Fuzzy Behavior-Based Navigation for Planetary
NASA Technical Reports Server (NTRS)
Tunstel, Edward; Danny, Harrison; Lippincott, Tanya; Jamshidi, Mo
1997-01-01
Adaptive behavioral capabilities are necessary for robust rover navigation in unstructured and partially-mapped environments. A control approach is described which exploits the approximate reasoning capability of fuzzy logic to produce adaptive motion behavior. In particular, a behavior-based architecture for hierarchical fuzzy control of microrovers is presented. Its structure is described, as well as mechanisms of control decision-making which give rise to adaptive behavior. Control decisions for local navigation result from a consensus of recommendations offered only by behaviors that are applicable to current situations. Simulation predicts the navigation performance on a microrover in simplified Mars-analog terrain.
ADAPT: The Agent Development and Prototyping Testbed.
Shoulson, Alexander; Marshak, Nathan; Kapadia, Mubbasir; Badler, Norman I
2014-07-01
We present ADAPT, a flexible platform for designing and authoring functional, purposeful human characters in a rich virtual environment. Our framework incorporates character animation, navigation, and behavior with modular interchangeable components to produce narrative scenes. The animation system provides locomotion, reaching, gaze tracking, gesturing, sitting, and reactions to external physical forces, and can easily be extended with more functionality due to a decoupled, modular structure. The navigation component allows characters to maneuver through a complex environment with predictive steering for dynamic obstacle avoidance. Finally, our behavior framework allows a user to fully leverage a character's animation and navigation capabilities when authoring both individual decision-making and complex interactions between actors using a centralized, event-driven model.
LABRADOR: a learning autonomous behavior-based robot for adaptive detection and object retrieval
NASA Astrophysics Data System (ADS)
Yamauchi, Brian; Moseley, Mark; Brookshire, Jonathan
2013-01-01
As part of the TARDEC-funded CANINE (Cooperative Autonomous Navigation in a Networked Environment) Program, iRobot developed LABRADOR (Learning Autonomous Behavior-based Robot for Adaptive Detection and Object Retrieval). LABRADOR was based on the rugged, man-portable, iRobot PackBot unmanned ground vehicle (UGV) equipped with an explosives ordnance disposal (EOD) manipulator arm and a custom gripper. For LABRADOR, we developed a vision-based object learning and recognition system that combined a TLD (track-learn-detect) filter based on object shape features with a color-histogram-based object detector. Our vision system was able to learn in real-time to recognize objects presented to the robot. We also implemented a waypoint navigation system based on fused GPS, IMU (inertial measurement unit), and odometry data. We used this navigation capability to implement autonomous behaviors capable of searching a specified area using a variety of robust coverage strategies - including outward spiral, random bounce, random waypoint, and perimeter following behaviors. While the full system was not integrated in time to compete in the CANINE competition event, we developed useful perception, navigation, and behavior capabilities that may be applied to future autonomous robot systems.
Smart Swarms of Bacteria-Inspired Agents with Performance Adaptable Interactions
Shklarsh, Adi; Ariel, Gil; Schneidman, Elad; Ben-Jacob, Eshel
2011-01-01
Collective navigation and swarming have been studied in animal groups, such as fish schools, bird flocks, bacteria, and slime molds. Computer modeling has shown that collective behavior of simple agents can result from simple interactions between the agents, which include short range repulsion, intermediate range alignment, and long range attraction. Here we study collective navigation of bacteria-inspired smart agents in complex terrains, with adaptive interactions that depend on performance. More specifically, each agent adjusts its interactions with the other agents according to its local environment – by decreasing the peers' influence while navigating in a beneficial direction, and increasing it otherwise. We show that inclusion of such performance dependent adaptable interactions significantly improves the collective swarming performance, leading to highly efficient navigation, especially in complex terrains. Notably, to afford such adaptable interactions, each modeled agent requires only simple computational capabilities with short-term memory, which can easily be implemented in simple swarming robots. PMID:21980274
Smart swarms of bacteria-inspired agents with performance adaptable interactions.
Shklarsh, Adi; Ariel, Gil; Schneidman, Elad; Ben-Jacob, Eshel
2011-09-01
Collective navigation and swarming have been studied in animal groups, such as fish schools, bird flocks, bacteria, and slime molds. Computer modeling has shown that collective behavior of simple agents can result from simple interactions between the agents, which include short range repulsion, intermediate range alignment, and long range attraction. Here we study collective navigation of bacteria-inspired smart agents in complex terrains, with adaptive interactions that depend on performance. More specifically, each agent adjusts its interactions with the other agents according to its local environment--by decreasing the peers' influence while navigating in a beneficial direction, and increasing it otherwise. We show that inclusion of such performance dependent adaptable interactions significantly improves the collective swarming performance, leading to highly efficient navigation, especially in complex terrains. Notably, to afford such adaptable interactions, each modeled agent requires only simple computational capabilities with short-term memory, which can easily be implemented in simple swarming robots.
Olfaction, navigation, and the origin of isocortex
Aboitiz, Francisco; Montiel, Juan F.
2015-01-01
There are remarkable similarities between the brains of mammals and birds in terms of microcircuit architecture, despite obvious differences in gross morphology and development. While in reptiles and birds the most expanding component (the dorsal ventricular ridge) displays an overall nuclear shape and derives from the lateral and ventral pallium, in mammals a dorsal pallial, six-layered isocortex shows the most remarkable elaboration. Regardless of discussions about possible homologies between mammalian and avian brains, a main question remains in explaining the emergence of the mammalian isocortex, because it represents a unique phenotype across amniotes. In this article, we propose that the origin of the isocortex was driven by behavioral adaptations involving olfactory driven goal-directed and navigating behaviors. These adaptations were linked with increasing sensory development, which provided selective pressure for the expansion of the dorsal pallium. The latter appeared as an interface in olfactory-hippocampal networks, contributing somatosensory information for navigating behavior. Sensory input from other modalities like vision and audition were subsequently recruited into this expanding region, contributing to multimodal associative networks. PMID:26578863
Adaptive Tracking Control for Robots With an Interneural Computing Scheme.
Tsai, Feng-Sheng; Hsu, Sheng-Yi; Shih, Mau-Hsiang
2018-04-01
Adaptive tracking control of mobile robots requires the ability to follow a trajectory generated by a moving target. The conventional analysis of adaptive tracking uses energy minimization to study the convergence and robustness of the tracking error when the mobile robot follows a desired trajectory. However, in the case that the moving target generates trajectories with uncertainties, a common Lyapunov-like function for energy minimization may be extremely difficult to determine. Here, to solve the adaptive tracking problem with uncertainties, we wish to implement an interneural computing scheme in the design of a mobile robot for behavior-based navigation. The behavior-based navigation adopts an adaptive plan of behavior patterns learning from the uncertainties of the environment. The characteristic feature of the interneural computing scheme is the use of neural path pruning with rewards and punishment interacting with the environment. On this basis, the mobile robot can be exploited to change its coupling weights in paths of neural connections systematically, which can then inhibit or enhance the effect of flow elimination in the dynamics of the evolutionary neural network. Such dynamical flow translation ultimately leads to robust sensory-to-motor transformations adapting to the uncertainties of the environment. A simulation result shows that the mobile robot with the interneural computing scheme can perform fault-tolerant behavior of tracking by maintaining suitable behavior patterns at high frequency levels.
Neural systems analysis of decision making during goal-directed navigation.
Penner, Marsha R; Mizumori, Sheri J Y
2012-01-01
The ability to make adaptive decisions during goal-directed navigation is a fundamental and highly evolved behavior that requires continual coordination of perceptions, learning and memory processes, and the planning of behaviors. Here, a neurobiological account for such coordination is provided by integrating current literatures on spatial context analysis and decision-making. This integration includes discussions of our current understanding of the role of the hippocampal system in experience-dependent navigation, how hippocampal information comes to impact midbrain and striatal decision making systems, and finally the role of the striatum in the implementation of behaviors based on recent decisions. These discussions extend across cellular to neural systems levels of analysis. Not only are key findings described, but also fundamental organizing principles within and across neural systems, as well as between neural systems functions and behavior, are emphasized. It is suggested that studying decision making during goal-directed navigation is a powerful model for studying interactive brain systems and their mediation of complex behaviors. Copyright © 2011. Published by Elsevier Ltd.
Grinke, Eduard; Tetzlaff, Christian; Wörgötter, Florentin; Manoonpong, Poramate
2015-01-01
Walking animals, like insects, with little neural computing can effectively perform complex behaviors. For example, they can walk around their environment, escape from corners/deadlocks, and avoid or climb over obstacles. While performing all these behaviors, they can also adapt their movements to deal with an unknown situation. As a consequence, they successfully navigate through their complex environment. The versatile and adaptive abilities are the result of an integration of several ingredients embedded in their sensorimotor loop. Biological studies reveal that the ingredients include neural dynamics, plasticity, sensory feedback, and biomechanics. Generating such versatile and adaptive behaviors for a many degrees-of-freedom (DOFs) walking robot is a challenging task. Thus, in this study, we present a bio-inspired approach to solve this task. Specifically, the approach combines neural mechanisms with plasticity, exteroceptive sensory feedback, and biomechanics. The neural mechanisms consist of adaptive neural sensory processing and modular neural locomotion control. The sensory processing is based on a small recurrent neural network consisting of two fully connected neurons. Online correlation-based learning with synaptic scaling is applied to adequately change the connections of the network. By doing so, we can effectively exploit neural dynamics (i.e., hysteresis effects and single attractors) in the network to generate different turning angles with short-term memory for a walking robot. The turning information is transmitted as descending steering signals to the neural locomotion control which translates the signals into motor actions. As a result, the robot can walk around and adapt its turning angle for avoiding obstacles in different situations. The adaptation also enables the robot to effectively escape from sharp corners or deadlocks. Using backbone joint control embedded in the the locomotion control allows the robot to climb over small obstacles. Consequently, it can successfully explore and navigate in complex environments. We firstly tested our approach on a physical simulation environment and then applied it to our real biomechanical walking robot AMOSII with 19 DOFs to adaptively avoid obstacles and navigate in the real world.
Grinke, Eduard; Tetzlaff, Christian; Wörgötter, Florentin; Manoonpong, Poramate
2015-01-01
Walking animals, like insects, with little neural computing can effectively perform complex behaviors. For example, they can walk around their environment, escape from corners/deadlocks, and avoid or climb over obstacles. While performing all these behaviors, they can also adapt their movements to deal with an unknown situation. As a consequence, they successfully navigate through their complex environment. The versatile and adaptive abilities are the result of an integration of several ingredients embedded in their sensorimotor loop. Biological studies reveal that the ingredients include neural dynamics, plasticity, sensory feedback, and biomechanics. Generating such versatile and adaptive behaviors for a many degrees-of-freedom (DOFs) walking robot is a challenging task. Thus, in this study, we present a bio-inspired approach to solve this task. Specifically, the approach combines neural mechanisms with plasticity, exteroceptive sensory feedback, and biomechanics. The neural mechanisms consist of adaptive neural sensory processing and modular neural locomotion control. The sensory processing is based on a small recurrent neural network consisting of two fully connected neurons. Online correlation-based learning with synaptic scaling is applied to adequately change the connections of the network. By doing so, we can effectively exploit neural dynamics (i.e., hysteresis effects and single attractors) in the network to generate different turning angles with short-term memory for a walking robot. The turning information is transmitted as descending steering signals to the neural locomotion control which translates the signals into motor actions. As a result, the robot can walk around and adapt its turning angle for avoiding obstacles in different situations. The adaptation also enables the robot to effectively escape from sharp corners or deadlocks. Using backbone joint control embedded in the the locomotion control allows the robot to climb over small obstacles. Consequently, it can successfully explore and navigate in complex environments. We firstly tested our approach on a physical simulation environment and then applied it to our real biomechanical walking robot AMOSII with 19 DOFs to adaptively avoid obstacles and navigate in the real world. PMID:26528176
Advocates and critics for tactical behaviors in UGV navigation
NASA Astrophysics Data System (ADS)
Hussain, Talib S.; Vidaver, Gordon; Berliner, Jeffrey
2005-05-01
Critical to the development of unmanned ground vehicle platforms is the incorporation of adaptive tactical behaviors for the planning of high-level navigation and tactical actions. BBN Technologies recently completed a simulation-based project for the Army Research Lab (ARL) in which we applied an evolutionary computation approach to navigating through a terrain to capture flag objectives while faced with one or more mobile enemies. Our Advocates and Critics for Tactical Behaviors (ACTB) system evolves plans for the vehicle that control its movement goals (in the form of waypoints), and its future actions (e.g., pointing cameras). We apply domain-specific, state-dependent genetic operators called advocates that promote specific tactical behaviors (e.g., adapt a plan to stay closer to walls). We define the fitness function as a weighted sum of a number of independent, domain-specific, state-dependent evaluation components called critics. Critics reward plans based upon specific tactical criteria, such as minimizing risk of exposure or time to the flags. Additionally, the ACTB system provides the capability for a human commander to specify the "rules of engagement" under which the vehicle will operate. The rules of engagement determine the planning emphasis required under different tactical situations (e.g., discovery of an enemy), and provide a mechanism for automatically adapting the relative selection probabilities of the advocates, the weights of the critics, and the depth of planning in response to tactical events. The ACTB system demonstrated highly effective performance in a head-to-head testing event, held by ARL, against two competing tactical behavior systems.
A biologically inspired meta-control navigation system for the Psikharpax rat robot.
Caluwaerts, K; Staffa, M; N'Guyen, S; Grand, C; Dollé, L; Favre-Félix, A; Girard, B; Khamassi, M
2012-06-01
A biologically inspired navigation system for the mobile rat-like robot named Psikharpax is presented, allowing for self-localization and autonomous navigation in an initially unknown environment. The ability of parts of the model (e.g. the strategy selection mechanism) to reproduce rat behavioral data in various maze tasks has been validated before in simulations. But the capacity of the model to work on a real robot platform had not been tested. This paper presents our work on the implementation on the Psikharpax robot of two independent navigation strategies (a place-based planning strategy and a cue-guided taxon strategy) and a strategy selection meta-controller. We show how our robot can memorize which was the optimal strategy in each situation, by means of a reinforcement learning algorithm. Moreover, a context detector enables the controller to quickly adapt to changes in the environment-recognized as new contexts-and to restore previously acquired strategy preferences when a previously experienced context is recognized. This produces adaptivity closer to rat behavioral performance and constitutes a computational proposition of the role of the rat prefrontal cortex in strategy shifting. Moreover, such a brain-inspired meta-controller may provide an advancement for learning architectures in robotics.
Tight coordination of aerial flight maneuvers and sonar call production in insectivorous bats
Falk, Benjamin; Kasnadi, Joseph; Moss, Cynthia F.
2015-01-01
ABSTRACT Echolocating bats face the challenge of coordinating flight kinematics with the production of echolocation signals used to guide navigation. Previous studies of bat flight have focused on kinematics of fruit and nectar-feeding bats, often in wind tunnels with limited maneuvering, and without analysis of echolocation behavior. In this study, we engaged insectivorous big brown bats in a task requiring simultaneous turning and climbing flight, and used synchronized high-speed motion-tracking cameras and audio recordings to quantify the animals' coordination of wing kinematics and echolocation. Bats varied flight speed, turn rate, climb rate and wingbeat rate as they navigated around obstacles, and they adapted their sonar signals in patterning, duration and frequency in relation to the timing of flight maneuvers. We found that bats timed the emission of sonar calls with the upstroke phase of the wingbeat cycle in straight flight, and that this relationship changed when bats turned to navigate obstacles. We also characterized the unsteadiness of climbing and turning flight, as well as the relationship between speed and kinematic parameters. Adaptations in the bats' echolocation call frequency suggest changes in beam width and sonar field of view in relation to obstacles and flight behavior. By characterizing flight and sonar behaviors in an insectivorous bat species, we find evidence of exquisitely tight coordination of sensory and motor systems for obstacle navigation and insect capture. PMID:26582935
Tight coordination of aerial flight maneuvers and sonar call production in insectivorous bats.
Falk, Benjamin; Kasnadi, Joseph; Moss, Cynthia F
2015-11-01
Echolocating bats face the challenge of coordinating flight kinematics with the production of echolocation signals used to guide navigation. Previous studies of bat flight have focused on kinematics of fruit and nectar-feeding bats, often in wind tunnels with limited maneuvering, and without analysis of echolocation behavior. In this study, we engaged insectivorous big brown bats in a task requiring simultaneous turning and climbing flight, and used synchronized high-speed motion-tracking cameras and audio recordings to quantify the animals' coordination of wing kinematics and echolocation. Bats varied flight speed, turn rate, climb rate and wingbeat rate as they navigated around obstacles, and they adapted their sonar signals in patterning, duration and frequency in relation to the timing of flight maneuvers. We found that bats timed the emission of sonar calls with the upstroke phase of the wingbeat cycle in straight flight, and that this relationship changed when bats turned to navigate obstacles. We also characterized the unsteadiness of climbing and turning flight, as well as the relationship between speed and kinematic parameters. Adaptations in the bats' echolocation call frequency suggest changes in beam width and sonar field of view in relation to obstacles and flight behavior. By characterizing flight and sonar behaviors in an insectivorous bat species, we find evidence of exquisitely tight coordination of sensory and motor systems for obstacle navigation and insect capture. © 2015. Published by The Company of Biologists Ltd.
A Navigation Analysis Tool (NAT) to assess spatial behavior in open-field and structured mazes.
Jarlier, Frédéric; Arleo, Angelo; Petit, Géraldine H; Lefort, Julie M; Fouquet, Céline; Burguière, Eric; Rondi-Reig, Laure
2013-05-15
Spatial navigation calls upon mnemonic capabilities (e.g. remembering the location of a rewarding site) as well as adaptive motor control (e.g. fine tuning of the trajectory according to the ongoing sensory context). To study this complex process by means of behavioral measurements it is necessary to quantify a large set of meaningful parameters on multiple time scales (from milliseconds to several minutes), and to compare them across different paradigms. Moreover, the issue of automating the behavioral analysis is critical to cope with the consequent computational load and the sophistication of the measurements. We developed a general purpose Navigation Analysis Tool (NAT) that provides an integrated architecture consisting of a data management system (implemented in MySQL), a core analysis toolbox (in MATLAB), and a graphical user interface (in JAVA). Its extensive characterization of trajectories over time, from exploratory behavior to goal-oriented navigation with decision points using a wide range of parameters, makes NAT a powerful analysis tool. In particular, NAT supplies a new set of specific measurements assessing performances in multiple intersection mazes and allowing navigation strategies to be discriminated (e.g. in the starmaze). Its user interface enables easy use while its modular organization provides many opportunities of extension and customization. Importantly, the portability of NAT to any type of maze and environment extends its exploitation far beyond the field of spatial navigation. Copyright © 2013 Elsevier B.V. All rights reserved.
Moving in Dim Light: Behavioral and Visual Adaptations in Nocturnal Ants.
Narendra, Ajay; Kamhi, J Frances; Ogawa, Yuri
2017-11-01
Visual navigation is a benchmark information processing task that can be used to identify the consequence of being active in dim-light environments. Visual navigational information that animals use during the day includes celestial cues such as the sun or the pattern of polarized skylight and terrestrial cues such as the entire panorama, canopy pattern, or significant salient features in the landscape. At night, some of these navigational cues are either unavailable or are significantly dimmer or less conspicuous than during the day. Even under these circumstances, animals navigate between locations of importance. Ants are a tractable system for studying navigation during day and night because the fine scale movement of individual animals can be recorded in high spatial and temporal detail. Ant species range from being strictly diurnal, crepuscular, and nocturnal. In addition, a number of species have the ability to change from a day- to a night-active lifestyle owing to environmental demands. Ants also offer an opportunity to identify the evolution of sensory structures for discrete temporal niches not only between species but also within a single species. Their unique caste system with an exclusive pedestrian mode of locomotion in workers and an exclusive life on the wing in males allows us to disentangle sensory adaptations that cater for different lifestyles. In this article, we review the visual navigational abilities of nocturnal ants and identify the optical and physiological adaptations they have evolved for being efficient visual navigators in dim-light. © The Author 2017. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.
Eldridge, Johanna D; Devine, Carol M; Wethington, Elaine; Aceves, Luz; Phillips-Caesar, Erica; Wansink, Brian; Charlson, Mary E
2016-01-01
Small eating behavior changes are proposed as more feasible to achieve and maintain than larger changes used in traditional behavioral weight loss studies. However, it is unclear whether overweight Black and Hispanic adults in a low-income urban setting experience small changes as feasible and what might influence feasibility. Participants' experiences in a 12-week pilot weight loss intervention were explored qualitatively to determine the feasibility of making small eating behavior changes in this population. After the intervention (69% retention), semi-structured interviews with 46 men and women (mean age 51, 50% Non-Hispanic Black, 43% Hispanic) revealed that making small eating changes was a process shaped by participants' intrapersonal and interpersonal eating environments. Participants responded to intrapersonal and interpersonal eating environmental challenges by adapting small change strategies, navigating eating environments, and negotiating household eating practices. Findings highlight how even small eating behavior changes called for adaptation, navigation, and negotiation of complex eating environments in daily life. These findings were used to improve the trial that followed and underline the importance of feasibility studies to inform community trials. Findings also add to understanding of contextual challenges and the skills needed to implement small changes in a low income, ethnic minority population. Copyright © 2015. Published by Elsevier Ltd.
Eldridge, Johanna D.; Devine, Carol M.; Wethington, Elaine; Aceves, Luz; Phillips-Caesar, Erica; Wansink, Brian; Charlson, Mary E.
2015-01-01
Small eating behavior changes are proposed as more feasible to achieve and maintain than larger changes used in traditional behavioral weight loss studies. However, it is unclear whether overweight Black and Hispanic adults in a low-income urban setting experience small changes as feasible and what might influence feasibility. Participants' experiences in a 12-week pilot weight loss intervention were explored qualitatively to determine the feasibility of making small eating behavior changes in this population. After the intervention (69% retention), semi-structured interviews with 46 men and women (mean age 51, 50% Non-Hispanic Black, 43% Hispanic) revealed that making small eating changes was a process shaped by participants' intrapersonal and interpersonal eating environments. Participants responded to intrapersonal and interpersonal eating environmental challenges by adapting small change strategies, navigating eating environments, and negotiating household eating practices. Findings highlight how even small eating behavior changes called for adaptation, navigation, and negotiation of complex eating environments in daily life. These findings were used to improve the trial that followed and underline the importance of feasibility studies to inform community trials. Findings also add to understanding of contextual challenges and the skills needed to implement small changes in a low income, ethnic minority population. PMID:26368577
Chalmers, Eric; Luczak, Artur; Gruber, Aaron J.
2016-01-01
The mammalian brain is thought to use a version of Model-based Reinforcement Learning (MBRL) to guide “goal-directed” behavior, wherein animals consider goals and make plans to acquire desired outcomes. However, conventional MBRL algorithms do not fully explain animals' ability to rapidly adapt to environmental changes, or learn multiple complex tasks. They also require extensive computation, suggesting that goal-directed behavior is cognitively expensive. We propose here that key features of processing in the hippocampus support a flexible MBRL mechanism for spatial navigation that is computationally efficient and can adapt quickly to change. We investigate this idea by implementing a computational MBRL framework that incorporates features inspired by computational properties of the hippocampus: a hierarchical representation of space, “forward sweeps” through future spatial trajectories, and context-driven remapping of place cells. We find that a hierarchical abstraction of space greatly reduces the computational load (mental effort) required for adaptation to changing environmental conditions, and allows efficient scaling to large problems. It also allows abstract knowledge gained at high levels to guide adaptation to new obstacles. Moreover, a context-driven remapping mechanism allows learning and memory of multiple tasks. Simulating dorsal or ventral hippocampal lesions in our computational framework qualitatively reproduces behavioral deficits observed in rodents with analogous lesions. The framework may thus embody key features of how the brain organizes model-based RL to efficiently solve navigation and other difficult tasks. PMID:28018203
Comparison of Navigation-Related Brain Regions in Migratory versus Non-Migratory Noctuid Moths
de Vries, Liv; Pfeiffer, Keram; Trebels, Björn; Adden, Andrea K.; Green, Ken; Warrant, Eric; Heinze, Stanley
2017-01-01
Brain structure and function are tightly correlated across all animals. While these relations are ultimately manifestations of differently wired neurons, many changes in neural circuit architecture lead to larger-scale alterations visible already at the level of brain regions. Locating such differences has served as a beacon for identifying brain areas that are strongly associated with the ecological needs of a species—thus guiding the way towards more detailed investigations of how brains underlie species-specific behaviors. Particularly in relation to sensory requirements, volume-differences in neural tissue between closely related species reflect evolutionary investments that correspond to sensory abilities. Likewise, memory-demands imposed by lifestyle have revealed similar adaptations in regions associated with learning. Whether this is also the case for species that differ in their navigational strategy is currently unknown. While the brain regions associated with navigational control in insects have been identified (central complex (CX), lateral complex (LX) and anterior optic tubercles (AOTU)), it remains unknown in what way evolutionary investments have been made to accommodate particularly demanding navigational strategies. We have thus generated average-shape atlases of navigation-related brain regions of a migratory and a non-migratory noctuid moth and used volumetric analysis to identify differences. We further compared the results to identical data from Monarch butterflies. Whereas we found differences in the size of the nodular unit of the AOTU, the LX and the protocerebral bridge (PB) between the two moths, these did not unambiguously reflect migratory behavior across all three species. We conclude that navigational strategy, at least in the case of long-distance migration in lepidopteran insects, is not easily deductible from overall neuropil anatomy. This suggests that the adaptations needed to ensure successful migratory behavior are found in the detailed wiring characteristics of the neural circuits underlying navigation—differences that are only accessible through detailed physiological and ultrastructural investigations. The presented results aid this task in two ways. First, the identified differences in neuropil volumes serve as promising initial targets for electrophysiology. Second, the new standard atlases provide an anatomical reference frame for embedding all functional data obtained from the brains of the Bogong and the Turnip moth. PMID:28928641
Variance adaptation in navigational decision making
NASA Astrophysics Data System (ADS)
Gershow, Marc; Gepner, Ruben; Wolk, Jason; Wadekar, Digvijay
Drosophila larvae navigate their environments using a biased random walk strategy. A key component of this strategy is the decision to initiate a turn (change direction) in response to declining conditions. We modeled this decision as the output of a Linear-Nonlinear-Poisson cascade and used reverse correlation with visual and fictive olfactory stimuli to find the parameters of this model. Because the larva responds to changes in stimulus intensity, we used stimuli with uncorrelated normally distributed intensity derivatives, i.e. Brownian processes, and took the stimulus derivative as the input to our LNP cascade. In this way, we were able to present stimuli with 0 mean and controlled variance. We found that the nonlinear rate function depended on the variance in the stimulus input, allowing larvae to respond more strongly to small changes in low-noise compared to high-noise environments. We measured the rate at which the larva adapted its behavior following changes in stimulus variance, and found that larvae adapted more quickly to increases in variance than to decreases, consistent with the behavior of an optimal Bayes estimator. Supported by NIH Grant 1DP2EB022359 and NSF Grant PHY-1455015.
Transitions and Turning Points: Navigating the Passage from Childhood through Adolescence.
ERIC Educational Resources Information Center
Graber, Julia A.; Brooks-Gunn, Jeanne
1996-01-01
Comments on this special theme issue examining the roles of socialization, biology, and culture as they affect adaptive and maladaptive developmental outcomes. Presents models for predicting and understanding behavioral and affective change at transitions occurring especially from middle childhood through adolescence. Provides examples…
Learning System of Web Navigation Patterns through Hypertext Probabilistic Grammars
ERIC Educational Resources Information Center
Cortes Vasquez, Augusto
2015-01-01
One issue of real interest in the area of web data mining is to capture users' activities during connection and extract behavior patterns that help define their preferences in order to improve the design of future pages adapting websites interfaces to individual users. This research is intended to provide, first of all, a presentation of the…
ERIC Educational Resources Information Center
Carter, Dorinda J.
2008-01-01
In this article, Dorinda Carter examines the embodiment of a critical race achievement ideology in high-achieving black students. She conducted a yearlong qualitative investigation of the adaptive behaviors that nine high-achieving black students developed and employed to navigate the process of schooling at an upper-class, predominantly white,…
Using sensor habituation in mobile robots to reduce oscillatory movements in narrow corridors.
Chang, Carolina
2005-11-01
Habituation is a form of nonassociative learning observed in a variety of species of animals. Arguably, it is the simplest form of learning. Nonetheless, the ability to habituate to certain stimuli implies plastic neural systems and adaptive behaviors. This paper describes how computational models of habituation can be applied to real robots. In particular, we discuss the problem of the oscillatory movements observed when a Khepera robot navigates through narrow hallways using a biologically inspired neurocontroller. Results show that habituation to the proximity of the walls can lead to smoother navigation. Habituation to sensory stimulation to the sides of the robot does not interfere with the robot's ability to turn at dead ends and to avoid obstacles outside the hallway. This paper shows that simple biological mechanisms of learning can be adapted to achieve better performance in real mobile robots.
Outsourcing neural active control to passive composite mechanics: a tissue engineered cyborg ray
NASA Astrophysics Data System (ADS)
Gazzola, Mattia; Park, Sung Jin; Park, Kyung Soo; Park, Shirley; di Santo, Valentina; Deisseroth, Karl; Lauder, George V.; Mahadevan, L.; Parker, Kevin Kit
2016-11-01
Translating the blueprint that stingrays and skates provide, we create a cyborg swimming ray capable of orchestrating adaptive maneuvering and phototactic navigation. The impossibility of replicating the neural system of batoids fish is bypassed by outsourcing algorithmic functionalities to the body composite mechanics, hence casting the active control problem into a design, passive one. We present a first step in engineering multilevel "brain-body-flow" systems that couple sensory information to motor coordination and movement, leading to behavior. This work paves the way for the development of autonomous and adaptive artificial creatures able to process multiple sensory inputs and produce complex behaviors in distributed systems and may represent a path toward soft-robotic "embodied cognition".
Kheifets, Aaron; Gallistel, C R
2012-05-29
Animals successfully navigate the world despite having only incomplete information about behaviorally important contingencies. It is an open question to what degree this behavior is driven by estimates of stochastic parameters (brain-constructed models of the experienced world) and to what degree it is directed by reinforcement-driven processes that optimize behavior in the limit without estimating stochastic parameters (model-free adaptation processes, such as associative learning). We find that mice adjust their behavior in response to a change in probability more quickly and abruptly than can be explained by differential reinforcement. Our results imply that mice represent probabilities and perform calculations over them to optimize their behavior, even when the optimization produces negligible material gain.
Kheifets, Aaron; Gallistel, C. R.
2012-01-01
Animals successfully navigate the world despite having only incomplete information about behaviorally important contingencies. It is an open question to what degree this behavior is driven by estimates of stochastic parameters (brain-constructed models of the experienced world) and to what degree it is directed by reinforcement-driven processes that optimize behavior in the limit without estimating stochastic parameters (model-free adaptation processes, such as associative learning). We find that mice adjust their behavior in response to a change in probability more quickly and abruptly than can be explained by differential reinforcement. Our results imply that mice represent probabilities and perform calculations over them to optimize their behavior, even when the optimization produces negligible material gain. PMID:22592792
Developing Culture-Adaptive Competency Through Experiences with Expressive Avatars
NASA Technical Reports Server (NTRS)
Silverglate, Daniel S.; Sims, Edward M.; Glover, Gerald; Friedman, Harris
2012-01-01
Modern Warfighters often find themselves in a variety of non-combat roles such as negotiator, peacekeeper, reconstruction, and disaster relief. They are expected to perform these roles within a culture alien to their own. Each individual they encounter brings their own set of values to the interaction that must be understood and reconciled. To navigate the human terrain of these complex interactions, the Warfighter must not only consider the specifics of the target culture, but also identify the stakeholders, recognize the influencing cultural dimensions, and adapt to the situation to achieve the best possible outcome. Vcom3D is using game-based scenarios to develop culturally adaptive competency. The avatars that represent the stakeholders must be able to portray culturally accurate behavior, display complex emotion, and communicate through verbal and non-verbal cues. This paper will discuss the use of emerging game technologies to better simulate human behavior in cross-cultural dilemmas. Nomenclature: culture, adaptive, values, cultural values dimensions, dilemmas, virtual humans, non-verbal communications
An adaptive deep-coupled GNSS/INS navigation system with hybrid pre-filter processing
NASA Astrophysics Data System (ADS)
Wu, Mouyan; Ding, Jicheng; Zhao, Lin; Kang, Yingyao; Luo, Zhibin
2018-02-01
The deep-coupling of a global navigation satellite system (GNSS) with an inertial navigation system (INS) can provide accurate and reliable navigation information. There are several kinds of deeply-coupled structures. These can be divided mainly into coherent and non-coherent pre-filter based structures, which have their own strong advantages and disadvantages, especially in accuracy and robustness. In this paper, the existing pre-filters of the deeply-coupled structures are analyzed and modified to improve them firstly. Then, an adaptive GNSS/INS deeply-coupled algorithm with hybrid pre-filters processing is proposed to combine the advantages of coherent and non-coherent structures. An adaptive hysteresis controller is designed to implement the hybrid pre-filters processing strategy. The simulation and vehicle test results show that the adaptive deeply-coupled algorithm with hybrid pre-filters processing can effectively improve navigation accuracy and robustness, especially in a GNSS-challenged environment.
Pavlova, Marina; Sokolov, Alexander; Krägeloh-Mann, Ingeborg
2007-02-01
Visual navigation in familiar and unfamiliar surroundings is an essential ingredient of adaptive daily life behavior. Recent brain imaging work helps to recognize that establishing connectivity between brain regions is of importance for successful navigation. Here, we ask whether the ability to navigate is impaired in adolescents who were born premature and suffer congenital bilateral periventricular brain damage that might affect the pathways interconnecting subcortical structures with cortex. Performance on a set of visual labyrinth tasks was significantly worse in patients with periventricular leukomalacia (PVL) as compared with premature-born controls without lesions and term-born adolescents. The ability for visual navigation inversely relates to the severity of motor disability, leg-dominated bilateral spastic cerebral palsy. This agrees with the view that navigation ability substantially improves with practice and might be compromised in individuals with restrictions in active spatial exploration. Visual navigation is negatively linked to the volumetric extent of lesions over the right parietal and frontal periventricular regions. Whereas impairments of visual processing of point-light biological motion are associated in patients with PVL with bilateral parietal periventricular lesions, navigation ability is specifically linked to the frontal lesions in the right hemisphere. We suggest that more anterior periventricular lesions impair the interrelations between the right hippocampus and cortical areas leading to disintegration of neural networks engaged in visual navigation. For the first time, we show that the severity of right frontal periventricular damage and leg-dominated motor disorders can serve as independent predictors of the visual navigation disability.
Fuzzy Behavior Modulation with Threshold Activation for Autonomous Vehicle Navigation
NASA Technical Reports Server (NTRS)
Tunstel, Edward
2000-01-01
This paper describes fuzzy logic techniques used in a hierarchical behavior-based architecture for robot navigation. An architectural feature for threshold activation of fuzzy-behaviors is emphasized, which is potentially useful for tuning navigation performance in real world applications. The target application is autonomous local navigation of a small planetary rover. Threshold activation of low-level navigation behaviors is the primary focus. A preliminary assessment of its impact on local navigation performance is provided based on computer simulations.
Intelligent flight control systems
NASA Technical Reports Server (NTRS)
Stengel, Robert F.
1993-01-01
The capabilities of flight control systems can be enhanced by designing them to emulate functions of natural intelligence. Intelligent control functions fall in three categories. Declarative actions involve decision-making, providing models for system monitoring, goal planning, and system/scenario identification. Procedural actions concern skilled behavior and have parallels in guidance, navigation, and adaptation. Reflexive actions are spontaneous, inner-loop responses for control and estimation. Intelligent flight control systems learn knowledge of the aircraft and its mission and adapt to changes in the flight environment. Cognitive models form an efficient basis for integrating 'outer-loop/inner-loop' control functions and for developing robust parallel-processing algorithms.
From modulated Hebbian plasticity to simple behavior learning through noise and weight saturation.
Soltoggio, Andrea; Stanley, Kenneth O
2012-10-01
Synaptic plasticity is a major mechanism for adaptation, learning, and memory. Yet current models struggle to link local synaptic changes to the acquisition of behaviors. The aim of this paper is to demonstrate a computational relationship between local Hebbian plasticity and behavior learning by exploiting two traditionally unwanted features: neural noise and synaptic weight saturation. A modulation signal is employed to arbitrate the sign of plasticity: when the modulation is positive, the synaptic weights saturate to express exploitative behavior; when it is negative, the weights converge to average values, and neural noise reconfigures the network's functionality. This process is demonstrated through simulating neural dynamics in the autonomous emergence of fearful and aggressive navigating behaviors and in the solution to reward-based problems. The neural model learns, memorizes, and modifies different behaviors that lead to positive modulation in a variety of settings. The algorithm establishes a simple relationship between local plasticity and behavior learning by demonstrating the utility of noise and weight saturation. Moreover, it provides a new tool to simulate adaptive behavior, and contributes to bridging the gap between synaptic changes and behavior in neural computation. Copyright © 2012 Elsevier Ltd. All rights reserved.
Karantanis, Nikolaos-Evangelos; Youlatos, Dionisios; Rychlik, Leszek
2015-09-01
Research on primate origins has revolved around arboreality and, more specifically, the adaptations that are linked to safe navigation in the fine-branch niche. To this end, extant non-primate mammals have been used as models to assess the significance of these adaptations. However, the size of these models is larger than that estimated for early primates. In contrast, the feathertail marsupial glider Acrobates pygmaeus, with a body mass of 12 g, a clawless opposable hallux, and terminal branch feeding habits appears more suited to modeling behavioral adaptations to the small branch milieu. Analysis of video recordings of 18 feathertail gliders walking on poles of variable diameter and inclination revealed that they preferentially used diagonal sequence gaits, fast velocities and low duty factors. Diagonal gaits did not correlate to duty factor, but increased as substrate size decreased, and from descending to ascending locomotion. Furthermore, the duty factor index increased in more diagonal gaits and ascending locomotion. Finally, velocities were lower on smaller substrates, and were mainly regulated by stride frequency and, to a lesser degree, stride length. Feathertail glider gaits displayed noteworthy behavioral convergences with primate quadrupedalism, but some of these results need additional investigation. Despite any discrepancies, these features appear to be favorable for quadrupedal progression on small branches, providing a selective advantage for navigating within a fine branch niche and highlighting the importance of small body size in early primate evolution. Copyright © 2015 Elsevier Ltd. All rights reserved.
Automatic Training of Rat Cyborgs for Navigation.
Yu, Yipeng; Wu, Zhaohui; Xu, Kedi; Gong, Yongyue; Zheng, Nenggan; Zheng, Xiaoxiang; Pan, Gang
2016-01-01
A rat cyborg system refers to a biological rat implanted with microelectrodes in its brain, via which the outer electrical stimuli can be delivered into the brain in vivo to control its behaviors. Rat cyborgs have various applications in emergency, such as search and rescue in disasters. Prior to a rat cyborg becoming controllable, a lot of effort is required to train it to adapt to the electrical stimuli. In this paper, we build a vision-based automatic training system for rat cyborgs to replace the time-consuming manual training procedure. A hierarchical framework is proposed to facilitate the colearning between rats and machines. In the framework, the behavioral states of a rat cyborg are visually sensed by a camera, a parameterized state machine is employed to model the training action transitions triggered by rat's behavioral states, and an adaptive adjustment policy is developed to adaptively adjust the stimulation intensity. The experimental results of three rat cyborgs prove the effectiveness of our system. To the best of our knowledge, this study is the first to tackle automatic training of animal cyborgs.
Automatic Training of Rat Cyborgs for Navigation
Yu, Yipeng; Wu, Zhaohui; Xu, Kedi; Gong, Yongyue; Zheng, Nenggan; Zheng, Xiaoxiang; Pan, Gang
2016-01-01
A rat cyborg system refers to a biological rat implanted with microelectrodes in its brain, via which the outer electrical stimuli can be delivered into the brain in vivo to control its behaviors. Rat cyborgs have various applications in emergency, such as search and rescue in disasters. Prior to a rat cyborg becoming controllable, a lot of effort is required to train it to adapt to the electrical stimuli. In this paper, we build a vision-based automatic training system for rat cyborgs to replace the time-consuming manual training procedure. A hierarchical framework is proposed to facilitate the colearning between rats and machines. In the framework, the behavioral states of a rat cyborg are visually sensed by a camera, a parameterized state machine is employed to model the training action transitions triggered by rat's behavioral states, and an adaptive adjustment policy is developed to adaptively adjust the stimulation intensity. The experimental results of three rat cyborgs prove the effectiveness of our system. To the best of our knowledge, this study is the first to tackle automatic training of animal cyborgs. PMID:27436999
An evaluation of unisensory and multisensory adaptive flight-path navigation displays
NASA Astrophysics Data System (ADS)
Moroney, Brian W.
1999-11-01
The present study assessed the use of unimodal (auditory or visual) and multimodal (audio-visual) adaptive interfaces to aid military pilots in the performance of a precision-navigation flight task when they were confronted with additional information-processing loads. A standard navigation interface was supplemented by adaptive interfaces consisting of either a head-up display based flight director, a 3D virtual audio interface, or a combination of the two. The adaptive interfaces provided information about how to return to the pathway when off course. Using an advanced flight simulator, pilots attempted two navigation scenarios: (A) maintain proper course under normal flight conditions and (B) return to course after their aircraft's position has been perturbed. Pilots flew in the presence or absence of an additional information-processing task presented in either the visual or auditory modality. The additional information-processing tasks were equated in terms of perceived mental workload as indexed by the NASA-TLX. Twelve experienced military pilots (11 men and 1 woman), naive to the purpose of the experiment, participated in the study. They were recruited from Wright-Patterson Air Force Base and had a mean of 2812 hrs. of flight experience. Four navigational interface configurations, the standard visual navigation interface alone (SV), SV plus adaptive visual, SV plus adaptive auditory, and SV plus adaptive visual-auditory composite were combined factorially with three concurrent tasks (CT), the no CT, the visual CT, and the auditory CT, a completely repeated measures design. The adaptive navigation displays were activated whenever the aircraft was more than 450 ft off course. In the normal flight scenario, the adaptive interfaces did not bolster navigation performance in comparison to the standard interface. It is conceivable that the pilots performed quite adequately using the familiar generic interface under normal flight conditions and hence showed no added benefit of the adaptive interfaces. In the return-to-course scenario, the relative advantages of the three adaptive interfaces were dependent upon the nature of the CT in a complex way. In the absence of a CT, recovery heading performance was superior with the adaptive visual and adaptive composite interfaces compared to the adaptive auditory interface. In the context of a visual CT, recovery when using the adaptive composite interface was superior to that when using the adaptive visual interface. Post-experimental inquiry indicated that when faced with a visual CT, the pilots used the auditory component of the multimodal guidance display to detect gross heading errors and the visual component to make more fine-grained heading adjustments. In the context of the auditory CT, navigation performance using the adaptive visual interface tended to be superior to that when using the adaptive auditory interface. Neither CT performance nor NASA-TLX workload level was influenced differentially by the interface configurations. Thus, the potential benefits associated with the proposed interfaces appear to be unaccompanied by negative side effects involving CT interference and workload. The adaptive interface configurations were altered without any direct input from the pilot. Thus, it was feared that pilots might reject the activation of interfaces independent of their control. However, pilots' debriefing comments about the efficacy of the adaptive interface approach were very positive. (Abstract shortened by UMI.)
33 CFR 385.31 - Adaptive management program.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Adaptive management program. 385... Incorporating New Information Into the Plan § 385.31 Adaptive management program. (a) General. The Corps of Engineers and the South Florida Water Management District shall, in consultation with the Department of the...
Intelligent agents: adaptation of autonomous bimodal microsystems
NASA Astrophysics Data System (ADS)
Smith, Patrice; Terry, Theodore B.
2014-03-01
Autonomous bimodal microsystems exhibiting survivability behaviors and characteristics are able to adapt dynamically in any given environment. Equipped with a background blending exoskeleton it will have the capability to stealthily detect and observe a self-chosen viewing area while exercising some measurable form of selfpreservation by either flying or crawling away from a potential adversary. The robotic agent in this capacity activates a walk-fly algorithm, which uses a built in multi-sensor processing and navigation subsystem or algorithm for visual guidance and best walk-fly path trajectory to evade capture or annihilation. The research detailed in this paper describes the theoretical walk-fly algorithm, which broadens the scope of spatial and temporal learning, locomotion, and navigational performances based on optical flow signals necessary for flight dynamics and walking stabilities. By observing a fly's travel and avoidance behaviors; and, understanding the reverse bioengineering research efforts of others, we were able to conceptualize an algorithm, which works in conjunction with decisionmaking functions, sensory processing, and sensorimotor integration. Our findings suggest that this highly complex decentralized algorithm promotes inflight or terrain travel mobile stability which is highly suitable for nonaggressive micro platforms supporting search and rescue (SAR), and chemical and explosive detection (CED) purposes; a necessity in turbulent, non-violent structured or unstructured environments.
On learning navigation behaviors for small mobile robots with reservoir computing architectures.
Antonelo, Eric Aislan; Schrauwen, Benjamin
2015-04-01
This paper proposes a general reservoir computing (RC) learning framework that can be used to learn navigation behaviors for mobile robots in simple and complex unknown partially observable environments. RC provides an efficient way to train recurrent neural networks by letting the recurrent part of the network (called reservoir) be fixed while only a linear readout output layer is trained. The proposed RC framework builds upon the notion of navigation attractor or behavior that can be embedded in the high-dimensional space of the reservoir after learning. The learning of multiple behaviors is possible because the dynamic robot behavior, consisting of a sensory-motor sequence, can be linearly discriminated in the high-dimensional nonlinear space of the dynamic reservoir. Three learning approaches for navigation behaviors are shown in this paper. The first approach learns multiple behaviors based on the examples of navigation behaviors generated by a supervisor, while the second approach learns goal-directed navigation behaviors based only on rewards. The third approach learns complex goal-directed behaviors, in a supervised way, using a hierarchical architecture whose internal predictions of contextual switches guide the sequence of basic navigation behaviors toward the goal.
van Hoorn, Jorien; McCormick, Ethan M; Telzer, Eva H
2018-05-01
Adolescence is a time of increased social-affective sensitivity, which is often related to heightened health-risk behaviors. However, moderate levels of social sensitivity, relative to either low (social vacuum) or high levels (exceptionally attuned), may confer benefits as it facilitates effective navigation of the social world. The present fMRI study tested a curvilinear relationship between social sensitivity and adaptive decision-making. Participants (ages 12-16; N = 35) played the Social Analogue Risk Task, which measures participants' willingness to knock on doors in order to earn points. With each knock, the facial expression of the house's resident shifted from happy to somewhat angrier. If the resident became too angry, the door slammed and participants lost points. Social sensitivity was defined as the extent to which adolescents adjusted their risky choices based on shifting facial expressions. Results confirmed a curvilinear relationship between social sensitivity and self-reported adaptive decision-making at the behavioral and neural level. Moderate adolescent social sensitivity was modulated via heightened tracking of social cues in the temporoparietal junction, insula and dorsolateral prefrontal cortex and related to adaptive decision-making. These findings suggest that social-affective sensitivity may positively impact outcomes in adolescence and have implications for interventions to help adolescents reach mature social goals into adulthood.
Design of all-weather celestial navigation system
NASA Astrophysics Data System (ADS)
Sun, Hongchi; Mu, Rongjun; Du, Huajun; Wu, Peng
2018-03-01
In order to realize autonomous navigation in the atmosphere, an all-weather celestial navigation system is designed. The research of celestial navigation system include discrimination method of comentropy and the adaptive navigation algorithm based on the P value. The discrimination method of comentropy is studied to realize the independent switching of two celestial navigation modes, starlight and radio. Finally, an adaptive filtering algorithm based on P value is proposed, which can greatly improve the disturbance rejection capability of the system. The experimental results show that the accuracy of the three axis attitude is better than 10″, and it can work all weather. In perturbation environment, the position accuracy of the integrated navigation system can be increased 20% comparing with the traditional method. It basically meets the requirements of the all-weather celestial navigation system, and it has the ability of stability, reliability, high accuracy and strong anti-interference.
Fontaine, Guillaume; Cossette, Sylvie; Maheu-Cadotte, Marc-André; Mailhot, Tanya; Deschênes, Marie-France; Mathieu-Dupuis, Gabrielle
2017-07-05
Adaptive e-learning environments (AEEs) can provide tailored instruction by adapting content, navigation, presentation, multimedia, and tools to each user's navigation behavior, individual objectives, knowledge, and preferences. AEEs can have various levels of complexity, ranging from systems using a simple adaptive functionality to systems using artificial intelligence. While AEEs are promising, their effectiveness for the education of health professionals and health professions students remains unclear. The purpose of this systematic review is to assess the effectiveness of AEEs in improving knowledge, competence, and behavior in health professionals and students. We will follow the Cochrane Collaboration and the Effective Practice and Organisation of Care (EPOC) Group guidelines on systematic review methodology. A systematic search of the literature will be conducted in 6 bibliographic databases (CINAHL, EMBASE, ERIC, PsycINFO, PubMed, and Web of Science) using the concepts "adaptive e-learning environments," "health professionals/students," and "effects on knowledge/skills/behavior." We will include randomized and nonrandomized controlled trials, in addition to controlled before-after, interrupted time series, and repeated measures studies published between 2005 and 2017. The title and the abstract of each study followed by a full-text assessment of potentially eligible studies will be independently screened by 2 review authors. Using the EPOC extraction form, 1 review author will conduct data extraction and a second author will validate the data extraction. The methodological quality of included studies will be independently assessed by 2 review authors using the EPOC risk of bias criteria. Included studies will be synthesized by a descriptive analysis. Where appropriate, data will be pooled using meta-analysis by applying the RevMan software version 5.1, considering the heterogeneity of studies. The review is in progress. We plan to submit the results in the beginning of 2018. Providing tailored instruction to health professionals and students is a priority in order to optimize learning and clinical outcomes. This systematic review will synthesize the best available evidence regarding the effectiveness of AEEs in improving knowledge, competence, and behavior in health professionals and students. It will provide guidance to policy makers, hospital managers, and researchers in terms of AEE development, implementation, and evaluation in health care. ©Guillaume Fontaine, Sylvie Cossette, Marc-André Maheu-Cadotte, Tanya Mailhot, Marie-France Deschênes, Gabrielle Mathieu-Dupuis. Originally published in JMIR Research Protocols (http://www.researchprotocols.org), 05.07.2017.
Cossette, Sylvie; Maheu-Cadotte, Marc-André; Mailhot, Tanya; Deschênes, Marie-France; Mathieu-Dupuis, Gabrielle
2017-01-01
Background Adaptive e-learning environments (AEEs) can provide tailored instruction by adapting content, navigation, presentation, multimedia, and tools to each user’s navigation behavior, individual objectives, knowledge, and preferences. AEEs can have various levels of complexity, ranging from systems using a simple adaptive functionality to systems using artificial intelligence. While AEEs are promising, their effectiveness for the education of health professionals and health professions students remains unclear. Objective The purpose of this systematic review is to assess the effectiveness of AEEs in improving knowledge, competence, and behavior in health professionals and students. Methods We will follow the Cochrane Collaboration and the Effective Practice and Organisation of Care (EPOC) Group guidelines on systematic review methodology. A systematic search of the literature will be conducted in 6 bibliographic databases (CINAHL, EMBASE, ERIC, PsycINFO, PubMed, and Web of Science) using the concepts “adaptive e-learning environments,” “health professionals/students,” and “effects on knowledge/skills/behavior.” We will include randomized and nonrandomized controlled trials, in addition to controlled before-after, interrupted time series, and repeated measures studies published between 2005 and 2017. The title and the abstract of each study followed by a full-text assessment of potentially eligible studies will be independently screened by 2 review authors. Using the EPOC extraction form, 1 review author will conduct data extraction and a second author will validate the data extraction. The methodological quality of included studies will be independently assessed by 2 review authors using the EPOC risk of bias criteria. Included studies will be synthesized by a descriptive analysis. Where appropriate, data will be pooled using meta-analysis by applying the RevMan software version 5.1, considering the heterogeneity of studies. Results The review is in progress. We plan to submit the results in the beginning of 2018. Conclusions Providing tailored instruction to health professionals and students is a priority in order to optimize learning and clinical outcomes. This systematic review will synthesize the best available evidence regarding the effectiveness of AEEs in improving knowledge, competence, and behavior in health professionals and students. It will provide guidance to policy makers, hospital managers, and researchers in terms of AEE development, implementation, and evaluation in health care. Trial Registration PROSPERO International Prospective Register of Systematic Reviews: CRD42017065585; https://www.crd.york.ac.uk/PROSPERO/display_record.asp?ID=CRD42017065585 (Archived by WebCite® at http://www.webcitation.org/6rXGdDwf4) PMID:28679491
Context-Aided Sensor Fusion for Enhanced Urban Navigation
Martí, Enrique David; Martín, David; García, Jesús; de la Escalera, Arturo; Molina, José Manuel; Armingol, José María
2012-01-01
The deployment of Intelligent Vehicles in urban environments requires reliable estimation of positioning for urban navigation. The inherent complexity of this kind of environments fosters the development of novel systems which should provide reliable and precise solutions to the vehicle. This article details an advanced GNSS/IMU fusion system based on a context-aided Unscented Kalman filter for navigation in urban conditions. The constrained non-linear filter is here conditioned by a contextual knowledge module which reasons about sensor quality and driving context in order to adapt it to the situation, while at the same time it carries out a continuous estimation and correction of INS drift errors. An exhaustive analysis has been carried out with available data in order to characterize the behavior of available sensors and take it into account in the developed solution. The performance is then analyzed with an extensive dataset containing representative situations. The proposed solution suits the use of fusion algorithms for deploying Intelligent Transport Systems in urban environments. PMID:23223080
Flow Navigation by Smart Microswimmers via Reinforcement Learning
NASA Astrophysics Data System (ADS)
Colabrese, Simona; Gustavsson, Kristian; Celani, Antonio; Biferale, Luca
2017-04-01
Smart active particles can acquire some limited knowledge of the fluid environment from simple mechanical cues and exert a control on their preferred steering direction. Their goal is to learn the best way to navigate by exploiting the underlying flow whenever possible. As an example, we focus our attention on smart gravitactic swimmers. These are active particles whose task is to reach the highest altitude within some time horizon, given the constraints enforced by fluid mechanics. By means of numerical experiments, we show that swimmers indeed learn nearly optimal strategies just by experience. A reinforcement learning algorithm allows particles to learn effective strategies even in difficult situations when, in the absence of control, they would end up being trapped by flow structures. These strategies are highly nontrivial and cannot be easily guessed in advance. This Letter illustrates the potential of reinforcement learning algorithms to model adaptive behavior in complex flows and paves the way towards the engineering of smart microswimmers that solve difficult navigation problems.
Context-aided sensor fusion for enhanced urban navigation.
Martí, Enrique David; Martín, David; García, Jesús; de la Escalera, Arturo; Molina, José Manuel; Armingol, José María
2012-12-06
The deployment of Intelligent Vehicles in urban environments requires reliable estimation of positioning for urban navigation. The inherent complexity of this kind of environments fosters the development of novel systems which should provide reliable and precise solutions to the vehicle. This article details an advanced GNSS/IMU fusion system based on a context-aided Unscented Kalman filter for navigation in urban conditions. The constrained non-linear filter is here conditioned by a contextual knowledge module which reasons about sensor quality and driving context in order to adapt it to the situation, while at the same time it carries out a continuous estimation and correction of INS drift errors. An exhaustive analysis has been carried out with available data in order to characterize the behavior of available sensors and take it into account in the developed solution. The performance is then analyzed with an extensive dataset containing representative situations. The proposed solution suits the use of fusion algorithms for deploying Intelligent Transport Systems in urban environments.
Multi-Sensor Optimal Data Fusion Based on the Adaptive Fading Unscented Kalman Filter
Gao, Bingbing; Hu, Gaoge; Gao, Shesheng; Gu, Chengfan
2018-01-01
This paper presents a new optimal data fusion methodology based on the adaptive fading unscented Kalman filter for multi-sensor nonlinear stochastic systems. This methodology has a two-level fusion structure: at the bottom level, an adaptive fading unscented Kalman filter based on the Mahalanobis distance is developed and serves as local filters to improve the adaptability and robustness of local state estimations against process-modeling error; at the top level, an unscented transformation-based multi-sensor optimal data fusion for the case of N local filters is established according to the principle of linear minimum variance to calculate globally optimal state estimation by fusion of local estimations. The proposed methodology effectively refrains from the influence of process-modeling error on the fusion solution, leading to improved adaptability and robustness of data fusion for multi-sensor nonlinear stochastic systems. It also achieves globally optimal fusion results based on the principle of linear minimum variance. Simulation and experimental results demonstrate the efficacy of the proposed methodology for INS/GNSS/CNS (inertial navigation system/global navigation satellite system/celestial navigation system) integrated navigation. PMID:29415509
Multi-Sensor Optimal Data Fusion Based on the Adaptive Fading Unscented Kalman Filter.
Gao, Bingbing; Hu, Gaoge; Gao, Shesheng; Zhong, Yongmin; Gu, Chengfan
2018-02-06
This paper presents a new optimal data fusion methodology based on the adaptive fading unscented Kalman filter for multi-sensor nonlinear stochastic systems. This methodology has a two-level fusion structure: at the bottom level, an adaptive fading unscented Kalman filter based on the Mahalanobis distance is developed and serves as local filters to improve the adaptability and robustness of local state estimations against process-modeling error; at the top level, an unscented transformation-based multi-sensor optimal data fusion for the case of N local filters is established according to the principle of linear minimum variance to calculate globally optimal state estimation by fusion of local estimations. The proposed methodology effectively refrains from the influence of process-modeling error on the fusion solution, leading to improved adaptability and robustness of data fusion for multi-sensor nonlinear stochastic systems. It also achieves globally optimal fusion results based on the principle of linear minimum variance. Simulation and experimental results demonstrate the efficacy of the proposed methodology for INS/GNSS/CNS (inertial navigation system/global navigation satellite system/celestial navigation system) integrated navigation.
Juang, Chia-Feng; Lai, Min-Ge; Zeng, Wan-Ting
2015-09-01
This paper presents a method that allows two wheeled, mobile robots to navigate unknown environments while cooperatively carrying an object. In the navigation method, a leader robot and a follower robot cooperatively perform either obstacle boundary following (OBF) or target seeking (TS) to reach a destination. The two robots are controlled by fuzzy controllers (FC) whose rules are learned through an adaptive fusion of continuous ant colony optimization and particle swarm optimization (AF-CACPSO), which avoids the time-consuming task of manually designing the controllers. The AF-CACPSO-based evolutionary fuzzy control approach is first applied to the control of a single robot to perform OBF. The learning approach is then applied to achieve cooperative OBF with two robots, where an auxiliary FC designed with the AF-CACPSO is used to control the follower robot. For cooperative TS, a rule for coordination of the two robots is developed. To navigate cooperatively, a cooperative behavior supervisor is introduced to select between cooperative OBF and cooperative TS. The performance of the AF-CACPSO is verified through comparisons with various population-based optimization algorithms for the OBF learning problem. Simulations and experiments verify the effectiveness of the approach for cooperative navigation of two robots.
Markovian robots: Minimal navigation strategies for active particles
NASA Astrophysics Data System (ADS)
Nava, Luis Gómez; Großmann, Robert; Peruani, Fernando
2018-04-01
We explore minimal navigation strategies for active particles in complex, dynamical, external fields, introducing a class of autonomous, self-propelled particles which we call Markovian robots (MR). These machines are equipped with a navigation control system (NCS) that triggers random changes in the direction of self-propulsion of the robots. The internal state of the NCS is described by a Boolean variable that adopts two values. The temporal dynamics of this Boolean variable is dictated by a closed Markov chain—ensuring the absence of fixed points in the dynamics—with transition rates that may depend exclusively on the instantaneous, local value of the external field. Importantly, the NCS does not store past measurements of this value in continuous, internal variables. We show that despite the strong constraints, it is possible to conceive closed Markov chain motifs that lead to nontrivial motility behaviors of the MR in one, two, and three dimensions. By analytically reducing the complexity of the NCS dynamics, we obtain an effective description of the long-time motility behavior of the MR that allows us to identify the minimum requirements in the design of NCS motifs and transition rates to perform complex navigation tasks such as adaptive gradient following, detection of minima or maxima, or selection of a desired value in a dynamical, external field. We put these ideas in practice by assembling a robot that operates by the proposed minimalistic NCS to evaluate the robustness of MR, providing a proof of concept that is possible to navigate through complex information landscapes with such a simple NCS whose internal state can be stored in one bit. These ideas may prove useful for the engineering of miniaturized robots.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nikolov, Svetoslav V.; Shum, Henry; Balazs, Anna C.
Systems of motile microscopic particles can exhibit behaviors that resemble those of living microorganisms, including cooperative motion, self-organization, and adaptability to changing environments. Using mesoscale computational modeling, we design synthetic microswimmers and microcapsules that undergo controllable, self-propelled motion in solution. Stimuli-responsive hydrogels are used to actuate the microswimmers and to enable their navigation and chemotaxing behavior. The self-propelled motion of microcapsules on solid surfaces is achieved by the release of encapsulated solutes that alter the surface adhesiveness. These signaling solutes also enable interactions among multiple microcapsules that lead to complex, cooperative behavior. Our findings provide guidelines for creating microscopic devicesmore » and machines able to autonomously move and mimic the communication and chemotaxis of biological microorganisms.« less
Sheiman, I M; Kreshchenko, N D
2010-10-01
The effects of weak electromagnetic irradiation on simple forms of behavior were studied using adult Tenebrio molitor mealworms. The beetles' motor behavior was studied in conditions of different motivations, i.e., positive (food) and negative (avoidance of light), in otherwise identical experimental conditions. The beetles had to navigate a defined space to reach their target - potato or cover from light. Experiments consisted of one trial per day for five days. Target attainment time was measured in groups of beetles. Behavior in both cases developed as follows: an initial orientation reaction appeared and was followed by adaptation to the apparatus. Exposure to weak electromagnetic irradiation led to increases in the response time at the initial stages of the experiments. The effects of irradiation were seasonal in nature and differed in the two types of behavior.
Lamprecht, Daniel; Strohmaier, Markus; Helic, Denis; Nyulas, Csongor; Tudorache, Tania; Noy, Natalya F; Musen, Mark A
The need to examine the behavior of different user groups is a fundamental requirement when building information systems. In this paper, we present Ontology-based Decentralized Search (OBDS), a novel method to model the navigation behavior of users equipped with different types of background knowledge. Ontology-based Decentralized Search combines decentralized search, an established method for navigation in social networks, and ontologies to model navigation behavior in information networks. The method uses ontologies as an explicit representation of background knowledge to inform the navigation process and guide it towards navigation targets. By using different ontologies, users equipped with different types of background knowledge can be represented. We demonstrate our method using four biomedical ontologies and their associated Wikipedia articles. We compare our simulation results with base line approaches and with results obtained from a user study. We find that our method produces click paths that have properties similar to those originating from human navigators. The results suggest that our method can be used to model human navigation behavior in systems that are based on information networks, such as Wikipedia. This paper makes the following contributions: (i) To the best of our knowledge, this is the first work to demonstrate the utility of ontologies in modeling human navigation and (ii) it yields new insights and understanding about the mechanisms of human navigation in information networks.
Lamprecht, Daniel; Strohmaier, Markus; Helic, Denis; Nyulas, Csongor; Tudorache, Tania; Noy, Natalya F.; Musen, Mark A.
2015-01-01
The need to examine the behavior of different user groups is a fundamental requirement when building information systems. In this paper, we present Ontology-based Decentralized Search (OBDS), a novel method to model the navigation behavior of users equipped with different types of background knowledge. Ontology-based Decentralized Search combines decentralized search, an established method for navigation in social networks, and ontologies to model navigation behavior in information networks. The method uses ontologies as an explicit representation of background knowledge to inform the navigation process and guide it towards navigation targets. By using different ontologies, users equipped with different types of background knowledge can be represented. We demonstrate our method using four biomedical ontologies and their associated Wikipedia articles. We compare our simulation results with base line approaches and with results obtained from a user study. We find that our method produces click paths that have properties similar to those originating from human navigators. The results suggest that our method can be used to model human navigation behavior in systems that are based on information networks, such as Wikipedia. This paper makes the following contributions: (i) To the best of our knowledge, this is the first work to demonstrate the utility of ontologies in modeling human navigation and (ii) it yields new insights and understanding about the mechanisms of human navigation in information networks. PMID:26568745
Grossberg, Stephen
2015-09-24
This article provides an overview of neural models of synaptic learning and memory whose expression in adaptive behavior depends critically on the circuits and systems in which the synapses are embedded. It reviews Adaptive Resonance Theory, or ART, models that use excitatory matching and match-based learning to achieve fast category learning and whose learned memories are dynamically stabilized by top-down expectations, attentional focusing, and memory search. ART clarifies mechanistic relationships between consciousness, learning, expectation, attention, resonance, and synchrony. ART models are embedded in ARTSCAN architectures that unify processes of invariant object category learning, recognition, spatial and object attention, predictive remapping, and eye movement search, and that clarify how conscious object vision and recognition may fail during perceptual crowding and parietal neglect. The generality of learned categories depends upon a vigilance process that is regulated by acetylcholine via the nucleus basalis. Vigilance can get stuck at too high or too low values, thereby causing learning problems in autism and medial temporal amnesia. Similar synaptic learning laws support qualitatively different behaviors: Invariant object category learning in the inferotemporal cortex; learning of grid cells and place cells in the entorhinal and hippocampal cortices during spatial navigation; and learning of time cells in the entorhinal-hippocampal system during adaptively timed conditioning, including trace conditioning. Spatial and temporal processes through the medial and lateral entorhinal-hippocampal system seem to be carried out with homologous circuit designs. Variations of a shared laminar neocortical circuit design have modeled 3D vision, speech perception, and cognitive working memory and learning. A complementary kind of inhibitory matching and mismatch learning controls movement. This article is part of a Special Issue entitled SI: Brain and Memory. Copyright © 2014 Elsevier B.V. All rights reserved.
