to increased glutamatergic transmission is supposed to also affect motor pathways. We therefore analyzed the effects of PRG-1 function on exploratory and motor behavior using homozygous PRG-1 knockout (PRG-1 -/- ) mice and PRG-1/LPA 2 -receptor double knockout (PRG-1 -/- /LPA 2 -/- ) mice in two open field settings of different size and assessing motor behavior in the Rota Rod test. PRG-1 -/- mice displayed significantly longer path lengths and higher running speed in both open field conditions. In addition, PRG-1 -/- mice spent significantly longer time in the larger open field and displayed rearing and self-grooming behavior. Furthermore PRG-1 -/- mice displayed stereotypical behavior resembling phenotypes of psychiatric disorders in the smaller sized open field arena. Altogether, this behavior is similar to the stereotypical behavior observed in animal models for psychiatric disease of autistic spectrum disorders which reflects a disrupted balance between glutamatergic and GABAergic synapses. These differences indicate an altered excitation/inhibition balance in neuronal circuits in PRG-1 -/- mice as recently shown in the somatosensory cortex [38]. In contrast, PRG-1 -/- /LPA 2 -/- did not show significant changes in behavior in the open field suggesting that these specific alterations were abolished when the LPA 2 -receptor was lacking. Our findings indicate that PRG-1 deficiency led to over-excitability caused by an altered LPA/LPA 2 -R signaling inducing a behavioral phenotype typically observed in animal models for psychiatric disorders. Copyright

  12. Chaotic operation and chaos control of travelling wave ultrasonic motor.

    PubMed

    Shi, Jingzhuo; Zhao, Fujie; Shen, Xiaoxi; Wang, Xiaojie

    2013-08-01

    The travelling wave ultrasonic motor, which is a nonlinear dynamic system, has complex chaotic phenomenon with some certain choices of system parameters and external inputs, and its chaotic characteristics have not been studied until now. In this paper, the preliminary study of the chaos phenomenon in ultrasonic motor driving system has been done. The experiment of speed closed-loop control is designed to obtain several groups of time sampling data sequence of the amplitude of driving voltage, and phase-space reconstruction is used to analyze the chaos characteristics of these time sequences. The largest Lyapunov index is calculated and the result is positive, which shows that the travelling wave ultrasonic motor has chaotic characteristics in a certain working condition Then, the nonlinear characteristics of travelling wave ultrasonic motor are analyzed which includes Lyapunov exponent map, the bifurcation diagram and the locus of voltage relative to speed based on the nonlinear chaos model of a travelling wave ultrasonic motor. After that, two kinds of adaptive delay feedback controllers are designed in this paper to control and suppress chaos in USM speed control system. Simulation results show that the method can control unstable periodic orbits, suppress chaos in USM control system. Proportion-delayed feedback controller was designed following and arithmetic of fuzzy logic was used to adaptively adjust the delay time online. Simulation results show that this method could fast and effectively change the chaos movement into periodic or fixed-point movement and make the system enter into stable state from chaos state. Finally the chaos behavior was controlled. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Cognitive Abilities, Social Adaptation, and Externalizing Behavior Problems in Childhood and Adolescence: Specific Cascade Effects Across Development.

    PubMed

    Racz, Sarah Jensen; Putnick, Diane L; Suwalsky, Joan T D; Hendricks, Charlene; Bornstein, Marc H

    2017-08-01

    Children's and adolescents' cognitive abilities, social adaptation, and externalizing behaviors are broadly associated with each other at the bivariate level; however, the direction, ordering, and uniqueness of these associations have yet to be identified. Developmental cascade models are particularly well-suited to (1) discern unique pathways among psychological domains and (2) model stability in and covariation among constructs, allowing for conservative tests of longitudinal associations. The current study aimed to identify specific cascade effects among children's cognitive abilities, social adaptation, and externalizing behaviors, beginning in preschool and extending through adolescence. Children (46.2 % female) and mothers (N = 351 families) provided data when children were 4, 10, and 14 years old. Cascade effects highlighted significant stability in these domains. Unique longitudinal associations were identified between (1) age-10 cognitive abilities and age-14 social adaptation, (2) age-4 social adaptation and age-10 externalizing behavior, and (3) age-10 externalizing behavior and age-14 social adaptation. These findings suggest that children's social adaptation in preschool and externalizing behavior in middle childhood may be ideal intervention targets to enhance adolescent well-being.

  14. Adolescent Balloon Analog Risk Task and Behaviors that Influence Risk of Motor Vehicle Crash Injury

    PubMed Central

    Vaca, Federico E.; Walthall, Jessica M.; Ryan, Sheryl; Moriarty-Daley, Alison; Riera, Antonio; Crowley, Michael J.; Mayes, Linda C.

    2013-01-01

    Risk-taking propensity is a pivotal facet of motor vehicle crash involvement and subsequent traumatic injury in adolescents. Clinical encounters are important opportunities to identify teens with high risk-taking propensity who may later experience serious injury. Our objective was to compare self-reports of health risk behavior with performance on the Balloon Analog Risk Task (BART), a validated metric of risk-taking propensity, in adolescents during a clinical encounter. 100 adolescent patients from a hospital emergency department and adolescent health clinic completed a computer-based survey of self-reported risk behaviors including substance use behaviors and behaviors that influence crash involvement. They then completed the BART, a validated laboratory-based risk task in which participants earn points by pumping up a computer-generated balloon with greater pumps leading to increased chance of balloon explosion. 20 trials were undertaken. Mean number of pumps on the BART showed a correlation of .243 (p=.015) with self-reported driver/passenger behaviors and attitudes towards driving that influence risk of crash injury. Regression analyses showed that self-reports of substance use and mean number of pumps on the BART uniquely predict self-reports of behaviors influencing the risk of crash injury. The BART is a promising correlate of real-world risk-taking behavior related to traffic safety. It remains a valid predictor of behaviors influencing risk of crash injury when using just 10 trials, suggesting its utility as a quick and effective screening measure for use in busy clinical environments. This tool may be an important link to prevention interventions for those most at-risk for future motor vehicle crash involvement and injury. PMID:24406948

  15. Distinct alterations in motor & reward seeking behavior are dependent on the gestational age of exposure to LPS-induced maternal immune activation.

    PubMed

    Straley, Megan E; Van Oeffelen, Wesley; Theze, Sarah; Sullivan, Aideen M; O'Mahony, Siobhain M; Cryan, John F; O'Keeffe, Gerard W

    2017-07-01

    The dopaminergic system is involved in motivation, reward and the associated motor activities. Mesodiencephalic dopaminergic neurons in the ventral tegmental area (VTA) regulate motivation and reward, whereas those in the substantia nigra (SN) are essential for motor control. Defective VTA dopaminergic transmission has been implicated in schizophrenia, drug addiction and depression whereas dopaminergic neurons in the SN are lost in Parkinson's disease. Maternal immune activation (MIA) leading to in utero inflammation has been proposed to be a risk factor for these disorders, yet it is unclear how this stimulus can lead to the diverse disturbances in dopaminergic-driven behaviors that emerge at different stages of life in affected offspring. Here we report that gestational age is a critical determinant of the subsequent alterations in dopaminergic-driven behavior in rat offspring exposed to lipopolysaccharide (LPS)-induced MIA. Behavioral analysis revealed that MIA on gestational day 16 but not gestational day 12 resulted in biphasic impairments in motor behavior. Specifically, motor impairments were evident in early life, which were resolved by adolescence, but subsequently re-emerged in adulthood. In contrast, reward seeking behaviors were altered in offspring exposed MIA on gestational day 12. These changes were not due to a loss of dopaminergic neurons per se in the postnatal period, suggesting that they reflect functional changes in dopaminergic systems. This highlights that gestational age may be a key determinant of how MIA leads to distinct alterations in dopaminergic-driven behavior across the lifespan of affected offspring. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Effect of Implicit Perceptual-Motor Training on Decision-Making Skills and Underpinning Gaze Behavior in Combat Athletes.

    PubMed

    Milazzo, Nicolas; Farrow, Damian; Fournier, Jean F

    2016-08-01

    This study investigated the effect of a 12-session, implicit perceptual-motor training program on decision-making skills and visual search behavior of highly skilled junior female karate fighters (M age = 15.7 years, SD = 1.2). Eighteen participants were required to make (physical or verbal) reaction decisions to various attacks within different fighting scenarios. Fighters' performance and eye movements were assessed before and after the intervention, and during acquisition through the use of video-based and on-mat decision-making tests. The video-based test revealed that following training, only the implicit perceptual-motor group (n = 6) improved their decision-making accuracy significantly compared to a matched motor training (placebo, n = 6) group and a control group (n = 6). Further, the implicit training group significantly changed their visual search behavior by focusing on fewer locations for longer durations. In addition, the session-by-session analysis showed no significant improvement in decision accuracy between training session 1 and all the other sessions, except the last one. Coaches should devote more practice time to implicit learning approaches during perceptual-motor training program to achieve significant decision-making improvements and more efficient visual search strategy with elite athletes. © The Author(s) 2016.

  17. Perceptions of middle-class mothers of their children with special needs participating in motor and sport programs.

    PubMed

    Roth, Dana; Rimmerman, Arie

    2009-12-01

    This exploratory research studied middle-class mother's primary reason for registering their young children, mean age 6.9 years, in adapted motor and sports programs and their perceptions of their children upon entering the program and upon completion. Analyses also examined the possible relationship between mothers' age, education or children's age with their perceived favorable changes in the children's development. Fifty-one mothers participated in the study. The mothers completed a survey examining their perceptions of their children's developmental function along seven domains: understanding direction, communication, general physical functioning, fine motor skills, activities of daily living, vigilance and attention, and social behavior. The children were categorized by primary reason of referral to three categories: attention deficit hyperactivity disorder, motor difficulties, and social/behavioral difficulties. Findings suggest that middle-class mothers showed awareness and understanding of their children's needs by identifying the general physical function as the desirable domain to be addressed by the motor group, vigilance and attention as associated with attention deficit hyperactivity disorder, and understanding directions and communication as the desirable domain by the social/behavioral group. The findings are discussed in terms of the complexity of mother's perception of their children participating in sports and motor programs as relating to the different domains as well as to their perceived needs of their children.

  18. Aberrant Hyperconnectivity in the Motor System at Rest Is Linked to Motor Abnormalities in Schizophrenia Spectrum Disorders.

    PubMed

    Walther, Sebastian; Stegmayer, Katharina; Federspiel, Andrea; Bohlhalter, Stephan; Wiest, Roland; Viher, Petra V

    2017-09-01

    Motor abnormalities are frequently observed in schizophrenia and structural alterations of the motor system have been reported. The association of aberrant motor network function, however, has not been tested. We hypothesized that abnormal functional connectivity would be related to the degree of motor abnormalities in schizophrenia. In 90 subjects (46 patients) we obtained resting stated functional magnetic resonance imaging (fMRI) for 8 minutes 40 seconds at 3T. Participants further completed a motor battery on the scanning day. Regions of interest (ROI) were cortical motor areas, basal ganglia, thalamus and motor cerebellum. We computed ROI-to-ROI functional connectivity. Principal component analyses of motor behavioral data produced 4 factors (primary motor, catatonia and dyskinesia, coordination, and spontaneous motor activity). Motor factors were correlated with connectivity values. Schizophrenia was characterized by hyperconnectivity in 3 main areas: motor cortices to thalamus, motor cortices to cerebellum, and prefrontal cortex to the subthalamic nucleus. In patients, thalamocortical hyperconnectivity was linked to catatonia and dyskinesia, whereas aberrant connectivity between rostral anterior cingulate and caudate was linked to the primary motor factor. Likewise, connectivity between motor cortex and cerebellum correlated with spontaneous motor activity. Therefore, altered functional connectivity suggests a specific intrinsic and tonic neural abnormality in the motor system in schizophrenia. Furthermore, altered neural activity at rest was linked to motor abnormalities on the behavioral level. Thus, aberrant resting state connectivity may indicate a system out of balance, which produces characteristic behavioral alterations. © The Author 2017. Published by Oxford University Press on behalf of the Maryland Psychiatric Research Center. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  19. Use of electric field sensors for recording respiration, heart rate, and stereotyped motor behaviors in the rodent home cage.

    PubMed

    Noble, Donald J; MacDowell, Camden J; McKinnon, Michael L; Neblett, Tamra I; Goolsby, William N; Hochman, Shawn

    2017-02-01

    Numerous environmental and genetic factors can contribute significantly to behavioral and cardiorespiratory variability observed experimentally. Affordable technologies that allow for noninvasive home cage capture of physio-behavioral variables should enhance understanding of inter-animal variability including after experimental interventions. We assessed whether EPIC electric field sensors (Plessey Semiconductors) embedded within or attached externally to a rodent's home cage could accurately record respiration, heart rate, and motor behaviors. Current systems for quantification of behavioral variables require expensive specialty equipment, while measures of respiratory and heart rate are often provided by surgically implanted or chronically affixed devices. Sensors accurately encoded imposed sinusoidal changes in electric field tested at frequencies ranging from 0.5-100Hz. Mini-metronome arm movements were easily detected, but response magnitude was highly distance dependent. Sensors accurately reported respiration during whole-body plethysmography. In anesthetized rodents, PVC tube-embedded sensors provided accurate mechanical detection of both respiratory and heart rate. Comparable success was seen in naturally behaving animals at rest or sleeping when sensors were attached externally. Video-verified motor behaviors (sniffing, grooming, chewing, and rearing) were detectable and largely separable by their characteristic voltage fluctuations. Larger movement-related events had comparably larger voltage dynamics that easily allowed for a broad approximation of overall motor activity. Spectrograms were used to quickly depict characteristic frequencies in long-lasting recordings, while filtering and thresholding software allowed for detection and quantification of movement-related physio-behavioral events. EPIC electric field sensors provide a means for affordable non-contact home cage detection of physio-behavioral variables. Copyright © 2016 Elsevier B.V. All

  20. Dominance of the Unaffected Hemisphere Motor Network and Its Role in the Behavior of Chronic Stroke Survivors

    PubMed Central

    Bajaj, Sahil; Housley, Stephen N.; Wu, David; Dhamala, Mukesh; James, G. A.; Butler, Andrew J.

