Science.gov

Sample records for adaptive noise suppression

  1. Adaptive Suppression of Noise in Voice Communications

    NASA Technical Reports Server (NTRS)

    Kozel, David; DeVault, James A.; Birr, Richard B.

    2003-01-01

    A subsystem for the adaptive suppression of noise in a voice communication system effects a high level of reduction of noise that enters the system through microphones. The subsystem includes a digital signal processor (DSP) plus circuitry that implements voice-recognition and spectral- manipulation techniques. The development of the adaptive noise-suppression subsystem was prompted by the following considerations: During processing of the space shuttle at Kennedy Space Center, voice communications among test team members have been significantly impaired in several instances because some test participants have had to communicate from locations with high ambient noise levels. Ear protection for the personnel involved is commercially available and is used in such situations. However, commercially available noise-canceling microphones do not provide sufficient reduction of noise that enters through microphones and thus becomes transmitted on outbound communication links.

  2. Adaptive Noise Suppression Using Digital Signal Processing

    NASA Technical Reports Server (NTRS)

    Kozel, David; Nelson, Richard

    1996-01-01

    A signal to noise ratio dependent adaptive spectral subtraction algorithm is developed to eliminate noise from noise corrupted speech signals. The algorithm determines the signal to noise ratio and adjusts the spectral subtraction proportion appropriately. After spectra subtraction low amplitude signals are squelched. A single microphone is used to obtain both eh noise corrupted speech and the average noise estimate. This is done by determining if the frame of data being sampled is a voiced or unvoiced frame. During unvoice frames an estimate of the noise is obtained. A running average of the noise is used to approximate the expected value of the noise. Applications include the emergency egress vehicle and the crawler transporter.

  3. Communication system with adaptive noise suppression

    NASA Technical Reports Server (NTRS)

    Kozel, David (Inventor); Devault, James A. (Inventor); Birr, Richard B. (Inventor)

    2007-01-01

    A signal-to-noise ratio dependent adaptive spectral subtraction process eliminates noise from noise-corrupted speech signals. The process first pre-emphasizes the frequency components of the input sound signal which contain the consonant information in human speech. Next, a signal-to-noise ratio is determined and a spectral subtraction proportion adjusted appropriately. After spectral subtraction, low amplitude signals can be squelched. A single microphone is used to obtain both the noise-corrupted speech and the average noise estimate. This is done by determining if the frame of data being sampled is a voiced or unvoiced frame. During unvoiced frames an estimate of the noise is obtained. A running average of the noise is used to approximate the expected value of the noise. Spectral subtraction may be performed on a composite noise-corrupted signal, or upon individual sub-bands of the noise-corrupted signal. Pre-averaging of the input signal's magnitude spectrum over multiple time frames may be performed to reduce musical noise.

  4. SPECKLE NOISE SUBTRACTION AND SUPPRESSION WITH ADAPTIVE OPTICS CORONAGRAPHIC IMAGING

    SciTech Connect

    Ren Deqing; Dou Jiangpei; Zhang Xi; Zhu Yongtian

    2012-07-10

    Future ground-based direct imaging of exoplanets depends critically on high-contrast coronagraph and wave-front manipulation. A coronagraph is designed to remove most of the unaberrated starlight. Because of the wave-front error, which is inherit from the atmospheric turbulence from ground observations, a coronagraph cannot deliver its theoretical performance, and speckle noise will limit the high-contrast imaging performance. Recently, extreme adaptive optics, which can deliver an extremely high Strehl ratio, is being developed for such a challenging mission. In this publication, we show that barely taking a long-exposure image does not provide much gain for coronagraphic imaging with adaptive optics. We further discuss a speckle subtraction and suppression technique that fully takes advantage of the high contrast provided by the coronagraph, as well as the wave front corrected by the adaptive optics. This technique works well for coronagraphic imaging with conventional adaptive optics with a moderate Strehl ratio, as well as for extreme adaptive optics with a high Strehl ratio. We show how to substrate and suppress speckle noise efficiently up to the third order, which is critical for future ground-based high-contrast imaging. Numerical simulations are conducted to fully demonstrate this technique.

  5. Adaptive noise suppression for a dual-microphone hearing aid.

    PubMed

    Wouters, Jan; Berghe, Jeff Vanden; Maj, Jean-Baptiste

    2002-10-01

    An adaptive beamformer for behind-the-ear dual-microphone hearing aids has been optimized for speech intelligibility enhancement in the presence of disturbing sounds or noise. The noise reduction approach is based on the scheme presented by Vanden Berghe and Wouters (1998). A real-time implementation of the signal processing is realized in Audallion, a wearable, small digital signal processing (DSP) platform. After physical evaluation, speech-in-noise intelligibility tests have been carried out on three normally-hearing and two hearing-impaired subjects. A significant speech reception threshold improvement of 11.3 dB was obtained in a moderately reverberant environment for one jammer sound source (steady speech-weighted noise or multi-talker babble) in a direction of 90 degrees relative to the direction of the speech. PMID:12403608

  6. Adaptive noise estimation and suppression for improving microseismic event detection

    NASA Astrophysics Data System (ADS)

    Mousavi, S. Mostafa; Langston, Charles A.

    2016-09-01

    Microseismic data recorded by surface arrays are often strongly contaminated by unwanted noise. This background noise makes the detection of small magnitude events difficult. A noise level estimation and noise reduction algorithm is presented for microseismic data analysis based upon minimally controlled recursive averaging and neighborhood shrinkage estimators. The method might not be compared with more sophisticated and computationally expensive denoising algorithm in terms of preserving detailed features of seismic signal. However, it is fast and data-driven and can be applied in real-time processing of continuous data for event detection purposes. Results from application of this algorithm to synthetic and real seismic data show that it holds a great promise for improving microseismic event detection.

  7. Adaptive control and noise suppression by a variable-gain gradient algorithm

    NASA Technical Reports Server (NTRS)

    Merhav, S. J.; Mehta, R. S.

    1987-01-01

    An adaptive control system based on normalized LMS filters is investigated. The finite impulse response of the nonparametric controller is adaptively estimated using a given reference model. Specifically, the following issues are addressed: The stability of the closed loop system is analyzed and heuristically established. Next, the adaptation process is studied for piecewise constant plant parameters. It is shown that by introducing a variable-gain in the gradient algorithm, a substantial reduction in the LMS adaptation rate can be achieved. Finally, process noise at the plant output generally causes a biased estimate of the controller. By introducing a noise suppression scheme, this bias can be substantially reduced and the response of the adapted system becomes very close to that of the reference model. Extensive computer simulations validate these and demonstrate assertions that the system can rapidly adapt to random jumps in plant parameters.

  8. Adaptive noise suppression technique for dense 3D point cloud reconstructions from monocular vision

    NASA Astrophysics Data System (ADS)

    Diskin, Yakov; Asari, Vijayan K.

    2012-10-01

    Mobile vision-based autonomous vehicles use video frames from multiple angles to construct a 3D model of their environment. In this paper, we present a post-processing adaptive noise suppression technique to enhance the quality of the computed 3D model. Our near real-time reconstruction algorithm uses each pair of frames to compute the disparities of tracked feature points to translate the distance a feature has traveled within the frame in pixels into real world depth values. As a result these tracked feature points are plotted to form a dense and colorful point cloud. Due to the inevitable small vibrations in the camera and the mismatches within the feature tracking algorithm, the point cloud model contains a significant amount of misplaced points appearing as noise. The proposed noise suppression technique utilizes the spatial information of each point to unify points of similar texture and color into objects while simultaneously removing noise dissociated with any nearby objects. The noise filter combines all the points of similar depth into 2D layers throughout the point cloud model. By applying erosion and dilation techniques we are able to eliminate the unwanted floating points while retaining points of larger objects. To reverse the compression process, we transform the 2D layer back into the 3D model allowing points to return to their original position without the attached noise components. We evaluate the resulting noiseless point cloud by utilizing an unmanned ground vehicle to perform obstacle avoidance tasks. The contribution of the noise suppression technique is measured by evaluating the accuracy of the 3D reconstruction.

  9. Effects of Adaptation Rate and Noise Suppression on the Intelligibility of Compressed-Envelope Based Speech

    PubMed Central

    Lai, Ying-Hui; Tsao, Yu; Chen, Fei

    2015-01-01

    Temporal envelope is the primary acoustic cue used in most cochlear implant (CI) speech processors to elicit speech perception for patients fitted with CI devices. Envelope compression narrows down envelope dynamic range and accordingly degrades speech understanding abilities of CI users, especially under challenging listening conditions (e.g., in noise). A new adaptive envelope compression (AEC) strategy was proposed recently, which in contrast to the traditional static envelope compression, is effective at enhancing the modulation depth of envelope waveform by making best use of its dynamic range and thus improving the intelligibility of envelope-based speech. The present study further explored the effect of adaptation rate in envelope compression on the intelligibility of compressed-envelope based speech. Moreover, since noise reduction is another essential unit in modern CI systems, the compatibility of AEC and noise reduction was also investigated. In this study, listening experiments were carried out by presenting vocoded sentences to normal hearing listeners for recognition. Experimental results demonstrated that the adaptation rate in envelope compression had a notable effect on the speech intelligibility performance of the AEC strategy. By specifying a suitable adaptation rate, speech intelligibility could be enhanced significantly in noise compared to when using static envelope compression. Moreover, results confirmed that the AEC strategy was suitable for combining with noise reduction to improve the intelligibility of envelope-based speech in noise. PMID:26196508

  10. Jet Noise Suppression

    NASA Technical Reports Server (NTRS)

    Gliebe, P. R.; Brausch, J. F.; Majjigi, R. K.; Lee, R.

    1991-01-01

    The objectives of this chapter are to review and summarize the jet noise suppression technology, to provide a physical and theoretical model to explain the measured jet noise suppression characteristics of different concepts, and to provide a set of guidelines for evolving jet noise suppression designs. The underlying principle for all jet noise suppression devices is to enhance rapid mixing (i.e., diffusion) of the jet plume by geometric and aerothermodynamic means. In the case of supersonic jets, the shock-cell broadband noise reduction is effectively accomplished by the elimination or mitigation of the shock-cell structure. So far, the diffusion concepts have predominantly concentrated on jet momentum and energy (kinetic and thermal) diffusion, in that order, and have yielded better noise reduction than the simple conical nozzles. A critical technology issue that needs resolution is the effect of flight on the noise suppression potential of mechanical suppressor nozzles. A more thorough investigation of this mechanism is necessary for the successful development and design of an acceptable noise suppression device for future high-speed civil transports.

  11. Adaptive Noise Suppression of Pediatric Lung Auscultations With Real Applications to Noisy Clinical Settings in Developing Countries

    PubMed Central

    Emmanouilidou, Dimitra; McCollum, Eric D.; Park, Daniel E.

    2015-01-01

    Goal Chest auscultation constitutes a portable low-cost tool widely used for respiratory disease detection. Though it offers a powerful means of pulmonary examination, it remains riddled with a number of issues that limit its diagnostic capability. Particularly, patient agitation (especially in children), background chatter, and other environmental noises often contaminate the auscultation, hence affecting the clarity of the lung sound itself. This paper proposes an automated multiband denoising scheme for improving the quality of auscultation signals against heavy background contaminations. Methods The algorithm works on a simple two-microphone setup, dynamically adapts to the background noise and suppresses contaminations while successfully preserving the lung sound content. The proposed scheme is refined to offset maximal noise suppression against maintaining the integrity of the lung signal, particularly its unknown adventitious components that provide the most informative diagnostic value during lung pathology. Results The algorithm is applied to digital recordings obtained in the field in a busy clinic in West Africa and evaluated using objective signal fidelity measures and perceptual listening tests performed by a panel of licensed physicians. A strong preference of the enhanced sounds is revealed. Significance The strengths and benefits of the proposed method lie in the simple automated setup and its adaptive nature, both fundamental conditions for everyday clinical applicability. It can be simply extended to a real-time implementation, and integrated with lung sound acquisition protocols. PMID:25879837

  12. Suppression Measured from Chinchilla Auditory-Nerve-Fiber Responses Following Noise-Induced Hearing Loss: Adaptive-Tracking and Systems-Identification Approaches.

    PubMed

    Sayles, Mark; Walls, Michael K; Heinz, Michael G

    2016-01-01

    The compressive nonlinearity of cochlear signal transduction, reflecting outer-hair-cell function, manifests as suppressive spectral interactions; e.g., two-tone suppression. Moreover, for broadband sounds, there are multiple interactions between frequency components. These frequency-dependent nonlinearities are important for neural coding of complex sounds, such as speech. Acoustic-trauma-induced outer-hair-cell damage is associated with loss of nonlinearity, which auditory prostheses attempt to restore with, e.g., "multi-channel dynamic compression" algorithms.Neurophysiological data on suppression in hearing-impaired (HI) mammals are limited. We present data on firing-rate suppression measured in auditory-nerve-fiber responses in a chinchilla model of noise-induced hearing loss, and in normal-hearing (NH) controls at equal sensation level. Hearing-impaired (HI) animals had elevated single-fiber excitatory thresholds (by ~ 20-40 dB), broadened frequency tuning, and reduced-magnitude distortion-product otoacoustic emissions; consistent with mixed inner- and outer-hair-cell pathology. We characterized suppression using two approaches: adaptive tracking of two-tone-suppression threshold (62 NH, and 35 HI fibers), and Wiener-kernel analyses of responses to broadband noise (91 NH, and 148 HI fibers). Suppression-threshold tuning curves showed sensitive low-side suppression for NH and HI animals. High-side suppression thresholds were elevated in HI animals, to the same extent as excitatory thresholds. We factored second-order Wiener-kernels into excitatory and suppressive sub-kernels to quantify the relative strength of suppression. We found a small decrease in suppression in HI fibers, which correlated with broadened tuning. These data will help guide novel amplification strategies, particularly for complex listening situations (e.g., speech in noise), in which current hearing aids struggle to restore intelligibility. PMID:27080669

  13. Noise suppression methods for robust speech processing

    NASA Astrophysics Data System (ADS)

    Boll, S. F.; Kajiya, J.; Youngberg, J.; Petersen, T. L.; Ravindra, H.; Done, W.; Cox, B. V.; Cohen, E.

    1981-04-01

    Robust speech processing in practical operating environments requires effective environmental and processor noise suppression. This report describes the technical findings and accomplishments during the reporting period for the research program funded to develop real-time, compressed speech analysis-synthesis algorithms whose performance is invariant under signal contamination. Fulfillment of this requirement is necessary to insure reliable secure compressed speech transmission within realistic military command and control environments. Overall contributions resulting from this research program include the understanding of how environmental noise degrades narrow band, coded speech, development of appropriate real-time noise suppression algorithms, and development of speech parameter identification methods that consider signal contamination as a fundamental element in the estimation process. This report describes the research and results in the areas of noise suppression using the dual input adaptive noise cancellation articulation rate change techniques, spectral subtraction and a description of an experiment which demonstrated that the spectral substraction noise suppression algorithm can improve the intelligibility of 2400 bps, LPC-10 coded, helicopter speech by 10.6 points. In addition summaries are included of prior studies in Constant-Q signal analysis and synthesis, perceptual modelling, speech activity detection, and pole-zero modelling of noisy signals. Three recent studies in speech modelling using the critical band analysis-synthesis transform and using splines are then presented. Finally a list of major publications generated under this contract is given.

  14. Noise suppressing capillary separation system

    DOEpatents

    Yeung, Edward S.; Xue, Yongjun

    1996-07-30

    A noise-suppressing capillary separation system for detecting the real-time presence or concentration of an analyte in a sample is provided. The system contains a capillary separation means through which the analyte is moved, a coherent light source that generates a beam which is split into a reference beam and a sample beam that irradiate the capillary, and a detector for detecting the reference beam and the sample beam light that transmits through the capillary. The laser beam is of a wavelength effective to be absorbed by a chromophore in the capillary. The system includes a noise suppressing system to improve performance and accuracy without signal averaging or multiple scans.

  15. Noise suppressing capillary separation system

    DOEpatents

    Yeung, E.S.; Xue, Y.

    1996-07-30

    A noise-suppressing capillary separation system for detecting the real-time presence or concentration of an analyte in a sample is provided. The system contains a capillary separation means through which the analyte is moved, a coherent light source that generates a beam which is split into a reference beam and a sample beam that irradiate the capillary, and a detector for detecting the reference beam and the sample beam light that transmits through the capillary. The laser beam is of a wavelength effective to be absorbed by a chromophore in the capillary. The system includes a noise suppressing system to improve performance and accuracy without signal averaging or multiple scans. 13 figs.

  16. Noise suppression in surface microseismic data

    USGS Publications Warehouse

    Forghani-Arani, Farnoush; Batzle, Mike; Behura, Jyoti; Willis, Mark; Haines, Seth S.; Davidson, Michael

    2012-01-01

    We introduce a passive noise suppression technique, based on the τ − p transform. In the τ − p domain, one can separate microseismic events from surface noise based on distinct characteristics that are not visible in the time-offset domain. By applying the inverse τ − p transform to the separated microseismic event, we suppress the surface noise in the data. Our technique significantly improves the signal-to-noise ratios of the microseismic events and is superior to existing techniques for passive noise suppression in the sense that it preserves the waveform. We introduce a passive noise suppression technique, based on the τ − p transform. In the τ − p domain, one can separate microseismic events from surface noise based on distinct characteristics that are not visible in the time-offset domain. By applying the inverse τ − p transform to the separated microseismic event, we suppress the surface noise in the data. Our technique significantly improves the signal-to-noise ratios of the microseismic events and is superior to existing techniques for passive noise suppression in the sense that it preserves the waveform.

  17. Model of aircraft noise adaptation

    NASA Technical Reports Server (NTRS)

    Dempsey, T. K.; Coates, G. D.; Cawthorn, J. M.

    1977-01-01

    Development of an aircraft noise adaptation model, which would account for much of the variability in the responses of subjects participating in human response to noise experiments, was studied. A description of the model development is presented. The principal concept of the model, was the determination of an aircraft adaptation level which represents an annoyance calibration for each individual. Results showed a direct correlation between noise level of the stimuli and annoyance reactions. Attitude-personality variables were found to account for varying annoyance judgements.

  18. Adaptive feedback active noise control

    NASA Astrophysics Data System (ADS)

    Kuo, Sen M.; Vijayan, Dipa

    Feedforward active noise control (ANC) systems use a reference sensor that senses a reference input to the controller. This signal is assumed to be unaffected by the secondary source and is a good measure of the undesired noise to be cancelled by the system. The reference sensor may be acoustic (e.g., microphone) or non-acoustic (e.g., tachometer, optical transducer). An obvious problem when using acoustic sensors is that the reference signal may be corrupted by the canceling signal generated by the secondary source. This problem is known as acoustic feedback. One way of avoiding this is by using a feedback active noise control (FANC) system which dispenses with the reference sensor. The FANC technique originally proposed by Olson and May employs a high gain negative feedback amplifier. This system suffered from the drawback that the error microphone had to be placed very close to the loudspeaker. The operation of the system was restricted to low frequency range and suffered from instability due to the possibility of positive feedback. Feedback systems employing adaptive filtering techniques for active noise control were developed. This paper presents the FANC system modeled as an adaptive prediction scheme.

  19. Program in acoustics. [aeroacoustics, aircraft noise, and noise suppression

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Relevant research projects conducted by faculty and graduate students in the general area of aeroacoustics to further the understanding of noise generation by aircraft and to aid in the development of practical methods for noise suppression are listed. Special activities summarized relate to the nonlinear acoustic wave theory and its application to several cases including that of the acoustic source located at the throat of a near-sonic duct, a computer program developed to compute the nonlinear wave theory, and a parabolic approximation for propagation of sounding in moving stratified media.

  20. Optimal control techniques for active noise suppression

    NASA Technical Reports Server (NTRS)

    Banks, H. T.; Keeling, S. L.; Silcox, R. J.

    1988-01-01

    Active suppression of noise in a bounded enclosure is considered within the framework of optimal control theory. A sinusoidal pressure field due to exterior offending noise sources is assumed to be known in a neighborhood of interior sensors. The pressure field due to interior controlling sources is assumed to be governed by a nonhomogeneous wave equation within the enclosure and by a special boundary condition designed to accommodate frequency-dependent reflection properties of the enclosure boundary. The form of the controlling sources is determined by considering the steady-state behavior of the system, and it is established that the control strategy proposed is stable and asymptotically optimal.

  1. Jet noise suppression by porous plug nozzles

    NASA Technical Reports Server (NTRS)

    Bauer, A. B.; Kibens, V.; Wlezien, R. W.

    1982-01-01

    Jet noise suppression data presented earlier by Maestrello for porous plug nozzles were supplemented by the testing of a family of nozzles having an equivalent throat diameter of 11.77 cm. Two circular reference nozzles and eight plug nozzles having radius ratios of either 0.53 or 0.80 were tested at total pressure ratios of 1.60 to 4.00. Data were taken both with and without a forward motion or coannular flow jet, and some tests were made with a heated jet. Jet thrust was measured. The data were analyzed to show the effects of suppressor geometry on nozzle propulsive efficiency and jet noise. Aerodynamic testing of the nozzles was carried out in order to study the physical features that lead to the noise suppression. The aerodynamic flow phenomena were examined by the use of high speed shadowgraph cinematography, still shadowgraphs, extensive static pressure probe measurements, and two component laser Doppler velocimeter studies. The different measurement techniques correlated well with each other and demonstrated that the porous plug changes the shock cell structure of a standard nozzle into a series of smaller, periodic cell structures without strong shock waves. These structures become smaller in dimension and have reduced pressure variations as either the plug diameter or the porosity is increased, changes that also reduce the jet noise and decrease thrust efficiency.

  2. Ejector Noise Suppression with Auxiliary Jet Injection

    NASA Technical Reports Server (NTRS)

    Berman, Charles H.; Andersen, Otto P., Jr.

    1997-01-01

    An experimental program to reduce aircraft jet turbulence noise investigated the interaction of small auxiliary jets with a larger main jet. Significant reductions in the far field jet noise were obtained over a range of auxiliary jet pressures and flow rates when used in conjunction with an acoustically lined ejector. While the concept is similar to that of conventional ejector suppressors that use mechanical mixing devices, the present approach should improve thrust and lead to lower weight and less complex noise suppression systems since no hardware needs to be located in the main jet flow. A variety of auxiliary jet and ejector configurations and operating conditions were studied. The best conditions tested produced peak to peak noise reductions ranging from 11 to 16 dB, depending on measurement angle, for auxiliary jet mass flows that were 6.6% of the main jet flow with ejectors that were 8 times the main jet diameter in length. Much larger reductions in noise were found at the original peak frequencies of the unsuppressed jet over a range of far field measurement angles.

  3. Constrained crosstalk resistant adaptive noise canceller

    NASA Astrophysics Data System (ADS)

    Parsa, V.; Parker, P.

    1994-08-01

    The performance of an adaptive noise canceller (ANC) is sensitive to the presence of signal `crosstalk' in the reference channel. The authors propose a novel approach to crosstalk resistant adaptive noise cancellation, namely the constrained crosstalk resistant adaptive noise canceller (CCRANC). The theoretical analysis of the CCRANC along with the constrained algorithm is presented. The performance of the CCRANC in recovering somatosensory evoked potentials (SEPs) from myoelectric interference is then evaluated through simulations.

  4. Method for suppressing noise in measurements

    NASA Technical Reports Server (NTRS)

    Carson, Paul J. (Inventor); Madsen, Louis A. (Inventor); Leskowitz, Garett M. (Inventor); Weitekamp, Daniel P. (Inventor)

    2000-01-01

    Techniques of combining separate but correlated measurements to form a second-order or higher order correlation function to suppress the effects of noise in the initial condition of a system capable of retaining memory of an initial state of the system with a characteristic relaxation time. At least two separate measurements are obtained from the system. The temporal separation between the two separate measurements is preferably comparable to or less than the characteristic relaxation time and is adjusted to allow for a correlation between two measurements.

  5. Adaptive Responses Limited by Intrinsic Noise

    PubMed Central

    Shankar, Prabhat; Nishikawa, Masatoshi; Shibata, Tatsuo

    2015-01-01

    Sensory systems have mechanisms to respond to the external environment and adapt to them. Such adaptive responses are effective for a wide dynamic range of sensing and perception of temporal change in stimulus. However, noise generated by the adaptation system itself as well as extrinsic noise in sensory inputs may impose a limit on the ability of adaptation systems. The relation between response and noise is well understood for equilibrium systems in the form of fluctuation response relation. However, the relation for nonequilibrium systems, including adaptive systems, are poorly understood. Here, we systematically explore such a relation between response and fluctuation in adaptation systems. We study the two network motifs, incoherent feedforward loops (iFFL) and negative feedback loops (nFBL), that can achieve perfect adaptation. We find that the response magnitude in adaption systems is limited by its intrinsic noise, implying that higher response would have higher noise component as well. Comparing the relation of response and noise in iFFL and nFBL, we show that whereas iFFL exhibits adaptation over a wider parameter range, nFBL offers higher response to noise ratio than iFFL. We also identify the condition that yields the upper limit of response for both network motifs. These results may explain the reason of why nFBL seems to be more abundant in nature for the implementation of adaption systems. PMID:26305221

  6. Hybrid Active/Passive Jet Engine Noise Suppression System

    NASA Technical Reports Server (NTRS)

    Parente, C. A.; Arcas, N.; Walker, B. E.; Hersh, A. S.; Rice, E. J.

    1999-01-01

    A novel adaptive segmented liner concept has been developed that employs active control elements to modify the in-duct sound field to enhance the tone-suppressing performance of passive liner elements. This could potentially allow engine designs that inherently produce more tone noise but less broadband noise, or could allow passive liner designs to more optimally address high frequency broadband noise. A proof-of-concept validation program was undertaken, consisting of the development of an adaptive segmented liner that would maximize attenuation of two radial modes in a circular or annular duct. The liner consisted of a leading active segment with dual annuli of axially spaced active Helmholtz resonators, followed by an optimized passive liner and then an array of sensing microphones. Three successively complex versions of the adaptive liner were constructed and their performances tested relative to the performance of optimized uniform passive and segmented passive liners. The salient results of the tests were: The adaptive segmented liner performed well in a high flow speed model fan inlet environment, was successfully scaled to a high sound frequency and successfully attenuated three radial modes using sensor and active resonator arrays that were designed for a two mode, lower frequency environment.

  7. Suppressing buzz-saw noise in jet engines

    NASA Technical Reports Server (NTRS)

    Maestrello, L.

    1980-01-01

    Buzz-saw noise, most annoying noise component generated by turbofan engines, can be suppresses by installing porous surface on duct wall directly above engine fan-blade tip. Porous surface and its housing would reduce shock-wave reflection from wall and thus suppress noise.

  8. Apparatus and method for jet noise suppression

    NASA Astrophysics Data System (ADS)

    Maestrello, L.

    1983-08-01

    A method and apparatus for jet noise suppression through control of the static pressure of the jet and control of the rate of entrainment of ambient fluid into the jet downstream of the exhaust nozzle is disclosed. The momentum flux over an extended region of the jet is regulated, affecting Reynolds stresses in the jet and the spreading angle of the jet. Static pressure is controlled through a long hollow, porous nozzle plug centerbody which may be selectively vented to ambient conditions, connected to a vacuum source, or supplied with fluids of various densities for injection into the stream. Sound in the jet may be channeled along the nozzle plug centerbody by injecting coolant such as a cryogenic fluid throughout the center-body into the jet.

  9. Kalman filtering to suppress spurious signals in Adaptive Optics control

    SciTech Connect

    Poyneer, L; Veran, J P

    2010-03-29

    In many scenarios, an Adaptive Optics (AO) control system operates in the presence of temporally non-white noise. We use a Kalman filter with a state space formulation that allows suppression of this colored noise, hence improving residual error over the case where the noise is assumed to be white. We demonstrate the effectiveness of this new filter in the case of the estimated Gemini Planet Imager tip-tilt environment, where there are both common-path and non-common path vibrations. We discuss how this same framework can also be used to suppress spatial aliasing during predictive wavefront control assuming frozen flow in a low-order AO system without a spatially filtered wavefront sensor, and present experimental measurements from Altair that clearly reveal these aliased components.

  10. Neural Control Adaptation to Motor Noise Manipulation

    PubMed Central

    Hasson, Christopher J.; Gelina, Olga; Woo, Garrett

    2016-01-01

    Antagonistic muscular co-activation can compensate for movement variability induced by motor noise at the expense of increased energetic costs. Greater antagonistic co-activation is commonly observed in older adults, which could be an adaptation to increased motor noise. The present study tested this hypothesis by manipulating motor noise in 12 young subjects while they practiced a goal-directed task using a myoelectric virtual arm, which was controlled by their biceps and triceps muscle activity. Motor noise was increased by increasing the coefficient of variation (CV) of the myoelectric signals. As hypothesized, subjects adapted by increasing antagonistic co-activation, and this was associated with reduced noise-induced performance decrements. A second hypothesis was that a virtual decrease in motor noise, achieved by smoothing the myoelectric signals, would have the opposite effect: co-activation would decrease and motor performance would improve. However, the results showed that a decrease in noise made performance worse instead of better, with no change in co-activation. Overall, these findings suggest that the nervous system adapts to virtual increases in motor noise by increasing antagonistic co-activation, and this preserves motor performance. Reducing noise may have failed to benefit performance due to characteristics of the filtering process itself, e.g., delays are introduced and muscle activity bursts are attenuated. The observed adaptations to increased noise may explain in part why older adults and many patient populations have greater antagonistic co-activation, which could represent an adaptation to increased motor noise, along with a desire for increased joint stability. PMID:26973487

  11. Neural Control Adaptation to Motor Noise Manipulation.

    PubMed

    Hasson, Christopher J; Gelina, Olga; Woo, Garrett

    2016-01-01

    Antagonistic muscular co-activation can compensate for movement variability induced by motor noise at the expense of increased energetic costs. Greater antagonistic co-activation is commonly observed in older adults, which could be an adaptation to increased motor noise. The present study tested this hypothesis by manipulating motor noise in 12 young subjects while they practiced a goal-directed task using a myoelectric virtual arm, which was controlled by their biceps and triceps muscle activity. Motor noise was increased by increasing the coefficient of variation (CV) of the myoelectric signals. As hypothesized, subjects adapted by increasing antagonistic co-activation, and this was associated with reduced noise-induced performance decrements. A second hypothesis was that a virtual decrease in motor noise, achieved by smoothing the myoelectric signals, would have the opposite effect: co-activation would decrease and motor performance would improve. However, the results showed that a decrease in noise made performance worse instead of better, with no change in co-activation. Overall, these findings suggest that the nervous system adapts to virtual increases in motor noise by increasing antagonistic co-activation, and this preserves motor performance. Reducing noise may have failed to benefit performance due to characteristics of the filtering process itself, e.g., delays are introduced and muscle activity bursts are attenuated. The observed adaptations to increased noise may explain in part why older adults and many patient populations have greater antagonistic co-activation, which could represent an adaptation to increased motor noise, along with a desire for increased joint stability. PMID:26973487

  12. Adaptive whitening of ambient ocean noise with narrowband signal preservation.

    PubMed

    Hollmann, Luke J; Stevenson, Robert L

    2016-06-01

    Passive underwater listening devices are often deployed to listen for narrowband signals of interest in time-varying background ocean noise. Such tonals are generated mechanically by ships, submarines, and machines, or acoustically by aquatic wildlife. Quantization of the sensor data for storage or low bit-rate transmission adds white noise which can overwhelm weak narrowband signals if the background noise is sufficiently colored. Whitening the background noise prior to quantization can reduce the detrimental effects, but the whitening process must preserve any tonals in the signal for maximum effectiveness. Existing adaptive whitening techniques make no effort to avoid suppressing tonals in the whitening process, while existing spectral separation methods fail to whiten background noise. The proposed methods perform adaptive whitening of background ambient noise while preserving narrowband tones at their original signal-to-noise ratios. The proposed methods are shown to outperform combinations of existing partial solutions both subjectively and by evaluating the objective criteria introduced. The stability and convergence properties of the proposed algorithms match or surpass those of existing well-known adaptive algorithms. PMID:27369136

  13. Quantization noise in adaptive weighting networks

    NASA Astrophysics Data System (ADS)

    Davis, R. M.; Sher, P. J.-S.

    1984-09-01

    Adaptive weighting networks can be implemented using in-phase and quadrature, phase-phase, or phase-amplitude modulators. The statistical properties of the quantization error are derived for each modulator and the quantization noise power produced by the modulators are compared at the output of an adaptive antenna. Other relevant characteristics of the three types of modulators are also discussed.

  14. Method for suppressing noise in measurements

    NASA Technical Reports Server (NTRS)

    Carson, Paul L. (Inventor); Madsen, Louis A. (Inventor); Leskowitz, Garett M. (Inventor); Weitekamp, Daniel P. (Inventor)

    2000-01-01

    Methods for suppressing noise in measurements by correlating functions based on at least two different measurements of a system at two different times. In one embodiment, a measurement operation is performed on at least a portion of a system that has a memory. A property of the system is measured during a first measurement period to produce a first response indicative of a first state of the system. Then the property of the system is measured during a second measurement period to produce a second response indicative of a second state of the system. The second measurement is performed after an evolution duration subsequent to the first measurement period when the system still retains a degree of memory of an aspect of the first state. Next, a first function of the first response is combined with a second function of the second response to form a second-order correlation function. Information of the system is then extracted from the second-order correlation function.

  15. Suppression of Rayleigh-scattering-induced noise in OEOs.

    PubMed

    Okusaga, Olukayode; Cahill, James P; Docherty, Andrew; Menyuk, Curtis R; Zhou, Weimin; Carter, Gary M

    2013-09-23

    Optoelectronic oscillators (OEOs) are hybrid RF-photonic devices that promise to be environmentally robust high-frequency RF sources with very low phase noise. Previously, we showed that Rayleigh-scattering-induced noise in optical fibers coupled with amplitude-to-phase noise conversion in photodetectors and amplifiers leads to fiber-length-dependent noise in OEOs. In this work, we report on two methods for the suppression of this fiber-length-dependent noise: altering the amplitude-dependent phase delay of the OEO loops and suppressing the Rayleigh-scattering-induced noise in optical fibers. We report a 20 dB reduction in the flicker phase noise of a 6 km OEO via these suppression techniques. PMID:24104117

  16. Interaction between noise suppression and inhomogeneity correction in MRI

    NASA Astrophysics Data System (ADS)

    Montillo, Albert; Udupa, Jayaram K.; Axel, Leon; Metaxas, Dimitri N.

    2003-05-01

    While cardiovascular disease is the leading cause of death in most developed countries, SPAMM-MRI can reduce morbidity by facilitating patient diagnosis. An image analysis method with a high degree of automation is essential for clinical adoption of SPAMM-MRI. The degree of this automation is dependent on the amount of thermal noise and surface coil-induced intensity inhomogeneity that can be removed from the images. An ideal noise suppression algorithm removes thermal noise yet retains or enhances the strength of the edges of salient structures. In this paper, we quantitatively compare and rank several noise suppression algorithms in images from both normal and diseased subjects using measures of the residual noise and edge strength and the statistical significance levels and confidence intervals of these measures. We also investigate the interrelationship between inhomogeneity correction and noise suppression algorithms and compare the effect of the ordering of these algorithms. The variance of thermal noise does not tend to change with position, however, inhomogeneity correction increases noise variance in deep thoracic regions. We quantify the degree to which an inhomogeneity estimate can improve noise suppression and how well noise suppression can facilitate the identification of homogeneous tissue regions and thereby, assist in inhomogeneity correction.

  17. Musical noise reduction using an adaptive filter

    NASA Astrophysics Data System (ADS)

    Hanada, Takeshi; Murakami, Takahiro; Ishida, Yoshihisa; Hoya, Tetsuya

    2003-10-01

    This paper presents a method for reducing a particular noise (musical noise). The musical noise is artificially produced by Spectral Subtraction (SS), which is one of the most conventional methods for speech enhancement. The musical noise is the tin-like sound and annoying in human auditory. We know that the duration of the musical noise is considerably short in comparison with that of speech, and that the frequency components of the musical noise are random and isolated. In the ordinary SS-based methods, the musical noise is removed by the post-processing. However, the output of the ordinary post-processing is delayed since the post-processing uses the succeeding frames. In order to improve this problem, we propose a novel method using an adaptive filter. In the proposed system, the observed noisy signal is used as the input signal to the adaptive filter and the output of SS is used as the reference signal. In this paper we exploit the normalized LMS (Least Mean Square) algorithm for the adaptive filter. Simulation results show that the proposed method has improved the intelligibility of the enhanced speech in comparison with the conventional method.

  18. Adaptive Modal Identification for Flutter Suppression Control

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan T.; Drew, Michael; Swei, Sean S.

    2016-01-01

    In this paper, we will develop an adaptive modal identification method for identifying the frequencies and damping of a flutter mode based on model-reference adaptive control (MRAC) and least-squares methods. The least-squares parameter estimation will achieve parameter convergence in the presence of persistent excitation whereas the MRAC parameter estimation does not guarantee parameter convergence. Two adaptive flutter suppression control approaches are developed: one based on MRAC and the other based on the least-squares method. The MRAC flutter suppression control is designed as an integral part of the parameter estimation where the feedback signal is used to estimate the modal information. On the other hand, the separation principle of control and estimation is applied to the least-squares method. The least-squares modal identification is used to perform parameter estimation.

  19. Suppression of Speckles at High Adaptive Correction Using Speckle Symmetry

    NASA Technical Reports Server (NTRS)

    Bloemhof, Eric E.

    2006-01-01

    Focal-plane speckles set important sensitivity limits on ground- or space-based imagers and coronagraphs that may be used to search for faint companions, perhaps ultimately including exoplanets, around stars. As speckles vary with atmospheric fluctuations or with drifting beamtrain aberrations, they contribute speckle noise proportional to their full amplitude. Schemes to suppress speckles are thus of great interest. At high adaptive correction, speckles organize into species, represented by algebraic terms in the expansion of the phase exponential, that have distinct spatial symmetry, even or odd, under spatial inversion. Filtering speckle patterns by symmetry may eliminate a disproportionate fraction of the speckle noise while blocking (only) half of the image signal from the off-axis companion being sought. The fraction of speckle power and hence of speckle noise in each term will vary with degree of correction, and so also will the net symmetry in the speckle pattern.

  20. Ground-roll noise extraction and suppression using high-resolution linear Radon transform

    NASA Astrophysics Data System (ADS)

    Hu, Yue; Wang, Limin; Cheng, Feng; Luo, Yinhe; Shen, Chao; Mi, Binbin

    2016-05-01

    Ground-roll is a main type of strong noises in petroleum seismic exploration. Suppression of this kind of noise is essential to improve the signal-to-noise ratio of seismic data. In the time-offset (t-x) domain, the ground-roll noise and the effective waves (e.g., direct waves, reflections) overlap with each other in terms of time and frequency, which make it difficult to suppress ground roll noise in exploration seismic data. However, significant different features shown in the frequency-velocity (f-v) domain make it possible to separate ground roll noise and effective waves effectively. We propose a novel method to separate them using high-resolution linear Radon transform (LRT). Amplitude and phase information is preserved during the proposed quasi-reversible transformation. The reversibility and linearity of LRT provide a foundation for ground-roll noise suppression in the f-v domain. We extract the energy of ground-roll noise in the f-v domain, and transform the extracted part back to the t-x domain to obtain the ground-roll noise shot gather. Finally, the extracted ground-roll noise is subtracted from the original data arithmetically. Theoretical tests and a real world example have been implemented to illustrate that the ground-roll noise suppression can be achieved with negligible distortion of the effective signals. When compared with the adaptive ground-roll attenuation method and the K-L transform method, the real world example shows the superiority of our method in suppressing the ground-roll noise and preserving the amplitude and phase information of effective waves.

  1. Noise suppression by flexible fan silencers

    SciTech Connect

    Partyka, J.; Kelly, T.R.J.

    1995-12-31

    This paper presents the results on noise testing of a fan only, as well as the results of a steel silencer and of flexible silencers that were connected directly to a fan. On-site facilities and free-field method set by the British Standards Institution were used to measure and then compare the fan only and different practical silencer configuration setups. In order to determine the fan-silencer combination that would give the maximum noise attenuation, total noise intensity, noise contributed to by the fan motor only, as well as aerodynamical noise created through air interacting with the fan parts were considered to obtain decibel readings for the octave bands. Subsequently, the optimal configuration found was the setup with flexible silencers on the fan inlet and the fan outlet. If only one silencer is used, it should be installed on the fan inlet. The aerodynamic noise affects the low frequencies. The flow noise is then overtaken at 1 kHz by the mechanical noise.

  2. A Robust Approach For Acoustic Noise Suppression In Speech Using ANFIS

    NASA Astrophysics Data System (ADS)

    Martinek, Radek; Kelnar, Michal; Vanus, Jan; Bilik, Petr; Zidek, Jan

    2015-11-01

    The authors of this article deals with the implementation of a combination of techniques of the fuzzy system and artificial intelligence in the application area of non-linear noise and interference suppression. This structure used is called an Adaptive Neuro Fuzzy Inference System (ANFIS). This system finds practical use mainly in audio telephone (mobile) communication in a noisy environment (transport, production halls, sports matches, etc). Experimental methods based on the two-input adaptive noise cancellation concept was clearly outlined. Within the experiments carried out, the authors created, based on the ANFIS structure, a comprehensive system for adaptive suppression of unwanted background interference that occurs in audio communication and degrades the audio signal. The system designed has been tested on real voice signals. This article presents the investigation and comparison amongst three distinct approaches to noise cancellation in speech; they are LMS (least mean squares) and RLS (recursive least squares) adaptive filtering and ANFIS. A careful review of literatures indicated the importance of non-linear adaptive algorithms over linear ones in noise cancellation. It was concluded that the ANFIS approach had the overall best performance as it efficiently cancelled noise even in highly noise-degraded speech. Results were drawn from the successful experimentation, subjective-based tests were used to analyse their comparative performance while objective tests were used to validate them. Implementation of algorithms was experimentally carried out in Matlab to justify the claims and determine their relative performances.

  3. Eye gaze adaptation under interocular suppression.

    PubMed

    Stein, Timo; Peelen, Marius V; Sterzer, Philipp

    2012-01-01

    The perception of eye gaze is central to social interaction in that it provides information about another person's goals, intentions, and focus of attention. Direction of gaze has been found to reflexively shift the observer's attention in the corresponding direction, and prolonged exposure to averted eye gaze adapts the visual system, biasing perception of subsequent gaze in the direction opposite to the adapting face. Here, we tested the role of conscious awareness in coding eye gaze directions. To this end, we measured aftereffects induced by adapting faces with different eye gaze directions that were presented during continuous flash suppression, a potent interocular suppression technique. In some trials the adapting face was rendered fully invisible, whereas in others it became partially visible. In Experiment 1, the adapting and test faces were presented in identical sizes and to the same eye. Even fully invisible faces were capable of inducing significant eye gaze aftereffects, although these were smaller than aftereffects from partially visible faces. When the adapting and test faces were shown to different eyes in Experiment 2, significant eye gaze aftereffects were still observed for the fully invisible faces, thus showing interocular transfer. Experiment 3 disrupted the spatial correspondence between adapting and test faces by introducing a size change. Under these conditions, aftereffects were restricted to partially visible adapting faces. These results were replicated in Experiment 4 using a blocked adaptation design. Together, these findings indicate that size-dependent low-level components of eye gaze can be represented without awareness, whereas object-centered higher-level representations of eye gaze directions depend on visual awareness. PMID:22753441

  4. Recent results about fan noise: Its generation, radiation and suppression

    NASA Technical Reports Server (NTRS)

    Feiler, C. E.

    1982-01-01

    Fan noise including its generation, radiation characteristics, and suppression by acoustic treatment is studied. In fan noise generation, results from engine and fan experiments, using inflow control measures to suppress noise sources related to inflow distortion and turbulence, are described. The suppression of sources related to inflow allows the experiments to focus on the fan or engine internal sources. Some of the experiments incorporated pressure sensors on the fan blades to sample the flow disturbances encountered by the blades. From these data some inferences can be drawn about the origins of the disturbances. Also, hot wire measurements of a fan rotor wake field are presented and related to the fan's noise signature. The radiation and the suppression of fan noise are dependent on the acoustic modes generated by the fan. Fan noise suppression and radiation is described by relating these phenomena to the mode cutoff ratio parameter. In addition to its utility in acoustic treatment design and performance prediction, cutoff ratio was useful in developing a simple description of the radiation pattern for broadband fan noise. Some of the findings using the cutoff ratio parameter are presented.

  5. Adaptive flutter suppression, analysis and test

    NASA Technical Reports Server (NTRS)

    Johnson, E. H.; Hwang, C.; Joshi, D. S.; Harvey, C. A.; Huttsell, L. T.; Farmer, M. G.

    1983-01-01

    Methods of adaptive control have been applied to suppress a potentially violent flutter condition of a half-span model of a lightweight figher aircraft. This marked the confluence of several technologies with active flutter suppression, digital control and adaptive control theory the primary contributors. The control algorithm was required to adapt both to slowly varying changes, corresponding to changes in the flight condition or fuel loading and to rapid changes, corresponding to a store release or the transition from a stable to an unstable flight condition. The development of the adaptive control methods was followed by a simulation and checkout of the complete system and a wind tunnel demonstration. As part of the test, a store was released from the model wing tip, transforming the model abruptly from a stable configuration to a violent flutter condition. The adaptive algorithm recognized the unstable nature of the resulting configuration and implemented a stabilizing control law in a fraction of a second. The algorithm was also shown to provide system stability over a range of wind tunnel Mach numbers and dynamic pressures.

  6. Noise Suppression for Dual-Energy CT Through Entropy Minimization.

    PubMed

    Petrongolo, Michael; Zhu, Lei

    2015-11-01

    In dual energy CT (DECT), noise amplification during signal decomposition significantly limits the utility of basis material images. Since clinically relevant objects typically contain a limited number of different materials, we propose an Image-domain Decomposition method through Entropy Minimization (IDEM) for noise suppression in DECT. Pixels of decomposed images are first linearly transformed into 2D clusters of data points, which are highly asymmetric due to strong signal correlation. An optimal axis is identified in the 2D space via numerical search such that the projection of data clusters onto the axis has minimum entropy. Noise suppression is performed on each image pixel by estimating the center-of-mass value of each data cluster along the direction perpendicular to the projection axis. The IDEM method is distinct from other noise suppression techniques in that it does not suppress pixel noise by reducing spatial variation between neighboring pixels. As supported by studies on Catphan©600 and anthropomorphic head phantoms, this feature endows our algorithm with a unique capability of reducing noise standard deviation on DECT decomposed images by approximately one order of magnitude while preserving spatial resolution and image noise power spectra (NPS). Compared with a filtering method and recently developed iterative method at the same level of noise suppression, the IDEM algorithm obtains high-resolution images with less artifacts. It also maintains accuracy of electron density measurements with less than 2% bias error. The IDEM method effectively suppresses noise of DECT for quantitative use, with appealing features on preservation of image spatial resolution and NPS. PMID:25955585

  7. Wavelet-Based Speech Enhancement Using Time-Adapted Noise Estimation

    NASA Astrophysics Data System (ADS)

    Lei, Sheau-Fang; Tung, Ying-Kai

    Spectral subtraction is commonly used for speech enhancement in a single channel system because of the simplicity of its implementation. However, this algorithm introduces perceptually musical noise while suppressing the background noise. We propose a wavelet-based approach in this paper for suppressing the background noise for speech enhancement in a single channel system. The wavelet packet transform, which emulates the human auditory system, is used to decompose the noisy signal into critical bands. Wavelet thresholding is then temporally adjusted with the noise power by time-adapted noise estimation. The proposed algorithm can efficiently suppress the noise while reducing speech distortion. Experimental results, including several objective measurements, show that the proposed wavelet-based algorithm outperforms spectral subtraction and other wavelet-based denoising approaches for speech enhancement for nonstationary noise environments.

  8. Suppression of cable induced noise in an interferometric sensor system

    NASA Astrophysics Data System (ADS)

    Waagaard, Ole Henrik; Rønnekleiv, Erlend; Forbord, Stig; Thingbø, Dag

    2009-10-01

    Vibrations in the lead cables is known to cause noise in interferometric sensor systems, through modulation of the polarization state of the transmitted light, and through Doppler stretching of the interrogating signals. We demonstrate effective methods for suppression of both these noise sources. The polarization modulation sensitivity is suppressed by 36 dB by using a polarization resolved interrogation technique. The sensitivity to Doppler shift is suppressed by 22 dB by using a reference interferometer that is interrogated through the same lead fiber.

  9. A hybrid method for strong low-frequency noise suppression in prestack seismic data

    NASA Astrophysics Data System (ADS)

    Hu, Chunhua; Lu, Wenkai

    2014-09-01

    Low-frequency components are important portion of seismic data in exploration geophysics, and have great effects on seismic imaging of deep subsurface and full waveform inversion. Unfortunately, seismic data usually suffers from various kinds of noises and has low signal to noise ratio (SNR) in low-frequency band, although this situation has been improved by developments of acquisition technology. In this paper, we propose a low-frequency cascade filter (LFCF) in Fourier domain for strong low-frequency noise suppression in prestack gathers. LFCF includes a 1D adaptive median filter in f-x domain and a 2D notch filter in f-k domain, which is able to process high-amplitude swell noise, random noise, and seismic interference noise. We employ traces rearrangement and spike-detection mechanisms in adaptive f-x median filter, which can handle strong noise specifically, such as wide-spreading swell noise and tug noise. And a notch filter in f-k domain is designed to separate reflection signal and random noise by different apparent velocities. Through these means, our method can effectively attenuate low-frequency random and coherent noise while simultaneously protect the signal. Experiments on synthetic example and field data are conducted, and the results demonstrate that our method is practical and effective and can preserve signal down to 2 Hz.

  10. Adaptive iterated function systems filter for images highly corrupted with fixed - Value impulse noise

    NASA Astrophysics Data System (ADS)

    Shanmugavadivu, P.; Eliahim Jeevaraj, P. S.

    2014-06-01

    The Adaptive Iterated Functions Systems (AIFS) Filter presented in this paper has an outstanding potential to attenuate the fixed-value impulse noise in images. This filter has two distinct phases namely noise detection and noise correction which uses Measure of Statistics and Iterated Function Systems (IFS) respectively. The performance of AIFS filter is assessed by three metrics namely, Peak Signal-to-Noise Ratio (PSNR), Mean Structural Similarity Index Matrix (MSSIM) and Human Visual Perception (HVP). The quantitative measures PSNR and MSSIM endorse the merit of this filter in terms of degree of noise suppression and details/edge preservation respectively, in comparison with the high performing filters reported in the recent literature. The qualitative measure HVP confirms the noise suppression ability of the devised filter. This computationally simple noise filter broadly finds application wherein the images are highly degraded by fixed-value impulse noise.

  11. Impulsive Noise Suppression from Images by Using Anfis Interpolant and Lillietest

    NASA Astrophysics Data System (ADS)

    Beşdok, Erkan

    2004-12-01

    A new impulsive noise (IN) elimination filter, entitled adaptive neuro-fuzzy inference system-based IN removal filter ( Anfis- F), which shows high performance at the restoration of images distorted by IN, is proposed in this paper. The Anfis- F comprises three main steps: finding the pixels that are suspected to be corrupted, the Delaunay triangulation, and finally, making estimation for intensity values of corrupted pixels within each of the Delaunay triangles. Extensive simulation results show that the proposed filter achieves better performance than other filters mentioned in this paper in the cases of being effective in noise suppression and detail preservation, especially when the noise density is very high.

  12. Coherent optical noise suppression device. [using spatial filtering

    NASA Technical Reports Server (NTRS)

    Horner, J. L.

    1974-01-01

    The present work describes a scheme for a noise suppression system to be used with an afocal coherent optical data processor. The noise averaging scheme is based on the simple principle of moving input and output film planes together during exposure; the noise pattern remains stationary while the desired (filtered) image moves through it. The noise suppression system consists of a drive motor, right-angle gear box, reversing gear assemblage, right-angle gear drive, and micrometer adjusting translation tables. The device was tested by using a Sayce target containing fundamental spatial frequencies from 5 lines/mm to 100 lines/mm as the input signal. The output was photographed on Pan-X 35-mm film with and without the noise suppression system in operation. Microdensitometer scans of the exposed output film show that without noise averaging, resolution is good to about 80 lines/mm, while with noise averaging, it is good to about 35 lines/mm. A brief analysis of errors in the mechanical parts of the system reponsible for the upper limit of resolution is presented.

  13. Subradiant spontaneous undulator emission through collective suppression of shot noise

    NASA Astrophysics Data System (ADS)

    Ratner, D.; Hemsing, E.; Gover, A.; Marinelli, A.; Nause, A.

    2015-05-01

    The phenomenon of Dicke's subradiance, in which the collective properties of a system suppress radiation, has received broad interest in atomic physics. Recent theoretical papers in the field of relativistic electron beams have proposed schemes to achieve subradiance through suppression of shot noise current fluctuations. The resulting "quiet" beam generates less spontaneous radiation than emitted even by a shot noise beam when oscillating in an undulator. Quiet beams could have diverse accelerator applications, including lowering power requirements for seeded free-electron lasers and improving efficiency of hadron cooling. In this paper we present experimental observation of a strong reduction in undulator radiation, demonstrating the feasibility of noise suppression as a practical tool in accelerator physics.

  14. Collective microdynamics and noise suppression in dispersive electron beam transport

    SciTech Connect

    Gover, Avraham; Dyunin, Egor; Duchovni, Tamir; Nause, Ariel

    2011-12-15

    A general formulation is presented for deep collective interaction micro-dynamics in dispersive e-beam transport. In the regime of transversely coherent interaction, the formulation is applicable to both coherent and random temporal modulation of the electron beam. We demonstrate its use for determining the conditions for suppressing beam current noise below the classical shot-noise level by means of transport through a dispersive section with a small momentum compaction parameter.

  15. Suppression of shot noise and spontaneous radiation in electron beams

    SciTech Connect

    Litvinenko,V.

    2009-08-23

    Shot noise in the electron beam distribution is the main source of noise in high-gain FEL amplifiers, which may affect applications ranging from single- and multi-stage HGHG FELs to an FEL amplifier for coherent electron cooling. This noise also imposes a fundamental limit of about 10{sup 6} on FEL gain, after which SASE FELs saturate. There are several advantages in strongly suppressing this shot noise in the electron beam, and the corresponding spontaneous radiation. For more than a half-century, a traditional passive method has been used successfully in practical low-energy microwave electronic devices to suppress shot noise. Recently, it was proposed for this purpose in FELs. However, being passive, the method has some significant limitations and is hardly suitable for the highly inhomogeneous beams of modern high-gain FELs. I present a novel active method of suppressing, by many orders-of-magnitude, the shot noise in relativistic electron beams. I give a theoretical description of the process, and detail its fundamental limitation.

  16. Modeling and adaptive control of acoustic noise

    NASA Astrophysics Data System (ADS)

    Venugopal, Ravinder

    Active noise control is a problem that receives significant attention in many areas including aerospace and manufacturing. The advent of inexpensive high performance processors has made it possible to implement real-time control algorithms to effect active noise control. Both fixed-gain and adaptive methods may be used to design controllers for this problem. For fixed-gain methods, it is necessary to obtain a mathematical model of the system to design controllers. In addition, models help us gain phenomenological insights into the dynamics of the system. Models are also necessary to perform numerical simulations. However, models are often inadequate for the purpose of controller design because they involve parameters that are difficult to determine and also because there are always unmodeled effects. This fact motivates the use of adaptive algorithms for control since adaptive methods usually require significantly less model information than fixed-gain methods. The first part of this dissertation deals with derivation of a state space model of a one-dimensional acoustic duct. Two types of actuation, namely, a side-mounted speaker (interior control) and an end-mounted speaker (boundary control) are considered. The techniques used to derive the model of the acoustic duct are extended to the problem of fluid surface wave control. A state space model of small amplitude surfaces waves of a fluid in a rectangular container is derived and two types of control methods, namely, surface pressure control and map actuator based control are proposed and analyzed. The second part of this dissertation deals with the development of an adaptive disturbance rejection algorithm that is applied to the problem of active noise control. ARMARKOV models which have the same structure as predictor models are used for system representation. The algorithm requires knowledge of only one path of the system, from control to performance, and does not require a measurement of the disturbance nor

  17. Bosonic Amplification of Noise-Induced Suppression of Phase Diffusion

    SciTech Connect

    Khodorkovsky, Y.; Vardi, A.; Kurizki, G.

    2008-06-06

    We study the effect of noise-induced dephasing on collisional phase diffusion in the two-site Bose-Hubbard model. Dephasing of the quasimomentum modes may slow down phase diffusion in the quantum Zeno limit. Remarkably, the degree of suppression is enhanced by a bosonic factor of order N/logN as the particle number N increases.

  18. Robust local search for spacecraft operations using adaptive noise

    NASA Technical Reports Server (NTRS)

    Fukunaga, Alex S.; Rabideau, Gregg; Chien, Steve

    2004-01-01

    Randomization is a standard technique for improving the performance of local search algorithms for constraint satisfaction. However, it is well-known that local search algorithms are constraints satisfaction. However, it is well-known that local search algorithms are to the noise values selected. We investigate the use of an adaptive noise mechanism in an iterative repair-based planner/scheduler for spacecraft operations. Preliminary results indicate that adaptive noise makes the use of randomized repair moves safe and robust; that is, using adaptive noise makes it possible to consistently achieve, performance comparable with the best tuned noise setting without the need for manually tuning the noise parameter.

  19. Noisy Speech Recognition Based on Integration/Selection of Multiple Noise Suppression Methods Using Noise GMMs

    NASA Astrophysics Data System (ADS)

    Kitaoka, Norihide; Hamaguchi, Souta; Nakagawa, Seiichi

    To achieve high recognition performance for a wide variety of noise and for a wide range of signal-to-noise ratio, this paper presents methods for integration of four noise reduction algorithms: spectral subtraction with smoothing of time direction, temporal domain SVD-based speech enhancement, GMM-based speech estimation and KLT-based comb-filtering. In this paper, we proposed two types of combination methods of noise suppression algorithms: selection of front-end processor and combination of results from multiple recognition processes. Recognition results on the CENSREC-1 task showed the effectiveness of our proposed methods.kn-abstract=

  20. Effects of noise suppression on intelligibility: dependency on signal-to-noise ratios.

    PubMed

    Hilkhuysen, Gaston; Gaubitch, Nikolay; Brookes, Mike; Huckvale, Mark

    2012-01-01

    The effects on speech intelligibility of three different noise reduction algorithms (spectral subtraction, minimal mean squared error spectral estimation, and subspace analysis) were evaluated in two types of noise (car and babble) over a 12 dB range of signal-to-noise ratios (SNRs). Results from these listening experiments showed that most algorithms deteriorated intelligibility scores. Modeling of the results with a logit-shaped psychometric function showed that the degradation in intelligibility scores was largely congruent with a constant shift in SNR, although some additional degradation was observed at two SNRs, suggesting a limited interaction between the effects of noise suppression and SNR. PMID:22280614

  1. UAV visual signature suppression via adaptive materials

    NASA Astrophysics Data System (ADS)

    Barrett, Ron; Melkert, Joris

    2005-05-01

    Visual signature suppression (VSS) methods for several classes of aircraft from WWII on are examined and historically summarized. This study shows that for some classes of uninhabited aerial vehicles (UAVs), primary mission threats do not stem from infrared or radar signatures, but from the amount that an aircraft visually stands out against the sky. The paper shows that such visual mismatch can often jeopardize mission success and/or induce the destruction of the entire aircraft. A psycho-physioptical study was conducted to establish the definition and benchmarks of a Visual Cross Section (VCS) for airborne objects. This study was centered on combining the effects of size, shape, color and luminosity or effective illumance (EI) of a given aircraft to arrive at a VCS. A series of tests were conducted with a 6.6ft (2m) UAV which was fitted with optically adaptive electroluminescent sheets at altitudes of up to 1000 ft (300m). It was shown that with proper tailoring of the color and luminosity, the VCS of the aircraft dropped from more than 4,200cm2 to less than 1.8cm2 at 100m (the observed lower limit of the 20-20 human eye in this study). In laypersons terms this indicated that the UAV essentially "disappeared". This study concludes with an assessment of the weight and volume impact of such a Visual Suppression System (VSS) on the UAV, showing that VCS levels on this class UAV can be suppressed to below 1.8cm2 for aircraft gross weight penalties of only 9.8%.

  2. Short wavelength limits of current shot noise suppression

    SciTech Connect

    Nause, Ariel; Dyunin, Egor; Gover, Avraham

    2014-08-15

    Shot noise in electron beam was assumed to be one of the features beyond control of accelerator physics. Current results attained in experiments at Accelerator Test Facility in Brookhaven and Linac Coherent Light Source in Stanford suggest that the control of the shot noise in electron beam (and therefore of spontaneous radiation and Self Amplified Spontaneous Emission of Free Electron Lasers) is feasible at least in the visible range of the spectrum. Here, we present a general linear formulation for collective micro-dynamics of e-beam noise and its control. Specifically, we compare two schemes for current noise suppression: a quarter plasma wavelength drift section and a combined drift/dispersive (transverse magnetic field) section. We examine and compare their limits of applicability at short wavelengths via considerations of electron phase-spread and the related Landau damping effect.

  3. Suppression of jet noise peak by velocity profile reshaping

    NASA Astrophysics Data System (ADS)

    Fujii, S.; Nishiwaki, H.; Takeda, K.

    1981-07-01

    Proposed here is an efficient noise-abating system having the potential for application to a broad spectrum of turbofan engines. An exhaust system with the core nozzle reshaped into an elliptic exit section from the conventional circular nozzle is recommended. The comparison of the scale-model tests revealed that a 5 dB decrease in peak noise levels was realized with a slight increase of the sound pressure at large emission angles. A laser Doppler velocimeter was used to quantify the high-temperature flow turbulence. With the elliptic core nozzle, the jet flow was more diffused axially and spread radially along the major axis. The noise reduction was attributed to the enhancement of the sound refraction and to the lower sound generation, due to the turbulence suppression as well as the lowered mean density gradients at the noise source.

  4. An effective noise-suppression technique for surface microseismic data

    USGS Publications Warehouse

    Forghani-Arani, Farnoush; Willis, Mark; Haines, Seth S.; Batzle, Mike; Behura, Jyoti; Davidson, Michael

    2013-01-01

    The presence of strong surface-wave noise in surface microseismic data may decrease the utility of these data. We implement a technique, based on the distinct characteristics that microseismic signal and noise show in the τ‐p domain, to suppress surface-wave noise in microseismic data. Because most microseismic source mechanisms are deviatoric, preprocessing is necessary to correct for the nonuniform radiation pattern prior to transforming the data to the τ‐p domain. We employ a scanning approach, similar to semblance analysis, to test all possible double-couple orientations to determine an estimated orientation that best accounts for the polarity pattern of any microseismic events. We then correct the polarity of the data traces according to this pattern, prior to conducting signal-noise separation in the τ‐p domain. We apply our noise-suppression technique to two surface passive-seismic data sets from different acquisition surveys. The first data set includes a synthetic microseismic event added to field passive noise recorded by an areal receiver array distributed over a Barnett Formation reservoir undergoing hydraulic fracturing. The second data set is field microseismic data recorded by receivers arranged in a star-shaped array, over a Bakken Shale reservoir during a hydraulic-fracturing process. Our technique significantly improves the signal-to-noise ratios of the microseismic events and preserves the waveforms at the individual traces. We illustrate that the enhancement in signal-to-noise ratio also results in improved imaging of the microseismic hypocenter.

  5. Computational Investigations of Noise Suppression in Subsonic Round Jets

    NASA Technical Reports Server (NTRS)

    Pruett, C. David

    1997-01-01

    NASA Grant NAG1-1802, originally submitted in June 1996 as a two-year proposal, was awarded one-year's funding by NASA LaRC for the period 5 Oct., 1996, through 4 Oct., 1997. Because of the inavailability (from IT at NASA ARC) of sufficient supercomputer time in fiscal 1998 to complete the computational goals of the second year of the original proposal (estimated to be at least 400 Cray C-90 CPU hours), those goals have been appropriately amended, and a new proposal has been submitted to LaRC as a follow-on to NAG1-1802. The current report documents the activities and accomplishments on NAG1-1802 during the one-year period from 5 Oct., 1996, through 4 Oct., 1997. NASA Grant NAG1-1802, and its predecessor, NAG1-1772, have been directed toward adapting the numerical tool of Large-Eddy Simulation (LES) to aeroacoustic applications, with particular focus on noise suppression in subsonic round jets. In LES, the filtered Navier-Stokes equations are solved numerically on a relatively coarse computational grid. Residual stresses, generated by scales of motion too small to be resolved on the coarse grid, are modeled. Although most LES incorporate spatial filtering, time-domain filtering affords certain conceptual and computational advantages, particularly for aeroacoustic applications. Consequently, this work has focused on the development of SubGrid-Scale (SGS) models that incorporate time- domain filters. The author is unaware of any previous attempt at purely time-filtered LES; however, Aldama and Dakhoul and Bedford have considered approaches that combine both spatial and temporal filtering. In our view, filtering in both space and time is redundant, because removal of high frequencies effects the removal of small spatial scales and vice versa.

  6. Self-noise suppression schemes in blind image steganography

    NASA Astrophysics Data System (ADS)

    Ramkumar, Mahalingam; Akansu, Ali N.

    1999-11-01

    Blind or oblivious data hiding, can be considered as a signaling method where the origin of the signal constellation is not known. The origin however, can be estimated, by means of self-noise suppression techniques. In this paper, we propose such a technique, and present both theoretical and numerical evaluations of its performance in an additive noise scenario. The problem of optimal choice of the parameters of the proposed technique is also explored, and solutions are presented. Though the cover object is assumed to be an image for purposes of illustration, the proposed method is equally applicable for other types of multimedia data, like video, speech or music.

