Science.gov

Sample records for adaptive optics camera

  1. Multiwavelength adaptive optical fundus camera and continuous retinal imaging

    NASA Astrophysics Data System (ADS)

    Yang, Han-sheng; Li, Min; Dai, Yun; Zhang, Yu-dong

    2009-08-01

    We have constructed a new version of retinal imaging system with chromatic aberration concerned and the correlated optical design presented in this article is based on the adaptive optics fundus camera modality. In our system, three typical wavelengths of 550nm, 650nm and 480nm were selected. Longitude chromatic aberration (LCA) was traded off to a minimum using ZEMAX program. The whole setup was actually evaluated on human subjects and retinal imaging was performed at continuous frame rates up to 20 Hz. Raw videos at parafovea locations were collected, and cone mosaics as well as retinal vasculature were clearly observed in one single clip. In addition, comparisons under different illumination conditions were also made to confirm our design. Image contrast and the Strehl ratio were effectively increased after dynamic correction of high order aberrations. This system is expected to bring new applications in functional imaging of human retina.

  2. Adaptive optics fundus camera using a liquid crystal phase modulator

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Tatsuo; Nakazawa, Naoki; Bessho, Kenichiro; Kitaguchi, Yoshiyuki; Maeda, Naoyuki; Fujikado, Takashi; Mihashi, Toshifumi

    2008-05-01

    We have developed an adaptive optics (AO) fundus camera to obtain high resolution retinal images of eyes. We use a liquid crystal phase modulator to compensate the aberrations of the eye for better resolution and better contrast in the images. The liquid crystal phase modulator has a wider dynamic range to compensate aberrations than most mechanical deformable mirrors and its linear phase generation makes it easy to follow eye movements. The wavefront aberration was measured in real time with a sampling rate of 10 Hz and the closed loop system was operated at around 2 Hz. We developed software tools to align consecutively obtained images. From our experiments with three eyes, the aberrations of normal eyes were reduced to less than 0.1 μm (RMS) in less than three seconds by the liquid crystal phase modulator. We confirmed that this method was adequate for measuring eyes with large aberrations including keratoconic eyes. Finally, using the liquid crystal phase modulator, high resolution images of retinas could be obtained.

  3. Compact infrared camera (CIRC) for earth observation adapting athermal optics

    NASA Astrophysics Data System (ADS)

    Kato, Eri; Katayama, Haruyoshi; Naitoh, Masataka; Harada, Masatomo; Nakamura, Ryoko; Nakau, Koji; Sato, Ryota

    2013-09-01

    We have developed the compact infrared camera (CIRC) with an uncooled infrared array detector (microbolometer) for space application. The main mission of the CIRC is the technology demonstration of the wildfire detection using a large format (640×480) microbolometer. Wildfires are major and chronic disasters affecting numerous countries, especially in the Asia-Pacific region, and may get worse with global warming and climate change. Microbolometers have an advantage of not requiring cooling systems such an a mechanical cooler, and is suitable for resource-limited sensor systems or small satellites. Main characteristic of the CIRC is also an athermal optics. The thermal optics compensates the defocus due to the temperature change by using Germanium and Chalcogenide glass which have different coefficient of thermal expansion and temperature dependence of refractive index. The CIRC achieves a small size, light weight, and low electrical power by employing the athermal optics and a shutter-less system. Two CIRCs will be carried as a technology demonstration payload of ALOS-2 and JEM-CALET, which will be launched in JFY 2013 and 2014, respectively. We have finished the ground calibration test of the CIRC Proto Flight Model (PFM). Athermal optical performance of the CIRC have been confirmed by measuring modulation transfer function (MTF) in a vacuum environment and at environmental temperature from -15 to 50 °C. As a result, MTF was found to be effective at capturing clear images across the entire range of operating temperatures. We also provide an overview of the CIRC and radiometric test results in this presentation.

  4. An overview of AONGC and the ESO adaptive optics wave front sensing camera

    NASA Astrophysics Data System (ADS)

    Reyes, Javier; Downing, Mark; Conzelmann, Ralf; Mehrgan, Leander; Stegmeier, Joerg; Todorovic, Mirko; Molina-Conde, Ignacio

    2012-07-01

    The detector controller requirements for Adaptive Optics (AO) cameras presents numerous challenges in the design of the electronics, all of which have led to highly customized controller development in order to meet the requirements of high frame rate, low-noise and low image latency in a compact sized camera. This paper presents an overview of the ESO AOWFS camera and AONGC, the Adaptive Optics ESO's new detector controller; the challenges and excellent progress in achieving detector limited performance from the e2v EMCCD CCD220, along with test results demonstrating sub-electron read noise at frame rates in excess of 1500 Hz. Pre-series cameras have been delivered for use in 2nd Generation VLT instruments (AOF and SPHERE).

  5. Enabling technologies for visible adaptive optics: the Magellan adaptive secondary VisAO camera

    NASA Astrophysics Data System (ADS)

    Kopon, Derek; Males, Jared; Close, Laird M.; Gasho, Victor

    2009-08-01

    Since its beginnings, diffraction-limited ground-based adaptive optics (AO) imaging has been limited to wavelengths in the near IR (λ>1μm) and longer. Visible AO (λ>1μm) has proven to be difficult because shorter wavelengths require wavefront correction on very short spatial and temporal scales. The pupil must be sampled very finely, which requires dense actuator spacing and fine wavefront sampling with large dynamic range. In addition, atmospheric dispersion is much more significant in the visible than in the near-IR. Imaging over a broad visible band requires a very good Atmospheric Dispersion Corrector (ADC). Even with these technologies, our AO simulations using the CAOS code, combined with the optical and site parameters for the 6.5m Magellan telescope, demonstrate a large temporal variability of visible (λ=0.7μm) Strehl on timescales of 50 ms. Over several hundred milliseconds, the visible Strehl can be as high at 50% and as low as 10%. Taking advantage of periods of high Strehl requires either the ability to read out the CCD very fast, thereby introducing significant amounts of read-noise, or the use of a fast asynchronous shutter that can block the low-Strehl light. Our Magellan VisAO camera will use an advanced ADC, a high-speed shutter, and our 585 actuator adaptive secondary to achieve broadband (0.5-1.0 μm) diffraction limited images on the 6.5m Magellan Clay telescope in Chile at Las Campanas Observatory. These will be the sharpest and deepest visible direct images taken to date with a resolution of 17 mas, a factor of 2.7 better than the diffraction limit of the Hubble Space Telescope.

  6. Retinal axial focusing and multi-layer imaging with a liquid crystal adaptive optics camera

    NASA Astrophysics Data System (ADS)

    Liu, Rui-Xue; Zheng, Xian-Liang; Li, Da-Yu; Xia, Ming-Liang; Hu, Li-Fa; Cao, Zhao-Liang; Mu, Quan-Quan; Xuan, Li

    2014-09-01

    With the help of adaptive optics (AO) technology, cellular level imaging of living human retina can be achieved. Aiming to reduce distressing feelings and to avoid potential drug induced diseases, we attempted to image retina with dilated pupil and froze accommodation without drugs. An optimized liquid crystal adaptive optics camera was adopted for retinal imaging. A novel eye stared system was used for stimulating accommodation and fixating imaging area. Illumination sources and imaging camera kept linkage for focusing and imaging different layers. Four subjects with diverse degree of myopia were imaged. Based on the optical properties of the human eye, the eye stared system reduced the defocus to less than the typical ocular depth of focus. In this way, the illumination light can be projected on certain retina layer precisely. Since that the defocus had been compensated by the eye stared system, the adopted 512 × 512 liquid crystal spatial light modulator (LC-SLM) corrector provided the crucial spatial fidelity to fully compensate high-order aberrations. The Strehl ratio of a subject with -8 diopter myopia was improved to 0.78, which was nearly close to diffraction-limited imaging. By finely adjusting the axial displacement of illumination sources and imaging camera, cone photoreceptors, blood vessels and nerve fiber layer were clearly imaged successfully.

  7. Application of adaptive optics in retinal imaging: a quantitative and clinical comparison with standard cameras

    NASA Astrophysics Data System (ADS)

    Barriga, E. S.; Erry, G.; Yang, S.; Russell, S.; Raman, B.; Soliz, P.

    2005-04-01

    Aim: The objective of this project was to evaluate high resolution images from an adaptive optics retinal imager through comparisons with standard film-based and standard digital fundus imagers. Methods: A clinical prototype adaptive optics fundus imager (AOFI) was used to collect retinal images from subjects with various forms of retinopathy to determine whether improved visibility into the disease could be provided to the clinician. The AOFI achieves low-order correction of aberrations through a closed-loop wavefront sensor and an adaptive optics system. The remaining high-order aberrations are removed by direct deconvolution using the point spread function (PSF) or by blind deconvolution when the PSF is not available. An ophthalmologist compared the AOFI images with standard fundus images and provided a clinical evaluation of all the modalities and processing techniques. All images were also analyzed using a quantitative image quality index. Results: This system has been tested on three human subjects (one normal and two with retinopathy). In the diabetic patient vascular abnormalities were detected with the AOFI that cannot be resolved with the standard fundus camera. Very small features, such as the fine vascular structures on the optic disc and the individual nerve fiber bundles are easily resolved by the AOFI. Conclusion: This project demonstrated that adaptive optic images have great potential in providing clinically significant detail of anatomical and pathological structures to the ophthalmologist.

  8. An adaptive optics approach for laser beam correction in turbulence utilizing a modified plenoptic camera

    NASA Astrophysics Data System (ADS)

    Ko, Jonathan; Wu, Chensheng; Davis, Christopher C.

    2015-09-01

    Adaptive optics has been widely used in the field of astronomy to correct for atmospheric turbulence while viewing images of celestial bodies. The slightly distorted incoming wavefronts are typically sensed with a Shack-Hartmann sensor and then corrected with a deformable mirror. Although this approach has proven to be effective for astronomical purposes, a new approach must be developed when correcting for the deep turbulence experienced in ground to ground based optical systems. We propose the use of a modified plenoptic camera as a wavefront sensor capable of accurately representing an incoming wavefront that has been significantly distorted by strong turbulence conditions (C2n <10-13 m- 2/3). An intelligent correction algorithm can then be developed to reconstruct the perturbed wavefront and use this information to drive a deformable mirror capable of correcting the major distortions. After the large distortions have been corrected, a secondary mode utilizing more traditional adaptive optics algorithms can take over to fine tune the wavefront correction. This two-stage algorithm can find use in free space optical communication systems, in directed energy applications, as well as for image correction purposes.

  9. OCAM2: world's fastest and most sensitive camera system for advanced Adaptive Optics wavefront sensing

    NASA Astrophysics Data System (ADS)

    Gach, Jean-Luc; Balard, Philippe; Stadler, Eric; Guillaume, Christian; Feautrier, Philippe

    2011-09-01

    For the first time, sub-electron read noise has been achieved with a camera suitable for astronomical wavefront-sensing (WFS) applications. The OCam system has demonstrated this performance at 1500 Hz frame rate and with 240x240-pixel. ESO and JRA2 OPTICON have jointly funded e2v technologies to develop a custom CCD for Adaptive Optics (AO) wavefront sensing applications. The device, called CCD220, is a compact Peltier-cooled 240x240 pixel frame-transfer 8-output back-illuminated sensor using the EMCCD technology. This talk demonstrates sub-electron read noise at frame rates from 25 Hz to 1500 Hz and dark current lower than 0.01 e-/pixel/frame. It reports on the comprehensive, quantitative performance characterization of OCam and the CCD220 such as readout noise, dark current, multiplication gain, quantum efficiency, charge transfer efficiency... OCam includes a low noise preamplifier stage, a digital board to generate the clocks and a microcontroller. The data acquisition system includes a user friendly timer file editor to generate any type of clocking scheme. A second version of OCam, called OCAM2, was designed offering enhanced performances, a completely sealed camera package and an additional Peltier stage to facilitate operation on a telescope or environmentally rugged applications. OCAM2 offers two types of built-in data link to the Real Time Computer: the CameraLink industry standard interface and various fiber link options like the sFPDP interface. OCAM2 includes also a modified mechanical design to ease the integration of microlens arrays for use of this camera in all types of wavefront sensing AO system. The front cover of OCAM2 can be customized to include a microlens exchange mechanism. A picture of OCAM2, the commercial version of OCam, is shown in Figure 2. OCAM2 is commercialized by the "First Light Imaging" company.

  10. CAMERA: a compact, automated, laser adaptive optics system for small aperture telescopes

    NASA Astrophysics Data System (ADS)

    Britton, Matthew; Velur, Viswa; Law, Nick; Choi, Philip; Penprase, Bryan E.

    2008-07-01

    CAMERA is an autonomous laser guide star adaptive optics system designed for small aperture telescopes. This system is intended to be mounted permanently on such a telescope to provide large amounts of flexibly scheduled observing time, delivering high angular resolution imagery in the visible and near infrared. The design employs a Shack Hartmann wavefront sensor, a 12x12 actuator MEMS device for high order wavefront compensation, and a solid state 355nm ND:YAG laser to generate a guide star. Commercial CCD and InGaAs detectors provide coverage in the visible and near infrared. CAMERA operates by selecting targets from a queue populated by users and executing these observations autonomously. This robotic system is targeted towards applications that are diffcult to address using classical observing strategies: surveys of very large target lists, recurrently scheduled observations, and rapid response followup of transient objects. This system has been designed and costed, and a lab testbed has been developed to evaluate key components and validate autonomous operations.

  11. Imaging microscopic structures in pathological retinas using a flood-illumination adaptive optics retinal camera

    NASA Astrophysics Data System (ADS)

    Viard, Clément; Nakashima, Kiyoko; Lamory, Barbara; Pâques, Michel; Levecq, Xavier; Château, Nicolas

    2011-03-01

    This research is aimed at characterizing in vivo differences between healthy and pathological retinal tissues at the microscopic scale using a compact adaptive optics (AO) retinal camera. Tests were performed in 120 healthy eyes and 180 eyes suffering from 19 different pathological conditions, including age-related maculopathy (ARM), glaucoma and rare diseases such as inherited retinal dystrophies. Each patient was first examined using SD-OCT and infrared SLO. Retinal areas of 4°x4° were imaged using an AO flood-illumination retinal camera based on a large-stroke deformable mirror. Contrast was finally enhanced by registering and averaging rough images using classical algorithms. Cellular-resolution images could be obtained in most cases. In ARM, AO images revealed granular contents in drusen, which were invisible in SLO or OCT images, and allowed the observation of the cone mosaic between drusen. In glaucoma cases, visual field was correlated to changes in cone visibility. In inherited retinal dystrophies, AO helped to evaluate cone loss across the retina. Other microstructures, slightly larger in size than cones, were also visible in several retinas. AO provided potentially useful diagnostic and prognostic information in various diseases. In addition to cones, other microscopic structures revealed by AO images may also be of interest in monitoring retinal diseases.

  12. LSST Camera Optics Design

    SciTech Connect

    Riot, V J; Olivier, S; Bauman, B; Pratuch, S; Seppala, L; Gilmore, D; Ku, J; Nordby, M; Foss, M; Antilogus, P; Morgado, N

    2012-05-24

    The Large Synoptic Survey Telescope (LSST) uses a novel, three-mirror, telescope design feeding a camera system that includes a set of broad-band filters and three refractive corrector lenses to produce a flat field at the focal plane with a wide field of view. Optical design of the camera lenses and filters is integrated in with the optical design of telescope mirrors to optimize performance. We discuss the rationale for the LSST camera optics design, describe the methodology for fabricating, coating, mounting and testing the lenses and filters, and present the results of detailed analyses demonstrating that the camera optics will meet their performance goals.

  13. Design and study of a thermal infrared camera for an adaptive optics instrument. Circumstellar medium around PMS binaries.

    NASA Astrophysics Data System (ADS)

    Geoffray, H.

    1998-10-01

    This thesis work provides a complete study of a 1-5 μm infrared camera designed to be used with the adaptive optics system installed at the European Southern Observatory (ESO) 3.6 m telescope, from the laboratory characterization of the IRCCD 128x128 HgCdTe Focal Plane Array, to astronomical results obtained on a sample of Pre-Main-Sequence binaries.

  14. Adaptive compressive sensing camera

    NASA Astrophysics Data System (ADS)

    Hsu, Charles; Hsu, Ming K.; Cha, Jae; Iwamura, Tomo; Landa, Joseph; Nguyen, Charles; Szu, Harold

    2013-05-01

    We have embedded Adaptive Compressive Sensing (ACS) algorithm on Charge-Coupled-Device (CCD) camera based on the simplest concept that each pixel is a charge bucket, and the charges comes from Einstein photoelectric conversion effect. Applying the manufactory design principle, we only allow altering each working component at a minimum one step. We then simulated what would be such a camera can do for real world persistent surveillance taking into account of diurnal, all weather, and seasonal variations. The data storage has saved immensely, and the order of magnitude of saving is inversely proportional to target angular speed. We did design two new components of CCD camera. Due to the matured CMOS (Complementary metal-oxide-semiconductor) technology, the on-chip Sample and Hold (SAH) circuitry can be designed for a dual Photon Detector (PD) analog circuitry for changedetection that predicts skipping or going forward at a sufficient sampling frame rate. For an admitted frame, there is a purely random sparse matrix [Φ] which is implemented at each bucket pixel level the charge transport bias voltage toward its neighborhood buckets or not, and if not, it goes to the ground drainage. Since the snapshot image is not a video, we could not apply the usual MPEG video compression and Hoffman entropy codec as well as powerful WaveNet Wrapper on sensor level. We shall compare (i) Pre-Processing FFT and a threshold of significant Fourier mode components and inverse FFT to check PSNR; (ii) Post-Processing image recovery will be selectively done by CDT&D adaptive version of linear programming at L1 minimization and L2 similarity. For (ii) we need to determine in new frames selection by SAH circuitry (i) the degree of information (d.o.i) K(t) dictates the purely random linear sparse combination of measurement data a la [Φ]M,N M(t) = K(t) Log N(t).

  15. Retinal Imaging: Adaptive Optics

    NASA Astrophysics Data System (ADS)

    Goncharov, A. S.; Iroshnikov, N. G.; Larichev, Andrey V.

    This chapter describes several factors influencing the performance of ophthalmic diagnostic systems with adaptive optics compensation of human eye aberration. Particular attention is paid to speckle modulation, temporal behavior of aberrations, and anisoplanatic effects. The implementation of a fundus camera with adaptive optics is considered.

  16. Photoreceptor counting and montaging of en-face retinal images from an adaptive optics fundus camera

    NASA Astrophysics Data System (ADS)

    Xue, Bai; Choi, Stacey S.; Doble, Nathan; Werner, John S.

    2007-05-01

    A fast and efficient method for quantifying photoreceptor density in images obtained with an en-face flood-illuminated adaptive optics (AO) imaging system is described. To improve accuracy of cone counting, en-face images are analyzed over extended areas. This is achieved with two separate semiautomated algorithms: (1) a montaging algorithm that joins retinal images with overlapping common features without edge effects and (2) a cone density measurement algorithm that counts the individual cones in the montaged image. The accuracy of the cone density measurement algorithm is high, with >97% agreement for a simulated retinal image (of known density, with low contrast) and for AO images from normal eyes when compared with previously reported histological data. Our algorithms do not require spatial regularity in cone packing and are, therefore, useful for counting cones in diseased retinas, as demonstrated for eyes with Stargardt's macular dystrophy and retinitis pigmentosa.

  17. LSST Camera Optics

    SciTech Connect

    Olivier, S S; Seppala, L; Gilmore, K; Hale, L; Whistler, W

    2006-06-05

    The Large Synoptic Survey Telescope (LSST) is a unique, three-mirror, modified Paul-Baker design with an 8.4m primary, a 3.4m secondary, and a 5.0m tertiary feeding a camera system that includes corrector optics to produce a 3.5 degree field of view with excellent image quality (<0.3 arcsecond 80% encircled diffracted energy) over the entire field from blue to near infra-red wavelengths. We describe the design of the LSST camera optics, consisting of three refractive lenses with diameters of 1.6m, 1.0m and 0.7m, along with a set of interchangeable, broad-band, interference filters with diameters of 0.75m. We also describe current plans for fabricating, coating, mounting and testing these lenses and filters.

  18. The CAFADIS camera: a new tomographic wavefront sensor for Adaptive Optics

    NASA Astrophysics Data System (ADS)

    Rodríguez, J. M.; Femenía, B.; Montilla, I.; Rodríguez-Ramos, L. F.; Marichal-Hernández, J. G.; Lüke, J. P.; López, R.; Díaz, J. J.; Martín, Y.

    The CAFADIS camera is a new wavefront sensor (WFS) patented by the Universidad de La Laguna. CAFADIS is a system based on the concept of plenoptic camera originally proposed by Adelson and Wang [Single lens stereo with a plenoptic camera, IEEE Transactions on Pattern Analysis and Machine Intelligence 14 (1992)] and its most salient feature is its ability to simultaneously measuring wavefront maps and distances to objects [Wavefront and distance measurements using the CAFADIS camera, in Astronomical telescopes, Marseille (2008)]. This makes of CAFADIS an interesting alternative for LGS-based AO systems as it is capable of measuring from an LGS-beacon the atmospheric turbulence wavefront and simultaneously the distance to the LGS beacon thus removing the need of a NGS defocus sensor to probe changes in distance to the LGS beacon due to drifts of the mesospheric Na layer. In principle, the concept can also be employed to recover 3D profiles of the Na Layer allowing for optimizations of the measurement of the distance to the LGS-beacon. Currently we are investigating the possibility of extending the plenoptic WFS into a tomographic wavefront sensor. Simulations will be shown of a plenoptic WFS when operated within an LGS-based AO system for the recovery of wavefront maps at different heights. The preliminary results presented here show the tomographic ability of CAFADIS.

  19. Camera lens adapter magnifies image

    NASA Technical Reports Server (NTRS)

    Moffitt, F. L.

    1967-01-01

    Polaroid Land camera with an illuminated 7-power magnifier adapted to the lens, photographs weld flaws. The flaws are located by inspection with a 10-power magnifying glass and then photographed with this device, thus providing immediate pictorial data for use in remedial procedures.

  20. Telescope Adaptive Optics Code

    SciTech Connect

    Phillion, D.

    2005-07-28

    The Telescope AO Code has general adaptive optics capabilities plus specialized models for three telescopes with either adaptive optics or active optics systems. It has the capability to generate either single-layer or distributed Kolmogorov turbulence phase screens using the FFT. Missing low order spatial frequencies are added using the Karhunen-Loeve expansion. The phase structure curve is extremely dose to the theoreUcal. Secondly, it has the capability to simulate an adaptive optics control systems. The default parameters are those of the Keck II adaptive optics system. Thirdly, it has a general wave optics capability to model the science camera halo due to scintillation from atmospheric turbulence and the telescope optics. Although this capability was implemented for the Gemini telescopes, the only default parameter specific to the Gemini telescopes is the primary mirror diameter. Finally, it has a model for the LSST active optics alignment strategy. This last model is highly specific to the LSST

  1. High-Resolution Imaging of Parafoveal Cones in Different Stages of Diabetic Retinopathy Using Adaptive Optics Fundus Camera

    PubMed Central

    Soliman, Mohamed Kamel; Hassan, Muhammad; Hanout, Mostafa; Graf, Frank; High, Robin; Do, Diana V.; Nguyen, Quan Dong; Sepah, Yasir J.

    2016-01-01

    Purpose To assess cone density as a marker of early signs of retinopathy in patients with type II diabetes mellitus. Methods An adaptive optics (AO) retinal camera (rtx1™; Imagine Eyes, Orsay, France) was used to acquire images of parafoveal cones from patients with type II diabetes mellitus with or without retinopathy and from healthy controls with no known systemic or ocular disease. Cone mosaic was captured at 0° and 2°eccentricities along the horizontal and vertical meridians. The density of the parafoveal cones was calculated within 100×100-μm squares located at 500-μm from the foveal center along the orthogonal meridians. Manual corrections of the automated counting were then performed by 2 masked graders. Cone density measurements were evaluated with ANOVA that consisted of one between-subjects factor, stage of retinopathy and the within-subject factors. The ANOVA model included a complex covariance structure to account for correlations between the levels of the within-subject factors. Results Ten healthy participants (20 eyes) and 25 patients (29 eyes) with type II diabetes mellitus were recruited in the study. The mean (± standard deviation [SD]) age of the healthy participants (Control group), patients with diabetes without retinopathy (No DR group), and patients with diabetic retinopathy (DR group) was 55 ± 8, 53 ± 8, and 52 ± 9 years, respectively. The cone density was significantly lower in the moderate nonproliferative diabetic retinopathy (NPDR) and severe NPDR/proliferative DR groups compared to the Control, No DR, and mild NPDR groups (P < 0.05). No correlation was found between cone density and the level of hemoglobin A1c (HbA1c) or the duration of diabetes. Conclusions The extent of photoreceptor loss on AO imaging may correlate positively with severity of DR in patients with type II diabetes mellitus. Photoreceptor loss may be more pronounced among patients with advanced stages of DR due to higher risk of macular edema and its

  2. Telescope Adaptive Optics Code

    2005-07-28

    The Telescope AO Code has general adaptive optics capabilities plus specialized models for three telescopes with either adaptive optics or active optics systems. It has the capability to generate either single-layer or distributed Kolmogorov turbulence phase screens using the FFT. Missing low order spatial frequencies are added using the Karhunen-Loeve expansion. The phase structure curve is extremely dose to the theoreUcal. Secondly, it has the capability to simulate an adaptive optics control systems. The defaultmore » parameters are those of the Keck II adaptive optics system. Thirdly, it has a general wave optics capability to model the science camera halo due to scintillation from atmospheric turbulence and the telescope optics. Although this capability was implemented for the Gemini telescopes, the only default parameter specific to the Gemini telescopes is the primary mirror diameter. Finally, it has a model for the LSST active optics alignment strategy. This last model is highly specific to the LSST« less

  3. Corrective Optics For Camera On Telescope

    NASA Technical Reports Server (NTRS)

    Macenka, Steven A.; Meinel, Aden B.

    1994-01-01

    Assembly of tilted, aspherical circularly symmetric mirrors used as corrective optical subsystem for camera mounted on telescope exhibiting both large spherical wave-front error and inherent off-axis astigmatism. Subsystem provides unobscured camera aperture and diffraction-limited camera performance, despite large telescope aberrations. Generic configuration applied in other optical systems in which aberations deliberately introduced into telescopes and corrected in associated cameras. Concept of corrective optical subsystem provides designer with additional degrees of freedom used to optimize optical system.

  4. Recent advances in digital camera optics

    NASA Astrophysics Data System (ADS)

    Ishiguro, Keizo

    2012-10-01

    The digital camera market has extremely expanded in the last ten years. The zoom lens for digital camera is especially the key determining factor of the camera body size and image quality. Its technologies have been based on several analog technological progresses including the method of aspherical lens manufacturing and the mechanism of image stabilization. Panasonic is one of the pioneers of both technologies. I will introduce the previous trend in optics of zoom lens as well as original optical technologies of Panasonic digital camera "LUMIX", and in addition optics in 3D camera system. Besides, I would like to suppose the future trend in digital cameras.

  5. Detailed Morphological Changes of Foveoschisis in Patient with X-Linked Retinoschisis Detected by SD-OCT and Adaptive Optics Fundus Camera.

    PubMed

    Akeo, Keiichiro; Kameya, Shuhei; Gocho, Kiyoko; Kubota, Daiki; Yamaki, Kunihiko; Takahashi, Hiroshi

    2015-01-01

    Purpose. To report the morphological and functional changes associated with a regression of foveoschisis in a patient with X-linked retinoschisis (XLRS). Methods. A 42-year-old man with XLRS underwent genetic analysis and detailed ophthalmic examinations. Functional assessments included best-corrected visual acuity (BCVA), full-field electroretinograms (ERGs), and multifocal ERGs (mfERGs). Morphological assessments included fundus photography, spectral-domain optical coherence tomography (SD-OCT), and adaptive optics (AO) fundus imaging. After the baseline clinical data were obtained, topical dorzolamide was applied to the patient. The patient was followed for 24 months. Results. A reported RS1 gene mutation was found (P203L) in the patient. At the baseline, his decimal BCVA was 0.15 in the right and 0.3 in the left eye. Fundus photographs showed bilateral spoke wheel-appearing maculopathy. SD-OCT confirmed the foveoschisis in the left eye. The AO images of the left eye showed spoke wheel retinal folds, and the folds were thinner than those in fundus photographs. During the follow-up period, the foveal thickness in the SD-OCT images and the number of retinal folds in the AO images were reduced. Conclusions. We have presented the detailed morphological changes of foveoschisis in a patient with XLRS detected by SD-OCT and AO fundus camera. However, the findings do not indicate whether the changes were influenced by topical dorzolamide or the natural history. PMID:26356828

  6. Detailed Morphological Changes of Foveoschisis in Patient with X-Linked Retinoschisis Detected by SD-OCT and Adaptive Optics Fundus Camera

    PubMed Central

    Akeo, Keiichiro; Kameya, Shuhei; Gocho, Kiyoko; Kubota, Daiki; Yamaki, Kunihiko; Takahashi, Hiroshi

    2015-01-01

    Purpose. To report the morphological and functional changes associated with a regression of foveoschisis in a patient with X-linked retinoschisis (XLRS). Methods. A 42-year-old man with XLRS underwent genetic analysis and detailed ophthalmic examinations. Functional assessments included best-corrected visual acuity (BCVA), full-field electroretinograms (ERGs), and multifocal ERGs (mfERGs). Morphological assessments included fundus photography, spectral-domain optical coherence tomography (SD-OCT), and adaptive optics (AO) fundus imaging. After the baseline clinical data were obtained, topical dorzolamide was applied to the patient. The patient was followed for 24 months. Results. A reported RS1 gene mutation was found (P203L) in the patient. At the baseline, his decimal BCVA was 0.15 in the right and 0.3 in the left eye. Fundus photographs showed bilateral spoke wheel-appearing maculopathy. SD-OCT confirmed the foveoschisis in the left eye. The AO images of the left eye showed spoke wheel retinal folds, and the folds were thinner than those in fundus photographs. During the follow-up period, the foveal thickness in the SD-OCT images and the number of retinal folds in the AO images were reduced. Conclusions. We have presented the detailed morphological changes of foveoschisis in a patient with XLRS detected by SD-OCT and AO fundus camera. However, the findings do not indicate whether the changes were influenced by topical dorzolamide or the natural history. PMID:26356828

  7. Coherent Digital Holographic Adaptive Optics

    NASA Astrophysics Data System (ADS)

    Liu, Changgeng

    A new type of adaptive optics (AO) based on the principles of digital holography (DH) is proposed and developed for the use in wide-field and confocal retinal imaging. Digital holographic adaptive optics (DHAO) dispenses with the wavefront sensor and wavefront corrector of the conventional AO system. DH is an emergent imaging technology that gives direct numerical access to the phase of the optical field, thus allowing precise control and manipulation of the optical field. Incorporation of DH in an ophthalmic imaging system can lead to versatile imaging capabilities at substantially reduced complexity and cost of the instrument. A typical conventional AO system includes several critical hardware pieces: spatial light modulator, lenslet array, and a second CCD camera in addition to the camera for imaging. The proposed DHAO system replaces these hardware components with numerical processing for wavefront measurement and compensation of aberration through the principles of DH. (Abstract shortened by UMI.).

  8. Adaptive optics in ophthalmology: current techniques and new methods of increasing field-of-view of fundus cameras

    NASA Astrophysics Data System (ADS)

    Dubinin, Alexander; Cherezova, Tatyana; Kudryashov, Alexis; Starikov, Fedor

    2007-06-01

    In this paper we investigate anisoplanatism effect in human eye. We measured off-axis aberrations of eyes of several subjects and also performed measurements of corneal and internal optics aberrations. Using the results of the experiments we estimated anisoplanatism effect in human eye and developed human eye models reproducing on-axis and off-axis eye aberrations and their distribution between optical elements of the eye.

  9. Superconducting cameras for optical astronomy

    NASA Astrophysics Data System (ADS)

    Martin, D. D. E.; Verhoeve, P.; de Bruijne, J. H. J.; Reynolds, A. P.; van Dordrecht, A.; Verveer, J.; Page, J.; Rando, N.; Peacock, A.

    2002-05-01

    superconducting Tunnel junctions (STJs) have been extensively investigated it as photon detectors covering the range from near-infrared to x-ray energies. A 6× 6 array of Tantalum junctions has performed multiple astronomical observations of optical sources using the wiliam Herschel 4.2m telescope at La Palma. Following the success of this programme, we are now developing a second generation camera. The goals of this programme are to increase the field of view of the instrument from “4× 4” to “5×9”, to optimize IR rejection filters, possibly extending the `red' response to ~ lum and to increase the electronics readout speed. For these purposes, we are developing a new Superconducting Tunnel Junction Array consisting of 10× 12 Tantalum/Aluminium devices as well as an important readout system. In this paper, we review the instrument's architecture and describe the performance of the new detector

  10. Compact Optical Technique for Streak Camera Calibration

    SciTech Connect

    Curt Allen; Terence Davies; Frans Janson; Ronald Justin; Bruce Marshall; Oliver Sweningsen; Perry Bell; Roger Griffith; Karla Hagans; Richard Lerche

    2004-04-01

    The National Ignition Facility is under construction at the Lawrence Livermore National Laboratory for the U.S. Department of Energy Stockpile Stewardship Program. Optical streak cameras are an integral part of the experimental diagnostics instrumentation. To accurately reduce data from the streak cameras a temporal calibration is required. This article describes a technique for generating trains of precisely timed short-duration optical pulses that are suitable for temporal calibrations.

  11. [Adaptive optics for ophthalmology].

    PubMed

    Saleh, M

    2016-04-01

    Adaptive optics is a technology enhancing the visual performance of an optical system by correcting its optical aberrations. Adaptive optics have already enabled several breakthroughs in the field of visual sciences, such as improvement of visual acuity in normal and diseased eyes beyond physiologic limits, and the correction of presbyopia. Adaptive optics technology also provides high-resolution, in vivo imaging of the retina that may eventually help to detect the onset of retinal conditions at an early stage and provide better assessment of treatment efficacy. PMID:27019970

  12. Adaptive optics revisited.

    PubMed

    Babcock, H W

    1990-07-20

    From the earliest days and nights of telescopic astronomy, atmospheric turbulence has been a serious detriment to optical performance. The new technology of adaptive optics can overcome this problem by compensating for the wavefront distortion that results from turbulence. The result will be large gains in resolving power and limiting magnitude, closely approaching the theoretical limit. In other words, telescopic images will be very significantly sharpened. Rapid and accelerating progress is being made today by several groups. Adaptive optics, together with the closely related technology of active optics, seems certain to be utilized in large astronomical telescopes of the future. This may entail significant changes in telescope design. PMID:17750109

  13. Optical Design of the LSST Camera

    SciTech Connect

    Olivier, S S; Seppala, L; Gilmore, K

    2008-07-16

    The Large Synoptic Survey Telescope (LSST) uses a novel, three-mirror, modified Paul-Baker design, with an 8.4-meter primary mirror, a 3.4-m secondary, and a 5.0-m tertiary feeding a camera system that includes a set of broad-band filters and refractive corrector lenses to produce a flat focal plane with a field of view of 9.6 square degrees. Optical design of the camera lenses and filters is integrated with optical design of telescope mirrors to optimize performance, resulting in excellent image quality over the entire field from ultra-violet to near infra-red wavelengths. The LSST camera optics design consists of three refractive lenses with clear aperture diameters of 1.55 m, 1.10 m and 0.69 m and six interchangeable, broad-band, filters with clear aperture diameters of 0.75 m. We describe the methodology for fabricating, coating, mounting and testing these lenses and filters, and we present the results of detailed tolerance analyses, demonstrating that the camera optics will perform to the specifications required to meet their performance goals.

  14. Exact optics - III. Schwarzschild's spectrograph camera revised

    NASA Astrophysics Data System (ADS)

    Willstrop, R. V.

    2004-03-01

    Karl Schwarzschild identified a system of two mirrors, each defined by conic sections, free of third-order spherical aberration, coma and astigmatism, and with a flat focal surface. He considered it impractical, because the field was too restricted. This system was rediscovered as a quadratic approximation to one of Lynden-Bell's `exact optics' designs which have wider fields. Thus the `exact optics' version has a moderate but useful field, with excellent definition, suitable for a spectrograph camera. The mirrors are strongly aspheric in both the Schwarzschild design and the exact optics version.

  15. Adaptive optical processors.

    PubMed

    Ghosh, A

    1989-06-15

    There are two different approaches for improving the accuracy of analog optical associative processors: postprocessing with a bimodal system and preprocessing with a preconditioner. These two approaches can be combined to develop an adaptive optical multiprocessor that can adjust the computational steps depending on the data and produce solutions of linear algebra problems with a specified accuracy in a given amount of time. PMID:19752909

  16. Quantitative optical metrology with CMOS cameras

    NASA Astrophysics Data System (ADS)

    Furlong, Cosme; Kolenovic, Ervin; Ferguson, Curtis F.

    2004-08-01

    Recent advances in laser technology, optical sensing, and computer processing of data, have lead to the development of advanced quantitative optical metrology techniques for high accuracy measurements of absolute shapes and deformations of objects. These techniques provide noninvasive, remote, and full field of view information about the objects of interest. The information obtained relates to changes in shape and/or size of the objects, characterizes anomalies, and provides tools to enhance fabrication processes. Factors that influence selection and applicability of an optical technique include the required sensitivity, accuracy, and precision that are necessary for a particular application. In this paper, sensitivity, accuracy, and precision characteristics in quantitative optical metrology techniques, and specifically in optoelectronic holography (OEH) based on CMOS cameras, are discussed. Sensitivity, accuracy, and precision are investigated with the aid of National Institute of Standards and Technology (NIST) traceable gauges, demonstrating the applicability of CMOS cameras in quantitative optical metrology techniques. It is shown that the advanced nature of CMOS technology can be applied to challenging engineering applications, including the study of rapidly evolving phenomena occurring in MEMS and micromechatronics.

  17. Advanced Adaptive Optics Technology Development

    SciTech Connect

    Olivier, S

    2001-09-18

    The NSF Center for Adaptive Optics (CfAO) is supporting research on advanced adaptive optics technologies. CfAO research activities include development and characterization of micro-electro-mechanical systems (MEMS) deformable mirror (DM) technology, as well as development and characterization of high-resolution adaptive optics systems using liquid crystal (LC) spatial light modulator (SLM) technology. This paper presents an overview of the CfAO advanced adaptive optics technology development activities including current status and future plans.

  18. Adaptive optics ophthalmoscopy

    PubMed Central

    Roorda, Austin; Duncan, Jacque L.

    2016-01-01

    This review starts with a brief history and description of adaptive optics (AO) technology, followed by a showcase of the latest capabilities of AO systems for imaging the human retina and an extensive review of the literature on where AO is being used clinically. The review concludes with a discussion on future directions and guidance on usage and interpretation of images from AO systems for the eye. PMID:26973867

  19. Atmospheric and adaptive optics

    NASA Astrophysics Data System (ADS)

    Hickson, Paul

    2014-11-01

    Atmospheric optics is the study of optical effects induced by the atmosphere on light propagating from distant sources. Of particular concern to astronomers is atmospheric turbulence, which limits the performance of ground-based telescopes. The past two decades have seen remarkable growth in the capabilities and performance of adaptive optics (AO) systems. These opto-mechanical systems actively compensate for the blurring effect of the Earth's turbulent atmosphere. By sensing, and correcting, wavefront distortion introduced by atmospheric index-of-refraction variations, AO systems can produce images with resolution approaching the diffraction limit of the telescope at near-infrared wavelengths. This review highlights the physical processes and fundamental relations of atmospheric optics that are most relevant to astronomy, and discusses the techniques used to characterize atmospheric turbulence. The fundamentals of AO are then introduced and the many types of advanced AO systems that have been developed are described. The principles of each are outlined, and the performance and limitations are examined. Aspects of photometric and astrometric measurements of AO-corrected images are considered. The paper concludes with a discussion of some of the challenges related to current and future AO systems, particularly those that will equip the next generation of large, ground-based optical and infrared telescopes.

  20. Adaptive Optical Scanning Holography

    PubMed Central

    Tsang, P. W. M.; Poon, Ting-Chung; Liu, J.-P.

    2016-01-01

    Optical Scanning Holography (OSH) is a powerful technique that employs a single-pixel sensor and a row-by-row scanning mechanism to capture the hologram of a wide-view, three-dimensional object. However, the time required to acquire a hologram with OSH is rather lengthy. In this paper, we propose an enhanced framework, which is referred to as Adaptive OSH (AOSH), to shorten the holographic recording process. We have demonstrated that the AOSH method is capable of decreasing the acquisition time by up to an order of magnitude, while preserving the content of the hologram favorably. PMID:26916866

  1. Adaptive Optical Scanning Holography.

    PubMed

    Tsang, P W M; Poon, Ting-Chung; Liu, J-P

    2016-01-01

    Optical Scanning Holography (OSH) is a powerful technique that employs a single-pixel sensor and a row-by-row scanning mechanism to capture the hologram of a wide-view, three-dimensional object. However, the time required to acquire a hologram with OSH is rather lengthy. In this paper, we propose an enhanced framework, which is referred to as Adaptive OSH (AOSH), to shorten the holographic recording process. We have demonstrated that the AOSH method is capable of decreasing the acquisition time by up to an order of magnitude, while preserving the content of the hologram favorably. PMID:26916866

  2. ERIS adaptive optics system design

    NASA Astrophysics Data System (ADS)

    Marchetti, Enrico; Le Louarn, Miska; Soenke, Christian; Fedrigo, Enrico; Madec, Pierre-Yves; Hubin, Norbert

    2012-07-01

    The Enhanced Resolution Imager and Spectrograph (ERIS) is the next-generation instrument planned for the Very Large Telescope (VLT) and the Adaptive Optics facility (AOF). It is an AO assisted instrument that will make use of the Deformable Secondary Mirror and the new Laser Guide Star Facility (4LGSF), and it is planned for the Cassegrain focus of the telescope UT4. The project is currently in its Phase A awaiting for approval to continue to the next phases. The Adaptive Optics system of ERIS will include two wavefront sensors (WFS) to maximize the coverage of the proposed sciences cases. The first is a high order 40x40 Pyramid WFS (PWFS) for on axis Natural Guide Star (NGS) observations. The second is a high order 40x40 Shack-Hartmann WFS for single Laser Guide Stars (LGS) observations. The PWFS, with appropriate sub-aperture binning, will serve also as low order NGS WFS in support to the LGS mode with a field of view patrolling capability of 2 arcmin diameter. Both WFSs will be equipped with the very low read-out noise CCD220 based camera developed for the AOF. The real-time reconstruction and control is provided by a SPARTA real-time platform adapted to support both WFS modes. In this paper we will present the ERIS AO system in all its main aspects: opto-mechanical design, real-time computer design, control and calibrations strategy. Particular emphasis will be given to the system performance obtained via dedicated numerical simulations.

  3. Feasibility evaluation and study of adapting the attitude reference system to the Orbiter camera payload system's large format camera

    NASA Technical Reports Server (NTRS)

    1982-01-01

    A design concept that will implement a mapping capability for the Orbital Camera Payload System (OCPS) when ground control points are not available is discussed. Through the use of stellar imagery collected by a pair of cameras whose optical axis are structurally related to the large format camera optical axis, such pointing information is made available.

  4. Camera calibration approach based on adaptive active target

    NASA Astrophysics Data System (ADS)

    Zhang, Yalin; Zhou, Fuqiang; Deng, Peng

    2011-12-01

    Aiming at calibrating camera on site, where the lighting condition is hardly controlled and the quality of target images would be declined when the angle between camera and target changes, an adaptive active target is designed and the camera calibration approach based on the target is proposed. The active adaptive target in which LEDs are embedded is flat, providing active feature point. Therefore the brightness of the feature point can be modified via adjusting the electricity, judging from the threshold of image feature criteria. In order to extract features of the image accurately, the concept of subpixel-precise thresholding is also proposed. It converts the discrete representation of the digital image to continuous function by bilinear interpolation, and the sub-pixel contours are acquired by the intersection of the continuous function and the appropriate selection of threshold. According to analysis of the relationship between the features of the image and the brightness of the target, the area ratio of convex hulls and the grey value variance are adopted as the criteria. Result of experiments revealed that the adaptive active target accommodates well to the changing of the illumination in the environment, the camera calibration approach based on adaptive active target can obtain high level of accuracy and fit perfectly for image targeting in various industrial sites.

  5. New Adaptive Optics Technique Demonstrated

    NASA Astrophysics Data System (ADS)

    2007-03-01

    First ever Multi-Conjugate Adaptive Optics at the VLT Achieves First Light On the evening of 25 March 2007, the Multi-Conjugate Adaptive Optics Demonstrator (MAD) achieved First Light at the Visitor Focus of Melipal, the third Unit Telescope of the Very Large Telescope (VLT). MAD allowed the scientists to obtain images corrected for the blurring effect of atmospheric turbulence over the full 2x2 arcminute field of view. This world premiere shows the promises of a crucial technology for Extremely Large Telescopes. ESO PR Photo 19a/07 ESO PR Photo 19a/07 The MCAO Demonstrator Telescopes on the ground suffer from the blurring effect induced by atmospheric turbulence. This turbulence causes the stars to twinkle in a way which delights the poets but frustrates the astronomers, since it blurs the fine details of the images. However, with Adaptive Optics (AO) techniques, this major drawback can be overcome so that the telescope produces images that are as sharp as theoretically possible, i.e., approaching space conditions. Adaptive Optics systems work by means of a computer-controlled deformable mirror (DM) that counteracts the image distortion induced by atmospheric turbulence. It is based on real-time optical corrections computed from image data obtained by a 'wavefront sensor' (a special camera) at very high speed, many hundreds of times each second. The concept is not new. Already in 1989, the first Adaptive Optics system ever built for Astronomy (aptly named "COME-ON") was installed on the 3.6-m telescope at the ESO La Silla Observatory, as the early fruit of a highly successful continuing collaboration between ESO and French research institutes (ONERA and Observatoire de Paris). Ten years ago, ESO initiated an Adaptive Optics program to serve the needs for its frontline VLT project. Today, the Paranal Observatory is without any doubt one of the most advanced of its kind with respect to AO with no less than 7 systems currently installed (NACO, SINFONI, CRIRES and

  6. Robotic visible-light laser adaptive optics

    NASA Astrophysics Data System (ADS)

    Baranec, Christoph; Riddle, Reed; Law, Nicholas; Ramaprakash, A. N.; Tendulkar, Shriharsh; Bui, Khanh; Burse, Mahesh; Chordia, Pravin; Das, Hillol; Dekany, Richard; Kulkarni, Shrinivas; Punnadi, Sujit

    2013-12-01

    Robo-AO is the first autonomous laser adaptive optics system and science instrument operating on sky. With minimal human oversight, the system robotically executes large scale surveys, monitors long-term astrophysical dynamics and characterizes newly discovered transients, all at the visible diffraction limit. The adaptive optics setup time, from the end of the telescope slew to the beginning of an observation, is a mere ~50-60 s, enabling over 200 observations per night. The first of many envisioned systems has finished 58 nights of science observing at the Palomar Observatory 60-inch (1.5 m) telescope, with over 6,400 robotic observations executed thus far. The system will be augmented in late 2013 with a low-noise wide field infrared camera, which doubles as a tip-tilt sensor, to widen the spectral bandwidth of observations and increase available sky coverage while also enabling deeper visible imaging using adaptive-optics sharpened infrared tip-tilt guide sources. Techniques applicable to larger telescope systems will also be tested: the infrared camera will be used to demonstrate advanced multiple region-of-interest tip-tilt guiding methods, and a visitor instrument port will be used for evaluation of other instrumentation, e.g. single-mode and photonic fibers to feed compact spectrographs.

  7. Performance of adaptive optics at Lick Observatory

    SciTech Connect

    Olivier, S.S.; An, J.; Avicola, K.

    1994-03-01

    A prototype adaptive optics system has been developed at Lawrence Livermore National Laboratory (LLNL) for use at Lick Observatory. This system is based on an ITEX 69-actuator continuous-surface deformable mirror, a Kodak fast-framing intensified CCD camera, and a Mercury VME board containing four Intel i860 processors. The system has been tested using natural reference stars on the 40-inch Nickel telescope at Lick Observatory yielding up to a factor of 10 increase in image peak intensity and a factor of 6 reduction in image full width at half maximum (FWHM). These results are consistent with theoretical expectations. In order to improve performance, the intensified CCD camera will be replaced by a high-quantum-efficiency low-noise fast CCD camera built for LLNL by Adaptive Optics Associates using a chip developed by Lincoln Laboratory, and the 69-actuator deformable mirror will be replaced by a 127-actuator deformable mirror developed at LLNL. With these upgrades, the system should perform well in median seeing conditions on the 120-inch Shane telescope for observing wavelengths longer than {approximately}1 {mu}m and using natural reference stars brighter than m{sub R} {approximately} 10 or using the laser currently being developed at LLNL for use at Lick Observatory to generate a sodium-layer reference star.

  8. Demonstrations of Optical Spectra with a Video Camera

    ERIC Educational Resources Information Center

    Kraftmakher, Yaakov

    2012-01-01

    The use of a video camera may markedly improve demonstrations of optical spectra. First, the output electrical signal from the camera, which provides full information about a picture to be transmitted, can be used for observing the radiant power spectrum on the screen of a common oscilloscope. Second, increasing the magnification by the camera…

  9. Adaptive Optics Communications Performance Analysis

    NASA Technical Reports Server (NTRS)

    Srinivasan, M.; Vilnrotter, V.; Troy, M.; Wilson, K.

    2004-01-01

    The performance improvement obtained through the use of adaptive optics for deep-space communications in the presence of atmospheric turbulence is analyzed. Using simulated focal-plane signal-intensity distributions, uncoded pulse-position modulation (PPM) bit-error probabilities are calculated assuming the use of an adaptive focal-plane detector array as well as an adaptively sized single detector. It is demonstrated that current practical adaptive optics systems can yield performance gains over an uncompensated system ranging from approximately 1 dB to 6 dB depending upon the PPM order and background radiation level.

  10. Adaptive optics without guide stars (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Mertz, Jerome; Li, Jiang; Beaulieu, Devin; Paudel, Hari P.; Barankov, Roman; Bifano, Thomas G.

    2016-03-01

    Adaptive optics is a strategy to compensate for sample-induced aberrations in microscopy applications. Generally, it requires the presence of "guide stars" in the sample to serve as localized reference targets. We describe an implementation of conjugate adaptive optics that is amenable to widefield (i.e. non-scanning) microscopy, and can provide aberration corrections over potentially large fields of view without the use of guide stars. A unique feature of our implementation is that it is based on wavefront sensing with a single-shot partitioned-aperture sensor that provides large dynamic range compatible with extended samples. Combined information provided by this sensor and the imaging camera enable robust image de-blurring based on a rapid estimation of sample and aberrations obtained by closed-loop feedback. We present the theoretical principle of our technique and experimental demonstrations using both trans-illumination and fluorescence microscopes. Finally, we apply our technique to mouse brain imaging.

  11. Adaptive optical zoom sensor.

    SciTech Connect

    Sweatt, William C.; Bagwell, Brett E.; Wick, David Victor

    2005-11-01

    In order to optically vary the magnification of an imaging system, continuous mechanical zoom lenses require multiple optical elements and use fine mechanical motion to precisely adjust the separations between individual or groups of lenses. By incorporating active elements into the optical design, we have designed and demonstrated imaging systems that are capable of variable optical magnification with no macroscopic moving parts. Changing the effective focal length and magnification of an imaging system can be accomplished by adeptly positioning two or more active optics in the optical design and appropriately adjusting the optical power of those elements. In this application, the active optics (e.g. liquid crystal spatial light modulators or deformable mirrors) serve as variable focal-length lenses. Unfortunately, the range over which currently available devices can operate (i.e. their dynamic range) is relatively small. Therefore, the key to this concept is to create large changes in the effective focal length of the system with very small changes in the focal lengths of individual elements by leveraging the optical power of conventional optical elements surrounding the active optics. By appropriately designing the optical system, these variable focal-length lenses can provide the flexibility necessary to change the overall system focal length, and therefore magnification, that is normally accomplished with mechanical motion in conventional zoom lenses.

  12. Phase Adaptation and Correction by Adaptive Optics

    NASA Astrophysics Data System (ADS)

    Tiziani, Hans J.

    2010-04-01

    Adaptive optical elements and systems for imaging or laser beam propagation are used for some time in particular in astronomy, where the image quality is degraded by atmospheric turbulence. In astronomical telescopes a deformable mirror is frequently used to compensate wavefront-errors due to deformations of the large mirror, vibrations as well as turbulence and hence to increase the image quality. In the last few years interesting elements like Spatial Light Modulators, SLM's, such as photorefractive crystals, liquid crystals and micro mirrors and membrane mirrors were introduced. The development of liquid crystals and micro mirrors was driven by data projectors as consumer products. They contain typically a matrix of individually addressable pixels of liquid crystals and flip mirrors respectively or more recently piston mirrors for special applications. Pixel sizes are in the order of a few microns and therefore also appropriate as active diffractive elements in digital holography or miniature masks. Although liquid crystals are mainly optimized for intensity modulation; they can be used for phase modulation. Adaptive optics is a technology for beam shaping and wavefront adaptation. The application of spatial light modulators for wavefront adaptation and correction and defect analysis as well as sensing will be discussed. Dynamic digital holograms are generated with liquid crystal devices (LCD) and used for wavefront correction as well as for beam shaping and phase manipulation, for instance. Furthermore, adaptive optics is very useful to extend the measuring range of wavefront sensors and for the wavefront adaptation in order to measure and compare the shape of high precision aspherical surfaces.

  13. Fast Source Camera Identification Using Content Adaptive Guided Image Filter.

    PubMed

    Zeng, Hui; Kang, Xiangui

    2016-03-01

    Source camera identification (SCI) is an important topic in image forensics. One of the most effective fingerprints for linking an image to its source camera is the sensor pattern noise, which is estimated as the difference between the content and its denoised version. It is widely believed that the performance of the sensor-based SCI heavily relies on the denoising filter used. This study proposes a novel sensor-based SCI method using content adaptive guided image filter (CAGIF). Thanks to the low complexity nature of the CAGIF, the proposed method is much faster than the state-of-the-art methods, which is a big advantage considering the potential real-time application of SCI. Despite the advantage of speed, experimental results also show that the proposed method can achieve comparable or better performance than the state-of-the-art methods in terms of accuracy. PMID:27404627

  14. Adaptive optics parallel near-confocal scanning ophthalmoscopy.

    PubMed

    Lu, Jing; Gu, Boyu; Wang, Xiaolin; Zhang, Yuhua

    2016-08-15

    We present an adaptive optics parallel near-confocal scanning ophthalmoscope (AOPCSO) using a digital micromirror device (DMD). The imaging light is modulated to be a line of point sources by the DMD, illuminating the retina simultaneously. By using a high-speed line camera to acquire the image and using adaptive optics to compensate the ocular wave aberration, the AOPCSO can image the living human eye with cellular level resolution at the frame rate of 100 Hz. AOPCSO has been demonstrated with improved spatial resolution in imaging of the living human retina compared with adaptive optics line scan ophthalmoscopy. PMID:27519106

  15. Adaptive Optics for Large Telescopes

    SciTech Connect

    Olivier, S

    2008-06-27

    The use of adaptive optics was originally conceived by astronomers seeking to correct the blurring of images made with large telescopes due to the effects of atmospheric turbulence. The basic idea is to use a device, a wave front corrector, to adjust the phase of light passing through an optical system, based on some measurement of the spatial variation of the phase transverse to the light propagation direction, using a wave front sensor. Although the original concept was intended for application to astronomical imaging, the technique can be more generally applied. For instance, adaptive optics systems have been used for several decades to correct for aberrations in high-power laser systems. At Lawrence Livermore National Laboratory (LLNL), the world's largest laser system, the National Ignition Facility, uses adaptive optics to correct for aberrations in each of the 192 beams, all of which must be precisely focused on a millimeter scale target in order to perform nuclear physics experiments.

  16. MTF online compensation in space optical remote sensing camera

    NASA Astrophysics Data System (ADS)

    Qu, Youshan; Zhai, Bo; Han, Yameng; Zhou, Jiang

    2015-02-01

    An ordinary space optical remote sensing camera is an optical diffraction-limited system and a low-pass filter from the theory of Fourier Optics, and all the digital imaging sensors, whether the CCD or CMOS, are low-pass filters as well. Therefore, when the optical image with abundant high-frequency components passes through an optical imaging system, the profuse middle-frequency information is attenuated and the rich high-frequency information is lost, which will blur the remote sensing image. In order to overcome this shortcoming of the space optical remote sensing camera, an online compensating approach of the Modulation Transfer Function in the space cameras is designed. The designed method was realized by a hardware analog circuit placed before the A/D converter, which was composed of adjustable low-pass filters with a calculated value of quality factor Q. Through the adjustment of the quality factor Q of the filters, the MTF of the processed image is compensated. The experiment results display that the realized compensating circuit in a space optical camera is capable of improving the MTF of an optical remote sensing imaging system 30% higher than that of no compensation. This quantized principle can efficiently instruct the MTF compensating circuit design in practice.

  17. Adaptive optics assisted Fourier domain OCT with balanced detection

    NASA Astrophysics Data System (ADS)

    Meadway, A.; Bradu, A.; Hathaway, M.; Van der Jeught, S.; Rosen, R. B.; Podoleanu, A. Gh.

    2011-03-01

    Two factors are of importance to optical coherence tomography (OCT), resolution and sensitivity. Adaptive optics improves the resolution of a system by correcting for aberrations causing distortions in the wave-front. Balanced detection has been used in time domain OCT systems by removing excess photon noise, however it has not been used in Fourier domain systems, as the cameras used in the spectrometers saturated before excess photon noise becomes a problem. Advances in camera technology mean that this is no longer the case and balanced detection can now be used to improve the signal to noise ratio in a Fourier domain (FD) OCT system. An FD-OCT system, enhanced with adaptive optics, is presented and is used to show the improvement that balanced detection can provide. The signal to noise ratios of single camera detection and balanced detection are assessed and in-vivo retinal images are acquired to demonstrate better image quality when using balance detection.

  18. Epipolar geometry comparison of SAR and optical camera

    NASA Astrophysics Data System (ADS)

    Li, Dong; Zhang, Yunhua

    2016-03-01

    In computer vision, optical camera is often used as the eyes of computer. If we replace camera with synthetic aperture radar (SAR), we will then enter a microwave vision of the world. This paper gives a comparison of SAR imaging and camera imaging from the viewpoint of epipolar geometry. The imaging model and epipolar geometry of the two sensors are analyzed in detail. Their difference is illustrated, and their unification is particularly demonstrated. We hope these may benefit researchers in field of computer vision or SAR image processing to construct a computer SAR vision, which is dedicated to compensate and improve human vision by electromagnetically perceiving and understanding the images.

  19. Virtual camera calibration using optical design software.

    PubMed

    Poulin-Girard, Anne-Sophie; Dallaire, Xavier; Thibault, Simon; Laurendeau, Denis

    2014-05-01

    Camera calibration is a critical step in many vision applications. It is a delicate and complex process that is highly sensitive to environmental conditions. This paper presents a novel virtual calibration technique that can be used to study the impact of various factors on the calibration parameters. To highlight the possibilities of the method, the calibration parameters' behavior has been studied regarding the effects of tolerancing and temperature for a specific lens. This technique could also be used in many other promising areas to make calibration in the laboratory or in the field easier. PMID:24921866

  20. Progress with the lick adaptive optics system

    SciTech Connect

    Gavel, D T; Olivier, S S; Bauman, B; Max, C E; Macintosh, B

    2000-03-01

    Progress and results of observations with the Lick Observatory Laser Guide Star Adaptive Optics System are presented. This system is optimized for diffraction-limited imaging in the near infrared, 1-2 micron wavelength bands. We describe our development efforts in a number of component areas including, a redesign of the optical bench layout, the commissioning of a new infrared science camera, and improvements to the software and user interface. There is also an ongoing effort to characterize the system performance with both natural and laser guide stars and to fold this data into a refined system model. Such a model can be used to help plan future observations, for example, predicting the point-spread function as a function of seeing and guide star magnitude.