Navigational strategies during fast walking: a comparison between trained athletes and non-athletes.
Gérin-Lajoie, Martin; Ronsky, Janet L; Loitz-Ramage, Barbara; Robu, Ion; Richards, Carol L; McFadyen, Bradford J
2007-10-01
Many common activities such as walking in a shopping mall, moving in a busy subway station, or even avoiding opponents during sports, all require different levels of navigational skills. Obstacle circumvention is beginning to be understood across age groups, but studying trained athletes with greater levels of motor ability will further our understanding of skillful adaptive locomotor behavior. The objective of this work was to compare navigational skills during fast walking between elite athletes (e.g. soccer, field hockey, basketball) and aged-matched non-athletes under different levels of environmental complexity in relation to obstacle configuration and visibility. The movements of eight women athletes and eight women non-athletes were measured as they walked as fast as possible through different obstacle courses in both normal and low lighting conditions. Results showed that athletes, despite similar unobstructed maximal speeds to non-athletes, had faster walking times during the navigation of all obstructed environments. It appears that athletes can process visuo-spatial information faster since both groups can make appropriate navigational decisions, but athletes can navigate through complex, novel, environments at greater speeds. Athletes' walking times were also more affected by the low lighting conditions suggesting that they normally scan the obstructed course farther ahead. This study also uses new objective measures to assess functional locomotor capacity in order to discriminate individuals according to their level of navigational ability. The evaluation paradigm and outcome measures developed may be applicable to the evaluation of skill level in athletic training and selection, as well as in gait rehabilitation following impairment.
An Adaptive Technique for a Redundant-Sensor Navigation System. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Chien, T. T.
1972-01-01
An on-line adaptive technique is developed to provide a self-contained redundant-sensor navigation system with a capability to utilize its full potentiality in reliability and performance. The gyro navigation system is modeled as a Gauss-Markov process, with degradation modes defined as changes in characteristics specified by parameters associated with the model. The adaptive system is formulated as a multistage stochastic process: (1) a detection system, (2) an identification system and (3) a compensation system. It is shown that the sufficient statistics for the partially observable process in the detection and identification system is the posterior measure of the state of degradation, conditioned on the measurement history.
Yan, Zheping; Wang, Lu; Wang, Tongda; Yang, Zewen; Chen, Tao; Xu, Jian
2018-03-30
To solve the navigation accuracy problems of multi-Unmanned Underwater Vehicles (multi-UUVs) in the polar region, a polar cooperative navigation algorithm for multi-UUVs considering communication delays is proposed in this paper. UUVs are important pieces of equipment in ocean engineering for marine development. For UUVs to complete missions, precise navigation is necessary. It is difficult for UUVs to establish true headings because of the rapid convergence of Earth meridians and the severe polar environment. Based on the polar grid navigation algorithm, UUV navigation in the polar region can be accomplished with the Strapdown Inertial Navigation System (SINS) in the grid frame. To save costs, a leader-follower type of system is introduced in this paper. The leader UUV helps the follower UUVs to achieve high navigation accuracy. Follower UUVs correct their own states based on the information sent by the leader UUV and the relative position measured by ultra-short baseline (USBL) acoustic positioning. The underwater acoustic communication delay is quantized by the model. In this paper, considering underwater acoustic communication delay, the conventional adaptive Kalman filter (AKF) is modified to adapt to polar cooperative navigation. The results demonstrate that the polar cooperative navigation algorithm for multi-UUVs that considers communication delays can effectively navigate the sailing of multi-UUVs in the polar region.
Yan, Zheping; Wang, Lu; Wang, Tongda; Yang, Zewen; Chen, Tao; Xu, Jian
2018-01-01
To solve the navigation accuracy problems of multi-Unmanned Underwater Vehicles (multi-UUVs) in the polar region, a polar cooperative navigation algorithm for multi-UUVs considering communication delays is proposed in this paper. UUVs are important pieces of equipment in ocean engineering for marine development. For UUVs to complete missions, precise navigation is necessary. It is difficult for UUVs to establish true headings because of the rapid convergence of Earth meridians and the severe polar environment. Based on the polar grid navigation algorithm, UUV navigation in the polar region can be accomplished with the Strapdown Inertial Navigation System (SINS) in the grid frame. To save costs, a leader-follower type of system is introduced in this paper. The leader UUV helps the follower UUVs to achieve high navigation accuracy. Follower UUVs correct their own states based on the information sent by the leader UUV and the relative position measured by ultra-short baseline (USBL) acoustic positioning. The underwater acoustic communication delay is quantized by the model. In this paper, considering underwater acoustic communication delay, the conventional adaptive Kalman filter (AKF) is modified to adapt to polar cooperative navigation. The results demonstrate that the polar cooperative navigation algorithm for multi-UUVs that considers communication delays can effectively navigate the sailing of multi-UUVs in the polar region. PMID:29601537
Evolutionary Perspective on Collective Decision Making
NASA Astrophysics Data System (ADS)
Farrell, Dene; Sayama, Hiroki; Dionne, Shelley D.; Yammarino, Francis J.; Wilson, David Sloan
Team decision making dynamics are investigated from a novel perspective by shifting agency from decision makers to representations of potential solutions. We provide a new way to navigate social dynamics of collective decision making by interpreting decision makers as constituents of an evolutionary environment of an ecology of evolving solutions. We demonstrate distinct patterns of evolution with respect to three forms of variation: (1) Results with random variations in utility functions of individuals indicate that groups demonstrating minimal internal variation produce higher true utility values of group solutions and display better convergence; (2) analysis of variations in behavioral patterns within a group shows that a proper balance between selective and creative evolutionary forces is crucial to producing adaptive solutions; and (3) biased variations of the utility functions diminish the range of variation for potential solution utility, leaving only the differential of convergence performance static. We generally find that group cohesion (low random variation within a group) and composition (appropriate variation of behavioral patterns within a group) are necessary for a successful navigation of the solution space, but performance in both cases is susceptible to group level biases.
GALE: a generic open source extensible adaptation engine
NASA Astrophysics Data System (ADS)
De Bra, Paul; Knutov, Evgeny; Smits, David; Stash, Natalia; Ramos, Vinicius F. C.
2013-06-01
This paper motivates and describes GALE, the Generic Adaptation Language and Engine that came out of the GRAPPLE EU FP7 project. The main focus of the paper is the extensible nature of GALE. The purpose of this description is to illustrate how a single core adaptation engine can be used for different types of adaptation, applied to different types of information items and documents. We illustrate the adaptive functionality on some examples of hypermedia documents. In April 2012, David Smits defended the world's first adaptive PhD thesis on this topic. The thesis, available for download and direct adaptive access at http://gale.win.tue.nl/thesis, shows that a single source of information can serve different audiences and at the same time also allows more freedom of navigation than is possible in any paper or static hypermedia document. The same can be done for course texts, hyperfiction, encyclopedia, museum, or other cultural heritage websites, etc. We explain how to add functionality to GALE if desired, to adapt the system's behavior to whatever the application requires. This stresses our main objective: to provide a technological base for adaptive (hypermedia) system researchers on which they can build extensions for the specific research they have in mind.
A New Adaptive H-Infinity Filtering Algorithm for the GPS/INS Integrated Navigation
Jiang, Chen; Zhang, Shu-Bi; Zhang, Qiu-Zhao
2016-01-01
The Kalman filter is an optimal estimator with numerous applications in technology, especially in systems with Gaussian distributed noise. Moreover, the adaptive Kalman filtering algorithms, based on the Kalman filter, can control the influence of dynamic model errors. In contrast to the adaptive Kalman filtering algorithms, the H-infinity filter is able to address the interference of the stochastic model by minimization of the worst-case estimation error. In this paper, a novel adaptive H-infinity filtering algorithm, which integrates the adaptive Kalman filter and the H-infinity filter in order to perform a comprehensive filtering algorithm, is presented. In the proposed algorithm, a robust estimation method is employed to control the influence of outliers. In order to verify the proposed algorithm, experiments with real data of the Global Positioning System (GPS) and Inertial Navigation System (INS) integrated navigation, were conducted. The experimental results have shown that the proposed algorithm has multiple advantages compared to the other filtering algorithms. PMID:27999361
A New Adaptive H-Infinity Filtering Algorithm for the GPS/INS Integrated Navigation.
Jiang, Chen; Zhang, Shu-Bi; Zhang, Qiu-Zhao
2016-12-19
The Kalman filter is an optimal estimator with numerous applications in technology, especially in systems with Gaussian distributed noise. Moreover, the adaptive Kalman filtering algorithms, based on the Kalman filter, can control the influence of dynamic model errors. In contrast to the adaptive Kalman filtering algorithms, the H-infinity filter is able to address the interference of the stochastic model by minimization of the worst-case estimation error. In this paper, a novel adaptive H-infinity filtering algorithm, which integrates the adaptive Kalman filter and the H-infinity filter in order to perform a comprehensive filtering algorithm, is presented. In the proposed algorithm, a robust estimation method is employed to control the influence of outliers. In order to verify the proposed algorithm, experiments with real data of the Global Positioning System (GPS) and Inertial Navigation System (INS) integrated navigation, were conducted. The experimental results have shown that the proposed algorithm has multiple advantages compared to the other filtering algorithms.
Unraveling the neural basis of insect navigation.
Heinze, Stanley
2017-12-01
One of the defining features of animals is their ability to navigate their environment. Using behavioral experiments this topic has been under intense investigation for nearly a century. In insects, this work has largely focused on the remarkable homing abilities of ants and bees. More recently, the neural basis of navigation shifted into the focus of attention. Starting with revealing the neurons that process the sensory signals used for navigation, in particular polarized skylight, migratory locusts became the key species for delineating navigation-relevant regions of the insect brain. Over the last years, this work was used as a basis for research in the fruit fly Drosophila and extraordinary progress has been made in illuminating the neural underpinnings of navigational processes. With increasingly detailed understanding of navigation circuits, we can begin to ask whether there is a fundamentally shared concept underlying all navigation behavior across insects. This review highlights recent advances and puts them into the context of the behavioral work on ants and bees, as well as the circuits involved in polarized-light processing. A region of the insect brain called the central complex emerges as the common substrate for guiding navigation and its highly organized neuroarchitecture provides a framework for future investigations potentially suited to explain all insect navigation behavior at the level of identified neurons. Copyright © 2017 Elsevier Inc. All rights reserved.
Behavioral Mapless Navigation Using Rings
NASA Technical Reports Server (NTRS)
Monroe, Randall P.; Miller, Samuel A.; Bradley, Arthur T.
2012-01-01
This paper presents work on the development and implementation of a novel approach to robotic navigation. In this system, map-building and localization for obstacle avoidance are discarded in favor of moment-by-moment behavioral processing of the sonar sensor data. To accomplish this, we developed a network of behaviors that communicate through the passing of rings, data structures that are similar in form to the sonar data itself and express the decisions of each behavior. Through the use of these rings, behaviors can moderate each other, conflicting impulses can be mediated, and designers can easily connect modules to create complex emergent navigational techniques. We discuss the development of a number of these modules and their successful use as a navigation system in the Trinity omnidirectional robot.
Adaptability of non-genetic diversity in bacterial chemotaxis
Frankel, Nicholas W; Pontius, William; Dufour, Yann S; Long, Junjiajia; Hernandez-Nunez, Luis; Emonet, Thierry
2014-01-01
Bacterial chemotaxis systems are as diverse as the environments that bacteria inhabit, but how much environmental variation can cells tolerate with a single system? Diversification of a single chemotaxis system could serve as an alternative, or even evolutionary stepping-stone, to switching between multiple systems. We hypothesized that mutations in gene regulation could lead to heritable control of chemotactic diversity. By simulating foraging and colonization of E. coli using a single-cell chemotaxis model, we found that different environments selected for different behaviors. The resulting trade-offs show that populations facing diverse environments would ideally diversify behaviors when time for navigation is limited. We show that advantageous diversity can arise from changes in the distribution of protein levels among individuals, which could occur through mutations in gene regulation. We propose experiments to test our prediction that chemotactic diversity in a clonal population could be a selectable trait that enables adaptation to environmental variability. DOI: http://dx.doi.org/10.7554/eLife.03526.001 PMID:25279698
ERIC Educational Resources Information Center
Moore, Jacob; Williams, Christopher B.; North, Christopher; Johri, Aditya; Paretti, Marie
2015-01-01
Traditional instructional materials such as textbooks contain significant educational content, but the navigational mechanisms to access that content are limited and, more importantly, not designed with learning in mind. To address this gap, we present the Adaptive Map, a novel organization and navigation tool designed to help students better…
ERIC Educational Resources Information Center
Schubring, Linda Louise
2013-01-01
This study in adaptive leadership reveals what factors contributed to how leaders and teams navigate change within the church planting context of Christian Associates (CA) Europe. In the beginning chapter, I lay the foundation for the study of individuals and teams within CA by describing my research, CA's history, and the significance of the…
Mathematical Models for Doppler Measurements
NASA Technical Reports Server (NTRS)
Lear, William M.
1987-01-01
Error analysis increases precision of navigation. Report presents improved mathematical models of analysis of Doppler measurements and measurement errors of spacecraft navigation. To take advantage of potential navigational accuracy of Doppler measurements, precise equations relate measured cycle count to position and velocity. Drifts and random variations in transmitter and receiver oscillator frequencies taken into account. Mathematical models also adapted to aircraft navigation, radar, sonar, lidar, and interferometry.
Lyu, Weiwei; Cheng, Xianghong
2017-11-28
Transfer alignment is always a key technology in a strapdown inertial navigation system (SINS) because of its rapidity and accuracy. In this paper a transfer alignment model is established, which contains the SINS error model and the measurement model. The time delay in the process of transfer alignment is analyzed, and an H∞ filtering method with delay compensation is presented. Then the H∞ filtering theory and the robust mechanism of H∞ filter are deduced and analyzed in detail. In order to improve the transfer alignment accuracy in SINS with time delay, an adaptive H∞ filtering method with delay compensation is proposed. Since the robustness factor plays an important role in the filtering process and has effect on the filtering accuracy, the adaptive H∞ filter with delay compensation can adjust the value of robustness factor adaptively according to the dynamic external environment. The vehicle transfer alignment experiment indicates that by using the adaptive H∞ filtering method with delay compensation, the transfer alignment accuracy and the pure inertial navigation accuracy can be dramatically improved, which demonstrates the superiority of the proposed filtering method.
Should Animals Navigating Over Short Distances Switch to a Magnetic Compass Sense?
Wyeth, Russell C.
2010-01-01
Magnetoreception can play a substantial role in long distance navigation by animals. I hypothesize that locomotion guided by a magnetic compass sense could also play a role in short distance navigation. Animals identify mates, prey, or other short distance navigational goals using different sensory modalities (olfaction, vision, audition, etc.) to detect sensory cues associated with those goals. In conditions where these cues become unreliable for navigation (due to flow changes, obstructions, noise interference, etc.), switching to a magnetic compass sense to guide locomotion toward the navigational goals could be beneficial. Using simulations based on known locomotory and flow parameters, I show this strategy has strong theoretical benefits for the nudibranch mollusk Tritonia diomedea navigating toward odor sources in variable flow. A number of other animals may garner similar benefits, particularly slow-moving species in environments with rapidly changing cues relevant for navigation. Faster animals might also benefit from switching to a magnetic compass sense, provided the initial cues used for navigation (acoustic signals, odors, etc.) are intermittent or change rapidly enough that the entire navigation behavior cannot be guided by a continuously detectable cue. Examination of the relative durations of navigational tasks, the persistence of navigational cues, and the stability of both navigators and navigational targets will identify candidates with the appropriate combination of unreliable initial cues and relatively immobile navigational goals for which this hypothetical behavior could be beneficial. Magnetic manipulations can then test whether a switch to a magnetic compass sense occurs. This hypothesis thus provides an alternative when considering the behavioral significance of a magnetic compass sense in animals. PMID:20740070
What Can Ethobehavioral Studies Tell Us About The Brain’s Fear System?
Pellman, Blake A.; Kim, Jeansok J.
2016-01-01
Foraging-associated predation risk is a natural problem all prey must face. Fear evolved due to its protective functions, guiding and shaping behaviors that help animals adapt to various ecological challenges. Despite the breadth of risky situations in nature that demand diversity in fear behaviors, contemporary neurobiological models of fear stem largely from Pavlovian fear conditioning studies that focus on how a particular cue becomes capable of eliciting learned fear responses, thus oversimplifying the brain’s fear system. Here we review fear from functional, mechanistic, and phylogenetic perspectives where environmental threats cause animals to alter their foraging strategies in terms of spatial and temporal navigation, and discuss whether the inferences we draw from fear conditioning studies operate in the natural world. PMID:27130660
The Aging Navigational System.
Lester, Adam W; Moffat, Scott D; Wiener, Jan M; Barnes, Carol A; Wolbers, Thomas
2017-08-30
The discovery of neuronal systems dedicated to computing spatial information, composed of functionally distinct cell types such as place and grid cells, combined with an extensive body of human-based behavioral and neuroimaging research has provided us with a detailed understanding of the brain's navigation circuit. In this review, we discuss emerging evidence from rodents, non-human primates, and humans that demonstrates how cognitive aging affects the navigational computations supported by these systems. Critically, we show 1) that navigational deficits cannot solely be explained by general deficits in learning and memory, 2) that there is no uniform decline across different navigational computations, and 3) that navigational deficits might be sensitive markers for impending pathological decline. Following an introduction to the mechanisms underlying spatial navigation and how they relate to general processes of learning and memory, the review discusses how aging affects the perception and integration of spatial information, the creation and storage of memory traces for spatial information, and the use of spatial information during navigational behavior. The closing section highlights the clinical potential of behavioral and neural markers of spatial navigation, with a particular emphasis on neurodegenerative disorders. Copyright © 2017 Elsevier Inc. All rights reserved.
Developing Autonomous Vehicles That Learn to Navigate by Mimicking Human Behavior
2006-09-28
navigate in an unstructured environment to a specific target or location. 15. SUBJECT TERMS autonomous vehicles , fuzzy logic, learning behavior...ANSI-Std Z39-18 Developing Autonomous Vehicles That Learn to Navigate by Mimicking Human Behavior FINAL REPORT 9/28/2006 Dean B. Edwards Department...the future, as greater numbers of autonomous vehicles are employed, it is hoped that lower LONG-TERM GOALS Use LAGR (Learning Applied to Ground Robots
Adaptation to Variance of Stimuli in Drosophila Larva Navigation
NASA Astrophysics Data System (ADS)
Wolk, Jason; Gepner, Ruben; Gershow, Marc
In order to respond to stimuli that vary over orders of magnitude while also being capable of sensing very small changes, neural systems must be capable of rapidly adapting to the variance of stimuli. We study this adaptation in Drosophila larvae responding to varying visual signals and optogenetically induced fictitious odors using an infrared illuminated arena and custom computer vision software. Larval navigational decisions (when to turn) are modeled as the output a linear-nonlinear Poisson process. The development of the nonlinear turn rate in response to changes in variance is tracked using an adaptive point process filter determining the rate of adaptation to different stimulus profiles. Supported by NIH Grant 1DP2EB022359 and NSF Grant PHY-1455015.
Motion-adapted catheter navigation with real-time instantiation and improved visualisation
Kwok, Ka-Wai; Wang, Lichao; Riga, Celia; Bicknell, Colin; Cheshire, Nicholas; Yang, Guang-Zhong
2014-01-01
The improvements to catheter manipulation by the use of robot-assisted catheter navigation for endovascular procedures include increased precision, stability of motion and operator comfort. However, navigation through the vasculature under fluoroscopic guidance is still challenging, mostly due to physiological motion and when tortuous vessels are involved. In this paper, we propose a motion-adaptive catheter navigation scheme based on shape modelling to compensate for these dynamic effects, permitting predictive and dynamic navigations. This allows for timed manipulations synchronised with the vascular motion. The technical contribution of the paper includes the following two aspects. Firstly, a dynamic shape modelling and real-time instantiation scheme based on sparse data obtained intra-operatively is proposed for improved visualisation of the 3D vasculature during endovascular intervention. Secondly, a reconstructed frontal view from the catheter tip using the derived dynamic model is used as an interventional aid to user guidance. To demonstrate the practical value of the proposed framework, a simulated aortic branch cannulation procedure is used with detailed user validation to demonstrate the improvement in navigation quality and efficiency. PMID:24744817
Fuzzy adaptive integration scheme for low-cost SINS/GPS navigation system
NASA Astrophysics Data System (ADS)
Nourmohammadi, Hossein; Keighobadi, Jafar
2018-01-01
Due to weak stand-alone accuracy as well as poor run-to-run stability of micro-electro mechanical system (MEMS)-based inertial sensors, special approaches are required to integrate low-cost strap-down inertial navigation system (SINS) with global positioning system (GPS), particularly in long-term applications. This paper aims to enhance long-term performance of conventional SINS/GPS navigation systems using a fuzzy adaptive integration scheme. The main concept behind the proposed adaptive integration is the good performance of attitude-heading reference system (AHRS) in low-accelerated motions and its degradation in maneuvered or accelerated motions. Depending on vehicle maneuvers, gravity-based attitude angles can be intelligently utilized to improve orientation estimation in the SINS. Knowledge-based fuzzy inference system is developed for decision-making between the AHRS and the SINS according to vehicle maneuvering conditions. Inertial measurements are the main input data of the fuzzy system to determine the maneuvering level during the vehicle motions. Accordingly, appropriate weighting coefficients are produced to combine the SINS/GPS and the AHRS, efficiently. The assessment of the proposed integrated navigation system is conducted via real data in airborne tests.
Wang, Qiuying; Cui, Xufei; Li, Yibing; Ye, Fang
2017-01-01
To improve the ability of autonomous navigation for Unmanned Surface Vehicles (USVs), multi-sensor integrated navigation based on Inertial Navigation System (INS), Celestial Navigation System (CNS) and Doppler Velocity Log (DVL) is proposed. The CNS position and the DVL velocity are introduced as the reference information to correct the INS divergence error. The autonomy of the integrated system based on INS/CNS/DVL is much better compared with the integration based on INS/GNSS alone. However, the accuracy of DVL velocity and CNS position are decreased by the measurement noise of DVL and bad weather, respectively. Hence, the INS divergence error cannot be estimated and corrected by the reference information. To resolve the problem, the Adaptive Information Sharing Factor Federated Filter (AISFF) is introduced to fuse data. The information sharing factor of the Federated Filter is adaptively adjusted to maintaining multiple component solutions usable as back-ups, which can improve the reliability of overall system. The effectiveness of this approach is demonstrated by simulation and experiment, the results show that for the INS/CNS/DVL integrated system, when the DVL velocity accuracy is decreased and the CNS cannot work under bad weather conditions, the INS/CNS/DVL integrated system can operate stably based on the AISFF method. PMID:28165369
Wang, Qiuying; Cui, Xufei; Li, Yibing; Ye, Fang
2017-02-03
To improve the ability of autonomous navigation for Unmanned Surface Vehicles (USVs), multi-sensor integrated navigation based on Inertial Navigation System (INS), Celestial Navigation System (CNS) and Doppler Velocity Log (DVL) is proposed. The CNS position and the DVL velocity are introduced as the reference information to correct the INS divergence error. The autonomy of the integrated system based on INS/CNS/DVL is much better compared with the integration based on INS/GNSS alone. However, the accuracy of DVL velocity and CNS position are decreased by the measurement noise of DVL and bad weather, respectively. Hence, the INS divergence error cannot be estimated and corrected by the reference information. To resolve the problem, the Adaptive Information Sharing Factor Federated Filter (AISFF) is introduced to fuse data. The information sharing factor of the Federated Filter is adaptively adjusted to maintaining multiple component solutions usable as back-ups, which can improve the reliability of overall system. The effectiveness of this approach is demonstrated by simulation and experiment, the results show that for the INS/CNS/DVL integrated system, when the DVL velocity accuracy is decreased and the CNS cannot work under bad weather conditions, the INS/CNS/DVL integrated system can operate stably based on the AISFF method.
NASA Astrophysics Data System (ADS)
Liu, Yahui; Fan, Xiaoqian; Lv, Chen; Wu, Jian; Li, Liang; Ding, Dawei
2018-02-01
Information fusion method of INS/GPS navigation system based on filtering technology is a research focus at present. In order to improve the precision of navigation information, a navigation technology based on Adaptive Kalman Filter with attenuation factor is proposed to restrain noise in this paper. The algorithm continuously updates the measurement noise variance and processes noise variance of the system by collecting the estimated and measured values, and this method can suppress white noise. Because a measured value closer to the current time would more accurately reflect the characteristics of the noise, an attenuation factor is introduced to increase the weight of the current value, in order to deal with the noise variance caused by environment disturbance. To validate the effectiveness of the proposed algorithm, a series of road tests are carried out in urban environment. The GPS and IMU data of the experiments were collected and processed by dSPACE and MATLAB/Simulink. Based on the test results, the accuracy of the proposed algorithm is 20% higher than that of a traditional Adaptive Kalman Filter. It also shows that the precision of the integrated navigation can be improved due to the reduction of the influence of environment noise.
Goal-recognition-based adaptive brain-computer interface for navigating immersive robotic systems.
Abu-Alqumsan, Mohammad; Ebert, Felix; Peer, Angelika
2017-06-01
This work proposes principled strategies for self-adaptations in EEG-based Brain-computer interfaces (BCIs) as a way out of the bandwidth bottleneck resulting from the considerable mismatch between the low-bandwidth interface and the bandwidth-hungry application, and a way to enable fluent and intuitive interaction in embodiment systems. The main focus is laid upon inferring the hidden target goals of users while navigating in a remote environment as a basis for possible adaptations. To reason about possible user goals, a general user-agnostic Bayesian update rule is devised to be recursively applied upon the arrival of evidences, i.e. user input and user gaze. Experiments were conducted with healthy subjects within robotic embodiment settings to evaluate the proposed method. These experiments varied along three factors: the type of the robot/environment (simulated and physical), the type of the interface (keyboard or BCI), and the way goal recognition (GR) is used to guide a simple shared control (SC) driving scheme. Our results show that the proposed GR algorithm is able to track and infer the hidden user goals with relatively high precision and recall. Further, the realized SC driving scheme benefits from the output of the GR system and is able to reduce the user effort needed to accomplish the assigned tasks. Despite the fact that the BCI requires higher effort compared to the keyboard conditions, most subjects were able to complete the assigned tasks, and the proposed GR system is additionally shown able to handle the uncertainty in user input during SSVEP-based interaction. The SC application of the belief vector indicates that the benefits of the GR module are more pronounced for BCIs, compared to the keyboard interface. Being based on intuitive heuristics that model the behavior of the general population during the execution of navigation tasks, the proposed GR method can be used without prior tuning for the individual users. The proposed methods can be easily integrated in devising more advanced SC schemes and/or strategies for automatic BCI self-adaptations.
Goal-recognition-based adaptive brain-computer interface for navigating immersive robotic systems
NASA Astrophysics Data System (ADS)
Abu-Alqumsan, Mohammad; Ebert, Felix; Peer, Angelika
2017-06-01
Objective. This work proposes principled strategies for self-adaptations in EEG-based Brain-computer interfaces (BCIs) as a way out of the bandwidth bottleneck resulting from the considerable mismatch between the low-bandwidth interface and the bandwidth-hungry application, and a way to enable fluent and intuitive interaction in embodiment systems. The main focus is laid upon inferring the hidden target goals of users while navigating in a remote environment as a basis for possible adaptations. Approach. To reason about possible user goals, a general user-agnostic Bayesian update rule is devised to be recursively applied upon the arrival of evidences, i.e. user input and user gaze. Experiments were conducted with healthy subjects within robotic embodiment settings to evaluate the proposed method. These experiments varied along three factors: the type of the robot/environment (simulated and physical), the type of the interface (keyboard or BCI), and the way goal recognition (GR) is used to guide a simple shared control (SC) driving scheme. Main results. Our results show that the proposed GR algorithm is able to track and infer the hidden user goals with relatively high precision and recall. Further, the realized SC driving scheme benefits from the output of the GR system and is able to reduce the user effort needed to accomplish the assigned tasks. Despite the fact that the BCI requires higher effort compared to the keyboard conditions, most subjects were able to complete the assigned tasks, and the proposed GR system is additionally shown able to handle the uncertainty in user input during SSVEP-based interaction. The SC application of the belief vector indicates that the benefits of the GR module are more pronounced for BCIs, compared to the keyboard interface. Significance. Being based on intuitive heuristics that model the behavior of the general population during the execution of navigation tasks, the proposed GR method can be used without prior tuning for the individual users. The proposed methods can be easily integrated in devising more advanced SC schemes and/or strategies for automatic BCI self-adaptations.
Pilly, Praveen K.; Grossberg, Stephen
2013-01-01
Medial entorhinal grid cells and hippocampal place cells provide neural correlates of spatial representation in the brain. A place cell typically fires whenever an animal is present in one or more spatial regions, or places, of an environment. A grid cell typically fires in multiple spatial regions that form a regular hexagonal grid structure extending throughout the environment. Different grid and place cells prefer spatially offset regions, with their firing fields increasing in size along the dorsoventral axes of the medial entorhinal cortex and hippocampus. The spacing between neighboring fields for a grid cell also increases along the dorsoventral axis. This article presents a neural model whose spiking neurons operate in a hierarchy of self-organizing maps, each obeying the same laws. This spiking GridPlaceMap model simulates how grid cells and place cells may develop. It responds to realistic rat navigational trajectories by learning grid cells with hexagonal grid firing fields of multiple spatial scales and place cells with one or more firing fields that match neurophysiological data about these cells and their development in juvenile rats. The place cells represent much larger spaces than the grid cells, which enable them to support navigational behaviors. Both self-organizing maps amplify and learn to categorize the most frequent and energetic co-occurrences of their inputs. The current results build upon a previous rate-based model of grid and place cell learning, and thus illustrate a general method for converting rate-based adaptive neural models, without the loss of any of their analog properties, into models whose cells obey spiking dynamics. New properties of the spiking GridPlaceMap model include the appearance of theta band modulation. The spiking model also opens a path for implementation in brain-emulating nanochips comprised of networks of noisy spiking neurons with multiple-level adaptive weights for controlling autonomous adaptive robots capable of spatial navigation. PMID:23577130
Proximity Navigation of Highly Constrained Spacecraft
NASA Technical Reports Server (NTRS)
Scarritt, S.; Swartwout, M.
2007-01-01
Bandit is a 3-kg automated spacecraft in development at Washington University in St. Louis. Bandit's primary mission is to demonstrate proximity navigation, including docking, around a 25-kg student-built host spacecraft. However, because of extreme constraints in mass, power and volume, traditional sensing and actuation methods are not available. In particular, Bandit carries only 8 fixed-magnitude cold-gas thrusters to control its 6 DOF motion. Bandit lacks true inertial sensing, and the ability to sense position relative to the host has error bounds that approach the size of the Bandit itself. Some of the navigation problems are addressed through an extremely robust, error-tolerant soft dock. In addition, we have identified a control methodology that performs well in this constrained environment: behavior-based velocity potential functions, which use a minimum-seeking method similar to Lyapunov functions. We have also adapted the discrete Kalman filter for use on Bandit for position estimation and have developed a similar measurement vs. propagation weighting algorithm for attitude estimation. This paper provides an overview of Bandit and describes the control and estimation approach. Results using our 6DOF flight simulator are provided, demonstrating that these methods show promise for flight use.
Real-time artificial intelligence issues in the development of the adaptive tactical navigator
NASA Technical Reports Server (NTRS)
Green, Peter E.; Glasson, Douglas P.; Pomarede, Jean-Michel L.; Acharya, Narayan A.
1987-01-01
Adaptive Tactical Navigation (ATN) is a laboratory prototype of a knowledge based system to provide navigation system management and decision aiding in the next generation of tactical aircraft. ATN's purpose is to manage a set of multimode navigation equipment, dynamically selecting the best equipment to use in accordance with mission goals and phase, threat environment, equipment malfunction status, and battle damage. ATN encompasses functions as diverse as sensor data interpretation, diagnosis, and planning. Real time issues that were identified in ATN and the approaches used to address them are addressed. Functional requirements and a global architecture for the ATN system are described. Decision making with time constraints are discussed. Two subproblems are identified; making decisions with incomplete information and with limited resources. Approaches used in ATN to address real time performance are described and simulation results are discussed.
Li, Zheng; Zhang, Hai; Zhou, Qifan; Che, Huan
2017-09-05
The main objective of the introduced study is to design an adaptive Inertial Navigation System/Global Navigation Satellite System (INS/GNSS) tightly-coupled integration system that can provide more reliable navigation solutions by making full use of an adaptive Kalman filter (AKF) and satellite selection algorithm. To achieve this goal, we develop a novel redundant measurement noise covariance estimation (RMNCE) theorem, which adaptively estimates measurement noise properties by analyzing the difference sequences of system measurements. The proposed RMNCE approach is then applied to design both a modified weighted satellite selection algorithm and a type of adaptive unscented Kalman filter (UKF) to improve the performance of the tightly-coupled integration system. In addition, an adaptive measurement noise covariance expanding algorithm is developed to mitigate outliers when facing heavy multipath and other harsh situations. Both semi-physical simulation and field experiments were conducted to evaluate the performance of the proposed architecture and were compared with state-of-the-art algorithms. The results validate that the RMNCE provides a significant improvement in the measurement noise covariance estimation and the proposed architecture can improve the accuracy and reliability of the INS/GNSS tightly-coupled systems. The proposed architecture can effectively limit positioning errors under conditions of poor GNSS measurement quality and outperforms all the compared schemes.
Li, Zheng; Zhang, Hai; Zhou, Qifan; Che, Huan
2017-01-01
The main objective of the introduced study is to design an adaptive Inertial Navigation System/Global Navigation Satellite System (INS/GNSS) tightly-coupled integration system that can provide more reliable navigation solutions by making full use of an adaptive Kalman filter (AKF) and satellite selection algorithm. To achieve this goal, we develop a novel redundant measurement noise covariance estimation (RMNCE) theorem, which adaptively estimates measurement noise properties by analyzing the difference sequences of system measurements. The proposed RMNCE approach is then applied to design both a modified weighted satellite selection algorithm and a type of adaptive unscented Kalman filter (UKF) to improve the performance of the tightly-coupled integration system. In addition, an adaptive measurement noise covariance expanding algorithm is developed to mitigate outliers when facing heavy multipath and other harsh situations. Both semi-physical simulation and field experiments were conducted to evaluate the performance of the proposed architecture and were compared with state-of-the-art algorithms. The results validate that the RMNCE provides a significant improvement in the measurement noise covariance estimation and the proposed architecture can improve the accuracy and reliability of the INS/GNSS tightly-coupled systems. The proposed architecture can effectively limit positioning errors under conditions of poor GNSS measurement quality and outperforms all the compared schemes. PMID:28872629
NASA Technical Reports Server (NTRS)
1977-01-01
The use of computers for aircraft control, flight simulation, and inertial navigation is explored. The man-machine relation problem in aviation is addressed. Simple and self-adapting autopilots are described and the assets and liabilities of digital navigation techniques are assessed.
Lyu, Weiwei
2017-01-01
Transfer alignment is always a key technology in a strapdown inertial navigation system (SINS) because of its rapidity and accuracy. In this paper a transfer alignment model is established, which contains the SINS error model and the measurement model. The time delay in the process of transfer alignment is analyzed, and an H∞ filtering method with delay compensation is presented. Then the H∞ filtering theory and the robust mechanism of H∞ filter are deduced and analyzed in detail. In order to improve the transfer alignment accuracy in SINS with time delay, an adaptive H∞ filtering method with delay compensation is proposed. Since the robustness factor plays an important role in the filtering process and has effect on the filtering accuracy, the adaptive H∞ filter with delay compensation can adjust the value of robustness factor adaptively according to the dynamic external environment. The vehicle transfer alignment experiment indicates that by using the adaptive H∞ filtering method with delay compensation, the transfer alignment accuracy and the pure inertial navigation accuracy can be dramatically improved, which demonstrates the superiority of the proposed filtering method. PMID:29182592
Wei, Wenhui; Gao, Zhaohui; Gao, Shesheng; Jia, Ke
2018-04-09
In order to meet the requirements of autonomy and reliability for the navigation system, combined with the method of measuring speed by using the spectral redshift information of the natural celestial bodies, a new scheme, consisting of Strapdown Inertial Navigation System (SINS)/Spectral Redshift (SRS)/Geomagnetic Navigation System (GNS), is designed for autonomous integrated navigation systems. The principle of this SINS/SRS/GNS autonomous integrated navigation system is explored, and the corresponding mathematical model is established. Furthermore, a robust adaptive central difference particle filtering algorithm is proposed for this autonomous integrated navigation system. The simulation experiments are conducted and the results show that the designed SINS/SRS/GNS autonomous integrated navigation system possesses good autonomy, strong robustness and high reliability, thus providing a new solution for autonomous navigation technology.
Rodent models of adaptive decision making.
Izquierdo, Alicia; Belcher, Annabelle M
2012-01-01
Adaptive decision making affords the animal the ability to respond quickly to changes in a dynamic environment: one in which attentional demands, cost or effort to procure the reward, and reward contingencies change frequently. The more flexible the organism is in adapting choice behavior, the more command and success the organism has in navigating its environment. Maladaptive decision making is at the heart of much neuropsychiatric disease, including addiction. Thus, a better understanding of the mechanisms that underlie normal, adaptive decision making helps achieve a better understanding of certain diseases that incorporate maladaptive decision making as a core feature. This chapter presents three general domains of methods that the experimenter can manipulate in animal decision-making tasks: attention, effort, and reward contingency. Here, we present detailed methods of rodent tasks frequently employed within these domains: the Attentional Set-Shift Task, Effortful T-maze Task, and Visual Discrimination Reversal Learning. These tasks all recruit regions within the frontal cortex and the striatum, and performance is heavily modulated by the neurotransmitter dopamine, making these assays highly valid measures in the study of psychostimulant addiction.
Murty, Vishnu P; LaBar, Kevin S; Hamilton, Derek A; Adcock, R Alison
2011-01-01
The present study investigated the effects of approach versus avoidance motivation on declarative learning. Human participants navigated a virtual reality version of the Morris water task, a classic spatial memory paradigm, adapted to permit the experimental manipulation of motivation during learning. During this task, participants were instructed to navigate to correct platforms while avoiding incorrect platforms. To manipulate motivational states participants were either rewarded for navigating to correct locations (approach) or punished for navigating to incorrect platforms (avoidance). Participants' skin conductance levels (SCLs) were recorded during navigation to investigate the role of physiological arousal in motivated learning. Behavioral results revealed that, overall, approach motivation enhanced and avoidance motivation impaired memory performance compared to nonmotivated spatial learning. This advantage was evident across several performance indices, including accuracy, learning rate, path length, and proximity to platform locations during probe trials. SCL analysis revealed three key findings. First, within subjects, arousal interacted with approach motivation, such that high arousal on a given trial was associated with performance deficits. In addition, across subjects, high arousal negated or reversed the benefits of approach motivation. Finally, low-performing, highly aroused participants showed SCL responses similar to those of avoidance-motivation participants, suggesting that for these individuals, opportunities for reward may evoke states of learning similar to those typically evoked by threats of punishment. These results provide a novel characterization of how approach and avoidance motivation influence declarative memory and indicate a critical and selective role for arousal in determining how reinforcement influences goal-oriented learning.
Murty, Vishnu P.; LaBar, Kevin S.; Hamilton, Derek A.; Adcock, R. Alison
2011-01-01
The present study investigated the effects of approach versus avoidance motivation on declarative learning. Human participants navigated a virtual reality version of the Morris water task, a classic spatial memory paradigm, adapted to permit the experimental manipulation of motivation during learning. During this task, participants were instructed to navigate to correct platforms while avoiding incorrect platforms. To manipulate motivational states participants were either rewarded for navigating to correct locations (approach) or punished for navigating to incorrect platforms (avoidance). Participants’ skin conductance levels (SCLs) were recorded during navigation to investigate the role of physiological arousal in motivated learning. Behavioral results revealed that, overall, approach motivation enhanced and avoidance motivation impaired memory performance compared to nonmotivated spatial learning. This advantage was evident across several performance indices, including accuracy, learning rate, path length, and proximity to platform locations during probe trials. SCL analysis revealed three key findings. First, within subjects, arousal interacted with approach motivation, such that high arousal on a given trial was associated with performance deficits. In addition, across subjects, high arousal negated or reversed the benefits of approach motivation. Finally, low-performing, highly aroused participants showed SCL responses similar to those of avoidance–motivation participants, suggesting that for these individuals, opportunities for reward may evoke states of learning similar to those typically evoked by threats of punishment. These results provide a novel characterization of how approach and avoidance motivation influence declarative memory and indicate a critical and selective role for arousal in determining how reinforcement influences goal-oriented learning. PMID:22021253
Navigating towards improved surgical safety using aviation-based strategies.
Kao, Lillian S; Thomas, Eric J
2008-04-01
Safety practices in the aviation industry are being increasingly adapted to healthcare in an effort to reduce medical errors and patient harm. However, caution should be applied in embracing these practices because of limited experience in surgical disciplines, lack of rigorous research linking these practices to outcome, and fundamental differences between the two industries. Surgeons should have an in-depth understanding of the principles and data supporting aviation-based safety strategies before routinely adopting them. This paper serves as a review of strategies adapted to improve surgical safety, including the following: implementation of crew resource management in training operative teams; incorporation of simulation in training of technical and nontechnical skills; and analysis of contributory factors to errors using surveys, behavioral marker systems, human factors analysis, and incident reporting. Avenues and challenges for future research are also discussed.
NASA Astrophysics Data System (ADS)
Smith-Ferguson, Jules; Reid, Chris R.; Latty, Tanya; Beekman, Madeleine
2017-10-01
The ability to navigate through an environment is critical to most organisms’ ability to survive and reproduce. The presence of a memory system greatly enhances navigational success. Therefore, natural selection is likely to drive the creation of memory systems, even in non-neuronal organisms, if having such a system is adaptive. Here we examine if the external spatial memory system present in the acellular slime mould, Physarum polycephalum, provides an adaptive advantage for resource acquisition. P. polycephalum lays tracks of extracellular slime as it moves through its environment. Previous work has shown that the presence of extracellular slime allows the organism to escape from a trap in laboratory experiments simply by avoiding areas previously explored. Here we further investigate the benefits of using extracellular slime as an external spatial memory by testing the organism’s ability to navigate through environments of differing complexity with and without the ability to use its external memory. Our results suggest that the external memory has an adaptive advantage in ‘open’ and simple bounded environments. However, in a complex bounded environment, the extracellular slime provides no advantage, and may even negatively affect the organism’s navigational abilities. Our results indicate that the exact experimental set up matters if one wants to fully understand how the presence of extracellular slime affects the slime mould’s search behaviour.
Distinct retinal pathways drive spatial orientation behaviors in zebrafish navigation.
Burgess, Harold A; Schoch, Hannah; Granato, Michael
2010-02-23
Navigation requires animals to adjust ongoing movements in response to pertinent features of the environment and select between competing target cues. The neurobiological basis of navigational behavior in vertebrates is hard to analyze, partly because underlying neural circuits are experience dependent. Phototaxis in zebrafish is a hardwired navigational behavior, performed at a stage when larvae swim by using a small repertoire of stereotyped movements. We established conditions to elicit robust phototaxis behavior and found that zebrafish larvae deploy directional orienting maneuvers and regulate forward swimming speed to navigate toward a target light. Using genetic analysis and targeted laser ablations, we show that retinal ON and OFF pathways play distinct roles during phototaxis. The retinal OFF pathway controls turn movements via retinotectal projections and establishes correct orientation by causing larvae to turn away from nontarget areas. In contrast, the retinal ON pathway activates the serotonergic system to trigger rapid forward swimming toward the target. Computational simulation of phototaxis with an OFF-turn, ON-approach algorithm verifies that our model accounts for key features of phototaxis and provides a simple and robust mechanism for behavioral choice between competing targets. Copyright 2010 Elsevier Ltd. All rights reserved.
Anisotropy of Human Horizontal and Vertical Navigation in Real Space: Behavioral and PET Correlates.
Zwergal, Andreas; Schöberl, Florian; Xiong, Guoming; Pradhan, Cauchy; Covic, Aleksandar; Werner, Philipp; Trapp, Christoph; Bartenstein, Peter; la Fougère, Christian; Jahn, Klaus; Dieterich, Marianne; Brandt, Thomas
2016-10-17
Spatial orientation was tested during a horizontal and vertical real navigation task in humans. Video tracking of eye movements was used to analyse the behavioral strategy and combined with simultaneous measurements of brain activation and metabolism ([18F]-FDG-PET). Spatial navigation performance was significantly better during horizontal navigation. Horizontal navigation was predominantly visually and landmark-guided. PET measurements indicated that glucose metabolism increased in the right hippocampus, bilateral retrosplenial cortex, and pontine tegmentum during horizontal navigation. In contrast, vertical navigation was less reliant on visual and landmark information. In PET, vertical navigation activated the bilateral hippocampus and insula. Direct comparison revealed a relative activation in the pontine tegmentum and visual cortical areas during horizontal navigation and in the flocculus, insula, and anterior cingulate cortex during vertical navigation. In conclusion, these data indicate a functional anisotropy of human 3D-navigation in favor of the horizontal plane. There are common brain areas for both forms of navigation (hippocampus) as well as unique areas such as the retrosplenial cortex, visual cortex (horizontal navigation), flocculus, and vestibular multisensory cortex (vertical navigation). Visually guided landmark recognition seems to be more important for horizontal navigation, while distance estimation based on vestibular input might be more relevant for vertical navigation. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Fuzzy Adaptive Cubature Kalman Filter for Integrated Navigation Systems.
Tseng, Chien-Hao; Lin, Sheng-Fuu; Jwo, Dah-Jing
2016-07-26
This paper presents a sensor fusion method based on the combination of cubature Kalman filter (CKF) and fuzzy logic adaptive system (FLAS) for the integrated navigation systems, such as the GPS/INS (Global Positioning System/inertial navigation system) integration. The third-degree spherical-radial cubature rule applied in the CKF has been employed to avoid the numerically instability in the system model. In processing navigation integration, the performance of nonlinear filter based estimation of the position and velocity states may severely degrade caused by modeling errors due to dynamics uncertainties of the vehicle. In order to resolve the shortcoming for selecting the process noise covariance through personal experience or numerical simulation, a scheme called the fuzzy adaptive cubature Kalman filter (FACKF) is presented by introducing the FLAS to adjust the weighting factor of the process noise covariance matrix. The FLAS is incorporated into the CKF framework as a mechanism for timely implementing the tuning of process noise covariance matrix based on the information of degree of divergence (DOD) parameter. The proposed FACKF algorithm shows promising accuracy improvement as compared to the extended Kalman filter (EKF), unscented Kalman filter (UKF), and CKF approaches.
Fuzzy Adaptive Cubature Kalman Filter for Integrated Navigation Systems
Tseng, Chien-Hao; Lin, Sheng-Fuu; Jwo, Dah-Jing
2016-01-01
This paper presents a sensor fusion method based on the combination of cubature Kalman filter (CKF) and fuzzy logic adaptive system (FLAS) for the integrated navigation systems, such as the GPS/INS (Global Positioning System/inertial navigation system) integration. The third-degree spherical-radial cubature rule applied in the CKF has been employed to avoid the numerically instability in the system model. In processing navigation integration, the performance of nonlinear filter based estimation of the position and velocity states may severely degrade caused by modeling errors due to dynamics uncertainties of the vehicle. In order to resolve the shortcoming for selecting the process noise covariance through personal experience or numerical simulation, a scheme called the fuzzy adaptive cubature Kalman filter (FACKF) is presented by introducing the FLAS to adjust the weighting factor of the process noise covariance matrix. The FLAS is incorporated into the CKF framework as a mechanism for timely implementing the tuning of process noise covariance matrix based on the information of degree of divergence (DOD) parameter. The proposed FACKF algorithm shows promising accuracy improvement as compared to the extended Kalman filter (EKF), unscented Kalman filter (UKF), and CKF approaches. PMID:27472336
Fuzzy adaptive interacting multiple model nonlinear filter for integrated navigation sensor fusion.
Tseng, Chien-Hao; Chang, Chih-Wen; Jwo, Dah-Jing
2011-01-01
In this paper, the application of the fuzzy interacting multiple model unscented Kalman filter (FUZZY-IMMUKF) approach to integrated navigation processing for the maneuvering vehicle is presented. The unscented Kalman filter (UKF) employs a set of sigma points through deterministic sampling, such that a linearization process is not necessary, and therefore the errors caused by linearization as in the traditional extended Kalman filter (EKF) can be avoided. The nonlinear filters naturally suffer, to some extent, the same problem as the EKF for which the uncertainty of the process noise and measurement noise will degrade the performance. As a structural adaptation (model switching) mechanism, the interacting multiple model (IMM), which describes a set of switching models, can be utilized for determining the adequate value of process noise covariance. The fuzzy logic adaptive system (FLAS) is employed to determine the lower and upper bounds of the system noise through the fuzzy inference system (FIS). The resulting sensor fusion strategy can efficiently deal with the nonlinear problem for the vehicle navigation. The proposed FUZZY-IMMUKF algorithm shows remarkable improvement in the navigation estimation accuracy as compared to the relatively conventional approaches such as the UKF and IMMUKF.
Authoring of Adaptive Computer Assisted Assessment of Free-Text Answers
ERIC Educational Resources Information Center
Alfonseca, Enrique; Carro, Rosa M.; Freire, Manuel; Ortigosa, Alvaro; Perez, Diana; Rodriguez, Pilar
2005-01-01
Adaptation techniques can be applied not only to the multimedia contents or navigational possibilities of a course, but also to the assessment. In order to facilitate the authoring of adaptive free-text assessment and its integration within adaptive web-based courses, Adaptive Hypermedia techniques and Free-text Computer Assisted Assessment are…
Wei, Wenhui; Gao, Zhaohui; Gao, Shesheng; Jia, Ke
2018-01-01
In order to meet the requirements of autonomy and reliability for the navigation system, combined with the method of measuring speed by using the spectral redshift information of the natural celestial bodies, a new scheme, consisting of Strapdown Inertial Navigation System (SINS)/Spectral Redshift (SRS)/Geomagnetic Navigation System (GNS), is designed for autonomous integrated navigation systems. The principle of this SINS/SRS/GNS autonomous integrated navigation system is explored, and the corresponding mathematical model is established. Furthermore, a robust adaptive central difference particle filtering algorithm is proposed for this autonomous integrated navigation system. The simulation experiments are conducted and the results show that the designed SINS/SRS/GNS autonomous integrated navigation system possesses good autonomy, strong robustness and high reliability, thus providing a new solution for autonomous navigation technology. PMID:29642549
Mobile robot navigation modulated by artificial emotions.
Lee-Johnson, C P; Carnegie, D A
2010-04-01
For artificial intelligence research to progress beyond the highly specialized task-dependent implementations achievable today, researchers may need to incorporate aspects of biological behavior that have not traditionally been associated with intelligence. Affective processes such as emotions may be crucial to the generalized intelligence possessed by humans and animals. A number of robots and autonomous agents have been created that can emulate human emotions, but the majority of this research focuses on the social domain. In contrast, we have developed a hybrid reactive/deliberative architecture that incorporates artificial emotions to improve the general adaptive performance of a mobile robot for a navigation task. Emotions are active on multiple architectural levels, modulating the robot's decisions and actions to suit the context of its situation. Reactive emotions interact with the robot's control system, altering its parameters in response to appraisals from short-term sensor data. Deliberative emotions are learned associations that bias path planning in response to eliciting objects or events. Quantitative results are presented that demonstrate situations in which each artificial emotion can be beneficial to performance.
Exploring the neural bases of goal-directed motor behavior using fully resolved simulations
NASA Astrophysics Data System (ADS)
Patel, Namu; Patankar, Neelesh A.
2016-11-01
Undulatory swimming is an ideal problem for understanding the neural architecture for motor control and movement; a vertebrate's robust morphology and adaptive locomotive gait allows the swimmer to navigate complex environments. Simple mathematical models for neurally activated muscle contractions have been incorporated into a swimmer immersed in fluid. Muscle contractions produce bending moments which determine the swimming kinematics. The neurobiology of goal-directed locomotion is explored using fast, efficient, and fully resolved constraint-based immersed boundary simulations. Hierarchical control systems tune the strength, frequency, and duty cycle for neural activation waves to produce multifarious swimming gaits or synergies. Simulation results are used to investigate why the basal ganglia and other control systems may command a particular neural pattern to accomplish a task. Using simple neural models, the effect of proprioceptive feedback on refining the body motion is demonstrated. Lastly, the ability for a learned swimmer to successfully navigate a complex environment is tested. This work is supported by NSF CBET 1066575 and NSF CMMI 0941674.
Fault Mitigation Schemes for Future Spaceflight Multicore Processors
NASA Technical Reports Server (NTRS)
Alexander, James W.; Clement, Bradley J.; Gostelow, Kim P.; Lai, John Y.
2012-01-01
Future planetary exploration missions demand significant advances in on-board computing capabilities over current avionics architectures based on a single-core processing element. The state-of-the-art multi-core processor provides much promise in meeting such challenges while introducing new fault tolerance problems when applied to space missions. Software-based schemes are being presented in this paper that can achieve system-level fault mitigation beyond that provided by radiation-hard-by-design (RHBD). For mission and time critical applications such as the Terrain Relative Navigation (TRN) for planetary or small body navigation, and landing, a range of fault tolerance methods can be adapted by the application. The software methods being investigated include Error Correction Code (ECC) for data packet routing between cores, virtual network routing, Triple Modular Redundancy (TMR), and Algorithm-Based Fault Tolerance (ABFT). A robust fault tolerance framework that provides fail-operational behavior under hard real-time constraints and graceful degradation will be demonstrated using TRN executing on a commercial Tilera(R) processor with simulated fault injections.
One Teacher's Instructional Adaptations and Her Students' Reflections on the Adaptations
ERIC Educational Resources Information Center
Parsons, Seth A.; Vaughn, Margaret
2016-01-01
Currently, much debate exists nationally regarding how to define and measure teacher effectiveness. Educators and researchers agree that adaptability is an important aspect of teacher effectiveness. Teachers must adapt their instruction to navigate the complexity of classroom instruction. However, little research has specifically examined teacher…
To Adapt or Not to Adapt: Navigating an Implementation Conundrum
ERIC Educational Resources Information Center
Leko, Melinda M.
2015-01-01
Maximizing the effectiveness of evidence-based practices (EBPs) requires an optimal balance of implementation fidelity and adaptation so EBPs fit local contexts and meet the individual learning needs of students with disabilities. The framework for classifying adaptations presented in this article can help educators make decisions about whether…
From Objects to Landmarks: The Function of Visual Location Information in Spatial Navigation
Chan, Edgar; Baumann, Oliver; Bellgrove, Mark A.; Mattingley, Jason B.
2012-01-01
Landmarks play an important role in guiding navigational behavior. A host of studies in the last 15 years has demonstrated that environmental objects can act as landmarks for navigation in different ways. In this review, we propose a parsimonious four-part taxonomy for conceptualizing object location information during navigation. We begin by outlining object properties that appear to be important for a landmark to attain salience. We then systematically examine the different functions of objects as navigational landmarks based on previous behavioral and neuroanatomical findings in rodents and humans. Evidence is presented showing that single environmental objects can function as navigational beacons, or act as associative or orientation cues. In addition, we argue that extended surfaces or boundaries can act as landmarks by providing a frame of reference for encoding spatial information. The present review provides a concise taxonomy of the use of visual objects as landmarks in navigation and should serve as a useful reference for future research into landmark-based spatial navigation. PMID:22969737
From Resource-Adaptive Navigation Assistance to Augmented Cognition
NASA Astrophysics Data System (ADS)
Zimmer, Hubert D.; Münzer, Stefan; Baus, Jörg
In an assistance scenario, a computer provides purposive information supporting a human user in an everyday situation. Wayfinding with navigation assistance is a prototypical assistance scenario. The present chapter analyzes the interplay of the resources of the assistance system and the resources of the user. The navigation assistance system provides geographic knowledge, positioning information, route planning, spatial overview information, and route commands at decision points. The user's resources encompass spatial knowledge, spatial abilities and visuo-spatial working memory, orientation strategies, and cultural habit. Flexible adaptations of the assistance system to available resources of the user are described, taking different wayfinding goals, situational constraints, and individual differences into account. Throughout the chapter, the idea is pursued that the available resources of the user should be kept active.
33 CFR 385.31 - Adaptive management program.
Code of Federal Regulations, 2013 CFR
2013-07-01
....31 Section 385.31 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE PROGRAMMATIC REGULATIONS FOR THE COMPREHENSIVE EVERGLADES RESTORATION PLAN... Engineers and the South Florida Water Management District shall, in consultation with the Department of the...
33 CFR 385.31 - Adaptive management program.
Code of Federal Regulations, 2012 CFR
2012-07-01
....31 Section 385.31 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE PROGRAMMATIC REGULATIONS FOR THE COMPREHENSIVE EVERGLADES RESTORATION PLAN... Engineers and the South Florida Water Management District shall, in consultation with the Department of the...
33 CFR 385.31 - Adaptive management program.
Code of Federal Regulations, 2014 CFR
2014-07-01
....31 Section 385.31 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE PROGRAMMATIC REGULATIONS FOR THE COMPREHENSIVE EVERGLADES RESTORATION PLAN... Engineers and the South Florida Water Management District shall, in consultation with the Department of the...
33 CFR 385.31 - Adaptive management program.
Code of Federal Regulations, 2011 CFR
2011-07-01
....31 Section 385.31 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE PROGRAMMATIC REGULATIONS FOR THE COMPREHENSIVE EVERGLADES RESTORATION PLAN... Engineers and the South Florida Water Management District shall, in consultation with the Department of the...
Li, Hong; Liu, Mingyong; Zhang, Feihu
2017-01-01
This paper presents a multi-objective evolutionary algorithm of bio-inspired geomagnetic navigation for Autonomous Underwater Vehicle (AUV). Inspired by the biological navigation behavior, the solution was proposed without using a priori information, simply by magnetotaxis searching. However, the existence of the geomagnetic anomalies has significant influence on the geomagnetic navigation system, which often disrupts the distribution of the geomagnetic field. An extreme value region may easily appear in abnormal regions, which makes AUV lost in the navigation phase. This paper proposes an improved bio-inspired algorithm with behavior constraints, for sake of making AUV escape from the abnormal region. First, the navigation problem is considered as the optimization problem. Second, the environmental monitoring operator is introduced, to determine whether the algorithm falls into the geomagnetic anomaly region. Then, the behavior constraint operator is employed to get out of the abnormal region. Finally, the termination condition is triggered. Compared to the state-of- the-art, the proposed approach effectively overcomes the disturbance of the geomagnetic abnormal. The simulation result demonstrates the reliability and feasibility of the proposed approach in complex environments.
Li, Hong; Liu, Mingyong; Zhang, Feihu
2017-01-01
This paper presents a multi-objective evolutionary algorithm of bio-inspired geomagnetic navigation for Autonomous Underwater Vehicle (AUV). Inspired by the biological navigation behavior, the solution was proposed without using a priori information, simply by magnetotaxis searching. However, the existence of the geomagnetic anomalies has significant influence on the geomagnetic navigation system, which often disrupts the distribution of the geomagnetic field. An extreme value region may easily appear in abnormal regions, which makes AUV lost in the navigation phase. This paper proposes an improved bio-inspired algorithm with behavior constraints, for sake of making AUV escape from the abnormal region. First, the navigation problem is considered as the optimization problem. Second, the environmental monitoring operator is introduced, to determine whether the algorithm falls into the geomagnetic anomaly region. Then, the behavior constraint operator is employed to get out of the abnormal region. Finally, the termination condition is triggered. Compared to the state-of- the-art, the proposed approach effectively overcomes the disturbance of the geomagnetic abnormal. The simulation result demonstrates the reliability and feasibility of the proposed approach in complex environments. PMID:28747884
Negen, James; Roome, Hannah E; Keenaghan, Samantha; Nardini, Marko
2018-06-01
Spatial memory is an important aspect of adaptive behavior and experience, providing both content and context to the perceptions and memories that we form in everyday life. Young children's abilities in this realm shift from mainly egocentric (self-based) to include allocentric (world-based) codings at around 4 years of age. However, information about the cognitive mechanisms underlying acquisition of these new abilities is still lacking. We examined allocentric spatial recall in 4.5- to 8.5-year-olds, looking for continuity with navigation as previously studied in 2- to 4-year-olds and other species. We specifically predicted an advantage for three-dimensional landmarks over two-dimensional ones and for recalling targets "in the middle" versus elsewhere. However, we did not find compelling evidence for either of these effects, and indeed some analyses even support the opposite of each of these conclusions. There were also no significant interactions with age. These findings highlight the incompleteness of our overall theories of the development of spatial cognition in general and allocentric spatial recall in particular. They also suggest that allocentric spatial recall involves processes that have separate behavioral characteristics from other cognitive systems involved in navigation earlier in life and in other species. Copyright © 2018 Elsevier Inc. All rights reserved.
A 2D virtual reality system for visual goal-driven navigation in zebrafish larvae
Jouary, Adrien; Haudrechy, Mathieu; Candelier, Raphaël; Sumbre, German
2016-01-01
Animals continuously rely on sensory feedback to adjust motor commands. In order to study the role of visual feedback in goal-driven navigation, we developed a 2D visual virtual reality system for zebrafish larvae. The visual feedback can be set to be similar to what the animal experiences in natural conditions. Alternatively, modification of the visual feedback can be used to study how the brain adapts to perturbations. For this purpose, we first generated a library of free-swimming behaviors from which we learned the relationship between the trajectory of the larva and the shape of its tail. Then, we used this technique to infer the intended displacements of head-fixed larvae, and updated the visual environment accordingly. Under these conditions, larvae were capable of aligning and swimming in the direction of a whole-field moving stimulus and produced the fine changes in orientation and position required to capture virtual prey. We demonstrate the sensitivity of larvae to visual feedback by updating the visual world in real-time or only at the end of the discrete swimming episodes. This visual feedback perturbation caused impaired performance of prey-capture behavior, suggesting that larvae rely on continuous visual feedback during swimming. PMID:27659496
Fernandez-Leon, Jose A; Acosta, Gerardo G; Rozenfeld, Alejandro
2014-10-01
Researchers in diverse fields, such as in neuroscience, systems biology and autonomous robotics, have been intrigued by the origin and mechanisms for biological robustness. Darwinian evolution, in general, has suggested that adaptive mechanisms as a way of reaching robustness, could evolve by natural selection acting successively on numerous heritable variations. However, is this understanding enough for realizing how biological systems remain robust during their interactions with the surroundings? Here, we describe selected studies of bio-inspired systems that show behavioral robustness. From neurorobotics, cognitive, self-organizing and artificial immune system perspectives, our discussions focus mainly on how robust behaviors evolve or emerge in these systems, having the capacity of interacting with their surroundings. These descriptions are twofold. Initially, we introduce examples from autonomous robotics to illustrate how the process of designing robust control can be idealized in complex environments for autonomous navigation in terrain and underwater vehicles. We also include descriptions of bio-inspired self-organizing systems. Then, we introduce other studies that contextualize experimental evolution with simulated organisms and physical robots to exemplify how the process of natural selection can lead to the evolution of robustness by means of adaptive behaviors. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
The cerebellum: a new key structure in the navigation system
Rochefort, Christelle; Lefort, Julie M.; Rondi-Reig, Laure
2013-01-01
Early investigations of cerebellar function focused on motor learning, in particular on eyeblink conditioning and adaptation of the vestibulo-ocular reflex, and led to the general view that cerebellar long-term depression (LTD) at parallel fiber (PF)–Purkinje cell (PC) synapses is the neural correlate of cerebellar motor learning. Thereafter, while the full complexity of cerebellar plasticities was being unraveled, cerebellar involvement in more cognitive tasks—including spatial navigation—was further investigated. However, cerebellar implication in spatial navigation remains a matter of debate because motor deficits frequently associated with cerebellar damage often prevent the dissociation between its role in spatial cognition from its implication in motor function. Here, we review recent findings from behavioral and electrophysiological analyses of cerebellar mutant mouse models, which show that the cerebellum might participate in the construction of hippocampal spatial representation map (i.e., place cells) and thereby in goal-directed navigation. These recent advances in cerebellar research point toward a model in which computation from the cerebellum could be required for spatial representation and would involve the integration of multi-source self-motion information to: (1) transform the reference frame of vestibular signals and (2) distinguish between self- and externally-generated vestibular signals. We eventually present herein anatomical and functional connectivity data supporting a cerebello-hippocampal interaction. Whilst a direct cerebello-hippocampal projection has been suggested, recent investigations rather favor a multi-synaptic pathway involving posterior parietal and retrosplenial cortices, two regions critically involved in spatial navigation. PMID:23493515
Mental simulation of routes during navigation involves adaptive temporal compression
Arnold, Aiden E.G.F.; Iaria, Giuseppe; Ekstrom, Arne D.