  7. Suppression and enhancement of transcriptional noise by DNA looping

    NASA Astrophysics Data System (ADS)

    Vilar, Jose M. G.; Saiz, Leonor

    2014-06-01

    DNA looping has been observed to enhance and suppress transcriptional noise but it is uncertain which of these two opposite effects is to be expected for given conditions. Here, we derive analytical expressions for the main quantifiers of transcriptional noise in terms of the molecular parameters and elucidate the role of DNA looping. Our results rationalize paradoxical experimental observations and provide the first quantitative explanation of landmark individual-cell measurements at the single molecule level on the classical lac operon genetic system [Choi, L. Cai, K. Frieda, and X. S. Xie, Science 322, 442 (2008), 10.1126/science.1161427].

  8. Contourlet based seismic reflection data non-local noise suppression

    NASA Astrophysics Data System (ADS)

    Li, Qiang; Gao, Jinghuai

    2013-08-01

    In this paper, we propose a non-local, transform domain noise suppression framework to improve the quality of seismic reflection data. The original non-local means (NLM) algorithm measures similarities in the data domain and we generalize it in the nonsubsampled contourlet transform (NSCT) domain. NSCT gives a multiscale, multiresolution and anisotropy representation of the noisy input. The redundancy information in NSCT subbands can be utilized to enhance the structures in the original seismic data. Like the wavelet transform, NSCT coefficients in each subband follow the generalized Gaussian distribution and the parameters can be estimated using appropriate techniques. These parameters are used to construct our proposed NSCT domain filtering algorithm. Applications for synthetic and real seismic data of the proposed algorithm demonstrate its effectiveness on seismic data random noise suppression.

  9. Thermal noise for SBS suppression in fiber optical parametric amplifiers

    NASA Astrophysics Data System (ADS)

    Mussot, Arnaud; Le Parquier, Marc; Szriftgiser, Pascal

    2010-06-01

    We demonstrate a new and simple solution to suppress stimulated Brillouin scattering in fiber optical parametric amplifiers. Cumbersome PRBS or sinusoidal generators used to broaden the pump spectrum are replaced by a filtered microwave noise source. Stimulated Brillouin scattering threshold can be increased up to large values still keeping an excellent quality of amplification of nonreturn to zero signals. The simplicity and the performances of this setup open the way for a wide variety of applications for FOPAs.

  10. Optical noise suppression device and method. [laser light exposing film

    NASA Technical Reports Server (NTRS)

    Horner, J. L. (Inventor)

    1976-01-01

    A device and method is disclosed for suppression of optical noise in an optical spatial filtering system using highly coherent light. In the disclosed embodiment, input photographic film to be processed in the system, and output photographic film to be exposed, are each mounted on lateral translation devices. During application of the coherent light for exposure of the output film, the two translation devices are moved in synchronism by a motor-driven gear and linkage assembly. The ratio of the resulting output film translation to the input film translation is equal to the magnification of the optical data processing system. The noise pattern associated with the lenses and other elements in the optical processing system remains stationary while the image-producing light moves laterally through the pattern with the output film, thus averaging out the noise effect at the output film.

  11. Adaptive noise Wiener filter for scanning electron microscope imaging system.

    PubMed

    Sim, K S; Teh, V; Nia, M E

    2016-01-01

    Noise on scanning electron microscope (SEM) images is studied. Gaussian noise is the most common type of noise in SEM image. We developed a new noise reduction filter based on the Wiener filter. We compared the performance of this new filter namely adaptive noise Wiener (ANW) filter, with four common existing filters as well as average filter, median filter, Gaussian smoothing filter and the Wiener filter. Based on the experiments results the proposed new filter has better performance on different noise variance comparing to the other existing noise removal filters in the experiments. PMID:26235517

  12. Comparative Analysis of Median and Average Filters in Impulse Noise Suppression

    NASA Astrophysics Data System (ADS)

    Shi, Luyao; Chen, Yang; Yuan, Wenlong; Zhang, Libo; Yang, Benqiang; Shu, Huazhong; Luo, Limin; Coatrieux, Jean-Louis

    2015-10-01

    Median type filters coupled with the Laplacian distribution assumption have shown a high efficiency in suppressing impulse noise. We however demonstrate in this paper that the Gaussian distribution assumption is more preferable than Laplacian distribution assumption in suppressing impulse noise, especially for high noise densities. This conclusion is supported by numerical experiments with different noise densities and filter models.

  13. Background Noise Reduction Using Adaptive Noise Cancellation Determined by the Cross-Correlation

    NASA Technical Reports Server (NTRS)

    Spalt, Taylor B.; Brooks, Thomas F.; Fuller, Christopher R.

    2012-01-01

    Background noise due to flow in wind tunnels contaminates desired data by decreasing the Signal-to-Noise Ratio. The use of Adaptive Noise Cancellation to remove background noise at measurement microphones is compromised when the reference sensor measures both background and desired noise. The technique proposed modifies the classical processing configuration based on the cross-correlation between the reference and primary microphone. Background noise attenuation is achieved using a cross-correlation sample width that encompasses only the background noise and a matched delay for the adaptive processing. A present limitation of the method is that a minimum time delay between the background noise and desired signal must exist in order for the correlated parts of the desired signal to be separated from the background noise in the crosscorrelation. A simulation yields primary signal recovery which can be predicted from the coherence of the background noise between the channels. Results are compared with two existing methods.

  14. Adaptive noise cancelling of multichannel magnetic resonance sounding signals

    NASA Astrophysics Data System (ADS)

    Dalgaard, E.; Auken, E.; Larsen, J. J.

    2012-10-01

    Adaptive noise cancelling of multichannel magnetic resonance sounding (MRS) signals is investigated. An analysis of the noise sources affecting MRS signals show that the applicability of adaptive noise cancelling is primarily limited to cancel powerline harmonics. The problems of handling spikes in MRS signals are discussed and an efficient algorithm for spike detection is presented. The optimum parameters for multichannel adaptive noise cancelling are identified through simulations with synthetic signals added to noise-only recordings from an MRS instrument. We discuss the design and the efficiency of different stacking methods. The results from multichannel adaptive noise cancelling are compared to time-domain multichannel Wiener filtering. Our results show that within the experimental uncertainty the two methods give identical results.

  15. Transient amplification limits noise suppression in biochemical networks

    NASA Astrophysics Data System (ADS)

    Dixon, John; Lindemann, Anika; McCoy, Jonathan H.

    2016-01-01

    Cell physiology is orchestrated, on a molecular level, through complex networks of biochemical reactions. The propagation of random fluctuations through these networks can significantly impact cell behavior, raising challenging questions about how network design shapes the cell's ability to suppress or exploit these fluctuations. Here, drawing on insights from statistical physics, fluid dynamics, and systems biology, we explore how transient amplification phenomena arising from network connectivity naturally limit a biochemical system's ability to suppress small fluctuations around steady-state behaviors. We find that even a simple system consisting of two variables linked by a single interaction is capable of amplifying small fluctuations orders of magnitude beyond the levels predicted by linear stability theory. We also find that adding additional interactions can promote further amplification, even when these interactions implement classic design strategies known to suppress fluctuations. These results establish that transient amplification is an essential factor determining baseline noise levels in stable intracellular networks. Significantly, our analysis is not bound to specific systems or interaction mechanisms: we find that noise amplification is an emergent phenomenon found near steady states in any network containing sufficiently strong interactions, regardless of its form or function.

  16. Transient amplification limits noise suppression in biochemical networks.

    PubMed

    Dixon, John; Lindemann, Anika; McCoy, Jonathan H

    2016-01-01

    Cell physiology is orchestrated, on a molecular level, through complex networks of biochemical reactions. The propagation of random fluctuations through these networks can significantly impact cell behavior, raising challenging questions about how network design shapes the cell's ability to suppress or exploit these fluctuations. Here, drawing on insights from statistical physics, fluid dynamics, and systems biology, we explore how transient amplification phenomena arising from network connectivity naturally limit a biochemical system's ability to suppress small fluctuations around steady-state behaviors. We find that even a simple system consisting of two variables linked by a single interaction is capable of amplifying small fluctuations orders of magnitude beyond the levels predicted by linear stability theory. We also find that adding additional interactions can promote further amplification, even when these interactions implement classic design strategies known to suppress fluctuations. These results establish that transient amplification is an essential factor determining baseline noise levels in stable intracellular networks. Significantly, our analysis is not bound to specific systems or interaction mechanisms: we find that noise amplification is an emergent phenomenon found near steady states in any network containing sufficiently strong interactions, regardless of its form or function. PMID:26871109

  17. Construction and solution of an adaptive image-restoration model for removing blur and mixed noise

    NASA Astrophysics Data System (ADS)

    Wang, Youquan; Cui, Lihong; Cen, Yigang; Sun, Jianjun

    2016-03-01

    We establish a practical regularized least-squares model with adaptive regularization for dealing with blur and mixed noise in images. This model has some advantages, such as good adaptability for edge restoration and noise suppression due to the application of a priori spatial information obtained from a polluted image. We further focus on finding an important feature of image restoration using an adaptive restoration model with different regularization parameters in polluted images. A more important observation is that the gradient of an image varies regularly from one regularization parameter to another under certain conditions. Then, a modified graduated nonconvexity approach combined with a median filter version of a spatial information indicator is proposed to seek the solution of our adaptive image-restoration model by applying variable splitting and weighted penalty techniques. Numerical experiments show that the method is robust and effective for dealing with various blur and mixed noise levels in images.

  18. Analysis and suppression of passive noise in surface microseismic data

    NASA Astrophysics Data System (ADS)

    Forghani-Arani, Farnoush

    Surface microseismic surveys are gaining popularity in monitoring the hydraulic fracturing process. The effectiveness of these surveys, however, is strongly dependent on the signal-to-noise ratio of the acquired data. Cultural and industrial noise generated during hydraulic fracturing operations usually dominate the data, thereby decreasing the effectiveness of using these data in identifying and locating microseismic events. Hence, noise suppression is a critical step in surface microseismic monitoring. In this thesis, I focus on two important aspects in using surface-recorded microseismic seismic data: first, I take advantage of the unwanted surface noise to understand the characteristics of these noise and extract information about the propagation medium from the noise; second, I propose effective techniques to suppress the surface noise while preserving the waveforms that contain information about the source of microseisms. Automated event identification on passive seismic data using only a few receivers is challenging especially when the record lengths span over long durations of time. I introduce an automatic event identification algorithm that is designed specifically for detecting events in passive data acquired with a small number of receivers. I demonstrate that the conventional STA/LTA (Short-term Average/Long-term Average) algorithm is not sufficiently effective in event detection in the common case of low signal-to-noise ratio. With a cross-correlation based method as an extension of the STA/LTA algorithm, even low signal-to-noise events (that were not detectable with conventional STA/LTA) were revealed. Surface microseismic data contains surface-waves (generated primarily from hydraulic fracturing activities) and body-waves in the form of microseismic events. It is challenging to analyze the surface-waves on the recorded data directly because of the randomness of their source and their unknown source signatures. I use seismic interferometry to extract

  19. Perceptually relevant evaluation of noise power spectra in adaptive pictorial systems

    NASA Astrophysics Data System (ADS)

    Jenkin, Robin B.; Keelan, Brian W.

    2011-01-01

    Noise Power Spectra (NPS) are traditionally measured using uniform areas of tone. Adaptive algorithms, such as noise reduction, demosaicing, and sharpening, can modify their behavior based on underlying image structure. In particular, noise reduction algorithms may suppress noise more strongly in perfectly uniform areas than they would in those with modest variations, as found in actual pictorial images, and so yield unrepresentative NPS. This phenomenon would be similar in nature to the susceptibility of high-contrast-edges to adaptive sharpening and the subsequent over-estimation of effective pictorial modulation transfer function by some targets. Experimentation is described that examines the effect of modern adaptive noise reduction algorithms on the NPS of images containing ramps of varying gradient. Gradients are chosen based on a survey of consumer images from areas where noise is typically noticeable, such as blue sky, walls and faces. Although loss in performance of adaptive noise reduction is observed as gradients increase, the effect is perceptually small when weighted according to the frequency of occurrence of the gradients in pictorial imaging. The significant additional complexity of measuring gradient-based NPS does not appear to be justified; measuring NPS from uniform areas of tone should suffice for most perceptual work.

  20. Retinophilin is a light-regulated phosphoprotein required to suppress photoreceptor dark noise in Drosophila

    PubMed Central

    Mecklenburg, Kirk L.; Takemori, Nobuaki; Komori, Naoka; Chu, Brian; Hardie, Roger C.; Matsumoto, Hiroyuki; O’Tousa, Joseph. E.

    2010-01-01

    Photoreceptor cells achieve high sensitivity, reliably detecting single photons, while limiting the spontaneous activation events responsible for dark noise. We used proteomic, genetic, and electrophysiological approaches to characterize Retinophilin (RTP/CG10233) in Drosophila photoreceptors, and establish its involvement in dark noise suppression. RTP possesses MORN (Membrane Occupation and Recognition Nexus) motifs, a structure shared with mammalian junctophilins and other membrane-associated proteins found within excitable cells. We show the MORN repeats, and both the N- and C-terminal domains, are required for RTP localization in the microvillar light gathering organelle, the rhabdomere. RTP exists in multiple phosphorylated isoforms under dark conditions and is dephosphorylated by light exposure. An RTP deletion mutant exhibits a high rate of spontaneous membrane depolarization events in dark conditions but retains the normal kinetics of the light response. Photoreceptors lacking NINAC myosin III, a motor protein/kinase, also display a similar dark noise phenotype as the RTP deletion. We show that NINAC mutants are depleted for RTP. These results suggest the increase in dark noise in NINAC mutants is due to lack of RTP, and further, defines a novel role for NINAC in the rhabdomere. We propose that RTP is a light-regulated phosphoprotein that organizes rhabdomeric components to suppress random activation of the phototransduction cascade and thus increases the signaling fidelity of dark-adapted photoreceptors. PMID:20107052

  1. Noise Reduction using Frequency Sub-Band Adaptive Spectral Subtraction

    NASA Technical Reports Server (NTRS)

    Kozel, David

    2000-01-01

    A frequency sub-band based adaptive spectral subtraction algorithm is developed to remove noise from noise-corrupted speech signals. A single microphone is used to obtain both the noise-corrupted speech and the estimate of the statistics of the noise. The statistics of the noise are estimated during time frames that do not contain speech. These statistics are used to determine if future time frames contain speech. During speech time frames, the algorithm determines which frequency sub-bands contain useful speech information and which frequency sub-bands contain only noise. The frequency sub-bands, which contain only noise, are subtracted off at a larger proportion so the noise does not compete with the speech information. Simulation results are presented.

  2. Broad-bandwidth near-shot-noise-limited intensity noise suppression of a single-frequency fiber laser.

    PubMed

    Zhao, Qilai; Xu, Shanhui; Zhou, Kaijun; Yang, Changsheng; Li, Can; Feng, Zhouming; Peng, Mingying; Deng, Huaqiu; Yang, Zhongmin

    2016-04-01

    A significant broad-bandwidth near-shot-noise-limited intensity noise suppression of a single-frequency fiber laser is demonstrated based on a semiconductor optical amplifier (SOA) with optoelectronic feedback. By exploiting the gain saturation effect of the SOA and the intensity feedback loop, a maximum noise suppression of over 50 dB around the relaxation oscillation frequencies and a suppression bandwidth of up to 50 MHz are obtained. The relative intensity noise of -150  dB/Hz in the frequency range from 0.8 kHz to 50 MHz is achieved, which approaches the shot-noise limit. The obtained optical signal-to-noise ratio is more than 70 dB. This near-shot-noise-limited laser source shows important implications for the advanced fields of high-precision frequency stabilization, quantum key distribution, and gravitational wave detection. PMID:27192229

  3. Adaptive PI control strategy for flat permanent magnet linear synchronous motor vibration suppression

    NASA Astrophysics Data System (ADS)

    Meng, Fanwei; Liu, Chengying; Li, Zhijun; Wang, Liping

    2013-01-01

    Due to low damping ratio, flat permanent magnet linear synchronous motor's vibration is difficult to be damped and the accuracy is limited. The vibration suppressing results are not good enough in the existing research because only the longitudinal direction vibration is considered while the normal direction vibration is neglected. The parameters of the direct-axis current controller are set to be the same as those of the quadrature-axis current controller commonly. This causes contradiction between signal noise and response. To suppress the vibration, the electromagnetic force model of the flat permanent magnet synchronous linear motor is formulated first. Through the analysis of the effect that direct-axis current noise and quadrature-axis current noise have on both direction vibration, it can be declared that the conclusion that longitudinal direction vibration is only related to the quadrature-axis current noise while the normal direction vibration is related to both the quadrature-axis current noise and direct-axis current noise. Then, the simulation test on current loop with a low-pass filter is conducted and the results show that the low-pass filter can not suppress the vibration but makes the vibration more severe. So a vibration suppressing strategy that the proportional gain of direct-axis current controller adapted according to quadrature-axis reference current is proposed. This control strategy can suppress motor vibration by suppressing direct-axis current noise. The experiments results about the effect of K p and T i on normal direction vibration, longitudinal vibration and the position step response show that this strategy suppresses vibration effectively while the motor's motion performance is not affected. The maximum reduction of vibration can be up to 40%. In addition, current test under rated load condition is also conducted and the results show that the control strategy can avoid the conflict between the direct-axis current and the quadrature

  4. Experimental verifications of noise suppression in retinal recognition by using compression-based joint transform correlator

    NASA Astrophysics Data System (ADS)

    Widjaja, Joewono; Kaewphaluk, Komin

    2014-03-01

    Noise suppression in retinal recognition by using a compression-based joint transform correlator (CBJTC) is experimentally studied. The experimental results show that the noise suppression can be done by compressing targets into a joint-photographic expert group (JPEG) format with appropriate image compression quality. In the case of the weak noise suppression, the improved recognition performance is as high as that of the classical JTC.

  5. Adaptive noise reduction circuit for a sound reproduction system

    NASA Technical Reports Server (NTRS)

    Engebretson, A. Maynard (Inventor); O'Connell, Michael P. (Inventor)

    1995-01-01

    A noise reduction circuit for a hearing aid having an adaptive filter for producing a signal which estimates the noise components present in an input signal. The circuit includes a second filter for receiving the noise-estimating signal and modifying it as a function of a user's preference or as a function of an expected noise environment. The circuit also includes a gain control for adjusting the magnitude of the modified noise-estimating signal, thereby allowing for the adjustment of the magnitude of the circuit response. The circuit also includes a signal combiner for combining the input signal with the adjusted noise-estimating signal to produce a noise reduced output signal.

  6. Local suppression of turbulent noise by passively inducing relaminarization

    NASA Astrophysics Data System (ADS)

    Kirkman, Richard; Metzger, Meredith

    2010-11-01

    Direct numerical simulations of turbulent channel flow were performed to study potential means of locally suppressing wall pressure noise by passively driving the flow towards relaminarization. The noise reduction is achieved by altering the surface geometry along a wall of the channel. Two separate geometries were investigated, namely a wedge-shaped protrusion and an inverted wedge-shaped depression. In both configurations, the wedge remains stationary and spans the width of the channel. The flow tends toward relaminarization due to local convective acceleration along the upslope of the wedge (in the case of the protrusion) and due to the gradual unstalled expansion along the downslope of the wedge (in the case of the depression). Simulations were performed at a Reynolds number based on friction velocity of 180. The no-slip condition along the surface of the protrusion/depression was enforced using an immersed boundary method. Profiles of turbulence statistics and wall- pressure intensity, as well as the wall-pressure spectra along the front face of the two different wedges are compared in relation to those of the undisturbed approach boundary layer.

  7. A mathematical model for simulating noise suppression of lined ejectors

    NASA Technical Reports Server (NTRS)

    Watson, Willie R.

    1994-01-01

    A mathematical model containing the essential features embodied in the noise suppression of lined ejectors is presented. Although some simplification of the physics is necessary to render the model mathematically tractable, the current model is the most versatile and technologically advanced at the current time. A system of linearized equations and the boundary conditions governing the sound field are derived starting from the equations of fluid dynamics. A nonreflecting boundary condition is developed. In view of the complex nature of the equations, a parametric study requires the use of numerical techniques and modern computers. A finite element algorithm that solves the differential equations coupled with the boundary condition is then introduced. The numerical method results in a matrix equation with several hundred thousand degrees of freedom that is solved efficiently on a supercomputer. The model is validated by comparing results either with exact solutions or with approximate solutions from other works. In each case, excellent correlations are obtained. The usefulness of the model as an optimization tool and the importance of variable impedance liners as a mechanism for achieving broadband suppression within a lined ejector are demonstrated.

  8. Local adaptive filtering of images corrupted by nonstationary noise

    NASA Astrophysics Data System (ADS)

    Lukin, Vladimir V.; Fevralev, Dmitriy V.; Ponomarenko, Nikolay N.; Pogrebnyak, Oleksiy B.; Egiazarian, Karen O.; Astola, Jaakko T.

    2009-02-01

    In various practical situations of remote sensing image processing it is assumed that noise is nonstationary and no a priory information on noise dependence on local mean or about local properties of noise statistics is available. It is shown that in such situations it is difficult to find a proper filter for effective image processing, i.e., for noise removal with simultaneous edge/detail preservation. To deal with such images, a local adaptive filter based on discrete cosine transform in overlapping blocks is proposed. A threshold is set locally based on a noise standard deviation estimate obtained for each block. Several other operations to improve performance of the locally adaptive filter are proposed and studied. The designed filter effectiveness is demonstrated for simulated data as well as for real life radar remote sensing and marine polarimetric radar images.

  9. Eigenanalysis-based adaptive interference suppression for source localization

    NASA Astrophysics Data System (ADS)

    Ren, Suiling; Ge, Fengxiang; Guo, Xin; Guo, Lianghao

    2012-11-01

    Passive sonar detection in shallow water environments is very difficult due to strong interference. In this paper, an eigenanalysis-based adaptive interference suppression method (EAAIS) is presented for source localization. First, using beamforming for each eigenvector of the cross-spectral density matrix (CSDM) and a priori knowledge of the target's bearing interval, the proposed method constructs an appropriate rule to adaptively and robustly identify which eigenvector does not contain dominant contributions from the target of interest (TOI). Then, the identified eigenvectors are subtracted from the CSDM for interference suppression and source location. Numerical simulation results show that the proposed method could effectively detect the TOI even in the presence of strong interference. In comparison with other adaptive interference suppression methods, the proposed method has better interference rejection capability and wider range of applications without a priori knowledge of the interference's position.

  10. Robust stochastic resonance: Signal detection and adaptation in impulsive noise

    NASA Astrophysics Data System (ADS)

    Kosko, Bart; Mitaim, Sanya

    2001-11-01

    Stochastic resonance (SR) occurs when noise improves a system performance measure such as a spectral signal-to-noise ratio or a cross-correlation measure. All SR studies have assumed that the forcing noise has finite variance. Most have further assumed that the noise is Gaussian. We show that SR still occurs for the more general case of impulsive or infinite-variance noise. The SR effect fades as the noise grows more impulsive. We study this fading effect on the family of symmetric α-stable bell curves that includes the Gaussian bell curve as a special case. These bell curves have thicker tails as the parameter α falls from 2 (the Gaussian case) to 1 (the Cauchy case) to even lower values. Thicker tails create more frequent and more violent noise impulses. The main feedback and feedforward models in the SR literature show this fading SR effect for periodic forcing signals when we plot either the signal-to-noise ratio or a signal correlation measure against the dispersion of the α-stable noise. Linear regression shows that an exponential law γopt(α)=cAα describes this relation between the impulsive index α and the SR-optimal noise dispersion γopt. The results show that SR is robust against noise ``outliers.'' So SR may be more widespread in nature than previously believed. Such robustness also favors the use of SR in engineering systems. We further show that an adaptive system can learn the optimal noise dispersion for two standard SR models (the quartic bistable model and the FitzHugh-Nagumo neuron model) for the signal-to-noise ratio performance measure. This also favors practical applications of SR and suggests that evolution may have tuned the noise-sensitive parameters of biological systems.

  11. An adaptive noise reduction stethoscope for auscultation in high noise environments.

    PubMed

    Patel, S B; Callahan, T F; Callahan, M G; Jones, J T; Graber, G P; Foster, K S; Glifort, K; Wodicka, G R

    1998-05-01

    Auscultation of lung sounds in patient transport vehicles such as an ambulance or aircraft is unachievable because of high ambient noise levels. Aircraft noise levels of 90-100 dB SPL are common, while lung sounds have been measured in the 22-30 dB SPL range in free space and 65-70 dB SPL within a stethoscope coupler. Also, the bandwidth of lung sounds and vehicle noise typically has significant overlap, limiting the utility of traditional band-pass filtering. In this study, a passively shielded stethoscope coupler that contains one microphone to measure the (noise-corrupted) lung sound and another to measure the ambient noise was constructed. Lung sound measurements were made on a healthy subject in a simulated USAF C-130 aircraft environment within an acoustic chamber at noise levels ranging from 80 to 100 dB SPL. Adaptive filtering schemes using a least-mean-squares (LMS) and a normalized least-mean-squares (NLMS) approach were employed to extract the lung sounds from the noise-corrupted signal. Approximately 15 dB of noise reduction over the 100-600 Hz frequency range was achieved with the LMS algorithm, with the more complex NLMS algorithm providing faster convergence and up to 5 dB of additional noise reduction. These findings indicate that a combination of active and passive noise reduction can be used to measure lung sounds in high noise environments. PMID:9604343

  12. Broadband near-to-shot-noise suppression of arbitrary cw-laser excess intensity noise in the gigahertz range.

    PubMed

    Michael, Ernest A; Pallanca, Laurent

    2015-04-01

    Broadband near-to-shot-noise suppression of the intensity noise from a continuous-wave (cw) fiber laser at 1550 nm is demonstrated at GHz-frequencies using feed-forward phase-matched destructive noise interference impressed onto the optical signal with a fiber electro-optic power modulator. The scheme is independent of the laser frequency and therefore is suitable for tunable lasers. It can be used with some modifications after an optical fiber-amplifier boosting a cw laser signal. A noise residual of down to 2 dB above the shot-noise was measured, which is about 2 dB below the prediction with a rigorous noise model. While the total laser noise can be removed, inclusive shot noise, because the latter is still 10 dB above the thermal noise, the power splitter introduces some partition noise above the shot level. In that case, a sub-shot-noise suppression scheme should be possible by replacing the photon anti-correlation of the power splitter by the co-correlation obtained from a paired photon or twin beam source. PMID:25831326

  13. Quadrature mixture LO suppression via DSW DAC noise dither

    DOEpatents

    Dubbert, Dale F.; Dudley, Peter A.

    2007-08-21

    A Quadrature Error Corrected Digital Waveform Synthesizer (QECDWS) employs frequency dependent phase error corrections to, in effect, pre-distort the phase characteristic of the chirp to compensate for the frequency dependent phase nonlinearity of the RF and microwave subsystem. In addition, the QECDWS can employ frequency dependent correction vectors to the quadrature amplitude and phase of the synthesized output. The quadrature corrections cancel the radars' quadrature upconverter (mixer) errors to null the unwanted spectral image. A result is the direct generation of an RF waveform, which has a theoretical chirp bandwidth equal to the QECDWS clock frequency (1 to 1.2 GHz) with the high Spurious Free Dynamic Range (SFDR) necessary for high dynamic range radar systems such as SAR. To correct for the problematic upconverter local oscillator (LO) leakage, precision DC offsets can be applied over the chirped pulse using a pseudo-random noise dither. The present dither technique can effectively produce a quadrature DC bias which has the precision required to adequately suppress the LO leakage. A calibration technique can be employed to calculate both the quadrature correction vectors and the LO-nulling DC offsets using the radar built-in test capability.

  14. Application of Feedforward Adaptive Active-Noise Control for Reducing Blade Passing Noise in Centrifugal Fans

    NASA Astrophysics Data System (ADS)

    WU, J.-D.; BAI, M. R.

    2001-02-01

    This paper describes two configurations of feedforward adaptive active-noise control (ANC) technique for reducing blade passing noise in centrifugal fans. In one configuration, the control speaker is installed at the cut-off region of the fan, while in the other configuration at the exit duct. The proposed ANC system is based on the filtered-x least-mean-squares (FXLMS) algorithm with multi-sine synthesized reference signal and frequency counting and is implemented by using a digital signal processor (DSP). Experiments are carried out to evaluate the proposed system for reducing the noise at the blade passing frequency (BPF) and its harmonics at various flow speeds. The results of the experiment indicated that the ANC technique is effective in reducing the blade passing noise for two configurations by using the feedforward adaptive control.

  15. J-adaptive estimation with estimated noise statistics

    NASA Technical Reports Server (NTRS)

    Jazwinski, A. H.; Hipkins, C.

    1973-01-01

    The J-adaptive sequential estimator is extended to include simultaneous estimation of the noise statistics in a model for system dynamics. This extension completely automates the estimator, eliminating the requirement of an analyst in the loop. Simulations in satellite orbit determination demonstrate the efficacy of the sequential estimation algorithm.

  16. Adaptive optimization for pilot-tone aided phase noise compensation

    NASA Astrophysics Data System (ADS)

    Cui, Sheng; Xu, Mengran; Xia, Wenjuan; Ke, Chanjian; Xia, Zijie; Liu, Deming

    2015-11-01

    Pilot-tone (PT) aided phase noise compensation algorithm is very simple and effective, especially for flexible optical networks, because the phase noise coming from both Tx/Rx lasers and nonlinear cross phase modulation (XPM) during transmission can be adaptively compensated without high computational cost nonlinear operations, or the information of the neighboring channels and the optical link configuration. But to achieve the best performance the two key parameters, i.e. the pilot to signal power ratio and pilot bandpass filter bandwidth need to be optimized. In this paper it is demonstrated that constellation information can be used to adjust the two parameters adaptively to achieve the minimum BER in both homogenous and hybrid single carrier transmission systems with different LPN, XPM and amplified spontaneous emission (ASE) noise distortions.

  17. Two-stage method to suppress speckle noise in digital holography

    NASA Astrophysics Data System (ADS)

    Leng, Junmin; Zhou, Jinhe; Lang, Xiaoping; Li, Xiaoying

    2015-10-01

    The two-stage method is proposed to suppress speckle noise in the digital hologram. Three kinds of optical denoising ways are analyzed and compared at first. The optimal one is used to reduce speckle preliminarily. At the same time, the statistical property of the speckle is changed by the optical way. Then the optimized NLM algorithm is adopted to further suppress speckle noise. The experimental system is set up, and the performance indices are calculated. The results are compared with other algorithms. It is demonstrated that the presented method can effectively suppress speckle noise in the digital hologram and the processed image is very vivid.

  18. Noise-exploitation and adaptation in neuromorphic sensors

    NASA Astrophysics Data System (ADS)

    Hindo, Thamira; Chakrabartty, Shantanu

    2012-04-01

    Even though current micro-nano fabrication technology has reached integration levels where ultra-sensitive sensors can be fabricated, the sensing performance (resolution per joule) of synthetic systems are still orders of magnitude inferior to those observed in neurobiology. For example, the filiform hairs in crickets operate at fundamental limits of noise; auditory sensors in a parasitoid fly can overcome fundamental limitations to precisely localize ultra-faint acoustic signatures. Even though many of these biological marvels have served as inspiration for different types of neuromorphic sensors, the main focus these designs have been to faithfully replicate the biological functionalities, without considering the constructive role of "noise". In man-made sensors device and sensor noise are typically considered as a nuisance, where as in neurobiology "noise" has been shown to be a computational aid that enables biology to sense and operate at fundamental limits of energy efficiency and performance. In this paper, we describe some of the important noise-exploitation and adaptation principles observed in neurobiology and how they can be systematically used for designing neuromorphic sensors. Our focus will be on two types of noise-exploitation principles, namely, (a) stochastic resonance; and (b) noise-shaping, which are unified within our previously reported framework called Σ▵ learning. As a case-study, we describe the application of Σ▵ learning for the design of a miniature acoustic source localizer whose performance matches that of its biological counterpart(Ormia Ochracea).

  19. Adaptive Instability Suppression Controls in a Liquid-fueled Combustor

    NASA Technical Reports Server (NTRS)

    Kopasakis, George; DeLaat, John C.

    2002-01-01

    An adaptive control algorithm has been developed for the suppression of combustion thermo-acoustic instabilities. This technique involves modulating the fuel flow in the combustor with a control phase that continuously slides within the stable phase region, in a back and forth motion. The control method is referred to as Adaptive Sliding Phasor Averaged Control (ASPAC). The control method is evaluated against a simplified simulation of the combustion instability. Plans are to validate the control approach against a more physics-based model and an actual experimental combustor rig.

  20. MO-A-BRD-02: Noise Suppression for Dual-Energy CT Through Entropy Minimization

    SciTech Connect

    Petrongolo, M; Niu, T; Zhu, L

    2014-06-15

    Purpose: In dual energy CT (DECT), noise amplification during signal decomposition significantly limits the utility of basis material images. Since clinically relevant objects contain a limited number of materials, we propose to suppress noise in decomposed images through entropy minimization within a 2D transformation space. Distinct from other noise suppression techniques, the entropy minimization method does not estimate and suppress noise based on spatial variations of signals and thus maximally preserves image spatial resolution. Methods: From decomposed images, we first generate a 2D plot of scattered data points, using basis material densities as coordinates. Data points representing the same material generate a cluster with a highly asymmetric shape. We orient an axis by minimizing the entropy in a 1D histogram of these points projected onto the axis. To suppress noise, we replace the pixel values of decomposed images with center-of-mass values in the direction perpendicular to the optimized axis. The proposed method's performance is assessed using a Catphan 600 phantom and an anthropomorphic head phantom. Electron density calculations are used to quantify its accuracy. Our results are compared to those without noise suppression, with a filtering method, and with a recently developed iterative method. Results: On both phantoms, the proposed method reduces noise standard deviations of the decomposed images by at least on order of magnitude. In the Catphan study, this method retains the spatial resolution of the CT images and increases the accuracy of electron density calculations. In the head phantom study, the proposed method outperforms the others in retaining fine, intricate structures. Conclusion: This work shows that the proposed method of noise suppression through entropy minimization for DECT suppresses noise without loss of spatial resolution while increasing electron density calculation accuracy. Future investigations will analyze possible bias and

  1. The acoustic and perceptual effects of two noise-suppression algorithms.

    PubMed

    Zakis, Justin A; Wise, Christi

    2007-01-01

    Internal noise generated by hearing-aid circuits can be audible and objectionable to aid users, and may lead to the rejection of hearing aids. Two expansion algorithms were developed to suppress internal noise below a threshold level. The multiple-channel algorithm's expansion thresholds followed the 55-dB SPL long-term average speech spectrum, while the single-channel algorithm suppressed sounds below 45 dBA. With the recommended settings in static conditions, the single-channel algorithm provided lower noise levels, which were perceived as quieter by most normal-hearing participants. However, in dynamic conditions "pumping" noises were more noticeable with the single-channel algorithm. For impaired-hearing listeners fitted with the ADRO amplification strategy, both algorithms maintained speech understanding for words in sentences presented at 55 dB SPL in quiet (99.3% correct). Mean sentence reception thresholds in quiet were 39.4, 40.7, and 41.8 dB SPL without noise suppression, and with the single- and multiple-channel algorithms, respectively. The increase in the sentence reception threshold was statistically significant for the multiple-channel algorithm, but not the single-channel algorithm. Thus, both algorithms suppressed noise without affecting the intelligibility of speech presented at 55 dB SPL, with the single-channel algorithm providing marginally greater noise suppression in static conditions, and the multiple-channel algorithm avoiding pumping noises. PMID:17297798

  2. Applications of active adaptive noise control to jet engines

    NASA Technical Reports Server (NTRS)

    Shoureshi, Rahmat; Brackney, Larry

    1993-01-01

    During phase 2 research on the application of active noise control to jet engines, the development of multiple-input/multiple-output (MIMO) active adaptive noise control algorithms and acoustic/controls models for turbofan engines were considered. Specific goals for this research phase included: (1) implementation of a MIMO adaptive minimum variance active noise controller; and (2) turbofan engine model development. A minimum variance control law for adaptive active noise control has been developed, simulated, and implemented for single-input/single-output (SISO) systems. Since acoustic systems tend to be distributed, multiple sensors, and actuators are more appropriate. As such, the SISO minimum variance controller was extended to the MIMO case. Simulation and experimental results are presented. A state-space model of a simplified gas turbine engine is developed using the bond graph technique. The model retains important system behavior, yet is of low enough order to be useful for controller design. Expansion of the model to include multiple stages and spools is also discussed.

  3. A Background Noise Reduction Technique Using Adaptive Noise Cancellation for Microphone Arrays

    NASA Technical Reports Server (NTRS)

    Spalt, Taylor B.; Fuller, Christopher R.; Brooks, Thomas F.; Humphreys, William M., Jr.; Brooks, Thomas F.

    2011-01-01

    Background noise in wind tunnel environments poses a challenge to acoustic measurements due to possible low or negative Signal to Noise Ratios (SNRs) present in the testing environment. This paper overviews the application of time domain Adaptive Noise Cancellation (ANC) to microphone array signals with an intended application of background noise reduction in wind tunnels. An experiment was conducted to simulate background noise from a wind tunnel circuit measured by an out-of-flow microphone array in the tunnel test section. A reference microphone was used to acquire a background noise signal which interfered with the desired primary noise source signal at the array. The technique s efficacy was investigated using frequency spectra from the array microphones, array beamforming of the point source region, and subsequent deconvolution using the Deconvolution Approach for the Mapping of Acoustic Sources (DAMAS) algorithm. Comparisons were made with the conventional techniques for improving SNR of spectral and Cross-Spectral Matrix subtraction. The method was seen to recover the primary signal level in SNRs as low as -29 dB and outperform the conventional methods. A second processing approach using the center array microphone as the noise reference was investigated for more general applicability of the ANC technique. It outperformed the conventional methods at the -29 dB SNR but yielded less accurate results when coherence over the array dropped. This approach could possibly improve conventional testing methodology but must be investigated further under more realistic testing conditions.

  4. Noise of He-Cd laser and its suppression

    SciTech Connect

    Tseng, Y.G.; Jiang, J.L.; Lu, J.H.; Chiu, M.S.

    1983-08-15

    Linear relations have been observed between the reciprocal of the noise ratio and the reciprocal of the output power of the He-Cd laser as well as between the noise ratio and the net gain within the laser cavity. By a feedback method with an acoustooptic modulator in the laser cavity at the Brewster angle for low optical loss, a stable laser with high power output and low noise has been obtained. The noise ratio and the output power are 0.8% and 33 m W, respectively, at 4416 A.

  5. RF noise suppression using the photodielectric effect in semiconductors

    NASA Technical Reports Server (NTRS)

    Arndt, G. D.

    1969-01-01

    Technique using photodielectric effect of semiconductor in high-Q superconductive cavity gives initial improvement of 2-4 db in signal-to-noise enhancement of conventional RF communication systems. Wide band signal plus noise can be transmitted through a narrow-band cavity due to parametric perturbation of the cavity frequency or phase.

  6. Noise sources in wind turbines. Source identification research: Noise suppression design

    NASA Astrophysics Data System (ADS)

    Vanschie, L. W. A.; Debruijn, A.; Vantol, F. H.

    1985-06-01

    Aerodynamic and mechanical noise measurements on medium-sized wind turbines were carried out; literature on aerodynamic noise sources at wings was reviewed. The total emission level as a function of the average wind velocity was determined. Aerodynamic wing noise was measured seperately from the nacelle noise using a microphone. A trigger unit consisting of an optical sensor and telelens was developed to measure synchronically the noise signal of the wing in horizontal position. In the nacelle, noise and vibration measurements were done at the entering axis, the gear casing, and the generator. Main sources are the gear casing, the generator, and obstacles on the wings. Noise reducing design recommendations are given.

  7. Offset Manchester coding for Rayleigh noise suppression in carrier-distributed WDM-PONs

    NASA Astrophysics Data System (ADS)

    Xu, Jing; Yu, Xiangyu; Lu, Weichao; Qu, Fengzhong; Deng, Ning

    2015-07-01

    We propose a novel offset Manchester coding in upstream to simultaneously realize Rayleigh noise suppression and differential detection in a carrier-distributed wavelength division multiplexed passive optical network. Error-free transmission of 2.5-Gb/s upstream signals over 50-km standard single mode fiber is experimentally demonstrated, with a 7-dB enhanced tolerance to Rayleigh noise.

  8. A moving hum filter to suppress rotor noise in high-resolution airborne magnetic data

    USGS Publications Warehouse

    Xia, J.; Doll, W.E.; Miller, R.D.; Gamey, T.J.; Emond, A.M.

    2005-01-01

    A unique filtering approach is developed to eliminate helicopter rotor noise. It is designed to suppress harmonic noise from a rotor that varies slightly in amplitude, phase, and frequency and that contaminates aero-magnetic data. The filter provides a powerful harmonic noise-suppression tool for data acquired with modern large-dynamic-range recording systems. This three-step approach - polynomial fitting, bandpass filtering, and rotor-noise synthesis - significantly reduces rotor noise without altering the spectra of signals of interest. Two steps before hum filtering - polynomial fitting and bandpass filtering - are critical to accurately model the weak rotor noise. During rotor-noise synthesis, amplitude, phase, and frequency are determined. Data are processed segment by segment so that there is no limit on the length of data. The segment length changes dynamically along a line based on modeling results. Modeling the rotor noise is stable and efficient. Real-world data examples demonstrate that this method can suppress rotor noise by more than 95% when implemented in an aeromagnetic data-processing flow. ?? 2005 Society of Exploration Geophysicists. All rights reserved.

  9. The suppression of charged-particle-induced noise in infrared detectors

    NASA Technical Reports Server (NTRS)

    Houck, J. R.; Briotta, D. A., Jr.

    1982-01-01

    A d.c.-coupled transimpedance amplifier/pulse suppression circuit designed to remove charged-particle-induced noise from infrared detectors is described. Noise spikes produced by single particle events are large and have short rise times, and can degrade the performance of an infrared detector in moderate radiation environments. The use of the suppression circuit improves the signal-to-noise ratio by a factor of 1.6:1, which corresponds to a reduction in required observing time by a factor of about 2.6.

  10. Noise suppression in surface microseismic data by τ-p transform

    USGS Publications Warehouse

    Forghani-Arani, Farnoush; Batzle, Mike; Behura, Jyoti; Willis, Mark; Haines, Seth; Davidson, Michael

    2013-01-01

    Surface passive seismic methods are receiving increased attention for monitoring changes in reservoirs during the production of unconventional oil and gas. However, in passive seismic data the strong cultural and ambient noise (mainly surface-waves) decreases the effectiveness of these techniques. Hence, suppression of surface-waves is a critical step in surface microseismic monitoring. We apply a noise suppression technique, based on the τ — p transform, to a surface passive seismic dataset recorded over a Barnett Shale reservoir undergoing a hydraulic fracturing process. This technique not only improves the signal-to-noise ratios of added synthetic microseismic events, but it also preserves the event waveforms.

  11. Improved Radiometric Based Method for Suppressing Impulse Noise from Corrupted Images

    NASA Astrophysics Data System (ADS)

    Wu, Changcheng; Zhao, Chunyu; Chen, Dayue

    A novel filter is introduced in this paper to improve the ability of radiometric based method on suppressing impulse noise. Firstly, a new method is introduced to design the impulsive weight by measuring how impulsive a pixel is. Then, the impulsive weight is combined with the radiometric weight to obtain the evaluated values on each pixel in the whole corrupted image. The impulsive weight is mainly designed to suppress the impulse noise, while the radiometric weight is mainly designed to protect the noise-free pixel. Extensive experiments demonstrate that the proposed algorithm can perform much better than other filters in terms of the quantitative and qualitative aspects.

  12. High noise suppression using magnetically isotropic (CoFe-AlN)/(AlN) multilayer films

    NASA Astrophysics Data System (ADS)

    Kijima, Hanae; Ohnuma, Shigehiro; Masumoto, Hiroshi; Shimada, Yutaka; Endo, Yasushi; Yamaguchi, Masahiro

    2015-05-01

    Magnetically isotropic (CoFe-AlN)n/(AlN)n+1 multilayer films, in which the number of CoFe-AlN magnetic layers n ranged from 1 to 27, were prepared by radio frequency sputtering to achieve noise suppression at gigahertz frequencies. The soft CoFe-AlN magnetic layers consisted of nanometer-sized CoFe ferromagnetic grains embedded in an insulating AlN amorphous matrix, while the insulating AlN layers comprised AlN columnar crystals. All films showed a similar frequency dependence of permeability and ferromagnetic resonance of 1.7 GHz. Noise suppression was evaluated using a microstrip line as a noise source by determining the in-line conductive loss and the near-field intensity picked up by magnetic field detective probes. High noise suppression effects were observed in every direction in the film plane. Maximum noise suppression values amounted to 60% for the in-line conductive loss and -20 dB for the magnetic near-field intensity at around 1.7 GHz in the 27-layer film. These high-frequency noise suppression levels may be attributed to eddy current losses and ferromagnetic resonance.

  13. Measurement Sensitivity Improvement of All-Optical Atomic Spin Magnetometer by Suppressing Noises

    PubMed Central

    Chen, Xiyuan; Zhang, Hong; Zou, Sheng

    2016-01-01

    Quantum manipulation technology and photoelectric detection technology have jointly facilitated the rapid development of ultra-sensitive atomic spin magnetometers. To improve the output signal and sensitivity of the spin-exchange-relaxation-free (SERF) atomic spin magnetometer, the noises influencing on the output signal and the sensitivity were analyzed, and the corresponding noise suppression methods were presented. The magnetic field noises, including the residual magnetic field noise and the light shift noise, were reduced to approximately zero by employing the magnetic field compensation method and by adjusting the frequency of the pump beam, respectively. With respect to the operation temperature, the simulation results showed that the temperature of the potassium atomic spin magnetometer realizing the spin-exchange relaxation-free regime was 180 °C. Moreover, the fluctuation noises of the frequency and the power were suppressed by using the frequency and the power stable systems. The experimental power stability results showed that the light intensity stability was enhanced 10%. Contrast experiments on the sensitivity were carried out to demonstrate the validity of the suppression methods. Finally, a sensitivity of 13 fT/Hz1/2 was successfully achieved by suppressing noises and optimizing parameters. PMID:27322272

  14. Measurement Sensitivity Improvement of All-Optical Atomic Spin Magnetometer by Suppressing Noises.

    PubMed

    Chen, Xiyuan; Zhang, Hong; Zou, Sheng

    2016-01-01

    Quantum manipulation technology and photoelectric detection technology have jointly facilitated the rapid development of ultra-sensitive atomic spin magnetometers. To improve the output signal and sensitivity of the spin-exchange-relaxation-free (SERF) atomic spin magnetometer, the noises influencing on the output signal and the sensitivity were analyzed, and the corresponding noise suppression methods were presented. The magnetic field noises, including the residual magnetic field noise and the light shift noise, were reduced to approximately zero by employing the magnetic field compensation method and by adjusting the frequency of the pump beam, respectively. With respect to the operation temperature, the simulation results showed that the temperature of the potassium atomic spin magnetometer realizing the spin-exchange relaxation-free regime was 180 °C. Moreover, the fluctuation noises of the frequency and the power were suppressed by using the frequency and the power stable systems. The experimental power stability results showed that the light intensity stability was enhanced 10%. Contrast experiments on the sensitivity were carried out to demonstrate the validity of the suppression methods. Finally, a sensitivity of 13 fT/Hz(1/2) was successfully achieved by suppressing noises and optimizing parameters. PMID:27322272

  15. Noise Suppression Using Symmetric Exchange Gates in Spin Qubits

    NASA Astrophysics Data System (ADS)

    Martins, Frederico; Malinowski, Filip K.; Nissen, Peter D.; Barnes, Edwin; Fallahi, Saeed; Gardner, Geoffrey C.; Manfra, Michael J.; Marcus, Charles M.; Kuemmeth, Ferdinand

    2016-03-01

    We demonstrate a substantial improvement in the spin-exchange gate using symmetric control instead of conventional detuning in GaAs spin qubits, up to a factor of six increase in the quality factor of the gate. For symmetric operation, nanosecond voltage pulses are applied to the barrier that controls the interdot potential between quantum dots, modulating the exchange interaction while maintaining symmetry between the dots. Excellent agreement is found with a model that separately includes electrical and nuclear noise sources for both detuning and symmetric gating schemes. Unlike exchange control via detuning, the decoherence of symmetric exchange rotations is dominated by rotation-axis fluctuations due to nuclear field noise rather than direct exchange noise.

  16. Suppression of 1/f Flux Noise in Superconducting Quantum Circuits

    NASA Astrophysics Data System (ADS)

    Kumar, Pradeep; Freeland, John; Yu, Clare; Wu, Ruqian; Wang, Zhe; Wang, Hui; Shi, Chuntai; Pappas, David; McDermott, Robert

    Low frequency 1/f magnetic flux noise is a dominant contributor to dephasing in superconducting quantum circuits. It is believed that the noise is due to a high density of unpaired magnetic defect states at the surface of the superconducting thin films. We have performed X-ray absorption spectroscopy (XAS) and X-ray magnetic circular dichroism (XMCD) experiments that point to adsorbed molecular oxygen as the dominant source of magnetism in these films. By improving the vacuum environment of our superconducting devices, we have achieved a significant reduction in surface magnetic susceptibility and 1/f flux noise power spectral density. These results open the door to realization of superconducting qubits with improved dephasing times. State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai, China.

  17. Noise Suppression Using Symmetric Exchange Gates in Spin Qubits.

    PubMed

    Martins, Frederico; Malinowski, Filip K; Nissen, Peter D; Barnes, Edwin; Fallahi, Saeed; Gardner, Geoffrey C; Manfra, Michael J; Marcus, Charles M; Kuemmeth, Ferdinand

    2016-03-18

    We demonstrate a substantial improvement in the spin-exchange gate using symmetric control instead of conventional detuning in GaAs spin qubits, up to a factor of six increase in the quality factor of the gate. For symmetric operation, nanosecond voltage pulses are applied to the barrier that controls the interdot potential between quantum dots, modulating the exchange interaction while maintaining symmetry between the dots. Excellent agreement is found with a model that separately includes electrical and nuclear noise sources for both detuning and symmetric gating schemes. Unlike exchange control via detuning, the decoherence of symmetric exchange rotations is dominated by rotation-axis fluctuations due to nuclear field noise rather than direct exchange noise. PMID:27035316

  18. Nonlinear mode decomposition: A noise-robust, adaptive decomposition method

    NASA Astrophysics Data System (ADS)

    Iatsenko, Dmytro; McClintock, Peter V. E.; Stefanovska, Aneta

    2015-09-01

    The signals emanating from complex systems are usually composed of a mixture of different oscillations which, for a reliable analysis, should be separated from each other and from the inevitable background of noise. Here we introduce an adaptive decomposition tool—nonlinear mode decomposition (NMD)—which decomposes a given signal into a set of physically meaningful oscillations for any wave form, simultaneously removing the noise. NMD is based on the powerful combination of time-frequency analysis techniques—which, together with the adaptive choice of their parameters, make it extremely noise robust—and surrogate data tests used to identify interdependent oscillations and to distinguish deterministic from random activity. We illustrate the application of NMD to both simulated and real signals and demonstrate its qualitative and quantitative superiority over other approaches, such as (ensemble) empirical mode decomposition, Karhunen-Loève expansion, and independent component analysis. We point out that NMD is likely to be applicable and useful in many different areas of research, such as geophysics, finance, and the life sciences. The necessary matlab codes for running NMD are freely available for download.

  19. Nonlinear mode decomposition: a noise-robust, adaptive decomposition method.

    PubMed

    Iatsenko, Dmytro; McClintock, Peter V E; Stefanovska, Aneta

    2015-09-01

    The signals emanating from complex systems are usually composed of a mixture of different oscillations which, for a reliable analysis, should be separated from each other and from the inevitable background of noise. Here we introduce an adaptive decomposition tool-nonlinear mode decomposition (NMD)-which decomposes a given signal into a set of physically meaningful oscillations for any wave form, simultaneously removing the noise. NMD is based on the powerful combination of time-frequency analysis techniques-which, together with the adaptive choice of their parameters, make it extremely noise robust-and surrogate data tests used to identify interdependent oscillations and to distinguish deterministic from random activity. We illustrate the application of NMD to both simulated and real signals and demonstrate its qualitative and quantitative superiority over other approaches, such as (ensemble) empirical mode decomposition, Karhunen-Loève expansion, and independent component analysis. We point out that NMD is likely to be applicable and useful in many different areas of research, such as geophysics, finance, and the life sciences. The necessary matlab codes for running NMD are freely available for download. PMID:26465549

  20. Improved NASA-ANOPP Noise Prediction Computer Code for Advanced Subsonic Propulsion Systems. Volume 2; Fan Suppression Model Development

    NASA Technical Reports Server (NTRS)

    Kontos, Karen B.; Kraft, Robert E.; Gliebe, Philip R.

    1996-01-01

    The Aircraft Noise Predication Program (ANOPP) is an industry-wide tool used to predict turbofan engine flyover noise in system noise optimization studies. Its goal is to provide the best currently available methods for source noise prediction. As part of a program to improve the Heidmann fan noise model, models for fan inlet and fan exhaust noise suppression estimation that are based on simple engine and acoustic geometry inputs have been developed. The models can be used to predict sound power level suppression and sound pressure level suppression at a position specified relative to the engine inlet.

  1. Microwave oscillator with reduced phase noise by negative feedback incorporating microwave signals with suppressed carrier

    NASA Technical Reports Server (NTRS)

    Dick, G. J.; Saunders, J.

    1989-01-01

    Oscillator configurations which reduce the effect of 1/f noise sources for both direct feedback and stabilized local oscillator (STALO) circuits are developed and analyzed. By appropriate use of carrier suppression, a small signal is generated which suffers no loss of loop phase information or signal-to-noise ratio. This small signal can be amplified without degradation by multiplicative amplifier noise, and can be detected without saturation of the detector. Together with recent advances in microwave resonator Qs, these circuit improvements will make possible lower phase noise than can be presently achieved without the use of cryogenic devices.

  2. High Frequency Adaptive Instability Suppression Controls in a Liquid-Fueled Combustor

    NASA Technical Reports Server (NTRS)

    Kopasakis, George

    2003-01-01

    This effort extends into high frequency (>500 Hz), an earlier developed adaptive control algorithm for the suppression of thermo-acoustic instabilities in a liquidfueled combustor. The earlier work covered the development of a controls algorithm for the suppression of a low frequency (280 Hz) combustion instability based on simulations, with no hardware testing involved. The work described here includes changes to the simulation and controller design necessary to control the high frequency instability, augmentations to the control algorithm to improve its performance, and finally hardware testing and results with an experimental combustor rig developed for the high frequency case. The Adaptive Sliding Phasor Averaged Control (ASPAC) algorithm modulates the fuel flow in the combustor with a control phase that continuously slides back and forth within the phase region that reduces the amplitude of the instability. The results demonstrate the power of the method - that it can identify and suppress the instability even when the instability amplitude is buried in the noise of the combustor pressure. The successful testing of the ASPAC approach helped complete an important NASA milestone to demonstrate advanced technologies for low-emission combustors.

  3. Quiet engine program: Turbine noise suppression. -Volume 1: General treatment evaluation and measurement techniques

    NASA Technical Reports Server (NTRS)

    Clemons, A.; Hehmann, H.; Radecki, K.

    1973-01-01

    Acoustic treatment was developed for jet engine turbine noise suppression. Acoustic impedance and duct transmission loss measurements were made for various suppression systems. An environmental compatibility study on several material types having suppression characteristics is presented. Two sets of engine hardware were designed and are described along with engine test results which include probe, farfield, near field, and acoustic directional array data. Comparisons of the expected and the measured suppression levels are given as well as a discussion of test results and design techniques.

  4. Aeroacoustic performance of an externally blown flap configuration with several flap noise suppression devices

    NASA Technical Reports Server (NTRS)

    Mckinzie, D. J., Jr.

    1982-01-01

    Small scale model acoustic experiments were conducted to measure the noise produced in the flyover and sideline planes by an engine under the wing externally blown flap configuration in its approach attitude. Broadband low frequency noise reductions as large as 9 dB were produced by reducing the separation distance between the nozzle exhaust plane and the flaps. Experiments were also conducted to determine the noise suppression effectiveness in comparison with a reference configuration of three passive types of devices that were located on the jet impingement surfaces of the reference configuration. These devices produced noise reductions that varied up to 10 dB at reduced separation distances. In addition, a qualitative estimate of the noise suppression characteristics of the separate devices was made. Finally static aerodynamic performance data were obtained to evaluate the penalties incurred by these suppression devices. The test results suggest that further parametric studies are required in order to understand more fully the noise mechanisms that are affected by the suppression devices used.

  5. Aeroacoustic performance of an externally blown flap configuration with several flap noise suppression devices

    NASA Astrophysics Data System (ADS)

    McKinzie, D. J., Jr.

    1982-05-01

    Small scale model acoustic experiments were conducted to measure the noise produced in the flyover and sideline planes by an engine under the wing externally blown flap configuration in its approach attitude. Broadband low frequency noise reductions as large as 9 dB were produced by reducing the separation distance between the nozzle exhaust plane and the flaps. Experiments were also conducted to determine the noise suppression effectiveness in comparison with a reference configuration of three passive types of devices that were located on the jet impingement surfaces of the reference configuration. These devices produced noise reductions that varied up to 10 dB at reduced separation distances. In addition, a qualitative estimate of the noise suppression characteristics of the separate devices was made. Finally static aerodynamic performance data were obtained to evaluate the penalties incurred by these suppression devices. The test results suggest that further parametric studies are required in order to understand more fully the noise mechanisms that are affected by the suppression devices used.

  6. Prediction, Measurement, and Suppression of High Temperature Supersonic Jet Noise

    NASA Technical Reports Server (NTRS)

    Seiner, John M.; Bhat, T. R. S.; Jansen, Bernard J.

    1999-01-01

    The photograph in figure 1 displays a water cooled round convergent-divergent supersonic nozzle operating slightly overexpanded near 2460 F. The nozzle is designed to produce shock free flow near this temperature at Mach 2. The exit diameter of this nozzle is 3.5 inches. This nozzle is used in the present study to establish properties of the sound field associated with high temperature supersonic jets operating fully pressure balanced (i.e. shock free) and to evaluate capability of the compressible Rayleigh model to account for principle physical features of the observed sound emission. The experiment is conducted statically (i.e. M(sub f) = 0.) in the NASA/LaRC Jet Noise Laboratory. Both aerodynamic and acoustic measurements are obtained in this study along with numerical plume simulation and theoretical prediction of jet noise. Detailed results from this study are reported previously by Seiner, Ponton, Jansen, and Lagen.

  7. New calibration noise suppression techniques for the GLORIA limb imager

    NASA Astrophysics Data System (ADS)

    Guggenmoser, T.; Blank, J.; Kleinert, A.; Latzko, T.; Ungermann, J.; Friedl-Vallon, F.; Höpfner, M.; Kaufmann, M.; Kretschmer, E.; Maucher, G.; Neubert, T.; Oelhaf, H.; Preusse, P.; Riese, M.; Rongen, H.; Sha, M. K.; Sumińska-Ebersoldt, O.; Tan, V.

    2014-12-01

    The Gimballed Limb Observer for Radiance Imaging of the Atmosphere (GLORIA) presents new opportunities for the retrieval of trace gases in the upper troposphere and lower stratosphere. The radiometric calibration of the measured signal is achieved using in-flight measurements of reference blackbody and upward-pointing "deep space" scenes. In this paper, we present techniques developed specifically to calibrate GLORIA data exploiting the instrument's imaging capability. The algorithms discussed here make use of the spatial correlation of parameters across GLORIA's detector pixels in order to mitigate the noise levels and artefacts in the calibration measurements. This is achieved by combining a priori and empirical knowledge about the instrument background radiation with noise-mitigating compression methods, specifically low-pass filtering and principal component analysis. In addition, a new software package for the processing of GLORIA data is introduced which allows us to generate calibrated spectra from raw measurements in a semi-automated data processing chain.

  8. New calibration noise suppression techniques for the GLORIA limb imager

    NASA Astrophysics Data System (ADS)

    Guggenmoser, T.; Blank, J.; Kleinert, A.; Latzko, T.; Ungermann, J.; Friedl-Vallon, F.; Höpfner, M.; Kaufmann, M.; Kretschmer, E.; Maucher, G.; Neubert, T.; Oelhaf, H.; Preusse, P.; Riese, M.; Rongen, H.; Sha, M. K.; Sumińska-Ebersoldt, O.; Tan, V.

    2015-08-01

    The Gimballed Limb Observer for Radiance Imaging of the Atmosphere (GLORIA) presents new opportunities for the retrieval of trace gases in the upper troposphere and lower stratosphere. The radiometric calibration of the measured signal is achieved using in-flight measurements of reference blackbody and upward-pointing "deep space" scenes. In this paper, we present techniques developed specifically to calibrate GLORIA data exploiting the instrument's imaging capability. The algorithms discussed here make use of the spatial correlation of parameters across GLORIA's detector pixels in order to mitigate the noise levels and artefacts in the calibration measurements. This is achieved by combining a priori and empirical knowledge about the instrument background radiation with noise-mitigating compression methods, specifically low-pass filtering and principal component analysis (PCA). In addition, a new software package for the processing of GLORIA data is introduced which allows us to generate calibrated spectra from raw measurements in a semi-automated data processing chain.

  9. Design of a Low Speed Fan Stage for Noise Suppression

    NASA Technical Reports Server (NTRS)

    Dalton, W. N.; Elliot, D. B.; Nickols, K. L.

    1999-01-01

    This report describes the design of a low tip speed, moderate pressure rise fan stage for demonstration of noise reduction concepts. The fan rotor is a fixed-pitch configuration delivering a design pressure ratio of 1.378 at a specific flow of 43.1 lbm/sec/sq ft. Four exit stator configurations were provided to demonstrate the effectiveness of circumferential and axial sweep in reducing rotor-stator interaction tone noise. The fan stage design was combined with an axisymmetric inlet, conical convergent nozzle, and nacelle to form a powered fan-nacelle subscale model. This model has a 22-inch cylindrical flow path and employs a rotor with a 0.30 hub-to-tip radius ratio. The design is fully compatible with an existing NASA force balance and rig drive system. The stage aerodynamic and structural design is described in detail. Three-dimensional (3-D) computational fluid dynamics (CFD) tools were used to define optimum airfoil sections for both the rotor and stators. A fan noise predictive system developed by Pratt & Whitney under contract to NASA was used to determine the acoustic characteristics of the various stator configurations. Parameters varied included rotor-to-stator spacing and vane leading edge sweep. The structural analysis of the rotor and stator are described herein. An integral blade and disk configuration was selected for the rotor. Analysis confirmed adequate low cycle fatigue life, vibratory endurance strength, and aeroelastic suitability. A unique load carrying stator arrangement was selected to minimize generation of tonal noise due to sources other than rotor-stator interaction. Analysis of all static structural components demonstrated adequate strength, fatigue life, and vibratory characteristics.

  10. Suppression of frequency locking noise in resonator fiber optic gyro by differential detection method

    NASA Astrophysics Data System (ADS)

    Feng, Lishuang; Zhi, Yinzhou; Lei, Ming; Wang, Junjie

    2014-10-01

    The performance of the resonator fiber optic gyro (RFOG) is influenced by frequency locking noise. This paper proposes a differential detection method (DDM) to suppress the frequency locking noise. First, the frequency locking noise induced by the frequency locking error is described theoretically; the description indicates that it acts as the common-mode noise in the RFOG. In the traditional signal-path detection method (SDM), there is a trade-off between suppressing the frequency locking noise and improving the gyro sensitivity. Thus, a model of the DDM is set up and analyzed. The frequency locking noise can be suppressed using the DDM by adjusting the gains of two lock-in amplifiers. Finally, the experimental setup is established, and the SDM and DDM are compared. When the tested equivalent frequency locking noise is 10.6°/h, the bias stability of the RFOG is improved from 12.9°/h to 1.1°/h by the DDM.

  11. Adjoint-based optimization for understanding and suppressing jet noise

    NASA Astrophysics Data System (ADS)

    Freund, Jonathan B.

    2011-08-01

    Advanced simulation tools, particularly large-eddy simulation techniques, are becoming capable of making quality predictions of jet noise for realistic nozzle geometries and at engineering relevant flow conditions. Increasing computer resources will be a key factor in improving these predictions still further. Quality prediction, however, is only a necessary condition for the use of such simulations in design optimization. Predictions do not themselves lead to quieter designs. They must be interpreted or harnessed in some way that leads to design improvements. As yet, such simulations have not yielded any simplifying principals that offer general design guidance. The turbulence mechanisms leading to jet noise remain poorly described in their complexity. In this light, we have implemented and demonstrated an aeroacoustic adjoint-based optimization technique that automatically calculates gradients that point the direction in which to adjust controls in order to improve designs. This is done with only a single flow solutions and a solution of an adjoint system, which is solved at computational cost comparable to that for the flow. Optimization requires iterations, but having the gradient information provided via the adjoint accelerates convergence in a manner that is insensitive to the number of parameters to be optimized. This paper, which follows from a presentation at the 2010 IUTAM Symposium on Computational Aero-Acoustics for Aircraft Noise Prediction, reviews recent and ongoing efforts by the author and co-workers. It provides a new formulation of the basic approach and demonstrates the approach on a series of model flows, culminating with a preliminary result for a turbulent jet.