    2016-01-01

    Balance of motor network activity between the two brain hemispheres after stroke is crucial for functional recovery. Several studies have extensively studied the role of the affected brain hemisphere to better understand changes in motor network activity following stroke. Very few studies have examined the role of the unaffected brain hemisphere and confirmed the test–retest reliability of connectivity measures on unaffected hemisphere. We recorded blood oxygenation level dependent functional magnetic resonance imaging (fMRI) signals from nine stroke survivors with hemiparesis of the left or right hand. Participants performed a motor execution task with affected hand, unaffected hand, and both hands simultaneously. Participants returned for a repeat fMRI scan 1 week later. Using dynamic causal modeling (DCM), we evaluated effective connectivity among three motor areas: the primary motor area (M1), the premotor cortex (PMC) and the supplementary motor area for the affected and unaffected hemispheres separately. Five participants’ manual motor ability was assessed by Fugl-Meyer Motor Assessment scores and root-mean square error of participants’ tracking ability during a robot-assisted game. We found (i) that the task performance with the affected hand resulted in strengthening of the connectivity pattern for unaffected hemisphere, (ii) an identical network of the unaffected hemisphere when participants performed the task with their unaffected hand, and (iii) the pattern of directional connectivity observed in the affected hemisphere was identical for tasks using the affected hand only or both hands. Furthermore, paired t-test comparison found no significant differences in connectivity strength for any path when compared with one-week follow-up. Brain-behavior linear correlation analysis showed that the connectivity patterns in the unaffected hemisphere more accurately reflected the behavioral conditions than the connectivity patterns in the affected hemisphere

  1. Three timescales in prism adaptation.

    PubMed

    Inoue, Masato; Uchimura, Motoaki; Karibe, Ayaka; O'Shea, Jacinta; Rossetti, Yves; Kitazawa, Shigeru

    2015-01-01

    It has been proposed that motor adaptation depends on at least two learning systems, one that learns fast but with poor retention and another that learns slowly but with better retention (Smith MA, Ghazizadeh A, Shadmehr R. PLoS Biol 4: e179, 2006). This two-state model has been shown to account for a range of behavior in the force field adaptation task. In the present study, we examined whether such a two-state model could also account for behavior arising from adaptation to a prismatic displacement of the visual field. We first confirmed that an "adaptation rebound," a critical prediction of the two-state model, occurred when visual feedback was deprived after an adaptation-extinction episode. We then examined the speed of decay of the prism aftereffect (without any visual feedback) after repetitions of 30, 150, and 500 trials of prism exposure. The speed of decay decreased with the number of exposure trials, a phenomenon that was best explained by assuming an "ultraslow" system, in addition to the fast and slow systems. Finally, we compared retention of aftereffects 24 h after 150 or 500 trials of exposure: retention was significantly greater after 500 than 150 trials. This difference in retention could not be explained by the two-state model but was well explained by the three-state model as arising from the difference in the amount of adaptation of the "ultraslow process." These results suggest that there are not only fast and slow systems but also an ultraslow learning system in prism adaptation that is activated by prolonged prism exposure of 150-500 trials. Copyright © 2015 the American Physiological Society.

  2. Effects of Normal Aging on Visuo-Motor Plasticity

    NASA Technical Reports Server (NTRS)

    Roller, Carrie A.; Cohen, Helen S.; Kimball, Kay T.; Bloomberg, Jacob J.

    2001-01-01

    Normal aging is associated with declines in neurologic function. Uncompensated visual and vestibular problems may have dire consequences including dangerous falls. Visuomotor plasticity is a form of behavioral neural plasticity which is important in the process of adapting to visual or vestibular alteration, including those changes due to pathology, pharmacotherapy, surgery or even entry into a microgravity or underwater environment. In order to determine the effects of aging on visuomotor plasticity, we chose the simple and easily measured paradigm of visual-motor re-arrangement created by using visual displacement prisms while throwing small balls at a target. Subjects threw balls before, during and after wearing a set of prisms which displace the visual scene by twenty degrees to the right. Data obtained during adaptation were modeled using multilevel analyses for 73 subjects aged 20 to 80 years. We found no statistically significant difference in measures of visuomotor plasticity with advancing age. Further studies are underway examining variable practice training as a potential mechanism for enhancing this form of behavioral neural plasticity.

  3. Murine motor and behavior functional evaluations for acute 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) intoxication.

    PubMed

    Hutter-Saunders, Jessica A L; Gendelman, Howard E; Mosley, R Lee

    2012-03-01

    Acute intoxication with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) induces nigrostriatal neurodegeneration that reflects Parkinson's disease (PD) pathobiology. The model is commonly used for rodent studies of PD pathogenesis and diagnostics and for developmental therapeutics. However, tests of motor function in MPTP-intoxicated mice have yielded mixed results. This unmet need reflects, in part, lesion severity, animal variability, and the overall test sensitivity and specificity. In attempts to standardize rodent motor function and behavioral tests, mice were trained on the rotarod or habituated in an open field test chamber, and baseline performance measurements were collected prior to MPTP intoxication. One week following MPTP intoxication, motor function and behavior were assessed and baseline measurements applied to post-MPTP measurements with normalization to PBS controls. Rotarod and open field tests assessed in this manner demonstrated significant differences between MPTP- and saline-treated mice, while tests of neuromuscular strength and endurance did not. We conclude that the rotarod and open field tests provide reliable measures of motor function for MPTP-intoxicated mice.

  4. Perceptual and Motor Development in Infants and Children. Second Edition.

    ERIC Educational Resources Information Center

    Cratty, Bryant J.

    Motor behavior, motor performance, and motor learning are discussed at length within the context of infant and child development. Individual chapters focus on the following: the sensory-motor behavior of infants; analysis of selected perceptual-motor programs; beginnings of movement in infants; gross motor attributes in early childhood; visual…

  5. Regression rate behaviors of HTPB-based propellant combinations for hybrid rocket motor

    NASA Astrophysics Data System (ADS)

    Sun, Xingliang; Tian, Hui; Li, Yuelong; Yu, Nanjia; Cai, Guobiao

    2016-02-01

    The purpose of this paper is to characterize the regression rate behavior of hybrid rocket motor propellant combinations, using hydrogen peroxide (HP), gaseous oxygen (GOX), nitrous oxide (N2O) as the oxidizer and hydroxyl-terminated poly-butadiene (HTPB) as the based fuel. In order to complete this research by experiment and simulation, a hybrid rocket motor test system and a numerical simulation model are established. Series of hybrid rocket motor firing tests are conducted burning different propellant combinations, and several of those are used as references for numerical simulations. The numerical simulation model is developed by combining the Navies-Stokes equations with the turbulence model, one-step global reaction model, and solid-gas coupling model. The distribution of regression rate along the axis is determined by applying simulation mode to predict the combustion process and heat transfer inside the hybrid rocket motor. The time-space averaged regression rate has a good agreement between the numerical value and experimental data. The results indicate that the N2O/HTPB and GOX/HTPB propellant combinations have a higher regression rate, since the enhancement effect of latter is significant due to its higher flame temperature. Furthermore, the containing of aluminum (Al) and/or ammonium perchlorate(AP) in the grain does enhance the regression rate, mainly due to the more energy released inside the chamber and heat feedback to the grain surface by the aluminum combustion.

  6. Early and late changes in the distal forelimb representation of the supplementary motor area after injury to frontal motor areas in the squirrel monkey.

    PubMed

    Eisner-Janowicz, Ines; Barbay, Scott; Hoover, Erica; Stowe, Ann M; Frost, Shawn B; Plautz, Erik J; Nudo, Randolph J

    2008-09-01

    Neuroimaging studies in stroke survivors have suggested that adaptive plasticity occurs following stroke. However, the complex temporal dynamics of neural reorganization after injury make the interpretation of functional imaging studies equivocal. In the present study in adult squirrel monkeys, intracortical microstimulation (ICMS) techniques were used to monitor changes in representational maps of the distal forelimb in the supplementary motor area (SMA) after a unilateral ischemic infarct of primary motor (M1) and premotor distal forelimb representations (DFLs). In each animal, ICMS maps were derived at early (3 wk) and late (13 wk) postinfarct stages. Lesions resulted in severe deficits in motor abilities on a reach and retrieval task. Limited behavioral recovery occurred and plateaued at 3 wk postinfarct. At both early and late postinfarct stages, distal forelimb movements could still be evoked by ICMS in SMA at low current levels. However, the size of the SMA DFL changed after the infarct. In particular, wrist-forearm representations enlarged significantly between early and late stages, attaining a size substantially larger than the preinfarct area. At the late postinfarct stage, the expansion in the SMA DFL area was directly proportional to the absolute size of the lesion. The motor performance scores were positively correlated to the absolute size of the SMA DFL at the late postinfarct stage. Together, these data suggest that, at least in squirrel monkeys, descending output from M1 and dorsal and ventral premotor cortices is not necessary for SMA representations to be maintained and that SMA motor output maps undergo delayed increases in representational area after damage to other motor areas. Finally, the role of SMA in recovery of function after such lesions remains unclear because behavioral recovery appears to precede neurophysiological map changes.

  7. Frontal Theta Links Prediction Errors to Behavioral Adaptation in Reinforcement Learning

    PubMed Central

    Cavanagh, James F.; Frank, Michael J.; Klein, Theresa J.; Allen, John J.B.

    2009-01-01

    Investigations into action monitoring have consistently detailed a fronto-central voltage deflection in the Event-Related Potential (ERP) following the presentation of negatively valenced feedback, sometimes termed the Feedback Related Negativity (FRN). The FRN has been proposed to reflect a neural response to prediction errors during reinforcement learning, yet the single trial relationship between neural activity and the quanta of expectation violation remains untested. Although ERP methods are not well suited to single trial analyses, the FRN has been associated with theta band oscillatory perturbations in the medial prefrontal cortex. Medio-frontal theta oscillations have been previously associated with expectation violation and behavioral adaptation and are well suited to single trial analysis. Here, we recorded EEG activity during a probabilistic reinforcement learning task and fit the performance data to an abstract computational model (Q-learning) for calculation of single-trial reward prediction errors. Single-trial theta oscillatory activities following feedback were investigated within the context of expectation (prediction error) and adaptation (subsequent reaction time change). Results indicate that interactive medial and lateral frontal theta activities reflect the degree of negative and positive reward prediction error in the service of behavioral adaptation. These different brain areas use prediction error calculations for different behavioral adaptations: with medial frontal theta reflecting the utilization of prediction errors for reaction time slowing (specifically following errors), but lateral frontal theta reflecting prediction errors leading to working memory-related reaction time speeding for the correct choice. PMID:19969093

  8. Body side-specific control of motor activity during turning in a walking animal

    PubMed Central

    Gruhn, Matthias; Rosenbaum, Philipp; Bockemühl, Till; Büschges, Ansgar

    2016-01-01

    Animals and humans need to move deftly and flexibly to adapt to environmental demands. Despite a large body of work on the neural control of walking in invertebrates and vertebrates alike, the mechanisms underlying the motor flexibility that is needed to adjust the motor behavior remain largely unknown. Here, we investigated optomotor-induced turning and the neuronal mechanisms underlying the differences between the leg movements of the two body sides in the stick insect Carausius morosus. We present data to show that the generation of turning kinematics in an insect are the combined result of descending unilateral commands that change the leg motor output via task-specific modifications in the processing of local sensory feedback as well as modification of the activity of local central pattern generating networks in a body-side-specific way. To our knowledge, this is the first study to demonstrate the specificity of such modifications in a defined motor task. DOI: http://dx.doi.org/10.7554/eLife.13799.001 PMID:27130731

  9. Sensory Processing Subtypes in Autism: Association with Adaptive Behavior

    ERIC Educational Resources Information Center

    Lane, Alison E.; Young, Robyn L.; Baker, Amy E. Z.; Angley, Manya T.

    2010-01-01

    Children with autism are frequently observed to experience difficulties in sensory processing. This study examined specific patterns of sensory processing in 54 children with autistic disorder and their association with adaptive behavior. Model-based cluster analysis revealed three distinct sensory processing subtypes in autism. These subtypes…

  10. Voluntary inhibitory motor control over involuntary tic movements.

    PubMed

    Ganos, Christos; Rothwell, John; Haggard, Patrick

    2018-03-06

    Inhibitory control is crucial for normal adaptive motor behavior. In hyperkinesias, such as tics, disinhibition within the cortico-striato-thalamo-cortical loops is thought to underlie the presence of involuntary movements. Paradoxically, tics are also subject to voluntary inhibitory control. This puzzling clinical observation questions the traditional definition of tics as purely involuntary motor behaviors. Importantly, it suggests novel insights into tic pathophysiology. In this review, we first define voluntary inhibitory tic control and compare it with other notions of tic control from the literature. We then examine the association between voluntary inhibitory tic control with premonitory urges and review evidence linking voluntary tic inhibition to other forms of executive control of action. We discuss the somatotopic selectivity and the neural correlates of voluntary inhibitory tic control. Finally, we provide a scientific framework with regard to the clinical relevance of the study of voluntary inhibitory tic control within the context of the neurodevelopmental disorder of Tourette syndrome. We identify current knowledge gaps that deserve attention in future research. © 2018 International Parkinson and Movement Disorder Society. © 2018 International Parkinson and Movement Disorder Society.