2016-01-01
Mental simulation is a hallmark feature of human cognition, allowing features from memories to be flexibly used during prospection. While past studies demonstrate the preservation of real-world features such as size and distance during mental simulation, their temporal dynamics remains unknown. Here, we compare mental simulations to navigation of routes in a large-scale spatial environment to test the hypothesis that such simulations are temporally compressed in an adaptive manner. Our results show that simulations occurred at 2.39x the speed it took to navigate a route, increasing in compression (3.57x) for slower movement speeds. Participant self-reports of vividness and spatial coherence of simulations also correlated strongly with simulation duration, providing an important link between subjective experiences of simulated events and how spatial representations are combined during prospection. These findings suggest that simulation of spatial events involve adaptive temporal mechanisms, mediated partly by the fidelity of memories used to generate the simulation. PMID:27568586
Kangovi, Shreya; Carter, Tamala; Charles, Dorothy; Smith, Robyn A; Glanz, Karen; Long, Judith A; Grande, David
2016-12-01
Community health worker (CHW) programs are an increasingly popular strategy for patient-centered care. Many health care organizations are building CHW programs through trial and error, rather than implementing or adapting evidence-based interventions. This study used a qualitative design-mapping process to adapt an evidence-based CHW intervention, originally developed and tested in the hospital setting, for use among outpatients with multiple chronic conditions. The study involved qualitative in-depth, semi-structured interviews with chronically ill, uninsured, or Medicaid outpatients from low-income zip codes (n = 21) and their primary care practice staff (n = 30). Three key themes informed adaptation of the original intervention for outpatients with multiple conditions. First, outpatients were overwhelmed by their multiple conditions and wished they could focus on 1 at a time. Thus, the first major revision was to design a low-literacy decision aid that patients and providers could use to select a condition to focus on during the intervention. Second, motivation for health behavior change was a more prominent theme than in the original intervention. It was decided that in addition to providing tailored social support as in the original intervention, CHWs would help patients track progress toward their chronic disease management goals to motivate health behavior change. Third, patients were already connected to primary care; yet they still needed additional support to navigate their clinic once the intervention ended. The intervention was revised to include a weekly clinic-based support group. Structured adaptation using qualitative design mapping may allow for rapid adaptation and scale-up of evidence-based CHW interventions across new settings and populations.
Flight Testing of Terrain-Relative Navigation and Large-Divert Guidance on a VTVL Rocket
NASA Technical Reports Server (NTRS)
Trawny, Nikolas; Benito, Joel; Tweddle, Brent; Bergh, Charles F.; Khanoyan, Garen; Vaughan, Geoffrey M.; Zheng, Jason X.; Villalpando, Carlos Y.; Cheng, Yang; Scharf, Daniel P.;
2015-01-01
Since 2011, the Autonomous Descent and Ascent Powered-Flight Testbed (ADAPT) has been used to demonstrate advanced descent and landing technologies onboard the Masten Space Systems (MSS) Xombie vertical-takeoff, vertical-landing suborbital rocket. The current instantiation of ADAPT is a stand-alone payload comprising sensing and avionics for terrain-relative navigation and fuel-optimal onboard planning of large divert trajectories, thus providing complete pin-point landing capabilities needed for planetary landers. To this end, ADAPT combines two technologies developed at JPL, the Lander Vision System (LVS), and the Guidance for Fuel Optimal Large Diverts (G-FOLD) software. This paper describes the integration and testing of LVS and G-FOLD in the ADAPT payload, culminating in two successful free flight demonstrations on the Xombie vehicle conducted in December 2014.
Lebedev, Mikhail A; Pimashkin, Alexey; Ossadtchi, Alexei
2018-01-01
According to the currently prevailing theory, hippocampal formation constructs and maintains cognitive spatial maps. Most of the experimental evidence for this theory comes from the studies on navigation in laboratory rats and mice, typically male animals. While these animals exhibit a rich repertoire of behaviors associated with navigation, including locomotion, head movements, whisking, sniffing, raring and scent marking, the contribution of these behavioral patterns to the hippocampal spatially-selective activity has not been sufficiently studied. Instead, many publications have considered animal position in space as the major variable that affects the firing of hippocampal place cells and entorhinal grid cells. Here we argue that future work should focus on a more detailed examination of different behaviors exhibited during navigation to better understand the mechanism of spatial tuning in hippocampal neurons. As an inquiry in this direction, we have analyzed data from two datasets, shared online, containing recordings from rats navigating in square and round arenas. Our analyses revealed patchy navigation patterns, evident from the spatial maps of animal position, velocity and acceleration. Moreover, grid cells available in the datasets exhibited similar periodicity as the navigation parameters. These findings indicate that activity of grid cells could affect navigation parameters and/or vice versa. Additionally, we speculate that scent marks left by navigating animals could contribute to neuronal responses while rats and mice sniff their environment; the act of sniffing could modulate neuronal discharges even in virtual visual environments. Accordingly, we propose that future experiments should contain additional controls for navigation patterns, whisking, sniffing and maps composed of scent marks.
An Algorithm for Autonomous Formation Obstacle Avoidance
NASA Astrophysics Data System (ADS)
Cruz, Yunior I.
The level of human interaction with Unmanned Aerial Systems varies greatly from remotely piloted aircraft to fully autonomous systems. In the latter end of the spectrum, the challenge lies in designing effective algorithms to dictate the behavior of the autonomous agents. A swarm of autonomous Unmanned Aerial Vehicles requires collision avoidance and formation flight algorithms to negotiate environmental challenges it may encounter during the execution of its mission, which may include obstacles and chokepoints. In this work, a simple algorithm is developed to allow a formation of autonomous vehicles to perform point to point navigation while avoiding obstacles and navigating through chokepoints. Emphasis is placed on maintaining formation structures. Rather than breaking formation and individually navigating around the obstacle or through the chokepoint, vehicles are required to assemble into appropriately sized/shaped sub-formations, bifurcate around the obstacle or negotiate the chokepoint, and reassemble into the original formation at the far side of the obstruction. The algorithm receives vehicle and environmental properties as inputs and outputs trajectories for each vehicle from start to the desired ending location. Simulation results show that the algorithm safely routes all vehicles past the obstruction while adhering to the aforementioned requirements. The formation adapts and successfully negotiates the obstacles and chokepoints in its path while maintaining proper vehicle separation.
Krieger, Jakob; Grandy, Ronald; Drew, Michelle M; Erland, Susanne; Stensmyr, Marcus C; Harzsch, Steffen; Hansson, Bill S
2012-01-01
We investigated the navigational capabilities of the world's largest land-living arthropod, the giant robber crab Birgus latro (Anomura, Coenobitidae); this crab reaches 4 kg in weight and can reach an age of up to 60 years. Populations are distributed over small Indo-Pacific islands of the tropics, including Christmas Island (Indian Ocean). Although this species has served as a crustacean model to explore anatomical, physiological, and ecological aspects of terrestrial adaptations, few behavioral analyses of it exist. We used a GPS-based telemetric system to analyze movements of freely roaming robber crabs, the first large-scale study of any arthropod using GPS technology to monitor behavior. Although female robber crabs are known to migrate to the coast for breeding, no such observations have been recorded for male animals. In total, we equipped 55 male robber crabs with GPS tags, successfully recording more than 1,500 crab days of activity, and followed some individual animals for as long as three months. Besides site fidelity with short-distance excursions, our data reveal long-distance movements (several kilometers) between the coast and the inland rainforest. These movements are likely related to mating, saltwater drinking and foraging. The tracking patterns indicate that crabs form route memories. Furthermore, translocation experiments show that robber crabs are capable of homing over large distances. We discuss if the search behavior induced in these experiments suggests path integration as another important navigation strategy.
Krieger, Jakob; Grandy, Ronald; Drew, Michelle M.; Erland, Susanne; Stensmyr, Marcus C.; Harzsch, Steffen; Hansson, Bill S.
2012-01-01
We investigated the navigational capabilities of the world's largest land-living arthropod, the giant robber crab Birgus latro (Anomura, Coenobitidae); this crab reaches 4 kg in weight and can reach an age of up to 60 years. Populations are distributed over small Indo-Pacific islands of the tropics, including Christmas Island (Indian Ocean). Although this species has served as a crustacean model to explore anatomical, physiological, and ecological aspects of terrestrial adaptations, few behavioral analyses of it exist. We used a GPS-based telemetric system to analyze movements of freely roaming robber crabs, the first large-scale study of any arthropod using GPS technology to monitor behavior. Although female robber crabs are known to migrate to the coast for breeding, no such observations have been recorded for male animals. In total, we equipped 55 male robber crabs with GPS tags, successfully recording more than 1,500 crab days of activity, and followed some individual animals for as long as three months. Besides site fidelity with short-distance excursions, our data reveal long-distance movements (several kilometers) between the coast and the inland rainforest. These movements are likely related to mating, saltwater drinking and foraging. The tracking patterns indicate that crabs form route memories. Furthermore, translocation experiments show that robber crabs are capable of homing over large distances. We discuss if the search behavior induced in these experiments suggests path integration as another important navigation strategy. PMID:23166774
INS/GNSS Tightly-Coupled Integration Using Quaternion-Based AUPF for USV.
Xia, Guoqing; Wang, Guoqing
2016-08-02
This paper addresses the problem of integration of Inertial Navigation System (INS) and Global Navigation Satellite System (GNSS) for the purpose of developing a low-cost, robust and highly accurate navigation system for unmanned surface vehicles (USVs). A tightly-coupled integration approach is one of the most promising architectures to fuse the GNSS data with INS measurements. However, the resulting system and measurement models turn out to be nonlinear, and the sensor stochastic measurement errors are non-Gaussian and distributed in a practical system. Particle filter (PF), one of the most theoretical attractive non-linear/non-Gaussian estimation methods, is becoming more and more attractive in navigation applications. However, the large computation burden limits its practical usage. For the purpose of reducing the computational burden without degrading the system estimation accuracy, a quaternion-based adaptive unscented particle filter (AUPF), which combines the adaptive unscented Kalman filter (AUKF) with PF, has been proposed in this paper. The unscented Kalman filter (UKF) is used in the algorithm to improve the proposal distribution and generate a posterior estimates, which specify the PF importance density function for generating particles more intelligently. In addition, the computational complexity of the filter is reduced with the avoidance of the re-sampling step. Furthermore, a residual-based covariance matching technique is used to adapt the measurement error covariance. A trajectory simulator based on a dynamic model of USV is used to test the proposed algorithm. Results show that quaternion-based AUPF can significantly improve the overall navigation accuracy and reliability.
NASA Technical Reports Server (NTRS)
Rodriguez, Guillermo (Editor)
1990-01-01
Various papers on intelligent control and adaptive systems are presented. Individual topics addressed include: control architecture for a Mars walking vehicle, representation for error detection and recovery in robot task plans, real-time operating system for robots, execution monitoring of a mobile robot system, statistical mechanics models for motion and force planning, global kinematics for manipulator planning and control, exploration of unknown mechanical assemblies through manipulation, low-level representations for robot vision, harmonic functions for robot path construction, simulation of dual behavior of an autonomous system. Also discussed are: control framework for hand-arm coordination, neural network approach to multivehicle navigation, electronic neural networks for global optimization, neural network for L1 norm linear regression, planning for assembly with robot hands, neural networks in dynamical systems, control design with iterative learning, improved fuzzy process control of spacecraft autonomous rendezvous using a genetic algorithm.
Fiore, Vincenzo G; Kottler, Benjamin; Gu, Xiaosi; Hirth, Frank
2017-01-01
The central complex in the insect brain is a composite of midline neuropils involved in processing sensory cues and mediating behavioral outputs to orchestrate spatial navigation. Despite recent advances, however, the neural mechanisms underlying sensory integration and motor action selections have remained largely elusive. In particular, it is not yet understood how the central complex exploits sensory inputs to realize motor functions associated with spatial navigation. Here we report an in silico interrogation of central complex-mediated spatial navigation with a special emphasis on the ellipsoid body. Based on known connectivity and function, we developed a computational model to test how the local connectome of the central complex can mediate sensorimotor integration to guide different forms of behavioral outputs. Our simulations show integration of multiple sensory sources can be effectively performed in the ellipsoid body. This processed information is used to trigger continuous sequences of action selections resulting in self-motion, obstacle avoidance and the navigation of simulated environments of varying complexity. The motor responses to perceived sensory stimuli can be stored in the neural structure of the central complex to simulate navigation relying on a collective of guidance cues, akin to sensory-driven innate or habitual behaviors. By comparing behaviors under different conditions of accessible sources of input information, we show the simulated insect computes visual inputs and body posture to estimate its position in space. Finally, we tested whether the local connectome of the central complex might also allow the flexibility required to recall an intentional behavioral sequence, among different courses of actions. Our simulations suggest that the central complex can encode combined representations of motor and spatial information to pursue a goal and thus successfully guide orientation behavior. Together, the observed computational features identify central complex circuitry, and especially the ellipsoid body, as a key neural correlate involved in spatial navigation.
Fiore, Vincenzo G.; Kottler, Benjamin; Gu, Xiaosi; Hirth, Frank
2017-01-01
The central complex in the insect brain is a composite of midline neuropils involved in processing sensory cues and mediating behavioral outputs to orchestrate spatial navigation. Despite recent advances, however, the neural mechanisms underlying sensory integration and motor action selections have remained largely elusive. In particular, it is not yet understood how the central complex exploits sensory inputs to realize motor functions associated with spatial navigation. Here we report an in silico interrogation of central complex-mediated spatial navigation with a special emphasis on the ellipsoid body. Based on known connectivity and function, we developed a computational model to test how the local connectome of the central complex can mediate sensorimotor integration to guide different forms of behavioral outputs. Our simulations show integration of multiple sensory sources can be effectively performed in the ellipsoid body. This processed information is used to trigger continuous sequences of action selections resulting in self-motion, obstacle avoidance and the navigation of simulated environments of varying complexity. The motor responses to perceived sensory stimuli can be stored in the neural structure of the central complex to simulate navigation relying on a collective of guidance cues, akin to sensory-driven innate or habitual behaviors. By comparing behaviors under different conditions of accessible sources of input information, we show the simulated insect computes visual inputs and body posture to estimate its position in space. Finally, we tested whether the local connectome of the central complex might also allow the flexibility required to recall an intentional behavioral sequence, among different courses of actions. Our simulations suggest that the central complex can encode combined representations of motor and spatial information to pursue a goal and thus successfully guide orientation behavior. Together, the observed computational features identify central complex circuitry, and especially the ellipsoid body, as a key neural correlate involved in spatial navigation. PMID:28824390
Astronomical Methods in Aerial Navigation
NASA Technical Reports Server (NTRS)
Beij, K Hilding
1925-01-01
The astronomical method of determining position is universally used in marine navigation and may also be of service in aerial navigation. The practical application of the method, however, must be modified and adapted to conform to the requirements of aviation. Much of this work of adaptation has already been accomplished, but being scattered through various technical journals in a number of languages, is not readily available. This report is for the purpose of collecting under one cover such previous work as appears to be of value to the aerial navigator, comparing instruments and methods, indicating the best practice, and suggesting future developments. The various methods of determining position and their application and value are outlined, and a brief resume of the theory of the astronomical method is given. Observation instruments are described in detail. A complete discussion of the reduction of observations follows, including a rapid method of finding position from the altitudes of two stars. Maps and map cases are briefly considered. A bibliography of the subject is appended.
Use of the Brainlab Disposable Stylet for endoscope and peel-away navigation.
Halliday, Jane; Kamaly, Ian
2016-12-01
Neuronavigation, the ability to perform real-time intra-operative guidance during cranial and/or spinal surgery, has increased both accuracy and safety in neurosurgery [2]. Cranial navigation of existing surgical instruments using Brainlab requires the use of an instrument adapter and clamp, which in our experience renders an endoscope 'top-heavy', difficult to manipulate, and the process of registration of the adapter quite time-consuming. A Brainlab Disposable Stylet was used to navigate fenestration of an entrapped temporal horn in a pediatric case. Accuracy was determined by target visualization relative to neuronavigation targeting. Accuracy was also calculated using basic trigonometry to establish the maximum tool tip inaccuracy for the disposible stylet inserted into a peel-away (Codman) and endoscope. The Brainlab Disposable Stylet was easier to use, more versatile, and as accurate as use of an instrument adapter and clamp. The maximum tool-tip inaccuracy for the endoscope was 0.967 mm, and the Codman peel-away 0.489 mm. A literature review did not reveal any reports of use of the Brainlab Disposable Stylet in this way, and we are unaware of this being used in common neurosurgical practice. We would recommend this technique in endoscopic cases that require use of Brainlab navigation.
Gao, Liqiang; Sun, Chao; Zhang, Chen; Zheng, Nenggan; Chen, Weidong; Zheng, Xiaoxiang
2013-01-01
Traditional automatic navigation methods for bio-robots are constrained to configured environments and thus can't be applied to tasks in unknown environments. With no consideration of bio-robot's own innate living ability and treating bio-robots in the same way as mechanical robots, those methods neglect the intelligence behavior of animals. This paper proposes a novel ratbot automatic navigation method in unknown environments using only reward stimulation and distance measurement. By utilizing rat's habit of thigmotaxis and its reward-seeking behavior, this method is able to incorporate rat's intrinsic intelligence of obstacle avoidance and path searching into navigation. Experiment results show that this method works robustly and can successfully navigate the ratbot to a target in the unknown environment. This work might put a solid base for application of ratbots and also has significant implication of automatic navigation for other bio-robots as well.
A study of navigation in virtual space
NASA Technical Reports Server (NTRS)
Darken, Rudy; Sibert, John L.; Shumaker, Randy
1994-01-01
In the physical world, man has developed efficient methods for navigation and orientation. These methods are dependent on the high-fidelity stimuli presented by the environment. When placed in a virtual world which cannot offer stimuli of the same quality due to computing constraints and immature technology, tasks requiring the maintenance of position and orientation knowledge become laborious. In this paper, we present a representative set of techniques based on principles of navigation derived from real world analogs including human and avian navigation behavior and cartography. A preliminary classification of virtual worlds is presented based on the size of the world, the density of objects in the world, and the level of activity taking place in the world. We also summarize an informal study we performed to determine how the tools influenced the subjects' navigation strategies and behavior. We conclude that principles extracted from real world navigation aids such as maps can be seen to apply in virtual environments.
The application of dummy noise adaptive Kalman filter in underwater navigation
NASA Astrophysics Data System (ADS)
Li, Song; Zhang, Chun-Hua; Luan, Jingde
2011-10-01
The track of underwater target is easy to be affected by the various by the various factors, which will cause poor performance in Kalman filter with the error in the state and measure model. In order to solve the situation, a method is provided with dummy noise compensative technology. Dummy noise is added to state and measure model artificially, and then the question can be solved by the adaptive Kalman filter with unknown time-changed statistical character. The simulation result of underwater navigation proves the algorithm is effective.
Navigating Transitions: Challenges for Engineering Students
ERIC Educational Resources Information Center
Moore-Russo, Deborah; Wilsey, Jillian N.; Parthum, Michael J., Sr.; Lewis, Kemper
2017-01-01
As college students enter engineering, they face challenges when they navigate across various transitions. These challenges impact whether a student can successfully adapt to the rigorous curricular requirements of an engineering degree and to the norms and expectations that are particular to engineering. This article focuses on the transitions…
Magnetic navigation behavior and the oceanic ecology of young loggerhead sea turtles.
Putman, Nathan F; Verley, Philippe; Endres, Courtney S; Lohmann, Kenneth J
2015-04-01
During long-distance migrations, animals navigate using a variety of sensory cues, mechanisms and strategies. Although guidance mechanisms are usually studied under controlled laboratory conditions, such methods seldom allow for navigation behavior to be examined in an environmental context. Similarly, although realistic environmental models are often used to investigate the ecological implications of animal movement, explicit consideration of navigation mechanisms in such models is rare. Here, we used an interdisciplinary approach in which we first conducted lab-based experiments to determine how hatchling loggerhead sea turtles (Caretta caretta) respond to magnetic fields that exist at five widely separated locations along their migratory route, and then studied the consequences of the observed behavior by simulating it within an ocean circulation model. Magnetic fields associated with two geographic regions that pose risks to young turtles (due to cold wintertime temperatures or potential displacement from the migratory route) elicited oriented swimming, whereas fields from three locations where surface currents and temperature pose no such risk did not. Additionally, at locations with fields that elicited oriented swimming, simulations indicate that the observed behavior greatly increases the likelihood of turtles advancing along the migratory pathway. Our findings suggest that the magnetic navigation behavior of sea turtles is intimately tied to their oceanic ecology and is shaped by a complex interplay between ocean circulation and geomagnetic dynamics. © 2015. Published by The Company of Biologists Ltd.
Luo, Xiongbiao; Wan, Ying; He, Xiangjian; Mori, Kensaku
2015-02-01
Registration of pre-clinical images to physical space is indispensable for computer-assisted endoscopic interventions in operating rooms. Electromagnetically navigated endoscopic interventions are increasingly performed at current diagnoses and treatments. Such interventions use an electromagnetic tracker with a miniature sensor that is usually attached at an endoscope distal tip to real time track endoscope movements in a pre-clinical image space. Spatial alignment between the electromagnetic tracker (or sensor) and pre-clinical images must be performed to navigate the endoscope to target regions. This paper proposes an adaptive marker-free registration method that uses a multiple point selection strategy. This method seeks to address an assumption that the endoscope is operated along the centerline of an intraluminal organ which is easily violated during interventions. We introduce an adaptive strategy that generates multiple points in terms of sensor measurements and endoscope tip center calibration. From these generated points, we adaptively choose the optimal point, which is the closest to its assigned the centerline of the hollow organ, to perform registration. The experimental results demonstrate that our proposed adaptive strategy significantly reduced the target registration error from 5.32 to 2.59 mm in static phantoms validation, as well as from at least 7.58 mm to 4.71 mm in dynamic phantom validation compared to current available methods. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
An analysis of the adaptability of Loran-C to air navigation
NASA Technical Reports Server (NTRS)
Littlefield, J. A.
1981-01-01
The sources of position errors characteristics of the Loran-C navigation system were identified. Particular emphasis was given to their point on entry as well as their elimination. It is shown that the ratio of realized accuracy to theoretical accuracy of the Loran-C is highly receiver dependent.
A Sustained Proximity Network for Multi-Mission Lunar Exploration
NASA Technical Reports Server (NTRS)
Soloff, Jason A.; Noreen, Gary; Deutsch, Leslie; Israel, David
2005-01-01
Tbe Vision for Space Exploration calls for an aggressive sequence of robotic missions beginning in 2008 to prepare for a human return to the Moon by 2020, with the goal of establishing a sustained human presence beyond low Earth orbit. A key enabler of exploration is reliable, available communication and navigation capabilities to support both human and robotic missions. An adaptable, sustainable communication and navigation architecture has been developed by Goddard Space Flight Center and the Jet Propulsion Laboratory to support human and robotic lunar exploration through the next two decades. A key component of the architecture is scalable deployment, with the infrastructure evolving as needs emerge, allowing NASA and its partner agencies to deploy an interoperable communication and navigation system in an evolutionary way, enabling cost effective, highly adaptable systems throughout the lunar exploration program.
Conjunctive coding in an evolved spiking model of retrosplenial cortex.
Rounds, Emily L; Alexander, Andrew S; Nitz, Douglas A; Krichmar, Jeffrey L
2018-06-04
Retrosplenial cortex (RSC) is an association cortex supporting spatial navigation and memory. However, critical issues remain concerning the forms by which its ensemble spiking patterns register spatial relationships that are difficult for experimental techniques to fully address. We therefore applied an evolutionary algorithmic optimization technique to create spiking neural network models that matched electrophysiologically observed spiking dynamics in rat RSC neuronal ensembles. Virtual experiments conducted on the evolved networks revealed a mixed selectivity coding capability that was not built into the optimization method, but instead emerged as a consequence of replicating biological firing patterns. The experiments reveal several important outcomes of mixed selectivity that may subserve flexible navigation and spatial representation: (a) robustness to loss of specific inputs, (b) immediate and stable encoding of novel routes and route locations, (c) automatic resolution of input variable conflicts, and (d) dynamic coding that allows rapid adaptation to changing task demands without retraining. These findings suggest that biological retrosplenial cortex can generate unique, first-trial, conjunctive encodings of spatial positions and actions that can be used by downstream brain regions for navigation and path integration. Moreover, these results are consistent with the proposed role for the RSC in the transformation of representations between reference frames and navigation strategy deployment. Finally, the specific modeling framework used for evolving synthetic retrosplenial networks represents an important advance for computational modeling by which synthetic neural networks can encapsulate, describe, and predict the behavior of neural circuits at multiple levels of function. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
Context-Aware Personal Navigation Using Embedded Sensor Fusion in Smartphones
Saeedi, Sara; Moussa, Adel; El-Sheimy, Naser
2014-01-01
Context-awareness is an interesting topic in mobile navigation scenarios where the context of the application is highly dynamic. Using context-aware computing, navigation services consider the situation of user, not only in the design process, but in real time while the device is in use. The basic idea is that mobile navigation services can provide different services based on different contexts—where contexts are related to the user's activity and the device placement. Context-aware systems are concerned with the following challenges which are addressed in this paper: context acquisition, context understanding, and context-aware application adaptation. The proposed approach in this paper is using low-cost sensors in a multi-level fusion scheme to improve the accuracy and robustness of context-aware navigation system. The experimental results demonstrate the capabilities of the context-aware Personal Navigation Systems (PNS) for outdoor personal navigation using a smartphone. PMID:24670715
Context-aware personal navigation using embedded sensor fusion in smartphones.
Saeedi, Sara; Moussa, Adel; El-Sheimy, Naser
2014-03-25
Context-awareness is an interesting topic in mobile navigation scenarios where the context of the application is highly dynamic. Using context-aware computing, navigation services consider the situation of user, not only in the design process, but in real time while the device is in use. The basic idea is that mobile navigation services can provide different services based on different contexts-where contexts are related to the user's activity and the device placement. Context-aware systems are concerned with the following challenges which are addressed in this paper: context acquisition, context understanding, and context-aware application adaptation. The proposed approach in this paper is using low-cost sensors in a multi-level fusion scheme to improve the accuracy and robustness of context-aware navigation system. The experimental results demonstrate the capabilities of the context-aware Personal Navigation Systems (PNS) for outdoor personal navigation using a smartphone.
NASA Astrophysics Data System (ADS)
Nagel, Markus; Hoheisel, Martin; Petzold, Ralf; Kalender, Willi A.; Krause, Ulrich H. W.
2007-03-01
Integrated solutions for navigation systems with CT, MR or US systems become more and more popular for medical products. Such solutions improve the medical workflow, reduce hardware, space and costs requirements. The purpose of our project was to develop a new electromagnetic navigation system for interventional radiology which is integrated into C-arm CT systems. The application is focused on minimally invasive percutaneous interventions performed under local anaesthesia. Together with a vacuum-based patient immobilization device and newly developed navigation tools (needles, panels) we developed a safe and fully automatic navigation system. The radiologist can directly start with navigated interventions after loading images without any prior user interaction. The complete system is adapted to the requirements of the radiologist and to the clinical workflow. For evaluation of the navigation system we performed different phantom studies and achieved an average accuracy of better than 2.0 mm.
Amicuzi, Ileana; Stortini, Massimo; Petrarca, Maurizio; Di Giulio, Paola; Di Rosa, Giuseppe; Fariello, Giuseppe; Longo, Daniela; Cannatà, Vittorio; Genovese, Elisabetta; Castelli, Enrico
2006-10-01
We report the case of a 4.6-year-old girl born pre-term with early bilateral occipital damage. It was revealed that the child had non-severely impaired basic visual abilities and ocular motility, a selective perceptual deficit of figure-ground segregation, impaired visual recognition and abnormal navigating through space. Even if the child's visual functioning was not optimal, this was the expression of adaptive anatomic and functional brain modifications that occurred following the early lesion. Anatomic brain structure was studied with anatomic MRI and Diffusor Tensor Imaging (DTI)-MRI. This behavioral study may provide an important contribution to understanding the impact of an early lesion of the visual system on the development of visual functions and on the immature brain's potential for reorganisation related to when the damage occurred.
Wells, Anjanette A; Palinkas, Lawrence A; Williams, Sha-Lai L; Ell, Kathleen
2015-08-01
Previously published work finds significant benefit from medical and behavioral health team care among safety-net patients with major depression. This qualitative study assessed clinical social worker, psychiatrist and patient navigator strategies to increase depression treatment among low-income minority cancer patients participating in the ADAPt-C clinical depression trial. Patient care retention strategies were elicited through in-depth, semi-structured interviews with nine behavioral health providers. Using grounded theory, concepts from the literature and dropout barriers identified by patients, guided interview prompts. Retention strategies clustered around five dropout barriers: (1) informational, (2) instrumental, (3) provider-patient therapeutic alliance, (4) clinic setting, and (5) depression treatment. All strategies emphasized the importance of communication between providers and patients. Findings suggest that strong therapeutic alliance and telephone facilitates collaborative team provider communication and depression treatment retention among patients in safety-net oncology care systems.
Impact of agile methodologies on team capacity in automotive radio-navigation projects
NASA Astrophysics Data System (ADS)
Prostean, G.; Hutanu, A.; Volker, S.
2017-01-01
The development processes used in automotive radio-navigation projects are constantly under adaption pressure. While the software development models are based on automotive production processes, the integration of peripheral components into an automotive system will trigger a high number of requirement modifications. The use of traditional development models in automotive industry will bring team’s development capacity to its boundaries. The root cause lays in the inflexibility of actual processes and their adaption limits. This paper addresses a new project management approach for the development of radio-navigation projects. The understanding of weaknesses of current used models helped us in development and integration of agile methodologies in traditional development model structure. In the first part we focus on the change management methods to reduce request for change inflow. Established change management risk analysis processes enables the project management to judge the impact of a requirement change and also gives time to the project to implement some changes. However, in big automotive radio-navigation projects the saved time is not enough to implement the large amount of changes, which are submitted to the project. In the second phase of this paper we focus on increasing team capacity by integrating at critical project phases agile methodologies into the used traditional model. The overall objective of this paper is to prove the need of process adaption in order to solve project team capacity bottlenecks.
Learning classifier systems for single and multiple mobile robots in unstructured environments
NASA Astrophysics Data System (ADS)
Bay, John S.
1995-12-01
The learning classifier system (LCS) is a learning production system that generates behavioral rules via an underlying discovery mechanism. The LCS architecture operates similarly to a blackboard architecture; i.e., by posted-message communications. But in the LCS, the message board is wiped clean at every time interval, thereby requiring no persistent shared resource. In this paper, we adapt the LCS to the problem of mobile robot navigation in completely unstructured environments. We consider the model of the robot itself, including its sensor and actuator structures, to be part of this environment, in addition to the world-model that includes a goal and obstacles at unknown locations. This requires a robot to learn its own I/O characteristics in addition to solving its navigation problem, but results in a learning controller that is equally applicable, unaltered, in robots with a wide variety of kinematic structures and sensing capabilities. We show the effectiveness of this LCS-based controller through both simulation and experimental trials with a small robot. We then propose a new architecture, the Distributed Learning Classifier System (DLCS), which generalizes the message-passing behavior of the LCS from internal messages within a single agent to broadcast massages among multiple agents. This communications mode requires little bandwidth and is easily implemented with inexpensive, off-the-shelf hardware. The DLCS is shown to have potential application as a learning controller for multiple intelligent agents.
Proulx, Michael J.; Gwinnutt, James; Dell’Erba, Sara; Levy-Tzedek, Shelly; de Sousa, Alexandra A.; Brown, David J.
2015-01-01
Vision is the dominant sense for perception-for-action in humans and other higher primates. Advances in sight restoration now utilize the other intact senses to provide information that is normally sensed visually through sensory substitution to replace missing visual information. Sensory substitution devices translate visual information from a sensor, such as a camera or ultrasound device, into a format that the auditory or tactile systems can detect and process, so the visually impaired can see through hearing or touch. Online control of action is essential for many daily tasks such as pointing, grasping and navigating, and adapting to a sensory substitution device successfully requires extensive learning. Here we review the research on sensory substitution for vision restoration in the context of providing the means of online control for action in the blind or blindfolded. It appears that the use of sensory substitution devices utilizes the neural visual system; this suggests the hypothesis that sensory substitution draws on the same underlying mechanisms as unimpaired visual control of action. Here we review the current state of the art for sensory substitution approaches to object recognition, localization, and navigation, and the potential these approaches have for revealing a metamodal behavioral and neural basis for the online control of action. PMID:26599473
Li, Hong; Liu, Mingyong; Liu, Kun; Zhang, Feihu
2017-12-25
By simulating the geomagnetic fields and analyzing thevariation of intensities, this paper presents a model for calculating the objective function ofan Autonomous Underwater Vehicle (AUV)geomagnetic navigation task. By investigating the biologically inspired strategies, the AUV successfullyreachesthe destination duringgeomagnetic navigation without using the priori geomagnetic map. Similar to the pattern of a flatworm, the proposed algorithm relies on a motion pattern to trigger a local searching strategy by detecting the real-time geomagnetic intensity. An adapted strategy is then implemented, which is biased on the specific target. The results show thereliabilityandeffectivenessofthe proposed algorithm.
Evolved Navigation Theory and Horizontal Visual Illusions
ERIC Educational Resources Information Center
Jackson, Russell E.; Willey, Chela R.
2011-01-01
Environmental perception is prerequisite to most vertebrate behavior and its modern investigation initiated the founding of experimental psychology. Navigation costs may affect environmental perception, such as overestimating distances while encumbered (Solomon, 1949). However, little is known about how this occurs in real-world navigation or how…
ERIC Educational Resources Information Center
Ohio State Univ., Columbus. National Center for Research in Vocational Education.
This coursebook and textbook for a secondary/postsecondary level course in navigation rules comprise one of a number of military-developed curriculum packages selected for adaptation to vocational instruction and curriculum development in a civilian setting. The individualized, self-paced course discusses the international regulations for…
Effective Levels of Adaptation to Different Types of Users in Interactive Museum Systems.
ERIC Educational Resources Information Center
Paterno, F.; Mancini, C.
2000-01-01
Discusses user interaction with museum application interfaces and emphasizes the importance of adaptable and adaptive interfaces to meet differing user needs. Considers levels of support that can be given to different users during navigation of museum hypermedia information, using examples from the Web site for the Marble Museum (Italy).…
Adaptability, Engagement and Academic Achievement at University
ERIC Educational Resources Information Center
Collie, Rebecca J.; Holliman, Andrew J.; Martin, Andrew J.
2017-01-01
University entry is a time of great change for students. The extent to which students are able to effectively navigate such change likely has an impact on their success in university. In the current study, we examined this by way of adaptability, the extent to which students' adaptability is associated with their behavioural engagement at…
Exploring Adaptability through Learning Layers and Learning Loops
ERIC Educational Resources Information Center
Lof, Annette
2010-01-01
Adaptability in social-ecological systems results from individual and collective action, and multi-level interactions. It can be understood in a dual sense as a system's ability to adapt to disturbance and change, and to navigate system transformation. Inherent in this conception, as found in resilience thinking, are the concepts of learning and…
Navigators for motion detection during real-time MRI-guided radiotherapy
NASA Astrophysics Data System (ADS)
Stam, Mette K.; Crijns, Sjoerd P. M.; Zonnenberg, Bernard A.; Barendrecht, Maurits M.; van Vulpen, Marco; Lagendijk, Jan J. W.; Raaymakers, Bas W.
2012-11-01
An MRI-linac system provides direct MRI feedback and with that the possibility of adapting radiation treatments to the actual tumour position. This paper addresses the use of fast 1D MRI, pencil-beam navigators, for this feedback. The accuracy of using navigators was determined on a moving phantom. The possibility of organ tracking and breath-hold monitoring based on navigator guidance was shown for the kidney. Navigators are accurate within 0.5 mm and the analysis has a minimal time lag smaller than 30 ms as shown for the phantom measurements. The correlation of 2D kidney images and navigators shows the possibility of complete organ tracking. Furthermore the breath-hold monitoring of the kidney is accurate within 1.5 mm, allowing gated radiotherapy based on navigator feedback. Navigators are a fast and precise method for monitoring and real-time tracking of anatomical landmarks. As such, they provide direct MRI feedback on anatomical changes for more precise radiation delivery.
Li, Tianlong; Chang, Xiaocong; Wu, Zhiguang; Li, Jinxing; Shao, Guangbin; Deng, Xinghong; Qiu, Jianbin; Guo, Bin; Zhang, Guangyu; He, Qiang; Li, Longqiu; Wang, Joseph
2017-09-26
Self-propelled micro- and nanoscale robots represent a rapidly emerging and fascinating robotics research area. However, designing autonomous and adaptive control systems for operating micro/nanorobotics in complex and dynamically changing environments, which is a highly demanding feature, is still an unmet challenge. Here we describe a smart microvehicle for precise autonomous navigation in complicated environments and traffic scenarios. The fully autonomous navigation system of the smart microvehicle is composed of a microscope-coupled CCD camera, an artificial intelligence planner, and a magnetic field generator. The microscope-coupled CCD camera provides real-time localization of the chemically powered Janus microsphere vehicle and environmental detection for path planning to generate optimal collision-free routes, while the moving direction of the microrobot toward a reference position is determined by the external electromagnetic torque. Real-time object detection offers adaptive path planning in response to dynamically changing environments. We demonstrate that the autonomous navigation system can guide the vehicle movement in complex patterns, in the presence of dynamically changing obstacles, and in complex biological environments. Such a navigation system for micro/nanoscale vehicles, relying on vision-based close-loop control and path planning, is highly promising for their autonomous operation in complex dynamic settings and unpredictable scenarios expected in a variety of realistic nanoscale scenarios.
ERIC Educational Resources Information Center
Doty, Keith L.
1999-01-01
Research on neural networks and hippocampal function demonstrating how mammals construct mental maps and develop navigation strategies is being used to create Intelligent Autonomous Mobile Robots (IAMRs). Such robots are able to recognize landmarks and navigate without "vision." (SK)
NASA Astrophysics Data System (ADS)
Ushaq, Muhammad; Fang, Jiancheng
2013-10-01
Integrated navigation systems for various applications, generally employs the centralized Kalman filter (CKF) wherein all measured sensor data are communicated to a single central Kalman filter. The advantage of CKF is that there is a minimal loss of information and high precision under benign conditions. But CKF may suffer computational overloading, and poor fault tolerance. The alternative is the federated Kalman filter (FKF) wherein the local estimates can deliver optimal or suboptimal state estimate as per certain information fusion criterion. FKF has enhanced throughput and multiple level fault detection capability. The Standard CKF or FKF require that the system noise and the measurement noise are zero-mean and Gaussian. Moreover it is assumed that covariance of system and measurement noises remain constant. But if the theoretical and actual statistical features employed in Kalman filter are not compatible, the Kalman filter does not render satisfactory solutions and divergence problems also occur. To resolve such problems, in this paper, an adaptive Kalman filter scheme strengthened with fuzzy inference system (FIS) is employed to adapt the statistical features of contributing sensors, online, in the light of real system dynamics and varying measurement noises. The excessive faults are detected and isolated by employing Chi Square test method. As a case study, the presented scheme has been implemented on Strapdown Inertial Navigation System (SINS) integrated with the Celestial Navigation System (CNS), GPS and Doppler radar using FKF. Collectively the overall system can be termed as SINS/CNS/GPS/Doppler integrated navigation system. The simulation results have validated the effectiveness of the presented scheme with significantly enhanced precision, reliability and fault tolerance. Effectiveness of the scheme has been tested against simulated abnormal errors/noises during different time segments of flight. It is believed that the presented scheme can be applied to the navigation system of aircraft or unmanned aerial vehicle (UAV).
Sex differences in virtual navigation influenced by scale and navigation experience.
Padilla, Lace M; Creem-Regehr, Sarah H; Stefanucci, Jeanine K; Cashdan, Elizabeth A
2017-04-01
The Morris water maze is a spatial abilities test adapted from the animal spatial cognition literature and has been studied in the context of sex differences in humans. This is because its standard design, which manipulates proximal (close) and distal (far) cues, applies to human navigation. However, virtual Morris water mazes test navigation skills on a scale that is vastly smaller than natural human navigation. Many researchers have argued that navigating in large and small scales is fundamentally different, and small-scale navigation might not simulate natural human navigation. Other work has suggested that navigation experience could influence spatial skills. To address the question of how individual differences influence navigational abilities in differently scaled environments, we employed both a large- (146.4 m in diameter) and a traditional- (36.6 m in diameter) scaled virtual Morris water maze along with a novel measure of navigation experience (lifetime mobility). We found sex differences on the small maze in the distal cue condition only, but in both cue-conditions on the large maze. Also, individual differences in navigation experience modulated navigation performance on the virtual water maze, showing that higher mobility was related to better performance with proximal cues for only females on the small maze, but for both males and females on the large maze.
Negrón-Oyarzo, Ignacio; Espinosa, Nelson; Aguilar, Marcelo; Fuenzalida, Marco; Aboitiz, Francisco; Fuentealba, Pablo
2018-06-18
Learning the location of relevant places in the environment is crucial for survival. Such capacity is supported by a distributed network comprising the prefrontal cortex and hippocampus, yet it is not fully understood how these structures cooperate during spatial reference memory formation. Hence, we examined neural activity in the prefrontal-hippocampal circuit in mice during acquisition of spatial reference memory. We found that interregional oscillatory coupling increased with learning, specifically in the slow-gamma frequency (20 to 40 Hz) band during spatial navigation. In addition, mice used both spatial and nonspatial strategies to navigate and solve the task, yet prefrontal neuronal spiking and oscillatory phase coupling were selectively enhanced in the spatial navigation strategy. Lastly, a representation of the behavioral goal emerged in prefrontal spiking patterns exclusively in the spatial navigation strategy. These results suggest that reference memory formation is supported by enhanced cortical connectivity and evolving prefrontal spiking representations of behavioral goals.
SLAM algorithm applied to robotics assistance for navigation in unknown environments.
Cheein, Fernando A Auat; Lopez, Natalia; Soria, Carlos M; di Sciascio, Fernando A; Pereira, Fernando Lobo; Carelli, Ricardo
2010-02-17
The combination of robotic tools with assistance technology determines a slightly explored area of applications and advantages for disability or elder people in their daily tasks. Autonomous motorized wheelchair navigation inside an environment, behaviour based control of orthopaedic arms or user's preference learning from a friendly interface are some examples of this new field. In this paper, a Simultaneous Localization and Mapping (SLAM) algorithm is implemented to allow the environmental learning by a mobile robot while its navigation is governed by electromyographic signals. The entire system is part autonomous and part user-decision dependent (semi-autonomous). The environmental learning executed by the SLAM algorithm and the low level behaviour-based reactions of the mobile robot are robotic autonomous tasks, whereas the mobile robot navigation inside an environment is commanded by a Muscle-Computer Interface (MCI). In this paper, a sequential Extended Kalman Filter (EKF) feature-based SLAM algorithm is implemented. The features correspond to lines and corners -concave and convex- of the environment. From the SLAM architecture, a global metric map of the environment is derived. The electromyographic signals that command the robot's movements can be adapted to the patient's disabilities. For mobile robot navigation purposes, five commands were obtained from the MCI: turn to the left, turn to the right, stop, start and exit. A kinematic controller to control the mobile robot was implemented. A low level behavior strategy was also implemented to avoid robot's collisions with the environment and moving agents. The entire system was tested in a population of seven volunteers: three elder, two below-elbow amputees and two young normally limbed patients. The experiments were performed within a closed low dynamic environment. Subjects took an average time of 35 minutes to navigate the environment and to learn how to use the MCI. The SLAM results have shown a consistent reconstruction of the environment. The obtained map was stored inside the Muscle-Computer Interface. The integration of a highly demanding processing algorithm (SLAM) with a MCI and the communication between both in real time have shown to be consistent and successful. The metric map generated by the mobile robot would allow possible future autonomous navigation without direct control of the user, whose function could be relegated to choose robot destinations. Also, the mobile robot shares the same kinematic model of a motorized wheelchair. This advantage can be exploited for wheelchair autonomous navigation.
Huang, Meng; Barber, Sean Michael; Steele, William James; Boghani, Zain; Desai, Viren Rajendrakumar; Britz, Gavin Wayne; West, George Alexander; Trask, Todd Wilson; Holman, Paul Joseph
2018-06-01
Image-guided approaches to spinal instrumentation and interbody fusion have been widely popularized in the last decade [1-5]. Navigated pedicle screws are significantly less likely to breach [2, 3, 5, 6]. Navigation otherwise remains a point reference tool because the projection is off-axis to the surgeon's inline loupe or microscope view. The Synaptive robotic brightmatter drive videoexoscope monitor system represents a new paradigm for off-axis high-definition (HD) surgical visualization. It has many advantages over the traditional microscope and loupes, which have already been demonstrated in a cadaveric study [7]. An auxiliary, but powerful capability of this system is projection of a second, modifiable image in a split-screen configuration. We hypothesized that integration of both Medtronic and Synaptive platforms could permit the visualization of reconstructed navigation and surgical field images simultaneously. By utilizing navigated instruments, this configuration has the ability to support live image-guided surgery or real-time navigation (RTN). Medtronic O-arm/Stealth S7 navigation, MetRx, NavLock, and SureTrak spinal systems were implemented on a prone cadaveric specimen with a stream output to the Synaptive Display. Surgical visualization was provided using a Storz Image S1 platform and camera mounted to the Synaptive robotic brightmatter drive. We were able to successfully technically co-adapt both platforms. A minimally invasive transforaminal lumbar interbody fusion (MIS TLIF) and an open pedicle subtraction osteotomy (PSO) were performed using a navigated high-speed drill under RTN. Disc Shaver and Trials under RTN were implemented on the MIS TLIF. The synergy of Synaptive HD videoexoscope robotic drive and Medtronic Stealth platforms allow for live image-guided surgery or real-time navigation (RTN). Off-axis projection also allows upright neutral cervical spine operative ergonomics for the surgeons and improved surgical team visualization and education compared to traditional means. This technique has the potential to augment existing minimally invasive and open approaches, but will require long-term outcome measurements for efficacy.
Swarm Intelligence: New Techniques for Adaptive Systems to Provide Learning Support
ERIC Educational Resources Information Center
Wong, Lung-Hsiang; Looi, Chee-Kit
2012-01-01
The notion of a system adapting itself to provide support for learning has always been an important issue of research for technology-enabled learning. One approach to provide adaptivity is to use social navigation approaches and techniques which involve analysing data of what was previously selected by a cluster of users or what worked for…
ERIC Educational Resources Information Center
Rikoon, Samuel H.; Liebtag, Travis; Olivera-Aguilar, Margarita; Steinberg, Jonathan; Robbins, Steven B.
2015-01-01
In this report, we describe the development of an extension of the "SuccessNavigator"® assessment for late high school settings. We discuss the assessment's conceptualization and support its application with psychometric studies detailing scale development in terms of structural analyses, reliability, and several other aspects of…
Bioinspired magnetoreception and navigation using magnetic signatures as waypoints.
Taylor, Brian K
2018-05-15
Diverse taxa use Earth's magnetic field in conjunction with other sensory modalities to accomplish navigation tasks ranging from local homing to long-distance migration across continents and ocean basins. However, despite extensive research, the mechanisms that underlie animal magnetoreception are not clearly understood, and how animals use Earth's magnetic field to navigate is an active area of investigation. Concurrently, Earth's magnetic field offers a signal that engineered systems can leverage for navigation in environments where man-made systems such as GPS are unavailable or unreliable. Using a proxy for Earth's magnetic field, and inspired by migratory animal behavior, this work implements a behavioral strategy that uses combinations of magnetic field properties as rare or unique signatures that mark specific locations. Using a discrete number of these signatures as goal waypoints, the strategy navigates through a closed set of points several times in a variety of environmental conditions, and with various levels of sensor noise. The results from this engineering/quantitative biology approach support existing notions that some animals may use combinations of magnetic properties as navigational markers, and provides insights into features and constraints that would enable navigational success or failure. The findings also offer insights into how autonomous engineered platforms might be designed to leverage the magnetic field as a navigational resource.
Cancer patient experience with navigation service in an urban hospital setting: a qualitative study.
Gotlib Conn, L; Hammond Mobilio, M; Rotstein, O D; Blacker, S
2016-01-01
Cancer patient navigators are increasingly present on the oncology health care team. The positive impact of navigation on cancer care is recognised, yet a clear understanding of what the patient navigator does and how he/she executes the role continues to emerge. This study aimed to understand cancer patients' perceptions of, and experiences with patient navigation, exploring how navigation may enhance the patient experience in an urban hospital setting where patients with varying needs are treated. A qualitative study using a constructionist approach was conducted. Fifteen colorectal cancer patients participated in semi-structured telephone interviews. Data were analyzed inductively and iteratively. Findings provide insight into two central aspects of cancer navigation: navigation as patient-centred coordination and explanation of clinical care, and navigation as individualised, holistic support. Within these themes, the key benefits of navigation from the patients' perspective were demystifying the system; ensuring comprehension, managing expectations; and, delivering patient-centred care. The navigator provided individualised and extended family support; a holistic approach; and, addressed emotional and psychological needs. These findings provide a means to operationalise and validate an emerging role description and competency framework for the cancer navigator who must identify and adapt to patients' varying needs throughout the cancer care continuum. © 2014 John Wiley & Sons Ltd.
Insect navigation: do ants live in the now?
Graham, Paul; Mangan, Michael
2015-03-01
Visual navigation is a critical behaviour for many animals, and it has been particularly well studied in ants. Decades of ant navigation research have uncovered many ways in which efficient navigation can be implemented in small brains. For example, ants show us how visual information can drive navigation via procedural rather than map-like instructions. Two recent behavioural observations highlight interesting adaptive ways in which ants implement visual guidance. Firstly, it has been shown that the systematic nest searches of ants can be biased by recent experience of familiar scenes. Secondly, ants have been observed to show temporary periods of confusion when asked to repeat a route segment, even if that route segment is very familiar. Taken together, these results indicate that the navigational decisions of ants take into account their recent experiences as well as the currently perceived environment. © 2015. Published by The Company of Biologists Ltd.
NASA Technical Reports Server (NTRS)
Hegarty, D. M.
1974-01-01
A guidance, navigation, and control system, the Simulated Shuttle Flight Test System (SS-FTS), when interfaced with existing aircraft systems, provides a research facility for studying concepts for landing the space shuttle orbiter and conventional jet aircraft. The SS-FTS, which includes a general-purpose computer, performs all computations for precisely following a prescribed approach trajectory while properly managing the vehicle energy to allow safe arrival at the runway and landing within prescribed dispersions. The system contains hardware and software provisions for navigation with several combinations of possible navigation aids that have been suggested for the shuttle. The SS-FTS can be reconfigured to study different guidance and navigation concepts by changing only the computer software, and adapted to receive different radio navigation information through minimum hardware changes. All control laws, logic, and mode interlocks reside solely in the computer software.
Design of a 3D Navigation Technique Supporting VR Interaction
NASA Astrophysics Data System (ADS)
Boudoin, Pierre; Otmane, Samir; Mallem, Malik
2008-06-01
Multimodality is a powerful paradigm to increase the realness and the easiness of the interaction in Virtual Environments (VEs). In particular, the search for new metaphors and techniques for 3D interaction adapted to the navigation task is an important stage for the realization of future 3D interaction systems that support multimodality, in order to increase efficiency and usability. In this paper we propose a new multimodal 3D interaction model called Fly Over. This model is especially devoted to the navigation task. We present a qualitative comparison between Fly Over and a classical navigation technique called gaze-directed steering. The results from preliminary evaluation on the IBISC semi-immersive Virtual Reality/Augmented Realty EVR@ platform show that Fly Over is a user friendly and efficient navigation technique.
Calibrating cellular automaton models for pedestrians walking through corners
NASA Astrophysics Data System (ADS)
Dias, Charitha; Lovreglio, Ruggiero
2018-05-01
Cellular Automata (CA) based pedestrian simulation models have gained remarkable popularity as they are simpler and easier to implement compared to other microscopic modeling approaches. However, incorporating traditional floor field representations in CA models to simulate pedestrian corner navigation behavior could result in unrealistic behaviors. Even though several previous studies have attempted to enhance CA models to realistically simulate pedestrian maneuvers around bends, such modifications have not been calibrated or validated against empirical data. In this study, two static floor field (SFF) representations, namely 'discrete representation' and 'continuous representation', are calibrated for CA-models to represent pedestrians' walking behavior around 90° bends. Trajectory data collected through a controlled experiment are used to calibrate these model representations. Calibration results indicate that although both floor field representations can represent pedestrians' corner navigation behavior, the 'continuous' representation fits the data better. Output of this study could be beneficial for enhancing the reliability of existing CA-based models by representing pedestrians' corner navigation behaviors more realistically.
... motels Expand sub-navigation Hotel fire safety tips Marijuana grow & extraction facilities Nightclubs and other assembly occupancies ... Fire behavior research Fire loss and injury research Benefits of home fire sprinklers Expand sub-navigation Environmental ...
Weak and Dynamic GNSS Signal Tracking Strategies for Flight Missions in the Space Service Volume
Jing, Shuai; Zhan, Xingqun; Liu, Baoyu; Chen, Maolin
2016-01-01
Weak-signal and high-dynamics are of two primary concerns of space navigation using GNSS (Global Navigation Satellite System) in the space service volume (SSV). The paper firstly defines a reference assumption third-order phase-locked loop (PLL) as the baseline of an onboard GNSS receiver, and proves the incompetence of this conventional architecture. Then an adaptive four-state Kalman filter (KF)-based algorithm is introduced to realize the optimization of loop noise bandwidth, which can adaptively regulate its filter gain according to the received signal power and line-of-sight (LOS) dynamics. To overcome the matter of losing lock in weak-signal and high-dynamic environments, an open loop tracking strategy aided by an inertial navigation system (INS) is recommended, and the traditional maximum likelihood estimation (MLE) method is modified in a non-coherent way by reconstructing the likelihood cost function. Furthermore, a typical mission with combined orbital maneuvering and non-maneuvering arcs is taken as a destination object to test the two proposed strategies. Finally, the experiment based on computer simulation identifies the effectiveness of an adaptive four-state KF-based strategy under non-maneuvering conditions and the virtue of INS-assisted methods under maneuvering conditions. PMID:27598164
Weak and Dynamic GNSS Signal Tracking Strategies for Flight Missions in the Space Service Volume.
Jing, Shuai; Zhan, Xingqun; Liu, Baoyu; Chen, Maolin
2016-09-02
Weak-signal and high-dynamics are of two primary concerns of space navigation using GNSS (Global Navigation Satellite System) in the space service volume (SSV). The paper firstly defines a reference assumption third-order phase-locked loop (PLL) as the baseline of an onboard GNSS receiver, and proves the incompetence of this conventional architecture. Then an adaptive four-state Kalman filter (KF)-based algorithm is introduced to realize the optimization of loop noise bandwidth, which can adaptively regulate its filter gain according to the received signal power and line-of-sight (LOS) dynamics. To overcome the matter of losing lock in weak-signal and high-dynamic environments, an open loop tracking strategy aided by an inertial navigation system (INS) is recommended, and the traditional maximum likelihood estimation (MLE) method is modified in a non-coherent way by reconstructing the likelihood cost function. Furthermore, a typical mission with combined orbital maneuvering and non-maneuvering arcs is taken as a destination object to test the two proposed strategies. Finally, the experiment based on computer simulation identifies the effectiveness of an adaptive four-state KF-based strategy under non-maneuvering conditions and the virtue of INS-assisted methods under maneuvering conditions.
An Adaptive INS-Aided PLL Tracking Method for GNSS Receivers in Harsh Environments.
Cong, Li; Li, Xin; Jin, Tian; Yue, Song; Xue, Rui
2016-01-23
As the weak link in global navigation satellite system (GNSS) signal processing, the phase-locked loop (PLL) is easily influenced with frequent cycle slips and loss of lock as a result of higher vehicle dynamics and lower signal-to-noise ratios. With inertial navigation system (INS) aid, PLLs' tracking performance can be improved. However, for harsh environments with high dynamics and signal attenuation, the traditional INS-aided PLL with fixed loop parameters has some limitations to improve the tracking adaptability. In this paper, an adaptive INS-aided PLL capable of adjusting its noise bandwidth and coherent integration time has been proposed. Through theoretical analysis, the relation between INS-aided PLL phase tracking error and carrier to noise density ratio (C/N₀), vehicle dynamics, aiding information update time, noise bandwidth, and coherent integration time has been built. The relation formulae are used to choose the optimal integration time and bandwidth for a given application under the minimum tracking error criterion. Software and hardware simulation results verify the correctness of the theoretical analysis, and demonstrate that the adaptive tracking method can effectively improve the PLL tracking ability and integrated GNSS/INS navigation performance. For harsh environments, the tracking sensitivity is increased by 3 to 5 dB, velocity errors are decreased by 36% to 50% and position errors are decreased by 6% to 24% when compared with other INS-aided PLL methods.
A Semantic Navigation Model for Video Games
NASA Astrophysics Data System (ADS)
van Driel, Leonard; Bidarra, Rafael
Navigational performance of artificial intelligence (AI) characters in computer games is gaining an increasingly important role in the perception of their behavior. While recent games successfully solve some complex navigation problems, there is little known or documented on the underlying approaches, often resembling a primitive conglomerate of ad-hoc algorithms for specific situations.
Understanding the Social Navigation User Experience
ERIC Educational Resources Information Center
Goecks, Jeremy
2009-01-01
A social navigation system collects data from its users--its community--about what they are doing, their opinions, and their decisions, aggregates this data, and provides the aggregated data--community data--back to individuals so that they can use it to guide behavior and decisions. Social navigation systems empower users with the ability to…
Ribbon networks for modeling navigable paths of autonomous agents in virtual environments.
Willemsen, Peter; Kearney, Joseph K; Wang, Hongling
2006-01-01
This paper presents the Environment Description Framework (EDF) for modeling complex networks of intersecting roads and pathways in virtual environments. EDF represents information about the layout of streets and sidewalks, the rules that govern behavior on roads and walkways, and the locations of agents with respect to navigable structures. The framework serves as the substrate on which behavior programs for autonomous vehicles and pedestrians are built. Pathways are modeled as ribbons in space. The ribbon structure provides a natural coordinate frame for defining the local geometry of navigable surfaces. EDF includes a powerful runtime interface supported by robust and efficient code for locating objects on the ribbon network, for mapping between Cartesian and ribbon coordinates, and for determining behavioral constraints imposed by the environment.
Online Learners' Navigational Patterns Based on Data Mining in Terms of Learning Achievement
ERIC Educational Resources Information Center
Keskin, Sinan; Sahin, Muhittin; Ozgur, Adem; Yurdugul, Halil
2016-01-01
The aim of this study is to determine navigational patterns of university students in a learning management system (LMS). It also investigates whether online learners' navigational behaviors differ in terms of their academic achievement (pass, fail). The data for the study comes from 65 third grade students enrolled in online Computer Network and…
Adaptive management for a turbulent future
Allen, Craig R.; Fontaine, J.J.; Pope, K.L.; Garmestani, A.S.
2011-01-01
The challenges that face humanity today differ from the past because as the scale of human influence has increased, our biggest challenges have become global in nature, and formerly local problems that could be addressed by shifting populations or switching resources, now aggregate (i.e., "scale up") limiting potential management options. Adaptive management is an approach to natural resource management that emphasizes learning through management based on the philosophy that knowledge is incomplete and much of what we think we know is actually wrong. Adaptive management has explicit structure, including careful elucidation of goals, identification of alternative management objectives and hypotheses of causation, and procedures for the collection of data followed by evaluation and reiteration. It is evident that adaptive management has matured, but it has also reached a crossroads. Practitioners and scientists have developed adaptive management and structured decision making techniques, and mathematicians have developed methods to reduce the uncertainties encountered in resource management, yet there continues to be misapplication of the method and misunderstanding of its purpose. Ironically, the confusion over the term "adaptive management" may stem from the flexibility inherent in the approach, which has resulted in multiple interpretations of "adaptive management" that fall along a continuum of complexity and a priori design. Adaptive management is not a panacea for the navigation of 'wicked problems' as it does not produce easy answers, and is only appropriate in a subset of natural resource management problems where both uncertainty and controllability are high. Nonetheless, the conceptual underpinnings of adaptive management are simple; there will always be inherent uncertainty and unpredictability in the dynamics and behavior of complex social-ecological systems, but management decisions must still be made, and whenever possible, we should incorporate learning into management. ?? 2010 .
Adaptive Management for a Turbulent Future
Allen, Craig R.; Fontaine, Joseph J.; Pope, Kevin L.; Garmestani, Ahjond S.
2011-01-01
The challenges that face humanity today differ from the past because as the scale of human influence has increased, our biggest challenges have become global in nature, and formerly local problems that could be addressed by shifting populations or switching resources, now aggregate (i.e., "scale up") limiting potential management options. Adaptive management is an approach to natural resource management that emphasizes learning through management based on the philosophy that knowledge is incomplete and much of what we think we know is actually wrong. Adaptive management has explicit structure, including careful elucidation of goals, identification of alternative management objectives and hypotheses of causation, and procedures for the collection of data followed by evaluation and reiteration. It is evident that adaptive management has matured, but it has also reached a crossroads. Practitioners and scientists have developed adaptive management and structured decision making techniques, and mathematicians have developed methods to reduce the uncertainties encountered in resource management, yet there continues to be misapplication of the method and misunderstanding of its purpose. Ironically, the confusion over the term "adaptive management" may stem from the flexibility inherent in the approach, which has resulted in multiple interpretations of "adaptive management" that fall along a continuum of complexity and a priori design. Adaptive management is not a panacea for the navigation of 'wicked problems' as it does not produce easy answers, and is only appropriate in a subset of natural resource management problems where both uncertainty and controllability are high. Nonetheless, the conceptual underpinnings of adaptive management are simple; there will always be inherent uncertainty and unpredictability in the dynamics and behavior of complex social-ecological systems, but management decisions must still be made, and whenever possible, we should incorporate learning into management. Published by Elsevier Ltd.
Stress resilience in early marriage: can practice make perfect?
Neff, Lisa A; Broady, Elizabeth F
2011-11-01
As all couples experience stressful life events, addressing how couples adapt to stress is imperative for understanding marital development. Drawing from theories of stress inoculation, which suggest that the successful adaptation to moderately stressful events may help individuals develop a resilience to future stress, the current studies examined whether experiences with manageable stressors early in the marriage may serve to make the relationship more resilient to future stress. In Study 1, 61 newlywed couples provided data regarding their stressful life events, relationship resources (i.e., observed problem-solving behaviors), and marital satisfaction at multiple points over 2½ years. Results revealed that among spouses displaying more effective problem-solving behaviors, those who experienced moderate stress during the early months of marriage exhibited fewer future stress spillover effects and reported greater increases in felt efficacy than did spouses who had less experience with early stress. Study 2 examined stress resilience following the transition to parenthood in a new sample of 50 newlywed couples. Again, spouses who experienced moderate stress during the early months of marriage and had good initial relationship resources (i.e., observed support behaviors) reported greater marital adjustment following the transition to parenthood than did spouses who had good initial resources but less prior experience coping with stress. Together, results indicate that entering marriage with better relationship resources may not be sufficient to shield marital satisfaction from the detrimental effects of stress; rather, couples may also need practice in using those resources to navigate manageable stressful events.
Jacob, Mithun George; Wachs, Juan Pablo; Packer, Rebecca A
2013-01-01
This paper presents a method to improve the navigation and manipulation of radiological images through a sterile hand gesture recognition interface based on attentional contextual cues. Computer vision algorithms were developed to extract intention and attention cues from the surgeon's behavior and combine them with sensory data from a commodity depth camera. The developed interface was tested in a usability experiment to assess the effectiveness of the new interface. An image navigation and manipulation task was performed, and the gesture recognition accuracy, false positives and task completion times were computed to evaluate system performance. Experimental results show that gesture interaction and surgeon behavior analysis can be used to accurately navigate, manipulate and access MRI images, and therefore this modality could replace the use of keyboard and mice-based interfaces. PMID:23250787
Jacob, Mithun George; Wachs, Juan Pablo; Packer, Rebecca A
2013-06-01
This paper presents a method to improve the navigation and manipulation of radiological images through a sterile hand gesture recognition interface based on attentional contextual cues. Computer vision algorithms were developed to extract intention and attention cues from the surgeon's behavior and combine them with sensory data from a commodity depth camera. The developed interface was tested in a usability experiment to assess the effectiveness of the new interface. An image navigation and manipulation task was performed, and the gesture recognition accuracy, false positives and task completion times were computed to evaluate system performance. Experimental results show that gesture interaction and surgeon behavior analysis can be used to accurately navigate, manipulate and access MRI images, and therefore this modality could replace the use of keyboard and mice-based interfaces.
Biosonar navigation above water I: estimating flight height.
Hoffmann, Susanne; Genzel, Daria; Prosch, Selina; Baier, Leonie; Weser, Sabrina; Wiegrebe, Lutz; Firzlaff, Uwe
2015-02-15
Locomotion and foraging on the wing require precise navigation in more than just the horizontal plane. Navigation in three dimensions and, specifically, precise adjustment of flight height are essential for flying animals. Echolocating bats drink from water surfaces in flight, which requires an exceptionally precise vertical navigation. Here, we exploit this behavior in the bat, Phyllostomus discolor, to understand the biophysical and neural mechanisms that allow for sonar-guided navigation in the vertical plane. In a set of behavioral experiments, we show that for echolocating bats, adjustment of flight height depends on the tragus in their outer ears. Specifically, the tragus imposes elevation-specific spectral interference patterns on the echoes of the bats' sonar emissions. Head-related transfer functions of our bats show that these interference patterns are most conspicuous in the frequency range ∼55 kHz. This conspicuousness is faithfully preserved in the frequency tuning and spatial receptive fields of cortical single and multiunits recorded from anesthetized animals. In addition, we recorded vertical spatiotemporal response maps that describe neural tuning in elevation over time. One class of units that were very sharply tuned to frequencies ∼55 kHz showed unusual spatiotemporal response characteristics with a preference for paired echoes where especially the first echo originates from very low elevations. These behavioral and neural data provide the first insight into biosonar-based processing and perception of acoustic elevation cues that are essential for bats to navigate in three-dimensional space. Copyright © 2015 the American Physiological Society.