  1. Adaptive Optics Retinal Imaging: Emerging Clinical Applications

    PubMed Central

    Godara, Pooja; Dubis, Adam M.; Roorda, Austin; Duncan, Jacque L.; Carroll, Joseph

    2010-01-01

    The human retina is a uniquely accessible tissue. Tools like scanning laser ophthalmoscopy (SLO) and spectral domain optical coherence tomography (SD-OCT) provide clinicians with remarkably clear pictures of the living retina. While the anterior optics of the eye permit such non-invasive visualization of the retina and associated pathology, these same optics induce significant aberrations that in most cases obviate cellular-resolution imaging. Adaptive optics (AO) imaging systems use active optical elements to compensate for aberrations in the optical path between the object and the camera. Applied to the human eye, AO allows direct visualization of individual rod and cone photoreceptor cells, RPE cells, and white blood cells. AO imaging has changed the way vision scientists and ophthalmologists see the retina, helping to clarify our understanding of retinal structure, function, and the etiology of various retinal pathologies. Here we review some of the advances made possible with AO imaging of the human retina, and discuss applications and future prospects for clinical imaging. PMID:21057346

  2. Adaptive optics projects at ESO

    NASA Astrophysics Data System (ADS)

    Hubin, Norbert N.; Arsenault, Robin; Bonnet, Henri; Conan, Rodolphe; Delabre, Bernard; Donaldson, Robert; Dupuy, Christophe; Fedrigo, Enrico; Ivanescu, L.; Kasper, Markus E.; Kissler-Patig, Markus; Lizon, Jean-Luis; Le Louarn, Miska; Marchetti, Enrico; Paufique, J.; Stroebele, Stefan; Tordo, Sebastien

    2003-02-01

    Over the past two years ESO has reinforced its efforts in the field of Adaptive Optics. The AO team has currently the challenging objectives to provide 8 Adaptive Optics systems for the VLT in the coming years and has now a world-leading role in that field. This paper will review all AO projects and plans. We will present an overview of the Nasmyth Adaptive Optics System (NAOS) with its infrared imager CONICA installed successfully at the VLT last year. Sodium Laser Guide Star plans will be introduced. The status of the 4 curvature AO systems (MACAO) developed for the VLT interferometer will be discussed. The status of the SINFONI AO module developed to feed the infrared integral field spectrograph (SPIFFI) will be presented. A short description of the Multi-conjugate Adaptive optics Demonstrator MAD and its instrumentation will be introduced. Finally, we will present the plans for the VLT second-generation AO systems and the researches performed in the frame of OWL.

  3. Reliable and Repeatable Characterization of Optical Streak Cameras

    SciTech Connect

    Michael Charest Jr., Peter Torres III, Christopher Silbernagel, and Daniel Kalantar

    2008-10-31

    Optical streak cameras are used as primary diagnostics for a wide range of physics and laser experiments at facilities such as the National Ignition Facility (NIF). To meet the strict accuracy requirements needed for these experiments, the systematic nonlinearities of the streak cameras (attributed to nonlinearities in the optical and electrical components that make up the streak camera system) must be characterized. In some cases the characterization information is used as a guide to help determine how experiment data should be taken. In other cases, the characterization data are applied to the raw data images to correct for the nonlinearities. In order to characterize an optical streak camera, a specific set of data is collected, where the response to defined inputs are recorded. A set of analysis software routines has been developed to extract information such as spatial resolution, dynamic range, and temporal resolution from this data set. The routines are highly automated, requiring very little user input and thus provide very reliable and repeatable results that are not subject to interpretation. An emphasis on quality control has been placed on these routines due to the high importance of the camera characterization information.

  4. Reliable and Repeatable Characterication of Optical Streak Cameras

    SciTech Connect

    Kalantar, D; Charest, M; Torres III, P; Charest, M

    2008-05-06

    Optical streak cameras are used as primary diagnostics for a wide range of physics and laser experiments at facilities such as the National Ignition Facility (NIF). To meet the strict accuracy requirements needed for these experiments, the systematic nonlinearities of the streak cameras (attributed to nonlinearities in the optical and electrical components that make up the streak camera system) must be characterized. In some cases the characterization information is used as a guide to help determine how experiment data should be taken. In other cases, the characterization data are applied to the raw data images to correct for the nonlinearities. In order to characterize an optical streak camera, a specific set of data is collected, where the response to defined inputs are recorded. A set of analysis software routines has been developed to extract information such as spatial resolution, dynamic range, and temporal resolution from this data set. The routines are highly automated, requiring very little user input and thus provide very reliable and repeatable results that are not subject to interpretation. An emphasis on quality control has been placed on these routines due to the high importance of the camera characterization information.

  5. Adaptive optics optical coherence tomography at 1 MHz.

    PubMed

    Kocaoglu, Omer P; Turner, Timothy L; Liu, Zhuolin; Miller, Donald T

    2014-12-01

    Image acquisition speed of optical coherence tomography (OCT) remains a fundamental barrier that limits its scientific and clinical utility. Here we demonstrate a novel multi-camera adaptive optics (AO-)OCT system for ophthalmologic use that operates at 1 million A-lines/s at a wavelength of 790 nm with 5.3 μm axial resolution in retinal tissue. Central to the spectral-domain design is a novel detection channel based on four high-speed spectrometers that receive light sequentially from a 1 × 4 optical switch assembly. Absence of moving parts enables ultra-fast (50ns) and precise switching with low insertion loss (-0.18 dB per channel). This manner of control makes use of all available light in the detection channel and avoids camera dead-time, both critical for imaging at high speeds. Additional benefit in signal-to-noise accrues from the larger numerical aperture afforded by the use of AO and yields retinal images of comparable dynamic range to that of clinical OCT. We validated system performance by a series of experiments that included imaging in both model and human eyes. We demonstrated the performance of our MHz AO-OCT system to capture detailed images of individual retinal nerve fiber bundles and cone photoreceptors. This is the fastest ophthalmic OCT system we know of in the 700 to 915 nm spectral band. PMID:25574431

  6. Intelligent Optical Systems Using Adaptive Optics

    NASA Technical Reports Server (NTRS)

    Clark, Natalie

    2012-01-01

    Until recently, the phrase adaptive optics generally conjured images of large deformable mirrors being integrated into telescopes to compensate for atmospheric turbulence. However, the development of smaller, cheaper devices has sparked interest for other aerospace and commercial applications. Variable focal length lenses, liquid crystal spatial light modulators, tunable filters, phase compensators, polarization compensation, and deformable mirrors are becoming increasingly useful for other imaging applications including guidance navigation and control (GNC), coronagraphs, foveated imaging, situational awareness, autonomous rendezvous and docking, non-mechanical zoom, phase diversity, and enhanced multi-spectral imaging. The active components presented here allow flexibility in the optical design, increasing performance. In addition, the intelligent optical systems presented offer advantages in size and weight and radiation tolerance.

  7. Adaptive optics for directly imaging planetary systems

    NASA Astrophysics Data System (ADS)

    Bailey, Vanessa Perry

    In this dissertation I present the results from five papers (including one in preparation) on giant planets, brown dwarfs, and their environments, as well as on the commissioning and optimization of the Adaptive Optics system for the Large Binocular Telescope Interferometer. The first three Chapters cover direct imaging results on several distantly-orbiting planets and brown dwarf companions. The boundary between giant planets and brown dwarf companions in wide orbits is a blurry one. In Chapter 2, I use 3--5 mum imaging of several brown dwarf companions, combined with mid-infrared photometry for each system to constrain the circum-substellar disks around the brown dwarfs. I then use this information to discuss limits on scattering events versus in situ formation. In Chapters 3 and 4, I present results from an adaptive optics imaging survey for giant planets, where the target stars were selected based on the properties of their circumstellar debris disks. Specifically, we targeted systems with debris disks whose SEDs indicated gaps, clearings, or truncations; these features may possibly be sculpted by planets. I discuss in detail one planet-mass companion discovered as part of this survey, HD 106906 b. At a projected separation of 650 AU and weighing in at 11 Jupiter masses, a companion such as this is not a common outcome of any planet or binary star formation model. In the remaining three Chapters, I discuss pre-commissioning, on-sky results, and planned work on the Large Binocular Telescope Interferometer Adaptive Optics system. Before construction of the LBT AO system was complete, I tested a prototype of LBTI's pyramid wavefront sensor unit at the MMT with synthetically-generated calibration files. I present the methodology and MMT on-sky tests in Chapter 5. In Chapter 6, I present the commissioned performance of LBTIAO. Optical imperfections within LBTI limited the quality of the science images, and I describe a simple method to use the adaptive optics system

  8. Unusual optics of the Polaroid SX-70 Land camera.

    PubMed

    Plummer, W T

    1982-01-15

    The unique optical system of the folding single-lens-reflex viewfinder used in the Polaroid SX-70 Land camera has required novel approaches to design and manufacture. The camera uses an unusual short-barrel taking lens with front-element focus, two plane mirrors, an eccentric reflective Fresnel focus screen, an aspheric aperture element, an aspheric concave mirror, and an aspheric eye lens. All the viewing components are tilted or decentered, and two aspheres are not figures of revolution. Beginning with J. G. Baker's computer design, special technology has been needed for producing millions of replicas of this system and controlling their quality. PMID:20372431

  9. A simplified adaptive optics system

    NASA Astrophysics Data System (ADS)

    Ivanescu, Liviu; Racine, René; Nadeau, Daniel

    2003-02-01

    Affordable adaptive optics on small telescopes allow to introduce the technology to a large community and provide opportunities to train new specialists in the field. We have developed a low order, low cost adaptive optics system for the 1.6m telescope of the Mont Megantic Observatory. The system corrects tip-tilt, focus, astigmatisms and one trefoil term. It explores a number of new approaches. The sensor receives a single out-of-focus image of the reference star. The central obstruction of the telescope can free the focus detection from the effect of seeing and allows a very small defocus. The deformable mirror is profiled so as to preserve a parabolic shape under pressure from actuators located at its edge. A separate piezoelectric platform drives the tilt mirror.

  10. Driver Code for Adaptive Optics

    NASA Technical Reports Server (NTRS)

    Rao, Shanti

    2007-01-01

    A special-purpose computer code for a deformable-mirror adaptive-optics control system transmits pixel-registered control from (1) a personal computer running software that generates the control data to (2) a circuit board with 128 digital-to-analog converters (DACs) that generate voltages to drive the deformable-mirror actuators. This program reads control-voltage codes from a text file, then sends them, via the computer s parallel port, to a circuit board with four AD5535 (or equivalent) chips. Whereas a similar prior computer program was capable of transmitting data to only one chip at a time, this program can send data to four chips simultaneously. This program is in the form of C-language code that can be compiled and linked into an adaptive-optics software system. The program as supplied includes source code for integration into the adaptive-optics software, documentation, and a component that provides a demonstration of loading DAC codes from a text file. On a standard Windows desktop computer, the software can update 128 channels in 10 ms. On Real-Time Linux with a digital I/O card, the software can update 1024 channels (8 boards in parallel) every 8 ms.

  11. Streak cameras for soft x-ray and optical radiation

    SciTech Connect

    Medecki, H.

    1983-09-01

    The principal component of a streak camera is the image converter tube. A slit-shaped photocathode transforms the radiation into a proportional emission of electrons. An electron - optics arrangement accelerates the electrons and projects them into a phosphor screen creating the image of the slit. A pair of deflection plates deflects the electronic beam along a direction perpendicular to the main dimension of the slit. Different portions of the phosphor screen show the instantaneous image of the slit with brightness proportional to the number of emitted electrons and, consequently, to the intensity of the radiation. For our x-ray streak cameras, we use the RCA C73435A image conventer tube intended for the measurement of the radiation of light and modified to have an x-ray sensitive photocathode. Practical considerations lead to the use of transparent rather than reflecting photocathodes. Several of these camera tubes are briefly described.

  12. High frame rate CCD camera with fast optical shutter

    SciTech Connect

    Yates, G.J.; McDonald, T.E. Jr.; Turko, B.T.

    1998-09-01

    A high frame rate CCD camera coupled with a fast optical shutter has been designed for high repetition rate imaging applications. The design uses state-of-the-art microchannel plate image intensifier (MCPII) technology fostered/developed by Los Alamos National Laboratory to support nuclear, military, and medical research requiring high-speed imagery. Key design features include asynchronous resetting of the camera to acquire random transient images, patented real-time analog signal processing with 10-bit digitization at 40--75 MHz pixel rates, synchronized shutter exposures as short as 200pS, sustained continuous readout of 512 x 512 pixels per frame at 1--5Hz rates via parallel multiport (16-port CCD) data transfer. Salient characterization/performance test data for the prototype camera are presented, temporally and spatially resolved images obtained from range-gated LADAR field testing are included, an alternative system configuration using several cameras sequenced to deliver discrete numbers of consecutive frames at effective burst rates up to 5GHz (accomplished by time-phasing of consecutive MCPII shutter gates without overlap) is discussed. Potential applications including dynamic radiography and optical correlation will be presented.

  13. A new paradigm for video cameras: optical sensors

    NASA Astrophysics Data System (ADS)

    Grottle, Kevin; Nathan, Anoo; Smith, Catherine

    2007-04-01

    This paper presents a new paradigm for the utilization of video surveillance cameras as optical sensors to augment and significantly improve the reliability and responsiveness of chemical monitoring systems. Incorporated into a hierarchical tiered sensing architecture, cameras serve as 'Tier 1' or 'trigger' sensors monitoring for visible indications after a release of warfare or industrial toxic chemical agents. No single sensor today yet detects the full range of these agents, but the result of exposure is harmful and yields visible 'duress' behaviors. Duress behaviors range from simple to complex types of observable signatures. By incorporating optical sensors in a tiered sensing architecture, the resulting alarm signals based on these behavioral signatures increases the range of detectable toxic chemical agent releases and allows timely confirmation of an agent release. Given the rapid onset of duress type symptoms, an optical sensor can detect the presence of a release almost immediately. This provides cues for a monitoring system to send air samples to a higher-tiered chemical sensor, quickly launch protective mitigation steps, and notify an operator to inspect the area using the camera's video signal well before the chemical agent can disperse widely throughout a building.

  14. Manufacturing of the ESO adaptive optics facility

    NASA Astrophysics Data System (ADS)

    Arsenault, R.,; Madec, P.-Y.; Hubin, N.; Stroebele, S.; Paufique, J.; Vernet, E.; Hackenberg, W.; Pirard, J.-F.; Jochum, L.; Glindemann, A.; Jost, A.; Conzelmann, R.; Kiekebusch, M.; Tordo, S.; Lizon, J.-L.; Donaldson, R.; Fedrigo, E.; Soenke, C.; Duchateau, M.; Bruton, A.; Delabre, B.; Downing, M.; Reyes, J.; Kolb, J.; Bechet, C.; Lelouarn, M.; Bonaccini Calia, D.; Quattri, M.; Guidolin, I.; Buzzoni, B.; Dupuy, C.; Guzman, R.; Comin, M.; Silber, A.; Quentin, J.; La Penna, P.; Manescau, A.; Jolley, P.; Heinz, V.; Duhoux, P.; Argomedo, J.; Gallieni, D.; Lazzarini, P.; Biasi, R.; Andrighettoni, M.; Angerer, G.; Pescoller, D.; Stuik, R.,; Deep, A.

    2010-07-01

    The ESO Adaptive Optics Facility (AOF) consists in an evolution of one of the ESO VLT unit telescopes to a laser driven adaptive telescope with a deformable mirror in its optical train, in this case the secondary 1.1m mirror, and four Laser Guide Stars (LGSs). This evolution implements many challenging technologies like the Deformable Secondary Mirror (DSM) including a thin shell mirror (1.1 m diameter and 2mm thin), the high power Na lasers (20W), the low Read-Out Noise (RON) WaveFront Sensor (WFS) camera (< 1e-) and SPARTA the new generation of Real Time Computers (RTC) for adaptive control. It also faces many problematic similar to any Extremely Large Telescope (ELT) and as such, will validate many technologies and solutions needed for the European ELT (E-ELT) 42m telescope. The AOF will offer a very large (7 arcmin) Field Of View (FOV) GLAO correction in J, H and K bands (GRAAL+Hawk-I), a visible integral field spectrograph with a 1 arcmin GLAO corrected FOV (GALACSI-MUSE WFM) and finally a LTAO 7.5" FOV (GALACSI-MUSE NFM). Most systems of the AOF have completed final design and are in manufacturing phase. Specific activities are linked to the modification of the 8m telescope in order to accommodate the new DSM and the 4 LGS Units assembled on its Center-Piece. A one year test period in Europe is planned to test and validate all modes and their performance followed by a commissioning phase in Paranal scheduled for 2014.

  15. Optical Design and Optimization of Translational Reflective Adaptive Optics Ophthalmoscopes

    NASA Astrophysics Data System (ADS)

    Sulai, Yusufu N. B.

    The retina serves as the primary detector for the biological camera that is the eye. It is composed of numerous classes of neurons and support cells that work together to capture and process an image formed by the eye's optics, which is then transmitted to the brain. Loss of sight due to retinal or neuro-ophthalmic disease can prove devastating to one's quality of life, and the ability to examine the retina in vivo is invaluable in the early detection and monitoring of such diseases. Adaptive optics (AO) ophthalmoscopy is a promising diagnostic tool in early stages of development, still facing significant challenges before it can become a clinical tool. The work in this thesis is a collection of projects with the overarching goal of broadening the scope and applicability of this technology. We begin by providing an optical design approach for AO ophthalmoscopes that reduces the aberrations that degrade the performance of the AO correction. Next, we demonstrate how to further improve image resolution through the use of amplitude pupil apodization and non-common path aberration correction. This is followed by the development of a viewfinder which provides a larger field of view for retinal navigation. Finally, we conclude with the development of an innovative non-confocal light detection scheme which improves the non-invasive visualization of retinal vasculature and reveals the cone photoreceptor inner segments in healthy and diseased eyes.

  16. Advancing High Contrast Adaptive Optics

    NASA Astrophysics Data System (ADS)

    Ammons, M.; Poyneer, L.; GPI Team

    2014-09-01

    A long-standing challenge has been to directly image faint extrasolar planets adjacent to their host suns, which may be ~1-10 million times brighter than the planet. Several extreme AO systems designed for high-contrast observations have been tested at this point, including SPHERE, Magellan AO, PALM-3000, Project 1640, NICI, and the Gemini Planet Imager (GPI, Macintosh et al. 2014). The GPI is the world's most advanced high-contrast adaptive optics system on an 8-meter telescope for detecting and characterizing planets outside of our solar system. GPI will detect a previously unstudied population of young analogs to the giant planets of our solar system and help determine how planetary systems form. GPI employs a 44x44 woofer-tweeter adaptive optics system with a Shack-Hartmann wavefront sensor operating at 1 kHz. The controller uses Fourier-based reconstruction and modal gains optimized from system telemetry (Poyneer et al. 2005, 2007). GPI has an apodized Lyot coronal graph to suppress diffraction and a near-infrared integral field spectrograph for obtaining planetary spectra. This paper discusses current performance limitations and presents the necessary instrumental modifications and sensitivity calculations for scenarios related to high-contrast observations of non-sidereal targets.

  17. The ERIS adaptive optics system

    NASA Astrophysics Data System (ADS)

    Marchetti, Enrico; Fedrigo, Enrico; Le Louarn, Miska; Madec, Pierre-Yves; Soenke, Christian; Brast, Roland; Conzelmann, Ralf; Delabre, Bernard; Duchateau, Michel; Frank, Christoph; Klein, Barbara; Amico, Paola; Hubin, Norbert; Esposito, Simone; Antichi, Jacopo; Carbonaro, Luca; Puglisi, Alfio; Quirós-Pacheco, Fernando; Riccardi, Armando; Xompero, Marco

    2014-07-01

    The Enhanced Resolution Imager and Spectrograph (ERIS) is the new Adaptive Optics based instrument for ESO's VLT aiming at replacing NACO and SINFONI to form a single compact facility with AO fed imaging and integral field unit spectroscopic scientific channels. ERIS completes the instrument suite at the VLT adaptive telescope. In particular it is equipped with a versatile AO system that delivers up to 95% Strehl correction in K band for science observations up to 5 micron It comprises high order NGS and LGS correction enabling the observation from exoplanets to distant galaxies with a large sky coverage thanks to the coupling of the LGS WFS with the high sensitivity of its visible WFS and the capability to observe in dust embedded environment thanks to its IR low order WFS. ERIS will be installed at the Cassegrain focus of the VLT unit hosting the Adaptive Optics Facility (AOF). The wavefront correction is provided by the AOF deformable secondary mirror while the Laser Guide Star is provided by one of the four launch units of the 4 Laser Guide Star Facility for the AOF. The overall layout of the ERIS AO system is extremely compact and highly optimized: the SPIFFI spectrograph is fed directly by the Cassegrain focus and both the NIX's (IR imager) and SPIFFI's entrance windows work as visible/infrared dichroics. In this paper we describe the concept of the ERIS AO system in detail, starting from the requirements and going through the estimated performance, the opto-mechanical design and the Real-Time Computer design.

  18. Adaptive optics for peripheral vision

    NASA Astrophysics Data System (ADS)

    Rosén, R.; Lundström, L.; Unsbo, P.

    2012-07-01

    Understanding peripheral optical errors and their impact on vision is important for various applications, e.g. research on myopia development and optical correction of patients with central visual field loss. In this study, we investigated whether correction of higher order aberrations with adaptive optics (AO) improve resolution beyond what is achieved with best peripheral refractive correction. A laboratory AO system was constructed for correcting peripheral aberrations. The peripheral low contrast grating resolution acuity in the 20° nasal visual field of the right eye was evaluated for 12 subjects using three types of correction: refractive correction of sphere and cylinder, static closed loop AO correction and continuous closed loop AO correction. Running AO in continuous closed loop improved acuity compared to refractive correction for most subjects (maximum benefit 0.15 logMAR). The visual improvement from aberration correction was highly correlated with the subject's initial amount of higher order aberrations (p = 0.001, R 2 = 0.72). There was, however, no acuity improvement from static AO correction. In conclusion, correction of peripheral higher order aberrations can improve low contrast resolution, provided refractive errors are corrected and the system runs in continuous closed loop.

  19. Adaptive Optics Technology for High-Resolution Retinal Imaging

    PubMed Central

    Lombardo, Marco; Serrao, Sebastiano; Devaney, Nicholas; Parravano, Mariacristina; Lombardo, Giuseppe

    2013-01-01

    Adaptive optics (AO) is a technology used to improve the performance of optical systems by reducing the effects of optical aberrations. The direct visualization of the photoreceptor cells, capillaries and nerve fiber bundles represents the major benefit of adding AO to retinal imaging. Adaptive optics is opening a new frontier for clinical research in ophthalmology, providing new information on the early pathological changes of the retinal microstructures in various retinal diseases. We have reviewed AO technology for retinal imaging, providing information on the core components of an AO retinal camera. The most commonly used wavefront sensing and correcting elements are discussed. Furthermore, we discuss current applications of AO imaging to a population of healthy adults and to the most frequent causes of blindness, including diabetic retinopathy, age-related macular degeneration and glaucoma. We conclude our work with a discussion on future clinical prospects for AO retinal imaging. PMID:23271600

  20. The eye as an optical instrument: from camera obscura to Helmholtz's perspective.

    PubMed

    Wade, N J; Finger, S

    2001-01-01

    The era of modern vision research can be thought of as beginning in the seventeenth century with Johannes Kepler's understanding of the optics of the camera obscura with a lens and its relation to the eye. During the nineteenth century, Helmholtz used "The eye as an optical instrument" as the title for one of his Popular Lectures, and such a conception of the eye is now accepted as a fundamental feature of visual science. In analysing the optics of the eye, Helmholtz constructed some novel optical instruments for studying the eye. The development of optometers, ophthalmometers, and ophthalmoscopes is presented historically, with emphasis on how these instruments and camera analogies helped scientists to understand the functions of the eye, especially the enigma of accommodation. "The laws of optics are so well understood, and the knowledge of the eye, when considered as an optical instrument, has been rendered so perfect, that I do not consider myself capable of making any addition to it; but still there is a power in the eye by which it can adapt itself to different distances far too extensive for the simple mechanism of the parts to effect." (John Hunter in a letter to Joseph Banks in 1793, published by Home 1794, page 24). PMID:11721819

  1. Adaptive Optics for the German Solar Telescopes

    NASA Astrophysics Data System (ADS)

    Soltau, D.; Brunner, R.; von der Lühe, O.

    Adaptive Optics is a precondition to get high resolution observations near the diffraction limit when the integration times become larger than a few milliseconds At the KIS there is a project to upgrade the Vacuum Tower Telescope at Tenerife with an adaptive optics system (KAOS = Kiepenheuer-Institut adaptives Optiksystem). The optical concept is discussed and first measurements with the KAOS wavefront sensor and their implications are presented. Considerations with respect to AO for the future GREGOR telescope are also discussed.

  2. FPGA-accelerated adaptive optics wavefront control

    NASA Astrophysics Data System (ADS)

    Mauch, S.; Reger, J.; Reinlein, C.; Appelfelder, M.; Goy, M.; Beckert, E.; Tünnermann, A.

    2014-03-01

    The speed of real-time adaptive optical systems is primarily restricted by the data processing hardware and computational aspects. Furthermore, the application of mirror layouts with increasing numbers of actuators reduces the bandwidth (speed) of the system and, thus, the number of applicable control algorithms. This burden turns out a key-impediment for deformable mirrors with continuous mirror surface and highly coupled actuator influence functions. In this regard, specialized hardware is necessary for high performance real-time control applications. Our approach to overcome this challenge is an adaptive optics system based on a Shack-Hartmann wavefront sensor (SHWFS) with a CameraLink interface. The data processing is based on a high performance Intel Core i7 Quadcore hard real-time Linux system. Employing a Xilinx Kintex-7 FPGA, an own developed PCie card is outlined in order to accelerate the analysis of a Shack-Hartmann Wavefront Sensor. A recently developed real-time capable spot detection algorithm evaluates the wavefront. The main features of the presented system are the reduction of latency and the acceleration of computation For example, matrix multiplications which in general are of complexity O(n3 are accelerated by using the DSP48 slices of the field-programmable gate array (FPGA) as well as a novel hardware implementation of the SHWFS algorithm. Further benefits are the Streaming SIMD Extensions (SSE) which intensively use the parallelization capability of the processor for further reducing the latency and increasing the bandwidth of the closed-loop. Due to this approach, up to 64 actuators of a deformable mirror can be handled and controlled without noticeable restriction from computational burdens.

  3. Keck adaptive optics: control subsystem

    SciTech Connect

    Brase, J.M.; An, J.; Avicola, K.

    1996-03-08

    Adaptive optics on the Keck 10 meter telescope will provide an unprecedented level of capability in high resolution ground based astronomical imaging. The system is designed to provide near diffraction limited imaging performance with Strehl {gt} 0.3 n median Keck seeing of r0 = 25 cm, T =10 msec at 500 nm wavelength. The system will be equipped with a 20 watt sodium laser guide star to provide nearly full sky coverage. The wavefront control subsystem is responsible for wavefront sensing and the control of the tip-tilt and deformable mirrors which actively correct atmospheric turbulence. The spatial sampling interval for the wavefront sensor and deformable mirror is de=0.56 m which gives us 349 actuators and 244 subapertures. This paper summarizes the wavefront control system and discusses particular issues in designing a wavefront controller for the Keck telescope.

  4. STS-113 Endeavour processing with fiber-optic camera

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- With the engines removed from Endeavour, the inside of Endeavour is exposed. At left center, Scott Minnick, with United Space Alliance, operates a fiber-optic camera inside the flow line. Other USA team members, right, watching the progress on a screen in front, are Gerry Kathka (with controls), Mike Fore and Peggy Ritchie. The inspection is the result of small cracks being discovered on the LH2 Main Propulsion System (MPS) flow liners in other orbiters. Endeavour is next scheduled to fly on mission STS-113.

  5. Optical design of the comet Shoemaker-Levy speckle camera

    SciTech Connect

    Bissinger, H.

    1994-11-15

    An optical design is presented in which the Lick 3 meter telescope and a bare CCD speckle camera system was used to image the collision sites of the Shoemaker-Levy 9 comet with the Planet Jupiter. The brief overview includes of the optical constraints and system layout. The choice of a Risley prism combination to compensate for the time dependent atmospheric chromatic changes are described. Plate scale and signal-to-noise ratio curves resulting from imaging reference stars are compared with theory. Comparisons between un-corrected and reconstructed images of Jupiter`s impact sites. The results confirm that speckle imaging techniques can be used over an extended time period to provide a method to image large extended objects.

  6. Securing quality of camera-based biomedical optics

    NASA Astrophysics Data System (ADS)

    Guse, Frank; Kasper, Axel; Zinter, Bob

    2009-02-01

    As sophisticated optical imaging technologies move into clinical applications, manufacturers need to guarantee their products meet required performance criteria over long lifetimes and in very different environmental conditions. A consistent quality management marks critical components features derived from end-users requirements in a top-down approach. Careful risk analysis in the design phase defines the sample sizes for production tests, whereas first article inspection assures the reliability of the production processes. We demonstrate the application of these basic quality principles to camera-based biomedical optics for a variety of examples including molecular diagnostics, dental imaging, ophthalmology and digital radiography, covering a wide range of CCD/CMOS chip sizes and resolutions. Novel concepts in fluorescence detection and structured illumination are also highlighted.

  7. Accurate projector calibration method by using an optical coaxial camera.

    PubMed

    Huang, Shujun; Xie, Lili; Wang, Zhangying; Zhang, Zonghua; Gao, Feng; Jiang, Xiangqian

    2015-02-01

    Digital light processing (DLP) projectors have been widely utilized to project digital structured-light patterns in 3D imaging systems. In order to obtain accurate 3D shape data, it is important to calibrate DLP projectors to obtain the internal parameters. The existing projector calibration methods have complicated procedures or low accuracy of the obtained parameters. This paper presents a novel method to accurately calibrate a DLP projector by using an optical coaxial camera. The optical coaxial geometry is realized by a plate beam splitter, so the DLP projector can be treated as a true inverse camera. A plate having discrete markers on the surface is used to calibrate the projector. The corresponding projector pixel coordinate of each marker on the plate is determined by projecting vertical and horizontal sinusoidal fringe patterns on the plate surface and calculating the absolute phase. The internal parameters of the DLP projector are obtained by the corresponding point pair between the projector pixel coordinate and the world coordinate of discrete markers. Experimental results show that the proposed method can accurately calibrate the internal parameters of a DLP projector. PMID:25967789

  8. Optical fiducial timing system for X-ray streak cameras with aluminum coated optical fiber ends

    DOEpatents

    Nilson, David G.; Campbell, E. Michael; MacGowan, Brian J.; Medecki, Hector

    1988-01-01

    An optical fiducial timing system is provided for use with interdependent groups of X-ray streak cameras (18). The aluminum coated (80) ends of optical fibers (78) are positioned with the photocathodes (20, 60, 70) of the X-ray streak cameras (18). The other ends of the optical fibers (78) are placed together in a bundled array (90). A fiducial optical signal (96), that is comprised of 2.omega. or 1.omega. laser light, after introduction to the bundled array (90), travels to the aluminum coated (82) optical fiber ends and ejects quantities of electrons (84) that are recorded on the data recording media (52) of the X-ray streak cameras (18). Since both 2.omega. and 1.omega. laser light can travel long distances in optical fiber with only a slight attenuation, the initial arial power density of the fiducial optical signal (96) is well below the damage threshold of the fused silica or other material that comprises the optical fibers (78, 90). Thus the fiducial timing system can be repeatably used over long durations of time.

  9. Adaptive optics imaging of the retina

    PubMed Central

    Battu, Rajani; Dabir, Supriya; Khanna, Anjani; Kumar, Anupama Kiran; Roy, Abhijit Sinha

    2014-01-01

    Adaptive optics is a relatively new tool that is available to ophthalmologists for study of cellular level details. In addition to the axial resolution provided by the spectral-domain optical coherence tomography, adaptive optics provides an excellent lateral resolution, enabling visualization of the photoreceptors, blood vessels and details of the optic nerve head. We attempt a mini review of the current role of adaptive optics in retinal imaging. PubMed search was performed with key words Adaptive optics OR Retina OR Retinal imaging. Conference abstracts were searched from the Association for Research in Vision and Ophthalmology (ARVO) and American Academy of Ophthalmology (AAO) meetings. In total, 261 relevant publications and 389 conference abstracts were identified. PMID:24492503

  10. Adaptive optics with pupil tracking for high resolution retinal imaging

    PubMed Central

    Sahin, Betul; Lamory, Barbara; Levecq, Xavier; Harms, Fabrice; Dainty, Chris

    2012-01-01

    Adaptive optics, when integrated into retinal imaging systems, compensates for rapidly changing ocular aberrations in real time and results in improved high resolution images that reveal the photoreceptor mosaic. Imaging the retina at high resolution has numerous potential medical applications, and yet for the development of commercial products that can be used in the clinic, the complexity and high cost of the present research systems have to be addressed. We present a new method to control the deformable mirror in real time based on pupil tracking measurements which uses the default camera for the alignment of the eye in the retinal imaging system and requires no extra cost or hardware. We also present the first experiments done with a compact adaptive optics flood illumination fundus camera where it was possible to compensate for the higher order aberrations of a moving model eye and in vivo in real time based on pupil tracking measurements, without the real time contribution of a wavefront sensor. As an outcome of this research, we showed that pupil tracking can be effectively used as a low cost and practical adaptive optics tool for high resolution retinal imaging because eye movements constitute an important part of the ocular wavefront dynamics. PMID:22312577

  11. Adaptive atom-optics in atom interferometry

    NASA Astrophysics Data System (ADS)

    Marable, M. L.; Savard, T. A.; Thomas, J. E.

    1997-02-01

    We suggest a general technique for creating virtual atom-optical elements which are adaptive. The shape and position of these elements is determined by the frequency distribution for optical fields which induce transitions in a high gradient potential. This adaptive method is demonstrated in an all-optical atom interferometer, by creating either a variable optical slit or a variable optical grating which is scanned across the atomic spatial patterns to measure the fringes. This method renders mechanical motion of the interferometer elements unnecessary.

  12. Next generation high resolution adaptive optics fundus imager

    NASA Astrophysics Data System (ADS)

    Fournier, P.; Erry, G. R. G.; Otten, L. J.; Larichev, A.; Irochnikov, N.

    2005-12-01

    The spatial resolution of retinal images is limited by the presence of static and time-varying aberrations present within the eye. An updated High Resolution Adaptive Optics Fundus Imager (HRAOFI) has been built based on the development from the first prototype unit. This entirely new unit was designed and fabricated to increase opto-mechanical integration and ease-of-use through a new user interface. Improved camera systems for the Shack-Hartmann sensor and for the scene image were implemented to enhance the image quality and the frequency of the Adaptive Optics (AO) control loop. An optimized illumination system that uses specific wavelength bands was applied to increase the specificity of the images. Sample images of clinical trials of retinas, taken with and without the system, are shown. Data on the performance of this system will be presented, demonstrating the ability to calculate near diffraction-limited images.

  13. Adaptive optical interconnects: the ADDAPT project

    NASA Astrophysics Data System (ADS)

    Henker, Ronny; Pliva, Jan; Khafaji, Mahdi; Ellinger, Frank; Toifl, Thomas; Offrein, Bert; Cevrero, Alessandro; Oezkaya, Ilter; Seifried, Marc; Ledentsov, Nikolay; Kropp, Joerg-R.; Shchukin, Vitaly; Zoldak, Martin; Halmo, Leos; Turkiewicz, Jaroslaw; Meredith, Wyn; Eddie, Iain; Georgiades, Michael; Charalambides, Savvas; Duis, Jeroen; van Leeuwen, Pieter

    2015-09-01

    Existing optical networks are driven by dynamic user and application demands but operate statically at their maximum performance. Thus, optical links do not offer much adaptability and are not very energy-efficient. In this paper a novel approach of implementing performance and power adaptivity from system down to optical device, electrical circuit and transistor level is proposed. Depending on the actual data load, the number of activated link paths and individual device parameters like bandwidth, clock rate, modulation format and gain are adapted to enable lowering the components supply power. This enables flexible energy-efficient optical transmission links which pave the way for massive reductions of CO2 emission and operating costs in data center and high performance computing applications. Within the FP7 research project Adaptive Data and Power Aware Transceivers for Optical Communications (ADDAPT) dynamic high-speed energy-efficient transceiver subsystems are developed for short-range optical interconnects taking up new adaptive technologies and methods. The research of eight partners from industry, research and education spanning seven European countries includes the investigation of several adaptive control types and algorithms, the development of a full transceiver system, the design and fabrication of optical components and integrated circuits as well as the development of high-speed, low loss packaging solutions. This paper describes and discusses the idea of ADDAPT and provides an overview about the latest research results in this field.

  14. Fly's Eye camera system: optical imaging using a hexapod platform

    NASA Astrophysics Data System (ADS)

    Jaskó, Attila; Pál, András.; Vida, Krisztián.; Mészáros, László; Csépány, Gergely; Mező, György

    2014-07-01

    The Fly's Eye Project is a high resolution, high coverage time-domain survey in multiple optical passbands: our goal is to cover the entire visible sky above the 30° horizontal altitude with a cadence of ~3 min. Imaging is going to be performed by 19 wide-field cameras mounted on a hexapod platform resembling a fly's eye. Using a hexapod developed and built by our team allows us to create a highly fault-tolerant instrument that uses the sky as a reference to define its own tracking motion. The virtual axis of the platform is automatically aligned with the Earth's rotational axis; therefore the same mechanics can be used independently from the geographical location of the device. Its enclosure makes it capable of autonomous observing and withstanding harsh environmental conditions. We briefly introduce the electrical, mechanical and optical design concepts of the instrument and summarize our early results, focusing on sidereal tracking. Due to the hexapod design and hence the construction is independent from the actual location, it is considerably easier to build, install and operate a network of such devices around the world.

  15. Adaptive optics system for the IRSOL solar observatory

    NASA Astrophysics Data System (ADS)

    Ramelli, Renzo; Bucher, Roberto; Rossini, Leopoldo; Bianda, Michele; Balemi, Silvano

    2010-07-01

    We present a low cost adaptive optics system developed for the solar observatory at Istituto Ricerche Solari Locarno (IRSOL), Switzerland. The Shack-Hartmann Wavefront Sensor is based on a Dalsa CCD camera with 256 pixels × 256 pixels working at 1kHz. The wavefront compensation is obtained by a deformable mirror with 37 actuators and a Tip-Tilt mirror. A real time control software has been developed on a RTAI-Linux PC. Scicos/Scilab based software has been realized for an online analysis of the system behavior. The software is completely open source.

  16. Computational adaptive optics of the human retina

    NASA Astrophysics Data System (ADS)

    South, Fredrick A.; Liu, Yuan-Zhi; Carney, P. Scott; Boppart, Stephen A.

    2016-03-01

    It is well known that patient-specific ocular aberrations limit imaging resolution in the human retina. Previously, hardware adaptive optics (HAO) has been employed to measure and correct these aberrations to acquire high-resolution images of various retinal structures. While the resulting aberration-corrected images are of great clinical importance, clinical use of HAO has not been widespread due to the cost and complexity of these systems. We present a technique termed computational adaptive optics (CAO) for aberration correction in the living human retina without the use of hardware adaptive optics components. In CAO, complex interferometric data acquired using optical coherence tomography (OCT) is manipulated in post-processing to adjust the phase of the optical wavefront. In this way, the aberrated wavefront can be corrected. We summarize recent results in this technology for retinal imaging, including aberration-corrected imaging in multiple retinal layers and practical considerations such as phase stability and image optimization.

  17. Adapting smartphones for low-cost optical medical imaging

    NASA Astrophysics Data System (ADS)

    Pratavieira, Sebastião.; Vollet-Filho, José D.; Carbinatto, Fernanda M.; Blanco, Kate; Inada, Natalia M.; Bagnato, Vanderlei S.; Kurachi, Cristina

    2015-06-01

    Optical images have been used in several medical situations to improve diagnosis of lesions or to monitor treatments. However, most systems employ expensive scientific (CCD or CMOS) cameras and need computers to display and save the images, usually resulting in a high final cost for the system. Additionally, this sort of apparatus operation usually becomes more complex, requiring more and more specialized technical knowledge from the operator. Currently, the number of people using smartphone-like devices with built-in high quality cameras is increasing, which might allow using such devices as an efficient, lower cost, portable imaging system for medical applications. Thus, we aim to develop methods of adaptation of those devices to optical medical imaging techniques, such as fluorescence. Particularly, smartphones covers were adapted to connect a smartphone-like device to widefield fluorescence imaging systems. These systems were used to detect lesions in different tissues, such as cervix and mouth/throat mucosa, and to monitor ALA-induced protoporphyrin-IX formation for photodynamic treatment of Cervical Intraepithelial Neoplasia. This approach may contribute significantly to low-cost, portable and simple clinical optical imaging collection.

  18. Adaptive-optics performance of Antarctic telescopes.

    PubMed

    Lawrence, Jon S

    2004-02-20

    The performance of natural guide star adaptive-optics systems for telescopes located on the Antarctic plateau is evaluated and compared with adaptive-optics systems operated with the characteristic mid-latitude atmosphere found at Mauna Kea. A 2-m telescope with tip-tilt correction and an 8-m telescope equipped with a high-order adaptive-optics system are considered. Because of the large isoplanatic angle of the South Pole atmosphere, the anisoplanatic error associated with an adaptive-optics correction is negligible, and the achievable resolution is determined only by the fitting error associated with the number of corrected wave-front modes, which depends on the number of actuators on the deformable mirror. The usable field of view of an adaptive-optics equipped Antarctic telescope is thus orders of magnitude larger than for a similar telescope located at a mid-latitude site; this large field of view obviates the necessity for multiconjugate adaptive-optics systems that use multiple laser guide stars. These results, combined with the low infrared sky backgrounds, indicate that the Antarctic plateau is the best site on Earth at which to perform high-resolution imaging with large telescopes, either over large fields of view or with appreciable sky coverage. Preliminary site-testing results obtained recently from the Dome Concordia station indicate that this site is far superior to even the South Pole. PMID:15008551

  19. Adaptive compensation for an optical tracking telescope

    NASA Technical Reports Server (NTRS)

    Gilbart, J. W.; Winston, G. C.

    1974-01-01

    The application of model referenced adaptive control theory to an optical tracking telescope is discussed. The capability of the adaptive technique to compensate for mount irregularities such as inertial variations and bearing friction is demonstrated via field test results on a large tracking telescope. Results are presented which show a 6 to 1 improvement in tracking accuracy for a worst-case satellite trajectory.

  20. Small scale adaptive optics experiment systems engineering

    NASA Technical Reports Server (NTRS)

    Boykin, William H.

    1993-01-01

    Assessment of the current technology relating to the laser power beaming system which in full scale is called the Beam Transmission Optical System (BTOS). Evaluation of system integration efforts are being conducted by the various government agencies and industry. Concepts are being developed for prototypes of adaptive optics for a BTOS.

  1. Pulse front adaptive optics in multiphoton microscopy

    NASA Astrophysics Data System (ADS)

    Sun, B.; Salter, P. S.; Booth, M. J.

    2016-03-01

    The accurate focusing of ultrashort laser pulses is extremely important in multiphoton microscopy. Using adaptive optics to manipulate the incident ultrafast beam in either the spectral or spatial domain can introduce significant benefits when imaging. Here we introduce pulse front adaptive optics: manipulating an ultrashort pulse in both the spatial and temporal domains. A deformable mirror and a spatial light modulator are operated in concert to modify contours of constant intensity in space and time within an ultrashort pulse. Through adaptive control of the pulse front, we demonstrate an enhancement in the measured fluorescence from a two photon microscope.

  2. Optical Profilometers Using Adaptive Signal Processing

    NASA Technical Reports Server (NTRS)

    Hall, Gregory A.; Youngquist, Robert; Mikhael, Wasfy

    2006-01-01

    A method of adaptive signal processing has been proposed as the basis of a new generation of interferometric optical profilometers for measuring surfaces. The proposed profilometers would be portable, hand-held units. Sizes could be thus reduced because the adaptive-signal-processing method would make it possible to substitute lower-power coherent light sources (e.g., laser diodes) for white light sources and would eliminate the need for most of the optical components of current white-light profilometers. The adaptive-signal-processing method would make it possible to attain scanning ranges of the order of decimeters in the proposed profilometers.

  3. Adaptive optics at the Subaru telescope: current capabilities and development

    NASA Astrophysics Data System (ADS)

    Guyon, Olivier; Hayano, Yutaka; Tamura, Motohide; Kudo, Tomoyuki; Oya, Shin; Minowa, Yosuke; Lai, Olivier; Jovanovic, Nemanja; Takato, Naruhisa; Kasdin, Jeremy; Groff, Tyler; Hayashi, Masahiko; Arimoto, Nobuo; Takami, Hideki; Bradley, Colin; Sugai, Hajime; Perrin, Guy; Tuthill, Peter; Mazin, Ben

    2014-08-01

    Current AO observations rely heavily on the AO188 instrument, a 188-elements system that can operate in natural or laser guide star (LGS) mode, and delivers diffraction-limited images in near-IR. In its LGS mode, laser light is transported from the solid state laser to the launch telescope by a single mode fiber. AO188 can feed several instruments: the infrared camera and spectrograph (IRCS), a high contrast imaging instrument (HiCIAO) or an optical integral field spectrograph (Kyoto-3DII). Adaptive optics development in support of exoplanet observations has been and continues to be very active. The Subaru Coronagraphic Extreme-AO (SCExAO) system, which combines extreme-AO correction with advanced coronagraphy, is in the commissioning phase, and will greatly increase Subaru Telescope's ability to image and study exoplanets. SCExAO currently feeds light to HiCIAO, and will soon be combined with the CHARIS integral field spectrograph and the fast frame MKIDs exoplanet camera, which have both been specifically designed for high contrast imaging. SCExAO also feeds two visible-light single pupil interferometers: VAMPIRES and FIRST. In parallel to these direct imaging activities, a near-IR high precision spectrograph (IRD) is under development for observing exoplanets with the radial velocity technique. Wide-field adaptive optics techniques are also being pursued. The RAVEN multi-object adaptive optics instrument was installed on Subaru telescope in early 2014. Subaru Telescope is also planning wide field imaging with ground-layer AO with the ULTIMATE-Subaru project.

  4. Adaptive Optics and NICMOS Uniqueness Space

    SciTech Connect

    Max, C.

    1999-03-22

    As part of the HST Second Decade Study a subgroup consisting of Claire Max, James Beletic, Donald McCarthy, and Keith Noll has analyzed the expected performance of near-infra-red adaptive optics systems on the new generation of 8-10 meter ground-based telescopes, for comparison with HST. In addition the subgroup has polled the adaptive optics community regarding expected adaptive optics performance over the coming five years. Responses have been received from representatives of most of the major telescopes: Gemini, VLT, Keck, LBT, and the MMT, as well as of several operational 3-4 meter telescope AO systems. The present document outlines the conclusions to date, with emphasis on aspects relevant to the NICMOS cryocooler Independent Science Review. In general the near-infra-red capabilities of the new ground-based adaptive optics systems will be complementary to the capabilities of NICMOS. For example NICMOS will have greater H-band sensitivity, broader wavelength coverage, and higher point-spread-function stability, whereas ground-based adaptive optics instruments will have higher spatial and spectral resolution. Section 2 of this report outlines the operational constraints faced by the first generation of adaptive optics (AO) systems on new 8-10 meter telescopes. Section 3 describes the areas of relative strength of near-infra-red observing from the ground via adaptive optics, compared with NICMOS. A Table gives an overview of the main strengths and weaknesses of these current-generation systems. Section 4 gives an indication of ground-based capabilities anticipated in the near future and in five to ten years. Section 5 contains a summary and conclusions.

  5. Near-Infrared Camera Calibration for Optical Surgical Navigation.

    PubMed

    Cai, Ken; Yang, Rongqian; Lin, Qinyong; Liu, Sujuan; Chen, Huazhou; Ou, Shanxing; Huang, Wenhua; Zhou, Jing

    2016-03-01

    Near-infrared optical tracking devices, which are important components of surgical navigation systems, need to be calibrated for effective tracking. The calibration results has a direct influence on the tracking accuracy of an entire system. Therefore, the study of calibration techniques is of theoretical significance and practical value. In the present work, a systematic calibration method based on movable plates is established, which analyzes existing calibration theories and implements methods using calibration reference objects. First, the distortion model of near-infrared cameras (NICs) is analyzed in the implementation of this method. Second, the calibration images from different positions and orientations are used to establish the required linear equations. The initial values of the NIC parameters are calculated with the direct linear transformation method. Finally, the accurate internal and external parameters of the NICs are obtained by conducting nonlinear optimization. Analysis results show that the relative errors of the left and right NICs in the tracking system are 0.244 and 0.282 % for the focal lengths and 0.735 and 1.111 % for the principal points, respectively. The image residuals of the left and right image sets are both less than 0.01 pixel. The standard error of the calibration result is lower than 1, and the measurement error of the tracking system is less than 0.3 mm. The experimental data show that the proposed method of calibrating NICs is effective and can generate favorable calibration results. PMID:26728393

  6. On-film optical recording of camera lens settings

    NASA Technical Reports Server (NTRS)

    Thompson, R. E. (Inventor)

    1973-01-01

    An apparatus is described for recording a representation of the camera lens aperture and focus setting on the film of a camera, while the photographic image is being recorded. A data lens is provided between the camera lens and film, by means of which the aperture and focus setting may be determined. The determination is made by measuring both the location and the size of a data image provided by the data lens. The data lens apparatus requires no electrical power, is low in weight, and does not result in an increase in the external dimensions of the camera.

  7. Adaptive Optics for Industry and Medicine

    NASA Astrophysics Data System (ADS)

    Dainty, Christopher

    2008-01-01

    pt. 1. Wavefront correctors and control. Liquid crystal lenses for correction of presbyopia (Invited Paper) / Guoqiang Li and Nasser Peyghambarian. Converging and diverging liquid crystal lenses (oral paper) / Andrew X. Kirby, Philip J. W. Hands, and Gordon D. Love. Liquid lens technology for miniature imaging systems: status of the technology, performance of existing products and future trends (invited paper) / Bruno Berge. Carbon fiber reinforced polymer deformable mirrors for high energy laser applications (oral paper) / S. R. Restaino ... [et al.]. Tiny multilayer deformable mirrors (oral paper) / Tatiana Cherezova ... [et al.]. Performance analysis of piezoelectric deformable mirrors (oral paper) / Oleg Soloviev, Mikhail Loktev and Gleb Vdovin. Deformable membrane mirror with high actuator density and distributed control (oral paper) / Roger Hamelinck ... [et al.]. Characterization and closed-loop demonstration of a novel electrostatic membrane mirror using COTS membranes (oral paper) / David Dayton ... [et al.]. Electrostatic micro-deformable mirror based on polymer materials (oral paper) / Frederic Zamkotsian ... [et al.]. Recent progress in CMOS integrated MEMS A0 mirror development (oral paper) / A. Gehner ... [et al.]. Compact large-stroke piston-tip-tilt actuator and mirror (oral paper) / W. Noell ... [et al.]. MEMS deformable mirrors for high performance AO applications (oral paper) / Paul Bierden, Thomas Bifano and Steven Cornelissen. A versatile interferometric test-rig for the investigation and evaluation of ophthalmic AO systems (poster paper) / Steve Gruppetta, Jiang Jian Zhong and Luis Diaz-Santana. Woofer-tweeter adaptive optics (poster paper) / Thomas Farrell and Chris Dainty. Deformable mirrors based on transversal piezoeffect (poster paper) / Gleb Vdovin, Mikhail Loktev and Oleg Soloviev. Low-cost spatial light modulators for ophthalmic applications (poster paper) / Vincente Durán ... [et al.]. Latest MEMS DM developments and the path ahead

  8. Solar Ground-Layer Adaptive Optics

    NASA Astrophysics Data System (ADS)

    Ren, Deqing; Jolissaint, Laurent; Zhang, Xi; Dou, Jianpei; Chen, Rui; Zhao, Gang; Zhu, Yongtian

    2015-05-01

    Solar conventional adaptive optics (CAO) with one deformable-mirror uses a small field-of-view (FOV) for wave-front sensing, which yields a small corrected FOV for high-resolution imaging. Solar activities occur in a two-dimensional extended FOV and studies of solar magnetic fields need high-resolution imaging over a FOV at least 60''. Recently, solar Tomography Adaptive Optics (TAO) and Multi-Conjugate Adaptive Optics (MCAO) were being developed to overcome this problem of small AO corrected FOV. However, for both TAO and MCAO, wavefront distortions need to be tomographically reconstructed from measurements on multiple guide stars, which is a complicated and time-consuming process. Solar Ground-Layer Adaptive Optics (S-GLAO) uses one or several guide stars, and does not rely on a tomographic reconstruction of the atmospheric turbulence. In this publication, we present two unique wavefront sensing approaches for the S-GLAO. We show that our S-GLAO can deliver good to excellent performance at variable seeing conditions in the Near Infrared (NIR) J and H bands, and is much simpler to implement. We discuss details of our S-GLAO associated wavefront approaches, which make our S-GLAO a unique solution for sunspot high-resolution imaging that other current adaptive optics systems, including the solar MCAO, cannot offer.

  9. Bidirectional fiber optic cable adapter

    NASA Astrophysics Data System (ADS)

    Linehan, M.; Gee, N. B.; Taylor, R.

    1983-02-01

    The technical objective of the BIFOCS program was to develop, build, and test a full-duplex single fiber, fiber optic link, operating in the 1.0 micron to 1.6 micron region, capable of transmitting 20 Mb/s data (10 to the -9th power BER) over a range of at least 10 km, with a goal of 15 km. The link MTBF goal was 5 X 10 to the 3rd power hours and operation over a temperature range of 0 to 50 C. The fiber optic cable consisted of sections not exceeding 2 km in length joined by commercially available dry fiber optic connectors. The system performed successfully at ambient temperature over 15 km of cable.

  10. Parametric distortion-adaptive neighborhood for omnidirectional camera.

    PubMed

    Tang, Yazhe; Li, Youfu; Luo, Jun

    2015-08-10

    Catadioptric omnidirectional images exhibit serious nonlinear distortion due to the involved quadratic mirror. Conventional pinhole model-based methods perform poorly when directly applied to the deformed omnidirectional images. This study constructs a catadioptric geometry system to analyze the variation of the neighborhood of an object in terms of the elevation and azimuth directions in a spherical coordinate system. To accurately represent the distorted visual information, a parametric neighborhood mapping model is proposed based on the catadioptric geometry. Unlike the conventional catadioptric models, the prior information of the system is effectively integrated into the neighborhood formulation framework. Then the distortion-adaptive neighborhood can be directly calculated based on its measurable image radial distance. This method can significantly improve the computational efficiency of algorithm since statistical neighborhood sampling is not used. On the basis of the proposed neighborhood model, a distortion-invariant Haar wavelet transform is presented to perform the robust human detection and tracking in catadioptric omnidirectional vision. The experimental results verify the effectiveness of the proposed neighborhood mapping model and prove that the distorted neighborhood in the omnidirectional image follows a nonlinear pattern. PMID:26368363

  11. The Magellan Telescope Deformable Secondary Adaptive Optics System

    NASA Astrophysics Data System (ADS)

    Close, Laird M.; Gasho, V.; Kopon, D.; Males, J.; Hinz, P.; Hare, T.

    2009-05-01

    We present the adaptive optics system for the 6.5m Magellan Telescope. The Magellan telescope is a 6.5m Gregorian telescope located in southern Chile at Las Campanas Observatory. The Gregorian design allows for an adaptive secondary mirror that can be tested off-sky in a straight-forward manner. We have fabricated a 85 cm diameter aspheric adaptive secondary with our subcontractors and partners. This secondary has 585 actuators with 1 msec response times. The secondary will allow low emissivity AO science. We will achieve very high Strehls ( 98%) in the Mid-IR (8-26 microns) imaged with the BLINC/MIRAC4 Mid-IR camera. This will allow the first "super-resolution" Mid-IR studies of dusty southern objects. We will employ a high order (585 mode) pyramid wavefront sensor similar to that used in the Large Binocular Telescope AO systems. The relatively high actuator count for a 6.5m telescope will allow modest Strehls to be obtained in the visible. Our visible light AO CCD camera is fed by a beamsplitter piggy backed on the wavefront sensor system. We have addressed several difficult issues with 20 milliarcsec diffraction-limited imaging in the visible with our VisAO system. The Magellan AO system successfully passed PDR in December 2008 and should have first light in early 2011.

  12. Cranz-Schardin camera of 8 frames constructed of department store optics and hobbyist electronics

    NASA Astrophysics Data System (ADS)

    McDaniel, Olin K.

    1993-01-01

    A Cranz-Schardin camera with independently adjustable inter-frame times from 100 microseconds to less than 1 microsecond is described. The flash system is the classical LC spark and delay approach used by Cranz and Schardin. The capacitors are 0.06 microfarad units charged to only 7000 volts, allowing the use of commercially available flash lamp trigger transformers as delay inductors for the longer times. Shorter delays are achieved with homemade vacuum potted coils. The field element may be a telescope achromat, a Fresnel lens, or alternately a concave mirror. The camera lenses are standard achromats or simple meniscus lenses sold by optics supply houses. Mounted on the lensboard of a Calumet 4 inch by 5 inch view camera, the optics train is simply installed in the camera. The front end of the camera may be raised to bring the lens apertures into position to act as schlieren stops. Photos of resolution charts are shown to demonstrate the camera.

  13. NFIRAOS: TMT narrow field near-infrared facility adaptive optics

    NASA Astrophysics Data System (ADS)

    Herriot, Glen; Hickson, Paul; Ellerbroek, B. L.; Andersen, D. A.; Davidge, T.; Erickson, D. A.; Powell, I. P.; Clare, R.; Gilles, L.; Boyer, C.; Smith, M.; Saddlemyer, L.; Véran, J.-P.

    2006-06-01

    Although many of the instruments planned for the TMT (Thirty Meter Telescope) have their own closely-coupled adaptive optics systems, TMT will also have a facility Adaptive Optics (AO) system, NFIRAOS, feeding three instruments on the Nasmyth platform. This Narrow-Field Infrared Adaptive Optics System, employs conventional deformable mirrors with large diameters of about 300 mm. The requirements for NFIRAOS include 1.0-2.5 microns wavelength range, 30 arcsecond diameter science field of view (FOV), excellent sky coverage, and diffraction-limited atmospheric turbulence compensation (specified at 133 nm RMS including residual telescope and science instrument errors.) The reference design for NFIRAOS includes six sodium laser guide stars over a 70 arcsecond FOV, and multiple infrared tip/tilt sensors and a natural guide star focus sensor within instruments. Larger telescopes require greater deformable mirror (DM) stroke. Although initially NFIRAOS will correct a 10 arcsecond science field, it uses two deformable mirrors in series, partly to provide sufficient stroke for atmospheric correction over the 30 m telescope aperture, but mainly to improve sky coverage by sharpening near-IR natural guide stars over a 2 arcminute diameter "technical" field. The planned upgrade to full performance includes replacing the ground-conjugated DM with a higher actuator density, and using a deformable telescope secondary mirror as a "woofer." NFIRAOS feeds three live instruments: a near-Infrared integral field Imaging spectrograph, a near-infrared echelle spectrograph, and after upgrading NFIRAOS to full multi-conjugation, a wide field (30 arcsecond) infrared camera.

  14. Performance of laser guide star adaptive optics at Lick Observatory

    SciTech Connect

    Olivier, S.S.; An, J.; Avicola, K.

    1995-07-19

    A sodium-layer laser guide star adaptive optics system has been developed at Lawrence Livermore National Laboratory (LLNL) for use on the 3-meter Shane telescope at Lick Observatory. The system is based on a 127-actuator continuous-surface deformable mirror, a Hartmann wavefront sensor equipped with a fast-framing low-noise CCD camera, and a pulsed solid-state-pumped dye laser tuned to the atomic sodium resonance line at 589 nm. The adaptive optics system has been tested on the Shane telescope using natural reference stars yielding up to a factor of 12 increase in image peak intensity and a factor of 6.5 reduction in image full width at half maximum (FWHM). The results are consistent with theoretical expectations. The laser guide star system has been installed and operated on the Shane telescope yielding a beam with 22 W average power at 589 nm. Based on experimental data, this laser should generate an 8th magnitude guide star at this site, and the integrated laser guide star adaptive optics system should produce images with Strehl ratios of 0.4 at 2.2 {mu}m in median seeing and 0.7 at 2.2 {mu}m in good seeing.