  11. Behavioral training promotes multiple adaptive processes following acute hearing loss.

    PubMed

    Keating, Peter; Rosenior-Patten, Onayomi; Dahmen, Johannes C; Bell, Olivia; King, Andrew J

    2016-03-23

    The brain possesses a remarkable capacity to compensate for changes in inputs resulting from a range of sensory impairments. Developmental studies of sound localization have shown that adaptation to asymmetric hearing loss can be achieved either by reinterpreting altered spatial cues or by relying more on those cues that remain intact. Adaptation to monaural deprivation in adulthood is also possible, but appears to lack such flexibility. Here we show, however, that appropriate behavioral training enables monaurally-deprived adult humans to exploit both of these adaptive processes. Moreover, cortical recordings in ferrets reared with asymmetric hearing loss suggest that these forms of plasticity have distinct neural substrates. An ability to adapt to asymmetric hearing loss using multiple adaptive processes is therefore shared by different species and may persist throughout the lifespan. This highlights the fundamental flexibility of neural systems, and may also point toward novel therapeutic strategies for treating sensory disorders.

  12. Developing Rational-Empirical Views of Intelligent Adaptive Behavior

    DTIC Science & Technology

    2004-08-01

    biological frame to the information processing model and outline our understanding of intentions and beliefs that co-exist with rational and...notion that the evolution of cognition has produced memory/ knowledge systems that specialize in the processing of particular types of information ...1 PERMIS 2004 Developing Rational-Empirical Views of Intelligent Adaptive Behavior Gary Berg-Cross, Knowledge Strategies Potomac, Maryland

  13. Adaptive PIF Control for Permanent Magnet Synchronous Motors Based on GPC

    PubMed Central

    Lu, Shaowu; Tang, Xiaoqi; Song, Bao

    2013-01-01

    To enhance the control performance of permanent magnet synchronous motors (PMSMs), a generalized predictive control (GPC)-based proportional integral feedforward (PIF) controller is proposed for the speed control system. In this new approach, firstly, based on the online identification of controlled model parameters, a simplified GPC law supplies the PIF controller with suitable control parameters according to the uncertainties in the operating conditions. Secondly, the speed reference curve for PMSMs is usually required to be continuous and continuously differentiable according to the general servo system design requirements, so the adaptation of the speed reference is discussed in details in this paper. Hence, the performance of the speed control system using a GPC-based PIF controller is improved for tracking some specified signals. The main motivation of this paper is the extension of GPC law to replace the traditional PI or PIF controllers in industrial applications. The efficacy and usefulness of the proposed controller are verified through experimental results. PMID:23262481

  14. Adaptive PIF control for permanent magnet synchronous motors based on GPC.

    PubMed

    Lu, Shaowu; Tang, Xiaoqi; Song, Bao

    2012-12-24

    To enhance the control performance of permanent magnet synchronous motors (PMSMs), a generalized predictive control (GPC)-based proportional integral feedforward (PIF) controller is proposed for the speed control system. In this new approach, firstly, based on the online identification of controlled model parameters, a simplified GPC law supplies the PIF controller with suitable control parameters according to the uncertainties in the operating conditions. Secondly, the speed reference curve for PMSMs is usually required to be continuous and continuously differentiable according to the general servo system design requirements, so the adaptation of the speed reference is discussed in details in this paper. Hence, the performance of the speed control system using a GPC-based PIF controller is improved for tracking some specified signals. The main motivation of this paper is the extension of GPC law to replace the traditional PI or PIF controllers in industrial applications. The efficacy and usefulness of the proposed controller are verified through experimental results.

  15. Impact of Parkinson's Disease and Dopaminergic Medication on Adaptation to Explicit and Implicit Visuomotor Perturbations

    ERIC Educational Resources Information Center

    Mongeon, David; Blanchet, Pierre; Messier, Julie

    2013-01-01

    The capacity to learn new visuomotor associations is fundamental to adaptive motor behavior. Evidence suggests visuomotor learning deficits in Parkinson's disease (PD). However, the exact nature of these deficits and the ability of dopamine medication to improve them are under-explored. Previous studies suggested that learning driven by large and…

  16. Adaptive Skills, Behavior Problems, and Parenting Stress in Mothers of Boys with Fragile X Syndrome

    ERIC Educational Resources Information Center

    Sarimski, Klaus

    2010-01-01

    The relationship of temperament, atypical behaviors, and adaptive behavior of young boys with Fragile X syndrome on mothers' parenting stress was analyzed. Twenty-six boys with Fragile X syndrome (30-88 months of age) participated. The overall development of the participants was significantly delayed with a specific profile of adaptive behaviors…

  17. Hybrid Model Predictive Control for Sequential Decision Policies in Adaptive Behavioral Interventions.

    PubMed

    Dong, Yuwen; Deshpande, Sunil; Rivera, Daniel E; Downs, Danielle S; Savage, Jennifer S

    2014-06-01

    Control engineering offers a systematic and efficient method to optimize the effectiveness of individually tailored treatment and prevention policies known as adaptive or "just-in-time" behavioral interventions. The nature of these interventions requires assigning dosages at categorical levels, which has been addressed in prior work using Mixed Logical Dynamical (MLD)-based hybrid model predictive control (HMPC) schemes. However, certain requirements of adaptive behavioral interventions that involve sequential decision making have not been comprehensively explored in the literature. This paper presents an extension of the traditional MLD framework for HMPC by representing the requirements of sequential decision policies as mixed-integer linear constraints. This is accomplished with user-specified dosage sequence tables, manipulation of one input at a time, and a switching time strategy for assigning dosages at time intervals less frequent than the measurement sampling interval. A model developed for a gestational weight gain (GWG) intervention is used to illustrate the generation of these sequential decision policies and their effectiveness for implementing adaptive behavioral interventions involving multiple components.

  18. Method and system for determining induction motor speed

    DOEpatents

    Parlos, Alexander G.; Bharadwaj, Raj M.

    2004-03-30

    A non-linear, semi-parametric neural network-based adaptive filter is utilized to determine the dynamic speed of a rotating rotor within an induction motor, without the explicit use of a speed sensor, such as a tachometer, is disclosed. The neural network-based filter is developed using actual motor current measurements, voltage measurements, and nameplate information. The neural network-based adaptive filter is trained using an estimated speed calculator derived from the actual current and voltage measurements. The neural network-based adaptive filter uses voltage and current measurements to determine the instantaneous speed of a rotating rotor. The neural network-based adaptive filter also includes an on-line adaptation scheme that permits the filter to be readily adapted for new operating conditions during operations.

  19. Physiological, behavioral and biochemical adaptations of intertidal fishes to hypoxia.

    PubMed

    Richards, Jeffrey G

    2011-01-15

    Hypoxia survival in fish requires a well-coordinated response to either secure more O(2) from the hypoxic environment or to limit the metabolic consequences of an O(2) restriction at the mitochondria. Although there is a considerable amount of information available on the physiological, behavioral, biochemical and molecular responses of fish to hypoxia, very little research has attempted to determine the adaptive value of these responses. This article will review current attempts to use the phylogenetically corrected comparative method to define physiological and behavioral adaptations to hypoxia in intertidal fish and further identify putatively adaptive biochemical traits that should be investigated in the future. In a group of marine fishes known as sculpins, from the family Cottidae, variation in hypoxia tolerance, measured as a critical O(2) tension (P(crit)), is primarily explained by variation in mass-specific gill surface area, red blood cell hemoglobin-O(2) binding affinity, and to a lesser extent variation in routine O(2) consumption rate (M(O(2))). The most hypoxia-tolerant sculpins consistently show aquatic surface respiration (ASR) and aerial emergence behavior during hypoxia exposure, but no phylogenetically independent relationship has been found between the thresholds for initiating these behaviors and P(crit). At O(2) levels below P(crit), hypoxia survival requires a rapid reorganization of cellular metabolism to suppress ATP consumption to match the limited capacity for O(2)-independent ATP production. Thus, it is reasonable to speculate that the degree of metabolic rate suppression and the quantity of stored fermentable fuel is strongly selected for in hypoxia-tolerant fishes; however, these assertions have not been tested in a phylogenetic comparative model.

  20. Automated Detection of Repetitive Motor Behaviors as an Outcome Measurement in Intellectual and Developmental Disabilities

    ERIC Educational Resources Information Center

    Gilchrist, Kristin H.; Hegarty-Craver, Meghan; Christian, Robert B.; Grego, Sonia; Kies, Ashley C.; Wheeler, Anne C.

    2018-01-01

    Repetitive sensory motor behaviors are a direct target for clinical treatment and a potential treatment endpoint for individuals with intellectual or developmental disabilities. By removing the burden associated with video annotation or direct observation, automated detection of stereotypy would allow for longer term monitoring in ecologic…

  1. Temporal structure of motor variability is dynamically regulated and predicts motor learning ability.

    PubMed

    Wu, Howard G; Miyamoto, Yohsuke R; Gonzalez Castro, Luis Nicolas; Ölveczky, Bence P; Smith, Maurice A

    2014-02-01

    Individual differences in motor learning ability are widely acknowledged, yet little is known about the factors that underlie them. Here we explore whether movement-to-movement variability in motor output, a ubiquitous if often unwanted characteristic of motor performance, predicts motor learning ability. Surprisingly, we found that higher levels of task-relevant motor variability predicted faster learning both across individuals and across tasks in two different paradigms, one relying on reward-based learning to shape specific arm movement trajectories and the other relying on error-based learning to adapt movements in novel physical environments. We proceeded to show that training can reshape the temporal structure of motor variability, aligning it with the trained task to improve learning. These results provide experimental support for the importance of action exploration, a key idea from reinforcement learning theory, showing that motor variability facilitates motor learning in humans and that our nervous systems actively regulate it to improve learning.

  2. Temporal structure of motor variability is dynamically regulated and predicts motor learning ability

    PubMed Central

    Wu, Howard G; Miyamoto, Yohsuke R; Castro, Luis Nicolas Gonzalez; Ölveczky, Bence P; Smith, Maurice A

    2015-01-01

    Individual differences in motor learning ability are widely acknowledged, yet little is known about the factors that underlie them. Here we explore whether movement-to-movement variability in motor output, a ubiquitous if often unwanted characteristic of motor performance, predicts motor learning ability. Surprisingly, we found that higher levels of task-relevant motor variability predicted faster learning both across individuals and across tasks in two different paradigms, one relying on reward-based learning to shape specific arm movement trajectories and the other relying on error-based learning to adapt movements in novel physical environments. We proceeded to show that training can reshape the temporal structure of motor variability, aligning it with the trained task to improve learning. These results provide experimental support for the importance of action exploration, a key idea from reinforcement learning theory, showing that motor variability facilitates motor learning in humans and that our nervous systems actively regulate it to improve learning. PMID:24413700

  3. Toward a more sophisticated response representation in theories of medial frontal performance monitoring: The effects of motor similarity and motor asymmetries.

    PubMed

    Hochman, Eldad Yitzhak; Orr, Joseph M; Gehring, William J

    2014-02-01

    Cognitive control in the posterior medial frontal cortex (pMFC) is formulated in models that emphasize adaptive behavior driven by a computation evaluating the degree of difference between 2 conflicting responses. These functions are manifested by an event-related brain potential component coined the error-related negativity (ERN). We hypothesized that the ERN represents a regulative rather than evaluative pMFC process, exerted over the error motor representation, expediting the execution of a corrective response. We manipulated the motor representations of the error and the correct response to varying degrees. The ERN was greater when 1) the error response was more potent than when the correct response was more potent, 2) more errors were committed, 3) fewer and slower corrections were observed, and 4) the error response shared fewer motor features with the correct response. In their current forms, several prominent models of the pMFC cannot be reconciled with these findings. We suggest that a prepotent, unintended error is prone to reach the manual motor processor responsible for response execution before a nonpotent, intended correct response. In this case, the correct response is a correction and its execution must wait until the error is aborted. The ERN may reflect pMFC activity that aimed to suppress the error.

  4. The diagnostic adaptive behavior scale: evaluating its diagnostic sensitivity and specificity.

    PubMed

    Balboni, Giulia; Tassé, Marc J; Schalock, Robert L; Borthwick-Duffy, Sharon A; Spreat, Scott; Thissen, David; Widaman, Keith F; Zhang, Dalun; Navas, Patricia

    2014-11-01

    The Diagnostic Adaptive Behavior Scale (DABS) was constructed with items across three domains--conceptual, social, and practical adaptive skills--and normed on a representative sample of American individuals from 4 to 21 years of age. The DABS was developed to focus its assessment around the decision point for determining the presence or absence of significant limitations of adaptive behavior for the diagnosis of Intellectual Disability (ID). The purpose of this study, which was composed of 125 individuals with and 933 without an ID-related diagnosis, was to determine the ability of the DABS to correctly identify the individuals with and without ID (i.e., sensitivity and specificity). The results indicate that the DABS sensitivity coefficients ranged from 81% to 98%, specificity coefficients ranged from 89% to 91%, and that the Area Under the Receiver Operating Characteristic Curve were excellent or good. These results indicate that the DABS has very good levels of diagnostic efficiency. Copyright © 2014. Published by Elsevier Ltd.