Han, Houzeng; Wang, Jian; Wang, Jinling; Tan, Xinglong
2015-01-01
The integration of Global Navigation Satellite Systems (GNSS) carrier phases with Inertial Navigation System (INS) measurements is essential to provide accurate and continuous position, velocity and attitude information, however it is necessary to fix ambiguities rapidly and reliably to obtain high accuracy navigation solutions. In this paper, we present the notion of combining the Global Positioning System (GPS), the BeiDou Navigation Satellite System (BDS) and low-cost micro-electro-mechanical sensors (MEMS) inertial systems for reliable navigation. An adaptive multipath factor-based tightly-coupled (TC) GPS/BDS/INS integration algorithm is presented and the overall performance of the integrated system is illustrated. A twenty seven states TC GPS/BDS/INS model is adopted with an extended Kalman filter (EKF), which is carried out by directly fusing ambiguity fixed double-difference (DD) carrier phase measurements with the INS predicted pseudoranges to estimate the error states. The INS-aided integer ambiguity resolution (AR) strategy is developed by using a dynamic model, a two-step estimation procedure is applied with adaptively estimated covariance matrix to further improve the AR performance. A field vehicular test was carried out to demonstrate the positioning performance of the combined system. The results show the TC GPS/BDS/INS system significantly improves the single-epoch AR reliability as compared to that of GPS/BDS-only or single satellite navigation system integrated strategy, especially for high cut-off elevations. The AR performance is also significantly improved for the combined system with adaptive covariance matrix in the presence of low elevation multipath related to the GNSS-only case. A total of fifteen simulated outage tests also show that the time to relock of the GPS/BDS signals is shortened, which improves the system availability. The results also indicate that TC integration system achieves a few centimeters accuracy in positioning based on the comparison analysis and covariance analysis, even in harsh environments (e.g., in urban canyons), thus we can see the advantage of positioning at high cut-off elevations that the combined GPS/BDS brings. PMID:25875191
Han, Houzeng; Wang, Jian; Wang, Jinling; Tan, Xinglong
2015-04-14
The integration of Global Navigation Satellite Systems (GNSS) carrier phases with Inertial Navigation System (INS) measurements is essential to provide accurate and continuous position, velocity and attitude information, however it is necessary to fix ambiguities rapidly and reliably to obtain high accuracy navigation solutions. In this paper, we present the notion of combining the Global Positioning System (GPS), the BeiDou Navigation Satellite System (BDS) and low-cost micro-electro-mechanical sensors (MEMS) inertial systems for reliable navigation. An adaptive multipath factor-based tightly-coupled (TC) GPS/BDS/INS integration algorithm is presented and the overall performance of the integrated system is illustrated. A twenty seven states TC GPS/BDS/INS model is adopted with an extended Kalman filter (EKF), which is carried out by directly fusing ambiguity fixed double-difference (DD) carrier phase measurements with the INS predicted pseudoranges to estimate the error states. The INS-aided integer ambiguity resolution (AR) strategy is developed by using a dynamic model, a two-step estimation procedure is applied with adaptively estimated covariance matrix to further improve the AR performance. A field vehicular test was carried out to demonstrate the positioning performance of the combined system. The results show the TC GPS/BDS/INS system significantly improves the single-epoch AR reliability as compared to that of GPS/BDS-only or single satellite navigation system integrated strategy, especially for high cut-off elevations. The AR performance is also significantly improved for the combined system with adaptive covariance matrix in the presence of low elevation multipath related to the GNSS-only case. A total of fifteen simulated outage tests also show that the time to relock of the GPS/BDS signals is shortened, which improves the system availability. The results also indicate that TC integration system achieves a few centimeters accuracy in positioning based on the comparison analysis and covariance analysis, even in harsh environments (e.g., in urban canyons), thus we can see the advantage of positioning at high cut-off elevations that the combined GPS/BDS brings.
Adaptive Automation Design and Implementation
2015-09-17
Study : Space Navigator This section demonstrates the player modeling paradigm, focusing specifically on the response generation section of the player ...human-machine system, a real-time player modeling framework for imitating a specific person’s task performance, and the Adaptive Automation System...Model . . . . . . . . . . . . . . . . . . . . . . . 13 Clustering-Based Real-Time Player Modeling . . . . . . . . . . . . . . . . . . . . . . 15 An
Solving the detour problem in navigation: a model of prefrontal and hippocampal interactions.
Spiers, Hugo J; Gilbert, Sam J
2015-01-01
Adapting behavior to accommodate changes in the environment is an important function of the nervous system. A universal problem for motile animals is the discovery that a learned route is blocked and a detour is required. Given the substantial neuroscience research on spatial navigation and decision-making it is surprising that so little is known about how the brain solves the detour problem. Here we review the limited number of relevant functional neuroimaging, single unit recording and lesion studies. We find that while the prefrontal cortex (PFC) consistently responds to detours, the hippocampus does not. Recent evidence suggests the hippocampus tracks information about the future path distance to the goal. Based on this evidence we postulate a conceptual model in which: Lateral PFC provides a prediction error signal about the change in the path, frontopolar and superior PFC support the re-formulation of the route plan as a novel subgoal and the hippocampus simulates the new path. More data will be required to validate this model and understand (1) how the system processes the different options; and (2) deals with situations where a new path becomes available (i.e., shortcuts).
A Distributed Model for Mobile Robot Environment-Learning and Navigation
1990-05-01
are unex- pectedly removed, the bats continue to navigate around, as if they continue to be present [ Gallistel 89]. This behavior indicates the...itself ( Gallistel 80]. 11.2.2 Bees The behavior of bees has been intriguing biologists, behaviorists, and ethol- ogists for centuries. Bee hives...corresponding to their previous length [ Gallistel 80]. In experiments with rotated radial mazes, rats enter already sampled arms without realizing the
NASA Technical Reports Server (NTRS)
Holley, M. D.; Swingle, W. L.; Bachman, S. L.; Leblanc, C. J.; Howard, H. T.; Biggs, H. M.
1976-01-01
The primary guidance, navigation, and control systems for both the lunar module and the command module are described. Development of the Apollo primary guidance systems is traced from adaptation of the Polaris Mark II system through evolution from Block I to Block II configurations; the discussion includes design concepts used, test and qualification programs performed, and major problems encountered. The major subsystems (inertial, computer, and optical) are covered. Separate sections on the inertial components (gyroscopes and accelerometers) are presented because these components represent a major contribution to the success of the primary guidance, navigation, and control system.
SLAM algorithm applied to robotics assistance for navigation in unknown environments
2010-01-01
Background The combination of robotic tools with assistance technology determines a slightly explored area of applications and advantages for disability or elder people in their daily tasks. Autonomous motorized wheelchair navigation inside an environment, behaviour based control of orthopaedic arms or user's preference learning from a friendly interface are some examples of this new field. In this paper, a Simultaneous Localization and Mapping (SLAM) algorithm is implemented to allow the environmental learning by a mobile robot while its navigation is governed by electromyographic signals. The entire system is part autonomous and part user-decision dependent (semi-autonomous). The environmental learning executed by the SLAM algorithm and the low level behaviour-based reactions of the mobile robot are robotic autonomous tasks, whereas the mobile robot navigation inside an environment is commanded by a Muscle-Computer Interface (MCI). Methods In this paper, a sequential Extended Kalman Filter (EKF) feature-based SLAM algorithm is implemented. The features correspond to lines and corners -concave and convex- of the environment. From the SLAM architecture, a global metric map of the environment is derived. The electromyographic signals that command the robot's movements can be adapted to the patient's disabilities. For mobile robot navigation purposes, five commands were obtained from the MCI: turn to the left, turn to the right, stop, start and exit. A kinematic controller to control the mobile robot was implemented. A low level behavior strategy was also implemented to avoid robot's collisions with the environment and moving agents. Results The entire system was tested in a population of seven volunteers: three elder, two below-elbow amputees and two young normally limbed patients. The experiments were performed within a closed low dynamic environment. Subjects took an average time of 35 minutes to navigate the environment and to learn how to use the MCI. The SLAM results have shown a consistent reconstruction of the environment. The obtained map was stored inside the Muscle-Computer Interface. Conclusions The integration of a highly demanding processing algorithm (SLAM) with a MCI and the communication between both in real time have shown to be consistent and successful. The metric map generated by the mobile robot would allow possible future autonomous navigation without direct control of the user, whose function could be relegated to choose robot destinations. Also, the mobile robot shares the same kinematic model of a motorized wheelchair. This advantage can be exploited for wheelchair autonomous navigation. PMID:20163735
Smoke Alarms for People Who Are Deaf or Hard-of-Hearing
... motels Expand sub-navigation Hotel fire safety tips Marijuana grow & extraction facilities Nightclubs and other assembly occupancies ... Fire behavior research Fire loss and injury research Benefits of home fire sprinklers Expand sub-navigation Environmental ...
Bellassen, Virginie; Iglói, Kinga; de Souza, Leonardo Cruz; Dubois, Bruno; Rondi-Reig, Laure
2012-02-08
Episodic memory impairment is a hallmark for early diagnosis of Alzheimer's disease. Most actual tests used to diagnose Alzheimer's disease do not assess the spatiotemporal properties of episodic memory and lead to false-positive or -negative diagnosis. We used a newly developed, nonverbal navigation test for Human, based on the objective experimental testing of a spatiotemporal experience, to differentially Alzheimer's disease at the mild stage (N = 16 patients) from frontotemporal lobar degeneration (N = 11 patients) and normal aging (N = 24 subjects). Comparing navigation parameters and standard neuropsychological tests, temporal order memory appeared to have the highest predictive power for mild Alzheimer's disease diagnosis versus frontotemporal lobar degeneration and normal aging. This test was also nonredundant with classical neuropsychological tests. As a conclusion, our results suggest that temporal order memory tested in a spatial navigation task may provide a selective behavioral marker of Alzheimer's disease.
User-Adapted Recommendation of Content on Mobile Devices Using Bayesian Networks
NASA Astrophysics Data System (ADS)
Iwasaki, Hirotoshi; Mizuno, Nobuhiro; Hara, Kousuke; Motomura, Yoichi
Mobile devices, such as cellular phones and car navigation systems, are essential to daily life. People acquire necessary information and preferred content over communication networks anywhere, anytime. However, usability issues arise from the simplicity of user interfaces themselves. Thus, a recommendation of content that is adapted to a user's preference and situation will help the user select content. In this paper, we describe a method to realize such a system using Bayesian networks. This user-adapted mobile system is based on a user model that provides recommendation of content (i.e., restaurants, shops, and music that are suitable to the user and situation) and that learns incrementally based on accumulated usage history data. However, sufficient samples are not always guaranteed, since a user model would require combined dependency among users, situations, and contents. Therefore, we propose the LK method for modeling, which complements incomplete and insufficient samples using knowledge data, and CPT incremental learning for adaptation based on a small number of samples. In order to evaluate the methods proposed, we applied them to restaurant recommendations made on car navigation systems. The evaluation results confirmed that our model based on the LK method can be expected to provide better generalization performance than that of the conventional method. Furthermore, our system would require much less operation than current car navigation systems from the beginning of use. Our evaluation results also indicate that learning a user's individual preference through CPT incremental learning would be beneficial to many users, even with only a few samples. As a result, we have developed the technology of a system that becomes more adapted to a user the more it is used.
Wiegmann, Daniel D.; Hebets, Eileen A.; Gronenberg, Wulfila; Graving, Jacob M.; Bingman, Verner P.
2016-01-01
Navigation is an ideal behavioral model for the study of sensory system integration and the neural substrates associated with complex behavior. For this broader purpose, however, it may be profitable to develop new model systems that are both tractable and sufficiently complex to ensure that information derived from a single sensory modality and path integration are inadequate to locate a goal. Here, we discuss some recent discoveries related to navigation by amblypygids, nocturnal arachnids that inhabit the tropics and sub-tropics. Nocturnal displacement experiments under the cover of a tropical rainforest reveal that these animals possess navigational abilities that are reminiscent, albeit on a smaller spatial scale, of true-navigating vertebrates. Specialized legs, called antenniform legs, which possess hundreds of olfactory and tactile sensory hairs, and vision appear to be involved. These animals also have enormous mushroom bodies, higher-order brain regions that, in insects, integrate contextual cues and may be involved in spatial memory. In amblypygids, the complexity of a nocturnal rainforest may impose navigational challenges that favor the integration of information derived from multimodal cues. Moreover, the movement of these animals is easily studied in the laboratory and putative neural integration sites of sensory information can be manipulated. Thus, amblypygids could serve as model organisms for the discovery of neural substrates associated with a unique and potentially sophisticated navigational capability. The diversity of habitats in which amblypygids are found also offers an opportunity for comparative studies of sensory integration and ecological selection pressures on navigation mechanisms. PMID:27014008
Interaction dynamics of multiple mobile robots with simple navigation strategies
NASA Technical Reports Server (NTRS)
Wang, P. K. C.
1989-01-01
The global dynamic behavior of multiple interacting autonomous mobile robots with simple navigation strategies is studied. Here, the effective spatial domain of each robot is taken to be a closed ball about its mass center. It is assumed that each robot has a specified cone of visibility such that interaction with other robots takes place only when they enter its visibility cone. Based on a particle model for the robots, various simple homing and collision-avoidance navigation strategies are derived. Then, an analysis of the dynamical behavior of the interacting robots in unbounded spatial domains is made. The article concludes with the results of computer simulations studies of two or more interacting robots.
Empirically Supported Interventions for Sexual and Gender Minority Youth.
Austin, Ashley; Craig, Shelley L
2015-01-01
When empirically supported treatments (ESTs) are effectively adapted for use with minority populations, they may be more efficacious. As such, there is a need to adapt existing ESTs for use with diverse sexual and gender minority youth (SGMY). The unique bias-based challenges faced by SGMY require the integration of affirmative practices into ESTs to effectively address the specific needs of this underserved group of youth. The primary purpose of the authors in this article is to present a clearly articulated stakeholder driven model for developing an affirmative adapted version of cognitive behavioral therapy (CBT) for use with diverse SGMY. The authors' approach to adaptation follows the "adapt and evaluate" framework for enhancing cultural congruence of interventions for minority groups. A community based participatory research approach, consistent with a stakeholder driven process, is utilized to develop the intervention from the ground up through the voices of the target community. Researchers conducted 3 focus groups with culturally diverse SGMY to explore salient aspects of youths' cultural and SGM identities in order to inform the intervention and ensure its applicability to a wide range of SGMY. Focus group data is analyzed and integrated into an existing group-based CBT intervention. The following themes emerge as critical to affirmative work with diverse SGMY: (1) the interplay between cultural norms, gender norms, sexual orientation, and gender identity; (2) the complex role of religious community within the lives of SGMY; and (3) consideration of extended family and cultural community as youth navigate their SGM identities.
An adaptive technique for a redundant-sensor navigation system.
NASA Technical Reports Server (NTRS)
Chien, T.-T.
1972-01-01
An on-line adaptive technique is developed to provide a self-contained redundant-sensor navigation system with a capability to utilize its full potentiality in reliability and performance. This adaptive system is structured as a multistage stochastic process of detection, identification, and compensation. It is shown that the detection system can be effectively constructed on the basis of a design value, specified by mission requirements, of the unknown parameter in the actual system, and of a degradation mode in the form of a constant bias jump. A suboptimal detection system on the basis of Wald's sequential analysis is developed using the concept of information value and information feedback. The developed system is easily implemented, and demonstrates a performance remarkably close to that of the optimal nonlinear detection system. An invariant transformation is derived to eliminate the effect of nuisance parameters such that the ambiguous identification system can be reduced to a set of disjoint simple hypotheses tests. By application of a technique of decoupled bias estimation in the compensation system the adaptive system can be operated without any complicated reorganization.
Selection method of terrain matching area for TERCOM algorithm
NASA Astrophysics Data System (ADS)
Zhang, Qieqie; Zhao, Long
2017-10-01
The performance of terrain aided navigation is closely related to the selection of terrain matching area. The different matching algorithms have different adaptability to terrain. This paper mainly studies the adaptability to terrain of TERCOM algorithm, analyze the relation between terrain feature and terrain characteristic parameters by qualitative and quantitative methods, and then research the relation between matching probability and terrain characteristic parameters by the Monte Carlo method. After that, we propose a selection method of terrain matching area for TERCOM algorithm, and verify the method correctness with real terrain data by simulation experiment. Experimental results show that the matching area obtained by the method in this paper has the good navigation performance and the matching probability of TERCOM algorithm is great than 90%
Building a Navigation System to Reduce Cancer Disparities in Urban Black Older Adults
Bone, Lee; Edington, Kristen; Rosenberg, Jessica; Wenzel, Jennifer; Garza, Mary A.; Klein, Catherine; Schmitt, Lisa; Ford, Jean G.
2014-01-01
Background Although cancer outcomes have improved in recent decades, substantial disparities by race, ethnicity, income and education persist. Increasingly, patient navigation services are demonstrating success in improving cancer detection, treatment and care and in reducing cancer health disparities. To advance progress in developing patient navigation programs, extensive descriptions of each component of the program must be made available to researchers and health service providers. Objective To describe the components of a patient navigation program designed to improve cancer screening based on informed decision-making on cancer screening and cancer treatment services among predominantly Black older adults in Baltimore City. Methods A community-academic participatory approach was used to develop a patient navigation program in Baltimore, Maryland. The components of the patient navigation system included the development of a community academic (advisory) committee (CAC); recruitment and selection of community health workers (CHWs)/navigators and supervisory staff; initial training and continuing education of the CHWs/navigators; and evaluation of CHWs/navigators. The study was approved by the Johns Hopkins Bloomberg School of Public Health Institutional Review Board. Conclusions The incorporation of community-based participatory research (CPBR) principles into each facet of this patient navigation program facilitated the attainment of the intervention’s objectives. This patient navigation program successfully delivered cancer navigation services to 1302 urban Black older adults. Appropriately recruited, selected and trained CHWs monitored by an experienced supervisor and investigators are the key elements in a patient navigation program. This model has the potential to be adapted by research and health service providers. PMID:23793252
Development evolving:The origins and meanings of instinct
Blumberg, Mark S.
2015-01-01
How do migratory birds, herding dogs, and navigating sea turtles do the amazing things that they do? For hundreds of years, scientists and philosophers have struggled over possible explanations. In time, one word came to dominate the discussion: instinct. It became the catch-all explanation for those adaptive and complex abilities that do not obviously result from learning or experience. Today, various animals are said to possess a survival instinct, migratory instinct, herding instinct, maternal instinct, or language instinct. But a closer look reveals that these and other “instincts” are not satisfactorily described as inborn, pre-programmed, hardwired, or genetically determined. Rather, research in this area teaches us that species-typical behaviors develop—and they do so in every individual under the guidance of species-typical experiences occurring within reliable ecological contexts. PMID:27906515
Control of autonomous robot using neural networks
NASA Astrophysics Data System (ADS)
Barton, Adam; Volna, Eva
2017-07-01
The aim of the article is to design a method of control of an autonomous robot using artificial neural networks. The introductory part describes control issues from the perspective of autonomous robot navigation and the current mobile robots controlled by neural networks. The core of the article is the design of the controlling neural network, and generation and filtration of the training set using ART1 (Adaptive Resonance Theory). The outcome of the practical part is an assembled Lego Mindstorms EV3 robot solving the problem of avoiding obstacles in space. To verify models of an autonomous robot behavior, a set of experiments was created as well as evaluation criteria. The speed of each motor was adjusted by the controlling neural network with respect to the situation in which the robot was found.
Real-time adaptive off-road vehicle navigation and terrain classification
NASA Astrophysics Data System (ADS)
Muller, Urs A.; Jackel, Lawrence D.; LeCun, Yann; Flepp, Beat
2013-05-01
We are developing a complete, self-contained autonomous navigation system for mobile robots that learns quickly, uses commodity components, and has the added benefit of emitting no radiation signature. It builds on the autonomous navigation technology developed by Net-Scale and New York University during the Defense Advanced Research Projects Agency (DARPA) Learning Applied to Ground Robots (LAGR) program and takes advantage of recent scientific advancements achieved during the DARPA Deep Learning program. In this paper we will present our approach and algorithms, show results from our vision system, discuss lessons learned from the past, and present our plans for further advancing vehicle autonomy.
Wyeth, Russell C; Woodward, Owen M; Willows, A O Dennis
2006-04-01
Progress in understanding sensory and locomotory systems in Tritonia diomedea has created the potential for the neuroethological study of animal navigation in this species. Our goal is to describe the navigational behaviors to guide further work on how the nervous system integrates information from multiple senses to produce oriented locomotion. Observation of T. diomedea in its habitat has suggested that it uses water flow to navigate relative to prey, predators, and conspecifics. We test these hypotheses in the field by comparing slug orientation in time-lapse videos to flow direction in circumstances with and without prey, predators, or conspecifics upstream. T. diomedea oriented upstream both while crawling and after turning. This trend was strongest before feeding or mating; after feeding or mating, the slugs did not orient significantly to flow. Slugs turned downstream away from an upstream predator but did not react in control situations without an upstream predator. These data support the hypothesis that T. diomedea uses a combination of odors (or some other cue transported downstream) and water flow to navigate relative to prey, predators, and conspecifics. Understanding the context-dependent choice between upstream and downstream crawling in T. diomedea provides an opportunity for further work on the sensory integration underlying navigation behavior.
The Study of Intelligent Vehicle Navigation Path Based on Behavior Coordination of Particle Swarm.
Han, Gaining; Fu, Weiping; Wang, Wen
2016-01-01
In the behavior dynamics model, behavior competition leads to the shock problem of the intelligent vehicle navigation path, because of the simultaneous occurrence of the time-variant target behavior and obstacle avoidance behavior. Considering the safety and real-time of intelligent vehicle, the particle swarm optimization (PSO) algorithm is proposed to solve these problems for the optimization of weight coefficients of the heading angle and the path velocity. Firstly, according to the behavior dynamics model, the fitness function is defined concerning the intelligent vehicle driving characteristics, the distance between intelligent vehicle and obstacle, and distance of intelligent vehicle and target. Secondly, behavior coordination parameters that minimize the fitness function are obtained by particle swarm optimization algorithms. Finally, the simulation results show that the optimization method and its fitness function can improve the perturbations of the vehicle planning path and real-time and reliability.
The Study of Intelligent Vehicle Navigation Path Based on Behavior Coordination of Particle Swarm
Han, Gaining; Fu, Weiping; Wang, Wen
2016-01-01
In the behavior dynamics model, behavior competition leads to the shock problem of the intelligent vehicle navigation path, because of the simultaneous occurrence of the time-variant target behavior and obstacle avoidance behavior. Considering the safety and real-time of intelligent vehicle, the particle swarm optimization (PSO) algorithm is proposed to solve these problems for the optimization of weight coefficients of the heading angle and the path velocity. Firstly, according to the behavior dynamics model, the fitness function is defined concerning the intelligent vehicle driving characteristics, the distance between intelligent vehicle and obstacle, and distance of intelligent vehicle and target. Secondly, behavior coordination parameters that minimize the fitness function are obtained by particle swarm optimization algorithms. Finally, the simulation results show that the optimization method and its fitness function can improve the perturbations of the vehicle planning path and real-time and reliability. PMID:26880881
Proposition and Organization of an Adaptive Learning Domain Based on Fusion from the Web
ERIC Educational Resources Information Center
Chaoui, Mohammed; Laskri, Mohamed Tayeb
2013-01-01
The Web allows self-navigated education through interaction with large amounts of Web resources. While enjoying the flexibility of Web tools, authors may suffer from research and filtering Web resources, when they face various resources formats and complex structures. An adaptation of extracted Web resources must be assured by authors, to give…
Methods of Adapting Digital Content for the Learning Process via Mobile Devices
ERIC Educational Resources Information Center
Lopez, J. L. Gimenez; Royo, T. Magal; Laborda, Jesus Garcia; Calvo, F. Garde
2009-01-01
This article analyses different methods of adapting digital content for its delivery via mobile devices taking into account two aspects which are a fundamental part of the learning process; on the one hand, functionality of the contents, and on the other, the actual controlled navigation requirements that the learner needs in order to acquire high…
Impact of delayed information in sub-second complex systems
NASA Astrophysics Data System (ADS)
Manrique, Pedro D.; Zheng, Minzhang; Johnson Restrepo, D. Dylan; Hui, Pak Ming; Johnson, Neil F.
What happens when you slow down the delivery of information in large-scale complex systems that operate faster than the blink of an eye? This question just adopted immediate commercial, legal and political importance following U.S. regulators' decision to allow an intentional 350 microsecond delay to be added in the ultrafast network of financial exchanges. However there is still no scientific understanding available to policymakers of the potential system-wide impact of such delays. Here we take a first step in addressing this question using a minimal model of a population of competing, heterogeneous, adaptive agents which has previously been shown to produce similar statistical features to real markets. We find that while certain extreme system-level behaviors can be prevented by such delays, the duration of others is increased. This leads to a highly non-trivial relationship between delays and system-wide instabilities which warrants deeper empirical investigation. The generic nature of our model suggests there should be a fairly wide class of complex systems where such delay-driven extreme behaviors can arise, e.g. sub-second delays in brain function possibly impacting individuals' behavior, and sub-second delays in navigational systems potentially impacting the safety of driverless vehicles.
Adaptive vehicle motion estimation and prediction
NASA Astrophysics Data System (ADS)
Zhao, Liang; Thorpe, Chuck E.
1999-01-01
Accurate motion estimation and reliable maneuver prediction enable an automated car to react quickly and correctly to the rapid maneuvers of the other vehicles, and so allow safe and efficient navigation. In this paper, we present a car tracking system which provides motion estimation, maneuver prediction and detection of the tracked car. The three strategies employed - adaptive motion modeling, adaptive data sampling, and adaptive model switching probabilities - result in an adaptive interacting multiple model algorithm (AIMM). The experimental results on simulated and real data demonstrate that our tracking system is reliable, flexible, and robust. The adaptive tracking makes the system intelligent and useful in various autonomous driving tasks.
A Novel Grid SINS/DVL Integrated Navigation Algorithm for Marine Application
Kang, Yingyao; Zhao, Lin; Cheng, Jianhua; Fan, Xiaoliang
2018-01-01
Integrated navigation algorithms under the grid frame have been proposed based on the Kalman filter (KF) to solve the problem of navigation in some special regions. However, in the existing study of grid strapdown inertial navigation system (SINS)/Doppler velocity log (DVL) integrated navigation algorithms, the Earth models of the filter dynamic model and the SINS mechanization are not unified. Besides, traditional integrated systems with the KF based correction scheme are susceptible to measurement errors, which would decrease the accuracy and robustness of the system. In this paper, an adaptive robust Kalman filter (ARKF) based hybrid-correction grid SINS/DVL integrated navigation algorithm is designed with the unified reference ellipsoid Earth model to improve the navigation accuracy in middle-high latitude regions for marine application. Firstly, to unify the Earth models, the mechanization of grid SINS is introduced and the error equations are derived based on the same reference ellipsoid Earth model. Then, a more accurate grid SINS/DVL filter model is designed according to the new error equations. Finally, a hybrid-correction scheme based on the ARKF is proposed to resist the effect of measurement errors. Simulation and experiment results show that, compared with the traditional algorithms, the proposed navigation algorithm can effectively improve the navigation performance in middle-high latitude regions by the unified Earth models and the ARKF based hybrid-correction scheme. PMID:29373549
Oral and maxillofacial surgery with computer-assisted navigation system.
Kawachi, Homare; Kawachi, Yasuyuki; Ikeda, Chihaya; Takagi, Ryo; Katakura, Akira; Shibahara, Takahiko
2010-01-01
Intraoperative computer-assisted navigation has gained acceptance in maxillofacial surgery with applications in an increasing number of indications. We adapted a commercially available wireless passive marker system which allows calibration and tracking of virtually every instrument in maxillofacial surgery. Virtual computer-generated anatomical structures are displayed intraoperatively in a semi-immersive head-up display. Continuous observation of the operating field facilitated by computer assistance enables surgical navigation in accordance with the physician's preoperative plans. This case report documents the potential for augmented visualization concepts in surgical resection of tumors in the oral and maxillofacial region. We report a case of T3N2bM0 carcinoma of the maxillary gingival which was surgically resected with the assistance of the Stryker Navigation Cart System. This system was found to be useful in assisting preoperative planning and intraoperative monitoring.
Design and testing of a multi-sensor pedestrian location and navigation platform.
Morrison, Aiden; Renaudin, Valérie; Bancroft, Jared B; Lachapelle, Gérard
2012-01-01
Navigation and location technologies are continually advancing, allowing ever higher accuracies and operation under ever more challenging conditions. The development of such technologies requires the rapid evaluation of a large number of sensors and related utilization strategies. The integration of Global Navigation Satellite Systems (GNSSs) such as the Global Positioning System (GPS) with accelerometers, gyros, barometers, magnetometers and other sensors is allowing for novel applications, but is hindered by the difficulties to test and compare integrated solutions using multiple sensor sets. In order to achieve compatibility and flexibility in terms of multiple sensors, an advanced adaptable platform is required. This paper describes the design and testing of the NavCube, a multi-sensor navigation, location and timing platform. The system provides a research tool for pedestrian navigation, location and body motion analysis in an unobtrusive form factor that enables in situ data collections with minimal gait and posture impact. Testing and examples of applications of the NavCube are provided.
Vision-based navigation in a dynamic environment for virtual human
NASA Astrophysics Data System (ADS)
Liu, Yan; Sun, Ji-Zhou; Zhang, Jia-Wan; Li, Ming-Chu
2004-06-01
Intelligent virtual human is widely required in computer games, ergonomics software, virtual environment and so on. We present a vision-based behavior modeling method to realize smart navigation in a dynamic environment. This behavior model can be divided into three modules: vision, global planning and local planning. Vision is the only channel for smart virtual actor to get information from the outside world. Then, the global and local planning module use A* and D* algorithm to find a way for virtual human in a dynamic environment. Finally, the experiments on our test platform (Smart Human System) verify the feasibility of this behavior model.
The sensory ecology of ocean navigation.
Lohmann, Kenneth J; Lohmann, Catherine M F; Endres, Courtney S
2008-06-01
How animals guide themselves across vast expanses of open ocean, sometimes to specific geographic areas, has remained an enduring mystery of behavioral biology. In this review we briefly contrast underwater oceanic navigation with terrestrial navigation and summarize the advantages and constraints of different approaches used to analyze animal navigation in the sea. In addition, we highlight studies and techniques that have begun to unravel the sensory cues that underlie navigation in sea turtles, salmon and other ocean migrants. Environmental signals of importance include geomagnetic, chemical and hydrodynamic cues, perhaps supplemented in some cases by celestial cues or other sources of information that remain to be discovered. An interesting similarity between sea turtles and salmon is that both have been hypothesized to complete long-distance reproductive migrations using navigational systems composed of two different suites of mechanisms that function sequentially over different spatial scales. The basic organization of navigation in these two groups of animals may be functionally similar, and perhaps also representative of other long-distance ocean navigators.
Cerebellum Augmented Rover Development
NASA Technical Reports Server (NTRS)
King, Matthew
2005-01-01
Bio-Inspired Technologies and Systems (BITS) are a very natural result of thinking about Nature's way of solving problems. Knowledge of animal behaviors an be used in developing robotic behaviors intended for planetary exploration. This is the expertise of the JFL BITS Group and has served as a philosophical model for NMSU RioRobolab. Navigation is a vital function for any autonomous system. Systems must have the ability to determine a safe path between their current location and some target location. The MER mission, as well as other JPL rover missions, uses a method known as dead-reckoning to determine position information. Dead-reckoning uses wheel encoders to sense the wheel's rotation. In a sandy environment such as Mars, this method is highly inaccurate because the wheels will slip in the sand. Improving positioning error will allow the speed of an autonomous navigating rover to be greatly increased. Therefore, local navigation based upon landmark tracking is desirable in planetary exploration. The BITS Group is developing navigation technology based upon landmark tracking. Integration of the current rover architecture with a cerebellar neural network tracking algorithm will demonstrate that this approach to navigation is feasible and should be implemented in future rover and spacecraft missions.
Simultaneous dual-band radar development
NASA Technical Reports Server (NTRS)
Liskow, C. L.
1974-01-01
Efforts to design and construct an airborne imaging radar operating simultaneously at L band and X band with an all-inertial navigation system in order to form a dual-band radar system are described. The areas of development include duplex transmitters, receivers, and recorders, a control module, motion compensation for both bands, and adaptation of a commercial inertial navigation system. Installation of the system in the aircraft and flight tests are described. Circuit diagrams, performance figures, and some radar images are presented.
Brzosko, Zuzanna; Zannone, Sara; Schultz, Wolfram
2017-01-01
Spike timing-dependent plasticity (STDP) is under neuromodulatory control, which is correlated with distinct behavioral states. Previously, we reported that dopamine, a reward signal, broadens the time window for synaptic potentiation and modulates the outcome of hippocampal STDP even when applied after the plasticity induction protocol (Brzosko et al., 2015). Here, we demonstrate that sequential neuromodulation of STDP by acetylcholine and dopamine offers an efficacious model of reward-based navigation. Specifically, our experimental data in mouse hippocampal slices show that acetylcholine biases STDP toward synaptic depression, whilst subsequent application of dopamine converts this depression into potentiation. Incorporating this bidirectional neuromodulation-enabled correlational synaptic learning rule into a computational model yields effective navigation toward changing reward locations, as in natural foraging behavior. Thus, temporally sequenced neuromodulation of STDP enables associations to be made between actions and outcomes and also provides a possible mechanism for aligning the time scales of cellular and behavioral learning. DOI: http://dx.doi.org/10.7554/eLife.27756.001 PMID:28691903
Functional imaging of hippocampal place cells at cellular resolution during virtual navigation
Dombeck, Daniel A.; Harvey, Christopher D.; Tian, Lin; Looger, Loren L.; Tank, David W.
2010-01-01
Spatial navigation is a widely employed behavior in rodent studies of neuronal circuits underlying cognition, learning and memory. In vivo microscopy combined with genetically-encoded indicators provides important new tools to study neuronal circuits, but has been technically difficult to apply during navigation. We describe methods to image the activity of hippocampal CA1 neurons with sub-cellular resolution in behaving mice. Neurons expressing the genetically encoded calcium indicator GCaMP3 were imaged through a chronic hippocampal window. Head-fixed mice performed spatial behaviors within a setup combining a virtual reality system and a custom built two-photon microscope. Populations of place cells were optically identified, and the correlation between the location of their place fields in the virtual environment and their anatomical location in the local circuit was measured. The combination of virtual reality and high-resolution functional imaging should allow for a new generation of studies to probe neuronal circuit dynamics during behavior. PMID:20890294
Perception system and functions for autonomous navigation in a natural environment
NASA Technical Reports Server (NTRS)
Chatila, Raja; Devy, Michel; Lacroix, Simon; Herrb, Matthieu
1994-01-01
This paper presents the approach, algorithms, and processes we developed for the perception system of a cross-country autonomous robot. After a presentation of the tele-programming context we favor for intervention robots, we introduce an adaptive navigation approach, well suited for the characteristics of complex natural environments. This approach lead us to develop a heterogeneous perception system that manages several different terrain representatives. The perception functionalities required during navigation are listed, along with the corresponding representations we consider. The main perception processes we developed are presented. They are integrated within an on-board control architecture we developed. First results of an ambitious experiment currently underway at LAAS are then presented.
Common features in diverse insect clocks.
Numata, Hideharu; Miyazaki, Yosuke; Ikeno, Tomoko
2015-01-01
This review describes common features among diverse biological clocks in insects, including circadian, circatidal, circalunar/circasemilunar, and circannual clocks. These clocks control various behaviors, physiological functions, and developmental events, enabling adaptation to periodic environmental changes. Circadian clocks also function in time-compensation for celestial navigation and in the measurement of day or night length for photoperiodism. Phase response curves for such clocks reported thus far exhibit close similarities; specifically, the circannual clock in Anthrenus verbasci shows striking similarity to circadian clocks in its phase response. It is suggested that diverse biological clocks share physiological properties in their phase responses irrespective of period length. Molecular and physiological mechanisms are best understood for the optic-lobe and mid-brain circadian clocks, although there is no direct evidence that these clocks are involved in rhythmic phenomena other than circadian rhythms in daily events. Circadian clocks have also been localized in peripheral tissues, and research on their role in various rhythmic phenomena has been started. Although clock genes have been identified as controllers of circadian rhythms in daily events, some of these genes have also been shown to be involved in photoperiodism and possibly in time-compensated celestial navigation. In contrast, there is no experimental evidence indicating that any known clock gene is involved in biological clocks other than circadian clocks.
Land, sea, and air unmanned systems research and development at SPAWAR Systems Center Pacific
NASA Astrophysics Data System (ADS)
Nguyen, Hoa G.; Laird, Robin; Kogut, Greg; Andrews, John; Fletcher, Barbara; Webber, Todd; Arrieta, Rich; Everett, H. R.
2009-05-01
The Space and Naval Warfare (SPAWAR) Systems Center Pacific (SSC Pacific) has a long and extensive history in unmanned systems research and development, starting with undersea applications in the 1960s and expanding into ground and air systems in the 1980s. In the ground domain, we are addressing force-protection scenarios using large unmanned ground vehicles (UGVs) and fixed sensors, and simultaneously pursuing tactical and explosive ordnance disposal (EOD) operations with small man-portable robots. Technology thrusts include improving robotic intelligence and functionality, autonomous navigation and world modeling in urban environments, extended operational range of small teleoperated UGVs, enhanced human-robot interaction, and incorporation of remotely operated weapon systems. On the sea surface, we are pushing the envelope on dynamic obstacle avoidance while conforming to established nautical rules-of-the-road. In the air, we are addressing cooperative behaviors between UGVs and small vertical-takeoff- and-landing unmanned air vehicles (UAVs). Underwater applications involve very shallow water mine countermeasures, ship hull inspection, oceanographic data collection, and deep ocean access. Specific technology thrusts include fiber-optic communications, adaptive mission controllers, advanced navigation techniques, and concepts of operations (CONOPs) development. This paper provides a review of recent accomplishments and current status of a number of projects in these areas.
Impact Assessment of GNSS Spoofing Attacks on INS/GNSS Integrated Navigation System.
Liu, Yang; Li, Sihai; Fu, Qiangwen; Liu, Zhenbo
2018-05-04
In the face of emerging Global Navigation Satellite System (GNSS) spoofing attacks, there is a need to give a comprehensive analysis on how the inertial navigation system (INS)/GNSS integrated navigation system responds to different kinds of spoofing attacks. A better understanding of the integrated navigation system’s behavior with spoofed GNSS measurements gives us valuable clues to develop effective spoofing defenses. This paper focuses on an impact assessment of GNSS spoofing attacks on the integrated navigation system Kalman filter’s error covariance, innovation sequence and inertial sensor bias estimation. A simple and straightforward measurement-level trajectory spoofing simulation framework is presented, serving as the basis for an impact assessment of both unsynchronized and synchronized spoofing attacks. Recommendations are given for spoofing detection and mitigation based on our findings in the impact assessment process.
Analyzing the User Behavior toward Electronic Commerce Stimuli.
Lorenzo-Romero, Carlota; Alarcón-Del-Amo, María-Del-Carmen; Gómez-Borja, Miguel-Ángel
2016-01-01
Based on the Stimulus-Organism-Response paradigm this research analyzes the main differences between the effects of two types of web technologies: Verbal web technology (i.e., navigational structure as utilitarian stimulus) versus non-verbal web technology (music and presentation of products as hedonic stimuli). Specific webmosphere stimuli have not been examined yet as separate variables and their impact on internal and behavioral responses seems unknown. Therefore, the objective of this research consists in analyzing the impact of these web technologies -which constitute the web atmosphere or webmosphere of a website- on shopping human behavior (i.e., users' internal states -affective, cognitive, and satisfaction- and behavioral responses - approach responses, and real shopping outcomes-) within the retail online store created by computer, taking into account some mediator variables (i.e., involvement, atmospheric responsiveness, and perceived risk). A 2 ("free" versus "hierarchical" navigational structure) × 2 ("on" versus "off" music) × 2 ("moving" versus "static" images) between-subjects computer experimental design is used to test empirically this research. In addition, an integrated methodology was developed allowing the simulation, tracking and recording of virtual user behavior within an online shopping environment. As main conclusion, this study suggests that the positive responses of online consumers might increase when they are allowed to freely navigate the online stores and their experience is enriched by animate gifts and music background. The effect caused by mediator variables modifies relatively the final shopping human behavior.
NASA Astrophysics Data System (ADS)
Ganji, Farid
This dissertation presents novel nonlinear adaptive formation controllers for a heterogeneous group of holonomic planetary exploration rovers navigating over flat terrains with unknown soil types and surface conditions. A leader-follower formation control architecture is employed. In the first part, using a point-mass model for robots and a Coulomb-viscous friction model for terrain resistance, direct adaptive control laws and a formation speed-adaptation strategy are developed for formation navigation over unknown and changing terrain in the presence of actuator saturation. On-line estimates of terrain frictional parameters compensate for unknown terrain resistance and its variations. In saturation events over difficult terrain, the formation speed is reduced based on the speed of the slowest saturated robot, using internal fleet communication and a speed-adaptation strategy, so that the formation error stays bounded and small. A formal proof for asymptotic stability of the formation system in non-saturated conditions is given. The performance of robot controllers are verified using a modular 3-robot formation simulator. Simulations show that the formation errors reduce to zero asymptotically under non-saturated conditions as is guaranteed by the theoretical proof. In the second part, the proposed adaptive control methodology is extended for formation control of a class of omnidirectional rovers with three independently-driven universal holonomic rigid wheels, where the rovers' rigid-body dynamics, drive-system electromechanical characteristics, and wheel-ground interaction mechanics are incorporated. Holonomic rovers have the ability to move simultaneously and independently in translation and rotation, rendering great maneuverability and agility, which makes them suitable for formation navigation. Novel nonlinear adaptive control laws are designed for the input voltages of the three wheel-drive motors. The motion resistance, which is due to the sinkage of rover wheels in soft planetary terrain, is modeled using classical terramechanics theory. The unknown system parameters for adaptive estimation pertain to the rolling resistance forces and scrubbing resistance torques at the wheel-terrain interfaces. Novel terramechanical formulas for terrain resistance forces and torques are derived via considering the universal holonomic wheels as rigid toroidal wheels moving forward and/or sideways as well as turning on soft ground. The asymptotic stability of the formation control system is rigorously proved using Lyapunov's direct method.
ERIC Educational Resources Information Center
Schmidt, Brandy; Papale, Andrew; Redish, A. David; Markus, Etan J.
2013-01-01
Navigation can be accomplished through multiple decision-making strategies, using different information-processing computations. A well-studied dichotomy in these decision-making strategies compares hippocampal-dependent "place" and dorsal-lateral striatal dependent "response" strategies. A place strategy depends on the ability to flexibly respond…
Backtracking behaviour in lost ants: an additional strategy in their navigational toolkit
Wystrach, Antoine; Schwarz, Sebastian; Baniel, Alice; Cheng, Ken
2013-01-01
Ants use multiple sources of information to navigate, but do not integrate all this information into a unified representation of the world. Rather, the available information appears to serve three distinct main navigational systems: path integration, systematic search and the use of learnt information—mainly via vision. Here, we report on an additional behaviour that suggests a supplemental system in the ant's navigational toolkit: ‘backtracking’. Homing ants, having almost reached their nest but, suddenly displaced to unfamiliar areas, did not show the characteristic undirected headings of systematic searches. Instead, these ants backtracked in the compass direction opposite to the path that they had just travelled. The ecological function of this behaviour is clear as we show it increases the chances of returning to familiar terrain. Importantly, the mechanistic implications of this behaviour stress an extra level of cognitive complexity in ant navigation. Our results imply: (i) the presence of a type of ‘memory of the current trip’ allowing lost ants to take into account the familiar view recently experienced, and (ii) direct sharing of information across different navigational systems. We propose a revised architecture of the ant's navigational toolkit illustrating how the different systems may interact to produce adaptive behaviours. PMID:23966644
Resolving coiled shapes reveals new reorientation behaviors in C. elegans
Broekmans, Onno D; Rodgers, Jarlath B; Ryu, William S; Stephens, Greg J
2016-01-01
We exploit the reduced space of C. elegans postures to develop a novel tracking algorithm which captures both simple shapes and also self-occluding coils, an important, yet unexplored, component of 2D worm behavior. We apply our algorithm to show that visually complex, coiled sequences are a superposition of two simpler patterns: the body wave dynamics and a head-curvature pulse. We demonstrate the precise Ω-turn dynamics of an escape response and uncover a surprising new dichotomy in spontaneous, large-amplitude coils; deep reorientations occur not only through classical Ω-shaped postures but also through larger postural excitations which we label here as δ-turns. We find that omega and delta turns occur independently, suggesting a distinct triggering mechanism, and are the serpentine analog of a random left-right step. Finally, we show that omega and delta turns occur with approximately equal rates and adapt to food-free conditions on a similar timescale, a simple strategy to avoid navigational bias. DOI: http://dx.doi.org/10.7554/eLife.17227.001 PMID:27644113
Adaptive Resampling Particle Filters for GPS Carrier-Phase Navigation and Collision Avoidance System
NASA Astrophysics Data System (ADS)
Hwang, Soon Sik
This dissertation addresses three problems: 1) adaptive resampling technique (ART) for Particle Filters, 2) precise relative positioning using Global Positioning System (GPS) Carrier-Phase (CP) measurements applied to nonlinear integer resolution problem for GPS CP navigation using Particle Filters, and 3) collision detection system based on GPS CP broadcasts. First, Monte Carlo filters, called Particle Filters (PF), are widely used where the system is non-linear and non-Gaussian. In real-time applications, their estimation accuracies and efficiencies are significantly affected by the number of particles and the scheduling of relocating weights and samples, the so-called resampling step. In this dissertation, the appropriate number of particles is estimated adaptively such that the error of the sample mean and variance stay in bounds. These bounds are given by the confidence interval of a normal probability distribution for a multi-variate state. Two required number of samples maintaining the mean and variance error within the bounds are derived. The time of resampling is determined when the required sample number for the variance error crosses the required sample number for the mean error. Second, the PF using GPS CP measurements with adaptive resampling is applied to precise relative navigation between two GPS antennas. In order to make use of CP measurements for navigation, the unknown number of cycles between GPS antennas, the so called integer ambiguity, should be resolved. The PF is applied to this integer ambiguity resolution problem where the relative navigation states estimation involves nonlinear observations and nonlinear dynamics equation. Using the PF, the probability density function of the states is estimated by sampling from the position and velocity space and the integer ambiguities are resolved without using the usual hypothesis tests to search for the integer ambiguity. The ART manages the number of position samples and the frequency of the resampling step for real-time kinematics GPS navigation. The experimental results demonstrate the performance of the ART and the insensitivity of the proposed approach to GPS CP cycle-slips. Third, the GPS has great potential for the development of new collision avoidance systems and is being considered for the next generation Traffic alert and Collision Avoidance System (TCAS). The current TCAS equipment, is capable of broadcasting GPS code information to nearby airplanes, and also, the collision avoidance system using the navigation information based on GPS code has been studied by researchers. In this dissertation, the aircraft collision detection system using GPS CP information is addressed. The PF with position samples is employed for the CP based relative position estimation problem and the same algorithm can be used to determine the vehicle attitude if multiple GPS antennas are used. For a reliable and enhanced collision avoidance system, three dimensional trajectories are projected using the estimates of the relative position, velocity, and the attitude. It is shown that the performance of GPS CP based collision detecting algorithm meets the accuracy requirements for a precise approach of flight for auto landing with significantly less unnecessary collision false alarms and no miss alarms.
Marcus, Pamela M; Huang, Grace C; Beck, Vicki; Miller, Michael J
2010-12-01
We assessed the educational impact of a primetime network TV storyline that addressed cancer patient navigators. An online survey was administered after the episode aired. Exposed respondents saw the episode (n = 336); unexposed respondents did not (n = 211). Exposed respondents were more likely to report they would recommend a patient navigator (61% vs. 48%, p = 0.01). Clips of the episode were shown to raise awareness of patient navigators in a Congressional Committee meeting before the Patient Navigator Act was signed into law (2005). Entertainment education can have a positive impact on cancer knowledge and can contribute to policy-level decisions.
An adaptive reentry guidance method considering the influence of blackout zone
NASA Astrophysics Data System (ADS)
Wu, Yu; Yao, Jianyao; Qu, Xiangju
2018-01-01
Reentry guidance has been researched as a popular topic because it is critical for a successful flight. In view that the existing guidance methods do not take into account the accumulated navigation error of Inertial Navigation System (INS) in the blackout zone, in this paper, an adaptive reentry guidance method is proposed to obtain the optimal reentry trajectory quickly with the target of minimum aerodynamic heating rate. The terminal error in position and attitude can be also reduced with the proposed method. In this method, the whole reentry guidance task is divided into two phases, i.e., the trajectory updating phase and the trajectory planning phase. In the first phase, the idea of model predictive control (MPC) is used, and the receding optimization procedure ensures the optimal trajectory in the next few seconds. In the trajectory planning phase, after the vehicle has flown out of the blackout zone, the optimal reentry trajectory is obtained by online planning to adapt to the navigation information. An effective swarm intelligence algorithm, i.e. pigeon inspired optimization (PIO) algorithm, is applied to obtain the optimal reentry trajectory in both of the two phases. Compared to the trajectory updating method, the proposed method can reduce the terminal error by about 30% considering both the position and attitude, especially, the terminal error of height has almost been eliminated. Besides, the PIO algorithm performs better than the particle swarm optimization (PSO) algorithm both in the trajectory updating phase and the trajectory planning phases.
Ghazzawi, Andrea; Kuziemsky, Craig; O'Sullivan, Tracey
2016-10-01
Family caregivers provide the stroke survivor with social support and continuity during the transition home from a rehabilitation facility. In this exploratory study we examined family caregivers' perceptions and experiences navigating the stroke rehabilitation system. The theories of continuity of care and complex adaptive systems were integrated to examine the transition from a stroke rehabilitation facility to the patient's home. This study provides an understanding of the interacting complexities at the macro and micro levels. A convenient sample of family caregivers (n = 14) who provide care for a stroke survivor were recruited 4-12 weeks following the patient's discharge from a stroke rehabilitation facility in Ontario, Canada. Interviews were conducted with family caregivers to examine their perceptions and experiences navigating the stroke rehabilitation system. Directed and inductive content analysis and the theory of Complex Adaptive Systems were used to interpret the perceptions of family caregivers. Health system policies and procedures at the macro-level determined the types and timing of information being provided to caregivers, and impacted continuity of care and access to supports and services at the micro-level. Supports and services in the community, such as outpatient physiotherapy services, were limited or did not meet the specific needs of the stroke survivors or family caregivers. Relationships with health providers, informational support, and continuity in case management all influence the family caregiving experience and ultimately the quality of care for the stroke survivor, during the transition home from a rehabilitation facility.
Flexible Multi agent Algorithm for Distributed Decision Making
2015-01-01
How, J. P. Consensus - Based Auction Approaches for Decentralized task Assignment. Proceedings of the AIAA Guidance, Navigation, and Control...G. ; Kim, Y. Market- based Decentralized Task Assignment for Cooperative UA V Mission Including Rendezvous. Proceedings of the AIAA Guidance...scalable and adaptable to a variety of specific mission tasks . Additionally, the algorithm could easily be adapted for use on land or sea- based systems
KnowledgePuzzle: A Browsing Tool to Adapt the Web Navigation Process to the Learner's Mental Model
ERIC Educational Resources Information Center
AlAgha, Iyad
2012-01-01
This article presents KnowledgePuzzle, a browsing tool for knowledge construction from the web. It aims to adapt the structure of web content to the learner's information needs regardless of how the web content is originally delivered. Learners are provided with a meta-cognitive space (e.g., a concept mapping tool) that enables them to plan…
33 CFR 148.236 - What authority does an Administrative Law Judge (ALJ) have?
Code of Federal Regulations, 2010 CFR
2010-07-01
... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false What authority does an... Formal Hearings § 148.236 What authority does an Administrative Law Judge (ALJ) have? When assigned to a... the proceeding for unsuitable conduct; (h) Exclude any person for disruptive behavior during the...
de Freitas, Mafalda; Jensen, Frants H; Tyne, Julian; Bejder, Lars; Madsen, Peter T
2015-06-01
Echolocation is a key sensory modality for toothed whale orientation, navigation, and foraging. However, a more comparative understanding of the biosonar properties of toothed whales is necessary to understand behavioral and evolutionary adaptions. To address this, two free-ranging sympatric delphinid species, Australian humpback dolphins (Sousa sahulensis) and Indo-Pacific bottlenose dolphins (Tursiops aduncus), were studied. Biosonar clicks from both species were recorded within the same stretch of coastal habitat in Exmouth Gulf, Western Australia, using a vertical seven element hydrophone array. S. sahulensis used biosonar clicks with a mean source level of 199 ± 3 dB re 1 μPa peak-peak (pp), mean centroid frequency of 106 ± 11 kHz, and emitted at interclick intervals (ICIs) of 79 ± 33 ms. These parameters were similar to click parameters of sympatric T. aduncus, characterized by mean source levels of 204 ± 4 dB re 1 μPa pp, centroid frequency of 112 ± 9 kHz, and ICIs of 73 ± 29 ms. These properties are comparable to those of other similar sized delphinids and suggest that biosonar parameters are independent of sympatric delphinids and possibly driven by body size. The dynamic biosonar behavior of these delphinids may have, consequently, allowed for adaptations to local environments through high levels of control over sonar beam properties.
A Barnes maze for juvenile rats delineates the emergence of spatial navigation ability.
McHail, Daniel G; Valibeigi, Nazanin; Dumas, Theodore C
2018-03-01
The neural bases of cognition may be greatly informed by relating temporally defined developmental changes in behavior with concurrent alterations in neural function. A robust improvement in performance in spatial learning and memory tasks occurs at 3 wk of age in rodents. We reported that the developmental increase of spontaneous alternation in a Y-maze was related to changes in temporal dynamics of fast glutamatergic synaptic transmission in the hippocampus. We also showed that, during allothetic behaviors in the Y-maze, network oscillation power increased at frequency bands known to support spatial learning and memory in adults. However, there are no discrete learning and memory phases during free exploration in the Y-maze. Thus, we adapted the Barnes maze for use with juvenile rats. Following a single platform exposure in dim light on the day before training (to encourage exploration), animals were trained on the subsequent 2 d in bright light to find a hidden escape box and then underwent a memory test 24 h later. During escape training, the older animals learned the task in 1 d, while the younger animals required 2 d and did not reach the performance of older animals. Long-term memory performance was also superior in the older animals. Thus, we have validated the use of the Barnes maze for this developmental period and established a timeline for the ontogeny of spatial navigation ability in this maze around 3 wk of age. Subsequent work will pair in vivo recording of hippocampal oscillations and single units with this task to help identify how hippocampal maturation might relate to performance improvements. © 2018 McHail et al.; Published by Cold Spring Harbor Laboratory Press.
Gandhi, Réno M; Kogan, Cary S; Messier, Claude
2014-01-01
Fragile X Syndrome (FXS) is caused by the lack of expression of the fragile X mental retardation protein (FMRP), which results in intellectual disability and other debilitating symptoms including impairment of visual-spatial functioning. FXS is the only single-gene disorder that is highly co-morbid with autism spectrum disorder and can therefore provide insight into its pathophysiology. Lack of FMRP results in altered group I metabotropic glutamate receptor (mGluR) signaling, which is a target for putative treatments. The Hebb-Williams (H-W) mazes are a set of increasingly complex spatial navigation problems that depend on intact hippocampal and thus mGluR-5 functioning. In the present investigation, we examined whether an antagonist of mGluR-5 would reverse previously described behavioral deficits in fragile X mental retardation 1 knock-out (Fmr1 KO) mice. Mice were trained on a subset of the H-W mazes and then treated with either 20 mg/kg of an mGluR-5 antagonist, 2-Methyl-6-(phenylethynyl) pyridine (MPEP; n = 11) or an equivalent dose of saline (n = 11) prior to running test mazes. Latency and errors were dependent variables recorded during the test phase. Immediately after completing each test, marble-burying behavior was assessed, which confirmed that the drug treatment was pharmacologically active during maze learning. Although latency was not statistically different between the groups, MPEP treated Fmr1 KO mice made significantly fewer errors on mazes deemed more difficult suggesting a reversal of the behavioral deficit. MPEP treated mice were also less perseverative and impulsive when navigating mazes. Furthermore, MPEP treatment reversed post-synaptic density-95 (PSD-95) protein deficits in Fmr1 KO treated mice, whereas levels of a control protein (β-tubulin) remained unchanged. These data further validate MPEP as a potentially beneficial treatment for FXS. Our findings also suggest that adapted H-W mazes may be a useful tool to document alterations in behavioral functioning following pharmacological intervention in FXS.
Bush, Matthew L; Kaufman, Michael R; Shackleford, Taylor
2017-06-01
Patient navigation is an evidence-based intervention involving trained healthcare workers who assist patients in assessing and mitigating personal and environmental factors to promote healthy behaviors. The purpose of this research is to systematically assess the efficacy of patient navigation and similar programs to improve diagnosis and treatment of diseases affecting medically underserved populations. A systematic review was performed by searching PubMed, MEDLINE, PsychINFO, and CINAHL to identify potential studies. Eligible studies were those containing original peer-reviewed research reports in English on patient navigation, community health workers, vulnerable and underserved populations, and healthcare disparity. Specific outcomes regarding patient navigator including the effect of the intervention on definitive diagnosis and effect on initiation of treatment were extracted from each study. The search produced 1428 articles, and 16 were included for review. All studies involved patient navigation in the field of oncology in underserved populations. Timing of initial contact with a patient navigator after diagnostic or screening testing is correlated to the effectiveness of the navigator intervention. The majority of the studies reported significantly shorter time intervals to diagnosis and to treatment with patient navigation. Patient navigation expedites oncologic diagnosis and treatment of patients in underserved populations. This intervention is more efficacious when utilized shortly after screening or diagnostic testing.
Itskov, Vladimir; Curto, Carina; Pastalkova, Eva; Buzsáki, György
2011-01-01
Hippocampal neurons can display reliable and long-lasting sequences of transient firing patterns, even in the absence of changing external stimuli. We suggest that time-keeping is an important function of these sequences, and propose a network mechanism for their generation. We show that sequences of neuronal assemblies recorded from rat hippocampal CA1 pyramidal cells can reliably predict elapsed time (15-20 sec) during wheel running with a precision of 0.5sec. In addition, we demonstrate the generation of multiple reliable, long-lasting sequences in a recurrent network model. These sequences are generated in the presence of noisy, unstructured inputs to the network, mimicking stationary sensory input. Identical initial conditions generate similar sequences, whereas different initial conditions give rise to distinct sequences. The key ingredients responsible for sequence generation in the model are threshold-adaptation and a Mexican-hat-like pattern of connectivity among pyramidal cells. This pattern may arise from recurrent systems such as the hippocampal CA3 region or the entorhinal cortex. We hypothesize that mechanisms that evolved for spatial navigation also support tracking of elapsed time in behaviorally relevant contexts. PMID:21414904
Analyzing the User Behavior toward Electronic Commerce Stimuli
Lorenzo-Romero, Carlota; Alarcón-del-Amo, María-del-Carmen; Gómez-Borja, Miguel-Ángel
2016-01-01
Based on the Stimulus-Organism-Response paradigm this research analyzes the main differences between the effects of two types of web technologies: Verbal web technology (i.e., navigational structure as utilitarian stimulus) versus non-verbal web technology (music and presentation of products as hedonic stimuli). Specific webmosphere stimuli have not been examined yet as separate variables and their impact on internal and behavioral responses seems unknown. Therefore, the objective of this research consists in analyzing the impact of these web technologies –which constitute the web atmosphere or webmosphere of a website– on shopping human behavior (i.e., users’ internal states -affective, cognitive, and satisfaction- and behavioral responses – approach responses, and real shopping outcomes-) within the retail online store created by computer, taking into account some mediator variables (i.e., involvement, atmospheric responsiveness, and perceived risk). A 2 (“free” versus “hierarchical” navigational structure) × 2 (“on” versus “off” music) × 2 (“moving” versus “static” images) between-subjects computer experimental design is used to test empirically this research. In addition, an integrated methodology was developed allowing the simulation, tracking and recording of virtual user behavior within an online shopping environment. As main conclusion, this study suggests that the positive responses of online consumers might increase when they are allowed to freely navigate the online stores and their experience is enriched by animate gifts and music background. The effect caused by mediator variables modifies relatively the final shopping human behavior. PMID:27965549
Lind, Sophie E.; Bowler, Dermot M.; Raber, Jacob
2014-01-01
This study explored spatial navigation alongside several other cognitive abilities that are thought to share common underlying neurocognitive mechanisms (e.g., the capacity for self-projection, scene construction, or mental simulation), and which we hypothesized may be impaired in autism spectrum disorder (ASD). Twenty intellectually high-functioning children with ASD (with a mean age of ~8 years) were compared to 20 sex, age, IQ, and language ability matched typically developing children on a series of tasks to assess spatial navigation, episodic memory, episodic future thinking (also known as episodic foresight or prospection), theory of mind (ToM), relational memory, and central coherence. This is the first study to explore these abilities concurrently within the same sample. Spatial navigation was assessed using the “memory island” task, which involves finding objects within a realistic, computer simulated, three-dimensional environment. Episodic memory and episodic future thinking were assessed using a past and future event description task. ToM was assessed using the “animations” task, in which children were asked to describe the interactions between two animated triangles. Relational memory was assessed using a recognition task involving memory for items (line drawings), patterned backgrounds, or combinations of items and backgrounds. Central coherence was assessed by exploring differences in performance across segmented and unsegmented versions of block design. Children with ASD were found to show impairments in spatial navigation, episodic memory, episodic future thinking, and central coherence, but not ToM or relational memory. Among children with ASD, spatial navigation was found to be significantly negatively related to the number of repetitive behaviors. In other words, children who showed more repetitive behaviors showed poorer spatial navigation. The theoretical and practical implications of the results are discussed. PMID:25538661
Lind, Sophie E; Bowler, Dermot M; Raber, Jacob
2014-01-01
This study explored spatial navigation alongside several other cognitive abilities that are thought to share common underlying neurocognitive mechanisms (e.g., the capacity for self-projection, scene construction, or mental simulation), and which we hypothesized may be impaired in autism spectrum disorder (ASD). Twenty intellectually high-functioning children with ASD (with a mean age of ~8 years) were compared to 20 sex, age, IQ, and language ability matched typically developing children on a series of tasks to assess spatial navigation, episodic memory, episodic future thinking (also known as episodic foresight or prospection), theory of mind (ToM), relational memory, and central coherence. This is the first study to explore these abilities concurrently within the same sample. Spatial navigation was assessed using the "memory island" task, which involves finding objects within a realistic, computer simulated, three-dimensional environment. Episodic memory and episodic future thinking were assessed using a past and future event description task. ToM was assessed using the "animations" task, in which children were asked to describe the interactions between two animated triangles. Relational memory was assessed using a recognition task involving memory for items (line drawings), patterned backgrounds, or combinations of items and backgrounds. Central coherence was assessed by exploring differences in performance across segmented and unsegmented versions of block design. Children with ASD were found to show impairments in spatial navigation, episodic memory, episodic future thinking, and central coherence, but not ToM or relational memory. Among children with ASD, spatial navigation was found to be significantly negatively related to the number of repetitive behaviors. In other words, children who showed more repetitive behaviors showed poorer spatial navigation. The theoretical and practical implications of the results are discussed.
A Neurocomputational Model of Goal-Directed Navigation in Insect-Inspired Artificial Agents
Goldschmidt, Dennis; Manoonpong, Poramate; Dasgupta, Sakyasingha
2017-01-01
Despite their small size, insect brains are able to produce robust and efficient navigation in complex environments. Specifically in social insects, such as ants and bees, these navigational capabilities are guided by orientation directing vectors generated by a process called path integration. During this process, they integrate compass and odometric cues to estimate their current location as a vector, called the home vector for guiding them back home on a straight path. They further acquire and retrieve path integration-based vector memories globally to the nest or based on visual landmarks. Although existing computational models reproduced similar behaviors, a neurocomputational model of vector navigation including the acquisition of vector representations has not been described before. Here we present a model of neural mechanisms in a modular closed-loop control—enabling vector navigation in artificial agents. The model consists of a path integration mechanism, reward-modulated global learning, random search, and action selection. The path integration mechanism integrates compass and odometric cues to compute a vectorial representation of the agent's current location as neural activity patterns in circular arrays. A reward-modulated learning rule enables the acquisition of vector memories by associating the local food reward with the path integration state. A motor output is computed based on the combination of vector memories and random exploration. In simulation, we show that the neural mechanisms enable robust homing and localization, even in the presence of external sensory noise. The proposed learning rules lead to goal-directed navigation and route formation performed under realistic conditions. Consequently, we provide a novel approach for vector learning and navigation in a simulated, situated agent linking behavioral observations to their possible underlying neural substrates. PMID:28446872
A Neurocomputational Model of Goal-Directed Navigation in Insect-Inspired Artificial Agents.