  15. Head-mountable high speed camera for optical neural recording

    PubMed Central

    Park, Joon Hyuk; Platisa, Jelena; Verhagen, Justus V.; Gautam, Shree H.; Osman, Ahmad; Kim, Dongsoo; Pieribone, Vincent A.; Culurciello, Eugenio

    2011-01-01

    We report a head-mountable CMOS camera for recording rapid neuronal activity in freely-moving rodents using fluorescent activity reporters. This small, lightweight camera is capable of detecting small changes in light intensity (0.2% ΔI/I) at 500 fps. The camera has a resolution of 32 × 32, sensitivity of 0.62 V/lux·s, conversion gain of 0.52 μV/e- and well capacity of 2.1 Me-. The camera, containing intensity offset subtraction circuitry within the imaging chip, is part of a miniaturized epi-fluorescent microscope and represents a first generation, mobile scientific-grade, physiology imaging camera. PMID:21763348

  16. Adaptive Optics at Lawrence Livermore National Laboratory

    SciTech Connect

    Gavel, D T

    2003-03-10

    Adaptive optics enables high resolution imaging through the atmospheric by correcting for the turbulent air's aberrations to the light waves passing through it. The Lawrence Livermore National Laboratory for a number of years has been at the forefront of applying adaptive optics technology to astronomy on the world's largest astronomical telescopes, in particular at the Keck 10-meter telescope on Mauna Kea, Hawaii. The technology includes the development of high-speed electrically driven deformable mirrors, high-speed low-noise CCD sensors, and real-time wavefront reconstruction and control hardware. Adaptive optics finds applications in many other areas where light beams pass through aberrating media and must be corrected to maintain diffraction-limited performance. We describe systems and results in astronomy, medicine (vision science), and horizontal path imaging, all active programs in our group.

  17. Flat-field response and geometric distortion measurements of optical streak cameras

    SciTech Connect

    Montgomery, D.S.; Drake, R.P.; Jones, B.A.; Wiedwald, J.D.

    1987-08-01

    To accurately measure pulse amplitude, shape, and relative time histories of optical signals with an optical streak camera, it is necessary to correct each recorded image for spatially-dependent gain nonuniformity and geometric distortion. Gain nonuniformities arise from sensitivity variations in the streak-tube photocathode, phosphor screen, image-intensifier tube, and image recording system. These nonuniformities may be severe, and have been observed to be on the order of 100% for some LLNL optical streak cameras. Geometric distortion due to optical couplings, electron-optics, and sweep nonlinearity not only affects pulse position and timing measurements, but affects pulse amplitude and shape measurements as well. By using a 1.053-..mu..m, long-pulse, high-power laser to generate a spatially and temporally uniform source as input to the streak camera, the combined effects of flat-field response and geometric distortion can be measured under the normal dynamic operation of cameras with S-1 photocathodes. Additionally, by using the same laser system to generate a train of short pulses that can be spatially modulated at the input of the streak camera, we can effectively create a two-dimensional grid of equally-spaced pulses. This allows a dynamic measurement of the geometric distortion of the streak camera. We will discuss the techniques involved in performing these calibrations, will present some of the measured results for LLNL optical streak cameras, and will discuss software methods to correct for these effects. 6 refs., 6 figs.

  18. Adaptive Optics Applications in Vision Science

    SciTech Connect

    Olivier, S S

    2003-03-17

    Adaptive optics can be used to correct the aberrations in the human eye caused by imperfections in the cornea and the lens and thereby, improve image quality both looking into and out of the eye. Under the auspices of the NSF Center for Adaptive Optics and the DOE Biomedical Engineering Program, Lawrence Livermore National Laboratory has joined together with leading vision science researchers around the country to develop and test new ophthalmic imaging systems using novel wavefront corrector technologies. Results of preliminary comparative evaluations of these technologies in initial system tests show promise for future clinical utility.

  19. Thin, nearly wireless adaptive optical device

    NASA Technical Reports Server (NTRS)

    Knowles, Gareth (Inventor); Hughes, Eli (Inventor)

    2008-01-01

    A thin, nearly wireless adaptive optical device capable of dynamically modulating the shape of a mirror in real time to compensate for atmospheric distortions and/or variations along an optical material is provided. The device includes an optical layer, a substrate, at least one electronic circuit layer with nearly wireless architecture, an array of actuators, power electronic switches, a reactive force element, and a digital controller. Actuators are aligned so that each axis of expansion and contraction intersects both substrate and reactive force element. Electronics layer with nearly wireless architecture, power electronic switches, and digital controller are provided within a thin-film substrate. The size and weight of the adaptive optical device is solely dominated by the size of the actuator elements rather than by the power distribution system.

  20. Thin, nearly wireless adaptive optical device

    NASA Technical Reports Server (NTRS)

    Knowles, Gareth (Inventor); Hughes, Eli (Inventor)

    2007-01-01

    A thin, nearly wireless adaptive optical device capable of dynamically modulating the shape of a mirror in real time to compensate for atmospheric distortions and/or variations along an optical material is provided. The device includes an optical layer, a substrate, at least one electronic circuit layer with nearly wireless architecture, an array of actuators, power electronic switches, a reactive force element, and a digital controller. Actuators are aligned so that each axis of expansion and contraction intersects both substrate and reactive force element. Electronics layer with nearly wireless architecture, power electronic switches, and digital controller are provided within a thin-film substrate. The size and weight of the adaptive optical device is solely dominated by the size of the actuator elements rather than by the power distribution system.

  1. Thin nearly wireless adaptive optical device

    NASA Technical Reports Server (NTRS)

    Knowles, Gareth J. (Inventor); Hughes, Eli (Inventor)

    2009-01-01

    A thin nearly wireless adaptive optical device capable of dynamically modulating the shape of a mirror in real time to compensate for atmospheric distortions and/or variations along an optical material is provided. The device includes an optical layer, a substrate, at least one electronic circuit layer with nearly wireless architecture, an array of actuators, power electronic switches, a reactive force element, and a digital controller. Actuators are aligned so that each axis of expansion and contraction intersects both substrate and reactive force element. Electronics layer with nearly wireless architecture, power electronic switches, and digital controller are provided within a thin-film substrate. The size and weight of the adaptive optical device is solely dominated by the size of the actuator elements rather than by the power distribution system.

  2. Robust Wiener filtering for Adaptive Optics

    SciTech Connect

    Poyneer, L A

    2004-06-17

    In many applications of optical systems, the observed field in the pupil plane has a non-uniform phase component. This deviation of the phase of the field from uniform is called a phase aberration. In imaging systems this aberration will degrade the quality of the images. In the case of a large astronomical telescope, random fluctuations in the atmosphere lead to significant distortion. These time-varying distortions can be corrected using an Adaptive Optics (AO) system, which is a real-time control system composed of optical, mechanical and computational parts. Adaptive optics is also applicable to problems in vision science, laser propagation and communication. For a high-level overview, consult this web site. For an in-depth treatment of the astronomical case, consult these books.

  3. Woofer-Tweeter Adaptive Optics - Poster Paper

    NASA Astrophysics Data System (ADS)

    Farrell, T. D.; Dainty, J. C.

    2008-01-01

    An optical bench experiment has been assembled to demonstrate the concept of woofer-tweeter adaptive optics for astronomical applications. The system includes an OKO 37 actuator woofer deformable mirror combined with a Boston Micromachines 140 actuator tweeter. The goal of such a system is to achieve a higher degree of wavefront correction not currently possible due to the limitations of deformable mirror technology and cost.

  4. Near infra-red astronomy with adaptive optics and laser guide stars at the Keck Observatory

    SciTech Connect

    Max, C.E.; Gavel, D.T.; Olivier, S.S.

    1995-08-03

    A laser guide star adaptive optics system is being built for the W. M. Keck Observatory`s 10-meter Keck II telescope. Two new near infra-red instruments will be used with this system: a high-resolution camera (NIRC 2) and an echelle spectrometer (NIRSPEC). The authors describe the expected capabilities of these instruments for high-resolution astronomy, using adaptive optics with either a natural star or a sodium-layer laser guide star as a reference. They compare the expected performance of these planned Keck adaptive optics instruments with that predicted for the NICMOS near infra-red camera, which is scheduled to be installed on the Hubble Space Telescope in 1997.

  5. Pulse front control with adaptive optics

    NASA Astrophysics Data System (ADS)

    Sun, B.; Salter, P. S.; Booth, M. J.

    2016-03-01

    The focusing of ultrashort laser pulses is extremely important for processes including microscopy, laser fabrication and fundamental science. Adaptive optic elements, such as liquid crystal spatial light modulators or membrane deformable mirrors, are routinely used for the correction of aberrations in these systems, leading to improved resolution and efficiency. Here, we demonstrate that adaptive elements used with ultrashort pulses should not be considered simply in terms of wavefront modification, but that changes to the incident pulse front can also occur. We experimentally show how adaptive elements may be used to engineer pulse fronts with spatial resolution.

  6. Thermal/structural/optical integrated design for optical window of a high-speed aerial optical camera

    NASA Astrophysics Data System (ADS)

    Zhang, Gaopeng; Yang, Hongtao; Mei, Chao; Shi, Kui; Wu, Dengshan; Qiao, Mingrui

    2015-10-01

    In order to obtain high quality image of the aero optical remote sensor, it is important to analysis its thermal-optical performance on the condition of high speed and high altitude. Especially for the key imaging assembly, such as optical window, the temperature variation and temperature gradient can result in defocus and aberrations in optical system, which will lead to the poor quality image. In order to improve the optical performance of a high speed aerial camera optical window, the thermal/structural/optical integrated design method is developed. Firstly, the flight environment of optical window is analyzed. Based on the theory of aerodynamics and heat transfer, the convection heat transfer coefficient is calculated. The temperature distributing of optical window is simulated by the finite element analysis software. The maximum difference in temperature of the inside and outside of optical window is obtained. Then the deformation of optical window under the boundary condition of the maximum difference in temperature is calculated. The optical window surface deformation is fitted in Zernike polynomial as the interface, the calculated Zernike fitting coefficients is brought in and analyzed by CodeV Optical Software. At last, the transfer function diagrams of the optical system on temperature field are comparatively analyzed. By comparing and analyzing the result, it can be obtained that the optical path difference caused by thermal deformation of the optical window is 149.6 nm, which is under PV <=1 4λ .The simulation result meets the requirements of optical design very well. The above study can be used as an important reference for other optical window designs.

  7. Mach-zehnder based optical marker/comb generator for streak camera calibration

    SciTech Connect

    Miller, Edward Kirk

    2015-03-03

    This disclosure is directed to a method and apparatus for generating marker and comb indicia in an optical environment using a Mach-Zehnder (M-Z) modulator. High speed recording devices are configured to record image or other data defining a high speed event. To calibrate and establish time reference, the markers or combs are indicia which serve as timing pulses (markers) or a constant-frequency train of optical pulses (comb) to be imaged on a streak camera for accurate time based calibration and time reference. The system includes a camera, an optic signal generator which provides an optic signal to an M-Z modulator and biasing and modulation signal generators configured to provide input to the M-Z modulator. An optical reference signal is provided to the M-Z modulator. The M-Z modulator modulates the reference signal to a higher frequency optical signal which is output through a fiber coupled link to the streak camera.

  8. Demonstration of portable solar adaptive optics system

    NASA Astrophysics Data System (ADS)

    Ren, Deqing; Dong, Bing

    2012-10-01

    Solar-adaptive optics (AO) are more challenging than night-time AO, in some aspects. A portable solar adaptive optics (PSAO) system featuring compact physical size, low cost, and good performance has been proposed and developed. PSAO can serve as a visiting instrument for any existing ground-based solar telescope to improve solar image quality by replacing just a few optical components. High-level programming language, LabVIEW, is used to develop the wavefront sensing and control software, and general purpose computers are used to drive the whole system. During October 2011, the feasibility and good performance of PSAO was demonstrated with the 61-cm solar telescope at San Fernando Observatory. The image contrast and resolution are noticeably improved after AO correction.

  9. A pipe-profiling adapter for CCTV inspection cameras: development of a pipe-profiling instrument

    NASA Astrophysics Data System (ADS)

    Henry, R.; Luxmoore, A. R.

    1996-04-01

    The principle of the optical section has been used to develop a profiling attachment for CCTV pipe inspection cameras. A light source, placed in front of the camera, projects a ring of light onto the pipe wall, which is then viewed by the camera. Any distortion in the pipe wall will be made visible by the light ring. The CCTV image is digitized by an electronic frame grabber and the light ring image is located by specially developed pattern-matching software. The light ring shape is then analysed mathematically using a radial descriptor, which allows any distortion to be represented in terms of a Fourier series. The device has been tested in the laboratory and in the field, and has been used to examine pipe degradation both in sewers and in water mains.

  10. Optical synthesizer for a large quadrant-array CCD camera: Center director's discretionary fund

    NASA Technical Reports Server (NTRS)

    Hagyard, Mona J.

    1992-01-01

    The objective of this program was to design and develop an optical device, an optical synthesizer, that focuses four contiguous quadrants of a solar image on four spatially separated CCD arrays that are part of a unique CCD camera system. This camera and the optical synthesizer will be part of the new NASA-Marshall Experimental Vector Magnetograph, and instrument developed to measure the Sun's magnetic field as accurately as present technology allows. The tasks undertaken in the program are outlined and the final detailed optical design is presented.

  11. Teaching Optics and Systems Engineering With Adaptive Optics Workbenches

    NASA Astrophysics Data System (ADS)

    Harrington, D. M.; Ammons, M.; Hunter, L.; Max, C.; Hoffmann, M.; Pitts, M.; Armstrong, J. D.

    2010-12-01

    Adaptive optics workbenches are fully functional optical systems that can be used to illustrate and teach a variety of concepts and cognitive processes. Four systems have been funded, designed and constructed by various institutions and people as part of education programs associated with the Center for Adaptive Optics, the Professional Development Program and the Institute for Scientist & Engineer Educators. Activities can range from first-year undergraduate explorations to professional level training. These workbenches have been used in many venues including the Center for Adaptive Optics AO Summer School, the Maui Community College-hosted Akamai Maui Short Course, classrooms, training of new staff in laboratories and other venues. The activity content has focused on various elements of systems thinking, characterization, feedback and system control, basic optics and optical alignment as well as advanced topics such as phase conjugation, wave-front sensing and correction concepts, and system design. The workbenches have slightly different designs and performance capabilities. We describe here outlines for several activities utilizing these different designs and some examples of common student learner outcomes and experiences.

  12. Optical axis jitter rejection for double overlapped adaptive optics systems

    NASA Astrophysics Data System (ADS)

    Luo, Qi; Luo, Xi; Li, Xinyang

    2016-04-01

    Optical axis jitters, or vibrations, which arise from wind shaking and structural oscillations of optical platforms, etc., cause a deleterious impact on the performance of adaptive optics systems. When conventional integrators are utilized to reject such high frequency and narrow-band disturbance, the benefits are quite small despite their acceptable capabilities to reject atmospheric turbulence. In our case, two suits of complete adaptive optics systems called double overlapped adaptive optics systems (DOAOS) are used to counteract both optical jitters and atmospheric turbulence. A novel algorithm aiming to remove vibrations is proposed by resorting to combine the Smith predictor and notch filer. With the help of loop shaping method, the algorithm will lead to an effective and stable controller, which makes the characteristics of error transfer function close to notch filters. On the basis of the spectral analysis of observed data, the peak frequency and bandwidth of vibrations can be identified in advance. Afterwards, the number of notch filters and their parameters will be determined using coordination descending method. The relationship between controller parameters and filtering features is discussed, and the robustness of the controller against varying parameters of the control object is investigated. Preliminary experiments are carried out to validate the proposed algorithms. The overall control performance of DOAOS is simulated. Results show that time delays are a limit of the performance, but the algorithm can be successfully implemented on our systems, which indicate that it has a great potential to reject jitters.

  13. Development of large aperture composite adaptive optics

    NASA Astrophysics Data System (ADS)

    Kmetik, Viliam; Vitovec, Bohumil; Jiran, Lukas; Nemcova, Sarka; Zicha, Josef; Inneman, Adolf; Mikulickova, Lenka; Pavlica, Richard

    2015-01-01

    Large aperture composite adaptive optics for laser applications is investigated in cooperation of Institute of Plasma Physic, Department of Instrumentation and Control Engineering FME CTU and 5M Ltd. We are exploring opportunity of a large-size high-power-laser deformable-mirror production using a lightweight bimorph actuated structure with a composite core. In order to produce a sufficiently large operational free aperture we are developing new technologies for production of flexible core, bimorph actuator and deformable mirror reflector. Full simulation of a deformable-mirrors structure was prepared and validated by complex testing. A deformable mirror actuation and a response of a complicated structure are investigated for an accurate control of the adaptive optics. An original adaptive optics control system and a bimorph deformable mirror driver were developed. Tests of material samples, components and sub-assemblies were completed. A subscale 120 mm bimorph deformable mirror prototype was designed, fabricated and thoroughly tested. A large-size 300 mm composite-core bimorph deformable mirror was simulated and optimized, fabrication of a prototype is carried on. A measurement and testing facility is modified to accommodate large sizes optics.

  14. Wide field/planetary camera optics study. [for the large space telescope

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Design feasibility of the baseline optical design concept was established for the wide field/planetary camera (WF/PC) and will be used with the space telescope (ST) to obtain high angular resolution astronomical information over a wide field. The design concept employs internal optics to relay the ST image to a CCD detector system. Optical design performance predictions, sensitivity and tolerance analyses, manufacturability of the optical components, and acceptance testing of the two mirror Cassegrain relays are discussed.

  15. The Magellan Adaptive Secondary VisAO Camera: diffraction-limited broadband visible imaging and 20mas fiber array IFU

    NASA Astrophysics Data System (ADS)

    Kopon, Derek; Close, Laird M.; Males, Jared; Gasho, Victor; Follette, Katherine

    2010-07-01

    The Magellan Adaptive Secondary AO system, scheduled for first light in the fall of 2011, will be able to simultaneously perform diffraction limited AO science in both the mid-IR, using the BLINC/MIRAC4 10μm camera, and in the visible using our novel VisAO camera. The VisAO camera will be able to operate as either an imager, using a CCD47 with 8.5 mas pixels, or as an IFS, using a custom fiber array at the focal plane with 20 mas elements in its highest resolution mode. In imaging mode, the VisAO camera will have a full suite of filters, coronagraphic focal plane occulting spots, and SDI prism/filters. The imaging mode should provide ~20% mean Strehl diffraction-limited images over the band 0.5-1.0 μm. In IFS mode, the VisAO instrument will provide R~1,800 spectra over the band 0.6-1.05 μm. Our unprecedented 20 mas spatially resolved visible spectra would be the highest spatial resolution achieved to date, either from the ground or in space. We also present lab results from our recently fabricated advanced triplet Atmospheric Dispersion Corrector (ADC) and the design of our novel wide-field acquisition and active optics lens. The advanced ADC is designed to perform 58% better than conventional doublet ADCs and is one of the enabling technologies that will allow us to achieve broadband (0.5-1.0μm) diffraction limited imaging and wavefront sensing in the visible.

  16. Optical Comb Generation for Streak Camera Calibration for Inertial Confinement Fusion Experiments

    SciTech Connect

    Ronald Justin, Terence Davies, Frans Janson, Bruce Marshall, Perry Bell, Daniel Kalantar, Joseph Kimbrough, Stephen Vernon, Oliver Sweningsen

    2008-09-18

    The National Ignition Facility (NIF) at Lawrence Livermore National Laboratory (LLNL) is coming on-line to support physics experimentation for the U.S. Department of Energy (DOE) programs in Inertial Confinement Fusion (ICF) and Stockpile Stewardship (SS). Optical streak cameras are an integral part of the experimental diagnostics instrumentation at NIF. To accurately reduce streak camera data a highly accurate temporal calibration is required. This article describes a technique for simultaneously generating a precise +/- 2 ps optical marker pulse (fiducial reference) and trains of precisely timed, short-duration optical pulses (so-called “comb” pulse trains) that are suitable for the timing calibrations. These optical pulse generators are used with the LLNL optical streak cameras. They are small, portable light sources that, in the comb mode, produce a series of temporally short, uniformly spaced optical pulses, using a laser diode source. Comb generators have been produced with pulse-train repetition rates up to 10 GHz at 780 nm, and somewhat lower frequencies at 664 nm. Individual pulses can be as short as 25-ps FWHM. Signal output is via a fiber-optic connector on the front panel of the generator box. The optical signal is transported from comb generator to streak camera through multi-mode, graded-index optical fiber.

  17. Adaptive optics assisted reconfigurable liquid-driven optical switch

    NASA Astrophysics Data System (ADS)

    Fuh, Yiin-Kuen; Huang, Wei-Chi

    2013-07-01

    This study demonstrates a mechanical-based, liquid-driven optical switch integrated with adaptive optics and a reconfigurable black liquid (dye-doped liquid). The device aperture can be continuously tuned between 0.6 and 6.9 mm, precisely achieved by a syringe pump for volume control. Adaptive optics (AO) capability and possible enhancement of the lost power intensity of the ink-polluted glass plate have also been experimentally investigated. While measuring power intensity with/without AO indicates only a marginal difference of ˜1%, a significant difference of 3 s in the response characteristic of "switching on" time can be observed. An extremely high contrast ratio of ˜105 for a red-colored light is achieved.

  18. Applications of Adaptive Optics Scanning Laser Ophthalmoscopy

    PubMed Central

    Roorda, Austin

    2010-01-01

    Adaptive optics (AO) describes a set of tools to correct or control aberrations in any optical system. In the eye, AO allows for precise control of the ocular aberrations. If used to correct aberrations over a large pupil, for example, cellular level resolution in retinal images can be achieved. AO systems have been demonstrated for advanced ophthalmoscopy as well as for testing and/or improving vision. In fact, AO can be integrated to any ophthalmic instrument where the optics of the eye is involved, with a scope of applications ranging from phoropters to optical coherence tomography systems. In this paper, I discuss the applications and advantages of using AO in a specific system, the adaptive optics scanning laser ophthalmoscope, or AOSLO. Since the Borish award was, in part, awarded to me because of this effort, I felt it appropriate to select this as the topic for this paper. Furthermore, users of AOSLO continue to appreciate the benefits of the technology, some of which were not anticipated at the time of development, and so it is time to revisit this topic and summarize them in a single paper. PMID:20160657

  19. Iterative blind deconvolution of adaptive optics images

    NASA Astrophysics Data System (ADS)

    Liang, Ying; Rao, Changhui; Li, Mei; Geng, Zexun

    2006-04-01

    Adaptive optics (AO) technique has been extensively used for large ground-based optical telescopes to overcome the effect of atmospheric turbulence. But the correction is often partial. An iterative blind deconvolution (IBD) algorithm based on maximum-likelihood (ML) method is proposed to restore the details of the object image corrected by AO. IBD algorithm and the procedure are briefly introduced and the experiment results are presented. The results show that IBD algorithm is efficient for the restoration of some useful high-frequency of the image.

  20. The optical design of a visible adaptive optics system for the Magellan Telescope

    NASA Astrophysics Data System (ADS)

    Kopon, Derek

    The Magellan Adaptive Optics system will achieve first light in November of 2012. This AO system contains several subsystems including the 585-actuator concave adaptive secondary mirror, the Calibration Return Optic (CRO) alignment and calibration system, the CLIO 1-5 microm IR science camera, the movable guider camera and active optics assembly, and the W-Unit, which contains both the Pyramid Wavefront Sensor (PWFS) and the VisAO visible science camera. In this dissertation, we present details of the design, fabrication, assembly, alignment, and laboratory performance of the VisAO camera and its optical components. Many of these components required a custom design, such as the Spectral Differential Imaging Wollaston prisms and filters and the coronagraphic spots. One component, the Atmospheric Dispersion Corrector (ADC), required a unique triplet design that had until now never been fabricated and tested on sky. We present the design, laboratory, and on-sky results for our triplet ADC. We also present details of the CRO test setup and alignment. Because Magellan is a Gregorian telescope, the ASM is a concave ellipsoidal mirror. By simulating a star with a white light point source at the far conjugate, we can create a double-pass test of the whole system without the need for a real on-sky star. This allows us to test the AO system closed loop in the Arcetri test tower at its nominal design focal length and optical conjugates. The CRO test will also allow us to calibrate and verify the system off-sky at the Magellan telescope during commissioning and periodically thereafter. We present a design for a possible future upgrade path for a new visible Integral Field Spectrograph. By integrating a fiber array bundle at the VisAO focal plane, we can send light to a pre-existing facility spectrograph, such as LDSS3, which will allow 20 mas spatial sampling and R˜1,800 spectra over the band 0.6-1.05 microm. This would be the highest spatial resolution IFU to date, either

  1. Performance of the Keck Observatory adaptive optics system

    SciTech Connect

    van Dam, M A; Mignant, D L; Macintosh, B A

    2004-01-19

    In this paper, the adaptive optics (AO) system at the W.M. Keck Observatory is characterized. The authors calculate the error budget of the Keck AO system operating in natural guide star mode with a near infrared imaging camera. By modeling the control loops and recording residual centroids, the measurement noise and band-width errors are obtained. The error budget is consistent with the images obtained. Results of sky performance tests are presented: the AO system is shown to deliver images with average Strehl ratios of up to 0.37 at 1.58 {micro}m using a bright guide star and 0.19 for a magnitude 12 star.

  2. Laser tomography adaptive optics: a performance study.

    PubMed

    Tatulli, Eric; Ramaprakash, A N

    2013-12-01

    We present an analytical derivation of the on-axis performance of adaptive optics systems using a given number of guide stars of arbitrary altitude, distributed at arbitrary angular positions in the sky. The expressions of the residual error are given for cases of both continuous and discrete turbulent atmospheric profiles. Assuming Shack-Hartmann wavefront sensing with circular apertures, we demonstrate that the error is formally described by integrals of products of three Bessel functions. We compare the performance of adaptive optics correction when using natural, sodium, or Rayleigh laser guide stars. For small diameter class telescopes (≲5 m), we show that a small number of Rayleigh beacons can provide similar performance to that of a single sodium laser, for a lower overall cost of the instrument. For bigger apertures, using Rayleigh stars may not be such a suitable alternative because of the too severe cone effect that drastically degrades the quality of the correction. PMID:24323009

  3. Adaptive Optics for Industry and Medicine

    NASA Astrophysics Data System (ADS)

    Dainty, Christopher

    2008-01-01

    pt. 1. Wavefront correctors and control. Liquid crystal lenses for correction of presbyopia (Invited Paper) / Guoqiang Li and Nasser Peyghambarian. Converging and diverging liquid crystal lenses (oral paper) / Andrew X. Kirby, Philip J. W. Hands, and Gordon D. Love. Liquid lens technology for miniature imaging systems: status of the technology, performance of existing products and future trends (invited paper) / Bruno Berge. Carbon fiber reinforced polymer deformable mirrors for high energy laser applications (oral paper) / S. R. Restaino ... [et al.]. Tiny multilayer deformable mirrors (oral paper) / Tatiana Cherezova ... [et al.]. Performance analysis of piezoelectric deformable mirrors (oral paper) / Oleg Soloviev, Mikhail Loktev and Gleb Vdovin. Deformable membrane mirror with high actuator density and distributed control (oral paper) / Roger Hamelinck ... [et al.]. Characterization and closed-loop demonstration of a novel electrostatic membrane mirror using COTS membranes (oral paper) / David Dayton ... [et al.]. Electrostatic micro-deformable mirror based on polymer materials (oral paper) / Frederic Zamkotsian ... [et al.]. Recent progress in CMOS integrated MEMS A0 mirror development (oral paper) / A. Gehner ... [et al.]. Compact large-stroke piston-tip-tilt actuator and mirror (oral paper) / W. Noell ... [et al.]. MEMS deformable mirrors for high performance AO applications (oral paper) / Paul Bierden, Thomas Bifano and Steven Cornelissen. A versatile interferometric test-rig for the investigation and evaluation of ophthalmic AO systems (poster paper) / Steve Gruppetta, Jiang Jian Zhong and Luis Diaz-Santana. Woofer-tweeter adaptive optics (poster paper) / Thomas Farrell and Chris Dainty. Deformable mirrors based on transversal piezoeffect (poster paper) / Gleb Vdovin, Mikhail Loktev and Oleg Soloviev. Low-cost spatial light modulators for ophthalmic applications (poster paper) / Vincente Durán ... [et al.]. Latest MEMS DM developments and the path ahead

  4. Adaptive Optics Imaging of Solar System Objects

    NASA Technical Reports Server (NTRS)

    Roddier, Francois; Owen, Toby

    1999-01-01

    Most solar system objects have never been observed at wavelengths longer than the R band with an angular resolution better than 1". The Hubble Space Telescope itself has only recently been equipped to observe in the infrared. However, because of its small diameter, the angular resolution is lower than that one can now achieved from the ground with adaptive optics, and time allocated to planetary science is limited. We have successfully used adaptive optics on a 4-m class telescope to obtain 0.1" resolution images of solar system objects in the far red and near infrared (0.7-2.5 microns), aE wavelengths which best discl"lmlnate their spectral signatures. Our efforts have been put into areas of research for which high angular resolution is essential.

  5. Adaptive Optics Imaging of Solar System Objects

    NASA Technical Reports Server (NTRS)

    Roddier, Francois; Owen, Toby

    1997-01-01

    Most solar system objects have never been observed at wavelengths longer than the R band with an angular resolution better than 1 sec. The Hubble Space Telescope itself has only recently been equipped to observe in the infrared. However, because of its small diameter, the angular resolution is lower than that one can now achieved from the ground with adaptive optics, and time allocated to planetary science is limited. We have been using adaptive optics (AO) on a 4-m class telescope to obtain 0.1 sec resolution images solar system objects at far red and near infrared wavelengths (0.7-2.5 micron) which best discriminate their spectral signatures. Our efforts has been put into areas of research for which high angular resolution is essential, such as the mapping of Titan and of large asteroids, the dynamics and composition of Neptune stratospheric clouds, the infrared photometry of Pluto, Charon, and close satellites previously undetected from the ground.

  6. HIGH-EFFICIENCY AUTONOMOUS LASER ADAPTIVE OPTICS

    SciTech Connect

    Baranec, Christoph; Riddle, Reed; Tendulkar, Shriharsh; Hogstrom, Kristina; Bui, Khanh; Dekany, Richard; Kulkarni, Shrinivas; Law, Nicholas M.; Ramaprakash, A. N.; Burse, Mahesh; Chordia, Pravin; Das, Hillol; Punnadi, Sujit

    2014-07-20

    As new large-scale astronomical surveys greatly increase the number of objects targeted and discoveries made, the requirement for efficient follow-up observations is crucial. Adaptive optics imaging, which compensates for the image-blurring effects of Earth's turbulent atmosphere, is essential for these surveys, but the scarcity, complexity and high demand of current systems limit their availability for following up large numbers of targets. To address this need, we have engineered and implemented Robo-AO, a fully autonomous laser adaptive optics and imaging system that routinely images over 200 objects per night with an acuity 10 times sharper at visible wavelengths than typically possible from the ground. By greatly improving the angular resolution, sensitivity, and efficiency of 1-3 m class telescopes, we have eliminated a major obstacle in the follow-up of the discoveries from current and future large astronomical surveys.

  7. Integration and testing of the GRAVITY infrared camera for multiple telescope optical beam analysis

    NASA Astrophysics Data System (ADS)

    Gordo, Paulo; Amorim, Antonio; Abreu, Jorge; Eisenhauer, Frank; Anugu, Narsireddy; Garcia, Paulo; Pfuhl, Oliver; Haug, Marcus; Sturm, Eckhard; Wieprecht, Ekkehard; Perrin, Guy; Brandner, Wolfgang; Straubmeier, Christian; Perraut, Karine; Naia, M. Duarte; Guimarães, M.

    2014-07-01

    The GRAVITY Acquisition Camera was designed to monitor and evaluate the optical beam properties of the four ESO/VLT telescopes simultaneously. The data is used as part of the GRAVITY beam stabilization strategy. Internally the Acquisition Camera has four channels each with: several relay mirrors, imaging lens, H-band filter, a single custom made silica bulk optics (i.e. Beam Analyzer) and an IR detector (HAWAII2-RG). The camera operates in vacuum with operational temperature of: 240k for the folding optics and enclosure, 100K for the Beam Analyzer optics and 80K for the detector. The beam analysis is carried out by the Beam Analyzer, which is a compact assembly of fused silica prisms and lenses that are glued together into a single optical block. The beam analyzer handles the four telescope beams and splits the light from the field mode into the pupil imager, the aberration sensor and the pupil tracker modes. The complex optical alignment and focusing was carried out first at room temperature with visible light, using an optical theodolite/alignment telescope, cross hairs, beam splitter mirrors and optical path compensator. The alignment was validated at cryogenic temperatures. High Strehl ratios were achieved at the first cooldown. In the paper we present the Acquisition Camera as manufactured, focusing key sub-systems and key technical challenges, the room temperature (with visible light) alignment and first IR images acquired in cryogenic operation.

  8. Geometric view of adaptive optics control.

    PubMed

    Wiberg, Donald M; Max, Claire E; Gavel, Donald T

    2005-05-01

    The objective of an astronomical adaptive optics control system is to minimize the residual wave-front error remaining on the science-object wave fronts after being compensated for atmospheric turbulence and telescope aberrations. Minimizing the mean square wave-front residual maximizes the Strehl ratio and the encircled energy in pointlike images and maximizes the contrast and resolution of extended images. We prove the separation principle of optimal control for application to adaptive optics so as to minimize the mean square wave-front residual. This shows that the residual wave-front error attributable to the control system can be decomposed into three independent terms that can be treated separately in design. The first term depends on the geometry of the wave-front sensor(s), the second term depends on the geometry of the deformable mirror(s), and the third term is a stochastic term that depends on the signal-to-noise ratio. The geometric view comes from understanding that the underlying quantity of interest, the wave-front phase surface, is really an infinite-dimensional vector within a Hilbert space and that this vector space is projected into subspaces we can control and measure by the deformable mirrors and wave-front sensors, respectively. When the control and estimation algorithms are optimal, the residual wave front is in a subspace that is the union of subspaces orthogonal to both of these projections. The method is general in that it applies both to conventional (on-axis, ground-layer conjugate) adaptive optics architectures and to more complicated multi-guide-star- and multiconjugate-layer architectures envisaged for future giant telescopes. We illustrate the approach by using a simple example that has been worked out previously [J. Opt. Soc. Am. A 73, 1171 (1983)] for a single-conjugate, static atmosphere case and follow up with a discussion of how it is extendable to general adaptive optics architectures. PMID:15898546

  9. Flight build of the collimator and shortwave camera optics on NIRCam

    NASA Astrophysics Data System (ADS)

    Kvamme, E. Todd; Jacoby, Mike; Hix, Troy

    2011-10-01

    The Near Infrared Camera (NIRCam) instrument for NASA's James Webb Space Telescope (JWST) has an optical prescription which employs three triplet lens cells. The instrument will operate at 35K after experiencing launch loads at ~293K and the optic mounts must accommodate all associated thermal and mechanical stresses, plus maintain an exceptional wavefront during operation. The Lockheed Martin Advanced Technology Center (LMATC) has built and tested the collimator and camera optics for use on the NIRCam flight instrument. This paper presents an overview of the driving requirements, a brief overview of the changes in the opto-mechanical design and analysis since our last presentation, a discussion of the collimator and shortwave camera triplet assembly processes, and finally a summary of the mechanical and optical test results.

  10. Phase Contrast Wavefront Sensing for Adaptive Optics

    NASA Technical Reports Server (NTRS)

    Bloemhof, E. E.; Wallace, J. K.; Bloemhof, E. E.

    2004-01-01

    Most ground-based adaptive optics systems use one of a small number of wavefront sensor technologies, notably (for relatively high-order systems) the Shack-Hartmann sensor, which provides local measurements of the phase slope (first-derivative) at a number of regularly-spaced points across the telescope pupil. The curvature sensor, with response proportional to the second derivative of the phase, is also sometimes used, but has undesirable noise propagation properties during wavefront reconstruction as the number of actuators becomes large. It is interesting to consider the use for astronomical adaptive optics of the "phase contrast" technique, originally developed for microscopy by Zemike to allow convenient viewing of phase objects. In this technique, the wavefront sensor provides a direct measurement of the local value of phase in each sub-aperture of the pupil. This approach has some obvious disadvantages compared to Shack-Hartmann wavefront sensing, but has some less obvious but substantial advantages as well. Here we evaluate the relative merits in a practical ground-based adaptive optics system.

  11. Optical Property Analyses of Plant Cells for Adaptive Optics Microscopy

    NASA Astrophysics Data System (ADS)

    Tamada, Yosuke; Murata, Takashi; Hattori, Masayuki; Oya, Shin; Hayano, Yutaka; Kamei, Yasuhiro; Hasebe, Mitsuyasu

    2014-04-01

    In astronomy, adaptive optics (AO) can be used to cancel aberrations caused by atmospheric turbulence and to perform diffraction-limited observation of astronomical objects from the ground. AO can also be applied to microscopy, to cancel aberrations caused by cellular structures and to perform high-resolution live imaging. As a step toward the application of AO to microscopy, here we analyzed the optical properties of plant cells. We used leaves of the moss Physcomitrella patens, which have a single layer of cells and are thus suitable for optical analysis. Observation of the cells with bright field and phase contrast microscopy, and image degradation analysis using fluorescent beads demonstrated that chloroplasts provide the main source of optical degradations. Unexpectedly, the cell wall, which was thought to be a major obstacle, has only a minor effect. Such information provides the basis for the application of AO to microscopy for the observation of plant cells.

  12. Compact adaptive optics line scanning ophthalmoscope

    PubMed Central

    Mujat, Mircea; Ferguson, R. Daniel; Iftimia, Nicusor; Hammer, Daniel X.

    2010-01-01

    We have developed a compact retinal imager that integrates adaptive optics (AO) into a line scanning ophthalmoscope (LSO). The bench-top AO-LSO instrument significantly reduces the size, complexity, and cost of research AO scanning laser ophthalmoscopes (AOSLOs), for the purpose of moving adaptive optics imaging more rapidly into routine clinical use. The AO-LSO produces high resolution retinal images with only one moving part and a significantly reduced instrument footprint and number of optical components. The AO-LSO has a moderate field of view (5.5 deg), which allows montages of the macula or other targets to be obtained more quickly and efficiently. In a preliminary human subjects investigation, photoreceptors could be resolved and counted within ~0.5 mm of the fovea. Photoreceptor counts matched closely to previously reported histology. The capillaries surrounding the foveal avascular zone could be resolved, as well as cells flowing within them. Individual nerve fiber bundles could be resolved, especially near the optic nerve head, as well as other structures such as the lamina cribrosa. In addition to instrument design, fabrication, and testing, software algorithms were developed for automated image registration and cone counting. PMID:19506678

  13. Reflective afocal broadband adaptive optics scanning ophthalmoscope.

    PubMed

    Dubra, Alfredo; Sulai, Yusufu

    2011-06-01

    A broadband adaptive optics scanning ophthalmoscope (BAOSO) consisting of four afocal telescopes, formed by pairs of off-axis spherical mirrors in a non-planar arrangement, is presented. The non-planar folding of the telescopes is used to simultaneously reduce pupil and image plane astigmatism. The former improves the adaptive optics performance by reducing the root-mean-square (RMS) of the wavefront and the beam wandering due to optical scanning. The latter provides diffraction limited performance over a 3 diopter (D) vergence range. This vergence range allows for the use of any broadband light source(s) in the 450-850 nm wavelength range to simultaneously image any combination of retinal layers. Imaging modalities that could benefit from such a large vergence range are optical coherence tomography (OCT), multi- and hyper-spectral imaging, single- and multi-photon fluorescence. The benefits of the non-planar telescopes in the BAOSO are illustrated by resolving the human foveal photoreceptor mosaic in reflectance using two different superluminescent diodes with 680 and 796 nm peak wavelengths, reaching the eye with a vergence of 0.76 D relative to each other. PMID:21698035

  14. Reflective afocal broadband adaptive optics scanning ophthalmoscope

    PubMed Central

    Dubra, Alfredo; Sulai, Yusufu

    2011-01-01

    A broadband adaptive optics scanning ophthalmoscope (BAOSO) consisting of four afocal telescopes, formed by pairs of off-axis spherical mirrors in a non-planar arrangement, is presented. The non-planar folding of the telescopes is used to simultaneously reduce pupil and image plane astigmatism. The former improves the adaptive optics performance by reducing the root-mean-square (RMS) of the wavefront and the beam wandering due to optical scanning. The latter provides diffraction limited performance over a 3 diopter (D) vergence range. This vergence range allows for the use of any broadband light source(s) in the 450-850 nm wavelength range to simultaneously image any combination of retinal layers. Imaging modalities that could benefit from such a large vergence range are optical coherence tomography (OCT), multi- and hyper-spectral imaging, single- and multi-photon fluorescence. The benefits of the non-planar telescopes in the BAOSO are illustrated by resolving the human foveal photoreceptor mosaic in reflectance using two different superluminescent diodes with 680 and 796 nm peak wavelengths, reaching the eye with a vergence of 0.76 D relative to each other. PMID:21698035

  15. Specialized wavefront sensors for adaptive optics

    SciTech Connect

    Neal, D.R.; Mansell, J.D.; Gruetzner, J.K.

    1995-08-01

    The performance of an adaptive optical system is strongly dependent upon correctly measuring the wavefront of the arriving light. The most common wavefront measurement techniques used to date are the shearing interferometer and the Shack-Hartmann sensor. Shack-Hartmann sensors rely on the use of lenslet arrays to sample the aperture appropriately. These have traditionally been constructed using ULM or step and repeat technology, and more recently with binary optics technology. Diffractive optics fabrication methodology can be used to remove some of the limitations of the previous technologies and can allow for low-cost production of sophisticated elements. We have investigated several different specialized wavefront sensor configurations using both Shack-Hartmann and shearing interferometer principles. We have taken advantage of the arbitrary nature of these elements to match pupil shapes of detector and telescope aperture and to introduce magnification between the lenslet array and the detector. We have fabricated elements that facilitate matching the sampling to the current atmospheric conditions. The sensors were designed using a far-field diffraction model and a photolithography layout program. They were fabricated using photolithography and RIE etching. Several different designs will be presented with some experimental results from a small-scale adaptive optics brass-board.

  16. NFIRAOS: TMT facility adaptive optics with conventional DMs

    NASA Astrophysics Data System (ADS)

    Herriot, Glen; Hickson, Paul; Ellerbroek, B. L.; Andersen, David A.; Davidge, T.; Erickson, D. A.; Powell, I. P.; Clare, R.; Smith, M.; Saddlemyer, L.; Veran, J.-P.

    2005-08-01

    Although many of the instruments planned for the TMT (Thirty Meter Telescope) have their own closely-coupled adaptive optics systems, TMT will also have a facility Adaptive Optics (AO) system feeding three instruments on the Nasmyth platform. For this Narrow-Field Infrared Adaptive Optics System, NFIRAOS (pronounced nefarious), the TMT project considered two architectures. One, described in this paper, employs conventional deformable mirrors with large diameters of about 300 mm and this is the reference design adopted by the TMT project. An alternative design based on MEMS was also studied, and is being presented separately in this conference. The requirements for NFIRAOS include 0.8-5 microns wavelength range, 30 arcsecond diameter output field of view (FOV), excellent sky coverage, and diffraction- limited atmospheric turbulence compensation (specified at 133 nm RMS including residual telescope and science instrument errors.) The reference design for NFIRAOS includes multiple sodium laser guide stars over a 70 arcsecond FOV, and an infrared tip/tilt/focus/astigmatism natural guide star sensor within instruments. Larger telescopes require greater deformable mirror (DM) stroke. Although initially NFIRAOS will correct a 10 arcsecond science field, it uses two deformable mirrors in series, partly to provide sufficient stroke for atmospheric correction over the 30 m telescope aperture, but mainly to partially correct a 2 arcminute diameter "technical" field to sharpen near-IR natural guide stars and improve sky coverage. The planned upgrade to full performance includes replacing the groundconjugated DM with a higher actuator density, and using a deformable telescope secondary mirror as a "woofer." NFIRAOS incorporates an instrument rotator and selection of three live instruments: a near-Infrared integral field Imaging spectrograph, a near-infrared echelle spectrograph, and after upgrading NFIRAOS to full multi-conjugation, a wide field (30 arcsecond) infrared camera.

  17. Adaptive optics for space debris tracking

    NASA Astrophysics Data System (ADS)

    Bennet, Francis; D'Orgeville, Celine; Gao, Yue; Gardhouse, William; Paulin, Nicolas; Price, Ian; Rigaut, Francois; Ritchie, Ian T.; Smith, Craig H.; Uhlendorf, Kristina; Wang, Yanjie

    2014-07-01

    Space debris in Low Earth Orbit (LEO) is becoming an increasing threat to satellite and spacecraft. A reliable and cost effective method for detecting possible collisions between orbiting objects is required to prevent an exponential growth in the number of debris. Current RADAR survey technologies used to monitor the orbits of thousands of space debris objects are relied upon to manoeuvre operational satellites to prevent possible collisions. A complimentary technique, ground-based laser LIDAR (Light Detection and Ranging) have been used to track much smaller objects with higher accuracy than RADAR, giving greater prediction of possible collisions and avoiding unnecessary manoeuvring. Adaptive optics will play a key role in any ground based LIDAR tracking system as a cost effective way of utilising smaller ground stations or less powerful lasers. The use of high power and high energy lasers for the orbital modification of debris objects will also require an adaptive optic system to achieve the high photon intensity on the target required for photon momentum transfer and laser ablation. EOS Space Systems have pioneered the development of automated laser space debris tracking for objects in low Earth orbit. The Australian National University have been developing an adaptive optics system to improve this space debris tracking capability at the EOS Space Systems Mount Stromlo facility in Canberra, Australia. The system is integrated with the telescope and commissioned as an NGS AO system before moving on to LGS AO and tracking operations. A pulsed laser propagated through the telescope is used to range the target using time of flight data. Adaptive optics is used to increase the maximum range and number or targets available to the LIDAR system, by correcting the uplink laser beam. Such a system presents some unique challenges for adaptive optics: high power lasers reflecting off deformable mirrors, high slew rate tracking, and variable off-axis tracking correction. A

  18. Electron density measurements for plasma adaptive optics

    NASA Astrophysics Data System (ADS)

    Neiswander, Brian W.

    Over the past 40 years, there has been growing interest in both laser communications and directed energy weapons that operate from moving aircraft. As a laser beam propagates from an aircraft in flight, it passes through boundary layers, turbulence, and shear layers in the near-region of the aircraft. These fluid instabilities cause strong density gradients which adversely affect the transmission of laser energy to a target. Adaptive optics provides corrective measures for this problem but current technology cannot respond quickly enough to be useful for high speed flight conditions. This research investigated the use of plasma as a medium for adaptive optics for aero-optics applications. When a laser beam passes through plasma, its phase is shifted proportionally to the electron density and gas heating within the plasma. As a result, plasma can be utilized as a dynamically controllable optical medium. Experiments were carried out using a cylindrical dielectric barrier discharge plasma chamber which generated a sub-atmospheric pressure, low-temperature plasma. An electrostatic model of this design was developed and revealed an important design constraint relating to the geometry of the chamber. Optical diagnostic techniques were used to characterize the plasma discharge. Single-wavelength interferometric experiments were performed and demonstrated up to 1.5 microns of optical path difference (OPD) in a 633 nm laser beam. Dual-wavelength interferometry was used to obtain time-resolved profiles of the plasma electron density and gas heating inside the plasma chamber. Furthermore, a new multi-wavelength infrared diagnostic technique was developed and proof-of-concept simulations were conducted to demonstrate the system's capabilities.

  19. Measurement of noises and modulation transfer function of cameras used in optical-digital correlators

    NASA Astrophysics Data System (ADS)

    Evtikhiev, Nikolay N.; Starikov, Sergey N.; Cheryomkhin, Pavel A.; Krasnov, Vitaly V.

    2012-01-01

    Hybrid optical-digital systems based on diffractive correlator are being actively developed. To correctly estimate application capabilities of cameras of different types in optical-digital correlation systems knowledge of modulation transfer function (MTF) and light depended temporal and spatial noises is required. The method for measurement of 2D MTF is presented. The method based on random target method but instead of a random target the specially created target with flat power spectrum is used. It allows to measure MTF without averaging 1D Fourier spectra over rows or columns as is in the random target method and to achieve all values of 2D MTF instead of just two orthogonal cross-sections. The simple method for measuring the dependence of camera temporal noise on light signal value by shooting a single scene is described. Measurements results of light and dark spatial and temporal noises of cameras are presented. Procedure for obtaining camera's light spatial noise portrait (array of PRNU values for all photo sensor pixels) is presented. Results on measurements of MTF and temporal and spatial noises for consumer photo camera, machine vision camera and videosurveillance camera are presented.

  20. Developments of wide field submillimeter optics and lens antenna-coupled MKID cameras

    NASA Astrophysics Data System (ADS)

    Sekimoto, Y.; Nitta, T.; Karatsu, K.; Sekine, M.; Sekiguchi, S.; Okada, T.; Shu, S.; Noguchi, T.; Naruse, M.; Mitsui, K.; Okada, N.; Tsuzuki, T.; Dominjon, A.; Matsuo, H.

    2014-07-01

    Wide field cryogenic optics and millimeter-wave Microwave Kinetic Inductance Detector (MKID) cameras with Si lens array have been developed. MKID is a Cooper-pair breaking photon detector and consists of supercon- ducting resonators which enable microwave (~GHz) frequency multiplexing. Antenna-coupled Aluminum CPW resonators are put in a line on a Si substrate to be read by a pair of coaxial cables. A 220 GHz - 600 pixels MKID camera with anti-reflection (AR) coated Si lens has been demonstrated in an 0.1 K cryostat. A compact cryogenic system with high refractive index materials has been developed for the MKID camera.

  1. Adaptive optics scanning ophthalmoscopy with annular pupils

    PubMed Central

    Sulai, Yusufu N.; Dubra, Alfredo

    2012-01-01

    Annular apodization of the illumination and/or imaging pupils of an adaptive optics scanning light ophthalmoscope (AOSLO) for improving transverse resolution was evaluated using three different normalized inner radii (0.26, 0.39 and 0.52). In vivo imaging of the human photoreceptor mosaic at 0.5 and 10° from fixation indicates that the use of an annular illumination pupil and a circular imaging pupil provides the most benefit of all configurations when using a one Airy disk diameter pinhole, in agreement with the paraxial confocal microscopy theory. Annular illumination pupils with 0.26 and 0.39 normalized inner radii performed best in terms of the narrowing of the autocorrelation central lobe (between 7 and 12%), and the increase in manual and automated photoreceptor counts (8 to 20% more cones and 11 to 29% more rods). It was observed that the use of annular pupils with large inner radii can result in multi-modal cone photoreceptor intensity profiles. The effect of the annular masks on the average photoreceptor intensity is consistent with the Stiles-Crawford effect (SCE). This indicates that combinations of images of the same photoreceptors with different apodization configurations and/or annular masks can be used to distinguish cones from rods, even when the former have complex multi-modal intensity profiles. In addition to narrowing the point spread function transversally, the use of annular apodizing masks also elongates it axially, a fact that can be used for extending the depth of focus of techniques such as adaptive optics optical coherence tomography (AOOCT). Finally, the positive results from this work suggest that annular pupil apodization could be used in refractive or catadioptric adaptive optics ophthalmoscopes to mitigate undesired back-reflections. PMID:22808435

  2. Synchronous time-resolved optical and x-ray emission from simultaneous optical and x-ray streak cameras driven by a master ramp generator

    SciTech Connect

    Balmer, J.E.; Lampert, W.; Roschger, E.; Hares, J.D.; Kilkenny, J.D.

    1985-05-01

    An optical and an x-ray streak camera have been synchronized by driving the deflection plates of both cameras from the same ramp generator. The relative timing of the two cameras was calibrated by running UV light onto the x-ray streak camera. The x-ray streak camera was then used to measure the time of the x-ray emission from a laser plasma with respect to the laser pulse.

  3. First steps toward 3D high resolution imaging using adaptive optics and full-field optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Blanco, Leonardo; Blavier, Marie; Glanc, Marie; Pouplard, Florence; Tick, Sarah; Maksimovic, Ivan; Chenegros, Guillaume; Mugnier, Laurent; Lacombe, Francois; Rousset, Gérard; Paques, Michel; Le Gargasson, Jean-François; Sahel, Jose-Alain

    2008-09-01

    We describe here two parts of our future 3D fundus camera coupling Adaptive Optics and full-field Optical Coherence Tomography. The first part is an Adaptive Optics flood imager installed at the Quinze-Vingts Hospital, regularly used on healthy and pathological eyes. A posteriori image reconstruction is performed, increasing the final image quality and field of view. The instrument lateral resolution is better than 2 microns. The second part is a full-field Optical Coherence Tomograph, which has demonstrated capability of performing a simple kind of "4 phases" image reconstruction of non biological samples and ex situ retinas. Final aim is to couple both parts in order to achieve 3D high resolution mapping of in vivo retinas.

  4. Adaptive optics without altering visual perception

    PubMed Central

    DE, Koenig; NW, Hart; HJ, Hofer

    2014-01-01

    Adaptive optics combined with visual psychophysics creates the potential to study the relationship between visual function and the retina at the cellular scale. This potential is hampered, however, by visual interference from the wavefront-sensing beacon used during correction. For example, we have previously shown that even a dim, visible beacon can alter stimulus perception (Hofer, H. J., Blaschke, J., Patolia, J., & Koenig, D. E. (2012). Fixation light hue bias revisited: Implications for using adaptive optics to study color vision. Vision Research, 56, 49-56). Here we describe a simple strategy employing a longer wavelength (980nm) beacon that, in conjunction with appropriate restriction on timing and placement, allowed us to perform psychophysics when dark adapted without altering visual perception. The method was verified by comparing detection and color appearance of foveally presented small spot stimuli with and without the wavefront beacon present in 5 subjects. As an important caution, we found that significant perceptual interference can occur even with a subliminal beacon when additional measures are not taken to limit exposure. Consequently, the lack of perceptual interference should be verified for a given system, and not assumed based on invisibility of the beacon. PMID:24607992

  5. A low-cost web-camera-based multichannel fiber-optic spectrometer structure

    NASA Astrophysics Data System (ADS)

    Sumriddetchkajorn, Sarun

    2010-11-01

    This paper shows how a web camera can be used to realize a low-cost multichannel fiber-optic spectrometer suitable for educational purposes as well as for quality control purposes in small and medium enterprises. Our key idea is to arrange N input optical fibers in a line and use an external dispersive element to separate incoming optical beams into their associated spectral components in a two-dimensional (2-D) space. As a web camera comes with a plastic lens, each set of spectral components is imaged onto the 2-D image sensor of the web camera. For our demonstration, we build a 5-channel web-camera based fiber-optic optical spectrometer and simply calibrate it by using eight lightsources with known peak wavelengths. In this way, it functions as a 5-channel wavelength meter in a 380-700 nm wavelength range with a calculated wavelength resolution of 0.67 nm/pixel. Experimental results show that peak operating wavelengths of a light emitting diode (λp = 525 nm) and a laser pointer (λp = 655 nm) can be measured with a +/-2.5 nm wavelength accuracy. Total cost of our 5-channel fiber-optic spectrometer is ~USD92.50.

  6. The CHARA Array Adaptive Optics Program

    NASA Astrophysics Data System (ADS)

    Ten Brummelaar, Theo; Che, Xiao; McAlister, Harold A.; Ireland, Michael; Monnier, John D.; Mourard, Denis; Ridgway, Stephen T.; sturmann, judit; Sturmann, Laszlo; Turner, Nils H.; Tuthill, Peter

    2016-01-01

    The CHARA array is an optical/near infrared interferometer consisting of six 1-meter diameter telescopes the longest baseline of which is 331 meters. With sub-millisecond angular resolution, the CHARA array is able to spatially resolve nearby stellar systems to reveal the detailed structures. To improve the sensitivity and scientific throughput, the CHARA array was funded by NSF-ATI in 2011, and by NSF-MRI in 2015, for an upgrade of adaptive optics (AO) systems to all six telescopes. The initial grant covers Phase I of the adaptive optics system, which includes an on-telescope Wavefront Sensor and non-common-path (NCP) error correction. The WFS use a fairly standard Shack-Hartman design and will initially close the tip tilt servo and log wavefront errors for use in data reduction and calibration. The second grant provides the funding for deformable mirrors for each telescope which will be used closed loop to remove atmospheric aberrations from the beams. There are then over twenty reflections after the WFS at the telescopes that bring the light several hundred meters into the beam combining laboratory. Some of these, including the delay line and beam reducing optics, are powered elements, and some of them, in particular the delay lines and telescope Coude optics, are continually moving. This means that the NCP problems in an interferometer are much greater than those found in more standard telescope systems. A second, slow AO system is required in the laboratory to correct for these NCP errors. We will breifly describe the AO system, and it's current status, as well as discuss the new science enabled by the system with a focus on our YSO program.

  7. Imaging Radio Galaxies with Adaptive Optics

    NASA Astrophysics Data System (ADS)

    de Vries, W. H.; van Breugel, W. J. M.; Quirrenbach, A.; Roberts, J.; Fidkowski, K.

    2000-12-01

    We present 42 milli-arcsecond resolution Adaptive Optics near-infrared images of 3C 452 and 3C 294, two powerful radio galaxies at z=0.081 and z=1.79 respectively, obtained with the NIRSPEC/SCAM+AO instrument on the Keck telescope. The observations provide unprecedented morphological detail of radio galaxy components like nuclear dust-lanes, off-centered or binary nuclei, and merger induced starforming structures; all of which are key features in understanding galaxy formation and the onset of powerful radio emission. Complementary optical HST imaging data are used to construct high resolution color images, which, for the first time, have matching optical and near-IR resolutions. Based on these maps, the extra-nuclear structural morphologies and compositions of both galaxies are discussed. Furthermore, detailed brightness profile analysis of 3C 452 allows a direct comparison to a large literature sample of nearby ellipticals, all of which have been observed in the optical and near-IR by HST. Both the imaging data and the profile information on 3C 452 are consistent with it being a relative diminutive and well-evolved elliptical, in stark contrast to 3C 294 which seems to be in its initial formation throes with an active AGN off-centered from the main body of the galaxy. These results are discussed further within the framework of radio galaxy triggering and the formation of massive ellipticals. The work of WdV and WvB was performed under the auspices of the U.S. Department of Energy by University of California Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48. The work at UCSD has been supported by the NSF Science and Technology Center for Adaptive Optics, under agreement No. AST-98-76783.

  8. The Adaptive Optics Summer School Laboratory Activities

    NASA Astrophysics Data System (ADS)

    Ammons, S. M.; Severson, S.; Armstrong, J. D.; Crossfield, I.; Do, T.; Fitzgerald, M.; Harrington, D.; Hickenbotham, A.; Hunter, J.; Johnson, J.; Johnson, L.; Li, K.; Lu, J.; Maness, H.; Morzinski, K.; Norton, A.; Putnam, N.; Roorda, A.; Rossi, E.; Yelda, S.

    2010-12-01

    Adaptive Optics (AO) is a new and rapidly expanding field of instrumentation, yet astronomers, vision scientists, and general AO practitioners are largely unfamiliar with the root technologies crucial to AO systems. The AO Summer School (AOSS), sponsored by the Center for Adaptive Optics, is a week-long course for training graduate students and postdoctoral researchers in the underlying theory, design, and use of AO systems. AOSS participants include astronomers who expect to utilize AO data, vision scientists who will use AO instruments to conduct research, opticians and engineers who design AO systems, and users of high-bandwidth laser communication systems. In this article we describe new AOSS laboratory sessions implemented in 2006-2009 for nearly 250 students. The activity goals include boosting familiarity with AO technologies, reinforcing knowledge of optical alignment techniques and the design of optical systems, and encouraging inquiry into critical scientific questions in vision science using AO systems as a research tool. The activities are divided into three stations: Vision Science, Fourier Optics, and the AO Demonstrator. We briefly overview these activities, which are described fully in other articles in these conference proceedings (Putnam et al., Do et al., and Harrington et al., respectively). We devote attention to the unique challenges encountered in the design of these activities, including the marriage of inquiry-like investigation techniques with complex content and the need to tune depth to a graduate- and PhD-level audience. According to before-after surveys conducted in 2008, the vast majority of participants found that all activities were valuable to their careers, although direct experience with integrated, functional AO systems was particularly beneficial.

  9. Multifocal multiphoton microscopy with adaptive optical correction

    NASA Astrophysics Data System (ADS)

    Coelho, Simao; Poland, Simon; Krstajic, Nikola; Li, David; Monypenny, James; Walker, Richard; Tyndall, David; Ng, Tony; Henderson, Robert; Ameer-Beg, Simon

    2013-02-01

    Fluorescence lifetime imaging microscopy (FLIM) is a well established approach for measuring dynamic signalling events inside living cells, including detection of protein-protein interactions. The improvement in optical penetration of infrared light compared with linear excitation due to Rayleigh scattering and low absorption have provided imaging depths of up to 1mm in brain tissue but significant image degradation occurs as samples distort (aberrate) the infrared excitation beam. Multiphoton time-correlated single photon counting (TCSPC) FLIM is a method for obtaining functional, high resolution images of biological structures. In order to achieve good statistical accuracy TCSPC typically requires long acquisition times. We report the development of a multifocal multiphoton microscope (MMM), titled MegaFLI. Beam parallelization performed via a 3D Gerchberg-Saxton (GS) algorithm using a Spatial Light Modulator (SLM), increases TCSPC count rate proportional to the number of beamlets produced. A weighted 3D GS algorithm is employed to improve homogeneity. An added benefit is the implementation of flexible and adaptive optical correction. Adaptive optics performed by means of Zernike polynomials are used to correct for system induced aberrations. Here we present results with significant improvement in throughput obtained using a novel complementary metal-oxide-semiconductor (CMOS) 1024 pixel single-photon avalanche diode (SPAD) array, opening the way to truly high-throughput FLIM.