  12. System and Method for Suppression of Unwanted Noise in Ground Test Facilities

    NASA Technical Reports Server (NTRS)

    Zaman, Khairul B. M. Q. (Inventor); Clem, Michelle M. (Inventor); Fagan, Amy F. (Inventor)

    2015-01-01

    Systems and methods for the suppression of unwanted noise from a jet discharging into a duct are disclosed herein. The unwanted noise may be in the form of excited duct modes or howl due to super resonance. A damper member is used to reduce acoustic velocity perturbations at the velocity anti-node, associated with the half-wave resonance of the duct, weakening the resonance condition and reducing the amplitudes of the spectral peaks.

  13. Observation of Shot Noise Suppression at Optical Wavelengths in a Relativistic Electron Beam

    SciTech Connect

    Ratner, Daniel; Stupakov, Gennady; /SLAC

    2012-06-19

    Control of collective properties of relativistic particles is increasingly important in modern accelerators. In particular, shot noise affects accelerator performance by driving instabilities or by competing with coherent processes. We present experimental observations of shot noise suppression in a relativistic beam at the Linac Coherent Light Source. By adjusting the dispersive strength of a chicane, we observe a decrease in the optical transition radiation emitted from a downstream foil. We show agreement between the experimental results, theoretical models, and 3D particle simulations.

  14. Comparative study of adaptive-noise-cancellation algorithms for intrusion detection systems

    SciTech Connect

    Claassen, J.P.; Patterson, M.M.

    1981-01-01

    Some intrusion detection systems are susceptible to nonstationary noise resulting in frequent nuisance alarms and poor detection when the noise is present. Adaptive inverse filtering for single channel systems and adaptive noise cancellation for two channel systems have both demonstrated good potential in removing correlated noise components prior detection. For such noise susceptible systems the suitability of a noise reduction algorithm must be established in a trade-off study weighing algorithm complexity against performance. The performance characteristics of several distinct classes of algorithms are established through comparative computer studies using real signals. The relative merits of the different algorithms are discussed in the light of the nature of intruder and noise signals.

  15. On-line, adaptive state estimator for active noise control

    NASA Technical Reports Server (NTRS)

    Lim, Tae W.

    1994-01-01

    Dynamic characteristics of airframe structures are expected to vary as aircraft flight conditions change. Accurate knowledge of the changing dynamic characteristics is crucial to enhancing the performance of the active noise control system using feedback control. This research investigates the development of an adaptive, on-line state estimator using a neural network concept to conduct active noise control. In this research, an algorithm has been developed that can be used to estimate displacement and velocity responses at any locations on the structure from a limited number of acceleration measurements and input force information. The algorithm employs band-pass filters to extract from the measurement signal the frequency contents corresponding to a desired mode. The filtered signal is then used to train a neural network which consists of a linear neuron with three weights. The structure of the neural network is designed as simple as possible to increase the sampling frequency as much as possible. The weights obtained through neural network training are then used to construct the transfer function of a mode in z-domain and to identify modal properties of each mode. By using the identified transfer function and interpolating the mode shape obtained at sensor locations, the displacement and velocity responses are estimated with reasonable accuracy at any locations on the structure. The accuracy of the response estimates depends on the number of modes incorporated in the estimates and the number of sensors employed to conduct mode shape interpolation. Computer simulation demonstrates that the algorithm is capable of adapting to the varying dynamic characteristics of structural properties. Experimental implementation of the algorithm on a DSP (digital signal processing) board for a plate structure is underway. The algorithm is expected to reach the sampling frequency range of about 10 kHz to 20 kHz which needs to be maintained for a typical active noise control

  16. Adaptive threshold harvesting and the suppression of transients.

    PubMed

    Segura, Juan; Hilker, Frank M; Franco, Daniel

    2016-04-21

    Fluctuations in population size are in many cases undesirable, as they can induce outbreaks and extinctions or impede the optimal management of populations. We propose the strategy of adaptive threshold harvesting (ATH) to control fluctuations in population size. In this strategy, the population is harvested whenever population size has grown beyond a certain proportion in comparison to the previous generation. Taking such population increases into account, ATH intervenes also at smaller population sizes than the strategy of threshold harvesting. Moreover, ATH is the harvesting version of adaptive limiter control (ALC) that has recently been shown to stabilize population oscillations in both experiments and theoretical studies. We find that ATH has similar stabilization properties as ALC and thus offers itself as a harvesting alternative for the control of pests, exploitation of biological resources, or when restocking interventions required from ALC are unfeasible. We present numerical simulations of ATH to illustrate its performance in the presence of noise, lattice effect, and Allee effect. In addition, we propose an adjustment to both ATH and ALC that restricts interventions when control seems unnecessary, i.e. when population size is too small or too large, respectively. This adjustment cancels prolonged transients. PMID:26854876

  17. Noise suppression for energy-resolved CT using similarity-based non-local filtration

    NASA Astrophysics Data System (ADS)

    Harms, Joe; Wang, Tonghe; Petrongolo, Michael; Zhu, Lei

    2016-03-01

    In energy-resolved CT, images are reconstructed independently at different energy levels, resulting in images with different qualities but the same structures. We propose a similarity-based non-local filtration method to extract structural information from these images for noise suppression. For each pixel, we calculate its similarity to other pixels based on CT number. The calculation is repeated on each image at different energy levels and similarity values are averaged to generate a similarity matrix. Noise suppression is achieved by multiplying the image vector by the similarity matrix. Multiple scans on a tabletop CT system are used to simulate 6-channel energy-resolved CT, with energies ranging from 75 to 125 kVp. Phantom studies show that the proposed method improves average contrast-to-noise ratio (CNR) of seven materials on the 75 kVp image by a factor of 22. Compared with averaging CT images for noise suppression, our method achieves a higher CNR and reduces the CT number error of iodine solutions from 16.5% to 3.5% and the overall image root of mean-square error (RMSE) from 3.58% to 0.93%. On the phantom with line-pair structures, our algorithm reduces noise standard deviation (STD) by a factor of 23 while maintaining 7 lp/cm spatial resolution. Additionally, anthropomorphic head phantom studies show noise STD reduction by a factor or 26 with no loss of spatial resolution. The noise suppression achieved by the similarity-based method is clinically attractive, especially for CNRs of iodine in contrast-enhanced CT.

  18. Suppression of low-frequency charge noise in gates-defined GaAs quantum dots

    SciTech Connect

    You, Jie; Li, Hai-Ou E-mail: gpguo@ustc.edu.cn; Wang, Ke; Cao, Gang; Song, Xiang-Xiang; Xiao, Ming; Guo, Guo-Ping E-mail: gpguo@ustc.edu.cn

    2015-12-07

    To reduce the charge noise of a modulation-doped GaAs/AlGaAs quantum dot, we have fabricated shallow-etched GaAs/AlGaAs quantum dots using the wet-etching method to study the effects of two-dimensional electron gas (2DEG) underneath the metallic gates. The low-frequency 1/f noise in the Coulomb blockade region of the shallow-etched quantum dot is compared with a non-etched quantum dot on the same wafer. The average values of the gate noise are approximately 0.5 μeV in the shallow-etched quantum dot and 3 μeV in the regular quantum dot. Our results show the quantum dot low-frequency charge noise can be suppressed by the removal of the 2DEG underneath the metallic gates, which provides an architecture for noise reduction.

  19. Suppressing technical noise in weak measurements by entanglement

    NASA Astrophysics Data System (ADS)

    Pang, Shengshi; Brun, Todd A.

    2015-07-01

    Postselected weak measurement has aroused broad interest for its distinctive ability to amplify small physical quantities. However, the low postselection efficiency to obtain a large weak value has been a big obstacle to its application in practice since it may waste resources, and reduce the measurement precision. An improved protocol was proposed in Pang et al., Phys. Rev. Lett. 113, 030401 (2014), 10.1103/PhysRevLett.113.030401 to make the postselected weak measurement dramatically more efficient by using entanglement. Such a protocol can increase the Fisher information of the measurement to approximately saturate the well-known Heisenberg limit. In this paper, we review the entanglement-assisted protocol of postselected weak measurement in detail, and study its robustness against technical noises. We focus on readout errors. Readout errors can greatly degrade the performance of postselected weak measurement, especially when the readout error probability is comparable to the postselection probability. We show that entanglement can significantly reduce the two main detrimental effects of readout errors: inaccuracy in the measurement result and the loss of Fisher information. We extend the protocol by introducing a majority vote scheme to postselection to further compensate for readout errors. With a proper threshold, almost no Fisher information will be lost. These results demonstrate the effectiveness of entanglement in protecting postselected weak measurement against readout errors.

  20. Digital filter suppresses effects of nonstatistical noise bursts on multichannel scaler digital averaging systems

    NASA Technical Reports Server (NTRS)

    Goodman, L. S.; Salter, F. O.

    1968-01-01

    Digital filter suppresses the effects of nonstatistical noise bursts on data averaged over multichannel scaler. Interposed between the sampled channels and the digital averaging system, it uses binary logic circuitry to compare the number of counts per channel with the average number of counts per channel.

  1. Interocular suppression patterns in binocularly abnormal observers using luminance- and contrast-modulated noise stimuli.

    PubMed

    Chima, Akash S; Formankiewicz, Monika A; Waugh, Sarah J

    2016-08-01

    In binocular viewing, images presented to the amblyopic eye are suppressed in the cortex to prevent confusion or diplopia. The present study measures depth and extent of interocular suppression across the central circular 24° visual field in observers with strabismus and microstrabismus. Visual stimuli were concentric rings of alternating polarity, each divided into sectors. Rings were defined by luminance (L), luminance-modulated noise (LM), or contrast-modulated noise (CM). They were viewed binocularly except for the tested ring, which was viewed dichoptically, so that the modulation of one sector presented to the weaker or amblyopic eye was adjusted to perceptually match the surrounding ring presented to the preferred eye. A two alternative forced-choice paradigm combined with a staircase procedure allowed for measurement of the point of subjective equality, or perceptual match. Depth of suppression was calculated as the difference between physical modulations presented to the two eyes at this point. Strabismic participants showed suppression deeper centrally than peripherally, and in one hemifield of the visual field more than the other. Suppression was deeper for L than LM, and CM than LM stimuli. Microstrabismic suppression was weaker than that of strabismics, central for L and LM stimuli, with suppression of CM stimuli being broader, deeper and more in one hemifield. Suppression depth was positively correlated with interocular visual acuity difference and stereoacuity reduction. Clinically, LM stimuli could be used for assessment of deeper amblyopes to assess suppression patterns, while more sensitive detection of mild suppression would be possible using CM stimuli. PMID:27580040

  2. Noise from a Jet Discharging Into a Duct and Its Suppression

    NASA Technical Reports Server (NTRS)

    Zaman, Khairul B. M. Q.; Clem, M. M.; Fagan, A. F.

    2012-01-01

    The present study addresses unwanted high intensity noise sometimes encountered in engine test facilities. A simplified model-scale experiment is conducted for a circular jet discharging into a cylindrical duct. For the given configuration the unwanted noise is found to be primarily due to the duct resonance modes excited by the jet. When the "preferred mode". frequency of the jet matches a duct resonant frequency there can be a locked-in "super resonance". accompanied by a high intensity tone. However, even in the absence of a locked-in resonance, high levels of unwanted noise may occur due to the duct modes excited simply by broadband disturbances of the jet. Various methods for suppression of the noise are explored. Tabs placed on the ends of the duct are found ineffective; so are longitudinal fins placed inside the duct. A rod inserted perpendicular to the flow at different axial locations is also found ineffective; however, when there is a super resonance it is effective in suppressing the tone. By far the best suppression is achieved by a wire-mesh screen placed at the downstream end of the duct; placing it on the upstream end also works, however, there is some penalty at high frequencies due to impingement noise. The screen not only eliminates any super resonance but also the duct mode spectral peaks in the absence of such resonance. Apparently it works by dampening the velocity fluctuations at the pressure node and thereby weakening the resonance condition, for the simplified configuration under consideration.

  3. Surface treatment method for 1/f noise suppression in reactively sputtered nickel oxide film

    NASA Astrophysics Data System (ADS)

    Kim, Dong Soo; Park, Seung-Man; Lee, Hee Chul

    2012-07-01

    A surface treatment method combined with O2 plasma treatment and Ar+ bombardment is proposed for 1/f noise suppression in a reactively sputtered NiO film as a micro-bolometer sensing material. The 1/f noise power spectral density on a sample prepared by the proposed surface treatment method prior to the contact formation is suppressed to a level roughly 18 times lower than that on an untreated sample. The improved noise characteristic can be ascribed to the cooperative effects of the two steps in the proposed surface treatment method. In its effects, the oxygen plasma treatment is supposed to increase the Ni3+ component on the surface of the NiO film, which in turn increases the hole concentration on the surface. Additional Ar+ bombardment is expected to remove contaminants on the surface of the NiO film, leading to a low contact resistance.

  4. Note: A simple method to suppress the artificial noise for velocity map imaging spectroscopy

    SciTech Connect

    Qin, Zhengbo E-mail: zctang@dicp.ac.cn; Li, Chunsheng; Qu, Zehua; Tang, Zichao E-mail: zctang@dicp.ac.cn

    2015-04-15

    A simple method has been proposed to suppress artificial noise from the counts with respect to the central line (or point) for the reconstructed 3D images with cylindrical symmetry in the velocity-map imaging spectroscopy. A raw 2D projection around the z-axis (usually referred to as central line) for photodetachment, photoionization, or photodissociation experiments is pre-processed via angular tailored method to avoid the signal counts distributed near the central line (or point). Two types of photoelectron velocity-map imaging (O{sup −} and Au{sup −} ⋅ NH{sub 3}) are demonstrated to give rise to the 3D images with significantly reduced central line noise after pre-processing operation. The major advantages of the pre-operation are the ability of suppression of central-line noise to resolve weak structures or vibrational excitation in atoms or molecules near photon threshold.

  5. Feedback suppression of rotating external kink instabilities in the presence of noise

    SciTech Connect

    Hanson, Jeremy M.; De Bono, Bryan; James, Royce W.; Levesque, Jeffrey P.; Mauel, Michael E.; Maurer, David A.; Navratil, Gerald A.; Pedersen, Thomas Sunn; Shiraki, Daisuke

    2008-08-15

    The authors report on the first experimental demonstration of active feedback suppression of rotating external kink modes near the ideal wall limit in a tokamak using Kalman filtering to discriminate the n=1 kink mode from background noise. The Kalman filter contains an internal model that captures the dynamics of a rotating, growing n=1 mode. Suppression of the external kink mode is demonstrated over a broad range of phase angles between the sensed mode and applied control field, and performance is robust at noise levels that render proportional gain feedback ineffective. Suppression of the kink mode is accomplished without excitation of higher frequencies as was observed in previous experiments using lead-lag loop compensation [A. J. Klein et al., Phys Plasmas 12, 040703 (2005)].

  6. Emergent Adaptive Noise Reduction from Communal Cooperation of Sensor Grid

    NASA Technical Reports Server (NTRS)

    Jones, Kennie H.; Jones, Michael G.; Nark, Douglas M.; Lodding, Kenneth N.

    2010-01-01

    In the last decade, the realization of small, inexpensive, and powerful devices with sensors, computers, and wireless communication has promised the development of massive sized sensor networks with dense deployments over large areas capable of high fidelity situational assessments. However, most management models have been based on centralized control and research has concentrated on methods for passing data from sensor devices to the central controller. Most implementations have been small but, as it is not scalable, this methodology is insufficient for massive deployments. Here, a specific application of a large sensor network for adaptive noise reduction demonstrates a new paradigm where communities of sensor/computer devices assess local conditions and make local decisions from which emerges a global behaviour. This approach obviates many of the problems of centralized control as it is not prone to single point of failure and is more scalable, efficient, robust, and fault tolerant

  7. Adaptive noise cancellation based on beehive pattern evolutionary digital filter

    NASA Astrophysics Data System (ADS)

    Zhou, Xiaojun; Shao, Yimin

    2014-01-01

    Evolutionary digital filtering (EDF) exhibits the advantage of avoiding the local optimum problem by using cloning and mating searching rules in an adaptive noise cancellation system. However, convergence performance is restricted by the large population of individuals and the low level of information communication among them. The special beehive structure enables the individuals on neighbour beehive nodes to communicate with each other and thus enhance the information spread and random search ability of the algorithm. By introducing the beehive pattern evolutionary rules into the original EDF, this paper proposes an improved beehive pattern evolutionary digital filter (BP-EDF) to overcome the defects of the original EDF. In the proposed algorithm, a new evolutionary rule which combines competing cloning, complete cloning and assistance mating methods is constructed to enable the individuals distributed on the beehive to communicate with their neighbours. Simulation results are used to demonstrate the improved performance of the proposed algorithm in terms of convergence speed to the global optimum compared with the original methods. Experimental results also verify the effectiveness of the proposed algorithm in extracting feature signals that are contaminated by significant amounts of noise during the fault diagnosis task.

  8. Active vibration suppression of self-excited structures using an adaptive LMS algorithm

    NASA Astrophysics Data System (ADS)

    Danda Roy, Indranil

    The purpose of this investigation is to study the feasibility of an adaptive feedforward controller for active flutter suppression in representative linear wing models. The ability of the controller to suppress limit-cycle oscillations in wing models having root springs with freeplay nonlinearities has also been studied. For the purposes of numerical simulation, mathematical models of a rigid and a flexible wing structure have been developed. The rigid wing model is represented by a simple three-degree-of-freedom airfoil while the flexible wing is modelled by a multi-degree-of-freedom finite element representation with beam elements for bending and rod elements for torsion. Control action is provided by one or more flaps attached to the trailing edge and extending along the entire wing span for the rigid model and a fraction of the wing span for the flexible model. Both two-dimensional quasi-steady aerodynamics and time-domain unsteady aerodynamics have been used to generate the airforces in the wing models. An adaptive feedforward controller has been designed based on the filtered-X Least Mean Squares (LMS) algorithm. The control configuration for the rigid wing model is single-input single-output (SISO) while both SISO and multi-input multi-output (MIMO) configurations have been applied on the flexible wing model. The controller includes an on-line adaptive system identification scheme which provides the LMS controller with a reasonably accurate model of the plant. This enables the adaptive controller to track time-varying parameters in the plant and provide effective control. The wing models in closed-loop exhibit highly damped responses at airspeeds where the open-loop responses are destructive. Simulations with the rigid and the flexible wing models in a time-varying airstream show a 63% and 53% increase, respectively, over their corresponding open-loop flutter airspeeds. The ability of the LMS controller to suppress wing store flutter in the two models has

  9. Reset noise suppression in two-dimensional CMOS photodiode pixels through column-based feedback-reset

    NASA Technical Reports Server (NTRS)

    Pain, B.; Cunningham, T. J.; Hancock, B.; Yang, G.; Seshadri, S.; Ortiz, M.

    2002-01-01

    We present new CMOS photodiode imager pixel with ultra-low read noise through on-chip suppression of reset noise via column-based feedback circuitry. The noise reduction is achieved without introducing any image lag, and with insignificant reduction in quantum efficiency and full well.

  10. Virus infection suppresses Nicotiana benthamiana adaptive phenotypic plasticity.

    PubMed

    Bedhomme, Stéphanie; Elena, Santiago F

    2011-01-01

    Competition and parasitism are two important selective forces that shape life-histories, migration rates and population dynamics. Recently, it has been shown in various pathosystems that parasites can modify intraspecific competition, thus generating an indirect cost of parasitism. Here, we investigated if this phenomenon was present in a plant-potyvirus system using two viruses of different virulence (Tobacco etch virus and Turnip mosaic virus). Moreover, we asked if parasitism interacted with the shade avoidance syndrome, the plant-specific phenotypic plasticity in response to intraspecific competition. Our results indicate that the modification of intraspecific competition by parasitism is not present in the Nicotiana benthamiana--potyvirus system and suggests that this phenomenon is not universal but depends on the peculiarities of each pathosystem. However, whereas the healthy N. benthamiana presented a clear shade avoidance syndrome, this phenotypic plasticity totally disappeared when the plants were infected with TEV and TuMV, very likely resulting in a fitness loss and being another form of indirect cost of parasitism. This result suggests that the suppression or the alteration of adaptive phenotypic plasticity might be a component of virulence that is often overlooked. PMID:21359142

  11. Virus Infection Suppresses Nicotiana benthamiana Adaptive Phenotypic Plasticity

    PubMed Central

    Bedhomme, Stéphanie; Elena, Santiago F.

    2011-01-01

    Competition and parasitism are two important selective forces that shape life-histories, migration rates and population dynamics. Recently, it has been shown in various pathosystems that parasites can modify intraspecific competition, thus generating an indirect cost of parasitism. Here, we investigated if this phenomenon was present in a plant-potyvirus system using two viruses of different virulence (Tobacco etch virus and Turnip mosaic virus). Moreover, we asked if parasitism interacted with the shade avoidance syndrome, the plant-specific phenotypic plasticity in response to intraspecific competition. Our results indicate that the modification of intraspecific competition by parasitism is not present in the Nicotiana benthamiana – potyvirus system and suggests that this phenomenon is not universal but depends on the peculiarities of each pathosystem. However, whereas the healthy N. benthamiana presented a clear shade avoidance syndrome, this phenotypic plasticity totally disappeared when the plants were infected with TEV and TuMV, very likely resulting in a fitness loss and being another form of indirect cost of parasitism. This result suggests that the suppression or the alteration of adaptive phenotypic plasticity might be a component of virulence that is often overlooked. PMID:21359142

  12. A multi-stage noise adaptive switching filter for extremely corrupted images

    NASA Astrophysics Data System (ADS)

    Dinh, Hai; Adhami, Reza; Wang, Yi

    2015-07-01

    A multi-stage noise adaptive switching filter (MSNASF) is proposed for the restoration of images extremely corrupted by impulse and impulse-like noise. The filter consists of two steps: noise detection and noise removal. The proposed extrema-based noise detection scheme utilizes the false contouring effect to get better over detection rate at low noise density. It is adaptive and will detect not only impulse but also impulse-like noise. In the noise removal step, a novel multi-stage filtering scheme is proposed. It replaces corrupted pixel with the nearest uncorrupted median to preserve details. When compared with other methods, MSNASF provides better peak signal to noise ratio (PSNR) and structure similarity index (SSIM). A subjective evaluation carried out online also demonstrates that MSNASF yields higher fidelity.

  13. A new noise suppression algorithm for optical fiber temperature surveillance of heavy oil thermal recovery well

    NASA Astrophysics Data System (ADS)

    Wang, Jiahuai; Han, Jisheng; Pan, Yong; Zhang, Min; Zou, Qilin; Xie, Shangran

    2011-11-01

    Pure silica core optical fiber is commonly used as the sensing fiber in Raman-backscatter distributed temperature sensors (DTS) in heavy oil thermal well. However the sensing signal collected from this type of fiber statistically belongs to nonstationary random process which cannot be effectively de-noised by simply applying conventional methods. To solve this problem, we develop a novel noise suppression algorithm by combining wavelet multi-scale analysis and moving grey model GM(1,1). The algorithm first applies wavelet de-noising in spatial domain of temperature profile to remove the high frequency noise, then uses moving GM(1,1) method to remove both high frequency and low frequency nonstationary noise in time domain. Autoregressive (AR) model and least square regression are used to optimize the forecasting parameters of GM(1,1). Finally the results of both domains are reconstructed to obtain the de-noised profile. Long-term field test was proposed on the Karamay oil field F11051 steam stimulation well, Xinjiang Province, China. Field test result shows that signal to noise ratio (SNR) is improved by 11dB using the algorithm.

  14. Cold-flow acoustic evaluation of a small scale, divergent, lobed nozzle for supersonic jet noise suppression

    NASA Technical Reports Server (NTRS)

    Huff, R. G.; Groesbeck, D. E.

    1975-01-01

    A supersonic jet noise suppressor was tested with cold flow for acoustic and thrust characteristics at nozzle- to atmospheric-pressure ratios of 1.5 to 4.0. Jet noise suppression and spectral characteristics of the divergent, lobed, suppressor (DLS) nozzle with and without an ejector are presented. Suppression was obtained at nozzle pressure ratios of 2.5 to 4.0. The largest, maximum-lobe, sound pressure level suppression with a hard-wall ejector was 14.6 decibels at a nozzle pressure ratio of 3.5. The thrust loss was 2 percent. In general, low-frequency jet noise was suppressed, leaving higher frequencies essentially unchanged. Without the ejector the nozzle showed a thrust loss of 11 percent together with slightly poorer noise suppression.

  15. Anisotropic stark effect and electric-field noise suppression for phosphorus donor qubits in silicon.

    PubMed

    Sigillito, A J; Tyryshkin, A M; Lyon, S A

    2015-05-29

    We report the use of novel, capacitively terminated coplanar waveguide resonators to measure the quadratic Stark shift of phosphorus donor qubits in Si. We confirm that valley repopulation leads to an anisotropic spin-orbit Stark shift depending on electric and magnetic field orientations relative to the Si crystal. By measuring the linear Stark effect, we estimate the effective electric field due to strain in our samples. We show that in the presence of this strain, electric-field sources of decoherence can be non-negligible. Using our measured values for the Stark shift, we predict magnetic fields for which the spin-orbit Stark effect cancels the hyperfine Stark effect, suppressing decoherence from electric-field noise. We discuss the limitations of these noise-suppression points due to random distributions of strain and propose a method for overcoming them. PMID:26066457

  16. Frequency Noise Suppression of a Single Mode Laser with an Unbalanced Fiber Interferometer for Subnanometer Interferometry

    PubMed Central

    Šmíd, Radek; Čížek, Martin; Mikel, Břetislav; Číp, Ondřej

    2015-01-01

    We present a method of noise suppression of laser diodes by an unbalanced Michelson fiber interferometer. The unstabilized laser source is represented by compact planar waveguide external cavity laser module, ORIONTM (Redfern Integrated Optics, Inc.), working at 1540.57 nm with a 1.5-kHz linewidth. We built up the unbalanced Michelson interferometer with a 2.09 km-long arm based on the standard telecommunication single-mode fiber (SMF-28) spool to suppress the frequency noise by the servo-loop control by 20 dB to 40 dB within the Fourier frequency range, remaining the tuning range of the laser frequency. PMID:25587980

  17. Study of Aerodynamic Design Procedure of a Large-Scale Aircraft Noise Suppression Facility

    NASA Astrophysics Data System (ADS)

    Kawai, Masafumi; Nagai, Kiyoyuki; Aso, Shigeru

    The aerodynamic design procedure of a large-scale aircraft noise suppression facility has been developed. Flow quality required for the engine inlet flow has been determined through basic experiment. Aerodynamic design of the facility has been performed by using wind tunnel experiment and CFD. Important relationship between the length of the facility and the inlet flow quality has been found. The operational envelope of the designed facility has been estimated. Then, the aerodynamic characteristics of an actual large-scale aircraft noise suppression facility, constructed based on the new design procedure, have been measured. Obtained flow field showed good agreement with CFD results, and the effectiveness of the design procedure based on CFD and wind tunnel experiment has been confirmed. The engine operations were satisfactory under various wind conditions. Furthermore, the data under commercial operations thereafter have been collected and analyzed. As the result, the aerodynamic design procedure has been validated.

  18. Frequency noise suppression of a single mode laser with an unbalanced fiber interferometer for subnanometer interferometry.

    PubMed

    Šmíd, Radek; Čížek, Martin; Mikel, Břetislav; Číp, Ondřej

    2015-01-01

    We present a method of noise suppression of laser diodes by an unbalanced Michelson fiber interferometer. The unstabilized laser source is represented by compact planar waveguide external cavity laser module, ORIONTM (Redfern Integrated Optics, Inc.), working at 1540.57 nm with a 1.5-kHz linewidth. We built up the unbalanced Michelson interferometer with a 2.09 km-long arm based on the standard telecommunication single-mode fiber (SMF-28) spool to suppress the frequency noise by the servo-loop control by 20 dB to 40 dB within the Fourier frequency range, remaining the tuning range of the laser frequency. PMID:25587980

  19. Adaptive Optics Images of the Galactic Center: Using Empirical Noise-maps to Optimize Image Analysis

    NASA Astrophysics Data System (ADS)

    Albers, Saundra; Witzel, Gunther; Meyer, Leo; Sitarski, Breann; Boehle, Anna; Ghez, Andrea M.

    2015-01-01

    Adaptive Optics images are one of the most important tools in studying our Galactic Center. In-depth knowledge of the noise characteristics is crucial to optimally analyze this data. Empirical noise estimates - often represented by a constant value for the entire image - can be greatly improved by computing the local detector properties and photon noise contributions pixel by pixel. To comprehensively determine the noise, we create a noise model for each image using the three main contributors—photon noise of stellar sources, sky noise, and dark noise. We propagate the uncertainties through all reduction steps and analyze the resulting map using Starfinder. The estimation of local noise properties helps to eliminate fake detections while improving the detection limit of fainter sources. We predict that a rigorous understanding of noise allows a more robust investigation of the stellar dynamics in the center of our Galaxy.

  20. Interior Noise Reduction by Adaptive Feedback Vibration Control

    NASA Technical Reports Server (NTRS)

    Lim, Tae W.

    1998-01-01

    The objective of this project is to investigate the possible use of adaptive digital filtering techniques in simultaneous, multiple-mode identification of the modal parameters of a vibrating structure in real-time. It is intended that the results obtained from this project will be used for state estimation needed in adaptive structural acoustics control. The work done in this project is basically an extension of the work on real-time single mode identification, which was performed successfully using a digital signal processor (DSP) at NASA, Langley. Initially, in this investigation the single mode identification work was duplicated on a different processor, namely the Texas Instruments TMS32OC40 DSP. The system identification results for the single mode case were very good. Then an algorithm for simultaneous two mode identification was developed and tested using analytical simulation. When it successfully performed the expected tasks, it was implemented in real-time on the DSP system to identify the first two modes of vibration of a cantilever aluminum beam. The results of the simultaneous two mode case were good but some problems were identified related to frequency warping and spurious mode identification. The frequency warping problem was found to be due to the bilinear transformation used in the algorithm to convert the system transfer function from the continuous-time domain to the discrete-time domain. An alternative approach was developed to rectify the problem. The spurious mode identification problem was found to be associated with high sampling rates. Noise in the signal is suspected to be the cause of this problem but further investigation will be needed to clarify the cause. For simultaneous identification of more than two modes, it was found that theoretically an adaptive digital filter can be designed to identify the required number of modes, but the algebra became very complex which made it impossible to implement in the DSP system used in this study

  1. Relationship between signal fidelity, hearing loss and working memory for digital noise suppression

    PubMed Central

    Arehart, Kathryn; Souza, Pamela; Kates, James; Lunner, Thomas; Pedersen, Michael Syskind

    2015-01-01

    Objectives The present study considered speech modified by additive babble combined with noise-suppression processing. The purpose was to determine the relative importance of the signal modifications, individual peripheral hearing loss, and individual cognitive capacity on speech intelligibility and speech quality. Design The participant group consisted of 31 individuals with moderate high-frequency hearing loss ranging in age from 51 to 89 years (mean= 69.6 years). Speech intelligibility and speech quality were measured using low-context sentences presented in babble at several signal-to-noise ratios. Speech stimuli were processed with a binary mask noise-suppression strategy with systematic manipulations of two parameters (error rate and attenuation values). The cumulative effects of signal modification produced by babble and signal processing were quantified using an envelope-distortion metric. Working memory capacity was assessed with a reading span test. Analysis of variance was used to determine the effects of signal processing parameters on perceptual scores. Hierarchical linear modeling was used to determine the role of degree of hearing loss and working memory capacity in individual listener response to the processed noisy speech. The model also considered improvements in envelope fidelity caused by the binary mask and the degradations to envelope caused by error and noise. Results The participants showed significant benefits in terms of intelligibility scores and quality ratings for noisy speech processed by the ideal binary mask noise-suppression strategy. This benefit was observed across a range of signal-to-noise ratios and persisted when up to a 30% error rate was introduced into the processing. Average intelligibility scores and average quality ratings were well-predicted by an objective metric of envelope fidelity. Degree of hearing loss and working memory capacity were significant factors in explaining individual listener’s intelligibility scores

  2. Suppression of background noise in a transonic wind-tunnel test section

    NASA Technical Reports Server (NTRS)

    Schutzenhofer, L. A.; Howard, P. W.

    1975-01-01

    Some exploratory tests were recently performed in the transonic test section of the NASA Marshall Space Flight Center 14-in. wind tunnel to suppress the background noise. In these tests, the perforated walls of the test section were covered with fine wire screens. The screens eliminated the edge tones generated by the holes in the perforated walls and significantly reduced the tunnel background noise. The tunnel noise levels were reduced to such a degree by this simple modification at Mach numbers 0.75, 0.9, 1.1, 1.2, and 1.46 that the fluctuating pressure levels of a turbulent boundary layer could be measured on a 5-deg half-angle cone.

  3. SNR Loss: A new objective measure for predicting speech intelligibility of noise-suppressed speech

    PubMed Central

    Ma, Jianfen; Loizou, Philipos C.

    2010-01-01

    Most of the existing intelligibility measures do not account for the distortions present in processed speech, such as those introduced by speech-enhancement algorithms. In the present study, we propose three new objective measures that can be used for prediction of intelligibility of processed (e.g., via an enhancement algorithm) speech in noisy conditions. All three measures use a critical-band spectral representation of the clean and noise-suppressed signals and are based on the measurement of the SNR loss incurred in each critical band after the corrupted signal goes through a speech enhancement algorithm. The proposed measures are flexible in that they can provide different weights to the two types of spectral distortions introduced by enhancement algorithms, namely spectral attenuation and spectral amplification distortions. The proposed measures were evaluated with intelligibility scores obtained by normal-hearing listeners in 72 noisy conditions involving noise-suppressed speech (consonants and sentences) corrupted by four different maskers (car, babble, train and street interferences). Highest correlation (r=−0.85) with sentence recognition scores was obtained using a variant of the SNR loss measure that only included vowel/consonant transitions and weak consonant information. High correlation was maintained for all noise types, with a maximum correlation (r=−0.88) achieved in street noise conditions. PMID:21503274

  4. Pairing broadband noise with cortical stimulation induces extensive suppression of ascending sensory activity

    NASA Astrophysics Data System (ADS)

    Markovitz, Craig D.; Hogan, Patrick S.; Wesen, Kyle A.; Lim, Hubert H.

    2015-04-01

    Objective. The corticofugal system can alter coding along the ascending sensory pathway. Within the auditory system, electrical stimulation of the auditory cortex (AC) paired with a pure tone can cause egocentric shifts in the tuning of auditory neurons, making them more sensitive to the pure tone frequency. Since tinnitus has been linked with hyperactivity across auditory neurons, we sought to develop a new neuromodulation approach that could suppress a wide range of neurons rather than enhance specific frequency-tuned neurons. Approach. We performed experiments in the guinea pig to assess the effects of cortical stimulation paired with broadband noise (PN-Stim) on ascending auditory activity within the central nucleus of the inferior colliculus (CNIC), a widely studied region for AC stimulation paradigms. Main results. All eight stimulated AC subregions induced extensive suppression of activity across the CNIC that was not possible with noise stimulation alone. This suppression built up over time and remained after the PN-Stim paradigm. Significance. We propose that the corticofugal system is designed to decrease the brain’s input gain to irrelevant stimuli and PN-Stim is able to artificially amplify this effect to suppress neural firing across the auditory system. The PN-Stim concept may have potential for treating tinnitus and other neurological disorders.

  5. Pairing broadband noise with cortical stimulation induces extensive suppression of ascending sensory activity

    PubMed Central

    Markovitz, Craig D.; Hogan, Patrick S.; Wesen, Kyle A.; Lim, Hubert H.

    2015-01-01

    Objective The corticofugal system can alter coding along the ascending sensory pathway. Within the auditory system, electrical stimulation of the auditory cortex (AC) paired with a pure tone can cause egocentric shifts in the tuning of auditory neurons, making them more sensitive to the pure tone frequency. Since tinnitus has been linked with hyperactivity across auditory neurons, we sought to develop a new neuromodulation approach that could suppress a wide range of neurons rather than enhance specific frequency-tuned neurons. Approach We performed experiments in the guinea pig to assess the effects of cortical stimulation paired with broadband noise (PN-Stim) on ascending auditory activity within the central nucleus of the inferior colliculus (CNIC), a widely studied region for AC stimulation paradigms. Main results All eight stimulated AC regions induced extensive suppression of activity across the CNIC that was not possible with noise stimulation alone. This suppression built up over time and remained after the PN-Stim paradigm. Significance We propose that the corticofugal system is designed to decrease the brain’s input gain to irrelevant stimuli and PN-Stim is able to artificially amplify this effect to suppress neural firing across the auditory system. The PN-Stim concept may have potential for treating tinnitus and other neurological disorders. PMID:25686163

  6. Feasibility of patient dose reduction based on various noise suppression filters for cone-beam computed tomography in an image-guided patient positioning system.

    PubMed

    Kamezawa, Hidemi; Arimura, Hidetaka; Shirieda, Katsutoshi; Kameda, Noboru; Ohki, Masafumi

    2016-05-01

    We investigated the feasibility of patient dose reduction based on six noise suppression filters for cone-beam computed tomography (CBCT) in an image-guided patient positioning (IGPP) system. A midpoint dose was employed as a patient dose index. First, a reference dose (RD) and low-dose (LD)-CBCT images were acquired with a reference dose and various low doses. Second, an automated rigid registration was performed for three axis translations to estimate patient setup errors between a planning CT image and the LD-CBCT images processed by six noise suppression filters (averaging filter, median filter, Gaussian filter, edge-preserving smoothing filter, bilateral filter, and adaptive partial median filter (AMF)). Third, residual errors representing the patient positioning accuracy were calculated as Euclidean distances between the setup error vectors estimated using the LD-CBCT and RD-CBCT images. Finally, the residual errors as a function of the patient dose index were estimated for LD-CBCT images processed by six noise suppression filters, and then the patient dose indices for the filtered LD-CBCT images were obtained at the same residual error as the RD-CBCT image. This approach was applied to an anthropomorphic phantom and four cancer patients. The patient dose for the LD-CBCT images was reduced to 19% of that for the RD-CBCT image for the phantom by using AMF, while keeping a same residual error of 0.47 mm as the RD-CBCT image by applying the noise suppression filters to the LD-CBCT images. The average patient dose was reduced to 31.1% for prostate cancer patients, and it was reduced to 82.5% for a lung cancer patient by applying the AMF. These preliminary results suggested that the proposed approach based on noise suppression filters could decrease the patient dose in IGPP systems. PMID:27065312

  7. Feasibility of patient dose reduction based on various noise suppression filters for cone-beam computed tomography in an image-guided patient positioning system

    NASA Astrophysics Data System (ADS)

    Kamezawa, Hidemi; Arimura, Hidetaka; Shirieda, Katsutoshi; Kameda, Noboru; Ohki, Masafumi

    2016-05-01

    We investigated the feasibility of patient dose reduction based on six noise suppression filters for cone-beam computed tomography (CBCT) in an image-guided patient positioning (IGPP) system. A midpoint dose was employed as a patient dose index. First, a reference dose (RD) and low-dose (LD)-CBCT images were acquired with a reference dose and various low doses. Second, an automated rigid registration was performed for three axis translations to estimate patient setup errors between a planning CT image and the LD-CBCT images processed by six noise suppression filters (averaging filter, median filter, Gaussian filter, edge-preserving smoothing filter, bilateral filter, and adaptive partial median filter (AMF)). Third, residual errors representing the patient positioning accuracy were calculated as Euclidean distances between the setup error vectors estimated using the LD-CBCT and RD-CBCT images. Finally, the residual errors as a function of the patient dose index were estimated for LD-CBCT images processed by six noise suppression filters, and then the patient dose indices for the filtered LD-CBCT images were obtained at the same residual error as the RD-CBCT image. This approach was applied to an anthropomorphic phantom and four cancer patients. The patient dose for the LD-CBCT images was reduced to 19% of that for the RD-CBCT image for the phantom by using AMF, while keeping a same residual error of 0.47 mm as the RD-CBCT image by applying the noise suppression filters to the LD-CBCT images. The average patient dose was reduced to 31.1% for prostate cancer patients, and it was reduced to 82.5% for a lung cancer patient by applying the AMF. These preliminary results suggested that the proposed approach based on noise suppression filters could decrease the patient dose in IGPP systems.

  8. Parallel feedback active noise control of MRI acoustic noise with signal decomposition using hybrid RLS-NLMS adaptive algorithms.

    PubMed

    Ganguly, Anshuman; Krishna Vemuri, Sri Hari; Panahi, Issa

    2014-01-01

    This paper presents a cost-effective adaptive feedback Active Noise Control (FANC) method for controlling functional Magnetic Resonance Imaging (fMRI) acoustic noise by decomposing it into dominant periodic components and residual random components. Periodicity of fMRI acoustic noise is exploited by using linear prediction (LP) filtering to achieve signal decomposition. A hybrid combination of adaptive filters-Recursive Least Squares (RLS) and Normalized Least Mean Squares (NLMS) are then used to effectively control each component separately. Performance of the proposed FANC system is analyzed and Noise attenuation levels (NAL) up to 32.27 dB obtained by simulation are presented which confirm the effectiveness of the proposed FANC method. PMID:25570676

  9. Discrete cosine transform-based local adaptive filtering of images corrupted by nonstationary noise

    NASA Astrophysics Data System (ADS)

    Lukin, Vladimir V.; Fevralev, Dmitriy V.; Ponomarenko, Nikolay N.; Abramov, Sergey K.; Pogrebnyak, Oleksiy; Egiazarian, Karen O.; Astola, Jaakko T.

    2010-04-01

    In many image-processing applications, observed images are contaminated by a nonstationary noise and no a priori information on noise dependence on local mean or about local properties of noise statistics is available. In order to remove such a noise, a locally adaptive filter has to be applied. We study a locally adaptive filter based on evaluation of image local activity in a ``blind'' manner and on discrete cosine transform computed in overlapping blocks. Two mechanisms of local adaptation are proposed and applied. The first mechanism takes into account local estimates of noise standard deviation while the second one exploits discrimination of homogeneous and heterogeneous image regions by adaptive threshold setting. The designed filter performance is tested for simulated data as well as for real-life remote-sensing and maritime radar images. Recommendations concerning filter parameter setting are provided. An area of applicability of the proposed filter is defined.

  10. Understanding the sensitivity of cavity-enhanced absorption spectroscopy: pathlength enhancement versus noise suppression

    NASA Astrophysics Data System (ADS)

    Ouyang, B.; Jones, R. L.

    2012-12-01

    ultimately down to the suppression of any measurement noise that is associated with it. The noise component that is most effectively suppressed is the type whose magnitude scales linearly with light intensity I, as is typical of noise caused by environmental instabilities, followed by the shot noise which scales as square root of I. No suppression is achievable for noise sources that are independent of I, a notable example being the thermal noise of a detector or of detection electronics. The usefulness of this "noise suppression" argument is that it links the sensitivity gain offered by a cavity with the property of measurement noise present in the system, and clearly suggests that the achievable sensitivity is dependent on how efficient the various noise components are "suppressed" by the cavity.

  11. Noise suppression in reconstruction of low-Z target megavoltage cone-beam CT images

    SciTech Connect

    Wang Jing; Robar, James; Guan Huaiqun

    2012-08-15

    Purpose: To improve the image contrast-to-noise (CNR) ratio for low-Z target megavoltage cone-beam CT (MV CBCT) using a statistical projection noise suppression algorithm based on the penalized weighted least-squares (PWLS) criterion. Methods: Projection images of a contrast phantom, a CatPhan{sup Registered-Sign} 600 phantom and a head phantom were acquired by a Varian 2100EX LINAC with a low-Z (Al) target and low energy x-ray beam (2.5 MeV) at a low-dose level and at a high-dose level. The projections were then processed by minimizing the PWLS objective function. The weighted least square (WLS) term models the noise of measured projection and the penalty term enforces the smoothing constraints of the projection image. The variance of projection data was chosen as the weight for the PWLS objective function and it determined the contribution of each measurement. An anisotropic quadratic form penalty that incorporates the gradient information of projection image was used to preserve edges during noise reduction. Low-Z target MV CBCT images were reconstructed by the FDK algorithm after each projection was processed by the PWLS smoothing. Results: Noise in low-Z target MV CBCT images were greatly suppressed after the PWLS projection smoothing, without noticeable sacrifice of the spatial resolution. Depending on the choice of smoothing parameter, the CNR of selected regions of interest in the PWLS processed low-dose low-Z target MV CBCT image can be higher than the corresponding high-dose image.Conclusion: The CNR of low-Z target MV CBCT images was substantially improved by using PWLS projection smoothing. The PWLS projection smoothing algorithm allows the reconstruction of high contrast low-Z target MV CBCT image with a total dose of as low as 2.3 cGy.

  12. Noise suppression using preconditioned least-squares prestack time migration: application to the Mississippian limestone

    NASA Astrophysics Data System (ADS)

    Guo, Shiguang; Zhang, Bo; Wang, Qing; Cabrales-Vargas, Alejandro; Marfurt, Kurt J.

    2016-08-01

    Conventional Kirchhoff migration often suffers from artifacts such as aliasing and acquisition footprint, which come from sub-optimal seismic acquisition. The footprint can mask faults and fractures, while aliased noise can focus into false coherent events which affect interpretation and contaminate amplitude variation with offset, amplitude variation with azimuth and elastic inversion. Preconditioned least-squares migration minimizes these artifacts. We implement least-squares migration by minimizing the difference between the original data and the modeled demigrated data using an iterative conjugate gradient scheme. Unpreconditioned least-squares migration better estimates the subsurface amplitude, but does not suppress aliasing. In this work, we precondition the results by applying a 3D prestack structure-oriented LUM (lower–upper–middle) filter to each common offset and common azimuth gather at each iteration. The preconditioning algorithm not only suppresses aliasing of both signal and noise, but also improves the convergence rate. We apply the new preconditioned least-squares migration to the Marmousi model and demonstrate how it can improve the seismic image compared with conventional migration, and then apply it to one survey acquired over a new resource play in the Mid-Continent, USA. The acquisition footprint from the targets is attenuated and the signal to noise ratio is enhanced. To demonstrate the impact on interpretation, we generate a suite of seismic attributes to image the Mississippian limestone, and show that the karst-enhanced fractures in the Mississippian limestone can be better illuminated.

  13. Dynamic vortex interactions with flexible fibers and edges for prediction of owl noise suppression

    NASA Astrophysics Data System (ADS)

    Korykora, Sarah; Jaworski, Justin

    2015-11-01

    The compliant trailing-edge fringe of owls and the soft downy material on their upper wing surfaces are thought to enable their silent flight by weakening the interaction of boundary layer turbulence with these flexible structures. Previous analysis of turbulence noise generation by wave-bearing elastic edges have shown that the far-field acoustic power scaling can be weakened by up to the square of the Mach number relative to a rigid edge. However, it is unclear whether or not the wave-bearing feature or simply the flexible nature of the edge scatterer produces this noise suppression. To assess this distinction, a dynamic vortex interaction model is developed whereby the motion of a line vortex round a rigid but elastically-restrained wall-mounted fiber or trailing edge is determined numerically. Special attention is paid to the dynamic interaction between the flexible structure and vortex, which is accomplished via a conformal mapping relationship determined in closed form. Results from this analysis seek to develop a vortex sound model to discern the effect of flexible versus wave-bearing scatterers on turbulence noise suppression and help explain the mechanisms of silent owl flight.

  14. Adaptive mean filtering for noise reduction in CT polymer gel dosimetry

    SciTech Connect

    Hilts, Michelle; Jirasek, Andrew

    2008-01-15

    X-ray computed tomography (CT) as a method of extracting 3D dose information from irradiated polymer gel dosimeters is showing potential as a practical means to implement gel dosimetry in a radiation therapy clinic. However, the response of CT contrast to dose is weak and noise reduction is critical in order to achieve adequate dose resolutions with this method. Phantom design and CT imaging technique have both been shown to decrease image noise. In addition, image postprocessing using noise reduction filtering techniques have been proposed. This work evaluates in detail the use of the adaptive mean filter for reducing noise in CT gel dosimetry. Filter performance is systematically tested using both synthetic patterns mimicking a range of clinical dose distribution features as well as actual clinical dose distributions. Both low and high signal-to-noise ratio (SNR) situations are examined. For all cases, the effects of filter kernel size and the number of iterations are investigated. Results indicate that adaptive mean filtering is a highly effective tool for noise reduction CT gel dosimetry. The optimum filtering strategy depends on characteristics of the dose distributions and image noise level. For low noise images (SNR {approx}20), the filtered results are excellent and use of adaptive mean filtering is recommended as a standard processing tool. For high noise images (SNR {approx}5) adaptive mean filtering can also produce excellent results, but filtering must be approached with more caution as spatial and dose distortions of the original dose distribution can occur.

  15. TH-A-18C-07: Noise Suppression in Material Decomposition for Dual-Energy CT

    SciTech Connect

    Dong, X; Petrongolo, M; Wang, T; Zhu, L

    2014-06-15

    Purpose: A general problem of dual-energy CT (DECT) is that the decomposition is sensitive to noise in the two sets of dual-energy projection data, resulting in severely degraded qualities of decomposed images. We have previously proposed an iterative denoising method for DECT. Using a linear decomposition function, the method does not gain the full benefits of DECT on beam-hardening correction. In this work, we expand the framework of our iterative method to include non-linear decomposition models for noise suppression in DECT. Methods: We first obtain decomposed projections, which are free of beam-hardening artifacts, using a lookup table pre-measured on a calibration phantom. First-pass material images with high noise are reconstructed from the decomposed projections using standard filter-backprojection reconstruction. Noise on the decomposed images is then suppressed by an iterative method, which is formulated in the form of least-square estimation with smoothness regularization. Based on the design principles of a best linear unbiased estimator, we include the inverse of the estimated variance-covariance matrix of the decomposed images as the penalty weight in the least-square term. Analytical formulae are derived to compute the variance-covariance matrix from the measured decomposition lookup table. Results: We have evaluated the proposed method via phantom studies. Using non-linear decomposition, our method effectively suppresses the streaking artifacts of beam-hardening and obtains more uniform images than our previous approach based on a linear model. The proposed method reduces the average noise standard deviation of two basis materials by one order of magnitude without sacrificing the spatial resolution. Conclusion: We propose a general framework of iterative denoising for material decomposition of DECT. Preliminary phantom studies have shown the proposed method improves the image uniformity and reduces noise level without resolution loss. In the future

  16. Adaptive neuro-fuzzy methodology for noise assessment of wind turbine.

    PubMed

    Shamshirband, Shahaboddin; Petković, Dalibor; Hashim, Roslan; Motamedi, Shervin

    2014-01-01

    Wind turbine noise is one of the major obstacles for the widespread use of wind energy. Noise tone can greatly increase the annoyance factor and the negative impact on human health. Noise annoyance caused by wind turbines has become an emerging problem in recent years, due to the rapid increase in number of wind turbines, triggered by sustainable energy goals set forward at the national and international level. Up to now, not all aspects of the generation, propagation and perception of wind turbine noise are well understood. For a modern large wind turbine, aerodynamic noise from the blades is generally considered to be the dominant noise source, provided that mechanical noise is adequately eliminated. The sources of aerodynamic noise can be divided into tonal noise, inflow turbulence noise, and airfoil self-noise. Many analytical and experimental acoustical studies performed the wind turbines. Since the wind turbine noise level analyzing by numerical methods or computational fluid dynamics (CFD) could be very challenging and time consuming, soft computing techniques are preferred. To estimate noise level of wind turbine, this paper constructed a process which simulates the wind turbine noise levels in regard to wind speed and sound frequency with adaptive neuro-fuzzy inference system (ANFIS). This intelligent estimator is implemented using Matlab/Simulink and the performances are investigated. The simulation results presented in this paper show the effectiveness of the developed method. PMID:25075621

  17. Adaptive Neuro-Fuzzy Methodology for Noise Assessment of Wind Turbine

    PubMed Central

    Shamshirband, Shahaboddin; Petković, Dalibor; Hashim, Roslan; Motamedi, Shervin

    2014-01-01

    Wind turbine noise is one of the major obstacles for the widespread use of wind energy. Noise tone can greatly increase the annoyance factor and the negative impact on human health. Noise annoyance caused by wind turbines has become an emerging problem in recent years, due to the rapid increase in number of wind turbines, triggered by sustainable energy goals set forward at the national and international level. Up to now, not all aspects of the generation, propagation and perception of wind turbine noise are well understood. For a modern large wind turbine, aerodynamic noise from the blades is generally considered to be the dominant noise source, provided that mechanical noise is adequately eliminated. The sources of aerodynamic noise can be divided into tonal noise, inflow turbulence noise, and airfoil self-noise. Many analytical and experimental acoustical studies performed the wind turbines. Since the wind turbine noise level analyzing by numerical methods or computational fluid dynamics (CFD) could be very challenging and time consuming, soft computing techniques are preferred. To estimate noise level of wind turbine, this paper constructed a process which simulates the wind turbine noise levels in regard to wind speed and sound frequency with adaptive neuro-fuzzy inference system (ANFIS). This intelligent estimator is implemented using Matlab/Simulink and the performances are investigated. The simulation results presented in this paper show the effectiveness of the developed method. PMID:25075621

  18. Active noise control using noise source having adaptive resonant frequency tuning through stiffness variation

    NASA Technical Reports Server (NTRS)

    Pla, Frederic G. (Inventor); Rajiyah, Harindra (Inventor); Renshaw, Anthony A. (Inventor); Hedeen, Robert A. (Inventor)

    1995-01-01

    A noise source for an aircraft engine active noise cancellation system in which the resonant frequency of a noise radiating element is tuned to permit noise cancellation over a wide range of frequencies. The resonant frequency of the noise radiating element is tuned by a plurality of force transmitting mechanisms which contact the noise radiating element. Each one of the force transmitting mechanisms includes an expandable element and a spring in contact with the noise radiating element so that excitation of the element varies the spring force applied to the noise radiating element. The elements are actuated by a controller which receives input of a signal proportional to displacement of the noise radiating element and a signal corresponding to the blade passage frequency of the engine's fan. In response, the controller determines a control signal which is sent to the elements and causes the spring force applied to the noise radiating element to be varied. The force transmitting mechanisms can be arranged to either produce bending or linear stiffness variations in the noise radiating element.

  19. Image signal-to-noise ratio estimation using adaptive slope nearest-neighbourhood model.

    PubMed

    Sim, K S; Teh, V

    2015-12-01

    A new technique based on nearest neighbourhood method is proposed. In this paper, considering the noise as Gaussian additive white noise, new technique single-image-based estimator is proposed. The performance of this new technique such as adaptive slope nearest neighbourhood is compared with three of the existing method which are original nearest neighbourhood (simple method), first-order interpolation method and shape-preserving piecewise cubic hermite autoregressive moving average. In a few cases involving images with different brightness and edges, this adaptive slope nearest neighbourhood is found to deliver an optimum solution for signal-to-noise ratio estimation problems. For different values of noise variance, the adaptive slope nearest neighbourhood has highest accuracy and less percentage estimation error. Being more robust with white noise, the new proposed technique estimator has efficiency that is significantly greater than those of the three methods. PMID:26292081

  20. Shape anomaly detection under strong measurement noise: An analytical approach to adaptive thresholding

    NASA Astrophysics Data System (ADS)

    Krasichkov, Alexander S.; Grigoriev, Eugene B.; Bogachev, Mikhail I.; Nifontov, Eugene M.

    2015-10-01

    We suggest an analytical approach to the adaptive thresholding in a shape anomaly detection problem. We find an analytical expression for the distribution of the cosine similarity score between a reference shape and an observational shape hindered by strong measurement noise that depends solely on the noise level and is independent of the particular shape analyzed. The analytical treatment is also confirmed by computer simulations and shows nearly perfect agreement. Using this analytical solution, we suggest an improved shape anomaly detection approach based on adaptive thresholding. We validate the noise robustness of our approach using typical shapes of normal and pathological electrocardiogram cycles hindered by additive white noise. We show explicitly that under high noise levels our approach considerably outperforms the conventional tactic that does not take into account variations in the noise level.

  1. Enhanced multiwavelength generation in Brillouin fiber laser with pump noise suppression technique

    NASA Astrophysics Data System (ADS)

    Al-Alimi, A. W.; Cholan, N. A.; Yaacob, M. H.; Mahdi, M. A.

    2016-06-01

    A new multiwavelength Brillouin fiber laser (BFL) that provides a large number of Stokes lines with improved optical signal-to-noise ratio has been proposed and demonstrated. The BFL cavity is only formed by a nonlinear fiber loop mirror (NOLM) with 500 m long highly nonlinear fiber (HNLF). The BFL with improved performance is based on the suppression of the Brillouin pump noise floor utilizing a narrow tunable bandpass filter. The generation of Stokes lines covering up to a 33.67 nm wavelength range is achieved by setting the Brillouin pump signal within the HNLF’s zero dispersion wavelength and with power of 250 mW. This is owing to the combination of the stimulated Brillouin scattering and four-wave mixing effect in the NOLM structure.

  2. Suppression of Rayleigh scattering noise in sodium laser guide stars by hyperfine depolarization of fluorescence.

    PubMed

    Guillet de Chatellus, Hugues; Moldovan, Ioana; Fesquet, Vincent; Pique, Jean-Paul

    2006-11-27

    We propose what we believe is a novel method for enabling the complete suppression of noise due to Rayleigh scattering in sodium laser guide star systems by means of selective discrimination between Rayleigh and fluorescence signals based on polarization properties. We show that, contrary to the nearly 100% polarized Rayleigh scattering, fluorescence from the D(2) sodium line is strongly depolarized under excitation by a modeless laser. This offers the possibility of completely cancelling the effects of the Rayleigh scattering background while preserving the fluorescence signal to about 40% of its maximal value, leading to an improvement of the signal-to-noise ratio by several orders of magnitude. Both theoretical and experimental data confirm this new proposal. PMID:19529568

  3. Suppression of Low-Frequency Electronic Noise in Polymer Nanowire Field-Effect Transistors.

    PubMed

    Lezzi, Francesca; Ferrari, Giorgio; Pennetta, Cecilia; Pisignano, Dario

    2015-11-11

    The authors report on the reduction of low-frequency noise in semiconductor polymer nanowires with respect to thin-films made of the same organic material. Flicker noise is experimentally investigated in polymer nanowires in the range of 10-10(5) Hz by means of field-effect transistor architectures. The noise in the devices is well described by the Hooge empirical model and exhibits an average Hooge constant, which describes the current power spectral density of fluctuations, suppressed by 1-2 orders of magnitude compared to thin-film devices. To explain the Hooge constant reduction, a resistor network model is developed, in which the organic semiconducting nanostructures or films are depicted through a two-dimensional network of resistors with a square-lattice structure, accounting for the different anisotropy and degree of structural disorder of the active nanowires and films. Results from modeling agree well with experimental findings. These results support enhanced structural order through size-confinement in organic nanostructures as effective route to improve the noise performance in polymer electronic devices. PMID:26479330

  4. Application of the Radon–FCL approach to seismic random noise suppression and signal preservation

    NASA Astrophysics Data System (ADS)

    Meng, Fanlei; Li, Yue; Liu, Yanping; Tian, Yanan; Wu, Ning

    2016-08-01

    The fractal conservation law (FCL) is a linear partial differential equation that is modified by an anti-diffusive term of lower order. The analysis indicated that this algorithm could eliminate high frequencies and preserve or amplify low/medium-frequencies. Thus, this method is quite suitable for the simultaneous noise suppression and enhancement or preservation of seismic signals. However, the conventional FCL filters seismic data only along the time direction, thereby ignoring the spatial coherence between neighbouring traces, which leads to the loss of directional information. Therefore, we consider the development of the conventional FCL into the time-space domain and propose a Radon–FCL approach. We applied a Radon transform to implement the FCL method in this article; performing FCL filtering in the Radon domain achieves a higher level of noise attenuation. Using this method, seismic reflection events can be recovered with the sacrifice of fewer frequency components while effectively attenuating more random noise than conventional FCL filtering. Experiments using both synthetic and common shot point data demonstrate the advantages of the Radon–FCL approach versus the conventional FCL method with regard to both random noise attenuation and seismic signal preservation.

  5. Noise Suppression on the Tunable Laser for Precise Cavity Length Displacement Measurement.

    PubMed

    Šmíd, Radek; Čížek, Martin; Mikel, Břetislav; Hrabina, Jan; Lazar, Josef; Číp, Ondřej

    2016-01-01

    The absolute distance between the mirrors of a Fabry-Perot cavity with a spacer from an ultra low expansion material was measured by an ultra wide tunable laser diode. The DFB laser diode working at 1542 nm with 1.5 MHz linewidth and 2 nm tuning range has been suppressed with an unbalanced heterodyne fiber interferometer. The frequency noise of laser has been suppressed by 40 dB across the Fourier frequency range 30-300 Hz and by 20 dB up to 4 kHz and the linewidth of the laser below 300 kHz. The relative resolution of the measurement was 10 - 9 that corresponds to 0.3 nm (sub-nm) for 0.178 m long cavity with ability of displacement measurement of 0.5 mm. PMID:27608024

  6. Speckle noise suppression using a helix-free ferroelectric liquid crystal cell

    SciTech Connect

    Andreev, A L; Andreeva, T B; Kompanets, I N; Zalyapin, N V

    2014-12-31

    We have studied the method for suppressing speckle noise in patterns produced by a laser based on a fast-response electro-optical cell with a ferroelectric liquid crystal (FLC) in which helicoid is absent, i.e., compensated for. The character of smectic layer deformation in an electric field is considered along with the mechanism of spatially inhomogeneous phase modulation of a laser beam passing through the cell which is accompanied by the destruction of phase relations in the beam. Advantages of a helix-free FLC cell are pointed out as compared to helical crystal cells studied previously. (liquid crystal devices)

  7. Active noise control using noise source having adaptive resonant frequency tuning through stress variation

    NASA Technical Reports Server (NTRS)

    Pla, Frederic G. (Inventor); Rajiyah, Harindra (Inventor); Renshaw, Anthony A. (Inventor); Hedeen, Robert A. (Inventor)

    1995-01-01

    A noise source for an aircraft engine active noise cancellation system in which the resonant frequency of a noise radiating element is tuned to permit noise cancellation over a wide range of frequencies. The resonant frequency of the noise radiating element is tuned by an expandable ring embedded in the noise radiating element. Excitation of the ring causes expansion or contraction of the ring, thereby varying the stress in the noise radiating element. The ring is actuated by a controller which receives input of a feedback signal proportional to displacement of the noise radiating element and a signal corresponding to the blade passage frequency of the engine's fan. In response, the controller determines a control signal which is sent to the ring, causing the ring to expand or contract. Instead of a single ring embedded in the noise radiating panel, a first expandable ring can be bonded to one side of the noise radiating element, and a second expandable ring can be bonded to the other side.

  8. J-Adaptive estimation with estimated noise statistics. [for orbit determination

    NASA Technical Reports Server (NTRS)

    Jazwinski, A. H.; Hipkins, C.

    1975-01-01

    The J-Adaptive estimator described by Jazwinski and Hipkins (1972) is extended to include the simultaneous estimation of the statistics of the unmodeled system accelerations. With the aid of simulations it is demonstrated that the J-Adaptive estimator with estimated noise statistics can automatically estimate satellite orbits to an accuracy comparable with the data noise levels, when excellent, continuous tracking coverage is available. Such tracking coverage will be available from satellite-to-satellite tracking.

  9. Broadband noise suppression and feature identification of ECG waveforms using mathematical morphology and embedding theorem.

    PubMed

    Ji, T Y; Wu, Q H

    2013-12-01

    The paper presents an adaptive morphological filter developed using multiscale mathematical morphology (MM) to reject broadband noise from ECG signals without affecting the feature waveforms. As a pre-processing procedure, the adaptive morphological filter cleans an ECG signal to prepare it for further analysis. The noiseless ECG signal is embedded within a two-dimensional phase space to form a binary image and the identification of the feature waveforms is carried out based on the information presented by the image. The classification of the feature waveforms is implemented by an adaptive clustering technique according to the geometric information represented by the image in the phase space. Simulation studies on ECG records from the MIT-BIH and BIDMC databases have demonstrated the effectiveness and accuracy of the proposed methods. PMID:24094825

  10. Adaptive suppression of subordinate reproduction in cooperative mammals.

    PubMed

    Clutton-Brock, Tim H; Hodge, Sarah J; Flower, Tom P; Spong, Goran F; Young, Andrew J

    2010-11-01

    Attempts to account for observed variation in the degree of reproductive skew among cooperative breeders have usually assumed that subordinate breeding has fitness costs to dominant females. They argue that dominant females concede reproductive opportunities to subordinates to retain them in the group or to dissuade them from challenging for the dominant position or that subordinate females breed where dominants are incapable of controlling them. However, an alternative possibility is that suppressing subordinate reproduction has substantive costs to the fitness of dominant females and that variation in these costs generates differences in the net benefits of suppression to dominants which are responsible for variation in the frequency of subordinate breeding that is not a consequence of either reproductive concessions or limitations in dominant control. Here, we show that, in wild Kalahari meerkats (Suricata suricatta), the frequency with which dominants evict subordinates or kill their pups varies with the costs and benefits to dominants of suppressing subordinate breeding, including the dominants' reproductive status, the size of their group, and the relatedness of subordinates. We review evidence from other studies that the suppression of reproduction by subordinates varies with the likely costs of subordinate breeding to dominants. PMID:20846043

  11. Effects of surround suppression on response adaptation of V1 neurons to visual stimuli

    PubMed Central

    LI, Peng; JIN, Cai-Hong; JIANG, San; LI, Miao-Miao; WANG, Zi-Lu; ZHU, Hui; CHEN, Cui-Yun; HUA, Tian-Miao

    2014-01-01

    The influence of intracortical inhibition on the response adaptation of visual cortical neurons remains in debate. To clarify this issue, in the present study the influence of surround suppression evoked through the local inhibitory interneurons on the adaptation effects of neurons in the primary visual cortex (V1) were observed. Moreover, the adaptations of V1 neurons to both the high-contrast visual stimuli presented in the classical receptive field (CRF) and to the costimulation presented in the CRF and the surrounding nonclassical receptive field (nCRF) were compared. The intensities of surround suppression were modulated with different sized grating stimuli. The results showed that the response adaptation of V1 neurons decreased significantly with the increase of surround suppression and this adaptation decrease was due to the reduction of the initial response of V1 neurons to visual stimuli. However, the plateau response during adaptation showed no significant changes. These findings indicate that the adaptation effects of V1 neurons may not be directly affected by surround suppression, but may be dynamically regulated by a negative feedback network and be finely adjusted by its initial spiking response to stimulus. This adaptive regulation is not only energy efficient for the central nervous system, but also beneficially acts to maintain the homeostasis of neuronal response to long-presenting visual signals. PMID:25297081

  12. Active noise control using noise source having adaptive resonant frequency tuning through variable ring loading

    NASA Technical Reports Server (NTRS)

    Pla, Frederic G. (Inventor); Rajiyah, Harindra (Inventor); Renshaw, Anthony A. (Inventor); Hedeen, Robert A. (Inventor)

    1995-01-01

    A noise source for an aircraft engine active noise cancellation system in which the resonant frequency of noise radiating structure is tuned to permit noise cancellation over a wide range of frequencies. The resonant frequency of the noise radiating structure is tuned by a plurality of drivers arranged to contact the noise radiating structure. Excitation of the drivers causes expansion or contraction of the drivers, thereby varying the edge loading applied to the noise radiating structure. The drivers are actuated by a controller which receives input of a feedback signal proportional to displacement of the noise radiating element and a signal corresponding to the blade passage frequency of the engine's fan. In response, the controller determines a control signal which is sent to the drivers, causing them to expand or contract. The noise radiating structure may be either the outer shroud of the engine or a ring mounted flush with an inner wall of the shroud or disposed in the interior of the shroud.