Goldschmidt, Dennis; Manoonpong, Poramate; Dasgupta, Sakyasingha
2017-01-01
Despite their small size, insect brains are able to produce robust and efficient navigation in complex environments. Specifically in social insects, such as ants and bees, these navigational capabilities are guided by orientation directing vectors generated by a process called path integration. During this process, they integrate compass and odometric cues to estimate their current location as a vector, called the home vector for guiding them back home on a straight path. They further acquire and retrieve path integration-based vector memories globally to the nest or based on visual landmarks. Although existing computational models reproduced similar behaviors, a neurocomputational model of vector navigation including the acquisition of vector representations has not been described before. Here we present a model of neural mechanisms in a modular closed-loop control-enabling vector navigation in artificial agents. The model consists of a path integration mechanism, reward-modulated global learning, random search, and action selection. The path integration mechanism integrates compass and odometric cues to compute a vectorial representation of the agent's current location as neural activity patterns in circular arrays. A reward-modulated learning rule enables the acquisition of vector memories by associating the local food reward with the path integration state. A motor output is computed based on the combination of vector memories and random exploration. In simulation, we show that the neural mechanisms enable robust homing and localization, even in the presence of external sensory noise. The proposed learning rules lead to goal-directed navigation and route formation performed under realistic conditions. Consequently, we provide a novel approach for vector learning and navigation in a simulated, situated agent linking behavioral observations to their possible underlying neural substrates.
Adaptive Behavior and Problem Behavior in Young Children with Williams Syndrome
ERIC Educational Resources Information Center
Hahn, Laura J.; Fidler, Deborah J.; Hepburn, Susan L.
2014-01-01
The present study compares the adaptive behavior profile of 18 young children with Williams syndrome (WS) and a developmentally matched group of 19 children with developmental disabilities and examines the relationship between adaptive behavior and problem behaviors in WS. Parents completed the Vineland Adaptive Behavioral Scales--Interview…
Tian, Xiaochun; Chen, Jiabin; Han, Yongqiang; Shang, Jianyu; Li, Nan
2016-01-01
Zero velocity update (ZUPT) plays an important role in pedestrian navigation algorithms with the premise that the zero velocity interval (ZVI) should be detected accurately and effectively. A novel adaptive ZVI detection algorithm based on a smoothed pseudo Wigner–Ville distribution to remove multiple frequencies intelligently (SPWVD-RMFI) is proposed in this paper. The novel algorithm adopts the SPWVD-RMFI method to extract the pedestrian gait frequency and to calculate the optimal ZVI detection threshold in real time by establishing the function relationships between the thresholds and the gait frequency; then, the adaptive adjustment of thresholds with gait frequency is realized and improves the ZVI detection precision. To put it into practice, a ZVI detection experiment is carried out; the result shows that compared with the traditional fixed threshold ZVI detection method, the adaptive ZVI detection algorithm can effectively reduce the false and missed detection rate of ZVI; this indicates that the novel algorithm has high detection precision and good robustness. Furthermore, pedestrian trajectory positioning experiments at different walking speeds are carried out to evaluate the influence of the novel algorithm on positioning precision. The results show that the ZVI detected by the adaptive ZVI detection algorithm for pedestrian trajectory calculation can achieve better performance. PMID:27669266
Climate Change Adaptation Plan
2014-06-01
evapotranspiration impacting reservoirs and soil moisture; increased risk of wild fires; alterations in material properties Increases in worker safety...Changes in evapotranspiration N: Navig ion F: Flood and Coastal Storm Damage Reduction R: cosystem Restoration H: Hydropower RG: Regulatory RC
Illuminating the circadian clock in monarch butterfly migration.
Froy, Oren; Gotter, Anthony L; Casselman, Amy L; Reppert, Steven M
2003-05-23
Migratory monarch butterflies use a time-compensated Sun compass to navigate to their overwintering grounds in Mexico. Here, we report that constant light, which disrupts circadian clock function at both the behavioral and molecular levels in monarchs, also disrupts the time-compensated component of flight navigation. We further show that ultraviolet light is important for flight navigation but is not required for photic entrainment of circadian rhythms. Tracing these distinct light-input pathways into the brain should aid our understanding of the clock-compass mechanisms necessary for successful migration.
Navigation, behaviors, and control modes in an autonomous vehicle
NASA Astrophysics Data System (ADS)
Byler, Eric A.
1995-01-01
An Intelligent Mobile Sensing System (IMSS) has been developed for the automated inspection of radioactive and hazardous waste storage containers in warehouse facilities at Department of Energy sites. A 2D space of control modes was used that provides a combined view of reactive and planning approaches wherein a 2D situation space is defined by dimensions representing the predictability of the agent's task environment and the constraint imposed by its goals. In this sense selection of appropriate systems for planning, navigation, and control depends on the problem at hand. The IMSS vehicle navigation system is based on a combination of feature based motion, landmark sightings, and an a priori logical map of the mockup storage facility. Motion for the inspection activities are composed of different interactions of several available control modes, several obstacle avoidance modes, and several feature identification modes. Features used to drive these behaviors are both visual and acoustic.
Adaptive UAV Attitude Estimation Employing Unscented Kalman Filter, FOAM and Low-Cost MEMS Sensors
de Marina, Héctor García; Espinosa, Felipe; Santos, Carlos
2012-01-01
Navigation employing low cost MicroElectroMechanical Systems (MEMS) sensors in Unmanned Aerial Vehicles (UAVs) is an uprising challenge. One important part of this navigation is the right estimation of the attitude angles. Most of the existent algorithms handle the sensor readings in a fixed way, leading to large errors in different mission stages like take-off aerobatic maneuvers. This paper presents an adaptive method to estimate these angles using off-the-shelf components. This paper introduces an Attitude Heading Reference System (AHRS) based on the Unscented Kalman Filter (UKF) using the Fast Optimal Attitude Matrix (FOAM) algorithm as the observation model. The performance of the method is assessed through simulations. Moreover, field experiments are presented using a real fixed-wing UAV. The proposed low cost solution, implemented in a microcontroller, shows a satisfactory real time performance. PMID:23012559
ERIC Educational Resources Information Center
Markle, Ross; Olivera-Aguilar, Margarita; Jackson, Teresa; Noeth, Richard; Robbins, Steven
2013-01-01
The "SuccessNavigator"™ assessment is an online, 30 minute self-assessment of psychosocial and study skills designed for students entering postsecondary education. In addition to providing feedback in areas such as classroom and study behaviors, commitment to educational goals, management of academic stress, and connection to social…
77 FR 76291 - Agency Information Collection Activities: Submission for OMB Review; Comment Request
Federal Register 2010, 2011, 2012, 2013, 2014
2012-12-27
... collection titled, ``Clearance for Consumer Attitudes, Understanding, and Behaviors with Respect to Financial... Consumer Attitudes, Understanding, and Behaviors with Respect to Financial Services and Products. OMB... consumer attitudes, beliefs, and behaviors as they navigate financial decisions. It will help the CFPB...
Early Failures Benefit Subsequent Task Performance.
Igata, Hideyoshi; Sasaki, Takuya; Ikegaya, Yuji
2016-02-17
Animals navigate using cognitive maps. However, how they adaptively exploit these maps in changing environments is not fully understood. In this study, we investigated the problem-solving behaviors of mice in a complicated maze in which multiple routes with different intersections were available (Test 1). Although all mice eventually settled on the shortest route, mice that initially exhibited more trial-and-error exploration solved the maze more rapidly. We then introduced one or two barriers that obstructed learned routes such that mice had to establish novel roundabout detours (Tests 2/3). Solutions varied among mice but were predictable based on individual early trial-and-error patterns observed in Test 1: mice that had initially explored more extensively found better solutions. Finally, when the barriers were removed (Test 4), all mice reverted to the best solution after active exploration. Thus, early active exploration helps mice to develop optimal strategies.
Hassler, Björn
2011-03-01
Marine governance of oil transportation is complex. Due to difficulties in effectively monitoring procedures on vessels en voyage, incentives to save costs by not following established regulations on issues such as cleaning of tanks, crew size, and safe navigation may be substantial. The issue of problem structure is placed in focus, that is, to what degree the specific characteristics and complexity of intentional versus accidental oil spill risks affect institutional responses. It is shown that whereas the risk of accidental oil spills primarily has been met by technical requirements on the vessels in combination with Port State control, attempts have been made to curb intentional pollution by for example increased surveillance and smart governance mechanisms such as the No-Special-Fee system. It is suggested that environmental safety could be improved by increased use of smart governance mechanisms tightly adapted to key actors' incentives to alter behavior in preferable directions.
Brief Report: Developmental Trajectories of Adaptive Behavior in Children and Adolescents with ASD.
Meyer, Allison T; Powell, Patrick S; Butera, Nicole; Klinger, Mark R; Klinger, Laura G
2018-03-17
Research suggests that individuals with autism spectrum disorder (ASD) have significant difficulties with adaptive behavior skills including daily living and functional communication skills. Few studies have examined the developmental trajectory of adaptive behavior across childhood and adolescence. The present study examined longitudinal trajectories of adaptive behavior in a community-based clinic sample of 186 individuals with ASD. The overall pattern indicated an initial increase in adaptive behavior during early childhood followed by a plateau in skills during adolescence for individuals of all IQ groups. Given the importance of adaptive behavior for employment and quality of life, this study emphasizes the importance of targeting adaptive behavior during adolescence to insure continued gains.
Mursch, K; Gotthardt, T; Kröger, R; Bublat, M; Behnke-Mursch, J
2005-08-01
We evaluated an advanced concept for patient-based navigation during minimally invasive neurosurgical procedures. An infrared-based, off-line neuro-navigation system (LOCALITE, Bonn, Germany) was applied during operations within a 0.5 T intraoperative MRI scanner (iMRI) (Signa SF, GE Medical Systems, Milwaukee, WI, USA) in addition to the conventional real-time system. The three-dimensional (3D) data set was acquired intraoperatively and up-dated when brain-shift was suspected. Twenty-three patients with subcortical lesions were operated upon with the aim to minimise the operative trauma. Small craniotomies (median diameter 30 mm, mean diameter 27 mm) could be placed exactly. In all cases, the primary goal of the operation (total resection or biopsy) was achieved in a straightforward procedure without permanent morbidity. The navigation system could be easily used without technical problems. In contrast to the real-time navigation mode of the MR system, the higher quality as well as the real-time display of the MR images reconstructed from the 3D reference data provided sufficient visual-manual coordination. The system combines the advantages of conventional neuro-navigation with the ability to adapt intraoperatively to the continuously changing anatomy. Thus, small and/or deep lesions can be operated upon in straightforward minimally invasive operations.
Safety assurance of non-deterministic flight controllers in aircraft applications
NASA Astrophysics Data System (ADS)
Noriega, Alfonso
Loss of control is a serious problem in aviation that primarily affects General Aviation. Technological advancements can help mitigate the problem, but the FAA certification process makes certain solutions economically unfeasible. This investigation presents the design of a generic adaptive autopilot that could potentially lead to a single certification for use in several makes and models of aircraft. The autopilot consists of a conventional controller connected in series with a robust direct adaptive model reference controller. In this architecture, the conventional controller is tuned once to provide outer-loop guidance and navigation to a reference model. The adaptive controller makes unknown aircraft behave like the reference model, allowing the conventional controller to successfully provide navigation without the need for retuning. A strong theoretical foundation is presented as an argument for the safety and stability of the controller. The stability proof of direct adaptive controllers require that the plant being controlled has no unstable transmission zeros and has a nonzero high frequency gain. Because most conventional aircraft do not readily meet these requirements, a process known as sensor blending was used. Sensor blending consists of using a linear combination of the plant's outputs that has no unstable transmission zeros and has a nonzero high frequency gain to drive the adaptive controller. Although this method does not present a problem for regulators, it can lead to a steady state error in tracking applications. The sensor blending theory was expanded to take advantage of the system's dynamics to allow for zero steady state error tracking. This method does not need knowledge of the specific system's dynamics, but instead uses the structure of the A and B matrices to perform the blending for the general case. The generic adaptive autopilot was tested in two high-fidelity nonlinear simulators of two typical General Aviation aircraft. The results show that the autopilot was able to adapt appropriately to the different aircraft and was able to perform three-dimensional navigation and an ILS approach, without any modification to the controller. The autopilot was tested in moderate atmospheric turbulence, using consumer-grade sensors and actuators currently available in General Aviation aircraft. The generic adaptive autopilot was shown to be robust to atmospheric turbulence and sensor and actuator random noise. In both aircraft simulators, the autopilot adapted successfully to changes in airspeed, altitude, and configuration. This investigation proves the feasibility of a generic autopilot using direct adaptive controller. The autopilot does not need a priori information of the specific aircraft's dynamics to maintain its safety and stability arguments. Real-time parameter estimation of the aircraft dynamics are not needed. Recommendations for future work are provided.
Loss of CaMKI function disrupts salt aversive learning in C. elegans.
Lim, Jana P; Fehlauer, Holger; Das, Alakananda; Saro, Gabriella; Glauser, Dominique A; Brunet, Anne; Goodman, Miriam B
2018-06-06
The ability to adapt behavior to environmental fluctuations is critical for survival of organisms ranging from invertebrates to mammals. Caenorhabditis elegans can learn to avoid sodium chloride when it is paired with starvation. This behavior may help animals avoid areas without food. While some genes have been implicated in this salt aversive learning behavior, critical genetic components, and the neural circuit in which they act, remain elusive. Here, we show that the sole worm ortholog of mammalian CaMKI/IV, CMK-1, is essential for salt aversive learning behavior in C. elegans hermaphrodites. We find that CMK-1 acts in the primary salt-sensing ASE neurons to regulate this behavior. By characterizing the intracellular calcium dynamics in ASE neurons using microfluidics, we find that loss of cmk-1 has subtle effects on sensory-evoked calcium responses in ASE axons and their modulation by salt conditioning. Our study implicates the expression of the conserved CaMKI/CMK-1 in chemosensory neurons as a regulator of behavioral plasticity to environmental salt in C. elegans SIGNIFICANCE STATEMENT Like other animals, the nematode Caenorhabditis elegans depends on salt for survival and navigates toward high concentrations of this essential mineral. Besides its role as an essential nutrient, salt also causes osmotic stress at high concentrations. A growing body of evidence indicates that C. elegans balances the requirement for salt with the danger it presents through a process called salt aversive learning. We show that this behavior depends on expression of a calcium/calmodulin-dependent kinase, CMK-1, in the ASE salt sensing neurons. Our study identifies CMK-1 and salt-sensitive chemosensory neurons as key factors in this form of behavioral plasticity. Copyright © 2018 the authors.
Honeybees consolidate navigation memory during sleep.
Beyaert, Lisa; Greggers, Uwe; Menzel, Randolf
2012-11-15
Sleep is known to support memory consolidation in animals, including humans. Here we ask whether consolidation of novel navigation memory in honeybees depends on sleep. Foragers were exposed to a forced navigation task in which they learned to home more efficiently from an unexpected release site by acquiring navigational memory during the successful homing flight. This task was quantified using harmonic radar tracking and applied to bees that were equipped with a radio frequency identification device (RFID). The RFID was used to record their outbound and inbound flights and continuously monitor their behavior inside the colony, including their rest during the day and sleep at night. Bees marked with the RFID behaved normally inside and outside the hive. Bees slept longer during the night following forced navigation tasks, but foraging flights of different lengths did not lead to different rest times during the day or total sleep time during the night. Sleep deprivation before the forced navigation task did not alter learning and memory acquired during the task. However, sleep deprivation during the night after forced navigation learning reduced the probability of returning successfully to the hive from the same release site. It is concluded that consolidation of novel navigation memory is facilitated by night sleep in bees.
NASA Astrophysics Data System (ADS)
Hansen, Christian; Schlichting, Stefan; Zidowitz, Stephan; Köhn, Alexander; Hindennach, Milo; Kleemann, Markus; Peitgen, Heinz-Otto
2008-03-01
Tumor resections from the liver are complex surgical interventions. With recent planning software, risk analyses based on individual liver anatomy can be carried out preoperatively. However, additional tumors within the liver are frequently detected during oncological interventions using intraoperative ultrasound. These tumors are not visible in preoperative data and their existence may require changes to the resection strategy. We propose a novel method that allows an intraoperative risk analysis adaptation by merging newly detected tumors with a preoperative risk analysis. To determine the exact positions and sizes of these tumors we make use of a navigated ultrasound-system. A fast communication protocol enables our application to exchange crucial data with this navigation system during an intervention. A further motivation for our work is to improve the visual presentation of a moving ultrasound plane within a complex 3D planning model including vascular systems, tumors, and organ surfaces. In case the ultrasound plane is located inside the liver, occlusion of the ultrasound plane by the planning model is an inevitable problem for the applied visualization technique. Our system allows the surgeon to focus on the ultrasound image while perceiving context-relevant planning information. To improve orientation ability and distance perception, we include additional depth cues by applying new illustrative visualization algorithms. Preliminary evaluations confirm that in case of intraoperatively detected tumors a risk analysis adaptation is beneficial for precise liver surgery. Our new GPU-based visualization approach provides the surgeon with a simultaneous visualization of planning models and navigated 2D ultrasound data while minimizing occlusion problems.
Foti, Francesca; Sdoia, Stefano; Menghini, Deny; Mandolesi, Laura; Vicari, Stefano; Ferlazzo, Fabio; Petrosini, Laura
2015-01-01
Williams syndrome (WS) is associated with a distinct profile of relatively proficient skills within the verbal domain compared to the severe impairment of visuo-spatial processing. Abnormalities in executive functions and deficits in planning ability and spatial working memory have been described. However, to date little is known about the influence of executive function deficits on navigational abilities in WS. This study aimed at analyzing in WS individuals a specific executive function, the backward inhibition (BI) that allows individuals to flexibly adapt to continuously changing environments. A group of WS individuals and a mental age- and gender-matched group of typically developing children were subjected to three task-switching experiments requiring visuospatial or verbal material to be processed. Results showed that WS individuals exhibited clear BI deficits during visuospatial task-switching paradigms and normal BI effect during verbal task-switching paradigm. Overall, the present results suggest that the BI involvement in updating environment representations during navigation may influence WS navigational abilities. PMID:25852605
Indoor Navigation by People with Visual Impairment Using a Digital Sign System
Legge, Gordon E.; Beckmann, Paul J.; Tjan, Bosco S.; Havey, Gary; Kramer, Kevin; Rolkosky, David; Gage, Rachel; Chen, Muzi; Puchakayala, Sravan; Rangarajan, Aravindhan
2013-01-01
There is a need for adaptive technology to enhance indoor wayfinding by visually-impaired people. To address this need, we have developed and tested a Digital Sign System. The hardware and software consist of digitally-encoded signs widely distributed throughout a building, a handheld sign-reader based on an infrared camera, image-processing software, and a talking digital map running on a mobile device. Four groups of subjects—blind, low vision, blindfolded sighted, and normally sighted controls—were evaluated on three navigation tasks. The results demonstrate that the technology can be used reliably in retrieving information from the signs during active mobility, in finding nearby points of interest, and following routes in a building from a starting location to a destination. The visually impaired subjects accurately and independently completed the navigation tasks, but took substantially longer than normally sighted controls. This fully functional prototype system demonstrates the feasibility of technology enabling independent indoor navigation by people with visual impairment. PMID:24116156
Samaras, Athena T; Murphy, Kara; Nonzee, Narissa J; Endress, Richard; Taylor, Shaneah; Hajjar, Nadia; Bularzik, Rosario; Frankovich, Carmi; Dong, XinQi; Simon, Melissa A
2014-01-01
Using community-based participatory research (CBPR), the DuPage County Patient Navigation Collaborative (DPNC) developed an academic campus-community research partnership aimed at increasing access to care for underserved breast and cervical cancer patients within DuPage County, a collar county of Chicago. Given rapidly shifting demographics, targeting CBPR initiatives among underserved suburban communities is essential. To discuss the facilitating factors and lessons learned in forging the DPNC. A patient navigation collaborative was formed to guide medically underserved women through diagnostic resolution and if necessary, treatment, after an abnormal breast or cervical cancer screening. Facilitating factors included (1) fostering and maintaining collaborations within a suburban context, (2) a systems-based participatory research approach, (3) a truly equitable community-academic partnership, (4) funding adaptability, (5) culturally relevant navigation, and (6) emphasis on co-learning and capacity building. By highlighting the strategies that contributed to DPNC success, we envision the DPNC to serve as a feasible model for future health interventions.
Kikutis, Ramūnas; Stankūnas, Jonas; Rudinskas, Darius; Masiulionis, Tadas
2017-09-28
Current research on Unmanned Aerial Vehicles (UAVs) shows a lot of interest in autonomous UAV navigation. This interest is mainly driven by the necessity to meet the rules and restrictions for small UAV flights that are issued by various international and national legal organizations. In order to lower these restrictions, new levels of automation and flight safety must be reached. In this paper, a new method for ground obstacle avoidance derived by using UAV navigation based on the Dubins paths algorithm is presented. The accuracy of the proposed method has been tested, and research results have been obtained by using Software-in-the-Loop (SITL) simulation and real UAV flights, with the measurements done with a low cost Global Navigation Satellite System (GNSS) sensor. All tests were carried out in a three-dimensional space, but the height accuracy was not assessed. The GNSS navigation data for the ground obstacle avoidance algorithm is evaluated statistically.
Kikutis, Ramūnas; Stankūnas, Jonas; Rudinskas, Darius; Masiulionis, Tadas
2017-01-01
Current research on Unmanned Aerial Vehicles (UAVs) shows a lot of interest in autonomous UAV navigation. This interest is mainly driven by the necessity to meet the rules and restrictions for small UAV flights that are issued by various international and national legal organizations. In order to lower these restrictions, new levels of automation and flight safety must be reached. In this paper, a new method for ground obstacle avoidance derived by using UAV navigation based on the Dubins paths algorithm is presented. The accuracy of the proposed method has been tested, and research results have been obtained by using Software-in-the-Loop (SITL) simulation and real UAV flights, with the measurements done with a low cost Global Navigation Satellite System (GNSS) sensor. All tests were carried out in a three-dimensional space, but the height accuracy was not assessed. The GNSS navigation data for the ground obstacle avoidance algorithm is evaluated statistically. PMID:28956839
Allison, Samantha; Babulal, Ganesh M; Stout, Sarah H; Barco, Peggy P; Carr, David B; Fagan, Anne M; Morris, John C; Roe, Catherine M; Head, Denise
2018-01-01
Older adults experience impaired driving performance, and modify their driving habits, including limiting amount and spatial extent of travel. Alzheimer disease (AD)-related pathology, as well as spatial navigation difficulties, may influence driving performance and driving behaviors in clinically normal older adults. We examined whether AD biomarkers [cerebrospinal fluid (CSF) concentrations of Aβ42, tau, and ptau181] were associated with lower self-reported spatial navigation abilities, and whether navigation abilities mediated the relationship of AD biomarkers with driving performance and extent. Clinically normal older adults (n=112; aged 65+) completed an on-road driving test, the Santa Barbara Sense of Direction scale (self-report measure of spatial navigation ability), and the Driving Habits Questionnaire for an estimate of driving extent (composite of driving exposure and driving space). All participants had a lumbar puncture to obtain CSF. CSF Aβ42, but not tau or ptau181, was associated with self-reported navigation ability. Lower self-reported navigation was associated with reduced driving extent, but not driving errors. Self-reported navigation mediated the relationship between CSF Aβ42 and driving extent. Findings suggest that cerebral amyloid deposition is associated with lower perceived ability to navigate the environment, which may lead older adults with AD pathology to limit their driving extent.
Taillade, Mathieu; N'Kaoua, Bernard; Sauzéon, Hélène
2016-01-01
The present study investigated the effect of aging on direct navigation measures and self-reported ones according to the real-virtual test manipulation. Navigation (wayfinding tasks) and spatial memory (paper-pencil tasks) performances, obtained either in real-world or in virtual-laboratory test conditions, were compared between young (n = 32) and older (n = 32) adults who had self-rated their everyday navigation behavior (SBSOD scale). Real age-related differences were observed in navigation tasks as well as in paper-pencil tasks, which investigated spatial learning relative to the distinction between survey-route knowledge. The manipulation of test conditions (real vs. virtual) did not change these age-related differences, which are mostly explained by age-related decline in both spatial abilities and executive functioning (measured with neuropsychological tests). In contrast, elderly adults did not differ from young adults in their self-reporting relative to everyday navigation, suggesting some underestimation of navigation difficulties by elderly adults. Also, spatial abilities in young participants had a mediating effect on the relations between actual and self-reported navigation performance, but not for older participants. So, it is assumed that the older adults carried out the navigation task with fewer available spatial abilities compared to young adults, resulting in inaccurate self-estimates. PMID:26834666
Taillade, Mathieu; N'Kaoua, Bernard; Sauzéon, Hélène
2015-01-01
The present study investigated the effect of aging on direct navigation measures and self-reported ones according to the real-virtual test manipulation. Navigation (wayfinding tasks) and spatial memory (paper-pencil tasks) performances, obtained either in real-world or in virtual-laboratory test conditions, were compared between young (n = 32) and older (n = 32) adults who had self-rated their everyday navigation behavior (SBSOD scale). Real age-related differences were observed in navigation tasks as well as in paper-pencil tasks, which investigated spatial learning relative to the distinction between survey-route knowledge. The manipulation of test conditions (real vs. virtual) did not change these age-related differences, which are mostly explained by age-related decline in both spatial abilities and executive functioning (measured with neuropsychological tests). In contrast, elderly adults did not differ from young adults in their self-reporting relative to everyday navigation, suggesting some underestimation of navigation difficulties by elderly adults. Also, spatial abilities in young participants had a mediating effect on the relations between actual and self-reported navigation performance, but not for older participants. So, it is assumed that the older adults carried out the navigation task with fewer available spatial abilities compared to young adults, resulting in inaccurate self-estimates.
Comparative advantage between traditional and smart navigation systems
NASA Astrophysics Data System (ADS)
Shin, Jeongkyu; Kim, Pan-Jun; Kim, Seunghwan
2013-03-01
The smart navigation system that refers to real-time traffic data is believed to be superior to traditional navigation systems. To verify this belief, we created an agent-based traffic model and examined the effect of changing market share of the traditional shortest-travel-time algorithm based navigation and the smart navigation system. We tested our model on the grid and actual metropolitan road network structures. The result reveals that the traditional navigation system have better performance than the smart one as the market share of the smart navigation system exceeds a critical value, which is contrary to conventional expectation. We suggest that the superiority inversion between agent groups is strongly related to the traffic weight function form, and is general. We also found that the relationship of market share, traffic flow density and travel time is determined by the combination of congestion avoidance behavior of the smartly navigated agents and the inefficiency of shortest-travel-time based navigated agents. Our results can be interpreted with the minority game and extended to the diverse topics of opinion dynamics. This work was supported by the Original Technology Research Program for Brain Science through the National Research Foundation of Korea funded by the Ministry of Education, Science and Technology(No. 2010-0018847).
Bengochea-Guevara, José M; Conesa-Muñoz, Jesus; Andújar, Dionisio; Ribeiro, Angela
2016-02-24
The concept of precision agriculture, which proposes farming management adapted to crop variability, has emerged in recent years. To effectively implement precision agriculture, data must be gathered from the field in an automated manner at minimal cost. In this study, a small autonomous field inspection vehicle was developed to minimise the impact of the scouting on the crop and soil compaction. The proposed approach integrates a camera with a GPS receiver to obtain a set of basic behaviours required of an autonomous mobile robot to inspect a crop field with full coverage. A path planner considered the field contour and the crop type to determine the best inspection route. An image-processing method capable of extracting the central crop row under uncontrolled lighting conditions in real time from images acquired with a reflex camera positioned on the front of the robot was developed. Two fuzzy controllers were also designed and developed to achieve vision-guided navigation. A method for detecting the end of a crop row using camera-acquired images was developed. In addition, manoeuvres necessary for the robot to change rows were established. These manoeuvres enabled the robot to autonomously cover the entire crop by following a previously established plan and without stepping on the crop row, which is an essential behaviour for covering crops such as maize without damaging them.
Bengochea-Guevara, José M.; Conesa-Muñoz, Jesus; Andújar, Dionisio; Ribeiro, Angela
2016-01-01
The concept of precision agriculture, which proposes farming management adapted to crop variability, has emerged in recent years. To effectively implement precision agriculture, data must be gathered from the field in an automated manner at minimal cost. In this study, a small autonomous field inspection vehicle was developed to minimise the impact of the scouting on the crop and soil compaction. The proposed approach integrates a camera with a GPS receiver to obtain a set of basic behaviours required of an autonomous mobile robot to inspect a crop field with full coverage. A path planner considered the field contour and the crop type to determine the best inspection route. An image-processing method capable of extracting the central crop row under uncontrolled lighting conditions in real time from images acquired with a reflex camera positioned on the front of the robot was developed. Two fuzzy controllers were also designed and developed to achieve vision-guided navigation. A method for detecting the end of a crop row using camera-acquired images was developed. In addition, manoeuvres necessary for the robot to change rows were established. These manoeuvres enabled the robot to autonomously cover the entire crop by following a previously established plan and without stepping on the crop row, which is an essential behaviour for covering crops such as maize without damaging them. PMID:26927102
ERIC Educational Resources Information Center
Shernoff, Elisa; Frazier, Stacy; Lisetti, Christine; Buche, Cedric; Lunn, Stephanie; Brown, Claire; Delmarre, Alban; Chou, Tommy; Gabbard, Joseph; Morgan, Emily
2018-01-01
Early career teachers working in high poverty schools face of overwhelming challenges navigating disruptive behaviors with studies highlighting behavior problems as one of the strongest predictors of turnover (Ingersoll & Smith, 2003). Simulation-based technology leverages important pedagogical strengths (e.g., realistic training context,…
AYAs Are Not Alone: Confronting Psychosocial Challenges of Cancer
Adolescents and young adults with cancer have unique and specific psychosocial needs. Getting support to meet those needs is critical for enabling AYAs to adapt and cope as they navigate the course of their illness and beyond.
Two-photon calcium imaging during fictive navigation in virtual environments
Ahrens, Misha B.; Huang, Kuo Hua; Narayan, Sujatha; Mensh, Brett D.; Engert, Florian
2013-01-01
A full understanding of nervous system function requires recording from large populations of neurons during naturalistic behaviors. Here we enable paralyzed larval zebrafish to fictively navigate two-dimensional virtual environments while we record optically from many neurons with two-photon imaging. Electrical recordings from motor nerves in the tail are decoded into intended forward swims and turns, which are used to update a virtual environment displayed underneath the fish. Several behavioral features—such as turning responses to whole-field motion and dark avoidance—are well-replicated in this virtual setting. We readily observed neuronal populations in the hindbrain with laterally selective responses that correlated with right or left optomotor behavior. We also observed neurons in the habenula, pallium, and midbrain with response properties specific to environmental features. Beyond single-cell correlations, the classification of network activity in such virtual settings promises to reveal principles of brainwide neural dynamics during behavior. PMID:23761738
Two-photon calcium imaging during fictive navigation in virtual environments.
Ahrens, Misha B; Huang, Kuo Hua; Narayan, Sujatha; Mensh, Brett D; Engert, Florian
2013-01-01
A full understanding of nervous system function requires recording from large populations of neurons during naturalistic behaviors. Here we enable paralyzed larval zebrafish to fictively navigate two-dimensional virtual environments while we record optically from many neurons with two-photon imaging. Electrical recordings from motor nerves in the tail are decoded into intended forward swims and turns, which are used to update a virtual environment displayed underneath the fish. Several behavioral features-such as turning responses to whole-field motion and dark avoidance-are well-replicated in this virtual setting. We readily observed neuronal populations in the hindbrain with laterally selective responses that correlated with right or left optomotor behavior. We also observed neurons in the habenula, pallium, and midbrain with response properties specific to environmental features. Beyond single-cell correlations, the classification of network activity in such virtual settings promises to reveal principles of brainwide neural dynamics during behavior.
OsiriX: an open-source software for navigating in multidimensional DICOM images.
Rosset, Antoine; Spadola, Luca; Ratib, Osman
2004-09-01
A multidimensional image navigation and display software was designed for display and interpretation of large sets of multidimensional and multimodality images such as combined PET-CT studies. The software is developed in Objective-C on a Macintosh platform under the MacOS X operating system using the GNUstep development environment. It also benefits from the extremely fast and optimized 3D graphic capabilities of the OpenGL graphic standard widely used for computer games optimized for taking advantage of any hardware graphic accelerator boards available. In the design of the software special attention was given to adapt the user interface to the specific and complex tasks of navigating through large sets of image data. An interactive jog-wheel device widely used in the video and movie industry was implemented to allow users to navigate in the different dimensions of an image set much faster than with a traditional mouse or on-screen cursors and sliders. The program can easily be adapted for very specific tasks that require a limited number of functions, by adding and removing tools from the program's toolbar and avoiding an overwhelming number of unnecessary tools and functions. The processing and image rendering tools of the software are based on the open-source libraries ITK and VTK. This ensures that all new developments in image processing that could emerge from other academic institutions using these libraries can be directly ported to the OsiriX program. OsiriX is provided free of charge under the GNU open-source licensing agreement at http://homepage.mac.com/rossetantoine/osirix.
Luo, Yong; Wu, Wenqi; Babu, Ravindra; Tang, Kanghua; Luo, Bing
2012-01-01
COMPASS is an indigenously developed Chinese global navigation satellite system and will share many features in common with GPS (Global Positioning System). Since the ultra-tight GPS/INS (Inertial Navigation System) integration shows its advantage over independent GPS receivers in many scenarios, the federated ultra-tight COMPASS/INS integration has been investigated in this paper, particularly, by proposing a simplified prefilter model. Compared with a traditional prefilter model, the state space of this simplified system contains only carrier phase, carrier frequency and carrier frequency rate tracking errors. A two-quadrant arctangent discriminator output is used as a measurement. Since the code tracking error related parameters were excluded from the state space of traditional prefilter models, the code/carrier divergence would destroy the carrier tracking process, and therefore an adaptive Kalman filter algorithm tuning process noise covariance matrix based on state correction sequence was incorporated to compensate for the divergence. The federated ultra-tight COMPASS/INS integration was implemented with a hardware COMPASS intermediate frequency (IF), and INS's accelerometers and gyroscopes signal sampling system. Field and simulation test results showed almost similar tracking and navigation performances for both the traditional prefilter model and the proposed system; however, the latter largely decreased the computational load. PMID:23012564
Towards a new approach to model guidance laws
DOE Office of Scientific and Technical Information (OSTI.GOV)
Borne, P.; Duflos, E.; Vanheeghe, P.
1994-12-31
Proportional navigation laws have been widely used and studied. Nevertheless very few publications explain rigorously the origin of all these laws. For researchers who are starting to work on guidance laws, a feeling of confusion can result. For others, this lack of explanation can be, for example, the source of the difficulties to make the true proportional navigation become equivalent to the pure proportional navigation. The authors propose here a way to model guidance laws in order to fill this lack of explanation. The first consequence is a better exploration of the kinematic behaviors arising during the guidance process. Themore » second consequence is the definition of a new 3D guidance law which can be seen as a generalization of the true proportional navigation. Moreover, this generalization allow this last law to become equivalent to the pure proportional navigation in terms of initial conditions which allow the object to reach its target.« less
NASA Astrophysics Data System (ADS)
Thomas, Romain; Donikian, Stéphane
Many articles dealing with agent navigation in an urban environment involve the use of various heuristics. Among them, one is prevalent: the search of the shortest path between two points. This strategy impairs the realism of the resulting behaviour. Indeed, psychological studies state that such a navigation behaviour is conditioned by the knowledge the subject has of its environment. Furthermore, the path a city dweller can follow may be influenced by many factors like his daily habits, or the path simplicity in term of minimum of direction changes. It appeared interesting to us to investigate how to mimic human navigation behavior with an autonomous agent. The solution we propose relies on an architecture based on a generic model of informed environment, a spatial cognitive map model merged with a human-like memory model, representing the agent's temporal knowledge of the environment, it gained along its experiences of navigation.
From self-assessment to frustration, a small step toward autonomy in robotic navigation
Jauffret, Adrien; Cuperlier, Nicolas; Tarroux, Philippe; Gaussier, Philippe
2013-01-01
Autonomy and self-improvement capabilities are still challenging in the fields of robotics and machine learning. Allowing a robot to autonomously navigate in wide and unknown environments not only requires a repertoire of robust strategies to cope with miscellaneous situations, but also needs mechanisms of self-assessment for guiding learning and for monitoring strategies. Monitoring strategies requires feedbacks on the behavior's quality, from a given fitness system in order to take correct decisions. In this work, we focus on how a second-order controller can be used to (1) manage behaviors according to the situation and (2) seek for human interactions to improve skills. Following an incremental and constructivist approach, we present a generic neural architecture, based on an on-line novelty detection algorithm that may be able to self-evaluate any sensory-motor strategies. This architecture learns contingencies between sensations and actions, giving the expected sensation from the previous perception. Prediction error, coming from surprising events, provides a measure of the quality of the underlying sensory-motor contingencies. We show how a simple second-order controller (emotional system) based on the prediction progress allows the system to regulate its behavior to solve complex navigation tasks and also succeeds in asking for help if it detects dead-lock situations. We propose that this model could be a key structure toward self-assessment and autonomy. We made several experiments that can account for such properties for two different strategies (road following and place cells based navigation) in different situations. PMID:24115931
Lee, Kenneth; Hoti, Kreshnik; Hughes, Jeffery David; Emmerton, Lynne
2014-12-02
The abundance of health information available online provides consumers with greater access to information pertinent to the management of health conditions. This is particularly important given an increasing drive for consumer-focused health care models globally, especially in the management of chronic health conditions, and in recognition of challenges faced by lay consumers with finding, understanding, and acting on health information sourced online. There is a paucity of literature exploring the navigational needs of consumers with regards to accessing online health information. Further, existing interventions appear to be didactic in nature, and it is unclear whether such interventions appeal to consumers' needs. Our goal was to explore the navigational needs of consumers with chronic health conditions in finding online health information within the broader context of consumers' online health information-seeking behaviors. Potential barriers to online navigation were also identified. Semistructured interviews were conducted with adult consumers who reported using the Internet for health information and had at least one chronic health condition. Participants were recruited from nine metropolitan community pharmacies within Western Australia, as well as through various media channels. Interviews were audio-recorded, transcribed verbatim, and then imported into QSR NVivo 10. Two established approaches to thematic analysis were adopted. First, a data-driven approach was used to minimize potential bias in analysis and improve construct and criterion validity. A theory-driven approach was subsequently used to confirm themes identified by the former approach and to ensure identified themes were relevant to the objectives. Two levels of analysis were conducted for both data-driven and theory-driven approaches: manifest-level analysis, whereby face-value themes were identified, and latent-level analysis, whereby underlying concepts were identified. We conducted 17 interviews, with data saturation achieved by the 14th interview. While we identified a broad range of online health information-seeking behaviors, most related to information discussed during consumer-health professional consultations such as looking for information about medication side effects. The barriers we identified included intrinsic barriers, such as limited eHealth literacy, and extrinsic barriers, such as the inconsistency of information between different online sources. The navigational needs of our participants were extrinsic in nature and included health professionals directing consumers to appropriate online resources and better filtering of online health information. Our participants' online health information-seeking behaviors, reported barriers, and navigational needs were underpinned by the themes of trust, patient activation, and relevance. This study suggests that existing interventions aimed to assist consumers with navigating online health information may not be what consumers want or perceive they need. eHealth literacy and patient activation appear to be prevalent concepts in the context of consumers' online health information-seeking behaviors. Furthermore, the role for health professionals in guiding consumers to quality online health information is highlighted.
Adaptive Estimation of Multiple Fading Factors for GPS/INS Integrated Navigation Systems.
Jiang, Chen; Zhang, Shu-Bi; Zhang, Qiu-Zhao
2017-06-01
The Kalman filter has been widely applied in the field of dynamic navigation and positioning. However, its performance will be degraded in the presence of significant model errors and uncertain interferences. In the literature, the fading filter was proposed to control the influences of the model errors, and the H-infinity filter can be adopted to address the uncertainties by minimizing the estimation error in the worst case. In this paper, a new multiple fading factor, suitable for the Global Positioning System (GPS) and the Inertial Navigation System (INS) integrated navigation system, is proposed based on the optimization of the filter, and a comprehensive filtering algorithm is constructed by integrating the advantages of the H-infinity filter and the proposed multiple fading filter. Measurement data of the GPS/INS integrated navigation system are collected under actual conditions. Stability and robustness of the proposed filtering algorithm are tested with various experiments and contrastive analysis are performed with the measurement data. Results demonstrate that both the filter divergence and the influences of outliers are restrained effectively with the proposed filtering algorithm, and precision of the filtering results are improved simultaneously.
Patient-Centeredness as Physician Behavioral Adaptability to Patient Preferences.
Carrard, Valérie; Schmid Mast, Marianne; Jaunin-Stalder, Nicole; Junod Perron, Noëlle; Sommer, Johanna
2018-05-01
A physician who communicates in a patient-centered way is a physician who adapts his or her communication style to what each patient needs. In order to do so, the physician has to (1) accurately assess each patient's states and traits (interpersonal accuracy) and (2) possess a behavioral repertoire to choose from in order to actually adapt his or her behavior to different patients (behavioral adaptability). Physician behavioral adaptability describes the change in verbal or nonverbal behavior a physician shows when interacting with patients who have different preferences in terms of how the physician should interact with them. We hypothesized that physician behavioral adaptability to their patients' preferences would lead to better patient outcomes and that physician interpersonal accuracy was positively related to behavioral adaptability. To test these hypotheses, we recruited 61 physicians who completed an interpersonal accuracy test before being videotaped during four consultations with different patients. The 244 participating patients indicated their preferences for their physician's interaction style prior to the consultation and filled in a consultation outcomes questionnaire directly after the consultation. We coded the physician's verbal and nonverbal behavior for each of the consultations and compared it to the patients' preferences to obtain a measure of physician behavioral adaptability. Results partially confirmed our hypotheses in that female physicians who adapted their nonverbal (but not their verbal) behavior had patients who reported more positive consultation outcomes. Moreover, the more female physicians were accurate interpersonally, the more they showed verbal and nonverbal behavioral adaptability. For male physicians, more interpersonal accuracy was linked to less nonverbal adaptability.
ERIC Educational Resources Information Center
MaKinster, James; Trautmann, Nancy; Burch, Carol; Watkins, Michelle
2015-01-01
Species richness, migration, habitats, ecological niches, adaptations: Concepts such as these come alive when students explore and analyze landscapes, environmental characteristics, and related biological features represented on digital maps. Most students are familiar with navigation tools integrated into smartphone apps but may be surprised to…
Long range radio tracking of sea turtles and polar bear: Instrumentation and preliminary results
NASA Technical Reports Server (NTRS)
Baldwin, H. A.
1972-01-01
Instrumentation developed for studies of path behavior of the green sea turtle and migration movement of polar bear is described. Preliminary results bearing on navigation ability in these species are presented. Both species operate in difficult environments, and the problems faced in the design of electronic instrumentation for these studies are not completely specified at this time. However, the critical factors yet to be understood are primarily related to the behavior of instrumented animals. The data obtained with these experimental techniques are included, first to illustrate the technique and, second to provide initial preliminary results bearing on animal navigation.
Automated Analysis of a Nematode Population-based Chemosensory Preference Assay
Chai, Cynthia M.; Cronin, Christopher J.; Sternberg, Paul W.
2017-01-01
The nematode, Caenorhabditis elegans' compact nervous system of only 302 neurons underlies a diverse repertoire of behaviors. To facilitate the dissection of the neural circuits underlying these behaviors, the development of robust and reproducible behavioral assays is necessary. Previous C. elegans behavioral studies have used variations of a "drop test", a "chemotaxis assay", and a "retention assay" to investigate the response of C. elegans to soluble compounds. The method described in this article seeks to combine the complementary strengths of the three aforementioned assays. Briefly, a small circle in the middle of each assay plate is divided into four quadrants with the control and experimental solutions alternately placed. After the addition of the worms, the assay plates are loaded into a behavior chamber where microscope cameras record the worms' encounters with the treated regions. Automated video analysis is then performed and a preference index (PI) value for each video is generated. The video acquisition and automated analysis features of this method minimizes the experimenter's involvement and any associated errors. Furthermore, minute amounts of the experimental compound are used per assay and the behavior chamber's multi-camera setup increases experimental throughput. This method is particularly useful for conducting behavioral screens of genetic mutants and novel chemical compounds. However, this method is not appropriate for studying stimulus gradient navigation due to the close proximity of the control and experimental solution regions. It should also not be used when only a small population of worms is available. While suitable for assaying responses only to soluble compounds in its current form, this method can be easily modified to accommodate multimodal sensory interaction and optogenetic studies. This method can also be adapted to assay the chemosensory responses of other nematode species. PMID:28745641
Industry Cluster's Adaptive Co-competition Behavior Modeling Inspired by Swarm Intelligence
NASA Astrophysics Data System (ADS)
Xiang, Wei; Ye, Feifan
Adaptation helps the individual enterprise to adjust its behavior to uncertainties in environment and hence determines a healthy growth of both the individuals and the whole industry cluster as well. This paper is focused on the study on co-competition adaptation behavior of industry cluster, which is inspired by swarm intelligence mechanisms. By referencing to ant cooperative transportation and ant foraging behavior and their related swarm intelligence approaches, the cooperative adaptation and competitive adaptation behavior are studied and relevant models are proposed. Those adaptive co-competition behaviors model can be integrated to the multi-agent system of industry cluster to make the industry cluster model more realistic.
Assessment of Spatial Navigation and Docking Performance During Simulated Rover Tasks
NASA Technical Reports Server (NTRS)
Wood, S. J.; Dean, S. L.; De Dios, Y. E.; Moore, S. T.
2010-01-01
INTRODUCTION: Following long-duration exploration transits, pressurized rovers will enhance surface mobility to explore multiple sites across Mars and other planetary bodies. Multiple rovers with docking capabilities are envisioned to expand the range of exploration. However, adaptive changes in sensorimotor and cognitive function may impair the crew s ability to safely navigate and perform docking tasks shortly after transition to the new gravitoinertial environment. The primary goal of this investigation is to quantify post-flight decrements in spatial navigation and docking performance during a rover simulation. METHODS: Eight crewmembers returning from the International Space Station will be tested on a motion simulator during four pre-flight and three post-flight sessions over the first 8 days following landing. The rover simulation consists of a serial presentation of discrete tasks to be completed within a scheduled 10 min block. The tasks are based on navigating around a Martian outpost spread over a 970 sq m terrain. Each task is subdivided into three components to be performed as quickly and accurately as possible: (1) Perspective taking: Subjects use a joystick to indicate direction of target after presentation of a map detailing current orientation and location of the rover with the task to be performed. (2) Navigation: Subjects drive the rover to the desired location while avoiding obstacles. (3) Docking: Fine positioning of the rover is required to dock with another object or align a camera view. Overall operator proficiency will be based on how many tasks the crewmember can complete during the 10 min time block. EXPECTED RESULTS: Functionally relevant testing early post-flight will develop evidence regarding the limitations to early surface operations and what countermeasures are needed. This approach can be easily adapted to a wide variety of simulated vehicle designs to provide sensorimotor assessments for other operational and civilian populations.
Pedestrian Choice Behavior at Shopping Mall Intersections in China and the United States
ERIC Educational Resources Information Center
Bitgood, Stephen; Davey, Gareth; Huang, Xiaoyi; Fung, Holly
2013-01-01
Pedestrian navigation through public spaces reflects the nature of interaction between behavior and environment. This study compared pedestrian choice behavior at shopping mall intersections in China and the United States. The study found that in both countries (a) pedestrians chose movement patterns that involved the fewest steps and (b) there…
How the structure of Wikipedia articles influences user navigation.
Lamprecht, Daniel; Lerman, Kristina; Helic, Denis; Strohmaier, Markus
2017-01-02
In this work we study how people navigate the information network of Wikipedia and investigate (i) free-form navigation by studying all clicks within the English Wikipedia over an entire month and (ii) goal-directed Wikipedia navigation by analyzing wikigames, where users are challenged to retrieve articles by following links. To study how the organization of Wikipedia articles in terms of layout and links affects navigation behavior, we first investigate the characteristics of the structural organization and of hyperlinks in Wikipedia and then evaluate link selection models based on article structure and other potential influences in navigation, such as the generality of an article's topic. In free-form Wikipedia navigation, covering all Wikipedia usage scenarios, we find that click choices can be best modeled by a bias towards article structure, such as a tendency to click links located in the lead section. For the goal-directed navigation of wikigames, our findings confirm the zoom-out and the homing-in phases identified by previous work, where users are guided by generality at first and textual similarity to the target later. However, our interpretation of the link selection models accentuates that article structure is the best explanation for the navigation paths in all except these initial and final stages. Overall, we find evidence that users more frequently click on links that are located close to the top of an article. The structure of Wikipedia articles, which places links to more general concepts near the top, supports navigation by allowing users to quickly find the better-connected articles that facilitate navigation. Our results highlight the importance of article structure and link position in Wikipedia navigation and suggest that better organization of information can help make information networks more navigable.
How the structure of Wikipedia articles influences user navigation
NASA Astrophysics Data System (ADS)
Lamprecht, Daniel; Lerman, Kristina; Helic, Denis; Strohmaier, Markus
2017-01-01
In this work we study how people navigate the information network of Wikipedia and investigate (i) free-form navigation by studying all clicks within the English Wikipedia over an entire month and (ii) goal-directed Wikipedia navigation by analyzing wikigames, where users are challenged to retrieve articles by following links. To study how the organization of Wikipedia articles in terms of layout and links affects navigation behavior, we first investigate the characteristics of the structural organization and of hyperlinks in Wikipedia and then evaluate link selection models based on article structure and other potential influences in navigation, such as the generality of an article's topic. In free-form Wikipedia navigation, covering all Wikipedia usage scenarios, we find that click choices can be best modeled by a bias towards article structure, such as a tendency to click links located in the lead section. For the goal-directed navigation of wikigames, our findings confirm the zoom-out and the homing-in phases identified by previous work, where users are guided by generality at first and textual similarity to the target later. However, our interpretation of the link selection models accentuates that article structure is the best explanation for the navigation paths in all except these initial and final stages. Overall, we find evidence that users more frequently click on links that are located close to the top of an article. The structure of Wikipedia articles, which places links to more general concepts near the top, supports navigation by allowing users to quickly find the better-connected articles that facilitate navigation. Our results highlight the importance of article structure and link position in Wikipedia navigation and suggest that better organization of information can help make information networks more navigable.
How the structure of Wikipedia articles influences user navigation
Lamprecht, Daniel; Lerman, Kristina; Helic, Denis; Strohmaier, Markus
2017-01-01
In this work we study how people navigate the information network of Wikipedia and investigate (i) free-form navigation by studying all clicks within the English Wikipedia over an entire month and (ii) goal-directed Wikipedia navigation by analyzing wikigames, where users are challenged to retrieve articles by following links. To study how the organization of Wikipedia articles in terms of layout and links affects navigation behavior, we first investigate the characteristics of the structural organization and of hyperlinks in Wikipedia and then evaluate link selection models based on article structure and other potential influences in navigation, such as the generality of an article's topic. In free-form Wikipedia navigation, covering all Wikipedia usage scenarios, we find that click choices can be best modeled by a bias towards article structure, such as a tendency to click links located in the lead section. For the goal-directed navigation of wikigames, our findings confirm the zoom-out and the homing-in phases identified by previous work, where users are guided by generality at first and textual similarity to the target later. However, our interpretation of the link selection models accentuates that article structure is the best explanation for the navigation paths in all except these initial and final stages. Overall, we find evidence that users more frequently click on links that are located close to the top of an article. The structure of Wikipedia articles, which places links to more general concepts near the top, supports navigation by allowing users to quickly find the better-connected articles that facilitate navigation. Our results highlight the importance of article structure and link position in Wikipedia navigation and suggest that better organization of information can help make information networks more navigable. PMID:28670171
Sofroniew, Nicholas J; Svoboda, Karel
2015-02-16
Eyes may be 'the window to the soul' in humans, but whiskers provide a better path to the inner lives of rodents. The brain has remarkable abilities to focus its limited resources on information that matters, while ignoring a cacophony of distractions. While inspecting a visual scene, primates foveate to multiple salient locations, for example mouths and eyes in images of people, and ignore the rest. Similar processes have now been observed and studied in rodents in the context of whisker-based tactile sensation. Rodents use their mechanosensitive whiskers for a diverse range of tactile behaviors such as navigation, object recognition and social interactions. These animals move their whiskers in a purposive manner to locations of interest. The shapes of whiskers, as well as their movements, are exquisitely adapted for tactile exploration in the dark tight burrows where many rodents live. By studying whisker movements during tactile behaviors, we can learn about the tactile information available to rodents through their whiskers and how rodents direct their attention. In this primer, we focus on how the whisker movements of rats and mice are providing clues about the logic of active sensation and the underlying neural mechanisms. Copyright © 2015 Elsevier Ltd. All rights reserved.
Global spatio-temporal patterns in human migration: a complex network perspective.
Davis, Kyle F; D'Odorico, Paolo; Laio, Francesco; Ridolfi, Luca
2013-01-01
Migration is a powerful adaptive strategy for humans to navigate hardship and pursue a better quality of life. As a universal vehicle facilitating exchanges of ideas, culture, money and goods, international migration is a major contributor to globalization. Consisting of countries linked by multiple connections of human movements, global migration constitutes a network. Despite the important role of human migration in connecting various communities in different parts of the world, the topology and behavior of the international migration network and its changes through time remain poorly understood. Here we show that the global human migration network became more interconnected during the latter half of the twentieth century and that migrant destination choice partly reflects colonial and postcolonial histories, language, religion, and distances. From 1960 to 2000 we found a steady increase in network transitivity (i.e. connectivity between nodes connected to the same node), a decrease in average path length and an upward shift in degree distribution, all of which strengthened the 'small-world' behavior of the migration network. Furthermore, we found that distinct groups of countries preferentially interact to form migration communities based largely on historical, cultural and economic factors.
Matsuoka, Tomohiro; Gomi, Sohei; Shingai, Ryuzo
2008-01-21
The nematode Caenorhabditis elegans has been reported to exhibit thermotaxis, a sophisticated behavioral response to temperature. However, there appears to be some inconsistency among previous reports. The results of population-level thermotaxis investigations suggest that C. elegans can navigate to the region of its cultivation temperature from nearby regions of higher or lower temperature. However, individual C. elegans nematodes appear to show only cryophilic tendencies above their cultivation temperature. A Monte-Carlo style simulation using a simple individual model of C. elegans provides insight into clarifying apparent inconsistencies among previous findings. The simulation using the thermotaxis model that includes the cryophilic tendencies, isothermal tracking and thermal adaptation was conducted. As a result of the random walk property of locomotion of C. elegans, only cryophilic tendencies above the cultivation temperature result in population-level thermophilic tendencies. Isothermal tracking, a period of active pursuit of an isotherm around regions of temperature near prior cultivation temperature, can strengthen the tendencies of these worms to gather around near-cultivation-temperature regions. A statistical index, the thermotaxis (TTX) L-skewness, was introduced and was useful in analyzing the population-level thermotaxis of model worms.
Dynamical encoding of looming, receding, and focussing
NASA Astrophysics Data System (ADS)
Longtin, Andre; Clarke, Stephen Elisha; Maler, Leonard; CenterNeural Dynamics Collaboration
This talk will discuss a non-conventional neural coding task that may apply more broadly to many senses in higher vertebrates. We ask whether and how a non-visual sensory system can focus on an object. We present recent experimental and modeling work that shows how the early sensory circuitry of electric sense can perform such neuronal focusing that is manifested behaviorally. This sense is the main one used by weakly electric fish to navigate, locate prey and communicate in the murky waters of their natural habitat. We show that there is a distance at which the Fisher information of a neuron's response to a looming and receding object is maximized, and that this distance corresponds to a behaviorally relevant one chosen by these animals. Strikingly, this maximum occurs at a bifurcation between tonic firing and bursting. We further discuss how the invariance of this distance to signal attributes can arise, a process that first involves power-law spike frequency adaptation. The talk will also highlight the importance of expanding the classic dual neural encoding of contrast using ON and OFF cells in the context of looming and receding stimuli. The authors acknowledge support from CIHR and NSERC.
Heli/SITAN: A Terrain Referenced Navigation algorithm for helicopters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hollowell, J.
1990-01-01
Heli/SITAN is a Terrain Referenced Navigation (TRN) algorithm that utilizes radar altimeter ground clearance measurements in combination with a conventional navigation system and a stored digital terrain elevation map to accurately estimate a helicopter's position. Multiple Model Adaptive Estimation (MMAE) techniques are employed using a bank of single state Kalman filters to ensure that reliable position estimates are obtained even in the face of large initial position errors. A real-time implementation of the algorithm was tested aboard a US Army UH-1 helicopter equipped with a Singer-Kearfott Doppler Velocity Sensor (DVS) and a Litton LR-80 strapdown Attitude and Heading Reference Systemmore » (AHRS). The median radial error of the position fixes provided in real-time by this implementation was less than 50 m for a variety of mission profiles. 6 refs., 7 figs.« less
NASA Astrophysics Data System (ADS)
Qin, M.; Wan, X.; Shao, Y. Y.; Li, S. Y.
2018-04-01
Vision-based navigation has become an attractive solution for autonomous navigation for planetary exploration. This paper presents our work of designing and building an autonomous vision-based GPS-denied unmanned vehicle and developing an ARFM (Adaptive Robust Feature Matching) based VO (Visual Odometry) software for its autonomous navigation. The hardware system is mainly composed of binocular stereo camera, a pan-and tilt, a master machine, a tracked chassis. And the ARFM-based VO software system contains four modules: camera calibration, ARFM-based 3D reconstruction, position and attitude calculation, BA (Bundle Adjustment) modules. Two VO experiments were carried out using both outdoor images from open dataset and indoor images captured by our vehicle, the results demonstrate that our vision-based unmanned vehicle is able to achieve autonomous localization and has the potential for future planetary exploration.
Adaptive Behavior of Children and Adolescents with Visual Impairments
ERIC Educational Resources Information Center
Papadopoulos, Konstantinos; Metsiou, Katerina; Agaliotis, Ioannis
2011-01-01
The present study explored the total adaptive behavior of children and adolescents with visual impairments, as well as their adaptive behavior in each of the domains of Communication, Daily Living Skills, and Socialization. Moreover, the predictors of the performance and developmental delay in adaptive behavior were investigated. Instrumentation…
Intelligent Behavioral Action Aiding for Improved Autonomous Image Navigation
2012-09-13
odometry, SICK laser scanning unit ( Lidar ), Inertial Measurement Unit (IMU) and ultrasonic distance measurement system (Figure 32). The Lidar , IMU...2010, July) GPS world. [Online]. http://www.gpsworld.com/tech-talk- blog/gnss-independent-navigation-solution-using-integrated- lidar -data-11378 [4...Milford, David McKinnon, Michael Warren, Gordon Wyeth, and Ben Upcroft, "Feature-based Visual Odometry and Featureless Place Recognition for SLAM in
Cornwell, Brian R; Salvadore, Giacomo; Colon-Rosario, Veronica; Latov, David R; Holroyd, Tom; Carver, Frederick W; Coppola, Richard; Manji, Husseini K; Zarate, Carlos A; Grillon, Christian
2010-07-01
Dysfunction of the hippocampus has long been suspected to be a key component of the pathophysiology of major depressive disorder. Despite evidence of hippocampal structural abnormalities in depressed patients, abnormal hippocampal functioning has not been demonstrated. The authors aimed to link spatial navigation deficits previously documented in depressed patients to abnormal hippocampal functioning using a virtual reality navigation task. Whole-head magnetoencephalography (MEG) recordings were collected while participants (19 patients diagnosed with major depressive disorder and 19 healthy subjects matched by gender and age) navigated a virtual Morris water maze to find a hidden platform; navigation to a visible platform served as a control condition. Behavioral measures were obtained to assess navigation performance. Theta oscillatory activity (4-8 Hz) was mapped across the brain on a voxel-wise basis using a spatial-filtering MEG source analysis technique. Depressed patients performed worse than healthy subjects in navigating to the hidden platform. Robust group differences in theta activity were observed in right medial temporal cortices during navigation, with patients exhibiting less engagement of the anterior hippocampus and parahippocampal cortices relative to comparison subjects. Left posterior hippocampal theta activity was positively correlated with individual performance within each group. Consistent with previous findings, depressed patients showed impaired spatial navigation. Dysfunction of right anterior hippocampus and parahippocampal cortices may underlie this deficit and stem from structural abnormalities commonly found in depressed patients.
Comparing two types of navigational interfaces for Virtual Reality.
Teixeira, Luís; Vilar, Elisângela; Duarte, Emília; Rebelo, Francisco; da Silva, Fernando Moreira
2012-01-01
Previous studies suggest significant differences between navigating virtual environments in a life-like walking manner (i.e., using treadmills or walk-in-place techniques) and virtual navigation (i.e., flying while really standing). The latter option, which usually involves hand-centric devices (e.g., joysticks), is the most common in Virtual Reality-based studies, mostly due to low costs, less space and technology demands. However, recently, new interaction devices, originally conceived for videogames have become available offering interesting potentialities for research. This study aimed to explore the potentialities of the Nintendo Wii Balance Board as a navigation interface in a Virtual Environment presented in an immersive Virtual Reality system. Comparing participants' performance while engaged in a simulated emergency egress allows determining the adequacy of such alternative navigation interface on the basis of empirical results. Forty university students participated in this study. Results show that participants were more efficient when performing navigation tasks using the Joystick than with the Balance Board. However there were no significantly differences in the behavioral compliance with exit signs. Therefore, this study suggests that, at least for tasks similar to the studied, the Balance Board have good potentiality to be used as a navigation interface for Virtual Reality systems.
Navigation of robotic system using cricket motes
NASA Astrophysics Data System (ADS)
Patil, Yogendra J.; Baine, Nicholas A.; Rattan, Kuldip S.
2011-06-01
This paper presents a novel algorithm for self-mapping of the cricket motes that can be used for indoor navigation of autonomous robotic systems. The cricket system is a wireless sensor network that can provide indoor localization service to its user via acoustic ranging techniques. The behavior of the ultrasonic transducer on the cricket mote is studied and the regions where satisfactorily distance measurements can be obtained are recorded. Placing the motes in these regions results fine-grain mapping of the cricket motes. Trilateration is used to obtain a rigid coordinate system, but is insufficient if the network is to be used for navigation. A modified SLAM algorithm is applied to overcome the shortcomings of trilateration. Finally, the self-mapped cricket motes can be used for navigation of autonomous robotic systems in an indoor location.
Navigation strategies for multiple autonomous mobile robots moving in formation
NASA Technical Reports Server (NTRS)
Wang, P. K. C.
1991-01-01
The problem of deriving navigation strategies for a fleet of autonomous mobile robots moving in formation is considered. Here, each robot is represented by a particle with a spherical effective spatial domain and a specified cone of visibility. The global motion of each robot in the world space is described by the equations of motion of the robot's center of mass. First, methods for formation generation are discussed. Then, simple navigation strategies for robots moving in formation are derived. A sufficient condition for the stability of a desired formation pattern for a fleet of robots each equipped with the navigation strategy based on nearest neighbor tracking is developed. The dynamic behavior of robot fleets consisting of three or more robots moving in formation in a plane is studied by means of computer simulation.
Computer-aided navigation in dental implantology: 7 years of clinical experience.
Ewers, Rolf; Schicho, Kurt; Truppe, Michael; Seemann, Rudolf; Reichwein, Astrid; Figl, Michael; Wagner, Arne
2004-03-01
This long-term study gives a review over 7 years of research, development, and routine clinical application of computer-aided navigation technology in dental implantology. Benefits and disadvantages of up-to-date technologies are discussed. In the course of the current advancement, various hardware and software configurations are used. In the initial phase, universally applicable navigation software is adapted for implantology. Since 2001, a special software module for dental implantology is available. Preoperative planning is performed on the basis of prosthetic aspects and requirements. In clinical routine use, patient and drill positions are intraoperatively registered by means of optoelectronic tracking systems; during preclinical tests, electromagnetic trackers are also used. In 7 years (1995 to 2002), 55 patients with 327 dental implants were successfully positioned with computer-aided navigation technology. The mean number of implants per patient was 6 (minimum, 1; maximum, 11). No complications were observed; the preoperative planning could be exactly realized. The average expenditure of time for the preparation of a surgical intervention with navigation decreased from 2 to 3 days in the initial phase to one-half day in clinical routine use with software that is optimized for dental implantology. The use of computer-aided navigation technology can contribute to considerable quality improvement. Preoperative planning is exactly realized and intraoperative safety is increased, because damage to nerves or neighboring teeth can be avoided.
Tassé, Marc J; Schalock, Robert L; Thissen, David; Balboni, Giulia; Bersani, Henry Hank; Borthwick-Duffy, Sharon A; Spreat, Scott; Widaman, Keith F; Zhang, Dalun; Navas, Patricia
2016-03-01
The Diagnostic Adaptive Behavior Scale (DABS) was developed using item response theory (IRT) methods and was constructed to provide the most precise and valid adaptive behavior information at or near the cutoff point of making a decision regarding a diagnosis of intellectual disability. The DABS initial item pool consisted of 260 items. Using IRT modeling and a nationally representative standardization sample, the item set was reduced to 75 items that provide the most precise adaptive behavior information at the cutoff area determining the presence or not of significant adaptive behavior deficits across conceptual, social, and practical skills. The standardization of the DABS is described and discussed.