  10. Adaptive Optics Imaging in Laser Pointer Maculopathy.

    PubMed

    Sheyman, Alan T; Nesper, Peter L; Fawzi, Amani A; Jampol, Lee M

    2016-08-01

    The authors report multimodal imaging including adaptive optics scanning laser ophthalmoscopy (AOSLO) (Apaeros retinal image system AOSLO prototype; Boston Micromachines Corporation, Boston, MA) in a case of previously diagnosed unilateral acute idiopathic maculopathy (UAIM) that demonstrated features of laser pointer maculopathy. The authors also show the adaptive optics images of a laser pointer maculopathy case previously reported. A 15-year-old girl was referred for the evaluation of a maculopathy suspected to be UAIM. The authors reviewed the patient's history and obtained fluorescein angiography, autofluorescence, optical coherence tomography, infrared reflectance, and AOSLO. The time course of disease and clinical examination did not fit with UAIM, but the linear pattern of lesions was suspicious for self-inflicted laser pointer injury. This was confirmed on subsequent questioning of the patient. The presence of linear lesions in the macula that are best highlighted with multimodal imaging techniques should alert the physician to the possibility of laser pointer injury. AOSLO further characterizes photoreceptor damage in this condition. [Ophthalmic Surg Lasers Imaging Retina. 2016;47:782-785.]. PMID:27548458

  11. The ESO Adaptive Optics Facility under Test

    NASA Astrophysics Data System (ADS)

    Arsenault, Robin; Madec, Pierre-Yves; Paufique, Jerome; La Penna, Paolo; Stroebele, Stefan; Vernet, Elise; Pirard, Jean-François; Hackenberg, Wolfgang; Kuntschner, Harald; Kolb, Johann; Muller, Nicolas; Le Louarn, Miska; Amico, Paola; Hubin, Norbert; Lizon, Jean-Louis; Ridings, Rob; Abad, Jose; Fischer, Gert; Heinz, Volker; Kiekebusch, Mario; Argomedo, Javier; Conzelmann, Ralf; Tordo, Sebastien; Donaldson, Rob; Soenke, Christian; Duhoux, Philippe; Fedrigo, Enrico; Delabre, Bernard; Jost, Andrea; Duchateau, Michel; Downing, Mark; Moreno, Javier; Manescau, Antonio; Bonaccini Calia, Domenico; Quattri, Marco; Dupuy, Christophe; Guidolin, Ivan; Comin, Mauro; Guzman, Ronald; Buzzoni, Bernard; Quentin, Jutta; Lewis, Steffan; Jolley, Paul; Kraus, Max; Pfrommer, Thomas; Garcia-Rissmann, Aurea; Biasi, Roberto; Gallieni, Daniele; Stuik, Remko

    2013-12-01

    The Adaptive Optics Facility project has received most of its subsystems in Garching and the ESO Integration Hall has become the central operation location for the next phase of the project. The main test bench ASSIST and the 2nd Generation M2-Unit (hosting the Deformable Secondary Mirror) have been granted acceptance late 2012. The DSM will now undergo a series of tests on ASSIST to qualify its optical performance which launches the System Test Phase of the AOF. The tests will validate the AO modules operation with the DSM: first the GRAAL adaptive optics module for Hawk-I in natural guide star AO mode on-axis and then its Ground Layer AO mode. This will be followed by the GALACSI (for MUSE) Wide-Field-Mode (GLAO) and then the more challenging Narrow-Field-Mode (LTAO). We will report on the status of the subsystems at the time of the conference but also on the performance of the delivered ASSIST test bench, the DSM and the 20 Watt Sodium fiber Laser pre-production unit which has validated all specifications before final manufacturing of the serial units. We will also present some considerations and tools to ensure an efficient operation of the Facility in Paranal.

  12. Cone photoreceptor definition on adaptive optics retinal imaging

    PubMed Central

    Muthiah, Manickam Nick; Gias, Carlos; Chen, Fred Kuanfu; Zhong, Joe; McClelland, Zoe; Sallo, Ferenc B; Peto, Tunde; Coffey, Peter J; da Cruz, Lyndon

    2014-01-01

    Aims To quantitatively analyse cone photoreceptor matrices on images captured on an adaptive optics (AO) camera and assess their correlation to well-established parameters in the retinal histology literature. Methods High resolution retinal images were acquired from 10 healthy subjects, aged 20–35 years old, using an AO camera (rtx1, Imagine Eyes, France). Left eye images were captured at 5° of retinal eccentricity, temporal to the fovea for consistency. In three subjects, images were also acquired at 0, 2, 3, 5 and 7° retinal eccentricities. Cone photoreceptor density was calculated following manual and automated counting. Inter-photoreceptor distance was also calculated. Voronoi domain and power spectrum analyses were performed for all images. Results At 5° eccentricity, the cone density (cones/mm2 mean±SD) was 15.3±1.4×103 (automated) and 13.9±1.0×103 (manual) and the mean inter-photoreceptor distance was 8.6±0.4 μm. Cone density decreased and inter-photoreceptor distance increased with increasing retinal eccentricity from 2 to 7°. A regular hexagonal cone photoreceptor mosaic pattern was seen at 2, 3 and 5° of retinal eccentricity. Conclusions Imaging data acquired from the AO camera match cone density, intercone distance and show the known features of cone photoreceptor distribution in the pericentral retina as reported by histology, namely, decreasing density values from 2 to 7° of eccentricity and the hexagonal packing arrangement. This confirms that AO flood imaging provides reliable estimates of pericentral cone photoreceptor distribution in normal subjects. PMID:24729030

  13. Development of streak camera with anisotropic focusing electron optical system

    NASA Astrophysics Data System (ADS)

    Tian, J.; Ding, Y.; Cao, X.; Liu, S.; Xu, X.; Hu, X.; Wen, W.; Wang, J.; Wang, C.; Liu, H.; Dong, G.; Zhang, T.; Lu, Y.; Wang, Xi.; Liu, J.

    2013-05-01

    In this paper, the anisotropic focusing technique is used to make a novel streak tube. The salient features are the introduction of both temporally focusing electrodes and spatially focusing electric quadrupole lens. The simulation showed that physical temporal dispersion of 0.38 ps and edge spatial resolution of 56 lp/mm can be achieved. The Nd:YLF 8ps pulse laser was used to calibrate the performance index of streak camera. The static and dynamic spatial resolutions are 35 lp/mm and 25 lp/mm respectively. The dynamic range more than 950:1 and time resolution 8ps can be reached. Furthermore, the magnifications in slit and scanning direction can be adjusted respectively, so it is very convenient to select amplification needed when it is coupled with KB microscope.

  14. Global (Multi Conjugated) Adaptive Optics and beyond

    NASA Astrophysics Data System (ADS)

    Ragazzoni, Roberto

    Multi Conjugated Adaptive Optics is nowadays a well established achievement marked by the short-lived MAD at the VLT, although it still lacks the benefits of being employed in instrumentations at 8m class telescopes, with the sole exception of GeMS at GEMINI. While the next obvious extension of MCAO is reppresented by GMCAO that is briefly described, I speculate on which could be the areas where development is needed or where some outstanding achievement could have the chance to make a further leap, if not a novel revolution, in the field of ground based astronomical instrumentation.

  15. Tomographic Adaptive Optics and Turbulence Profiling

    NASA Astrophysics Data System (ADS)

    Morris, Tim

    2015-04-01

    The use of tomographic adaptive optics is fundamental to fulfilling scientific goals for many proposed instruments at major observatories. Tomographic AO uses knowledge of the atmospheric C2n profile and to date, the majority of the profiles used to design and simulate these systems have come from external turbulence profilers. The C2n profile resolution required for accurate predictions of ELT instrumentation exceeds that of existing instrumentation and here we define the requirements on these profilers for ELT support. However, tomographic AO systems can also measure C2n profiles and we highlight several cases where external profilers can provide critical functionality to support on-sky operations.

  16. Adaptive Holographic Fiber-Optic Interferometer

    NASA Astrophysics Data System (ADS)

    Kozhevnikov, Nikolai M.; Lipovskaya, Margarita J.

    1990-04-01

    Interaction of phase-modulated light beams in photorefractive local inertial responce media was analysed. Interaction of this type allows to registrate phase-modulated signals adaptively under low frequency phase disturbtion. The experiments on multimode fiber-optic interferometer with demodulation element based on photorefractive bacteriorhodopsin-doped polimer film are described. As the writing of dynamic phase hologram is an inertial process the signal fluctuations with the frequencies up to 100 Hz can be canceled. The hologram efficiencies are enough to registrate high frequency phase shifts ~10-4 radn.

  17. Characterization of Adaptive Optics at Keck Observatory

    SciTech Connect

    van Dam, M A; Macintosh, B A

    2003-07-24

    In this paper, the adaptive optics (AO) system at Keck Observatory is characterized. The AO system is described in detail. The physical parameters of the lenslets, CCD and deformable mirror, the calibration procedures and the signal processing algorithms are explained. Results of sky performance tests are presented: the AO system is shown to deliver images with an average Strehl ratio of up to 0.37 at 1.59 {micro}m using a bright guide star. An error budget that is consistent with the observed image quality is presented.

  18. Task Performance in Astronomical Adaptive Optics

    PubMed Central

    Barrett, Harrison H.; Myers, Kyle J.; Devaney, Nicholas; Dainty, J. C.; Caucci, Luca

    2010-01-01

    In objective or task-based assessment of image quality, figures of merit are defined by the performance of some specific observer on some task of scientific interest. This methodology is well established in medical imaging but is just beginning to be applied in astronomy. In this paper we survey the theory needed to understand the performance of ideal or ideal-linear (Hotelling) observers on detection tasks with adaptive-optical data. The theory is illustrated by discussing its application to detection of exoplanets from a sequence of short-exposure images. PMID:20890393

  19. Design and modal analysis of optical and mechanical structures of a space infrared camera

    NASA Astrophysics Data System (ADS)

    Zhang, Guangyu; Sun, Dewei; Long, Funian

    2008-10-01

    Space infrared cameras have been widely used for weather prediction, earth resource detection, military reconnaissance and astronomy observation. In order to design and produce an excellent space camera, the optical and mechanical structures of the camera are deeply investigated. Firstly, according to the technical targets and interface requirements for infrared sensor, optical modulation transfer function (MTF) must be up to 0.65 in the central field and more than 0.55 in the marginal field at the cut-off frequency of the optical system. Secondly, in accordance with the requirement of optical system, the structure of body tube is designed and a new type of material- graphite fiber reinforced aluminium matrix composite (Gr/Al composite) is used for the first time. The weight of Gr/Al composite body tube is 31.8% lighter than that of Titanium alloy. Thirdly, in terms of the theory of modal analysis, the resonance frequencies and modal sharps of body tube are acquired. The first order resonance frequency is 292Hz. Finally, the test of random vibration is conducted. Experimental results indicate that optical and mechanical systems do not change after vibration test. Namely, the research above suggests that space infrared camera has an important utility value in the space remote sensing field.

  20. Camera Calibration by Hybrid Hopfield Network and Self- Adaptive Genetic Algorithm

    NASA Astrophysics Data System (ADS)

    Xiang, Wen-Jiang; Zhou, Zhi-Xiong; Ge, Dong-Yuan; Zhang, Qing-Ying; Yao, Qing-He

    2012-12-01

    A new approach based on hybrid Hopfield neural network and self-adaptive genetic algorithm for camera calibration is proposed. First, a Hopfield network based on dynamics is structured according to the normal equation obtained from experiment data. The network has 11 neurons, its weights are elements of the symmetrical matrix of the normal equation and keep invariable, whose input vector is corresponding to the right term of normal equation, and its output signals are corresponding to the fitting coefficients of the camera’s projection matrix. At the same time an innovative genetic algorithm is presented to get the global optimization solution, where the cross-over probability and mutation probability are tuned self-adaptively according to the evolution speed factor in longitudinal direction and the aggregation degree factor in lateral direction, respectively. When the system comes to global equilibrium state, the camera’s projection matrix is estimated from the output vector of the Hopfield network, so the camera calibration is completed. Finally, the precision analysis is carried out, which demonstrates that, as opposed to the existing methods, such as Faugeras’s, the proposed approach has high precision, and provides a new scheme for machine vision system and precision manufacture.

  1. Natural optical design concepts for highly miniaturized camera systems

    NASA Astrophysics Data System (ADS)

    Voelkel, Reinhard

    1999-08-01

    Microcameras for computers, mobile phones, watches, security system and credit cards is a very promising future market. Semiconductor industry is now able to integrate light reception, signal amplification and processing in a low- power-consuming microchip of a few mm2 size. Active pixel sensors supply each pixel in an image sensor with an individually programmable functionality. Beside the electronic receptor chip, a highly miniaturized lens system is required. Compared to the progress in microelectronics, optics has not yet made a significant step. Today's microcamera lenses are usually a downscaled version of a classical lens system and rarely smaller than 3 mm X 3 mm X 3 mm. This lagging of optics is quite surprising. Biologists have systematically studied all types of natural eye sensors since the 18th Century. Mother Nature provides a variety of highly effective examples for miniaturized imaging system. Single-aperture systems are the appropriate solution if the size is a free design parameter. If the budget is tight and optics limited to size, nature prefers multiple-aperture systems, the so-called compound eyes. As compound eyes are limited in resolution and night view, a cluster of single-aperture eyes, as jumping spiders use, is probably a better solution. The recent development in micro- optics offers the chance to imitate such natural design concepts. We have investigated miniaturized imaging systems based on microlens array and natural optical design concepts. Practical limitations for system design, packaging and assembling are given. Examples for micro-optical components and imaging systems are presented.

  2. Adaptive optics and laser guide stars at Lick observatory

    SciTech Connect

    Brase, J.M.

    1994-11-15

    For the past several years LLNL has been developing adaptive optics systems for correction of both atmospheric turbulence effects and thermal distortions in optics for high-power lasers. Our early work focused on adaptive optics for beam control in laser isotope separation and ground-based free electron lasers. We are currently developing innovative adaptive optics and laser systems for sodium laser guide star applications at the University of California`s Lick and Keck Observeratories. This talk will describe our adaptive optics technology and some of its applications in high-resolution imaging and beam control.

  3. High-speed optical shutter coupled to fast-readout CCD camera

    NASA Astrophysics Data System (ADS)

    Yates, George J.; Pena, Claudine R.; McDonald, Thomas E., Jr.; Gallegos, Robert A.; Numkena, Dustin M.; Turko, Bojan T.; Ziska, George; Millaud, Jacques E.; Diaz, Rick; Buckley, John; Anthony, Glen; Araki, Takae; Larson, Eric D.

    1999-04-01

    A high frame rate optically shuttered CCD camera for radiometric imaging of transient optical phenomena has been designed and several prototypes fabricated, which are now in evaluation phase. the camera design incorporates stripline geometry image intensifiers for ultra fast image shutters capable of 200ps exposures. The intensifiers are fiber optically coupled to a multiport CCD capable of 75 MHz pixel clocking to achieve 4KHz frame rate for 512 X 512 pixels from simultaneous readout of 16 individual segments of the CCD array. The intensifier, Philips XX1412MH/E03 is generically a Generation II proximity-focused micro channel plate intensifier (MCPII) redesigned for high speed gating by Los Alamos National Laboratory and manufactured by Philips Components. The CCD is a Reticon HSO512 split storage with bi-direcitonal vertical readout architecture. The camera main frame is designed utilizing a multilayer motherboard for transporting CCD video signals and clocks via imbedded stripline buses designed for 100MHz operation. The MCPII gate duration and gain variables are controlled and measured in real time and up-dated for data logging each frame, with 10-bit resolution, selectable either locally or by computer. The camera provides both analog and 10-bit digital video. The camera's architecture, salient design characteristics, and current test data depicting resolution, dynamic range, shutter sequences, and image reconstruction will be presented and discussed.

  4. VISION: The Next Generation Science Camera for the Navy Optical Interferometer

    NASA Astrophysics Data System (ADS)

    Ghasempour, Askari; Muterspaugh, M.; Hutter, D.; Monnier, J.; Armstrong, T.; Benson, J.; Mozurkewich, D.; Williamson, M.; Fall, S.; Harrison, C.; Sergeyous, C.

    2012-01-01

    The Visible Imaging System for Interferometric Observations at NOI (VISION) will be a versatile camera for high resolution astronomical imaging. It allows precision measurements at the Navy Optical Interferometer (NOI), with spatial resolution 200 times sharper than what is possible with the Hubble Space Telescope while furthering technological capabilities. This resolution allows one to reconstruct multipixel images of stars. VISION is a fiber-optics based beam combiner that can coherently combine up to six telescope beams using a spatially-modulated image-plane combination scheme. In comparison to NOI's current beam combiner, VISION is able to achieve a higher precision result and a better flexibility by incorporating single mode fibers for spatial filtering that removes the effect of atmospheric turbulence and also by using low-noise detectors. The VISION project was initiated in June 2010. The team completed the optical design and system requirement studies, including simulations and tradeoff studies, for the fiber feed system and fringe forming optical system in the first step. Purchasing and installation of the mechanical and optical components including camera, spectrograph, optical table, and optical fibers were completed in December 2010. The current status of VISION is that the first throughput test of the fiber feed unit at NOI confirmed adequate throughput of the system. The control software for the camera, spectrograph, and fiber micro-positioners were developed. High quality laser fringes and first white light fringes were demonstrated in the Tennessee State University laboratory. The full system is expected to be delivered in early 2012.

  5. In vivo cellular visualization of the human retina using optical coherence tomography and adaptive optics

    SciTech Connect

    Olivier, S S; Jones, S M; Chen, D C; Zawadzki, R J; Choi, S S; Laut, S P; Werner, J S

    2006-01-05

    Optical coherence tomography (OCT) sees the human retina sharply with adaptive optics. In vivo cellular visualization of the human retina at micrometer-scale resolution is possible by enhancing Fourier-domain optical-coherence tomography with adaptive optics, which compensate for the eye's optical aberrations.

  6. MEMS deformable mirrors for astronomical adaptive optics

    NASA Astrophysics Data System (ADS)

    Cornelissen, S. A.; Hartzell, A. L.; Stewart, J. B.; Bifano, T. G.; Bierden, P. A.

    2010-07-01

    We report on the development of high actuator count, micro-electromechanical (MEMS) deformable mirrors designed for high order wavefront correction in ground and space-based astronomical adaptive optics instruments. The design of these polysilicon, surface-micromachined MEMS deformable mirrors builds on technology that has been used extensively to correct for ocular aberrations in retinal imaging systems and for compensation of atmospheric turbulence in free-space laser communication. These light-weight, low power deformable mirrors have an active aperture of up to 25.2mm consisting of a thin silicon membrane mirror supported by an array of 140 to 4092 electrostatic actuators which exhibit no hysteresis and have sub-nanometer repeatability making them well suited for open-loop control applications such as Multi-Object Adaptive Optics (MOAO). The continuous membrane deformable mirrors, coated with a highly reflective metal film, are capable of up to 6μm of stroke, have a surface finish of <10nm RMS with a fill factor of 99.8%. Presented in this paper are device characteristics and performance test results, as well as reliability test data and device lifetime predictions that show that trillions of actuator cycles can be achieved without failures.

  7. Approach for reconstructing anisoplanatic adaptive optics images.

    PubMed

    Aubailly, Mathieu; Roggemann, Michael C; Schulz, Timothy J

    2007-08-20

    Atmospheric turbulence corrupts astronomical images formed by ground-based telescopes. Adaptive optics systems allow the effects of turbulence-induced aberrations to be reduced for a narrow field of view corresponding approximately to the isoplanatic angle theta(0). For field angles larger than theta(0), the point spread function (PSF) gradually degrades as the field angle increases. We present a technique to estimate the PSF of an adaptive optics telescope as function of the field angle, and use this information in a space-varying image reconstruction technique. Simulated anisoplanatic intensity images of a star field are reconstructed by means of a block-processing method using the predicted local PSF. Two methods for image recovery are used: matrix inversion with Tikhonov regularization, and the Lucy-Richardson algorithm. Image reconstruction results obtained using the space-varying predicted PSF are compared to space invariant deconvolution results obtained using the on-axis PSF. The anisoplanatic reconstruction technique using the predicted PSF provides a significant improvement of the mean squared error between the reconstructed image and the object compared to the deconvolution performed using the on-axis PSF. PMID:17712366

  8. Large aperture adaptive optics for intense lasers

    NASA Astrophysics Data System (ADS)

    Deneuville, François; Ropert, Laurent; Sauvageot, Paul; Theis, Sébastien

    2015-05-01

    ISP SYSTEM has developed a range of large aperture electro-mechanical deformable mirrors (DM) suitable for ultra short pulsed intense lasers. The design of the MD-AME deformable mirror is based on force application on numerous locations thanks to electromechanical actuators driven by stepper motors. DM design and assembly method have been adapted to large aperture beams and the performances were evaluated on a first application for a beam with a diameter of 250mm at 45° angle of incidence. A Strehl ratio above 0.9 was reached for this application. Simulations were correlated with measurements on optical bench and the design has been validated by calculation for very large aperture (up to Ø550mm). Optical aberrations up to Zernike order 5 can be corrected with a very low residual error as for actual MD-AME mirror. Amplitude can reach up to several hundreds of μm for low order corrections. Hysteresis is lower than 0.1% and linearity better than 99%. Contrary to piezo-electric actuators, the μ-AME actuators avoid print-through effects and they permit to keep the mirror shape stable even unpowered, providing a high resistance to electro-magnetic pulses. The MD-AME mirrors can be adapted to circular, square or elliptical beams and they are compatible with all dielectric or metallic coatings.

  9. Adaptive Optics with Sodium Laser Guide Stars

    NASA Astrophysics Data System (ADS)

    Lloyd-Hart, M.; Angel, J. R. P.; Jacobsen, B.; Wittman, D.; McCarthy, D.; Martinez, T.

    1994-12-01

    Adaptive optics requires a reference source of light in the sky to measure wavefront aberration introduced by atmospheric turbulence. Natural stars are ideal for this purpose, but the density of bright stars is not sufficient to provide complete sky coverage. The problem can be overcome with an artificial beacon generated from resonant backscattering off mesospheric sodium atoms exited by a low-power laser tuned to the D2 resonance. Recent experiments at the Multiple Mirror Telescope (MMT) have demonstrated for the first time that an adaptive optics system using a sodium laser guide beacon can be used to improve the imaging quality of the telescope. A beacon of mv = 10.4 was used to control the relative image motion between two of the six apertures of the MMT, while a natural star was used to measure the absolute tilt. A factor of two improvement in the K-band Strehl ratio was measured, and the resolution improved from 0(\\?.58) to 0(\\?.41) . The experiment demonstrated all the features needed for correction of telescopes of 6.5 to 8-m diameter to the diffraction limit in the near infrared with a single sodium laser beacon.

  10. Extreme Adaptive Optics Planet Imager: XAOPI

    SciTech Connect

    Macintosh, B A; Graham, J; Poyneer, L; Sommargren, G; Wilhelmsen, J; Gavel, D; Jones, S; Kalas, P; Lloyd, J; Makidon, R; Olivier, S; Palmer, D; Patience, J; Perrin, M; Severson, S; Sheinis, A; Sivaramakrishnan, A; Troy, M; Wallace, K

    2003-09-17

    Ground based adaptive optics is a potentially powerful technique for direct imaging detection of extrasolar planets. Turbulence in the Earth's atmosphere imposes some fundamental limits, but the large size of ground-based telescopes compared to spacecraft can work to mitigate this. We are carrying out a design study for a dedicated ultra-high-contrast system, the eXtreme Adaptive Optics Planet Imager (XAOPI), which could be deployed on an 8-10m telescope in 2007. With a 4096-actuator MEMS deformable mirror it should achieve Strehl >0.9 in the near-IR. Using an innovative spatially filtered wavefront sensor, the system will be optimized to control scattered light over a large radius and suppress artifacts caused by static errors. We predict that it will achieve contrast levels of 10{sup 7}-10{sup 8} at angular separations of 0.2-0.8 inches around a large sample of stars (R<7-10), sufficient to detect Jupiter-like planets through their near-IR emission over a wide range of ages and masses. We are constructing a high-contrast AO testbed to verify key concepts of our system, and present preliminary results here, showing an RMS wavefront error of <1.3 nm with a flat mirror.

  11. Optical Design for Extremely Large Telescope Adaptive Optics Systems

    SciTech Connect

    Bauman, B J

    2003-11-26

    Designing an adaptive optics (AO) system for extremely large telescopes (ELT's) will present new optical engineering challenges. Several of these challenges are addressed in this work, including first-order design of multi-conjugate adaptive optics (MCAO) systems, pyramid wavefront sensors (PWFS's), and laser guide star (LGS) spot elongation. MCAO systems need to be designed in consideration of various constraints, including deformable mirror size and correction height. The y,{bar y} method of first-order optical design is a graphical technique that uses a plot with marginal and chief ray heights as coordinates; the optical system is represented as a segmented line. This method is shown to be a powerful tool in designing MCAO systems. From these analyses, important conclusions about configurations are derived. PWFS's, which offer an alternative to Shack-Hartmann (SH) wavefront sensors (WFS's), are envisioned as the workhorse of layer-oriented adaptive optics. Current approaches use a 4-faceted glass pyramid to create a WFS analogous to a quad-cell SH WFS. PWFS's and SH WFS's are compared and some newly-considered similarities and PWFS advantages are presented. Techniques to extend PWFS's are offered: First, PWFS's can be extended to more pixels in the image by tiling pyramids contiguously. Second, pyramids, which are difficult to manufacture, can be replaced by less expensive lenslet arrays. An approach is outlined to convert existing SH WFS's to PWFS's for easy evaluation of PWFS's. Also, a demonstration of PWFS's in sensing varying amounts of an aberration is presented. For ELT's, the finite altitude and finite thickness of LGS's means that the LGS will appear elongated from the viewpoint of subapertures not directly under the telescope. Two techniques for dealing with LGS spot elongation in SH WFS's are presented. One method assumes that the laser will be pulsed and uses a segmented micro-electromechanical system (MEMS) to track the LGS light subaperture by

  12. Current status of the Explosive Transient Camera. [automated sky survey instument sensitive to optical transients

    NASA Technical Reports Server (NTRS)

    Vanderspek, Roland; Doty, John P.; Ricker, George R.

    1992-01-01

    The current configuration and performance of the Explosive Transient Camera (ETC), a wide-field sky monitor capable of detecting short-timescale optical transients, are briefly reviewed, as are plans for future improvements. The primary objective of the ETC is to detect an optical transient that is spatially and temporally coincident with a gamma-ray burster. However, the ETC is sensitive to all sources of short-timescale optical transients and will conduct a systematic survey of the night sky for all optical transients. Results of preliminary observations of the night sky conducted since January 1991 are summarized, and long-term variability searches with the ETC are discussed.

  13. Optical design of the camera for Transiting Exoplanet Survey Satellite (TESS)

    NASA Astrophysics Data System (ADS)

    Chrisp, Michael; Clark, Kristin; Primeau, Brian; Dalpiaz, Michael; Lennon, Joseph

    2015-09-01

    The optical design of the wide field of view refractive camera with a 34 degree diagonal field for the TESS payload is described. This fast f/1.4 cryogenic camera, operating at -75°C, has no vignetting for maximum light gathering within the size and weight constraints. Four of these cameras capture full frames of star images for photometric searches of planet crossings. The optical design evolution, from the initial Petzval design, takes advantage of Forbes aspheres to develop a hybrid design form. This maximizes the correction from the two aspherics resulting in a reduction of average spot size by sixty percent in the final design. An external long wavelength pass filter has been replaced by an internal filter coating on a lens to save weight, and has been fabricated to meet the specifications. The stray light requirements are met by an extended lens hood baffle design, giving the necessary off-axis attenuation.

  14. Optical Design of the Camera for Transiting Exoplanet Survey Satellite (TESS)

    NASA Technical Reports Server (NTRS)

    Chrisp, Michael; Clark, Kristin; Primeau, Brian; Dalpiaz, Michael; Lennon, Joseph

    2015-01-01

    The optical design of the wide field of view refractive camera, 34 degrees diagonal field, for the TESS payload is described. This fast f/1.4 cryogenic camera, operating at -75 C, has no vignetting for maximum light gathering within the size and weight constraints. Four of these cameras capture full frames of star images for photometric searches of planet crossings. The optical design evolution, from the initial Petzval design, took advantage of Forbes aspheres to develop a hybrid design form. This maximized the correction from the two aspherics resulting in a reduction of average spot size by sixty percent in the final design. An external long wavelength pass filter was replaced by an internal filter coating on a lens to save weight, and has been fabricated to meet the specifications. The stray light requirements were met by an extended lens hood baffle design, giving the necessary off-axis attenuation.

  15. Driving micro-optical imaging systems towards miniature camera applications

    NASA Astrophysics Data System (ADS)

    Brückner, Andreas; Duparré, Jacques; Dannberg, Peter; Leitel, Robert; Bräuer, Andreas

    2010-05-01

    Up to now, multi channel imaging systems have been increasingly studied and approached from various directions in the academic domain due to their promising large field of view at small system thickness. However, specific drawbacks of each of the solutions prevented the diffusion into corresponding markets so far. Most severe problems are a low image resolution and a low sensitivity compared to a conventional single aperture lens besides the lack of a cost-efficient method of fabrication and assembly. We propose a microoptical approach to ultra-compact optics for real-time vision systems that are inspired by the compound eyes of insects. The demonstrated modules achieve a VGA resolution with 700x550 pixels within an optical package of 6.8mm x 5.2mm and a total track length of 1.4mm. The partial images that are separately recorded within different optical channels are stitched together to form a final image of the whole field of view by means of image processing. These software tools allow to correct the distortion of the individual partial images so that the final image is also free of distortion. The so-called electronic cluster eyes are realized by state-of-the-art microoptical fabrication techniques and offer a resolution and sensitivity potential that makes them suitable for consumer, machine vision and medical imaging applications.

  16. Object-oriented Matlab adaptive optics toolbox

    NASA Astrophysics Data System (ADS)

    Conan, R.; Correia, C.

    2014-08-01

    Object-Oriented Matlab Adaptive Optics (OOMAO) is a Matlab toolbox dedicated to Adaptive Optics (AO) systems. OOMAO is based on a small set of classes representing the source, atmosphere, telescope, wavefront sensor, Deformable Mirror (DM) and an imager of an AO system. This simple set of classes allows simulating Natural Guide Star (NGS) and Laser Guide Star (LGS) Single Conjugate AO (SCAO) and tomography AO systems on telescopes up to the size of the Extremely Large Telescopes (ELT). The discrete phase screens that make the atmosphere model can be of infinite size, useful for modeling system performance on large time scales. OOMAO comes with its own parametric influence function model to emulate different types of DMs. The cone effect, altitude thickness and intensity profile of LGSs are also reproduced. Both modal and zonal modeling approach are implemented. OOMAO has also an extensive library of theoretical expressions to evaluate the statistical properties of turbulence wavefronts. The main design characteristics of the OOMAO toolbox are object-oriented modularity, vectorized code and transparent parallel computing. OOMAO has been used to simulate and to design the Multi-Object AO prototype Raven at the Subaru telescope and the Laser Tomography AO system of the Giant Magellan Telescope. In this paper, a Laser Tomography AO system on an ELT is simulated with OOMAO. In the first part, we set-up the class parameters and we link the instantiated objects to create the source optical path. Then we build the tomographic reconstructor and write the script for the pseudo-open-loop controller.

  17. The search for optical counterparts to BATSE GRBs with the Explosive Transient Camera

    NASA Technical Reports Server (NTRS)

    Vanderspek, Roland; Ricker, George R.

    1992-01-01

    The Explosive Transient Camera (ETC), an automatic wide-field sky monitor sensitive to short-timescale optical transients, has been operating in conjunction with BATSE since the launch of GRO. In this paper, we discuss the probability and implications of the ETC monitoring a part of the sky in which BATSE detects a gamma-ray burst.

  18. Adaptive optics scanning laser ophthalmoscope imaging: technology update

    PubMed Central

    Merino, David; Loza-Alvarez, Pablo

    2016-01-01

    Adaptive optics (AO) retinal imaging has become very popular in the past few years, especially within the ophthalmic research community. Several different retinal techniques, such as fundus imaging cameras or optical coherence tomography systems, have been coupled with AO in order to produce impressive images showing individual cell mosaics over different layers of the in vivo human retina. The combination of AO with scanning laser ophthalmoscopy has been extensively used to generate impressive images of the human retina with unprecedented resolution, showing individual photoreceptor cells, retinal pigment epithelium cells, as well as microscopic capillary vessels, or the nerve fiber layer. Over the past few years, the technique has evolved to develop several different applications not only in the clinic but also in different animal models, thanks to technological developments in the field. These developments have specific applications to different fields of investigation, which are not limited to the study of retinal diseases but also to the understanding of the retinal function and vision science. This review is an attempt to summarize these developments in an understandable and brief manner in order to guide the reader into the possibilities that AO scanning laser ophthalmoscopy offers, as well as its limitations, which should be taken into account when planning on using it. PMID:27175057

  19. Adaptive optics scanning laser ophthalmoscope imaging: technology update.

    PubMed

    Merino, David; Loza-Alvarez, Pablo

    2016-01-01

    Adaptive optics (AO) retinal imaging has become very popular in the past few years, especially within the ophthalmic research community. Several different retinal techniques, such as fundus imaging cameras or optical coherence tomography systems, have been coupled with AO in order to produce impressive images showing individual cell mosaics over different layers of the in vivo human retina. The combination of AO with scanning laser ophthalmoscopy has been extensively used to generate impressive images of the human retina with unprecedented resolution, showing individual photoreceptor cells, retinal pigment epithelium cells, as well as microscopic capillary vessels, or the nerve fiber layer. Over the past few years, the technique has evolved to develop several different applications not only in the clinic but also in different animal models, thanks to technological developments in the field. These developments have specific applications to different fields of investigation, which are not limited to the study of retinal diseases but also to the understanding of the retinal function and vision science. This review is an attempt to summarize these developments in an understandable and brief manner in order to guide the reader into the possibilities that AO scanning laser ophthalmoscopy offers, as well as its limitations, which should be taken into account when planning on using it. PMID:27175057

  20. Optical design of the adaptive optics laser guide star system

    SciTech Connect

    Bissinger, H.

    1994-11-15

    The design of an adaptive optics package for the 3 meter Lick telescope is presented. This instrument package includes a 69 actuator deformable mirror and a Hartmann type wavefront sensor operating in the visible wavelength; a quadrant detector for the tip-tile sensor and a tip-tilt mirror to stabilize atmospheric first order tip-tile errors. A high speed computer drives the deformable mirror to achieve near diffraction limited imagery. The different optical components and their individual design constraints are described. motorized stages and diagnostics tools are used to operate and maintain alignment throughout observation time from a remote control room. The expected performance are summarized and actual results of astronomical sources are presented.

  1. The Tesat transportable adaptive optical ground station

    NASA Astrophysics Data System (ADS)

    Saucke, Karen; Seiter, Christoph; Heine, Frank; Gregory, Mark; Tröndle, Daniel; Fischer, Edgar; Berkefeld, Thomas; Feriencik, Mikael; Feriencik, Marco; Richter, Ines; Meyer, Rolf

    2016-03-01

    Tesat together with Synopta have built a Transportable Adaptive Optical Ground Station (TAOGS) under contract of German Aerospace Center DLR for communication with the 1st and 2nd generation of Tesat's spaceborne Laser Communication Terminals (LCTs), which employ coherent homodyne optical communication with 1064 nm and binary phase shift keying (BPSK) modulation. The TAOGS is able to communicate with space segments on low earth orbit (LEO, high pointing and tracking dynamics, 5.625 Gbps), and with space segments on geostationary orbit (GEO, low pointing dynamics, up to 40,000 km distance, optical data rate of 2.8125 Gbps and user data rate of 1.8 Gbps). After an alignment and testing phase at the location of Izana, Tenerife, using the TDP1 LCT on geostationary Alphasat as counter terminal, the TAOGS is now fully functioning. Several up-links, down-links and bi-directional links have been performed. Experimental results of some of these links are presented. An outlook to further activities is given.

  2. The Coming of Age of Adaptive Optics

    NASA Astrophysics Data System (ADS)

    1995-10-01

    How Ground-Based Astronomers Beat the Atmosphere Adaptive Optics (AO) is the new ``wonder-weapon'' in ground-based astronomy. By means of advanced electro-optical devices at their telescopes, astronomers are now able to ``neutralize'' the image-smearing turbulence of the terrestrial atmosphere (seen by the unaided eye as the twinkling of stars) so that much sharper images can be obtained than before. In practice, this is done with computer-controlled, flexible mirrors which refocus the blurred images up to 100 times per second, i.e. at a rate that is faster than the changes in the atmospheric turbulence. This means that finer details in astronomical objects can be studied and also - because of the improved concentration of light in the telescope's focal plane - that fainter objects can be observed. At the moment, Adaptive Optics work best in the infrared part of spectrum, but at some later time it may also significantly improve observations at the shorter wavelengths of visible light. The many-sided aspects of this new technology and its impact on astronomical instrumentation was the subject of a recent AO conference [1] with over 150 participants from about 30 countries, presenting a total of more than 100 papers. The Introduction of AO Techniques into Astronomy The scope of this meeting was the design, fabrication and testing of AO systems, characterisation of the sources of atmospheric disturbance, modelling of compensation systems, individual components, astronomical AO results, non-astronomical applications, laser guide star systems, non-linear optical phase conjugation, performance evaluation, and other areas of this wide and complex field, in which front-line science and high technology come together in a new and powerful symbiosis. One of the specific goals of the meeting was to develop contacts between AO scientists and engineers in the western world and their colleagues in Russia and Asia. For the first time at a conference of this type, nine Russian

  3. Daytime adaptive optics for deep space optical communications

    NASA Technical Reports Server (NTRS)

    Wilson, Keith; Troy, M.; Srinivasan, M.; Platt, B.; Vilnrotter, V.; Wright, M.; Garkanian, V.; Hemmati, H.

    2003-01-01

    The deep space optical communications subsystem offers a higher bandwidth communications link in smaller size, lower mass, and lower power consumption subsystem than does RF. To demonstrate the benefit of this technology to deep space communications NASA plans to launch an optical telecommunications package on the 2009 Mars Telecommunications orbiter spacecraft. Current performance goals are 30-Mbps from opposition, and 1-Mbps near conjunction (-3 degrees Sun-Earth-Probe angle). Yet, near conjunction the background noise from the day sky will degrade the performance of the optical link. Spectral and spatial filtering and higher modulation formats can mitigate the effects of background sky. Narrowband spectral filters can result in loss of link margin, and higher modulation formats require higher transmitted peak powers. In contrast, spatial filtering at the receiver has the potential of being lossless while providing the required sky background rejection. Adaptive optics techniques can correct wave front aberrations caused by atmospheric turbulence and enable near-diffraction-limited performance of the receiving telescope. Such performance facilitates spatial filtering, and allows the receiver field-of-view and hence the noise from the sky background to be reduced.

  4. Applying UV cameras for SO2 detection to distant or optically thick volcanic plumes

    USGS Publications Warehouse

    Kern, Christoph; Werner, Cynthia; Elias, Tamar; Sutton, A. Jeff; Lübcke, Peter

    2013-01-01

    Ultraviolet (UV) camera systems represent an exciting new technology for measuring two dimensional sulfur dioxide (SO2) distributions in volcanic plumes. The high frame rate of the cameras allows the retrieval of SO2 emission rates at time scales of 1 Hz or higher, thus allowing the investigation of high-frequency signals and making integrated and comparative studies with other high-data-rate volcano monitoring techniques possible. One drawback of the technique, however, is the limited spectral information recorded by the imaging systems. Here, a framework for simulating the sensitivity of UV cameras to various SO2 distributions is introduced. Both the wavelength-dependent transmittance of the optical imaging system and the radiative transfer in the atmosphere are modeled. The framework is then applied to study the behavior of different optical setups and used to simulate the response of these instruments to volcanic plumes containing varying SO2 and aerosol abundances located at various distances from the sensor. Results show that UV radiative transfer in and around distant and/or optically thick plumes typically leads to a lower sensitivity to SO2 than expected when assuming a standard Beer–Lambert absorption model. Furthermore, camera response is often non-linear in SO2 and dependent on distance to the plume and plume aerosol optical thickness and single scatter albedo. The model results are compared with camera measurements made at Kilauea Volcano (Hawaii) and a method for integrating moderate resolution differential optical absorption spectroscopy data with UV imagery to retrieve improved SO2 column densities is discussed.

  5. High-frame-rate intensified fast optically shuttered TV cameras with selected imaging applications

    SciTech Connect

    Yates, G.J.; King, N.S.P.

    1994-08-01

    This invited paper focuses on high speed electronic/electro-optic camera development by the Applied Physics Experiments and Imaging Measurements Group (P-15) of Los Alamos National Laboratory`s Physics Division over the last two decades. The evolution of TV and image intensifier sensors and fast readout fast shuttered cameras are discussed. Their use in nuclear, military, and medical imaging applications are presented. Several salient characteristics and anomalies associated with single-pulse and high repetition rate performance of the cameras/sensors are included from earlier studies to emphasize their effects on radiometric accuracy of electronic framing cameras. The Group`s test and evaluation capabilities for characterization of imaging type electro-optic sensors and sensor components including Focal Plane Arrays, gated Image Intensifiers, microchannel plates, and phosphors are discussed. Two new unique facilities, the High Speed Solid State Imager Test Station (HSTS) and the Electron Gun Vacuum Test Chamber (EGTC) arc described. A summary of the Group`s current and developmental camera designs and R&D initiatives are included.

  6. DKIST Adaptive Optics System: Simulation Results

    NASA Astrophysics Data System (ADS)

    Marino, Jose; Schmidt, Dirk

    2016-05-01

    The 4 m class Daniel K. Inouye Solar Telescope (DKIST), currently under construction, will be equipped with an ultra high order solar adaptive optics (AO) system. The requirements and capabilities of such a solar AO system are beyond those of any other solar AO system currently in operation. We must rely on solar AO simulations to estimate and quantify its performance.We present performance estimation results of the DKIST AO system obtained with a new solar AO simulation tool. This simulation tool is a flexible and fast end-to-end solar AO simulator which produces accurate solar AO simulations while taking advantage of current multi-core computer technology. It relies on full imaging simulations of the extended field Shack-Hartmann wavefront sensor (WFS), which directly includes important secondary effects such as field dependent distortions and varying contrast of the WFS sub-aperture images.

  7. Durham adaptive optics real-time controller.

    PubMed

    Basden, Alastair; Geng, Deli; Myers, Richard; Younger, Eddy

    2010-11-10

    The Durham adaptive optics (AO) real-time controller was initially a proof of concept design for a generic AO control system. It has since been developed into a modern and powerful central-processing-unit-based real-time control system, capable of using hardware acceleration (including field programmable gate arrays and graphical processing units), based primarily around commercial off-the-shelf hardware. It is powerful enough to be used as the real-time controller for all currently planned 8 m class telescope AO systems. Here we give details of this controller and the concepts behind it, and report on performance, including latency and jitter, which is less than 10 μs for small AO systems. PMID:21068868

  8. Asteroid Maps From Photometry And Adaptive Optics

    NASA Astrophysics Data System (ADS)

    Kaasalainen, Mikko; Marchis, F.; Carry, B.

    2007-10-01

    While disk-integrated photometry is the main source of information on most asteroids, adaptive optics can provide some disk-resolved data on many larger (main-belt) asteroids. Asteroid models from lightcurve inversion agree well with the obtained AO images (Marchis et al. 2006, Icarus 185,39), but even more detailed models can be obtained by combining the two sources in inversion. In addition to giving more detail to existing models, the approach can also be used to obtain models of asteroids for which the photometric data are yet insufficient alone. This also helps to calibrate the inversion and deconvolution processes related to the separate sources; e.g., whether features apparently revealed by AO post-processing are real or artificial. We present some examples and discuss the resolution level of topographic detail in the resulting models. Hundreds of asteroids can be mapped in this way in the near future.

  9. Adaptive Optics Imaging and Spectroscopy of Neptune

    NASA Technical Reports Server (NTRS)

    Johnson, Lindley (Technical Monitor); Sromovsky, Lawrence A.

    2005-01-01

    OBJECTIVES: We proposed to use high spectral resolution imaging and spectroscopy of Neptune in visible and near-IR spectral ranges to advance our understanding of Neptune s cloud structure. We intended to use the adaptive optics (AO) system at Mt. Wilson at visible wavelengths to try to obtain the first groundbased observations of dark spots on Neptune; we intended to use A 0 observations at the IRTF to obtain near-IR R=2000 spatially resolved spectra and near-IR A0 observations at the Keck observatory to obtain the highest spatial resolution studies of cloud feature dynamics and atmospheric motions. Vertical structure of cloud features was to be inferred from the wavelength dependent absorption of methane and hydrogen,

  10. Wavefront Control for Extreme Adaptive Optics

    SciTech Connect

    Poyneer, L A

    2003-07-16

    Current plans for Extreme Adaptive Optics systems place challenging requirements on wave-front control. This paper focuses on control system dynamics, wave-front sensing and wave-front correction device characteristics. It may be necessary to run an ExAO system after a slower, low-order AO system. Running two independent systems can result in very good temporal performance, provided specific design constraints are followed. The spatially-filtered wave-front sensor, which prevents aliasing and improves PSF sensitivity, is summarized. Different models of continuous and segmented deformable mirrors are studied. In a noise-free case, a piston-tip-tilt segmented MEMS device can achieve nearly equivalent performance to a continuous-sheet DM in compensating for a static phase aberration with use of spatial filtering.

  11. Electro optical design for a space camera based on MODTRAN data analysis

    NASA Astrophysics Data System (ADS)

    Haghshenas, Javad

    2014-11-01

    Electro-Optical design of a push-broom space camera for a Low Earth Orbit (LEO) remote sensing satellite is discussed in this paper. An atmosphere analysis is performed based on ModTran algorithm and the total radiance of visible light reached to the camera entrance diameter is simulated by Atmosphere radiative transfer software PcModWin. Simulation is done for various conditions of sun zenith angles and earth surface albedos to predict the signal performance in different times and locations. According to the proposed simulation of total radiance incidence, appropriate linear CCD is chosen and then an optical design is done to completely satisfy electro-optics requirements. Optical design is based on Schmidt-Cassegrain scheme, which results in simple fabrication and high accuracy. Proposed electro-optical camera satisfies 5.9 meter ground resolution with image swath of higher than 23 km on the earth surface. Satellite is assumed to be at 681km altitude with 6.8km/s ground track speed.

  12. Home-made N-channel fiber-optic spectrometer from a web camera.

    PubMed

    Sumriddetchkajorn, Sarun; Intaravanne, Yuttana

    2012-10-01

    This paper demonstrates the high potential of a web camera to be utilized as a low-cost multichannel fiber-optic spectrometer suitable for either educational or quality-control purposes in small and medium enterprises. The key idea is to arrange N input optical fibers in a line and position an external dispersive element to separate incoming optical beams into their associated spectral components in a two-dimensional (2D) space. With a commercial web camera, each set of the spectral components is imaged through a plastic lens onto the 2D image sensor of the web camera. For the demonstration, a five-channel webcam-based fiber-optic spectrometer is implemented where each channel is calibrated by selected reference light sources. The constructed spectrometer can perform wavelength analysis of the spectral irradiance in the range of 400 to 655 nm. Experimental results also show that peak operating wavelengths of five light-emitting diodes and a laser pointer can be determined with a wavelength measurement error of less than 10.5 nm. The total cost of the webcam-based five-channel fiber-optic spectrometer is only approximately US$92.50 and effectively performs to the desired results. PMID:23031698

  13. Optical design of the wide angle camera for the Rosetta mission.

    PubMed

    Naletto, Giampiero; Da, Deppo Vania; Pelizzo, Maria Guglielmina; Ragazzoni, Roberto; Marchetti, Enrico

    2002-03-01

    The final optical design of the Wide Angle Camera for the Rosetta mission to the P/Wirtanen comet is described. This camera is an F/5.6 telescope with a rather large 12 degrees x 12 degrees field of view. To satisfy the scientific requirements for spatial resolution, contrast capability, and spectral coverage, a two-mirror, off-axis, and unobstructed optical design, believed to be novel, has been adopted. This configuration has been simulated with a ray-tracing code, showing that theoretically more than 80% of the collimated beam energy falls within a single pixel (20" x 20") over the whole camera field of view and that the possible contrast ratio is smaller than 1/1000. Moreover, this novel optical design is rather simple from a mechanical point of view and is compact and relatively easy to align. All these characteristics make this type of camera rather flexible and also suitable for other space missions with similar performance requirements. PMID:11900025

  14. Adaptive strategies of remote systems operators exposed to perturbed camera-viewing conditions

    NASA Technical Reports Server (NTRS)

    Stuart, Mark A.; Manahan, Meera K.; Bierschwale, John M.; Sampaio, Carlos E.; Legendre, A. J.

    1991-01-01

    This report describes a preliminary investigation of the use of perturbed visual feedback during the performance of simulated space-based remote manipulation tasks. The primary objective of this NASA evaluation was to determine to what extent operators exhibit adaptive strategies which allow them to perform these specific types of remote manipulation tasks more efficiently while exposed to perturbed visual feedback. A secondary objective of this evaluation was to establish a set of preliminary guidelines for enhancing remote manipulation performance and reducing the adverse effects. These objectives were accomplished by studying the remote manipulator performance of test subjects exposed to various perturbed camera-viewing conditions while performing a simulated space-based remote manipulation task. Statistical analysis of performance and subjective data revealed that remote manipulation performance was adversely affected by the use of perturbed visual feedback and performance tended to improve with successive trials in most perturbed viewing conditions.

  15. ESO adaptive optics facility progress report

    NASA Astrophysics Data System (ADS)

    Arsenault, Robin; Madec, Pierre-Yves; Paufique, Jerome; La Penna, Paolo; Stroebele, Stefan; Vernet, Elise; Pirard, Jean-Francois; Hackenberg, Wolfgang; Kuntschner, Harald; Jochum, Lieselotte; Kolb, Johann; Muller, Nicolas; Le Louarn, Miska; Amico, Paola; Hubin, Norbert; Lizon, Jean-Louis; Ridings, Rob; Abad, Jose A.; Fischer, Gert; Heinz, Volker; Kiekebusch, Mario; Argomedo, Javier; Conzelmann, Ralf; Tordo, Sebastien; Donaldson, Robert; Soenke, Christian; Duhoux, Philippe; Fedrigo, Enrico; Delabre, Bernard; Jost, Andreas; Duchateau, Michel; Downing, Mark; Moreno, Javier R.; Dorn, Reinhold; Manescau, Antonio; Bonaccini Calia, Domenico; Quattri, Marco; Dupuy, Christophe; Guidolin, Ivan M.; Comin, Mauro; Guzman, Ronald; Buzzoni, Bernard; Quentin, Jutta; Lewis, Steffan; Jolley, Paul; Kraus, Maximilian; Pfrommer, Thomas; Biasi, Roberto; Gallieni, Daniele; Bechet, Clementine; Stuik, Remko

    2012-07-01

    The ESO Adaptive Optics Facility (AOF) consists in an evolution of one of the ESO VLT unit telescopes to a laser driven adaptive telescope with a deformable mirror in its optical train. The project has completed the procurement phase and several large structures have been delivered to Garching (Germany) and are being integrated (the AO modules GRAAL and GALACSI and the ASSIST test bench). The 4LGSF Laser (TOPTICA) has undergone final design review and a pre-production unit has been built and successfully tested. The Deformable Secondary Mirror is fully integrated and system tests have started with the first science grade thin shell mirror delivered by SAGEM. The integrated modules will be tested in stand-alone mode in 2012 and upon delivery of the DSM in late 2012, the system test phase will start. A commissioning strategy has been developed and will be updated before delivery to Paranal. A substantial effort has been spent in 2011-2012 to prepare the unit telescope to receive the AOF by preparing the mechanical interfaces and upgrading the cooling and electrical network. This preparation will also simplify the final installation of the facility on the telescope. A lot of attention is given to the system calibration, how to record and correct any misalignment and control the whole facility. A plan is being developed to efficiently operate the AOF after commissioning. This includes monitoring a relevant set of atmospheric parameters for scheduling and a Laser Traffic control system to assist the operator during the night and help/support the observing block preparation.

  16. The Adaptive Optics System for the New 6.5 Meter MMT Optical/Infrared Telescope

    NASA Astrophysics Data System (ADS)

    McGuire, Patrick C.; Lloyd-Hart, Michael; Angel, J. Roger P.; Angeli, George Z.; Johnson, Robert L.; Fitz-Patrick, Bruce C.; Davison, Warren B.; Sarlot, Roland J.; Bresloff, Cyndy J.; Hughes, John M.; Miller, Steve M.; Schaller, Phillip; Wildi, Francois P.; Kenworthy, Matthew A.; Cordova, Richard M.; Rademacher, Matthew L.; Rascon, Mario H.; Langlois, Maud; Roberts, Thomas; McCarthy, Don; Burge, James H.; Rhoadarmer, Troy A.; Shelton, J. Christopher; Jacobsen, Bruce; Salinari, Piero; Brusa, Guido; Del Vecchio, Ciro; Biasi, Roberto; Gallieni, Daniele; Sandler, David G.; Barrett, Todd K.

    1999-10-01

    The Multiple Mirror Telescope (MMT) is currently being upgraded to a single 6.5 meter diameter mirror and should see first light at prime focus in September 1999. We are constructing an F/15 adaptive optics (AO) system which will be an integral part of the new MMT with first light in early 2000, removing the effect of atmospheric turbulence so that images near the diffraction limit in the near-infrared can be achieved. The deformable element of this system is a 64 cm diameter secondary mirror composed of a 1.8 mm thick thin glass shell and 336 voice coil actuators operating at 1 kHz. This is the first system that uses the secondary mirror as the correcting element, which means thermal background is minimized. We will primarily present an overview of the adaptive optics technique, followed by select results which will include the laboratory testing of the AO system components with a solid secondary, data taken with the wavefront sensor camera at prime focus of the new MMT, and tests of the secondary mirror control system.

  17. Automatic respiration tracking for radiotherapy using optical 3D camera

    NASA Astrophysics Data System (ADS)

    Li, Tuotuo; Geng, Jason; Li, Shidong

    2013-03-01

    Rapid optical three-dimensional (O3D) imaging systems provide accurate digitized 3D surface data in real-time, with no patient contact nor radiation. The accurate 3D surface images offer crucial information in image-guided radiation therapy (IGRT) treatments for accurate patient repositioning and respiration management. However, applications of O3D imaging techniques to image-guided radiotherapy have been clinically challenged by body deformation, pathological and anatomical variations among individual patients, extremely high dimensionality of the 3D surface data, and irregular respiration motion. In existing clinical radiation therapy (RT) procedures target displacements are caused by (1) inter-fractional anatomy changes due to weight, swell, food/water intake; (2) intra-fractional variations from anatomy changes within any treatment session due to voluntary/involuntary physiologic processes (e.g. respiration, muscle relaxation); (3) patient setup misalignment in daily reposition due to user errors; and (4) changes of marker or positioning device, etc. Presently, viable solution is lacking for in-vivo tracking of target motion and anatomy changes during the beam-on time without exposing patient with additional ionized radiation or high magnet field. Current O3D-guided radiotherapy systems relay on selected points or areas in the 3D surface to track surface motion. The configuration of the marks or areas may change with time that makes it inconsistent in quantifying and interpreting the respiration patterns. To meet the challenge of performing real-time respiration tracking using O3D imaging technology in IGRT, we propose a new approach to automatic respiration motion analysis based on linear dimensionality reduction technique based on PCA (principle component analysis). Optical 3D image sequence is decomposed with principle component analysis into a limited number of independent (orthogonal) motion patterns (a low dimension eigen-space span by eigen-vectors). New

  18. Conceptual design for a user-friendly adaptive optics system at Lick Observatory

    SciTech Connect

    Bissinger, H.D.; Olivier, S.; Max, C.

    1996-03-08

    In this paper, we present a conceptual design for a general-purpose adaptive optics system, usable with all Cassegrain facility instruments on the 3 meter Shane telescope at the University of California`s Lick Observatory located on Mt. Hamilton near San Jose, California. The overall design goal for this system is to take the sodium-layer laser guide star adaptive optics technology out of the demonstration stage and to build a user-friendly astronomical tool. The emphasis will be on ease of calibration, improved stability and operational simplicity in order to allow the system to be run routinely by observatory staff. A prototype adaptive optics system and a 20 watt sodium-layer laser guide star system have already been built at Lawrence Livermore National Laboratory for use at Lick Observatory. The design presented in this paper is for a next- generation adaptive optics system that extends the capabilities of the prototype system into the visible with more degrees of freedom. When coupled with a laser guide star system that is upgraded to a power matching the new adaptive optics system, the combined system will produce diffraction-limited images for near-IR cameras. Atmospheric correction at wavelengths of 0.6-1 mm will significantly increase the throughput of the most heavily used facility instrument at Lick, the Kast Spectrograph, and will allow it to operate with smaller slit widths and deeper limiting magnitudes. 8 refs., 2 figs.

  19. Adaptive Detector Arrays for Optical Communications Receivers

    NASA Technical Reports Server (NTRS)

    Vilnrotter, V.; Srinivasan, M.

    2000-01-01

    The structure of an optimal adaptive array receiver for ground-based optical communications is described and its performance investigated. Kolmogorov phase screen simulations are used to model the sample functions of the focal-plane signal distribution due to turbulence and to generate realistic spatial distributions of the received optical field. This novel array detector concept reduces interference from background radiation by effectively assigning higher confidence levels at each instant of time to those detector elements that contain significant signal energy and suppressing those that do not. A simpler suboptimum structure that replaces the continuous weighting function of the optimal receiver by a hard decision on the selection of the signal detector elements also is described and evaluated. Approximations and bounds to the error probability are derived and compared with the exact calculations and receiver simulation results. It is shown that, for photon-counting receivers observing Poisson-distributed signals, performance improvements of approximately 5 dB can be obtained over conventional single-detector photon-counting receivers, when operating in high background environments.

  20. ELT oriented adaptive optics demonstration bench

    NASA Astrophysics Data System (ADS)

    LeRoux, B.; NDiaye, M.; El Hadi, K.

    2011-09-01

    We are developing an Adaptive Optics bench designed to validate experimentally new instrumental concepts dedicated to Extremely Large Telescopes (ELTs). Our AO bench is being developed with three main objectives. The first one concerns the experimental study of control solutions for two levels of correction systems, such as woofer-tweeter systems. Indeed, the use of two consecutive deformable mirrors (DM), necessary for most of AO insruments on E-ELT, rises correction and command problems to be optimized. Our two mirrors (a 140 actuators DM and a Phase Modulator LCoS mirror) are being fully characterized before closing the AO loop. The second goal is the experimental validation of the Pyramid Wave Front Sensor (PWFS) in ELTs conditions with a Laser Guide Star (LGS). The design of our PWFS is undergoing and the LGS tests will take place by the end of 2013. All these studies are led in collaboration with University of Bologna, ONERA and L2TI. The third and longer term application is the experimental validation of an optimized control law dedicated to the large number of degrees of freedom, based on Kalman filtering and studied at LAM. We present the optical design of the bench, the calibrations of the elements and the first experimental results.

  1. Geometric Calibration of the Orion Optical Navigation Camera using Star Field Images

    NASA Astrophysics Data System (ADS)

    Christian, John A.; Benhacine, Lylia; Hikes, Jacob; D'Souza, Christopher

    2016-07-01

    The Orion Multi Purpose Crew Vehicle will be capable of autonomously navigating in cislunar space using images of the Earth and Moon. Optical navigation systems, such as the one proposed for Orion, require the ability to precisely relate the observed location of an object in a 2D digital image with the true corresponding line-of-sight direction in the camera's sensor frame. This relationship is governed by the camera's geometric calibration parameters — typically described by a set of five intrinsic parameters and five lens distortion parameters. While pre-flight estimations of these parameters will exist, environmental conditions often necessitate on-orbit recalibration. This calibration will be performed for Orion using an ensemble of star field images. This manuscript provides a detailed treatment of the theory and mathematics that will form the foundation of Orion's on-orbit camera calibration. Numerical results and examples are also presented.