  5. Online Adaptation and Over-Trial Learning in Macaque Visuomotor Control

    PubMed Central

    Braun, Daniel A.; Aertsen, Ad; Paz, Rony; Vaadia, Eilon; Rotter, Stefan; Mehring, Carsten

    2011-01-01

    When faced with unpredictable environments, the human motor system has been shown to develop optimized adaptation strategies that allow for online adaptation during the control process. Such online adaptation is to be contrasted to slower over-trial learning that corresponds to a trial-by-trial update of the movement plan. Here we investigate the interplay of both processes, i.e., online adaptation and over-trial learning, in a visuomotor experiment performed by macaques. We show that simple non-adaptive control schemes fail to perform in this task, but that a previously suggested adaptive optimal feedback control model can explain the observed behavior. We also show that over-trial learning as seen in learning and aftereffect curves can be explained by learning in a radial basis function network. Our results suggest that both the process of over-trial learning and the process of online adaptation are crucial to understand visuomotor learning. PMID:21720526

  6. Treadmill exercise delays the onset of non-motor behaviors and striatal pathology in the CAG140 knock-in mouse model of Huntington's disease.

    PubMed

    Stefanko, D P; Shah, V D; Yamasaki, W K; Petzinger, G M; Jakowec, M W

    2017-09-01

    Depression, cognitive impairments, and other neuropsychiatric disturbances are common during the prodromal phase of Huntington's disease (HD) well before the onset of classical motor symptoms of this degenerative disorder. The purpose of this study was to examine the potential impact of physical activity in the form of exercise on a motorized treadmill on non-motor behavioral features including depression-like behavior and cognition in the CAG 140 knock-in (KI) mouse model of HD. The CAG 140 KI mouse model has a long lifespan compared to other HD rodent models with HD motor deficits emerging after 12months of age and thus provides the opportunity to investigate early life interventions such as exercise on disease progression. Motorized treadmill running was initiated at 4weeks of age (1h per session, 3 times per week) and continued for 6months. Non-motor behaviors were assessed up to 6months of age and included analysis of depression-like behavior (using the tail-suspension and forced-swim tests) and cognition (using the T-maze and object recognition tests). At both 4 and 6months of age, CAG 140 KI mice displayed significant depression-like behavior in the forced swim and tail suspension tests and cognitive impairment by deficits in reversal relearning in the T-maze test. These deficits were not evident in mice engaged in treadmill running. In addition, exercise restored striatal dopamine D2 receptor expression and dopamine neurotransmitter levels both reduced in sedentary HD mice. Finally, we examined the pattern of striatal expression of mutant huntingtin (mHTT) protein and showed that the number and intensity of immunohistochemical staining patterns of intranuclear aggregates were significantly reduced with exercise. Altogether these findings begin to address the potential impact of lifestyle and early intervention such as exercise on modifying HD progression. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Neural Dynamics of Autistic Behaviors: Cognitive, Emotional, and Timing Substrates

    ERIC Educational Resources Information Center

    Grossberg, Stephen; Seidman, Don

    2006-01-01

    What brain mechanisms underlie autism, and how do they give rise to autistic behavioral symptoms? This article describes a neural model, called the Imbalanced Spectrally Timed Adaptive Resonance Theory (iSTART) model, that proposes how cognitive, emotional, timing, and motor processes that involve brain regions such as the prefrontal and temporal…

  8. Predicting ground level impacts of solid rocket motor testing

    NASA Technical Reports Server (NTRS)

    Douglas, Willard L.; Eagan, Ellen E.; Kennedy, Carolyn D.; Mccaleb, Rebecca C.

    1993-01-01

    Beginning in August of 1988 and continuing until the present, NASA at Stennis Space Center, Mississippi has conducted environmental monitoring of selected static test firings of the solid rocket motor used on the Space Shuttle. The purpose of the study was to assess the modeling protocol adapted for use in predicting plume behavior for the Advanced Solid Rocket Motor that is to be tested in Mississippi beginning in the mid-1990's. Both motors use an aluminum/ammonium perchlorate fuel that produces HCl and Al2O3 particulates as the major combustion products of concern. A combination of COMBUS.sr and PRISE.sr subroutines and the INPUFF model are used to predict the centerline stabilization height, the maximum concentration of HCl and Al2O3 at ground level, and distance to maximum concentration. Ground studies were conducted to evaluate the ability of the model to make these predictions. The modeling protocol was found to be conservative in the prediction of plume stabilization height and in the concentrations of the two emission products predicted.

  9. Vivid Motor Imagery as an Adaptation Method for Head Turns on a Short-Arm Centrifuge

    NASA Technical Reports Server (NTRS)

    Newby, N. J.; Mast, F. W.; Natapoff, A.; Paloski, W. H.

    2006-01-01

    Artificial gravity (AG) has been proposed as a potential countermeasure to the debilitating physiological effects of long duration space flight. The most economical means of implementing AG may be through the use of a short-radius (2m or less) centrifuge. For such a device to produce gravitational forces comparable to those on earth requires rotation rates in excess of 20 revolutions per minute (rpm). Head turns made out of the plane of rotation at these rates, as may be necessary if exercise is combined with AG, result in cross-coupled stimuli (CCS) that cause adverse side effects including motion sickness, illusory sensations of motion, and inappropriate eye movements. Recent studies indicate that people can adapt to CCS and reduce these side effects by making multiple head turns during centrifuge sessions conducted over consecutive days. However, about 25% of the volunteers for these studies have difficulty tolerating the CCS adaptation paradigm and often drop out due to motion sickness symptoms. The goal of this investigation was to determine whether vivid motor imagery could be used as a pseudostimulus for adapting subjects to this unique environment. Twenty four healthy human subjects (14 males, 10 females), ranging in age from 21 to 48 years (mean 33, sd 7 years) took part in this study. The experimental stimuli were produced using the NASA JSC short-arm centrifuge (SAC). Subjects were oriented supinely on this device with the nose pointed toward the ceiling and head centered on the axis of rotation. Thus, centrifuge rotation was in the body roll plane. After ramp-up the SAC rotated clockwise at a constant rate of 23 rpm, producing a centrifugal force of approximately 1 g at the feet. Semicircular canal CCS were produced by having subjects make yaw head turns from the nose up (NU) position to the right ear down (RED) position and from RED to NU. Each head turn was completed in about one second, and a 30 second recovery period separated consecutive head

  10. Reducing the Stress of Intensive Care: Effects on Motor and State Behavior. Conference Summary.

    ERIC Educational Resources Information Center

    Becker, Patricia T.

    This report presents outcome data on infant motor activity and behavioral state. Subjects were 45 infants who had birth weight of less than 1,501 grams, were appropriate for gestational age, and were free of major complications. A total of 21 infants were studied during a preintervention (control period), and 24 were studied in a posttraining…

  11. Motor stereotypy disorders.

    PubMed

    Muthugovindan, Deivasumathy; Singer, Harvey

    2009-04-01

    This review highlights recent advances in understanding the clinical features, prevalence, and outcomes of motor stereotypy disorders in typically developing children. Longitudinal data indicate that stereotypies in children with normal intelligence show an early age of onset, chronicity, and high prevalence of comorbid difficulties, including tics, obsessive-compulsive behaviors, and attention deficit hyperactivity disorder. The underlying abnormality remains unknown, but there is increasing evidence for Mendelian inheritance and a neurobiological mechanism. Primary motor stereotypies are relatively common in childhood and can be subdivided into three groups (common, head nodding, and complex motor). Movements are similar to those seen in children with autistic spectrum disorders, mental retardation, and sensory deprivation. The role of pharmacotherapy is not established and behavioral therapy can be beneficial.

  12. The bliss (not the problem) of motor abundance (not redundancy).

    PubMed

    Latash, Mark L

    2012-03-01

    Motor control is an area of natural science exploring how the nervous system interacts with other body parts and the environment to produce purposeful, coordinated actions. A central problem of motor control-the problem of motor redundancy-was formulated by Nikolai Bernstein as the problem of elimination of redundant degrees-of-freedom. Traditionally, this problem has been addressed using optimization methods based on a variety of cost functions. This review draws attention to a body of recent findings suggesting that the problem has been formulated incorrectly. An alternative view has been suggested as the principle of abundance, which considers the apparently redundant degrees-of-freedom as useful and even vital for many aspects of motor behavior. Over the past 10 years, dozens of publications have provided support for this view based on the ideas of synergic control, computational apparatus of the uncontrolled manifold hypothesis, and the equilibrium-point (referent configuration) hypothesis. In particular, large amounts of "good variance"-variance in the space of elements that has no effect on the overall performance-have been documented across a variety of natural actions. "Good variance" helps an abundant system to deal with secondary tasks and unexpected perturbations; its amount shows adaptive modulation across a variety of conditions. These data support the view that there is no problem of motor redundancy; there is bliss of motor abundance.

  13. Behavioral Problems in Children with Motor and Intellectual Disabilities: Prevalence and Associations with Maladaptive Personality and Marital Relationship

    ERIC Educational Resources Information Center

    Vrijmoeth, Cis; Monbaliu, Elegast; Lagast, Emmy; Prinzie, Peter

    2012-01-01

    Prevalence rates of behavioral problems in children with motor disabilities are commonly based on questionnaires developed for a general population (e.g., Child Behavior CheckList). These questionnaires do not take into account lower levels of intellectual functioning. The first aim of this study was to examine the prevalence of parent-reported…

  14. Dynamic adjustments of cognitive control: oscillatory correlates of the conflict adaptation effect.

    PubMed

    Pastötter, Bernhard; Dreisbach, Gesine; Bäuml, Karl-Heinz T

    2013-12-01

    It is a prominent idea that cognitive control mediates conflict adaptation, in that response conflict in a previous trial triggers control adjustments that reduce conflict in a current trial. In the present EEG study, we investigated the dynamics of cognitive control in a response-priming task by examining the effects of previous trial conflict on intertrial and current trial oscillatory brain activities, both on the electrode and the source level. Behavioral results showed conflict adaptation effects for RTs and response accuracy. Physiological results showed sustained intertrial effects in left parietal theta power, originating in the left inferior parietal cortex, and midcentral beta power, originating in the left and right (pre)motor cortex. Moreover, physiological analysis revealed a current trial conflict adaptation effect in midfrontal theta power, originating in the ACC. Correlational analyses showed that intertrial effects predicted conflict-induced midfrontal theta power in currently incongruent trials. In addition, conflict adaptation effects in midfrontal theta power and RTs were positively related. Together, these findings point to a dynamic cognitive control system that, as a function of previous trial type, up- and down-regulates attention and preparatory motor activities in anticipation of the next trial.

  15. Learning-induced Dependence of Neuronal Activity in Primary Motor Cortex on Motor Task Condition.

    PubMed

    Cai, X; Shimansky, Y; He, Jiping

    2005-01-01

    A brain-computer interface (BCI) system such as a cortically controlled robotic arm must have a capacity of adjusting its function to a specific environmental condition. We studied this capacity in non-human primates based on chronic multi-electrode recording from the primary motor cortex of a monkey during the animal's performance of a center-out 3D reaching task and adaptation to external force perturbations. The main condition-related feature of motor cortical activity observed before the onset of force perturbation was a phasic raise of activity immediately before the perturbation onset. This feature was observed during a series of perturbation trials, but were absent under no perturbations. After adaptation has been completed, it usually was taking the subject only one trial to recognize a change in the condition to switch the neuronal activity accordingly. These condition-dependent features of neuronal activity can be used by a BCI for recognizing a change in the environmental condition and making corresponding adjustments, which requires that the BCI-based control system possess such advanced properties of the neural motor control system as capacity to learn and adapt.

  16. Probability differently modulating the effects of reward and punishment on visuomotor adaptation.

    PubMed

    Song, Yanlong; Smiley-Oyen, Ann L

    2017-12-01

    Recent human motor learning studies revealed that punishment seemingly accelerated motor learning but reward enhanced consolidation of motor memory. It is not evident how intrinsic properties of reward and punishment modulate the potentially dissociable effects of reward and punishment on motor learning and motor memory. It is also not clear what causes the dissociation of the effects of reward and punishment. By manipulating probability of distribution, a critical property of reward and punishment, the present study demonstrated that probability had distinct modulation on the effects of reward and punishment in adapting to a sudden visual rotation and consolidation of the adaptation memory. Specifically, two probabilities of monetary reward and punishment distribution, 50 and 100%, were applied during young adult participants adapting to a sudden visual rotation. Punishment and reward showed distinct effects on motor adaptation and motor memory. The group that received punishments in 100% of the adaptation trials adapted significantly faster than the other three groups, but the group that received rewards in 100% of the adaptation trials showed marked savings in re-adapting to the same rotation. In addition, the group that received punishments in 50% of the adaptation trials that were randomly selected also had savings in re-adapting to the same rotation. Sensitivity to sensory prediction error or difference in explicit process induced by reward and punishment may likely contribute to the distinct effects of reward and punishment.

  17. Pomegranate Supplementation Improves Affective and Motor Behavior in Mice after Radiation Exposure

    PubMed Central

    Dulcich, Melissa S.; Hartman, Richard E.