  13. Adaptive anisotropic diffusion for noise reduction of phase images in Fourier domain Doppler optical coherence tomography.

    PubMed

    Xia, Shaoyan; Huang, Yong; Peng, Shizhao; Wu, Yanfeng; Tan, Xiaodi

    2016-08-01

    Phase image in Fourier domain Doppler optical coherence tomography offers additional flow information of investigated samples, which provides valuable evidence towards accurate medical diagnosis. High quality phase images are thus desirable. We propose a noise reduction method for phase images by combining a synthetic noise estimation criteria based on local noise estimator (LNE) and distance median value (DMV) with anisotropic diffusion model. By identifying noise and signal pixels accurately and diffusing them with different coefficients respectively and adaptive iteration steps, we demonstrated the effectiveness of our proposed method in both phantom and mouse artery images. Comparison with other methods such as filtering method (mean, median filtering), wavelet method, probabilistic method and partial differential equation based methods in terms of peak signal-to-noise ratio (PSNR), equivalent number of looks (ENL) and contrast-to-noise ratio (CNR) showed the advantages of our method in reserving image energy and removing noise. PMID:27570687

  14. Adaptive anisotropic diffusion for noise reduction of phase images in Fourier domain Doppler optical coherence tomography

    PubMed Central

    Xia, Shaoyan; Huang, Yong; Peng, Shizhao; Wu, Yanfeng; Tan, Xiaodi

    2016-01-01

    Phase image in Fourier domain Doppler optical coherence tomography offers additional flow information of investigated samples, which provides valuable evidence towards accurate medical diagnosis. High quality phase images are thus desirable. We propose a noise reduction method for phase images by combining a synthetic noise estimation criteria based on local noise estimator (LNE) and distance median value (DMV) with anisotropic diffusion model. By identifying noise and signal pixels accurately and diffusing them with different coefficients respectively and adaptive iteration steps, we demonstrated the effectiveness of our proposed method in both phantom and mouse artery images. Comparison with other methods such as filtering method (mean, median filtering), wavelet method, probabilistic method and partial differential equation based methods in terms of peak signal-to-noise ratio (PSNR), equivalent number of looks (ENL) and contrast-to-noise ratio (CNR) showed the advantages of our method in reserving image energy and removing noise. PMID:27570687

  15. Adaptive nonlocal means filtering based on local noise level for CT denoising

    SciTech Connect

    Li, Zhoubo; Trzasko, Joshua D.; Lake, David S.; Blezek, Daniel J.; Manduca, Armando; Yu, Lifeng; Fletcher, Joel G.; McCollough, Cynthia H.

    2014-01-15

    Purpose: To develop and evaluate an image-domain noise reduction method based on a modified nonlocal means (NLM) algorithm that is adaptive to local noise level of CT images and to implement this method in a time frame consistent with clinical workflow. Methods: A computationally efficient technique for local noise estimation directly from CT images was developed. A forward projection, based on a 2D fan-beam approximation, was used to generate the projection data, with a noise model incorporating the effects of the bowtie filter and automatic exposure control. The noise propagation from projection data to images was analytically derived. The analytical noise map was validated using repeated scans of a phantom. A 3D NLM denoising algorithm was modified to adapt its denoising strength locally based on this noise map. The performance of this adaptive NLM filter was evaluated in phantom studies in terms of in-plane and cross-plane high-contrast spatial resolution, noise power spectrum (NPS), subjective low-contrast spatial resolution using the American College of Radiology (ACR) accreditation phantom, and objective low-contrast spatial resolution using a channelized Hotelling model observer (CHO). Graphical processing units (GPU) implementation of this noise map calculation and the adaptive NLM filtering were developed to meet demands of clinical workflow. Adaptive NLM was piloted on lower dose scans in clinical practice. Results: The local noise level estimation matches the noise distribution determined from multiple repetitive scans of a phantom, demonstrated by small variations in the ratio map between the analytical noise map and the one calculated from repeated scans. The phantom studies demonstrated that the adaptive NLM filter can reduce noise substantially without degrading the high-contrast spatial resolution, as illustrated by modulation transfer function and slice sensitivity profile results. The NPS results show that adaptive NLM denoising preserves the

  16. Adaptive top-down suppression of hippocampal activity and the purging of intrusive memories from consciousness.

    PubMed

    Benoit, Roland G; Hulbert, Justin C; Huddleston, Ean; Anderson, Michael C

    2015-01-01

    When reminded of unwanted memories, people often attempt to suppress these experiences from awareness. Prior work indicates that control processes mediated by the dorsolateral prefrontal cortex (DLPFC) modulate hippocampal activity during such retrieval suppression. It remains unknown whether this modulation plays a role in purging an intrusive memory from consciousness. Here, we combined fMRI and effective connectivity analyses with phenomenological reports to scrutinize a role for adaptive top-down suppression of hippocampal retrieval processes in terminating mnemonic awareness of intrusive memories. Participants either suppressed or recalled memories of pictures depicting faces or places. After each trial, they reported their success at regulating awareness of the memory. DLPFC activation was greatest when unwanted memories intruded into consciousness and needed to be purged, and this increased engagement predicted superior control of intrusive memories over time. However, hippocampal activity was decreased during the suppression of place memories only. Importantly, the inhibitory influence of the DLPFC on the hippocampus was linked to the ensuing reduction in intrusions of the suppressed memories. Individuals who exhibited negative top-down coupling during early suppression attempts experienced fewer involuntary memory intrusions later on. Over repeated suppressions, the DLPFC-hippocampus connectivity grew less negative with the degree that they no longer had to purge unwanted memories from awareness. These findings support a role of DLPFC in countermanding the unfolding recollection of an unwanted memory via the suppression of hippocampal processing, a mechanism that may contribute to adaptation in the aftermath of traumatic experiences. PMID:25100219

  17. Hypercapnia Suppresses the HIF-dependent Adaptive Response to Hypoxia.

    PubMed

    Selfridge, Andrew C; Cavadas, Miguel A S; Scholz, Carsten C; Campbell, Eric L; Welch, Lynn C; Lecuona, Emilia; Colgan, Sean P; Barrett, Kim E; Sporn, Peter H S; Sznajder, Jacob I; Cummins, Eoin P; Taylor, Cormac T

    2016-05-27

    Molecular oxygen and carbon dioxide are the primary gaseous substrate and product of oxidative metabolism, respectively. Hypoxia (low oxygen) and hypercapnia (high carbon dioxide) are co-incidental features of the tissue microenvironment in a range of pathophysiologic states, including acute and chronic respiratory diseases. The hypoxia-inducible factor (HIF) is the master regulator of the transcriptional response to hypoxia; however, little is known about the impact of hypercapnia on gene transcription. Because of the relationship between hypoxia and hypercapnia, we investigated the effect of hypercapnia on the HIF pathway. Hypercapnia suppressed HIF-α protein stability and HIF target gene expression both in mice and cultured cells in a manner that was at least in part independent of the canonical O2-dependent HIF degradation pathway. The suppressive effects of hypercapnia on HIF-α protein stability could be mimicked by reducing intracellular pH at a constant level of partial pressure of CO2 Bafilomycin A1, a specific inhibitor of vacuolar-type H(+)-ATPase that blocks lysosomal degradation, prevented the hypercapnic suppression of HIF-α protein. Based on these results, we hypothesize that hypercapnia counter-regulates activation of the HIF pathway by reducing intracellular pH and promoting lysosomal degradation of HIF-α subunits. Therefore, hypercapnia may play a key role in the pathophysiology of diseases where HIF is implicated. PMID:27044749

  18. A study of infrared spectroscopy de-noising based on LMS adaptive filter

    NASA Astrophysics Data System (ADS)

    Mo, Jia-qing; Lv, Xiao-yi; Yu, Xiao

    2015-12-01

    Infrared spectroscopy has been widely used, but which often contains a lot of noise, so the spectral characteristic of the sample is seriously affected. Therefore the de-noising is very important in the spectrum analysis and processing. In the study of infrared spectroscopy, the least mean square (LMS) adaptive filter was applied in the field firstly. LMS adaptive filter algorithm can reserve the detail and envelope of the effective signal when the method was applied to infrared spectroscopy of breast cancer which signal-to-noise ratio (SNR) is lower than 10 dB, contrast and analysis the result with result of wavelet transform and ensemble empirical mode decomposition (EEMD). The three evaluation standards (SNR, root mean square error (RMSE) and the correlation coefficient (ρ)) fully proved de-noising advantages of LMS adaptive filter in infrared spectroscopy of breast cancer.

  19. Jet Noise Modeling for Suppressed and Unsuppressed Aircraft in Simulated Flight

    NASA Technical Reports Server (NTRS)

    Stone, James R.; Krejsa, Eugene A.; Clark, Bruce J; Berton, Jeffrey J.

    2009-01-01

    role of facility effects will thus be documented. Although the comparisons that can be accomplished within the limited resources of this task are not comprehensive, they provide a broad enough sampling to enable NASA to make an informed decision on how much further effort should be expended on such comparisons. The improved finalized model is incorporated into the FOOTPR code. MTC has also supported the adaptation of this code for incorporation in NASA s Aircraft Noise Prediction Program (ANOPP).

  20. Injection monitoring with seismic arrays and adaptive noise cancellation

    SciTech Connect

    Harben, P.E.; Harris, D.B.; Jarpe, S.P.

    1991-01-01

    Although the application of seismic methods, active and passive, to monitor in-situ reservoir stimulation processes is not new, seismic arrays and array processing technology coupled with a new noise cancellation method has not been attempted. Successful application of seismic arrays to passively monitor in-situ reservoir stimulation processes depends on being able to sufficiently cancel the expected large amplitude background seismic noise typical of an oil or geothermal production environment so that small amplitude seismic signals occurring at depth can be detected and located. This report describes the results of a short field experiment conducted to test both the application of seismic arrays for in-situ reservoir stimulation monitoring and the active noise cancellation technique in a real reservoir production environment. Although successful application of these techniques to in-situ reservoir stimulation monitoring would have the greatest payoff in the oil industry, the proof-of-concept field experiment site was chosen to be the Geysers geothermal field in northern California. This site was chosen because of known high seismicity rates, a relatively shallow production depth, cooperation and some cost sharing the UNOCAL Oil Corporation, and the close proximity of the site to LLNL. The body of this report describes the Geysers field experimental configuration and then discusses the results of the seismic array processing and the results of the seismic noise cancellation followed by a brief conclusion. 2 refs., 11 figs.

  1. Adaptive non-local means filtering based on local noise level for CT denoising

    NASA Astrophysics Data System (ADS)

    Li, Zhoubo; Yu, Lifeng; Trzasko, Joshua D.; Fletcher, Joel G.; McCollough, Cynthia H.; Manduca, Armando

    2012-03-01

    Radiation dose from CT scans is an increasing health concern in the practice of radiology. Higher dose scans can produce clearer images with high diagnostic quality, but may increase the potential risk of radiation-induced cancer or other side effects. Lowering radiation dose alone generally produces a noisier image and may degrade diagnostic performance. Recently, CT dose reduction based on non-local means (NLM) filtering for noise reduction has yielded promising results. However, traditional NLM denoising operates under the assumption that image noise is spatially uniform noise, while in CT images the noise level varies significantly within and across slices. Therefore, applying NLM filtering to CT data using a global filtering strength cannot achieve optimal denoising performance. In this work, we have developed a technique for efficiently estimating the local noise level for CT images, and have modified the NLM algorithm to adapt to local variations in noise level. The local noise level estimation technique matches the true noise distribution determined from multiple repetitive scans of a phantom object very well. The modified NLM algorithm provides more effective denoising of CT data throughout a volume, and may allow significant lowering of radiation dose. Both the noise map calculation and the adaptive NLM filtering can be performed in times that allow integration with the clinical workflow.

  2. Geophysical Inversion with Adaptive Array Processing of Ambient Noise

    NASA Astrophysics Data System (ADS)

    Traer, James

    2011-12-01

    Land-based seismic observations of microseisms generated during Tropical Storms Ernesto and Florence are dominated by signals in the 0.15--0.5Hz band. Data from seafloor hydrophones in shallow water (70m depth, 130 km off the New Jersey coast) show dominant signals in the gravity-wave frequency band, 0.02--0.18Hz and low amplitudes from 0.18--0.3Hz, suggesting significant opposing wave components necessary for DF microseism generation were negligible at the site. Both storms produced similar spectra, despite differing sizes, suggesting near-coastal shallow water as the dominant region for observed microseism generation. A mathematical explanation for a sign-inversion induced to the passive fathometer response by minimum variance distortionless response (MVDR) beamforming is presented. This shows that, in the region containing the bottom reflection, the MVDR fathometer response is identical to that obtained with conventional processing multiplied by a negative factor. A model is presented for the complete passive fathometer response to ocean surface noise, interfering discrete noise sources, and locally uncorrelated noise in an ideal waveguide. The leading order term of the ocean surface noise produces the cross-correlation of vertical multipaths and yields the depth of sub-bottom reflectors. Discrete noise incident on the array via multipaths give multiple peaks in the fathometer response. These peaks may obscure the sub-bottom reflections but can be attenuated with use of Minimum Variance Distortionless Response (MVDR) steering vectors. A theory is presented for the Signal-to-Noise-Ratio (SNR) for the seabed reflection peak in the passive fathometer response as a function of seabed depth, seabed reflection coefficient, averaging time, bandwidth and spatial directivity of the noise field. The passive fathometer algorithm was applied to data from two drifting array experiments in the Mediterranean, Boundary 2003 and 2004, with 0.34s of averaging time. In the 2004

  3. SU-E-J-243: Possibility of Exposure Dose Reduction of Cone-Beam Computed Tomography in An Image Guided Patient Positioning System by Using Various Noise Suppression Filters

    SciTech Connect

    Kamezawa, H; Arimura, H; Ohki, M; Shirieda, K; Kameda, N

    2014-06-01

    Purpose: To investigate the possibility of exposure dose reduction of the cone-beam computed tomography (CBCT) in an image guided patient positioning system by using 6 noise suppression filters. Methods: First, a reference dose (RD) and low-dose (LD)-CBCT (X-ray volume imaging system, Elekta Co.) images were acquired with a reference dose of 86.2 mGy (weighted CT dose index: CTDIw) and various low doses of 1.4 to 43.1 mGy, respectively. Second, an automated rigid registration for three axes was performed for estimating setup errors between a planning CT image and the LD-CBCT images, which were processed by 6 noise suppression filters, i.e., averaging filter (AF), median filter (MF), Gaussian filter (GF), bilateral filter (BF), edge preserving smoothing filter (EPF) and adaptive partial median filter (AMF). Third, residual errors representing the patient positioning accuracy were calculated as an Euclidean distance between the setup error vectors estimated using the LD-CBCT image and RD-CBCT image. Finally, the relationships between the residual error and CTDIw were obtained for 6 noise suppression filters, and then the CTDIw for LD-CBCT images processed by the noise suppression filters were measured at the same residual error, which was obtained with the RD-CBCT. This approach was applied to an anthropomorphic pelvic phantom and two cancer patients. Results: For the phantom, the exposure dose could be reduced from 61% (GF) to 78% (AMF) by applying the noise suppression filters to the CBCT images. The exposure dose in a prostate cancer case could be reduced from 8% (AF) to 61% (AMF), and the exposure dose in a lung cancer case could be reduced from 9% (AF) to 37% (AMF). Conclusion: Using noise suppression filters, particularly an adaptive partial median filter, could be feasible to decrease the additional exposure dose to patients in image guided patient positioning systems.

  4. Retrieval Induces Adaptive Forgetting of Competing Memories via Cortical Pattern Suppression

    PubMed Central

    Wimber, Maria; Alink, Arjen; Charest, Ian; Kriegeskorte, Nikolaus; Anderson, Michael C.

    2015-01-01

    Remembering a past experience can, surprisingly, cause forgetting. Forgetting arises when other competing traces interfere with retrieval, and inhibitory control mechanisms are engaged to suppress the distraction they cause. This form of forgetting is considered adaptive because it reduces future interference. The impact of this proposed inhibition process on competing memories has, however, never been observed both because behavioural methods are “blind” to retrieval dynamics and because neuroimaging methods have not isolated retrieval of individual memories. Here we introduce a canonical template tracking method to quantify the activation state of individual target memories and competitors during retrieval. This method revealed that repeatedly retrieving target memories suppressed cortical patterns unique to competitors. Pattern suppression was related to engagement of prefrontal regions implicated in resolving retrieval competition, and, critically, predicted later forgetting. We thus demonstrate a cortical pattern suppression mechanism through which remembering adaptively shapes which aspects of our past remain accessible. PMID:25774450

  5. Suppression of a Brownian noise in a hole-type sensor due to induced-charge electro-osmosis

    NASA Astrophysics Data System (ADS)

    Sugioka, Hideyuki

    2016-03-01

    Noise reduction is essential for a single molecular sensor. Thus, we propose a novel noise reduction mechanism using a hydrodynamic force due to induced-charge electro-osmosis (ICEO) in a hole-type sensor and numerically examine the performance. By the boundary element method that considers both a Brownian motion and an ICEO flow of a polarizable particle, we find that the Brownian noise in a current signal is suppressed significantly in a converging channel because of the ICEO flow around the particle in the presence of an electric field. Further, we propose a simple model that explains a numerically obtained threshold voltage of the suppression of the Brownian noise due to ICEO. We believe that our findings contribute greatly to developments of a single molecular sensor.

  6. Autophagy suppresses host adaptive immune responses toward Borrelia burgdorferi.

    PubMed

    Buffen, Kathrin; Oosting, Marije; Li, Yang; Kanneganti, Thirumala-Devi; Netea, Mihai G; Joosten, Leo A B

    2016-09-01

    We have previously demonstrated that inhibition of autophagy increased the Borrelia burgdorferi induced innate cytokine production in vitro, but little is known regarding the effect of autophagy on in vivo models of Borrelia infection. Here, we showed that ATG7-deficient mice that were intra-articular injected with Borrelia spirochetes displayed increased joint swelling, cell influx, and enhanced interleukin-1β and interleukin-6 production by inflamed synovial tissue. Because both interleukin-1β and interleukin-6 are linked to the development of adaptive immune responses, we examine the function of autophagy on Borrelia induced adaptive immunity. Human peripheral blood mononuclear cells treated with autophagy inhibitors showed an increase in interleukin-17, interleukin-22, and interferon-γ production in response to exposure to Borrelia burgdorferi. Increased IL-17 production was dependent on IL-1β release but, interestingly, not on interleukin-23 production. In addition, cytokine quantitative trait loci in ATG9B modulate the Borrelia induced interleukin-17 production. Because high levels of IL-17 have been found in patients with confirmed, severe, chronic borreliosis, we propose that the modulation of autophagy may be a potential target for anti-inflammatory therapy in patients with persistent Lyme disease. PMID:27101991

  7. Noise suppression in coherent population-trapping atomic clock by differential magneto-optic rotation detection.

    PubMed

    Tan, Bozhong; Tian, Yuan; Lin, Huifang; Chen, Jiehua; Gu, Sihong

    2015-08-15

    We propose and investigate a scheme for differential detection of the magneto-optic rotation (MOR) effect, where a linearly polarized bichromatic laser field is coherent population-trapping (CPT)-resonant with alkali atoms, and discuss the application of this effect to CPT-based atomic clocks. The results of our study indicate that laser noise in a vertical cavity surface-emitting laser-based CPT atomic clock can be effectively suppressed by the proposed scheme. The proposed scheme promises to realize a packaged MOR-CPT atomic clock that has significantly better frequency stability coupled with similar power consumption, volume, and cost when compared with currently available packaged CPT atomic clocks. PMID:26274639

  8. Exact calculation of shot noise suppression in resonant diodes under coherent tunneling

    NASA Astrophysics Data System (ADS)

    Aleshkin, V. Ya.; Reggiani, L.

    2012-07-01

    Shot noise suppression in resonant diodes with transport controlled by coherent tunneling is investigated using the tunneling transparency D(ɛ) obtained from an exact numerical solution of the Schrödinger equation in the presence of an applied voltage. The cases of two potential barriers in GaAs/AlAs heterostructures are considered. Results show that the use of an exact dependence of D(ɛ) confirms the existence of a voltage range of values where the Fano factor γ is significantly less than 0.5, in agreement with previous findings obtained within a Lorentzian approximation and with experiments available in the literature for different heterostructures. At increasing values of the barrier width the Fano factor recovers the 0.5 value common to a transport controlled by the sequential tunneling regime.

  9. Beam combining and SBS suppression in white noise and pseudo-random modulated amplifiers

    NASA Astrophysics Data System (ADS)

    Anderson, Brian; Flores, Angel; Holten, Roger; Ehrenreich, Thomas; Dajani, Iyad

    2015-03-01

    White noise phase modulation (WNS) and pseudo-random binary sequence phase modulation (PRBS) are effective techniques for mitigation of nonlinear effects such as stimulated Brillouin scattering (SBS); thereby paving the way for higher power narrow linewidth fiber amplifiers. However, detailed studies comparing both coherent beam combination and the SBS suppression of these phase modulation schemes have not been reported. In this study an active fiber cutback experiment is performed comparing the enhancement factor of a PRBS and WNS broadened seed as a function of linewidth and fiber length. Furthermore, two WNS and PRBS modulated fiber lasers are coherently combined to measure and compare the fringe visibility and coherence length as a function of optical path length difference. Notably, the discrete frequency comb of PRBS modulation provides a beam combining re-coherence effect where the lasers periodically come back into phase. Significantly, this may reduce path length matching complexity in coherently combined fiber laser systems.

  10. Linearly interpolated sub-symbol optical phase noise suppression in CO-OFDM system.

    PubMed

    Hong, Xuezhi; Hong, Xiaojian; He, Sailing

    2015-02-23

    An optical phase noise suppression algorithm, LI-SCPEC, based on phase linear interpolation and sub-symbol processing is proposed for CO-OFDM system. By increasing the temporal resolution of carrier phase tracking through dividing one symbol into several sub-blocks, i.e., sub-symbols, inter-carrier-interference (ICI) mitigation is achieved in the proposed algorithm. Linear interpolation is employed to obtain a reliable temporal reference for sub-symbol phase estimation. The new algorithm, with only a few number of sub-symbols (N(B) = 4), can provide a considerably larger laser linewidth tolerance than several other ICI mitigation algorithms as demonstrated by Monte-Carlo simulations. Numerical analysis verifies that the best performance is achieved with an optimal and moderate number of sub-symbols. Complexity analysis shows that the required number of complex-valued multiplications is independent of the number of sub-symbols used in the proposed algorithm. PMID:25836506

  11. An Efficient Adaptive Weighted Switching Median Filter for Removing High Density Impulse Noise

    NASA Astrophysics Data System (ADS)

    Nair, Madhu S.; Ameera Mol, P. M.

    2014-09-01

    Restoration of images corrupted by impulse noise is a very active research area in image processing. In this paper, an Efficient Adaptive Weighted Switching Median filter for restoration of images that are corrupted by high density impulse noise is proposed. The filtering is performed as a two phase process—a detection phase followed by a filtering phase. In the proposed method, noise detection is done by HEIND algorithm proposed by Duan et al. The filtering algorithm is then applied to the pixels which are detected as noisy by the detection algorithm. All uncorrupted pixels in the image are left unchanged. The filtering window size is chosen adaptively depending on the local noise distribution around each corrupted pixels. Noisy pixels are replaced by a weighted median value of uncorrupted pixels in the filtering window. The weight value assigned to each uncorrupted pixels depends on its closeness to the central pixel.

  12. Impedance-based control and piezoelectric shell actuators for suppressing interior noise

    NASA Astrophysics Data System (ADS)

    Jayachandran, Vijay

    The damaging effects of high level acoustic noise are visible in many aspects of engineering as well as in our everyday life. The active control of interior noise in fixed-wing aircraft, helicopters, automobiles and HVAC equipment have received considerable attention in the recent past. Various techniques have been investigated, of which Active Noise Cancellation (ANC) and Active Structural-Acoustic Control (ASAC) are quite popular. Some researchers have investigated the possibility of using acoustic impedance as the controlled variable at the secondary sources in active interior noise control systems. However, there are no detailed studies of impedance conditions in actively controlled three- dimensional systems, and many control approaches are based on results from one-dimensional studies. The first part of this thesis investigates the steady-state impedance conditions in an actively controlled three- dimensional rectangular enclosure, with a tonal disturbance field. This is followed by an investigation into the adaptive-passive impedance control of tonal duct noise using mass-spring type of absorptive elements. The studies provide a better understanding of active and passive impedance control strategies and serve as a foundation for building impedance-based controllers. The second part of the thesis investigates new actuation schemes for ANC in aircraft. The severe weight and space limitations encountered in the design of commercial aircraft have created a need for low-profiled and lightweight acoustic sources that can be used as control elements. To this end, a detailed analytical and experimental investigation into the possible use of the commercially available RAINBOW and THUNDER actuators as controllable acoustic sources is performed. The RAINBOW actuator is modeled analytically as a piezoceramic spherical shallow shell and the effects of curvature, support stiffness, loading mass and other parameters on the natural frequencies, linear stroke and volume

  13. Optimized suppression of coherent noise from seismic data using the Karhunen-Loève transform.

    PubMed

    Montagne, Raúl; Vasconcelos, Giovani L

    2006-07-01

    Signals obtained in land seismic surveys are usually contaminated with coherent noise, among which the ground roll (Rayleigh surface waves) is of major concern for it can severely degrade the quality of the information obtained from the seismic record. This paper presents an optimized filter based on the Karhunen-Loève transform for processing seismic images contaminated with ground roll. In this method, the contaminated region of the seismic record, to be processed by the filter, is selected in such way as to correspond to the maximum of a properly defined coherence index. The main advantages of the method are that the ground roll is suppressed with negligible distortion of the remnant reflection signals and that the filtering procedure can be automated. The image processing technique described in this study should also be relevant for other applications where coherent structures embedded in a complex spatiotemporal pattern need to be identified in a more refined way. In particular, it is argued that the method is appropriate for processing optical coherence tomography images whose quality is often degraded by coherent noise (speckle). PMID:16907183

  14. An Adaptive Filter for the Removal of Drifting Sinusoidal Noise Without a Reference.

    PubMed

    Kelly, John W; Siewiorek, Daniel P; Smailagic, Asim; Wang, Wei

    2016-01-01

    This paper presents a method for filtering sinusoidal noise with a variable bandwidth filter that is capable of tracking a sinusoid's drifting frequency. The method, which is based on the adaptive noise canceling (ANC) technique, will be referred to here as the adaptive sinusoid canceler (ASC). The ASC eliminates sinusoidal contamination by tracking its frequency and achieving a narrower bandwidth than typical notch filters. The detected frequency is used to digitally generate an internal reference instead of relying on an external one as ANC filters typically do. The filter's bandwidth adjusts to achieve faster and more accurate convergence. In this paper, the focus of the discussion and the data is physiological signals, specifically electrocorticographic (ECoG) neural data contaminated with power line noise, but the presented technique could be applicable to other recordings as well. On simulated data, the ASC was able to reliably track the noise's frequency, properly adjust its bandwidth, and outperform comparative methods including standard notch filters and an adaptive line enhancer. These results were reinforced by visual results obtained from real ECoG data. The ASC showed that it could be an effective method for increasing signal to noise ratio in the presence of drifting sinusoidal noise, which is of significant interest for biomedical applications. PMID:25474814

  15. Model- based filtering for artifact and noise suppression with state estimation for electrodermal activity measurements in real time.

    PubMed

    Tronstad, Christian; Staal, Odd M; Saelid, Steinar; Martinsen, Orjan G

    2015-08-01

    Measurement of electrodermal activity (EDA) has recently made a transition from the laboratory into daily life with the emergence of wearable devices. Movement and nongelled electrodes make these devices more susceptible to noise and artifacts. In addition, real-time interpretation of the measurement is needed for user feedback. The Kalman filter approach may conveniently deal with both these issues. This paper presents a biophysical model for EDA implemented in an extended Kalman filter. Employing the filter on data from Physionet along with simulated noise and artifacts demonstrates noise and artifact suppression while implicitly providing estimates of model states and parameters such as the sudomotor nerve activation. PMID:26736861

  16. Probability-based non-local means filter for speckle noise suppression in optical coherence tomography images.

    PubMed

    Yu, Hancheng; Gao, Jianlin; Li, Aiting

    2016-03-01

    In this Letter, a probability-based non-local means filter is proposed for speckle reduction in optical coherence tomography (OCT). Originally developed for additive white Gaussian noise, the non-local means filter is not suitable for multiplicative speckle noise suppression. This Letter presents a two-stage non-local means algorithm using the uncorrupted probability of each pixel to effectively reduce speckle noise in OCT. Experiments on real OCT images demonstrate that the proposed filter is competitive with other state-of-the-art speckle removal techniques and able to accurately preserve edges and structural details with small computational cost. PMID:26974099

  17. Correctable noise of quantum-error-correcting codes under adaptive concatenation

    NASA Astrophysics Data System (ADS)

    Fern, Jesse

    2008-01-01

    We examine the transformation of noise under a quantum-error-correcting code (QECC) concatenated repeatedly with itself, by analyzing the effects of a quantum channel after each level of concatenation using recovery operators that are optimally adapted to use error syndrome information from the previous levels of the code. We use the Shannon entropy of these channels to estimate the thresholds of correctable noise for QECCs and find considerable improvements under this adaptive concatenation. Similar methods could be used to increase quantum-fault-tolerant thresholds.

  18. Ultralow noise and supermode suppression in an actively mode-locked external-cavity semiconductor diode ring laser.

    PubMed

    Depriest, C M; Yilmaz, T; Delfyett, P J; Etemad, S; Braun, A; Abeles, J

    2002-05-01

    We report what is to our knowledge the lowest phase and amplitude noise characteristics achieved to date in a 10-GHz pulse train produced by the active harmonic mode locking of an external-cavity semiconductor diode laser. Supermode noise has also been suppressed below -140 dBc/Hz by use of a high-finesse fiber Fabry-Perot etalon as an intracavity filter. Novel noise sideband measurements that extend to the Nyquist offset frequency suggest a significant advantage in using harmonic (rather than fundamental) mode locking to produce ultralow-noise pulse trains, owing to the relationship between the noise roll-off frequency and the fundamental cavity frequency. PMID:18007910

  19. Suppressing Rayleigh backscatter and code noise from all-fiber digital interferometers.

    PubMed

    Ngo, Silvie; Shaddock, Daniel A; McRae, Terry G; Lam, Timothy T-Y; Chow, Jong H; Gray, Malcolm B

    2016-01-01

    We configure an all-fiber digital interferometer to eliminate both code noise and Rayleigh backscatter noise from bidirectional measurements. We utilize a sawtooth phase ramp to upconvert code noise beyond our signal bandwidth, demonstrating an in-band noise reduction of approximately two orders of magnitude. In addition, we demonstrate, for the first time to our knowledge, the use of relative code delays within a digital-interferometer system to eliminate Rayleigh-backscatter noise, resulting in a noise reduction of a factor of 50. Finally, we identify double Rayleigh-backscatter noise as our limiting noise source and suggest two methods to minimize this noise source. PMID:26696164

  20. An Adaptive Instability Suppression Controls Method for Aircraft Gas Turbine Engine Combustors

    NASA Technical Reports Server (NTRS)

    Kopasakis, George; DeLaat, John C.; Chang, Clarence T.

    2008-01-01

    An adaptive controls method for instability suppression in gas turbine engine combustors has been developed and successfully tested with a realistic aircraft engine combustor rig. This testing was part of a program that demonstrated, for the first time, successful active combustor instability control in an aircraft gas turbine engine-like environment. The controls method is called Adaptive Sliding Phasor Averaged Control. Testing of the control method has been conducted in an experimental rig with different configurations designed to simulate combustors with instabilities of about 530 and 315 Hz. Results demonstrate the effectiveness of this method in suppressing combustor instabilities. In addition, a dramatic improvement in suppression of the instability was achieved by focusing control on the second harmonic of the instability. This is believed to be due to a phenomena discovered and reported earlier, the so called Intra-Harmonic Coupling. These results may have implications for future research in combustor instability control.

  1. Adaptive box filters for removal of random noise from digital images

    USGS Publications Warehouse

    Eliason, E.M.; McEwen, A.S.

    1990-01-01

    We have developed adaptive box-filtering algorithms to (1) remove random bit errors (pixel values with no relation to the image scene) and (2) smooth noisy data (pixels related to the image scene but with an additive or multiplicative component of noise). For both procedures, we use the standard deviation (??) of those pixels within a local box surrounding each pixel, hence they are adaptive filters. This technique effectively reduces speckle in radar images without eliminating fine details. -from Authors

  2. Adaptive filters for suppressing irregular hostile jamming in direct sequence spread-spectrum system

    NASA Astrophysics Data System (ADS)

    Lee, Jung Hoon; Lee, Choong Woong

    A stable and high-performance adaptive filter for suppressing irregular hostile jamming in direct-sequence (DS) spread-spectrum systems is designed. A gradient-search fast converging algorithm (GFC) is suggested. For the case of a sudden parameter jump or incoming of an interference, the transient behaviors of the receiver using a GFC adaptive filter are investigated and compared with those of the receiver using a least-mean-square (LMS) or a lattice adaptive filter. The results are shown in the response graphs of the simulated receiver during the short period when the characteristic of a jammer is suddenly changed. Steady-state performances of those receivers are also evaluated in the sense of the excess mean-square error over that of an optimum receiver for suppressing stationary interferences.

  3. Burst noise reduction of image by decimation and adaptive weighted median filter

    NASA Astrophysics Data System (ADS)

    Nakayama, Fumitaka; Meguro, Mitsuhiko; Hamada, Nozomu

    2000-12-01

    The removal of noise in image is one of the important issues, and useful as a preprocessing for edge detection, motion estimation and so on. Recently, many studies on the nonlinear digital filter for impulsive noise reduction have been reported. The median filter, the representative of the nonlinear filters, is very effective for removing impulsive noise and preserving sharp edge. In some cases, burst (i.e., successive) impulsive noise is added to image, and this type of noise is difficult to remove by using the median filter. In this paper, we propose an Adaptive Weighted Median (AWM) filter with Decimation (AWM-D filter) for burst noise reduction. This method can also be applied to recover large destructive regions, such as blotch and scratch. The proposed filter is an extension of the Decimated Median (DM) filter, which is useful for reducing successive impulsive noise. The DM filter can split long impulsive noise sequences into short ones, and remove burst noise in spite of the short filter window. Nevertheless, the DM filter also has two disadvantages. One is that the signals without added noise is unnecessary filtered. The other is that the position information in the window is not considered in the weight determinative process, as common in the median type filter. To improve detail-preserving property of the DM filter, we use the noise detection procedure and the AWM-D filter, which can be tuned by Least Mean Absolute (LMA) algorithm. The AWM-D filter preserves details more precisely than the median-type filter, because the AWM-D filter has the weights that can control the filter output. Through some simulations, the higher performance of the proposed filter is shown compared with the simple median, the WM filter, and the DM filter.

  4. Adaptive multidirectional frequency domain filter for noise removal in wrapped phase patterns.

    PubMed

    Liu, Guixiong; Chen, Dongxue; Peng, Yanhua; Zeng, Qilin

    2016-08-01

    In order to avoid the detrimental effects of excessive noise in the phase fringe patterns of a laser digital interferometer over the accuracy of phase unwrapping and the successful detection of mechanical fatigue defects, an effective method of adaptive multidirectional frequency domain filtering is introduced based on the characteristics of the energy spectrum of localized wrapped phase patterns. Not only can this method automatically set the cutoff frequency, but it can also effectively filter out noise while preserving the image edge information. Compared with the sine and cosine transform filtering and the multidirectional frequency domain filtering, the experimental results demonstrate that the image filtered by our method has the fewest number of residues and is the closest to the noise-free image, compared to the two aforementioned methods, demonstrating the effectiveness of this adaptive multidirectional frequency domain filter. PMID:27505376

  5. Adaptive passive fathometer processing using ambient noise received by vertical nested array

    NASA Astrophysics Data System (ADS)

    Kim, Junghun; Cho, Sungho; Choi, Jee Woong

    2015-07-01

    A passive fathometer technique utilizes surface-generated ambient noise received by a vertical line array as a sound source to estimate the depths of water-sediment interface and sub-bottom layers. Ambient noise was measured using a 24-channel, vertical nested line array consisting of four sub-arrays, in shallow water off the eastern coast of Korea. In this paper, nested array processing is applied to passive fathometer technique to improve the performance. Passive fathometer processing is performed for each sub-array, and the results are then combined to form a passive fathometer output for broadband ambient noise. Three types of beamforming technique, including conventional and two adaptive methods, are used in passive fathometer processing. The results are compared to the depths of water-sediment interface measured by an echo sounder. As a result, it is found that the adaptive methods have better performance than the conventional method.

  6. Transform Domain Robust Variable Step Size Griffiths' Adaptive Algorithm for Noise Cancellation in ECG

    NASA Astrophysics Data System (ADS)

    Hegde, Veena; Deekshit, Ravishankar; Satyanarayana, P. S.

    2011-12-01

    The electrocardiogram (ECG) is widely used for diagnosis of heart diseases. Good quality of ECG is utilized by physicians for interpretation and identification of physiological and pathological phenomena. However, in real situations, ECG recordings are often corrupted by artifacts or noise. Noise severely limits the utility of the recorded ECG and thus needs to be removed, for better clinical evaluation. In the present paper a new noise cancellation technique is proposed for removal of random noise like muscle artifact from ECG signal. A transform domain robust variable step size Griffiths' LMS algorithm (TVGLMS) is proposed for noise cancellation. For the TVGLMS, the robust variable step size has been achieved by using the Griffiths' gradient which uses cross-correlation between the desired signal contaminated with observation or random noise and the input. The algorithm is discrete cosine transform (DCT) based and uses symmetric property of the signal to represent the signal in frequency domain with lesser number of frequency coefficients when compared to that of discrete Fourier transform (DFT). The algorithm is implemented for adaptive line enhancer (ALE) filter which extracts the ECG signal in a noisy environment using LMS filter adaptation. The proposed algorithm is found to have better convergence error/misadjustment when compared to that of ordinary transform domain LMS (TLMS) algorithm, both in the presence of white/colored observation noise. The reduction in convergence error achieved by the new algorithm with desired signal decomposition is found to be lower than that obtained without decomposition. The experimental results indicate that the proposed method is better than traditional adaptive filter using LMS algorithm in the aspects of retaining geometrical characteristics of ECG signal.

  7. An adaptive way for improving noise reduction using local geometric projection

    NASA Astrophysics Data System (ADS)

    Leontitsis, Alexandros; Bountis, Tassos; Pagge, Jenny

    2004-03-01

    We propose an adaptive way to improve noise reduction by local geometric projection. From the neighborhood of each candidate point in phase space, we identify the best subspace that the point will be orthogonally projected to. The signal subspace is formed by the most significant eigendirections of the neighborhood, while the less significant ones define the noise subspace. We provide a simple criterion to separate the most significant eigendirections from the less significant ones. This criterion is based on the maximum logarithmic difference between the neighborhood eigendirection lengths, and the assumption that there is at least one eigendirection that corresponds to the noise subspace. In this way, we take into account the special characteristics of each neighborhood and introduce a more successful noise reduction technique. Results are presented for a chaotic time series of the Hénon map and Ikeda map, as well as on the Nasdaq Composite index.

  8. Signal to noise ratio of free space homodyne coherent optical communication after adaptive optics compensation

    NASA Astrophysics Data System (ADS)

    Huang, Jian; Mei, Haiping; Deng, Ke; Kang, Li; Zhu, Wenyue; Yao, Zhoushi

    2015-12-01

    Designing and evaluating the adaptive optics system for coherent optical communication link through atmosphere requires to distinguish the effects of the residual wavefront and disturbed amplitude to the signal to noise ratio. Based on the new definition of coherent efficiency, a formula of signal to noise ratio for describing the performance of coherent optical communication link after wavefront compensation is derived in the form of amplitude non-uniformity and wavefront error separated. A beam quality metric is deduced mathematically to evaluate the effect of disturbed amplitude to the signal to noise ratio. Experimental results show that the amplitude fluctuation on the receiver aperture may reduce the signal to noise ratio about 24% on average when Fried coherent length r0=16 cm.

  9. Adaptive correction procedure for TVL1 image deblurring under impulse noise

    NASA Astrophysics Data System (ADS)

    Bai, Minru; Zhang, Xiongjun; Shao, Qianqian

    2016-08-01

    For the problem of image restoration of observed images corrupted by blur and impulse noise, the widely used TVL1 model may deviate from both the data-acquisition model and the prior model, especially for high noise levels. In order to seek a solution of high recovery quality beyond the reach of the TVL1 model, we propose an adaptive correction procedure for TVL1 image deblurring under impulse noise. Then, a proximal alternating direction method of multipliers (ADMM) is presented to solve the corrected TVL1 model and its convergence is also established under very mild conditions. It is verified by numerical experiments that our proposed approach outperforms the TVL1 model in terms of signal-to-noise ratio (SNR) values and visual quality, especially for high noise levels: it can handle salt-and-pepper noise as high as 90% and random-valued noise as high as 70%. In addition, a comparison with a state-of-the-art method, the two-phase method, demonstrates the superiority of the proposed approach.

  10. Unsteady numerical simulation of a round jet with impinging microjets for noise suppression

    PubMed Central

    Lew, Phoi-Tack; Najafi-Yazdi, Alireza; Mongeau, Luc

    2013-01-01

    The objective of this study was to determine the feasibility of a lattice-Boltzmann method (LBM)-Large Eddy Simulation methodology for the prediction of sound radiation from a round jet-microjet combination. The distinct advantage of LBM over traditional computational fluid dynamics methods is its ease of handling problems with complex geometries. Numerical simulations of an isothermal Mach 0.5, ReD = 1 × 105 circular jet (Dj = 0.0508 m) with and without the presence of 18 microjets (Dmj = 1 mm) were performed. The presence of microjets resulted in a decrease in the axial turbulence intensity and turbulent kinetic energy. The associated decrease in radiated sound pressure level was around 1 dB. The far-field sound was computed using the porous Ffowcs Williams-Hawkings surface integral acoustic method. The trend obtained is in qualitative agreement with experimental observations. The results of this study support the accuracy of LBM based numerical simulations for predictions of the effects of noise suppression devices on the radiated sound power. PMID:23967931

  11. Unsteady numerical simulation of a round jet with impinging microjets for noise suppression.

    PubMed

    Lew, Phoi-Tack; Najafi-Yazdi, Alireza; Mongeau, Luc

    2013-09-01

    The objective of this study was to determine the feasibility of a lattice-Boltzmann method (LBM)-Large Eddy Simulation methodology for the prediction of sound radiation from a round jet-microjet combination. The distinct advantage of LBM over traditional computational fluid dynamics methods is its ease of handling problems with complex geometries. Numerical simulations of an isothermal Mach 0.5, Re(D) = 1 × 10(5) circular jet (D(j) = 0.0508 m) with and without the presence of 18 microjets (D(mj) = 1 mm) were performed. The presence of microjets resulted in a decrease in the axial turbulence intensity and turbulent kinetic energy. The associated decrease in radiated sound pressure level was around 1 dB. The far-field sound was computed using the porous Ffowcs Williams-Hawkings surface integral acoustic method. The trend obtained is in qualitative agreement with experimental observations. The results of this study support the accuracy of LBM based numerical simulations for predictions of the effects of noise suppression devices on the radiated sound power. PMID:23967931

  12. Locomotor control of limb force switches from minimal intervention principle in early adaptation to noise reduction in late adaptation

    PubMed Central

    Selgrade, Brian P.

    2014-01-01

    During movement, errors are typically corrected only if they hinder performance. Preferential correction of task-relevant deviations is described by the minimal intervention principle but has not been demonstrated in the joints during locomotor adaptation. We studied hopping as a tractable model of locomotor adaptation of the joints within the context of a limb-force-specific task space. Subjects hopped while adapting to shifted visual feedback that induced them to increase peak ground reaction force (GRF). We hypothesized subjects would preferentially reduce task-relevant joint torque deviations over task-irrelevant deviations to increase peak GRF. We employed a modified uncontrolled manifold analysis to quantify task-relevant and task-irrelevant joint torque deviations for each individual hop cycle. As would be expected by the explicit goal of the task, peak GRF errors decreased in early adaptation before reaching steady state during late adaptation. Interestingly, during the early adaptation performance improvement phase, subjects reduced GRF errors by decreasing only the task-relevant joint torque deviations. In contrast, during the late adaption performance maintenance phase, all torque deviations decreased in unison regardless of task relevance. In deadaptation, when the shift in visual feedback was removed, all torque deviations decreased in unison, possibly because performance improvement was too rapid to detect changes in only the task-relevant dimension. We conclude that limb force adaptation in hopping switches from a minimal intervention strategy during performance improvement to a noise reduction strategy during performance maintenance, which may represent a general control strategy for locomotor adaptation of limb force in other bouncing gaits, such as running. PMID:25475343

  13. Background noise cancellation of manatee vocalizations using an adaptive line enhancer.

    PubMed

    Yan, Zheng; Niezrecki, Christopher; Cattafesta, Louis N; Beusse, Diedrich O

    2006-07-01

    The West Indian manatee (Trichechus manatus latirostris) has become an endangered species partly because of an increase in the number of collisions with boats. A device to alert boaters of the presence of manatees is desired. Previous research has shown that background noise limits the manatee vocalization detection range (which is critical for practical implementation). By improving the signal-to-noise ratio of the measured manatee vocalization signal, it is possible to extend the detection range. The finite impulse response (FIR) structure of the adaptive line enhancer (ALE) can detect and track narrow-band signals buried in broadband noise. In this paper, a constrained infinite impulse response (IIR) ALE, called a feedback ALE (FALE), is implemented to reduce the background noise. In addition, a bandpass filter is used as a baseline for comparison. A library consisting of 100 manatee calls spanning ten different signal categories is used to evaluate the performance of the bandpass filter, FIR-ALE, and FALE. The results show that the FALE is capable of reducing background noise by about 6.0 and 21.4 dB better than that of the FIR-ALE and bandpass filter, respectively, when the signal-to-noise ratio (SNR) of the original manatee call is -5 dB. PMID:16875212

  14. Adaptive Control For Flexible Structures

    NASA Technical Reports Server (NTRS)

    Bayard, David S.; Ih, Che-Hang Charles; Wang, Shyh Jong

    1988-01-01

    Paper discusses ways to cope with measurement noise in adaptive control system for large, flexible structure in outer space. System generates control signals for torque and thrust actuators to turn all or parts of structure to desired orientations while suppressing torsional and other vibrations. Main result of paper is general theory for introduction of filters to suppress measurement noise while preserving stability.

  15. Robust vibration suppression of an adaptive circular composite plate for satellite thrust vector control

    NASA Astrophysics Data System (ADS)

    Yan, Su; Ma, Kougen; Ghasemi-Nejhad, Mehrdad N.

    2008-03-01

    In this paper, a novel application of adaptive composite structures, a University of Hawaii at Manoa (UHM) smart composite platform, is developed for the Thrust Vector Control (TVC) of satellites. The device top plate of the UHM platform is an adaptive circular composite plate (ACCP) that utilizes integrated sensors/actuators and controllers to suppress low frequency vibrations during the thruster firing as well as to potentially isolate dynamic responses from the satellite structure bus. Since the disturbance due to the satellite thruster firing can be estimated, a combined strategy of an adaptive disturbance observer (DOB) and feed-forward control is proposed for vibration suppression of the ACCP with multi-sensors and multi-actuators. Meanwhile, the effects of the DOB cut-off frequency and the relative degree of the low-pass filter on the DOB performance are investigated. Simulations and experimental results show that higher relative degree of the low-pass filter with the required cut-off frequency will enhance the DOB performance for a high-order system control. Further, although the increase of the filter cut-off frequency can guarantee a sufficient stability margin, it may cause an undesirable increase of the control bandwidth. The effectiveness of the proposed adaptive DOB with feed-forward control strategy is verified through simulations and experiments using the ACCP system.

  16. Audiovisual cues benefit recognition of accented speech in noise but not perceptual adaptation.

    PubMed

    Banks, Briony; Gowen, Emma; Munro, Kevin J; Adank, Patti

    2015-01-01

    Perceptual adaptation allows humans to recognize different varieties of accented speech. We investigated whether perceptual adaptation to accented speech is facilitated if listeners can see a speaker's facial and mouth movements. In Study 1, participants listened to sentences in a novel accent and underwent a period of training with audiovisual or audio-only speech cues, presented in quiet or in background noise. A control group also underwent training with visual-only (speech-reading) cues. We observed no significant difference in perceptual adaptation between any of the groups. To address a number of remaining questions, we carried out a second study using a different accent, speaker and experimental design, in which participants listened to sentences in a non-native (Japanese) accent with audiovisual or audio-only cues, without separate training. Participants' eye gaze was recorded to verify that they looked at the speaker's face during audiovisual trials. Recognition accuracy was significantly better for audiovisual than for audio-only stimuli; however, no statistical difference in perceptual adaptation was observed between the two modalities. Furthermore, Bayesian analysis suggested that the data supported the null hypothesis. Our results suggest that although the availability of visual speech cues may be immediately beneficial for recognition of unfamiliar accented speech in noise, it does not improve perceptual adaptation. PMID:26283946

  17. Audiovisual cues benefit recognition of accented speech in noise but not perceptual adaptation

    PubMed Central

    Banks, Briony; Gowen, Emma; Munro, Kevin J.; Adank, Patti

    2015-01-01

    Perceptual adaptation allows humans to recognize different varieties of accented speech. We investigated whether perceptual adaptation to accented speech is facilitated if listeners can see a speaker’s facial and mouth movements. In Study 1, participants listened to sentences in a novel accent and underwent a period of training with audiovisual or audio-only speech cues, presented in quiet or in background noise. A control group also underwent training with visual-only (speech-reading) cues. We observed no significant difference in perceptual adaptation between any of the groups. To address a number of remaining questions, we carried out a second study using a different accent, speaker and experimental design, in which participants listened to sentences in a non-native (Japanese) accent with audiovisual or audio-only cues, without separate training. Participants’ eye gaze was recorded to verify that they looked at the speaker’s face during audiovisual trials. Recognition accuracy was significantly better for audiovisual than for audio-only stimuli; however, no statistical difference in perceptual adaptation was observed between the two modalities. Furthermore, Bayesian analysis suggested that the data supported the null hypothesis. Our results suggest that although the availability of visual speech cues may be immediately beneficial for recognition of unfamiliar accented speech in noise, it does not improve perceptual adaptation. PMID:26283946

  18. RIN-suppressed ultralow noise interferometric fiber optic gyroscopes (IFOGs) for improving inertial stabilization of space telescopes

    NASA Astrophysics Data System (ADS)

    Hakimi, Farhad; Moores, John D.

    2013-03-01

    Pointing, acquisition, and tracking (PAT) systems in spaceborne optical communications terminals can exploit inertial sensors and actuators to counter platform vibrations and maintain steady beam pointing. Interferometric fiber optic gyroscopes (IFOGs) can provide sensitive angle rate measurements down to very low (sub-milliHertz) mechanical frequencies, potentially reducing the required beacon power and facilitating acquisition for a spaceborne optical communications terminals. Incoherent broadband light sources are used in IFOGs to alleviate detrimental effects of optical nonlinearities, backscattering, and polarization non-reciprocity. But incoherent broadband sources have excess noise or relative intensity noise (RIN), caused by the beating of different spectral components on the photodetector. Unless RIN noise is suppressed, IFOG performance cannot be improved once the light on the photodetector exceeds one photon per coherence time (~microWatts). We propose a simple method to dramatically suppress the RIN of an incoherent light source and thereby reduce the angle random walk (ARW) of an IFOG using such a source. We demonstrate 20 dB RIN suppression of a broadband EDFA source, which we predict could improve the angle random walk (ARW) of an IFOG using this source by 12 dB.

  19. A NOISE ADAPTIVE FUZZY EQUALIZATION METHOD FOR PROCESSING SOLAR EXTREME ULTRAVIOLET IMAGES

    SciTech Connect

    Druckmueller, M.

    2013-08-15

    A new image enhancement tool ideally suited for the visualization of fine structures in extreme ultraviolet images of the corona is presented in this paper. The Noise Adaptive Fuzzy Equalization method is particularly suited for the exceptionally high dynamic range images from the Atmospheric Imaging Assembly instrument on the Solar Dynamics Observatory. This method produces artifact-free images and gives significantly better results than methods based on convolution or Fourier transform which are often used for that purpose.

  20. Suppressing Short-term Polarization Noise and Related Spectral Decoherence in All-normal Dispersion Fiber Supercontinuum Generation

    PubMed Central

    Liu, Yuan; Zhao, Youbo; Lyngsø, Jens; You, Sixian; Wilson, William L.; Tu, Haohua; Boppart, Stephen A.

    2015-01-01

    The supercontinuum generated exclusively in the normal dispersion regime of a nonlinear fiber is widely believed to possess low optical noise and high spectral coherence. The recent development of flattened all-normal dispersion fibers has been motivated by this belief to construct a general-purpose broadband coherent optical source. Somewhat surprisingly, we identify a large short-term polarization noise in this type of supercontinuum generation that has been masked by the total-intensity measurement in the past, but can be easily detected by filtering the supercontinuum with a linear polarizer. Fortunately, this hidden intrinsic noise and the accompanied spectral decoherence can be effectively suppressed by using a polarization-maintaining all-normal dispersion fiber. A polarization-maintaining coherent supercontinuum laser is thus built with a broad bandwidth (780–1300 nm) and high spectral power (~1 mW/nm). PMID:26166939

  1. Noise suppression of point spread functions and its influence on deconvolution of three-dimensional fluorescence microscopy image sets.

    PubMed

    Lai, X; Lin, Zhiping; Ward, E S; Ober, R J

    2005-01-01

    The point spread function (PSF) is of central importance in the image restoration of three-dimensional image sets acquired by an epifluorescent microscope. Even though it is well known that an experimental PSF is typically more accurate than a theoretical one, the noise content of the experimental PSF is often an obstacle to its use in deconvolution algorithms. In this paper we apply a recently introduced noise suppression method to achieve an effective noise reduction in experimental PSFs. We show with both simulated and experimental three-dimensional image sets that a PSF that is smoothed with this method leads to a significant improvement in the performance of deconvolution algorithms, such as the regularized least-squares algorithm and the accelerated Richardson-Lucy algorithm. PMID:15655067

  2. Suppression of noise in FitzHugh-Nagumo model driven by a strong periodic signal [rapid communication

    NASA Astrophysics Data System (ADS)

    Pankratova, Evgeniya V.; Polovinkin, Andrey V.; Spagnolo, Bernardo

    2005-08-01

    The response time of a neuron in the presence of a strong periodic driving in the stochastic FitzHugh Nagumo model is investigated. We analyze two cases: (i) the variable that corresponds to membrane potential is subjected to fluctuations, and (ii) the recovery variable associated with the refractory properties of a neuron is noisy. The influence of noise sources on the delay of the response of a neuron is analyzed. In both cases we observe a resonant activation-like phenomenon and suppression of noise: the negative effect of fluctuations on the process of spike generation is minimal near the resonance region. The phenomenon of noise enhanced stability is also observed in both cases. The role of the initial phase of the periodic driving is examined.

  3. Speech perception at positive signal-to-noise ratios using adaptive adjustment of time compression.

    PubMed

    Schlueter, Anne; Brand, Thomas; Lemke, Ulrike; Nitzschner, Stefan; Kollmeier, Birger; Holube, Inga

    2015-11-01

    Positive signal-to-noise ratios (SNRs) characterize listening situations most relevant for hearing-impaired listeners in daily life and should therefore be considered when evaluating hearing aid algorithms. For this, a speech-in-noise test was developed and evaluated, in which the background noise is presented at fixed positive SNRs and the speech rate (i.e., the time compression of the speech material) is adaptively adjusted. In total, 29 younger and 12 older normal-hearing, as well as 24 older hearing-impaired listeners took part in repeated measurements. Younger normal-hearing and older hearing-impaired listeners conducted one of two adaptive methods which differed in adaptive procedure and step size. Analysis of the measurements with regard to list length and estimation strategy for thresholds resulted in a practical method measuring the time compression for 50% recognition. This method uses time-compression adjustment and step sizes according to Versfeld and Dreschler [(2002). J. Acoust. Soc. Am. 111, 401-408], with sentence scoring, lists of 30 sentences, and a maximum likelihood method for threshold estimation. Evaluation of the procedure showed that older participants obtained higher test-retest reliability compared to younger participants. Depending on the group of listeners, one or two lists are required for training prior to data collection. PMID:26627804

  4. Adaptive subspace detection of extended target in white Gaussian noise using sinc basis

    NASA Astrophysics Data System (ADS)

    Zhang, Xiao-Wei; Li, Ming; Qu, Jian-She; Yang, Hui

    2016-01-01

    For the high resolution radar (HRR), the problem of detecting the extended target is considered in this paper. Based on a single observation, a new two-step detection based on sparse representation (TSDSR) method is proposed to detect the extended target in the presence of Gaussian noise with unknown covariance. In the new method, the Sinc dictionary is introduced to sparsely represent the high resolution range profile (HRRP). Meanwhile, adaptive subspace pursuit (ASP) is presented to recover the HRRP embedded in the Gaussian noise and estimate the noise covariance matrix. Based on the Sinc dictionary and the estimated noise covariance matrix, one step subspace detector (OSSD) for the first-order Gaussian (FOG) model without secondary data is adopted to realise the extended target detection. Finally, the proposed TSDSR method is applied to raw HRR data. Experimental results demonstrate that HRRPs of different targets can be sparsely represented very well with the Sinc dictionary. Moreover, the new method can estimate the noise power with tiny errors and have a good detection performance.

  5. Noise

    MedlinePlus

    Noise is all around you, from televisions and radios to lawn mowers and washing machines. Normally, you ... sensitive structures of the inner ear and cause noise-induced hearing loss. More than 30 million Americans ...

  6. Suppression of tonal noise in a centrifugal fan using guide vanes

    NASA Astrophysics Data System (ADS)

    Paramasivam, Kishokanna; Rajoo, Srithar; Romagnoli, Alessandro

    2015-11-01

    This paper presents the work aiming for tonal noise reduction in a centrifugal fan. In previous studies, it is well documented that tonal noise is the dominant noise source generated in centrifugal fans. Tonal noise is generated due to the aerodynamic interaction between the rotating impeller and stationary diffuser vanes. The generation of tonal noise is related to the pressure fluctuation at the leading edge of the stationary vane. The tonal noise is periodic in time which occurs at the blade passing frequency (BPF) and its harmonics. Much of previous studies, have shown that the stationary vane causes the tonal noise and generation of non-rotational turbulent noise. However, omitting stationary vanes will lead to the increase of non-rotational turbulent noise resulted from the high velocity of the flow leaving the impeller. Hence in order to reduce the tonal noise and the non-rotational noise, guide vanes were designed as part of this study to replace the diffuser vanes, which were originally used in the chosen centrifugal fan. The leading edge of the guide vane is tapered. This modification reduces the strength of pressure fluctuation resulting from the interaction between the impeller outflow and stationary vane. The sound pressure level at blade passing frequency (BPF) is reduced by 6.8 dB, the 2nd BPF is reduced by 4.1 dB and the 3rd BPF reduced by about 17.5 dB. The overall reduction was 0.9 dB. The centrifugal fan with tapered guide vanes radiates lower tonal noise compared to the existing diffuser vanes. These reductions are achieved without compromising the performance of the centrifugal fan. The behavior of the fluid flow was studied using computational fluid dynamics (CFD) tools and the acoustics characteristics were determined through experiments in an anechoic chamber.

  7. Nociceptin/Orphanin FQ Suppresses Adaptive Immune Responses in Vivo and at Picomolar Levels in Vitro

    PubMed Central

    Anton, Benito; Calva, Juan C.; Acevedo, Rodolfo; Salazar, Alberto; Matus, Maura; Flores, Anabel; Martinez, Martin; Adler, Martin W.; Gaughan, John P.; Eisenstein, Toby K.

    2014-01-01

    Nociceptin/orphanin FQ (N/OFQ), added in vitro to murine spleen cells in the picomolar range, suppressed antibody formation to sheep red blood cells in a primary and a secondary plaque-forming cell (PFC) assay. The activity of the peptide was maximal at 10−12 M, with an asymmetric U-shaped dose response curve that extended activity to 10−14 M. Suppression was not blocked by pretreatment with naloxone. Specificity of the suppressive response was shown using affinity purified rabbit antibodies against two N/OFQ peptides, and with a pharmacological antagonist. Antisera against both peptides were active, in a dose related manner, in neutralizing N/OFQ -mediated immunosuppression, when the peptide was used at concentrations from 10−12.3 to 10−11.6 M. In addition, nociceptin given in vivo by osmotic pump for 48 hr suppressed the capacity of spleen cells placed ex vivo to make an anti-sheep red blood cell response. These studies show that nociceptin directly inhibits an adaptive immune response, i.e. antibody formation, both in vitro and in vivo. PMID:20119853

  8. Blockade of interleukin-6 signaling suppressed cochlear inflammatory response and improved hearing impairment in noise-damaged mice cochlea.

    PubMed

    Wakabayashi, Kenichiro; Fujioka, Masato; Kanzaki, Sho; Okano, Hirotaka James; Shibata, Shinsuke; Yamashita, Daisuke; Masuda, Masatsugu; Mihara, Masahiko; Ohsugi, Yoshiyuki; Ogawa, Kaoru; Okano, Hideyuki

    2010-04-01

    Hearing impairment can be the cause of serious socio-economic disadvantages. Recent studies have shown inflammatory responses in the inner ear co-occur with various damaging conditions including noise-induced hearing loss. We reported pro-inflammatory cytokine interleukin-6 (IL-6) was induced in the cochlea 6h after noise exposure, but the pathophysiological implications of this are still obscure. To address this issue, we investigated the effects of IL-6 inhibition using the anti-IL-6 receptor antibody (MR16-1). Noise-exposed mice were treated with MR16-1 and evaluated. Improved hearing at 4kHz as measured by auditory brainstem response (ABR) was noted in noise-exposed mice treated with MR16-1. Histological analysis revealed the decrease in spiral ganglion neurons was ameliorated in the MR16-1-treated group, while no significant change was observed in the organ of Corti. Immunohistochemistry for Iba1 and CD45 demonstrated a remarkable reduction of activated cochlear macrophages in spiral ganglions compared to the control group when treated with MR16-1. Thus, MR16-1 had protective effects both functionally and pathologically for the noise-damaged cochlea primarily due to suppression of neuronal loss and presumably through alleviation of inflammatory responses. Anti-inflammatory cytokine therapy including IL-6 blockade would be a feasible novel therapeutic strategy for acute sensory neural hearing loss. PMID:20026135

  9. Rayleigh backscattering noise suppression based on real-time heterodyne receiver for loop-back WDM-PON.

    PubMed

    Feng, Hanlin; Xiao, Shilin; Zhou, Qi; Ge, Jia; Fok, Mable P

    2014-09-22

    In this paper, we propose a Rayleigh backscattering (RB) noise mitigation scheme based on the use of real-time heterodyne receiver for loop-back wavelength division multiplexing passive optical network (WDM-PON). Heterodyne detection has been utilized to increase the upstream receiver sensitivity, while an electro-absorption modulator (EAM) is used to simultaneously turn heterodyning bipolar signal into single polar signal and mitigate accumulated carrier RB noise. With the help of the nonlinear negative-slope transfer function of EAM, low frequency interference noise is suppressed successfully. RB noise mitigation performance is studied over 45-km single mode fiber (SMF) transmission, and the optical-signal-to-Rayleigh-noise-ratio (OSRNR) is reduced to 15.6 dB, when bias voltage of EAM is at -4 V. Through utilizing this real-time heterodyne receiver in single fiber loop-back structure, upstream error free transmission is realized with receiver sensitivity of -25 dBm. PMID:25321736

  10. A new time-adaptive discrete bionic wavelet transform for enhancing speech from adverse noise environment

    NASA Astrophysics Data System (ADS)

    Palaniswamy, Sumithra; Duraisamy, Prakash; Alam, Mohammad Showkat; Yuan, Xiaohui

    2012-04-01

    Automatic speech processing systems are widely used in everyday life such as mobile communication, speech and speaker recognition, and for assisting the hearing impaired. In speech communication systems, the quality and intelligibility of speech is of utmost importance for ease and accuracy of information exchange. To obtain an intelligible speech signal and one that is more pleasant to listen, noise reduction is essential. In this paper a new Time Adaptive Discrete Bionic Wavelet Thresholding (TADBWT) scheme is proposed. The proposed technique uses Daubechies mother wavelet to achieve better enhancement of speech from additive non- stationary noises which occur in real life such as street noise and factory noise. Due to the integration of human auditory system model into the wavelet transform, bionic wavelet transform (BWT) has great potential for speech enhancement which may lead to a new path in speech processing. In the proposed technique, at first, discrete BWT is applied to noisy speech to derive TADBWT coefficients. Then the adaptive nature of the BWT is captured by introducing a time varying linear factor which updates the coefficients at each scale over time. This approach has shown better performance than the existing algorithms at lower input SNR due to modified soft level dependent thresholding on time adaptive coefficients. The objective and subjective test results confirmed the competency of the TADBWT technique. The effectiveness of the proposed technique is also evaluated for speaker recognition task under noisy environment. The recognition results show that the TADWT technique yields better performance when compared to alternate methods specifically at lower input SNR.