  2. Perfect Optical Compensator With 1:1 Shutter Ratio Used For High Speed Camera

    NASA Astrophysics Data System (ADS)

    Zhihong, Rong

    1983-03-01

    An optical compensator used for high speed camera is described. The method of compensation, the analysis of the imaging quality and the result of experiment are introduced. The compensator consists of pairs of parallel mirrors. It can perform perfect compensation even at 1:1 shutter ratio. Using this compensator a high speed camera can be operated with no shutter and can obtain the same image sharpness as that of the intermittent camera. The advantages of this compensator are summarized as follows: . While compensating, the aberration correction of the objective would not be damaged. . There is no displacement and defocussing between the scanning image and the film in frame center during compensation. Increasing the exposure angle doesn't reduce the resolving power. . The compensator can also be used in the projector in place of the intermittent mechanism to practise continuous (non-intermittent) projection without shutter.

  3. Optical spectroscopy with a near-single-mode fiber-feed and adaptive optics

    NASA Astrophysics Data System (ADS)

    Ge, Jian; Angel, J. Roger P.; Shelton, J. Christopher

    1998-07-01

    We report on first astronomical results with a cross-dispersed optical echelle spectrograph fed by a near single-mode fiber. We also present on a novel design of a new adaptive optics (AO) optimized fiber-fed cross-dispersed echelle spectrograph. The spectrograph is designed to match with AO corrected images in the optical bands provided by such as the Mt. Wilson 100 inch, Starfire Optical Range 3.5 m AO telescopes. Ultimately, it will be installed at the 6.5 m MMT, when this has high resolution AO correcting the optical spectrum. The spectrograph, fed by a 10 micron fused silica fiber, is unique in that the entire spectrum from 0.4 micron to 1.0 micron will be almost completely covered at resolution 200,000 in one exposure. The detector is a 2k X 4k AR coated back illuminated CCD with 15 micron pixel size. The close order spacing allowed by the sharp AO image makes the full cover possible. A 250 X 125 mm(superscript 2) Milton Roy R2 echelle grating with 23.2 grooves mm(superscript -1) and a blaze angle of 63.5 deg provides main dispersion. A double pass BK7 prism with 21 deg wedge angle provides cross dispersion, covering the spectrum from order 193 to 77. The spectrograph is used in the quasi- Littrow configuration with an off-axis Maksutov collimator/camera. The fiber feeds the AO corrected beams from the telescope Cassegrain focus to the spectrograph, which is set up on an optical bench. The spectrograph will be used mainly to study line profiles of solar type stars, to explore problems of indirect detection of planets and also study interstellar medium, circumstellar medium and metal abundance and isotopic ratios of extremely metal-poor stars.

  4. Multiconjugate adaptive optics results from the laboratory for adaptive optics MCAO/MOAO testbed.

    PubMed

    Laag, Edward A; Ammons, S Mark; Gavel, Donald T; Kupke, Renate

    2008-08-01

    We report on the development of wavefront reconstruction and control algorithms for multiconjugate adaptive optics (MCAO) and the results of testing them in the laboratory under conditions that simulate an 8 meter class telescope. The University of California Observatories (UCO) Lick Observatory Laboratory for Adaptive Optics multiconjugate testbed allows us to test wide-field-of-view adaptive optics systems as they might be instantiated in the near future on giant telescopes. In particular, we have been investigating the performance of MCAO using five laser beacons for wavefront sensing and a minimum-variance algorithm for control of two conjugate deformable mirrors. We have demonstrated improved Strehl ratio and enlarged field-of-view performance when compared to conventional AO techniques. We have demonstrated improved MCAO performance with the implementation of a routine that minimizes the generalized isoplanatism when turbulent layers do not correspond to deformable mirror conjugate altitudes. Finally, we have demonstrated suitability of the system for closed loop operation when configured to feed back conditional mean estimates of wavefront residuals rather than the directly measured residuals. This technique has recently been referred to as the "pseudo-open-loop" control law in the literature. PMID:18677374

  5. Operation of the adaptive optics system at the Large Binocular Telescope Observatory

    NASA Astrophysics Data System (ADS)

    Miller, Douglas L.; Guerra, Juan Carlos; Boutsia, Konstantina; Fini, Luca; Argomedo, Javier; Biddick, Chris; Agapito, Guido; Arcidiacono, Carmelo; Briguglio, Runa; Brusa, Guido; Busoni, Lorenzo; Esposito, Simone; Hill, John; Kulesa, Craig; McCarthy, Don; Pinna, Enrico; Puglisi, Alfio T.; Quiros-Pacheco, Fernando; Riccardi, Armando; Xompero, Marco

    2012-07-01

    The Adaptive Optics System at the Large Binocular Telescope Observatory consists of two Adaptive Secondary (ASM) mirrors and two Pyramid Wavefront sensors. The first ASM/Pyramid pair has been commissioned and is being used for science operation using the NIR camera PISCES on the right side of the binocular telescope. The left side ASM/Pyramid system is currently being commissioned, with completion scheduled for the Fall of 2012. We will discuss the operation of the first Adaptive Optics System at the LBT Observatory including interactions of the AO system with the telescope and its TCS, observational modes, user interfaces, observational scripting language, time requirement for closed loop and offsets and observing efficiency.

  6. Retinal imaging with polarization-sensitive optical coherence tomography and adaptive optics

    PubMed Central

    Cense, Barry; Gao, Weihua; Brown, Jeffrey M.; Jones, Steven M.; Jonnal, Ravi S.; Mujat, Mircea; Park, B. Hyle; de Boer, Johannes F.; Miller, Donald T.

    2011-01-01

    Various layers of the retina are well known to alter the polarization state of light. Such changes in polarization may be a sensitive indicator of tissue structure and function, and as such have gained increased clinical attention. Here we demonstrate a polarization-sensitive optical coherence tomography (PS-OCT) system that incorporates adaptive optics (AO) in the sample arm and a single line scan camera in the detection arm. We quantify the benefit of AO for PS-OCT in terms of signal-to-noise, lateral resolution, and speckle size. Double pass phase retardation per unit depth values ranging from 0.25°/µm to 0.65°/µm were found in the birefringent nerve fiber layer at 6° eccentricity, superior to the fovea, with the highest values being noticeably higher than previously reported with PS-OCT around the optic nerve head. Moreover, fast axis orientation and degree of polarization uniformity measurements made with AO-PS-OCT demonstrate polarization scrambling in the retinal pigment epithelium at the highest resolution reported to date. PMID:19997405

  7. Liquid-crystal prisms for tip-tilt adaptive optics.

    PubMed

    Love, G D; Major, J V; Purvis, A

    1994-08-01

    Results from an electrically addressed liquid-crystal cell producing continuous phase profiles are presented. The adaptive deflection of a beam of light for use in a tip-tilt adaptive optics system is demonstrated. We compare the optical performance of liquid-crystal prisms with experimental data on atmospheric seeing at the William Herschel Telescope. PMID:19844566

  8. Proposed Multiconjugate Adaptive Optics Experiment at Lick Observatory

    SciTech Connect

    Bauman, B J; Gavel, D T; Flath, L M; Hurd, R L; Max, C E; Olivier, S S

    2001-08-15

    While the theory behind design of multiconjugate adaptive optics (MCAO) systems is growing, there is still a paucity of experience building and testing such instruments. We propose using the Lick adaptive optics (AO) system as a basis for demonstrating the feasibility/workability of MCAO systems, testing underlying assumptions, and experimenting with different approaches to solving MCAO system issues.

  9. Gemini South Adaptive Optics Imager (GSAOI) at Gemini South - Commissioning and Fist Science Results

    NASA Astrophysics Data System (ADS)

    Pessev, Peter; Carrasco, R.; Winge, C.; McGregor, P.; Edwards, M.; Rigaut, F.; Neichel, B.; Young, P.; Artigau, E.; Mauro, F.

    2013-01-01

    The Gemini South Adaptive Optics Imager (GSAOI) is the imaging camera to be used with the Multi-Conjugate Adaptive Optics system (GeMS) at Gemini South. GeMS and GSAOI are capable of delivering a diffraction limited images in the Near-Ifrared (0.9-2.5 micrometers) over an 85" square field of view. The focal plane of the instrument is covered by 2 x 2 array of HAWAII 2RG detectors and has a plate scale of 0.02". The instrument optics are all-refractive and coupled with the superb spatial resolution take a full advantage of the unprecedented image quality delivered by GeMS. GSAOI went through several commissioning runs during the southern summer of 2011/2012. In this presentation a brief summary of the system is provided, along with relevant commissioning information and some preliminary science results.

  10. Development of a stereo-optical camera system for monitoring tidal turbines

    NASA Astrophysics Data System (ADS)

    Joslin, James; Polagye, Brian; Parker-Stetter, Sandra

    2014-01-01

    The development, implementation, and testing of a stereo-optical imaging system suitable for environmental monitoring of a tidal turbine is described. This monitoring system is intended to provide real-time stereographic imagery in the near-field (<10 m) of tidal turbines proposed for deployment in Admiralty Inlet, Puget Sound, Washington. Postdeployment observations will provide the necessary information about the frequency and type of interactions between marine animals and the turbine. A method for optimizing the stereo camera arrangement is given, along with a quantitative assessment of the system's ability to measure and track targets in three-dimensional space. Optical camera effectiveness is qualitatively evaluated under realistic field conditions to determine the range within which detection, discrimination, and classification of targets is possible. These field evaluations inform optimal system placement relative to the turbine rotor. Tests suggest that the stereographic cameras will likely be able to discriminate and classify targets at ranges up to 3.5 m and detect targets at ranges up to, and potentially beyond, 4.5 m. Future system testing will include the use of an imaging sonar ("acoustical camera") to evaluate behavioral disturbances associated with artificial lighting.

  11. The CAMCAO infrared camera

    NASA Astrophysics Data System (ADS)

    Amorim, Antonio; Melo, Antonio; Alves, Joao; Rebordao, Jose; Pinhao, Jose; Bonfait, Gregoire; Lima, Jorge; Barros, Rui; Fernandes, Rui; Catarino, Isabel; Carvalho, Marta; Marques, Rui; Poncet, Jean-Marc; Duarte Santos, Filipe; Finger, Gert; Hubin, Norbert; Huster, Gotthard; Koch, Franz; Lizon, Jean-Louis; Marchetti, Enrico

    2004-09-01

    The CAMCAO instrument is a high resolution near infrared (NIR) camera conceived to operate together with the new ESO Multi-conjugate Adaptive optics Demonstrator (MAD) with the goal of evaluating the feasibility of Multi-Conjugate Adaptive Optics techniques (MCAO) on the sky. It is a high-resolution wide field of view (FoV) camera that is optimized to use the extended correction of the atmospheric turbulence provided by MCAO. While the first purpose of this camera is the sky observation, in the MAD setup, to validate the MCAO technology, in a second phase, the CAMCAO camera is planned to attach directly to the VLT for scientific astrophysical studies. The camera is based on the 2kx2k HAWAII2 infrared detector controlled by an ESO external IRACE system and includes standard IR band filters mounted on a positional filter wheel. The CAMCAO design requires that the optical components and the IR detector should be kept at low temperatures in order to avoid emitting radiation and lower detector noise in the region analysis. The cryogenic system inclues a LN2 tank and a sptially developed pulse tube cryocooler. Field and pupil cold stops are implemented to reduce the infrared background and the stray-light. The CAMCAO optics provide diffraction limited performance down to J Band, but the detector sampling fulfills the Nyquist criterion for the K band (2.2mm).

  12. Using new optical materials and DOE in low-cost lenses for uncooled IR cameras

    NASA Astrophysics Data System (ADS)

    Bacchus, Jean-Marie

    2004-02-01

    Angénieux recently developed a low cost 100 mm F/1.25 lens for uncooled IR cameras. It is made of only 2 elements, thanks to the use of GASIR glass (Umicore product) and a diffractive surface. With regard to its equivalent in germanium, it offers similar performances, for a much lower cost due to the price of the optical material, molding, and no need for athermalisation. This lens can be used with new light-weighted night vision goggle ELVIR developed by Thales-Angénieux. We plan to also use GASIR in low cost zoom lenses for uncooled cameras. Starting with these examples, we will compare different available optical materials for IR, their characteristics, and respective advantages and drawbacks. We will deduct from it from rules of use for these materials, depending upon the envisaged use, spectral bandwidth and number of items manufactured.

  13. Adaptive optics optical coherence tomography with dynamic retinal tracking

    PubMed Central

    Kocaoglu, Omer P.; Ferguson, R. Daniel; Jonnal, Ravi S.; Liu, Zhuolin; Wang, Qiang; Hammer, Daniel X.; Miller, Donald T.

    2014-01-01

    Adaptive optics optical coherence tomography (AO-OCT) is a highly sensitive and noninvasive method for three dimensional imaging of the microscopic retina. Like all in vivo retinal imaging techniques, however, it suffers the effects of involuntary eye movements that occur even under normal fixation. In this study we investigated dynamic retinal tracking to measure and correct eye motion at KHz rates for AO-OCT imaging. A customized retina tracking module was integrated into the sample arm of the 2nd-generation Indiana AO-OCT system and images were acquired on three subjects. Analyses were developed based on temporal amplitude and spatial power spectra in conjunction with strip-wise registration to independently measure AO-OCT tracking performance. After optimization of the tracker parameters, the system was found to correct eye movements up to 100 Hz and reduce residual motion to 10 µm root mean square. Between session precision was 33 µm. Performance was limited by tracker-generated noise at high temporal frequencies. PMID:25071963

  14. Adaptive optics optical coherence tomography with dynamic retinal tracking.

    PubMed

    Kocaoglu, Omer P; Ferguson, R Daniel; Jonnal, Ravi S; Liu, Zhuolin; Wang, Qiang; Hammer, Daniel X; Miller, Donald T

    2014-07-01

    Adaptive optics optical coherence tomography (AO-OCT) is a highly sensitive and noninvasive method for three dimensional imaging of the microscopic retina. Like all in vivo retinal imaging techniques, however, it suffers the effects of involuntary eye movements that occur even under normal fixation. In this study we investigated dynamic retinal tracking to measure and correct eye motion at KHz rates for AO-OCT imaging. A customized retina tracking module was integrated into the sample arm of the 2nd-generation Indiana AO-OCT system and images were acquired on three subjects. Analyses were developed based on temporal amplitude and spatial power spectra in conjunction with strip-wise registration to independently measure AO-OCT tracking performance. After optimization of the tracker parameters, the system was found to correct eye movements up to 100 Hz and reduce residual motion to 10 µm root mean square. Between session precision was 33 µm. Performance was limited by tracker-generated noise at high temporal frequencies. PMID:25071963

  15. Optimized micromirror arrays for adaptive optics

    NASA Astrophysics Data System (ADS)

    Michalicek, M. Adrian; Comtois, John H.; Hetherington, Dale L.

    1999-01-01

    This paper describes the design, layout, fabrication, and surface characterization of highly optimized surface micromachined micromirror devices. Design considerations and fabrication capabilities are presented. These devices are fabricated in the state-of-the-art, four-level, planarized, ultra-low-stress polysilicon process available at Sandia National Laboratories known as the Sandia Ultra-planar Multi-level MEMS Technology (SUMMiT). This enabling process permits the development of micromirror devices with near-ideal characteristics that have previously been unrealizable in standard three-layer polysilicon processes. The reduced 1 μm minimum feature sizes and 0.1 μm mask resolution make it possible to produce dense wiring patterns and irregularly shaped flexures. Likewise, mirror surfaces can be uniquely distributed and segmented in advanced patterns and often irregular shapes in order to minimize wavefront error across the pupil. The ultra-low-stress polysilicon and planarized upper layer allow designers to make larger and more complex micromirrors of varying shape and surface area within an array while maintaining uniform performance of optical surfaces. Powerful layout functions of the AutoCAD editor simplify the design of advanced micromirror arrays and make it possible to optimize devices according to the capabilities of the fabrication process. Micromirrors fabricated in this process have demonstrated a surface variance across the array from only 2-3 nm to a worst case of roughly 25 nm while boasting active surface areas of 98% or better. Combining the process planarization with a ``planarized-by-design'' approach will produce micromirror array surfaces that are limited in flatness only by the surface deposition roughness of the structural material. Ultimately, the combination of advanced process and layout capabilities have permitted the fabrication of highly optimized micromirror arrays for adaptive optics.

  16. The research and development of the adaptive optics in ophthalmology

    NASA Astrophysics Data System (ADS)

    Wu, Chuhan; Zhang, Xiaofang; Chen, Weilin

    2015-08-01

    Recently the combination of adaptive optics and ophthalmology has made great progress and become highly effective. The retina disease is diagnosed by retina imaging technique based on scanning optical system, so the scanning of eye requires optical system characterized by great ability of anti-moving and optical aberration correction. The adaptive optics possesses high level of adaptability and is available for real time imaging, which meets the requirement of medical retina detection with accurate images. Now the Scanning Laser Ophthalmoscope and the Optical Coherence Tomography are widely used, which are the core techniques in the area of medical retina detection. Based on the above techniques, in China, a few adaptive optics systems used for eye medical scanning have been designed by some researchers from The Institute of Optics And Electronics of CAS(The Chinese Academy of Sciences); some foreign research institutions have adopted other methods to eliminate the interference of eye moving and optical aberration; there are many relevant patents at home and abroad. In this paper, the principles and relevant technique details of the Scanning Laser Ophthalmoscope and the Optical Coherence Tomography are described. And the recent development and progress of adaptive optics in the field of eye retina imaging are analyzed and summarized.

  17. VASAO: visible all sky adaptive optics

    NASA Astrophysics Data System (ADS)

    Veillet, Christian; Lai, Olivier; Salmon, Derrick; Pique, Jean-Paul

    2006-06-01

    Building on an extensive and successful experience in Adaptive Optics (AO) and on recent developments made in its funding nations, the Canada-France-Hawaii-Telescope Corporation (CFHT) is studying the VASAO concept: an integrated AO system that would allow diffraction limited imaging of the whole sky in the visible as well as in the infrared. At the core of VASAO, Pueo-Hou (the new Pueo) is built on Pueo, the current CFHT AO bonnette. Pueo will be refurbished and improved to be able to image the isoplanetic field at 700 nm with Strehl ratios of 30% or better, making possible imaging with a resolution of 50 milliarcseconds between 500 and 700nm, and at the telescope limit of diffraction above. The polychromatic tip-tilt laser guide star currently envisioned will be generated by a single 330nm mode-less laser, and the relative position of the 330nm and 589nm artificial stars created on the mesosphere by the 330nm excitation of the sodium layer will be monitored to provide the atmospheric tip-tilt along the line of sight, following the philosophy developed for the ELP-OA project. The feasibility study of VASAO will take most of 2006 in parallel with the development of a science case making the best possible use of the unique capabilities of the system, If the feasibility study is encouraging, VASAO development could start in 2007 for a full deployment on the sky by 2011-2012.

  18. Optimized modal tomography in adaptive optics

    NASA Astrophysics Data System (ADS)

    Tokovinin, A.; Le Louarn, M.; Viard, E.; Hubin, N.; Conan, R.

    2001-11-01

    The performance of modal Multi-Conjugate Adaptive Optics systems correcting a finite number of Zernike modes is studied using a second-order statistical analysis. Both natural and laser guide stars (GS) are considered. An optimized command matrix is computed from the covariances of atmospheric signals and noise, to minimize the residual phase variance averaged over the field of view. An efficient way to calculate atmospheric covariances of Zernike modes and their projections is found. The modal covariance code is shown to reproduce the known results on anisoplanatism and the cone effect with single GS. It is then used to study the error of wave-front estimation from several off-axis GSs (tomography). With increasing radius of the GS constellation Theta , the tomographic error increases quadratically at small Theta , then linearly at larger Theta when incomplete overlap of GS beams in the upper atmospheric layers provides the major contribution to this error, especially on low-order modes. It is demonstrated that the quality of turbulence correction with two deformable mirrors is practically independent of the conjugation altitude of the second mirror, as long as the command matrix is optimized for each configuration.

  19. Large stroke actuators for adaptive optics

    NASA Astrophysics Data System (ADS)

    Fernández, B.; Kubby, J. A.

    2006-01-01

    In this paper we review the use of a 3-dimensional MEMS fabrication process to prototype long stroke (>10 μm) actuators as are required for use in future adaptive optics systems in astronomy and vision science. The Electrochemical Fabrication (EFAB TM) process that was used creates metal micro-structures by electroplating multiple, independently patterned layers. The process has the design freedom of rapid prototyping where multiple patterned layers are stacked to build structures with virtually any desired geometry, but in contrast has much greater precision, the capability for batch fabrication and provides parts in engineering materials such as nickel. The design freedom enabled by this process has been used to make both parallel plate and comb drive actuator deformable mirror designs that can have large vertical heights of up to 1 mm. As the thickness of the sacrificial layers used to release the actuator is specified by the designer, rather than by constraints of the fabrication process, the design of large-stroke actuators is straightforward and does not require any new process development. Since the number of material layers in the EFAB TM process is also specified by the designer it has been possible to gang multiple parallel plate actuators together to decrease the voltage required for long-stroke actuators.

  20. Adaptive optics at the PHELIX laser

    NASA Astrophysics Data System (ADS)

    Heuck, Hans-Martin; Wittrock, Ulrich; Fils, Jérôme; Borneis, Stefan; Witte, Klaus; Eisenbart, Udo; Javorkova, Dasa; Bagnoud, Vincent; Götte, Stefan; Tauschwitz, Andreas; Onkels, Eckehard

    2007-05-01

    GSI Darmstadt currently builds a high-energy petawatt Nd:glass laser system, called PHELIX (Petawatt High-Energy Laser for Heavy-Ion Experiments). PHELIX will offer the world-wide unique combination of a high current, high-energy heavy-ion beam with an intense laser beam. Aberrations due to the beam transport and due to the amplification process limit the focusability and the intensity at the target. We have investigated the aberrations of the different amplification stages. The pre-amplifier stage consists of three rod-amplifiers which cause mainly defocus, but also a small part of coma and astigmatism. The main amplifier consists of five disk amplifiers with a clear aperture of 315 mm. These large disk-amplifiers cause pump-shot aberrations which occur instantly. After a shot, the disk amplifiers need a cooling time of several hours to relax to their initial state. This limits the repetition rate and causes long-term aberrations. We will present first measurements of the pump-shot and long-term aberrations caused by the pre- and the main amplifier in a single-pass configuration. In this context, we will present the adaptive optics system which is implemented in the PHELIX beam line and discuss its capability to compensate for the pump-shot and long-term aberrations.

  1. Adaptive optics and phase diversity imaging for responsive space applications.

    SciTech Connect

    Smith, Mark William; Wick, David Victor

    2004-11-01

    The combination of phase diversity and adaptive optics offers great flexibility. Phase diverse images can be used to diagnose aberrations and then provide feedback control to the optics to correct the aberrations. Alternatively, phase diversity can be used to partially compensate for aberrations during post-detection image processing. The adaptive optic can produce simple defocus or more complex types of phase diversity. This report presents an analysis, based on numerical simulations, of the efficiency of different modes of phase diversity with respect to compensating for specific aberrations during post-processing. It also comments on the efficiency of post-processing versus direct aberration correction. The construction of a bench top optical system that uses a membrane mirror as an active optic is described. The results of characterization tests performed on the bench top optical system are presented. The work described in this report was conducted to explore the use of adaptive optics and phase diversity imaging for responsive space applications.

  2. A preliminary optical design for the JANUS camera of ESA's space mission JUICE

    NASA Astrophysics Data System (ADS)

    Greggio, D.; Magrin, D.; Ragazzoni, R.; Munari, M.; Cremonese, G.; Bergomi, M.; Dima, M.; Farinato, J.; Marafatto, L.; Viotto, V.; Debei, S.; Della Corte, V.; Palumbo, P.; Hoffmann, H.; Jaumann, R.; Michaelis, H.; Schmitz, N.; Schipani, P.; Lara, L.

    2014-08-01

    The JANUS (Jovis, Amorum ac Natorum Undique Scrutator) will be the on board camera of the ESA JUICE satellite dedicated to the study of Jupiter and its moons, in particular Ganymede and Europa. This optical channel will provide surface maps with plate scale of 15 microrad/pixel with both narrow and broad band filters in the spectral range between 0.35 and 1.05 micrometers over a Field of View 1.72 × 1.29 degrees2. The current optical design is based on TMA design, with on-axis pupil and off-axis field of view. The optical stop is located at the secondary mirror providing an effective collecting area of 7854 mm2 (100 mm entrance pupil diameter) and allowing a simple internal baffling for first order straylight rejection. The nominal optical performances are almost limited by the diffraction and assure a nominal MTF better than 63% all over the whole Field of View. We describe here the optical design of the camera adopted as baseline together with the trade-off that has led us to this solution.

  3. Minimizing camera-eye optical aberrations during the 3D reconstruction of retinal structures

    NASA Astrophysics Data System (ADS)

    Aldana-Iuit, Javier; Martinez-Perez, M. Elena; Espinosa-Romero, Arturo; Diaz-Uribe, Rufino

    2010-05-01

    3D reconstruction of blood vessels is a powerful visualization tool for physicians, since it allows them to refer to qualitative representation of their subject of study. In this paper we propose a 3D reconstruction method of retinal vessels from fundus images. The reconstruction method propose herein uses images of the same retinal structure in epipolar geometry. Images are preprocessed by RISA system for segmenting blood vessels and obtaining feature points for correspondences. The correspondence points process is solved using correlation. The LMedS analysis and Graph Transformation Matching algorithm are used for outliers suppression. Camera projection matrices are computed with the normalized eight point algorithm. Finally, we retrieve 3D position of the retinal tree points by linear triangulation. In order to increase the power of visualization, 3D tree skeletons are represented by surfaces via generalized cylinders whose radius correspond to morphological measurements obtained by RISA. In this paper the complete calibration process including the fundus camera and the optical properties of the eye, the so called camera-eye system is proposed. On one hand, the internal parameters of the fundus camera are obtained by classical algorithms using a reference pattern. On the other hand, we minimize the undesirable efects of the aberrations induced by the eyeball optical system assuming that contact enlarging lens corrects astigmatism, spherical and coma aberrations are reduced changing the aperture size and eye refractive errors are suppressed adjusting camera focus during image acquisition. Evaluation of two self-calibration proposals and results of 3D blood vessel surface reconstruction are presented.

  4. Adaptive optics for daytime deep space laser communications to Mars

    NASA Technical Reports Server (NTRS)

    Wilson, Keith E.; Wright, Malcolm; Lee, Shinkhak; Troy, Mitchell

    2005-01-01

    This paper describes JPL research in adaptive optics (AO) to reduce the daytime background noise on a Mars-to-Earth optical communications link. AO can reduce atmosphere-induced wavefront aberrations, and enable single mode receiver operation thereby buying back margin in the deep space optical communications link.

  5. ShaneAO: an enhanced adaptive optics and IR imaging system for the Lick Observatory 3-meter telescope

    NASA Astrophysics Data System (ADS)

    Kupke, Renate; Gavel, Donald; Roskosi, Constance; Cabak, Gerald; Cowley, David; Dillon, Daren; Gates, Elinor L.; McGurk, Rosalie; Norton, Andrew; Peck, Michael; Ratliff, Christopher; Reinig, Marco

    2012-07-01

    The Lick Observatory 3-meter telescope has a history of serving as a testbed for innovative adaptive optics techniques. In 1996, it became one of the first astronomical observatories to employ laser guide star (LGS) adaptive optics as a facility instrument available to the astronomy community. Work on a second-generation LGS adaptive optics system, ShaneAO, is well underway, with plans to deploy on telescope in 2013. In this paper we discuss key design features and implementation plans for the ShaneAO adaptive optics system. Once again, the Shane 3-m will host a number of new techniques and technologies vital to the development of future adaptive optics systems on larger telescopes. Included is a woofer-tweeter based wavefront correction system incorporating a voice-coil actuated, low spatial and temporal bandwidth, high stroke deformable mirror in conjunction with a high order, high bandwidth MEMs deformable mirror. The existing dye laser, in operation since 1996, will be replaced with a fiber laser recently developed at Lawrence Livermore National Laboratories. The system will also incorporate a high-sensitivity, high bandwidth wavefront sensor camera. Enhanced IR performance will be achieved by replacing the existing PICNIC infrared array with an Hawaii 2RG. The updated ShaneAO system will provide opportunities to test predictive control algorithms for adaptive optics. Capabilities for astronomical spectroscopy, polarimetry, and visible-light adaptive optical astronomy will be supported.

  6. Retrieval of the optical depth using an all-sky CCD camera.

    PubMed

    Olmo, Francisco J; Cazorla, Alberto; Alados-Arboledas, Lucas; López-Alvarez, Miguel A; Hernández-Andrés, Javier; Romero, Javier

    2008-12-01

    A new method is presented for retrieval of the aerosol and cloud optical depth using a CCD camera equipped with a fish-eye lens (all-sky imager system). In a first step, the proposed method retrieves the spectral radiance from sky images acquired by the all-sky imager system using a linear pseudoinverse algorithm. Then, the aerosol or cloud optical depth at 500 nm is obtained as that which minimizes the residuals between the zenith spectral radiance retrieved from the sky images and that estimated by the radiative transfer code. The method is tested under extreme situations including the presence of nonspherical aerosol particles. The comparison of optical depths derived from the all-sky imager with those retrieved with a sunphotometer operated side by side shows differences similar to the nominal error claimed in the aerosol optical depth retrievals from sunphotometer networks. PMID:19037341

  7. The Laboratory Radiometric Calibration of the CCD Stereo Camera for the Optical Payload of the Lunar Explorer Project

    NASA Astrophysics Data System (ADS)

    Wang, Jue; Li, Chun-Lai; Zhao, Bao-Chang

    2007-03-01

    The system of the optical payload for the Lunar Explorer includes a CCD stereo camera and an imaging interferometer. The former is devised to get the solid images of the lunar surface with a laser altimeter. The camera working principle, calibration purpose, and content, nude chip detection, and the process of the relative and absolute calibration in the laboratory are introduced.

  8. Adaptation of the Camera Link Interface for Flight-Instrument Applications

    NASA Technical Reports Server (NTRS)

    Randall, David P.; Mahoney, John C.

    2010-01-01

    COTS (commercial-off-the-shelf) hard ware using an industry-standard Camera Link interface is proposed to accomplish the task of designing, building, assembling, and testing electronics for an airborne spectrometer that would be low-cost, but sustain the required data speed and volume. The focal plane electronics were designed to support that hardware standard. Analysis was done to determine how these COTS electronics could be interfaced with space-qualified camera electronics. Interfaces available for spaceflight application do not support the industry standard Camera Link interface, but with careful design, COTS EGSE (electronics ground support equipment), including camera interfaces and camera simulators, can still be used.

  9. Testing the Apodized Pupil Lyot Coronagraph on the Laboratory for Adaptive Optics Extreme Adaptive Optics Testbed

    NASA Astrophysics Data System (ADS)

    Thomas, Sandrine J.; Soummer, Rémi; Dillon, Daren; Macintosh, Bruce; Gavel, Donald; Sivaramakrishnan, Anand

    2011-10-01

    We present testbed results of the Apodized Pupil Lyot Coronagraph (APLC) at the Laboratory for Adaptive Optics (LAO). These results are part of the validation and tests of the coronagraph and of the Extreme Adaptive Optics (ExAO) for the Gemini Planet Imager (GPI). The apodizer component is manufactured with a halftone technique using black chrome microdots on glass. Testing this APLC (like any other coronagraph) requires extremely good wavefront correction, which is obtained to the 1 nm rms level using the microelectricalmechanical systems (MEMS) technology, on the ExAO visible testbed of the LAO at the University of Santa Cruz. We used an APLC coronagraph without central obstruction, both with a reference super-polished flat mirror and with the MEMS to obtain one of the first images of a dark zone in a coronagraphic image with classical adaptive optics using a MEMS deformable mirror (without involving dark hole algorithms). This was done as a complementary test to the GPI coronagraph testbed at American Museum of Natural History, which studied the coronagraph itself without wavefront correction. Because we needed a full aperture, the coronagraph design is very different from the GPI design. We also tested a coronagraph with central obstruction similar to that of GPI. We investigated the performance of the APLC coronagraph and more particularly the effect of the apodizer profile accuracy on the contrast. Finally, we compared the resulting contrast to predictions made with a wavefront propagation model of the testbed to understand the effects of phase and amplitude errors on the final contrast.

  10. TESTING THE APODIZED PUPIL LYOT CORONAGRAPH ON THE LABORATORY FOR ADAPTIVE OPTICS EXTREME ADAPTIVE OPTICS TESTBED

    SciTech Connect

    Thomas, Sandrine J.; Dillon, Daren; Gavel, Donald; Macintosh, Bruce; Sivaramakrishnan, Anand E-mail: dillon@ucolick.org E-mail: soummer@stsci.edu E-mail: anand@amnh.org

    2011-10-15

    We present testbed results of the Apodized Pupil Lyot Coronagraph (APLC) at the Laboratory for Adaptive Optics (LAO). These results are part of the validation and tests of the coronagraph and of the Extreme Adaptive Optics (ExAO) for the Gemini Planet Imager (GPI). The apodizer component is manufactured with a halftone technique using black chrome microdots on glass. Testing this APLC (like any other coronagraph) requires extremely good wavefront correction, which is obtained to the 1 nm rms level using the microelectricalmechanical systems (MEMS) technology, on the ExAO visible testbed of the LAO at the University of Santa Cruz. We used an APLC coronagraph without central obstruction, both with a reference super-polished flat mirror and with the MEMS to obtain one of the first images of a dark zone in a coronagraphic image with classical adaptive optics using a MEMS deformable mirror (without involving dark hole algorithms). This was done as a complementary test to the GPI coronagraph testbed at American Museum of Natural History, which studied the coronagraph itself without wavefront correction. Because we needed a full aperture, the coronagraph design is very different from the GPI design. We also tested a coronagraph with central obstruction similar to that of GPI. We investigated the performance of the APLC coronagraph and more particularly the effect of the apodizer profile accuracy on the contrast. Finally, we compared the resulting contrast to predictions made with a wavefront propagation model of the testbed to understand the effects of phase and amplitude errors on the final contrast.

  11. Technical assessment of Navitar Zoom 6000 optic and Sony HDC-X310 camera for MEMS presentations and training.

    SciTech Connect

    Diegert, Carl F.

    2006-02-01

    This report evaluates a newly-available, high-definition, video camera coupled with a zoom optical system for microscopic imaging of micro-electro-mechanical systems. We did this work to support configuration of three document-camera-like stations as part of an installation in a new Microsystems building at Sandia National Laboratories. The video display walls to be installed as part of these three presentation and training stations are of extraordinary resolution and quality. The new availability of a reasonably-priced, cinema-quality, high-definition video camera offers the prospect of filling these displays with full-motion imaging of Sandia's microscopic products at a quality substantially beyond the quality of typical video microscopes. Simple and robust operation of the microscope stations will allow the extraordinary-quality imaging to contribute to Sandia's day-to-day research and training operations. This report illustrates the disappointing image quality from a camera/lens system comprised of a Sony HDC-X310 high-definition video camera coupled to a Navitar Zoom 6000 lens. We determined that this Sony camera is capable of substantially more image quality than the Navitar optic can deliver. We identified an optical doubler lens from Navitar as the component of their optical system that accounts for a substantial part of the image quality problem. While work continues to incrementally improve performance of the Navitar system, we are also evaluating optical systems from other vendors to couple to this Sony camera.

  12. Spectral Domain Optical Coherence Tomography and Adaptive Optics: Imaging Photoreceptor Layer Morphology to Interpret Preclinical Phenotypes

    PubMed Central

    Rha, Jungtae; Dubis, Adam M.; Wagner-Schuman, Melissa; Tait, Diane M.; Godara, Pooja; Schroeder, Brett; Stepien, Kimberly

    2012-01-01

    Recent years have seen the emergence of advances in imaging technology that enable in vivo evaluation of the living retina. Two of the more promising techniques, spectral domain optical coherence tomography (SD-OCT) and adaptive optics (AO) fundus imaging provide complementary views of the retinal tissue. SD-OCT devices have high axial resolution, allowing assessment of retinal lamination, while the high lateral resolution of AO allows visualization of individual cells. The potential exists to use one modality to interpret results from the other. As a proof of concept, we examined the retina of a 32 year-old male, previously diagnosed with a red-green color vision defect. Previous AO imaging revealed numerous gaps throughout his cone mosaic, indicating that the structure of a subset of cones had been compromised. Whether the affected cells had completely degenerated or were simply morphologically deviant was not clear. Here an AO fundus camera was used to re-examine the retina (~6 years after initial exam) and SD-OCT to examine retinal lamination. The static nature of the cone mosaic disruption combined with the normal lamination on SD-OCT suggests that the affected cones are likely still present. PMID:20238030

  13. An Incremental Target-Adapted Strategy for Active Geometric Calibration of Projector-Camera Systems

    PubMed Central

    Chen, Chia-Yen; Chien, Hsiang-Jen

    2013-01-01

    The calibration of a projector-camera system is an essential step toward accurate 3-D measurement and environment-aware data projection applications, such as augmented reality. In this paper we present a two-stage easy-to-deploy strategy for robust calibration of both intrinsic and extrinsic parameters of a projector. Two key components of the system are the automatic generation of projected light patterns and the incremental calibration process. Based on the incremental strategy, the calibration process first establishes a set of initial parameters, and then it upgrades these parameters incrementally using the projection and captured images of dynamically-generated calibration patterns. The scene-driven light patterns allow the system to adapt itself to the pose of the calibration target, such that the difficulty in feature detection is greatly lowered. The strategy forms a closed-loop system that performs self-correction as more and more observations become available. Compared to the conventional method, which requires a time-consuming process for the acquisition of dense pixel correspondences, the proposed method deploys a homography-based coordinate computation, allowing the calibration time to be dramatically reduced. The experimental results indicate that an improvement of 70% in reprojection errors is achievable and 95% of the calibration time can be saved. PMID:23435056

  14. An incremental target-adapted strategy for active geometric calibration of projector-camera systems.

    PubMed

    Chen, Chia-Yen; Chien, Hsiang-Jen

    2013-01-01

    The calibration of a projector-camera system is an essential step toward accurate 3-D measurement and environment-aware data projection applications, such as augmented reality. In this paper we present a two-stage easy-to-deploy strategy for robust calibration of both intrinsic and extrinsic parameters of a projector. Two key components of the system are the automatic generation of projected light patterns and the incremental calibration process. Based on the incremental strategy, the calibration process first establishes a set of initial parameters, and then it upgrades these parameters incrementally using the projection and captured images of dynamically-generated calibration patterns. The scene-driven light patterns allow the system to adapt itself to the pose of the calibration target, such that the difficulty in feature detection is greatly lowered. The strategy forms a closed-loop system that performs self-correction as more and more observations become available. Compared to the conventional method, which requires a time-consuming process for the acquisition of dense pixel correspondences, the proposed method deploys a homography-based coordinate computation, allowing the calibration time to be dramatically reduced. The experimental results indicate that an improvement of 70% in reprojection errors is achievable and 95% of the calibration time can be saved. PMID:23435056

  15. GPU-based computational adaptive optics for volumetric optical coherence microscopy

    NASA Astrophysics Data System (ADS)

    Tang, Han; Mulligan, Jeffrey A.; Untracht, Gavrielle R.; Zhang, Xihao; Adie, Steven G.

    2016-03-01

    Optical coherence tomography (OCT) is a non-invasive imaging technique that measures reflectance from within biological tissues. Current higher-NA optical coherence microscopy (OCM) technologies with near cellular resolution have limitations on volumetric imaging capabilities due to the trade-offs between resolution vs. depth-of-field and sensitivity to aberrations. Such trade-offs can be addressed using computational adaptive optics (CAO), which corrects aberration computationally for all depths based on the complex optical field measured by OCT. However, due to the large size of datasets plus the computational complexity of CAO and OCT algorithms, it is a challenge to achieve high-resolution 3D-OCM reconstructions at speeds suitable for clinical and research OCM imaging. In recent years, real-time OCT reconstruction incorporating both dispersion and defocus correction has been achieved through parallel computing on graphics processing units (GPUs). We add to these methods by implementing depth-dependent aberration correction for volumetric OCM using plane-by-plane phase deconvolution. Following both defocus and aberration correction, our reconstruction algorithm achieved depth-independent transverse resolution of 2.8 um, equal to the diffraction-limited focal plane resolution. We have translated the CAO algorithm to a CUDA code implementation and tested the speed of the software in real-time using two GPUs - NVIDIA Quadro K600 and Geforce TITAN Z. For a data volume containing 4096×256×256 voxels, our system's processing speed can keep up with the 60 kHz acquisition rate of the line-scan camera, and takes 1.09 seconds to simultaneously update the CAO correction for 3 en face planes at user-selectable depths.

  16. A low-cost compact metric adaptive optics system

    NASA Astrophysics Data System (ADS)

    Mansell, Justin D.; Henderson, Brian; Wiesner, Brennen; Praus, Robert; Coy, Steve

    2007-09-01

    The application of adaptive optics has been hindered by the cost, size, and complexity of the systems. We describe here progress we have made toward creating low-cost compact turn-key adaptive optics systems. We describe our new low-cost deformable mirror technology developed using polymer membranes, the associated USB interface drive electronics, and different ways that this technology can be configured into a low-cost compact adaptive optics system. We also present results of a parametric study of the stochastic parallel gradient descent (SPGD) control algorithm.

  17. Is ESO's adaptive optics facility suited for MCAO?

    NASA Astrophysics Data System (ADS)

    Marchetti, Enrico; Amico, Paola; Fedrigo, Enrico; Glindemann, Andreas; Hubin, Norbert; La Penna, Paolo; Le Louarn, Miska; Madec, Pierre-Yves

    2010-07-01

    As of 2013, the ESO's VLT will be equipped with the Adaptive Optics Facility for Ground Layer and Laser Tomography adaptive optics assisted imaging and spectroscopy, using a Deformable Secondary Mirror and four Laser Guide Stars. Following the successful experience of the MAD demonstrator, we initiated a speculative study to evaluate the performance gain obtained by implementing a type of Multi-Conjugate Adaptive Optics correction that benefits from the unique features provided by the AOF. In this paper we present the basic concept and provide a first estimation of the correction performance obtained in the near infrared.

  18. The curvature adaptive optics system modeling

    NASA Astrophysics Data System (ADS)

    Yang, Qiang

    A curvature adaptive optics (AO) simulation system has been built. The simulation is based on the Hokupa'a-36 AO system for the NASA IRTF 3m telescope and the Hokupa'a-85 AO system for the Gemini Near Infrared Coronagraphic Imager. Several sub-models are built separately for the AO simulation system, and they are: (1) generation and propagation of atmospheric phase screens, (2) the bimorph deformable mirror (DM), (3) the curvature wave-front sensor (CWFS), (4) generation of response functions, interaction matrices and calculation of command matrices, (5) Fresnel propagation from the DM pupil to the lenslet pupil, (6) AO servo loop, and (7) post processing. The AO simulation system is then applied to the effects of DM hysteresis, and to the optimization of DM actuator patterns for the Hokupa'a-85 and Hokupa'a-36 AO systems. In the first application, an enhancing Coleman-Hodgdon model is introduced to approximate the hysteresis curves, and then the Lambert W function is introduced to calculate the inverse of the Coleman-Hodgdon equation. Step response, transfer functions and Strehl Ratios from the AO system have been compared under the cases with/without DM hysteresis. The servo-loop results show that the bandwidth of an AO system is improved greatly after the DM hysteresis is corrected. In the second application, many issues of the bimorph mirror will be considered to optimize the DM patterns, and they include the type and length of the edge benders, gap size of electrodes, DM size, and DM curvature limit.

  19. Simulating Astronomical Adaptive Optics Systems Using Yao

    NASA Astrophysics Data System (ADS)

    Rigaut, François; Van Dam, Marcos

    2013-12-01

    Adaptive Optics systems are at the heart of the coming Extremely Large Telescopes generation. Given the importance, complexity and required advances of these systems, being able to simulate them faithfully is key to their success, and thus to the success of the ELTs. The type of systems envisioned to be built for the ELTs cover most of the AO breeds, from NGS AO to multiple guide star Ground Layer, Laser Tomography and Multi-Conjugate AO systems, with typically a few thousand actuators. This represents a large step up from the current generation of AO systems, and accordingly a challenge for existing AO simulation packages. This is especially true as, in the past years, computer power has not been following Moore's law in its most common understanding; CPU clocks are hovering at about 3GHz. Although the use of super computers is a possible solution to run these simulations, being able to use smaller machines has obvious advantages: cost, access, environmental issues. By using optimised code in an already proven AO simulation platform, we were able to run complex ELT AO simulations on very modest machines, including laptops. The platform is YAO. In this paper, we describe YAO, its architecture, its capabilities, the ELT-specific challenges and optimisations, and finally its performance. As an example, execution speed ranges from 5 iterations per second for a 6 LGS 60x60 subapertures Shack-Hartmann Wavefront sensor Laser Tomography AO system (including full physical image formation and detector characteristics) up to over 30 iterations/s for a single NGS AO system.

  20. Isoplanatism in a multiconjugate adaptive optics system.

    PubMed

    Tokovinin, A; Le Louarn, M; Sarazin, M

    2000-10-01

    Turbulence correction in a large field of view by use of an adaptive optics imaging system with several deformable mirrors (DM's) conjugated to various heights is considered. The residual phase variance is computed for an optimized linear algorithm in which a correction of each turbulent layer is achieved by applying a combination of suitably smoothed and scaled input phase screens to all DM's. Finite turbulence outer scale and finite spatial resolution of the DM's are taken into account. A general expression for the isoplanatic angle thetaM of a system with M mirrors is derived in the limiting case of infinitely large apertures and Kolmogorov turbulence. Like Fried's isoplanatic angle theta0,thetaM is a function only of the turbulence vertical profile, is scalable with wavelength, and is independent of the telescope diameter. Use of angle thetaM permits the gain in the field of view due to the increased number of DM's to be quantified and their optimal conjugate heights to be found. Calculations with real turbulence profiles show that with three DM's a gain of 7-10x is possible, giving the typical and best isoplanatic field-of-view radii of 16 and 30 arcseconds, respectively, at lambda = 0.5 microm. It is shown that in the actual systems the isoplanatic field will be somewhat larger than thetaM owing to the combined effects of finite aperture diameter, finite outer scale, and optimized wave-front spatial filtering. However, this additional gain is not dramatic; it is less than 1.5x for large-aperture telescopes. PMID:11028530

  1. Research on the liquid crystal adaptive optics system for human retinal imaging

    NASA Astrophysics Data System (ADS)

    Zhang, Lei; Tong, Shoufeng; Song, Yansong; Zhao, Xin

    2013-12-01

    The blood vessels only in Human eye retinal can be observed directly. Many diseases that are not obvious in their early symptom can be diagnosed through observing the changes of distal micro blood vessel. In order to obtain the high resolution human retinal images,an adaptive optical system for correcting the aberration of the human eye was designed by using the Shack-Hartmann wavefront sensor and the Liquid Crystal Spatial Light Modulator(LCLSM) .For a subject eye with 8m-1 (8D)myopia, the wavefront error is reduced to 0.084 λ PV and 0.12 λRMS after adaptive optics(AO) correction ,which has reached diffraction limit.The results show that the LCLSM based AO system has the ability of correcting the aberration of the human eye efficiently,and making the blurred photoreceptor cell to clearly image on a CCD camera.

  2. Optical character recognition of camera-captured images based on phase features

    NASA Astrophysics Data System (ADS)

    Diaz-Escobar, Julia; Kober, Vitaly

    2015-09-01

    Nowadays most of digital information is obtained using mobile devices specially smartphones. In particular, it brings the opportunity for optical character recognition in camera-captured images. For this reason many recognition applications have been recently developed such as recognition of license plates, business cards, receipts and street signal; document classification, augmented reality, language translator and so on. Camera-captured images are usually affected by geometric distortions, nonuniform illumination, shadow, noise, which make difficult the recognition task with existing systems. It is well known that the Fourier phase contains a lot of important information regardless of the Fourier magnitude. So, in this work we propose a phase-based recognition system exploiting phase-congruency features for illumination/scale invariance. The performance of the proposed system is tested in terms of miss classifications and false alarms with the help of computer simulation.

  3. Detection of pointing errors with CMOS-based camera in intersatellite optical communications

    NASA Astrophysics Data System (ADS)

    Yu, Si-yuan; Ma, Jing; Tan, Li-ying

    2005-01-01

    For very high data rates, intersatellite optical communications hold a potential performance edge over microwave communications. Acquisition and Tracking problem is critical because of the narrow transmit beam. A single array detector in some systems performs both spatial acquisition and tracking functions to detect pointing errors, so both wide field of view and high update rate is required. The past systems tend to employ CCD-based camera with complex readout arrangements, but the additional complexity reduces the applicability of the array based tracking concept. With the development of CMOS array, CMOS-based cameras can employ the single array detector concept. The area of interest feature of the CMOS-based camera allows a PAT system to specify portion of the array. The maximum allowed frame rate increases as the size of the area of interest decreases under certain conditions. A commercially available CMOS camera with 105 fps @ 640×480 is employed in our PAT simulation system, in which only part pixels are used in fact. Beams angle varying in the field of view can be detected after getting across a Cassegrain telescope and an optical focus system. Spot pixel values (8 bits per pixel) reading out from CMOS are transmitted to a DSP subsystem via IEEE 1394 bus, and pointing errors can be computed by the centroid equation. It was shown in test that: (1) 500 fps @ 100×100 is available in acquisition when the field of view is 1mrad; (2)3k fps @ 10×10 is available in tracking when the field of view is 0.1mrad.

  4. Coherence-Gated Sensorless Adaptive Optics Multiphoton Retinal Imaging

    PubMed Central

    Cua, Michelle; Wahl, Daniel J.; Zhao, Yuan; Lee, Sujin; Bonora, Stefano; Zawadzki, Robert J.; Jian, Yifan; Sarunic, Marinko V.

    2016-01-01

    Multiphoton microscopy enables imaging deep into scattering tissues. The efficient generation of non-linear optical effects is related to both the pulse duration (typically on the order of femtoseconds) and the size of the focused spot. Aberrations introduced by refractive index inhomogeneity in the sample distort the wavefront and enlarge the focal spot, which reduces the multiphoton signal. Traditional approaches to adaptive optics wavefront correction are not effective in thick or multi-layered scattering media. In this report, we present sensorless adaptive optics (SAO) using low-coherence interferometric detection of the excitation light for depth-resolved aberration correction of two-photon excited fluorescence (TPEF) in biological tissue. We demonstrate coherence-gated SAO TPEF using a transmissive multi-actuator adaptive lens for in vivo imaging in a mouse retina. This configuration has significant potential for reducing the laser power required for adaptive optics multiphoton imaging, and for facilitating integration with existing systems. PMID:27599635

  5. Architecture and performance of astronomical adaptive optics systems

    NASA Technical Reports Server (NTRS)

    Bloemhof, E.

    2002-01-01

    In recent years the technological advances of adaptive optics have enabled a great deal of innovative science. In this lecture I review the system-level design of modern astronomical AO instruments, and discuss their current capabilities.

  6. Coherence-Gated Sensorless Adaptive Optics Multiphoton Retinal Imaging.

    PubMed

    Cua, Michelle; Wahl, Daniel J; Zhao, Yuan; Lee, Sujin; Bonora, Stefano; Zawadzki, Robert J; Jian, Yifan; Sarunic, Marinko V

    2016-01-01

    Multiphoton microscopy enables imaging deep into scattering tissues. The efficient generation of non-linear optical effects is related to both the pulse duration (typically on the order of femtoseconds) and the size of the focused spot. Aberrations introduced by refractive index inhomogeneity in the sample distort the wavefront and enlarge the focal spot, which reduces the multiphoton signal. Traditional approaches to adaptive optics wavefront correction are not effective in thick or multi-layered scattering media. In this report, we present sensorless adaptive optics (SAO) using low-coherence interferometric detection of the excitation light for depth-resolved aberration correction of two-photon excited fluorescence (TPEF) in biological tissue. We demonstrate coherence-gated SAO TPEF using a transmissive multi-actuator adaptive lens for in vivo imaging in a mouse retina. This configuration has significant potential for reducing the laser power required for adaptive optics multiphoton imaging, and for facilitating integration with existing systems. PMID:27599635

  7. Sensorless adaptive optics implementation in widefield optical sectioning microscopy inside in vivo Drosophila brain

    NASA Astrophysics Data System (ADS)

    Pedrazzani, Mélanie; Loriette, Vincent; Tchenio, Paul; Benrezzak, Sakina; Nutarelli, Daniele; Fragola, Alexandra

    2016-03-01

    We present an implementation of a sensorless adaptive optics loop in a widefield fluorescence microscope. This setup is designed to compensate for aberrations induced by the sample on both excitation and emission pathways. It allows fast optical sectioning inside a living Drosophila brain. We present a detailed characterization of the system performances. We prove that the gain brought to optical sectioning by realizing structured illumination microscopy with adaptive optics down to 50 μm deep inside living Drosophila brain.

  8. Sensorless adaptive optics implementation in widefield optical sectioning microscopy inside in vivo Drosophila brain.

    PubMed

    Pedrazzani, Mélanie; Loriette, Vincent; Tchenio, Paul; Benrezzak, Sakina; Nutarelli, Daniele; Fragola, Alexandra

    2016-03-01

    We present an implementation of a sensorless adaptive optics loop in a widefield fluorescence microscope. This setup is designed to compensate for aberrations induced by the sample on both excitation and emission pathways. It allows fast optical sectioning inside a living Drosophila brain. We present a detailed characterization of the system performances. We prove that the gain brought to optical sectioning by realizing structured illumination microscopy with adaptive optics down to 50 μm deep inside living Drosophila brain. PMID:26968001

  9. How adaptive optics may have won the Cold War

    NASA Astrophysics Data System (ADS)

    Tyson, Robert K.

    2013-05-01

    While there are many theories and studies concerning the end of the Cold War, circa 1990, I postulate that one of the contributors to the result was the development of adaptive optics. The emergence of directed energy weapons, specifically space-based and ground-based high energy lasers made practicable with adaptive optics, showed that a successful defense against inter-continental ballistic missiles was not only possible, but achievable in a reasonable period of time.

  10. Solar adaptive optics at the Observatorio del Teide, Tenerife

    NASA Astrophysics Data System (ADS)

    Soltau, Dirk; Berkefeld, Thomas; Schmidt, Dirk; von der Lühe, Oskar

    2013-10-01

    Observing the Sun with high angular resolution is difficult because the turbulence in the atmosphere is strongest during day time. In this paper we describe the principles of solar adaptive optics exemplified by the two German solar telescopes VTT and GREGOR at the Observatorio del Teide. With theses systems we obtain near diffraction limited images of the Sun. Ways to overcome the limits of conventional AO by applying multiconjugate adaptive optics (MCAO) are shown.

  11. Astronomy Applications of Adaptive Optics at Lawrence Livermore National Laboratory

    SciTech Connect

    Bauman, B J; Gavel, D T

    2003-04-23

    Astronomical applications of adaptive optics at Lawrence Livermore National Laboratory (LLNL) has a history that extends from 1984. The program started with the Lick Observatory Adaptive Optics system and has progressed through the years to lever-larger telescopes: Keck, and now the proposed CELT (California Extremely Large Telescope) 30m telescope. LLNL AO continues to be at the forefront of AO development and science.

  12. Laser guide star adaptive optics: Present and future

    SciTech Connect

    Olivier, S.S.; Max, C.E.

    1993-03-01

    Feasibility demonstrations using one to two meter telescopes have confirmed the utility of laser beacons as wavefront references for adaptive optics systems. Laser beacon architectures suitable for the new generation of eight and ten meter telescopes are presently under study. This paper reviews the concept of laser guide star adaptive optics and the progress that has been made by groups around the world implementing such systems. A description of the laser guide star program at LLNL and some experimental results is also presented.

  13. Guide star lasers for adaptive optics

    NASA Astrophysics Data System (ADS)

    Roberts, William Thomas, Jr.

    Exploitation of the imaging capabilities of the new generation of ground-based astronomical telescopes relies heavily on Adaptive Optics (AO). Current AO system designs call for sodium guide star lasers capable of producing at least eight Watts of power tuned to the peak of the sodium D2 line, with a high duty cycle to avoid saturation, and with 0.5-1.0 GHz spectral broadening. This work comprises development and testing of six candidate laser systems and materials which may afford a path to achieving these goals. An end-pumped CW dye laser producing 4.0 Watts of tuned output power was developed and used to obtain the first accurate measurement of sodium layer scattering efficiency. Methods of optimizing the laser output through improving pump overlap efficiency and reducing the number of intracavity scattering surfaces are covered. The 1181 nm fluorescence peak of Mn5+ ion in Ba5 (PO4)3Cl could be tuned and doubled to reach 589 nm. While efforts to grow this crystal were under way, the Mn5+ ion in natural apatite (Ca5(PO4)3F) was studied as a potential laser material. Fluorescence saturation measurements and transmission saturation are presented, as well as efforts to obtain CW lasing in natural apatite. A Q-switched laser color-center laser in LiF : F-2 was developed and successfully tuned and doubled to the sodium D 2 line. Broad-band lasing of 80 mW and tuned narrow-band lasing of 35 mW at 1178 nm were obtained with 275 mW of input pump power at 1064 nm. The measured thermal properties of this material indicate its potential for scaling to much higher power. A Q-switched intracavity Raman laser was developed in which CaWO 4 was used to shift a Nd:YAG laser, the frequency-doubled output of which was centered at 589.3 nm. To obtain light at 589.0 nm, a compositionally tuned pump laser of Nd : Y3Ga1.1Al3.9O 12 was produced which generated the desired shift, but was inhomogeneous broadened, limiting the tunable power of the material. Finally, temperature tuning of

  14. Optical streak camera images of wire-array z-pinches on the 1-MA COBRA pulsed power generator

    NASA Astrophysics Data System (ADS)

    McBride, Ryan; Pikuz, Sergei; Blesener, Isaac; Zhao, Yu Tao; Greenly, John; Hammer, David; Kusse, Bruce

    2006-10-01

    Initial optical streak camera imaging experiments of wire array z-pinches on the 1 MA COBRA pulsed power generator are presented. The imaging system makes use of a Hamamatsu C7700 streak unit, which is coupled to a V7669-06 image intensifier with an MCP, and a C4742-98 CCD camera. A long focal length optical system is employed to relay the z-pinch produced light from the experiment chamber to the input slit of the streak camera -- a total transmission distance of approximately 14 m. The optical streak camera images produced, along with data from other supporting diagnostics, are presented for z-pinch implosions of various wire array geometries and materials.

  15. Design of wide-field Nasmyth optics for a submillimeter camera

    NASA Astrophysics Data System (ADS)

    Tsuzuki, Toshihiro; Nitta, Tom; Imada, Hiroaki; Seta, Masumichi; Nakai, Naomasa; Sekiguchi, Sigeyuki; Sekimoto, Yutaro

    2014-07-01

    We designed wide FoV (1 degree) Nasmyth optics which transformed the f/6 Nasmyth focus to f/1 at a 850GHz superconducting camera for a planning 10-m Ritchey-Chrétien telescope. This optical system consists of reflecting mirrors at room temperature and a refractive lens at 4K. It enables us to carry out wide FoV imaging observations at the diffraction limit (Strehl ratio < 0.89) with a more than 100,000 pixel camera equipped in a 10-m telescope. The size of this system is reasonably compact (whole size:1.6 mx3.3 mx2.6 m, cryogenic part:0.7 mx0.7 mx1.0 m). The cryogenic part of this system such as vacuum window, cryogenic lens and IR block filters can be made with existing technologies at reasonable cost. The optical system can extend to the millimeter wave and the terahertz domain.

  16. 200 ps FWHM and 100 MHz repetition rate ultrafast gated camera for optical medical functional imaging

    NASA Astrophysics Data System (ADS)

    Uhring, Wilfried; Poulet, Patrick; Hanselmann, Walter; Glazenborg, René; Zint, Virginie; Nouizi, Farouk; Dubois, Benoit; Hirschi, Werner

    2012-04-01

    The paper describes the realization of a complete optical imaging device to clinical applications like brain functional imaging by time-resolved, spectroscopic diffuse optical tomography. The entire instrument is assembled in a unique setup that includes a light source, an ultrafast time-gated intensified camera and all the electronic control units. The light source is composed of four near infrared laser diodes driven by a nanosecond electrical pulse generator working in a sequential mode at a repetition rate of 100 MHz. The resulting light pulses, at four wavelengths, are less than 80 ps FWHM. They are injected in a four-furcated optical fiber ended with a frontal light distributor to obtain a uniform illumination spot directed towards the head of the patient. Photons back-scattered by the subject are detected by the intensified CCD camera; there are resolved according to their time of flight inside the head. The very core of the intensified camera system is the image intensifier tube and its associated electrical pulse generator. The ultrafast generator produces 50 V pulses, at a repetition rate of 100 MHz and a width corresponding to the 200 ps requested gate. The photocathode and the Micro-Channel-Plate of the intensifier have been specially designed to enhance the electromagnetic wave propagation and reduce the power loss and heat that are prejudicial to the quality of the image. The whole instrumentation system is controlled by an FPGA based module. The timing of the light pulses and the photocathode gating is precisely adjustable with a step of 9 ps. All the acquisition parameters are configurable via software through an USB plug and the image data are transferred to a PC via an Ethernet link. The compactness of the device makes it a perfect device for bedside clinical applications.