Quaresmini, Caterina; Forrester, Gillian S; Spiezio, Caterina; Vallortigara, Giorgio
2014-08-01
The influence of the social environment on lateralized behaviors has now been investigated across a wide variety of animal species. New evidence suggests that the social environment can modulate behavior. Currently, there is a paucity of data relating to how primates navigate their environmental space, and investigations that consider the naturalistic context of the individual are few and fragmented. Moreover, there are competing theories about whether only the right or rather both cerebral hemispheres are involved in the processing of social stimuli, especially in emotion processing. Here we provide the first report of lateralized social behaviors elicited by great apes. We employed a continuous focal animal sampling method to record the spontaneous interactions of a captive zoo-living colony of chimpanzees (Pan troglodytes) and a biological family group of peer-reared western lowland gorillas (Gorilla gorilla gorilla). We specifically focused on which side of the body (i.e., front, rear, left, right) the focal individual preferred to keep conspecifics. Utilizing a newly developed quantitative corpus-coding scheme, analysis revealed both chimpanzees and gorillas demonstrated a significant group-level preference for focal individuals to keep conspecifics positioned to the front of them compared with behind them. More interestingly, both groups also manifested a population-level bias to keep conspecifics on their left side compared with their right side. Our findings suggest a social processing dominance of the right hemisphere for context-specific social environments. Results are discussed in light of the evolutionary adaptive value of social stimulus as a triggering factor for the manifestation of group-level lateralized behaviors.
Patterns of Adaptive Behavior in Very Young Children with Autism.
ERIC Educational Resources Information Center
Stone, Wendy L.; Ousley, Opal Y.; Hepburn, Susan L.; Hogan, Kerry L.; Brown, Christia S.
1999-01-01
A study used the Vineland Adaptive Behavior Scales to investigate patterns of adaptive behavior in 30 children with autism who were under 3 years. Relative to controls, participants demonstrated weaker socialization and communication skills and greater discrepancies between adaptive behavior and mental age. The utility of the scales is discussed.…
ERIC Educational Resources Information Center
Metsiou, Katerina; Papadopoulos, Konstantinos; Agaliotis, Ioannis
2011-01-01
This study explored the adaptive behavior of primary school students with visual impairments, as well as the impact of educational setting on their adaptive behavior. Instrumentation included an informal questionnaire and the Vineland Adaptive Behavior Scales. Participants were 36 primary school students with visual impairments. The educational…
Complex adaptive behavior and dexterous action
Harrison, Steven J.; Stergiou, Nicholas
2016-01-01
Dexterous action, as conceptualized by Bernstein in his influential ecological analysis of human behavior, is revealed in the ability to flexibly generate behaviors that are adaptively tailored to the demands of the context in which they are embedded. Conceived as complex adaptive behavior, dexterity depends upon the qualities of robustness and degeneracy, and is supported by the functional complexity of the agent-environment system. Using Bernstein’s and Gibson’s ecological analyses of behavior situated in natural environments as conceptual touchstones, we consider the hypothesis that complex adaptive behavior capitalizes upon general principles of self-organization. Here, we outline a perspective in which the complex interactivity of nervous-system, body, and environment is revealed as an essential resource for adaptive behavior. From this perspective, we consider the implications for interpreting the functionality and dysfunctionality of human behavior. This paper demonstrates that, optimal variability, the topic of this special issue, is a logical consequence of interpreting the functionality of human behavior as complex adaptive behavior. PMID:26375932
Van Buyten, Jean-Pierre; Smet, Iris; Van de Kelft, Erik
2009-07-01
Introduction. Interventional pain management techniques require precise positioning of needles or electrodes, therefore fluoroscopic control is mandatory. This imaging technique does however not visualize soft tissues such as blood vessels. Moreover, patient and physician are exposed to a considerable dose of radiation. Computed tomography (CT)-scans give a better view of soft tissues, but there use requires presence of a radiologist and has proven to be laborious and time consuming. Objectives. This study is to develop a technique using electromagnetic (EM) navigation as a guidance technique for interventional pain management, using CT and/or magnetic resonance (MRI) images uploaded on the navigation station. Methods. One of the best documented interventional procedures for the management of trigeminal neuralgia is percutaneous radiofrequency treatment of the Gasserian ganglion. EM navigation software for intracranial applications already exists. We developed a technique using a stylet with two magnetic coils suitable for EM navigation. The procedure is followed in real time on a computer screen where the patient's multislice CT-scan images and three-dimensional reconstruction of his face are uploaded. Virtual landmarks on the screen are matched with those on the patient's face, calculating the precision of the needle placement. Discussion. The experience with EM navigation acquired with the radiofrequency technique can be transferred to other interventional pain management techniques, for instance, for the placement of a neuromodulation electrode close to the Gasserian ganglion. Currently, research is ongoing to extend the software of the navigation station for spinal application, and to adapt neurostimulation hardware to the EM navigation technology. This technology will allow neuromodulation techniques to be performed without x-ray exposure for the patient and the physician, and this with the precision of CT/MR imaging guidance. © 2009 International Neuromodulation Society.
ERIC Educational Resources Information Center
Farber, Betty, Ed.
This collection of articles is compiled to offer parents and teachers guidelines to help navigate between a child's intentions and his or her behavior. The book consists of 43 brief chapters divided into 9 sections. Articles in section one, "Guiding Young Children's Behavior," address issues of discipline, setting limits, effective…
Is there a geometric module for spatial orientation? Insights from a rodent navigation model.
Sheynikhovich, Denis; Chavarriaga, Ricardo; Strösslin, Thomas; Arleo, Angelo; Gerstner, Wulfram
2009-07-01
Modern psychological theories of spatial cognition postulate the existence of a geometric module for reorientation. This concept is derived from experimental data showing that in rectangular arenas with distinct landmarks in the corners, disoriented rats often make diagonal errors, suggesting their preference for the geometric (arena shape) over the nongeometric (landmarks) cues. Moreover, sensitivity of hippocampal cell firing to changes in the environment layout was taken in support of the geometric module hypothesis. Using a computational model of rat navigation, the authors proposed and tested the alternative hypothesis that the influence of spatial geometry on both behavioral and neuronal levels can be explained by the properties of visual features that constitute local views of the environment. Their modeling results suggest that the pattern of diagonal errors observed in reorientation tasks can be understood by the analysis of sensory information processing that underlies the navigation strategy employed to solve the task. In particular, 2 navigation strategies were considered: (a) a place-based locale strategy that relies on a model of grid and place cells and (b) a stimulus-response taxon strategy that involves direct association of local views with action choices. The authors showed that the application of the 2 strategies in the reorientation tasks results in different patterns of diagonal errors, consistent with behavioral data. These results argue against the geometric module hypothesis by providing a simpler and biologically more plausible explanation for the related experimental data. Moreover, the same model also describes behavioral results in different types of water-maze tasks. Copyright (c) 2009 APA, all rights reserved.
A map of abstract relational knowledge in the human hippocampal-entorhinal cortex.
Garvert, Mona M; Dolan, Raymond J; Behrens, Timothy Ej
2017-04-27
The hippocampal-entorhinal system encodes a map of space that guides spatial navigation. Goal-directed behaviour outside of spatial navigation similarly requires a representation of abstract forms of relational knowledge. This information relies on the same neural system, but it is not known whether the organisational principles governing continuous maps may extend to the implicit encoding of discrete, non-spatial graphs. Here, we show that the human hippocampal-entorhinal system can represent relationships between objects using a metric that depends on associative strength. We reconstruct a map-like knowledge structure directly from a hippocampal-entorhinal functional magnetic resonance imaging adaptation signal in a situation where relationships are non-spatial rather than spatial, discrete rather than continuous, and unavailable to conscious awareness. Notably, the measure that best predicted a behavioural signature of implicit knowledge and blood oxygen level-dependent adaptation was a weighted sum of future states, akin to the successor representation that has been proposed to account for place and grid-cell firing patterns.
Crosswalk navigation for people with visual impairments on a wearable device
NASA Astrophysics Data System (ADS)
Cheng, Ruiqi; Wang, Kaiwei; Yang, Kailun; Long, Ningbo; Hu, Weijian; Chen, Hao; Bai, Jian; Liu, Dong
2017-09-01
Detecting and reminding of crosswalks at urban intersections is one of the most important demands for people with visual impairments. A real-time crosswalk detection algorithm, adaptive extraction and consistency analysis (AECA), is proposed. Compared with existing algorithms, which detect crosswalks in ideal scenarios, the AECA algorithm performs better in challenging scenarios, such as crosswalks at far distances, low-contrast crosswalks, pedestrian occlusion, various illuminances, and the limited resources of portable PCs. Bright stripes of crosswalks are extracted by adaptive thresholding, and are gathered to form crosswalks by consistency analysis. On the testing dataset, the proposed algorithm achieves a precision of 84.6% and a recall of 60.1%, which are higher than the bipolarity-based algorithm. The position and orientation of crosswalks are conveyed to users by voice prompts so as to align themselves with crosswalks and walk along crosswalks. The field tests carried out in various practical scenarios prove the effectiveness and reliability of the proposed navigation approach.
Adaptive Coding and Modulation Experiment With NASA's Space Communication and Navigation Testbed
NASA Technical Reports Server (NTRS)
Downey, Joseph; Mortensen, Dale; Evans, Michael; Briones, Janette; Tollis, Nicholas
2016-01-01
National Aeronautics and Space Administration (NASA)'s Space Communication and Navigation Testbed is an advanced integrated communication payload on the International Space Station. This paper presents results from an adaptive coding and modulation (ACM) experiment over S-band using a direct-to-earth link between the SCaN Testbed and the Glenn Research Center. The testing leverages the established Digital Video Broadcasting Second Generation (DVB-S2) standard to provide various modulation and coding options, and uses the Space Data Link Protocol (Consultative Committee for Space Data Systems (CCSDS) standard) for the uplink and downlink data framing. The experiment was conducted in a challenging environment due to the multipath and shadowing caused by the International Space Station structure. Several approaches for improving the ACM system are presented, including predictive and learning techniques to accommodate signal fades. Performance of the system is evaluated as a function of end-to-end system latency (round-trip delay), and compared to the capacity of the link. Finally, improvements over standard NASA waveforms are presented.
Watson, Paul J; Andrews, Paul W
2002-10-01
Evolutionary biologists use Darwinian theory and functional design ("reverse engineering") analyses, to develop and test hypotheses about the adaptive functions of traits. Based upon a consideration of human social life and a functional design analysis of depression's core symptomatology we offer a comprehensive theory of its adaptive significance called the Social Navigation Hypothesis (SNH). The SNH attempts to account for all intensities of depression based on standard evolutionary theories of sociality, communication and psychological pain. The SNH suggests that depression evolved to perform two complimentary social problem-solving functions. First, depression induces cognitive changes that focus and enhance capacities for the accurate analysis and solution of key social problems, suggesting a social rumination function. Second, the costs associated with the anhedonia and psychomotor perturbation of depression can persuade reluctant social partners to provide help or make concessions via two possible mechanisms, namely, honest signaling and passive, unintentional fitness extortion. Thus it may also have a social motivation function.
Gorur-Shandilya, Srinivas; Demir, Mahmut; Long, Junjiajia; Clark, Damon A; Emonet, Thierry
2017-01-01
Insects find food and mates by navigating odorant plumes that can be highly intermittent, with intensities and durations that vary rapidly over orders of magnitude. Much is known about olfactory responses to pulses and steps, but it remains unclear how olfactory receptor neurons (ORNs) detect the intensity and timing of natural stimuli, where the absence of scale in the signal makes detection a formidable olfactory task. By stimulating Drosophila ORNs in vivo with naturalistic and Gaussian stimuli, we show that ORNs adapt to stimulus mean and variance, and that adaptation and saturation contribute to naturalistic sensing. Mean-dependent gain control followed the Weber-Fechner relation and occurred primarily at odor transduction, while variance-dependent gain control occurred at both transduction and spiking. Transduction and spike generation possessed complementary kinetic properties, that together preserved the timing of odorant encounters in ORN spiking, regardless of intensity. Such scale-invariance could be critical during odor plume navigation. DOI: http://dx.doi.org/10.7554/eLife.27670.001 PMID:28653907
Adaptive Coding and Modulation Experiment With NASA's Space Communication and Navigation Testbed
NASA Technical Reports Server (NTRS)
Downey, Joseph A.; Mortensen, Dale J.; Evans, Michael A.; Briones, Janette C.; Tollis, Nicholas
2016-01-01
National Aeronautics and Space Administration (NASA)'s Space Communication and Navigation Testbed is an advanced integrated communication payload on the International Space Station. This paper presents results from an adaptive coding and modulation (ACM) experiment over S-band using a direct-to-earth link between the SCaN Testbed and the Glenn Research Center. The testing leverages the established Digital Video Broadcasting Second Generation (DVB-S2) standard to provide various modulation and coding options, and uses the Space Data Link Protocol (Consultative Committee for Space Data Systems (CCSDS) standard) for the uplink and downlink data framing. The experiment was con- ducted in a challenging environment due to the multipath and shadowing caused by the International Space Station structure. Several approaches for improving the ACM system are presented, including predictive and learning techniques to accommodate signal fades. Performance of the system is evaluated as a function of end-to-end system latency (round- trip delay), and compared to the capacity of the link. Finally, improvements over standard NASA waveforms are presented.
Gnadt, William; Grossberg, Stephen
2008-06-01
How do reactive and planned behaviors interact in real time? How are sequences of such behaviors released at appropriate times during autonomous navigation to realize valued goals? Controllers for both animals and mobile robots, or animats, need reactive mechanisms for exploration, and learned plans to reach goal objects once an environment becomes familiar. The SOVEREIGN (Self-Organizing, Vision, Expectation, Recognition, Emotion, Intelligent, Goal-oriented Navigation) animat model embodies these capabilities, and is tested in a 3D virtual reality environment. SOVEREIGN includes several interacting subsystems which model complementary properties of cortical What and Where processing streams and which clarify similarities between mechanisms for navigation and arm movement control. As the animat explores an environment, visual inputs are processed by networks that are sensitive to visual form and motion in the What and Where streams, respectively. Position-invariant and size-invariant recognition categories are learned by real-time incremental learning in the What stream. Estimates of target position relative to the animat are computed in the Where stream, and can activate approach movements toward the target. Motion cues from animat locomotion can elicit head-orienting movements to bring a new target into view. Approach and orienting movements are alternately performed during animat navigation. Cumulative estimates of each movement are derived from interacting proprioceptive and visual cues. Movement sequences are stored within a motor working memory. Sequences of visual categories are stored in a sensory working memory. These working memories trigger learning of sensory and motor sequence categories, or plans, which together control planned movements. Predictively effective chunk combinations are selectively enhanced via reinforcement learning when the animat is rewarded. Selected planning chunks effect a gradual transition from variable reactive exploratory movements to efficient goal-oriented planned movement sequences. Volitional signals gate interactions between model subsystems and the release of overt behaviors. The model can control different motor sequences under different motivational states and learns more efficient sequences to rewarded goals as exploration proceeds.
Temporal and spatial complexity of maternal thermoregulation in tropical pythons.
Stahlschmidt, Zachary Ross; Shine, Richard; Denardo, Dale F
2012-01-01
Parental care is a widespread adaptation that evolved independently in a broad range of taxa. Although the dynamics by which two parents meet the developmental needs of offspring are well studied in birds, we lack understanding about the temporal and spatial complexity of parental care in taxa exhibiting female-only care, the predominant mode of parental care. Thus, we examined the behavioral and physiological mechanisms by which female water pythons Liasis fuscus meet a widespread developmental need (thermoregulation) in a natural setting. Although female L. fuscus were not facultatively thermogenic, they did use behaviors on multiple spatial scales (e.g., shifts in egg-brooding postures and surface activity patterns) to balance the thermal needs of their offspring throughout reproduction (gravidity and egg brooding). Maternal behaviors in L. fuscus varied by stage within reproduction and were mediated by interindividual variation in body size and fecundity. Female pythons with relatively larger clutch sizes were cooler during egg brooding, suggesting a trade-off between reproductive quantity (size of clutch) and quality (developmental temperature). In nature, caregiving parents of all taxa must navigate both extrinsic factors (temporal and spatial complexity) and intrinsic factors (body size and fecundity) to meet the needs of their offspring. Our study used a comprehensive approach that can be used as a general template for future research examining the dynamics by which parents meet other developmental needs (e.g., predation risk or energy balance).
Emergency navigation without an infrastructure.
Gelenbe, Erol; Bi, Huibo
2014-08-18
Emergency navigation systems for buildings and other built environments, such as sport arenas or shopping centres, typically rely on simple sensor networks to detect emergencies and, then, provide automatic signs to direct the evacuees. The major drawbacks of such static wireless sensor network (WSN)-based emergency navigation systems are the very limited computing capacity, which makes adaptivity very difficult, and the restricted battery power, due to the low cost of sensor nodes for unattended operation. If static wireless sensor networks and cloud-computing can be integrated, then intensive computations that are needed to determine optimal evacuation routes in the presence of time-varying hazards can be offloaded to the cloud, but the disadvantages of limited battery life-time at the client side, as well as the high likelihood of system malfunction during an emergency still remain. By making use of the powerful sensing ability of smart phones, which are increasingly ubiquitous, this paper presents a cloud-enabled indoor emergency navigation framework to direct evacuees in a coordinated fashion and to improve the reliability and resilience for both communication and localization. By combining social potential fields (SPF) and a cognitive packet network (CPN)-based algorithm, evacuees are guided to exits in dynamic loose clusters. Rather than relying on a conventional telecommunications infrastructure, we suggest an ad hoc cognitive packet network (AHCPN)-based protocol to adaptively search optimal communication routes between portable devices and the network egress nodes that provide access to cloud servers, in a manner that spares the remaining battery power of smart phones and minimizes the time latency. Experimental results through detailed simulations indicate that smart human motion and smart network management can increase the survival rate of evacuees and reduce the number of drained smart phones in an evacuation process.
Emergency Navigation without an Infrastructure
Gelenbe, Erol; Bi, Huibo
2014-01-01
Emergency navigation systems for buildings and other built environments, such as sport arenas or shopping centres, typically rely on simple sensor networks to detect emergencies and, then, provide automatic signs to direct the evacuees. The major drawbacks of such static wireless sensor network (WSN)-based emergency navigation systems are the very limited computing capacity, which makes adaptivity very difficult, and the restricted battery power, due to the low cost of sensor nodes for unattended operation. If static wireless sensor networks and cloud-computing can be integrated, then intensive computations that are needed to determine optimal evacuation routes in the presence of time-varying hazards can be offloaded to the cloud, but the disadvantages of limited battery life-time at the client side, as well as the high likelihood of system malfunction during an emergency still remain. By making use of the powerful sensing ability of smart phones, which are increasingly ubiquitous, this paper presents a cloud-enabled indoor emergency navigation framework to direct evacuees in a coordinated fashion and to improve the reliability and resilience for both communication and localization. By combining social potential fields (SPF) and a cognitive packet network (CPN)-based algorithm, evacuees are guided to exits in dynamic loose clusters. Rather than relying on a conventional telecommunications infrastructure, we suggest an ad hoc cognitive packet network (AHCPN)-based protocol to adaptively search optimal communication routes between portable devices and the network egress nodes that provide access to cloud servers, in a manner that spares the remaining battery power of smart phones and minimizes the time latency. Experimental results through detailed simulations indicate that smart human motion and smart network management can increase the survival rate of evacuees and reduce the number of drained smart phones in an evacuation process. PMID:25196014
ERIC Educational Resources Information Center
Goldberg, Michael R.; Dill, Charles A.; Shin, Jin Y.; Nhan, Nguyen Viet
2009-01-01
This study was conducted to examine an adaptation of the Vineland Adaptive Behavior Scale (VABS) [Sparrow, S. S., Balla, D. A., & Cicchetti, D. V. (1984). "The Vineland Adaptive Behavior Scales." Circle Pines, MN: America Guidance Service; Sparrow, S. S., Balla, D. A., & Cicchetti, D. V. (2005). "Vineland Adaptive Behavior…
BatSLAM: Simultaneous localization and mapping using biomimetic sonar.
Steckel, Jan; Peremans, Herbert
2013-01-01
We propose to combine a biomimetic navigation model which solves a simultaneous localization and mapping task with a biomimetic sonar mounted on a mobile robot to address two related questions. First, can robotic sonar sensing lead to intelligent interactions with complex environments? Second, can we model sonar based spatial orientation and the construction of spatial maps by bats? To address these questions we adapt the mapping module of RatSLAM, a previously published navigation system based on computational models of the rodent hippocampus. We analyze the performance of the proposed robotic implementation operating in the real world. We conclude that the biomimetic navigation model operating on the information from the biomimetic sonar allows an autonomous agent to map unmodified (office) environments efficiently and consistently. Furthermore, these results also show that successful navigation does not require the readings of the biomimetic sonar to be interpreted in terms of individual objects/landmarks in the environment. We argue that the system has applications in robotics as well as in the field of biology as a simple, first order, model for sonar based spatial orientation and map building.
BatSLAM: Simultaneous Localization and Mapping Using Biomimetic Sonar
Steckel, Jan; Peremans, Herbert
2013-01-01
We propose to combine a biomimetic navigation model which solves a simultaneous localization and mapping task with a biomimetic sonar mounted on a mobile robot to address two related questions. First, can robotic sonar sensing lead to intelligent interactions with complex environments? Second, can we model sonar based spatial orientation and the construction of spatial maps by bats? To address these questions we adapt the mapping module of RatSLAM, a previously published navigation system based on computational models of the rodent hippocampus. We analyze the performance of the proposed robotic implementation operating in the real world. We conclude that the biomimetic navigation model operating on the information from the biomimetic sonar allows an autonomous agent to map unmodified (office) environments efficiently and consistently. Furthermore, these results also show that successful navigation does not require the readings of the biomimetic sonar to be interpreted in terms of individual objects/landmarks in the environment. We argue that the system has applications in robotics as well as in the field of biology as a simple, first order, model for sonar based spatial orientation and map building. PMID:23365647
Study on polarized optical flow algorithm for imaging bionic polarization navigation micro sensor
NASA Astrophysics Data System (ADS)
Guan, Le; Liu, Sheng; Li, Shi-qi; Lin, Wei; Zhai, Li-yuan; Chu, Jin-kui
2018-05-01
At present, both the point source and the imaging polarization navigation devices only can output the angle information, which means that the velocity information of the carrier cannot be extracted from the polarization field pattern directly. Optical flow is an image-based method for calculating the velocity of pixel point movement in an image. However, for ordinary optical flow, the difference in pixel value as well as the calculation accuracy can be reduced in weak light. Polarization imaging technology has the ability to improve both the detection accuracy and the recognition probability of the target because it can acquire the extra polarization multi-dimensional information of target radiation or reflection. In this paper, combining the polarization imaging technique with the traditional optical flow algorithm, a polarization optical flow algorithm is proposed, and it is verified that the polarized optical flow algorithm has good adaptation in weak light and can improve the application range of polarization navigation sensors. This research lays the foundation for day and night all-weather polarization navigation applications in future.
NASA Astrophysics Data System (ADS)
Müller, M. S.; Urban, S.; Jutzi, B.
2017-08-01
The number of unmanned aerial vehicles (UAVs) is increasing since low-cost airborne systems are available for a wide range of users. The outdoor navigation of such vehicles is mostly based on global navigation satellite system (GNSS) methods to gain the vehicles trajectory. The drawback of satellite-based navigation are failures caused by occlusions and multi-path interferences. Beside this, local image-based solutions like Simultaneous Localization and Mapping (SLAM) and Visual Odometry (VO) can e.g. be used to support the GNSS solution by closing trajectory gaps but are computationally expensive. However, if the trajectory estimation is interrupted or not available a re-localization is mandatory. In this paper we will provide a novel method for a GNSS-free and fast image-based pose regression in a known area by utilizing a small convolutional neural network (CNN). With on-board processing in mind, we employ a lightweight CNN called SqueezeNet and use transfer learning to adapt the network to pose regression. Our experiments show promising results for GNSS-free and fast localization.
Place versus response learning in fish: a comparison between species.
McAroe, Claire L; Craig, Cathy M; Holland, Richard A
2016-01-01
Place learning is thought to be an adaptive and flexible facet of navigation. Due to the flexibility of this learning, it is thought to be more complex than the simpler strategies such as learning a particular route or navigating through the use of cues. Place learning is crucial in a familiar environment as it allows an individual to successfully navigate to the same endpoint, regardless of where in the environment the journey begins. Much of the research to date focusing on different strategies employed for navigation has used human subjects or other mammals such as rodents. In this series of experiments, the spatial memory of four different species of fish (goldfish, killifish, zebrafish and Siamese fighting fish) was analysed using a plus maze set-up. Results suggest that three of the species showed a significant preference for the adoption of a place strategy during this task, whereas zebrafish showed no significant preference. Furthermore, zebrafish took significantly longer to learn the task than the other species. Finally, results suggest that zebrafish took the least amount of time (seconds) to complete trials both during training and probe.
A Novel Online Data-Driven Algorithm for Detecting UAV Navigation Sensor Faults.
Sun, Rui; Cheng, Qi; Wang, Guanyu; Ochieng, Washington Yotto
2017-09-29
The use of Unmanned Aerial Vehicles (UAVs) has increased significantly in recent years. On-board integrated navigation sensors are a key component of UAVs' flight control systems and are essential for flight safety. In order to ensure flight safety, timely and effective navigation sensor fault detection capability is required. In this paper, a novel data-driven Adaptive Neuron Fuzzy Inference System (ANFIS)-based approach is presented for the detection of on-board navigation sensor faults in UAVs. Contrary to the classic UAV sensor fault detection algorithms, based on predefined or modelled faults, the proposed algorithm combines an online data training mechanism with the ANFIS-based decision system. The main advantages of this algorithm are that it allows real-time model-free residual analysis from Kalman Filter (KF) estimates and the ANFIS to build a reliable fault detection system. In addition, it allows fast and accurate detection of faults, which makes it suitable for real-time applications. Experimental results have demonstrated the effectiveness of the proposed fault detection method in terms of accuracy and misdetection rate.
A Behavior-Based Strategy for Single and Multi-Robot Autonomous Exploration
Cepeda, Jesus S.; Chaimowicz, Luiz; Soto, Rogelio; Gordillo, José L.; Alanís-Reyes, Edén A.; Carrillo-Arce, Luis C.
2012-01-01
In this paper, we consider the problem of autonomous exploration of unknown environments with single and multiple robots. This is a challenging task, with several potential applications. We propose a simple yet effective approach that combines a behavior-based navigation with an efficient data structure to store previously visited regions. This allows robots to safely navigate, disperse and efficiently explore the environment. A series of experiments performed using a realistic robotic simulator and a real testbed scenario demonstrate that our technique effectively distributes the robots over the environment and allows them to quickly accomplish their mission in large open spaces, narrow cluttered environments, dead-end corridors, as well as rooms with minimum exits.
[Effects of family cohesion and adaptability on behavioral problems in preschool children].
Wang, Yan-Ni; Xue, Hong-Li; Chen, Qian
2016-05-01
To investigate the effects of family cohesion and adaptability on behavioral problems in preschool children. The stratified cluster multistage sampling method was used to perform a questionnaire survey in the parents of 1 284 children aged 3-6 years in the urban area of Lanzhou, China. The general status questionnaire, Conners Child Behavior Checklist (Parent Symptom Question), and Family Adaptability and Cohesion Scale, Second edition, Chinese version (FACESII-CV) were used to investigate behavioral problems and family cohesion and adaptability. The overall detection rate of behavioral problems in preschool children was 17.13%. The children with different types of family cohesion had different detection rates of behavioral problems, and those with free-type family cohesion showed the highest detection rate of behavioral problems (40.2%). The children with different types of family adaptability also had different detection rates of behavioral problems, and those with stiffness type showed the highest detection rate of behavioral problems (25.1%). The behavioral problems in preschool children were negatively correlated with family cohesion and adaptability. During the growth of preschool children, family cohesion and adaptability have certain effects on the mental development of preschool children.
Physician behavioral adaptability: A model to outstrip a "one size fits all" approach.
Carrard, Valérie; Schmid Mast, Marianne
2015-10-01
Based on a literature review, we propose a model of physician behavioral adaptability (PBA) with the goal of inspiring new research. PBA means that the physician adapts his or her behavior according to patients' different preferences. The PBA model shows how physicians infer patients' preferences and adapt their interaction behavior from one patient to the other. We claim that patients will benefit from better outcomes if their physicians show behavioral adaptability rather than a "one size fits all" approach. This literature review is based on a literature search of the PsycINFO(®) and MEDLINE(®) databases. The literature review and first results stemming from the authors' research support the validity and viability of parts of the PBA model. There is evidence suggesting that physicians are able to show behavioral flexibility when interacting with their different patients, that a match between patients' preferences and physician behavior is related to better consultation outcomes, and that physician behavioral adaptability is related to better consultation outcomes. Training of physicians' behavioral flexibility and their ability to infer patients' preferences can facilitate physician behavioral adaptability and positive patient outcomes. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Ngoc Nguyen, Tu-Uyen; Tanjasiri, Sora Park; Kagawa-Singer, Marjorie; Tran, Jacqueline H; Foo, Mary Anne
2008-10-01
In recent years, there has been a growing number of programs employing health navigators to assist underserved individuals in overcoming barriers to obtaining regular and quality health care. This article describes the perspectives and experiences of community-based health navigators in the Cambodian and Laotian communities involved in a REACH 2010 project to reduce health disparities in breast and cervical cancer among Pacific Islander and Southeast Asian communities in California. These community health navigators, who have extensive training and knowledge about the cultural, historical, and structural needs and resources of their communities, are well equipped to build trusting relationships with community members traditionally ignored by the mainstream medical system. By comparing the different social support roles and intervention strategies employed by community health navigators in diverse communities, we can better understand how these valuable change agents of the health workforce are effective in improving health access and healthy behaviors for underserved communities.
A joint tracking method for NSCC based on WLS algorithm
NASA Astrophysics Data System (ADS)
Luo, Ruidan; Xu, Ying; Yuan, Hong
2017-12-01
Navigation signal based on compound carrier (NSCC), has the flexible multi-carrier scheme and various scheme parameters configuration, which enables it to possess significant efficiency of navigation augmentation in terms of spectral efficiency, tracking accuracy, multipath mitigation capability and anti-jamming reduction compared with legacy navigation signals. Meanwhile, the typical scheme characteristics can provide auxiliary information for signal synchronism algorithm design. This paper, based on the characteristics of NSCC, proposed a kind of joint tracking method utilizing Weighted Least Square (WLS) algorithm. In this method, the LS algorithm is employed to jointly estimate each sub-carrier frequency shift with the frequency-Doppler linear relationship, by utilizing the known sub-carrier frequency. Besides, the weighting matrix is set adaptively according to the sub-carrier power to ensure the estimation accuracy. Both the theory analysis and simulation results illustrate that the tracking accuracy and sensitivity of this method outperforms the single-carrier algorithm with lower SNR.
Goal-oriented robot navigation learning using a multi-scale space representation.
Llofriu, M; Tejera, G; Contreras, M; Pelc, T; Fellous, J M; Weitzenfeld, A
2015-12-01
There has been extensive research in recent years on the multi-scale nature of hippocampal place cells and entorhinal grid cells encoding which led to many speculations on their role in spatial cognition. In this paper we focus on the multi-scale nature of place cells and how they contribute to faster learning during goal-oriented navigation when compared to a spatial cognition system composed of single scale place cells. The task consists of a circular arena with a fixed goal location, in which a robot is trained to find the shortest path to the goal after a number of learning trials. Synaptic connections are modified using a reinforcement learning paradigm adapted to the place cells multi-scale architecture. The model is evaluated in both simulation and physical robots. We find that larger scale and combined multi-scale representations favor goal-oriented navigation task learning. Copyright © 2015 Elsevier Ltd. All rights reserved.
Tassé, Marc J; Luckasson, Ruth; Schalock, Robert L
2016-12-01
Intellectual disability originates during the developmental period and is characterized by significant limitations both in intellectual functioning and in adaptive behavior as expressed in conceptual, social, and practical adaptive skills. In this article, we present a brief history of the diagnostic criteria of intellectual disability for both the DSM-5 and AAIDD. The article also (a) provides an update of the understanding of adaptive behavior, (b) dispels two thinking errors regarding mistaken temporal or causal link between intellectual functioning and adaptive behavior, (c) explains that there is a strong correlational, but no causative, relation between intellectual functioning and adaptive behavior, and (d) asserts that once a question of determining intellectual disability is raised, both intellectual functioning and adaptive behavior are assessed and considered jointly and weighed equally in the diagnosis of intellectual disability. We discuss the problems created by an inaccurate statement that appears in the DSM-5 regarding a causal link between deficits in intellectual functioning and adaptive behavior and propose an immediate revision to remove this erroneous and confounding statement.
Mobile robots IV; Proceedings of the Meeting, Philadelphia, PA, Nov. 6, 7, 1989
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wolfe, W.J.; Chun, W.H.
1990-01-01
The present conference on mobile robot systems discusses high-speed machine perception based on passive sensing, wide-angle optical ranging, three-dimensional path planning for flying/crawling robots, navigation of autonomous mobile intelligence in an unstructured natural environment, mechanical models for the locomotion of a four-articulated-track robot, a rule-based command language for a semiautonomous Mars rover, and a computer model of the structured light vision system for a Mars rover. Also discussed are optical flow and three-dimensional information for navigation, feature-based reasoning trail detection, a symbolic neural-net production system for obstacle avoidance and navigation, intelligent path planning for robot navigation in an unknown environment,more » behaviors from a hierarchical control system, stereoscopic TV systems, the REACT language for autonomous robots, and a man-amplifying exoskeleton.« less
Lin, Jenny J; Mann, Devin M
2012-09-01
Diabetes incidence is increasing worldwide and providers often do not feel they can effectively counsel about preventive lifestyle changes. The goal of this paper is to describe the development and initial feasibility testing of the Avoiding Diabetes Thru Action Plan Targeting (ADAPT) program to enhance counseling about behavior change for patients with pre-diabetes. Primary care providers and patients were interviewed about their perspectives on lifestyle changes to prevent diabetes. A multidisciplinary design team incorporated this data to translate elements from behavior change theories to create the ADAPT program. The ADAPT program was pilot tested to evaluate feasibility. Leveraging elements from health behavior theories and persuasion literature, the ADAPT program comprises a shared goal-setting module, implementation intentions exercise, and tailored reminders to encourage behavior change. Feasibility data demonstrate that patients were able to use the program to achieve their behavior change goals. Initial findings show that the ADAPT program is feasible for helping improve primary care providers' counseling for behavior change in patients with pre-diabetes. If successful, the ADAPT program may represent an adaptable and scalable behavior change tool for providers to encourage lifestyle changes to prevent diabetes. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Brown, Thackery I.; Stern, Chantal E.
2014-01-01
Many life experiences share information with other memories. In order to make decisions based on overlapping memories, we need to distinguish between experiences to determine the appropriate behavior for the current situation. Previous work suggests that the medial temporal lobe (MTL) and medial caudate interact to support the retrieval of overlapping navigational memories in different contexts. The present study used functional magnetic resonance imaging (fMRI) in humans to test the prediction that the MTL and medial caudate play complementary roles in learning novel mazes that cross paths with, and must be distinguished from, previously learned routes. During fMRI scanning, participants navigated virtual routes that were well learned from prior training while also learning new mazes. Critically, some routes learned during scanning shared hallways with those learned during pre-scan training. Overlap between mazes required participants to use contextual cues to select between alternative behaviors. Results demonstrated parahippocampal cortex activity specific for novel spatial cues that distinguish between overlapping routes. The hippocampus and medial caudate were active for learning overlapping spatial memories, and increased their activity for previously learned routes when they became context dependent. Our findings provide novel evidence that the MTL and medial caudate play complementary roles in the learning, updating, and execution of context-dependent navigational behaviors. PMID:23448868
Evaluation of user perceptions and behaviors of Fast-Trac : pilot study results
DOT National Transportation Integrated Search
1996-01-01
The purpose of the User Perceptions and Behaviors evaluation component of FAST-TRAC is to understand how users perceive and value the in-vehicle navigation system, ALI-SCOUT, and to determine how the system is used in the Oakland County study area. S...
Adaptations for Substrate Gleaning in Bats: The Pallid Bat as a Case Study.
Razak, Khaleel A
2018-06-06
Substrate gleaning is a foraging strategy in which bats use a mixture of echolocation, prey-generated sounds, and vision to localize and hunt surface-dwelling prey. Many substrate-gleaning species depend primarily on prey-generated noise to hunt. Use of echolocation is limited to general orientation and obstacle avoidance. This foraging strategy involves a different set of selective pressures on morphology, behavior, and auditory system organization of bats compared to the use of echolocation for both hunting and navigation. Gleaning likely evolved to hunt in cluttered environments and/or as a counterstrategy to reduce detection by eared prey. Gleaning bats simultaneously receive streams of echoes from obstacles and prey-generated noise, and have to segregate these acoustic streams to attend to one or both. Not only do these bats have to be exquisitely sensitive to the soft, low frequency sounds produced by walking/rustling prey, they also have to precisely localize these sounds. Gleaners typically use low intensity echolocation calls. Such stealth echolocation requires a nervous system that is attuned to low intensity sound processing. In addition, landing on the ground to hunt may bring gleaners in close proximity to venomous prey. In fact, at least 2 gleaning bat species are known to hunt highly venomous scorpions. While a number of studies have addressed adaptations for echolocation in bats that hunt in the air, very little is known about the morphological, behavioral, and neural specializations for gleaning in bats. This review highlights the novel insights gleaning bats provide into bat evolution, particularly auditory pathway organization and ion channel structure/function relationships. Gleaning bats are found in multiple families, suggesting convergent evolution of specializations for gleaning as a foraging strategy. However, most of this review is based on recent work on a single species - the pallid bat (Antrozous palli dus) - symptomatic of the fact that more comparative work is needed to identify the mechanisms that facilitate gleaning behavior. © 2018 S. Karger AG, Basel.
ERIC Educational Resources Information Center
Tassé, Marc J.; Schalock, Robert L.; Thissen, David; Balboni, Giulia; Bersani, Henry, Jr.; Borthwick-Duffy, Sharon A.; Spreat, Scott; Widaman, Keith F.; Zhang, Dalun; Navas, Patricia
2016-01-01
The Diagnostic Adaptive Behavior Scale (DABS) was developed using item response theory (IRT) methods and was constructed to provide the most precise and valid adaptive behavior information at or near the cutoff point of making a decision regarding a diagnosis of intellectual disability. The DABS initial item pool consisted of 260 items. Using IRT…
Tremblay, Karine N; Richer, Louis; Lachance, Lise; Côté, Alain
2010-01-01
Children with intellectual disabilities show deficits in cognitive abilities and adaptive behavior which increase the risk of psychopathological disorders. This exploratory study aims at delineating profiles of children based on their cognitive functioning and adaptive behaviors, and to compare them on psychopathological manifestations. A cognitive assessment and an evaluation of adaptive behaviors are conducted with 52 school-age children receiving services from a rehabilitation center for people with intellectual disabilities. Adaptive behaviors are evaluated by a special educator and a questionnaire concerning psychopathology is filled out by a parent and a teacher. Cluster analyses highlight three profiles among children: Performing, Uncooperative and Non-performing. They differ on cognitive functions, collaboration and in terms of practical abilities of adaptive behaviors. Chi-square tests show significant differences in social competences, but not in problematic behaviors, according to the viewpoint of parents and teachers. Potential explanations are provided to understand the absence of significant differences in problematic behaviors between the three profiles.
Adaptive online self-gating (ADIOS) for free-breathing noncontrast renal MR angiography.
Xie, Yibin; Fan, Zhaoyang; Saouaf, Rola; Natsuaki, Yutaka; Laub, Gerhard; Li, Debiao
2015-01-01
To develop a respiratory self-gating method, adaptive online self-gating (ADIOS), for noncontrast MR angiography (NC MRA) of renal arteries to overcome some limitations of current free-breathing methods. A NC MRA pulse sequence for online respiratory self-gating was developed based on three-dimensional balanced steady-state free precession (bSSFP) and slab-selective inversion-recovery. Motion information was derived directly from the slab being imaged for online gating. Scan efficiency was maintained by an automatic adaptive online algorithm. Qualitative and quantitative assessments of image quality were performed and results were compared with conventional diaphragm navigator (NAV). NC MRA imaging was successfully completed in all subjects (n = 15). Similarly good image quality was observed in the proximal-middle renal arteries with ADIOS compared with NAV. Superior image quality was observed in the middle-distal renal arteries in the right kidneys with no NAV-induced artifacts. Maximal visible artery length was significantly longer with ADIOS versus NAV in the right kidneys. NAV setup was completely eliminated and scan time was significantly shorter with ADIOS on average compared with NAV. The proposed ADIOS technique for noncontrast MRA provides high-quality visualization of renal arteries with no diaphragm navigator-induced artifacts, simplified setup, and shorter scan time. © 2014 Wiley Periodicals, Inc.
Interactive knowledge networks for interdisciplinary course navigation within Moodle.
Scherl, Andre; Dethleffsen, Kathrin; Meyer, Michael
2012-12-01
Web-based hypermedia learning environments are widely used in modern education and seem particularly well suited for interdisciplinary learning. Previous work has identified guidance through these complex environments as a crucial problem of their acceptance and efficiency. We reasoned that map-based navigation might provide straightforward and effortless orientation. To achieve this, we developed a clickable and user-oriented concept map-based navigation plugin. This tool is implemented as an extension of Moodle, a widely used learning management system. It visualizes inner and interdisciplinary relations between learning objects and is generated dynamically depending on user set parameters and interactions. This plugin leaves the choice of navigation type to the user and supports direct guidance. Previously developed and evaluated face-to-face interdisciplinary learning materials bridging physiology and physics courses of a medical curriculum were integrated as learning objects, the relations of which were defined by metadata. Learning objects included text pages, self-assessments, videos, animations, and simulations. In a field study, we analyzed the effects of this learning environment on physiology and physics knowledge as well as the transfer ability of third-term medical students. Data were generated from pre- and posttest questionnaires and from tracking student navigation. Use of the hypermedia environment resulted in a significant increase of knowledge and transfer capability. Furthermore, the efficiency of learning was enhanced. We conclude that hypermedia environments based on Moodle and enriched by concept map-based navigation tools can significantly support interdisciplinary learning. Implementation of adaptivity may further strengthen this approach.
Rice, James P.; Wallace, Douglas G.; Hamilton, Derek A.
2015-01-01
The hippocampus and dorsolateral striatum are critically involved in spatial navigation based on extra-maze and intra-maze cues, respectively. Previous reports from our laboratory suggest that behavior in the Morris water task may be guided by both cue types, and rats appear to switch from extra-pool to intra-pool cues to guide navigation in a sequential manner within a given trial. In two experiments, rats with hippocampal or dorsolateral striatal lesions were trained and tested in water task paradigms that involved translation and removal of a cued platform within the pool and translations of the pool itself with respect to the extra-pool cue reference frame. In the first experiment, moment-to-moment analyses of swim behavior indicate that hippocampal lesions disrupt initial trajectories based on extra-pool cues at the beginning of the trial, while dorsolateral striatal lesions disrupt subsequent swim trajectories based on the location of the cued platform at the end of the trial. In the second experiment lesions of the hippocampus, but not the dorsolateral striatum, impaired directional responding in situations where the pool was shifted within the extra-pool cue array. These results are important for understanding the cooperative interactions between the hippocampus and dorsolateral striatum in spatial learning and memory, and establish that these brain areas are continuously involved in goal-directed spatial navigation. These results also highlight the importance of the hippocampus in directional responding in addition to place navigation. PMID:25907746
Developing Adaptable Online Information Literacy Modules for a Learning Management System
ERIC Educational Resources Information Center
Mune, Christina; Goldman, Crystal; Higgins, Silke; Eby, Laurel; Chan, Emily K.; Crotty, Linda
2015-01-01
Higher education institutions increasingly utilize learning management systems (LMS) to teach courses and programs in hybrid or online-only formats. Providing information literacy instruction in these emerging digital environments poses challenges to librarians as the delivery of instruction requires familiarity with navigating an LMS and…
Personalization in an Interactive Learning Environment through a Virtual Character
ERIC Educational Resources Information Center
Reategui, E.; Boff, E.; Campbell, J. A.
2008-01-01
Traditional hypermedia applications present the same content and provide identical navigational support to all users. Adaptive Hypermedia Systems (AHS) make it possible to construct personalized presentations to each user, according to preferences and needs identified. We present in this paper an alternative approach to educational AHS where a…
Case Study in Modeling Accessibility for Online Instruction
ERIC Educational Resources Information Center
Conway, Thomas Hayes
2017-01-01
The purpose of this qualitative multiple case study was to explore how accessibility standards are adapted to create online learning environments that are accessible to people who use assistive technology, or have navigational challenges due to physical or intellectual disabilities. Rogers diffusion of innovation was used as the contextual…
A Review and Reappraisal of Adaptive Human-Computer Interfaces in Complex Control Systems
2006-08-01
maneuverability measures. The cost elements were expressed as fuzzy membership functions. Figure 9 shows the flowchart of the route planner. A fuzzy navigator...and updating of the user model, which contains information about three generic stereotypes ( beginner , intermediate and expert users) plus an
Mission Executor for an Autonomous Underwater Vehicle
1991-09-01
which must control and intepret sensory output for navigation and reconition of various obstructions and provide adaptability strategies for local...envemmjnm -, cLdvhelama 0"in idmLMLISw (.?OFchdmjmiheu 1)))) CroW4%cdmdahuwm 7b~.mWl) Film 6-1L OvatE Mission Asumma Ride complications, just that the
Suboptimal Tradeoffs in Information Seeking
ERIC Educational Resources Information Center
Fu, Wai-Tat; Gray, Wayne D.
2006-01-01
Explicit information-seeking actions are needed to evaluate alternative actions in problem-solving tasks. Information-seeking costs are often traded off against the utility of information. We present three experiments that show how subjects adapt to the cost and information structures of environments in a map-navigation task. We found that…
Stability and diversity in collective adaptation
NASA Astrophysics Data System (ADS)
Sato, Yuzuru; Akiyama, Eizo; Crutchfield, James P.
2005-10-01
We derive a class of macroscopic differential equations that describe collective adaptation, starting from a discrete-time stochastic microscopic model. The behavior of each agent is a dynamic balance between adaptation that locally achieves the best action and memory loss that leads to randomized behavior. We show that, although individual agents interact with their environment and other agents in a purely self-interested way, macroscopic behavior can be interpreted as game dynamics. Application to several familiar, explicit game interactions shows that the adaptation dynamics exhibits a diversity of collective behaviors. The simplicity of the assumptions underlying the macroscopic equations suggests that these behaviors should be expected broadly in collective adaptation. We also analyze the adaptation dynamics from an information-theoretic viewpoint and discuss self-organization induced by the dynamics of uncertainty, giving a novel view of collective adaptation.
Adaptation of the ABS-S:2 for Use in Spain with Children with Intellectual Disabilities
ERIC Educational Resources Information Center
Garcia Alonso, Isabel; De La Fuente Anuncibay, Raquel; Fernandez Hawrylak, Maria
2010-01-01
As there is a dearth of Spanish-language standardized scales that assess adaptive behavior in children and adolescents with intellectual disabilities (ID), the authors adapted one of the most widely used and studied scales of adaptive behavior in the U.S., the ABS-S:2 (Adaptive Behavior Scale-School, 2nd Edition), and validated it for use in…
6DOF Testing of the SLS Inertial Navigation Unit
NASA Technical Reports Server (NTRS)
Geohagan, Kevin W.; Bernard, William P.; Oliver, T. Emerson; Strickland, Dennis J.; Leggett, Jared O.
2018-01-01
The Navigation System on the NASA Space Launch System (SLS) Block 1 vehicle performs initial alignment of the Inertial Navigation System (INS) navigation frame through gyrocompass alignment (GCA). In lieu of direct testing of GCA accuracy in support of requirement verification, the SLS Navigation Team proposed and conducted an engineering test to, among other things, validate the GCA performance and overall behavior of the SLS INS model through comparison with test data. This paper will detail dynamic hardware testing of the SLS INS, conducted by the SLS Navigation Team at Marshall Space Flight Center's 6DOF Table Facility, in support of GCA performance characterization and INS model validation. A 6-DOF motion platform was used to produce 6DOF pad twist and sway dynamics while a simulated SLS flight computer communicated with the INS. Tests conducted include an evaluation of GCA algorithm robustness to increasingly dynamic pad environments, an examination of GCA algorithm stability and accuracy over long durations, and a long-duration static test to gather enough data for Allan Variance analysis. Test setup, execution, and data analysis will be discussed, including analysis performed in support of SLS INS model validation.
Place field assembly distribution encodes preferred locations
Mamad, Omar; Stumpp, Lars; McNamara, Harold M.; Ramakrishnan, Charu; Deisseroth, Karl; Reilly, Richard B.
2017-01-01
The hippocampus is the main locus of episodic memory formation and the neurons there encode the spatial map of the environment. Hippocampal place cells represent location, but their role in the learning of preferential location remains unclear. The hippocampus may encode locations independently from the stimuli and events that are associated with these locations. We have discovered a unique population code for the experience-dependent value of the context. The degree of reward-driven navigation preference highly correlates with the spatial distribution of the place fields recorded in the CA1 region of the hippocampus. We show place field clustering towards rewarded locations. Optogenetic manipulation of the ventral tegmental area demonstrates that the experience-dependent place field assembly distribution is directed by tegmental dopaminergic activity. The ability of the place cells to remap parallels the acquisition of reward context. Our findings present key evidence that the hippocampal neurons are not merely mapping the static environment but also store the concurrent context reward value, enabling episodic memory for past experience to support future adaptive behavior. PMID:28898248
Vision System for Coarsely Estimating Motion Parameters for Unknown Fast Moving Objects in Space
Chen, Min; Hashimoto, Koichi
2017-01-01
Motivated by biological interests in analyzing navigation behaviors of flying animals, we attempt to build a system measuring their motion states. To do this, in this paper, we build a vision system to detect unknown fast moving objects within a given space, calculating their motion parameters represented by positions and poses. We proposed a novel method to detect reliable interest points from images of moving objects, which can be hardly detected by general purpose interest point detectors. 3D points reconstructed using these interest points are then grouped and maintained for detected objects, according to a careful schedule, considering appearance and perspective changes. In the estimation step, a method is introduced to adapt the robust estimation procedure used for dense point set to the case for sparse set, reducing the potential risk of greatly biased estimation. Experiments are conducted against real scenes, showing the capability of the system of detecting multiple unknown moving objects and estimating their positions and poses. PMID:29206189
Development evolving: the origins and meanings of instinct.
Blumberg, Mark S
2017-01-01
How do migratory birds, herding dogs, and navigating sea turtles do the amazing things that they do? For hundreds of years, scientists and philosophers have struggled over possible explanations. In time, one word came to dominate the discussion: instinct. It became the catch-all explanation for those adaptive and complex abilities that do not obviously result from learning or experience. Today, various animals are said to possess a survival instinct, migratory instinct, herding instinct, maternal instinct, or language instinct. But a closer look reveals that these and other 'instincts' are not satisfactorily described as inborn, pre-programmed, hardwired, or genetically determined. Rather, research in this area teaches us that species-typical behaviors develop-and they do so in every individual under the guidance of species-typical experiences occurring within reliable ecological contexts. WIREs Cogn Sci 2017, 8:e1371. doi: 10.1002/wcs.1371 For further resources related to this article, please visit the WIREs website. © 2016 Wiley Periodicals, Inc.
Hums, Ingrid; Riedl, Julia; Mende, Fanny; Kato, Saul; Kaplan, Harris S; Latham, Richard; Sonntag, Michael; Traunmüller, Lisa; Zimmer, Manuel
2016-01-01
In animal locomotion a tradeoff exists between stereotypy and flexibility: fast long-distance travelling (LDT) requires coherent regular motions, while local sampling and area-restricted search (ARS) rely on flexible movements. We report here on a posture control system in C. elegans that coordinates these needs. Using quantitative posture analysis we explain worm locomotion as a composite of two modes: regular undulations versus flexible turning. Graded reciprocal regulation of both modes allows animals to flexibly adapt their locomotion strategy under sensory stimulation along a spectrum ranging from LDT to ARS. Using genetics and functional imaging of neural activity we characterize the counteracting interneurons AVK and DVA that utilize FLP-1 and NLP-12 neuropeptides to control both motor modes. Gradual regulation of behaviors via this system is required for spatial navigation during chemotaxis. This work shows how a nervous system controls simple elementary features of posture to generate complex movements for goal-directed locomotion strategies. DOI: http://dx.doi.org/10.7554/eLife.14116.001 PMID:27222228
Enhancing the Behaviorial Fidelity of Synthetic Entities with Human Behavior Models
2004-05-05
reflecting the soldier’s extensive training. A civilian’s behavior in the same situation will be determined more by emotions , such as fear, and goals...of intelligent behavior , from path-planning to emotional effects, data on the environment must be gathered from the simulation to serve as sensor...model of decision-making based on emotional utility. AI.Implant takes a composite behavior -based approach to individual and crowd navigation
Manshack, Lindsey K; Conard, Caroline M; Johnson, Sarah A; Alex, Jorden M; Bryan, Sara J; Deem, Sharon L; Holliday, Dawn K; Ellersieck, Mark R; Rosenfeld, Cheryl S
2016-09-01
Developmental exposure of turtles and other reptiles to endocrine disrupting chemicals (EDCs), including bisphenol A (BPA) and ethinyl estradiol (EE2, estrogen present in birth control pills), can induce partial to full gonadal sex-reversal in males. No prior studies have considered whether in ovo exposure to EDCs disrupts normal brain sexual differentiation. Yet, rodent model studies indicate early exposure to these chemicals disturbs sexually selected behavioral traits, including spatial navigational learning and memory. Thus, we sought to determine whether developmental exposure of painted turtles (Chrysemys picta) to BPA and EE2 results in sex-dependent behavioral changes. At developmental stage 17, turtles incubated at 26⁰C (male-inducing temperature) were treated with 1) BPA High (100μg /mL), 2) BPA Low (0.01μg/mL), 3) EE2 (0.2μg/mL), or 4) vehicle or no vehicle control groups. Five months after hatching, turtles were tested with a spatial navigational test that included four food containers, only one of which was baited with food. Each turtle was randomly assigned one container that did not change over the trial period. Each individual was tested for 14 consecutive days. Results show developmental exposure to BPA High and EE2 improved spatial navigational learning and memory, as evidenced by increased number of times spent in the correct target zone and greater likelihood of solving the maze compared to control turtles. This study is the first to show that in addition to overriding temperature sex determination (TSD) of the male gonad, these EDCs may induce sex-dependent behavioral changes in turtles. Copyright © 2016 Elsevier Inc. All rights reserved.
Conflicting evidence about long-distance animal navigation.
Alerstam, Thomas
2006-08-11
Because of conflicting evidence about several fundamental issues, long-distance animal navigation has yet to be satisfactorily explained. Among the unsolved problems are the nature of genetic spatial control of migration and the relationships between celestial and magnetic compass mechanisms and between different map-related cues in orientation and homing, respectively. In addition, navigation is expected to differ between animal groups depending on sensory capabilities and ecological conditions. Evaluations based on modern long-term tracking techniques of the geometry of migration routes and individual migration history, combined with behavioral experiments and exploration of the sensory and genetic mechanisms, will be crucial for understanding the spatial principles that guide animals on their global journeys.
Tan, Mei; Reich, Jodi; Hart, Lesley; Thuma, Philip E; Grigorenko, Elena L
2014-02-01
Generally accepted as universal, the construct of adaptive behavior differs in its manifestations across different cultures and settings. The Vineland-II (Sparrow et al. in Vineland Adaptive Behavior Scales, Second edn. AGS Publishing, Circle Pines, MN, 2005) was translated into Chitonga and adapted to the setting of rural Southern Province, Zambia. This version was administered to the parents/caregivers of 114 children (grades 3-7, mean age = 12.94, SD = 2.34). The relationships between these children's adaptive behavior, academic achievement and cognitive ability indicators are compared to those usually observed in US samples. Results reflect no association between adaptive behavior and cognitive ability indicators, but a strong relationship between high adaptive behavior and reading-related measures. Six case studies of children with high and low scores on the Vineland-II are presented to illustrate the possible factors affecting these outcomes.
Feldman, Leonard H; Fertig, Amanda
2013-01-01
While relative care may offer significant benefits to kin children as compared to non-relative foster care, informal kinship caregivers often experience various hardships and needs without the resources of the child welfare system to aid them. They may benefit from services provided by an expanded kinship navigator program. This study, using an experimental design, adds to knowledge about the characteristics and needs of kinship caregivers and the impact of enhanced navigator services. The relative effect of this more intensive intervention was mixed. Caregivers had many of their expressed needs met. Yet, the enhanced services group did not demonstrate: an increase in perceived social support; reduction in caregiver stress; or improvement in child behavior compared to the families receiving brief, traditional navigator services. Little difference was found in post intervention involvement in the child welfare system. Further enhancements to the model are suggested.
Lead-acid batteries in solar photovoltaic power systems for marine aids to navigation. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trenchard, S.E.
1981-10-01
Since 1974, the U.S. Coast Guard has been testing lead-acid batteries in solar photovoltaic-powered systems for aids to navigation. Three types of lead-acid batteries, distinguished by the composition of their grid material, have been tested: lead-antimony grid, lead-calcium grid, and pure-lead grid. This report contains a comparison of the charging characteristics and the charge-discharge cycling behavior of each grid type. All types were remarkably similar qualitatively in their daily as well as annual cycling behavior but the significance of the quantitative differences offer distinctive tradeoffs. This report presents models for water usage, depth-of-discharge, and post-cycle capacity for various levels ofmore » voltage regulation. Based on the post-cycle capacity tests, the effect of grid strength, grid thickness, and operating conditions on life expectancy are presented. A final discussion presents the results of a field deployment of solar photovoltaic-powered aids to navigation in the Miami, Florida area. Potential solutions to the battery terminal corrosion and bird guano problems observed are discussed.« less
Schooling Increases Risk Exposure for Fish Navigating Past Artificial Barriers
Lemasson, Bertrand H.; Haefner, James W.; Bowen, Mark D.
2014-01-01
Artificial barriers have become ubiquitous features in freshwater ecosystems and they can significantly impact a region's biodiversity. Assessing the risk faced by fish forced to navigate their way around artificial barriers is largely based on assays of individual swimming behavior. However, social interactions can significantly influence fish movement patterns and alter their risk exposure. Using an experimental flume, we assessed the effects of social interactions on the amount of time required for juvenile palmetto bass (Morone chrysops × M. saxatilis) to navigate downstream past an artificial barrier. Fish were released either individually or in groups into the flume using flow conditions that approached the limit of their expected swimming stamina. We compared fish swimming behaviors under solitary and schooling conditions and measured risk as the time individuals spent exposed to the barrier. Solitary fish generally turned with the current and moved quickly downstream past the barrier, while fish in groups swam against the current and displayed a 23-fold increase in exposure time. Solitary individuals also showed greater signs of skittish behavior than those released in groups, which was reflected by larger changes in their accelerations and turning profiles. While groups displayed fission-fusion dynamics, inter-individual positions were highly structured and remained steady over time. These spatial patterns align with theoretical positions necessary to reduce swimming exertion through either wake capturing or velocity sheltering, but diverge from any potential gains from channeling effects between adjacent neighbors. We conclude that isolated performance trials and projections based on individual behaviors can lead to erroneous predictions of risk exposure along engineered structures. Our results also suggest that risk perception and behavior may be more important than a fish's swimming stamina in artificially modified systems. PMID:25268736
Schooling increases risk exposure for fish navigating past artificial barriers.
Lemasson, Bertrand H; Haefner, James W; Bowen, Mark D
2014-01-01
Artificial barriers have become ubiquitous features in freshwater ecosystems and they can significantly impact a region's biodiversity. Assessing the risk faced by fish forced to navigate their way around artificial barriers is largely based on assays of individual swimming behavior. However, social interactions can significantly influence fish movement patterns and alter their risk exposure. Using an experimental flume, we assessed the effects of social interactions on the amount of time required for juvenile palmetto bass (Morone chrysops × M. saxatilis) to navigate downstream past an artificial barrier. Fish were released either individually or in groups into the flume using flow conditions that approached the limit of their expected swimming stamina. We compared fish swimming behaviors under solitary and schooling conditions and measured risk as the time individuals spent exposed to the barrier. Solitary fish generally turned with the current and moved quickly downstream past the barrier, while fish in groups swam against the current and displayed a 23-fold increase in exposure time. Solitary individuals also showed greater signs of skittish behavior than those released in groups, which was reflected by larger changes in their accelerations and turning profiles. While groups displayed fission-fusion dynamics, inter-individual positions were highly structured and remained steady over time. These spatial patterns align with theoretical positions necessary to reduce swimming exertion through either wake capturing or velocity sheltering, but diverge from any potential gains from channeling effects between adjacent neighbors. We conclude that isolated performance trials and projections based on individual behaviors can lead to erroneous predictions of risk exposure along engineered structures. Our results also suggest that risk perception and behavior may be more important than a fish's swimming stamina in artificially modified systems.
High accuracy GNSS based navigation in GEO
NASA Astrophysics Data System (ADS)
Capuano, Vincenzo; Shehaj, Endrit; Blunt, Paul; Botteron, Cyril; Farine, Pierre-André
2017-07-01
Although significant improvements in efficiency and performance of communication satellites have been achieved in the past decades, it is expected that the demand for new platforms in Geostationary Orbit (GEO) and for the On-Orbit Servicing (OOS) on the existing ones will continue to rise. Indeed, the GEO orbit is used for many applications including direct broadcast as well as communications. At the same time, Global Navigation Satellites System (GNSS), originally designed for land, maritime and air applications, has been successfully used as navigation system in Low Earth Orbit (LEO) and its further utilization for navigation of geosynchronous satellites becomes a viable alternative offering many advantages over present ground based methods. Following our previous studies of GNSS signal characteristics in Medium Earth Orbit (MEO), GEO and beyond, in this research we specifically investigate the processing of different GNSS signals, with the goal to determine the best navigation performance they can provide in a GEO mission. Firstly, a detailed selection among different GNSS signals and different combinations of them is discussed, taking into consideration the L1 and L5 frequency bands, and the GPS and Galileo constellations. Then, the implementation of an Orbital Filter is summarized, which adaptively fuses the GN1SS observations with an accurate orbital forces model. Finally, simulation tests of the navigation performance achievable by processing the selected combination of GNSS signals are carried out. The results obtained show an achievable positioning accuracy of less than one meter. In addition, hardware-in-the-loop tests are presented using a COTS receiver connected to our GNSS Spirent simulator, in order to collect real-time hardware-in-the-loop observations and process them by the proposed navigation module.
Khamassi, Mehdi; Humphries, Mark D.
2012-01-01
Behavior in spatial navigation is often organized into map-based (place-driven) vs. map-free (cue-driven) strategies; behavior in operant conditioning research is often organized into goal-directed vs. habitual strategies. Here we attempt to unify the two. We review one powerful theory for distinct forms of learning during instrumental conditioning, namely model-based (maintaining a representation of the world) and model-free (reacting to immediate stimuli) learning algorithms. We extend these lines of argument to propose an alternative taxonomy for spatial navigation, showing how various previously identified strategies can be distinguished as “model-based” or “model-free” depending on the usage of information and not on the type of information (e.g., cue vs. place). We argue that identifying “model-free” learning with dorsolateral striatum and “model-based” learning with dorsomedial striatum could reconcile numerous conflicting results in the spatial navigation literature. From this perspective, we further propose that the ventral striatum plays key roles in the model-building process. We propose that the core of the ventral striatum is positioned to learn the probability of action selection for every transition between states of the world. We further review suggestions that the ventral striatal core and shell are positioned to act as “critics” contributing to the computation of a reward prediction error for model-free and model-based systems, respectively. PMID:23205006
Cross-National Assessment of Adaptive Behavior in Three Countries
ERIC Educational Resources Information Center
Oakland, Thomas; Iliescu, Dragos; Chen, Hsin-Yi; Chen, Juliet Honglei
2013-01-01
Measures of adaptive behaviors provide an important tool in the repertoire of clinical and school/educational psychologists. Measures that assess adaptive behaviors typically have been built in Western cultures and developed in light of behaviors common to them. Nevertheless, these measures are used elsewhere despite a paucity of data that examine…
2007-12-11
Implemented both carrier and code phase tracking loop for performance evaluation of a minimum power beam forming algorithm and null steering algorithm...4 Antennal Antenna2 Antenna K RF RF RF ct, Ct~2 ChKx1 X2 ....... Xk A W ~ ~ =Z, x W ,=1 Fig. 5. Schematics of a K-element antenna array spatial...adaptive processor Antennal Antenna K A N-i V/ ( Vil= .i= VK Fig. 6. Schematics of a K-element antenna array space-time adaptive processor Two additional
Barton, Brian; Treister, Andrew; Humphrey, Melanie; Abedi, Garen; Cramer, Steven C.; Brewer, Alyssa A.