  11. Adaptive control of stochastic Hammerstein-Wiener nonlinear systems with measurement noise

    NASA Astrophysics Data System (ADS)

    Zhang, Bi; Mao, Zhizhong

    2016-01-01

    This paper deals with the adaptive control of a class of stochastic Hammerstein-Wiener nonlinear systems with measurement noise. Despite the fundamental progress achieved so far, a general theory framework about adaptive control of Hammerstein-Wiener models is still absent. Such situation is mainly due to the lack of an appropriate parameterisation model. To this end, this paper presents a novel parameterisation model that is to replace unmeasurable internal variables with their estimations. Then, the adaptive control algorithm to be applied is derived on the basis of self-tuning control. In addition, due to the use of the internal variable estimations, the stability and convergence properties are different from the self-tuning control. Our aim, in theoretical analysis, is to discover what limitations are in using the estimations instead of the true values in a control algorithm. Representative numerical examples are given and the simulation results verify the theoretical analysis.

  12. Innovative Adaptive Control Method Demonstrated for Active Suppression of Instabilities in Engine Combustors

    NASA Technical Reports Server (NTRS)

    Kopasakis, George

    2005-01-01

    This year, an improved adaptive-feedback control method was demonstrated that suppresses thermoacoustic instabilities in a liquid-fueled combustor of a type used in aircraft engines. Extensive research has been done to develop lean-burning (low fuel-to-air ratio) combustors that can reduce emissions throughout the mission cycle to reduce the environmental impact of aerospace propulsion systems. However, these lean-burning combustors are susceptible to thermoacoustic instabilities (high-frequency pressure waves), which can fatigue combustor components and even downstream turbine blades. This can significantly decrease the safe operating life of the combustor and turbine. Thus, suppressing the thermoacoustic combustor instabilities is an enabling technology for meeting the low-emission goals of the NASA Ultra-Efficient Engine Technology (UEET) Project.

  13. Impulse noise removal using 1-D switching median filter with adaptive scanning order based on structural context of image

    NASA Astrophysics Data System (ADS)

    Koga, Takanori; Suetake, Noriaki

    2015-02-01

    This paper describes the detail-preserving impulse noise removal performance of a one-dimensional (1-D) switching median filter (SMF) applied along an adaptive space-filling curve. Usually, a SMF with a two-dimensional (2-D) filter window is widely used for impulse noise removal while still preserving detailed parts in an input image. However, the noise detector of the 2-D filter does not always distinguish between the original pixels and the noise-corrupted ones perfectly. In particular, pixels constituting thin lines in an input image tend to be incorrectly detected as noise-corrupted pixels, and such pixels are filtered regardless of the necessity of the filtering. To cope with this problem, we propose a new impulse noise removal method based on a 1-D SMF and a space-filling curve which is adaptively drawn using a minimum spanning tree reflecting structural context of an input image.

  14. Adaptive step-size strategy for noise-robust Fourier ptychographic microscopy.

    PubMed

    Zuo, Chao; Sun, Jiasong; Chen, Qian

    2016-09-01

    The incremental gradient approaches, such as PIE and ePIE, are widely used in the field of ptychographic imaging due to their great flexibility and computational efficiency. Nevertheless, their stability and reconstruction quality may be significantly degraded when non-negligible noise is present in the image. Though this problem is often attributed to the non-convex nature of phase retrieval, we found the reason for this is more closely related to the choice of the step-size, which needs to be gradually diminishing for convergence even in the convex case. To this end, we introduce an adaptive step-size strategy that decreases the step-size whenever sufficient progress is not made. The synthetic and real experiments on Fourier ptychographic microscopy show that the adaptive step-size strategy significantly improves the stability and robustness of the reconstruction towards noise yet retains the fast initial convergence speed of PIE and ePIE. More importantly, the proposed approach is simple, nonparametric, and does not require any preknowledge about the noise statistics. The great performance and limited computational complexity make it a very attractive and promising technique for robust Fourier ptychographic microscopy under noisy conditions. PMID:27607676

  15. Suppression of 1/f noise in near-ballistic h-BN-graphene-h-BN heterostructure field-effect transistors

    SciTech Connect

    Stolyarov, Maxim A.; Liu, Guanxiong; Balandin, Alexander A.; Rumyantsev, Sergey L.; Shur, Michael

    2015-07-13

    We have investigated low-frequency 1/f noise in the boron nitride–graphene–boron nitride heterostructure field-effect transistors on Si/SiO{sub 2} substrates (f is a frequency). The device channel was implemented with a single layer graphene encased between two layers of hexagonal boron nitride. The transistors had the charge carrier mobility in the range from ∼30 000 to ∼36 000 cm{sup 2}/Vs at room temperature. It was established that the noise spectral density normalized to the channel area in such devices can be suppressed to ∼5 × 10{sup −9 }μm{sup 2 }Hz{sup −1}, which is a factor of ×5 – ×10 lower than that in non-encapsulated graphene devices on Si/SiO{sub 2}. The physical mechanism of noise suppression was attributed to screening of the charge carriers in the channel from traps in SiO{sub 2} gate dielectric and surface defects. The obtained results are important for the electronic and optoelectronic applications of graphene.

  16. Low-complexity optical phase noise suppression in CO-OFDM system using recursive principal components elimination.

    PubMed

    Hong, Xiaojian; Hong, Xuezhi; He, Sailing

    2015-09-01

    A low-complexity optical phase noise suppression approach based on recursive principal components elimination, R-PCE, is proposed and theoretically derived for CO-OFDM systems. Through frequency domain principal components estimation and elimination, signal distortion caused by optical phase noise is mitigated by R-PCE. Since matrix inversion and domain transformation are completely avoided, compared with the case of the orthogonal basis expansion algorithm (L = 3) that offers a similar laser linewidth tolerance, the computational complexities of multiple principal components estimation are drastically reduced in the R-PCE by factors of about 7 and 5 for q = 3 and 4, respectively. The feasibility of optical phase noise suppression with the R-PCE and its decision-aided version (DA-R-PCE) in the QPSK/16QAM CO-OFDM system are demonstrated by Monte-Carlo simulations, which verify that R-PCE with only a few number of principal components q ( = 3) provides a significantly larger laser linewidth tolerance than conventional algorithms, including the common phase error compensation algorithm and linear interpolation algorithm. Numerical results show that the optimal performance of R-PCE and DA-R-PCE can be achieved with a moderate q, which is beneficial for low-complexity hardware implementation. PMID:26368499

  17. Noise Suppression and Enhanced Focusability in Plasma Raman Amplifier with Multi-frequency Pump

    SciTech Connect

    A.A. Balakin; G.M. Fraiman; N.J. Fisch; V.M. Malkin

    2003-06-16

    Laser pulse compression/amplification through Raman backscattering in plasmas can be facilitated by using multi-frequency pump laser beams. The efficiency of amplification is increased by suppressing the Raman instability of thermal fluctuations and seed precursors. Also the focusability of the amplified radiation is enhanced due to the suppression of large-scale longitudinal speckles in the pump wave structure.

  18. Three-dimensional anisotropic adaptive filtering of projection data for noise reduction in cone beam CT

    PubMed Central

    Maier, Andreas; Wigström, Lars; Hofmann, Hannes G.; Hornegger, Joachim; Zhu, Lei; Strobel, Norbert; Fahrig, Rebecca

    2011-01-01

    Purpose: The combination of quickly rotating C-arm gantry with digital flat panel has enabled the acquisition of three-dimensional data (3D) in the interventional suite. However, image quality is still somewhat limited since the hardware has not been optimized for CT imaging. Adaptive anisotropic filtering has the ability to improve image quality by reducing the noise level and therewith the radiation dose without introducing noticeable blurring. By applying the filtering prior to 3D reconstruction, noise-induced streak artifacts are reduced as compared to processing in the image domain. Methods: 3D anisotropic adaptive filtering was used to process an ensemble of 2D x-ray views acquired along a circular trajectory around an object. After arranging the input data into a 3D space (2D projections + angle), the orientation of structures was estimated using a set of differently oriented filters. The resulting tensor representation of local orientation was utilized to control the anisotropic filtering. Low-pass filtering is applied only along structures to maintain high spatial frequency components perpendicular to these. The evaluation of the proposed algorithm includes numerical simulations, phantom experiments, and in-vivo data which were acquired using an AXIOM Artis dTA C-arm system (Siemens AG, Healthcare Sector, Forchheim, Germany). Spatial resolution and noise levels were compared with and without adaptive filtering. A human observer study was carried out to evaluate low-contrast detectability. Results: The adaptive anisotropic filtering algorithm was found to significantly improve low-contrast detectability by reducing the noise level by half (reduction of the standard deviation in certain areas from 74 to 30 HU). Virtually no degradation of high contrast spatial resolution was observed in the modulation transfer function (MTF) analysis. Although the algorithm is computationally intensive, hardware acceleration using Nvidia’s CUDA Interface provided an 8

  19. Three-dimensional anisotropic adaptive filtering of projection data for noise reduction in cone beam CT

    SciTech Connect

    Maier, Andreas; Wigstroem, Lars; Hofmann, Hannes G.; Hornegger, Joachim; Zhu Lei; Strobel, Norbert; Fahrig, Rebecca

    2011-11-15

    Purpose: The combination of quickly rotating C-arm gantry with digital flat panel has enabled the acquisition of three-dimensional data (3D) in the interventional suite. However, image quality is still somewhat limited since the hardware has not been optimized for CT imaging. Adaptive anisotropic filtering has the ability to improve image quality by reducing the noise level and therewith the radiation dose without introducing noticeable blurring. By applying the filtering prior to 3D reconstruction, noise-induced streak artifacts are reduced as compared to processing in the image domain. Methods: 3D anisotropic adaptive filtering was used to process an ensemble of 2D x-ray views acquired along a circular trajectory around an object. After arranging the input data into a 3D space (2D projections + angle), the orientation of structures was estimated using a set of differently oriented filters. The resulting tensor representation of local orientation was utilized to control the anisotropic filtering. Low-pass filtering is applied only along structures to maintain high spatial frequency components perpendicular to these. The evaluation of the proposed algorithm includes numerical simulations, phantom experiments, and in-vivo data which were acquired using an AXIOM Artis dTA C-arm system (Siemens AG, Healthcare Sector, Forchheim, Germany). Spatial resolution and noise levels were compared with and without adaptive filtering. A human observer study was carried out to evaluate low-contrast detectability. Results: The adaptive anisotropic filtering algorithm was found to significantly improve low-contrast detectability by reducing the noise level by half (reduction of the standard deviation in certain areas from 74 to 30 HU). Virtually no degradation of high contrast spatial resolution was observed in the modulation transfer function (MTF) analysis. Although the algorithm is computationally intensive, hardware acceleration using Nvidia's CUDA Interface provided an 8.9-fold

  20. Seismic random noise attenuation based on adaptive time-frequency peak filtering

    NASA Astrophysics Data System (ADS)

    Deng, Xinhuan; Ma, Haitao; Li, Yue; Zeng, Qian

    2015-02-01

    Time-frequency peak filtering (TFPF) method uses a specific window with fixed length to recover band-limited signal in stationary random noise. However, the derivatives of signal such as seismic wavelets may change rapidly in some short time intervals. In this case, TFPF equipped with fixed window length will not provide an optimal solution. In this letter, we present an adaptive version of TFPF for seismic random noise attenuation. In our version, the improved intersection of confidence intervals combined with short-time energy criterion is used to preprocess the noisy signal. And then, we choose an appropriate threshold to divide the noisy signal into signal, buffer and noise. Different optimal window lengths are used in each type of segments. We test the proposed method on both synthetic and field seismic data. The experimental results illustrate that the proposed method makes the degree of amplitude preservation raise more than 10% and signal-to-noise (SNR) improve 2-4 dB compared with the original algorithm.

  1. Multi-microphone adaptive noise reduction strategies for coordinated stimulation in bilateral cochlear implant devices.

    PubMed

    Kokkinakis, Kostas; Loizou, Philipos C

    2010-05-01

    Bilateral cochlear implant (BI-CI) recipients achieve high word recognition scores in quiet listening conditions. Still, there is a substantial drop in speech recognition performance when there is reverberation and more than one interferers. BI-CI users utilize information from just two directional microphones placed on opposite sides of the head in a so-called independent stimulation mode. To enhance the ability of BI-CI users to communicate in noise, the use of two computationally inexpensive multi-microphone adaptive noise reduction strategies exploiting information simultaneously collected by the microphones associated with two behind-the-ear (BTE) processors (one per ear) is proposed. To this end, as many as four microphones are employed (two omni-directional and two directional) in each of the two BTE processors (one per ear). In the proposed two-microphone binaural strategies, all four microphones (two behind each ear) are being used in a coordinated stimulation mode. The hypothesis is that such strategies combine spatial information from all microphones to form a better representation of the target than that made available with only a single input. Speech intelligibility is assessed in BI-CI listeners using IEEE sentences corrupted by up to three steady speech-shaped noise sources. Results indicate that multi-microphone strategies improve speech understanding in single- and multi-noise source scenarios. PMID:21117762

  2. Adaptive ambient noise tomography and its application to the Garlock Fault, southern California

    NASA Astrophysics Data System (ADS)

    Li, Peng; Lin, Guoqing

    2014-05-01

    Traditional ambient noise tomography methods using regular grid nodes are often ill posed because the inversion grids do not always represent the distribution of ray paths. Large grid spacing is usually used to reduce the number of inversion parameters, which may not be able to solve for small-scale velocity structure. We present a new adaptive tomography method with irregular grids that provides a few advantages over the traditional methods. First, irregular grids with different sizes and shapes can fit the ray distribution better and the traditionally ill-posed problem can become more stable owing to the different parametrizations. Secondly, the data in the area with dense ray sampling will be sufficiently utilized so that the model resolution can be greatly improved. Both synthetic and real data are used to test the newly developed tomography algorithm. In synthetic data tests, we compare the resolution and stability of the traditional and adaptive methods. The results show that adaptive tomography is more stable and performs better in improving the resolution in the area with dense ray sampling. For real data, we extract the ambient noise signals of the seismic data near the Garlock Fault region, obtained from the Southern California Earthquake Data Center. The resulting group velocity of Rayleigh wave is well correlated with the geological structures. High-velocity anomalies are shown in the cold southern Sierra Nevada, the Tehachapi Mountains and the Western San Gabriel Mountains. In contrast, low velocity values are prominent in the southern San Joaquin Valley and western Mojave.

  3. Suppression of amplitude-to-phase noise conversion in balanced optical-microwave phase detectors.

    PubMed

    Lessing, Maurice; Margolis, Helen S; Brown, C Tom A; Gill, Patrick; Marra, Giuseppe

    2013-11-01

    We demonstrate an amplitude-to-phase (AM-PM) conversion coefficient for a balanced optical-microwave phase detector (BOM-PD) of 0.001 rad, corresponding to AM-PM induced phase noise 60 dB below the single-sideband relative intensity noise of the laser. This enables us to generate 8 GHz microwave signals from a commercial Er-fibre comb with a single-sideband residual phase noise of -131 dBc Hz(-1) at 1 Hz offset frequency and -148 dBc Hz(-1) at 1 kHz offset frequency. PMID:24216929

  4. Suppressing Multi-Channel Ultra-Low-Field MRI Measurement Noise Using Data Consistency and Image Sparsity

    PubMed Central

    Lin, Fa-Hsuan; Vesanen, Panu T.; Hsu, Yi-Cheng; Nieminen, Jaakko O.; Zevenhoven, Koos C. J.; Dabek, Juhani; Parkkonen, Lauri T.; Simola, Juha; Ahonen, Antti I.; Ilmoniemi, Risto J.

    2013-01-01

    Ultra-low-field (ULF) MRI (B0 = 10–100 µT) typically suffers from a low signal-to-noise ratio (SNR). While SNR can be improved by pre-polarization and signal detection using highly sensitive superconducting quantum interference device (SQUID) sensors, we propose to use the inter-dependency of the k-space data from highly parallel detection with up to tens of sensors readily available in the ULF MRI in order to suppress the noise. Furthermore, the prior information that an image can be sparsely represented can be integrated with this data consistency constraint to further improve the SNR. Simulations and experimental data using 47 SQUID sensors demonstrate the effectiveness of this data consistency constraint and sparsity prior in ULF-MRI reconstruction. PMID:23626710

  5. Adaptive Controls Method Demonstrated for the Active Suppression of Instabilities in Engine Combustors

    NASA Technical Reports Server (NTRS)

    Kopasakis, George

    2004-01-01

    An adaptive feedback control method was demonstrated that suppresses thermoacoustic instabilities in a liquid-fueled combustor of a type used in aircraft engines. Extensive research has been done to develop lean-burning (low fuel-to-air ratio) combustors that can reduce emissions throughout the mission cycle to reduce the environmental impact of aerospace propulsion systems. However, these lean-burning combustors are susceptible to thermoacoustic instabilities (high-frequency pressure waves), which can fatigue combustor components and even the downstream turbine blades. This can significantly decrease the safe operating lives of the combustor and turbine. Thus, suppressing the thermoacoustic combustor instabilities is an enabling technology for lean, low-emissions combustors under NASA's Propulsion and Power Program. This control methodology has been developed and tested in a partnership of the NASA Glenn Research Center, Pratt & Whitney, United Technologies Research Center, and the Georgia Institute of Technology. Initial combustor rig testing of the controls algorithm was completed during 2002. Subsequently, the test results were analyzed and improvements to the method were incorporated in 2003, which culminated in the final status of this controls algorithm. This control methodology is based on adaptive phase shifting. The combustor pressure oscillations are sensed and phase shifted, and a high-frequency fuel valve is actuated to put pressure oscillations into the combustor to cancel pressure oscillations produced by the instability.

  6. Micropower non-contact EEG electrode with active common-mode noise suppression and input capacitance cancellation.

    PubMed

    Chi, Yu M; Cauwenberghs, Gert

    2009-01-01

    A non-contact EEG electrode with input capacitance neutralization and common-mode noise suppression circuits is presented. The coin sized sensor capacitively couples to the scalp without direct contact to the skin. To minimize the effect of signal attenuation and channel gain mismatch, the input capacitance of each sensor is actively neutralized using positive feedback and bootstrapping. Common-mode suppression is achieved through a single conductive sheet to establish a common mode reference. Each sensor electrode provides a differential gain of 60 dB. Signals are transmitted in a digital serial daisy-chain directly from a local 16-bit ADC, minimizing the number of wires required to establish a high density EEG sensor network. The micropower electrode consumes only 600 microW from a single 3.3 V supply. PMID:19964104

  7. Suppression of Fiber Modal Noise Induced Radial Velocity Errors for Bright Emission-line Calibration Sources

    NASA Astrophysics Data System (ADS)

    Mahadevan, Suvrath; Halverson, Samuel; Ramsey, Lawrence; Venditti, Nick

    2014-05-01

    Modal noise in optical fibers imposes limits on the signal-to-noise ratio (S/N) and velocity precision achievable with the next generation of astronomical spectrographs. This is an increasingly pressing problem for precision radial velocity spectrographs in the near-infrared (NIR) and optical that require both high stability of the observed line profiles and high S/N. Many of these spectrographs plan to use highly coherent emission-line calibration sources like laser frequency combs and Fabry-Perot etalons to achieve precision sufficient to detect terrestrial-mass planets. These high-precision calibration sources often use single-mode fibers or highly coherent sources. Coupling light from single-mode fibers to multi-mode fibers leads to only a very low number of modes being excited, thereby exacerbating the modal noise measured by the spectrograph. We present a commercial off-the-shelf solution that significantly mitigates modal noise at all optical and NIR wavelengths, and which can be applied to spectrograph calibration systems. Our solution uses an integrating sphere in conjunction with a diffuser that is moved rapidly using electrostrictive polymers, and is generally superior to most tested forms of mechanical fiber agitation. We demonstrate a high level of modal noise reduction with a narrow bandwidth 1550 nm laser. Our relatively inexpensive solution immediately enables spectrographs to take advantage of the innate precision of bright state-of-the art calibration sources by removing a major source of systematic noise.

  8. Suppression of fiber modal noise induced radial velocity errors for bright emission-line calibration sources

    SciTech Connect

    Mahadevan, Suvrath; Halverson, Samuel; Ramsey, Lawrence; Venditti, Nick

    2014-05-01

    Modal noise in optical fibers imposes limits on the signal-to-noise ratio (S/N) and velocity precision achievable with the next generation of astronomical spectrographs. This is an increasingly pressing problem for precision radial velocity spectrographs in the near-infrared (NIR) and optical that require both high stability of the observed line profiles and high S/N. Many of these spectrographs plan to use highly coherent emission-line calibration sources like laser frequency combs and Fabry-Perot etalons to achieve precision sufficient to detect terrestrial-mass planets. These high-precision calibration sources often use single-mode fibers or highly coherent sources. Coupling light from single-mode fibers to multi-mode fibers leads to only a very low number of modes being excited, thereby exacerbating the modal noise measured by the spectrograph. We present a commercial off-the-shelf solution that significantly mitigates modal noise at all optical and NIR wavelengths, and which can be applied to spectrograph calibration systems. Our solution uses an integrating sphere in conjunction with a diffuser that is moved rapidly using electrostrictive polymers, and is generally superior to most tested forms of mechanical fiber agitation. We demonstrate a high level of modal noise reduction with a narrow bandwidth 1550 nm laser. Our relatively inexpensive solution immediately enables spectrographs to take advantage of the innate precision of bright state-of-the art calibration sources by removing a major source of systematic noise.

  9. Adaptive box filters for removal of random noise from digital images

    NASA Technical Reports Server (NTRS)

    Eliason, Eric M.; Mcewen, Alfred S.

    1990-01-01

    Adaptive box-filtering algorithms to remove random bit errors and to smooth noisy data have been developed. For both procedures, the standard deviation of those pixels within a local box surrounding each pixel is used. A series of two or three filters with decreasing box sizes can be run to clean up extremely noisy images and to remove bit errors near sharp edges. The second filter, for noise smoothing, is similar to the 'sigma filter' of Lee (1983). The technique effectively reduces speckle in radar images without eliminating fine details.

  10. Adaptive immunity does not strongly suppress spontaneous tumors in a Sleeping Beauty model of cancer

    PubMed Central

    Rogers, Laura M.; Olivier, Alicia K.; Meyerholz, David K.; Dupuy, Adam J.

    2013-01-01

    The tumor immunosurveillance hypothesis describes a process by which the immune system recognizes and suppresses the growth of transformed cancer cells. A variety of epidemiological and experimental evidence supports this hypothesis. Nevertheless, there are a number of conflicting reports regarding the degree of immune protection conferred, the immune cell types responsible for protection, and the potential contributions of immunosuppressive therapies to tumor induction. The purpose of this study was to determine whether the adaptive immune system actively suppresses tumorigenesis in a Sleeping Beauty (SB) mouse model of cancer. SB transposon mutagenesis was performed in either a wild-type or immunocompromised (Rag2-null) background. Tumor latency and multiplicity were remarkably similar in both immune cohorts, suggesting that the adaptive immune system is not efficiently suppressing tumor formation in our model. Exceptions included skin tumors, which displayed increased multiplicity in wild-type animals, and leukemias, which developed with shorter latency in immune-deficient mice. Overall tumor distribution was also altered such that tumors affecting the gastrointestinal tract were more frequent and hemangiosarcomas were less frequent in immune-deficient mice compared to wild-type mice. Finally, genetic profiling of transposon-induced mutations identified significant differences in mutation prevalence for a number of genes, including Uba1. Taken together, these results indicate that B- and T-cells function to shape the genetic profile of tumors in various tumor types, despite being ineffective at clearing SB-induced tumors. This study represents the first forward genetic screen designed to examine tumor immunosurveillance mechanisms. PMID:23475219

  11. An adaptive noise cancelling system used for beam control at the Stanford Linear Accelerator Center

    SciTech Connect

    Himel, T.; Allison, S.; Grossberg, P.; Hendrickson, L.; Sass, R.; Shoaee, H.

    1993-06-01

    The SLAC Linear Collider now has a total of twenty-four beam-steering feedback loops used to keep the electron and positron beams on their desired trajectories. Seven of these loops measure and control the same beam as it proceeds down the linac through the arcs to the final focus. Ideally by each loop should correct only for disturbances that occur between it and the immediate upstream loop. In fact, in the original system each loop corrected for all upstream disturbances. This resulted in undesirable over-correction and ringing. We added MIMO (Multiple Input Multiple Output) adaptive noise cancellers to separate the signal we wish to correct from disturbances further upstream. This adaptive control improved performance in the 1992 run.

  12. Suppression of the GLUT4 adaptive response to exercise in fructose-fed rats

    PubMed Central

    Goyaram, Veeraj; Kohn, Tertius A.

    2013-01-01

    Exercise-induced increase in skeletal muscle GLUT4 expression is associated with hyperacetylation of histone H3 within a 350-bp DNA region surrounding the myocyte enhancer factor 2 (MEF2) element on the Glut4 promoter and increased binding of MEF2A. Previous studies have hypothesized that the increase in MEF2A binding is a result of improved accessibility of this DNA segment. Here, we investigated the impact of fructose consumption on exercise-induced GLUT4 adaptive response and directly measured the accessibility of the above segment to nucleases. Male Wistar rats (n = 30) were fed standard chow or chow + 10% fructose or maltodextrin drinks ad libitum for 13 days. In the last 6 days five animals per group performed 3 × 17-min bouts of intermittent swimming daily and five remained untrained. Triceps muscles were harvested and used to measure 1) GLUT4, pAMPK, and HDAC5 contents by Western blot, 2) accessibility of the DNA segment from intact nuclei using nuclease accessibility assays, 3) acetylation level of histone H3 and bound MEF2A by ChIP assays, and 4) glycogen content. Swim training increased GLUT4 content by ∼66% (P < 0.05) but fructose and maltodextrin feeding suppressed the adaptation. Accessibility of the DNA region to MNase and DNase I was significantly increased by swimming (∼2.75- and 5.75-fold, respectively) but was also suppressed in trained rats that consumed fructose or maltodextrin. Histone H3 acetylation and MEF2A binding paralleled the accessibility pattern. These findings indicate that both fructose and maltodextrin modulate the GLUT4 adaptive response to exercise by mechanisms involving chromatin remodeling at the Glut4 promoter. PMID:24326422

  13. Investigation of noise suppression by sonic inlets for turbofan engines. Volume 1: Program summary

    NASA Technical Reports Server (NTRS)

    Klujber, F.; Bosch, J. C.; Demetrick, R. W.; Robb, W. L.

    1973-01-01

    Results of a program for sonic inlet technology development are presented. This program includes configuration and mechanical design selection of concepts, aerodynamic design description of the models, and results of test evaluation. Several sonic inlet concepts were tested and compared for aerodynamic and acoustic performance. Results of these comparative evaluations are presented. Near-field measurements were taken inside several of the inlet models. Results of these tests are discussed with respect to the effect of Mach number gradients on noise attenuation and rotor shock wave attenuation, and boundary layer effects on noise propagation. The test facilities and experimental techniques employed are described briefly.

  14. Neural Mechanisms Behind Identification of Leptokurtic Noise and Adaptive Behavioral Response

    PubMed Central

    d'Acremont, Mathieu; Bossaerts, Peter

    2016-01-01

    Large-scale human interaction through, for example, financial markets causes ceaseless random changes in outcome variability, producing frequent and salient outliers that render the outcome distribution more peaked than the Gaussian distribution, and with longer tails. Here, we study how humans cope with this evolutionary novel leptokurtic noise, focusing on the neurobiological mechanisms that allow the brain, 1) to recognize the outliers as noise and 2) to regulate the control necessary for adaptive response. We used functional magnetic resonance imaging, while participants tracked a target whose movements were affected by leptokurtic noise. After initial overreaction and insufficient subsequent correction, participants improved performance significantly. Yet, persistently long reaction times pointed to continued need for vigilance and control. We ran a contrasting treatment where outliers reflected permanent moves of the target, as in traditional mean-shift paradigms. Importantly, outliers were equally frequent and salient. There, control was superior and reaction time was faster. We present a novel reinforcement learning model that fits observed choices better than the Bayes-optimal model. Only anterior insula discriminated between the 2 types of outliers. In both treatments, outliers initially activated an extensive bottom-up attention and belief network, followed by sustained engagement of the fronto-parietal control network. PMID:26850528

  15. Adaptive spatial filtering of daytime sky noise in a satellite quantum key distribution downlink receiver

    NASA Astrophysics Data System (ADS)

    Gruneisen, Mark T.; Sickmiller, Brett A.; Flanagan, Michael B.; Black, James P.; Stoltenberg, Kurt E.; Duchane, Alexander W.

    2016-02-01

    Spatial filtering is an important technique for reducing sky background noise in a satellite quantum key distribution downlink receiver. Atmospheric turbulence limits the extent to which spatial filtering can reduce sky noise without introducing signal losses. Using atmospheric propagation and compensation simulations, the potential benefit of adaptive optics (AO) to secure key generation (SKG) is quantified. Simulations are performed assuming optical propagation from a low-Earth-orbit satellite to a terrestrial receiver that includes AO. Higher-order AO correction is modeled assuming a Shack-Hartmann wavefront sensor and a continuous-face-sheet deformable mirror. The effects of atmospheric turbulence, tracking, and higher-order AO on the photon capture efficiency are simulated using statistical representations of turbulence and a time-domain wave-optics hardware emulator. SKG rates are calculated for a decoy-state protocol as a function of the receiver field of view for various strengths of turbulence, sky radiances, and pointing angles. The results show that at fields of view smaller than those discussed by others, AO technologies can enhance SKG rates in daylight and enable SKG where it would otherwise be prohibited as a consequence of background optical noise and signal loss due to propagation and turbulence effects.

  16. Suppression of Spin Noise in Diamond for improved Sensing and Imaging

    NASA Astrophysics Data System (ADS)

    Bauch, Erik; Lee, Junghyun; Singh, Swati; Pham, My Linh; Arai, Keigo; Walsworth, Ronald

    2015-05-01

    Increasing the coherence time of nitrogen vacancy (NV) center spins in diamond is of great interest for quantum information, sensing and metrology applications. However, achieving long coherence times remains a challenge in dense samples, where the NV's T2 is limited by electronic spin-spin interaction of the nitrogen donors in the lattice. In these samples, nuclear spin impurities associated with the 13C isotopes can suppress the dominant nitrogen electronic spin bath by reducing the flip-flop rates and enhancing the NV's coherence time. We investigate this spin bath suppression effect both experimentally and theoretically and provide a pathway to engineering high density NV samples with sufficiently long coherence times.

  17. Cellular Signaling Networks Function as Generalized Wiener-Kolmogorov Filters to Suppress Noise

    NASA Astrophysics Data System (ADS)

    Hinczewski, Michael; Thirumalai, D.

    2014-10-01

    Cellular signaling involves the transmission of environmental information through cascades of stochastic biochemical reactions, inevitably introducing noise that compromises signal fidelity. Each stage of the cascade often takes the form of a kinase-phosphatase push-pull network, a basic unit of signaling pathways whose malfunction is linked with a host of cancers. We show that this ubiquitous enzymatic network motif effectively behaves as a Wiener-Kolmogorov optimal noise filter. Using concepts from umbral calculus, we generalize the linear Wiener-Kolmogorov theory, originally introduced in the context of communication and control engineering, to take nonlinear signal transduction and discrete molecule populations into account. This allows us to derive rigorous constraints for efficient noise reduction in this biochemical system. Our mathematical formalism yields bounds on filter performance in cases important to cellular function—such as ultrasensitive response to stimuli. We highlight features of the system relevant for optimizing filter efficiency, encoded in a single, measurable, dimensionless parameter. Our theory, which describes noise control in a large class of signal transduction networks, is also useful both for the design of synthetic biochemical signaling pathways and the manipulation of pathways through experimental probes such as oscillatory input.

  18. Lobed Mixer Design for Noise Suppression Acoustic and Aerodynamic Test Data Analysis

    NASA Technical Reports Server (NTRS)

    Mengle, Vinod G.; Dalton, William N.; Boyd, Kathleen (Technical Monitor); Bridges, James (Technical Monitor)

    2002-01-01

    A comprehensive database for the acoustic and aerodynamic characteristics of several model-scale lobe mixers of bypass ratio 5 to 6 has been created for mixed jet speeds up to 1080 ft/s at typical take-off (TO) conditions of small-to-medium turbofan engines. The flight effect was simulated for Mach numbers up to 0.3. The static thrust performance and plume data were also obtained at typical TO and cruise conditions. The tests were done at NASA Lewis anechoic dome and ASK's FluiDyne Laboratories. The effect of several lobe mixer and nozzle parameters, such as, lobe scalloping, lobe count, lobe penetration and nozzle length was examined in terms of flyover noise at constant altitude. Sound in the nozzle reference frame was analyzed to understand the source characteristics. Several new concepts, mechanisms and methods are reported for such lobed mixers, such as, "boomerang" scallops, "tongue" mixer, detection of "excess" internal noise sources, and extrapolation of flyover noise data from one flight speed to different flight speeds. Noise reduction of as much as 3 EPNdB was found with a deeply scalloped mixer compared to annular nozzle at net thrust levels of 9500 lb for a 29 in. diameter nozzle after optimizing the nozzle length.

  19. Suppressing the relaxation oscillation noise of injection-locked WRC-FPLD for directly modulated OFDM transmission.

    PubMed

    Cheng, Min-Chi; Chi, Yu-Chieh; Li, Yi-Cheng; Tsai, Cheng-Ting; Lin, Gong-Ru

    2014-06-30

    By up-shifting the relaxation oscillation peak and suppressing its relative intensity noise in a weak-resonant-cavity Fabry-Perot laser diode (WRC-FPLD) under intense injection-locking, the directly modulated transmission of optical 16 quadrature amplitude modulation (QAM) orthogonal frequency division multiplexing (OFDM) data-stream is demonstrated. The total bit rate of up to 20 Gbit/s within 5-GHz bandwidth is achieved by using the OFDM subcarrier pre-leveling technique. With increasing the injection-locking power from -12 to -3 dBm, the effective reduction on threshold current of the WRC-FPLD significantly shifts its relaxation oscillation frequency from 5 to 7.5 GHz. This concurrently induces an up-shift of the peak relative intensity noise (RIN) of the WRC-FPLD, and effectively suppresses the background RIN level to -104 dBc/Hz within the OFDM band between 3 and 6 GHz. The enhanced signal-to-noise ratio from 16 to 20 dB leads to a significant reduction of bit-error-rate (BER) of the back-to-back transmitted 16-QAM-OFDM data from 1.3 × 10(-3) to 5 × 10(-5), which slightly degrades to 1.1 × 10(-4) after 25-km single-mode fiber (SMF) transmission. However, the enlarged injection-locking power from -12 to -3 dBm inevitably declines the modulation throughput and increases its negative throughput slope from -0.8 to -1.9 dBm/GHz. After pre-leveling the peak amplitude of the OFDM subcarriers to compensate the throughput degradation of the directly modulated WRC-FPLD, the BER under 25-km SMF transmission can be further improved to 3 × 10(-5) under a receiving power of -3 dBm. PMID:24977832

  20. Suppressing the noise in SST retrieved from satellite infrared measurements by smoothing the differential terms in regression equations

    NASA Astrophysics Data System (ADS)

    Petrenko, B.; Ignatov, A.; Kihai, Y.

    2015-05-01

    Multichannel regression algorithms are widely used in retrievals of sea surface temperature (SST) from infrared brightness temperatures (BTs) observed from satellites. The SST equations typically include terms dependent on the difference between BTs observed in spectral bands with different atmospheric absorption. Such terms do account for variations in the variable atmospheric attenuation, but may introduce additional noise in the retrieved SST due to amplification of the radiometric noise. Some processing systems (e.g., the EUMETSAT OSI-SAF) incorporate noise suppression algorithms, based on spatial smoothing of the differential terms in the SST equations. A similar algorithm is being tested for the potential use in the NOAA Advanced Clear-Sky Processor for Oceans (ACSPO). The ACSPO smoothing algorithm aims to preserve natural variations in SST field, while minimizing distortions in the original SST imagery, at a minimal processing time. This presentation describes the ACSPO smoothing algorithm and results of its evaluation with the SST imagery, and with the in situ matchups for NOAA and Metop AVHRRs, Terra and Aqua MODISs, and SNPP/JPSS VIIRS.

  1. The adaptive functions of sexual plasticity: the suppression and surreptitious expression of human sociosexuality.

    PubMed

    Josephs, Lawrence

    2012-06-01

    Tendencies toward non-monogamy and bisexual expression may constitute primate-wide predispositions that have been conserved in humans. This observation is supported by studies of sexual development and behavior in our primate relatives and sexually permissive premodern tribal cultures including hunter-gatherers. Nevertheless, even in sexually permissive societies, there may be considerable sexual possessiveness and jealousy as well as attempts at parental control of children's marital choices. This is associated with punitive revenge against unfaithful spouses and mate poaching rivals and parent/offspring conflict around marital choices. There is no paradise lost despite the greater sexual freedom. Humans may be adaptively designed to suppress each other's sexuality due to sexual jealousy and parental desires to control children's sexuality but also to surreptitiously evade those restrictions, though there is considerable cross-cultural variability in the level of sexual restrictiveness. PMID:23006118

  2. Design of a nonlinear adaptive filter for suppression of shuttle pilot-induced oscillation tendencies

    NASA Technical Reports Server (NTRS)

    Smith, J. W.; Edwards, J. W.

    1980-01-01

    Analysis of a longitudinal pilot-induced oscillation (PIO) experienced just prior to touchdown on the final flight of the space shuttle's approach landing tests indicated that the source of the problem was a combination of poor basic handling qualities aggravated by time delays through the digital flight control computer and rate limiting of the elevator actuators due to high pilot gain. A nonlinear PIO suppression (PIOS) filter was designed and developed to alleviate the vehicle's PIO tendencies by reducing the gain in the command path. From analytical and simulator studies it was shown that the PIOS filter, in an adaptive fashion, can attenuate the command path gain without adding phase lag to the system. With the pitch attitude loop of a simulated shuttle model closed, the PIOS filter increased the gain margin by a factor of about two.

  3. Implementation Considerations, Not Topological Differences, Are the Main Determinants of Noise Suppression Properties in Feedback and Incoherent Feedforward Circuits

    PubMed Central

    Buzi, Gentian; Khammash, Mustafa

    2016-01-01

    Biological systems use a variety of mechanisms to deal with the uncertain nature of their external and internal environments. Two of the most common motifs employed for this purpose are the incoherent feedforward (IFF) and feedback (FB) topologies. Many theoretical and experimental studies suggest that these circuits play very different roles in providing robustness to uncertainty in the cellular environment. Here, we use a control theoretic approach to analyze two common FB and IFF architectures that make use of an intermediary species to achieve regulation. We show the equivalence of both circuits topologies in suppressing static cell-to-cell variations. While both circuits can suppress variations due to input noise, they are ineffective in suppressing inherent chemical reaction stochasticity. Indeed, these circuits realize comparable improvements limited to a modest 25% variance reduction in best case scenarios. Such limitations are attributed to the use of intermediary species in regulation, and as such, they persist even for circuit architectures that combine both IFF and FB features. Intriguingly, while the FB circuits are better suited in dealing with dynamic input variability, the most significant difference between the two topologies lies not in the structural features of the circuits, but in their practical implementation considerations. PMID:27257684

  4. Staphylococcal toxic shock syndrome: superantigen-mediated enhancement of endotoxin shock and adaptive immune suppression.

    PubMed

    Kulhankova, Katarina; King, Jessica; Salgado-Pabón, Wilmara

    2014-08-01

    Infectious diseases caused by Staphylococcus aureus present a significant clinical and public health problem. S. aureus causes some of the most severe hospital-associated and community-acquired illnesses. Specifically, it is the leading cause of infective endocarditis and osteomyelitis, and the second leading cause of sepsis in the USA. While pathogenesis of S. aureus infections is at the center of current research, many questions remain about the mechanisms underlying staphylococcal toxic shock syndrome (TSS) and associated adaptive immune suppression. Both conditions are mediated by staphylococcal superantigens (SAgs)-secreted staphylococcal toxins that are major S. aureus virulence factors. Toxic shock syndrome toxin-1 (TSST-1) is the SAg responsible for almost all menstrual TSS cases in the USA. TSST-1, staphylococcal enterotoxin B and C are also responsible for most cases of non-menstrual TSS. While SAgs mediate all of the hallmark features of TSS, such as fever, rash, hypotension, and multi-organ dysfunction, they are also capable of enhancing the toxic effects of endogenous endotoxin. This interaction appears to be critical in mediating the severity of TSS and related mortality. In addition, interaction between SAgs and the host immune system has been recognized to result in a unique form of adaptive immune suppression, contributing to poor outcomes of S. aureus infections. Utilizing rabbit models of S. aureus infective endocarditis, pneumonia and sepsis, and molecular genetics techniques, we aim to elucidate the mechanisms of SAg and endotoxin synergism in the pathogenesis of TSS, and examine the cellular and molecular mechanisms underlying SAg-mediated immune dysfunction. PMID:24816557

  5. Forward velocity effects on fan noise and the suppression characteristics of advanced inlets as measured in the NASA-Ames 40 by 80 foot wind tunnel

    NASA Technical Reports Server (NTRS)

    Moore, M. T.

    1980-01-01

    Forward velocity effects on the forward radiated fan noise and on the suppression characteristics of three advanced inlets relative to a baseline cylindrical inlet were measured in the NASA Ames Research Center 40 x 80 foot Wind Tunnel. A modified JT15D turbofan engine in a quiet nacelle was the source of fan noise; the advanced inlets were a Conventional Takeoff/Landing (CTOL) hybrid inlet, a Short Takeoff/Landing (STOL) hybrid inlet, and a treated deflector inlet. Also measured were the static to flight effects on the fan noise of canting the baseline inlet 4 deg downward to simulate typical wing mounted turbofan engines. The CTOL hybrid inlet suppressed the high tip speed fan noise as much as 18 PNdB on a 61 m (200 ft) sideline scaled to a CF6 size engine while the STOL hybrid inlet suppressed the low tip speed fan noise as much as 13 PNdB on a 61 m (200 ft) sideline scaled to a OCSEE size engine. The deflector inlet suppressed the high tip speed fan noise as much as 13 PNdB at 61 m (200 ft) overhead scaled to a CF6 size engine. No significant changes in fan noise suppression for the CTOL and STOL hybrid inlets occurred for forward velocity changes above 21 m/s (68 ft/s) or for angle of attack changes up to 15 deg. However, changes in both forward velocity and angle of attack changed the deflector inlet noise unpredictably due to the asymmetry of the inlet flow field into the fan.

  6. Model and observations of Schottky-noise suppression in a cold heavy-ion beam.

    PubMed

    Danared, H; Källberg, A; Rensfelt, K-G; Simonsson, A

    2002-04-29

    Some years ago it was found at GSI in Darmstadt that the momentum spread of electron-cooled beams of highly charged ions dropped abruptly to very low values when the particle number decreased to 10 000 or less. This has been interpreted as an ordering of the ions, such that they line up after one another in the ring. We report observations of similar transitions at CRYRING, including an accompanying drop in Schottky-noise power. We also introduce a model of the ordered beam from which the Schottky-noise power can be calculated numerically. The good agreement between the model calculation and the experimental data is seen as evidence for a spatial ordering of the ions. PMID:12005764

  7. A low-noise instrumentation amplifier with DC suppression for recording ENG signals.

    PubMed

    Paraskevopoulou, Sivylla E; Eftekhar, Amir; Kulasekeram, Nishanth; Toumazou, Christofer

    2015-08-01

    This paper presents an AC-coupled instrumentation amplifier for electroneurogram (ENG) activity recording. For this design, we evaluate gain and noise requirements based on interference sources (electrodes, power line, EMG). The circuit has been implemented in a commercially-available 0.35μm CMOS technology with total power consumption 460μW. The amplifier achieves CMRR 107 dB and integrated input referred noise 940 nV. The gain is 63 dB and the bandwidth is 0.5 Hz- 13 kHz. The chosen topology enables to minimise on-chip capacitance (only 27 pF), with a total chip area of 0.4mm2. PMID:26736847

  8. A concept for jet noise suppression for an afterburning turbojet engine

    NASA Technical Reports Server (NTRS)

    Chambellan, R. E.; Turek, R. J.

    1972-01-01

    A conceptual design of an afterburner system for turbojet engines which may reduce the jet exhaust noise by approximately 10 decibels is presented in this report. The proposed system consists of an array of swirl-can combustors and jet dividing nozzle tubes. The nozzle tubes translate axially upstream of the swirl cans when not in use. Results of preliminary design calculations and photographs of a kinematic model as applied to a hypothetical turbojet engine are presented.

  9. Circuit for echo and noise suppression of accoustic signals transmitted through a drill string

    DOEpatents

    Drumheller, Douglas S.; Scott, Douglas D.

    1993-01-01

    An electronic circuit for digitally processing analog electrical signals produced by at least one acoustic transducer is presented. In a preferred embodiment of the present invention, a novel digital time delay circuit is utilized which employs an array of First-in-First-out (FiFo) microchips. Also, a bandpass filter is used at the input to this circuit for isolating drill string noise and eliminating high frequency output.

  10. Noise suppression using optimum filtering of OCs generated by a multiport encoder/decoder.

    PubMed

    Kodama, Takahiro; Wada, Naoya; Cincotti, Gabriella; Wang, Xu; Kitayama, Ken-ichi

    2012-04-23

    We propose a novel receiver configuration using an extreme narrow band-optical band pass filter (ENB-OBPF) to reduce the multiple access interference (MAI) and beat noises in an optical code division multiplexing (OCDM) transmission. We numerically and experimentally demonstrate an enhancement of the code detectability, that allows us to increase the number of users in a passive optical network (PON) from 4 to 8 without any forward error correction (FEC). PMID:22535121

  11. Circuit for echo and noise suppression of acoustic signals transmitted through a drill string

    DOEpatents

    Drumheller, D.S.; Scott, D.D.

    1993-12-28

    An electronic circuit for digitally processing analog electrical signals produced by at least one acoustic transducer is presented. In a preferred embodiment of the present invention, a novel digital time delay circuit is utilized which employs an array of First-in-First-out (FiFo) microchips. Also, a bandpass filter is used at the input to this circuit for isolating drill string noise and eliminating high frequency output. 20 figures.

  12. Results from cascade thrust reverser noise and suppression experiments. [sound power level directivity and spectral characteristics

    NASA Technical Reports Server (NTRS)

    Gutierrez, O. A.; Stone, J. R.; Friedman, R.

    1974-01-01

    Results from experimental work on model scale cascade reversers with cold airflow are presented. Sound power level directivity and spectral characteristics for cascade reversers are reported. Effect of cascade exit area ratio, vane profile shape, and emission arc are discussed. Model equivalent diameters varied from 3 to 5 inches, pressure ratios range from 1.15 to 3.0. Depending on the reverser type, acoustic power was proportional to the 4 1/2 to 6th power of ideal jet velocity. Reverser noise peaked at higher frequency and was more omnidirectional than nozzle-alone jet noise. Appreciable reduction in sideline noise was obtained from plane shields. Airfoil-vaned cascades were the most aerodynamically efficient and least noisy reversers. Scaling of cascade reverser data to example aircraft engines showed all cascades above the 95 PNdB sideline goal from STOL aircraft. However, the airfoil-vaned reverser has a good potential for meeting this goal for high-bypass (low pressure ratio) exhausts.

  13. Adaptive HIFU noise cancellation for simultaneous therapy and imaging using an integrated HIFU/imaging transducer

    PubMed Central

    Jeong, Jong Seob; Cannata, Jonathan Matthew; Shung, K Kirk

    2010-01-01

    It was previously demonstrated that it is feasible to simultaneously perform ultrasound therapy and imaging of a coagulated lesion during treatment with an integrated transducer that is capable of high intensity focused ultrasound (HIFU) and B-mode ultrasound imaging. It was found that coded excitation and fixed notch filtering upon reception could significantly reduce interference caused by the therapeutic transducer. During HIFU sonication, the imaging signal generated with coded excitation and fixed notch filtering had a range side-lobe level of less than −40 dB, while traditional short-pulse excitation and fixed notch filtering produced a range side-lobe level of −20 dB. The shortcoming is, however, that relatively complicated electronics may be needed to utilize coded excitation in an array imaging system. It is for this reason that in this paper an adaptive noise canceling technique is proposed to improve image quality by minimizing not only the therapeutic interference, but also the remnant side-lobe ‘ripples’ when using the traditional short-pulse excitation. The performance of this technique was verified through simulation and experiments using a prototype integrated HIFU/imaging transducer. Although it is known that the remnant ripples are related to the notch attenuation value of the fixed notch filter, in reality, it is difficult to find the optimal notch attenuation value due to the change in targets or the media resulted from motion or different acoustic properties even during one sonication pulse. In contrast, the proposed adaptive noise canceling technique is capable of optimally minimizing both the therapeutic interference and residual ripples without such constraints. The prototype integrated HIFU/imaging transducer is composed of three rectangular elements. The 6 MHz center element is used for imaging and the outer two identical 4 MHz elements work together to transmit the HIFU beam. Two HIFU elements of 14.4 mm × 20.0 mm dimensions

  14. Adaptive HIFU noise cancellation for simultaneous therapy and imaging using an integrated HIFU/imaging transducer.

    PubMed

    Jeong, Jong Seob; Cannata, Jonathan Matthew; Shung, K Kirk

    2010-04-01

    It was previously demonstrated that it is feasible to simultaneously perform ultrasound therapy and imaging of a coagulated lesion during treatment with an integrated transducer that is capable of high intensity focused ultrasound (HIFU) and B-mode ultrasound imaging. It was found that coded excitation and fixed notch filtering upon reception could significantly reduce interference caused by the therapeutic transducer. During HIFU sonication, the imaging signal generated with coded excitation and fixed notch filtering had a range side-lobe level of less than -40 dB, while traditional short-pulse excitation and fixed notch filtering produced a range side-lobe level of -20 dB. The shortcoming is, however, that relatively complicated electronics may be needed to utilize coded excitation in an array imaging system. It is for this reason that in this paper an adaptive noise canceling technique is proposed to improve image quality by minimizing not only the therapeutic interference, but also the remnant side-lobe 'ripples' when using the traditional short-pulse excitation. The performance of this technique was verified through simulation and experiments using a prototype integrated HIFU/imaging transducer. Although it is known that the remnant ripples are related to the notch attenuation value of the fixed notch filter, in reality, it is difficult to find the optimal notch attenuation value due to the change in targets or the media resulted from motion or different acoustic properties even during one sonication pulse. In contrast, the proposed adaptive noise canceling technique is capable of optimally minimizing both the therapeutic interference and residual ripples without such constraints. The prototype integrated HIFU/imaging transducer is composed of three rectangular elements. The 6 MHz center element is used for imaging and the outer two identical 4 MHz elements work together to transmit the HIFU beam. Two HIFU elements of 14.4 mm x 20.0 mm dimensions could

  15. Suppression of blast pressure and noise from implosive-type connectors

    SciTech Connect

    Contestabile, E.; Thomas, C.

    1995-12-31

    Implosive-type electrical/mechanical connectors such as XECONEX have been used extensively for joining electrical transmission lines. This implosive action of explosives has also been applied to other forms of high energy metal working with excellent results. However, as with many other products, the inherent blast energy of these units has caused some environmental concerns especially when used in proximity to inhabited areas. This paper identifies the problem associated with the use of this type of connector in inhabited areas and details the efforts directed toward its solution. A test program was designed in which various materials and configurations were evaluated as potential candidates for reducing the blast pressure. The explosive charges were in two configurations; linear charges assembled with detonating cord and steel pipes wrapped with detonating cord. Various materials of varying densities and sizes were then used as a wrap around the explosive charge. The effectiveness of these wraps as blast suppressing mediums was established by monitoring the blast pressure and sound levels. Although, a complete solution was not found within the performance requirements, materials such as vermiculite and cardboard were found to be particularly useful in suppressing blast overpressures. Plotted against scaled distance on a TNT output curve, the data indicates the effectiveness of these materials. Also practical are the plots showing the mitigation of blast pressure as the suppressant material thickness is varied.

  16. Suppression of the low frequency intensity noise of a single-frequency Yb3+-doped phosphate fiber laser at 1083 nm

    NASA Astrophysics Data System (ADS)

    Feng, Z.; Li, C.; Xu, S.; Yang, C.; Mo, S.; Chen, D.; Peng, M.; Yang, Z.

    2014-06-01

    The suppression of the low frequency intensity noise of a 1083 nm single-frequency Yb3+-doped phosphate fiber laser is reported. The noise suppression scheme is to use a liquid crystal device as a variable attenuator to modulate the laser power to close to the desired level. The achieved long term (12 h) laser instability is less than 0.2%, while the relative intensity noise (RIN) has been decreased to lower than -140 dB Hz-1 at frequencies from 250 Hz to 1 kHz. Moreover, the laser linewidth value remains the same as before suppression, while the degree of polarization (DOP) declined slightly.

  17. Adaptive RSOV filter using the FELMS algorithm for nonlinear active noise control systems

    NASA Astrophysics Data System (ADS)

    Zhao, Haiquan; Zeng, Xiangping; He, Zhengyou; Li, Tianrui

    2013-01-01

    This paper presents a recursive second-order Volterra (RSOV) filter to solve the problems of signal saturation and other nonlinear distortions that occur in nonlinear active noise control systems (NANC) used for actual applications. Since this nonlinear filter based on an infinite impulse response (IIR) filter structure can model higher than second-order and third-order nonlinearities for systems where the nonlinearities are harmonically related, the RSOV filter is more effective in NANC systems with either a linear secondary path (LSP) or a nonlinear secondary path (NSP). Simulation results clearly show that the RSOV adaptive filter using the multichannel structure filtered-error least mean square (FELMS) algorithm can further greatly reduce the computational burdens and is more suitable to eliminate nonlinear distortions in NANC systems than a SOV filter, a bilinear filter and a third-order Volterra (TOV) filter.

  18. Communal Sensor Network for Adaptive Noise Reduction in Aircraft Engine Nacelles

    NASA Technical Reports Server (NTRS)

    Jones, Kennie H.; Nark, Douglas M.; Jones, Michael G.

    2011-01-01

    Emergent behavior, a subject of much research in biology, sociology, and economics, is a foundational element of Complex Systems Science and is apropos in the design of sensor network systems. To demonstrate engineering for emergent behavior, a novel approach in the design of a sensor/actuator network is presented maintaining optimal noise attenuation as an adaptation to changing acoustic conditions. Rather than use the conventional approach where sensors are managed by a central controller, this new paradigm uses a biomimetic model where sensor/actuators cooperate as a community of autonomous organisms, sharing with neighbors to control impedance based on local information. From the combination of all individual actions, an optimal attenuation emerges for the global system.

  19. Noise correlation-based adaptive polarimetric image representation for contrast enhancement of a polarized beacon in fog

    NASA Astrophysics Data System (ADS)

    Panigrahi, Swapnesh; Fade, Julien; Alouini, Mehdi

    2015-10-01

    We show the use of a simplified snapshot polarimetric camera along with an adaptive image processing for optimal detection of a polarized light beacon through fog. The adaptive representation is derived using theoretical noise analysis of the data at hand and is shown to be optimal in the Maximum likelihood sense. We report that the contrast enhancing optimal representation that depends on the background noise correlation differs in general from standard representations like polarimetric difference image or polarization filtered image. Lastly, we discuss a detection strategy to reduce the false positive counts.

  20. Preliminary evaluation of turbofan cycle parameters and acoustical suppression on the noise and direct operating cost of a commercial Mach 0.85 transport

    NASA Technical Reports Server (NTRS)

    Eisenberg, J. D.

    1975-01-01

    A study was made of the effects of turbofan cycle parameters and the use of acoustic noise suppression material to quiet 200 passenger, Mach 0.85 trijets having design ranges of 2778, 4630, and 9260 kilometers (1500, 2500, and 5000 n. mi). Aircraft gross weight and direct operating cost, which varied with amount of suppression and cycle selection, are presented as functions of both EPNdB traded and 90 EPNdB contour footprint area. Noise levels 10.9 EPNdB below FAR 36 requirements result in a 5 percent increase in DOC for an aircraft designed for a range of 9260 kilometers (5000 n. mi.). An aircraft designed for a 2778 kilometer (1500 n. mi.) range would have an EPNdB level 14 below FAR 36 for this same economic penalty. In this range of noise level, fan-machinery noise is the principal source.

  1. Application of the local similarity filter for the suppression of multiplicative noise in medical ultrasound images

    NASA Astrophysics Data System (ADS)

    Kusnik, Damian; Smolka, Bogdan; Cyganek, Boguslaw

    2016-04-01

    In this paper we address the problem of the reduction of multiplicative noise in digital images. This kind of image distortion, also known as speckle noise, severely decreases the quality of medical ultrasound images and therefore their effective enhancement and restoration is of vital importance for proper visual inspection and quantitative measurements. The structure of the proposed Pixel-Patch Similarity Filter (PPSF) is a weighted average of pixels in a processing block and the weights are determined calculating the sum of squared differences between the mean of a patch and the intensities of pixels of the local window at the block center. The structure of the proposed design is similar to the bilateral and non-local means filters, however we neglect the topographic distance between pixels, which decreases substantially its computational complexity. The new technique was evaluated on standard gray scale test images contaminated with multiplicative noise modelled using Gaussian and uniform distribution. Its efficiency was also assessed utilizing a set of simulated ultrasonographic images distorted by means of the Field II simulation software and real ultrasound images of a finger joint. The comparison with the state-of-the-art techniques revealed very high efficiency of the proposed filtering framework, especially for strongly degraded images. Visually, the homogeneous areas are smoother, while image edges and small details are better preserved. The experiments have shown that satisfactory results were obtained with patches consisting of only 9 samples belonging to a relatively small processing block of 7x7 pixels, which ensures low computational complexity of the proposed denoising scheme and allows its application in real-time image processing scenarios.

  2. Lobed Mixer Design for Noise Suppression: Plume, Aerodynamic and Acoustic Data. Volume 2

    NASA Technical Reports Server (NTRS)

    Mengle, Vinod G.; Baker, V. David; Dalton, William N.; Bridges, James (Technical Monitor)

    2002-01-01

    A comprehensive database for the acoustic and aerodynamic characteristics of several model-scale lobe mixers of bypass ratio 5 to 6 has been created for mixed jet speeds up to 1080 ft per s at typical take-off (TO) conditions of small-to-medium turbofan engines. The flight effect was simulated for Mach numbers up to 0.3. The static thrust performance and plume data were also obtained at typical TO and cruise conditions. The tests were done at NASA Lewis anechoic dome and ASE's FluiDyne Laboratories. The effect of several lobe mixer and nozzle parameters, such as, lobe scalloping, lobe count, lobe penetration and nozzle length was examined in terms of flyover noise at constant altitude and also noise in the reference frame of the nozzle. This volume is divided into three parts: in the first two parts, we collate the plume survey data in graphical form (line, contour and surface plots) and analyze it; in part 3, we tabulate the aerodynamic data for the acoustics tests and the acoustic data in one-third octave band levels.

  3. Extending the articulation index to account for non-linear distortions introduced by noise-suppression algorithms

    PubMed Central

    Loizou, Philipos C.; Ma, Jianfen

    2011-01-01

    The conventional articulation index (AI) measure cannot be applied in situations where non-linear operations are involved and additive noise is present. This is because the definitions of the target and masker signals become vague following non-linear processing, as both the target and masker signals are affected. The aim of the present work is to modify the basic form of the AI measure to account for non-linear processing. This was done using a new definition of the output or effective SNR obtained following non-linear processing. The proposed output SNR definition for a specific band was designed to handle cases where the non-linear processing affects predominantly the target signal rather than the masker signal. The proposed measure also takes into consideration the fact that the input SNR in a specific band cannot be improved following any form of non-linear processing. Overall, the proposed measure quantifies the proportion of input band SNR preserved or transmitted in each band after non-linear processing. High correlation (r = 0.9) was obtained with the proposed measure when evaluated with intelligibility scores obtained by normal-hearing listeners in 72 noisy conditions involving noise-suppressed speech corrupted in four different real-world maskers. PMID:21877811

  4. Hologram encoding strategies for non-Bayesian noise suppression in digital holography reconstructions and optical display

    NASA Astrophysics Data System (ADS)

    Bianco, V.; Memmolo, P.; Finizio, A.; Paturzo, M.; Ferraro, P.

    2016-03-01

    Here we first propose a fast, one-shot, non-Bayesian method which performs a numerical synthesis of a moving aperture in order to reduce the noise in Digital Holography without prior information on its statistics. Starting from one single hologram capture, multiple uncorrelated reconstructions are provided by random sparse resampling masks, which can be incoherently averaged. Thus, the problem of the setup complexity introduced by multiple recordings gets solved. Besides, at the scope of performing DH display using a SLM, it is highly required to operate directly on the hologram, in order to obtain its denoised version without losing the coherence between amplitude and phase information. We then move a step forward, showing a novel encoding formula allowing us to directly synthesize denoised holograms to be optically displayed by SLMs.

  5. Electrically Isolating Thermally Coupled Device for Noise Suppression of Circuits in Deep Space

    NASA Technical Reports Server (NTRS)

    Mantooth, A.; McNutt, T.; Mojarradi, M.; Li, H.; Blalock, B.

    2001-01-01

    Mixed mode rad hard avionics Systems on a Chip (SoC) designed for deep space applications such as Europa orbiters and Europa Landers will require data isolation circuits to block noise. This paper presents the simulation performance for a novel rad hard SOI CMOS compatible thermal transducer used for on-chip data isolation in SoC. The research presented involves the use of commercially available computer aided design tools to model the transient electrothermal behavior of the transducer. Both one- and two-dimensional analyses of a prototype thermal transducer were performed. Results indicate that thermal-based data isolator technology can pass a data bit in under a microsecond and, as a measurement of feasibility, I(exp 2)C bus specifications can be met.

  6. Forward velocity effects on fan noise and the suppression characteristics of advanced inlets as measured in the NASA Ames 40 by 80 foot wind tunnel: Acoustic data report

    NASA Technical Reports Server (NTRS)

    Moore, M. T.

    1981-01-01

    Forward velocity effects on the forward radiated fan noise and on the suppression characteristics of three advanced inlets relative to a baseline cylindrical inlet were measured in a wind tunnel. A modified JT15D turbofan engine in a quiet nacelle was the source of fan noise; the advanced inlets were a CTOL hybrid inlet, an STOL hybrid inlet, and a treated deflector inlet. Also measured were the static to flight effects on the baseline inlet noise and the effects on the fan noise of canting the baseline inlet 4 deg downward to simulate typical wing mounted turbofan engines. The 1/3 octave band noise data from these tests are given along with selected plots of 1/3 octave band spectra and directivity and full scale PNL directivities. The test facilities and data reduction techniques used are also described.

  7. Bovine brucellosis in wildlife: using adaptive management to improve understanding, technology and suppression.

    PubMed

    White, P J; Treanor, J J; Geremia, C; Wallen, R L; Blanton, D W; Hallac, D E

    2013-04-01

    Eradication of brucellosis from bison (Bison bison) and elk (Cervus elaphus) populations in the Greater Yellowstone Area is not possible with current technology. There are considerable uncertainties regarding the effectiveness of management techniques and unintended effects on wildlife behaviour and demography. However, adaptive management provides a framework for learning about the disease, improving suppression techniques, and lowering brucellosis transmission among wildlife and to cattle. Since it takes approximately three years after birth for female bison to become reproductively active and contribute to brucellosis transmission, there is an opportunity to implement actions such as vaccination and the selective removal of infectious bison based on age and assay results to reduce the potential for transmission. Older adult bison that have been exposed to the bacteria, but recovered from acute infection, could be retained in the population to provide some immunity (resistance) against future transmission. Through careful predictions, research, and monitoring, our understanding and technology will be improved and management actions can be adjusted to better achieve desired outcomes. PMID:23837383

  8. First-Order Adaptive Azimuthal Null-Steering for the Suppression of Two Directional Interferers

    NASA Astrophysics Data System (ADS)

    Derkx, René M. M.