  17. Adaptive optics in digital micromirror based confocal microscopy

    NASA Astrophysics Data System (ADS)

    Pozzi, P.; Wilding, D.; Soloviev, O.; Vdovin, G.; Verhaegen, M.

    2016-03-01

    This proceeding reports early results in the development of a new technique for adaptive optics in confocal microscopy. The term adaptive optics refers to the branch of optics in which an active element in the optical system is used to correct inhomogeneities in the media through which light propagates. In its most classical form, mostly used in astronomical imaging, adaptive optics is achieved through a closed loop in which the actuators of a deformable mirror are driven by a wavefront sensor. This approach is severely limited in fluorescence microscopy, as the use of a wavefront sensor requires the presence of a bright, point like source in the field of view, a condition rarely satisfied in microscopy samples. Previously reported approaches to adaptive optics in fluorescence microscopy are therefore limited to the inclusion of fluorescent microspheres in the sample, to use as bright stars for wavefront sensors, or time consuming sensorless optimization procedures, requiring several seconds of optimization before the acquisition of a single image. We propose an alternative approach to the problem, implementing sensorless adaptive optics in a Programmable array microscope. A programmable array microscope is a microscope based on a digital micromirror device, in which the single elements of the micromirror act both as point sources and pinholes.

  18. Diffuse optical tomography by using time-resolved single pixel camera

    NASA Astrophysics Data System (ADS)

    Farina, A.; Lepore, M.; Di Sieno, L.; Dalla Mora, A.; Ducros, N.; Pifferi, A.; Valentini, G.; Arridge, S.; D'Andrea, C.

    2015-03-01

    Diffuse Optical Tomography (DOT) and Fluorescence Molecular Tomography (FMT) generally require a huge data set which poses severe limits to acquisition and computational time, especially with a multidimensional data set. The highly scattering behavior of biological tissue leads to a low bandwidth of the information spatial distribution and hence the sampling can be preferably carried out in the spatial frequency source/detector space. In this work, a time-resolved single pixel camera scheme combined with structured light illumination is presented and experimentally validated on phantoms measurements. This approach leads to a significant reduction of the data set while preserving the information content.

  19. Optics design of laser spotter camera for ex-CCD sensor

    NASA Astrophysics Data System (ADS)

    Nautiyal, R. P.; Mishra, V. K.; Sharma, P. K.

    2015-06-01

    Development of Laser based instruments like laser range finder and laser ranger designator has received prominence in modern day military application. Aiming the laser on the target is done with the help of a bore sighted graticule as human eye cannot see the laser beam directly. To view Laser spot there are two types of detectors available, InGaAs detector and Ex-CCD detector, the latter being a cost effective solution. In this paper optics design for Ex-CCD based camera is discussed. The designed system is light weight and compact and has the ability to see the 1064nm pulsed laser spot upto a range of 5 km.

  20. Building the next-generation science camera for the Navy Optical Interferometer

    NASA Astrophysics Data System (ADS)

    Ghasempour, A.; Muterspaugh, M. W.; Hutter, D. J.; Monnier, J. D.; Benson, J. A.; Armstrong, J. T.; Williamson, M. H.; Fall, S.; Harrison, C.; Sergeyous, C.

    2012-07-01

    VISION is the next generation science camera for the Navy Optical Interferometer (NOI). In comparison to the current beam combiner of NOI, VISION will deliver higher precision data products and better exibility by incorporating single mode bers for spatial ltering and by using low-noise detectors. VISION can coherently combine up to six telescope beams using an image-plane combination scheme. This results in simultaneous measurement of 15 visibility amplitudes and 10 independent closure phases that can be used to reconstruct multipixel images of stars.

  1. Time-Of-Flight Camera, Optical Tracker and Computed Tomography in Pairwise Data Registration

    PubMed Central

    Badura, Pawel; Juszczyk, Jan; Pietka, Ewa

    2016-01-01

    Purpose A growing number of medical applications, including minimal invasive surgery, depends on multi-modal or multi-sensors data processing. Fast and accurate 3D scene analysis, comprising data registration, seems to be crucial for the development of computer aided diagnosis and therapy. The advancement of surface tracking system based on optical trackers already plays an important role in surgical procedures planning. However, new modalities, like the time-of-flight (ToF) sensors, widely explored in non-medical fields are powerful and have the potential to become a part of computer aided surgery set-up. Connection of different acquisition systems promises to provide a valuable support for operating room procedures. Therefore, the detailed analysis of the accuracy of such multi-sensors positioning systems is needed. Methods We present the system combining pre-operative CT series with intra-operative ToF-sensor and optical tracker point clouds. The methodology contains: optical sensor set-up and the ToF-camera calibration procedures, data pre-processing algorithms, and registration technique. The data pre-processing yields a surface, in case of CT, and point clouds for ToF-sensor and marker-driven optical tracker representation of an object of interest. An applied registration technique is based on Iterative Closest Point algorithm. Results The experiments validate the registration of each pair of modalities/sensors involving phantoms of four various human organs in terms of Hausdorff distance and mean absolute distance metrics. The best surface alignment was obtained for CT and optical tracker combination, whereas the worst for experiments involving ToF-camera. Conclusion The obtained accuracies encourage to further develop the multi-sensors systems. The presented substantive discussion concerning the system limitations and possible improvements mainly related to the depth information produced by the ToF-sensor is useful for computer aided surgery developers

  2. Adaptive Optics for Satellite Imaging and Space Debris Ranging

    NASA Astrophysics Data System (ADS)

    Bennet, F.; D'Orgeville, C.; Price, I.; Rigaut, F.; Ritchie, I.; Smith, C.

    Earth's space environment is becoming crowded and at risk of a Kessler syndrome, and will require careful management for the future. Modern low noise high speed detectors allow for wavefront sensing and adaptive optics (AO) in extreme circumstances such as imaging small orbiting bodies in Low Earth Orbit (LEO). The Research School of Astronomy and Astrophysics (RSAA) at the Australian National University have been developing AO systems for telescopes between 1 and 2.5m diameter to image and range orbiting satellites and space debris. Strehl ratios in excess of 30% can be achieved for targets in LEO with an AO loop running at 2kHz, allowing the resolution of small features (<30cm) and the capability to determine object shape and spin characteristics. The AO system developed at RSAA consists of a high speed EMCCD Shack-Hartmann wavefront sensor, a deformable mirror (DM), and realtime computer (RTC), and an imaging camera. The system works best as a laser guide star system but will also function as a natural guide star AO system, with the target itself being the guide star. In both circumstances tip-tilt is provided by the target on the imaging camera. The fast tip-tilt modes are not corrected optically, and are instead removed by taking images at a moderate speed (>30Hz) and using a shift and add algorithm. This algorithm can also incorporate lucky imaging to further improve the final image quality. A similar AO system for space debris ranging is also in development in collaboration with Electro Optic Systems (EOS) and the Space Environment Management Cooperative Research Centre (SERC), at the Mount Stromlo Observatory in Canberra, Australia. The system is designed for an AO corrected upward propagated 1064nm pulsed laser beam, from which time of flight information is used to precisely range the target. A 1.8m telescope is used for both propagation and collection of laser light. A laser guide star, Shack-Hartmann wavefront sensor, and DM are used for high order

  3. Stray light lessons learned from the Mars reconnaissance orbiter's optical navigation camera

    NASA Astrophysics Data System (ADS)

    Lowman, Andrew E.; Stauder, John L.

    2004-10-01

    The Optical Navigation Camera (ONC) is a technical demonstration slated to fly on NASA"s Mars Reconnaissance Orbiter in 2005. Conventional navigation methods have reduced accuracy in the days immediately preceding Mars orbit insertion. The resulting uncertainty in spacecraft location limits rover landing sites to relatively safe areas, away from interesting features that may harbor clues to past life on the planet. The ONC will provide accurate navigation on approach for future missions by measuring the locations of the satellites of Mars relative to background stars. Because Mars will be a bright extended object just outside the camera"s field of view, stray light control at small angles is essential. The ONC optomechanical design was analyzed by stray light experts and appropriate baffles were implemented. However, stray light testing revealed significantly higher levels of light than expected at the most critical angles. The primary error source proved to be the interface between ground glass surfaces (and the paint that had been applied to them) and the polished surfaces of the lenses. This paper will describe troubleshooting and correction of the problem, as well as other lessons learned that affected stray light performance.

  4. Diffraction limited focal spot in the interaction chamber using phase retrieval adaptive optics

    NASA Astrophysics Data System (ADS)

    Lefaudeux, Nicolas; Lavergne, Emeric; Monchoce, Sylvain; Levecq, Xavier

    2014-03-01

    In order to provide the end user with a diffraction limited collimated beam, adaptive optics phase correction systems are now a standard feature of ultra intense laser facilities. Generally speaking, these systems are based on a deformable mirror controlled in closed loop configuration in order to correct the aberrations of the beam measured by the wavefront sensor. Such implementation corrects for most of the aberrations of the laser. However, the aberrations of the optical elements located downstream of the wavefront sensor are not measured and therefore not corrected by the adaptive optics loop while they are degrading the final focal spot. We present an improved correction strategy and results based on a combination of both usual closed loop and phase retrieval in order to reach the diffraction limit at the focal spot inside the interaction chamber. The off axis parabola alignment camera located at the focal spot is used in combination of the deformable mirror and wavefront sensor to get images of the focal spot. The residual aberrations of the focal spot are measured by a Phase Retrieval algorithm using the acquired focal spot images. Then the adaptive optics loop is run in order to precompensate for these aberrations, which leads to diffraction limited focal spot in the interaction chamber.

  5. An adaptive optic for correcting low-order wavefront aberrations

    SciTech Connect

    Thompson, C A; Wilhelmsen, J

    1999-09-02

    Adaptive Optics used for correcting low-order wavefront aberrations were tested and compared using interferometry, beam propagation, and a far-field test. Results confirm that the design and manufacturing specifications were met. Experimental data also confirms theoretical performance expectations, indicating the usefulness of these optics (especially in a laser-beam processing system), and identifying the resulting differences between the two fabrication methods used to make the optics.

  6. MagAO: Status and on-sky performance of the Magellan adaptive optics system

    NASA Astrophysics Data System (ADS)

    Morzinski, Katie M.; Close, Laird M.; Males, Jared R.; Kopon, Derek; Hinz, Phil M.; Esposito, Simone; Riccardi, Armando; Puglisi, Alfio; Pinna, Enrico; Briguglio, Runa; Xompero, Marco; Quirós-Pacheco, Fernando; Bailey, Vanessa; Follette, Katherine B.; Rodigas, T. J.; Wu, Ya-Lin; Arcidiacono, Carmelo; Argomedo, Javier; Busoni, Lorenzo; Hare, Tyson; Uomoto, Alan; Weinberger, Alycia

    2014-07-01

    MagAO is the new adaptive optics system with visible-light and infrared science cameras, located on the 6.5-m Magellan "Clay" telescope at Las Campanas Observatory, Chile. The instrument locks on natural guide stars (NGS) from 0th to 16th R-band magnitude, measures turbulence with a modulating pyramid wavefront sensor binnable from 28×28 to 7×7 subapertures, and uses a 585-actuator adaptive secondary mirror (ASM) to provide at wavefronts to the two science cameras. MagAO is a mutated clone of the similar AO systems at the Large Binocular Telescope (LBT) at Mt. Graham, Arizona. The high-level AO loop controls up to 378 modes and operates at frame rates up to 1000 Hz. The instrument has two science cameras: VisAO operating from 0.5-1μm and Clio2 operating from 1-5 μm. MagAO was installed in 2012 and successfully completed two commissioning runs in 2012-2013. In April 2014 we had our first science run that was open to the general Magellan community. Observers from Arizona, Carnegie, Australia, Harvard, MIT, Michigan, and Chile took observations in collaboration with the MagAO instrument team. Here we describe the MagAO instrument, describe our on-sky performance, and report our status as of summer 2014.

  7. Open loop liquid crystal adaptive optics systems: progresses and results

    NASA Astrophysics Data System (ADS)

    Cao, Zhao-liang; Mu, Quan-quan; Xu, Huan-yu; Zhang, Pei-guang; Yao, Li-shuang; Xuan, Li

    2015-10-01

    Liquid crystal wavefront corrector (LCWFC) is one of the most attractive wavefront correction devices for adaptive optics system. The main disadvantages for conventional nematic LCWFC are polarization dependence and narrow working waveband. In this paper, a polarized beam splitter (PBS) based open loop optical design and an optimized energy splitting method was used to overcome these problems respectively. The results indicate that the open loop configuration was suitable for LCWFC and the novel energy splitting method can significantly improve the detection capability of the liquid crystal adaptive optics system.

  8. Introducing Novel Generation of High Accuracy Camera Optical-Testing and Calibration Test-Stands Feasible for Series Production of Cameras

    NASA Astrophysics Data System (ADS)

    Nekouei Shahraki, M.; Haala, N.

    2015-12-01

    The recent advances in the field of computer-vision have opened the doors of many opportunities for taking advantage of these techniques and technologies in many fields and applications. Having a high demand for these systems in today and future vehicles implies a high production volume of video cameras. The above criterions imply that it is critical to design test systems which deliver fast and accurate calibration and optical-testing capabilities. In this paper we introduce new generation of test-stands delivering high calibration quality in single-shot calibration of fisheye surround-view cameras. This incorporates important geometric features from bundle-block calibration, delivers very high (sub-pixel) calibration accuracy, makes possible a very fast calibration procedure (few seconds), and realizes autonomous calibration via machines. We have used the geometrical shape of a Spherical Helix (Type: 3D Spherical Spiral) with special geometrical characteristics, having a uniform radius which corresponds to the uniform motion. This geometrical feature was mechanically realized using three dimensional truncated icosahedrons which practically allow the implementation of a spherical helix on multiple surfaces. Furthermore the test-stand enables us to perform many other important optical tests such as stray-light testing, enabling us to evaluate the certain qualities of the camera optical module.

  9. Amplitude variations on the Extreme Adaptive Optics testbed

    SciTech Connect

    Evans, J; Thomas, S; Dillon, D; Gavel, D; Phillion, D; Macintosh, B

    2007-08-14

    High-contrast adaptive optics systems, such as those needed to image extrasolar planets, are known to require excellent wavefront control and diffraction suppression. At the Laboratory for Adaptive Optics on the Extreme Adaptive Optics testbed, we have already demonstrated wavefront control of better than 1 nm rms within controllable spatial frequencies. Corresponding contrast measurements, however, are limited by amplitude variations, including those introduced by the micro-electrical-mechanical-systems (MEMS) deformable mirror. Results from experimental measurements and wave optic simulations of amplitude variations on the ExAO testbed are presented. We find systematic intensity variations of about 2% rms, and intensity variations with the MEMS to be 6%. Some errors are introduced by phase and amplitude mixing because the MEMS is not conjugate to the pupil, but independent measurements of MEMS reflectivity suggest that some error is introduced by small non-uniformities in the reflectivity.

  10. Wavefront sensorless adaptive optics ophthalmoscopy in the human eye

    NASA Astrophysics Data System (ADS)

    Hofer, Heidi; Sredar, Nripun; Queener, Hope; Li, Chaohong; Porter, Jason

    2011-07-01

    Wavefront sensor noise and fidelity place a fundamental limit on achievable image quality in current adaptive optics ophthalmoscopes. Additionally, the wavefront sensor `beacon' can interfere with visual experiments. We demonstrate real-time (25 Hz), wavefront sensorless adaptive optics imaging in the living human eye with image quality rivaling that of wavefront sensor based control in the same system. A stochastic parallel gradient descent algorithm directly optimized the mean intensity in retinal image frames acquired with a confocal adaptive optics scanning laser ophthalmoscope (AOSLO). When imaging through natural, undilated pupils, both control methods resulted in comparable mean image intensities. However, when imaging through dilated pupils, image intensity was generally higher following wavefront sensor-based control. Despite the typically reduced intensity, image contrast was higher, on average, with sensorless control. Wavefront sensorless control is a viable option for imaging the living human eye and future refinements of this technique may result in even greater optical gains.

  11. High-resolution adaptive optics test bed for vision science

    NASA Astrophysics Data System (ADS)

    Wilks, Scott C.; Thompson, Charles A.; Olivier, Scot S.; Bauman, Brian J.; Flath, Laurence M.; Silva, Dennis A.; Sawvel, Robert M.; Barnes, Thomas B.; Werner, John S.

    2002-02-01

    We discuss the design and implementation of a low-cost, high-resolution adaptive optics test-bed for vision research. It is well known that high-order aberrations in the human eye reduce optical resolution and limit visual acuity. However, the effects of aberration-free eyesight on vision are only now beginning to be studied using adaptive optics to sense and correct the aberrations in the eye. We are developing a high-resolution adaptive optics system for this purpose using a Hamamatsu Parallel Aligned Nematic Liquid Crystal Spatial Light Modulator. Phase-wrapping is used to extend the effective stroke of the device, and the wavefront sensing and wavefront correction are done at different wavelengths. Issues associated with these techniques will be discussed.

  12. In vivo high-resolution retinal imaging using adaptive optics.

    PubMed

    Seyedahmadi, Babak Jian; Vavvas, Demetrios

    2010-01-01

    Retinal imaging with conventional methods is only able to overcome the lowest order of aberration, defocus and astigmatism. The human eye is fraught with higher order of aberrations. Since we are forced to use the human optical system in retinal imaging, the images are degraded. In addition, all of these distortions are constantly changing due to head/eye movement and change in accommodation. Adaptive optics is a promising technology introduced in the field of ophthalmology to measure and compensate for these aberrations. High-resolution obtained by adaptive optics enables us to view and image the retinal photoreceptors, retina pigment epithelium, and identification of cone subclasses in vivo. In this review we will be discussing the basic technology of adaptive optics and hardware requirement in addition to clinical applications of such technology. PMID:21090998

  13. A dual-modal retinal imaging system with adaptive optics

    PubMed Central

    Meadway, Alexander; Girkin, Christopher A.; Zhang, Yuhua

    2013-01-01

    An adaptive optics scanning laser ophthalmoscope (AO-SLO) is adapted to provide optical coherence tomography (OCT) imaging. The AO-SLO function is unchanged. The system uses the same light source, scanning optics, and adaptive optics in both imaging modes. The result is a dual-modal system that can acquire retinal images in both en face and cross-section planes at the single cell level. A new spectral shaping method is developed to reduce the large sidelobes in the coherence profile of the OCT imaging when a non-ideal source is used with a minimal introduction of noise. The technique uses a combination of two existing digital techniques. The thickness and position of the traditionally named inner segment/outer segment junction are measured from individual photoreceptors. In-vivo images of healthy and diseased human retinas are demonstrated. PMID:24514529

  14. CCD-camera-based diffuse optical tomography to study ischemic stroke in preclinical rat models

    NASA Astrophysics Data System (ADS)

    Lin, Zi-Jing; Niu, Haijing; Liu, Yueming; Su, Jianzhong; Liu, Hanli

    2011-02-01

    Stroke, due to ischemia or hemorrhage, is the neurological deficit of cerebrovasculature and is the third leading cause of death in the United States. More than 80 percent of stroke patients are ischemic stroke due to blockage of artery in the brain by thrombosis or arterial embolism. Hence, development of an imaging technique to image or monitor the cerebral ischemia and effect of anti-stoke therapy is more than necessary. Near infrared (NIR) optical tomographic technique has a great potential to be utilized as a non-invasive image tool (due to its low cost and portability) to image the embedded abnormal tissue, such as a dysfunctional area caused by ischemia. Moreover, NIR tomographic techniques have been successively demonstrated in the studies of cerebro-vascular hemodynamics and brain injury. As compared to a fiberbased diffuse optical tomographic system, a CCD-camera-based system is more suitable for pre-clinical animal studies due to its simpler setup and lower cost. In this study, we have utilized the CCD-camera-based technique to image the embedded inclusions based on tissue-phantom experimental data. Then, we are able to obtain good reconstructed images by two recently developed algorithms: (1) depth compensation algorithm (DCA) and (2) globally convergent method (GCM). In this study, we will demonstrate the volumetric tomographic reconstructed results taken from tissuephantom; the latter has a great potential to determine and monitor the effect of anti-stroke therapies.

  15. Horizontal Path Laser Communications Employing MEMS Adaptive Optics Correction

    SciTech Connect

    Thompson, C A; Wilks, S C; Brase, J M; Young, R A; Johnson, G W; Ruggiero, A J

    2001-09-05

    Horizontal path laser communications are beginning to provide attractive alternatives for high-speed optical communications, In particular, companies are beginning to sell fiberless alternatives for intranet and sporting event video. These applications are primarily aimed at short distance applications (on the order of 1 km pathlength). There exists a potential need to extend this pathlength to distances much greater than a 1km. For cases of long distance optical propagation, atmospheric turbulence will ultimately limit the maximum achievable data rate. In this paper, we propose a method of improved signal quality through the use of adaptive optics. In particular, we show work in progress toward a high-speed, small footprint Adaptive Optics system for horizontal path laser communications. Such a system relies heavily on recent progress in Micro-Electro-Mechanical Systems (MEMS) deformable mirrors as well as improved communication and computational components. In this paper we detail two Adaptive Optics approaches for improved through-put, the first is the compensated receiver (the traditional Adaptive Optics approach), the second is the compensated transmitter/receiver. The second approach allows for correction of the optical wavefront before transmission from the transmitter and prior to detection at the receiver.

  16. Adaptive optical biocompact disk for molecular recognition

    NASA Astrophysics Data System (ADS)

    Peng, Leilei; Varma, Manoj M.; Regnier, Fred E.; Nolte, David D.

    2005-05-01

    We report the use of adaptive interferometry to detect a monolayer of protein immobilized in a periodic pattern on a spinning glass disk. A photorefractive quantum-well device acting as an adaptive beam mixer in a two-wave mixing geometry stabilizes the interferometric quadrature in the far field. Phase modulation generated by the spinning biolayer pattern in the probe beam is detected as a homodyne signal free of amplitude modulation. Binding between antibodies and immobilized antigens in a two-analyte immunoassay was tested with high specificity and without observable cross reactivity.

  17. Digital adaptive optics line-scanning confocal imaging system.

    PubMed

    Liu, Changgeng; Kim, Myung K

    2015-01-01

    A digital adaptive optics line-scanning confocal imaging (DAOLCI) system is proposed by applying digital holographic adaptive optics to a digital form of line-scanning confocal imaging system. In DAOLCI, each line scan is recorded by a digital hologram, which allows access to the complex optical field from one slice of the sample through digital holography. This complex optical field contains both the information of one slice of the sample and the optical aberration of the system, thus allowing us to compensate for the effect of the optical aberration, which can be sensed by a complex guide star hologram. After numerical aberration compensation, the corrected optical fields of a sequence of line scans are stitched into the final corrected confocal image. In DAOLCI, a numerical slit is applied to realize the confocality at the sensor end. The width of this slit can be adjusted to control the image contrast and speckle noise for scattering samples. DAOLCI dispenses with the hardware pieces, such as Shack–Hartmann wavefront sensor and deformable mirror, and the closed-loop feedbacks adopted in the conventional adaptive optics confocal imaging system, thus reducing the optomechanical complexity and cost. Numerical simulations and proof-of-principle experiments are presented that demonstrate the feasibility of this idea. PMID:26140334

  18. Digital adaptive optics line-scanning confocal imaging system

    NASA Astrophysics Data System (ADS)

    Liu, Changgeng; Kim, Myung K.

    2015-11-01

    A digital adaptive optics line-scanning confocal imaging (DAOLCI) system is proposed by applying digital holographic adaptive optics to a digital form of line-scanning confocal imaging system. In DAOLCI, each line scan is recorded by a digital hologram, which allows access to the complex optical field from one slice of the sample through digital holography. This complex optical field contains both the information of one slice of the sample and the optical aberration of the system, thus allowing us to compensate for the effect of the optical aberration, which can be sensed by a complex guide star hologram. After numerical aberration compensation, the corrected optical fields of a sequence of line scans are stitched into the final corrected confocal image. In DAOLCI, a numerical slit is applied to realize the confocality at the sensor end. The width of this slit can be adjusted to control the image contrast and speckle noise for scattering samples. DAOLCI dispenses with the hardware pieces, such as Shack-Hartmann wavefront sensor and deformable mirror, and the closed-loop feedbacks adopted in the conventional adaptive optics confocal imaging system, thus reducing the optomechanical complexity and cost. Numerical simulations and proof-of-principle experiments are presented that demonstrate the feasibility of this idea.

  19. Optical design for the 450, 350, and 200 µm ArTeMiS camera

    NASA Astrophysics Data System (ADS)

    Dubreuil, Didier; Martignac, Jérôme; Toussaint, Jean Christian; Visticot, François; Delisle, Cyrille; Gallais, Pascal; Le Pennec, Jean; Lerch, Thierry; André, Philippe; Lortholary, Michel; Maffei, Bruno; Haynes, Vic; Hurtado, Norma; Pisano, Giampaolo; Revéret, Vincent; Rodriguez, Louis; Talvard, Michel

    2014-07-01

    ArTeMiS is a submillimeter camera planned to work simultaneously at 450 μm, 350 μm and 200 μm by use of 3 focal planes of, respectively, 8, 8 and 4 bolometric arrays, each one made of 16 x18 pixels. In July 2013, with a preliminary setting reduced to 4 modules and to the 350 μm band, ArTeMiS was installed successfully at the Cassegrain focus of APEX, a 12 m antenna located on the Chajnantor plateau, Chile. After the summary of the scientific requirements, we describe the main lines of the ArTeMiS nominal optical design with its rationale and performances. This optical design is highly constrained by the room allocation available in the Cassegrain cabin. It is an all-reflective design including a retractable pick off mirror, a warm Fore Optics to image the focal plane of the telescope inside the cryostat, and the cold optics. The large size of the field of view at the focal plane of the telescope, 72 mm x 134 mm for the 350 μm and 450 μm beams, leads to the use of biconical toroidal mirrors. In this way, the nominal image quality obtained on the bolometric arrays is only just diffraction limited at some corners of the field of view. To keep a final PSF as much uniform as possible across the field of view, we have used the technic of manufacturing by diamond turning to machine the mirrors. This approach, while providing high accuracy on the shape of the mirrors, made easier the control of the two sub units, the Fore Optics and the cold optics, in the visible domain and at room temperature. Moreover, the use of the similar material (Aluminium alloy 6061) for the optical bench and the mirrors with their mount ensures a homothetic shrinking during the cooling down. The alignment protocol, drew up at the early step of the study, is also presented. It required the implementation of two additional mechanisms inside the cryostat to check the optical axis of the cold optics, in the real conditions of operation of ArTeMiS. In this way, it was possible to pre-align the

  20. Planet detectability by an adaptive optics stellar coronagraph

    NASA Astrophysics Data System (ADS)

    Nakajima, T.

    1994-04-01

    We show the possibilities for imaging Jupiter-like planets around nearby bright stars, assuming the availability of stellar coronagraphs coupled with modest adaptive optics mounted on large ground-based telescopes. The adaptive optics sharpens the point-spread function (PSF) of the planet, permits the use of an occulting disk smaller than the seeing disk, reduces the PSF envelope of the bright star, and therefore enhances the contrast between the planet and background. We have generated the PSF of the planet and the PSF envelope of the main star, using Monte Carlo simulations based on the Kolmogorov theory of turbulence. We calculate the signal-to-noise ratio of a model planet as a function of the angular separation based on photon statistics and realistic assumptions on the system performance. We have derived a criterion for optimizing the combination of the degree of adaptive compensation and the telescope diameter. It is found that a stellar coronagraph with modest adaptive optics mounted on a large ground-based telescope will be capable of detecting Jupiter-like planets around nearby bright stars such as alpha Cen, Sirius, and Procyon at wavelengths between 0.7 and 2.2 micrometers. Near-infrared observations are preferred because usable telescopes and isoplanatic angles are larger at infrared wavelengths than optical wavelengths for a given adaptive optics system. We have also found seven other target stars around which planets will be above the detection limit.

  1. SPECKLE NOISE SUBTRACTION AND SUPPRESSION WITH ADAPTIVE OPTICS CORONAGRAPHIC IMAGING

    SciTech Connect

    Ren Deqing; Dou Jiangpei; Zhang Xi; Zhu Yongtian

    2012-07-10

    Future ground-based direct imaging of exoplanets depends critically on high-contrast coronagraph and wave-front manipulation. A coronagraph is designed to remove most of the unaberrated starlight. Because of the wave-front error, which is inherit from the atmospheric turbulence from ground observations, a coronagraph cannot deliver its theoretical performance, and speckle noise will limit the high-contrast imaging performance. Recently, extreme adaptive optics, which can deliver an extremely high Strehl ratio, is being developed for such a challenging mission. In this publication, we show that barely taking a long-exposure image does not provide much gain for coronagraphic imaging with adaptive optics. We further discuss a speckle subtraction and suppression technique that fully takes advantage of the high contrast provided by the coronagraph, as well as the wave front corrected by the adaptive optics. This technique works well for coronagraphic imaging with conventional adaptive optics with a moderate Strehl ratio, as well as for extreme adaptive optics with a high Strehl ratio. We show how to substrate and suppress speckle noise efficiently up to the third order, which is critical for future ground-based high-contrast imaging. Numerical simulations are conducted to fully demonstrate this technique.

  2. An adaptive interferometer for optical testing .

    NASA Astrophysics Data System (ADS)

    Pariani, G.; Colella, L.; Bertarelli, C.; Aliverti, M.; Riva, M.; Bianco, A.

    Interferometry is a well-established technique to test optical elements. However, its use is challenging in the case of free-form and aspheric elements, due to the lack of the reference optics. The proposed idea concerns the development of a versatile interferometer, where its reference arm is equipped with a reprogrammable Computer Generated Hologram. This principle takes advantage from our study on photochromic materials for optical applications, which shows a strong and reversible modulation of transparency in the visible region. The encoding of the desired hologram can be done off-line, or directly into the interferometer, and different patterns may be realized sequentially after the erasing of the previous hologram. We report on the present state of the research and on the future perspectives. skip=5pt

  3. Beaconless adaptive-optics technique for HEL beam control

    NASA Astrophysics Data System (ADS)

    Khizhnyak, Anatoliy; Markov, Vladimir

    2016-05-01

    Effective performance of forthcoming laser systems capable of power delivery on a distant target requires an adaptive optics system to correct atmospheric perturbations on the laser beam. The turbulence-induced effects are responsible for beam wobbling, wandering, and intensity scintillation, resulting in degradation of the beam quality and power density on the target. Adaptive optics methods are used to compensate for these negative effects. In its turn, operation of the AOS system requires a reference wave that can be generated by the beacon on the target. This report discusses a beaconless approach for wavefront correction with its performance based on the detection of the target-scattered light. Postprocessing of the beacon-generated light field enables retrieval and detailed characterization of the turbulence-perturbed wavefront -data that is essential to control the adaptive optics module of a high-power laser system.

  4. Camera, handlens, and microscope optical system for imaging and coupled optical spectroscopy

    NASA Technical Reports Server (NTRS)

    Mungas, Greg S. (Inventor); Boynton, John (Inventor); Sepulveda, Cesar A. (Inventor); Nunes de Sepulveda, legal representative, Alicia (Inventor); Gursel, Yekta (Inventor)

    2012-01-01

    An optical system comprising two lens cells, each lens cell comprising multiple lens elements, to provide imaging over a very wide image distance and within a wide range of magnification by changing the distance between the two lens cells. An embodiment also provides scannable laser spectroscopic measurements within the field-of-view of the instrument.

  5. Camera, handlens, and microscope optical system for imaging and coupled optical spectroscopy

    NASA Technical Reports Server (NTRS)

    Mungas, Greg S. (Inventor); Boynton, John (Inventor); Sepulveda, Cesar A. (Inventor); Nunes de Sepulveda, Alicia (Inventor); Gursel, Yekta (Inventor)

    2011-01-01

    An optical system comprising two lens cells, each lens cell comprising multiple lens elements, to provide imaging over a very wide image distance and within a wide range of magnification by changing the distance between the two lens cells. An embodiment also provides scannable laser spectroscopic measurements within the field-of-view of the instrument.

  6. High dynamic range adaptive real-time smart camera: an overview of the HDR-ARTiST project

    NASA Astrophysics Data System (ADS)

    Lapray, Pierre-Jean; Heyrman, Barthélémy; Ginhac, Dominique

    2015-04-01

    Standard cameras capture only a fraction of the information that is visible to the human visual system. This is specifically true for natural scenes including areas of low and high illumination due to transitions between sunlit and shaded areas. When capturing such a scene, many cameras are unable to store the full Dynamic Range (DR) resulting in low quality video where details are concealed in shadows or washed out by sunlight. The imaging technique that can overcome this problem is called HDR (High Dynamic Range) imaging. This paper describes a complete smart camera built around a standard off-the-shelf LDR (Low Dynamic Range) sensor and a Virtex-6 FPGA board. This smart camera called HDR-ARtiSt (High Dynamic Range Adaptive Real-time Smart camera) is able to produce a real-time HDR live video color stream by recording and combining multiple acquisitions of the same scene while varying the exposure time. This technique appears as one of the most appropriate and cheapest solution to enhance the dynamic range of real-life environments. HDR-ARtiSt embeds real-time multiple captures, HDR processing, data display and transfer of a HDR color video for a full sensor resolution (1280 1024 pixels) at 60 frames per second. The main contributions of this work are: (1) Multiple Exposure Control (MEC) dedicated to the smart image capture with alternating three exposure times that are dynamically evaluated from frame to frame, (2) Multi-streaming Memory Management Unit (MMMU) dedicated to the memory read/write operations of the three parallel video streams, corresponding to the different exposure times, (3) HRD creating by combining the video streams using a specific hardware version of the Devebecs technique, and (4) Global Tone Mapping (GTM) of the HDR scene for display on a standard LCD monitor.

  7. High-speed volumetric imaging of cone photoreceptors with adaptive optics spectral-domain optical coherence tomography

    PubMed Central

    Zhang, Yan; Cense, Barry; Rha, Jungtae; Jonnal, Ravi S.; Gao, Weihua; Zawadzki, Robert J.; Werner, John S.; Jones, Steve; Olivier, Scot; Miller, Donald T.

    2008-01-01

    We report the first observations of the three-dimensional morphology of cone photoreceptors in the living human retina. Images were acquired with a high-speed adaptive optics (AO) spectral-domain optical coherence tomography (SD-OCT) camera. The AO system consisted of a Shack-Hartmann wavefront sensor and bimorph mirror (AOptix) that measured and corrected the ocular and system aberrations at a closed-loop rate of 12 Hz. The bimorph mirror was positioned between the XY mechanical scanners and the subject’s eye. The SD-OCT system consisted of a superluminescent diode and a 512 pixel line scan charge-coupled device (CCD) that acquired 75,000 A-scans/s. This rate is more than two times faster than that previously reported. Retinal motion artifacts were minimized by quickly acquiring small volume images of the retina with and without AO compensation. Camera sensitivity was sufficient to detect reflections from all major retinal layers. The regular distribution of bright spots observed within C-scans at the inner segment / outer segment (IS/OS) junctions and at the posterior tips of the OS were found to be highly correlated with one another and with the expected cone spacing. No correlation was found between the posterior tips of the OS and the other retinal layers examined, including the retinal pigment epithelium. PMID:19096730

  8. Accuracy requirements of optical linear algebra processors in adaptive optics imaging systems

    NASA Technical Reports Server (NTRS)

    Downie, John D.

    1990-01-01

    A ground-based adaptive optics imaging telescope system attempts to improve image quality by detecting and correcting for atmospherically induced wavefront aberrations. The required control computations during each cycle will take a finite amount of time. Longer time delays result in larger values of residual wavefront error variance since the atmosphere continues to change during that time. Thus an optical processor may be well-suited for this task. This paper presents a study of the accuracy requirements in a general optical processor that will make it competitive with, or superior to, a conventional digital computer for the adaptive optics application. An optimization of the adaptive optics correction algorithm with respect to an optical processor's degree of accuracy is also briefly discussed.

  9. PSF halo reduction in adaptive optics using dynamic pupil masking.

    PubMed

    Osborn, James; Myers, Richard M; Love, Gordon D

    2009-09-28

    We describe a method to reduce residual speckles in an adaptive optics system which add to the halo of the point spread function (PSF). The halo is particularly problematic in astronomical applications involving the detection of faint companions. Areas of the pupil are selected where the residual wavefront aberrations are large and these are masked using a spatial light modulator. The method is also suitable for smaller telescopes without adaptive optics as a relatively simple method to increase the resolution of the telescope. We describe the principle of the technique and show simulation results. PMID:19907514

  10. Frequency based design of modal controllers for adaptive optics systems.

    PubMed

    Agapito, Guido; Battistelli, Giorgio; Mari, Daniele; Selvi, Daniela; Tesi, Alberto; Tesi, Pietro

    2012-11-19

    This paper addresses the problem of reducing the effects of wavefront distortions in ground-based telescopes within a "Modal-Control" framework. The proposed approach allows the designer to optimize the Youla parameter of a given modal controller with respect to a relevant adaptive optics performance criterion defined on a "sampled" frequency domain. This feature makes it possible to use turbulence/vibration profiles of arbitrary complexity (even empirical power spectral densities from data), while keeping the controller order at a moderate value. Effectiveness of the proposed solution is also illustrated through an adaptive optics numerical simulator. PMID:23187567

  11. Enhanced orbital gyrocompassing by the optical flow sensed by an Earth-pointing camera

    NASA Technical Reports Server (NTRS)

    Topaz, Leora; Grunwald, Arthur J.

    1992-01-01

    A new method for improving the orbital gyrocompassing process involving the attitude angle estimation of an earth-pointing satellite in low-Earth orbit uses an electro-optical sensor for direct measurement of the satellite azimuth angle. Simulations have shown that this additional measurement drastically reduces the estimator convergence time, especially when the sun sensor is rendered ineffective, e.g., by high solar elevations. The azimuth-sensing method is based on estimation of the image shift between successive picture frames of an on-board, Earth-pointing, charge-coupled device (CCD) full-matrix camera. The shift-estimation algorithm is based on minimizing a cost function which expresses mean-squared differences in brightness patterns of selected areas of the two frames. An extensive evaluation program with a computer-controlled 2-axis light table and actual satellite images has demonstrated high robustness for a wide range of variation of parameters including image texture content; camera focal length; sampling rate; and number of pixels processed. It was shown to be possible to estimate the azimuth angle within 0.1-0.2 degrees, for a suitably chosen parameter set.

  12. Focusing a NIR adaptive optics imager; experience with GSAOI

    NASA Astrophysics Data System (ADS)

    Doolan, Matthew; Bloxham, Gabe; Conroy, Peter; Jones, Damien; McGregor, Peter; Stevanovic, Dejan; Van Harmelen, Jan; Waldron, Liam E.; Waterson, Mark; Zhelem, Ross

    2006-06-01

    The Gemini South Adaptive Optics Imager (GSAOI) to be used with the Multi-Conjugate Adaptive Optics (MCAO) system at Gemini South is currently in the final stages of assembly and testing. GSAOI uses a suite of 26 different filters, made from both BK7 and Fused Silica substrates. These filters, located in a non-collimated beam, work as active optical elements. The optical design was undertaken to ensure that both the filter substrates both focused longitudinally at the same point. During the testing of the instrument it was found that longitudinal focus was filter dependant. The methods used to investigate this are outlined in the paper. These investigations identified several possible causes for the focal shift including substrate material properties in cryogenic conditions and small amounts of residual filter power.

  13. Characterization and Operation of Liquid Crystal Adaptive Optics Phoropter

    SciTech Connect

    Awwal, A; Bauman, B; Gavel, D; Olivier, S; Jones, S; Hardy, J L; Barnes, T; Werner, J S

    2003-02-05

    Adaptive optics (AO), a mature technology developed for astronomy to compensate for the effects of atmospheric turbulence, can also be used to correct the aberrations of the eye. The classic phoropter is used by ophthalmologists and optometrists to estimate and correct the lower-order aberrations of the eye, defocus and astigmatism, in order to derive a vision correction prescription for their patients. An adaptive optics phoropter measures and corrects the aberrations in the human eye using adaptive optics techniques, which are capable of dealing with both the standard low-order aberrations and higher-order aberrations, including coma and spherical aberration. High-order aberrations have been shown to degrade visual performance for clinical subjects in initial investigations. An adaptive optics phoropter has been designed and constructed based on a Shack-Hartmann sensor to measure the aberrations of the eye, and a liquid crystal spatial light modulator to compensate for them. This system should produce near diffraction-limited optical image quality at the retina, which will enable investigation of the psychophysical limits of human vision. This paper describes the characterization and operation of the AO phoropter with results from human subject testing.

  14. Holographic fluorescence microscopy with incoherent digital holographic adaptive optics.

    PubMed

    Jang, Changwon; Kim, Jonghyun; Clark, David C; Lee, Seungjae; Lee, Byoungho; Kim, Myung K

    2015-01-01

    Introduction of adaptive optics technology into astronomy and ophthalmology has made great contributions in these fields, allowing one to recover images blurred by atmospheric turbulence or aberrations of the eye. Similar adaptive optics improvement in microscopic imaging is also of interest to researchers using various techniques. Current technology of adaptive optics typically contains three key elements: a wavefront sensor, wavefront corrector, and controller. These hardware elements tend to be bulky, expensive, and limited in resolution, involving, for example, lenslet arrays for sensing or multiactuator deformable mirrors for correcting. We have previously introduced an alternate approach based on unique capabilities of digital holography, namely direct access to the phase profile of an optical field and the ability to numerically manipulate the phase profile. We have also demonstrated that direct access and compensation of the phase profile are possible not only with conventional coherent digital holography, but also with a new type of digital holography using incoherent light: selfinterference incoherent digital holography (SIDH). The SIDH generates a complex—i.e., amplitude plus phase—hologram from one or several interferograms acquired with incoherent light, such as LEDs, lamps, sunlight, or fluorescence. The complex point spread function can be measured using guide star illumination and it allows deterministic deconvolution of the full-field image. We present experimental demonstration of aberration compensation in holographic fluorescence microscopy using SIDH. Adaptive optics by SIDH provides new tools for improved cellular fluorescence microscopy through intact tissue layers or other types of aberrant media. PMID:26146767

  15. Holographic fluorescence microscopy with incoherent digital holographic adaptive optics

    NASA Astrophysics Data System (ADS)

    Jang, Changwon; Kim, Jonghyun; Clark, David C.; Lee, Seungjae; Lee, Byoungho; Kim, Myung K.

    2015-11-01

    Introduction of adaptive optics technology into astronomy and ophthalmology has made great contributions in these fields, allowing one to recover images blurred by atmospheric turbulence or aberrations of the eye. Similar adaptive optics improvement in microscopic imaging is also of interest to researchers using various techniques. Current technology of adaptive optics typically contains three key elements: a wavefront sensor, wavefront corrector, and controller. These hardware elements tend to be bulky, expensive, and limited in resolution, involving, for example, lenslet arrays for sensing or multiactuator deformable mirrors for correcting. We have previously introduced an alternate approach based on unique capabilities of digital holography, namely direct access to the phase profile of an optical field and the ability to numerically manipulate the phase profile. We have also demonstrated that direct access and compensation of the phase profile are possible not only with conventional coherent digital holography, but also with a new type of digital holography using incoherent light: self­interference incoherent digital holography (SIDH). The SIDH generates a complex-i.e., amplitude plus phase-hologram from one or several interferograms acquired with incoherent light, such as LEDs, lamps, sunlight, or fluorescence. The complex point spread function can be measured using guide star illumination and it allows deterministic deconvolution of the full-field image. We present experimental demonstration of aberration compensation in holographic fluorescence microscopy using SIDH. Adaptive optics by SIDH provides new tools for improved cellular fluorescence microscopy through intact tissue layers or other types of aberrant media.

  16. Optics for MUSIC: a new (sub)millimeter camera for the Caltech Submillimeter Observatory

    NASA Astrophysics Data System (ADS)

    Sayers, Jack; Czakon, Nicole G.; Day, Peter K.; Downes, Thomas P.; Duan, Ran P.; Gao, Jiansong; Glenn, Jason; Golwala, Sunil R.; Hollister, Matt I.; LeDuc, Henry G.; Mazin, Benjamin A.; Maloney, Philip R.; Noroozian, Omid; Nguyen, Hien T.; Schlaerth, James A.; Siegel, Seth; Vaillancourt, John E.; Vayonakis, Anastasios; Wilson, Philip R.; Zmuidzinas, Jonas

    2010-07-01

    We will present the design and implementation, along with calculations and some measurements of the performance, of the room-temperature and cryogenic optics for MUSIC, a new (sub)millimeter camera we are developing for the Caltech Submm Observatory (CSO). The design consists of two focusing elements in addition to the CSO primary and secondary mirrors: a warm off-axis elliptical mirror and a cryogenic (4K) lens. These optics will provide a 14 arcmin field of view that is diffraction limited in all four of the MUSIC observing bands (2.00, 1.33, 1.02, and 0.86 mm). A cold (4K) Lyot stop will be used to define the primary mirror illumination, which will be maximized while keeping spillover at the sub 1% level. The MUSIC focal plane will be populated with broadband phased antenna arrays that efficiently couple to factor of (see manuscript) 3 in bandwidth,1, 2 and each pixel on the focal plane will be read out via a set of four lumped element filters that define the MUSIC observing bands (i.e., each pixel on the focal plane simultaneously observes in all four bands). Finally, a series of dielectric and metal-mesh low pass filters have been implemented to reduce the optical power load on the MUSIC cryogenic stages to a quasi-negligible level while maintaining good transmission in-band.

  17. Optical design of multi-spectral optical system for infrared camera

    NASA Astrophysics Data System (ADS)

    Tang, Tianjin

    2015-08-01

    This paper studies about the multi-spectral imaging system and describes the design of dual-channel mirror-lens optical system with wide-field for multi-spectral sensor. Combined with the secondary imaging technology, it achieves the one hundred percent cold stop efficiency. Off-axis three-mirror reflective optics is adopted to provide an obstructive field of view and high spatial resolution over the wide-field, which is also shared by two channels. Independent relay lens are employed not only to extract the real exit-pupil matched with the cold shield, but also adjust the multiplication factors for infrared. The dichroic mirror and filters subdivide the wide spectral range into four bands, including mid-wavelength band and long-wavelength band. Each corresponds to respective field. The result shows that the Modulation Transfer Function of each band at respective fields is near the diffraction limit, which satisfies the needs of practical applications. The wavefront of the off-axis three-mirror reflective optics is also satisfactory, which is beneficial to the later alignment and measurement.

  18. Polarization-sensitive optical coherence tomography system tolerant to fiber disturbances using a line camera.

    PubMed

    Marques, Manuel J; Rivet, Sylvain; Bradu, Adrian; Podoleanu, Adrian

    2015-08-15

    This Letter presents a spectral-domain, polarization-sensitive optical coherence tomography (PS-OCT) system, where the light collection from the two arms of the interferometer is performed exclusively using single-mode fibers and couplers, and the two orthogonal polarization components are sequentially detected by a single line camera. Retardance measurements can be affected by polarimetric effects because of fiber birefringence and diattenuation in fiber couplers. This configuration bypasses such issues by performing polarization selection before the collection fiber through the combination of a polarization rotator and a linear polarizer. Retardance calibration is achieved with a Berek compensator. Similar net retardance maps of a birefringent phantom are obtained for two different settings of induced fiber birefringence, effectively demonstrating the tolerance of the configuration to fiber-based disturbances. PMID:26274678

  19. Selecting among competing models of electro-optic, infrared camera system range performance

    USGS Publications Warehouse

    Nichols, Jonathan M.; Hines, James E.; Nichols, James D.

    2013-01-01

    Range performance is often the key requirement around which electro-optical and infrared camera systems are designed. This work presents an objective framework for evaluating competing range performance models. Model selection based on the Akaike’s Information Criterion (AIC) is presented for the type of data collected during a typical human observer and target identification experiment. These methods are then demonstrated on observer responses to both visible and infrared imagery in which one of three maritime targets was placed at various ranges. We compare the performance of a number of different models, including those appearing previously in the literature. We conclude that our model-based approach offers substantial improvements over the traditional approach to inference, including increased precision and the ability to make predictions for some distances other than the specific set for which experimental trials were conducted.

  20. Experimental setup for camera-based measurements of electrically and optically stimulated luminescence of silicon solar cells and wafers.

    PubMed

    Hinken, David; Schinke, Carsten; Herlufsen, Sandra; Schmidt, Arne; Bothe, Karsten; Brendel, Rolf

    2011-03-01

    We report in detail on the luminescence imaging setup developed within the last years in our laboratory. In this setup, the luminescence emission of silicon solar cells or silicon wafers is analyzed quantitatively. Charge carriers are excited electrically (electroluminescence) using a power supply for carrier injection or optically (photoluminescence) using a laser as illumination source. The luminescence emission arising from the radiative recombination of the stimulated charge carriers is measured spatially resolved using a camera. We give details of the various components including cameras, optical filters for electro- and photo-luminescence, the semiconductor laser and the four-quadrant power supply. We compare a silicon charged-coupled device (CCD) camera with a back-illuminated silicon CCD camera comprising an electron multiplier gain and a complementary metal oxide semiconductor indium gallium arsenide camera. For the detection of the luminescence emission of silicon we analyze the dominant noise sources along with the signal-to-noise ratio of all three cameras at different operation conditions. PMID:21456750

  1. Holographic fluorescence microscopy with incoherent digital holographic adaptive optics

    NASA Astrophysics Data System (ADS)

    Jang, Changwon; Kim, Jonghyun; Clark, David C.; Lee, Byoungho; Kim, Myung K.

    2015-03-01

    Introduction of adaptive optics technology into astronomy and ophthalmology has made great contributions in these fields, allowing one to recover images blurred by atmospheric turbulence or aberrations of the eye. Similar adaptive optics improvement in microscopic imaging is also of interest to researchers using various techniques. Current technology of adaptive optics typically contains three key elements: wavefront sensor, wavefront corrector and controller. These hardware elements tend to be bulky, expensive, and limited in resolution, involving, e.g., lenslet arrays for sensing or multi-acuator deformable mirrors for correcting. We have previously introduced an alternate approach to adaptive optics based on unique capabilities of digital holography, namely direct access to the phase profile of an optical field and the ability to numerically manipulate the phase profile. We have also demonstrated that direct access and compensation of the phase profile is possible not only with the conventional coherent type of digital holography, but also with a new type of digital holography using incoherent light: self-interference incoherent digital holography (SIDH). The SIDH generates complex - i.e. amplitude plus phase - hologram from one or several interferograms acquired with incoherent light, such as LEDs, lamps, sunlight, or fluorescence. The complex point spread function can be measured using a guide star illumination and it allows deterministic deconvolution of the full-field image. We present experimental demonstration of aberration compensation in holographic fluorescence microscopy using SIDH. The adaptive optics by SIDH provides new tools for improved cellular fluorescence microscopy through intact tissue layers or other types of aberrant media.

  2. [Combination of measurement of retinal vascular caliber, adaptive optics and fluorescent angiography in early diagnosis and monitoring of diabetic and hypertensive retinopathy].

    PubMed

    Stepushina, O A; Bol'shunov, A V

    2011-01-01

    15 patients with diabetic and hypertensive retinopathy are examined. Retinal vascular caliber was measured using adaptive multifocal fundus camera (AMFC), fundus camera "Topcon" TRS-NW200 and FAG. Combination of retinal vascular caliber measurement and fundus foto using AMFC in patients with ametropia and astigmatismus showed apparently lower arteriolovenular coefficient (A VC) compared with that estimated using FAG imaging. Retinal vascular caliber measurement using adaptive optics is a highly sensitive method of visualization and monitoring of early signs of diabetic and hypertensive retinopathy. PMID:21721269

  3. Visualization of explosion phenomena using a high-speed video camera with an uncoupled objective lens by fiber-optic

    NASA Astrophysics Data System (ADS)

    Tokuoka, Nobuyuki; Miyoshi, Hitoshi; Kusano, Hideaki; Hata, Hidehiro; Hiroe, Tetsuyuki; Fujiwara, Kazuhito; Yasushi, Kondo

    2008-11-01

    Visualization of explosion phenomena is very important and essential to evaluate the performance of explosive effects. The phenomena, however, generate blast waves and fragments from cases. We must protect our visualizing equipment from any form of impact. In the tests described here, the front lens was separated from the camera head by means of a fiber-optic cable in order to be able to use the camera, a Shimadzu Hypervision HPV-1, for tests in severe blast environment, including the filming of explosions. It was possible to obtain clear images of the explosion that were not inferior to the images taken by the camera with the lens directly coupled to the camera head. It could be confirmed that this system is very useful for the visualization of dangerous events, e.g., at an explosion site, and for visualizations at angles that would be unachievable under normal circumstances.

  4. Adaptive subwavelength control of nano-optical fields.

    PubMed

    Aeschlimann, Martin; Bauer, Michael; Bayer, Daniela; Brixner, Tobias; García de Abajo, F Javier; Pfeiffer, Walter; Rohmer, Martin; Spindler, Christian; Steeb, Felix

    2007-03-15

    Adaptive shaping of the phase and amplitude of femtosecond laser pulses has been developed into an efficient tool for the directed manipulation of interference phenomena, thus providing coherent control over various quantum-mechanical systems. Temporal resolution in the femtosecond or even attosecond range has been demonstrated, but spatial resolution is limited by diffraction to approximately half the wavelength of the light field (that is, several hundred nanometres). Theory has indicated that the spatial limitation to coherent control can be overcome with the illumination of nanostructures: the spatial near-field distribution was shown to depend on the linear chirp of an irradiating laser pulse. An extension of this idea to adaptive control, combining multiparameter pulse shaping with a learning algorithm, demonstrated the generation of user-specified optical near-field distributions in an optimal and flexible fashion. Shaping of the polarization of the laser pulse provides a particularly efficient and versatile nano-optical manipulation method. Here we demonstrate the feasibility of this concept experimentally, by tailoring the optical near field in the vicinity of silver nanostructures through adaptive polarization shaping of femtosecond laser pulses and then probing the lateral field distribution by two-photon photoemission electron microscopy. In this combination of adaptive control and nano-optics, we achieve subwavelength dynamic localization of electromagnetic intensity on the nanometre scale and thus overcome the spatial restrictions of conventional optics. This experimental realization of theoretical suggestions opens a number of perspectives in coherent control, nano-optics, nonlinear spectroscopy, and other research fields in which optical investigations are carried out with spatial or temporal resolution. PMID:17361179

  5. Adaptive optical system for astronomical applications

    NASA Astrophysics Data System (ADS)

    Merkle, F.; Bille, J.; Freischlad, K.; Frieben, M.; Jahn, G.; Reischmann, H.-L.

    The active optical system being developed for use with the 0.75-m RC telescope at the Landessternwarte in Heidelberg, FRG, is discussed. A 5-cm electrostatically deformable aluminum-coated polymer mirror (sensitivity 0.05 microns/V, maximum local tilt 3 microns/5 mm) is mounted in a gimbal with piezoelectric-actuator tilt control. The mirror control systems being tested are a modified shearing interferometer with crosstalk-compensated feedback and Fourier-modulus wavefront computation, both using a 32 x 32 diode array as detector. Modal phase compensation is achieved using Zernike polynomials and Karhunen-Loeve functions; the correction for the tilt terms of the series expansion is left to the overall-tilt compensation unit, for which preliminary test results are shown.

  6. Use of electrochromic materials in adaptive optics.

    SciTech Connect

    Kammler, Daniel R.; Sweatt, William C.; Verley, Jason C.; Yelton, William Graham

    2005-07-01

    Electrochromic (EC) materials are used in 'smart' windows that can be darkened by applying a voltage across an EC stack on the window. The associated change in refractive index (n) in the EC materials might allow their use in tunable or temperature-insensitive Fabry-Perot filters and transmissive-spatial-light-modulators (SLMs). The authors are conducting a preliminary evaluation of these materials in many applications, including target-in-the-loop systems. Data on tungsten oxide, WO{sub 3}, the workhorse EC material, indicate that it's possible to achieve modest changes in n with only slight increases in absorption between the visible and {approx}10 {micro}m. This might enable construction of a tunable Fabry-Perot filter consisting of an active EC layer (e.g. WO{sub 3}) and a proton conductor (e.g.Ta{sub 2}O{sub 5}) sandwiched between two gold electrodes. A SLM might be produced by replacing the gold with a transparent conductor (e.g. ITO). This SLM would allow broad-band operation like a micromirror array. Since it's a transmission element, simple optical designs like those in liquid-crystal systems would be possible. Our team has fabricated EC stacks and characterized their switching speed and optical properties (n, k). We plan to study the interplay between process parameters, film properties, and performance characteristics associated with the FP-filter and then extend what we learn to SLMs. Our goals are to understand whether the changes in absorption associated with changes in n are acceptable, and whether it's possible to design an EC-stack that's fast enough to be interesting. We'll present our preliminary findings regarding the potential viability of EC materials for target-in-the-loop applications.

  7. Optic flow improves adaptability of spatiotemporal characteristics during split-belt locomotor adaptation with tactile stimulation.

    PubMed

    Eikema, Diderik Jan A; Chien, Jung Hung; Stergiou, Nicholas; Myers, Sara A; Scott-Pandorf, Melissa M; Bloomberg, Jacob J; Mukherjee, Mukul

    2016-02-01

    Human locomotor adaptation requires feedback and feed-forward control processes to maintain an appropriate walking pattern. Adaptation may require the use of visual and proprioceptive input to decode altered movement dynamics and generate an appropriate response. After a person transfers from an extreme sensory environment and back, as astronauts do when they return from spaceflight, the prolonged period required for re-adaptation can pose a significant burden. In our previous paper, we showed that plantar tactile vibration during a split-belt adaptation task did not interfere with the treadmill adaptation however, larger overground transfer effects with a slower decay resulted. Such effects, in the absence of visual feedback (of motion) and perturbation of tactile feedback, are believed to be due to a higher proprioceptive gain because, in the absence of relevant external dynamic cues such as optic flow, reliance on body-based cues is enhanced during gait tasks through multisensory integration. In this study, we therefore investigated the effect of optic flow on tactile-stimulated split-belt adaptation as a paradigm to facilitate the sensorimotor adaptation process. Twenty healthy young adults, separated into two matched groups, participated in the study. All participants performed an overground walking trial followed by a split-belt treadmill adaptation protocol. The tactile group (TC) received vibratory plantar tactile stimulation only, whereas the virtual reality and tactile group (VRT) received an additional concurrent visual stimulation: a moving virtual corridor, inducing perceived self-motion. A post-treadmill overground trial was performed to determine adaptation transfer. Interlimb coordination of spatiotemporal and kinetic variables was quantified using symmetry indices and analyzed using repeated-measures ANOVA. Marked changes of step length characteristics were observed in both groups during split-belt adaptation. Stance and swing time symmetries were

  8. Optical engineering application of modeled photosynthetically active radiation (PAR) for high-speed digital camera dynamic range optimization

    NASA Astrophysics Data System (ADS)

    Alves, James; Gueymard, Christian A.