2014-01-01
Brain-derived neurotrophic factor (BDNF) is the most abundant neurotrophin in the brain, influencing neural development, plasticity, and repair (Chen et al., 2004; Thoenen, 1995). The BDNF gene contains a single-nucleotide polymorphism (SNP) called Val66Met. The Met allele interferes with intracellular BDNF-trafficking, decreases activity-dependent BDNF secretion, and consequently is often associated with a shift from plasticity to stability in neural circuits (Egan et al., 2003). We investigated the behavioral consequences of the presence of the Met allele by comparing how 40 heterozygous subjects with the Val/Met genotype and 35 homozygous subjects with the Val/Val genotype performed on visuomotor tasks (reaching and navigation) under two conditions: normal vision and completely left-right reversed vision. As expected, subjects did not differ in their short-term ability to learn the tasks with normal vision (p = 0.58). Intuitively, it would be expected that homozygous Val/Val subjects with a propensity for greater BDNF-induced activity-dependent plasticity would learn new tasks more quickly than heterozygous Val/Met subjects with decreased BDNF secretion (Gilbert, Li, & Piech, 2009). However, we found the opposite here. When short-term mechanisms of visuomotor adaptation were engaged to compensate for the misalignment of visual and somatomotor information created by the left-right reversal of vision, heterozygous Val/Met subjects learned significantly more quickly than their homozygous Val/Val counterparts (p = 0.027). Our results demonstrate the paradoxical finding that the presence of the Met allele, which is thought to promote cortical stability, here improves immediate visuomotor adaptation to left–right-reversed visual input. PMID:25104829
Psychological Flexibility as a Fundamental Aspect of Health
Kashdan, Todd B.
2010-01-01
Traditionally, positive emotions and thoughts, strengths, and the satisfaction of basic psychological needs for belonging, competence, and autonomy have been seen as the cornerstones of psychological health. Without disputing their importance, these foci fail to capture many of the fluctuating, conflicting forces that are readily apparent when people navigate the environment and social world. In this paper, we review literature to offer evidence for the prominence of psychological flexibility in understanding psychological health. Thus far, the importance of psychological flexibility has been obscured by the isolation and disconnection of research conducted on this topic. Psychological flexibility spans a wide range of human abilities to: recognize and adapt to various situational demands; shift mindsets or behavioral repertoires when these strategies compromise personal or social functioning; maintain balance among important life domains; and be aware, open, and committed to behaviors that are congruent with deeply held values. In many forms of psychopathology, these flexibility processes are absent. In hopes of creating a more coherent understanding, we synthesize work in emotion regulation, mindfulness and acceptance, social and personality psychology, and neuropsychology. Basic research findings provide insight into the nature, correlates, and consequences of psychological flexibility and applied research provides details on promising interventions. Throughout, we emphasize dynamic approaches that might capture this fluid construct in the real-world. PMID:21151705
Dhital, Anup; Bancroft, Jared B; Lachapelle, Gérard
2013-11-07
In natural and urban canyon environments, Global Navigation Satellite System (GNSS) signals suffer from various challenges such as signal multipath, limited or lack of signal availability and poor geometry. Inertial sensors are often employed to improve the solution continuity under poor GNSS signal quality and availability conditions. Various fault detection schemes have been proposed in the literature to detect and remove biased GNSS measurements to obtain a more reliable navigation solution. However, many of these methods are found to be sub-optimal and often lead to unavailability of reliability measures, mostly because of the improper characterization of the measurement errors. A robust filtering architecture is thus proposed which assumes a heavy-tailed distribution for the measurement errors. Moreover, the proposed filter is capable of adapting to the changing GNSS signal conditions such as when moving from open sky conditions to deep canyons. Results obtained by processing data collected in various GNSS challenged environments show that the proposed scheme provides a robust navigation solution without having to excessively reject usable measurements. The tests reported herein show improvements of nearly 15% and 80% for position accuracy and reliability, respectively, when applying the above approach.
Dhital, Anup; Bancroft, Jared B.; Lachapelle, Gérard
2013-01-01
In natural and urban canyon environments, Global Navigation Satellite System (GNSS) signals suffer from various challenges such as signal multipath, limited or lack of signal availability and poor geometry. Inertial sensors are often employed to improve the solution continuity under poor GNSS signal quality and availability conditions. Various fault detection schemes have been proposed in the literature to detect and remove biased GNSS measurements to obtain a more reliable navigation solution. However, many of these methods are found to be sub-optimal and often lead to unavailability of reliability measures, mostly because of the improper characterization of the measurement errors. A robust filtering architecture is thus proposed which assumes a heavy-tailed distribution for the measurement errors. Moreover, the proposed filter is capable of adapting to the changing GNSS signal conditions such as when moving from open sky conditions to deep canyons. Results obtained by processing data collected in various GNSS challenged environments show that the proposed scheme provides a robust navigation solution without having to excessively reject usable measurements. The tests reported herein show improvements of nearly 15% and 80% for position accuracy and reliability, respectively, when applying the above approach. PMID:24212120
Architecting the Communication and Navigation Networks for NASA's Space Exploration Systems
NASA Technical Reports Server (NTRS)
Bhassin, Kul B.; Putt, Chuck; Hayden, Jeffrey; Tseng, Shirley; Biswas, Abi; Kennedy, Brian; Jennings, Esther H.; Miller, Ron A.; Hudiburg, John; Miller, Dave;
2007-01-01
NASA is planning a series of short and long duration human and robotic missions to explore the Moon and then Mars. A key objective of the missions is to grow, through a series of launches, a system of systems communication, navigation, and timing infrastructure at minimum cost while providing a network-centric infrastructure that maximizes the exploration capabilities and science return. There is a strong need to use architecting processes in the mission pre-formulation stage to describe the systems, interfaces, and interoperability needed to implement multiple space communication systems that are deployed over time, yet support interoperability with each deployment phase and with 20 years of legacy systems. In this paper we present a process for defining the architecture of the communications, navigation, and networks needed to support future space explorers with the best adaptable and evolable network-centric space exploration infrastructure. The process steps presented are: 1) Architecture decomposition, 2) Defining mission systems and their interfaces, 3) Developing the communication, navigation, networking architecture, and 4) Integrating systems, operational and technical views and viewpoints. We demonstrate the process through the architecture development of the communication network for upcoming NASA space exploration missions.
Augmentation method of XPNAV in Mars orbit based on Phobos and Deimos observations
NASA Astrophysics Data System (ADS)
Rong, Jiao; Luping, Xu; Zhang, Hua; Cong, Li
2016-11-01
Autonomous navigation for Mars probe spacecraft is required to reduce the operation costs and enhance the navigation performance in the future. X-ray pulsar-based navigation (XPNAV) is a potential candidate to meet this requirement. This paper addresses the use of the Mars' natural satellites to improve XPNAV for Mars probe spacecraft. Two observation variables of the field angle and natural satellites' direction vectors of Mars are added into the XPNAV positioning system. The measurement model of field angle and direction vectors is formulated by processing satellite image of Mars obtained from optical camera. This measurement model is integrated into the spacecraft orbit dynamics to build the filter model. In order to estimate position and velocity error of the spacecraft and reduce the impact of the system noise on navigation precision, an adaptive divided difference filter (ADDF) is applied. Numerical simulation results demonstrate that the performance of ADDF is better than Unscented Kalman Filter (UKF) DDF and EKF. In view of the invisibility of Mars' natural satellites in some cases, a visibility condition analysis is given and the augmented XPNAV in a different visibility condition is numerically simulated. The simulation results show that the navigation precision is evidently improved by using the augmented XPNAV based on the field angle and natural satellites' direction vectors of Mars in a comparison with the conventional XPNAV.
Systematic methods for knowledge acquisition and expert system development
NASA Technical Reports Server (NTRS)
Belkin, Brenda L.; Stengel, Robert F.
1991-01-01
Nine cooperating rule-based systems, collectively called AUTOCREW, were designed to automate functions and decisions associated with a combat aircraft's subsystem. The organization of tasks within each system is described; performance metrics were developed to evaluate the workload of each rule base, and to assess the cooperation between the rule-bases. Each AUTOCREW subsystem is composed of several expert systems that perform specific tasks. AUTOCREW's NAVIGATOR was analyzed in detail to understand the difficulties involved in designing the system and to identify tools and methodologies that ease development. The NAVIGATOR determines optimal navigation strategies from a set of available sensors. A Navigation Sensor Management (NSM) expert system was systematically designed from Kalman filter covariance data; four ground-based, a satellite-based, and two on-board INS-aiding sensors were modeled and simulated to aid an INS. The NSM Expert was developed using the Analysis of Variance (ANOVA) and the ID3 algorithm. Navigation strategy selection is based on an RSS position error decision metric, which is computed from the covariance data. Results show that the NSM Expert predicts position error correctly between 45 and 100 percent of the time for a specified navaid configuration and aircraft trajectory. The NSM Expert adapts to new situations, and provides reasonable estimates of hybrid performance. The systematic nature of the ANOVA/ID3 method makes it broadly applicable to expert system design when experimental or simulation data is available.
Computer-based Learning of Neuroanatomy: A Longitudinal Study of Learning, Transfer, and Retention
Chariker, Julia H.; Naaz, Farah; Pani, John R.
2013-01-01
A longitudinal experiment was conducted to evaluate the effectiveness of new methods for learning neuroanatomy with computer-based instruction. Using a 3D graphical model of the human brain, and sections derived from the model, tools for exploring neuroanatomy were developed to encourage adaptive exploration. This is an instructional method which incorporates graphical exploration in the context of repeated testing and feedback. With this approach, 72 participants learned either sectional anatomy alone or whole anatomy followed by sectional anatomy. Sectional anatomy was explored either with perceptually continuous navigation through the sections or with discrete navigation (as in the use of an anatomical atlas). Learning was measured longitudinally to a high performance criterion. Subsequent tests examined transfer of learning to the interpretation of biomedical images and long-term retention. There were several clear results of this study. On initial exposure to neuroanatomy, whole anatomy was learned more efficiently than sectional anatomy. After whole anatomy was mastered, learners demonstrated high levels of transfer of learning to sectional anatomy and from sectional anatomy to the interpretation of complex biomedical images. Learning whole anatomy prior to learning sectional anatomy led to substantially fewer errors overall than learning sectional anatomy alone. Use of continuous or discrete navigation through sectional anatomy made little difference to measured outcomes. Efficient learning, good long-term retention, and successful transfer to the interpretation of biomedical images indicated that computer-based learning using adaptive exploration can be a valuable tool in instruction of neuroanatomy and similar disciplines. PMID:23349552
Bang, Yoonsik; Kim, Jiyoung; Yu, Kiyun
2016-01-01
Wearable and smartphone technology innovations have propelled the growth of Pedestrian Navigation Services (PNS). PNS need a map-matching process to project a user’s locations onto maps. Many map-matching techniques have been developed for vehicle navigation services. These techniques are inappropriate for PNS because pedestrians move, stop, and turn in different ways compared to vehicles. In addition, the base map data for pedestrians are more complicated than for vehicles. This article proposes a new map-matching method for locating Global Positioning System (GPS) trajectories of pedestrians onto road network datasets. The theory underlying this approach is based on the Fréchet distance, one of the measures of geometric similarity between two curves. The Fréchet distance approach can provide reasonable matching results because two linear trajectories are parameterized with the time variable. Then we improved the method to be adaptive to the positional error of the GPS signal. We used an adaptation coefficient to adjust the search range for every input signal, based on the assumption of auto-correlation between consecutive GPS points. To reduce errors in matching, the reliability index was evaluated in real time for each match. To test the proposed map-matching method, we applied it to GPS trajectories of pedestrians and the road network data. We then assessed the performance by comparing the results with reference datasets. Our proposed method performed better with test data when compared to a conventional map-matching technique for vehicles. PMID:27782091
ERIC Educational Resources Information Center
McAfee, Jeanette L.
This volume presents a curriculum developed specifically to develop the social, emotional, and organizational skills of individuals with Asperger's Syndrome or high functioning autism. The book offers ideas and techniques drawn from various disciplines including cognitive behavioral therapy, applied behavioral therapy, education, and occupational…
Differences and Similarities in Information Seeking: Children and Adults as Web Users.
ERIC Educational Resources Information Center
Bilal, Dania; Kirby, Joe
2002-01-01
Analyzed and compared the success and information seeking behaviors of seventh grade science students and graduate students in using the Yahooligans! Web search engine. Discusses cognitive, affective, and physical behaviors during a fact-finding task, including searching, browsing, and time to complete the task; navigational styles; and focus on…
AAA Roadmap for Navigating Religion in Physical Education
ERIC Educational Resources Information Center
Kahan, David
2011-01-01
The majority of Americans identify with a religious faith, and the connection between religious beliefs/behaviors and health behaviors make it important to understand teachers' role and influence in this regard. The purpose of this article is to inform readers regarding (1) religious demographics in the United States; (2) the relationship between…
Navigation: Whence Our Sense of Direction?
Gallistel, C R
2017-02-06
Behavioral data have long implied our sense of direction derives from global environmental shape; electrophysiological evidence, however, has seemed to imply it derives from salient non-geometric landmarks. Experiments on the re-establishment of place fields in disoriented mice now align the electrophysiological data with the behavioral data. Copyright © 2017 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Murty, Vishnu P.; LaBar, Kevin S.; Hamilton, Derek A.; Adcock, R. Alison
2011-01-01
The present study investigated the effects of approach versus avoidance motivation on declarative learning. Human participants navigated a virtual reality version of the Morris water task, a classic spatial memory paradigm, adapted to permit the experimental manipulation of motivation during learning. During this task, participants were instructed…
Promoting Conceptual Understanding via Adaptive Concept Maps
ERIC Educational Resources Information Center
Moore, Jacob P.
2013-01-01
The purpose of this study is to explore the feasibility and effectiveness of a scalable concept map based navigation system for a digital textbook. A literature review has been conducted to identify possible methods to promote conceptual understanding in the context of a digital textbook, and these hypothesized solutions will be evaluated through…
Beyond "The Total Organization": A Graduate-Level Simulation
ERIC Educational Resources Information Center
Kane, Kathleen R.; Goldgehn, Leslie A.
2011-01-01
This simulation is designed to help students understand the complexity of organizational life and learn how to navigate a work world of chaos, conflict, and uncertainty. This adaptation and update of an exercise by Cohen, Fink, Gadon, and Willits has been a successful addition to MBA and EMBA courses. The participants must self-organize, choose…
Perspectives for Electronic Books in the World Wide Web Age.
ERIC Educational Resources Information Center
Bry, Francois; Kraus, Michael
2002-01-01
Discusses the rapid growth of the World Wide Web and the lack of use of electronic books and suggests that specialized contents and device independence can make Web-based books compete with print. Topics include enhancing the hypertext model of XML; client-side adaptation, including browsers and navigation; and semantic modeling. (Author/LRW)
Reading Games: Close Viewing and Guided Playing of Multimedia Texts
ERIC Educational Resources Information Center
Kozdras, Deborah; Joseph, Christine; Schneider, Jenifer Jasinski
2015-01-01
In this article, we describe how literacy strategies can be adapted for playing (and reading) video games--games that embed disciplinary content in multimedia texts. Using close viewing and guided playing strategies with online games and simulations, we share ideas for helping students navigate and comprehend multimedia texts in order to learn…
Authenticity, Aims and Authority: Navigating Youth Participatory Action Research in the Classroom
ERIC Educational Resources Information Center
Rubin, Beth C.; Ayala, Jennifer; Zaal, Mayida
2017-01-01
Motivated by the addition of a curriculum standard for active citizenship into New Jersey's social studies standards a group of educators and researchers set out to integrate an action research curriculum, based on a youth participatory action research (YPAR) model, into social studies classrooms. Adapting YPAR, with its promising blend of…
The Reflexive Adaptations of School Principals in a "Local" South African Space
ERIC Educational Resources Information Center
Fataar, Aslam
2009-01-01
This paper is an analysis of the work of three principals in an impoverished black township in post-apartheid South Africa. Based on qualitative approaches, it discusses the principals' entry into the township, and their navigation of their schools' surrounding social dynamics. It combines the lenses of "space" and…
Challenges in reusing transactional data for daily documentation in neonatal intensive care.
Kim, G R; Lawson, E E; Lehmann, C U
2008-11-06
The reuse of transactional data for clinical documentation requires navigation of computational, institutional and adaptive barriers. We describe organizational and technical issues in developing and deploying a daily progress note tool in a tertiary neonatal intensive care unit that reuses and aggregates data from a commercial integrated clinical information system.
Perceptions of Social Networks by Adults Who Are Deafblind
ERIC Educational Resources Information Center
Arndt, Katrina; Parker, Amy
2016-01-01
Findings are presented from a descriptive qualitative study of 10 adults who were deafblind who were interviewed about their social lives. Additional data were collected from a discussion board and e-mails from the study participants. Three findings emerged from the data: (a) Navigating adaptations was a significant part of socialization. (b) Gaps…
NASA Technical Reports Server (NTRS)
1980-01-01
Van is used by Land Inventory Systems to measure and map property for tax assessment purposes. It is adapted from navigation system of the Lunar Rover wheeled vehicle in which moon-exploring astronauts traveled as much as 20 miles from their Lunar Module base. Astronauts had to know their precise position so that in case of emergency they could take the shortest route back. Computerized navigational system kept a highly accurate record of the directional path providing continuous position report. Distance measuring subsystem was a more accurate counterpart of automobile odometer system counts revolutions of wheels and encoders generate electrical pulses for each fractional revolution and the computer analyzed the pulses to determine the distance traveled in a given direction.
Space shuttle guidance, navigation, and control design equations. Volume 3: Guidance
NASA Technical Reports Server (NTRS)
1973-01-01
Space shuttle guidance, navigation, and control design equations are presented. The space-shuttle mission includes three relatively distinct guidance phases which are discussed; atmospheric boost, which is characterized by an adaptive guidance law; extra-atmospheric activities; and re-entry activities, where aerodynamic surfaces are the principal effectors. Guidance tasks include pre-maneuver targeting and powered flight guidance, where powered flight is defined to include the application of aerodynamic forces as well as thruster forces. A flow chart which follows guidance activities throughout the mission from the pre-launch phase through touchdown is presented. The main guidance programs and subroutines used in each phase of a typical rendezvous mission are listed. Detailed software requirements are also presented.
Reich, Jodi; Hart, Lesley; Thuma, Philip E.
2011-01-01
Generally accepted as universal, the construct of adaptive behavior differs in its manifestations across different cultures and settings. The Vineland-II was translated into Chitonga and adapted to the setting of rural Southern Province, Zambia. This version was administered to the parents/caregivers of 114 children (grades 3-7, mean age = 12.94, sd = 2.34). The relationships between these children's adaptive behavior, academic achievement and cognitive ability indicators are compared to those usually observed in US samples. Results reflect no association between adaptive behavior and cognitive ability indicators, but a strong relationship between high adaptive behavior and reading-related measures. Six case studies of children with high and low scores on the Vineland-II are presented to illustrate the possible factors affecting these outcomes. PMID:22391811
A map of abstract relational knowledge in the human hippocampal–entorhinal cortex
Garvert, Mona M; Dolan, Raymond J; Behrens, Timothy EJ
2017-01-01
The hippocampal–entorhinal system encodes a map of space that guides spatial navigation. Goal-directed behaviour outside of spatial navigation similarly requires a representation of abstract forms of relational knowledge. This information relies on the same neural system, but it is not known whether the organisational principles governing continuous maps may extend to the implicit encoding of discrete, non-spatial graphs. Here, we show that the human hippocampal–entorhinal system can represent relationships between objects using a metric that depends on associative strength. We reconstruct a map-like knowledge structure directly from a hippocampal–entorhinal functional magnetic resonance imaging adaptation signal in a situation where relationships are non-spatial rather than spatial, discrete rather than continuous, and unavailable to conscious awareness. Notably, the measure that best predicted a behavioural signature of implicit knowledge and blood oxygen level-dependent adaptation was a weighted sum of future states, akin to the successor representation that has been proposed to account for place and grid-cell firing patterns. DOI: http://dx.doi.org/10.7554/eLife.17086.001 PMID:28448253
In-Space Networking On NASA's SCaN Testbed
NASA Technical Reports Server (NTRS)
Brooks, David; Eddy, Wesley M.; Clark, Gilbert J., III; Johnson, Sandra K.
2016-01-01
The NASA Space Communications and Navigation (SCaN) Testbed, an external payload onboard the International Space Station, is equipped with three software defined radios (SDRs) and a programmable flight computer. The purpose of the Testbed is to conduct inspace research in the areas of communication, navigation, and networking in support of NASA missions and communication infrastructure. Multiple reprogrammable elements in the end to end system, along with several communication paths and a semi-operational environment, provides a unique opportunity to explore networking concepts and protocols envisioned for the future Solar System Internet (SSI). This paper will provide a general description of the system's design and the networking protocols implemented and characterized on the testbed, including Encapsulation, IP over CCSDS, and Delay-Tolerant Networking (DTN). Due to the research nature of the implementation, flexibility and robustness are considered in the design to enable expansion for future adaptive and cognitive techniques. Following a detailed design discussion, lessons learned and suggestions for future missions and communication infrastructure elements will be provided. Plans for the evolving research on SCaN Testbed as it moves towards a more adaptive, autonomous system will be discussed.
Real-Time Motion Tracking for Indoor Moving Sphere Objects with a LiDAR Sensor.
Huang, Lvwen; Chen, Siyuan; Zhang, Jianfeng; Cheng, Bang; Liu, Mingqing
2017-08-23
Object tracking is a crucial research subfield in computer vision and it has wide applications in navigation, robotics and military applications and so on. In this paper, the real-time visualization of 3D point clouds data based on the VLP-16 3D Light Detection and Ranging (LiDAR) sensor is achieved, and on the basis of preprocessing, fast ground segmentation, Euclidean clustering segmentation for outliers, View Feature Histogram (VFH) feature extraction, establishing object models and searching matching a moving spherical target, the Kalman filter and adaptive particle filter are used to estimate in real-time the position of a moving spherical target. The experimental results show that the Kalman filter has the advantages of high efficiency while adaptive particle filter has the advantages of high robustness and high precision when tested and validated on three kinds of scenes under the condition of target partial occlusion and interference, different moving speed and different trajectories. The research can be applied in the natural environment of fruit identification and tracking, robot navigation and control and other fields.
Real-Time Motion Tracking for Indoor Moving Sphere Objects with a LiDAR Sensor
Chen, Siyuan; Zhang, Jianfeng; Cheng, Bang; Liu, Mingqing
2017-01-01
Object tracking is a crucial research subfield in computer vision and it has wide applications in navigation, robotics and military applications and so on. In this paper, the real-time visualization of 3D point clouds data based on the VLP-16 3D Light Detection and Ranging (LiDAR) sensor is achieved, and on the basis of preprocessing, fast ground segmentation, Euclidean clustering segmentation for outliers, View Feature Histogram (VFH) feature extraction, establishing object models and searching matching a moving spherical target, the Kalman filter and adaptive particle filter are used to estimate in real-time the position of a moving spherical target. The experimental results show that the Kalman filter has the advantages of high efficiency while adaptive particle filter has the advantages of high robustness and high precision when tested and validated on three kinds of scenes under the condition of target partial occlusion and interference, different moving speed and different trajectories. The research can be applied in the natural environment of fruit identification and tracking, robot navigation and control and other fields. PMID:28832520
Multi-Sensor Fusion with Interaction Multiple Model and Chi-Square Test Tolerant Filter.
Yang, Chun; Mohammadi, Arash; Chen, Qing-Wei
2016-11-02
Motivated by the key importance of multi-sensor information fusion algorithms in the state-of-the-art integrated navigation systems due to recent advancements in sensor technologies, telecommunication, and navigation systems, the paper proposes an improved and innovative fault-tolerant fusion framework. An integrated navigation system is considered consisting of four sensory sub-systems, i.e., Strap-down Inertial Navigation System (SINS), Global Navigation System (GPS), the Bei-Dou2 (BD2) and Celestial Navigation System (CNS) navigation sensors. In such multi-sensor applications, on the one hand, the design of an efficient fusion methodology is extremely constrained specially when no information regarding the system's error characteristics is available. On the other hand, the development of an accurate fault detection and integrity monitoring solution is both challenging and critical. The paper addresses the sensitivity issues of conventional fault detection solutions and the unavailability of a precisely known system model by jointly designing fault detection and information fusion algorithms. In particular, by using ideas from Interacting Multiple Model (IMM) filters, the uncertainty of the system will be adjusted adaptively by model probabilities and using the proposed fuzzy-based fusion framework. The paper also addresses the problem of using corrupted measurements for fault detection purposes by designing a two state propagator chi-square test jointly with the fusion algorithm. Two IMM predictors, running in parallel, are used and alternatively reactivated based on the received information form the fusion filter to increase the reliability and accuracy of the proposed detection solution. With the combination of the IMM and the proposed fusion method, we increase the failure sensitivity of the detection system and, thereby, significantly increase the overall reliability and accuracy of the integrated navigation system. Simulation results indicate that the proposed fault tolerant fusion framework provides superior performance over its traditional counterparts.
Multi-Sensor Fusion with Interaction Multiple Model and Chi-Square Test Tolerant Filter
Yang, Chun; Mohammadi, Arash; Chen, Qing-Wei
2016-01-01
Motivated by the key importance of multi-sensor information fusion algorithms in the state-of-the-art integrated navigation systems due to recent advancements in sensor technologies, telecommunication, and navigation systems, the paper proposes an improved and innovative fault-tolerant fusion framework. An integrated navigation system is considered consisting of four sensory sub-systems, i.e., Strap-down Inertial Navigation System (SINS), Global Navigation System (GPS), the Bei-Dou2 (BD2) and Celestial Navigation System (CNS) navigation sensors. In such multi-sensor applications, on the one hand, the design of an efficient fusion methodology is extremely constrained specially when no information regarding the system’s error characteristics is available. On the other hand, the development of an accurate fault detection and integrity monitoring solution is both challenging and critical. The paper addresses the sensitivity issues of conventional fault detection solutions and the unavailability of a precisely known system model by jointly designing fault detection and information fusion algorithms. In particular, by using ideas from Interacting Multiple Model (IMM) filters, the uncertainty of the system will be adjusted adaptively by model probabilities and using the proposed fuzzy-based fusion framework. The paper also addresses the problem of using corrupted measurements for fault detection purposes by designing a two state propagator chi-square test jointly with the fusion algorithm. Two IMM predictors, running in parallel, are used and alternatively reactivated based on the received information form the fusion filter to increase the reliability and accuracy of the proposed detection solution. With the combination of the IMM and the proposed fusion method, we increase the failure sensitivity of the detection system and, thereby, significantly increase the overall reliability and accuracy of the integrated navigation system. Simulation results indicate that the proposed fault tolerant fusion framework provides superior performance over its traditional counterparts. PMID:27827832
Asymmetry of different brain structures in homing pigeons with and without navigational experience.
Mehlhorn, Julia; Haastert, Burkhard; Rehkämper, Gerd
2010-07-01
Homing pigeons (Columba livia f.d.) are well-known for their homing abilities, and their brains seem to be functionally adapted to homing as exemplified, e.g. by their larger hippocampi and olfactory bulbs. Their hippocampus size is influenced by navigational experience, and, as in other birds, functional specialisation of the left and right hemispheres ('lateralisation') occurs in homing pigeons. To show in what way lateralisation is reflected in brain structure volume, and whether some lateralisation or asymmetry in homing pigeons is caused by experience, we compared brains of homing pigeons with and without navigational experience referring to this. Fourteen homing pigeons were raised under identical constraints. After fledging, seven of them were allowed to fly around the loft and participated successfully in races. The other seven stayed permanently in the loft and thus did not share the navigational experiences of the first group. After reaching sexual maturity, all individuals were killed and morphometric analyses were carried out to measure the volumes of five basic brain parts and eight telencephalic brain parts. Measurements of telencephalic brain parts and optic tectum were done separately for the left and right hemispheres. The comparison of left/right quotients of both groups reveal that pigeons with navigational experience show a smaller left mesopallium in comparison with the right mesopallium and pigeons without navigational experience a larger left mesopallium in comparison with the right one. Additionally, there are significant differences between left and right brain subdivisions within the two pigeon groups, namely a larger left hyperpallium apicale in both pigeon groups and a larger right nidopallium, left hippocampus and right optic tectum in pigeons with navigational experience. Pigeons without navigational experience did not show more significant differences between their left and right brain subdivisions. The results of our study confirm that the brain of homing pigeons is an example for mosaic evolution and indicates that lateralisation is correlated with individual life history (experience) and not exclusively based on heritable traits.
Someone has to give in: theta oscillations correlate with adaptive behavior in social bargaining
Zamorano, Francisco; López, Tamara; Rodriguez, Carlos; Cosmelli, Diego; Aboitiz, Francisco
2014-01-01
During social bargain, one has to both figure out the others’ intentions and behave strategically in such a way that the others’ behaviors will be consistent with one’s expectations. To understand the neurobiological mechanisms underlying these behaviors, we used electroencephalography while subjects played as proposers in a repeated ultimatum game. We found that subjects adapted their offers to obtain more acceptances in the last round and that this adaptation correlated negatively with prefrontal theta oscillations. People with higher prefrontal theta activity related to a rejection did not adapt their offers along the game to maximize their earning. Moreover, between-subject variation in posterior theta oscillations correlated positively with how individual theta activity influenced the change of offer after a rejection, reflecting a process of behavioral adaptation to the others’ demands. Interestingly, people adapted better their offers when they knew that they where playing against a computer, although the behavioral adaptation did not correlate with prefrontal theta oscillation. Behavioral changes between human and computer games correlated with prefrontal theta activity, suggesting that low adaptation in human games could be a strategy. Taken together, these results provide evidence for specific roles of prefrontal and posterior theta oscillations in social bargaining. PMID:24493841
Household-Level Coastal Adaptation and Its Drivers: A Systematic Case Study Review.
Koerth, Jana; Vafeidis, Athanasios T; Hinkel, Jochen
2017-04-01
Evidence-based information on household-level adaptation is an important element of integrated management of vulnerable coastal regions. A growing number of empirical studies deal with household-level adaptation at the coast in different regions. This article provides a systematic review of these studies. We analyze studies according to how households in different parts of the world are currently adapting, or how they are intending to adapt, and identify explanatory factors for adaptation behavior and intention. We find that households implement a broad range of adaptation measures and that adaptation behavior is explained by individual factors such as socioeconomic and cognitive variables, experience, and perceived responsibilities. Nonpersonal characteristics have also been used to explain adaptation behavior and intention but have not been extensively investigated. Few studies employ qualitative research methods and use inductive approaches as well as models stemming from behavioral economics. Our findings suggest that coastal risk management policies should communicate the efficacy of household-level adaptation, in addition to information about flood risk, in order to encourage coastal households in their adaptation activities. In this context, we discuss the role of resources and responsibility of households for their adaptation behavior. We describe the lessons learnt and formulate a research agenda on household-level adaptation to coastal flood risk. In practice, coastal risk management policies should further promote individually driven adaptation by integrating it in adaptation strategies and processes. © 2016 Society for Risk Analysis.
The role of urgency, frequency, and nocturia in defining overactive bladder adaptive behavior.
Minassian, Vatche; Stewart, Walter; Hirsch, Annemarie; Kolodner, Ken; Fitzgerald, Mary; Burgio, Kathryn; Cundiff, Geoffrey; Blaivas, Jerry; Newman, Diane; Dilley, Anne
2011-03-01
To determine the relation between urgency alone, or in combination with frequency and nocturia, and adaptive behavior in overactive bladder (OAB) syndrome. We used survey data from the General Longitudinal Overactive Bladder Evaluation (GLOBE) of primary care patients over 40. Participants (n=2,752: 1,557 females; 1,195 males) completed the same survey at two time points, 6 months apart. Questions assessed OAB symptoms and adaptive behavior. We estimated correlation coefficients (R(2)) between urgency, frequency, and nocturia symptom scores (alone and in combination) and adaptive behavior measures at baseline and change in symptom scores and behavioral measures from baseline to 6 months. At baseline, urgency was the dominant predictor of all behavioral measures for females (R(2)=0.19-0.48) and males (R(2)=0.15-0.39). Lower R(2) values were observed for the change in measures from baseline to 6 months, but again change in urgency was the strongest predictor of change in adaptive behavior (R(2)=0.04-0.13 in females, and 0.02-0.08 in males). The correlation between symptoms and measures of adaptive behavior was almost completely explained by the urgency score. Frequency and nocturia did not substantially improve the overall correlation. The relation between measures of OAB symptoms and adaptive behavior at baseline and over time are largely explained by urgency, not by frequency and nocturia. Copyright © 2011 Wiley-Liss, Inc.
Racz, Sarah Jensen; Putnick, Diane L; Suwalsky, Joan T D; Hendricks, Charlene; Bornstein, Marc H
2017-08-01
Children's and adolescents' cognitive abilities, social adaptation, and externalizing behaviors are broadly associated with each other at the bivariate level; however, the direction, ordering, and uniqueness of these associations have yet to be identified. Developmental cascade models are particularly well-suited to (1) discern unique pathways among psychological domains and (2) model stability in and covariation among constructs, allowing for conservative tests of longitudinal associations. The current study aimed to identify specific cascade effects among children's cognitive abilities, social adaptation, and externalizing behaviors, beginning in preschool and extending through adolescence. Children (46.2 % female) and mothers (N = 351 families) provided data when children were 4, 10, and 14 years old. Cascade effects highlighted significant stability in these domains. Unique longitudinal associations were identified between (1) age-10 cognitive abilities and age-14 social adaptation, (2) age-4 social adaptation and age-10 externalizing behavior, and (3) age-10 externalizing behavior and age-14 social adaptation. These findings suggest that children's social adaptation in preschool and externalizing behavior in middle childhood may be ideal intervention targets to enhance adolescent well-being.
Mehlhorn, Julia; Rehkaemper, Gerd
2017-01-01
Homing pigeons are known for their excellent homing ability, and their brains seem to be functionally adapted to homing. It is known that pigeons with navigational experience show a larger hippocampus and also a more lateralised brain than pigeons without navigational experience. So we hypothesized that experience may have an influence also on orientation ability. We examined two groups of pigeons (11 with navigational experience and 17 without) in a standard operant chamber with a touch screen monitor showing a 2-D schematic of a rectangular environment (as "geometric" information) and one uniquely shaped and colored feature in each corner (as "landmark" information). Pigeons were trained first for pecking on one of these features and then we examined their ability to encode geometric and landmark information in four tests by modifying the rectangular environment. All tests were done under binocular and monocular viewing to test hemispheric dominance. The number of pecks was counted for analysis. Results show that generally both groups orientate on the basis of landmarks and the geometry of environment, but landmark information was preferred. Pigeons with navigational experience did not perform better on the tests but showed a better conjunction of the different kinds of information. Significant differences between monocular and binocular viewing were detected particularly in pigeons without navigational experience on two tests with reduced information. Our data suggest that the conjunction of geometric and landmark information might be integrated after processing separately in each hemisphere and that this process is influenced by experience.
Beverly, Matthew; Anbil, Sriram; Sengupta, Piali
2011-01-01
Animals must ensure that they can execute behaviors important for physiological homeostasis under constantly changing environmental conditions. The neural mechanisms that regulate this behavioral robustness are not well understood. The nematode C. elegans thermoregulates primarily via modulation of navigation behavior. Upon encountering temperatures higher than its cultivation temperature (Tc), C. elegans exhibits negative thermotaxis towards colder temperatures using a biased random walk strategy. We find that C. elegans exhibits robust negative thermotaxis bias under conditions of varying Tc and temperature ranges. By cell ablation and cell-specific rescue experiments, we show that the ASI chemosensory neurons are newly identified components of the thermosensory circuit, and that different combinations of ASI and the previously identified AFD and AWC thermosensory neurons are necessary and sufficient under different conditions to execute a negative thermotaxis strategy. ASI responds to temperature stimuli within a defined operating range defined by Tc, and signaling from AFD regulates the bounds of this operating range, suggesting that neuromodulation among thermosensory neurons maintains coherence of behavioral output. Our observations demonstrate that a negative thermotaxis navigational strategy can be generated via different combinations of thermosensory neurons acting degenerately, and emphasize the importance of defining context when analyzing neuronal contributions to a behavior. PMID:21832201
Chrimes, Dillon; Kushniruk, Andre; Kitos, Nicole R.
2014-01-01
Purpose Usability testing can be used to evaluate human computer interaction (HCI) and communication in shared decision making (SDM) for patient-provider behavioral change and behavioral contracting. Traditional evaluations of usability using scripted or mock patient scenarios with think-aloud protocol analysis provide a to identify HCI issues. In this paper we describe the application of these methods in the evaluation of the Avoiding Diabetes Thru Action Plan Targeting (ADAPT) tool, and test the usability of the tool to support the ADAPT framework for integrated care counseling of pre-diabetes. The think-aloud protocol analysis typically does not provide an assessment of how patient-provider interactions are effected in “live” clinical workflow or whether a tool is successful. Therefore, “Near-live” clinical simulations involving applied simulation methods were used to compliment the think-aloud results. This complementary usability technique was used to test the end-user HCI and tool performance by more closely mimicking the clinical workflow and capturing interaction sequences along with assessing the functionality of computer module prototypes on clinician workflow. We expected this method to further complement and provide different usability findings as compared to think-aloud analysis. Together, this mixed method evaluation provided comprehensive and realistic feedback for iterative refinement of the ADAPT system prior to implementation. Methods The study employed two phases of testing of a new interactive ADAPT tool that embedded an evidence-based shared goal setting component into primary care workflow for dealing with pre-diabetes counseling within a commercial physician office electronic health record (EHR). Phase I applied usability testing that involved “think-aloud” protocol analysis of 8 primary care providers interacting with several scripted clinical scenarios. Phase II used “near-live” clinical simulations of 5 providers interacting with standardized trained patient actors enacting the clinical scenario of counseling for pre-diabetes, each of whom had a pedometer that recorded the number of steps taken over a week. In both phases, all sessions were audio-taped and motion screen-capture software was activated for onscreen recordings. Transcripts were coded using iterative qualitative content analysis methods. Results In Phase I, the impact of the components and layout of ADAPT on user’s Navigation, Understandability, and Workflow were associated with the largest volume of negative comments (i.e. approximately 80% of end-user commentary), while Usability and Content of ADAPT were representative of more positive than negative user commentary. The heuristic category of Usability had a positive-to-negative comment ratio of 2.1, reflecting positive perception of the usability of the tool, its functionality, and overall co-productive utilization of ADAPT. However, there were mixed perceptions about content (i.e., how the information was displayed, organized and described in the tool). In Phase II, the duration of patient encounters was approximately 10 minutes with all of the Patient Instructions (prescriptions) and behavioral contracting being activated at the end of each visit. Upon activation, providers accepted the pathway prescribed by the tool 100% of the time and completed all the fields in the tool in the simulation cases. Only 14% of encounter time was spent using the functionality of the ADAPT tool in terms of keystrokes and entering relevant data. The rest of the time was spent on communication and dialogue to populate the patient instructions. In all cases, the interaction sequence of reviewing and discussing exercise and diet of the patient was linked to the functionality of the ADAPT tool in terms of monitoring, response-efficacy, self-efficacy, and negotiation in the patient-provider dialogue. There was a change from one-way dialogue to two-way dialogue and negotiation that ended in a behavioral contract. This change demonstrated the tool’s sequence, which supported recording current exercise and diet followed by a diet and exercise goal setting procedure to reduce the risk of diabetes onset. Conclusions This study demonstrated that “think-aloud” protocol analysis with “near-live” clinical simulations provided a successful usability evaluation of a new primary care pre-diabetes shared goal setting tool. Each phase of the study provided complementary observations on problems with the new onscreen tool and was used to show the influence of the ADAPT framework on the usability, workflow integration, and communication between the patient and provider. The think-aloud tests with the provider showed the tool can be used according to the ADAPT framework (exercise-to-diet behavior change and tool utilization), while the clinical simulations revealed the ADAPT framework to realistically support patient-provider communication to obtain behavioral change contract. SDM interactions and mechanisms affecting protocol-based care can be more completely captured by combining “near-live” clinical simulations with traditional “think-aloud analysis” which augments clinician utilization. More analysis is required to verify if the rich communication actions found in Phase II compliment clinical workflows. PMID:24981988
Chrimes, Dillon; Kitos, Nicole R; Kushniruk, Andre; Mann, Devin M
2014-09-01
Usability testing can be used to evaluate human-computer interaction (HCI) and communication in shared decision making (SDM) for patient-provider behavioral change and behavioral contracting. Traditional evaluations of usability using scripted or mock patient scenarios with think-aloud protocol analysis provide a way to identify HCI issues. In this paper we describe the application of these methods in the evaluation of the Avoiding Diabetes Thru Action Plan Targeting (ADAPT) tool, and test the usability of the tool to support the ADAPT framework for integrated care counseling of pre-diabetes. The think-aloud protocol analysis typically does not provide an assessment of how patient-provider interactions are effected in "live" clinical workflow or whether a tool is successful. Therefore, "Near-live" clinical simulations involving applied simulation methods were used to compliment the think-aloud results. This complementary usability technique was used to test the end-user HCI and tool performance by more closely mimicking the clinical workflow and capturing interaction sequences along with assessing the functionality of computer module prototypes on clinician workflow. We expected this method to further complement and provide different usability findings as compared to think-aloud analysis. Together, this mixed method evaluation provided comprehensive and realistic feedback for iterative refinement of the ADAPT system prior to implementation. The study employed two phases of testing of a new interactive ADAPT tool that embedded an evidence-based shared goal setting component into primary care workflow for dealing with pre-diabetes counseling within a commercial physician office electronic health record (EHR). Phase I applied usability testing that involved "think-aloud" protocol analysis of eight primary care providers interacting with several scripted clinical scenarios. Phase II used "near-live" clinical simulations of five providers interacting with standardized trained patient actors enacting the clinical scenario of counseling for pre-diabetes, each of whom had a pedometer that recorded the number of steps taken over a week. In both phases, all sessions were audio-taped and motion screen-capture software was activated for onscreen recordings. Transcripts were coded using iterative qualitative content analysis methods. In Phase I, the impact of the components and layout of ADAPT on user's Navigation, Understandability, and Workflow were associated with the largest volume of negative comments (i.e. approximately 80% of end-user commentary), while Usability and Content of ADAPT were representative of more positive than negative user commentary. The heuristic category of Usability had a positive-to-negative comment ratio of 2.1, reflecting positive perception of the usability of the tool, its functionality, and overall co-productive utilization of ADAPT. However, there were mixed perceptions about content (i.e., how the information was displayed, organized and described in the tool). In Phase II, the duration of patient encounters was approximately 10 min with all of the Patient Instructions (prescriptions) and behavioral contracting being activated at the end of each visit. Upon activation, providers accepted the pathway prescribed by the tool 100% of the time and completed all the fields in the tool in the simulation cases. Only 14% of encounter time was spent using the functionality of the ADAPT tool in terms of keystrokes and entering relevant data. The rest of the time was spent on communication and dialog to populate the patient instructions. In all cases, the interaction sequence of reviewing and discussing exercise and diet of the patient was linked to the functionality of the ADAPT tool in terms of monitoring, response-efficacy, self-efficacy, and negotiation in the patient-provider dialog. There was a change from one-way dialog to two-way dialog and negotiation that ended in a behavioral contract. This change demonstrated the tool's sequence, which supported recording current exercise and diet followed by a diet and exercise goal setting procedure to reduce the risk of diabetes onset. This study demonstrated that "think-aloud" protocol analysis with "near-live" clinical simulations provided a successful usability evaluation of a new primary care pre-diabetes shared goal setting tool. Each phase of the study provided complementary observations on problems with the new onscreen tool and was used to show the influence of the ADAPT framework on the usability, workflow integration, and communication between the patient and provider. The think-aloud tests with the provider showed the tool can be used according to the ADAPT framework (exercise-to-diet behavior change and tool utilization), while the clinical simulations revealed the ADAPT framework to realistically support patient-provider communication to obtain behavioral change contract. SDM interactions and mechanisms affecting protocol-based care can be more completely captured by combining "near-live" clinical simulations with traditional "think-aloud analysis" which augments clinician utilization. More analysis is required to verify if the rich communication actions found in Phase II compliment clinical workflows. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Spacecraft Guidance, Navigation, and Control Visualization Tool
NASA Technical Reports Server (NTRS)
Mandic, Milan; Acikmese, Behcet; Blackmore, Lars
2011-01-01
G-View is a 3D visualization tool for supporting spacecraft guidance, navigation, and control (GN&C) simulations relevant to small-body exploration and sampling (see figure). The tool is developed in MATLAB using Virtual Reality Toolbox and provides users with the ability to visualize the behavior of their simulations, regardless of which programming language (or machine) is used to generate simulation results. The only requirement is that multi-body simulation data is generated and placed in the proper format before applying G-View.
Studying the neural bases of prism adaptation using fMRI: A technical and design challenge.
Bultitude, Janet H; Farnè, Alessandro; Salemme, Romeo; Ibarrola, Danielle; Urquizar, Christian; O'Shea, Jacinta; Luauté, Jacques
2017-12-01
Prism adaptation induces rapid recalibration of visuomotor coordination. The neural mechanisms of prism adaptation have come under scrutiny since the observations that the technique can alleviate hemispatial neglect following stroke, and can alter spatial cognition in healthy controls. Relative to non-imaging behavioral studies, fMRI investigations of prism adaptation face several challenges arising from the confined physical environment of the scanner and the supine position of the participants. Any researcher who wishes to administer prism adaptation in an fMRI environment must adjust their procedures enough to enable the experiment to be performed, but not so much that the behavioral task departs too much from true prism adaptation. Furthermore, the specific temporal dynamics of behavioral components of prism adaptation present additional challenges for measuring their neural correlates. We developed a system for measuring the key features of prism adaptation behavior within an fMRI environment. To validate our configuration, we present behavioral (pointing) and head movement data from 11 right-hemisphere lesioned patients and 17 older controls who underwent sham and real prism adaptation in an MRI scanner. Most participants could adapt to prismatic displacement with minimal head movements, and the procedure was well tolerated. We propose recommendations for fMRI studies of prism adaptation based on the design-specific constraints and our results.
Bible, Amber N.; Khalsa-Moyers, Gurusahai K.; Mukherjee, Tanmoy; Green, Calvin S.; Mishra, Priyanka; Purcell, Alicia; Aksenova, Anastasia; Hurst, Gregory B.
2015-01-01
The ability of bacteria to monitor their metabolism and adjust their behavior accordingly is critical to maintain competitiveness in the environment. The motile microaerophilic bacterium Azospirillum brasilense navigates oxygen gradients by aerotaxis in order to locate low oxygen concentrations that can support metabolism. When cells are exposed to elevated levels of oxygen in their surroundings, motile A. brasilense cells implement an alternative response to aerotaxis and form transient clumps by cell-to-cell interactions. Clumping was suggested to represent a behavior protecting motile cells from transiently elevated levels of aeration. Using the proteomics of wild-type and mutant strains affected in the extent of their clumping abilities, we show that cell-to-cell clumping represents a metabolic scavenging strategy that likely prepares the cells for further metabolic stresses. Analysis of mutants affected in carbon or nitrogen metabolism confirmed this assumption. The metabolic changes experienced as clumping progresses prime cells for flocculation, a morphological and metabolic shift of cells triggered under elevated-aeration conditions and nitrogen limitation. The analysis of various mutants during clumping and flocculation characterized an ordered set of changes in cell envelope properties accompanying the metabolic changes. These data also identify clumping and early flocculation to be behaviors compatible with the expression of nitrogen fixation genes, despite the elevated-aeration conditions. Cell-to-cell clumping may thus license diazotrophy to microaerophilic A. brasilense cells under elevated oxygen conditions and prime them for long-term survival via flocculation if metabolic stress persists. PMID:26407887
Cashdan, Elizabeth; Gaulin, Steven J C
2016-03-01
Males in many non-monogamous species have larger ranges than females do, a sex difference that has been well documented for decades and seems to be an aspect of male mating competition. Until recently, parallel data for humans have been mostly anecdotal and qualitative, but this is now changing as human behavioral ecologists turn their attention to matters of individual mobility. Sex differences in spatial cognition were among the first accepted psychological sex differences and, like differences in ranging behavior, are documented for a growing set of species. This special issue is dedicated to exploring the possible adaptive links between these cognitive and ranging traits. Multiple hypotheses, at various levels of analysis, are considered. At the functional (ultimate) level, a mating-competition hypothesis suggests that range expansion may augment mating opportunities, and a fertility-and-parental-care hypothesis suggests that range contraction may facilitate offspring provisioning. At a more mechanistic (proximate) level, differences in cue availability may support or inhibit particular sex-specific navigation strategies, and spatial anxiety may usefully inhibit travel that would not justify its costs. Studies in four different cultures-Twe, Tsimane, Yucatec Maya, and Faroese-as well as an experimental study using virtual reality tools are the venue for testing these hypotheses. Our hope is to stimulate more research on the evolutionary and developmental processes responsible for this suite of linked behavioral and cognitive traits.
Williams, Scott A.; Jasarevic, Eldin; Vandas, Gregory M.; Warzak, Denise A.; Geary, David C.; Ellersieck, Mark R.; Roberts, R. Michael; Rosenfeld, Cheryl S.
2013-01-01
Bisphenol A (BPA), a pervasive, endocrine disrupting compound (EDC), acts as a mixed agonist- antagonist with respect to estrogens and other steroid hormones. We hypothesized that sexually selected traits would be particularly sensitive to EDC. Consistent with this concept, developmental exposure of males from the polygynous deer mouse, Peromyscus maniculatus, to BPA resulted in compromised spatial navigational ability and exploratory behaviors, while there was little effect on females. Here, we have examined a related, monogamous species, the California mouse (Peromyscus californicus), where we predicted that males would be less sensitive to BPA in terms of navigational and exploratory behaviors, while displaying other traits related to interactions with females and territorial marking that might be vulnerable to disruption. As in the deer mouse experiments, females were fed either a phytoestrogen-free CTL diet through pregnancy and lactation or the same diet supplemented with BPA (50 mg/kg feed weight) or ethinyl estradiol (EE) (0.1 part per billion) to provide a “pure” estrogen control. After weaning, pups were maintained on CTL diet until they had reached sexual maturity, at which time behaviors were evaluated. In addition, territorial marking was assessed in BPA-exposed males housed alone and when a control male was visible in the testing arena. In contrast to deer mice, BPA and EE exposure had no effect on spatial navigational skills in either male or female California mice. While CTL females exhibited greater exploratory behavior than CTL males, BPA exposure abolished this sex difference. BPA-exposed males, however, engaged in less territorial marking when CTL males were present. These studies demonstrate that developmental BPA exposure can disrupt adult behaviors in a sex- and species-dependent manner and are consistent with the hypothesis that sexually selected traits are particularly vulnerable to endocrine disruption and should be a consideration in risk assessment studies. PMID:23405200
Adaptive Behavior of Young Urban Children with Developmental Disabilities.
ERIC Educational Resources Information Center
Vig, Susan; Jedrysek, Eleonora
1995-01-01
Assessment of 497 urban preschool children with developmental disabilities using the Vineland Adaptive Behavior Scales indicated a strong positive relationship between adaptive behavior and intelligence if measured globally. When Vineland domains were assessed separately, this relationship varied across domains and disability groups. With…
Longitudinal Profiles of Adaptive Behavior in Fragile X Syndrome
Quintin, Eve-Marie; Jo, Booil; Lightbody, Amy A.; Hazlett, Heather Cody; Piven, Joseph; Hall, Scott S.; Reiss, Allan L.
2014-01-01
OBJECTIVE: To examine longitudinally the adaptive behavior patterns in fragile X syndrome. METHOD: Caregivers of 275 children and adolescents with fragile X syndrome and 225 typically developing children and adolescents (2–18 years) were interviewed with the Vineland Adaptive Behavior Scales every 2 to 4 years as part of a prospective longitudinal study. RESULTS: Standard scores of adaptive behavior in people with fragile X syndrome are marked by a significant decline over time in all domains for males and in communication for females. Socialization skills are a relative strength as compared with the other domains for males with fragile X syndrome. Females with fragile X syndrome did not show a discernible pattern of developmental strengths and weaknesses. CONCLUSIONS: This is the first large-scale longitudinal study to show that the acquisition of adaptive behavior slows as individuals with fragile X syndrome age. It is imperative to ensure that assessments of adaptive behavior skills are part of intervention programs focusing on childhood and adolescence in this condition. PMID:25070318
Gilioli, Gianni; Caroli, Anna Maria; Tikubet, Getachew; Herren, Hans R.; Baumgärtner, Johann
2014-01-01
This paper presents a framework for the development of socio-ecological systems towards enhanced sustainability. Emphasis is given to the dynamic properties of complex, adaptive social-ecological systems, their structure and to the fundamental role of agriculture. The tangible components that meet the needs of specific projects executed in Kenya and Ethiopia encompass project objectives, innovation, facilitation, continuous recording and analyses of monitoring data, that allow adaptive management and system navigation. Two case studies deal with system navigation through the mitigation of key constraints; they aim to improve human health thanks to anopheline malaria vectors control in Nyabondo (Kenya), and to improve cattle health through tsetse control and antitrypanosomal drug administration to cattle in Luke (Ethiopia). The second case deals with a socio-ecological navigation system to enhance sustainability, establishing a periurban diversified enterprise in Addis Ababa (Ethiopia) and developing a rural sustainable social-ecological system in Luke (Ethiopia). The project procedures are briefly described here and their outcomes are analysed in relation to the stated objectives. The methodology for human and cattle disease vector control were easier to implement than the navigation of social-ecological systems towards sustainability enhancement. The achievements considerably differed between key constraints removal and sustainability enhancement projects. Some recommendations are made to rationalise human and cattle health improvement efforts and to smoothen the road towards enhanced sustainability: i) technology system implementation should be carried out through an innovation system; ii) transparent monitoring information should be continuously acquired and evaluated for assessing the state of the system in relation to stated objectives for (a) improving the insight into the systems behaviour and (b) rationalizing decision support; iii) the different views of all stakeholders should be reconciled in a pragmatic approach to social-ecological system management. Significance for public health Recently, there is a growing interest in studying the link between human, animal and environmental health. The connection between these different dimensions is particularly important for developing countries in which people face the challenge of escaping vicious cycle of high diseases prevalence, food insecurity driven by absolute poverty and population growth, and natural capital as a poverty trap. The design and implementation of such efforts, aiming at human health improvement and poverty alleviation, should be framed into adaptive social-ecological system management perspectives. In this paper, we present few case studies dealing with human health improvement through anopheline malaria vectors control in Kenya, cattle health improvement through tsetse vectored nagana control, antitrypanosomal drug administration to cattle in Ethiopia and with the development of rural sustainable communities in Ethiopia. Some recommendations are given to rationalise human and cattle health improvement efforts and to smoothen the road towards enhanced sustainability. PMID:25170511
Gilioli, Gianni; Caroli, Anna Maria; Tikubet, Getachew; Herren, Hans R; Baumgärtner, Johann
2014-03-26
This paper presents a framework for the development of socio-ecological systems towards enhanced sustainability. Emphasis is given to the dynamic properties of complex, adaptive social-ecological systems, their structure and to the fundamental role of agriculture. The tangible components that meet the needs of specific projects executed in Kenya and Ethiopia encompass project objectives, innovation, facilitation, continuous recording and analyses of monitoring data, that allow adaptive management and system navigation. Two case studies deal with system navigation through the mitigation of key constraints; they aim to improve human health thanks to anopheline malaria vectors control in Nyabondo (Kenya), and to improve cattle health through tsetse control and antitrypanosomal drug administration to cattle in Luke (Ethiopia). The second case deals with a socio-ecological navigation system to enhance sustainability, establishing a periurban diversified enterprise in Addis Ababa (Ethiopia) and developing a rural sustainable social-ecological system in Luke (Ethiopia). The project procedures are briefly described here and their outcomes are analysed in relation to the stated objectives. The methodology for human and cattle disease vector control were easier to implement than the navigation of social-ecological systems towards sustainability enhancement. The achievements considerably differed between key constraints removal and sustainability enhancement projects. Some recommendations are made to rationalise human and cattle health improvement efforts and to smoothen the road towards enhanced sustainability: i) technology system implementation should be carried out through an innovation system; ii) transparent monitoring information should be continuously acquired and evaluated for assessing the state of the system in relation to stated objectives for (a) improving the insight into the systems behaviour and (b) rationalizing decision support; iii) the different views of all stakeholders should be reconciled in a pragmatic approach to social-ecological system management. Significance for public healthRecently, there is a growing interest in studying the link between human, animal and environmental health. The connection between these different dimensions is particularly important for developing countries in which people face the challenge of escaping vicious cycle of high diseases prevalence, food insecurity driven by absolute poverty and population growth, and natural capital as a poverty trap. The design and implementation of such efforts, aiming at human health improvement and poverty alleviation, should be framed into adaptive social-ecological system management perspectives. In this paper, we present few case studies dealing with human health improvement through anopheline malaria vectors control in Kenya, cattle health improvement through tsetse vectored nagana control, antitrypanosomal drug administration to cattle in Ethiopia and with the development of rural sustainable communities in Ethiopia. Some recommendations are given to rationalise human and cattle health improvement efforts and to smoothen the road towards enhanced sustainability.
Navigation of autonomous vehicles for oil spill cleaning in dynamic and uncertain environments
NASA Astrophysics Data System (ADS)
Jin, Xin; Ray, Asok
2014-04-01
In the context of oil spill cleaning by autonomous vehicles in dynamic and uncertain environments, this paper presents a multi-resolution algorithm that seamlessly integrates the concepts of local navigation and global navigation based on the sensory information; the objective here is to enable adaptive decision making and online replanning of vehicle paths. The proposed algorithm provides a complete coverage of the search area for clean-up of the oil spills and does not suffer from the problem of having local minima, which is commonly encountered in potential-field-based methods. The efficacy of the algorithm is tested on a high-fidelity player/stage simulator for oil spill cleaning in a harbour, where the underlying oil weathering process is modelled as 2D random-walk particle tracking. A preliminary version of this paper was presented by X. Jin and A. Ray as 'Coverage Control of Autonomous Vehicles for Oil Spill Cleaning in Dynamic and Uncertain Environments', Proceedings of the American Control Conference, Washington, DC, June 2013, pp. 2600-2605.
Michelson, Kelly N; Frader, Joel; Sorce, Lauren; Clayman, Marla L; Persell, Stephen D; Fragen, Patricia; Ciolino, Jody D; Campbell, Laura C; Arenson, Melanie; Aniciete, Danica Y; Brown, Melanie L; Ali, Farah N; White, Douglas
2016-12-01
Stakeholder-developed interventions are needed to support pediatric intensive care unit (PICU) communication and decision-making. Few publications delineate methods and outcomes of stakeholder engagement in research. We describe the process and impact of stakeholder engagement on developing a PICU communication and decision-making support intervention. We also describe the resultant intervention. Stakeholders included parents of PICU patients, healthcare team members (HTMs), and research experts. Through a year-long iterative process, we involved 96 stakeholders in 25 meetings and 26 focus groups or interviews. Stakeholders adapted an adult navigator model by identifying core intervention elements and then determining how to operationalize those core elements in pediatrics. The stakeholder input led to PICU-specific refinements, such as supporting transitions after PICU discharge and including ancillary tools. The resultant intervention includes navigator involvement with parents and HTMs and navigator-guided use of ancillary tools. Subsequent research will test the feasibility and efficacy of our intervention.
Semantic retrieval and navigation in clinical document collections.
Kreuzthaler, Markus; Daumke, Philipp; Schulz, Stefan
2015-01-01
Patients with chronic diseases undergo numerous in- and outpatient treatment periods, and therefore many documents accumulate in their electronic records. We report on an on-going project focussing on the semantic enrichment of medical texts, in order to support recall-oriented navigation across a patient's complete documentation. A document pool of 1,696 de-identified discharge summaries was used for prototyping. A natural language processing toolset for document annotation (based on the text-mining framework UIMA) and indexing (Solr) was used to support a browser-based platform for document import, search and navigation. The integrated search engine combines free text and concept-based querying, supported by dynamically generated facets (diagnoses, procedures, medications, lab values, and body parts). The prototype demonstrates the feasibility of semantic document enrichment within document collections of a single patient. Originally conceived as an add-on for the clinical workplace, this technology could also be adapted to support personalised health record platforms, as well as cross-patient search for cohort building and other secondary use scenarios.
Huang, Keng-Yen; Calzada, Esther; Cheng, Sabrina; Barajas-Gonzalez, R Gabriela; Brotman, Laurie Miller
2017-08-01
Contrary to the "model minority" myth, Asian American children, especially those from low-income immigrant families, are at risk for both behavioral and emotional problems early in life. Little is known, however, about the underlying developmental mechanisms placing Asian American children at risk, including the role of cultural adaptation and parenting. This study examined cultural adaptation, parenting practices and culture related parenting values and child mental health in a sample of 157 English speaking Asian American immigrant families of children enrolled in early childhood education programs in low-income, urban neighborhoods. Overall, cultural adaptation and parenting cultural values and behaviors were related to aspects of child mental health in meaningful ways. Parents' cultural value of independence appears to be especially salient (e.g., negatively related to behavior problems and positively related to adaptive behavior) and significantly mediates the link between cultural adaptation and adaptive behavior. Study findings have implications for supporting Asian American immigrant families to promote their young children's mental health.
ERIC Educational Resources Information Center
Tan, Mei; Reich, Jodi; Hart, Lesley; Thuma, Philip E.; Grigorenko, Elena L.
2014-01-01
Generally accepted as universal, the construct of adaptive behavior differs in its manifestations across different cultures and settings. The Vineland-II (Sparrow et al. in "Vineland Adaptive Behavior Scales, Second edn." AGS Publishing, Circle Pines, MN, 2005) was translated into Chitonga and adapted to the setting of rural Southern…
Berry, Donna L; Halpenny, Barbara; Bosco, Jaclyn L F; Bruyere, John; Sanda, Martin G
2015-07-24
The Personal Patient Profile-Prostate (P3P), a web-based decision aid, was demonstrated to reduce decisional conflict in English-speaking men with localized prostate cancer early after initial diagnosis. The purpose of this study was to explore and enhance usability and cultural appropriateness of a Spanish P3P by Latino men with a diagnosis of prostate cancer. P3P was translated to Spanish and back-translated by three native Spanish-speaking translators working independently. Spanish-speaking Latino men with a diagnosis of localized prostate cancer, who had made treatment decisions in the past 24 months, were recruited from two urban clinical care sites. Individual cognitive interviews were conducted by two bilingual research assistants as each participant used the Spanish P3P. Notes of user behavior, feedback, and answers to direct questions about comprehension, usability and perceived usefulness were analyzed and categorized. Seven participants with a range of education levels identified 25 unique usability issues in navigation, content comprehension and completeness, sociocultural appropriateness, and methodology. Revisions were prioritized to refine the usability and cultural and linguistic appropriateness of the decision aid. Usability issues were discovered that are potential barriers to effective decision support. Successful use of decision aids requires adaptation and testing beyond translation. Our findings led to revisions further refining the usability and linguistic and cultural appropriateness of Spanish P3P.
Ubel, Peter A.; Zhang, Cecilia J.; Hesson, Ashley; Davis, J. Kelly; Kirby, Christine; Barnett, Jamison; Hunter, Wynn G.
2018-01-01
Some experts contend that requiring patients to pay out of pocket for a portion of their care will bring consumer discipline to health care markets. But are physicians prepared to help patients factor out-of-pocket expenses into medical decisions? In this qualitative study of audiorecorded clinical encounters, we identified physician behaviors that stand in the way of helping patients navigate out-of-pocket spending. Some behaviors reflected a failure to fully engage with patients’ financial concerns, from never acknowledging such concerns to dismissing them too quickly. Other behaviors reflected a failure to resolve uncertainty about out-of-pocket expenses or reliance on temporary solutions without making long-term plans to reduce spending. Many of these failures resulted from systemic barriers to health care spending conversations, such as a lack of price transparency. For consumer health care markets to work as intended, physicians need to be prepared to help patients navigate out-of-pocket expenses when financial concerns arise during clinical encounters. PMID:27044966
Navigational strategies underlying phototaxis in larval zebrafish.
Chen, Xiuye; Engert, Florian
2014-01-01
Understanding how the brain transforms sensory input into complex behavior is a fundamental question in systems neuroscience. Using larval zebrafish, we study the temporal component of phototaxis, which is defined as orientation decisions based on comparisons of light intensity at successive moments in time. We developed a novel "Virtual Circle" assay where whole-field illumination is abruptly turned off when the fish swims out of a virtually defined circular border, and turned on again when it returns into the circle. The animal receives no direct spatial cues and experiences only whole-field temporal light changes. Remarkably, the fish spends most of its time within the invisible virtual border. Behavioral analyses of swim bouts in relation to light transitions were used to develop four discrete temporal algorithms that transform the binary visual input (uniform light/uniform darkness) into the observed spatial behavior. In these algorithms, the turning angle is dependent on the behavioral history immediately preceding individual turning events. Computer simulations show that the algorithms recapture most of the swim statistics of real fish. We discovered that turning properties in larval zebrafish are distinctly modulated by temporal step functions in light intensity in combination with the specific motor history preceding these turns. Several aspects of the behavior suggest memory usage of up to 10 swim bouts (~10 sec). Thus, we show that a complex behavior like spatial navigation can emerge from a small number of relatively simple behavioral algorithms.
Cervical Cancer Control for Hispanic Women in Texas: Effective Strategies from Research and Practice
Fernandez, Maria E.; Savas, Lara S.; Lipizzi, Erica; Smith, Jennifer S.; Vernon, Sally W.