    2010-12-01

    An azimuth steerable first-order superdirectional microphone response can be constructed by a linear combination of three eigenbeams: a monopole and two orthogonal dipoles. Although the response of a (rotation symmetric) first-order response can only exhibit a single null, we will look at a slice through this beampattern lying in the azimuthal plane. In this way, we can define maximally two nulls in the azimuthal plane which are symmetric with respect to the main-lobe axis. By placing these two nulls on maximally two directional sources to be rejected and compensating for the drop in level for the desired direction, we can effectively reject these directional sources without attenuating the desired source. We present an adaptive null-steering scheme for adjusting the beampattern so as to obtain this suppression of the two directional interferers automatically. Closed-form expressions for this optimal null-steering are derived, enabling the computation of the azimuthal angles of the interferers. It is shown that the proposed technique has a good directivity index when the angular difference between the desired source and each directional interferer is at least 90 degrees.

  9. Vibration suppression in cutting tools using collocated piezoelectric sensors/actuators with an adaptive control algorithm

    SciTech Connect

    Radecki, Peter P; Farinholt, Kevin M; Park, Gyuhae; Bement, Matthew T

    2008-01-01

    The machining process is very important in many engineering applications. In high precision machining, surface finish is strongly correlated with vibrations and the dynamic interactions between the part and the cutting tool. Parameters affecting these vibrations and dynamic interactions, such as spindle speed, cut depth, feed rate, and the part's material properties can vary in real-time, resulting in unexpected or undesirable effects on the surface finish of the machining product. The focus of this research is the development of an improved machining process through the use of active vibration damping. The tool holder employs a high bandwidth piezoelectric actuator with an adaptive positive position feedback control algorithm for vibration and chatter suppression. In addition, instead of using external sensors, the proposed approach investigates the use of a collocated piezoelectric sensor for measuring the dynamic responses from machining processes. The performance of this method is evaluated by comparing the surface finishes obtained with active vibration control versus baseline uncontrolled cuts. Considerable improvement in surface finish (up to 50%) was observed for applications in modern day machining.

  10. miRNAs confer phenotypic robustness to gene networks by suppressing biological noise

    PubMed Central

    Siciliano, Velia; Garzilli, Immacolata; Fracassi, Chiara; Criscuolo, Stefania; Ventre, Simona; di Bernardo, Diego

    2013-01-01

    miRNAs are small non-coding RNAs able to modulate target-gene expression. It has been postulated that miRNAs confer robustness to biological processes, but a clear experimental evidence is still missing. Using a synthetic biology approach, we demonstrate that microRNAs provide phenotypic robustness to transcriptional regulatory networks by buffering fluctuations in protein levels. Here we construct a network motif in mammalian cells exhibiting a “toggle - switch” phenotype in which two alternative protein expression levels define its ON and OFF states. The motif consists of an inducible transcription factor that self-regulates its own transcription and that of a miRNA against the transcription factor itself. We confirm, using mathematical modeling and experimental approaches, that the microRNA confers robustness to the toggle-switch by enabling the cell to maintain and transmit its state. When absent, a dramatic increase in protein noise level occurs, causing the cell to randomly switch between the two states. PMID:24077216

  11. Analytical and experimental studies of an optimum multisegment phased liner noise suppression concept

    NASA Technical Reports Server (NTRS)

    Sawdy, D. T.; Beckemeyer, R. J.; Patterson, J. D.

    1976-01-01

    Results are presented from detailed analytical studies made to define methods for obtaining improved multisegment lining performance by taking advantage of relative placement of each lining segment. Properly phased liner segments reflect and spatially redistribute the incident acoustic energy and thus provide additional attenuation. A mathematical model was developed for rectangular ducts with uniform mean flow. Segmented acoustic fields were represented by duct eigenfunction expansions, and mode-matching was used to ensure continuity of the total field. Parametric studies were performed to identify attenuation mechanisms and define preliminary liner configurations. An optimization procedure was used to determine optimum liner impedance values for a given total lining length, Mach number, and incident modal distribution. Optimal segmented liners are presented and it is shown that, provided the sound source is well-defined and flow environment is known, conventional infinite duct optimum attenuation rates can be improved. To confirm these results, an experimental program was conducted in a laboratory test facility. The measured data are presented in the form of analytical-experimental correlations. Excellent agreement between theory and experiment verifies and substantiates the analytical prediction techniques. The results indicate that phased liners may be of immediate benefit in the development of improved aircraft exhaust duct noise suppressors.

  12. Duct wall impedance control as an advanced concept for acoustic suppression enhancement. [engine noise reduction

    NASA Technical Reports Server (NTRS)

    Dean, P. D.

    1978-01-01

    A systems concept procedure is described for the optimization of acoustic duct liner design for both uniform and multisegment types. The concept was implemented by the use of a double reverberant chamber flow duct facility coupled with sophisticated computer control and acoustic analysis systems. The optimization procedure for liner insertion loss was based on the concept of variable liner impedance produced by bias air flow through a multilayer, resonant cavity liner. A multiple microphone technique for in situ wall impedance measurements was used and successfully adapted to produce automated measurements for all liner configurations tested. The complete validation of the systems concept was prevented by the inability to optimize the insertion loss using bias flow induced wall impedance changes. This inability appeared to be a direct function of the presence of a higher order energy carrying modes which were not influenced significantly by the wall impedance changes.

  13. Suppression of Rayleigh backscattering noise using cascaded-SOA and microwave photonic filter for 10 Gb/s loop-back WDM-PON.

    PubMed

    Feng, Hanlin; Ge, Jia; Xiao, Shilin; Fok, Mable P

    2014-05-19

    In this paper, we present a novel Rayleigh backscattering (RB) noise mitigation scheme based on central carrier suppression for 10 Gb/s loop-back wavelength division multiplexing passive optical network (WDM-PON). Microwave modulated multi-subcarrier optical signal is used as downstream seeding light, while cascaded semiconductor optical amplifier (SOA) are used in the optical network unit (ONU) for suppressing the central carrier of the multi-subcarrier upstream signal. With central carrier suppression, interference generated by carrier RB noise at low frequency region is eliminated successfully. Transmission performance over 45 km single mode fiber (SMF) is studied experimentally, and the optical-signal-to-Rayleigh-noise-ratio (OSRNR) can be reduced to 15 dB with central carrier suppression ratio (CCSR) of 21 dB. Receiver sensitivity is further improved by 6 dB with the use of microwave photonic filter (MPF) for suppressing residual upstream microwave signal and residual carrier RB at high frequency region. PMID:24921298

  14. Impulsive noise suppression in color images based on the geodesic digital paths

    NASA Astrophysics Data System (ADS)

    Smolka, Bogdan; Cyganek, Boguslaw

    2015-02-01

    In the paper a novel filtering design based on the concept of exploration of the pixel neighborhood by digital paths is presented. The paths start from the boundary of a filtering window and reach its center. The cost of transitions between adjacent pixels is defined in the hybrid spatial-color space. Then, an optimal path of minimum total cost, leading from pixels of the window's boundary to its center is determined. The cost of an optimal path serves as a degree of similarity of the central pixel to the samples from the local processing window. If a pixel is an outlier, then all the paths starting from the window's boundary will have high costs and the minimum one will also be high. The filter output is calculated as a weighted mean of the central pixel and an estimate constructed using the information on the minimum cost assigned to each image pixel. So, first the costs of optimal paths are used to build a smoothed image and in the second step the minimum cost of the central pixel is utilized for construction of the weights of a soft-switching scheme. The experiments performed on a set of standard color images, revealed that the efficiency of the proposed algorithm is superior to the state-of-the-art filtering techniques in terms of the objective restoration quality measures, especially for high noise contamination ratios. The proposed filter, due to its low computational complexity, can be applied for real time image denoising and also for the enhancement of video streams.

  15. Neuromorphic learning of continuous-valued mappings from noise-corrupted data. Application to real-time adaptive control

    NASA Technical Reports Server (NTRS)

    Troudet, Terry; Merrill, Walter C.

    1990-01-01

    The ability of feed-forward neural network architectures to learn continuous valued mappings in the presence of noise was demonstrated in relation to parameter identification and real-time adaptive control applications. An error function was introduced to help optimize parameter values such as number of training iterations, observation time, sampling rate, and scaling of the control signal. The learning performance depended essentially on the degree of embodiment of the control law in the training data set and on the degree of uniformity of the probability distribution function of the data that are presented to the net during sequence. When a control law was corrupted by noise, the fluctuations of the training data biased the probability distribution function of the training data sequence. Only if the noise contamination is minimized and the degree of embodiment of the control law is maximized, can a neural net develop a good representation of the mapping and be used as a neurocontroller. A multilayer net was trained with back-error-propagation to control a cart-pole system for linear and nonlinear control laws in the presence of data processing noise and measurement noise. The neurocontroller exhibited noise-filtering properties and was found to operate more smoothly than the teacher in the presence of measurement noise.

  16. Practical Study and Solutions Adapted For The Road Noise In The Algiers City

    NASA Astrophysics Data System (ADS)

    Iddir, R.; Boukhaloua, N.; Saadi, T.

    At the present hour where the city spreads on a big space, the road network devel- opment was a following logical of this movement. Generating a considerable impact thus on the environment. This last is a resulting open system of the interaction be- tween the man and the nature, it's affected all side by the different means of transport and by their increasing demand of mobility. The contemporary city development be- got problems bound to the environment and among it : The road noise. This last is a complex phenomenon, essentially by reason of its humans sensory effects, its impact on the environment is considerable, this one concerns the life quality directly, mainly in population zones to strong density. The resonant pollution reached its paroxysm; the road network of Algiers is not conceived to satisfy requirements in resonant pol- lution matter. For it arrangements soundproof should be adapted in order to face of it these new requirements in matter of the acoustic comfort. All these elements drove to the process aiming the attenuation of the hindrance caused by the road traffic and it by actions essentially aiming: vehicles, the structure of the road and the immediate envi- ronment of the system road - structure. From these results, we note that the situation in resonant nuisance matter in this zone with strong traffic is disturbing, and especially on the residents health.

  17. A de-noising algorithm based on wavelet threshold-exponential adaptive window width-fitting for ground electrical source airborne transient electromagnetic signal

    NASA Astrophysics Data System (ADS)

    Ji, Yanju; Li, Dongsheng; Yu, Mingmei; Wang, Yuan; Wu, Qiong; Lin, Jun

    2016-05-01

    The ground electrical source airborne transient electromagnetic system (GREATEM) on an unmanned aircraft enjoys considerable prospecting depth, lateral resolution and detection efficiency, etc. In recent years it has become an important technical means of rapid resources exploration. However, GREATEM data are extremely vulnerable to stationary white noise and non-stationary electromagnetic noise (sferics noise, aircraft engine noise and other human electromagnetic noises). These noises will cause degradation of the imaging quality for data interpretation. Based on the characteristics of the GREATEM data and major noises, we propose a de-noising algorithm utilizing wavelet threshold method and exponential adaptive window width-fitting. Firstly, the white noise is filtered in the measured data using the wavelet threshold method. Then, the data are segmented using data window whose step length is even logarithmic intervals. The data polluted by electromagnetic noise are identified within each window based on the discriminating principle of energy detection, and the attenuation characteristics of the data slope are extracted. Eventually, an exponential fitting algorithm is adopted to fit the attenuation curve of each window, and the data polluted by non-stationary electromagnetic noise are replaced with their fitting results. Thus the non-stationary electromagnetic noise can be effectively removed. The proposed algorithm is verified by the synthetic and real GREATEM signals. The results show that in GREATEM signal, stationary white noise and non-stationary electromagnetic noise can be effectively filtered using the wavelet threshold-exponential adaptive window width-fitting algorithm, which enhances the imaging quality.

  18. Neuromorphic learning of continuous-valued mappings in the presence of noise: Application to real-time adaptive control

    NASA Technical Reports Server (NTRS)

    Troudet, Terry; Merrill, Walter C.

    1989-01-01

    The ability of feed-forward neural net architectures to learn continuous-valued mappings in the presence of noise is demonstrated in relation to parameter identification and real-time adaptive control applications. Factors and parameters influencing the learning performance of such nets in the presence of noise are identified. Their effects are discussed through a computer simulation of the Back-Error-Propagation algorithm by taking the example of the cart-pole system controlled by a nonlinear control law. Adequate sampling of the state space is found to be essential for canceling the effect of the statistical fluctuations and allowing learning to take place.

  19. Oroxin B selectively induces tumor-suppressive ER stress and concurrently inhibits tumor-adaptive ER stress in B-lymphoma cells for effective anti-lymphoma therapy.

    PubMed

    Yang, Ping; Fu, Shilong; Cao, Zhifei; Liao, Huaidong; Huo, Zihe; Pan, Yanyan; Zhang, Gaochuan; Gao, Aidi; Zhou, Quansheng

    2015-10-15

    Cancer cells have both tumor-adaptive and -suppressive endoplasmic reticulum (ER) stress machineries that determine cell fate. In malignant tumors including lymphoma, constant activation of tumor-adaptive ER stress and concurrent reduction of tumor-suppressive ER stress favors cancer cell proliferation and tumor growth. Current ER stress-based anti-tumor drugs typically activate both tumor-adaptive and -suppressive ER stresses, resulting in low anti-cancer efficacy; hence, selective induction of tumor-suppressive ER stress and inhibition of tumor-adaptive ER stress are new strategies for novel anti-cancer drug discovery. Thus far, specific tumor-suppressive ER stress therapeutics have remained absent in clinical settings. In this study, we explored unique tumor-suppressive ER stress agents from the traditional Chinese medicinal herb Oroxylum indicum, and found that a small molecule oroxin B selectively induced tumor-suppressive ER stress in malignant lymphoma cells, but not in normal cells, effectively inhibited lymphoma growth in vivo, and significantly prolonged overall survival of lymphoma-xenografted mice without obvious toxicity. Mechanistic studies have revealed that the expression of key tumor-adaptive ER-stress gene GRP78 was notably suppressed by oroxin B via down-regulation of up-stream key signaling protein ATF6, while tumor-suppressive ER stress master gene DDIT3 was strikingly activated through activating the MKK3-p38 signaling pathway, correcting the imbalance between tumor-suppressive DDIT3 and tumor-adaptive GRP78 in lymphoma. Together, selective induction of unique tumor-suppressive ER stress and concurrent inhibition of tumor-adaptive ER stress in malignant lymphoma are new and feasible approaches for novel anti-lymphoma drug discovery and anti-lymphoma therapy. PMID:26253462

  20. Adaptive cancellation of floor vibrations in standing ballistocardiogram measurements using a seismic sensor as a noise reference.

    PubMed

    Inan, Omer T; Etemadi, Mozziyar; Widrow, Bernard; Kovacs, Gregory T A

    2010-03-01

    An adaptive noise canceller was used to reduce the effect of floor vibrations on ballistocardiogram (BCG) measurements from a modified electronic bathroom scale. A seismic sensor was placed next to the scale on the floor and used as the noise reference input to the noise canceller. BCG recordings were acquired from a healthy subject while another person stomped around the scale, thus causing increased floor vibrations. The noise canceller substantially eliminated the artifacts in the BCG signal due to these vibrations without distorting the morphology of the measured BCG. Additionally, recordings were obtained from another subject standing inside a parked bus while the engine was running. The artifacts due to the vibrations of the engine, and the other vehicles moving on the road next to the bus, were also effectively eliminated by the noise canceller. The system with automatic floor vibration cancellation could be used to increase BCG measurement robustness in home monitoring applications. Additionally, the noise cancellation approach may enable BCG recording in ambulances-or other transport vehicles-where noninvasive hemodynamic monitoring may otherwise not be feasible. PMID:19362900

  1. Adaptive Multi-Layer LMS Controller Design and Application to Active Vibration Suppression on a Truss and Proposed Impact Analysis Technique

    NASA Technical Reports Server (NTRS)

    Barney, Timothy A.; Shin, Y. S.; Agrawal, B. N.

    2001-01-01

    This research develops an adaptive controller that actively suppresses a single frequency disturbance source at a remote position and tests the system on the NPS Space Truss. The experimental results are then compared to those predicted by an ANSYS finite element model. The NPS space truss is a 3.7-meter long truss that simulates a space-borne appendage with sensitive equipment mounted at its extremities. One of two installed piezoelectric actuators and an Adaptive Multi-Layer LMS control law were used to effectively eliminate an axial component of the vibrations induced by a linear proof mass actuator mounted at one end of the truss. Experimental and analytical results both demonstrate reductions to the level of system noise. Vibration reductions in excess of 50dB were obtained through experimentation and over 100dB using ANSYS, demonstrating the ability to model this system with a finite element model. This report also proposes a method to use distributed quartz accelerometers to evaluate the location, direction, and energy of impacts on the NPS space truss using the dSPACE data acquisition and processing system to capture the structural response and compare it to known reference Signals.

  2. New concepts in immunity to Neisseria gonorrhoeae: innate responses and suppression of adaptive immunity favor the pathogen, not the host.

    PubMed

    Liu, Yingru; Feinen, Brandon; Russell, Michael W

    2011-01-01

    It is well-known that gonorrhea can be acquired repeatedly with no apparent development of protective immunity arising from previous episodes of infection. Symptomatic infection is characterized by a purulent exudate, but the host response mechanisms are poorly understood. While the remarkable antigenic variability displayed by Neisseria gonorrhoeae and its capacity to inhibit complement activation allow it to evade destruction by the host's immune defenses, we propose that it also has the capacity to avoid inducing specific immune responses. In a mouse model of vaginal gonococcal infection, N. gonorrhoeae elicits Th17-driven inflammatory-immune responses, which recruit innate defense mechanisms including an influx of neutrophils. Concomitantly, N. gonorrhoeae suppresses Th1- and Th2-dependent adaptive immunity, including specific antibody responses, through a mechanism involving TGF-β and regulatory T cells. Blockade of TGF-β alleviates the suppression of specific anti-gonococcal responses and allows Th1 and Th2 responses to emerge with the generation of immune memory and protective immunity. Genital tract tissues are naturally rich in TGF-β, which fosters an immunosuppressive environment that is important in reproduction. In exploiting this niche, N. gonorrhoeae exemplifies a well-adapted pathogen that proactively elicits from its host innate responses that it can survive and concomitantly suppresses adaptive immunity. Comprehension of these mechanisms of gonococcal pathogenesis should allow the development of novel approaches to therapy and facilitate the development of an effective vaccine. PMID:21833308

  3. Moving Stimuli Are Less Effectively Masked Using Traditional Continuous Flash Suppression (CFS) Compared to a Moving Mondrian Mask (MMM): A Test Case for Feature-Selective Suppression and Retinotopic Adaptation

    PubMed Central

    Moors, Pieter; Wagemans, Johan; de-Wit, Lee

    2014-01-01

    Continuous flash suppression (CFS) is a powerful interocular suppression technique, which is often described as an effective means to reliably suppress stimuli from visual awareness. Suppression through CFS has been assumed to depend upon a reduction in (retinotopically specific) neural adaptation caused by the continual updating of the contents of the visual input to one eye. In this study, we started from the observation that suppressing a moving stimulus through CFS appeared to be more effective when using a mask that was actually more prone to retinotopically specific neural adaptation, but in which the properties of the mask were more similar to those of the to-be-suppressed stimulus. In two experiments, we find that using a moving Mondrian mask (i.e., one that includes motion) is more effective in suppressing a moving stimulus than a regular CFS mask. The observed pattern of results cannot be explained by a simple simulation that computes the degree of retinotopically specific neural adaptation over time, suggesting that this kind of neural adaptation does not play a large role in predicting the differences between conditions in this context. We also find some evidence consistent with the idea that the most effective CFS mask is the one that matches the properties (speed) of the suppressed stimulus. These results question the general importance of retinotopically specific neural adaptation in CFS, and potentially help to explain an implicit trend in the literature to adapt one’s CFS mask to match one’s to-be-suppressed stimuli. Finally, the results should help to guide the methodological development of future research where continuous suppression of moving stimuli is desired. PMID:24879378

  4. Rician noise reduction in magnetic resonance images using adaptive non-local mean and guided image filtering

    NASA Astrophysics Data System (ADS)

    Mahmood, Muhammad Tariq; Chu, Yeon-Ho; Choi, Young-Kyu

    2016-05-01

    This paper proposes a Rician noise reduction method for magnetic resonance (MR) images. The proposed method is based on adaptive non-local mean and guided image filtering techniques. In the first phase, a guidance image is obtained from the noisy image through an adaptive non-local mean filter. Sobel operators are applied to compute the strength of edges which is further used to control the spread of the kernel in non-local mean filtering. In the second phase, the noisy and the guidance images are provided to the guided image filter as input to restore the noise-free image. The improved performance of the proposed method is investigated using the simulated and real data sets of MR images. Its performance is also compared with the previously proposed state-of-the art methods. Comparative analysis demonstrates the superiority of the proposed scheme over the existing approaches.

  5. Rician noise reduction in magnetic resonance images using adaptive non-local mean and guided image filtering

    NASA Astrophysics Data System (ADS)

    Mahmood, Muhammad Tariq; Chu, Yeon-Ho; Choi, Young-Kyu

    2016-06-01

    This paper proposes a Rician noise reduction method for magnetic resonance (MR) images. The proposed method is based on adaptive non-local mean and guided image filtering techniques. In the first phase, a guidance image is obtained from the noisy image through an adaptive non-local mean filter. Sobel operators are applied to compute the strength of edges which is further used to control the spread of the kernel in non-local mean filtering. In the second phase, the noisy and the guidance images are provided to the guided image filter as input to restore the noise-free image. The improved performance of the proposed method is investigated using the simulated and real data sets of MR images. Its performance is also compared with the previously proposed state-of-the art methods. Comparative analysis demonstrates the superiority of the proposed scheme over the existing approaches.

  6. Adaptive DCT-based filtering of images corrupted by spatially correlated noise

    NASA Astrophysics Data System (ADS)

    Ponomarenko, Nikolay N.; Lukin, Vladimir V.; Zelensky, Aleksandr A.; Astola, Jaakko T.; Egiazarian, Karen O.

    2008-02-01

    Majority of image filtering techniques are designed under assumption that noise is of special, a priori known type and it is i.i.d., i.e. spatially uncorrelated. However, in many practical situations the latter assumption is not true due to several reasons. Moreover, spatial correlation properties of noise might be rather different and a priori unknown. Then the assumption that noise is i.i.d. under real conditions of spatially correlated noise commonly leads to considerable decrease of a used filter effectiveness in comparison to a case if this spatial correlation is taken into account. Our paper deals with two basic aspects. The first one is how to modify a denoising algorithm, in particular, a discrete cosine transform (DCT) based filter in order to incorporate a priori or preliminarily obtained knowledge of spatial correlation characteristics of noise. The second aspect is how to estimate spatial correlation characteristics of noise for a given image with appropriate accuracy and robustness under condition that there is some a priori information about, at least, noise type and statistics like variance (for additive noise case) or relative variance (for multiplicative noise). We also present simulation results showing the effectiveness (the benefit) of taking into consideration noise correlation properties.

  7. Noise-Robust Spectral Signature Classification in Non-resolved Object Detection using Feedback Controlled Adaptive Learning

    NASA Astrophysics Data System (ADS)

    Schmalz, M.; Key, G.

    2012-09-01

    Accurate spectral signature classification is key to reliable nonresolved detection and recognition of spaceborne objects. In classical signature-based recognition applications, classification accuracy has been shown to depend on accurate spectral endmember discrimination. Unfortunately, signatures are corrupted by noise and clutter that can be nonergodic in astronomical imaging practice. In previous work, we have shown that object class separation and classifier refinement results can be severely corrupted by input noise, leading to suboptimal classification. We have also shown that computed pattern recognition, like its human counterpart, can benefit from processes such as learning or forgetting, which in spectral signature classification can support adaptive tracking of input nonergodicities. In this paper, we model learning as the acquisition or insertion of a new pattern into a classifier's knowledge base. For example, in neural nets (NNs), this insertion process could correspond to the superposition of a new pattern onto the NN weight matrix. Similarly, we model forgetting as the deletion of a pattern currently stored in the classifier knowledge base, for example, as a pattern deletion operation on the NN weight matrix, which is a difficult goal with classical neural nets (CNNs). In particular, this paper discusses the implementation of feedback control for pattern insertion and deletion in lattice associative memories (LAMs) and dynamically adaptive statistical data fusion (DASDAF) paradigms, in support of signature classification. It is shown that adaptive classifiers based on LNN or DASDAF technology can achieve accurate signature classification in the presence of nonergodic Gaussian and non-Gaussian noise, at low signal-to-noise ratio (SNR). Demonstration involves classification of multiple closely spaced, noise corrupted signatures from a NASA database of space material signatures at SNR > 0.1:1.

  8. Formation of a sector dip in the radiation pattern of a phased-array antenna in the case of the suppression of broadband noise

    NASA Astrophysics Data System (ADS)

    Gusevskii, V. I.

    1991-05-01

    The linear relationship between the width of the noise spectrum and the magnitude of the sector dip in the radiation pattern of a linear equidistant antenna array is extended to the case of linear and planar phased-array antennas with arbitrary amplitude-phase distribution and arbitrary boundary of the antenna aperture. The nonlinear phase distribution law in the antenna aperture (necessary for the formation of the dip) is synthesized using the method of aperture orthogonal polynomials and is shown to be optimal according to the criterion of minimum gain losses in the noise-suppression process.

  9. A multichannel nonlinear adaptive noise canceller based on generalized FLANN for fetal ECG extraction

    NASA Astrophysics Data System (ADS)

    Ma, Yaping; Xiao, Yegui; Wei, Guo; Sun, Jinwei

    2016-01-01

    In this paper, a multichannel nonlinear adaptive noise canceller (ANC) based on the generalized functional link artificial neural network (FLANN, GFLANN) is proposed for fetal electrocardiogram (FECG) extraction. A FIR filter and a GFLANN are equipped in parallel in each reference channel to respectively approximate the linearity and nonlinearity between the maternal ECG (MECG) and the composite abdominal ECG (AECG). A fast scheme is also introduced to reduce the computational cost of the FLANN and the GFLANN. Two (2) sets of ECG time sequences, one synthetic and one real, are utilized to demonstrate the improved effectiveness of the proposed nonlinear ANC. The real dataset is derived from the Physionet non-invasive FECG database (PNIFECGDB) including 55 multichannel recordings taken from a pregnant woman. It contains two subdatasets that consist of 14 and 8 recordings, respectively, with each recording being 90 s long. Simulation results based on these two datasets reveal, on the whole, that the proposed ANC does enjoy higher capability to deal with nonlinearity between MECG and AECG as compared with previous ANCs in terms of fetal QRS (FQRS)-related statistics and morphology of the extracted FECG waveforms. In particular, for the second real subdataset, the F1-measure results produced by the PCA-based template subtraction (TSpca) technique and six (6) single-reference channel ANCs using LMS- and RLS-based FIR filters, Volterra filter, FLANN, GFLANN, and adaptive echo state neural network (ESN a ) are 92.47%, 93.70%, 94.07%, 94.22%, 94.90%, 94.90%, and 95.46%, respectively. The same F1-measure statistical results from five (5) multi-reference channel ANCs (LMS- and RLS-based FIR filters, Volterra filter, FLANN, and GFLANN) for the second real subdataset turn out to be 94.08%, 94.29%, 94.68%, 94.91%, and 94.96%, respectively. These results indicate that the ESN a and GFLANN perform best, with the ESN a being slightly better than the GFLANN but about four times more

  10. A gradient-free adaptation method for nonlinear active noise control

    NASA Astrophysics Data System (ADS)

    Spiriti, Emanuele; Morici, Simone; Piroddi, Luigi

    2014-01-01

    Active Noise Control (ANC) problems are often affected by nonlinear effects, such as saturation and distortion of microphones and loudspeakers. Nonlinear models and specific adaptation algorithms must be employed to properly account for these effects. The nonlinear structure of the problem complicates the application of gradient-based Least Mean Squares (LMS) algorithms, due to the fact that exact gradient calculation requires executing nonlinear recursive filtering operations, which pose computational and stability issues. One favored solution to this problem consists in neglecting recursive terms in the gradient calculation, an approximation which is not always without consequences on the convergence performance. Besides, an efficient application of nonlinear models cannot avoid some form of model structure selection, to avoid the well-known effects of overparametrization and to reduce the computational load on-line. Unfortunately, the standard ANC setting configures an indirect identification problem, due to the presence of the secondary path in the control loop. In the nonlinear case, this destroys the linear regression structure of the problem even if the control filter is linear-in-the-parameters, thereby making it impossible to apply the many existing model selection methods for linear regression problems. A simple and computationally wise low demanding approach is here proposed for parameter estimation and model structure selection that provides an answer to the mentioned issues. The proposed method avoids altogether the use of the error gradient and relies on direct cost function evaluations. A virtualization scheme is used to assess the accuracy improvements when the model is subject to parametric or structural modifications, without directly affecting the control performance. Several simulation examples are discussed to show the effectiveness of the proposed algorithms.

  11. Experimental evaluation of a spinning-mode acoustic-treatment design concept for aircraft inlets. [suppression of YF-102 engine fan noise

    NASA Technical Reports Server (NTRS)

    Heidelberg, L. J.; Rice, E. J.; Homyak, L.

    1980-01-01

    An aircraft-inlet noise suppressor method based on mode cutoff ratio was qualitatively checked by testing a series of liners on a YF-102 turbofan engine. Far-field directivity of the blade passing frequency was used extensively to evaluate the results. The trends and observations of the test data lend much qualitative support to the design method. The best of the BPF liners attained a suppression at design frequency of 19 dB per unit length-diameter ratio. The best multiple-pure-tone linear attained a remarkable suppression of 65.6 bB per unit length-diameter ratio.

  12. EEG/ERP adaptive noise canceller design with controlled search space (CSS) approach in cuckoo and other optimization algorithms.

    PubMed

    Ahirwal, M K; Kumar, Anil; Singh, G K

    2013-01-01

    This paper explores the migration of adaptive filtering with swarm intelligence/evolutionary techniques employed in the field of electroencephalogram/event-related potential noise cancellation or extraction. A new approach is proposed in the form of controlled search space to stabilize the randomness of swarm intelligence techniques especially for the EEG signal. Swarm-based algorithms such as Particles Swarm Optimization, Artificial Bee Colony, and Cuckoo Optimization Algorithm with their variants are implemented to design optimized adaptive noise canceler. The proposed controlled search space technique is tested on each of the swarm intelligence techniques and is found to be more accurate and powerful. Adaptive noise canceler with traditional algorithms such as least-mean-square, normalized least-mean-square, and recursive least-mean-square algorithms are also implemented to compare the results. ERP signals such as simulated visual evoked potential, real visual evoked potential, and real sensorimotor evoked potential are used, due to their physiological importance in various EEG studies. Average computational time and shape measures of evolutionary techniques are observed 8.21E-01 sec and 1.73E-01, respectively. Though, traditional algorithms take negligible time consumption, but are unable to offer good shape preservation of ERP, noticed as average computational time and shape measure difference, 1.41E-02 sec and 2.60E+00, respectively. PMID:24407307

  13. Supermode noise suppression in an actively mode-locked fiber laser with pulse intensity feed-forward and a dual-drive MZM

    NASA Astrophysics Data System (ADS)

    Xu, Kun; Wang, Ruixin; Dai, Yitang; Yin, Feifei; Li, Jianqiang; Ji, Yuefeng; Lin, Jintong

    2013-05-01

    The supermode noise in an actively mode-locked fiber laser is suppressed for the first time by a so-called pulse-intensity-feed-forward technique. In this novel scheme, the optical pulse is firstly converted into an electronic signal, and then fed forward to a dual-drive Mach-Zehnder modulator (MZM), where the optical pulse is modulated by the reversed intensity profile of itself. In a 12.5 m long actively mode-locked fiber ring laser experiment, the resulting power limiting shows a stable 10 GHz optical pulse train with a supermode-suppression ratio larger than 81 dB. The phase noise and pulse-to-pulse timing jitter are below -141 dBc Hz-1 at 10 MHz and 22.1 fs, respectively. Compared with the conventional fiber-nonlinearity-based power limiting schemes, our proposal is compact and stable.

  14. Stochastic sensitivity analysis of noise-induced suppression of firing and giant variability of spiking in a Hodgkin-Huxley neuron model.

    PubMed

    Bashkirtseva, Irina; Neiman, Alexander B; Ryashko, Lev

    2015-05-01

    We study the stochastic dynamics of a Hodgkin-Huxley neuron model in a regime of coexistent stable equilibrium and a limit cycle. In this regime, noise may suppress periodic firing by switching the neuron randomly to a quiescent state. We show that at a critical value of the injected current, the mean firing rate depends weakly on noise intensity, while the neuron exhibits giant variability of the interspike intervals and spike count. To reveal the dynamical origin of this noise-induced effect, we develop the stochastic sensitivity analysis and use the Mahalanobis metric for this four-dimensional stochastic dynamical system. We show that the critical point of giant variability corresponds to the matching of the Mahalanobis distances from attractors (stable equilibrium and limit cycle) to a three-dimensional surface separating their basins of attraction. PMID:26066242

  15. Adaptive center determination for effective suppression of ring artifacts in tomography images

    SciTech Connect

    Jha, D. Sørensen, H. O. Dobberschütz, S.; Stipp, S. L. S.; Feidenhans'l, R.

    2014-10-06

    Ring artifacts on tomogram slices hinder image interpretation. They are caused by minor variation in the response from individual elements in a two dimensional (2D) X-ray detector. Polar space decreases the suppression complexity by transforming the rings on the tomogram slice to linear stripes. However, it requires that the center of rings lie at the origin of polar transformation. If this is not the case, all methods employing polar space become ineffective. We developed a method based on Gaussian localization of the ring center in Hough parameter space to assign the origin for the polar transformation. Thus, obtained linear stripes can be effectively suppressed by already existing methods. This effectively suppresses ring artifacts in the data from a variety of experimental setups, sample types and also handles tomograms that are previously cropped. This approach functions automatically, avoids the need for assumptions and preserves fine details, all critical for synchrotron based nanometer resolution tomography.

  16. Suppression of Background Odor Effect in Odor Sensing System Using Olfactory Adaptation Model

    NASA Astrophysics Data System (ADS)

    Ohba, Tsuneaki; Yamanaka, Takao

    In this study, a new method for suppressing the background odor effect is proposed. Since odor sensors response to background odors in addition to a target odor, it is difficult to detect the target odor information. In the conventional odor sensing systems, the effect of the background odors are compensated by subtracting the response to the background odors (the baseline response). Although this simple subtraction method is effective for constant background odors, it fails in the compensation for time-varying background odors. The proposed method for the background suppression is effective even for the time-varying background odors.

  17. An adaptive integrated algorithm for noninvasive fetal ECG separation and noise reduction based on ICA-EEMD-WS.

    PubMed

    Liu, Guangchen; Luan, Yihui

    2015-11-01

    High-resolution fetal electrocardiogram (FECG) plays an important role in assisting physicians to detect fetal changes in the womb and to make clinical decisions. However, in real situations, clear FECG is difficult to extract because it is usually overwhelmed by the dominant maternal ECG and other contaminated noise such as baseline wander, high-frequency noise. In this paper, we proposed a novel integrated adaptive algorithm based on independent component analysis (ICA), ensemble empirical mode decomposition (EEMD), and wavelet shrinkage (WS) denoising, denoted as ICA-EEMD-WS, for FECG separation and noise reduction. First, ICA algorithm was used to separate the mixed abdominal ECG signal and to obtain the noisy FECG. Second, the noise in FECG was reduced by a three-step integrated algorithm comprised of EEMD, useful subcomponents statistical inference and WS processing, and partial reconstruction for baseline wander reduction. Finally, we evaluate the proposed algorithm using simulated data sets. The results indicated that the proposed ICA-EEMD-WS outperformed the conventional algorithms in signal denoising. PMID:26429348

  18. Adaptive Volterra filter with continuous lp-norm using a logarithmic cost for nonlinear active noise control

    NASA Astrophysics Data System (ADS)

    Lu, Lu; Zhao, Haiquan

    2016-03-01

    The filtered-x least mean lp-norm (FxLMP) algorithm is proven to be useful for nonlinear active noise control (NANC) systems. However, its performance deteriorates when the impulsive noises are presented in NANC systems. To surmount this shortcoming, a new nonlinear adaptive algorithm based on Volterra expansion model (VFxlogLMP) is developed in this paper, which is derived by minimizing the lp-norm of logarithmic cost. It is found that the FxLMP and VFxlogLMP require to select an appropriate value of p according to the prior information on noise characteristics, which prohibit their practical applications. Based on VFxlogLMP algorithm, we proposed a continuous lp-norm algorithm with logarithmic cost (VFxlogCLMP), which does not need the parameter selection and thresholds estimation. Benefiting from the various error norms for 1≤p≤2, it remains the robustness of VFxlogLMP. Moreover, the convergence behavior of VFxlogCLMP for moving average secondary paths and stochastic input signals is performed. Compared to the existing algorithms, two versions of the proposed algorithms have much better convergence and stability in impulsive noise environments.

  19. Adaptive switching filter for noise removal in highly corrupted depth maps from Time-of-Flight image sensors

    NASA Astrophysics Data System (ADS)

    Lee, Seunghee; Bae, Kwanghyuk; Kyung, Kyu-min; Kim, Tae-Chan

    2012-03-01

    In this work, we present an adaptive switching filter for noise reduction and sharpness preservation in depth maps provided by Time-of-Flight (ToF) image sensors. Median filter and bilateral filter are commonly used in cost-sensitive applications where low computational complexity is needed. However, median filter blurs fine details and edges in depth map while bilateral filter works poorly with impulse noise present in the image. Since the variance of depth is inversely proportional to amplitude, we suggest an adaptive filter that switches between median filter and bilateral filter based on the level of amplitude. If a region of interest has low amplitude indicating low confidence level of measured depth data, then median filter is applied on the depth at the position while regions with high level of amplitude is processed with bilateral filter using Gaussian kernel with adaptive weights. Results show that the suggested algorithm performs surface smoothing and detail preservation as well as median filter and bilateral filter, respectively. By using the suggested algorithm, significant gain in visual quality is obtained in depth maps while low computational cost is maintained.

  20. Wireless rake-receiver using adaptive filter with a family of partial update algorithms in noise cancellation applications

    NASA Astrophysics Data System (ADS)

    Fayadh, Rashid A.; Malek, F.; Fadhil, Hilal A.; Aldhaibani, Jaafar A.; Salman, M. K.; Abdullah, Farah Salwani

    2015-05-01

    For high data rate propagation in wireless ultra-wideband (UWB) communication systems, the inter-symbol interference (ISI), multiple-access interference (MAI), and multiple-users interference (MUI) are influencing the performance of the wireless systems. In this paper, the rake-receiver was presented with the spread signal by direct sequence spread spectrum (DS-SS) technique. The adaptive rake-receiver structure was shown with adjusting the receiver tap weights using least mean squares (LMS), normalized least mean squares (NLMS), and affine projection algorithms (APA) to support the weak signals by noise cancellation and mitigate the interferences. To minimize the data convergence speed and to reduce the computational complexity by the previous algorithms, a well-known approach of partial-updates (PU) adaptive filters were employed with algorithms, such as sequential-partial, periodic-partial, M-max-partial, and selective-partial updates (SPU) in the proposed system. The simulation results of bit error rate (BER) versus signal-to-noise ratio (SNR) are illustrated to show the performance of partial-update algorithms that have nearly comparable performance with the full update adaptive filters. Furthermore, the SPU-partial has closed performance to the full-NLMS and full-APA while the M-max-partial has closed performance to the full-LMS updates algorithms.

  1. Effects of Noise Suppression on Intelligibility: Experts' Opinions and Naive Normal-Hearing Listeners' Performance

    ERIC Educational Resources Information Center

    Hilkhuysen, Gaston L. M.; Gaubitch, Nikolay; Huckvale, Mark

    2013-01-01

    Purpose: In this study, the authors investigated how well experts can adjust the settings of a commercial noise-reduction system to optimize the intelligibility for naive normal-hearing listeners. Method: In Experiment 1, 5 experts adjusted parameters for a noise-reduction system while aiming to optimize intelligibility. The stimuli consisted of…

  2. Noise reduction in Doppler ultrasound signals using an adaptive decomposition algorithm.

    PubMed

    Zhang, Yufeng; Wang, Le; Gao, Yali; Chen, Jianhua; Shi, Xinling

    2007-07-01

    A novel de-noising method for improving the signal-to-noise ratio (SNR) of Doppler ultrasound blood flow signals, called the matching pursuit method, has been proposed. Using this method, the Doppler ultrasound signal was first decomposed into a linear expansion of waveforms, called time-frequency atoms, which were selected from a redundant dictionary named Gabor functions. Subsequently, a decay parameter-based algorithm was employed to determine the decomposition times. Finally, the de-noised Doppler signal was reconstructed using the selected components. The SNR improvements, the amount of the lost component in the original signal and the maximum frequency estimation precision with simulated Doppler blood flow signals, have been used to evaluate a performance comparison, based on the wavelet, the wavelet packets and the matching pursuit de-noising algorithms. From the simulation and clinical experiment results, it was concluded that the performance of the matching pursuit approach was better than those of the DWT and the WPs methods for the Doppler ultrasound signal de-noising. PMID:16996774

  3. Suppression of Adaptive Immune Cell Activation Does Not Alter Innate Immune Adipose Inflammation or Insulin Resistance in Obesity

    PubMed Central

    Subramanian, Manikandan; Ozcan, Lale; Ghorpade, Devram Sampat; Ferrante, Anthony W.; Tabas, Ira

    2015-01-01

    Obesity-induced inflammation in visceral adipose tissue (VAT) is a major contributor to insulin resistance and type 2 diabetes. Whereas innate immune cells, notably macrophages, contribute to visceral adipose tissue (VAT) inflammation and insulin resistance, the role of adaptive immunity is less well defined. To address this critical gap, we used a model in which endogenous activation of T cells was suppressed in obese mice by blocking MyD88-mediated maturation of CD11c+ antigen-presenting cells. VAT CD11c+ cells from Cd11cCre+Myd88fl/fl vs. control Myd88fl/fl mice were defective in activating T cells in vitro, and VAT T and B cell activation was markedly reduced in Cd11cCre+Myd88fl/fl obese mice. However, neither macrophage-mediated VAT inflammation nor systemic inflammation were altered in Cd11cCre+Myd88fl/fl mice, thereby enabling a focused analysis on adaptive immunity. Unexpectedly, fasting blood glucose, plasma insulin, and the glucose response to glucose and insulin were completely unaltered in Cd11cCre+Myd88fl/fl vs. control obese mice. Thus, CD11c+ cells activate VAT T and B cells in obese mice, but suppression of this process does not have a discernible effect on macrophage-mediated VAT inflammation or systemic glucose homeostasis. PMID:26317499

  4. Analysis of helicopter blade-vortex interaction noise with application to adaptive-passive and active alleviation methods

    NASA Astrophysics Data System (ADS)

    Tauszig, Lionel Christian

    This study focuses on detection and analysis methods of helicopter blade-vortex interactions (BVI) and applies these methods to two different BVI noise alleviation schemes---an adaptive-passive and an active scheme. A standard free-wake analysis based on relaxation methods is extended in this study to compute high-resolution blade loading, to account for blade-to-blade dissimilarities, and dual vortices when there is negative loading at the blade tips. The free-wake geometry is still calculated on a coarse azimuthal grid and then interpolated to a high-resolution grid to calculate the BVI induced impulsive loading. Blade-to-blade dissimilarities are accounted by allowing the different blades to release their own vortices. A number of BVI detection criteria, including the spherical method (a geometric criterion developed in this thesis) are critically examined. It was determined that high-resolution azimuthal discretization is required in virtually all detection methods except the spherical method which detected the occurrence of parallel BVI even while using a low-resolution azimuthal mesh. Detection methods based on inflow and blade loads were, in addition, found to be sensitive to vortex core size. While most BVI studies use the high-resolution airloads to compute BVI noise, the total noise can often be due to multiple dominant interactions on the advancing and retreating sides. A methodology is developed to evaluate the contribution of an individual interaction to the total BVI noise, based on using the loading due to an individual vortex as an input to the acoustic code WOPWOP. The adaptive-passive BVI alleviation method considered in this study comprises of reducing the length of one set of opposite blades (of a 4-bladed rotor) in low-speed descent. Results showed that differential coning resulting from the blade dissimilarity increases the blade-vortex miss-distances and reduces the BVI noise by 4 dB. The Higher Harmonic Control Aeroacoustic Rotor Test (HART

  5. Adenosine and Prostaglandin E2 Cooperate in the Suppression of Immune Responses Mediated by Adaptive Regulatory T Cells*

    PubMed Central

    Mandapathil, Magis; Szczepanski, Miroslaw J.; Szajnik, Marta; Ren, Jin; Jackson, Edwin K.; Johnson, Jonas T.; Gorelik, Elieser; Lang, Stephan; Whiteside, Theresa L.

    2010-01-01

    Adaptive regulatory T cells (Tr1) are induced in the periphery upon encountering cognate antigens. In cancer, their frequency is increased; however, Tr1-mediated suppression mechanisms are not yet defined. Here, we evaluate the simultaneous involvement of ectonucleotidases (CD39/CD73) and cyclooxygenase 2 (COX-2) in Tr1-mediated suppression. Human Tr1 cells were generated from peripheral blood mononuclear cell-derived, sorted CD4+CD25− T cells and incubated with autologous immature dendritic cells, irradiated COX-2+ or COX-2− tumor cells, and IL-2, IL-10, and IL-15 (each at 10–15 IU/ml) for 10 days as described (Bergmann, C., Strauss, L., Zeidler, R., Lang, S., and Whiteside, T. L. (2007) Cancer Immunol. Immunother. 56, 1429–1442). Tr1 were phenotyped by multicolor flow cytometry, and suppression of proliferating responder cells was assessed in carboxyfluorescein diacetate succinimidyl ester-based assays. ATP hydrolysis was measured using a luciferase detection assay, and levels of adenosine or prostaglandin E2 (PGE2) in cell supernatants were analyzed by mass spectrometry or ELISA, respectively. Intracellular cAMP levels were measured by enzyme immunoassay. The COX-2+ tumor induced a greater number of Tr1 than COX-2− tumor (p < 0.05). Tr1 induced by COX-2+ tumor were more suppressive, hydrolyzed more exogenous ATP (p < 0.05), and produced higher levels of adenosine and PGE2 (p < 0.05) than Tr1 induced by COX-2− tumor. Inhibitors of ectonucleotidase activity, A2A and EP2 receptor antagonists, or an inhibitor of the PKA type I decreased Tr1-mediated suppression (p < 0.05), whereas rolipram, a PDE4 inhibitor, increased the intracellular cAMP level in responder cells and their susceptibility to Tr1-mediated suppression. Tr1 present in tumors or the peripheral blood of head and neck squamous cell carcinoma patients co-expressed COX-2, CD39, and CD73. A concomitant inhibition of PGE2 and adenosine via the common intracellular cAMP pathway might be a novel

  6. Frequency- and intensity-noise suppression in Yb3+-doped single-frequency fiber laser by a passive optical-feedback loop.

    PubMed

    Hou, Yubin; Zhang, Qian; Wang, Pu

    2016-06-13

    The frequency and intensity noise of an Yb3+-doped single-frequency distributed Bragg reflector (DBR) fiber laser are effectively reduced by a simple, passive optical-feedback loop (POFL), which consists of only two optical couplers. The feedback loop, which has resonance with the high reflective grating of the DBR laser and relative long optical path compared to the DBR cavity, results in narrower linewidth and lower relative intensity noise (RIN) in the feedback signal. The RIN of relaxation oscillation is reduced by 20dB from -99.9dB/Hz @ 993 kHz to -119.4dB/Hz @ 192 kHz, and the frequency noise was suppressed at frequencies higher than 1 kHz, with a maximum reduction of about 30 dB from 10 kHz to 100 kHz, which results in a spectral linewidth compression from 3.96 kHz to 540 Hz. Even after one fiber amplification stage, the noise did not increase significantly, and a spectral linewidth well below 1 kHz were also achieved at output power of 10W. PMID:27410318

  7. Identification of heat stress-responsive genes in heat-adapted thermal Agrostis scabra by suppression subtractive hybridization.

    PubMed

    Tian, Jiang; Belanger, Faith C; Huang, Bingru

    2009-04-01

    To gain insights into molecular mechanisms of grass tolerance to heat stress, we constructed a suppression subtractive cDNA library to identify heat-responsive genes for a C(3) grass species, thermal Agrostis scabra adapted to heat stress in geothermal areas in Yellowstone National Park. Plants were exposed to 20 degrees C (control) or 35 degrees C for 12d. The SSH analysis was performed with control samples as the driver and heat-stressed samples as the tester. Differentially expressed cDNA fragments were cloned to screen the heat up-regulated library. The SSH analysis identified 120 non-redundant putative heat-responsive cDNAs out of 1180 clones. Genes with homology to known proteins were categorized into six functional groups, with the largest group of genes involved in stress/defense, followed by the group of genes related to protein metabolism. Immunoblot analysis confirmed increases in transcripts of selected genes under heat stress. Transcripts of seven and eight genes were strongly enhanced or induced in shoots and roots, respectively, while two genes were only induced in roots under heat stress. The heat up-regulated genes in thermal A. scabra adapted to long-term heat stress are potential candidate genes for engineering stress-tolerant grasses and for revealing molecular mechanisms of grass adaptation to heat stress. PMID:18950897

  8. Suppression of 1/f Noise in Accumulation Mode FD-SOI MOSFETs on Si(100) and (110) Surfaces

    SciTech Connect

    Cheng, W.; Gaubert, P.; Teramoto, A.; Tye, C.; Sugawa, S.; Ohmi, T.

    2009-04-23

    In this paper, a new approach to reduce the 1/f noise levels in the MOSFETs on varied silicon orientations, such as Si(100) and (110) surfaces, has been carried out. We focus on the Accumulation-mode (AM) FD-SOI device structure and demonstrate that the 1/f noise levels in this AM FD-SOI MOSFETs are obviously reduced on both the Si(100) and (110) surfaces.

  9. Drill-rig noise suppression using the Karhunen-Loéve transform for seismic-while-drilling experiment at Brukunga, South Australia

    NASA Astrophysics Data System (ADS)

    Sun, Baichun; Bóna, Andrej; Zhou, Binzhong; King, Andrew; Dupuis, Christian; Kepic, Anton

    2016-02-01

    Diamond-impregnated drill bits are known to be low energy vibration seismic sources. With the strong interference from the drill rig, it is difficult to obtain the drill-bit wavefield with a surface receiver array. To overcome the challenge of surface wave interference generated from the rig for seismic-while-drilling (SWD), we need to separate the rig- and bit-generated signals. To this end, we apply two wavefield separation methods, the Karhunen-Loéve (KL) transform and the f - k filter, and compare their performance. The applicability of these methods is based on the drill rig and drill bit having different spatial positions. While the drill-bit spatial position changes during the process of drilling, the drill rig remains stationary. This results in the source wavefields from the drill rig and the drill-bit having different characteristics, and allows us to separate and extract the drill-bit signal. We use a synthetic model to compare the KL transform and f - k filter. Both techniques are robust when the noise wavefield has consistent amplitude moveout. However, for changing amplitudes, such as the rig noise, which has an unrepeatable wavefield due to power amplitude variation, we show that the KL transform performs better in such situations. We also show the results of signal analysis of the SWD experiment data acquired from Brukunga, South Australia. We demonstrate the feasibility of the KL transform in separating the coherent noises from the stationary drill rig in a hard rock drilling environment, particularly emphasising the suppression of the surface and direct waves from the rig. The results show that drill-rig noise can be effectively suppressed in the correlation domain.

  10. Synchrony suppression in ensembles of coupled oscillators via adaptive vanishing feedback

    NASA Astrophysics Data System (ADS)

    Montaseri, Ghazal; Javad Yazdanpanah, Mohammad; Pikovsky, Arkady; Rosenblum, Michael

    2013-09-01

    Synchronization and emergence of a collective mode is a general phenomenon, frequently observed in ensembles of coupled self-sustained oscillators of various natures. In several circumstances, in particular in cases of neurological pathologies, this state of the active medium is undesirable. Destruction of this state by a specially designed stimulation is a challenge of high clinical relevance. Typically, the precise effect of an external action on the ensemble is unknown, since the microscopic description of the oscillators and their interactions are not available. We show that, desynchronization in case of a large degree of uncertainty about important features of the system is nevertheless possible; it can be achieved by virtue of a feedback loop with an additional adaptation of parameters. The adaptation also ensures desynchronization of ensembles with non-stationary, time-varying parameters. We perform the stability analysis of the feedback-controlled system and demonstrate efficient destruction of synchrony for several models, including those of spiking and bursting neurons.

  11. Analytical investigation of adaptive control of radiated inlet noise from turbofan engines

    NASA Technical Reports Server (NTRS)

    Risi, John D.; Burdisso, Ricardo A.

    1994-01-01

    An analytical model has been developed to predict the resulting far field radiation from a turbofan engine inlet. A feedforward control algorithm was simulated to predict the controlled far field radiation from the destructive combination of fan noise and secondary control sources. Numerical results were developed for two system configurations, with the resulting controlled far field radiation patterns showing varying degrees of attenuation and spillover. With one axial station of twelve control sources and error sensors with equal relative angular positions, nearly global attenuation is achieved. Shifting the angular position of one error sensor resulted in an increase of spillover to the extreme sidelines. The complex control inputs for each configuration was investigated to identify the structure of the wave pattern created by the control sources, giving an indication of performance of the system configuration. It is deduced that the locations of the error sensors and the control source configuration are equally critical to the operation of the active noise control system.

  12. Adapting histogram for automatic noise data removal in building interior point cloud data

    NASA Astrophysics Data System (ADS)

    Shukor, S. A. Abdul; Rushforth, E. J.

    2015-05-01

    3D point cloud data is now preferred by researchers to generate 3D models. These models can be used throughout a variety of applications including 3D building interior models. The rise of Building Information Modeling (BIM) for Architectural, Engineering, Construction (AEC) applications has given 3D interior modelling more attention recently. To generate a 3D model representing the building interior, a laser scanner is used to collect the point cloud data. However, this data often comes with noise. This is due to several factors including the surrounding objects, lighting and specifications of the laser scanner. This paper highlights on the usage of the histogram to remove the noise data. Histograms, used in statistics and probability, are regularly being used in a number of applications like image processing, where a histogram can represent the total number of pixels in an image at each intensity level. Here, histograms represent the number of points recorded at range distance intervals in various projections. As unwanted noise data has a sparser cloud density compared to the required data and is usually situated at a notable distance from the required data, noise data will have lower frequencies in the histogram. By defining the acceptable range using the average frequency, points below this range can be removed. This research has shown that these histograms have the capabilities to remove unwanted data from 3D point cloud data representing building interiors automatically. This feature will aid the process of data preprocessing in producing an ideal 3D model from the point cloud data.

  13. Development of Tremor Suppression Control System Using Adaptive Filter and Its Application to Meal-assist Robot

    NASA Astrophysics Data System (ADS)

    Yano, Ken'ichi; Ohara, Eiichi; Horihata, Satoshi; Aoki, Takaaki; Nishimoto, Yutaka

    A robot that supports independent living by assisting with eating and other activities which use the operator's own hand would be helpful for people suffering from tremors of the hand or any other body part. The proposed system using adaptive filter estimates tremor frequencies with a time-varying property and individual differences online. In this study, the estimated frequency is used to adjusting the tremor suppression filter which insulates the voluntary motion signal from the sensor signal containing tremor components. These system are integrated into the control system of the Meal-Assist Robot. As a result, the developed system makes it possible for the person with a tremor to manipulate the supporting robot without causing operability to deteriorate and without hazards due to improper operation.

  14. Forskolin Suppresses Delayed-Rectifier K+ Currents and Enhances Spike Frequency-Dependent Adaptation of Sympathetic Neurons

    PubMed Central

    Castro, Elena; Cruzblanca, Humberto

    2015-01-01

    In signal transduction research natural or synthetic molecules are commonly used to target a great variety of signaling proteins. For instance, forskolin, a diterpene activator of adenylate cyclase, has been widely used in cellular preparations to increase the intracellular cAMP level. However, it has been shown that forskolin directly inhibits some cloned K+ channels, which in excitable cells set up the resting membrane potential, the shape of action potential and regulate repetitive firing. Despite the growing evidence indicating that K+ channels are blocked by forskolin, there are no studies yet assessing the impact of this mechanism of action on neuron excitability and firing patterns. In sympathetic neurons, we find that forskolin and its derivative 1,9-Dideoxyforskolin, reversibly suppress the delayed rectifier K+ current (IKV). Besides, forskolin reduced the spike afterhyperpolarization and enhanced the spike frequency-dependent adaptation. Given that IKV is mostly generated by Kv2.1 channels, HEK-293 cells were transfected with cDNA encoding for the Kv2.1 α subunit, to characterize the mechanism of forskolin action. Both drugs reversible suppressed the Kv2.1-mediated K+ currents. Forskolin inhibited Kv2.1 currents and IKV with an IC50 of ~32 μM and ~24 µM, respectively. Besides, the drug induced an apparent current inactivation and slowed-down current deactivation. We suggest that forskolin reduces the excitability of sympathetic neurons by enhancing the spike frequency-dependent adaptation, partially through a direct block of their native Kv2.1 channels. PMID:25962132

  15. Brugia malayi Microfilariae Induce a Regulatory Monocyte/Macrophage Phenotype That Suppresses Innate and Adaptive Immune Responses

    PubMed Central

    Venugopal, Gopinath; Rao, Gopala B.; Lucius, Richard; Srikantam, Aparna; Hartmann, Susanne

    2014-01-01

    Background Monocytes and macrophages contribute to the dysfunction of immune responses in human filariasis. During patent infection monocytes encounter microfilariae in the blood, an event that occurs in asymptomatically infected filariasis patients that are immunologically hyporeactive. Aim To determine whether blood microfilariae directly act on blood monocytes and in vitro generated macrophages to induce a regulatory phenotype that interferes with innate and adaptive responses. Methodology and principal findings Monocytes and in vitro generated macrophages from filaria non-endemic normal donors were stimulated in vitro with Brugia malayi microfilarial (Mf) lysate. We could show that monocytes stimulated with Mf lysate develop a defined regulatory phenotype, characterised by expression of the immunoregulatory markers IL-10 and PD-L1. Significantly, this regulatory phenotype was recapitulated in monocytes from Wuchereria bancrofti asymptomatically infected patients but not patients with pathology or endemic normals. Monocytes from non-endemic donors stimulated with Mf lysate directly inhibited CD4+ T cell proliferation and cytokine production (IFN-γ, IL-13 and IL-10). IFN-γ responses were restored by neutralising IL-10 or PD-1. Furthermore, macrophages stimulated with Mf lysate expressed high levels of IL-10 and had suppressed phagocytic abilities. Finally Mf lysate applied during the differentiation of macrophages in vitro interfered with macrophage abilities to respond to subsequent LPS stimulation in a selective manner. Conclusions and significance Conclusively, our study demonstrates that Mf lysate stimulation of monocytes from healthy donors in vitro induces a regulatory phenotype, characterized by expression of PD-L1 and IL-10. This phenotype is directly reflected in monocytes from filarial patients with asymptomatic infection but not patients with pathology or endemic normals. We suggest that suppression of T cell functions typically seen in lymphatic

  16. Dual adaptive statistical approach for quantitative noise reduction in photon-counting medical imaging: application to nuclear medicine images

    NASA Astrophysics Data System (ADS)

    Hannequin, Pascal Paul

    2015-06-01

    Noise reduction in photon-counting images remains challenging, especially at low count levels. We have developed an original procedure which associates two complementary filters using a Wiener-derived approach. This approach combines two statistically adaptive filters into a dual-weighted (DW) filter. The first one, a statistically weighted adaptive (SWA) filter, replaces the central pixel of a sliding window with a statistically weighted sum of its neighbors. The second one, a statistical and heuristic noise extraction (extended) (SHINE-Ext) filter, performs a discrete cosine transformation (DCT) using sliding blocks. Each block is reconstructed using its significant components which are selected using tests derived from multiple linear regression (MLR). The two filters are weighted according to Wiener theory. This approach has been validated using a numerical phantom and a real planar Jaszczak phantom. It has also been illustrated using planar bone scintigraphy and myocardial single-photon emission computed tomography (SPECT) data. Performances of filters have been tested using mean normalized absolute error (MNAE) between the filtered images and the reference noiseless or high-count images. Results show that the proposed filters quantitatively decrease the MNAE in the images and then increase the signal-to-noise Ratio (SNR). This allows one to work with lower count images. The SHINE-Ext filter is well suited to high-size images and low-variance areas. DW filtering is efficient for low-size images and in high-variance areas. The relative proportion of eliminated noise generally decreases when count level increases. In practice, SHINE filtering alone is recommended when pixel spacing is less than one-quarter of the effective resolution of the system and/or the size of the objects of interest. It can also be used when the practical interest of high frequencies is low. In any case, DW filtering will be preferable. The proposed filters have been applied to nuclear

  17. Dual adaptive statistical approach for quantitative noise reduction in photon-counting medical imaging: application to nuclear medicine images.

    PubMed

    Hannequin, Pascal Paul

    2015-06-01

    Noise reduction in photon-counting images remains challenging, especially at low count levels. We have developed an original procedure which associates two complementary filters using a Wiener-derived approach. This approach combines two statistically adaptive filters into a dual-weighted (DW) filter. The first one, a statistically weighted adaptive (SWA) filter, replaces the central pixel of a sliding window with a statistically weighted sum of its neighbors. The second one, a statistical and heuristic noise extraction (extended) (SHINE-Ext) filter, performs a discrete cosine transformation (DCT) using sliding blocks. Each block is reconstructed using its significant components which are selected using tests derived from multiple linear regression (MLR). The two filters are weighted according to Wiener theory. This approach has been validated using a numerical phantom and a real planar Jaszczak phantom. It has also been illustrated using planar bone scintigraphy and myocardial single-photon emission computed tomography (SPECT) data. Performances of filters have been tested using mean normalized absolute error (MNAE) between the filtered images and the reference noiseless or high-count images.Results show that the proposed filters quantitatively decrease the MNAE in the images and then increase the signal-to-noise Ratio (SNR). This allows one to work with lower count images. The SHINE-Ext filter is well suited to high-size images and low-variance areas. DW filtering is efficient for low-size images and in high-variance areas. The relative proportion of eliminated noise generally decreases when count level increases. In practice, SHINE filtering alone is recommended when pixel spacing is less than one-quarter of the effective resolution of the system and/or the size of the objects of interest. It can also be used when the practical interest of high frequencies is low. In any case, DW filtering will be preferable.The proposed filters have been applied to nuclear

  18. Automatic artifact suppression in simultaneous tDCS-EEG using adaptive filtering.

    PubMed

    Mancini, Matteo; Pellicciari, Maria Concetta; Brignani, Debora; Mauri, Piercarlo; De Marchis, Cristiano; Miniussi, Carlo; Conforto, Silvia

    2015-08-01

    Transcranial direct current stimulation (tDCS) is a non-invasive brain stimulation method that can be used in cognitive and clinical protocols in order to modulate neural activity. Although some macro effects are known, the underlying mechanisms are still not clear. tDCS in combination with electroencephalography (EEG) could help to understand these mechanisms from a neural point of view. However, simultaneous tDCS-EEG still remains challenging because of the artifacts that affect the recorded signals. In this paper, an automated artifact cancellation method based on adaptive filtering is proposed. Using independent component analysis (ICA), the artifacts were characterized using data from both a phantom and a group of healthy subjects. The resulting filter can successfully remove tDCS-related artifacts during anodal and cathodal stimulations. PMID:26736856

  19. Suppression of antigen-specific adaptive immunity by IL-37 via induction of tolerogenic dendritic cells

    PubMed Central

    Luo, Yuchun; Cai, Xiangna; Liu, Sucai; Wang, Sen; Nold-Petry, Claudia A.; Nold, Marcel F.; Bufler, Philip; Norris, David; Dinarello, Charles A.; Fujita, Mayumi

    2014-01-01

    IL-1 family member IL-37 limits innate inflammation in models of colitis and LPS-induced shock, but a role in adaptive immunity remains unknown. Here, we studied mice expressing human IL-37b isoform (IL-37tg) subjected to skin contact hypersensitivity (CHS) to dinitrofluorobenzene. CHS challenge to the hapten was significantly decreased in IL-37tg mice compared with wild-type (WT) mice (−61%; P < 0.001 at 48 h). Skin dendritic cells (DCs) were present and migrated to lymph nodes after antigen uptake in IL-37tg mice. When hapten-sensitized DCs were adoptively transferred to WT mice, antigen challenge was greatly impaired in mice receiving DCs from IL-37tg mice compared with those receiving DCs from WT mice (−60%; P < 0.01 at 48 h). In DCs isolated from IL-37tg mice, LPS-induced increase of MHC II and costimulatory molecule CD40 was reduced by 51 and 31%, respectively. In these DCs, release of IL-1β, IL-6, and IL-12 was reduced whereas IL-10 secretion increased (37%). Consistent with these findings, DCs from IL-37tg mice exhibited a lower ability to stimulate syngeneic and allogeneic naive T cells as well as antigen-specific T cells and displayed enhanced induction of T regulatory (Treg) cells (86%; P < 0.001) in vitro. Histological analysis of CHS skin in mice receiving hapten-sensitized DCs from IL-37tg mice revealed a marked reduction in CD8+ T cells (−74%) but an increase in Treg cells (2.6-fold). Together, these findings reveal that DCs expressing IL-37 are tolerogenic, thereby impairing activation of effector T-cell responses and inducing Treg cells. IL-37 thus emerges as an inhibitor of adaptive immunity. PMID:25294929

  20. Hybrid two-dimensional navigator correction: a new technique to suppress respiratory-induced physiological noise in multi-shot echo-planar functional MRI

    PubMed Central

    Barry, Robert L.; Klassen, L. Martyn; Williams, Joy M.; Menon, Ravi S.