    2013-01-01

    Currently, NASA has plans for extended space travel, and previous research indicates that space radiation can have negative effects on cognitive skills as well as physical and mental health. With long-term space travel, astronauts will be exposed to greater radiation levels. Research shows that an antioxidant-enriched diet may offer some protection against the cellular effects of radiation and may provide significant neuroprotection from the effects of radiation-induced cognitive and behavioral skill deficits. Ninety-six C57BL/6 mice (48 pomegranate fed and 48 control) were irradiated with proton radiation (2 Gy), and two-month postradiation behaviors were assessed using a battery of behavioral tests to measure cognitive and motor functions. Proton irradiation was associated with depression-like behaviors in the tail suspension test, but this effect was ameliorated by the pomegranate diet. Males, in general, displayed worse coordination and balance than females on the rotarod task, and the pomegranate diet ameliorated this effect. Overall, it appears that proton irradiation, which may be encountered in space, may induce a different pattern of behavioral deficits in males than females and that a pomegranate diet may confer protection against some of those effects. PMID:23662154

  18. Variations in Static Force Control and Motor Unit Behavior with Error Amplification Feedback in the Elderly.

    PubMed

    Chen, Yi-Ching; Lin, Linda L; Lin, Yen-Ting; Hu, Chia-Ling; Hwang, Ing-Shiou

    2017-01-01

    Error amplification (EA) feedback is a promising approach to advance visuomotor skill. As error detection and visuomotor processing at short time scales decline with age, this study examined whether older adults could benefit from EA feedback that included higher-frequency information to guide a force-tracking task. Fourteen young and 14 older adults performed low-level static isometric force-tracking with visual guidance of typical visual feedback and EA feedback containing augmented high-frequency errors. Stabilogram diffusion analysis was used to characterize force fluctuation dynamics. Also, the discharge behaviors of motor units and pooled motor unit coherence were assessed following the decomposition of multi-channel surface electromyography (EMG). EA produced different behavioral and neurophysiological impacts on young and older adults. Older adults exhibited inferior task accuracy with EA feedback than with typical visual feedback, but not young adults. Although stabilogram diffusion analysis revealed that EA led to a significant decrease in critical time points for both groups, EA potentiated the critical point of force fluctuations [Formula: see text], short-term effective diffusion coefficients (Ds), and short-term exponent scaling only for the older adults. Moreover, in older adults, EA added to the size of discharge variability of motor units and discharge regularity of cumulative discharge rate, but suppressed the pooled motor unit coherence in the 13-35 Hz band. Virtual EA alters the strategic balance between open-loop and closed-loop controls for force-tracking. Contrary to expectations, the prevailing use of closed-loop control with EA that contained high-frequency error information enhanced the motor unit discharge variability and undermined the force steadiness in the older group, concerning declines in physiological complexity in the neurobehavioral system and the common drive to the motoneuronal pool against force destabilization.

  19. Variations in Static Force Control and Motor Unit Behavior with Error Amplification Feedback in the Elderly

    PubMed Central

    Chen, Yi-Ching; Lin, Linda L.; Lin, Yen-Ting; Hu, Chia-Ling; Hwang, Ing-Shiou

    2017-01-01

    Error amplification (EA) feedback is a promising approach to advance visuomotor skill. As error detection and visuomotor processing at short time scales decline with age, this study examined whether older adults could benefit from EA feedback that included higher-frequency information to guide a force-tracking task. Fourteen young and 14 older adults performed low-level static isometric force-tracking with visual guidance of typical visual feedback and EA feedback containing augmented high-frequency errors. Stabilogram diffusion analysis was used to characterize force fluctuation dynamics. Also, the discharge behaviors of motor units and pooled motor unit coherence were assessed following the decomposition of multi-channel surface electromyography (EMG). EA produced different behavioral and neurophysiological impacts on young and older adults. Older adults exhibited inferior task accuracy with EA feedback than with typical visual feedback, but not young adults. Although stabilogram diffusion analysis revealed that EA led to a significant decrease in critical time points for both groups, EA potentiated the critical point of force fluctuations <ΔFc2>, short-term effective diffusion coefficients (Ds), and short-term exponent scaling only for the older adults. Moreover, in older adults, EA added to the size of discharge variability of motor units and discharge regularity of cumulative discharge rate, but suppressed the pooled motor unit coherence in the 13–35 Hz band. Virtual EA alters the strategic balance between open-loop and closed-loop controls for force-tracking. Contrary to expectations, the prevailing use of closed-loop control with EA that contained high-frequency error information enhanced the motor unit discharge variability and undermined the force steadiness in the older group, concerning declines in physiological complexity in the neurobehavioral system and the common drive to the motoneuronal pool against force destabilization. PMID:29167637

  20. Adaptation and adaptation transfer characteristics of five different saccade types in the monkey

    PubMed Central

    Fuchs, Albert F.; Soetedjo, Robijanto

    2015-01-01

    Shifts in the direction of gaze are accomplished by different kinds of saccades, which are elicited under different circumstances. Saccade types include targeting saccades to simple jumping targets, delayed saccades to visible targets after a waiting period, memory-guided (MG) saccades to remembered target locations, scanning saccades to stationary target arrays, and express saccades after very short latencies. Studies of human cases and neurophysiological experiments in monkeys suggest that separate pathways, which converge on a common locus that provides the motor command, generate these different types of saccade. When behavioral manipulations in humans cause targeting saccades to have persistent dysmetrias as might occur naturally from growth, aging, and injury, they gradually adapt to reduce the dysmetria. Although results differ slightly between laboratories, this adaptation generalizes or transfers to all the other saccade types mentioned above. Also, when one of the other types of saccade undergoes adaptation, it often transfers to another saccade type. Similar adaptation and transfer experiments, which allow inferences to be drawn about the site(s) of adaptation for different saccade types, have yet to be done in monkeys. Here we show that simian targeting and MG saccades adapt more than express, scanning, and delayed saccades. Adaptation of targeting saccades transfers to all the other saccade types. However, the adaptation of MG saccades transfers only to delayed saccades. These data suggest that adaptation of simian targeting saccades occurs on the pathway common to all saccade types. In contrast, only the delayed saccade command passes through the adaptation site of the MG saccade. PMID:25855693

  1. Adapted Behavior Therapy for Persistently Depressed Primary Care Patients: An Open Trial

    ERIC Educational Resources Information Center

    Uebelacker, Lisa A.; Weisberg, Risa B.; Haggarty, Ryan; Miller, Ivan W.

    2009-01-01

    Major depressive disorder is commonly treated in primary care settings. Psychotherapy occurring in primary care should take advantage of the unique aspects of the setting and must adapt to the problems and limitations of the setting. In this open trial, the authors used a treatment development model to adapt behavior therapy for primary care…

  2. Modulation of motor performance and motor learning by transcranial direct current stimulation.

    PubMed

    Reis, Janine; Fritsch, Brita

    2011-12-01

    Transcranial direct current stimulation (tDCS) has shown preliminary success in improving motor performance and motor learning in healthy individuals, and restitution of motor deficits in stroke patients. This brief review highlights some recent work. Within the past years, behavioural studies have confirmed and specified the timing and polarity specific effects of tDCS on motor skill learning and motor adaptation. There is strong evidence that timely co-application of (hand/arm) training and anodal tDCS to the contralateral M1 can improve motor learning. Improvements in motor function as measured by clinical scores have been described for combined tDCS and training in stroke patients. For this purpose, electrode montages have been modified with respect to interhemispheric imbalance after brain injury. Cathodal tDCS applied to the unlesioned M1 or bihemispheric M1 stimulation appears to be well tolerated and useful to induce improvements in motor function. Mechanistic studies in humans and animals are discussed with regard to physiological motor learning. tDCS is well tolerated, easy to use and capable of inducing lasting improvements in motor function. This method holds promise for the rehabilitation of motor disabilities, although acute studies in patients with brain injury are so far lacking.

  3. Cyclic di-GMP differentially tunes a bacterial flagellar motor through a novel class of CheY-like regulators.

    PubMed

    Nesper, Jutta; Hug, Isabelle; Kato, Setsu; Hee, Chee-Seng; Habazettl, Judith Maria; Manfredi, Pablo; Grzesiek, Stephan; Schirmer, Tilman; Emonet, Thierry; Jenal, Urs

    2017-11-01

    The flagellar motor is a sophisticated rotary machine facilitating locomotion and signal transduction. Owing to its important role in bacterial behavior, its assembly and activity are tightly regulated. For example, chemotaxis relies on a sensory pathway coupling chemical information to rotational bias of the motor through phosphorylation of the motor switch protein CheY. Using a chemical proteomics approach, we identified a novel family of CheY-like (Cle) proteins in Caulobacter crescentus , which tune flagellar activity in response to binding of the second messenger c-di-GMP to a C-terminal extension. In their c-di-GMP bound conformation Cle proteins interact with the flagellar switch to control motor activity. We show that individual Cle proteins have adopted discrete cellular functions by interfering with chemotaxis and by promoting rapid surface attachment of motile cells. This study broadens the regulatory versatility of bacterial motors and unfolds mechanisms that tie motor activity to mechanical cues and bacterial surface adaptation.

  4. Information theory of adaptation in neurons, behavior, and mood.

    PubMed

    Sharpee, Tatyana O; Calhoun, Adam J; Chalasani, Sreekanth H

    2014-04-01

    The ability to make accurate predictions of future stimuli and consequences of one's actions are crucial for the survival and appropriate decision-making. These predictions are constantly being made at different levels of the nervous system. This is evidenced by adaptation to stimulus parameters in sensory coding, and in learning of an up-to-date model of the environment at the behavioral level. This review will discuss recent findings that actions of neurons and animals are selected based on detailed stimulus history in such a way as to maximize information for achieving the task at hand. Information maximization dictates not only how sensory coding should adapt to various statistical aspects of stimuli, but also that reward function should adapt to match the predictive information from past to future. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Translation and cultural adaptation of the Brazilian Portuguese version of the Behavioral Pain Scale.

    PubMed

    Morete, Márcia Carla; Mofatto, Sarah Camargo; Pereira, Camila Alves; Silva, Ana Paula; Odierna, Maria Tereza

    2014-01-01

    The objective of this study was to translate and culturally adapt the Behavioral Pain Scale to Brazilian Portuguese and to evaluate the psychometric properties of this scale. This study was conducted in two phases: the Behavioral Pain Scale was translated and culturally adapted to Brazilian Portuguese and the psychometric properties of this scale were subsequently assessed (reliability and clinical utility). The study sample consisted of 100 patients who were older than 18 years of age, admitted to an intensive care unit, intubated, mechanically ventilated, and subjected or not to sedation and analgesia from July 2012 to December 2012. Pediatric and non-intubated patients were excluded. The study was conducted at a large private hospital that was situated in the city of São Paulo (SP). Regarding reproducibility, the results revealed that the observed agreement between the two evaluators was 92.08% for the pain descriptor "adaptation to mechanical ventilation", 88.1% for "upper limbs", and 90.1% for "facial expression". The kappa coefficient of agreement for "adaptation to mechanical ventilation" assumed a value of 0.740. Good agreement was observed between the evaluators with an intraclass correlation coefficient of 0.807 (95% confidence interval: 0.727-0.866). The Behavioral Pain Scale was easy to administer and reproduce. Additionally, this scale had adequate internal consistency. The Behavioral Pain Scale was satisfactorily adapted to Brazilian Portuguese for the assessment of pain in critically ill patients.

  6. Chaos control for the output-constrained system by using adaptive dynamic surface technology and application to the brushless DC motor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo, Shaohua, E-mail: hua66com@163.com; School of Automation, Chongqing University, Chongqing 400044; Hou, Zhiwei

    2015-12-15

    In this paper, chaos control is proposed for the output- constrained system with uncertain control gain and time delay and is applied to the brushless DC motor. Using the dynamic surface technology, the controller overcomes the repetitive differentiation of backstepping and boundedness hypothesis of pre-determined control gain by incorporating radial basis function neural network and adaptive technology. The tangent barrier Lyapunov function is employed for time-delay chaotic system to prevent constraint violation. It is proved that the proposed control approach can guarantee asymptotically stable in the sense of uniformly ultimate boundedness without constraint violation. Finally, the effectiveness of the proposedmore » approach is demonstrated on the brushless DC motor example.« less

  7. Manganese-Enhanced Magnetic Resonance Imaging and Studies of Rat Behavior: Transient Motor Deficit in Skilled Reaching, Rears, and Activity in Rats After a Single Dose of MnCl2.

    PubMed

    Alaverdashvili, Mariam; Lapointe, Valerie; Whishaw, Ian Q; Cross, Albert R

    2017-01-01

    Manganese-enhanced magnetic resonance imaging (MEMRI) has been suggested to be a useful tool to visualize and map behavior-relevant neural populations at large scale in freely behaving rodents. A primary concern in MEMRI applications is Mn 2+ toxicity. Although a few studies have specifically examined toxicity on gross motor behavior, Mn 2+ toxicity on skilled motor behavior was not explored. Thus, the objective of this study was to combine manganese as a functional contrast agent with comprehensive behavior evaluation. We evaluated Mn 2+ effect on skilled reach-to-eat action, locomotion, and balance using a single pellet reaching task, activity cage, and cylinder test, respectively. The tests used are sensitive to the pathophysiology of many neurological and neurodegenerative disorders of the motor system. The behavioral testing was done in combination with a moderate dose of manganese. Behavior was studied before and after a single, intravenous infusion of MnCl 2 (48 mg/kg). The rats were imaged at 1, 3, 5, 7, and 14 days following infusion. The results show that MnCl 2 infusion resulted in detectable abnormalities in skilled reaching, locomotion, and balance that recovered within 3 days compared with the infusion of saline. Because some tests and behavioral measures could not detect motor abnormalities of skilled movements, comprehensive evaluation of motor behavior is critical in assessing the effects of MnCl 2 . The relaxation mapping results suggest that the transport of Mn 2+ into the brain is through the choroid plexus-cerebrospinal fluid system with the primary entry point and highest relaxation rates found in the pituitary gland. Relaxation rates in the pituitary gland correlated with measures of motor skill, suggesting that altered motor ability is related to the level of Mn circulating in the brain. Thus, combined MEMRI and behavioral studies that both achieve adequate image enhancement and are also free of motor skills deficits are difficult to achieve

  8. Interpreting problematic behavior: systematic compensatory adaptations as emergent phenomena in autism.

    PubMed

    Damico, Jack S; Nelson, Ryan L

    2005-01-01

    Based upon an emergent account of pragmatic ability and disability, this article provides theoretical and empirical support for a conceptually deeper understanding of some systematic behaviors that have served as diagnostic indices in communicatively impaired populations. Specifically, by employing conversation analysis, several examples of problematic behaviors in autism are analysed as a specific type of compensatory adaptation. Theoretical and clinical implications are discussed.