    2009-08-01

    As efforts to create accurate yet computationally efficient estimation models for clear-sky photosynthetically active solar radiation (PAR) have succeeded, the range of practical engineering applications where these models can be successfully applied has increased. This paper describes a novel application of the REST2 radiative model (developed by the second author) in optical engineering. The PAR predictions in this application are used to predict the possible range of instantaneous irradiances that could impinge on the image plane of a stationary video camera designed to image license plates on moving vehicles. The overall spectral response of the camera (including lens and optical filters) is similar to the 400-700 nm PAR range, thereby making PAR irradiance (rather than luminance) predictions most suitable for this application. The accuracy of the REST2 irradiance predictions for horizontal surfaces, coupled with another radiative model to obtain irradiances on vertical surfaces, and to standard optical image formation models, enable setting the dynamic range controls of the camera to ensure that the license plate images are legible (unsaturated with adequate contrast) regardless of the time of day, sky condition, or vehicle speed. A brief description of how these radiative models are utilized as part of the camera control algorithm is provided. Several comparisons of the irradiance predictions derived from the radiative model versus actual PAR measurements under varying sky conditions with three Licor sensors (one horizontal and two vertical) have been made and showed good agreement. Various camera-to-plate geometries and compass headings have been considered in these comparisons. Time-lapse sequences of license plate images taken with the camera under various sky conditions over a 30-day period are also analyzed. They demonstrate the success of the approach at creating legible plate images under highly variable lighting, which is the main goal of this

  9. A portable solar adaptive optics system: software and laboratory developments

    NASA Astrophysics Data System (ADS)

    Ren, Deqing; Penn, Matt; Plymate, Claude; Wang, Haimin; Zhang, Xi; Dong, Bing; Brown, Nathan; Denio, Andrew

    2010-07-01

    We present our recent process on a portable solar adaptive Optics system, which is aimed for diffraction-limited imaging in the 1.0 ~ 5.0-μm infrared wavelength range with any solar telescope with an aperture size up to 1.6 meters. The realtime wave-front sensing, image processing and computation are based on a commercial multi-core personal computer. The software is developed in LabVIEW. Combining the power of multi-core imaging processing and LabVIEW parallel programming, we show that our solar adaptive optics can achieve excellent performance that is competitive with other systems. In addition, the LabVIEW's block diagram based programming is especially suitable for rapid development of a prototype system, which makes a low-cost and high-performance system possible. Our adaptive optics system is flexible; it can work with any telescope with or without central obstruction with any aperture size in the range of 0.6~1.6 meters. In addition, the whole system is compact and can be brought to a solar observatory to perform associated scientific observations. According to our knowledge, this is the first adaptive optics that adopts the LabVIEW high-level programming language with a multi-core commercial personal computer, and includes the unique features discussed above.

  10. Auto-aligning stimulated emission depletion microscope using adaptive optics

    PubMed Central

    Gould, Travis J.; Kromann, Emil B.; Burke, Daniel; Booth, Martin J.; Bewersdorf, Joerg

    2013-01-01

    Stimulated emission depletion (STED) microscopy provides diffraction-unlimited resolution in fluorescence microscopy. Imaging at the nanoscale, however, requires precise alignment of the depletion and excitation laser foci of the STED microscope. We demonstrate here that adaptive optics can be implemented to automatically align STED and confocal images with a precision of 4.3 ± 2.3 nm. PMID:23722769

  11. Laser guide stars and adaptive optics for astronomy

    SciTech Connect

    Max, C.E.

    1992-07-15

    Five papers are included: feasibility experiment for sodium-alyer laser guide stars at LLNL; system design for a high power sodium beacon laser; sodium guide star adaptive optics system for astronomical imaging in the visible and near-infrared; high frame-rate, large field wavefront sensor; and resolution limits for ground-based astronomical imaging. Figs, tabs, refs.

  12. Observing techniques for astronomical laser guide star adaptive optics

    SciTech Connect

    Max, C.E.; Macintosh, B.; Olivier, S.S.; Gavel, D.T.; Friedman, H.W.

    1998-05-01

    We discuss astronomical observing requirements and their implementation using sodium-layer laser guide star adaptive optics. Specific issues requiring implementation include the ability to place the astronomical object at different locations within the field of view; reliable subtraction of Rayleigh-scattered light; efficient focusing; and stable point-spread-function characterization.

  13. eXtreme Adaptive Optics Planet Imager: Overview and status

    SciTech Connect

    Macintosh, B A; Bauman, B; Evans, J W; Graham, J; Lockwood, C; Poyneer, L; Dillon, D; Gavel, D; Green, J; Lloyd, J; Makidon, R; Olivier, S; Palmer, D; Perrin, M; Severson, S; Sheinis, A; Sivaramakrishnan, A; Sommargren, G; Soumer, R; Troy, M; Wallace, K; Wishnow, E

    2004-08-18

    As adaptive optics (AO) matures, it becomes possible to envision AO systems oriented towards specific important scientific goals rather than general-purpose systems. One such goal for the next decade is the direct imaging detection of extrasolar planets. An 'extreme' adaptive optics (ExAO) system optimized for extrasolar planet detection will have very high actuator counts and rapid update rates - designed for observations of bright stars - and will require exquisite internal calibration at the nanometer level. In addition to extrasolar planet detection, such a system will be capable of characterizing dust disks around young or mature stars, outflows from evolved stars, and high Strehl ratio imaging even at visible wavelengths. The NSF Center for Adaptive Optics has carried out a detailed conceptual design study for such an instrument, dubbed the eXtreme Adaptive Optics Planet Imager or XAOPI. XAOPI is a 4096-actuator AO system, notionally for the Keck telescope, capable of achieving contrast ratios >10{sup 7} at angular separations of 0.2-1'. ExAO system performance analysis is quite different than conventional AO systems - the spatial and temporal frequency content of wavefront error sources is as critical as their magnitude. We present here an overview of the XAOPI project, and an error budget highlighting the key areas determining achievable contrast. The most challenging requirement is for residual static errors to be less than 2 nm over the controlled range of spatial frequencies. If this can be achieved, direct imaging of extrasolar planets will be feasible within this decade.

  14. Adaptive optics center of excellence for national security

    NASA Astrophysics Data System (ADS)

    Agrawal, Brij

    2014-06-01

    This paper provides an overview of research at the Adaptive Optics Center of Excellence for national security (AOCoE) at the Naval Postgraduate School (NPS). The Center was established in 2011 with the sponsorship of the Office of Naval Research, National Reconnaissance Office, and Air Force research Laboratory. Research is in two areas: Segmented Mirror telescope (SMT) for imaging satellites and High Energy Laser Beam Control. SMT consists of a 3 meter diameter telescope with six segments and each segment has actuators for surface control and segment alignment. SMT research areas include developing improved techniques for surface control and segment alignment, and reduction in segment vibration by using tuned mass dampers. Research is also performed in adding a deformable mirror into the SMT optical path to correct for residual beam aberration not corrected by the primary mirror actuators. For high energy laser beam control the research areas are acquisition, tracking, and pointing, optical beam jitter control, and application of adaptive optics for correcting beam aberration due to air turbulence. The current focus is on adaptive optics for deep turbulence.

  15. FOCAL PLANE WAVEFRONT SENSING USING RESIDUAL ADAPTIVE OPTICS SPECKLES

    SciTech Connect

    Codona, Johanan L.; Kenworthy, Matthew

    2013-04-20

    Optical imperfections, misalignments, aberrations, and even dust can significantly limit sensitivity in high-contrast imaging systems such as coronagraphs. An upstream deformable mirror (DM) in the pupil can be used to correct or compensate for these flaws, either to enhance the Strehl ratio or suppress the residual coronagraphic halo. Measurement of the phase and amplitude of the starlight halo at the science camera is essential for determining the DM shape that compensates for any non-common-path (NCP) wavefront errors. Using DM displacement ripples to create a series of probe and anti-halo speckles in the focal plane has been proposed for space-based coronagraphs and successfully demonstrated in the lab. We present the theory and first on-sky demonstration of a technique to measure the complex halo using the rapidly changing residual atmospheric speckles at the 6.5 m MMT telescope using the Clio mid-IR camera. The AO system's wavefront sensor measurements are used to estimate the residual wavefront, allowing us to approximately compute the rapidly evolving phase and amplitude of speckle halo. When combined with relatively short, synchronized science camera images, the complex speckle estimates can be used to interferometrically analyze the images, leading to an estimate of the static diffraction halo with NCP effects included. In an operational system, this information could be collected continuously and used to iteratively correct quasi-static NCP errors or suppress imperfect coronagraphic halos.

  16. Performance Evaluations and Quality Validation System for Optical Gas Imaging Cameras That Visualize Fugitive Hydrocarbon Gas Emissions

    EPA Science Inventory

    Optical gas imaging (OGI) cameras have the unique ability to exploit the electromagnetic properties of fugitive chemical vapors to make invisible gases visible. This ability is extremely useful for industrial facilities trying to mitigate product losses from escaping gas and fac...

  17. The AVES adaptive optics spectrograph for the VLT: status report

    NASA Astrophysics Data System (ADS)

    Pallavicini, Roberto; Delabre, Bernard; Pasquini, Luca; Zerbi, Filippo M.; Bonanno, Giovanni; Comari, Maurizio; Conconi, Paolo; Mazzoleni, Ruben; Santin, Paolo; Damiani, Francesco; Di Marcantonio, Paolo; Franchini, Mariagrazia; Spano, Paolo; Bonifacio, P.; Catalano, Santo; Molaro, Paolo P.; Randich, S.; Rodono, Marcello

    2003-03-01

    We report on the status of AVES, the Adaptive-optics Visual Echelle Spectrograph proposed for the secondary port of the Nasmyth Adaptive Optics System (NAOS) recently installed at the VLT. AVES is an intermediate resolution (R ≍ 16,000) high-efficiency fixed- format echelle spectrograph which operates in the spectral band 500 - 1,000 nm. In addition to a high intrinsic efficiency, comparable to that of ESI at Keck II, it takes advantage of the adaptive optics correction provided by NAOS to reduce the sky and detector contribution in background-limited observations of weak sources, thus allowing a further magnitude gain with respect to comparable non-adaptive optics spectrographs. Simulations show that the instrument will be capable of reaching a magnitude V = 22.5 at S/N > 10 in two hours, two magnitudes weaker than GIRAFFE at the same resolution and 3 magnitudes weaker than the higher resolution UVES spectrograph. Imaging and coronographic functions have also been implemented in the design. We present the results of the final design study and we dicuss the technical and operational issues related to its implementation at the VLT as a visitor instrument. We also discuss the possibility of using a scaled-up non-adaptive optics version of the same design as an element of a double- or triple-arm intermediate-resolution spectrograph for the VLT. Such an option looks attractive in the context of a high-efficiency large-bandwidth (320 - 1,500 nm) spectrograph ("fast-shooter") being considered by ESO as a 2nd-generation VLT instrument.

  18. Adaptive wide-field optical tomography

    NASA Astrophysics Data System (ADS)

    Venugopal, Vivek; Intes, Xavier

    2013-03-01

    We describe a wide-field optical tomography technique, which allows the measurement-guided optimization of illumination patterns for enhanced reconstruction performances. The iterative optimization of the excitation pattern aims at reducing the dynamic range in photons transmitted through biological tissue. It increases the number of measurements collected with high photon counts resulting in a dataset with improved tomographic information. Herein, this imaging technique is applied to time-resolved fluorescence molecular tomography for preclinical studies. First, the merit of this approach is tested by in silico studies in a synthetic small animal model for typical illumination patterns. Second, the applicability of this approach in tomographic imaging is validated in vitro using a small animal phantom with two fluorescent capillaries occluded by a highly absorbing inclusion. The simulation study demonstrates an improvement of signal transmitted (˜2 orders of magnitude) through the central portion of the small animal model for all patterns considered. A corresponding improvement in the signal at the emission wavelength by 1.6 orders of magnitude demonstrates the applicability of this technique for fluorescence molecular tomography. The successful discrimination and localization (˜1 mm error) of the two objects with higher resolution using the optimized patterns compared with nonoptimized illumination establishes the improvement in reconstruction performance when using this technique.

  19. An approach to fabrication of large adaptive optics mirrors

    NASA Astrophysics Data System (ADS)

    Schwartz, Eric; Rey, Justin; Blaszak, David; Cavaco, Jeffrey

    2014-07-01

    For more than two decades, Northrop Grumman Xinetics has been the principal supplier of small deformable mirrors that enable adaptive optical (AO) systems for the ground-based astronomical telescope community. With today's drive toward extremely large aperture systems, and the desire of telescope designers to include adaptive optics in the main optical path of the telescope, Xinetics has recognized the need for large active mirrors with the requisite bandwidth and actuator stoke. Presented in this paper is the proposed use of Northrop Grumman Xinetics' large, ultra-lightweight Silicon Carbide substrates with surface parallel actuation of sufficient spatial density and bandwidth to meet the requirements of tomorrow's AO systems, while reducing complexity and cost.

  20. Modeling for deformable mirrors and the adaptive optics optimization program

    SciTech Connect

    Henesian, M.A.; Haney, S.W.; Trenholme, J.B.; Thomas, M.

    1997-03-18

    We discuss aspects of adaptive optics optimization for large fusion laser systems such as the 192-arm National Ignition Facility (NIF) at LLNL. By way of example, we considered the discrete actuator deformable mirror and Hartmann sensor system used on the Beamlet laser. Beamlet is a single-aperture prototype of the 11-0-5 slab amplifier design for NIF, and so we expect similar optical distortion levels and deformable mirror correction requirements. We are now in the process of developing a numerically efficient object oriented C++ language implementation of our adaptive optics and wavefront sensor code, but this code is not yet operational. Results are based instead on the prototype algorithms, coded-up in an interpreted array processing computer language.

  1. Optical design and stray light analysis for the JANUS camera of the JUICE space mission

    NASA Astrophysics Data System (ADS)

    Greggio, D.; Magrin, D.; Munari, M.; Zusi, M.; Ragazzoni, R.; Cremonese, G.; Debei, S.; Friso, E.; Della Corte, V.; Palumbo, P.; Hoffmann, H.; Jaumann, R.; Michaelis, H.; Schmitz, N.; Schipani, P.; Lara, L. M.

    2015-09-01

    The JUICE (JUpiter ICy moons Explorer) satellite of the European Space Agency (ESA) is dedicated to the detailed study of Jupiter and its moons. Among the whole instrument suite, JANUS (Jovis, Amorum ac Natorum Undique Scrutator) is the camera system of JUICE designed for imaging at visible wavelengths. It will conduct an in-depth study of Ganymede, Callisto and Europa, and explore most of the Jovian system and Jupiter itself, performing, in the case of Ganymede, a global mapping of the satellite with a resolution of 400 m/px. The optical design chosen to meet the scientific goals of JANUS is a three mirror anastigmatic system in an off-axis configuration. To ensure that the achieved contrast is high enough to observe the features on the surface of the satellites, we also performed a preliminary stray light analysis of the telescope. We provide here a short description of the optical design and we present the procedure adopted to evaluate the stray-light expected during the mapping phase of the surface of Ganymede. We also use the results obtained from the first run of simulations to optimize the baffle design.

  2. The JANUS camera onboard JUICE mission for Jupiter system optical imaging

    NASA Astrophysics Data System (ADS)

    Della Corte, Vincenzo; Schmitz, Nicole; Zusi, Michele; Castro, José Maria; Leese, Mark; Debei, Stefano; Magrin, Demetrio; Michalik, Harald; Palumbo, Pasquale; Jaumann, Ralf; Cremonese, Gabriele; Hoffmann, Harald; Holland, Andrew; Lara, Luisa Maria; Fiethe, Björn; Friso, Enrico; Greggio, Davide; Herranz, Miguel; Koncz, Alexander; Lichopoj, Alexander; Martinez-Navajas, Ignacio; Mazzotta Epifani, Elena; Michaelis, Harald; Ragazzoni, Roberto; Roatsch, Thomas; Rodrigo, Julio; Rodriguez, Emilio; Schipani, Pietro; Soman, Matthew; Zaccariotto, Mirco

    2014-08-01

    JANUS (Jovis, Amorum ac Natorum Undique Scrutator) is the visible camera selected for the ESA JUICE mission to the Jupiter system. Resources constraints, S/C characteristics, mission design, environment and the great variability of observing conditions for several targets put stringent constraints on instrument architecture. In addition to the usual requirements for a planetary mission, the problem of mass and power consumption is particularly stringent due to the long-lasting cruising and operations at large distance from the Sun. JANUS design shall cope with a wide range of targets, from Jupiter atmosphere, to solid satellite surfaces, exosphere, rings, and lightning, all to be observed in several color and narrow-band filters. All targets shall be tracked during the mission and in some specific cases the DTM will be derived from stereo imaging. Mission design allows a quite long time range for observations in Jupiter system, with orbits around Jupiter and multiple fly-bys of satellites for 2.5 years, followed by about 6 months in orbit around Ganymede, at surface distances variable from 104 to few hundreds km. Our concept was based on a single optical channel, which was fine-tuned to cover all scientific objectives based on low to high-resolution imaging. A catoptric telescope with excellent optical quality is coupled with a rectangular detector, avoiding any scanning mechanism. In this paper the present JANUS design and its foreseen scientific capabilities are discussed.

  3. Simultaneous multispectral framing infrared camera using an embedded diffractive optical lenslet array

    NASA Astrophysics Data System (ADS)

    Hinnrichs, Michele

    2011-06-01

    Recent advances in micro-optical element fabrication using gray scale technology have opened up the opportunity to create simultaneous multi-spectral imaging with fine structure diffractive lenses. This paper will discuss an approach that uses diffractive optical lenses configured in an array (lenslet array) and placed in close proximity to the focal plane array which enables a small compact simultaneous multispectral imaging camera [1]. The lenslet array is designed so that all lenslets have a common focal length with each lenslet tuned for a different wavelength. The number of simultaneous spectral images is determined by the number of individually configured lenslets in the array. The number of spectral images can be increased by a factor of 2 when using it with a dual-band focal plane array (MWIR/LWIR) by exploiting multiple diffraction orders. In addition, modulation of the focal length of the lenslet array with piezoelectric actuation will enable spectral bin fill-in allowing additional spectral coverage while giving up simultaneity. Different lenslet array spectral imaging concept designs are presented in this paper along with a unique concept for prefiltering the radiation focused on the detector. This approach to spectral imaging has applications in the detection of chemical agents in both aerosolized form and as a liquid on a surface. It also can be applied to the detection of weaponized biological agent and IED detection in various forms from manufacturing to deployment and post detection during forensic analysis.

  4. Preliminary Results from the Array Camera for Optical to Near-IR Spectrophotometry (ARCONS)

    NASA Astrophysics Data System (ADS)

    Mazin, Benjamin A.; O'Brien, K.; Bumble, B.; Strader, M.; Meeker, S.; Stoughton, C.; Marsden, D.; Walter, A.; Szypyrt, P.; Ulbricht, G.

    2013-01-01

    In September 2012, the ARray Camera for Optical to Near-IR Spectrophotometry (ARCONS) was deployed at the 120" Shane telescope at Lick Observatory. ARCONS is a photon conuting integral field unit (IFU) that utilizes Microwave Kinetic Inductance Detectors (MKIDs), which are an emerging superconducting detector technology. MKIDs measure the energy (to within several percent) and arrival time (to within a microsecond) of detected photons. ARCONS contains a 2024 (46x44) pixel MKID array and has an operational bandwidth of 400 to 1100 nm. At the Shane telescope's Coudé focus, the array had a field of view of 22"x23". A variety of observations were made to demonstrate the potential applications of ARCONS's ability to do time-resolved low resolution spectro-imaging. Observations were made of short period compact binaries to look for spectral orbital variations. Observations of eclipsing white dwarfs were made to look for transit timing variations in orbital periods that would indicate the presence of additional companions. Observations were also made of faint galaxies to determine their redshifts, and observations of Low-Mass X-ray Binaries were made to probe the IR-emitting region of their jets. In another use of ARCONS's timing resolution, simultaneous optical and radio observations of the Crab pulsar were made, with the help of collaborators. In this talk I will discuss the preliminary results of a subset of these observations.

  5. Versatile illumination platform and fast optical switch to give standard observation camera gated active imaging capacity

    NASA Astrophysics Data System (ADS)

    Grasser, R.; Peyronneaudi, Benjamin; Yon, Kevin; Aubry, Marie

    2015-10-01

    CILAS, subsidiary of Airbus Defense and Space, develops, manufactures and sales laser-based optronics equipment for defense and homeland security applications. Part of its activity is related to active systems for threat detection, recognition and identification. Active surveillance and active imaging systems are often required to achieve identification capacity in case for long range observation in adverse conditions. In order to ease the deployment of active imaging systems often complex and expensive, CILAS suggests a new concept. It consists on the association of two apparatus working together. On one side, a patented versatile laser platform enables high peak power laser illumination for long range observation. On the other side, a small camera add-on works as a fast optical switch to select photons with specific time of flight only. The association of the versatile illumination platform and the fast optical switch presents itself as an independent body, so called "flash module", giving to virtually any passive observation systems gated active imaging capacity in NIR and SWIR.

  6. Off-axis scatter measurement of the Mars reconnaissance Orbiter (MRO) Optical Navigation Camera (ONC)

    NASA Astrophysics Data System (ADS)

    Stauder, John L.; Lowman, Andrew E.; Thiessen, Dave; Day, Darryl; Miles, D. O.

    2005-08-01

    The Optical Navigation Camera (ONC) is part of NASA's Mars Reconnaissance Orbiter (MRO) scheduled for an August 2005 launch. The design is a 500 mm focal length, F/8.3 Ritchey-Chretien with a refractive field corrector. Prior to flight, the off-axis performance of the ONC was measured at visible wavelengths in the off-axis scatter facility at the Space Dynamics Laboratory (SDL). This unique facility is designed to minimize scatter from the test setup to prevent data corruption. Testing was conducted in a clean room environment, and the results indicate that no detectable contamination of the optics occurred during testing. Measurements were taken in two time frames to correct an unanticipated stray light path, which occurred just outside of the sensor's field-of-view. The source of the offending path was identified as scatter from the edges of the field corrector lenses. Specifically, scatter from the interface between the flat ground glass and polished surfaces resulted in significant "humps" in the off-axis response centered at +/- 1.5°. Retesting showed the removal of the humps, and an overall satisfactory performance of the ONC. The troubleshooting, correction, and lessons learned regarding the above stray light path was reported on in an earlier paper. This paper discusses the measurement process, results, and a comparison to a software prediction and other planetary sensors. The measurement validated the final stray light design and complemented the software analysis.

  7. Improved visualization of outer retinal morphology with aberration cancelling reflective optical design for adaptive optics - optical coherence tomography

    PubMed Central

    Lee, Sang-Hyuck; Werner, John S.; Zawadzki, Robert J.

    2013-01-01

    We present an aberration cancelling optical design for a reflective adaptive optics - optical coherence tomography (AO-OCT) retinal imaging system. The optical performance of this instrument is compared to our previous multimodal AO-OCT/AO-SLO retinal imaging system. The feasibility of new instrumentation for improved visualization of microscopic retinal structures is discussed. Examples of images acquired with this new AO-OCT instrument are presented. PMID:24298411

  8. Adaptive Optics for the Thirty Meter Telescope

    NASA Astrophysics Data System (ADS)

    Ellerbroek, Brent

    2013-12-01

    This paper provides an overview of the progress made since the last AO4ELT conference towards developing the first-light AO architecture for the Thirty Meter Telescope (TMT). The Preliminary Design of the facility AO system NFIRAOS has been concluded by the Herzberg Institute of Astrophysics. Work on the client Infrared Imaging Spectrograph (IRIS) has progressed in parallel, including a successful Conceptual Design Review and prototyping of On-Instrument WFS (OIWFS) hardware. Progress on the design for the Laser Guide Star Facility (LGSF) continues at the Institute of Optics and Electronics in Chengdu, China, including the final acceptance of the Conceptual Design and modest revisions for the updated TMT telescope structure. Design and prototyping activities continue for lasers, wavefront sensing detectors, detector readout electronics, real-time control (RTC) processors, and deformable mirrors (DMs) with their associated drive electronics. Highlights include development of a prototype sum frequency guide star laser at the Technical Institute of Physics and Chemistry (Beijing); fabrication/test of prototype natural- and laser-guide star wavefront sensor CCDs for NFIRAOS by MIT Lincoln Laboratory and W.M. Keck Observatory; a trade study of RTC control algorithms and processors, with prototyping of GPU and FPGA architectures by TMT and the Dominion Radio Astrophysical Observatory; and fabrication/test of a 6x60 actuator DM prototype by CILAS. Work with the University of British Columbia LIDAR is continuing, in collaboration with ESO, to measure the spatial/temporal variability of the sodium layer and characterize the sodium coupling efficiency of several guide star laser systems. AO performance budgets have been further detailed. Modeling topics receiving particular attention include performance vs. computational cost tradeoffs for RTC algorithms; optimizing performance of the tip/tilt, plate scale, and sodium focus tracking loops controlled by the NGS on

  9. Prospective Motion Correction For Magnetic Resonance Spectroscopy Using Single Camera Retro-Grate Reflector Optical Tracking

    PubMed Central

    Andrews-Shigaki, Brian C; Armstrong, Brian S. R.; Zaitsev, Maxim; Ernst, Thomas

    2010-01-01

    Purpose To introduce and evaluate a method of prospective motion correction for localized proton magnetic resonance spectroscopy (1H-MRS), using a single-camera optical tracking system. Materials and Methods Five healthy participants were scanned at 3T using a PRESS sequence with a motion tracking module and phase navigator. Head motion in six degrees was tracked with a Retro-Grate Reflector (RGR) tracking system and target via a mirror mounted inside the bore. Participants performed a series of three predetermined motion patterns during scanning. Results Left-right rotation (Rz) (average 12°) resulted in an increase in the total Choline to total Creatine ratio (Cho/Cr) of +14.6±1.5% [p=0.0009] for scans without correction, but no change for scans with correction (+1.1±1.5%; p=0.76). Spectra with uncorrected Z-translations showed large lipid peaks (skull) with changes in Cho/Cr of −13.2±1.6% (p=0.02, no motion correction) and −2.2±2.4% (p=0.51) with correction enabled. There were no significant changes in the ratios of N-acetylaspartate, Glutamate+Glutamine, or Myo-inositol to Creatine compared to baseline scans for all experiments. Conclusion Prospective motion correction for 1H-MRS, using single-camera RGR tracking, can reduce spectral artifacts and quantitation errors in Cho/Cr ratios due to head motion, and promises improved spectral quality and reproducibility. PMID:21274994

  10. Adaptive optics high resolution spectroscopy: present status and future direction

    SciTech Connect

    Alcock, C; Angel, R; Ciarlo, D; Fugate, R O; Ge, J; Kuzmenko, P; Lloyd-Hart, M; Macintosh, B; Najita, J; Woolf, N

    1999-07-27

    High resolution spectroscopy experiments with visible adaptive optics (AO) telescopes at Starfire Optical Range and Mt. Wilson have demonstrated that spectral resolution can be routinely improved by a factor of - 10 over the seeing-limited case with no extra light losses at visible wavelengths. With large CCDs now available, a very wide wavelength range can be covered in a single exposure. In the near future, most large ground-based telescopes will be equipped with powerful A0 systems. Most of these systems are aimed primarily at diffraction-limited operation in the near IR. An exciting new opportunity will thus open up for high resolution IR spectroscopy. Immersion echelle gratings with much coarser grooves being developed by us at LLNL will play a critical role in achieving high spectral resolution with a compact and low cost IR cryogenically cooled spectrograph and simultaneous large wavelength coverage on relatively small IR detectors. We have constructed a new A0 optimized spectrograph at Steward Observatory to provide R = 200,000 in the optical, which is being commissioned at the Starfire Optical Range 3.5m telescope. We have completed the optical design of the LLNL IR Immersion Spectrograph (LISPEC) to take advantage of improved silicon etching technology. Key words: adaptive optics, spectroscopy, high resolution, immersion gratings

  11. Intelligent correction of laser beam propagation through turbulent media using adaptive optics

    NASA Astrophysics Data System (ADS)

    Ko, Jonathan; Wu, Chensheng; Davis, Christopher C.

    2014-10-01

    Adaptive optics methods have long been used by researchers in the astronomy field to retrieve correct images of celestial bodies. The approach is to use a deformable mirror combined with Shack-Hartmann sensors to correct the slightly distorted image when it propagates through the earth's atmospheric boundary layer, which can be viewed as adding relatively weak distortion in the last stage of propagation. However, the same strategy can't be easily applied to correct images propagating along a horizontal deep turbulence path. In fact, when turbulence levels becomes very strong (Cn 2>10-13 m-2/3), limited improvements have been made in correcting the heavily distorted images. We propose a method that reconstructs the light field that reaches the camera, which then provides information for controlling a deformable mirror. An intelligent algorithm is applied that provides significant improvement in correcting images. In our work, the light field reconstruction has been achieved with a newly designed modified plenoptic camera. As a result, by actively intervening with the coherent illumination beam, or by giving it various specific pre-distortions, a better (less turbulence affected) image can be obtained. This strategy can also be expanded to much more general applications such as correcting laser propagation through random media and can also help to improve designs in free space optical communication systems.

  12. Performance Characterization of KAPAO, a Low-Cost Natural Guide Star Adaptive Optics Instrument

    NASA Astrophysics Data System (ADS)

    Long, Joseph; Choi, P. I.; Severson, S. A.; Littleton, E.; Badham, K.; Bolger, D.; Guerrero, C.; Ortega, F.; Wong, J.; Baranec, C.; Riddle, R. L.

    2014-01-01

    We present a software overview of KAPAO, an adaptive optics system designed for the Pomona College 1-meter telescope at Table Mountain Observatory. The instrument is currently in the commissioning phase and data presented here are from both in-lab and on-sky observations. In an effort to maximize on-sky performance, we have developed a suite of instrument-specific data analysis tools. This suite of tools aids in the alignment of the instrument's optics, and the optimization of on-sky performance. The analysis suite visualizes and extends the telemetry output by the Robo-AO control software. This includes visualization of deformable mirror and wavefront sensor telemetry and a Zernike decomposition of the residual wavefront error. We complement this with analysis tools for the science camera data. We model a synthetic PSF for the Table Mountain telescope to calibrate our Strehl measurements, and process image data cubes to track instrument performance over the course of an observation. By coupling WFS telemetry with science camera data we can use image sharpening techniques to account for non-common-path wavefront errors and improve image performance. Python packages for scientific computing, such as NumPy and Matplotlib, are employed to complement existing IDL code. A primary goal of this suite of software is to support the remote use of the system by a broad range of users that includes faculty and undergraduate students from the consortium of member campuses.

  13. Lock-in camera based heterodyne holography for ultrasound-modulated optical tomography inside dynamic scattering media

    NASA Astrophysics Data System (ADS)

    Liu, Yan; Shen, Yuecheng; Ma, Cheng; Shi, Junhui; Wang, Lihong V.

    2016-06-01

    Ultrasound-modulated optical tomography (UOT) images optical contrast deep inside scattering media. Heterodyne holography based UOT is a promising technique that uses a camera for parallel speckle detection. In previous works, the speed of data acquisition was limited by the low frame rates of conventional cameras. In addition, when the signal-to-background ratio was low, these cameras wasted most of their bits representing an informationless background, resulting in extremely low efficiencies in the use of bits. Here, using a lock-in camera, we increase the bit efficiency and reduce the data transfer load by digitizing only the signal after rejecting the background. Moreover, compared with the conventional four-frame based amplitude measurement method, our single-frame method is more immune to speckle decorrelation. Using lock-in camera based UOT with an integration time of 286 μs, we imaged an absorptive object buried inside a dynamic scattering medium exhibiting a speckle correlation time ( τ c ) as short as 26 μs. Since our method can tolerate speckle decorrelation faster than that found in living biological tissue ( τ c ˜ 100-1000 μs), it is promising for in vivo deep tissue non-invasive imaging.

  14. Accuracy requirements of optical linear algebra processors in adaptive optics imaging systems

    NASA Technical Reports Server (NTRS)

    Downie, John D.; Goodman, Joseph W.

    1989-01-01

    The accuracy requirements of optical processors in adaptive optics systems are determined by estimating the required accuracy in a general optical linear algebra processor (OLAP) that results in a smaller average residual aberration than that achieved with a conventional electronic digital processor with some specific computation speed. Special attention is given to an error analysis of a general OLAP with regard to the residual aberration that is created in an adaptive mirror system by the inaccuracies of the processor, and to the effect of computational speed of an electronic processor on the correction. Results are presented on the ability of an OLAP to compete with a digital processor in various situations.

  15. Solar adaptive optics with the DKIST: status report

    NASA Astrophysics Data System (ADS)

    Johnson, Luke C.; Cummings, Keith; Drobilek, Mark; Gregory, Scott; Hegwer, Steve; Johansson, Erik; Marino, Jose; Richards, Kit; Rimmele, Thomas; Sekulic, Predrag; Wöger, Friedrich

    2014-08-01

    The DKIST wavefront correction system will be an integral part of the telescope, providing active alignment control, wavefront correction, and jitter compensation to all DKIST instruments. The wavefront correction system will operate in four observing modes, diffraction-limited, seeing-limited on-disk, seeing-limited coronal, and limb occulting with image stabilization. Wavefront correction for DKIST includes two major components: active optics to correct low-order wavefront and alignment errors, and adaptive optics to correct wavefront errors and high-frequency jitter caused by atmospheric turbulence. The adaptive optics system is built around a fast tip-tilt mirror and a 1600 actuator deformable mirror, both of which are controlled by an FPGA-based real-time system running at 2 kHz. It is designed to achieve on-axis Strehl of 0.3 at 500 nm in median seeing (r0 = 7 cm) and Strehl of 0.6 at 630 nm in excellent seeing (r0 = 20 cm). We present the current status of the DKIST high-order adaptive optics, focusing on system design, hardware procurements, and error budget management.

  16. Laser beacon adaptive optics for power beaming applications

    SciTech Connect

    Fugate, R.Q.

    1994-12-31

    This paper discusses the laser beam control system requirements for power beaming applications. Power beaming applications include electric and thermal engine propulsion for orbit transfer, station changing, and recharging batteries. Beam control includes satellite acquisition, high accuracy tracking, higher order atmospheric compensation using adaptive optics, and precision point-ahead. Beam control may also include local laser beam clean-up with a low order adaptive optics system. This paper also presents results of tracking and higher-order correction experiments on astronomical objects. The results were obtained with a laser beacon adaptive optics system at Phillips Laboratory`s Starfire Optical Range near Albuquerque, NM. At a wavelength of 0.85 {mu}m, the author has achieved Strehl ratios of {approximately}0.50 using laser beacons and {approximately}0.65 using natural stars for exposures longer than one minute on objects of {approximately}8{sup th} magnitude. The resulting point spread function has a full width half maximum (FWHM) of 0.13 arcsec.

  17. Deploying the testbed for the VLT adaptive optics facility: ASSIST

    NASA Astrophysics Data System (ADS)

    Stuik, Remko; La Penna, Paolo; Dupuy, Christophe; de Haan, Menno; Arsenault, Robin; Boland, Wilfried; Elswijk, Eddy; ter Horst, Rik; Hubin, Norbert; Madec, Pierre-Yves; Molster, Frank; Wiegers, Emiel

    2012-07-01

    The ESO Very Large Telescope Adaptive Optics Facility (VLT-AOF) will transform the VLT Unit Telescope 4 to an Adaptive Telescope. In absence of an intermediate focus before the Adaptive Secondary in this Ritchey-Chrétien type telescope and in order to reduce the testing and calibration of the system on-sky, ASSIST, The Adaptive Secondary Setup and Instrument STimulator, was developed. It provides an off-sky testing facility for the ESO AOF and will provide a full testing environment for three elements of the VLT Adaptive Optics Facility: the Deformable Secondary Mirror (DSM) and the AO modules for MUSE and HAWK-I (GALACSI and GRAAL). ASSIST was delivered to ESO Garching, where it was assembled and tested. Currently ASSIST is being integrated with the Deformable Secondary Mirror, the first step in the full system testing of the two AO systems for the VLT AOF on ASSIST. This paper briefly reviews the design and properties of ASSIST and reports on the first results of ASSIST in stand-alone mode.

  18. Smart adaptive optic systems using spatial light modulators.

    PubMed

    Clark, N; Banish, M; Ranganath, H S

    1999-01-01

    Many factors contribute to the aberrations induced in an optical system. Atmospheric turbulence between the object and the imaging system, physical or thermal perturbations in optical elements degrade the system's point spread function, and misaligned optics are the primary sources of aberrations that affect image quality. The design of a nonconventional real-time adaptive optic system using a micro-mirror device for wavefront correction is presented. The unconventional compensated imaging system presented offers advantages in speed, cost, power consumption, and weight. A pulsed-coupled neural network is used to as a preprocessor to enhance the performance of the wavefront sensor for low-light applications. Modeling results that characterize the system performance are presented. PMID:18252558

  19. Adaptive optics two-photon scanning laser fluorescence microscopy

    NASA Astrophysics Data System (ADS)

    Zhou, Yaopeng; Bifano, Thomas; Lin, Charles

    2011-03-01

    Two-photon fluorescence microscopy provides a powerful tool for deep tissue imaging. However, optical aberrations from illumination beam path limit imaging depth and resolution. Adaptive Optics (AO) is found to be useful to compensate for optical aberrations and improve image resolution and contrast from two-photon excitation. We have developed an AO system relying on a MEMS Deformable Mirror (DM) to compensate the optical aberrations in a two-photon scanning laser fluorescence microscope. The AO system utilized a Zernike polynomial based stochastic parallel gradient descent (SPGD) algorithm to optimize the DM shape for wavefront correction. The developed microscope is applied for subsurface imaging of mouse bone marrow. It was demonstrated that AO allows 80% increase in fluorescence signal intensity from bone cavities 145um below the surface. The AO-enhanced microscope provides cellular level images of mouse bone marrow at depths exceeding those achievable without AO.

  20. Chemical reactivity testing of optical fluids and materials in the DEIMOS spectrographic camera for the Keck II telescope

    NASA Astrophysics Data System (ADS)

    Hilyard, David F.; Laopodis, George K.; Faber, Sandra M.

    1999-09-01

    The DEIMOS Spectrograph Camera contains tow doublets and a triplet. Each group contains materials differing in thermal coefficient expansion, mechanical and optical properties. To mate the elements and at the same time accommodate large camera temperature changes, we will fill the space between with an optical fluid couplant. We selected candidate couplants, lens-support materials, and fluid-constraining materials based on published optical, mechanical and chemical properties. We then tested the chemical reactivity between the coupling fluids, lens-support and fluid- constraining materials. We describe here the test configurations, our criteria for reactivity, and the result for various test durations. We describe our conclusions and final choices for couplant and materials.

  1. Fast calibration of high-order adaptive optics systems

    NASA Astrophysics Data System (ADS)

    Kasper, Markus; Fedrigo, Enrico; Looze, Douglas P.; Bonnet, Henri; Ivanescu, Liviu; Oberti, Sylvain

    2004-06-01

    We present a new method of calibrating adaptive optics systems that greatly reduces the required calibration time or, equivalently, improves the signal-to-noise ratio. The method uses an optimized actuation scheme with Hadamard patterns and does not scale with the number of actuators for a given noise level in the wave-front sensor channels. It is therefore highly desirable for high-order systems and/or adaptive secondary systems on a telescope without a Gregorian focal plane. In the latter case, the measurement noise is increased by the effects of the turbulent atmosphere when one is calibrating on a natural guide star.

  2. Fast calibration of high-order adaptive optics systems.

    PubMed

    Kasper, Markus; Fedrigo, Enrico; Looze, Douglas P; Bonnet, Henri; Ivanescu, Liviu; Oberti, Sylvain

    2004-06-01

    We present a new method of calibrating adaptive optics systems that greatly reduces the required calibration time or, equivalently, improves the signal-to-noise ratio. The method uses an optimized actuation scheme with Hadamard patterns and does not scale with the number of actuators for a given noise level in the wavefront sensor channels. It is therefore highly desirable for high-order systems and/or adaptive secondary systems on a telescope without a Gregorian focal plane. In the latter case, the measurement noise is increased by the effects of the turbulent atmosphere when one is calibrating on a natural guide star. PMID:15191182

  3. Infinite impulse response modal filtering in visible adaptive optics

    NASA Astrophysics Data System (ADS)

    Agapito, G.; Arcidiacono, C.; Quirós-Pacheco, F.; Puglisi, A.; Esposito, S.

    2012-07-01

    Diffraction limited resolution adaptive optics (AO) correction in visible wavelengths requires a high performance control. In this paper we investigate infinite impulse response filters that optimize the wavefront correction: we tested these algorithms through full numerical simulations of a single-conjugate AO system comprising an adaptive secondary mirror with 1127 actuators and a pyramid wavefront sensor (WFS). The actual practicability of the algorithms depends on both robustness and knowledge of the real system: errors in the system model may even worsen the performance. In particular we checked the robustness of the algorithms in different conditions, proving that the proposed method can reject both disturbance and calibration errors.

  4. Pixelized Device Control Actuators for Large Adaptive Optics

    NASA Technical Reports Server (NTRS)

    Knowles, Gareth J.; Bird, Ross W.; Shea, Brian; Chen, Peter

    2009-01-01

    A fully integrated, compact, adaptive space optic mirror assembly has been developed, incorporating new advances in ultralight, high-performance composite mirrors. The composite mirrors use Q-switch matrix architecture-based pixelized control (PMN-PT) actuators, which achieve high-performance, large adaptive optic capability, while reducing the weight of present adaptive optic systems. The self-contained, fully assembled, 11x11x4-in. (approx.= 28x28x10-cm) unit integrates a very-high-performance 8-in. (approx.=20-cm) optic, and has 8-kHz true bandwidth. The assembled unit weighs less than 15 pounds (=6.8 kg), including all mechanical assemblies, power electronics, control electronics, drive electronics, face sheet, wiring, and cabling. It requires just three wires to be attached (power, ground, and signal) for full-function systems integration, and uses a steel-frame and epoxied electronics. The three main innovations are: 1. Ultralightweight composite optics: A new replication method for fabrication of very thin composite 20-cm-diameter laminate face sheets with good as-fabricated optical figure was developed. The approach is a new mandrel resin surface deposition onto previously fabricated thin composite laminates. 2. Matrix (regenerative) power topology: Waveform correction can be achieved across an entire face sheet at 6 kHz, even for large actuator counts. In practice, it was found to be better to develop a quadrant drive, that is, four quadrants of 169 actuators behind the face sheet. Each quadrant has a single, small, regenerative power supply driving all 169 actuators at 8 kHz in effective parallel. 3. Q-switch drive architecture: The Q-switch innovation is at the heart of the matrix architecture, and allows for a very fast current draw into a desired actuator element in 120 counts of a MHz clock without any actuator coupling.

  5. High-order adaptive optical system for Big Bear Solar Observatory

    NASA Astrophysics Data System (ADS)

    Didkovsky, L. V.; Denker, C.; Goode, P. R.; Wang, H.; Rimmele, T. R.

    A high-order Adaptive Optical (AO) system for the 65 cm vacuum telescope of the Big Bear Solar Observatory (BBSO) is presented. The Coudé-exit of the telescope has been modified to accommodate the AO system and two imaging magnetograph systems for visible-light and near infrared (NIR) observations. A small elliptical tip/tilt mirror directs the light into an optical laboratory on the observatory's 2mathrm {nd} floor just below the observing floor. A deformable mirror (DM) with 77 mm diameter is located on an optical table where it serves two wave-front sensors (WFS), a correlation tracker (CT) and Shack-Hartman (SH) sensor for the high-order AO system, and the scientific channels with the imaging magnetographs. The two-axis tip/tilt platform has a resonance frequency around 3.3 kHz and tilt range of about 2 mrad, which corresponds to about 25'' in the sky. Based on 32 x 32 pixel images, the CT detects image displacements between a reference frame and real-time frames at a rate of 2 kHz. High-order wave-front aberrations are detected in the SH WFS channel from slope measurements derived from 76 sub-apertures, which are recorded with 1,280 x 1,024 pixel Complex Metal Oxide Semiconductor (CMOS) camera manufactured by Photobit camera. In the 4 x 4 pixel binning mode, the data acquisition rate of the CMOS device is more than 2 kHz. Both visible-light and NIR imaging magnetographs use Fabry-Pérot etalons in telecentric configurations for two-dimensional spectro-polarimetry. The optical design of the AO system allows using small aperture prefilters, such as interference or Lyot filters, and 70 mm diameter Fabry-Pérot etalons covering a field-of-view (FOV) of about 180'' x 180''.

  6. Adaptive Quality of Transmission Control in Elastic Optical Network

    NASA Astrophysics Data System (ADS)

    Cai, Xinran

    Optical fiber communication is becoming increasingly important due to the burgeoning demand in the internet capacity. However, traditional wavelength division multiplexing (WDM) technique fails to address such demand because of its inefficient spectral utilization. As a result, elastic optical networking (EON) has been under extensive investigation recently. Such network allows sub-wavelength and super-wavelength channel accommodation, and mitigates the stranded bandwidth problem in the WDM network. In addition, elastic optical network is also able to dynamically allocate the spectral resources of the network based on channel conditions and impairments, and adaptively control the quality of transmission of a channel. This application requires two aspects to be investigated: an efficient optical performance monitoring scheme and networking control and management algorithms to reconfigure the network in a dynamic fashion. This thesis focuses on the two aspects discussed above about adaptive QoT control. We demonstrated a supervisory channel method for optical signal to noise ratio (OSNR) and chromatic dispersion (CD) monitoring. In addition, our proof-of-principle testbed experiments show successful impairment aware reconfiguration of the network with modulation format switching (MFS) only and MFS combined with lightpath rerouting (LR) for hundred-GHz QPSK superchannels undergoing time-varying OSNR impairment.

  7. Adaptive optics for improved retinal surgery and diagnostics

    SciTech Connect

    Humayun, M S; Sadda, S R; Thompson, C A; Olivier, S S; Kartz, M W

    2000-08-21

    It is now possible to field a compact adaptive optics (AO) system on a surgical microscope for use in retinal diagnostics and surgery. Recent developments in integrated circuit technology and optical photonics have led to the capability of building an AO system that is compact and significantly less expensive than traditional AO systems. It is foreseen that such an AO system can be integrated into a surgical microscope while maintaining a package size of a lunchbox. A prototype device can be developed in a manner that lends itself well to large-scale manufacturing.

  8. An optimized adaptive optics experimental setup for in vivo retinal imaging

    NASA Astrophysics Data System (ADS)

    Balderas-Mata, S. E.; Valdivieso González, L. G.; Ramírez Zavaleta, G.; López Olazagasti, E.; Tepichin Rodriguez, E.

    2012-10-01

    The use of Adaptive Optics (AO) in ophthalmologic instruments to image human retinas has been probed to improve the imaging lateral resolution, by correcting both static and dynamic aberrations inherent in human eyes. Typically, the configuration of the AO arm uses an infrared beam from a superluminescent diode (SLD), which is focused on the retina, acting as a point source. The back reflected light emerges through the eye optical system bringing with it the aberrations of the cornea. The aberrated wavefront is measured with a Shack - Hartmann wavefront sensor (SHWFS). However, the aberrations in the optical imaging system can reduced the performance of the wave front correction. The aim of this work is to present an optimized first stage AO experimental setup for in vivo retinal imaging. In our proposal, the imaging optical system has been designed in order to reduce spherical aberrations due to the lenses. The ANSI Standard is followed assuring the safety power levels. The performance of the system will be compared with a commercial aberrometer. This system will be used as the AO arm of a flood-illuminated fundus camera system for retinal imaging. We present preliminary experimental results showing the enhancement.

  9. AO-308: the high-order adaptive optics system at Big Bear Solar Observatory

    NASA Astrophysics Data System (ADS)

    Shumko, Sergey; Gorceix, Nicolas; Choi, Seonghwan; Kellerer, Aglaé; Cao, Wenda; Goode, Philip R.; Abramenko, Volodymyr; Richards, Kit; Rimmele, Thomas R.; Marino, Jose

    2014-08-01

    In this paper we present Big Bear Solar Observatory's (BBSO) newest adaptive optics system - AO-308. AO-308 is a result of collaboration between BBSO and National Solar Observatory (NSO). AO-308 uses a 357 actuators deformable mirror (DM) from Xinetics and its wave front sensor (WFS) has 308 sub-apertures. The WFS uses a Phantom V7.3 camera which runs at 2000 Hz with the region of interest of 416×400 pixels. AO-308 utilizes digital signal processors (DSPs) for image processing. AO-308 has been successfully used during the 2013 observing season. The system can correct up to 310 modes providing diffraction limited images at all wavelengths of interest.

  10. Experience with wavefront sensor and deformable mirror interfaces for wide-field adaptive optics systems

    NASA Astrophysics Data System (ADS)

    Basden, A. G.; Atkinson, D.; Bharmal, N. A.; Bitenc, U.; Brangier, M.; Buey, T.; Butterley, T.; Cano, D.; Chemla, F.; Clark, P.; Cohen, M.; Conan, J.-M.; de Cos, F. J.; Dickson, C.; Dipper, N. A.; Dunlop, C. N.; Feautrier, P.; Fusco, T.; Gach, J. L.; Gendron, E.; Geng, D.; Goodsell, S. J.; Gratadour, D.; Greenaway, A. H.; Guesalaga, A.; Guzman, C. D.; Henry, D.; Holck, D.; Hubert, Z.; Huet, J. M.; Kellerer, A.; Kulcsar, C.; Laporte, P.; Le Roux, B.; Looker, N.; Longmore, A. J.; Marteaud, M.; Martin, O.; Meimon, S.; Morel, C.; Morris, T. J.; Myers, R. M.; Osborn, J.; Perret, D.; Petit, C.; Raynaud, H.; Reeves, A. P.; Rousset, G.; Sanchez Lasheras, F.; Sanchez Rodriguez, M.; Santos, J. D.; Sevin, A.; Sivo, G.; Stadler, E.; Stobie, B.; Talbot, G.; Todd, S.; Vidal, F.; Younger, E. J.

    2016-06-01

    Recent advances in adaptive optics (AO) have led to the implementation of wide field-of-view AO systems. A number of wide-field AO systems are also planned for the forthcoming Extremely Large Telescopes. Such systems have multiple wavefront sensors of different types, and usually multiple deformable mirrors (DMs). Here, we report on our experience integrating cameras and DMs with the real-time control systems of two wide-field AO systems. These are CANARY, which has been operating on-sky since 2010, and DRAGON, which is a laboratory AO real-time demonstrator instrument. We detail the issues and difficulties that arose, along with the solutions we developed. We also provide recommendations for consideration when developing future wide-field AO systems.

  11. MEMS-based extreme adaptive optics for planet detection

    NASA Astrophysics Data System (ADS)

    Macintosh, Bruce; Graham, James; Oppenheimer, Ben; Poyneer, Lisa; Sivaramakrishnan, Anand; Veran, Jean-Pierre

    2006-01-01

    The next major step in the study of extrasolar planets will be the direct detection, resolved from their parent star, of a significant sample of Jupiter-like extrasolar giant planets. Such detection will open up new parts of the extrasolar planet distribution and allow spectroscopic characterization of the planets themselves. Detecting Jovian planets at 5-50 AU scale orbiting nearby stars requires adaptive optics systems and coronagraphs an order of magnitude more powerful than those available today - the realm of "Extreme" adaptive optics. We present the basic requirements and design for such a system, the Gemini Planet Imager (GPI.) GPI will require a MEMS-based deformable mirror with good surface quality, 2-4 micron stroke (operated in tandem with a conventional low-order "woofer" mirror), and a fully-functional 48-actuator-diameter aperture.

  12. Contrast-based sensorless adaptive optics for retinal imaging.

    PubMed

    Zhou, Xiaolin; Bedggood, Phillip; Bui, Bang; Nguyen, Christine T O; He, Zheng; Metha, Andrew

    2015-09-01

    Conventional adaptive optics ophthalmoscopes use wavefront sensing methods to characterize ocular aberrations for real-time correction. However, there are important situations in which the wavefront sensing step is susceptible to difficulties that affect the accuracy of the correction. To circumvent these, wavefront sensorless adaptive optics (or non-wavefront sensing AO; NS-AO) imaging has recently been developed and has been applied to point-scanning based retinal imaging modalities. In this study we show, for the first time, contrast-based NS-AO ophthalmoscopy for full-frame in vivo imaging of human and animal eyes. We suggest a robust image quality metric that could be used for any imaging modality, and test its performance against other metrics using (physical) model eyes. PMID:26417525

  13. MEMS-based extreme adaptive optics for planet detection

    SciTech Connect

    Macintosh, B A; Graham, J R; Oppenheimer, B; Poyneer, L; Sivaramakrishnan, A; Veran, J

    2005-11-18

    The next major step in the study of extrasolar planets will be the direct detection, resolved from their parent star, of a significant sample of Jupiter-like extrasolar giant planets. Such detection will open up new parts of the extrasolar planet distribution and allow spectroscopic characterization of the planets themselves. Detecting Jovian planets at 5-50 AU scale orbiting nearby stars requires adaptive optics systems and coronagraphs an order of magnitude more powerful than those available today--the realm of ''Extreme'' adaptive optics. We present the basic requirements and design for such a system, the Gemini Planet Imager (GPI.) GPI will require a MEMS-based deformable mirror with good surface quality, 2-4 micron stroke (operated in tandem with a conventional low-order ''woofer'' mirror), and a fully-functional 48-actuator-diameter aperture.

  14. Titan in the Infrared with Adaptive Optics. An Overview

    NASA Astrophysics Data System (ADS)

    Hirtzig, M.; Coustenis, A.; Gendron, E.; Drossart, P.; Negrão, A.; Combes, M.; Lai, O.; Rannou, P.; Hartung, M.

    For the past ten years or more, Adaptive Optics have allowed astronomers to harvest precious information about Titan, shrouded from view by its own thick atmosphere and blurred by the turbulence of the Earth's atmosphere. As the later is reduced by the use of Adaptive Optics, the atmosphere of Titan can be probed in the near-infrared and furthermore, thanks to the presence of methane -- windows -- the surface can be detected. We present here an overview of the latest results gathered on both Titan's atmosphere, and surface : seasonal, diurnal and meteorological features appear on the AO images. Maps of the surface were also built, a compulsory tool to constrain the chemical composition of this mysterious surface.

  15. Neptune and Titan Observed with Keck Telescope Adaptive Optics

    SciTech Connect

    Max, C.E.; Macintosh, B.A.; Gibbard, S.; Gavel, D.T.; Roe, H.; De Pater, I.; Ghez, A.M.; Acton, S.; Wizinowich, P.L.; Lai, O.

    2000-05-05

    The authors report on observations taken during engineering science validation time using the new adaptive optics system at the 10-m Keck II Telescope. They observe Neptune and Titan at near-infrared wavelengths. These objects are ideal for adaptive optics imaging because they are bright and small, yet have many diffraction-limited resolution elements across their disks. In addition Neptune and Titan have prominent physical features, some of which change markedly with time. They have observed infrared-bright storms on Neptune, and very low-albedo surface regions on Titan, Saturn's largest moon, Spatial resolution on Neptune and Titan was 0.05-0.06 and 0.04-0.05 arc sec, respectively.

  16. Adaptive Optics Control Strategies for Extremely Large Telescopes

    SciTech Connect

    Gavel, D T

    2001-07-26

    Adaptive optics for the 30-100 meter class telescopes now being considered will require an extension in almost every area of AO system component technology. In this paper, we present scaling laws and strawman error budgets for AO systems on extremely large telescopes (ELTs) and discuss the implications for component technology and computational architecture. In the component technology area, we discuss the advanced efforts being pursued at the NSF Center for Adaptive Optics (CfAO) in the development of large number of degrees of freedom deformable mirrors, wavefront sensors, and guidestar lasers. It is important to note that the scaling of present wavefront reconstructor algorithms will become computationally intractable for ELTs and will require the development of new algorithms and advanced numerical mathematics techniques. We present the computational issues and discuss the characteristics of new algorithmic approaches that show promise in scaling to ELT AO systems.

  17. Spectral characterization of tracheal and esophageal tissues using a hyperspectral camera and fiber optic sensors

    NASA Astrophysics Data System (ADS)

    Nawn, Corinne D.; Souhan, Brian E.; Carter, Robert; Kneapler, Caitlin; Fell, Nicholas; Ye, Jing Yong

    2016-03-01

    During emergency medical situations where the patient has an obstructed airway or necessitates respiratory support, endotracheal intubation (ETI) is the medical technique of placing a tube into the trachea in order to facilitate adequate ventilation of the lungs. In particular, the anatomical, visual and time-sensitive challenges presented in these scenarios, such as in trauma, require a skilled provider in order to successfully place the tube into the trachea. Complications during ETI such as repeated attempts, failed intubation or accidental intubation of the esophagus can lead to severe consequences or ultimately death. Consequently, a need exists for a feedback mechanism to aid providers in performing successful ETI. To investigate potential characteristics to exploit as a feedback mechanism, our study examined the spectral properties of the trachea tissue to determine whether a unique spectral profile exists. In this work, hyperspectral cameras and fiber optic sensors were used to capture and analyze the reflectance profiles of tracheal and esophageal tissues illuminated with UV and white light. Our results show consistent and specific spectral characteristics of the trachea, providing foundational support for using spectral properties to detect features of the trachea.

  18. Adaptation technology between IP layer and optical layer in optical Internet

    NASA Astrophysics Data System (ADS)

    Ji, Yuefeng; Li, Hua; Sun, Yongmei

    2001-10-01

    Wavelength division multiplexing (WDM) optical network provides a platform with high bandwidth capacity and is supposed to be the backbone infrastructure supporting the next-generation high-speed multi-service networks (ATM, IP, etc.). In the foreseeable future, IP will be the predominant data traffic, to make fully use of the bandwidth of the WDM optical network, many attentions have been focused on IP over WDM, which has been proposed as the most promising technology for new kind of network, so-called Optical Internet. According to OSI model, IP is in the 3rd layer (network layer) and optical network is in the 1st layer (physical layer), so the key issue is what adaptation technology should be used in the 2nd layer (data link layer). In this paper, firstly, we analyze and compare the current adaptation technologies used in backbone network nowadays. Secondly, aiming at the drawbacks of above technologies, we present a novel adaptation protocol (DONA) between IP layer and optical layer in Optical Internet and describe it in details. Thirdly, the gigabit transmission adapter (GTA) we accomplished based on the novel protocol is described. Finally, we set up an experiment platform to apply and verify the DONA and GTA, the results and conclusions of the experiment are given.

  19. LIFT: analysis of performance in a laser assisted adaptive optics

    NASA Astrophysics Data System (ADS)

    Plantet, Cedric; Meimon, Serge; Conan, Jean-Marc; Neichel, Benoît; Fusco, Thierry

    2014-08-01

    Laser assisted adaptive optics systems rely on Laser Guide Star (LGS) Wave-Front Sensors (WFS) for high order aberration measurements, and rely on Natural Guide Stars (NGS) WFS to complement the measurements on low orders such as tip-tilt and focus. The sky-coverage of the whole system is therefore related to the limiting magnitude of the NGS WFS. We have recently proposed LIFT, a novel phase retrieval WFS technique, that allows a 1 magnitude gain over the usually used 2×2 Shack-Hartmann WFS. After an in-lab validation, LIFT's concept has been demonstrated on sky in open loop on GeMS (the Gemini Multiconjugate adaptive optics System at Gemini South). To complete its validation, LIFT now needs to be operated in closed loop in a laser assisted adaptive optics system. The present work gives a detailed analysis of LIFT's behavior in presence of high order residuals and how to limit aliasing effects on the tip/tilt/focus estimation. Also, we study the high orders' impact on noise propagation. For this purpose, we simulate a multiconjugate adaptive optics loop representative of a GeMS-like 5 LGS configuration. The residual high orders are derived from a Fourier based simulation. We demonstrate that LIFT keeps a high performance gain over the Shack-Hartmann 2×2 whatever the turbulence conditions. Finally, we show the first simulation of a closed loop with LIFT estimating turbulent tip/tilt and focus residuals that could be induced by sodium layer's altitude variations.

  20. Evaluation of imaging performance of a taper optics CCD; FReLoN' camera designed for medical imaging.

    PubMed

    Coan, Paola; Peterzol, Angela; Fiedler, Stefan; Ponchut, Cyril; Labiche, Jean Claude; Bravin, Alberto

    2006-05-01

    The purpose of this work was to assess the imaging performance of an indirect conversion detector (taper optics CCD; FReLoN' camera) in terms of the modulation transfer function (MTF), normalized noise power spectrum (NNPS) and detective quantum efficiency (DQE). Measurements were made with a synchrotron radiation laminar beam at various monochromatic energies in the 20-51.5 keV range for a gadolinium-based fluorescent screen varying in thickness; data acquisition and analysis were made by adapting to this beam geometry protocols used for conventional cone beams. The pre-sampled MTFs of the systems were measured using an edge method. The NNPS of the systems were determined for a range of exposure levels by two-dimensional Fourier analysis of uniformly exposed radiographs. The DQEs were assessed from the measured MTF, NNPS, exposure and incoming number of photons. The MTF, for a given screen, was found to be almost energy independent and, for a given energy, higher for the thinnest screen. At 33 keV and for the 40 (100) microm screen, at 10% the MTF is 9.2 (8.6) line-pairs mm(-1). The NNPS was found to be different in the two analyzed directions in relation to frequency. Highest DQE values were found for the combination 100 microm and 25 keV (0.5); it was still equal to 0.4 at 51.5 keV (above the gadolinium K-edge). The DQE is limited by the phosphor screen conversion yield and by the CCD efficiency. At the end of the manuscript the results of the FReLoN characterization and those from a selected number of detectors presented in the literature are compared. PMID:16645252

  1. ADMIRE: a locally adaptive single-image, non-uniformity correction and denoising algorithm: application to uncooled IR camera

    NASA Astrophysics Data System (ADS)

    Tendero, Y.; Gilles, J.