2014-01-01
Purpose Hispanic women in Texas have among the highest rates of cervical cancer incidence and mortality in the country. Increasing regular Papanicolaou test screening and HPV vaccination are crucial to reduce the burden of cervical cancer among Hispanics. This paper presents lessons learned from community-based cervical cancer control programs in Texas and highlights effective intervention programs, methods and strategies. Methods We reviewed and summarized cervical cancer control efforts targeting Hispanic women in Texas, focusing on interventions developed by researchers at the University of Texas, School of Public Health. We identified commonalities across programs, highlighted effective methods, and summarized lessons learned to help guide future intervention efforts. Results Community-academic partnerships were fundamental in all steps of program development and implementation. Programs reviewed addressed psychosocial, cultural, and access barriers to cervical cancer control among low-income Hispanic women. Intervention approaches included lay health worker (LHW) and navigation models and used print media, interactive tailored media, photonovellas, client reminders, one-on-one and group education sessions. Conclusions Small media materials combined with LHW and navigation approaches were effective in delivering Pap test screening and HPV vaccination messages and in linking women to services. Common theoretical methods included in these approaches were modeling, verbal persuasion, and facilitating access. Adaptation of programs to an urban environment revealed that intensive navigation was needed to link women with multiple access barriers to health services. Collectively, this review reveals 1) the importance of using a systematic approach for planning and adapting cervical cancer control programs; 2) advantages of collaborative academic-community partnerships to develop feasible interventions with broad reach; 3) the use of small media and LHW approaches and the need for tailored phone navigation in urban settings; and 4) coordination and technical assistance of community-based efforts as a way to maximize resources. PMID:24398135
Software Defined GPS Receiver for International Space Station
NASA Technical Reports Server (NTRS)
Duncan, Courtney B.; Robison, David E.; Koelewyn, Cynthia Lee
2011-01-01
JPL is providing a software defined radio (SDR) that will fly on the International Space Station (ISS) as part of the CoNNeCT project under NASA's SCaN program. The SDR consists of several modules including a Baseband Processor Module (BPM) and a GPS Module (GPSM). The BPM executes applications (waveforms) consisting of software components for the embedded SPARC processor and logic for two Virtex II Field Programmable Gate Arrays (FPGAs) that operate on data received from the GPSM. GPS waveforms on the SDR are enabled by an L-Band antenna, low noise amplifier (LNA), and the GPSM that performs quadrature downconversion at L1, L2, and L5. The GPS waveform for the JPL SDR will acquire and track L1 C/A, L2C, and L5 GPS signals from a CoNNeCT platform on ISS, providing the best GPS-based positioning of ISS achieved to date, the first use of multiple frequency GPS on ISS, and potentially the first L5 signal tracking from space. The system will also enable various radiometric investigations on ISS such as local multipath or ISS dynamic behavior characterization. In following the software-defined model, this work will create a highly portable GPS software and firmware package that can be adapted to another platform with the necessary processor and FPGA capability. This paper also describes ISS applications for the JPL CoNNeCT SDR GPS waveform, possibilities for future global navigation satellite system (GNSS) tracking development, and the applicability of the waveform components to other space navigation applications.
ERIC Educational Resources Information Center
Pugliese, Cara E.; Anthony, Laura Gutermuth; Strang, John F.; Dudley, Katerina; Wallace, Gregory L.; Naiman, Daniel Q.; Kenworthy, Lauren
2016-01-01
This study characterizes longitudinal change in adaptive behavior in 64 children and adolescents with autism spectrum disorder (ASD) without intellectual disability evaluated on multiple occasions, and examines whether prior estimate of executive function (EF) problems predicts future adaptive behavior scores. Compared to standardized estimates…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Czejdo, Bogdan; Bhattacharya, Sambit; Ferragut, Erik M
2012-01-01
This paper describes the syntax and semantics of multi-level state diagrams to support probabilistic behavior of cooperating robots. The techniques are presented to analyze these diagrams by querying combined robots behaviors. It is shown how to use state abstraction and transition abstraction to create, verify and process large probabilistic state diagrams.
Someone has to give in: theta oscillations correlate with adaptive behavior in social bargaining.
Billeke, Pablo; Zamorano, Francisco; López, Tamara; Rodriguez, Carlos; Cosmelli, Diego; Aboitiz, Francisco
2014-12-01
During social bargain, one has to both figure out the others' intentions and behave strategically in such a way that the others' behaviors will be consistent with one's expectations. To understand the neurobiological mechanisms underlying these behaviors, we used electroencephalography while subjects played as proposers in a repeated ultimatum game. We found that subjects adapted their offers to obtain more acceptances in the last round and that this adaptation correlated negatively with prefrontal theta oscillations. People with higher prefrontal theta activity related to a rejection did not adapt their offers along the game to maximize their earning. Moreover, between-subject variation in posterior theta oscillations correlated positively with how individual theta activity influenced the change of offer after a rejection, reflecting a process of behavioral adaptation to the others' demands. Interestingly, people adapted better their offers when they knew that they where playing against a computer, although the behavioral adaptation did not correlate with prefrontal theta oscillation. Behavioral changes between human and computer games correlated with prefrontal theta activity, suggesting that low adaptation in human games could be a strategy. Taken together, these results provide evidence for specific roles of prefrontal and posterior theta oscillations in social bargaining. © The Author (2014). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.
The Migration Matrix: Marine Vertebrate Movements in Magnetic Coordinate Space
NASA Astrophysics Data System (ADS)
Horton, T. W.; Holdaway, R. N.; Clapham, P. J.; Zerbini, A. N.; Andriolo, A.; Hays, G. C.; Egevang, C.; Domeier, M. L.; Lucas, N.
2011-12-01
Determining how vertebrates navigate during their long-distance migrations remains one of the most enduring and fundamental challenges of behavioral ecology. It is widely accepted that spatial orientation relative to a reference datum is a fundamental requirement of long-distance return migration between seasonal habitats, and a variety of viable positional and directional orientation cues, including the sun, stars, and magnetic field, have been documented experimentally. However, a fundamental question remains unanswered: Are empirically observed migratory movements compatible with modern theoretical frameworks of spatial orientation? To address this question, we analysed leatherback turtle (Dermochelys coriacea), arctic tern (Sterna paradisaea), humpback whale (Megaptera novaeangliae), and great white shark (Carcharodon carcharias) track maps, frequency distribution diagrams and time-series plots of animal locations in spherical magnetic coordinate space. Our analyses indicates that, although individual migration tracks are spatially and temporally distinct, vertebrate movements are non-randomly distributed in all three spherical magnetic coordinates (i.e. intensity, inclination, and declination). Stop-over locations, migratory destinations, and re-orientation points occur at similar magnetic coordinate locations, relative to tagging areas, in all four species, suggesting that a common system of magnetic orientation likely informs the navigational behaviors of these phylogenetically diverse taxa. Although our analyses demonstrate that the experiment-derived 'magnetic map' goal orientation theoretical framework of animal navigation is compatible with remotely-sensed migration track data, they also indicate that magnetic information is complemented by spatially and temporally contingent celestial stimuli during navigation.
Underwater and surface behavior of homing juvenile northern elephant seals.
Matsumura, Moe; Watanabe, Yuuki Y; Robinson, Patrick W; Miller, Patrick J O; Costa, Daniel P; Miyazaki, Nobuyuki
2011-02-15
Northern elephant seals, Mirounga angustirostris, travel between colonies along the west coast of North America and foraging areas in the North Pacific. They also have the ability to return to their home colony after being experimentally translocated. However, the mechanisms of this navigation are not known. Visual information could serve an important role in navigation, either primary or supplementary. We examined the role of visual cues in elephant seal navigation by translocating three seals and recording their heading direction continuously using GPS, and acceleration and geomagnetic data loggers while they returned to the colony. The seals first reached the coast and then proceeded to the colony by swimming along the coast. While underwater the animals exhibited a horizontally straight course (mean net-to-gross displacement ratio=0.94±0.02). In contrast, while at the surface they changed their headings up to 360 deg. These results are consistent with the use of visual cues for navigation to the colony. The seals may visually orient by using landmarks as they swim along the coast. We further assessed whether the seals could maintain a consistent heading while underwater during drift dives where one might expect that passive spiraling during drift dives could cause disorientation. However, seals were able to maintain the initial course heading even while underwater during drift dives where there was spiral motion (to within 20 deg). This behavior may imply the use of non-visual cues such as acoustic signals or magnetic fields for underwater orientation.
NASA Astrophysics Data System (ADS)
Forbes, Cory T.; Davis, Elizabeth A.
2008-09-01
The work presented here represents a preliminary effort undertaken to address the role of teachers in supporting students’ learning and decision-making about socioscientific issues (SSI) by characterizing preservice elementary teachers’ critique and adaptation of SSI-based science curriculum materials and identifying factors that serve to mediate this process. Four undergraduate preservice elementary teachers were studied over the course of one semester. Results indicate that the teachers navigated multiple learning goals, as well as their own subject-matter knowledge, informal reasoning about SSI, and role identity, in their critique and adaptation of SSI-oriented science instructional materials. Implications for science teacher education and the design of curriculum materials in respect to SSI are discussed.
Rapid prototyping of an adaptive light-source for mobile manipulators with EasyKit and EasyLab
NASA Astrophysics Data System (ADS)
Wojtczyk, Martin; Barner, Simon; Geisinger, Michael; Knoll, Alois
2008-08-01
While still not common in day-to-day business, mobile robot platforms form a growing market in robotics. Mobile platforms equipped with a manipulator for increased flexibility have been used successfully in biotech laboratories for sample management as shown on the well-known ESACT meetings. Navigation and object recognition is carried out by the utilization of a mounted machine vision camera. To cope with the different illumination conditions in a large laboratory, development of an adaptive light source was indispensable. We present our approach of rapid developing a computer controlled, adaptive LED light within one single business day, by utilizing the hardware toolbox EasyKit and our appropriate software counterpart EasyLab.
Context Aware Recommendations in the Course Enrolment Process Based on Curriculum Guidelines
ERIC Educational Resources Information Center
Ajanovski, Vangel V.
2013-01-01
This research is a part of an ongoing project for development of an integrated student information system, aiming to incorporate self-adaptivity, personalization and social navigation, both in the overall management of university processes, and throughout the course work. In this paper the focus is on the advancement of the existing course…
From Mao to Memphis: Chinese Immigrant Fathers' Involvement with Their Children's Education
ERIC Educational Resources Information Center
Klein, Alan
2008-01-01
How do adults adapt when they have been inculcated into a particular philosophy of parenting and education and are then expected to adjust to a cultural framework possibly at odds with their worldview? Mainland Chinese fathers represent one immigrant group that has had to successfully learn to navigate various challenges while interacting with…
Navigating Middle Grades: Role of School Context in Students' Social Adaptation and Experiences
ERIC Educational Resources Information Center
Kim, Ha Yeon; Schwartz, Kate; Cappella, Elise; Seidman, Edward
2014-01-01
Informed by the current literature, this study examines social contexts across middle grade schools with different grade span configurations. In doing so, the authors aim to build understanding of where and how to target interventions in the middle grades to enhance maintenance of social-emotional adjustment and experiences from middle childhood…
3D elastic control for mobile devices.
Hachet, Martin; Pouderoux, Joachim; Guitton, Pascal
2008-01-01
To increase the input space of mobile devices, the authors developed a proof-of-concept 3D elastic controller that easily adapts to mobile devices. This embedded device improves the completion of high-level interaction tasks such as visualization of large documents and navigation in 3D environments. It also opens new directions for tomorrow's mobile applications.
National Centers for Environmental Prediction
Weather Service NWS logo - Click to go to the NWS homepage EMC Logo Navigation Bar Left Cap Home News TRAINING AND DOCUMENTATION MATERIALS: * Workflow Manager (7/24/12) * Zeus Advanced Group B Training Agenda (4/17/12) * Zeus Quickstart Training * NESCC HPC Group A End User Training (2/16/12) * Adaptive
Working Together Differently: Addressing the Housing Crisis in Oregon
ERIC Educational Resources Information Center
Ramaley, Judith A.
2017-01-01
Universities are being asked to prepare our students to navigate successfully in a complex and interconnected world and to contribute to the solution of difficult problems at work and in the communities where they live. Our universities must do the same. We must adapt our approaches to education, scholarship and community involvement in order to…
Developing Leadership in Higher Education: Perspectives from the USA, the UK and Australia
ERIC Educational Resources Information Center
Hempsall, Kay
2014-01-01
It is broadly acknowledged that leaders in the twenty-first century are required to navigate an increasingly complex landscape and that the types of challenges individuals and organisations face in the knowledge era require the capacity to adapt and respond to continual fluctuations and change. Outcomes from previous leadership research, combined…
Adaptive Model-Predictive Motion Planning for Navigation in Complex Environments
2009-08-01
AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Carnegie Mellon University,The...Robotics Institute,Pittsburgh,PA,15213 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR...6 1.5 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.6 Organization
Adaption of Space Station technology for lunar operations
NASA Technical Reports Server (NTRS)
Garvey, J. M.
1988-01-01
The possible use of Space Station technology in a lunar base program is discussed, focusing on the lunar lander/ascent vehicles and surface modules. The application of the Space Station data management system, software, and communications, tracking, guidance, navigation, control, and power technologies is examined. The benefits of utilizing this technology for lunar operations are considered.
Place recognition and heading retrieval are mediated by dissociable cognitive systems in mice.
Julian, Joshua B; Keinath, Alexander T; Muzzio, Isabel A; Epstein, Russell A
2015-05-19
A lost navigator must identify its current location and recover its facing direction to restore its bearings. We tested the idea that these two tasks--place recognition and heading retrieval--might be mediated by distinct cognitive systems in mice. Previous work has shown that numerous species, including young children and rodents, use the geometric shape of local space to regain their sense of direction after disorientation, often ignoring nongeometric cues even when they are informative. Notably, these experiments have almost always been performed in single-chamber environments in which there is no ambiguity about place identity. We examined the navigational behavior of mice in a two-chamber paradigm in which animals had to both recognize the chamber in which they were located (place recognition) and recover their facing direction within that chamber (heading retrieval). In two experiments, we found that mice used nongeometric features for place recognition, but simultaneously failed to use these same features for heading retrieval, instead relying exclusively on spatial geometry. These results suggest the existence of separate systems for place recognition and heading retrieval in mice that are differentially sensitive to geometric and nongeometric cues. We speculate that a similar cognitive architecture may underlie human navigational behavior.
Visual Place Learning in Drosophila melanogaster
Ofstad, Tyler A.; Zuker, Charles S.; Reiser, Michael B.
2011-01-01
The ability of insects to learn and navigate to specific locations in the environment has fascinated naturalists for decades. While the impressive navigation abilities of ants, bees, wasps, and other insects clearly demonstrate that insects are capable of visual place learning1–4, little is known about the underlying neural circuits that mediate these behaviors. Drosophila melanogaster is a powerful model organism for dissecting the neural circuitry underlying complex behaviors, from sensory perception to learning and memory. Flies can identify and remember visual features such as size, color, and contour orientation5, 6. However, the extent to which they use vision to recall specific locations remains unclear. Here we describe a visual place-learning platform and demonstrate that Drosophila are capable of forming and retaining visual place memories to guide selective navigation. By targeted genetic silencing of small subsets of cells in the Drosophila brain we show that neurons in the ellipsoid body, but not in the mushroom bodies, are necessary for visual place learning. Together, these studies reveal distinct neuroanatomical substrates for spatial versus non-spatial learning, and substantiate Drosophila as a powerful model for the study of spatial memories. PMID:21654803
Bacterial navigation in chemical and nonchemical environments
NASA Astrophysics Data System (ADS)
Hu, Bo; Tu, Yuhai
2014-03-01
Navigation of cells to the optimal environmental niches is critical for their survival and growth. E. coli cells, for example, can detect various chemicals and move up or down those chemical gradients (i.e., chemotaxis). Using the same signaling machinery, they can also sense other external factors such as pH and temperature and navigate from both sides toward some intermediate levels of those stimuli. This mode of precision sensing is more sophisticated than the (unidirectional) chemotaxis strategy and requires distinctive molecular mechanisms. To understand different bacterial taxis behaviors, we develop a theoretical model which incorporates microscopic signaling events in individual cells into macroscopic population dynamics. We find that the equilibrium population distribution is governed by an effective potential, the landscape of which depends on the external environment (chemical stimuli, pH, and temperature). We uncover the key conditions for various taxis behaviors and directly connects the cellular taxis performances with the underlying molecular parameters. This approach is used to examine and predict how background attractants and downstream temperature effects influence the performance and stability of thermotaxis, which can be tested in future experiments. This work is supported by the National Institutes of Health Grant GM081747.
Yu, Huapeng; Zhu, Hai; Gao, Dayuan; Yu, Meng; Wu, Wenqi
2015-01-01
The Kalman filter (KF) has always been used to improve north-finding performance under practical conditions. By analyzing the characteristics of the azimuth rotational inertial measurement unit (ARIMU) on a stationary base, a linear state equality constraint for the conventional KF used in the fine north-finding filtering phase is derived. Then, a constrained KF using the state equality constraint is proposed and studied in depth. Estimation behaviors of the concerned navigation errors when implementing the conventional KF scheme and the constrained KF scheme during stationary north-finding are investigated analytically by the stochastic observability approach, which can provide explicit formulations of the navigation errors with influencing variables. Finally, multiple practical experimental tests at a fixed position are done on a postulate system to compare the stationary north-finding performance of the two filtering schemes. In conclusion, this study has successfully extended the utilization of the stochastic observability approach for analytic descriptions of estimation behaviors of the concerned navigation errors, and the constrained KF scheme has demonstrated its superiority over the conventional KF scheme for ARIMU stationary north-finding both theoretically and practically. PMID:25688588
Framing of grid cells within and beyond navigation boundaries
Savelli, Francesco; Luck, JD; Knierim, James J
2017-01-01
Grid cells represent an ideal candidate to investigate the allocentric determinants of the brain’s cognitive map. Most studies of grid cells emphasized the roles of geometric boundaries within the navigational range of the animal. Behaviors such as novel route-taking between local environments indicate the presence of additional inputs from remote cues beyond the navigational borders. To investigate these influences, we recorded grid cells as rats explored an open-field platform in a room with salient, remote cues. The platform was rotated or translated relative to the room frame of reference. Although the local, geometric frame of reference often exerted the strongest control over the grids, the remote cues demonstrated a consistent, sometimes dominant, countervailing influence. Thus, grid cells are controlled by both local geometric boundaries and remote spatial cues, consistent with prior studies of hippocampal place cells and providing a rich representational repertoire to support complex navigational (and perhaps mnemonic) processes. DOI: http://dx.doi.org/10.7554/eLife.21354.001 PMID:28084992
Ybarra, Michele; Biringi, Ruth; Prescott, Tonya; Bull, Sheana S.
2012-01-01
Use of Internet is growing in Sub Saharan Africa. Evidence of computer and Internet effectiveness for reduction in risk behaviors associated with HIV shown in U.S. settings has yet to be replicated in Africa. We describe the development, usability and navigability testing of an Internet-based HIV prevention program for secondary school students in Uganda, called CyberSenga. For this work, we used four data collection activities, including observation of (a) computer skills and (b) navigation, (c) focus group discussions, and (d) field assessments to document comprehension and usability of program content. We document limited skills among students, but youth with basic computers skills were able to navigate the program after instruction. Youth were most interested in activities with more interaction. Field-testing illustrated the importance of using a stand-alone electrical source during program delivery. This work suggests delivery of Internet-based health promotion content in Africa requires attention to user preparedness and literacy, bandwidth, Internet connection, and electricity. PMID:22918136
Spatial Navigation and the Central Complex: Sensory Acquisition, Orientation, and Motor Control
Varga, Adrienn G.; Kathman, Nicholas D.; Martin, Joshua P.; Guo, Peiyuan; Ritzmann, Roy E.
2017-01-01
Cockroaches are scavengers that forage through dark, maze-like environments. Like other foraging animals, for instance rats, they must continually asses their situation to keep track of targets and negotiate barriers. While navigating a complex environment, all animals need to integrate sensory information in order to produce appropriate motor commands. The integrated sensory cues can be used to provide the animal with an environmental and contextual reference frame for the behavior. To successfully reach a goal location, navigational cues continuously derived from sensory inputs have to be utilized in the spatial guidance of motor commands. The sensory processes, contextual and spatial mechanisms, and motor outputs contributing to navigation have been heavily studied in rats. In contrast, many insect studies focused on the sensory and/or motor components of navigation, and our knowledge of the abstract representation of environmental context and spatial information in the insect brain is relatively limited. Recent reports from several laboratories have explored the role of the central complex (CX), a sensorimotor region of the insect brain, in navigational processes by recording the activity of CX neurons in freely-moving insects and in more constrained, experimenter-controlled situations. The results of these studies indicate that the CX participates in processing the temporal and spatial components of sensory cues, and utilizes these cues in creating an internal representation of orientation and context, while also directing motor control. Although these studies led to a better understanding of the CX's role in insect navigation, there are still major voids in the literature regarding the underlying mechanisms and brain regions involved in spatial navigation. The main goal of this review is to place the above listed findings in the wider context of animal navigation by providing an overview of the neural mechanisms of navigation in rats and summarizing and comparing our current knowledge on the CX's role in insect navigation to these processes. By doing so, we aimed to highlight some of the missing puzzle pieces in insect navigation and provide a different perspective for future directions. PMID:28174527
The Climate Adaptation Frontier
DOE Office of Scientific and Technical Information (OSTI.GOV)
Preston, Benjamin L
2013-01-01
Climate adaptation has emerged as a mainstream risk management strategy for assisting in maintaining socio-ecological systems within the boundaries of a safe operating space. Yet, there are limits to the ability of systems to adapt. Here, we introduce the concept of an adaptation frontier , which is defined as a socio-ecological system s transitional adaptive operating space between safe and unsafe domains. A number of driving forces are responsible for determining the sustainability of systems on the frontier. These include path dependence, adaptation/development deficits, values conflicts and discounting of future loss and damage. The cumulative implications of these driving forcesmore » are highly uncertain. Nevertheless, the fact that a broad range of systems already persist at the edge of their frontiers suggests a high likelihood that some limits will eventually be exceeded. The resulting system transformation is likely to manifest as anticipatory modification of management objectives or loss and damage. These outcomes vary significantly with respect to their ethical implications. Successful navigation of the adaptation frontier will necessitate new paradigms of risk governance to elicit knowledge that encourages reflexive reevaluation of societal values that enable or constrain sustainability.« less
Complexity and health professions education: a basic glossary.
Mennin, Stewart
2010-08-01
The study of health professions education in the context of complexity science and complex adaptive systems involves different concepts and terminology that are likely to be unfamiliar to many health professions educators. A list of selected key terms and definitions from the literature of complexity science is provided to assist readers to navigate familiar territory from a different perspective. include agent, attractor, bifurcation, chaos, co-evolution, collective variable, complex adaptive systems, complexity science, deterministic systems, dynamical system, edge of chaos, emergence, equilibrium, far from equilibrium, fuzzy boundaries, linear system, non-linear system, random, self-organization and self-similarity.
Ogawa, Hiroto; Oka, Kotaro
2015-08-19
Stimulus-specific adaptation (SSA) is considered to be the neural underpinning of habituation to frequent stimuli and novelty detection. However, neither the cellular mechanism underlying SSA nor the link between SSA-like neuronal plasticity and behavioral modulation is well understood. The wind-detection system in crickets is one of the best models for investigating the neural basis of SSA. We found that crickets exhibit stimulus-direction-specific adaptation in wind-elicited avoidance behavior. Repetitive air currents inducing this behavioral adaptation reduced firings to the stimulus and the amplitude of excitatory synaptic potentials in wind-sensitive giant interneurons (GIs) related to the avoidance behavior. Injection of a Ca(2+) chelator into GIs diminished both the attenuation of firings and the synaptic depression induced by the repetitive stimulation, suggesting that adaptation of GIs induced by this stimulation results in Ca(2+)-mediated modulation of postsynaptic responses, including postsynaptic short-term depression. Some types of GIs showed specific adaptation to the direction of repetitive stimuli, resulting in an alteration of their directional tuning curves. The types of GIs for which directional tuning was altered displayed heterogeneous direction selectivity in their Ca(2+) dynamics that was restricted to a specific area of dendrites. In contrast, other types of GIs with constant directionality exhibited direction-independent global Ca(2+) elevation throughout the dendritic arbor. These results suggest that depression induced by local Ca(2+) accumulation at repetitively activated synapses of key neurons underlies direction-specific behavioral adaptation. This input-selective depression mediated by heterogeneous Ca(2+) dynamics could confer the ability to detect novelty at the earliest stages of sensory processing in crickets. Stimulus-specific adaptation (SSA) is considered to be the neural underpinning of habituation and novelty detection. We found that crickets exhibit stimulus-direction-specific adaptation in wind-elicited avoidance behavior. Repetitive air currents inducing this behavioral adaptation altered the directional selectivity of wind-sensitive giant interneurons (GIs) via direction-specific adaptation mediated by dendritic Ca(2+) elevation. The GIs for which directional tuning was altered displayed heterogeneous direction selectivity in their Ca(2+) dynamics and the transient increase in Ca(2+) evoked by the repeated puffs was restricted to a specific area of dendrites. These results suggest that depression induced by local Ca(2+) accumulation at repetitively activated synapses of key neurons underlies direction-specific behavioral adaptation. Our findings elucidate the subcellular mechanism underlying SSA-like neuronal plasticity related to behavioral adaptation. Copyright © 2015 the authors 0270-6474/15/3511644-12$15.00/0.
Exploring the Structure of Adaptive Behavior: Project Report Number 87-1.
ERIC Educational Resources Information Center
Bruininks, Robert H.; McGrew, Kevin
This report presents results from three research studies that were designed to explore both the definition and the structure of the adaptive behavior construct. The first study investigated the structure of adaptive behavior as a function of age, developmental level, and type of handicap through an exploratory factor analysis of both the…
Variability in Adaptive Behavior in Autism: Evidence for the Importance of Family History
ERIC Educational Resources Information Center
Mazefsky, Carla A.; Williams, Diane L.; Minshew, Nancy J.
2008-01-01
Adaptive behavior in autism is highly variable and strongly related to prognosis. This study explored family history as a potential source of variability in adaptive behavior in autism. Participants included 77 individuals (mean age = 18) with average or better intellectual ability and autism. Parents completed the Family History Interview about…
Intelligent navigation to improve obstetrical sonography.
Yeo, Lami; Romero, Roberto
2016-04-01
'Manual navigation' by the operator is the standard method used to obtain information from two-dimensional and volumetric sonography. Two-dimensional sonography is highly operator dependent and requires extensive training and expertise to assess fetal anatomy properly. Most of the sonographic examination time is devoted to acquisition of images, while 'retrieval' and display of diagnostic planes occurs rapidly (essentially instantaneously). In contrast, volumetric sonography has a rapid acquisition phase, but the retrieval and display of relevant diagnostic planes is often time-consuming, tedious and challenging. We propose the term 'intelligent navigation' to refer to a new method of interrogation of a volume dataset whereby identification and selection of key anatomical landmarks allow the system to: 1) generate a geometrical reconstruction of the organ of interest; and 2) automatically navigate, find, extract and display specific diagnostic planes. This is accomplished using operator-independent algorithms that are both predictable and adaptive. Virtual Intelligent Sonographer Assistance (VIS-Assistance®) is a tool that allows operator-independent sonographic navigation and exploration of the surrounding structures in previously identified diagnostic planes. The advantage of intelligent (over manual) navigation in volumetric sonography is the short time required for both acquisition and retrieval and display of diagnostic planes. Intelligent navigation technology automatically realigns the volume, and reorients and standardizes the anatomical position, so that the fetus and the diagnostic planes are consistently displayed in the same manner each time, regardless of the fetal position or the initial orientation. Automatic labeling of anatomical structures, subject orientation and each of the diagnostic planes is also possible. Intelligent navigation technology can operate on conventional computers, and is not dependent on specific ultrasound platforms or on the use of software to perform manual navigation of volume datasets. Diagnostic planes and VIS-Assistance videoclips can be transmitted by telemedicine so that expert consultants can evaluate the images to provide an opinion. The end result is a user-friendly, simple, fast and consistent method of obtaining sonographic images with decreased operator dependency. Intelligent navigation is one approach to improve obstetrical sonography. Published 2015. This article is a U.S. Government work and is in the public domain in the USA. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.
Markl, Michael; Harloff, Andreas; Bley, Thorsten A; Zaitsev, Maxim; Jung, Bernd; Weigang, Ernst; Langer, Mathias; Hennig, Jürgen; Frydrychowicz, Alex
2007-04-01
To evaluate an improved image acquisition and data-processing strategy for assessing aortic vascular geometry and 3D blood flow at 3T. In a study with five normal volunteers and seven patients with known aortic pathology, prospectively ECG-gated cine three-dimensional (3D) MR velocity mapping with improved navigator gating, real-time adaptive k-space ordering and dynamic adjustment of the navigator acceptance criteria was performed. In addition to morphological information and three-directional blood flow velocities, phase-contrast (PC)-MRA images were derived from the same data set, which permitted 3D isosurface rendering of vascular boundaries in combination with visualization of blood-flow patterns. Analysis of navigator performance and image quality revealed improved scan efficiencies of 63.6%+/-10.5% and temporal resolution (<50 msec) compared to previous implementations. Semiquantitative evaluation of image quality by three independent observers demonstrated excellent general image appearance with moderate blurring and minor ghosting artifacts. Results from volunteer and patient examinations illustrate the potential of the improved image acquisition and data-processing strategy for identifying normal and pathological blood-flow characteristics. Navigator-gated time-resolved 3D MR velocity mapping at 3T in combination with advanced data processing is a powerful tool for performing detailed assessments of global and local blood-flow characteristics in the aorta to describe or exclude vascular alterations. Copyright (c) 2007 Wiley-Liss, Inc.
Page-Reeves, Janet; Moffett, Maurice L; Steimel, Leah; Smith, Daryl T
Health navigators and other types of community health workers (CHWs) have become recognized as essential components of quality care, and key for addressing health disparities owing to the complex health care services landscape presents almost insurmountable challenges for vulnerable individuals. Bernalillo County, New Mexico, has high rates of uninsurance, poverty, and food insecurity. The design of the Pathways to a Healthy Bernalillo County Program (BP) has evolved innovations that are unique in terms of program stability and security, expansive reach, and community capacity across six domains: sustainable public mechanism for program funding, involvement of community organizations in designing the program, expanded focus to address the broader social determinants of health with targeted outreach, an integrated, community-based implementation structure, an outcomes-based payment structure, and using an adaptive program design that actively incorporates navigators in the process. In 2008, the Pathways to a Healthy Bernalillo County Program (BP), located in the Albuquerque metropolitan area in central New Mexico, was established to provide navigation and support for the most vulnerable county residents. BP is funded through a 1% carve out of county mill levy funds. The pathways model is an outcome-based approach for health and social services coordination that uses culturally competent CHW as "navigators" trained to connect at-risk individuals to needed health and social services. One of the important innovations of the pathways approach is a shift in focus from merely providing discrete services to confirming healthy outcomes for the individual patient.
Dollé, Laurent; Chavarriaga, Ricardo
2018-01-01
We present a computational model of spatial navigation comprising different learning mechanisms in mammals, i.e., associative, cognitive mapping and parallel systems. This model is able to reproduce a large number of experimental results in different variants of the Morris water maze task, including standard associative phenomena (spatial generalization gradient and blocking), as well as navigation based on cognitive mapping. Furthermore, we show that competitive and cooperative patterns between different navigation strategies in the model allow to explain previous apparently contradictory results supporting either associative or cognitive mechanisms for spatial learning. The key computational mechanism to reconcile experimental results showing different influences of distal and proximal cues on the behavior, different learning times, and different abilities of individuals to alternatively perform spatial and response strategies, relies in the dynamic coordination of navigation strategies, whose performance is evaluated online with a common currency through a modular approach. We provide a set of concrete experimental predictions to further test the computational model. Overall, this computational work sheds new light on inter-individual differences in navigation learning, and provides a formal and mechanistic approach to test various theories of spatial cognition in mammals. PMID:29630600
A model of adaptation for families of elderly patients with dementia: focusing on family resilience.
Kim, Geun Myun; Lim, Ji Young; Kim, Eun Joo; Kim, Sang Suk
2017-07-19
We constructed a model explaining families' positive adaptation in chronic crisis situations such as the problematic behavior of elderly patients with dementia and attendant caregiving stress, based on the family resilience model. Our aim was to devise an adaptation model for families of elderly patients with dementia. A survey of problematic behavior in elderly patients with dementia, family stress, family resilience, and family adaptation was conducted with 292 consenting individuals. The collected data were analyzed using structural equation modeling. The communication process, family stress, and problematic behavior of elderly patients with dementia had direct and indirect effects on family adaptation, while belief system, organization pattern, and social support had indirect effects. Specifically, family stress and more severe problematic behavior by elderly patients with dementia negatively influenced family adaptation, while greater family resilience improved such adaptation. Interventions aiming to enhance family resilience, based on the results of this study, are required to help families with positive adaptation. Such family programs might involve practical support such as education on the characteristics of elderly persons with dementia and coping methods for their problematic behavior; forming self-help groups for families; revitalizing communication within families; and activating communication channels with experts.
A Clustering-Based Approach to Enriching Code Foraging Environment.
Niu, Nan; Jin, Xiaoyu; Niu, Zhendong; Cheng, Jing-Ru C; Li, Ling; Kataev, Mikhail Yu
2016-09-01
Developers often spend valuable time navigating and seeking relevant code in software maintenance. Currently, there is a lack of theoretical foundations to guide tool design and evaluation to best shape the code base to developers. This paper contributes a unified code navigation theory in light of the optimal food-foraging principles. We further develop a novel framework for automatically assessing the foraging mechanisms in the context of program investigation. We use the framework to examine to what extent the clustering of software entities affects code foraging. Our quantitative analysis of long-lived open-source projects suggests that clustering enriches the software environment and improves foraging efficiency. Our qualitative inquiry reveals concrete insights into real developer's behavior. Our research opens the avenue toward building a new set of ecologically valid code navigation tools.
Koene, Paul
2013-01-01
This project aimed to estimate a species' adaptations in nature and in captivity, assess welfare, suggest environmental changes, and find species characteristics that underlie welfare problems in nonhuman animals in the zoo. First, the current status of zoo animal welfare assessment was reviewed, and the behavioral ecology approach was outlined. In this approach, databases of species characteristics were developed using (a) literature of natural behavior and (b) captive behavior. Species characteristics were grouped in 8 functional behavioral ecological fitness-related categories: space, time, metabolic, safety, reproductive, comfort, social, and information adaptations. Assessments of the strength of behavioral adaptations in relation to environmental demands were made based on the results available from the literature. The databases with literature at the species level were coupled with databases of (c) behavioral observations and (d) welfare assessments under captive conditions. Observation and welfare assessment methods were adapted from the animal on the farm realm and applied to zoo species. It was expected that the comparison of the repertoire of behaviors in natural and captive environments would highlight welfare problems, provide solutions to welfare problems by environmental changes, and identify species characteristics underlying zoo animal welfare problems.
Human place and response learning: navigation strategy selection, pupil size and gaze behavior.
de Condappa, Olivier; Wiener, Jan M
2016-01-01
In this study, we examined the cognitive processes and ocular behavior associated with on-going navigation strategy choice using a route learning paradigm that distinguishes between three different wayfinding strategies: an allocentric place strategy, and the egocentric associative cue and beacon response strategies. Participants approached intersections of a known route from a variety of directions, and were asked to indicate the direction in which the original route continued. Their responses in a subset of these test trials allowed the assessment of strategy choice over the course of six experimental blocks. The behavioral data revealed an initial maladaptive bias for a beacon response strategy, with shifts in favor of the optimal configuration place strategy occurring over the course of the experiment. Response time analysis suggests that the configuration strategy relied on spatial transformations applied to a viewpoint-dependent spatial representation, rather than direct access to an allocentric representation. Furthermore, pupillary measures reflected the employment of place and response strategies throughout the experiment, with increasing use of the more cognitively demanding configuration strategy associated with increases in pupil dilation. During test trials in which known intersections were approached from different directions, visual attention was directed to the landmark encoded during learning as well as the intended movement direction. Interestingly, the encoded landmark did not differ between the three navigation strategies, which is discussed in the context of initial strategy choice and the parallel acquisition of place and response knowledge.
POSTMAN: Point of Sail Tacking for Maritime Autonomous Navigation
NASA Technical Reports Server (NTRS)
Huntsberger, Terrance L.; Reinhart, Felix
2012-01-01
Waves apply significant forces to small boats, in particular when such vessels are moving at a high speed in severe sea conditions. In addition, small high-speed boats run the risk of diving with the bow into the next wave crest during operations in the wavelengths and wave speeds that are typical for shallow water. In order to mitigate the issues of autonomous navigation in rough water, a hybrid controller called POSTMAN combines the concept of POS (point of sail) tack planning from the sailing domain with a standard PID (proportional-integral-derivative) controller that implements reliable target reaching for the motorized small boat control task. This is an embedded, adaptive software controller that uses look-ahead sensing in a closed loop method to perform path planning for safer navigation in rough waters. State-of-the-art controllers for small boats are based on complex models of the vessel's kinematics and dynamics. They enable the vessel to follow preplanned paths accurately and can theoretically control all of the small boat s six degrees of freedom. However, the problems of bow diving and other undesirable incidents are not addressed, and it is questionable if a six-DOF controller with basically a single actuator is possible at all. POSTMAN builds an adaptive capability into the controller based on sensed wave characteristics. This software will bring a muchneeded capability to unmanned small boats moving at high speeds. Previously, this class of boat was limited to wave heights of less than one meter in the sea states in which it could operate. POSTMAN is a major advance in autonomous safety for small maritime craft.
Petrenko, Valery A; Gillespie, James W
2017-03-01
New phage-directed nanomedicines have emerged recently as a result of the in-depth study of the genetics and structure of filamentous phage and evolution of phage display and phage nanobiotechnology. This review focuses on the progress made in the development of the cancer-targeted nanomaterials and discusses the trends in using phage as a bioselectable molecular navigation system. Areas covered: The merging of phage display technologies with nanotechnology in recent years has proved promising in different areas of medicine and technology, such as medical diagnostics, molecular imaging, vaccine development and targeted drug/gene delivery, which is the focus of this review. The authors used data obtained from their research group and sourced using Science Citation Index (Web of Science) and NCBI PubMed search resources. Expert opinion: First attempts of adapting traditional concepts of direct targeting of tumor using phage-targeted nanomedicines has shown minimal improvements. With discovery and study of biological and technical barriers that prevent anti-tumor drug delivery, a paradigm shift from traditional drug targeting to nanomedicine navigation systems is required. The advanced bacteriophage-driven self-navigation systems are thought to overcome those barriers using more precise, localized phage selection methods, multi-targeting 'promiscuous' ligands and advanced multifunctional nanomedicine platforms.
Survey of computer vision technology for UVA navigation
NASA Astrophysics Data System (ADS)
Xie, Bo; Fan, Xiang; Li, Sijian
2017-11-01
Navigation based on computer version technology, which has the characteristics of strong independence, high precision and is not susceptible to electrical interference, has attracted more and more attention in the filed of UAV navigation research. Early navigation project based on computer version technology mainly applied to autonomous ground robot. In recent years, the visual navigation system is widely applied to unmanned machine, deep space detector and underwater robot. That further stimulate the research of integrated navigation algorithm based on computer version technology. In China, with many types of UAV development and two lunar exploration, the three phase of the project started, there has been significant progress in the study of visual navigation. The paper expounds the development of navigation based on computer version technology in the filed of UAV navigation research and draw a conclusion that visual navigation is mainly applied to three aspects as follows.(1) Acquisition of UAV navigation parameters. The parameters, including UAV attitude, position and velocity information could be got according to the relationship between the images from sensors and carrier's attitude, the relationship between instant matching images and the reference images and the relationship between carrier's velocity and characteristics of sequential images.(2) Autonomous obstacle avoidance. There are many ways to achieve obstacle avoidance in UAV navigation. The methods based on computer version technology ,including feature matching, template matching, image frames and so on, are mainly introduced. (3) The target tracking, positioning. Using the obtained images, UAV position is calculated by using optical flow method, MeanShift algorithm, CamShift algorithm, Kalman filtering and particle filter algotithm. The paper expounds three kinds of mainstream visual system. (1) High speed visual system. It uses parallel structure, with which image detection and processing are carried out at high speed. The system is applied to rapid response system. (2) The visual system of distributed network. There are several discrete image data acquisition sensor in different locations, which transmit image data to the node processor to increase the sampling rate. (3) The visual system combined with observer. The system combines image sensors with the external observers to make up for lack of visual equipment. To some degree, these systems overcome lacks of the early visual system, including low frequency, low processing efficiency and strong noise. In the end, the difficulties of navigation based on computer version technology in practical application are briefly discussed. (1) Due to the huge workload of image operation , the real-time performance of the system is poor. (2) Due to the large environmental impact , the anti-interference ability of the system is poor.(3) Due to the ability to work in a particular environment, the system has poor adaptability.
Davidson, Emma M; Liu, Jing Jing; Bhopal, Raj; White, Martin; Johnson, Mark RD; Netto, Gina; Wabnitz, Cecile; Sheikh, Aziz
2013-01-01
Context Adapting behavior change interventions to meet the needs of racial and ethnic minority populations has the potential to enhance their effectiveness in the target populations. But because there is little guidance on how best to undertake these adaptations, work in this field has proceeded without any firm foundations. In this article, we present our Tool Kit of Adaptation Approaches as a framework for policymakers, practitioners, and researchers interested in delivering behavior change interventions to ethnically diverse, underserved populations in the United Kingdom. Methods We undertook a mixed-method program of research on interventions for smoking cessation, increasing physical activity, and promoting healthy eating that had been adapted to improve salience and acceptability for African-, Chinese-, and South Asian–origin minority populations. This program included a systematic review (reported using PRISMA criteria), qualitative interviews, and a realist synthesis of data. Findings We compiled a richly informative data set of 161 publications and twenty-six interviews detailing the adaptation of behavior change interventions and the contexts in which they were undertaken. On the basis of these data, we developed our Tool Kit of Adaptation Approaches, which contains (1) a forty-six-item Typology of Adaptation Approaches; (2) a Pathway to Adaptation, which shows how to use the Typology to create a generic behavior change intervention; and (3) RESET, a decision tool that provides practical guidance on which adaptations to use in different contexts. Conclusions Our Tool Kit of Adaptation Approaches provides the first evidence-derived suite of materials to support the development, design, implementation, and reporting of health behavior change interventions for minority groups. The Tool Kit now needs prospective, empirical evaluation in a range of intervention and population settings. PMID:24320170
Directional wave navigation radar measurements compared with pitch-roll buoy data
DOE Office of Scientific and Technical Information (OSTI.GOV)
A.-Munoyerro, M.A.; Borge, J.C.N.
1997-02-01
The knowledge of the spectral behavior of a specific sea region is complete when one knows surface elevations and directional wave movements. Usually, sea directional descriptions have been made using pitch-roll buoys, which can provide one with several wave characteristic time series. Alternatively, there are other measure systems, which belong to remote sensing technics, such as shipboard navigation radars. The aim of the present work is to compare results obtained from pitch-roll data and ship radar wave measurements obtained during a campaign in the Cantabric Sea.
Information Behaviors and Information Literacy Skills of LIS Students: An International Perspective
ERIC Educational Resources Information Center
Saunders, Laura; Kurbanoglu, Serap; Boustany, Joumana; Dogan, Guleda; Becker, Peter; Blumer, Eliane; Chowdhury, Sudatta; Dobreva, Milena; Gendina, Natalia; Grgic, Ivana Hebrang; Haddow, Gaby; Koltay, Tibor; Kortelainen, Terttu; Krakowska, Monika; Majid, Shaheen; Mezhova, Marina; Repanovici, Angela; Rudžioniene, Jurgita; Schneider, Rene; Terra, Ana Lucia; Todorova, Tania Y.
2015-01-01
Librarians are expected to be expert searchers, and developing information literacy skills to navigate the vast world of information is a focus of most library and information science (LIS) programs. It is important to understand the information literacy and behaviors of LIS students to see if they are employing the skills they will need to assist…
Otsuna, Hideo; Shinomiya, Kazunori; Ito, Kei
2014-01-01
Compared with connections between the retinae and primary visual centers, relatively less is known in both mammals and insects about the functional segregation of neural pathways connecting primary and higher centers of the visual processing cascade. Here, using the Drosophila visual system as a model, we demonstrate two levels of parallel computation in the pathways that connect primary visual centers of the optic lobe to computational circuits embedded within deeper centers in the central brain. We show that a seemingly simple achromatic behavior, namely phototaxis, is under the control of several independent pathways, each of which is responsible for navigation towards unique wavelengths. Silencing just one pathway is enough to disturb phototaxis towards one characteristic monochromatic source, whereas phototactic behavior towards white light is not affected. The response spectrum of each demonstrable pathway is different from that of individual photoreceptors, suggesting subtractive computations. A choice assay between two colors showed that these pathways are responsible for navigation towards, but not for the detection itself of, the monochromatic light. The present study provides novel insights about how visual information is separated and processed in parallel to achieve robust control of an innate behavior. PMID:24574974
Behavior coordination of mobile robotics using supervisory control of fuzzy discrete event systems.
Jayasiri, Awantha; Mann, George K I; Gosine, Raymond G
2011-10-01
In order to incorporate the uncertainty and impreciseness present in real-world event-driven asynchronous systems, fuzzy discrete event systems (DESs) (FDESs) have been proposed as an extension to crisp DESs. In this paper, first, we propose an extension to the supervisory control theory of FDES by redefining fuzzy controllable and uncontrollable events. The proposed supervisor is capable of enabling feasible uncontrollable and controllable events with different possibilities. Then, the extended supervisory control framework of FDES is employed to model and control several navigational tasks of a mobile robot using the behavior-based approach. The robot has limited sensory capabilities, and the navigations have been performed in several unmodeled environments. The reactive and deliberative behaviors of the mobile robotic system are weighted through fuzzy uncontrollable and controllable events, respectively. By employing the proposed supervisory controller, a command-fusion-type behavior coordination is achieved. The observability of fuzzy events is incorporated to represent the sensory imprecision. As a systematic analysis of the system, a fuzzy-state-based controllability measure is introduced. The approach is implemented in both simulation and real time. A performance evaluation is performed to quantitatively estimate the validity of the proposed approach over its counterparts.
Adaptive Skills, Behavior Problems, and Parenting Stress in Mothers of Boys with Fragile X Syndrome
ERIC Educational Resources Information Center
Sarimski, Klaus
2010-01-01
The relationship of temperament, atypical behaviors, and adaptive behavior of young boys with Fragile X syndrome on mothers' parenting stress was analyzed. Twenty-six boys with Fragile X syndrome (30-88 months of age) participated. The overall development of the participants was significantly delayed with a specific profile of adaptive behaviors…
ERIC Educational Resources Information Center
McDonald, Christin A.; Donnelly, James P.; Rodgers, Jonathan D.; Thomeer, Marcus L.; Lopata, Christopher; Jordan, Allyson K.
2017-01-01
This study extended the research on correlates of adaptive functioning of high-functioning children with autism spectrum disorder (HFASD) using the Behavior Assessment System for Children-Second Edition (BASC-2). Specifically, this study investigated the relationships between adaptive behavior and age, IQ, and ASD symptomology, in a…
ERIC Educational Resources Information Center
Kenworthy, Lauren; Case, Laura; Harms, Madeline B.; Martin, Alex; Wallace, Gregory L.
2010-01-01
Caregiver report on the Adaptive Behavior Assessment System-II (ABAS) for 40 high-functioning individuals with Autism Spectrum Disorders (ASD) and 30 typically developing (TD) individuals matched for age, IQ, and sex ratio revealed global adaptive behavior deficits in ASD, with social skills impairments particularly prominent. Within the ASD…
ERIC Educational Resources Information Center
Tasse, Marc J.; Schalock, Robert L.; Balboni, Giulia; Bersani, Hank, Jr.; Borthwick-Duffy, Sharon A.; Spreat, Scott; Thissen, David; Widaman, Keith F.; Zhang, Dalun
2012-01-01
This article updates the current conceptualization, measurement, and use of the adaptive behavior construct. Major sections of the article address an understanding of the construct, the current approaches to its measurement, four assessment issues and challenges related to the use of adaptive behavior information for the diagnosis of intellectual…
The Longitudinal Effects of Parenting on Adaptive Behavior in Children with Fragile X Syndrome
ERIC Educational Resources Information Center
Warren, Steven F.; Brady, Nancy; Fleming, Kandace K.; Hahn, Laura J.
2017-01-01
Several studies have reported declines in adaptive behavior amongst children with fragile X syndrome (FXS) starting in middle childhood. We examined the effects of maternal responsivity on adaptive behavior in 55 children with FXS visited 5-6 times in their homes from early through middle childhood. Our analyses indicated that sustained maternal…
Peripheral Processing Facilitates Optic Flow-Based Depth Perception
Li, Jinglin; Lindemann, Jens P.; Egelhaaf, Martin
2016-01-01
Flying insects, such as flies or bees, rely on consistent information regarding the depth structure of the environment when performing their flight maneuvers in cluttered natural environments. These behaviors include avoiding collisions, approaching targets or spatial navigation. Insects are thought to obtain depth information visually from the retinal image displacements (“optic flow”) during translational ego-motion. Optic flow in the insect visual system is processed by a mechanism that can be modeled by correlation-type elementary motion detectors (EMDs). However, it is still an open question how spatial information can be extracted reliably from the responses of the highly contrast- and pattern-dependent EMD responses, especially if the vast range of light intensities encountered in natural environments is taken into account. This question will be addressed here by systematically modeling the peripheral visual system of flies, including various adaptive mechanisms. Different model variants of the peripheral visual system were stimulated with image sequences that mimic the panoramic visual input during translational ego-motion in various natural environments, and the resulting peripheral signals were fed into an array of EMDs. We characterized the influence of each peripheral computational unit on the representation of spatial information in the EMD responses. Our model simulations reveal that information about the overall light level needs to be eliminated from the EMD input as is accomplished under light-adapted conditions in the insect peripheral visual system. The response characteristics of large monopolar cells (LMCs) resemble that of a band-pass filter, which reduces the contrast dependency of EMDs strongly, effectively enhancing the representation of the nearness of objects and, especially, of their contours. We furthermore show that local brightness adaptation of photoreceptors allows for spatial vision under a wide range of dynamic light conditions. PMID:27818631
Kosterhon, Michael; Gutenberg, Angelika; Kantelhardt, Sven R; Conrad, Jens; Nimer Amr, Amr; Gawehn, Joachim; Giese, Alf
2017-08-01
A feasibility study. To develop a method based on the DICOM standard which transfers complex 3-dimensional (3D) trajectories and objects from external planning software to any navigation system for planning and intraoperative guidance of complex spinal procedures. There have been many reports about navigation systems with embedded planning solutions but only few on how to transfer planning data generated in external software. Patients computerized tomography and/or magnetic resonance volume data sets of the affected spinal segments were imported to Amira software, reconstructed to 3D images and fused with magnetic resonance data for soft-tissue visualization, resulting in a virtual patient model. Objects needed for surgical plans or surgical procedures such as trajectories, implants or surgical instruments were either digitally constructed or computerized tomography scanned and virtually positioned within the 3D model as required. As crucial step of this method these objects were fused with the patient's original diagnostic image data, resulting in a single DICOM sequence, containing all preplanned information necessary for the operation. By this step it was possible to import complex surgical plans into any navigation system. We applied this method not only to intraoperatively adjustable implants and objects under experimental settings, but also planned and successfully performed surgical procedures, such as the percutaneous lateral approach to the lumbar spine following preplanned trajectories and a thoracic tumor resection including intervertebral body replacement using an optical navigation system. To demonstrate the versatility and compatibility of the method with an entirely different navigation system, virtually preplanned lumbar transpedicular screw placement was performed with a robotic guidance system. The presented method not only allows virtual planning of complex surgical procedures, but to export objects and surgical plans to any navigation or guidance system able to read DICOM data sets, expanding the possibilities of embedded planning software.
Kosaki, Yutaka; Pearce, John M; McGregor, Anthony
2018-04-10
Previous studies have suggested that spatial navigation can be achieved with at least two distinct learning processes, involving either cognitive map-like representations of the local environment, referred to as the "place strategy", or simple stimulus-response (S-R) associations, the "response strategy". A similar distinction between cognitive/behavioral processes has been made in the context of non-spatial, instrumental conditioning, with the definition of two processes concerning the sensitivity of a given behavior to the expected value of its outcome as well as to the response-outcome contingency ("goal-directed action" and "S-R habit"). Here we investigated whether these two versions of dichotomist definitions of learned behavior, one spatial and the other non-spatial, correspond to each other in a formal way. Specifically, we assessed the goal-directed nature of two navigational strategies, using a combination of an outcome devaluation procedure and a spatial probe trial frequently used to dissociate the two navigational strategies. In Experiment 1, rats trained in a dual-solution T-maze task were subjected to an extinction probe trial from the opposite start arm, with or without prefeeding-induced devaluation of the expected outcome. We found that a non-significant preference for the place strategy in the non-devalued condition was completely reversed after devaluation, such that significantly more animals displayed the use of the response strategy. The result suggests that the place strategy is sensitive to the expected value of the outcome, while the response strategy is not. In Experiment 2, rats with hippocampal lesions showed significant reliance on the response strategy, regardless of whether the expected outcome was devalued or not. The result thus offers further evidence that the response strategy conforms to the definition of an outcome-insensitive, habitual form of instrumental behavior. These results together attest a formal correspondence between two types of dual-process accounts of animal learning and behavior. © 2018 The Authors Hippocampus Published by Wiley Periodicals, Inc.
Hypersonic entry vehicle state estimation using nonlinearity-based adaptive cubature Kalman filters
NASA Astrophysics Data System (ADS)
Sun, Tao; Xin, Ming
2017-05-01
Guidance, navigation, and control of a hypersonic vehicle landing on the Mars rely on precise state feedback information, which is obtained from state estimation. The high uncertainty and nonlinearity of the entry dynamics make the estimation a very challenging problem. In this paper, a new adaptive cubature Kalman filter is proposed for state trajectory estimation of a hypersonic entry vehicle. This new adaptive estimation strategy is based on the measure of nonlinearity of the stochastic system. According to the severity of nonlinearity along the trajectory, the high degree cubature rule or the conventional third degree cubature rule is adaptively used in the cubature Kalman filter. This strategy has the benefit of attaining higher estimation accuracy only when necessary without causing excessive computation load. The simulation results demonstrate that the proposed adaptive filter exhibits better performance than the conventional third-degree cubature Kalman filter while maintaining the same performance as the uniform high degree cubature Kalman filter but with lower computation complexity.
Behavioral and Neural Adaptation in Approach Behavior.
Wang, Shuo; Falvello, Virginia; Porter, Jenny; Said, Christopher P; Todorov, Alexander
2018-06-01
People often make approachability decisions based on perceived facial trustworthiness. However, it remains unclear how people learn trustworthiness from a population of faces and whether this learning influences their approachability decisions. Here we investigated the neural underpinning of approach behavior and tested two important hypotheses: whether the amygdala adapts to different trustworthiness ranges and whether the amygdala is modulated by task instructions and evaluative goals. We showed that participants adapted to the stimulus range of perceived trustworthiness when making approach decisions and that these decisions were further modulated by the social context. The right amygdala showed both linear response and quadratic response to trustworthiness level, as observed in prior studies. Notably, the amygdala's response to trustworthiness was not modulated by stimulus range or social context, a possible neural dynamic adaptation. Together, our data have revealed a robust behavioral adaptation to different trustworthiness ranges as well as a neural substrate underlying approach behavior based on perceived facial trustworthiness.
Stimulus relevance modulates contrast adaptation in visual cortex
Keller, Andreas J; Houlton, Rachael; Kampa, Björn M; Lesica, Nicholas A; Mrsic-Flogel, Thomas D; Keller, Georg B; Helmchen, Fritjof
2017-01-01
A general principle of sensory processing is that neurons adapt to sustained stimuli by reducing their response over time. Most of our knowledge on adaptation in single cells is based on experiments in anesthetized animals. How responses adapt in awake animals, when stimuli may be behaviorally relevant or not, remains unclear. Here we show that contrast adaptation in mouse primary visual cortex depends on the behavioral relevance of the stimulus. Cells that adapted to contrast under anesthesia maintained or even increased their activity in awake naïve mice. When engaged in a visually guided task, contrast adaptation re-occurred for stimuli that were irrelevant for solving the task. However, contrast adaptation was reversed when stimuli acquired behavioral relevance. Regulation of cortical adaptation by task demand may allow dynamic control of sensory-evoked signal flow in the neocortex. DOI: http://dx.doi.org/10.7554/eLife.21589.001 PMID:28130922
Navigational strategies underlying phototaxis in larval zebrafish
Chen, Xiuye; Engert, Florian
2014-01-01
Understanding how the brain transforms sensory input into complex behavior is a fundamental question in systems neuroscience. Using larval zebrafish, we study the temporal component of phototaxis, which is defined as orientation decisions based on comparisons of light intensity at successive moments in time. We developed a novel “Virtual Circle” assay where whole-field illumination is abruptly turned off when the fish swims out of a virtually defined circular border, and turned on again when it returns into the circle. The animal receives no direct spatial cues and experiences only whole-field temporal light changes. Remarkably, the fish spends most of its time within the invisible virtual border. Behavioral analyses of swim bouts in relation to light transitions were used to develop four discrete temporal algorithms that transform the binary visual input (uniform light/uniform darkness) into the observed spatial behavior. In these algorithms, the turning angle is dependent on the behavioral history immediately preceding individual turning events. Computer simulations show that the algorithms recapture most of the swim statistics of real fish. We discovered that turning properties in larval zebrafish are distinctly modulated by temporal step functions in light intensity in combination with the specific motor history preceding these turns. Several aspects of the behavior suggest memory usage of up to 10 swim bouts (~10 sec). Thus, we show that a complex behavior like spatial navigation can emerge from a small number of relatively simple behavioral algorithms. PMID:24723859
ERIC Educational Resources Information Center
Hsiao, I.-H.; Sosnovsky, S.; Brusilovsky, P.
2010-01-01
Rapid growth of the volume of interactive questions available to the students of modern E-Learning courses placed the problem of personalized guidance on the agenda of E-Learning researchers. Without proper guidance, students frequently select too simple or too complicated problems and ended either bored or discouraged. This paper explores a…
ERIC Educational Resources Information Center
Carr, Sarah
2014-01-01
In this amended excerpt from "Hope Against Hope", educational reform in post-Katrina New Orleans is considered from a journalistic perspective in presenting the story of Geraldlynn Stewart as she and her family navigate the new school system. In providing voices of lived experiences of Stewart as well as other individuals within this new…
An Adaptive Navigation Support System for Conducting Context-Aware Ubiquitous Learning in Museums
ERIC Educational Resources Information Center
Chiou, Chuang-Kai; Tseng, Judy C. R.; Hwang, Gwo-Jen; Heller, Shelly
2010-01-01
In context-aware ubiquitous learning, students are guided to learn in the real world with personalized supports from the learning system. As the learning resources are realistic objects in the real world, certain physical constraints, such as the limitation of stream of people who visit the same learning object, the time for moving from one object…
Recolonization of experimentally defaunated tidepools by northeast Pacific intertidal fishes.
K.M. Polivka; M.A. Chotkowski
1998-01-01
Site fidelity and maintenance of home ranges are common in fishes (e.g., Stephens et al., 1970; Robertson and Sheldon, 1979; Hixon, 1981), especially for intertidal species for which the ability to navigate to a safe region of an environment that periodically drains of water may be adaptive (e.g., Gibson 1967, 1969, 1982). For intertidal fishes in the northeast Pacific...
Computational model for behavior shaping as an adaptive health intervention strategy.
Berardi, Vincent; Carretero-González, Ricardo; Klepeis, Neil E; Ghanipoor Machiani, Sahar; Jahangiri, Arash; Bellettiere, John; Hovell, Melbourne
2018-03-01
Adaptive behavioral interventions that automatically adjust in real-time to participants' changing behavior, environmental contexts, and individual history are becoming more feasible as the use of real-time sensing technology expands. This development is expected to improve shortcomings associated with traditional behavioral interventions, such as the reliance on imprecise intervention procedures and limited/short-lived effects. JITAI adaptation strategies often lack a theoretical foundation. Increasing the theoretical fidelity of a trial has been shown to increase effectiveness. This research explores the use of shaping, a well-known process from behavioral theory for engendering or maintaining a target behavior, as a JITAI adaptation strategy. A computational model of behavior dynamics and operant conditioning was modified to incorporate the construct of behavior shaping by adding the ability to vary, over time, the range of behaviors that were reinforced when emitted. Digital experiments were performed with this updated model for a range of parameters in order to identify the behavior shaping features that optimally generated target behavior. Narrowing the range of reinforced behaviors continuously in time led to better outcomes compared with a discrete narrowing of the reinforcement window. Rapid narrowing followed by more moderate decreases in window size was more effective in generating target behavior than the inverse scenario. The computational shaping model represents an effective tool for investigating JITAI adaptation strategies. Model parameters must now be translated from the digital domain to real-world experiments so that model findings can be validated.
Life after Stroke in an Urban Minority Population: A Photovoice Project.
Balakrishnan, Revathi; Kaplan, Benjamin; Negron, Rennie; Fei, Kezhen; Goldfinger, Judith Z; Horowitz, Carol R
2017-03-11
Stroke is a leading cause of disability in the United States and disproportionately affects minority populations. We sought to explore the quality of life in urban, minority stroke survivors through their own photos and narratives. Using the Photovoice method, seventeen stroke survivors were instructed to take pictures reflecting their experience living with and recovering from stroke. Key photographs were discussed in detail; participants brainstormed ways to improve their lives and presented their work in clinical and community sites. Group discussions were recorded, transcribed, and coded transcripts were reviewed with written narratives to identify themes. Participants conveyed recovery from stroke in three stages: learning to navigate the initial physical and emotional impact of the stroke; coping with newfound physical and emotional barriers; and long-term adaptation to physical impairment and/or chronic disease. Participants navigated this stage-based model to varying degrees of success and identified barriers and facilitators to this process. Barriers included limited access for disabled and limited healthy food choices unique to the urban setting; facilitators included presence of social support and community engagement. Using Photovoice, diverse stroke survivors were able to identify common challenges in adapting to life after stroke and important factors for recovery of quality of life.
NASA Technical Reports Server (NTRS)
Semenov, Boris V.; Acton, Charles H., Jr.; Bachman, Nathaniel J.; Elson, Lee S.; Wright, Edward D.
2005-01-01
The SPICE system of navigation and ancillary data possesses a number of traits that make its use in modern space missions of all types highly cost efficient. The core of the system is a software library providing API interfaces for storing and retrieving such data as trajectories, orientations, time conversions, and instrument geometry parameters. Applications used at any stage of a mission life cycle can call SPICE APIs to access this data and compute geometric quantities required for observation planning, engineering assessment and science data analysis. SPICE is implemented in three different languages, supported on 20+ computer environments, and distributed with complete source code and documentation. It includes capabilities that are extensively tested by everyday use in many active projects and are applicable to all types of space missions - flyby, orbiters, observatories, landers and rovers. While a customer's initial SPICE adaptation for the first mission or experiment requires a modest effort, this initial effort pays off because adaptation for subsequent missions/experiments is just a small fraction of the initial investment, with the majority of tools based on SPICE requiring no or very minor changes.
Science Activity Planner for the MER Mission
NASA Technical Reports Server (NTRS)
Norris, Jeffrey S.; Crockett, Thomas M.; Fox, Jason M.; Joswig, Joseph C.; Powell, Mark W.; Shams, Khawaja S.; Torres, Recaredo J.; Wallick, Michael N.; Mittman, David S.
2008-01-01
The Maestro Science Activity Planner is a computer program that assists human users in planning operations of the Mars Explorer Rover (MER) mission and visualizing scientific data returned from the MER rovers. Relative to its predecessors, this program is more powerful and easier to use. This program is built on the Java Eclipse open-source platform around a Web-browser-based user-interface paradigm to provide an intuitive user interface to Mars rovers and landers. This program affords a combination of advanced display and simulation capabilities. For example, a map view of terrain can be generated from images acquired by the High Resolution Imaging Science Explorer instrument aboard the Mars Reconnaissance Orbiter spacecraft and overlaid with images from a navigation camera (more precisely, a stereoscopic pair of cameras) aboard a rover, and an interactive, annotated rover traverse path can be incorporated into the overlay. It is also possible to construct an overhead perspective mosaic image of terrain from navigation-camera images. This program can be adapted to similar use on other outer-space missions and is potentially adaptable to numerous terrestrial applications involving analysis of data, operations of robots, and planning of such operations for acquisition of scientific data.
Contribution of Cerebellar Sensorimotor Adaptation to Hippocampal Spatial Memory
Passot, Jean-Baptiste; Sheynikhovich, Denis; Duvelle, Éléonore; Arleo, Angelo
2012-01-01
Complementing its primary role in motor control, cerebellar learning has also a bottom-up influence on cognitive functions, where high-level representations build up from elementary sensorimotor memories. In this paper we examine the cerebellar contribution to both procedural and declarative components of spatial cognition. To do so, we model a functional interplay between the cerebellum and the hippocampal formation during goal-oriented navigation. We reinterpret and complete existing genetic behavioural observations by means of quantitative accounts that cross-link synaptic plasticity mechanisms, single cell and population coding properties, and behavioural responses. In contrast to earlier hypotheses positing only a purely procedural impact of cerebellar adaptation deficits, our results suggest a cerebellar involvement in high-level aspects of behaviour. In particular, we propose that cerebellar learning mechanisms may influence hippocampal place fields, by contributing to the path integration process. Our simulations predict differences in place-cell discharge properties between normal mice and L7-PKCI mutant mice lacking long-term depression at cerebellar parallel fibre-Purkinje cell synapses. On the behavioural level, these results suggest that, by influencing the accuracy of hippocampal spatial codes, cerebellar deficits may impact the exploration-exploitation balance during spatial navigation. PMID:22485133