  9. Universal adaptive torque control for PM motors for field-weakening region operation

    DOEpatents

    Royak, Semyon [Beachwood, OH; Harbaugh, Mark M [Richfield, OH; Breitzmann, Robert J [South Russel, OH; Nondahl, Thomas A [Wauwatosa, WI; Schmidt, Peter B [Franklin, WI; Liu, Jingbo [Milwaukee, WI

    2011-03-29

    The invention includes a motor controller and method for controlling a permanent magnet motor. In accordance with one aspect of the present technique, a permanent magnet motor is controlled by, among other things, receiving a torque command, determining a normalized torque command by normalizing the torque command to a characteristic current of the motor, determining a normalized maximum available voltage, determining an inductance ratio of the motor, and determining a direct-axis current based upon the normalized torque command, the normalized maximum available voltage, and the inductance ratio of the motor.

  10. Isoflurane anesthesia has long-term consequences on motor and behavioral development in infant rhesus macaques

    PubMed Central

    Coleman, Kristine; Robertson, Nicola D.; Dissen, Gregory A.; Neuringer, Martha D.; Martin, L. Drew; Cuzon Carlson, Verginia C.; Kroenke, Christopher; Fair, Damien; Brambrink, Ansgar

    2016-01-01

    Background Experimental evidence correlates anesthetic exposure during early development with neuronal and glial injury and death as well as behavioral and cognitive impairments in young animals. Several, although not all, retrospective human studies of neurocognitive and behavioral disorders following childhood exposure to anesthesia suggest a similar association. Few studies have specifically investigated the effects of infant anesthesia exposure on subsequent neurobehavioral development. Using a highly translational nonhuman primate model, we investigated the potential dose-dependent effects of anesthesia across the first year of development. Methods We examined effects of single or multiple early postnatal isoflurane exposures on subsequent behavioral development in 24 socially reared rhesus macaques. Infants were exposed to 5-h of isoflurane anesthesia either once, three times, or not at all (control). We assessed reflex development and anxiety using standardized tests. At approximately one year, infants (n=23) were weaned and housed indoors with 5-6 other subjects. We recorded their response to this move and re-assessed anxiety. Results Compared to controls, animals exposed to repeated isoflurane (ISO-3) presented with motor reflex deficits at 1 month (median, range: ISO-3= 2 [1–5] versus control= 5 [3–7], p<0.005) and responded to their new social environment with increased anxiety (median, range: ISO-3=0.4 bouts/minute [0.2–0.6]; control= 0.25 [0.1–0.3], p,0.05) and affiliative/appeasement behavior (median, range: ISO-3=0.1 bouts/min [0–0.2]; control= 0 [0–0.1], p<0.01) at 12 months. There were no statistically significant behavioral alterations after single isoflurane exposure. Conclusions Neonatal exposure to isoflurane, particularly when repeated, has long-term behavioral consequences affecting both motor and socio-emotional aspects of behavior. PMID:27749311

  11. Exercise-related cognitive effects on sensory-motor control in athletes and drummers compared to non-athletes and other musicians.

    PubMed

    Bianco, V; Berchicci, M; Perri, R L; Quinzi, F; Di Russo, F

    2017-09-30

    Both playing a musical instrument and playing sport produce brain adaptations that might affect sensory-motor functions. While the benefits of sport practice have traditionally been attributed to aerobic fitness, it is still unknown whether playing an instrument might induce similar brain adaptations, or if a specific musical instrument like drums might be associated to specific benefits because of its high energy expenditure. Since the aerobic costs of playing drums was estimated to be comparable to those of average sport activities, we hypothesized that these two groups might show both behavioral and neurocognitive similarities. To test this hypothesis, we recruited 48 young adults and divided them into four age-matched groups: 12 drummers, 12 athletes, 12 no-drummer musicians and 12 non-athletes. Participants performed a visuo-motor discriminative response task, namely the Go/No-go, and their cortical activity was recorded by means of a 64-channel electroencephalography (EEG). Behavioral performance showed that athletes and drummers were faster than the other groups. Electrophysiological results showed that the pre-stimulus motor preparation (i.e. the Bereitschaftspotential or BP) and attentional control (i.e., the prefrontal negativity or pN), and specific post-stimulus components like the P3 and the pP2 (reflecting the stimulus categorization process) were enhanced in the athletes and drummers' groups. Overall, these results suggest that playing sport and drums led to similar benefits at behavioral and cognitive level as detectable in a cognitive task. Explanations of these findings, such as on the difference between drummers and other musicians, are provided in terms of long-term neural adaptation mechanisms and increased visuo-spatial abilities. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  12. The effects of yoga practice in school physical education on children's motor abilities and social behavior.

    PubMed

    Folleto, Júlia C; Pereira, Keila Rg; Valentini, Nadia Cristina

    2016-01-01

    In recent years, yoga programs in childhood have been implemented in schools, to promote the development for children. To investigate the effects of yoga program in physical education classes on the motor abilities and social behavior parameters of 6-8-year-old children. The study included 16 children from the 1(st) grade of a public elementary school in the South of Brazil. The children participated in a 12-week intervention, twice weekly, with 45 min each session. To assess children's performance, we used the Bruininks-Oseretsky Test of Motor Proficiency - Second Edition, the flexibility test (sit and reach - Eurofit, 1988), the Pictorial Scale of Perceived Competence and Social Acceptance for Young Children and semi-structured interviews with children, parents, and classroom' teacher. Data were analyzed with Wilcoxon test and level of significance was 5%. The yoga program was well accepted by children, children also demonstrated significant and positive changes in overall motor abilities scores (balance, strength, and flexibility). In addition, the interviews reported changing in social behavior and the use of the knowledge learned in the program in contexts outside of school. These findings suggest that the implementation of yoga practice in physical education lessons contributed to children's development.

  13. The effects of yoga practice in school physical education on children's motor abilities and social behavior

    PubMed Central

    Folleto, Júlia C; Pereira, Keila RG; Valentini, Nadia Cristina

    2016-01-01

    Background: In recent years, yoga programs in childhood have been implemented in schools, to promote the development for children. Aim: To investigate the effects of yoga program in physical education classes on the motor abilities and social behavior parameters of 6–8-year-old children. Methods: The study included 16 children from the 1st grade of a public elementary school in the South of Brazil. The children participated in a 12-week intervention, twice weekly, with 45 min each session. To assess children's performance, we used the Bruininks-Oseretsky Test of Motor Proficiency - Second Edition, the flexibility test (sit and reach – Eurofit, 1988), the Pictorial Scale of Perceived Competence and Social Acceptance for Young Children and semi-structured interviews with children, parents, and classroom’ teacher. Data were analyzed with Wilcoxon test and level of significance was 5%. Results: The yoga program was well accepted by children, children also demonstrated significant and positive changes in overall motor abilities scores (balance, strength, and flexibility). In addition, the interviews reported changing in social behavior and the use of the knowledge learned in the program in contexts outside of school. Conclusion: These findings suggest that the implementation of yoga practice in physical education lessons contributed to children's development. PMID:27512323

  14. Risk of Behavioral and Adaptive Functioning Difficulties in Youth with Previous and Current Sleep Disordered Breathing

    PubMed Central

    Perfect, Michelle M.; Archbold, Kristen; Goodwin, James L.; Levine-Donnerstein, Deborah; Quan, Stuart F.

    2013-01-01

    Objectives: To examine the rates of behavioral and adaptive functioning difficulties among youth who never had sleep disordered breathing (SDB), had remitted SDB, had incident SDB, or had persistent SDB; and to determine if there were increased odds of behavioral difficulties among youth with varying SDB histories relative to those who never had SDB. Methods: 263 youth had valid polysomnography and neurobehavioral data at two time points approximately 5 years apart from the prospective Tucson Children's Assessment of Sleep Apnea study. Primary outcomes were the Behavior Assessment Scale for Children-2nd Edition Parent Report Form (BASC-PRF) and Self-Report of Personality (SRP), and the Adaptive Behavior Assessment System-2nd Edition (ABAS-2). Results: Compared to those who never had SDB, individuals with persistent SDB had significant odds and met more cutoff scores on the BASC-2-PRF Externalizing Problems Composite (odds ratio [OR] 3.29; 8.92% vs. 35.3%), Behavioral Symptoms Index (OR 6.82; 7.4% vs. 35.3%) and Hyperactivity subscale (OR 6.82; 11.1% vs. 41.2%). Similarly, greater difficulties was seen for the group with persistent SDB (relative to never) on the ABAS-2 Social Domain (OR 3.39; 22% vs. 50%), and Communication (OR 4.26; 15% vs. 42.9%) and Self-Care subscales (OR = 2.97; 25.2% vs. 50%). Relative to youth who never had SDB, youth who developed SDB at Time 2 had compromised adaptive skills as evidenced by the BASC-2 PRF Adaptive Behavior Composite (OR 3.34; 15.6% vs. 38.1%) and the ABAS-2 General Adaptive Composite (OR 2.83; 20.5% vs. 42.1%). Conclusions: Youth with current SDB exhibited hyperactivity, attention problems, aggressivity, lower social competency, poorer communication, and/or diminished adaptive skills. Citation: Perfect MM; Archbold K; Goodwin JL; Levine-Donnerstein D; Quan SF. Risk of behavioral and adaptive functioning difficulties in youth with previous and current sleep disordered breathing. SLEEP 2013;36(4):517-525. PMID:23543901

  15. Cross-Cultural Study of Adaptive Behavior in the Classroom.

    ERIC Educational Resources Information Center

    Payne, Glen C.; And Others

    The study of coping may lead to a better understanding of how children develop adaptive or maladaptive behaviors. Cross-cultural studies were conducted in 1965 and in 1968 with 10- and 14-year-old children from Brazil, England, Italy, Japan, Mexico, West Germany, Yugoslavia, and the United States. Attributes of attitudes, motivation, and coping…

  16. Adaptive Behavior Ratings Correlate with Symptomatology and IQ among Individuals with High-Functioning Autism Spectrum Disorders

    ERIC Educational Resources Information Center

    Kenworthy, Lauren; Case, Laura; Harms, Madeline B.; Martin, Alex; Wallace, Gregory L.

    2010-01-01

    Caregiver report on the Adaptive Behavior Assessment System-II (ABAS) for 40 high-functioning individuals with Autism Spectrum Disorders (ASD) and 30 typically developing (TD) individuals matched for age, IQ, and sex ratio revealed global adaptive behavior deficits in ASD, with social skills impairments particularly prominent. Within the ASD…

  17. The Construct of Adaptive Behavior: Its Conceptualization, Measurement, and Use in the Field of Intellectual Disability

    ERIC Educational Resources Information Center

    Tasse, Marc J.; Schalock, Robert L.; Balboni, Giulia; Bersani, Hank, Jr.; Borthwick-Duffy, Sharon A.; Spreat, Scott; Thissen, David; Widaman, Keith F.; Zhang, Dalun

    2012-01-01

    This article updates the current conceptualization, measurement, and use of the adaptive behavior construct. Major sections of the article address an understanding of the construct, the current approaches to its measurement, four assessment issues and challenges related to the use of adaptive behavior information for the diagnosis of intellectual…

  18. Associations between risk perception, spontaneous adaptation behavior to heat waves and heatstroke in Guangdong province, China

    PubMed Central

    2013-01-01

    Background In many parts of the world, including in China, extreme heat events or heat waves are likely to increase in intensity, frequency, and duration in light of climate change in the next decades. Risk perception and adaptation behaviors are two important components in reducing the health impacts of heat waves, but little is known about their relationships in China. This study aimed to examine the associations between risk perception to heat waves, adaptation behaviors, and heatstroke among the public in Guangdong province, China. Methods A total of 2,183 adult participants were selected using a four-stage sampling method in Guangdong province. From September to November of 2010 each subject was interviewed at home by a well-trained investigator using a structured questionnaire. The information collected included socio-demographic characteristics, risk perception and spontaneous adaptation behaviors during heat wave periods, and heatstroke experience in the last year. Chi-square tests and unconditional logistic regression models were employed to analyze the data. Results This study found that 14.8%, 65.3% and 19.9% of participants perceived heat waves as a low, moderate or high health risk, respectively. About 99.1% participants employed at least one spontaneous adaptation behavior, and 26.2%, 51.2% and 22.6% respondents employed <4, 4–7, and >7 adaptation behaviors during heat waves, respectively. Individuals with moderate (OR=2.93, 95% CI: 1.38-6.22) or high (OR=10.58, 95% CI: 4.74-23.63) risk perception experienced more heatstroke in the past year than others. Drinking more water and wearing light clothes in urban areas, while decreasing activity as well as wearing light clothes in rural areas were negatively associated with heatstroke. Individuals with high risk perception and employing <4 adaptation behaviors during heat waves had the highest risks of heatstroke (OR=47.46, 95% CI: 12.82-175.73). Conclusions There is a large room for improving health

  19. Associations between risk perception, spontaneous adaptation behavior to heat waves and heatstroke in Guangdong province, China.