    2008-01-01

    A troublesome source of physiological noise in functional magnetic resonance imaging (fMRI) is due to the spatio-temporal modulation of the magnetic field in the brain caused by normal subject respiration. fMRI data acquired using echo-planar imaging is very sensitive to these respiratory-induced frequency offsets, which cause significant geometric distortions in images. Because these effects increase with main magnetic field, they can nullify the gains in statistical power expected by the use of higher magnetic fields. As a study of existing navigator correction techniques for echo-planar fMRI has shown that further improvements can be made in the suppression of respiratory-induced physiological noise, a new hybrid two-dimensional (2D) navigator is proposed. Using a priori knowledge of the slow spatial variations of these induced frequency offsets, 2D field maps are constructed for each shot using spatial frequencies between ±0.5 cm−1 in k-space. For multi-shot fMRI experiments, we estimate that the improvement of hybrid 2D navigator correction over the best performance of one-dimensional navigator echo correction translates into a 15% increase in the volume of activation, 6% and 10% increases in the maximum and average t-statistics, respectively, for regions with high t-statistics, and 71% and 56% increases in the maximum and average t-statistics, respectively, in regions with low t-statistics due to contamination by residual physiological noise. PMID:18024159

  1. Energy Detection Based Estimation of Channel Occupancy Rate with Adaptive Noise Estimation

    NASA Astrophysics Data System (ADS)

    Lehtomäki, Janne J.; Vuohtoniemi, Risto; Umebayashi, Kenta; Mäkelä, Juha-Pekka

    Recently, there has been growing interest in opportunistically utilizing the 2.4GHz ISM-band. Numerous spectrum occupancy measurements covering the ISM-band have been performed to analyze the spectrum usage. However, in these campaigns the verification of the correctness of the obtained occupancy values for the highly dynamic ISM-band has not been presented. In this paper, we propose and verify channel occupancy rate (COR) estimation utilizing energy detection mechanism with a novel adaptive energy detection threshold setting method. The results are compared with the true reference COR values. Several different types of verification measurements showed that our setup can estimate the COR values of 802.11 traffic well, with negligible overestimation. The results from real-time real-life measurements also confirm that the proposed adaptive threshold setting method enables accurate thresholds even in the situations where multiple interferers are present in the received signal.

  2. Motor Rumblings: Characterization of Adaptation Motors in Saccular Hair Cells by Noise Analysis

    NASA Astrophysics Data System (ADS)

    Frank, Jonathan E.; Markin, Vladislav; Jaramillo, Fernán

    2003-05-01

    The mechanical sensitivity of hair cells, the sensory receptors of the vestibular and auditory systems, is maintained by adaptation, which resets the transducer to cancel the effects of static stimuli. One model of adaptation proposes that myosin motors coupled to transduction channels move along the long axis of the hair bundle's stereocilia, to regulate the tension in the tip links which are thought to gate transduction channels [1, 2]. These motors can be activated by applying a transduction channel blocker to the bundle, causing it to move [3, 4]. We studied the variance in the position of the bundle during these displacements, and found that it increases as the bundle moves to its new position. We can explain both displacement and variance with a simple model in which a single motor acting on the bundle takes ˜3.6 nm steps whose frequency declines with the motor's load.

  3. Seismic random noise elimination according to the adaptive fractal conservation law

    NASA Astrophysics Data System (ADS)

    Meng, Fanlei; Li, Yue; Zeng, Qian

    2016-05-01

    The fractal conservation law (FCL) is based on the Cauchy problem of the partial differential equation (PDE), which is modified by an anti-diffusive term of lower order. The analysis indicates that it can eliminate the high frequencies and preserve or amplify the low/medium frequencies. The performance of FCL depends on the threshold selected for the PDE. This threshold corresponds to the cut-off frequency of FCL in the frequency domain. Generally, the threshold is fixed. Thus, the FCL cannot track the signal beyond the cut-off frequency, and it removes the higher-frequency components of the signal. To solve this problem, an adaptive FCL filtering method is presented. The main purpose of this method is to select the optimal FCL threshold in each sample index such that it can adaptively track the rapid changes in the signal. In the adaptive FCL, we select FCL estimations with different thresholds and construct a convex hull of these estimations of each sample index. Consequently, we introduce a quadratic functional with respect to FCL estimation to ensure that we select the optimal estimation from the convex hull of each sample index. This leads to a box-constrained convex problem, which can be solved by the Viterbi algorithm.

  4. Linear adaptive noise-reduction filters for tomographic imaging: Optimizing for minimum mean square error

    SciTech Connect

    Sun, W Y

    1993-04-01

    This thesis solves the problem of finding the optimal linear noise-reduction filter for linear tomographic image reconstruction. The optimization is data dependent and results in minimizing the mean-square error of the reconstructed image. The error is defined as the difference between the result and the best possible reconstruction. Applications for the optimal filter include reconstructions of positron emission tomographic (PET), X-ray computed tomographic, single-photon emission tomographic, and nuclear magnetic resonance imaging. Using high resolution PET as an example, the optimal filter is derived and presented for the convolution backprojection, Moore-Penrose pseudoinverse, and the natural-pixel basis set reconstruction methods. Simulations and experimental results are presented for the convolution backprojection method.

  5. Application of adaptive subband coding for noisy bandlimited ECG signal processing

    NASA Astrophysics Data System (ADS)

    Aditya, Krishna; Chu, Chee-Hung H.; Szu, Harold H.

    1996-03-01

    An approach to impulsive noise suppression and background normalization of digitized bandlimited electrovcardiogram signals is presented. This approach uses adaptive wavelet filters that incorporate the band-limited a priori information and the shape information of a signal to decompose the data. Empirical results show that the new algorithm has good performance in wideband impulsive noise suppression and background normalization for subsequent wave detection, when compared with subband coding using Daubechie's D4 wavelet, without the bandlimited adaptive wavelet transform.

  6. Design, fabrication, and testing of SMA-enabled adaptive chevrons for jet noise reduction

    NASA Astrophysics Data System (ADS)

    Turner, Travis L.; Buehrle, Ralph D.; Cano, Roberto J.; Fleming, Gary A.

    2004-07-01

    This study presents the status and results from an effort to design, fabricate, and test an adaptive jet engine chevron concept based upon embedding shape memory alloy (SMA) actuators in a composite laminate, termed a SMA hybrid composite (SMAHC). The approach for fabricating the adaptive SMAHC chevrons involves embedding prestrained Nitinol actuators on one side of the mid-plane of the composite laminate such that thermal excitation generates a thermal moment and deflects the structure. A glass-epoxy pre-preg/Nitinol ribbon material system and a vacuum hot press consolidation approach are employed. A versatile test system for control and measurement of the chevron deflection performance is described. Projection moire interferometry (PMI) is used for global deformation measurement and infrared (IR) thermography is used for 2-D temperature measurement and feedback control. A recently commercialized constitutive model for SMA and SMAHC materials is used in the finite element code ABAQUS to perform nonlinear static analysis of the chevron prototypes. Excellent agreement is achieved between the predicted and measured chevron deflection performance, thereby validating the design tool. Although the performance results presented in this paper fall short of the requirement, the concept is proven and an approach for achieving the performance objectives is evident.

  7. Design, Fabrication, and Testing of SMA Enabled Adaptive Chevrons for Jet Noise Reduction

    NASA Technical Reports Server (NTRS)

    Turner, Travis L.; Buehrle, Ralph D.; Cano, Roberto J.; Fleming, Gary A.

    2004-01-01

    This study presents the status and results from an effort to design, fabricate, and test an adaptive jet engine chevron concept based upon embedding shape memory alloy (SMA) actuators in a composite laminate, termed a SMA hybrid composite (SMAHC). The approach for fabricating the adaptive SMAHC chevrons involves embedding prestrained Nitinol actuators on one side of the mid-plane of the composite laminate such that thermal excitation generates a thermal moment and deflects the structure. A glass-epoxy pre-preg/Nitinol ribbon material system and a vacuum hot press consolidation approach are employed. A versatile test system for control and measurement of the chevron deflection performance is described. Projection moire interferometry (PMI) is used for global deformation measurement and infrared (IR) thermography is used for 2-D temperature measurement and feedback control. A recently commercialized constitutive model for SMA and SMAHC materials is used in the finite element code ABAQUS to perform nonlinear static analysis of the chevron prototypes. Excellent agreement is achieved between the predicted and measured chevron deflection performance, thereby validating the design tool. Although the performance results presented in this paper fall short of the requirement, the concept is proven and an approach for achieving the performance objectives is evident.

  8. Noise Estimation and Adaptive Encoding for Asymmetric Quantum Error Correcting Codes

    NASA Astrophysics Data System (ADS)

    Florjanczyk, Jan; Brun, Todd; Center for Quantum Information Science; Technology Team

    We present a technique that improves the performance of asymmetric quantum error correcting codes in the presence of biased qubit noise channels. Our study is motivated by considering what useful information can be learned from the statistics of syndrome measurements in stabilizer quantum error correcting codes (QECC). We consider the case of a qubit dephasing channel where the dephasing axis is unknown and time-varying. We are able to estimate the dephasing angle from the statistics of the standard syndrome measurements used in stabilizer QECC's. We use this estimate to rotate the computational basis of the code in such a way that the most likely type of error is covered by the highest distance of the asymmetric code. In particular, we use the [ [ 15 , 1 , 3 ] ] shortened Reed-Muller code which can correct one phase-flip error but up to three bit-flip errors. In our simulations, we tune the computational basis to match the estimated dephasing axis which in turn leads to a decrease in the probability of a phase-flip error. With a sufficiently accurate estimate of the dephasing axis, our memory's effective error is dominated by the much lower probability of four bit-flips. Aro MURI Grant No. W911NF-11-1-0268.

  9. New parameters in adaptive testing of ferromagnetic materials utilizing magnetic Barkhausen noise

    NASA Astrophysics Data System (ADS)

    Pal'a, Jozef; Ušák, Elemír

    2016-03-01

    A new method of magnetic Barkhausen noise (MBN) measurement and optimization of the measured data processing with respect to non-destructive evaluation of ferromagnetic materials was tested. Using this method we tried to found, if it is possible to enhance sensitivity and stability of measurement results by replacing the traditional MBN parameter (root mean square) with some new parameter. In the tested method, a complex set of the MBN from minor hysteresis loops is measured. Afterward, the MBN data are collected into suitably designed matrices and optimal parameters of MBN with respect to maximum sensitivity to the evaluated variable are searched. The method was verified on plastically deformed steel samples. It was shown that the proposed measuring method and measured data processing bring an improvement of the sensitivity to the evaluated variable when comparing with measuring traditional MBN parameter. Moreover, we found a parameter of MBN, which is highly resistant to the changes of applied field amplitude and at the same time it is noticeably more sensitive to the evaluated variable.

  10. Microseismic monitoring of a future CO2 storage site in the Arctic (Svalbard) - Suppression and utilization of seismic noise

    NASA Astrophysics Data System (ADS)

    Kühn, Daniela; Albaric, Julie; Harris, Dave; Oye, Volker; Hillers, Gregor; Brenguier, Florent; Ohrnberger, Matthias; Braathen, Alvar; Olaussen, Snorre

    2014-05-01

    Since 2007, CO2 Capture and Storage (CCS) research has been carried out in the Longyearbyen CO2 lab (hosted by University Centre in Svalbard, UNIS, and UNIS CO2-lab AS). Due to its remoteness, the CO2 lab injection site presents a unique opportunity to demonstrate the entire CO2 value chain based on the closed energy system including coal mines, a coal fuelled power plant and geological structures suited for CO2 sequestration. The reservoir at a depth of 670 - 970 m consists of Triassic and Jurassic sandstone formations. The primary caprock is formed by a 400 - 500 m thick layer of organic rich shale, whereas the impermeable near-surface layer of permafrost currently constitutes a secondary top-seal. Eight wells were drilled down to a maximum of about 1000 m depth in order to analyse composition and structure of the reservoir, to perform injection tests and to deploy instruments close to the reservoir. Although the reservoir sandstone exhibits a low primary permeability and porosity, injection test campaigns demonstrate a good injectivity, indicating an unconventional reservoir strongly impacted by tectonic fractures. To perform microseismic monitoring, a high-frequency geophone network surrounding the injection well has been established. During the first water injection in 2010, a microseismic event (M ~ 1) was recorded and located close to the injection well, followed by a series of 7 aftershocks identified using a matched filter method. Later injection tests did not generate any detectable microseismic events; nevertheless, pressure and flow rate showed a pattern characteristic for fracture opening, potentially indicating "aseismic" fracture propagation or slow slip. Prior to data analysis, signals resulting from local mining operations, degassing, icequakes and regional earthquakes have to be separated from seismicity induced by (water) injection. In addition, recorded signals are strongly corrupted by electronic noise. Especially for correlation and stacking

  11. Suppression of parasitic noise by strong Langmuir wave damping in quasitransient regimes of backward Raman amplification of intense laser pulses in plasmas.

    NASA Astrophysics Data System (ADS)

    Malkin, Vladimir; Fisch, Nathaniel

    2009-11-01

    Currently built powerful soft x-ray sources may be able to access intensities needed for backward Raman amplification (BRA) of x-ray pulses in plasmas. However, high plasma densities, needed to provide enough coupling between the pump and seed x-ray pulsed, cause strong damping of the Langmuir wave that mediates energy transfer from the pump to the seed pulse. Such damping could reduce the coupling, thus making efficient BRA impossible. This work shows that efficient BRA can survive despite the Langmuir wave damping significantly exceeding the linear BRA growth rate. Moreover, the strong Langmuir wave damping can suppress deleterious instabilities of BRA seeded by the thermal noise. This shows that it may be feasible to observe x-ray BRA for the first time soon.

  12. Metabolic Noise, Vestigial Metabolites or the Raw Material of Ecological Adaptation? Opportunitistic Enzymes, Catalytic Promiscuity and the Evolution of chemodiversity in Nature (2010 JGI User Meeting)

    ScienceCinema

    Noel, Joseph

    2011-04-25

    Joseph Noel from the Salk Institute on "Metabolic Noise, Vestigial Metabolites or the Raw Material of Ecological Adaptation? Enzymes, Catalytic Promiscuity and the Evolution of Chemodiversity in Nature" on March 26, 2010 at the 5th Annual DOE JGI User Meeting

  13. Metabolic Noise, Vestigial Metabolites or the Raw Material of Ecological Adaptation? Opportunitistic Enzymes, Catalytic Promiscuity and the Evolution of chemodiversity in Nature (2010 JGI User Meeting)

    SciTech Connect

    Noel, Joseph

    2010-03-26

    Joseph Noel from the Salk Institute on "Metabolic Noise, Vestigial Metabolites or the Raw Material of Ecological Adaptation? Enzymes, Catalytic Promiscuity and the Evolution of Chemodiversity in Nature" on March 26, 2010 at the 5th Annual DOE JGI User Meeting

  14. Altitude performance of a low-noise-technology fan in a turbofan engine with and without a sound suppressing nacelle

    NASA Technical Reports Server (NTRS)

    Biesiadny, T. J.; Grey, R. E.; Abdelwahah, M.

    1976-01-01

    Test variables were inlet Reynolds number index (0.2 to 0.5), flight Mach number (0.2 to 0.8), and flow distortion (tip radial and combined circumferential - tip radial patterns). Results are limited to fan bypass and overall engine performance. There were no discernible effects of Reynolds number on fan performance. Increasing flight Mach number shifted the fan operating line such that pressure ratio decreased and airflow increased. Inlet flow distortion lowered stall margin. For a Reynolds number index of 0.2 and flight Mach number of 0.54, the sound suppressing nacelle lowered fan efficiency three points and increased specific fuel consumption about 10 percent.

  15. A miniaturized compact open-loop RFOG with demodulation signal compensation technique to suppress intensity modulation noise

    NASA Astrophysics Data System (ADS)

    Ying, Diqing; Mao, Jianmin; Li, Qiang; Jin, Zhonghe

    2016-01-01

    A miniaturized compact open-loop resonator fiber optic gyro (RFOG) prototype with main body size of about 10.4 cm×10.4 cm×5.2 cm is reported, and a demodulation signal compensation technique is proposed, aiming to suppress the drift arising from accompanying intensity modulation induced by semiconductor laser diode (LD). The scheme of how to establish this miniaturized RFOG prototype is specifically stated. The linear relationship between the first-harmonic and second-harmonic demodulated signals respectively for the two counter propagating beams in the resonator is verified by theory and experiment, and based on this relationship, the demodulation signal compensation technique by monitoring the second-harmonic demodulated signal is described in detail. With this compensation technique, the gyro output stability under 1°/s rotation rate is effectively improved from 0.12°/s to 0.03°/s, and especially, an about 0.36°/s peak-to-peak fluctuation due to tuning current reset is significantly suppressed. A long term bias stability of about 4.5°/h in 1 h for such a small-sized RFOG prototype is demonstrated, which is of the same magnitude as that of currently reported large-sized RFOG systems utilizing LD as the laser source as well.

  16. Image copy-move forgery detection based on sped-up robust features descriptor and adaptive minimal-maximal suppression

    NASA Astrophysics Data System (ADS)

    Yang, Bin; Sun, Xingming; Xin, Xiangyang; Hu, Weifeng; Wu, Youxin

    2015-11-01

    Region duplication is a simple and effective operation to create digital image forgeries, where a continuous portion of pixels in an image is copied and pasted to a different location in the same image. Many prior copy-move forgery detection methods suffer from their inability to detect the duplicated region, which is subjected to various geometric transformations. A keypoint-based approach is proposed to detect the copy-move forgery in an image. Our method starts by extracting the keypoints through a fast Hessian detector. Then the adaptive minimal-maximal suppression (AMMS) strategy is developed for distributing the keypoints evenly throughout an image. By using AMMS and a sped-up robust feature descriptor, the proposed method is able to deal with the problem of insufficient keypoints in the almost uniform area. Finally, the geometric transformation performed in cloning is recovered by using the maximum likelihood estimation of the homography. Experimental results show the efficacy of this technique in detecting copy-move forgeries and estimating the geometric transformation parameters. Compared with the state of the art, our approach obtains a higher true positive rate and a lower false positive rate.

  17. Full Navier-Stokes analysis of a two-dimensional mixer/ejector nozzle for noise suppression

    NASA Technical Reports Server (NTRS)

    Debonis, James R.

    1992-01-01

    A three-dimensional full Navier-Stokes (FNS) analysis was performed on a mixer/ejector nozzle designed to reduce the jet noise created at takeoff by a future supersonic transport. The PARC3D computational fluid dynamics (CFD) code was used to study the flow field of the nozzle. The grid that was used in the analysis consisted of approximately 900,000 node points contained in eight grid blocks. Two nozzle configurations were studied: a constant area mixing section and a diverging mixing section. Data are presented for predictions of pressure, velocity, and total temperature distributions and for evaluations of internal performance and mixing effectiveness. The analysis provided good insight into the behavior of the flow.

  18. Protection of the main maximum in adaptive antenna arrays

    NASA Astrophysics Data System (ADS)

    Pistolkors, A. A.

    1980-12-01

    An adaptive algorithm based on the solution of the problem of minimizing the noise at the output of an array when a constraint is imposed on the main maximum direction is discussed. The suppression depth for the cases of one and two interferences and the enhancement of the direction-finding capability and resolution of an adaptive array are investigated.

  19. A 3 to 5 GHz low-phase-noise fractional-N frequency synthesizer with adaptive frequency calibration for GSM/PCS/DCS/WCDMA transceivers

    NASA Astrophysics Data System (ADS)

    Yaohua, Pan; Niansong, Mei; Hu, Chen; Yumei, Huang; Zhiliang, Hong

    2012-01-01

    A low-phase-noise Σ—Δ fractional-N frequency synthesizer for GSM/PCS/DCS/WCDMA transceivers is presented. The voltage controlled oscillator is designed with a modified digital controlled capacitor array to extend the tuning range and minimize phase noise. A high-resolution adaptive frequency calibration technique is introduced to automatically choose frequency bands and increase phase-noise immunity. A prototype is implemented in 0.13 μm CMOS technology. The experimental results show that the designed 1.2 V wideband frequency synthesizer is locked from 3.05 to 5.17 GHz within 30 μs, which covers all five required frequency bands. The measured in-band phase noise are -89, -95.5 and -101 dBc/Hz for 3.8 GHz, 2 GHz and 948 MHz carriers, respectively, and accordingly the out-of-band phase noise are -121, -123 and -132 dBc/Hz at 1 MHz offset, which meet the phase-noise-mask requirements of the above-mentioned standards.

  20. Noise suppression in curved glass shells using macro-fiber-composite actuators studied by the means of digital holography and acoustic measurements

    NASA Astrophysics Data System (ADS)

    Mokrý, P.; Psota, P.; Steiger, K.; Václavík, J.; Doleček, R.; Lédl, V.; Šulc, M.

    2015-02-01

    The paper presents methods and experimental results of the semi-active control of noise transmission in a curved glass shell with attached piezoelectric macro fiber composite (MFC) actuators. The semi-active noise control is achieved via active elasticity control of piezoelectric actuators by connecting them to an active electric shunt circuit that has a negative effective capacitance. Using this approach, it is possible to suppress the vibration of the glass shell in the normal direction with respect to its surface and to increase the acoustic transmission loss of the piezoelectric MFC-glass composite structure. The effect of the MFC actuators connected to the negative capacitance shunt circuit on the surface distribution of the normal vibration amplitude is studied using frequency-shifted digital holography (FSDH). The principle of the used FSDH method is described in the paper. The frequency dependence of the acoustic transmission loss through the piezoelectric MFC-glass composite structure is estimated using measurements of the specific acoustic impedance of the curved glass shell. The specific acoustic impedance is measured using two microphones and a laser Doppler vibrometer (LDV). The results from the LDV measurements are compared with the FSDH data. The results of the experiments show that using this approach, the acoustic transmission loss in a glass shell can be increased by 36 dB in the frequency range around 247 Hz and by 25 dB in the frequency range around 258 Hz. The experiments indicate that FSDH measurements provide an efficient tool that can be used for fast and accurate measurements of the acoustic transmission loss in large planar structures.

  1. Influence of static and combined magnetic fields' noises on the adaptation of the gravitropic reaction of the cress and maize roots.

    NASA Astrophysics Data System (ADS)

    Bogatina, Nina; Sheykina, Nadiia

    Dependencies of gravitropic reactions in the static magnetic field and at different frequencies of alternative component of the combined magnetic fields were investigated. These frequencies were equal to the cyclotron frequencies of Са2+, Mg2+ ions and ions of auxin and abscisic acid. It was shown that the increasing of magnetic field noise assisted both to the observation of biological effects and to the acceleration of adaptation processes.

  2. Adaptation.

    PubMed

    Broom, Donald M

    2006-01-01

    The term adaptation is used in biology in three different ways. It may refer to changes which occur at the cell and organ level, or at the individual level, or at the level of gene action and evolutionary processes. Adaptation by cells, especially nerve cells helps in: communication within the body, the distinguishing of stimuli, the avoidance of overload and the conservation of energy. The time course and complexity of these mechanisms varies. Adaptive characters of organisms, including adaptive behaviours, increase fitness so this adaptation is evolutionary. The major part of this paper concerns adaptation by individuals and its relationships to welfare. In complex animals, feed forward control is widely used. Individuals predict problems and adapt by acting before the environmental effect is substantial. Much of adaptation involves brain control and animals have a set of needs, located in the brain and acting largely via motivational mechanisms, to regulate life. Needs may be for resources but are also for actions and stimuli which are part of the mechanism which has evolved to obtain the resources. Hence pigs do not just need food but need to be able to carry out actions like rooting in earth or manipulating materials which are part of foraging behaviour. The welfare of an individual is its state as regards its attempts to cope with its environment. This state includes various adaptive mechanisms including feelings and those which cope with disease. The part of welfare which is concerned with coping with pathology is health. Disease, which implies some significant effect of pathology, always results in poor welfare. Welfare varies over a range from very good, when adaptation is effective and there are feelings of pleasure or contentment, to very poor. A key point concerning the concept of individual adaptation in relation to welfare is that welfare may be good or poor while adaptation is occurring. Some adaptation is very easy and energetically cheap and

  3. The status of supergenes in the 21st century: recombination suppression in Batesian mimicry and sex chromosomes and other complex adaptations.

    PubMed

    Charlesworth, Deborah

    2016-01-01

    I review theoretical models for the evolution of supergenes in the cases of Batesian mimicry in butterflies, distylous plants and sex chromosomes. For each of these systems, I outline the genetic evidence that led to the proposal that they involve multiple genes that interact during 'complex adaptations', and at which the mutations involved are not unconditionally advantageous, but show advantages that trade-off against some disadvantages. I describe recent molecular genetic studies of these systems and questions they raise about the evolution of suppressed recombination. Nonrecombining regions of sex chromosomes have long been known, but it is not yet fully understood why recombination suppression repeatedly evolved in systems in distantly related taxa, but does not always evolve. Recent studies of distylous plants are tending to support the existence of recombination-suppressed genome regions, which may include modest numbers of genes and resemble recently evolved sex-linked regions. For Batesian mimicry, however, molecular genetic work in two butterfly species suggests a new supergene scenario, with a single gene mutating to produce initial adaptive phenotypes, perhaps followed by modifiers specifically refining and perfecting the new phenotype. PMID:27087840

  4. Adaptive Channel-Tracking Method and Equalization for MC-CDMA Systems over Rapidly Fading Channel under Colored Noise

    NASA Astrophysics Data System (ADS)

    Yang, Chang-Yi; Chen, Bor-Sen

    2010-12-01

    A recursive maximum-likelihood (RML) algorithm for channel estimation under rapidly fading channel and colored noise in a multicarrier code-division multiple-access (MC-CDMA) system is proposed in this paper. A moving-average model with exogenous input (MAX) is given to describe the transmission channel and colored noise. Based on the pseudoregression method, the proposed RML algorithm can simultaneously estimate the parameters of channel and colored noise. Following the estimation results, these parameters can be used to enhance the minimum mean-square error (MMSE) equalizer. Considering high-speed mobile stations, a one-step linear trend predictor is added to improve symbol detection. Simulation results indicate that the proposed RML estimator can track the channel more precisely than the conventional estimator. Meanwhile, the performance of the proposed enhanced MMSE equalizer is robust to the rapidly Rayleigh fading channel under colored noise in the MC-CDMA systems.

  5. Adaptive antenna arrays for weak interfering signals

    NASA Technical Reports Server (NTRS)

    Gupta, I. J.

    1985-01-01

    The interference protection provided by adaptive antenna arrays to an Earth station or satellite receive antenna system is studied. The case where the interference is caused by the transmission from adjacent satellites or Earth stations whose signals inadverently enter the receiving system and interfere with the communication link is considered. Thus, the interfering signals are very weak. To increase the interference suppression, one can either decrease the thermal noise in the feedback loops or increase the gain of the auxiliary antennas in the interfering signal direction. Both methods are examined. It is shown that one may have to reduce the noise correlation to impractically low values and if directive auxiliary antennas are used, the auxiliary antenna size may have to be too large. One can, however, combine the two methods to achieve the specified interference suppression with reasonable requirements of noise decorrelation and auxiliary antenna size. Effects of the errors in the steering vector on the adaptive array performance are studied.

  6. In-Flight Suppression of an Unstable F/A-18 Structural Mode Using the Space Launch System Adaptive Augmenting Control System

    NASA Technical Reports Server (NTRS)

    VanZwieten, Tannen S.; Gilligan, Eric T.; Wall, John H.; Miller, Christopher J.; Hanson, Curtis E.; Orr, Jeb S.

    2015-01-01

    NASA's Space Launch System (SLS) Flight Control System (FCS) includes an Adaptive Augmenting Control (AAC) component which employs a multiplicative gain update law to enhance the performance and robustness of the baseline control system for extreme off-nominal scenarios. The SLS FCS algorithm including AAC has been flight tested utilizing a specially outfitted F/A-18 fighter jet in which the pitch axis control of the aircraft was performed by a Non-linear Dynamic Inversion (NDI) controller, SLS reference models, and the SLS flight software prototype. This paper describes test cases from the research flight campaign in which the fundamental F/A-18 airframe structural mode was identified using post-flight frequency-domain reconstruction, amplified to result in closed loop instability, and suppressed in-flight by the SLS adaptive control system.

  7. In-Flight Suppression of a Destabilized F/A-18 Structural Mode Using the Space Launch System Adaptive Augmenting Control System

    NASA Technical Reports Server (NTRS)

    Wall, John H.; VanZwieten, Tannen S.; Gilligan, Eric T.; Miller, Christopher J.; Hanson, Curtis E.; Orr, Jeb S.

    2015-01-01

    NASA's Space Launch System (SLS) Flight Control System (FCS) includes an Adaptive Augmenting Control (AAC) component which employs a multiplicative gain update law to enhance the performance and robustness of the baseline control system for extreme off nominal scenarios. The SLS FCS algorithm including AAC has been flight tested utilizing a specially outfitted F/A-18 fighter jet in which the pitch axis control of the aircraft was performed by a Non-linear Dynamic Inversion (NDI) controller, SLS reference models, and the SLS flight software prototype. This paper describes test cases from the research flight campaign in which the fundamental F/A-18 airframe structural mode was identified using frequency-domain reconstruction of flight data, amplified to result in closed loop instability, and suppressed in-flight by the SLS adaptive control system.

  8. Adapt

    NASA Astrophysics Data System (ADS)

    Bargatze, L. F.

    2015-12-01

    Active Data Archive Product Tracking (ADAPT) is a collection of software routines that permits one to generate XML metadata files to describe and register data products in support of the NASA Heliophysics Virtual Observatory VxO effort. ADAPT is also a philosophy. The ADAPT concept is to use any and all available metadata associated with scientific data to produce XML metadata descriptions in a consistent, uniform, and organized fashion to provide blanket access to the full complement of data stored on a targeted data server. In this poster, we present an application of ADAPT to describe all of the data products that are stored by using the Common Data File (CDF) format served out by the CDAWEB and SPDF data servers hosted at the NASA Goddard Space Flight Center. These data servers are the primary repositories for NASA Heliophysics data. For this purpose, the ADAPT routines have been used to generate data resource descriptions by using an XML schema named Space Physics Archive, Search, and Extract (SPASE). SPASE is the designated standard for documenting Heliophysics data products, as adopted by the Heliophysics Data and Model Consortium. The set of SPASE XML resource descriptions produced by ADAPT includes high-level descriptions of numerical data products, display data products, or catalogs and also includes low-level "Granule" descriptions. A SPASE Granule is effectively a universal access metadata resource; a Granule associates an individual data file (e.g. a CDF file) with a "parent" high-level data resource description, assigns a resource identifier to the file, and lists the corresponding assess URL(s). The CDAWEB and SPDF file systems were queried to provide the input required by the ADAPT software to create an initial set of SPASE metadata resource descriptions. Then, the CDAWEB and SPDF data repositories were queried subsequently on a nightly basis and the CDF file lists were checked for any changes such as the occurrence of new, modified, or deleted

  9. Supersonic flutter suppression of electrorheological fluid-based adaptive panels resting on elastic foundations using sliding mode control

    NASA Astrophysics Data System (ADS)

    Hasheminejad, Seyyed M.; Nezami, M.; Aryaee Panah, M. E.

    2012-04-01

    Brief reviews on suppressing panel flutter vibrations by various active control strategies as well as utilization tunable electrorheological fluids (ERFs) for vibration control of structural systems are presented. Active suppression of the supersonic flutter motion of a simply supported sandwich panel with a tunable ERF interlayer, and coupled to an elastic foundation, is subsequently investigated. The structural formulation is based on the classical beam theory along with the Winkler-Pasternak foundation model, the ER fluid core is modeled as a first-order Kelvin-Voigt material, and the quasi-steady first-order supersonic piston theory is employed to describe the aerodynamic loading. Hamilton’s principle is used to derive a set of fully coupled dynamic equations of motion. The generalized Fourier expansions in conjunction with the Galerkin method are then employed to formulate the governing equations in the state space domain. The critical dynamic pressures at which unstable panel oscillations (coalescence of eigenvalues) occur are obtained via the p-method for selected applied electric field strengths (E = 0,2,4 kV mm-1). The classical Runge-Kutta time integration algorithm is subsequently used to calculate the open-loop aeroelastic response of the system in various basic loading configurations (i.e. uniformly distributed blast, gust, sonic boom, and step loads), with or without an interacting soft/stiff elastic foundation. Finally, a sliding mode control synthesis (SMC) involving the first six natural modes of the structural system is set up to actively suppress the closed-loop system response in supersonic flight conditions and under the imposed excitations. Simulation results demonstrate performance, effectiveness, and insensitivity with respect to the spillover of the proposed SMC-based control system. Limiting cases are considered and good agreements with the data available in the literature as well as with the computations made by using the Rayleigh

  10. Suppression of optical beat interference-noise in orthogonal frequency division multiple access-passive optical network link using self-homodyne balanced detection

    NASA Astrophysics Data System (ADS)

    Won, Yong-Yuk; Jung, Sang-Min; Han, Sang-Kook

    2014-08-01

    A new technique, which reduces optical beat interference (OBI) noise in orthogonal frequency division multiple access-passive optical network (OFDMA-PON) links, is proposed. A self-homodyne balanced detection, which uses a single laser for the optical line terminal (OLT) as well as for the optical network unit (ONU), reduces OBI noise and also improves the signal to noise ratio (SNR) of the discrete multi-tone (DMT) signal. The proposed scheme is verified by transmitting quadrature phase shift keying (QPSK)-modulated DMT signal over a 20-km single mode fiber. The optical signal to noise ratio (OSNR), that is required for BER of 10-5, is reduced by 2 dB in the balanced detection compared with a single channel due to the cancellation of OBI noise in conjunction with the local laser.

  11. Theory and experimental study on low-light-level images by adaptive mode filter

    NASA Astrophysics Data System (ADS)

    Bai, Lianfa; Zhang, Baomin; Liu, Yunfen; Chen, Qian

    1996-09-01

    Real-time low light level (LLL) image processing technology is the important developmental subject in the area of LLL night vision. But there is an essential distinction between the LLL TV image and ordinary TV image, so the conventional digital image processing technique aren't suitable for LLL image. In this paper, the noise theoretical model of LLL imaging system is described and the LLL image processing system is set up. With regard to the characteristics of LLL image and its noise, a novel noise suppression method, adaptive mode filter, is presented. The experimental results show that the adaptive mode filter can suppress the sharp noise of LLL image effectively, and as for the protection of the image edge, the property of adaptive mode filter is better that of median filter. Finally, the processing results and the conclusions are given.

  12. Type I Interferon Induced Epigenetic Regulation of Macrophages Suppresses Innate and Adaptive Immunity in Acute Respiratory Viral Infection

    PubMed Central

    Kroetz, Danielle N.; Allen, Ronald M.; Schaller, Matthew A.; Cavallaro, Cleyton; Ito, Toshihiro; Kunkel, Steven L.

    2015-01-01

    Influenza A virus (IAV) is an airborne pathogen that causes significant morbidity and mortality each year. Macrophages (Mϕ) are the first immune population to encounter IAV virions in the lungs and are required to control infection. In the present study, we explored the mechanism by which cytokine signaling regulates the phenotype and function of Mϕ via epigenetic modification of chromatin. We have found that type I interferon (IFN-I) potently upregulates the lysine methyltransferase Setdb2 in murine and human Mϕ, and in turn Setdb2 regulates Mϕ-mediated immunity in response to IAV. The induction of Setdb2 by IFN-I was significantly impaired upon inhibition of the JAK-STAT signaling cascade, and chromatin immunoprecipitation revealed that both STAT1 and interferon regulatory factor 7 bind upstream of the transcription start site to induce expression. The generation of Setdb2LacZ reporter mice revealed that IAV infection results in systemic upregulation of Setdb2 in myeloid cells. In the lungs, alveolar Mϕ expressed the highest level of Setdb2, with greater than 70% lacZ positive on day 4 post-infection. Silencing Setdb2 activity in Mϕ in vivo enhanced survival in lethal IAV infection. Enhanced host protection correlated with an amplified antiviral response and less obstruction to the airways. By tri-methylating H3K9, Setdb2 silenced the transcription of Mx1 and Isg15, antiviral effectors that inhibit IAV replication. Accordingly, a reduced viral load in knockout mice on day 8 post-infection was linked to elevated Isg15 and Mx1 transcript in the lungs. In addition, Setdb2 suppressed the expression of a large number of other genes with proinflammatory or immunomodulatory function. This included Ccl2, a chemokine that signals through CCR2 to regulate monocyte recruitment to infectious sites. Consistently, knockout mice produced more CCL2 upon IAV infection and this correlated with a 2-fold increase in the number of inflammatory monocytes and alveolar Mϕ in the

  13. Type I Interferon Induced Epigenetic Regulation of Macrophages Suppresses Innate and Adaptive Immunity in Acute Respiratory Viral Infection.

    PubMed

    Kroetz, Danielle N; Allen, Ronald M; Schaller, Matthew A; Cavallaro, Cleyton; Ito, Toshihiro; Kunkel, Steven L

    2015-12-01

    Influenza A virus (IAV) is an airborne pathogen that causes significant morbidity and mortality each year. Macrophages (Mϕ) are the first immune population to encounter IAV virions in the lungs and are required to control infection. In the present study, we explored the mechanism by which cytokine signaling regulates the phenotype and function of Mϕ via epigenetic modification of chromatin. We have found that type I interferon (IFN-I) potently upregulates the lysine methyltransferase Setdb2 in murine and human Mϕ, and in turn Setdb2 regulates Mϕ-mediated immunity in response to IAV. The induction of Setdb2 by IFN-I was significantly impaired upon inhibition of the JAK-STAT signaling cascade, and chromatin immunoprecipitation revealed that both STAT1 and interferon regulatory factor 7 bind upstream of the transcription start site to induce expression. The generation of Setdb2LacZ reporter mice revealed that IAV infection results in systemic upregulation of Setdb2 in myeloid cells. In the lungs, alveolar Mϕ expressed the highest level of Setdb2, with greater than 70% lacZ positive on day 4 post-infection. Silencing Setdb2 activity in Mϕ in vivo enhanced survival in lethal IAV infection. Enhanced host protection correlated with an amplified antiviral response and less obstruction to the airways. By tri-methylating H3K9, Setdb2 silenced the transcription of Mx1 and Isg15, antiviral effectors that inhibit IAV replication. Accordingly, a reduced viral load in knockout mice on day 8 post-infection was linked to elevated Isg15 and Mx1 transcript in the lungs. In addition, Setdb2 suppressed the expression of a large number of other genes with proinflammatory or immunomodulatory function. This included Ccl2, a chemokine that signals through CCR2 to regulate monocyte recruitment to infectious sites. Consistently, knockout mice produced more CCL2 upon IAV infection and this correlated with a 2-fold increase in the number of inflammatory monocytes and alveolar Mϕ in the

  14. Adaptive scene-based correction algorithm for removal of residual fixed pattern noise in microgrid image data

    NASA Astrophysics Data System (ADS)

    Ratliff, Bradley M.; LeMaster, Daniel A.

    2012-06-01

    Pixel-to-pixel response nonuniformity is a common problem that affects nearly all focal plane array sensors. This results in a frame-to-frame fixed pattern noise (FPN) that causes an overall degradation in collected data. FPN is often compensated for through the use of blackbody calibration procedures; however, FPN is a particularly challenging problem because the detector responsivities drift relative to one another in time, requiring that the sensor be recalibrated periodically. The calibration process is obstructive to sensor operation and is therefore only performed at discrete intervals in time. Thus, any drift that occurs between calibrations (along with error in the calibration sources themselves) causes varying levels of residual calibration error to be present in the data at all times. Polarimetric microgrid sensors are particularly sensitive to FPN due to the spatial differencing involved in estimating the Stokes vector images. While many techniques exist in the literature to estimate FPN for conventional video sensors, few have been proposed to address the problem in microgrid imaging sensors. Here we present a scene-based nonuniformity correction technique for microgrid sensors that is able to reduce residual fixed pattern noise while preserving radiometry under a wide range of conditions. The algorithm requires a low number of temporal data samples to estimate the spatial nonuniformity and is computationally efficient. We demonstrate the algorithm's performance using real data from the AFRL PIRATE and University of Arizona LWIR microgrid sensors.

  15. Development of adaptive noise reduction filter algorithm for pediatric body images in a multi-detector CT

    NASA Astrophysics Data System (ADS)

    Nishimaru, Eiji; Ichikawa, Katsuhiro; Okita, Izumi; Ninomiya, Yuuji; Tomoshige, Yukihiro; Kurokawa, Takehiro; Ono, Yutaka; Nakamura, Yuko; Suzuki, Masayuki

    2008-03-01

    Recently, several kinds of post-processing image filters which reduce the noise of computed tomography (CT) images have been proposed. However, these image filters are mostly for adults. Because these are not very effective in small (< 20 cm) display fields of view (FOV), we cannot use them for pediatric body images (e.g., premature babies and infant children). We have developed a new noise reduction filter algorithm for pediatric body CT images. This algorithm is based on a 3D post-processing in which the output pixel values are calculated by nonlinear interpolation in z-directions on original volumetric-data-sets. This algorithm does not need the in-plane (axial plane) processing, so the spatial resolution does not change. From the phantom studies, our algorithm could reduce SD up to 40% without affecting the spatial resolution of x-y plane and z-axis, and improved the CNR up to 30%. This newly developed filter algorithm will be useful for the diagnosis and radiation dose reduction of the pediatric body CT images.

  16. Analytical approximations of the firing rate of an adaptive exponential integrate-and-fire neuron in the presence of synaptic noise

    PubMed Central

    Hertäg, Loreen; Durstewitz, Daniel; Brunel, Nicolas

    2014-01-01

    Computational models offer a unique tool for understanding the network-dynamical mechanisms which mediate between physiological and biophysical properties, and behavioral function. A traditional challenge in computational neuroscience is, however, that simple neuronal models which can be studied analytically fail to reproduce the diversity of electrophysiological behaviors seen in real neurons, while detailed neuronal models which do reproduce such diversity are intractable analytically and computationally expensive. A number of intermediate models have been proposed whose aim is to capture the diversity of firing behaviors and spike times of real neurons while entailing the simplest possible mathematical description. One such model is the exponential integrate-and-fire neuron with spike rate adaptation (aEIF) which consists of two differential equations for the membrane potential (V) and an adaptation current (w). Despite its simplicity, it can reproduce a wide variety of physiologically observed spiking patterns, can be fit to physiological recordings quantitatively, and, once done so, is able to predict spike times on traces not used for model fitting. Here we compute the steady-state firing rate of aEIF in the presence of Gaussian synaptic noise, using two approaches. The first approach is based on the 2-dimensional Fokker-Planck equation that describes the (V,w)-probability distribution, which is solved using an expansion in the ratio between the time constants of the two variables. The second is based on the firing rate of the EIF model, which is averaged over the distribution of the w variable. These analytically derived closed-form expressions were tested on simulations from a large variety of model cells quantitatively fitted to in vitro electrophysiological recordings from pyramidal cells and interneurons. Theoretical predictions closely agreed with the firing rate of the simulated cells fed with in-vivo-like synaptic noise. PMID:25278872

  17. A new VOX technique for reducing noise in voice communication systems. [voice operated keying

    NASA Technical Reports Server (NTRS)

    Morris, C. F.; Morgan, W. C.; Shack, P. E.

    1974-01-01

    A VOX technique for reducing noise in voice communication systems is described which is based on the separation of voice signals into contiguous frequency-band components with the aid of an adaptive VOX in each band. It is shown that this processing scheme can effectively reduce both wideband and narrowband quasi-periodic noise since the threshold levels readjust themselves to suppress noise that exceeds speech components in each band. Results are reported for tests of the adaptive VOX, and it is noted that improvements can still be made in such areas as the elimination of noise pulses, phoneme reproduction at high-noise levels, and the elimination of distortion introduced by phase delay.

  18. Jet engine noise source and noise footprint computer programs

    NASA Technical Reports Server (NTRS)

    Dunn, D. G.; Peart, N. A.; Miller, D. L.; Crowley, K. C.

    1972-01-01

    Calculation procedures are presented for predicting maximum passby noise levels and contours (footprints) of conventional jet aircraft with or without noise suppression devices. The procedures have been computerized and a user's guide is presented for the computer programs to be used in predicting the noise characteristics during aircraft takeoffs, fly-over, and/or landing operations.

  19. Higher-order ambulatory electrocardiogram identification and motion artifact suppression with adaptive second- and third-order Volterra filters

    NASA Astrophysics Data System (ADS)

    Sabry-Rizk, Madiha; Zgallai, Walid; El-Khafif, Sahar; Carson, Ewart; Grattan, Kenneth T. V.

    1998-10-01

    The objective of this paper is to demonstrate how, in a few seconds, a relatively simple ECG monitor, PC and advanced signal processing algorithms could pinpoint microvolts - late potentials - result from an infarct zone in the heart and is used as an indicator in identifying patients prone to ventricular tachycardia which, if left untreated, leads to ventricular fibrillation. We will characterize recorded ECG data obtained from the standard three vector electrodes during exercise in terms of their higher-order statistical features. Essentially we use adaptive LMS- and Kalman-based second- and third-order Volterra filters to model the non- linear low-frequency P and T waves and motion artifacts which might overlap with the QRS complex and lead to false positive QRS detection. We will illustrate the effectiveness of this new approach by mapping out bispectral regions with a strong bicoherence manifestation and showing their corresponding temporal/spatial origins. Furthermore, we will present a few examples of our own application of these non-invasive techniques to illustrate what we see as their promise for analysis of heart abnormality.

  20. Thiol dependent NF-κB suppression and inhibition of T-cell mediated adaptive immune responses by a naturally occurring steroidal lactone Withaferin A.

    PubMed

    Gambhir, Lokesh; Checker, Rahul; Sharma, Deepak; Thoh, M; Patil, Anand; Degani, M; Gota, Vikram; Sandur, Santosh K

    2015-12-01

    Withaferin A (WA), a steroidal lactone isolated from ayurvedic medicinal plant Withania somnifera, was shown to inhibit tumor growth by inducing oxidative stress and suppressing NF-κB pathway. However, its effect on T-cell mediated adaptive immune responses and the underlying mechanism has not been investigated. Since both T-cell responses and NF-κB pathway are known to be redox sensitive, the present study was undertaken to elucidate the effect of WA on adaptive immune responses in vitro and in vivo. WA inhibited mitogen induced T-cell and B-cell proliferation in vitro without inducing any cell death. It inhibited upregulation of T-cell (CD25, CD69, CD71 and CD54) and B-cell (CD80, CD86 and MHC-II) activation markers and secretion of Th1 and Th2 cytokines. WA induced oxidative stress by increasing the basal ROS levels and the immunosuppressive effects of WA were abrogated only by thiol anti-oxidants. The redox modulatory effects of WA in T-cells were attributed to its ability to directly interact with free thiols. WA inhibited NF-κB nuclear translocation in lymphocytes and prevented the direct binding of nuclear NF-κB to its consensus sequence. MALDI-TOF analysis using a synthetic NF-κB-p50 peptide containing Cys-62 residue suggested that WA can modify the cysteine residue of NF-κB. The pharmacokinetic studies for WA were also carried out and in vivo efficacy of WA was studied using mouse model of Graft-versus-host disease. In conclusion, WA is a potent inhibitor of T-cell responses and acts via a novel thiol dependent mechanism and inhibition of NF-κB pathway. PMID:26408225

  1. Perspectives on jet noise

    NASA Technical Reports Server (NTRS)

    Ribner, H. S.

    1981-01-01

    Jet noise is a byproduct of turbulence. Until recently turbulence was assumed to be known statistically, and jet noise was computed therefrom. As a result of new findings though on the behavior of vortices and instability waves, a more integrated view of the problem has been accepted lately. After presenting a simple view of jet noise, the paper attempts to resolve the apparent differences between Lighthill's and Lilley's interpretations of mean-flow shear, and examines a number of ad hoc approaches to jet noise suppression.

  2. Thermal-noise suppression in nano-scale Si field-effect transistors by feedback control based on single-electron detection

    SciTech Connect

    Chida, Kensaku Nishiguchi, Katsuhiko; Yamahata, Gento; Tanaka, Hirotaka; Fujiwara, Akira

    2015-08-17

    We perform feedback (FB) control for suppressing thermal fluctuation in the number of electrons in a silicon single-electron (SE) device composed of a small transistor and capacitor. SEs enter and leave the capacitor via the transistor randomly at thermal equilibrium, which is monitored in real time using a high-charge-sensitivity detector. In order to suppress such random motion or thermal fluctuation of the electrons, SEs are injected and removed using the transistor according to the monitored change in the number of electrons in the capacitor, which is exactly the FB control. As a result, thermal fluctuation in the number of electrons in a SE device is suppressed by 60%, which corresponds to the so-called FB cooling from 300 to 110 K. Moreover, a thermodynamics analysis of this FB cooling reveals that entropy in the capacitor is reduced and the device is at non-equilibrium; i.e., the free energy of the device increases. Since this entropy reduction originates from information about the electrons' motion monitored by the detector, our results by the FB control represent one type of information-to-energy conversion.

  3. Inhibition of Translation Initiation by Protein 169: A Vaccinia Virus Strategy to Suppress Innate and Adaptive Immunity and Alter Virus Virulence

    PubMed Central

    Strnadova, Pavla; Ren, Hongwei; Valentine, Robert; Mazzon, Michela; Sweeney, Trevor R.; Brierley, Ian; Smith, Geoffrey L.

    2015-01-01

    Vaccinia virus (VACV) is the prototypic orthopoxvirus and the vaccine used to eradicate smallpox. Here we show that VACV strain Western Reserve protein 169 is a cytoplasmic polypeptide expressed early during infection that is excluded from virus factories and inhibits the initiation of cap-dependent and cap-independent translation. Ectopic expression of protein 169 causes the accumulation of 80S ribosomes, a reduction of polysomes, and inhibition of protein expression deriving from activation of multiple innate immune signaling pathways. A virus lacking 169 (vΔ169) replicates and spreads normally in cell culture but is more virulent than parental and revertant control viruses in intranasal and intradermal murine models of infection. Intranasal infection by vΔ169 caused increased pro-inflammatory cytokines and chemokines, infiltration of pulmonary leukocytes, and lung weight. These alterations in innate immunity resulted in a stronger CD8+ T-cell memory response and better protection against virus challenge. This work illustrates how inhibition of host protein synthesis can be a strategy for virus suppression of innate and adaptive immunity. PMID:26334635

  4. Inhibition of Translation Initiation by Protein 169: A Vaccinia Virus Strategy to Suppress Innate and Adaptive Immunity and Alter Virus Virulence.

    PubMed

    Strnadova, Pavla; Ren, Hongwei; Valentine, Robert; Mazzon, Michela; Sweeney, Trevor R; Brierley, Ian; Smith, Geoffrey L

    2015-09-01

    Vaccinia virus (VACV) is the prototypic orthopoxvirus and the vaccine used to eradicate smallpox. Here we show that VACV strain Western Reserve protein 169 is a cytoplasmic polypeptide expressed early during infection that is excluded from virus factories and inhibits the initiation of cap-dependent and cap-independent translation. Ectopic expression of protein 169 causes the accumulation of 80S ribosomes, a reduction of polysomes, and inhibition of protein expression deriving from activation of multiple innate immune signaling pathways. A virus lacking 169 (vΔ169) replicates and spreads normally in cell culture but is more virulent than parental and revertant control viruses in intranasal and intradermal murine models of infection. Intranasal infection by vΔ169 caused increased pro-inflammatory cytokines and chemokines, infiltration of pulmonary leukocytes, and lung weight. These alterations in innate immunity resulted in a stronger CD8+ T-cell memory response and better protection against virus challenge. This work illustrates how inhibition of host protein synthesis can be a strategy for virus suppression of innate and adaptive immunity. PMID:26334635

  5. ADAPTIVE WATER SENSOR SIGNAL PROCESSING: EXPERIMENTAL RESULTS AND IMPLICATIONS FOR ONLINE CONTAMINANT WARNING SYSTEMS

    EPA Science Inventory

    A contaminant detection technique and its optimization algorithms have two principal functions. One is the adaptive signal treatment that suppresses background noise and enhances contaminant signals, leading to a promising detection of water quality changes at a false rate as low...

  6. Empirical mode decomposition based background removal and de-noising in polarization interference imaging spectrometer.

    PubMed

    Zhang, Chunmin; Ren, Wenyi; Mu, Tingkui; Fu, Lili; Jia, Chenling

    2013-02-11

    Based on empirical mode decomposition (EMD), the background removal and de-noising procedures of the data taken by polarization interference imaging interferometer (PIIS) are implemented. Through numerical simulation, it is discovered that the data processing methods are effective. The assumption that the noise mostly exists in the first intrinsic mode function is verified, and the parameters in the EMD thresholding de-noising methods is determined. In comparison, the wavelet and windowed Fourier transform based thresholding de-noising methods are introduced. The de-noised results are evaluated by the SNR, spectral resolution and peak value of the de-noised spectrums. All the methods are used to suppress the effect from the Gaussian and Poisson noise. The de-noising efficiency is higher for the spectrum contaminated by Gaussian noise. The interferogram obtained by the PIIS is processed by the proposed methods. Both the interferogram without background and noise free spectrum are obtained effectively. The adaptive and robust EMD based methods are effective to the background removal and de-noising in PIIS. PMID:23481716

  7. Adaptive autofocusing: a closed-loop perspective.

    PubMed

    Zhang, Ying; Wen, Changyun; Soh, Yeng Chai; Fong, Aik Meng

    2005-04-01

    We present an adaptive autofocusing scheme. In this scheme, the focus measure is updated with focus tuning. To achieve this, we construct the focus measure by using image moments and develop an adaptive focus-tuning strategy to estimate the measure in closed loop. It is shown that the adaptive updating of the focus measure enables us to overcome the dependence of autofocusing on the image contents. Such an adaptive closed-loop focusing operation also effectively suppresses both the effect of the noise in optical imaging and the effect of time delay due to image processing time. Therefore a high accuracy of autofocusing is guaranteed. The effectiveness of the proposed scheme is demonstrated by simulations and experiments. PMID:15839269

  8. Noise reduction of time domain electromagnetic data: Application of a combined wavelet denoising method

    NASA Astrophysics Data System (ADS)

    Ji, Yanju; Li, Dongsheng; Yuan, Guiyang; Lin, Jun; Du, Shangyu; Xie, Lijun; Wang, Yuan

    2016-06-01

    A denoising method based on wavelet analysis is presented for the removal of noise (background noise and random spike) from time domain electromagnetic (TEM) data. This method includes two signal processing technologies: wavelet threshold method and stationary wavelet transform. First, wavelet threshold method is used for the removal of background noise from TEM data. Then, the data are divided into a series of details and approximations by using stationary wavelet transform. The random spike in details is identified by zero reference data and adaptive energy detector. Next, the corresponding details are processed to suppress the random spike. The denoised TEM data are reconstructed via inverse stationary wavelet transform using the processed details at each level and the approximations at the highest level. The proposed method has been verified using a synthetic TEM data, the signal-to-noise ratio of synthetic TEM data is increased from 10.97 dB to 24.37 dB at last. This method is also applied to the noise suppression of the field data which were collected at Hengsha island, China. The section image results shown that the noise is suppressed effectively and the resolution of the deep anomaly is obviously improved.

  9. Digital Image Processing for Noise Reduction in Medical Ultrasonics

    NASA Astrophysics Data System (ADS)

    Loupas, Thanasis

    Available from UMI in association with The British Library. Requires signed TDF. The purpose of this project was to investigate the application of digital image processing techniques as a means of reducing noise in medical ultrasonic imaging. Ultrasonic images suffer primarily from a type of acoustic noise, known as speckle, which is generally regarded as a major source of image quality degradation. The origin of speckle, its statistical properties as well as methods suggested to eliminate this artifact were reviewed. A simple model which can characterize the statistics of speckle on displays was also developed. A large number of digital noise reduction techniques was investigated. These include frame averaging techniques performed by commercially available devices and spatial filters implemented in software. Among the latter, some filters have been proposed in the scientific literature for ultrasonic, laser and microwave speckle or general noise suppression and the rest are original, developed specifically to suppress ultrasonic speckle. Particular emphasis was placed on adaptive techniques which adjust the processing performed at each point according to the local image content. In this way, they manage to suppress speckle with negligible loss of genuine image detail. Apart from preserving the diagnostically significant features of a scan another requirement a technique must satisfy before it is accepted in routine clinical practice is real-time operation. A spatial filter capable of satisfying both these requirements was designed and built in hardware using low-cost and readily available components. The possibility of incorporating all the necessary filter circuitry into a single VLSI chip was also investigated. In order to establish the effectiveness and usefulness of speckle suppression, a representative sample from the techniques examined here was applied to a large number of abdominal scans and their effect on image quality was evaluated. Finally, further

  10. Rotorcraft noise

    NASA Technical Reports Server (NTRS)

    Huston, R. J. (Compiler)

    1982-01-01

    The establishment of a realistic plan for NASA and the U.S. helicopter industry to develop a design-for-noise methodology, including plans for the identification and development of promising noise reduction technology was discussed. Topics included: noise reduction techniques, scaling laws, empirical noise prediction, psychoacoustics, and methods of developing and validing noise prediction methods.

  11. Externally blown flap noise research

    NASA Technical Reports Server (NTRS)

    Dorsch, R. G.

    1974-01-01

    The Lewis Research Center cold-flow model externally blown flap (EBF) noise research test program is summarized. Both engine under-the-wing and over-the-wing EBF wing section configurations were studied. Ten large scale and nineteen small scale EBF models were tested. A limited number of forward airspeed effect and flap noise suppression tests were also run. The key results and conclusions drawn from the flap noise tests are summarized and discussed.

  12. Aircraft community noise impact studies

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The objectives of the study are to: (1) conduct a program to determine the community noise impact of advanced technology engines when installed in a supersonic aircraft, (2) determine the potential reduction of community noise by flight operational techniques for the study aircraft, (3) estimate the community noise impact of the study aircraft powered by suppressed turbojet engines and by advanced duct heating turbofan engines, and (4) compare the impact of the two supersonic designs with that of conventional commercial DC-8 aircraft.

  13. Aircraft turbofan noise

    NASA Technical Reports Server (NTRS)

    Groeneweg, J. F.; Rice, E. J.

    1983-01-01

    Turbofan noise generation and suppression in aircraft engines are reviewed. The chain of physical processes which connect unsteady flow interactions with fan blades to far field noise is addressed. Mechanism identification and description, duct propagation, radiation and acoustic suppression are discussed. The experimental technique of fan inflow static tests are discussed. Rotor blade surface pressure and wake velocity measurements aid in the determination of the types and strengths of the generation mechanisms. Approaches to predicting or measuring acoustic mode content, optimizing treatment impedance to maximize attenuation, translating impedance into porous wall structure and interpreting far field directivity patterns are illustrated by comparisons of analytical and experimental results. The interdependence of source and acoustic treatment design to minimize far field noise is emphasized. Area requiring further research are discussed and the relevance of aircraft turbofan results to quieting other turbomachinery installations is addressed.

  14. State-of-the-art of turbofan engine noise control

    NASA Technical Reports Server (NTRS)

    Jones, W. L.; Groeneweg, J. F.

    1977-01-01

    The technology of turbofan engine noise reduction is surveyed. Specific topics discussed include: (1) new fans for low noise; (2) fan and core noise suppression; (3) turbomachinery noise sources; and (4) a new program for improving static noise testing of fans and engines.

  15. Recent research on external helicopter noise at ONERA

    NASA Astrophysics Data System (ADS)

    Lewy, Serge

    1989-12-01

    Recent ONERA theoretical and experimental investigations of helicopter external noise and its suppression are reviewed. Topics addressed include generalized programs for the prediction of rotor tone noise, noise from blade-vortex interactions, high-speed noise, and turboshaft-engine noise. Diagrams, drawings, graphs, and photographs are provided.

  16. Noise Pollution

    MedlinePlus

    ... here: EPA Home Air and Radiation Noise Pollution Noise Pollution This page has moved. You should be ... epa.gov/clean-air-act-overview/title-iv-noise-pollution Local Navigation Air & Radiation Home Basic Information ...

  17. Aeroacoustics: Jet noise, combustion and core engine noise

    NASA Technical Reports Server (NTRS)

    Schwartz, I. R.

    1976-01-01

    The papers in this volume deal essentially with the question whether the amplification of noise is due to the jet noise phenomenon or perhaps an interaction of airframe and core engine noise. In the area of jet noise suppression, various promising suppressor concepts are examined. The swirling flow jet noise suppressor is shown to provide significant noise reduction with minimal thrust losses. Progress in the aircraft engine core noise problem is reflected by seven research-type papers. Two possible mechanisms are seen to be responsible for core noise. One is the direct noise radiated from the turbulent combustion in the primary combuster and transmitted through the turbine, passing out the nozzle into the far field. The other mechanism is the noise that is emitted from hot spots being convected through the turbine. Which of these mechanisms (or perhaps both mechanisms) is responsible for core noise, and what are the coupling mechanisms of core engine noise and jet noise are the questions confronting researchers.

  18. Speckle noise reduction of medical ultrasound images in complex wavelet domain using mixture priors.

    PubMed

    Rabbani, Hossein; Vafadust, Mansur; Abolmaesumi, Purang; Gazor, Saeed

    2008-09-01

    Speckle noise is an inherent nature of ultrasound images, which may have negative effect on image interpretation and diagnostic tasks. In this paper, we propose several multiscale nonlinear thresholding methods for ultrasound speckle suppression. The wavelet coefficients of the logarithm of image are modeled as the sum of a noise-free component plus an independent noise. Assuming that the noise-free component has some local mixture distribution (MD), and the noise is either Gaussian or Rayleigh, we derive the minimum mean squared error (MMSE) and the averaged maximum a posteriori (AMAP) estimators for noise reduction. We use Gaussian and Laplacian MD for each noise-free wavelet coefficient to characterize their heavy-tailed property. Since we estimate the parameters of the MD using the expectation maximization (EM) algorithm and local neighbors, the proposed MD incorporates some information about the intrascale dependency of the wavelet coefficients. To evaluate our spatially adaptive despeckling methods, we use both real medical ultrasound and synthetically introduced speckle images for speckle suppression. The simulation results show that our method outperforms several recently and the state-of-the-art techniques qualitatively and quantitatively. PMID:18713684

  19. Recursive framework for joint inpainting and de-noising of photographic films.

    PubMed

    Subrahmanyam, G R K S; Rajagopalan, A N; Aravind, R

    2010-05-01

    We address the problem of inpainting noisy photographs. We present a recursive image recovery scheme based on the unscented Kalman filter (UKF) to simultaneously inpaint identified damaged portions in an image and suppress film-grain noise. Inpainting of the missing observations is guided by a mask-dependent reconstruction of the image edges. Prediction within the UKF is based on a discontinuity-adaptive Markov random field prior that attempts to preserve edges while achieving noise reduction in uniform regions. We demonstrate the capability of the proposed method with many examples. PMID:20448776

  20. Noise prevention

    NASA Astrophysics Data System (ADS)

    Methods for noise abatement are discussed. Noise nuisance, types of noise (continuous, fluctuating, intermittent, pulsed), and types of noise abatement (absorption, vibration damping, isolation) are defined. Rockwool panels, industrial ceiling panels, baffles, acoustic foam panels, vibration dampers, acoustic mats, sandwich panels, isolating cabins and walls, ear protectors, and curtains are presented.

  1. Combustion noise

    NASA Technical Reports Server (NTRS)

    Strahle, W. C.

    1977-01-01

    A review of the subject of combustion generated noise is presented. Combustion noise is an important noise source in industrial furnaces and process heaters, turbopropulsion and gas turbine systems, flaring operations, Diesel engines, and rocket engines. The state-of-the-art in combustion noise importance, understanding, prediction and scaling is presented for these systems. The fundamentals and available theories of combustion noise are given. Controversies in the field are discussed and recommendations for future research are made.

  2. Airport noise

    NASA Technical Reports Server (NTRS)

    Pendley, R. E.

    1982-01-01

    The problem of airport noise at several airports and air bases is detailed. Community reactions to the noise, steps taken to reduce jet engine noise, and the effect of airport use restrictions and curfews on air transportation are discussed. The adverse effect of changes in allowable operational noise on airport safety and altenative means for reducing noise pollution are considered. Community-airport relations and public relations are discussed.

  3. Adaptive arrays for satellite communications

    NASA Technical Reports Server (NTRS)

    Gupta, I. J.; Ksienski, A. A.

    1984-01-01

    The suppression of interfering signals in a satellite communication system was studied. Adaptive arrays are used to suppress interference at the reception site. It is required that the interference be suppressed to very low levels and a modified adaptive circuit is used which accomplishes the desired objective. Techniques for the modification of the transmit patterns to minimize interference with neighboring communication links are explored.

  4. Furospinosulin-1, Marine Spongean Furanosesterterpene, Suppresses the Growth of Hypoxia-Adapted Cancer Cells by Binding to Transcriptional Regulators p54(nrb) and LEDGF/p75.

    PubMed

    Arai, Masayoshi; Kawachi, Takashi; Kotoku, Naoyuki; Nakata, Chiaki; Kamada, Haruhiko; Tsunoda, Shin-ichi; Tsutsumi, Yasuo; Endo, Hiroko; Inoue, Masahiro; Sato, Hiroki; Kobayashi, Motomasa

    2016-01-01

    Hypoxia-adapted cancer cells in tumors contribute to the pathological progression of cancer. Cancer research has therefore focused on the identification of molecules responsible for hypoxia adaptation in cancer cells, as well as the development of new compounds with action against hypoxia-adapted cancer cells. The marine natural product furospinosulin-1 (1) has displayed hypoxia-selective growth inhibition against cultured cancer cells, and has shown in vivo anti-tumor activity, although its precise mode of action and molecular targets remain unclear. In this study, we found that 1 is selectively effective against hypoxic regions of tumors, and that it directly binds to the transcriptional regulators p54(nrb) and LEDGF/p75, which have not been previously identified as mediators of hypoxia adaptation in cancer cells. PMID:26561285

  5. Aeroacoustics of Flight Vehicles: Theory and Practice. Volume 2: Noise Control

    NASA Technical Reports Server (NTRS)

    Hubbard, Harvey H. (Editor)

    1991-01-01

    Flight vehicles and the underlying concepts of noise generation, noise propagation, noise prediction, and noise control are studied. This volume includes those chapters that relate to flight vehicle noise control and operations: human response to aircraft noise; atmospheric propagation; theoretical models for duct acoustic propagation and radiation; design and performance of duct acoustic treatment; jet noise suppression; interior noise; flyover noise measurement and prediction; and quiet aircraft design and operational characteristics.

  6. Active Control Of Structure-Borne Noise

    NASA Astrophysics Data System (ADS)

    Elliott, S. J.

    1994-11-01

    The successful practical application of active noise control requires an understanding of both its acoustic limitations and the limitations of the electrical control strategy used. This paper is concerned with the active control of sound in enclosures. First, a review is presented of the fundamental physical limitations of using loudspeakers to achieve either global or local control. Both approaches are seen to have a high frequency limit, due to either the acoustic modal overlap, or the spatial correlation function of the pressure field. These physical performance limits could, in principle, be achieved with either a feedback or a feedforward control strategy. These strategies are reviewed and the use of adaptive digital filters is discussed for both approaches. The application of adaptive feedforward control in the control of engine and road noise in cars is described. Finally, an indirect approach to the active control of sound is discussed, in which the vibration is suppressed in the structural paths connecting the source of vibration to the enclosure. Two specific examples of this strategy are described, using an active automotive engine mount and the incorporation of actuators into helicopter struts to control gear-meshing tones. In both cases good passive design can minimize the complexity of the active controller.

  7. In-Flight Suppression of a De-Stabilized F/A-18 Structural Mode Using the Space Launch System Adaptive Augmenting Control System

    NASA Technical Reports Server (NTRS)

    Wall, John; VanZwieten, Tannen; Giiligan Eric; Miller, Chris; Hanson, Curtis; Orr, Jeb

    2015-01-01

    Adaptive Augmenting Control (AAC) has been developed for NASA's Space Launch System (SLS) family of launch vehicles and implemented as a baseline part of its flight control system (FCS). To raise the technical readiness level of the SLS AAC algorithm, the Launch Vehicle Adaptive Control (LVAC) flight test program was conducted in which the SLS FCS prototype software was employed to control the pitch axis of Dryden's specially outfitted F/A-18, the Full Scale Advanced Systems Test Bed (FAST). This presentation focuses on a set of special test cases which demonstrate the successful mitigation of the unstable coupling of an F/A-18 airframe structural mode with the SLS FCS.

  8. Community noise

    NASA Technical Reports Server (NTRS)

    Bragdon, C. R.

    1982-01-01

    Airport and community land use planning as they relate to airport noise reduction are discussed. Legislation, community relations, and the physiological effect of airport noise are considered. Noise at the Logan, Los Angeles, and Minneapolis/St. Paul airports is discussed.

  9. Rotor noise

    NASA Technical Reports Server (NTRS)

    Schmitz, F. H.

    1991-01-01

    The physical characteristics and sources of rotorcraft noise as they exist today are presented. Emphasis is on helicopter-like vehicles, that is, on rotorcraft in nonaxial flight. The mechanisms of rotor noise are reviewed in a simple physical manner for the most dominant sources of rotorcraft noise. With simple models, the characteristic time- and frequency-domain features of these noise sources are presented for idealized cases. Full-scale data on several rotorcraft are then reviewed to allow for the easy identification of the type and extent of the radiating noise. Methods and limitations of using scaled models to test for several noise sources are subsequently presented. Theoretical prediction methods are then discussed and compared with experimental data taken under very controlled conditions. Finally, some promising noise reduction technology is reviewed.

  10. Image Compression in Signal-Dependent Noise

    NASA Astrophysics Data System (ADS)

    Shahnaz, Rubeena; Walkup, John F.; Krile, Thomas F.

    1999-09-01

    The performance of an image compression scheme is affected by the presence of noise, and the achievable compression may be reduced significantly. We investigated the effects of specific signal-dependent-noise (SDN) sources, such as film-grain and speckle noise, on image compression, using JPEG (Joint Photographic Experts Group) standard image compression. For the improvement of compression ratios noisy images are preprocessed for noise suppression before compression is applied. Two approaches are employed for noise suppression. In one approach an estimator designed specifically for the SDN model is used. In an alternate approach, the noise is first transformed into signal-independent noise (SIN) and then an estimator designed for SIN is employed. The performances of these two schemes are compared. The compression results achieved for noiseless, noisy, and restored images are also presented.

  11. Sound can suppress visual perception.

    PubMed

    Hidaka, Souta; Ide, Masakazu

    2015-01-01

    In a single modality, the percept of an input (e.g., voices of neighbors) is often suppressed by another (e.g., the sound of a car horn nearby) due to close interactions of neural responses to these inputs. Recent studies have also suggested that close interactions of neural responses could occur even across sensory modalities, especially for audio-visual interactions. However, direct behavioral evidence regarding the audio-visual perceptual suppression effect has not been reported in a study with humans. Here, we investigated whether sound could have a suppressive effect on visual perception. We found that white noise bursts presented through headphones degraded visual orientation discrimination performance. This auditory suppression effect on visual perception frequently occurred when these inputs were presented in a spatially and temporally consistent manner. These results indicate that the perceptual suppression effect could occur across auditory and visual modalities based on close and direct neural interactions among those sensory inputs. PMID:26023877

  12. Noise and mental performance: personality attributes and noise sensitivity.

    PubMed

    Belojevic, G; Jakovljevic, B; Slepcevic, V

    2003-01-01

    The contradictory and confusing results in noise research on humans may partly be due to individual differences between the subjects participating in different studies. This review is based on a twelve year research on the role of neuroticism, extroversion and subjective noise sensitivity during mental work in noisy environment. Neurotic persons might show enhanced "arousability" i.e. their arousal level increases more in stress. Additional unfavorable factors for neurotics are worrying and anxiety, which might prevent them coping successfully with noise, or some other stressors during mental performance. In numerous experiments introverts have showed higher sensitivity to noise during mental performance compared to extroverts, while extroverts often cope with a boring task even by requesting short periods of noise during performance. Correlation analyses have regularly revealed a highly significant negative relation between extroversion and noise annoyance during mental processing. Numerous studies have shown that people with high noise sensitivity may be prevented from achieving the same work results as other people in noisy environment, thus leading to psychosomatic, neurotic or other difficulties. Positive relation between noise annoyance and subjective noise sensitivity might be very strong. Our results have shown, after matching with the results of other relevant studies, that more stable personality, with extroversive tendencies and with a relatively lower subjective noise sensitivity measured with standard questionnaires, may be expected to better adapt to noise during mental performance, compared to people with opposite personality traits. PMID:14965455

  13. Measurement of hearing aid internal noise1

    PubMed Central

    Lewis, James D.; Goodman, Shawn S.; Bentler, Ruth A.

    2010-01-01

    Hearing aid equivalent input noise (EIN) measures assume the primary source of internal noise to be located prior to amplification and to be constant regardless of input level. EIN will underestimate internal noise in the case that noise is generated following amplification. The present study investigated the internal noise levels of six hearing aids (HAs). Concurrent with HA processing of a speech-like stimulus with both adaptive features (acoustic feedback cancellation, digital noise reduction, microphone directionality) enabled and disabled, internal noise was quantified for various stimulus levels as the variance across repeated trials. Changes in noise level as a function of stimulus level demonstrated that (1) generation of internal noise is not isolated to the microphone, (2) noise may be dependent on input level, and (3) certain adaptive features may contribute to internal noise. Quantifying internal noise as the variance of the output measures allows for noise to be measured under real-world processing conditions, accounts for all sources of noise, and is predictive of internal noise audibility. PMID:20370034

  14. Adaptive Arrays for Weak Interfering Signals: An Experimental System. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Ward, James

    1987-01-01

    An experimental adaptive antenna system was implemented to study the performance of adaptive arrays in the presence of weak interfering signals. It is a sidelobe canceler with two auxiliary elements. Modified feedback loops, which decorrelate the noise components of the two inputs to the loop correlators, control the array weights. Digital processing is used for algorithm implementation and performance evaluation. The results show that the system can suppress interfering signals which are 0 to 10 dB below the thermal noise level in the main channel by 20 to 30 dB. When the desired signal is strong in the auxiliary elements the amount of interference suppression decreases. The amount of degradation depends on the number of interfering signals incident on the communication system. A modified steering vector which overcomes this problem is proposed.

  15. Prolonged inorganic arsenite exposure suppresses insulin-stimulated AKT S473 phosphorylation and glucose uptake in 3T3-L1 adipocytes: Involvement of the adaptive antioxidant response

    SciTech Connect

    Xue, Peng; Hou, Yongyong; Zhang, Qiang; Woods, Courtney G.; Yarborough, Kathy; Liu, Huiyu; Sun, Guifan; Andersen, Melvin E.; Pi, Jingbo

    2011-04-08

    Highlights: {yields} In 3T3-L1 adipocytes iAs{sup 3+} decreases insulin-stimulated glucose uptake. {yields} iAs{sup 3+} attenuates insulin-induced phosphorylation of AKT S473. {yields} iAs{sup 3+} activates the cellular adaptive oxidative stress response. {yields} iAs{sup 3+} impairs insulin-stimulated ROS signaling. {yields} iAs{sup 3+} decreases expression of adipogenic genes and GLUT4. -- Abstract: There is growing evidence that chronic exposure of humans to inorganic arsenic, a potent environmental oxidative stressor, is associated with the incidence of type 2 diabetes (T2D). One critical feature of T2D is insulin resistance in peripheral tissues, especially in mature adipocytes, the hallmark of which is decreased insulin-stimulated glucose uptake (ISGU). Despite the deleterious effects of reactive oxygen species (ROS), they have been recognized as a second messenger serving an intracellular signaling role for insulin action. Nuclear factor erythroid 2-related factor 2 (NRF2) is a central transcription factor regulating cellular adaptive response to oxidative stress. This study proposes that in response to arsenic exposure, the NRF2-mediated adaptive induction of endogenous antioxidant enzymes blunts insulin-stimulated ROS signaling and thus impairs ISGU. Exposure of differentiated 3T3-L1 cells to low-level (up to 2 {mu}M) inorganic arsenite (iAs{sup 3+}) led to decreased ISGU in a dose- and time-dependent manner. Concomitant to the impairment of ISGU, iAs{sup 3+} exposure significantly attenuated insulin-stimulated intracellular ROS accumulation and AKT S473 phosphorylation, which could be attributed to the activation of NRF2 and induction of a battery of endogenous antioxidant enzymes. In addition, prolonged iAs{sup 3+} exposure of 3T3-L1 adipocytes resulted in significant induction of inflammatory response genes and decreased expression of adipogenic genes and glucose transporter type 4 (GLUT4), suggesting chronic inflammation and reduction in GLUT4

  16. Airframe noise

    NASA Astrophysics Data System (ADS)

    Crighton, David G.

    1991-08-01

    Current understanding of airframe noise was reviewed as represented by experiment at model and full scale, by theoretical modeling, and by empirical correlation models. The principal component sources are associated with the trailing edges of wing and tail, deflected trailing edge flaps, flap side edges, leading edge flaps or slats, undercarriage gear elements, gear wheel wells, fuselage and wing boundary layers, and panel vibration, together with many minor protrusions like radio antennas and air conditioning intakes which may contribute significantly to perceived noise. There are also possibilities for interactions between the various mechanisms. With current engine technology, the principal airframe noise mechanisms dominate only at low frequencies, typically less than 1 kHz and often much lower, but further reduction of turbomachinery noise in particular may make airframe noise the principal element of approach noise at frequencies in the sensitive range.

  17. Active Noise Control of Radiated Noise from Jets Originating NASA

    NASA Technical Reports Server (NTRS)

    Doty, Michael J.; Fuller, Christopher R.; Schiller, Noah H.; Turner, Travis L.

    2013-01-01

    The reduction of jet noise using a closed-loop active noise control system with highbandwidth active chevrons was investigated. The high frequency energy introduced by piezoelectrically-driven chevrons was demonstrated to achieve a broadband reduction of jet noise, presumably due to the suppression of large-scale turbulence. For a nozzle with one active chevron, benefits of up to 0.8 dB overall sound pressure level (OASPL) were observed compared to a static chevron nozzle near the maximum noise emission angle, and benefits of up to 1.9 dB OASPL were observed compared to a baseline nozzle with no chevrons. The closed-loop actuation system was able to effectively reduce noise at select frequencies by 1-3 dB. However, integrated OASPL did not indicate further reduction beyond the open-loop benefits, most likely due to the preliminary controller design, which was focused on narrowband performance.

  18. Interior Noise

    NASA Technical Reports Server (NTRS)

    Mixson, John S.; Wilby, John F.

    1991-01-01

    The generation and control of flight vehicle interior noise is discussed. Emphasis is placed on the mechanisms of transmission through airborne and structure-borne paths and the control of cabin noise by path modification. Techniques for identifying the relative contributions of the various source-path combinations are also discussed along with methods for the prediction of aircraft interior noise such as those based on the general modal theory and statistical energy analysis.

  19. Noise Protection

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Environmental Health Systems puts forth an increasing effort in the U.S. to develop ways of controlling noise, particularly in industrial environments due to Federal and State laws, labor union insistence and new findings relative to noise pollution impact on human health. NASA's Apollo guidance control system aided in the development of a noise protection product, SMART. The basis of all SMART products is SMART compound a liquid plastic mixture with exceptional energy/sound absorbing qualities. The basic compound was later refined for noise protection use.

  20. A wavelet packet adaptive filtering algorithm for enhancing manatee vocalizations.

    PubMed

    Gur, M Berke; Niezrecki, Christopher

    2011-04-01

    Approximately a quarter of all West Indian manatee (Trichechus manatus latirostris) mortalities are attributed to collisions with watercraft. A boater warning system based on the passive acoustic detection of manatee vocalizations is one possible solution to reduce manatee-watercraft collisions. The success of such a warning system depends on effective enhancement of the vocalization signals in the presence of high levels of background noise, in particular, noise emitted from watercraft. Recent research has indicated that wavelet domain pre-processing of the noisy vocalizations is capable of significantly improving the detection ranges of passive acoustic vocalization detectors. In this paper, an adaptive denoising procedure, implemented on the wavelet packet transform coefficients obtained from the noisy vocalization signals, is investigated. The proposed denoising algorithm is shown to improve the manatee detection ranges by a factor ranging from two (minimum) to sixteen (maximum) compared to high-pass filtering alone, when evaluated using real manatee vocalization and background noise signals of varying signal-to-noise ratios (SNR). Furthermore, the proposed method is also shown to outperform a previously suggested feedback adaptive line enhancer (FALE) filter on average 3.4 dB in terms of noise suppression and 0.6 dB in terms of waveform preservation. PMID:21476661

  1. A novel algorithm for real-time adaptive signal detection and identification

    SciTech Connect

    Sleefe, G.E.; Ladd, M.D.; Gallegos, D.E.; Sicking, C.W.; Erteza, I.A.

    1998-04-01

    This paper describes a novel digital signal processing algorithm for adaptively detecting and identifying signals buried in noise. The algorithm continually computes and updates the long-term statistics and spectral characteristics of the background noise. Using this noise model, a set of adaptive thresholds and matched digital filters are implemented to enhance and detect signals that are buried in the noise. The algorithm furthermore automatically suppresses coherent noise sources and adapts to time-varying signal conditions. Signal detection is performed in both the time-domain and the frequency-domain, thereby permitting the detection of both broad-band transients and narrow-band signals. The detection algorithm also provides for the computation of important signal features such as amplitude, timing, and phase information. Signal identification is achieved through a combination of frequency-domain template matching and spectral peak picking. The algorithm described herein is well suited for real-time implementation on digital signal processing hardware. This paper presents the theory of the adaptive algorithm, provides an algorithmic block diagram, and demonstrate its implementation and performance with real-world data. The computational efficiency of the algorithm is demonstrated through benchmarks on specific DSP hardware. The applications for this algorithm, which range from vibration analysis to real-time image processing, are also discussed.

  2. Gabor-based anisotropic diffusion for speckle noise reduction in medical ultrasonography.

    PubMed

    Zhang, Qi; Han, Hong; Ji, Chunhong; Yu, Jinhua; Wang, Yuanyuan; Wang, Wenping

    2014-06-01

    In ultrasound (US), optical coherence tomography, synthetic aperture radar, and other coherent imaging systems, images are corrupted by multiplicative speckle noise that obscures image interpretation. An anisotropic diffusion (AD) method based on the Gabor transform, named Gabor-based anisotropic diffusion (GAD), is presented to suppress speckle in medical ultrasonography. First, an edge detector using the Gabor transform is proposed to capture directionality of tissue edges and discriminate edges from noise. Then the edge detector is embedded into the partial differential equation of AD to guide the diffusion process and iteratively denoise images. To enhance GAD's adaptability, parameters controlling diffusion are determined from a fully formed speckle region that is automatically detected. We evaluate the GAD on synthetic US images simulated with three models and clinical images acquired in vivo. Compared with seven existing speckle reduction methods, the GAD is superior to other methods in terms of noise reduction and detail preservation. PMID:24977366

  3. Aircraft Noise

    NASA Astrophysics Data System (ADS)

    Michel, Ulf; Dobrzynski, Werner; Splettstoesser, Wolf; Delfs, Jan; Isermann, Ullrich; Obermeier, Frank

    Aircraft industry is exposed to increasing public pressure aiming at a continuing reduction of aircraft noise levels. This is necessary to both compensate for the detrimental effect on noise of the expected increase in air traffic and improve the quality of living in residential areas around airports.

  4. Environmental Noise

    NASA Astrophysics Data System (ADS)

    Rumberg, Martin

    Environmental noise may be defined as unwanted sound that is caused by emissions from traffic (roads, air traffic corridors, and railways), industrial sites and recreational infrastructures, which may cause both annoyance and damage to health. Noise in the environment or community seriously affects people, interfering with daily activities at school, work and home and during leisure time.

  5. [Non-linear real-time adaptive filtration of ultrasound TI628A echotomoscope images].

    PubMed

    Barannik, E A; Volokhov, Iu V; Marusenko, A I

    1997-01-01

    The statistical uncertainty caused by speckle noise artifacts is the reason for the great importance of the problem which is the optimum choice between the medical diagnostic systems resolution and the statistical accuracy of histological tissue identification. The way of speckle noise suppression, which is closely associated with the well-known idea of adaptive filtration and based on the physical analysis of the origin of true and false signals, is very promising. The testing results of the nonlinear real-time adaptive filter which has been designed for a TI628A echotomoscope are presented. The filter has been shown to have a rather high contrast and space resolution and reduces the speckle noise and other artifacts of the images. PMID:9445983

  6. Active noise canceling system for mechanically cooled germanium radiation detectors

    SciTech Connect

    Nelson, Karl Einar; Burks, Morgan T

    2014-04-22

    A microphonics noise cancellation system and method for improving the energy resolution for mechanically cooled high-purity Germanium (HPGe) detector systems. A classical adaptive noise canceling digital processing system using an adaptive predictor is used in an MCA to attenuate the microphonics noise source making the system more deployable.

  7. Adaptive nonlocal means-based regularization for statistical image reconstruction of low-dose X-ray CT

    NASA Astrophysics Data System (ADS)

    Zhang, Hao; Ma, Jianhua; Wang, Jing; Liu, Yan; Han, Hao; Li, Lihong; Moore, William; Liang, Zhengrong

    2015-03-01

    To reduce radiation dose in X-ray computed tomography (CT) imaging, one of the common strategies is to lower the milliampere-second (mAs) setting during projection data acquisition. However, this strategy would inevitably increase the projection data noise, and the resulting image by the filtered back-projection (FBP) method may suffer from excessive noise and streak artifacts. The edge-preserving nonlocal means (NLM) filtering can help to reduce the noise-induced artifacts in the FBP reconstructed image, but it sometimes cannot completely eliminate them, especially under very low-dose circumstance when the image is severely degraded. To deal with this situation, we proposed a statistical image reconstruction scheme using a NLM-based regularization, which can suppress the noise and streak artifacts more effectively. However, we noticed that using uniform filtering parameter in the NLM-based regularization was rarely optimal for the entire image. Therefore, in this study, we further developed a novel approach for designing adaptive filtering parameters by considering local characteristics of the image, and the resulting regularization is referred to as adaptive NLM-based regularization. Experimental results with physical phantom and clinical patient data validated the superiority of using the proposed adaptive NLM-regularized statistical image reconstruction method for low-dose X-ray CT, in terms of noise/streak artifacts suppression and edge/detail/contrast/texture preservation.

  8. Direct computation of turbulence and noise

    NASA Technical Reports Server (NTRS)

    Berman, C.; Gordon, G.; Karniadakis, G.; Batcho, P.; Jackson, E.; Orszag, S.

    1991-01-01

    Jet exhaust turbulence noise is computed using a time dependent solution of the three dimensional Navier-Stokes equations to supply the source terms for an acoustic computation based on the Phillips convected wave equation. An extrapolation procedure is then used to determine the far field noise spectrum in terms of the near field sound. This will lay the groundwork for studies of more complex flows typical of noise suppression nozzles.

  9. Suppression of Density Fluctuations in a Quantum Degenerate Fermi Gas

    SciTech Connect

    Sanner, Christian; Su, Edward J.; Keshet, Aviv; Gommers, Ralf; Shin, Yong-il; Huang Wujie; Ketterle, Wolfgang

    2010-07-23

    We study density profiles of an ideal Fermi gas and observe Pauli suppression of density fluctuations (atom shot noise) for cold clouds deep in the quantum degenerate regime. Strong suppression is observed for probe volumes containing more than 10 000 atoms. Measuring the level of suppression provides sensitive thermometry at low temperatures. After this method of sensitive noise measurements has been validated with an ideal Fermi gas, it can now be applied to characterize phase transitions in strongly correlated many-body systems.

  10. Adaptive antennas

    NASA Astrophysics Data System (ADS)

    Barton, P.

    1987-04-01

    The basic principles of adaptive antennas are outlined in terms of the Wiener-Hopf expression for maximizing signal to noise ratio in an arbitrary noise environment; the analogy with generalized matched filter theory provides a useful aid to understanding. For many applications, there is insufficient information to achieve the above solution and thus non-optimum constrained null steering algorithms are also described, together with a summary of methods for preventing wanted signals being nulled by the adaptive system. The three generic approaches to adaptive weight control are discussed; correlation steepest descent, weight perturbation and direct solutions based on sample matrix conversion. The tradeoffs between hardware complexity and performance in terms of null depth and convergence rate are outlined. The sidelobe cancellor technique is described. Performance variation with jammer power and angular distribution is summarized and the key performance limitations identified. The configuration and performance characteristics of both multiple beam and phase scan array antennas are covered, with a brief discussion of performance factors.

  11. High level white noise generator

    DOEpatents

    Borkowski, Casimer J.; Blalock, Theron V.

    1979-01-01

    A wide band, stable, random noise source with a high and well-defined output power spectral density is provided which may be used for accurate calibration of Johnson Noise Power Thermometers (JNPT) and other applications requiring a stable, wide band, well-defined noise power spectral density. The noise source is based on the fact that the open-circuit thermal noise voltage of a feedback resistor, connecting the output to the input of a special inverting amplifier, is available at the amplifier output from an equivalent low output impedance caused by the feedback mechanism. The noise power spectral density level at the noise source output is equivalent to the density of the open-circuit thermal noise or a 100 ohm resistor at a temperature of approximately 64,000 Kelvins. The noise source has an output power spectral density that is flat to within 0.1% (0.0043 db) in the frequency range of from 1 KHz to 100 KHz which brackets typical passbands of the signal-processing channels of JNPT's. Two embodiments, one of higher accuracy that is suitable for use as a standards instrument and another that is particularly adapted for ambient temperature operation, are illustrated in this application.

  12. Noise in Nonlinear Dynamical Systems

    NASA Astrophysics Data System (ADS)

    Moss, Frank; McClintock, P. V. E.

    2009-08-01

    List of contributors; Preface; Introduction to volume three; 1. The effects of coloured quadratic noise on a turbulent transition in liquid He II J. T. Tough; 2. Electrohydrodynamic instability of nematic liquid crystals: growth process and influence of noise S. Kai; 3. Suppression of electrohydrodynamic instabilities by external noise Helmut R. Brand; 4. Coloured noise in dye laser fluctuations R. Roy, A. W. Yu and S. Zhu; 5. Noisy dynamics in optically bistable systems E. Arimondo, D. Hennequin and P. Glorieux; 6. Use of an electronic model as a guideline in experiments on transient optical bistability W. Lange; 7. Computer experiments in nonlinear stochastic physics Riccardo Mannella; 8. Analogue simulations of stochastic processes by means of minimum component electronic devices Leone Fronzoni; 9. Analogue techniques for the study of problems in stochastic nonlinear dynamics P. V. E. McClintock and Frank Moss; Index.

  13. Dual-microphone and binaural noise reduction techniques for improved speech intelligibility by hearing aid users

    NASA Astrophysics Data System (ADS)

    Yousefian Jazi, Nima

    Spatial filtering and directional discrimination has been shown to be an effective pre-processing approach for noise reduction in microphone array systems. In dual-microphone hearing aids, fixed and adaptive beamforming techniques are the most common solutions for enhancing the desired speech and rejecting unwanted signals captured by the microphones. In fact, beamformers are widely utilized in systems where spatial properties of target source (usually in front of the listener) is assumed to be known. In this dissertation, some dual-microphone coherence-based speech enhancement techniques applicable to hearing aids are proposed. All proposed algorithms operate in the frequency domain and (like traditional beamforming techniques) are purely based on the spatial properties of the desired speech source and does not require any knowledge of noise statistics for calculating the noise reduction filter. This benefit gives our algorithms the ability to address adverse noise conditions, such as situations where interfering talker(s) speaks simultaneously with the target speaker. In such cases, the (adaptive) beamformers lose their effectiveness in suppressing interference, since the noise channel (reference) cannot be built and updated accordingly. This difference is the main advantage of the proposed techniques in the dissertation over traditional adaptive beamformers. Furthermore, since the suggested algorithms are independent of noise estimation, they offer significant improvement in scenarios that the power level of interfering sources are much more than that of target speech. The dissertation also shows the premise behind the proposed algorithms can be extended and employed to binaural hearing aids. The main purpose of the investigated techniques is to enhance the intelligibility level of speech, measured through subjective listening tests with normal hearing and cochlear implant listeners. However, the improvement in quality of the output speech achieved by the

  14. Cardiorespiratory Responses to Acoustic Noise in Belugas.

    PubMed

    Lyamin, Oleg I; Korneva, Svetlana M; Rozhnov, Viatcheslav V; Mukhametov, Lev M

    2016-01-01

    To date, most research on the adverse effects of anthropogenic noise on marine mammals has focused on auditory and behavioral responses. Other responses have received little attention and are often ignored. In this study, the effect of acoustic noise on heart rate was examined in captive belugas. The data suggest that (1) heart rate can be used as a measure of physiological response (including stress) to noise in belugas and other cetaceans, (2) cardiac response is influenced by parameters of noise and adaptation to repeated exposure, and (3) cetacean calves are more vulnerable to the adverse effect of noise than adults. PMID:26611017

  15. Study Of Adaptive-Array Signal Processing

    NASA Technical Reports Server (NTRS)

    Satorius, Edgar H.; Griffiths, Lloyd

    1990-01-01

    Report describes study of adaptive signal-processing techniques for suppression of mutual satellite interference in mobile (on ground)/satellite communication system. Presents analyses and numerical simulations of performances of two approaches to signal processing for suppression of interference. One approach, known as "adaptive side lobe canceling", second called "adaptive temporal processing".

  16. Identifying separate components of surround suppression

    PubMed Central

    Schallmo, Michael-Paul; Murray, Scott O.

    2016-01-01

    Surround suppression is a well-known phenomenon in which the response to a visual stimulus is diminished by the presence of neighboring stimuli. This effect is observed in neural responses in areas such as primary visual cortex, and also manifests in visual contrast perception. Studies in animal models have identified at least two separate mechanisms that may contribute to surround suppression: one that is monocular and resistant to contrast adaptation, and another that is binocular and strongly diminished by adaptation. The current study was designed to investigate whether these two mechanisms exist in humans and if they can be identified psychophysically using eye-of-origin and contrast adaptation manipulations. In addition, we examined the prediction that the monocular suppression component is broadly tuned for orientation, while suppression between eyes is narrowly tuned. Our results confirmed that when center and surrounding stimuli were presented dichoptically (in opposite eyes), suppression was orientation-tuned. Following adaptation in the surrounding region, no dichoptic suppression was observed, and monoptic suppression no longer showed orientation selectivity. These results are consistent with a model of surround suppression that depends on both low-level and higher level components. This work provides a method to assess the separate contributions of these components during spatial context processing in human vision. PMID:26756172

  17. Noise analysis of injection-locked semiconductor injection lasers

    SciTech Connect

    Schunk, N.; Peterman, K.

    1986-05-01

    The noise of injection-locked semiconductor lasers is analyzed by rate equations including the spontaneous emission noise. The side mode suppression and the relative intensity noise (RIN) of the locked laser (slave laser) are given for different wavelengths detuning between the master and slave laser and for different linewidth enhancement factors ..cap alpha... For large ..cap alpha.., locking is difficult to achieve, whereas extremely low noise may be obtained for injection-locked lasers with a low linewidth enhancement factor.

  18. NASA/AHS rotorcraft noise reduction program - NASA Langley Acoustics Division contributions

    NASA Technical Reports Server (NTRS)

    Martin, Ruth M.

    1989-01-01

    An account is given of the contributions made by NASA-Langley's rotorcraft noise research programs over the last five years. Attention has been given to the broadband and blade-vortex interaction noise sources; both analytical and empirical noise-prediction codes have been developed and validated for several rotor noise sources, and the 'Rotonet' comprehensive system-noise prediction capability has been instituted. Among the technologies explored for helicopter noise reduction have been higher harmonic control and active vibration-suppression.

  19. NASA/AHS rotorcraft noise reduction program - NASA Langley Acoustics Division contributions

    NASA Astrophysics Data System (ADS)

    Martin, Ruth M.

    1989-06-01

    An account is given of the contributions made by NASA-Langley's rotorcraft noise research programs over the last five years. Attention has been given to the broadband and blade-vortex interaction noise sources; both analytical and empirical noise-prediction codes have been developed and validated for several rotor noise sources, and the 'Rotonet' comprehensive system-noise prediction capability has been instituted. Among the technologies explored for helicopter noise reduction have been higher harmonic control and active vibration-suppression.

  20. Community noise sources and noise control issues

    NASA Technical Reports Server (NTRS)

    Nihart, Gene L.

    1992-01-01

    The topics covered include the following: community noise sources and noise control issues; noise components for turbine bypass turbojet engine (TBE) turbojet; engine cycle selection and noise; nozzle development schedule; NACA nozzle design; NACA nozzle test results; nearly fully mixed (NFM) nozzle design; noise versus aspiration rate; peak noise test results; nozzle test in the Low Speed Aeroacoustic Facility (LSAF); and Schlieren pictures of NACA nozzle.

  1. Evaluation of Filters for Envisat Asar Speckle Suppression in Pasture Area

    NASA Astrophysics Data System (ADS)

    Wang, X.; Ge, L.; Li, X.

    2012-07-01

    In order to quantify real time pasture biomass from SAR image, regression model between ground measurements of biomass and ENVISAT ASAR backscattering coefficient should be built up. An important prerequisite of valid and accurate regression model is accurate grass backscattering coefficient which, however, cannot be obtained when there is speckle. Speckle noise is the best known problem of SAR images because of the coherent nature of radar illumination imaging system. This study aims to choose better adaptive filter from NEST software to reduce speckle noise in homogeneous pasture area, with little regard to linear feature (e.g. edge between pasture and forest) or point feature (e.g. pond, tree) preservation. This paper presents the speckle suppression result of ENVISAT ASAR VV/VH images in pasture of Western Australia (WA) using four built-in adaptive filters of the NEST software: Frost, Gamma Map, Lee, and Refined Lee filter. Two indices are usually used for evaluation of speckle suppression ability: ENL (Equivalent Number of Looks) and SSI (Speckle Suppression Index). These two, however, are not reliable because sometimes they overestimate mean value. Therefore, apart from ENL and SSI, the authors also used a new index SMPI (Speckle Suppression and Mean Preservation Index). It was found that, Lee filter with window size 7×7 and Frost filter (damping factor = 2) with window size 5×5 gave the best performance for VV and VH polarization, respectively. The filtering, together with radiometric calibration and terrain correction, paves the way to extraction of accurate backscattering coefficient of grass in homogeneous pasture area in WA.

  2. Adaptive Structures Flight Experiments

    NASA Technical Reports Server (NTRS)

    Martin, Maurice

    1992-01-01

    The topics are presented in viewgraph form and include the following: adaptive structures flight experiments; enhanced resolution using active vibration suppression; Advanced Controls Technology Experiment (ACTEX); ACTEX program status; ACTEX-2; ACTEX-2 program status; modular control patch; STRV-1b Cryocooler Vibration Suppression Experiment; STRV-1b program status; Precision Optical Bench Experiment (PROBE); Clementine Spacecraft Configuration; TECHSAT all-composite spacecraft; Inexpensive Structures and Materials Flight Experiment (INFLEX); and INFLEX program status.

  3. Adaptive structures flight experiments

    NASA Astrophysics Data System (ADS)

    Martin, Maurice

    The topics are presented in viewgraph form and include the following: adaptive structures flight experiments; enhanced resolution using active vibration suppression; Advanced Controls Technology Experiment (ACTEX); ACTEX program status; ACTEX-2; ACTEX-2 program status; modular control patch; STRV-1b Cryocooler Vibration Suppression Experiment; STRV-1b program status; Precision Optical Bench Experiment (PROBE); Clementine Spacecraft Configuration; TECHSAT all-composite spacecraft; Inexpensive Structures and Materials Flight Experiment (INFLEX); and INFLEX program status.

  4. Optimized Noise Filtration through Dynamical Decoupling

    NASA Astrophysics Data System (ADS)

    Uys, Hermann; Biercuk, Michael J.; Bollinger, John J.

    2009-07-01

    Recent studies have shown that applying a sequence of Hahn spin-echo pulses to a qubit system at judiciously chosen intervals can, in certain noise environments, greatly improve the suppression of phase errors compared to traditional dynamical decoupling approaches. By enforcing a simple analytical condition, we obtain sets of dynamical decoupling sequences that are designed for optimized noise filtration, but are independent of the noise spectrum up to a single scaling factor set by the coherence time of the system. These sequences are tested in a model qubit system, Be+9 ions in a Penning trap. Our combined theoretical and experimental studies show that in high-frequency-dominated noise environments with sharp high-frequency cutoffs this approach may suppress phase errors orders of magnitude more efficiently than comparable techniques can.

  5. Optimized noise filtration through dynamical decoupling.

    PubMed

    Uys, Hermann; Biercuk, Michael J; Bollinger, John J

    2009-07-24

    Recent studies have shown that applying a sequence of Hahn spin-echo pulses to a qubit system at judiciously chosen intervals can, in certain noise environments, greatly improve the suppression of phase errors compared to traditional dynamical decoupling approaches. By enforcing a simple analytical condition, we obtain sets of dynamical decoupling sequences that are designed for optimized noise filtration, but are independent of the noise spectrum up to a single scaling factor set by the coherence time of the system. These sequences are tested in a model qubit system, ;{9}Be;{+} ions in a Penning trap. Our combined theoretical and experimental studies show that in high-frequency-dominated noise environments with sharp high-frequency cutoffs this approach may suppress phase errors orders of magnitude more efficiently than comparable techniques can. PMID:19659335

  6. Multiplicative noise can lead to the collapse of dissipative solitons

    NASA Astrophysics Data System (ADS)

    Descalzi, Orazio; Cartes, Carlos; Brand, Helmut R.

    2016-07-01

    We investigate the influence of spatially homogeneous multiplicative noise on the formation of localized patterns in the framework of the cubic-quintic complex Ginzburg-Landau equation. We find that for sufficiently large multiplicative noise the formation of stationary and temporally periodic dissipative solitons is suppressed. This result is characterized by a linear relation between the bifurcation parameter and the noise amplitude required for suppression. For the regime associated with exploding dissipative solitons we find a reduction in the number of explosions for larger noise strength as well as a conversion to other types of dissipative solitons or to filling-in and eventually a collapse to the zero solution.

  7. Multiplicative noise can lead to the collapse of dissipative solitons.

    PubMed

    Descalzi, Orazio; Cartes, Carlos; Brand, Helmut R

    2016-07-01

    We investigate the influence of spatially homogeneous multiplicative noise on the formation of localized patterns in the framework of the cubic-quintic complex Ginzburg-Landau equation. We find that for sufficiently large multiplicative noise the formation of stationary and temporally periodic dissipative solitons is suppressed. This result is characterized by a linear relation between the bifurcation parameter and the noise amplitude required for suppression. For the regime associated with exploding dissipative solitons we find a reduction in the number of explosions for larger noise strength as well as a conversion to other types of dissipative solitons or to filling-in and eventually a collapse to the zero solution. PMID:27575135

  8. Control of Environmental Noise

    ERIC Educational Resources Information Center

    Jensen, Paul

    1973-01-01

    Discusses the physical properties, sources, physiological effects, and legislation pertaining to noise, especially noise characteristics in the community. Indicates that noise reduction steps can be taken more intelligently after determination of the true noise sources and paths. (CC)

  9. Analysis of modified SMI method for adaptive array weight control

    NASA Technical Reports Server (NTRS)

    Dilsavor, R. L.; Moses, R. L.

    1989-01-01

    An adaptive array is applied to the problem of receiving a desired signal in the presence of weak interference signals which need to be suppressed. A modification, suggested by Gupta, of the sample matrix inversion (SMI) algorithm controls the array weights. In the modified SMI algorithm, interference suppression is increased by subtracting a fraction F of the noise power from the diagonal elements of the estimated covariance matrix. Given the true covariance matrix and the desired signal direction, the modified algorithm is shown to maximize a well-defined, intuitive output power ratio criterion. Expressions are derived for the expected value and variance of the array weights and output powers as a function of the fraction F and the number of snapshots used in the covariance matrix estimate. These expressions are compared with computer simulation and good agreement is found. A trade-off is found to exist between the desired level of interference suppression and the number of snapshots required in order to achieve that level with some certainty. The removal of noise eigenvectors from the covariance matrix inverse is also discussed with respect to this application. Finally, the type and severity of errors which occur in the covariance matrix estimate are characterized through simulation.

  10. Flexible beam control using an adaptive truss

    NASA Technical Reports Server (NTRS)

    Warrington, Thomas J.; Horner, C. Garnett

    1990-01-01

    To demonstrate the feasibility of adaptive trusses for vibration suppression, a 12-ft-long beam is attached to a single cell of an adaptive truss which has three active battens. With the base of the adaptive truss attached to the laboratory frame, the measured strain of the vibrating beam shows the adaptive truss to be very effective in suppressing vibration when subjected to initial conditions. Control is accomplished by a PC/XT computer that implements an LQR-designed control law.

  11. A modified Richardson-Lucy algorithm for single image with adaptive reference maps

    NASA Astrophysics Data System (ADS)

    Cui, Guangmang; Feng, Huajun; Xu, Zhihai; Li, Qi; Chen, Yueting

    2014-06-01

    In this paper, we propose a modified non-blind Richardson-Lucy algorithm using adaptive reference maps as local constraint to reduce noise and ringing artifacts effectively. The deconvolution process can be divided into two stages. In the first deblurring stage, the reference map is estimated from the blurred image and an intermediate deblurred result is obtained. And then the adaptive reference map is updated according to both the blurred image and the deblurred result of the first stage to produce a more accurate edge description, which is very helpful to suppress the ringing around edges. Gaussian image prior is adopted as the regularization to improve the standard Richardson-Lucy algorithm. Experimental results show that the presented approach could suppress the negative ringing artifacts effectively as well as preserve the edge information, even if the blurred image contains rich textures.

  12. Noise screen for attitude control system

    NASA Technical Reports Server (NTRS)

    Rodden, John J. (Inventor); Stevens, Homer D. (Inventor); Hong, David P. (Inventor); Hirschberg, Philip C. (Inventor)

    2002-01-01

    An attitude control system comprising a controller and a noise screen device coupled to the controller. The controller is adapted to control an attitude of a vehicle carrying an actuator system that is adapted to pulse in metered bursts in order to generate a control torque to control the attitude of the vehicle in response to a control pulse. The noise screen device is adapted to generate a noise screen signal in response to the control pulse that is generated when an input attitude error signal exceeds a predetermined deadband attitude level. The noise screen signal comprises a decaying offset signal that when combined with the attitude error input signal results in a net attitude error input signal away from the predetermined deadband level to reduce further control pulse generation.

  13. Aircraft noise problems

    NASA Astrophysics Data System (ADS)

    1981-01-01

    The problems related to aircraft noise were studied. Physical origin (sound), human reaction (noise), quantization of noise and sound sources of aircraft noise are discussed. Noise abatement at the source, technical, fleet-political and air traffic measures are explained. The measurements and future developments are also discussed. The position of Lufthansa as regards aircraft noise problems is depicted.

  14. Noise pollution resources compendium

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Abstracts of reports concerning noise pollution are presented. The abstracts are grouped in the following areas of activity: (1) sources of noise, (2) noise detection and measurement, (3) noise abatement and control, (4) physical effects of noise and (5) social effects of noise.

  15. Noise Abatement

    NASA Technical Reports Server (NTRS)

    1983-01-01

    SMART, Sound Modification and Regulated Temperature compound, is a liquid plastic mixture with exceptional energy and sound absorbing qualities. It is derived from a very elastic plastic which was an effective noise abatement material in the Apollo Guidance System. Discovered by a NASA employee, it is marketed by Environmental Health Systems, Inc. (EHS). The product has been successfully employed by a diaper company with noisy dryers and a sugar company with noisy blowers. The company also manufactures an audiometric test booth and acoustical office partitions.

  16. Development of a Voice Activity Controlled Noise Canceller

    PubMed Central

    Abid Noor, Ali O.; Samad, Salina Abdul; Hussain, Aini

    2012-01-01

    In this paper, a variable threshold voice activity detector (VAD) is developed to control the operation of a two-sensor adaptive noise canceller (ANC). The VAD prohibits the reference input of the ANC from containing some strength of actual speech signal during adaptation periods. The novelty of this approach resides in using the residual output from the noise canceller to control the decisions made by the VAD. Thresholds of full-band energy and zero-crossing features are adjusted according to the residual output of the adaptive filter. Performance evaluation of the proposed approach is quoted in terms of signal to noise ratio improvements as well mean square error (MSE) convergence of the ANC. The new approach showed an improved noise cancellation performance when tested under several types of environmental noise. Furthermore, the computational power of the adaptive process is reduced since the output of the adaptive filter is efficiently calculated only during non-speech periods. PMID:22778667

  17. Variability of annoyance response due to aircraft noise

    NASA Technical Reports Server (NTRS)

    Dempsey, T. K.; Cawthorn, J. M.

    1979-01-01

    An investigation was conducted to study the variability in the response of subjects participating in noise experiments. This paper presents a description of a model developed to include this variability which incorporates an aircraft-noise adaptation level or an annoyance calibration for each individual. The results indicate that the use of an aircraft-noise adaption level improved prediction accuracy of annoyance responses (and simultaneously reduced response variation).

  18. Indirect combustion noise of auxiliary power units

    NASA Astrophysics Data System (ADS)

    Tam, Christopher K. W.; Parrish, Sarah A.; Xu, Jun; Schuster, Bill

    2013-08-01

    Recent advances in noise suppression technology have significantly reduced jet and fan noise from commercial jet engines. This leads many investigators in the aeroacoustics community to suggest that core noise could well be the next aircraft noise barrier. Core noise consists of turbine noise and combustion noise. There is direct combustion noise generated by the combustion processes, and there is indirect combustion noise generated by the passage of combustion hot spots, or entropy waves, through constrictions in an engine. The present work focuses on indirect combustion noise. Indirect combustion noise has now been found in laboratory experiments. The primary objective of this work is to investigate whether indirect combustion noise is also generated in jet and other engines. In a jet engine, there are numerous noise sources. This makes the identification of indirect combustion noise a formidable task. Here, our effort concentrates exclusively on auxiliary power units (APUs). This choice is motivated by the fact that APUs are relatively simple engines with only a few noise sources. It is, therefore, expected that the chance of success is higher. Accordingly, a theoretical model study of the generation of indirect combustion noise in an Auxiliary Power Unit (APU) is carried out. The cross-sectional areas of an APU from the combustor to the turbine exit are scaled off to form an equivalent nozzle. A principal function of a turbine in an APU is to extract mechanical energy from the flow stream through the exertion of a resistive force. Therefore, the turbine is modeled by adding a negative body force to the momentum equation. This model is used to predict the ranges of frequencies over which there is a high probability for indirect combustion noise generation. Experimental spectra of internal pressure fluctuations and far-field noise of an RE220 APU are examined to identify anomalous peaks. These peaks are possible indirection combustion noise. In the case of the

  19. Evaluation criteria for aircraft noise.

    PubMed

    Scheuch, Klaus; Griefahn, Barbara; Jansen, Gerd; Spreng, Manfred

    2003-01-01

    Based on extensive and detailed reviews the present paper suggests evaluation limits for aircraft noise for the prediction of noise effects and for the protection of residents living in the vicinity of (newly constructed or extended) civil airports. The protection concept provides graded assessment values: Critical Limits indicate noise loads that shall be tolerated only exceptionally during a limited time. Protection Guides are central assessment values for taking actions to reduce noise imission. Threshold values inform about measurable physiological and psychological reactions due to noise exposures where long term adverse health effects are not expected. Evaluation limits are provided for various protection goals. Apart from hearing damage, evaluation limits are provided for the avoidance of primary extraaural effects on communication and on sleep, for the avoidance of annoyance as a secondary effect and for the avoidance of suspected cardiovascular diseases. Such limits enable authorities to outline the areas around airports, where appropriate measures are mandatory to protect residents against the deleterious effects of noise. Protecting residents is a dynamic process that must be followed up. The evaluation limits must be repeatedly tested in view of new scientific findings and adapted, if necessary. PMID:14672514

  20. Newtonian noise cancellation in tensor gravitational wave detector

    NASA Astrophysics Data System (ADS)

    Paik, Ho Jung; Harms, Jan

    2016-05-01

    Terrestrial gravity noise produced by ambient seismic and infrasound fields poses one of the main sensitivity limitations in low-frequency ground-based gravitational-wave (GW) detectors. This noise needs to be suppressed by 3-5 orders of magnitude in the frequency band 10 mHz to 1 Hz, which is extremely challenging. We present a new approach that greatly facilitates cancellation of gravity noise in full-tensor GW detectors. It makes explicit use of the direction of propagation of a GW, and can therefore either be implemented in directional searches for GWs or in observations of known sources. We show that suppression of the Newtonian-noise foreground is greatly facilitated using the extra strain channels in full-tensor GW detectors. Only a modest number of auxiliary, high-sensitivity environmental sensors is required to achieve noise suppression by a few orders of magnitude.

  1. Current shot noise characteristics in biphenyl diamine and biphenyl dithiol devices

    NASA Astrophysics Data System (ADS)

    kalsoom, Ambreen; Song, Siyu; Li, Guiqin

    2014-09-01

    Current shot noise characteristics, away from their average current, in biphenyl diamine and biphenyl dithiol devices are investigated. The relations among the shot noise and the applied bias, the coupling factors, as well as the alligator clips are revealed. The regular change of the shot noise in biphenyl diamine device and irregular change of the shot noise in biphenyl dithiol device are shown as the coupling strength change from full coupling to weak coupling. It is found that the shot noise suppression in biphenyl diamine device is enhanced at the higher bias. The large differences of the shot noise suppression in the biphenyl dithiol device are revealed.

  2. Analysis on Influence Factors of Adaptive Filter Acting on ANC

    NASA Astrophysics Data System (ADS)

    Zhang, Xiuqun; Zou, Liang; Ni, Guangkui; Wang, Xiaojun; Han, Tao; Zhao, Quanfu

    The noise problem has become more and more serious in recent years. The adaptive filter theory which is applied in ANC [1] (active noise control) has also attracted more and more attention. In this article, the basic principle and algorithm of adaptive theory are both researched. And then the influence factor that affects its covergence rate and noise reduction is also simulated.

  3. Eliminating thermal violin spikes from LIGO noise

    SciTech Connect

    Santamore, D. H.; Levin, Yuri

    2001-08-15

    We have developed a scheme for reducing LIGO suspension thermal noise close to violin-mode resonances. The idea is to monitor directly the thermally induced motion of a small portion of (a 'point' on) each suspension fiber, thereby recording the random forces driving the test-mass motion close to each violin-mode frequency. One can then suppress the thermal noise by optimally subtracting the recorded fiber motions from the measured motion of the test mass, i.e., from the LIGO output. The proposed method is a modification of an analogous but more technically difficult scheme by Braginsky, Levin and Vyatchanin for reducing broad-band suspension thermal noise. The efficiency of our method is limited by the sensitivity of the sensor used to monitor the fiber motion. If the sensor has no intrinsic noise (i.e. has unlimited sensitivity), then our method allows, in principle, a complete removal of violin spikes from the thermal-noise spectrum. We find that in LIGO-II interferometers, in order to suppress violin spikes below the shot-noise level, the intrinsic noise of the sensor must be less than {approx}2 x 10{sup -13} cm/Hz. This sensitivity is two orders of magnitude greater than that of currently available sensors.

  4. Full scale upper surface blown flap noise

    NASA Technical Reports Server (NTRS)

    Heidelberg, L. J.; Homyak, L.; Jones, W. L.

    1975-01-01

    A highly noise suppressed TF 34 engine was used to investigate the noise of several powered lift configurations involving upper surface blown (USB) flaps. The configuration variables were nozzle type (i.e. slot and circular with deflector), flap chord length, and flap angle. The results of velocity surveys at both the nozzle exit and the flap trailing edge are also presented and used for correlation of the noise data. Configurations using a long flap design were 4 db quieter than a short flap typical of current trends in USB flap design. The lower noise for the long flap is attributed primarily to the greater velocity decay of the jet at the flap trailing edge. The full-scale data revealed substantially more quadrupole noise in the region near the deflected jet than observed in previous sub-scale tests.

  5. Applications of digital processing for noise removal from plasma diagnostics

    SciTech Connect

    Kane, R.J.; Candy, J.V.; Casper, T.A.

    1985-11-11

    The use of digital signal techniques for removal of noise components present in plasma diagnostic signals is discussed, particularly with reference to diamagnetic loop signals. These signals contain noise due to power supply ripple in addition to plasma characteristics. The application of noise canceling techniques, such as adaptive noise canceling and model-based estimation, will be discussed. The use of computer codes such as SIG is described. 19 refs., 5 figs.

  6. A novel method of drift-scanning stars suppression based on the standardized linear filter

    NASA Astrophysics Data System (ADS)

    Lin, Jianlin; Ping, Xijian; Hou, Guanghua; Ma, Debao

    2011-11-01

    A large number of stars in the drift-scanning star image have interfered with the detection of small target, this paper proposes an adaptive linear filtering method to achieve the small target detection by suppressing the stars. Firstly, the characteristics of stars, interest target and noise three different representative objects in the star image are analyzed, then the standardized linear filter is constructed to suppress the stars. For the purpose of decreasing the influence region of stars filtering uniformly, a gradient linear filter is constructed to modify the stars suppression method with the standardized linear filter. Then the filter parameter selection method is given. Finally, a multi-frame target track experiment on the real drift-scanning data is made to testify the validity of the proposed method. With the processing results of different methods, it has been showed that the proposed method for suppressing stars with different length and lean angle has a better effect, higher robustness and easier application than the others.

  7. Adaptations for nocturnal and diurnal vision in the hawkmoth lamina.

    PubMed

    Stöckl, Anna L; Ribi, Willi A; Warrant, Eric J

    2016-01-01

    Animals use vision over a wide range of light intensities, from dim starlight to bright sunshine. For animals active in very dim light the visual system is challenged by several sources of visual noise. Adaptations in the eyes, as well as in the neural circuitry, have evolved to suppress the noise and enhance the visual signal, thereby improving vision in dim light. Among neural adaptations, spatial summation of visual signals from neighboring processing units is suggested to increase the reliability of signal detection and thus visual sensitivity. In insects, the likely neural candidates for carrying out spatial summation are the lamina monopolar cells (LMCs) of the first visual processing area of the insect brain (the lamina). We have classified LMCs in three species of hawkmoths with considerably different activity periods but very similar ecology-the diurnal Macroglossum stellatarum, the nocturnal Deilephila elpenor and the crepuscular-nocturnal Manduca sexta. Using this classification, we investigated the anatomical adaptations of hawkmoth LMCs suited for spatial summation. We found that specific types of LMCs have dendrites extending to significantly more neighboring cartridges in the two nocturnal and crepuscular species than in the diurnal species, making these LMC types strong candidates for spatial summation. Moreover, while the absolute number of cartridges visited by the LMCs differed between the two dim-light species, their dendritic extents were very similar in terms of visual angle, possibly indicating a limiting spatial acuity. The overall size of the lamina neuropil did not correlate with the size of its LMCs. PMID:26100612

  8. A Two-Microphone Noise Reduction System for Cochlear Implant Users with Nearby Microphones—Part I: Signal Processing Algorithm Design and Development

    NASA Astrophysics Data System (ADS)

    Kompis, Martin; Bertram, Matthias; François, Jacques; Pelizzone, Marco

    2008-12-01

    Users of cochlear implant systems, that is, of auditory aids which stimulate the auditory nerve at the cochlea electrically, often complain about poor speech understanding in noisy environments. Despite the proven advantages of multimicrophone directional noise reduction systems for conventional hearing aids, only one major manufacturer has so far implemented such a system in a product, presumably because of the added power consumption and size. We present a physically small (intermicrophone distance 7 mm) and computationally inexpensive adaptive noise reduction system suitable for behind-the-ear cochlear implant speech processors. Supporting algorithms, which allow the adjustment of the opening angle and the maximum noise suppression, are proposed and evaluated. A portable real-time device for test in real acoustic environments is presented.

  9. Current noise in three-terminal hybrid quantum point contacts.

    PubMed

    Wu, B H; Wang, C R; Chen, X S; Xu, G J

    2014-01-15

    We investigate the current noise of three-terminal hybrid structures at arbitrary bias voltages. Our results indicate that the noise can be a useful tool to extract dynamical information in multi-terminal hybrid structures. The zero-frequency noise is sensitive to the coupling with a normal lead. As a result, the characteristic multiple-step structure of the noise Fano factor due to multiple Andreev reflection will be suppressed as we increase this coupling. In addition, the internal dynamics due to processes of Andreev reflection and multiple Andreev reflection raises rich features in the noise spectrum corresponding to the energy differences of various dynamical processes. PMID:24305057

  10. Helicopter engine core noise

    NASA Astrophysics Data System (ADS)

    Vonglahn, U. H.

    1982-07-01

    Calculated engine core noise levels, based on NASA Lewis prediction procedures, for five representative helicopter engines are compared with measured total helicopter noise levels and ICAO helicopter noise certification requirements. Comparisons are made for level flyover and approach procedures. The measured noise levels are generally significantly greater than those predicted for the core noise levels, except for the Sikorsky S-61 and S-64 helicopters. However, the predicted engine core noise levels are generally at or within 3 dB of the ICAO noise rules. Consequently, helicopter engine core noise can be a significant contributor to the overall helicopter noise signature.

  11. Helicopter engine core noise

    NASA Technical Reports Server (NTRS)

    Vonglahn, U. H.

    1982-01-01

    Calculated engine core noise levels, based on NASA Lewis prediction procedures, for five representative helicopter engines are compared with measured total helicopter noise levels and ICAO helicopter noise certification requirements. Comparisons are made for level flyover and approach procedures. The measured noise levels are generally significantly greater than those predicted for the core noise levels, except for the Sikorsky S-61 and S-64 helicopters. However, the predicted engine core noise levels are generally at or within 3 dB of the ICAO noise rules. Consequently, helicopter engine core noise can be a significant contributor to the overall helicopter noise signature.

  12. Community Response to Noise

    NASA Astrophysics Data System (ADS)

    Fidell, Sandy

    The primary effects of community noise on residential populations are speech interference, sleep disturbance, and annoyance. This chapter focuses on transportation noise in general and on aircraft noise in particular because aircraft noise is one of the most prominent community noise sources, because airport/community controversies are often the most contentious and widespread, and because industrial and other specialized formsofcommunitynoise generally posemorelocalized problems.

  13. Supersonic jet noise and the high speed civil transport

    NASA Astrophysics Data System (ADS)

    Seiner, John M.; Krejsa, Eugene A.

    1989-07-01

    An evaluation is made of the comparative advantages of prospective SST engine noise-suppression systems, with a view to their effectiveness in meeting the federally-mandated community noise standards of FAR 36 Stage III. A noise-suppression system must be capable of removing at least 4 EPNdB of noise percent thrust loss at takeoff. While none of the suppressors presently discussed is capable of meeting this goal, the inverted velocity profile/annular convergent-divergent plug/acoustically-treated ejector suppressor combination of configurational elements appears to represent the most efficient noise-control apparatus. Noncircular cross-section nozzle geometries also furnish a general noise reduction advantage over circular ones.

  14. A low-noise 492 GHz SIS waveguide receiver

    NASA Technical Reports Server (NTRS)

    Walker, C. K.; Kooi, J. W.; Chant, M.; Leduc, H. G.; Schaffer, P. L.; Carlstrom, J. E.; Phillips, T. G.

    1992-01-01

    The design and performance are described of an SIS waveguide receiver which provides low noise performance from 375 to 510 GHz. At its design frequency of 492 GHz the receiver has a double-sideband noise temperature of about 172 K. By using embedded magnetic-field concentrators Josephson pair tunneling is effectively suppressed. Techniques for improving receiver performance are discussed.

  15. A low-noise 492 GHz SIS waveguide receiver

    NASA Technical Reports Server (NTRS)

    Walker, C. K.; Kooi, J. W.; Chan, M.; Leduc, Henry G.; Schaffer, P. L.; Carlstrom, J. E.; Phillips, T. G.

    1992-01-01

    We discuss the design and performance of an SIS waveguide receiver which provides low noise performance from 375 to 510 GHz. At its design frequency of 492 GHz, the receiver has a double sideband noise temperature of approx. 172 K. By using embedded magnetic field concentrators, we are able to effectively suppress Josephson pair tunneling. Techniques for improving receiver performance are discussed.

  16. Nonanesthetics can suppress learning.

    PubMed

    Kandel, L; Chortkoff, B S; Sonner, J; Laster, M J; Eger, E I

    1996-02-01

    Nonanesthetic gases or vapors do not abolish movement in response to noxious stimuli despite partial pressures and affinities for lipids that would, according to the Meyer-Overton hypothesis, predict such abolition. We investigated whether nonanesthetics depress learning and memory (i.e., provide amnesia). To define learning, we used a "fear-potentiated startle paradigm": rats trained to associate light with a noxious stimulus (footshock) will startle more, as measured by an accelerometer, when a startle-eliciting stimulus (e.g., a noise) is paired with light than when the startle-eliciting stimulus is presented alone. We imposed light-shock pairings on 98 rats under three conditions: no anesthesia (control); 0.20, 0.29, and 0.38 times the minimum alveolar anesthetic concentration (MAC) of desflurane; or two nonanesthetics (1,2-dichloroperfluorocyclobutane and perfluoropentane) at partial pressures predicted from their lipid solubilities to be between 0.2 and 1 MAC. Desflurane produced a dose-related depression of learning with abolition of learning at 0.28 MAC. Perfluoropentane at 0.2-predicted MAC had the same effect as 0.28 MAC desflurane. 1,2-Dichloroperfluorocyclobutane at 0.5- to 1-predicted MAC abolished learning. Because nonanesthetics suppress learning but not movement (the two critical components of anesthesia), they may prove useful in discriminating between mechanisms and sites of action of anesthetics. PMID:8561335

  17. Turbomachinery noise

    NASA Technical Reports Server (NTRS)

    Groeneweg, John F.; Sofrin, Thomas G.; Rice, Edward J.; Gliebe, Phillip R.

    1991-01-01

    Summarized here are key advances in experimental techniques and theoretical applications which point the way to a broad understanding and control of turbomachinery noise. On the experimental side, the development of effective inflow control techniques makes it possible to conduct, in ground based facilities, definitive experiments in internally controlled blade row interactions. Results can now be valid indicators of flight behavior and can provide a firm base for comparison with analytical results. Inflow control coupled with detailed diagnostic tools such as blade pressure measurements can be used to uncover the more subtle mechanisms such as rotor strut interaction, which can set tone levels for some engine configurations. Initial mappings of rotor wake-vortex flow fields have provided a data base for a first generation semiempirical flow disturbance model. Laser velocimetry offers a nonintrusive method for validating and improving the model. Digital data systems and signal processing algorithms are bringing mode measurement closer to a working tool that can be frequently applied to a real machine such as a turbofan engine. On the analytical side, models of most of the links in the chain from turbomachine blade source to far field observation point have been formulated. Three dimensional lifting surface theory for blade rows, including source noncompactness and cascade effects, blade row transmission models incorporating mode and frequency scattering, and modal radiation calculations, including hybrid numerical-analytical approaches, are tools which await further application.

  18. Studies of electronic noise in gyroklystrons

    NASA Astrophysics Data System (ADS)

    Calame, J. P.; Danly, B. G.; Garven, M.; Levush, B.

    2000-05-01

    Direct measurements of phase noise in a four-cavity, 35 GHz gyroklystron producing 50 μs pulses of 175-210 kW output power with 50-53 dB saturated gain are presented. The measurements were performed at a 10.7 MHz frequency offset from the carrier, where the noise is expected to be dominated by shot noise and where the extrinsic noise from the electron gun's pulsed power supply is manageable. At an operating point with 70 kV beam voltage, 9 A beam current, and a beam velocity ratio of 1.3, a phase noise of -149±1 dBc/Hz was measured during the production of 180 kW output power at 50 dB gain. At a higher beam current of 10 A, the measured phase noise was -146±1 dBc/Hz during production of a 200 kW output power carrier with 53 dB gain. The directly measured phase noise levels were generally within 2-3 dB of the values expected on the basis of carrier-free noise temperature measurements. Overall, the measured gyroklystron noise levels are similar to those of conventional klystrons. Also presented are analytic calculations of the growth rates expected for electrostatic cyclotron instabilities in the region between the electron gun and the input cavity in a previous three-cavity gyroklystron. Very modest perpendicular velocity spreads (rms greater than 2%) are found to completely suppress such noise growth. This lack of significant noise growth above that of bare shot noise is in agreement with experimental results.

  19. Bone suppression technique for chest radiographs

    NASA Astrophysics Data System (ADS)

    Huo, Zhimin; Xu, Fan; Zhang, Jane; Zhao, Hui; Hobbs, Susan K.; Wandtke, John C.; Sykes, Anne-Marie; Paul, Narinder; Foos, David

    2014-03-01

    High-contrast bone structures are a major noise contributor in chest radiographic images. A signal of interest in a chest radiograph could be either partially or completely obscured or "overshadowed" by the highly contrasted bone structures in its surrounding. Thus, removing the bone structures, especially the posterior rib and clavicle structures, is highly desirable to increase the visibility of soft tissue density. We developed an innovative technology that offers a solution to suppress bone structures, including posterior ribs and clavicles, on conventional and portable chest X-ray images. The bone-suppression image processing technology includes five major steps: 1) lung segmentation, 2) rib and clavicle structure detection, 3) rib and clavicle edge detection, 4) rib and clavicle profile estimation, and 5) suppression based on the estimated profiles. The bone-suppression software outputs an image with both the rib and clavicle structures suppressed. The rib suppression performance was evaluated on 491 images. On average, 83.06% (±6.59%) of the rib structures on a standard chest image were suppressed based on the comparison of computer-identified rib areas against hand-drawn rib areas, which is equivalent to about an average of one rib that is still visible on a rib-suppressed image based on a visual assessment. Reader studies were performed to evaluate reader performance in detecting lung nodules and pneumothoraces with and without a bone-suppression companion view. Results from reader studies indicated that the bone-suppression technology significantly improved radiologists' performance in the detection of CT-confirmed possible nodules and pneumothoraces on chest radiographs. The results also showed that radiologists were more confident in making diagnoses regarding the presence or absence of an abnormality after rib-suppressed companion views were presented

  20. CT Image Reconstruction from Sparse Projections Using Adaptive TpV Regularization

    PubMed Central

    Chen, Zijia; Zhou, Linghong

    2015-01-01

    Radiation dose reduction without losing CT image quality has been an increasing concern. Reducing the number of X-ray projections to reconstruct CT images, which is also called sparse-projection reconstruction, can potentially avoid excessive dose delivered to patients in CT examination. To overcome the disadvantages of total variation (TV) minimization method, in this work we introduce a novel adaptive TpV regularization into sparse-projection image reconstruction and use FISTA technique to accelerate iterative convergence. The numerical experiments demonstrate that the proposed method suppresses noise and artifacts more efficiently, and preserves structure information better than other existing reconstruction methods. PMID:26089962