    PubMed

    Liu, Tao; Xu, Yan Jun; Zhang, Yong Hui; Yan, Qing Hua; Song, Xiu Ling; Xie, Hui Yan; Luo, Yuan; Rutherford, Shannon; Chu, Cordia; Lin, Hua Liang; Ma, Wen Jun

    2013-10-02

    In many parts of the world, including in China, extreme heat events or heat waves are likely to increase in intensity, frequency, and duration in light of climate change in the next decades. Risk perception and adaptation behaviors are two important components in reducing the health impacts of heat waves, but little is known about their relationships in China. This study aimed to examine the associations between risk perception to heat waves, adaptation behaviors, and heatstroke among the public in Guangdong province, China. A total of 2,183 adult participants were selected using a four-stage sampling method in Guangdong province. From September to November of 2010 each subject was interviewed at home by a well-trained investigator using a structured questionnaire. The information collected included socio-demographic characteristics, risk perception and spontaneous adaptation behaviors during heat wave periods, and heatstroke experience in the last year. Chi-square tests and unconditional logistic regression models were employed to analyze the data. This study found that 14.8%, 65.3% and 19.9% of participants perceived heat waves as a low, moderate or high health risk, respectively. About 99.1% participants employed at least one spontaneous adaptation behavior, and 26.2%, 51.2% and 22.6% respondents employed <4, 4-7, and >7 adaptation behaviors during heat waves, respectively. Individuals with moderate (OR=2.93, 95% CI: 1.38-6.22) or high (OR=10.58, 95% CI: 4.74-23.63) risk perception experienced more heatstroke in the past year than others. Drinking more water and wearing light clothes in urban areas, while decreasing activity as well as wearing light clothes in rural areas were negatively associated with heatstroke. Individuals with high risk perception and employing <4 adaptation behaviors during heat waves had the highest risks of heatstroke (OR=47.46, 95% CI: 12.82-175.73). There is a large room for improving health risk perception and adaptation capacity to

  20. [Adaptation of Child's Report of Parent Behavior Inventory for a Spanish population].

    PubMed

    Samper, Paula; Cortés, María Teresa; Mestre, Vicenta; Nácher, María José; Tur, Ana María

    2006-05-01

    This study presented an adaptation in Spanish of the Child's Reports of Parental Behavior Inventory (CRPBI) . The CRPBI is an instrument that allows us to assess family discipline perceived by children in the relation with their mothers and with their fathers. It's considered a good instrument to assess the perceptions that children have of parent behavior. The Spanish adaptation has been carried out with a sample of 1,274 Spanish adolescents (males and females) from different educational centers of the Valencian Community (13-18 years). The results show that affect, support and control are the main dimensions in the perceived child rearing styles of parents in our population.

  1. Adaptive neural coding: from biological to behavioral decision-making

    PubMed Central

    Louie, Kenway; Glimcher, Paul W.; Webb, Ryan

    2015-01-01

    Empirical decision-making in diverse species deviates from the predictions of normative choice theory, but why such suboptimal behavior occurs is unknown. Here, we propose that deviations from optimality arise from biological decision mechanisms that have evolved to maximize choice performance within intrinsic biophysical constraints. Sensory processing utilizes specific computations such as divisive normalization to maximize information coding in constrained neural circuits, and recent evidence suggests that analogous computations operate in decision-related brain areas. These adaptive computations implement a relative value code that may explain the characteristic context-dependent nature of behavioral violations of classical normative theory. Examining decision-making at the computational level thus provides a crucial link between the architecture of biological decision circuits and the form of empirical choice behavior. PMID:26722666

  2. Driving Human Motor Cortical Oscillations Leads to Behaviorally Relevant Changes in Local GABAA Inhibition: A tACS-TMS Study

    PubMed Central

    van Ede, Freek

    2017-01-01

    Beta and gamma oscillations are the dominant oscillatory activity in the human motor cortex (M1). However, their physiological basis and precise functional significance remain poorly understood. Here, we used transcranial magnetic stimulation (TMS) to examine the physiological basis and behavioral relevance of driving beta and gamma oscillatory activity in the human M1 using transcranial alternating current stimulation (tACS). tACS was applied using a sham-controlled crossover design at individualized intensity for 20 min and TMS was performed at rest (before, during, and after tACS) and during movement preparation (before and after tACS). We demonstrated that driving gamma frequency oscillations using tACS led to a significant, duration-dependent decrease in local resting-state GABAA inhibition, as quantified by short interval intracortical inhibition. The magnitude of this effect was positively correlated with the magnitude of GABAA decrease during movement preparation, when gamma activity in motor circuitry is known to increase. In addition, gamma tACS-induced change in GABAA inhibition was closely related to performance in a motor learning task such that subjects who demonstrated a greater increase in GABAA inhibition also showed faster short-term learning. The findings presented here contribute to our understanding of the neurophysiological basis of motor rhythms and suggest that tACS may have similar physiological effects to endogenously driven local oscillatory activity. Moreover, the ability to modulate local interneuronal circuits by tACS in a behaviorally relevant manner provides a basis for tACS as a putative therapeutic intervention. SIGNIFICANCE STATEMENT Gamma oscillations have a vital role in motor control. Using a combined tACS-TMS approach, we demonstrate that driving gamma frequency oscillations modulates GABAA inhibition in the human motor cortex. Moreover, there is a clear relationship between the change in magnitude of GABAA inhibition induced

  3. Driving Human Motor Cortical Oscillations Leads to Behaviorally Relevant Changes in Local GABAA Inhibition: A tACS-TMS Study.

    PubMed

    Nowak, Magdalena; Hinson, Emily; van Ede, Freek; Pogosyan, Alek; Guerra, Andrea; Quinn, Andrew; Brown, Peter; Stagg, Charlotte J

    2017-04-26

    Beta and gamma oscillations are the dominant oscillatory activity in the human motor cortex (M1). However, their physiological basis and precise functional significance remain poorly understood. Here, we used transcranial magnetic stimulation (TMS) to examine the physiological basis and behavioral relevance of driving beta and gamma oscillatory activity in the human M1 using transcranial alternating current stimulation (tACS). tACS was applied using a sham-controlled crossover design at individualized intensity for 20 min and TMS was performed at rest (before, during, and after tACS) and during movement preparation (before and after tACS). We demonstrated that driving gamma frequency oscillations using tACS led to a significant, duration-dependent decrease in local resting-state GABA A inhibition, as quantified by short interval intracortical inhibition. The magnitude of this effect was positively correlated with the magnitude of GABA A decrease during movement preparation, when gamma activity in motor circuitry is known to increase. In addition, gamma tACS-induced change in GABA A inhibition was closely related to performance in a motor learning task such that subjects who demonstrated a greater increase in GABA A inhibition also showed faster short-term learning. The findings presented here contribute to our understanding of the neurophysiological basis of motor rhythms and suggest that tACS may have similar physiological effects to endogenously driven local oscillatory activity. Moreover, the ability to modulate local interneuronal circuits by tACS in a behaviorally relevant manner provides a basis for tACS as a putative therapeutic intervention. SIGNIFICANCE STATEMENT Gamma oscillations have a vital role in motor control. Using a combined tACS-TMS approach, we demonstrate that driving gamma frequency oscillations modulates GABA A inhibition in the human motor cortex. Moreover, there is a clear relationship between the change in magnitude of GABA A inhibition

  4. The influence of an uncertain force environment on reshaping trial-to-trial motor variability.

    PubMed

    Izawa, Jun; Yoshioka, Toshinori; Osu, Rieko

    2014-09-10

    Motor memory is updated to generate ideal movements in a novel environment. When the environment changes every trial randomly, how does the brain incorporate this uncertainty into motor memory? To investigate how the brain adapts to an uncertain environment, we considered a reach adaptation protocol where individuals practiced moving in a force field where a noise was injected. After they had adapted, we measured the trial-to-trial variability in the temporal profiles of the produced hand force. We found that the motor variability was significantly magnified by the adaptation to the random force field. Temporal profiles of the motor variance were significantly dissociable between two different types of random force fields experienced. A model-based analysis suggests that the variability is generated by noise in the gains of the internal model. It further suggests that the trial-to-trial motor variability magnified by the adaptation in a random force field is generated by the uncertainty of the internal model formed in the brain as a result of the adaptation.

  5. Three phase AC motor controller

    DOEpatents

    Vuckovich, Michael; Wright, Maynard K.; Burkett, John P.

    1984-03-20

    A motor controller for a three phase AC motor (10) which is adapted to operate bidirectionally from signals received either from a computer (30) or a manual control (32). The controller is comprised of digital logic circuit means which implement a forward and reverse command signal channel (27, 29) for the application of power through the forward and reverse power switching relays (16, 18, 20, 22). The digital logic elements are cross coupled to prevent activation of both channels simultaneously and each includes a plugging circuit (65, 67) for stopping the motor upon the removal of control signal applied to one of the two channels (27, 29) for a direction of rotation desired. Each plugging circuit (65, 67) includes a one-shot pulse signal generator (88, 102) which outputs a single pulse signal of predetermined pulsewidth which is adapted to inhibit further operation of the application of power in the channel which is being activated and to apply a reversal command signal to the other channel which provides a reversed phase application of power to the motor for a period defined by the pulse-width output of the one-shot signal generator to plug the motor (10) which will then be inoperative until another rotational command signal is applied to either of the two channels.

  6. Plasticity of the postural function to sport and/or motor experience.

    PubMed

    Paillard, Thierry

    2017-01-01

    This review addresses the possible structural and functional adaptations of the postural function to motor experience. Evidence suggests that postural performance and strategy evolve after training in inactive subjects. In trained subjects, postural adaptations could also occur, since elite athletes exhibit better postural performance than, and different postural strategy to sub-elite athletes. The postural adaptations induced are specific to the context in which the physical activity is practiced. They appear to be so specific that there would be no or only a very slight effect of transfer to non-experienced motor tasks (apart from in subjects presenting low initial levels of postural performance, such as aged subjects). Yet adaptations could occur as part of the interlimb relationship, particularly when the two legs do not display the same motor experience. Mechanistic explanations as well as conceptual models are proposed to explain how postural adaptations operate according to the nature of physical activities and the context in which they are practiced as well as the level of motor expertise of individuals. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Attenuation of the Type IV Pilus Retraction Motor Influences Neisseria gonorrhoeae Social and Infection Behavior.

    PubMed

    Hockenberry, Alyson M; Hutchens, Danielle M; Agellon, Al; So, Magdalene

    2016-12-06

    Retraction of the type IV pilus (Tfp) mediates DNA uptake, motility, and social and infection behavior in a wide variety of prokaryotes. To date, investigations into Tfp retraction-dependent activities have used a mutant deleted of PilT, the ATPase motor protein that causes the pilus fiber to retract. ΔpilT cells are nontransformable, nonmotile, and cannot aggregate into microcolonies. We tested the hypothesis that these retraction-dependent activities are sensitive to the strength of PilT enzymatic activity by using the pathogen Neisseria gonorrhoeae as a model. We constructed an N. gonorrhoeae mutant with an amino acid substitution in the PilT Walker B box (a substitution of cysteine for leucine at position 201, encoded by pilT L201C ). Purified PilT L201C forms a native hexamer, but mutant hexamers hydrolyze ATP at half the maximal rate. N. gonorrhoeae pilT L201C cells produce Tfp fibers, crawl at the same speed as the wild-type (wt) parent, and are equally transformable. However, the social behavior of pilT L201C cells is intermediate between the behaviors of wt and ΔpilT cells. The infection behavior of pilT L201C is also defective, due to its failure to activate the epidermal growth factor receptor (EGFR)-heparin-binding EGF-like growth factor (HB-EGF) pathway. Our study indicates that pilus retraction, per se, is not sufficient for N. gonorrhoeae microcolony formation or infectivity; rather, these activities are sensitive to the strength of PilT enzymatic activity. We discuss the implications of these findings for Neisseria pathogenesis in the context of mechanobiology. Type IV pili are fibers expressed on the surface of many bacteria. Neisseria gonorrhoeae cells crawl, take up DNA, and communicate with each other and with human cells by retracting these fibers. Here, we show that an N. gonorrhoeae mutant expressing an enzymatically weakened type IV pilus retraction motor still crawls and takes up DNA normally. However, mutant cells exhibit abnormal

  8. Researching Travel Behavior and Adaptability: Using a Virtual Reality Role-Playing Game

    ERIC Educational Resources Information Center

    Watcharasukarn, Montira; Krumdieck, Susan; Green, Richard; Dantas, Andre

    2011-01-01

    This article describes a virtual reality role-playing game that was developed as a survey tool to collect travel behavior data and explore and monitor travel behavior adaptation. The Advanced Energy and Material Systems Laboratory has designed, developed a prototype, and tested such a game platform survey tool, called Travel Activity Constraint…

  9. Peripheral and central changes combine to induce motor behavioral deficits in a moderate repetition task.

    PubMed

    Coq, Jacques-Olivier; Barr, Ann E; Strata, Fabrizio; Russier, Michael; Kietrys, David M; Merzenich, Michael M; Byl, Nancy N; Barbe, Mary F

    2009-12-01

    Repetitive motion disorders, such as carpal tunnel syndrome and focal hand dystonia, can be associated with tasks that require prolonged, repetitive behaviors. Previous studies using animal models of repetitive motion have correlated cortical neuroplastic changes or peripheral tissue inflammation with fine motor performance. However, the possibility that both peripheral and central mechanisms coexist with altered motor performance has not been studied. In this study, we investigated the relationship between motor behavior changes associated with repetitive behaviors and both peripheral tissue inflammation and cortical neuroplasticity. A rat model of reaching and grasping involving moderate repetitive reaching with negligible force (MRNF) was used. Rats performed the MRNF task for 2 h/day, 3 days/week for 8 weeks. Reach performance was monitored by measuring reach rate/success, daily exposure, reach movement reversals/patterns, reach/grasp phase times, grip strength and grooming function. With cumulative task exposure, reach performance, grip strength and agility declined while an inefficient food retrieval pattern increased. In S1 of MRNF rats, a dramatic disorganization of the topographic forepaw representation was observed, including the emergence of large receptive fields located on both the wrist/forearm and forepaw with alterations of neuronal properties. In M1, there was a drastic enlargement of the overall forepaw map area, and of the cortex devoted to digit, arm-digits and elbow-wrist responses. In addition, unusually low current amplitude evoked digit movements. IL-1 beta and TNF-alpha increased in forearm flexor muscles and tendons of MRNF animals. The increases in IL-1 beta and TNF-alpha negatively correlated with grip strength and amount of current needed to evoke forelimb movements. This study provides strong evidence that both peripheral inflammation and cortical neuroplasticity jointly contribute to the development of chronic repetitive motion

  10. Driver's behavioral adaptation to adaptive cruise control (ACC): the case of speed and time headway.

    PubMed

    Bianchi Piccinini, Giulio Francesco; Rodrigues, Carlos Manuel; Leitão, Miguel; Simões, Anabela

    2014-06-01

    The Adaptive Cruise Control is an Advanced Driver Assistance System (ADAS) that allows maintaining given headway and speed, according to settings pre-defined by the users. Despite the potential benefits associated to the utilization of ACC, previous studies warned against negative behavioral adaptations that might occur while driving with the system activated. Unfortunately, up to now, there are no unanimous results about the effects induced by the usage of ACC on speed and time headway to the vehicle in front. Also, few studies were performed including actual users of ACC among the subjects. This research aimed to investigate the effect of the experience gained with ACC on speed and time headway for a group of users of the system. In addition, it explored the impact of ACC usage on speed and time headway for ACC users and regular drivers. A matched sample driving simulator study was planned as a two-way (2×2) repeated measures mixed design, with the experience with ACC as between-subjects factor and the driving condition (with ACC and manually) as within-subjects factor. The results show that the usage of ACC brought a small but not significant reduction of speed and, especially, the maintenance of safer time headways, being the latter result greater for ACC users, probably as a consequence of their experience in using the system. The usage of ACC did not cause any negative behavioral adaptations to the system regarding speed and time headway. Based on this research work, the Adaptive Cruise Control showed the potential to improve road safety for what concerns the speed and the time headway maintained by the drivers. The speed of the surrounding traffic and the minimum time headway settable through the ACC seem to have an important effect on the road safety improvement achievable with the system. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Cognitive Performance and Locomotor Adaptation in Persons With Anterior Cruciate Ligament Reconstruction.

    PubMed

    Stone, Amanda E; Roper, Jaimie A; Herman, Daniel C; Hass, Chris J

    2018-05-01

    Persons with anterior cruciate ligament reconstruction (ACLR) show deficits in gait and neuromuscular control following rehabilitation. This altered behavior extends to locomotor adaptation and learning, however the contributing factors to this observed behavior have yet to be investigated. The purpose of this study was to assess differences in locomotor adaptation and learning between ACLR and controls, and identify underlying contributors to motor adaptation in these individuals. Twenty ACLR individuals and 20 healthy controls (CON) agreed to participate in this study. Participants performed four cognitive and dexterity tasks (local version of Trail Making Test, reaction time test, electronic pursuit rotor test, and the Purdue pegboard). Three-dimensional kinematics were also collected while participants walked on a split-belt treadmill. ACLR individuals completed the local versions of Trails A and Trails B significantly faster than CON. During split-belt walking, ACLR individuals demonstrated smaller step length asymmetry during EARLY and LATE adaptation, smaller double support asymmetry during MID adaptation, and larger stance time asymmetry during DE-ADAPT compared with CON. ACLR individuals performed better during tasks that required visual attention and task switching and were less perturbed during split-belt walking compared to controls. Persons with ACLR may use different strategies than controls, cognitive or otherwise, to adapt locomotor patterns.

  12. Delta-9-tetrahydrocannabinol (THC) affects forelimb motor map expression but has little effect on skilled and unskilled behavior.

    PubMed

    Scullion, K; Guy, A R; Singleton, A; Spanswick, S C; Hill, M N; Teskey, G C

    2016-04-05

    It has previously been shown in rats that acute administration of delta-9-tetrahydrocannabinol (THC) exerts a dose-dependent effect on simple locomotor activity, with low doses of THC causing hyper-locomotion and high doses causing hypo-locomotion. However the effect of acute THC administration on cortical movement representations (motor maps) and skilled learned movements is completely unknown. It is important to determine the effects of THC on motor maps and skilled learned behaviors because behaviors like driving place people at a heightened risk. Three doses of THC were used in the current study: 0.2mg/kg, 1.0mg/kg and 2.5mg/kg representing the approximate range of the low to high levels of available THC one would consume from recreational use of cannabis. Acute peripheral administration of THC to drug naïve rats resulted in dose-dependent alterations in motor map expression using high resolution short duration intracortical microstimulation (SD-ICMS). THC at 0.2mg/kg decreased movement thresholds and increased motor map size, while 1.0mg/kg had the opposite effect, and 2.5mg/kg had an even more dramatic effect. Deriving complex movement maps using long duration (LD)-ICMS at 1.0mg/kg resulted in fewer complex movements. Dosages of 1.0mg/kg and 2.5mg/kg THC reduced the number of reach attempts but did not affect percentage of success or the kinetics of reaching on the single pellet skilled reaching task. Rats that received 2.5mg/kg THC did show an increase in latency of forelimb removal on the bar task, while dose-dependent effects of THC on unskilled locomotor activity using the rotorod and horizontal ladder tasks were not observed. Rats may be employing compensatory strategies after receiving THC, which may account for the robust changes in motor map expression but moderate effects on behavior. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  13. Effects of moderate prenatal ethanol exposure and age on social behavior, spatial response perseveration errors and motor behavior

    PubMed Central

    Hamilton, Derek A.; Barto, Daniel; Rodriguez, Carlos I.; Magcalas, Christy; Fink, Brandi C.; Rice, James P.; Bird, Clark W.; Davies, Suzy; Savage, Daniel D.

    2014-01-01

    Persistent deficits in social behavior are among the major negative consequences associated with exposure to ethanol during prenatal development. Prior work from our laboratory has linked deficits in social behavior following moderate prenatal alcohol exposure (PAE) in the rat to functional alterations in the ventrolateral frontal cortex [21]. In addition to social behaviors, the regions comprising the ventrolateral frontal cortex are critical for diverse processes ranging from orofacial motor movements to flexible alteration of behavior in the face of changing consequences. The broader behavioral implications of altered ventrolateral frontal cortex function following moderate PAE have, however, not been examined. In the present study we evaluated the consequences of moderate PAE on social behavior, tongue protrusion, and flexibility in a variant of the Morris water task that required modification of a well-established spatial response. PAE rats displayed deficits in tongue protrusion, reduced flexibility in the spatial domain, increased wrestling, and decreased investigation, indicating that several behaviors associated with ventrolateral frontal cortex function are impaired following moderate PAE. A linear discriminant analysis revealed that measures of wrestling and tongue protrusion provided the best discrimination of PAE rats from saccharin-exposed control rats. We also evaluated all behaviors in young adult (4-5 mos.) or older (10-11 mos.) rats to address the persistence of behavioral deficits in adulthood and possible interactions between early ethanol exposure and advancing age. Behavioral deficits in each domain persisted well into adulthood (10-11 mos.), however, there was no evidence that age enhances the effects of moderate PAE within the age ranges that were studied. PMID:24769174

  14. Motor Cortex Reorganization across the Lifespan

    ERIC Educational Resources Information Center

    Plowman, Emily K.; Kleim, Jeffrey A.

    2010-01-01

    The brain is a highly dynamic structure with the capacity for profound structural and functional change. Such neural plasticity has been well characterized within motor cortex and is believed to represent one of the neural mechanisms for acquiring and modifying motor behaviors. A number of behavioral and neural signals have been identified that…

  15. Motor planning modulates sensory-motor control of collision avoidance behavior in the bullfrog, Rana catesbeiana

    PubMed Central

    Nakagawa, Hideki; Nishida, Yuuya

    2012-01-01

    Summary In this study, we examined the collision avoidance behavior of the frog, Rana catesbeiana to an approaching object in the upper visual field. The angular velocity of the frog's escape turn showed a significant positive correlation with the turn angle (r2 = 0.5741, P<0.05). A similar mechanism of velocity control has been known in head movements of the owl and in human saccades. By analogy, this suggests that the frog planned its escape velocity in advance of executing the turn, to make the duration of the escape behavior relatively constant. For escape turns less than 60°, the positive correlation was very strong (r2 = 0.7097, P<0.05). Thus, the frog controlled the angular velocity of small escape turns very accurately and completed the behavior within a constant time. On the other hand, for escape turns greater than 60°, the same correlation was not significant (r2 = 0.065, P>0.05). Thus, the frog was not able to control the velocity of the large escape turns accurately and did not complete the behavior within a constant time. In the latter case, there was a small but significant positive correlation between the threshold angular size and the angular velocity (r2 = 0.1459, P<0.05). This suggests that the threshold is controlled to compensate for the insufficient escape velocity achieved during large turn angles, and could explain a significant negative correlation between the turn angle and the threshold angular size (r2 = 0.1145, P<0.05). Thus, it is likely that the threshold angular size is also controlled by the turn angle and is modulated by motor planning. PMID:23213389

  16. Social Motor Synchronization: Insights for Understanding Social Behavior in Autism.

    PubMed

    Fitzpatrick, Paula; Romero, Veronica; Amaral, Joseph L; Duncan, Amie; Barnard, Holly; Richardson, Michael J; Schmidt, R C

    2017-07-01

    Impairments in social interaction and communication are critical features of ASD but the underlying processes are poorly understood. An under-explored area is the social motor synchronization that happens when we coordinate our bodies with others. Here, we explored the relationships between dynamical measures of social motor synchronization and assessments of ASD traits. We found (a) spontaneous social motor synchronization was associated with responding to joint attention, cooperation, and theory of mind while intentional social motor synchronization was associated with initiating joint attention and theory of mind; and (b) social motor synchronization was associated with ASD severity but not fully explained by motor problems. Findings suggest that objective measures of social motor synchronization may provide insights into understanding ASD traits.

  17. The Relation between Intelligence and Adaptive Behavior: A Meta-Analysis

    ERIC Educational Resources Information Center

    Alexander, Ryan M.

    2017-01-01

    Intelligence tests and adaptive behavior scales measure vital aspects of the multidimensional nature of human functioning. Assessment of each is a required component in the diagnosis or identification of intellectual disability, and both are frequently used conjointly in the assessment and identification of other developmental disabilities. The…

  18. DSP-based adaptive backstepping using the tracking errors for high-performance sensorless speed control of induction motor drive.

    PubMed

    Zaafouri, Abderrahmen; Regaya, Chiheb Ben; Azza, Hechmi Ben; Châari, Abdelkader

    2016-01-01

    This paper presents a modified structure of the backstepping nonlinear control of the induction motor (IM) fitted with an adaptive backstepping speed observer. The control design is based on the backstepping technique complemented by the introduction of integral tracking errors action to improve its robustness. Unlike other research performed on backstepping control with integral action, the control law developed in this paper does not propose the increase of the number of system state so as not increase the complexity of differential equations resolution. The digital simulation and experimental results show the effectiveness of the proposed control compared to the conventional PI control. The results analysis shows the characteristic robustness of the adaptive control to disturbances of the load, the speed variation and low speed. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  19. The effects of gestational and chronic atrazine exposure on motor behaviors and striatal dopamine in male Sprague-Dawley rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walters, Jennifer L., E-mail: Jennifer.l.walters@wmich.edu; Lansdell, Theresa A., E-mail: lansdel1@msu.edu; Lookingland, Keith J., E-mail: lookingl@msu.edu

    This study sought to investigate the effects of environmentally relevant gestational followed by continued chronic exposure to the herbicide, atrazine, on motor function, cognition, and neurochemical indices of nigrostriatal dopamine (DA) activity in male rats. Dams were treated with 100 μg/kg atrazine, 10 mg/kg atrazine, or vehicle on gestational day 1 through postnatal day 21. Upon weaning, male offspring continued daily vehicle or atrazine gavage treatments for an additional six months. Subjects were tested in a series of behavioral assays, and 24 h after the last treatment, tissue samples from the striatum were analyzed for DA and 3,4-dihydroxyphenylacetic acid (DOPAC).more » At 10 mg/kg, this herbicide was found to produce modest disruptions in motor functioning, and at both dose levels it significantly lowered striatal DA and DOPAC concentrations. These results suggest that exposures to atrazine have the potential to disrupt nigrostriatal DA neurons and behaviors associated with motor functioning. - Highlights: • Male rats received gestational and chronic exposure to ATZ (10 mg/kg and 100 μg/kg). • ATZ altered locomotor activity and impaired motor coordination. • ATZ lowered striatal DA and DOPAC concentrations. • ATZ produced a potential anxiogenic effect. • ATZ did not impair performance in learning and memory assessments.« less

  20. Relations of Preschoolers' Visual-Motor and Object Manipulation Skills with Executive Function and Social Behavior

    ERIC Educational Resources Information Center

    MacDonald, Megan; Lipscomb, Shannon; McClelland, Megan M.; Duncan, Rob; Becker, Derek; Anderson, Kim; Kile, Molly

    2016-01-01

    Purpose: The purpose of this article was to examine specific linkages between early visual-motor integration skills and executive function, as well as between early object manipulation skills and social behaviors in the classroom during the preschool year. Method: Ninety-two children aged 3 to 5 years old (M[subscript age] = 4.31 years) were…