    2012-06-01

    We propose a new way to correct for the non-uniformity (NU) and the noise in uncooled infrared-type images. This method works on static images, needs no registration, no camera motion and no model for the non uniformity. The proposed method uses an hybrid scheme including an automatic locally-adaptive contrast adjustment and a state-of-the-art image denoising method. It permits to correct for a fully non-linear NU and the noise efficiently using only one image. We compared it with total variation on real raw and simulated NU infrared images. The strength of this approach lies in its simplicity, low computational cost. It needs no test-pattern or calibration and produces no "ghost-artefact".

  2. Adaptive algorithms of position and energy reconstruction in Anger-camera type detectors: experimental data processing in ANTS

    NASA Astrophysics Data System (ADS)

    Morozov, A.; Defendi, I.; Engels, R.; Fraga, F. A. F.; Fraga, M. M. F. R.; Gongadze, A.; Guerard, B.; Jurkovic, M.; Kemmerling, G.; Manzin, G.; Margato, L. M. S.; Niko, H.; Pereira, L.; Petrillo, C.; Peyaud, A.; Piscitelli, F.; Raspino, D.; Rhodes, N. J.; Sacchetti, F.; Schooneveld, E. M.; Solovov, V.; Van Esch, P.; Zeitelhack, K.

    2013-05-01

    The software package ANTS (Anger-camera type Neutron detector: Toolkit for Simulations), developed for simulation of Anger-type gaseous detectors for thermal neutron imaging was extended to include a module for experimental data processing. Data recorded with a sensor array containing up to 100 photomultiplier tubes (PMT) or silicon photomultipliers (SiPM) in a custom configuration can be loaded and the positions and energies of the events can be reconstructed using the Center-of-Gravity, Maximum Likelihood or Least Squares algorithm. A particular strength of the new module is the ability to reconstruct the light response functions and relative gains of the photomultipliers from flood field illumination data using adaptive algorithms. The performance of the module is demonstrated with simulated data generated in ANTS and experimental data recorded with a 19 PMT neutron detector. The package executables are publicly available at http://coimbra.lip.pt/~andrei/

  3. The use of a consumer grade photo camera in optical-digital correlator for pattern recognition and input scene restoration

    NASA Astrophysics Data System (ADS)

    Konnik, Mikhail V.; Starikov, Sergey N.

    2009-11-01

    In this work an optical-digital correlator for pattern recognition and input scene restoration is described. Main features of the described correlator are portability and ability of multi-element input scenes processing. The correlator consists of a consumer grade digital photo camera with a diffractive optical element (DOE) inserted as a correlation filter. Correlation of an input scene with a reference image recorded on the DOE are provided optically and registered by the digital photo camera for further processing. Using obtained correlation signals and DOE's point spread function (PSF), one can restore the image of the input scene from the image of correlation signals by digital deconvolution algorithms. The construction of the correlator based on the consumer grade digital photo camera is presented. The software procedure that is necessary for images linearization of correlation signals is described. Experimental results on optical correlation are compared with numerical simulation. The results of images restoration from conventionally and specially processed correlation signals are reported. Quantitative estimations of accuracy of correlation signals as well as restored images of the input scene are presented.

  4. Performance of a MEMS-base Adaptive Optics Optical Coherency Tomography System

    SciTech Connect

    Evans, J; Zadwadzki, R J; Jones, S; Olivier, S; Opkpodu, S; Werner, J S

    2008-01-16

    We have demonstrated that a microelectrical mechanical systems (MEMS) deformable mirror can be flattened to < 1 nm RMS within controllable spatial frequencies over a 9.2-mm aperture making it a viable option for high-contrast adaptive optics systems (also known as Extreme Adaptive Optics). The Extreme Adaptive Optics Testbed at UC Santa Cruz is being used to investigate and develop technologies for high-contrast imaging, especially wavefront control. A phase shifting diffraction interferometer (PSDI) measures wavefront errors with sub-nm precision and accuracy for metrology and wavefront control. Consistent flattening, required testing and characterization of the individual actuator response, including the effects of dead and low-response actuators. Stability and repeatability of the MEMS devices was also tested. An error budget for MEMS closed loop performance will summarize MEMS characterization.

  5. Astrometric performance of the Gemini multiconjugate adaptive optics system in crowded fields

    NASA Astrophysics Data System (ADS)

    Neichel, Benoit; Lu, Jessica R.; Rigaut, François; Ammons, S. Mark; Carrasco, Eleazar R.; Lassalle, Emmanuel

    2014-11-01

    The Gemini multiconjugate adaptive optics system (GeMS) is a facility instrument for the Gemini South telescope. It delivers uniform, near-diffraction-limited image quality at near-infrared wavelengths over a 2 arcmin field of view. Together with the Gemini South Adaptive Optics Imager (GSAOI), a near-infrared wide-field camera, GeMS/GSAOI's combination of high spatial resolution and a large field of view will make it a premier facility for precision astrometry. Potential astrometric science cases cover a broad range of topics including exoplanets, star formation, stellar evolution, star clusters, nearby galaxies, black holes and neutron stars, and the Galactic Centre. In this paper, we assess the astrometric performance and limitations of GeMS/GSAOI. In particular, we analyse deep, mono-epoch images, multi-epoch data and distortion calibration. We find that for single-epoch, undithered data, an astrometric error below 0.2 mas can be achieved for exposure times exceeding 1 min, provided enough stars are available to remove high-order distortions. We show however that such performance is not reproducible for multi-epoch observations, and an additional systematic error of ˜0.4 mas is evidenced. This systematic multi-epoch error is the dominant error term in the GeMS/GSAOI astrometric error budget, and it is thought to be due to time-variable distortion induced by gravity flexure.

  6. HiCIAO: A High-contrast Instrument for the Next Generation Subaru Adaptive Optics

    SciTech Connect

    Suzuki, Ryuji; Takami, Hideki; Guyon, Olivier; Nishimura, Tetsuo; Hayashi, Masahiko; Tamura, Motohide; Suto, Hiroshi; Morino, Jun-ichi; Hashimoto, Jun; Kudo, Tomoyuki; Kandori, Ryo; Murakami, Naoshi; Nishikawa, Jun; Ukita, Nobuharu; Izumiura, Hideyuki; Abe, Lyu; Tavrov, Alexander; Jacobson, Shane; Shelton, Richard; Hodapp, Klaus

    2009-08-05

    HiCIAO (the High-Contrast Instrument with Adaptive Optics) is a high-contrast instrument for the 8.2-meter Subaru Telescope. The instrument is a near-infrared camera which benefits from a new adaptive optics (AO) system on the Subaru Telescope (AO188). The instrument realizes the high contrast with a help of AO188, a classical Lyot coronagraph, and three differential imaging techniques (polarimetric, spectral, and angular). Besides the differential imaging modes, HiCIAO also offers a normal imaging mode which covers 20''x20'' FOV with 0.''01 pixel{sup -1} resolution, and a pupil viewing mode for a precise alignment of the Lyot stop on the pupil image. The expected contrasts are 10{sup 5.5} at 1.''0 separation and 10{sup 4} at 0.''1 separation from a central star in the spectral differential imaging mode. The instrument is currently in its commissioning phase after the first-light observation in December 2008. This paper is an introductory review of the instrument.

  7. 3D papillary image capturing by the stereo fundus camera system for clinical diagnosis on retina and optic nerve

    NASA Astrophysics Data System (ADS)

    Motta, Danilo A.; Serillo, André; de Matos, Luciana; Yasuoka, Fatima M. M.; Bagnato, Vanderlei S.; Carvalho, Luis A. V.

    2014-03-01

    Glaucoma is the second main cause of the blindness in the world and there is a tendency to increase this number due to the lifetime expectation raise of the population. Glaucoma is related to the eye conditions, which leads the damage to the optic nerve. This nerve carries visual information from eye to brain, then, if it has damage, it compromises the visual quality of the patient. In the majority cases the damage of the optic nerve is irreversible and it happens due to increase of intraocular pressure. One of main challenge for the diagnosis is to find out this disease, because any symptoms are not present in the initial stage. When is detected, it is already in the advanced stage. Currently the evaluation of the optic disc is made by sophisticated fundus camera, which is inaccessible for the majority of Brazilian population. The purpose of this project is to develop a specific fundus camera without fluorescein angiography and red-free system to accomplish 3D image of optic disc region. The innovation is the new simplified design of a stereo-optical system, in order to make capable the 3D image capture and in the same time quantitative measurements of excavation and topography of optic nerve; something the traditional fundus cameras do not do. The dedicated hardware and software is developed for this ophthalmic instrument, in order to permit quick capture and print of high resolution 3D image and videos of optic disc region (20° field-of-view) in the mydriatic and nonmydriatic mode.

  8. Performance assessment of MEMS adaptive optics in tactical airborne systems

    NASA Astrophysics Data System (ADS)

    Tyson, Robert K.

    1999-09-01

    Tactical airborne electro-optical systems are severely constrained by weight, volume, power, and cost. Micro- electrical-mechanical adaptive optics provide a solution that addresses the engineering realities without compromising spatial and temporal compensation requirements. Through modeling and analysis, we determined that substantial benefits could be gained for laser designators, ladar, countermeasures, and missile seekers. The developments potential exists for improving seeker imagery resolution 20 percent, extending countermeasures keep-out range by a factor of 5, doubling the range for ladar detection and identification, and compensating for supersonic and hypersonic aircraft boundary layers. Innovative concepts are required for atmospheric pat hand boundary layer compensation. We have developed design that perform these tasks using high speed scene-based wavefront sensing, IR aerosol laser guide stars, and extended-object wavefront beacons. We have developed a number of adaptive optics system configurations that met the spatial resolution requirements and we have determined that sensing and signal processing requirements can be met. With the help of micromachined deformable mirrors and sensor, we will be able to integrate the systems into existing airborne pods and missiles as well as next generation electro-optical systems.

  9. Holographic Adaptive Laser Optics System (HALOS): Fast, Autonomous Aberration Correction

    NASA Astrophysics Data System (ADS)

    Andersen, G.; MacDonald, K.; Gelsinger-Austin, P.

    2013-09-01

    We present an adaptive optics system which uses a multiplexed hologram to deconvolve the phase aberrations in an input beam. This wavefront characterization is extremely fast as it is based on simple measurements of the intensity of focal spots and does not require any computations. Furthermore, the system does not require a computer in the loop and is thus much cheaper, less complex and more robust as well. A fully functional, closed-loop prototype incorporating a 32-element MEMS mirror has been constructed. The unit has a footprint no larger than a laptop but runs at a bandwidth of 100kHz over an order of magnitude faster than comparable, conventional systems occupying a significantly larger volume. Additionally, since the sensing is based on parallel, all-optical processing, the speed is independent of actuator number running at the same bandwidth for one actuator as for a million. We are developing the HALOS technology with a view towards next-generation surveillance systems for extreme adaptive optics applications. These include imaging, lidar and free-space optical communications for unmanned aerial vehicles and SSA. The small volume is ideal for UAVs, while the high speed and high resolution will be of great benefit to the ground-based observation of space-based objects.

  10. Lens-based wavefront sensorless adaptive optics swept source OCT

    NASA Astrophysics Data System (ADS)

    Jian, Yifan; Lee, Sujin; Ju, Myeong Jin; Heisler, Morgan; Ding, Weiguang; Zawadzki, Robert J.; Bonora, Stefano; Sarunic, Marinko V.

    2016-06-01

    Optical coherence tomography (OCT) has revolutionized modern ophthalmology, providing depth resolved images of the retinal layers in a system that is suited to a clinical environment. Although the axial resolution of OCT system, which is a function of the light source bandwidth, is sufficient to resolve retinal features at a micrometer scale, the lateral resolution is dependent on the delivery optics and is limited by ocular aberrations. Through the combination of wavefront sensorless adaptive optics and the use of dual deformable transmissive optical elements, we present a compact lens-based OCT system at an imaging wavelength of 1060 nm for high resolution retinal imaging. We utilized a commercially available variable focal length lens to correct for a wide range of defocus commonly found in patient’s eyes, and a novel multi-actuator adaptive lens for aberration correction to achieve near diffraction limited imaging performance at the retina. With a parallel processing computational platform, high resolution cross-sectional and en face retinal image acquisition and display was performed in real time. In order to demonstrate the system functionality and clinical utility, we present images of the photoreceptor cone mosaic and other retinal layers acquired in vivo from research subjects.

  11. Lens-based wavefront sensorless adaptive optics swept source OCT

    PubMed Central

    Jian, Yifan; Lee, Sujin; Ju, Myeong Jin; Heisler, Morgan; Ding, Weiguang; Zawadzki, Robert J.; Bonora, Stefano; Sarunic, Marinko V.

    2016-01-01

    Optical coherence tomography (OCT) has revolutionized modern ophthalmology, providing depth resolved images of the retinal layers in a system that is suited to a clinical environment. Although the axial resolution of OCT system, which is a function of the light source bandwidth, is sufficient to resolve retinal features at a micrometer scale, the lateral resolution is dependent on the delivery optics and is limited by ocular aberrations. Through the combination of wavefront sensorless adaptive optics and the use of dual deformable transmissive optical elements, we present a compact lens-based OCT system at an imaging wavelength of 1060 nm for high resolution retinal imaging. We utilized a commercially available variable focal length lens to correct for a wide range of defocus commonly found in patient’s eyes, and a novel multi-actuator adaptive lens for aberration correction to achieve near diffraction limited imaging performance at the retina. With a parallel processing computational platform, high resolution cross-sectional and en face retinal image acquisition and display was performed in real time. In order to demonstrate the system functionality and clinical utility, we present images of the photoreceptor cone mosaic and other retinal layers acquired in vivo from research subjects. PMID:27278853

  12. Lens-based wavefront sensorless adaptive optics swept source OCT.

    PubMed

    Jian, Yifan; Lee, Sujin; Ju, Myeong Jin; Heisler, Morgan; Ding, Weiguang; Zawadzki, Robert J; Bonora, Stefano; Sarunic, Marinko V

    2016-01-01

    Optical coherence tomography (OCT) has revolutionized modern ophthalmology, providing depth resolved images of the retinal layers in a system that is suited to a clinical environment. Although the axial resolution of OCT system, which is a function of the light source bandwidth, is sufficient to resolve retinal features at a micrometer scale, the lateral resolution is dependent on the delivery optics and is limited by ocular aberrations. Through the combination of wavefront sensorless adaptive optics and the use of dual deformable transmissive optical elements, we present a compact lens-based OCT system at an imaging wavelength of 1060 nm for high resolution retinal imaging. We utilized a commercially available variable focal length lens to correct for a wide range of defocus commonly found in patient's eyes, and a novel multi-actuator adaptive lens for aberration correction to achieve near diffraction limited imaging performance at the retina. With a parallel processing computational platform, high resolution cross-sectional and en face retinal image acquisition and display was performed in real time. In order to demonstrate the system functionality and clinical utility, we present images of the photoreceptor cone mosaic and other retinal layers acquired in vivo from research subjects. PMID:27278853

  13. Possibilities of joint application of adaptive optics technique and nonlinear optical phase conjugation to compensate for turbulent distortions

    NASA Astrophysics Data System (ADS)

    Lukin, V. P.; Kanev, F. Yu; Kulagin, O. V.

    2016-05-01

    The efficiency of integrating the nonlinear optical technique based on forming a reverse wavefront and the conventional adaptive optics into a unified complex (for example, for adaptive focusing of quasi-cw laser radiation) is demonstrated. Nonlinear optical phase conjugation may provide more exact information about the phase fluctuations in the corrected wavefront in comparison with the adaptive optics methods. At the same time, the conventional methods of adaptive optics provide an efficient control of a laser beam projected onto a target for a rather long time.

  14. Continuous zooming optical design with a high-resolution and large-zoom ratios used for precision strike TV camera

    NASA Astrophysics Data System (ADS)

    Wang, Ling; Chang, Weijun; Qiang, Hua; Zhang, Bo

    2015-02-01

    According to the requirement of detector, a continuous zooming TV camera with a high resolution and a large zoom ratios used for precision strike was designed. In this paper, basis the selection of continuous zooming optical systems was discussed. Combing with PW method, the incipient structure was computed. Using the CODE V, the optimum design was done. Having analyzed the cam curve of this zooming system, a continuous zooming optical system meeting the technical requirements well was designed, which provided the technical support for the miniaturization of the structure and the stability of the optic axis. This continuous zooming optical system has been checked with image quality testing, real imaging and environment testing and the result showed that the image quality was well, the optic axis was stable and the system meet the requirement of detector well.

  15. Thermally tuneable optical modulator adapted for differential signaling

    DOEpatents

    Zortman, William A.

    2016-01-12

    An apparatus for optical modulation is provided. The apparatus includes a modulator structure and a heater structure. The modulator structure comprises a ring or disk optical resonator having a closed curvilinear periphery and a pair of oppositely doped semiconductor regions within and/or adjacent to the optical resonator and conformed to modify the optical length of the optical resonator upon application of a bias voltage. The heater structure comprises a relatively resistive annulus of semiconductor material enclosed between an inner disk and an outer annulus of relatively conductive semiconductor material. The inner disk and the outer annulus are adapted as contact regions for a heater activation current. The heater structure is situated within the periphery of the optical resonator such that in operation, at least a portion of the resonator is heated by radial conductive heat flow from the heater structure. The apparatus further includes a substantially annular isolation region of dielectric or relatively resistive semiconductor material interposed between the heater structure and the modulator structure. The isolation region is effective to electrically isolate the bias voltage from the heater activation current.

  16. Anisoplanatism in adaptive optics systems due to pupil aberrations

    SciTech Connect

    Bauman, B

    2005-08-01

    Adaptive optics systems typically include an optical relay that simultaneously images the science field to be corrected and also a set of pupil planes conjugate to the deformable mirror of the system. Often, in the optical spaces where DM's are placed, the pupils are aberrated, leading to a displacement and/or distortion of the pupil that varies according to field position--producing a type of anisoplanatism, i.e., a degradation of the AO correction with field angle. The pupil aberration phenomenon is described and expressed in terms of Seidel aberrations. An expression for anisoplanatism as a function of pupil distortion is derived, an example of an off-axis parabola is given, and a convenient method for controlling pupil-aberration-generated anisoplanatism is proposed.

  17. Manufacturing of glassy thin shell for adaptive optics: results achieved

    NASA Astrophysics Data System (ADS)

    Poutriquet, F.; Rinchet, A.; Carel, J.-L.; Leplan, H.; Ruch, E.; Geyl, R.; Marque, G.

    2012-07-01

    Glassy thin shells are key components for the development of adaptive optics and are part of future & innovative projects such as ELT. However, manufacturing thin shells is a real challenge. Even though optical requirements for the front face - or optical face - are relaxed compared to conventional passive mirrors, requirements concerning thickness uniformity are difficult to achieve. In addition, process has to be completely re-defined as thin mirror generates new manufacturing issues. In particular, scratches and digs requirement is more difficult as this could weaken the shell, handling is also an important issue due to the fragility of the mirror. Sagem, through REOSC program, has recently manufactured different types of thin shells in the frame of European projects: E-ELT M4 prototypes and VLT Deformable Secondary Mirror (VLT DSM).

  18. Measurements of Binary Stars with the Starfire Optical Range Adaptive Optics Systems

    NASA Astrophysics Data System (ADS)

    Barnaby, David; Spillar, Earl; Christou, Julian C.; Drummond, Jack D.

    2000-01-01

    To investigate the relative photometry produced by adaptive optics within the isoplanatic patch, we observed four binaries, 10 UMa, φ UMa, 81 Cnc, and κ UMa, with adaptive optics using natural guide stars on the 3.5 m telescope, as well as one binary, β Del, with adaptive optics using a laser guide star on the 1.5 m telescope at the Starfire Optical Range. Iterative blind deconvolution (IBD) and parametric blind deconvolution (PBD) techniques were used to postprocess the data, which produced consistent results for position angles, separations, and magnitude differences. We also conducted simulations that verify the agreement between IBD and PBD and compared their measurements to truth data. From the results of both observations and simulations, we conclude that adaptive optics is well suited for providing not only position angles and separations for close binaries, but also good relative magnitudes without quadrant ambiguity. From the observations, we find that the secondary of 81 Cnc (separation=0.12") appears to be 0.12 mag brighter than the primary at 0.85 μm and is, therefore, cooler. We also derive a new orbit for κ UMa (separation=0.067"). Our results for β Del (ADS 14073) have significantly improved precision compared with the 1998 analyses of the same data by ten Brummelaar and colleagues and by Roberts, ten Brummelaar, and Mason.

  19. The explosive transient camera - An automatic, wide-field sky monitor for short-timescale optical transients

    NASA Technical Reports Server (NTRS)

    Vanderspek, Roland K.; Ricker, George R.; Doty, John P.

    1992-01-01

    The Explosive Transient Camera (ETC) is a widefield sky monitor designed to detect short-timescale (1-l0 s) celestial optical flashes. It consists of two arrays of wide-field CCD cameras monitoring about 0.4 steradian of the night sky for optical transients with risetimes of about 1-10 s and peak magnitudes m(V) of less than about 10. The ETC was designed to be completely automated in order to make year-round observations with minimal human intervention. A small, powerful 68,000-based computer controls all aspects of observations, including roof motion, CCD readouts, and weather sensing: under software control, the ETC is able to perform all the functions of a human observer automatically.

  20. The explosive transient camera - An automatic, wide-field sky monitor for short-timescale optical transients

    NASA Astrophysics Data System (ADS)

    Vanderspek, Roland K.; Ricker, George R.; Doty, John P.

    The Explosive Transient Camera (ETC) is a widefield sky monitor designed to detect short-timescale (1-l0 s) celestial optical flashes. It consists of two arrays of wide-field CCD cameras monitoring about 0.4 steradian of the night sky for optical transients with risetimes of about 1-10 s and peak magnitudes m(V) of less than about 10. The ETC was designed to be completely automated in order to make year-round observations with minimal human intervention. A small, powerful 68,000-based computer controls all aspects of observations, including roof motion, CCD readouts, and weather sensing: under software control, the ETC is able to perform all the functions of a human observer automatically.

  1. Integrated modeling of the GMT laser tomography adaptive optics system

    NASA Astrophysics Data System (ADS)

    Piatrou, Piotr

    2014-08-01

    Laser Tomography Adaptive Optics (LTAO) is one of adaptive optics systems planned for the Giant Magellan Telescope (GMT). End-to-end simulation tools that are able to cope with the complexity and computational burden of the AO systems to be installed on the extremely large telescopes such as GMT prove to be an integral part of the GMT LTAO system development endeavors. SL95, the Fortran 95 Simulation Library, is one of the software tools successfully used for the LTAO system end-to-end simulations. The goal of SL95 project is to provide a complete set of generic, richly parameterized mathematical models for key elements of the segmented telescope wavefront control systems including both active and adaptive optics as well as the models for atmospheric turbulence, extended light sources like Laser Guide Stars (LGS), light propagation engines and closed-loop controllers. The library is implemented as a hierarchical collection of classes capable of mutual interaction, which allows one to assemble complex wavefront control system configurations with multiple interacting control channels. In this paper we demonstrate the SL95 capabilities by building an integrated end-to-end model of the GMT LTAO system with 7 control channels: LGS tomography with Adaptive Secondary and on-instrument deformable mirrors, tip-tilt and vibration control, LGS stabilization, LGS focus control, truth sensor-based dynamic noncommon path aberration rejection, pupil position control, SLODAR-like embedded turbulence profiler. The rich parameterization of the SL95 classes allows to build detailed error budgets propagating through the system multiple errors and perturbations such as turbulence-, telescope-, telescope misalignment-, segment phasing error-, non-common path-induced aberrations, sensor noises, deformable mirror-to-sensor mis-registration, vibration, temporal errors, etc. We will present a short description of the SL95 architecture, as well as the sample GMT LTAO system simulation

  2. Adaptive-optics optical coherence tomography processing using a graphics processing unit.

    PubMed

    Shafer, Brandon A; Kriske, Jeffery E; Kocaoglu, Omer P; Turner, Timothy L; Liu, Zhuolin; Lee, John Jaehwan; Miller, Donald T

    2014-01-01

    Graphics processing units are increasingly being used for scientific computing for their powerful parallel processing abilities, and moderate price compared to super computers and computing grids. In this paper we have used a general purpose graphics processing unit to process adaptive-optics optical coherence tomography (AOOCT) images in real time. Increasing the processing speed of AOOCT is an essential step in moving the super high resolution technology closer to clinical viability. PMID:25570838

  3. Research on the electro-optical assistant landing system based on the dual camera photogrammetry algorithm

    NASA Astrophysics Data System (ADS)

    Mi, Yuhe; Huang, Yifan; Li, Lin

    2015-08-01

    Based on the location technique of beacon photogrammetry, Dual Camera Photogrammetry (DCP) algorithm was used to assist helicopters landing on the ship. In this paper, ZEMAX was used to simulate the two Charge Coupled Device (CCD) cameras imaging four beacons on both sides of the helicopter and output the image to MATLAB. Target coordinate systems, image pixel coordinate systems, world coordinate systems and camera coordinate systems were established respectively. According to the ideal pin-hole imaging model, the rotation matrix and translation vector of the target coordinate systems and the camera coordinate systems could be obtained by using MATLAB to process the image information and calculate the linear equations. On the basis mentioned above, ambient temperature and the positions of the beacons and cameras were changed in ZEMAX to test the accuracy of the DCP algorithm in complex sea status. The numerical simulation shows that in complex sea status, the position measurement accuracy can meet the requirements of the project.

  4. Computational adaptive optics for broadband optical interferometric tomography of biological tissue

    NASA Astrophysics Data System (ADS)

    Boppart, Stephen A.

    2015-03-01

    High-resolution real-time tomography of biological tissues is important for many areas of biological investigations and medical applications. Cellular level optical tomography, however, has been challenging because of the compromise between transverse imaging resolution and depth-of-field, the system and sample aberrations that may be present, and the low imaging sensitivity deep in scattering tissues. The use of computed optical imaging techniques has the potential to address several of these long-standing limitations and challenges. Two related techniques are interferometric synthetic aperture microscopy (ISAM) and computational adaptive optics (CAO). Through three-dimensional Fourierdomain resampling, in combination with high-speed OCT, ISAM can be used to achieve high-resolution in vivo tomography with enhanced depth sensitivity over a depth-of-field extended by more than an order-of-magnitude, in realtime. Subsequently, aberration correction with CAO can be performed in a tomogram, rather than to the optical beam of a broadband optical interferometry system. Based on principles of Fourier optics, aberration correction with CAO is performed on a virtual pupil using Zernike polynomials, offering the potential to augment or even replace the more complicated and expensive adaptive optics hardware with algorithms implemented on a standard desktop computer. Interferometric tomographic reconstructions are characterized with tissue phantoms containing sub-resolution scattering particles, and in both ex vivo and in vivo biological tissue. This review will collectively establish the foundation for high-speed volumetric cellular-level optical interferometric tomography in living tissues.

  5. Understanding the changes of cone reflectance in adaptive optics flood illumination retinal images over three years.

    PubMed

    Mariotti, Letizia; Devaney, Nicholas; Lombardo, Giuseppe; Lombardo, Marco

    2016-07-01

    Although there is increasing interest in the investigation of cone reflectance variability, little is understood about its characteristics over long time scales. Cone detection and its automation is now becoming a fundamental step in the assessment and monitoring of the health of the retina and in the understanding of the photoreceptor physiology. In this work we provide an insight into the cone reflectance variability over time scales ranging from minutes to three years on the same eye, and for large areas of the retina (≥ 2.0 × 2.0 degrees) at two different retinal eccentricities using a commercial adaptive optics (AO) flood illumination retinal camera. We observed that the difference in reflectance observed in the cones increases with the time separation between the data acquisitions and this may have a negative impact on algorithms attempting to track cones over time. In addition, we determined that displacements of the light source within 0.35 mm of the pupil center, which is the farthest location from the pupil center used by operators of the AO camera to acquire high-quality images of the cone mosaic in clinical studies, does not significantly affect the cone detection and density estimation. PMID:27446708

  6. Understanding the changes of cone reflectance in adaptive optics flood illumination retinal images over three years

    PubMed Central

    Mariotti, Letizia; Devaney, Nicholas; Lombardo, Giuseppe; Lombardo, Marco

    2016-01-01

    Although there is increasing interest in the investigation of cone reflectance variability, little is understood about its characteristics over long time scales. Cone detection and its automation is now becoming a fundamental step in the assessment and monitoring of the health of the retina and in the understanding of the photoreceptor physiology. In this work we provide an insight into the cone reflectance variability over time scales ranging from minutes to three years on the same eye, and for large areas of the retina (≥ 2.0 × 2.0 degrees) at two different retinal eccentricities using a commercial adaptive optics (AO) flood illumination retinal camera. We observed that the difference in reflectance observed in the cones increases with the time separation between the data acquisitions and this may have a negative impact on algorithms attempting to track cones over time. In addition, we determined that displacements of the light source within 0.35 mm of the pupil center, which is the farthest location from the pupil center used by operators of the AO camera to acquire high-quality images of the cone mosaic in clinical studies, does not significantly affect the cone detection and density estimation. PMID:27446708

  7. Multi-modal adaptive optics system including fundus photography and optical coherence tomography for the clinical setting

    PubMed Central

    Salas, Matthias; Drexler, Wolfgang; Levecq, Xavier; Lamory, Barbara; Ritter, Markus; Prager, Sonja; Hafner, Julia; Schmidt-Erfurth, Ursula; Pircher, Michael

    2016-01-01

    We present a new compact multi-modal imaging prototype that combines an adaptive optics (AO) fundus camera with AO-optical coherence tomography (OCT) in a single instrument. The prototype allows acquiring AO fundus images with a field of view of 4°x4° and with a frame rate of 10fps. The exposure time of a single image is 10 ms. The short exposure time results in nearly motion artifact-free high resolution images of the retina. The AO-OCT mode allows acquiring volumetric data of the retina at 200kHz A-scan rate with a transverse resolution of ~4 µm and an axial resolution of ~5 µm. OCT imaging is acquired within a field of view of 2°x2° located at the central part of the AO fundus image. Recording of OCT volume data takes 0.8 seconds. The performance of the new system is tested in healthy volunteers and patients with retinal diseases. PMID:27231621

  8. Multi-modal adaptive optics system including fundus photography and optical coherence tomography for the clinical setting.

    PubMed

    Salas, Matthias; Drexler, Wolfgang; Levecq, Xavier; Lamory, Barbara; Ritter, Markus; Prager, Sonja; Hafner, Julia; Schmidt-Erfurth, Ursula; Pircher, Michael

    2016-05-01

    We present a new compact multi-modal imaging prototype that combines an adaptive optics (AO) fundus camera with AO-optical coherence tomography (OCT) in a single instrument. The prototype allows acquiring AO fundus images with a field of view of 4°x4° and with a frame rate of 10fps. The exposure time of a single image is 10 ms. The short exposure time results in nearly motion artifact-free high resolution images of the retina. The AO-OCT mode allows acquiring volumetric data of the retina at 200kHz A-scan rate with a transverse resolution of ~4 µm and an axial resolution of ~5 µm. OCT imaging is acquired within a field of view of 2°x2° located at the central part of the AO fundus image. Recording of OCT volume data takes 0.8 seconds. The performance of the new system is tested in healthy volunteers and patients with retinal diseases. PMID:27231621

  9. Uncertainties in cloud phase and optical thickness retrievals from the Earth Polychromatic Imaging Camera (EPIC)

    NASA Astrophysics Data System (ADS)

    Meyer, Kerry; Yang, Yuekui; Platnick, Steven

    2016-04-01

    This paper presents an investigation of the expected uncertainties of a single-channel cloud optical thickness (COT) retrieval technique, as well as a simple cloud-temperature-threshold-based thermodynamic phase approach, in support of the Deep Space Climate Observatory (DSCOVR) mission. DSCOVR cloud products will be derived from Earth Polychromatic Imaging Camera (EPIC) observations in the ultraviolet and visible spectra. Since EPIC is not equipped with a spectral channel in the shortwave or mid-wave infrared that is sensitive to cloud effective radius (CER), COT will be inferred from a single visible channel with the assumption of appropriate CER values for liquid and ice phase clouds. One month of Aqua MODerate-resolution Imaging Spectroradiometer (MODIS) daytime granules from April 2005 is selected for investigating cloud phase sensitivity, and a subset of these granules that has similar EPIC Sun-view geometry is selected for investigating COT uncertainties. EPIC COT retrievals are simulated with the same algorithm as the operational MODIS cloud products (MOD06), except using fixed phase-dependent CER values. Uncertainty estimates are derived by comparing the single-channel COT retrievals with the baseline bi-spectral MODIS retrievals. Results show that a single-channel COT retrieval is feasible for EPIC. For ice clouds, single-channel retrieval errors are minimal (< 2 %) due to the particle size insensitivity of the assumed ice crystal (i.e., severely roughened aggregate of hexagonal columns) scattering properties at visible wavelengths, while for liquid clouds the error is mostly limited to within 10 %, although for thin clouds (COT < 2) the error can be higher. Potential uncertainties in EPIC cloud masking and cloud temperature retrievals are not considered in this study.

  10. KAPAO: a MEMS-based natural guide star adaptive optics system

    NASA Astrophysics Data System (ADS)

    Severson, Scott A.; Choi, Philip I.; Contreras, Daniel S.; Gilbreth, Blaine N.; Littleton, Erik; McGonigle, Lorcan P.; Morrison, William A.; Rudy, Alex R.; Wong, Jonathan R.; Xue, Andrew; Spjut, Erik; Baranec, Christoph; Riddle, Reed

    2013-03-01

    We describe KAPAO, our project to develop and deploy a low-cost, remote-access, natural guide star adaptive optics (AO) system for the Pomona College Table Mountain Observatory (TMO) 1-meter telescope. We use a commercially available 140-actuator BMC MEMS deformable mirror and a version of the Robo-AO control software developed by Caltech and IUCAA. We have structured our development around the rapid building and testing of a prototype system, KAPAO-Alpha, while simultaneously designing our more capable final system, KAPAO-Prime. The main differences between these systems are the prototype's reliance on off-the-shelf optics and a single visible-light science camera versus the final design's improved throughput and capabilities due to the use of custom optics and dual-band, visible and near-infrared imaging. In this paper, we present the instrument design and on-sky closed-loop testing of KAPAO-Alpha as well as our plans for KAPAO-Prime. The primarily undergraduate-education nature of our partner institutions, both public (Sonoma State University) and private (Pomona and Harvey Mudd Colleges), has enabled us to engage physics, astronomy, and engineering undergraduates in all phases of this project. This material is based upon work supported by the National Science Foundation under Grant No. 0960343.

  11. SITHON: A Wireless Network of in Situ Optical Cameras Applied to the Early Detection-Notification-Monitoring of Forest Fires

    PubMed Central

    Tsiourlis, Georgios; Andreadakis, Stamatis; Konstantinidis, Pavlos

    2009-01-01

    The SITHON system, a fully wireless optical imaging system, integrating a network of in-situ optical cameras linking to a multi-layer GIS database operated by Control Operating Centres, has been developed in response to the need for early detection, notification and monitoring of forest fires. This article presents in detail the architecture and the components of SITHON, and demonstrates the first encouraging results of an experimental test with small controlled fires over Sithonia Peninsula in Northern Greece. The system has already been scheduled to be installed in some fire prone areas of Greece. PMID:22408536

  12. Graphite/Cyanate Ester Face Sheets for Adaptive Optics

    NASA Technical Reports Server (NTRS)

    Bennett, Harold; Shaffer, Joseph; Romeo, Robert

    2008-01-01

    It has been proposed that thin face sheets of wide-aperture deformable mirrors in adaptive-optics systems be made from a composite material consisting of cyanate ester filled with graphite. This composite material appears to offer an attractive alternative to low-thermal-expansion glasses that are used in some conventional optics and have been considered for adaptive-optics face sheets. Adaptive-optics face sheets are required to have maximum linear dimensions of the order of meters or even tens of meters for some astronomical applications. If the face sheets were to be made from low-thermal-expansion glasses, then they would also be required to have thicknesses of the order of a millimeter so as to obtain the optimum compromise between the stiffness needed for support and the flexibility needed to enable deformation to controlled shapes by use of actuators. It is difficult to make large glass sheets having thicknesses less than 3 mm, and 3-mm-thick glass sheets are too stiff to be deformable to the shapes typically required for correction of wavefronts of light that has traversed the terrestrial atmosphere. Moreover, the primary commercially produced candidate low-thermal-expansion glass is easily fractured when in the form of thin face sheets. Graphite-filled cyanate ester has relevant properties similar to those of the low-expansion glasses. These properties include a coefficient of thermal expansion (CTE) of the order of a hundredth of the CTEs of other typical mirror materials. The Young s modulus (which quantifies stiffness in tension and compression) of graphite-filled cyanate ester is also similar to the Young's moduli of low-thermal-expansion glasses. However, the fracture toughness of graphite-filled cyanate ester is much greater than that of the primary candidate low-thermal-expansion glass. Therefore, graphite-filled cyanate ester could be made into nearly unbreakable face sheets, having maximum linear dimensions greater than a meter and thicknesses of

  13. Beam shaping for laser-based adaptive optics in astronomy.

    PubMed

    Béchet, Clémentine; Guesalaga, Andrés; Neichel, Benoit; Fesquet, Vincent; González-Núñez, Héctor; Zúñiga, Sebastián; Escarate, Pedro; Guzman, Dani

    2014-06-01

    The availability and performance of laser-based adaptive optics (AO) systems are strongly dependent on the power and quality of the laser beam before being projected to the sky. Frequent and time-consuming alignment procedures are usually required in the laser systems with free-space optics to optimize the beam. Despite these procedures, significant distortions of the laser beam have been observed during the first two years of operation of the Gemini South multi-conjugate adaptive optics system (GeMS). A beam shaping concept with two deformable mirrors is investigated in order to provide automated optimization of the laser quality for astronomical AO. This study aims at demonstrating the correction of quasi-static aberrations of the laser, in both amplitude and phase, testing a prototype of this two-deformable mirror concept on GeMS. The paper presents the results of the preparatory study before the experimental phase. An algorithm to control amplitude and phase correction, based on phase retrieval techniques, is presented with a novel unwrapping method. Its performance is assessed via numerical simulations, using aberrations measured at GeMS as reference. The results predict effective amplitude and phase correction of the laser distortions with about 120 actuators per mirror and a separation of 1.4 m between the mirrors. The spot size is estimated to be reduced by up to 15% thanks to the correction. In terms of AO noise level, this has the same benefit as increasing the photon flux by 40%. PMID:24921496

  14. Adaptive Optics and Lucky Imager (AOLI): presentation and first light

    NASA Astrophysics Data System (ADS)

    Velasco, S.; Rebolo, R.; Mackay, C.; Oscoz, A.; King, D. L.; Crass, J.; Díaz-Sánchez, A.; Femenía, B.; González-Escalera, V.; Labadie, L.; López, R. L.; Pérez Garrido, A.; Puga, M.; Rodríguez-Ramos, L. F.; Zuther, J.

    2015-05-01

    In this paper we present the Adaptive Optics Lucky Imager (AOLI), a state-of-the-art instrument which makes use of two well proved techniques for extremely high spatial resolution with ground-based telescopes: Lucky Imaging (LI) and Adaptive Optics (AO). AOLI comprises an AO system, including a low order non-linear curvature wavefront sensor together with a 241 actuators deformable mirror, a science array of four 1024x1024 EMCCDs, allowing a 120×120 down to 36×36" field of view, a calibration subsystem and a powerful LI software. Thanks to the revolutionary WFS, AOLI shall have the capability of using faint reference stars (I˜16.5-17.5), enabling it to be used over a much wider part of the sky than with common Shack-Hartmann AO systems. This instrument saw first light in September 2013 at William Herschel Telescope. Although the instrument was not complete, these commissioning demonstrated its feasibility, obtaining a FWHM for the best PSF of 0.151±0.005" and a plate scale of 55.0±0.3 {mas} {pix}^{-1}. Those observations served us to prove some characteristics of the interesting multiple T Tauri system LkHα 262-263, finding it to be gravitationally bounded. This interesting multiple system mixes the presence of proto-planetary discs, one proved to be double, and the first-time optically resolved pair LkHα 263AB (0.42" separation).

  15. Extreme Adaptive Optics Testbed: Results and Future Work

    SciTech Connect

    Evans, J W; Sommargren, G; Poyneer, L; Macintosh, B; Severson, S; Dillon, D; Sheinis, A; Palmer, D; Kasdin, J; Olivier, S

    2004-07-15

    'Extreme' adaptive optics systems are optimized for ultra-high-contrast applications, such as ground-based extrasolar planet detection. The Extreme Adaptive Optics Testbed at UC Santa Cruz is being used to investigate and develop technologies for high-contrast imaging, especially wavefront control. A simple optical design allows us to minimize wavefront error and maximize the experimentally achievable contrast before progressing to a more complex set-up. A phase shifting diffraction interferometer is used to measure wavefront errors with sub-nm precision and accuracy. We have demonstrated RMS wavefront errors of <1.3 nm and a contrast of >10{sup -7} over a substantial region using a shaped pupil. Current work includes the installation and characterization of a 1024-actuator Micro-Electro-Mechanical- Systems (MEMS) deformable mirror, manufactured by Boston Micro-Machines, which will be used for wavefront control. In our initial experiments we can flatten the deformable mirror to 1.8-nm RMS wavefront error within a control radius of 5-13 cycles per aperture. Ultimately this testbed will be used to test all aspects of the system architecture for an extrasolar planet-finding AO system.

  16. Layer-oriented adaptive optics for solar telescopes.

    PubMed

    Kellerer, Aglaé

    2012-08-10

    First multiconjugate adaptive-optical (MCAO) systems are currently being installed on solar telescopes. The aim of these systems is to increase the corrected field of view with respect to conventional adaptive optics. However, this first generation is based on a star-oriented approach, and it is then difficult to increase the size of the field of view beyond 60-80 arc sec in diameter. We propose to implement the layer-oriented approach in solar MCAO systems by use of wide-field Shack-Hartmann wavefront sensors conjugated to the strongest turbulent layers. The wavefront distortions are averaged over a wide field: the signal from distant turbulence is attenuated and the tomographic reconstruction is thus done optically. The system consists of independent correction loops, which only need to account for local turbulence: the subapertures can be enlarged and the correction frequency reduced. Most importantly, a star-oriented MCAO system becomes more complex with increasing field size, while the layer-oriented approach benefits from larger fields and will therefore be an attractive solution for the future generation of solar MCAO systems. PMID:22885589

  17. Studying the star formation process with adaptive optics

    NASA Astrophysics Data System (ADS)

    Menard, Francois; Dougados, Catherine; Duchene, Gaspard; Bouvier, Jerome; Duvert, Gilles; Lavalley, Claudia; Monin, Jean-Louis; Beuzit, Jean-Luc

    2000-07-01

    Young Stellar Objects (YSOs) are the builders of worlds. During its infancy, a star transforms ordinary interstellar dust particles into astronomical gold: planets to say the process is complex, and largely unknown to data. Yet, violent and spectacular events of mass ejection are witnessed, disks in keplerian rotation are detected, multiple stars dancing around each other are found. These are as many traces of the stellar and planet formation process. The high angular resolution provided by adaptive optics, and the related gain in sensitivity, have allowed major breakthrough discoveries to be made in each of these specific fields and our understanding of the various physical processes involved in the formation of a star has leaped forward tremendously over the last few years. In the following, meant as a report of the progress made recently in star formation due to adaptive optics, we will describe new results obtained at optical and near- infrared wavelengths, in imaging and spectroscopic modes. Our images of accretion disks and ionized stellar jets permit direct measurements of many physical parameters and shed light into the physics of the accretion and ejection processes. Although the accretion/ejection process so fundamental to star formation is usually studied around single objects, most of young stars form as part of multiple systems. We also present our findings on how the fraction of stars in binary systems evolves with age. The implications of these results on the conditions under which these stars must have formed are discussed.

  18. High-resolution retinal imaging using adaptive optics and Fourier-domain optical coherence tomography

    DOEpatents

    Olivier, Scot S.; Werner, John S.; Zawadzki, Robert J.; Laut, Sophie P.; Jones, Steven M.

    2010-09-07

    This invention permits retinal images to be acquired at high speed and with unprecedented resolution in three dimensions (4.times.4.times.6 .mu.m). The instrument achieves high lateral resolution by using adaptive optics to correct optical aberrations of the human eye in real time. High axial resolution and high speed are made possible by the use of Fourier-domain optical coherence tomography. Using this system, we have demonstrated the ability to image microscopic blood vessels and the cone photoreceptor mosaic.

  19. Optical design of the Big Bear Solar Observatory's multi-conjugate adaptive optics system

    NASA Astrophysics Data System (ADS)

    Zhang, Xianyu; Gorceix, Nicolas; Schmidt, Dirk; Goode, Philip R.; Cao, Wenda; Rimmele, Thomas R.; Coulter, Roy

    2014-07-01

    A multi-conjugate adaptive optics (MCAO) system is being built for the world's largest aperture 1.6m solar telescope, New Solar Telescope, at the Big Bear Solar Observatory (BBSO). The BBSO MCAO system employs three deformable mirrors to enlarge the corrected field of view. In order to characterize the MCAO performance with different optical configurations and DM conjugated altitudes, the BBSO MCAO setup also needs to be flexible. In this paper, we present the optical design of the BBSO MCAO system.

  20. Circumnuclear Star Clusters in the Galaxy Merger NGC 6240, Observed with Keck Adaptive Optics and HST

    SciTech Connect

    Pollack, L K; Max, C E; Schneider, G

    2007-02-12

    We discuss images of the central {approx} 10 kpc (in projection) of the galaxy merger NGC 6240 at H and K{prime} bands, taken with the NIRC2 narrow camera on Keck II using natural guide star adaptive optics. We detect 28 star clusters in the NIRC2 images, of which only 7 can be seen in the similar-spatial-resolution, archival WFPC2 Planetary Camera data at either B or I bands. Combining the NIRC2 narrow camera pointings with wider NICMOS NIC2 images taken with the F110W, F160W, and F222M filters, we identify a total of 32 clusters that are detected in at least one of these 5 infrared ({lambda}{sub c} > 1 {micro}m) bandpasses. By comparing to instantaneous burst, stellar population synthesis models (Bruzual & Charlot 2003), we estimate that most of the clusters are consistent with being {approx} 15 Myr old and have photometric masses ranging from 7 x 10{sup 5} M{sub {circle_dot}} to 4 x 10{sup 7}M{sub {circle_dot}}. The total contribution to the star formation rate (SFR) from these clusters is approximately 10M{sub {circle_dot}} yr{sup -1}, or {approx} 10% of the total SFR in the nuclear region. We use these newly discovered clusters to estimate the extinction toward NGC 6240's double nuclei, and find values of A{sub v} as high as 14 magnitudes along some sightlines, with an average extinction of A{sub v} {approx} 7 mag toward sightlines within {approx} 3-inches of the double nuclei.

  1. Space telescope optical telescope assembly/scientific instruments. Phase B: -Preliminary design and program definition study; Volume 2A: Planetary camera report

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Development of the F/48, F/96 Planetary Camera for the Large Space Telescope is discussed. Instrument characteristics, optical design, and CCD camera submodule thermal design are considered along with structural subsystem and thermal control subsystem. Weight, electrical subsystem, and support equipment requirements are also included.

  2. Development of a lightweight near-zero CTE optical bench for the Wide-Field Camera 3 instrument

    NASA Astrophysics Data System (ADS)

    Holz, Jill M.; Kunt, Cengiz; Lashley, Chris; McGuffey, Douglas B.

    2003-02-01

    The design and development of an optical bench (OB) for Wide Field Camera 3 (WFC3), a next generation science instrument for the Hubble Space Telescope (HST) has proven a challenging task. WFC3 will replace Wide Field Planetary Camera 2 (WF/PC 2) during the next servicing mission of the HST in 2004. The WFC3 program is re-using much of the hardware from WF/PC 1, returned from the First Servicing Mission, which has added complexity to the program. This posed some significant packaging challenges, further complicated by WFC3 utilizing two, separate optical channels. The WF/PC 1 optical bench could not house the additional optical components, so a new bench was developed. The new bench had to be designed to accommodate the sometimes-conflicting requirements of the two channels, which operate over a wavelength range of 200nm to 1800nm, from Near Ultraviolet to Near Infrared. In addition, the bench had to interface to the reused WF/PC 1 hardware, which was not optimized for this mission. To aid in the design of the bench, the team used software tools to merge structural, thermal and optical models to obtain performance (STOP) of the optical systems in operation. Several iterations of this performance analysis were needed during the design process to verify the bench would meet requirements. The fabrication effort included a rigorous material characterization program and significant tooling. After assembly, the optical bench underwent an extensive qualification program to prove the design and manufacturing processes. This paper provides the details of the design and development process of this highly optimized optical bench.

  3. Pixelwise-adaptive blind optical flow assuming nonstationary statistics.

    PubMed

    Foroosh, Hassan

    2005-02-01

    In this paper, we address some of the major issues in optical flow within a new framework assuming nonstationary statistics for the motion field and for the errors. Problems addressed include the preservation of discontinuities, model/data errors, outliers, confidence measures, and performance evaluation. In solving these problems, we assume that the statistics of the motion field and the errors are not only spatially varying, but also unknown. We, thus, derive a blind adaptive technique based on generalized cross validation for estimating an independent regularization parameter for each pixel. Our formulation is pixelwise and combines existing first- and second-order constraints with a new second-order temporal constraint. We derive a new confidence measure for an adaptive rejection of erroneous and outlying motion vectors, and compare our results to other techniques in the literature. A new performance measure is also derived for estimating the signal-to-noise ratio for real sequences when the ground truth is unknown. PMID:15700527

  4. Objective assessment of image quality. IV. Application to adaptive optics

    PubMed Central

    Barrett, Harrison H.; Myers, Kyle J.; Devaney, Nicholas; Dainty, Christopher

    2008-01-01

    The methodology of objective assessment, which defines image quality in terms of the performance of specific observers on specific tasks of interest, is extended to temporal sequences of images with random point spread functions and applied to adaptive imaging in astronomy. The tasks considered include both detection and estimation, and the observers are the optimal linear discriminant (Hotelling observer) and the optimal linear estimator (Wiener). A general theory of first- and second-order spatiotemporal statistics in adaptive optics is developed. It is shown that the covariance matrix can be rigorously decomposed into three terms representing the effect of measurement noise, random point spread function, and random nature of the astronomical scene. Figures of merit are developed, and computational methods are discussed. PMID:17106464

  5. Night Myopia Studied with an Adaptive Optics Visual Analyzer

    PubMed Central

    Artal, Pablo; Schwarz, Christina; Cánovas, Carmen; Mira-Agudelo, Alejandro

    2012-01-01

    Purpose Eyes with distant objects in focus in daylight are thought to become myopic in dim light. This phenomenon, often called “night myopia” has been studied extensively for several decades. However, despite its general acceptance, its magnitude and causes are still controversial. A series of experiments were performed to understand night myopia in greater detail. Methods We used an adaptive optics instrument operating in invisible infrared light to elucidate the actual magnitude of night myopia and its main causes. The experimental setup allowed the manipulation of the eye's aberrations (and particularly spherical aberration) as well as the use of monochromatic and polychromatic stimuli. Eight subjects with normal vision monocularly determined their best focus position subjectively for a Maltese cross stimulus at different levels of luminance, from the baseline condition of 20 cd/m2 to the lowest luminance of 22×10−6 cd/m2. While subjects performed the focusing tasks, their eye's defocus and aberrations were continuously measured with the 1050-nm Hartmann-Shack sensor incorporated in the adaptive optics instrument. The experiment was repeated for a variety of controlled conditions incorporating specific aberrations of the eye and chromatic content of the stimuli. Results We found large inter-subject variability and an average of −0.8 D myopic shift for low light conditions. The main cause responsible for night myopia was the accommodation shift occurring at low light levels. Other factors, traditionally suggested to explain night myopia, such as chromatic and spherical aberrations, have a much smaller effect in this mechanism. Conclusions An adaptive optics visual analyzer was applied to study the phenomenon of night myopia. We found that the defocus shift occurring in dim light is mainly due to accommodation errors. PMID:22768343

  6. Application of network control systems for adaptive optics

    NASA Astrophysics Data System (ADS)

    Eager, Robert J.

    2008-04-01

    The communication architecture for most pointing, tracking, and high order adaptive optics control systems has been based on a centralized point-to-point and bus based approach. With the increased use of larger arrays and multiple sensors, actuators and processing nodes, these evolving systems require decentralized control, modularity, flexibility redundancy, integrated diagnostics, dynamic resource allocation, and ease of maintenance to support a wide range of experiments. Network control systems provide all of these critical functionalities. This paper begins with a quick overview of adaptive optics as a control system and communication architecture. It then provides an introduction to network control systems, identifying the key design areas that impact system performance. The paper then discusses the performance test results of a fielded network control system used to implement an adaptive optics system comprised of: a 10KHz, 32x32 spatial selfreferencing interferometer wave front sensor, a 705 channel "Tweeter" deformable mirror, a 177 channel "Woofer" deformable mirror, ten processing nodes, and six data acquisition nodes. The reconstructor algorithm utilized a modulo-2pi wave front phase measurement and a least-squares phase un-wrapper with branch point correction. The servo control algorithm is a hybrid of exponential and infinite impulse response controllers, with tweeter-to-woofer saturation offloading. This system achieved a first-pixel-out to last-mirror-voltage latency of 86 microseconds, with the network accounting for 4 microseconds of the measured latency. Finally, the extensibility of this architecture will be illustrated, by detailing the integration of a tracking sub-system into the existing network.

  7. Performance of keck adaptive optics with sodium laser guide star

    SciTech Connect

    Gavel, D.T.; Olivier, S.; Brase, J.

    1996-03-08

    The Keck telescope adaptive optics system is designed to optimize performance in he 1 to 3 micron region of observation wavelengths (J, H, and K astronomical bands). The system uses a 249 degree of freedom deformable mirror, so that the interactuator spacing is 56 cm as mapped onto the 10 meter aperture. 56 cm is roughly equal to r0 at 1.4 microns, which implies the wavefront fitting error is 0.52 ({lambda}/2{pi})({ital d}/{ital r}{sub 0}){sup 5/6} = 118 nm rms. This is sufficient to produce a system Strehl of 0.74 at 1.4 microns if all other sources of error are negligible, which would be the case with a bright natural guidestar and very high control bandwidth. Other errors associated with the adaptive optics will however contribute to Strehl degradation, namely, servo bandwidth error due to inability to reject all temporal frequencies of the aberrated wavefront, wavefront measurement error due to finite signal-to-noise ratio in the wavefront sensor, and, in the case of a laser guidestar, the so-called cone effect where rays from the guidestar beacon fail to sample some of the upper atmosphere turbulence. Cone effect is mitigated considerably by the use of the very high altitude sodium laser guidestar (90 km altitude), as opposed to Rayleigh beacons at 20 km. However, considering the Keck telescope`s large aperture, this is still the dominating wavefront error contributor in the current adaptive optics system design.

  8. Self-characterization of linear and nonlinear adaptive optics systems.

    PubMed

    Hampton, Peter J; Conan, Rodolphe; Keskin, Onur; Bradley, Colin; Agathoklis, Pan

    2008-01-10

    We present methods used to determine the linear or nonlinear static response and the linear dynamic response of an adaptive optics (AO) system. This AO system consists of a nonlinear microelectromechanical systems deformable mirror (DM), a linear tip-tilt mirror (TTM), a control computer, and a Shack-Hartmann wavefront sensor. The system is modeled using a single-input-single-output structure to determine the one-dimensional transfer function of the dynamic response of the chain of system hardware. An AO system has been shown to be able to characterize its own response without additional instrumentation. Experimentally determined models are given for a TTM and a DM. PMID:18188192

  9. Third MACAO-VLTI Curvature Adaptive Optics System now installed

    NASA Astrophysics Data System (ADS)

    Arsenault, R.; Donaldson, R.; Dupuy, C.; Fedrigo, E.; Hubin, N.; Ivanescu, L.; Kasper, M.; Oberti, S.; Paufique, J.; Rossi, S.; Silber, A.; Delabre, B.; Lizon, J.-L.; Gigan, P.

    2004-09-01

    IN JULY of this year the MACAO team returned to Paranal for the third time to install another MACAOVLTI system. These are 4 identical 60 element curvature adaptive optics systems, located in the Coudé room of each UT whose aim is to feed a turbulence corrected wavefront to the VLTI Recombination Laboratory. This time the activities took place on Yepun (UT4). The naming convention has been to associate the MACAO-VLTI number to the UT number where it is installed. Therefore, although we speak here of MACAO#4, it is the third system installed in Paranal.

  10. Performance predictions for the Keck telescope adaptive optics system

    SciTech Connect

    Gavel, D.T.; Olivier, S.S.

    1995-08-07

    The second Keck ten meter telescope (Keck-11) is slated to have an infrared-optimized adaptive optics system in the 1997--1998 time frame. This system will provide diffraction-limited images in the 1--3 micron region and the ability to use a diffraction-limited spectroscopy slit. The AO system is currently in the preliminary design phase and considerable analysis has been performed in order to predict its performance under various seeing conditions. In particular we have investigated the point-spread function, energy through a spectroscopy slit, crowded field contrast, object limiting magnitude, field of view, and sky coverage with natural and laser guide stars.

  11. Performance of the Gemini Planet Imager's adaptive optics system.

    PubMed

    Poyneer, Lisa A; Palmer, David W; Macintosh, Bruce; Savransky, Dmitry; Sadakuni, Naru; Thomas, Sandrine; Véran, Jean-Pierre; Follette, Katherine B; Greenbaum, Alexandra Z; Ammons, S Mark; Bailey, Vanessa P; Bauman, Brian; Cardwell, Andrew; Dillon, Daren; Gavel, Donald; Hartung, Markus; Hibon, Pascale; Perrin, Marshall D; Rantakyrö, Fredrik T; Sivaramakrishnan, Anand; Wang, Jason J

    2016-01-10

    The Gemini Planet Imager's adaptive optics (AO) subsystem was designed specifically to facilitate high-contrast imaging. A definitive description of the system's algorithms and technologies as built is given. 564 AO telemetry measurements from the Gemini Planet Imager Exoplanet Survey campaign are analyzed. The modal gain optimizer tracks changes in atmospheric conditions. Science observations show that image quality can be improved with the use of both the spatially filtered wavefront sensor and linear-quadratic-Gaussian control of vibration. The error budget indicates that for all targets and atmospheric conditions AO bandwidth error is the largest term. PMID:26835769

  12. Fourier transform digital holographic adaptive optics imaging system

    PubMed Central

    Liu, Changgeng; Yu, Xiao; Kim, Myung K.

    2013-01-01

    A Fourier transform digital holographic adaptive optics imaging system and its basic principles are proposed. The CCD is put at the exact Fourier transform plane of the pupil of the eye lens. The spherical curvature introduced by the optics except the eye lens itself is eliminated. The CCD is also at image plane of the target. The point-spread function of the system is directly recorded, making it easier to determine the correct guide-star hologram. Also, the light signal will be stronger at the CCD, especially for phase-aberration sensing. Numerical propagation is avoided. The sensor aperture has nothing to do with the resolution and the possibility of using low coherence or incoherent illumination is opened. The system becomes more efficient and flexible. Although it is intended for ophthalmic use, it also shows potential application in microscopy. The robustness and feasibility of this compact system are demonstrated by simulations and experiments using scattering objects. PMID:23262541

  13. Imaging of retinal vasculature using adaptive optics SLO/OCT

    PubMed Central

    Felberer, Franz; Rechenmacher, Matthias; Haindl, Richard; Baumann, Bernhard; Hitzenberger, Christoph K.; Pircher, Michael

    2015-01-01

    We use our previously developed adaptive optics (AO) scanning laser ophthalmoscope (SLO)/ optical coherence tomography (OCT) instrument to investigate its capability for imaging retinal vasculature. The system records SLO and OCT images simultaneously with a pixel to pixel correspondence which allows a direct comparison between those imaging modalities. Different field of views ranging from 0.8°x0.8° up to 4°x4° are supported by the instrument. In addition a dynamic focus scheme was developed for the AO-SLO/OCT system in order to maintain the high transverse resolution throughout imaging depth. The active axial eye tracking that is implemented in the OCT channel allows time resolved measurements of the retinal vasculature in the en-face imaging plane. Vessel walls and structures that we believe correspond to individual erythrocytes could be visualized with the system. PMID:25909024

  14. Six-channel adaptive fibre-optic interferometer

    SciTech Connect

    Romashko, R V; Bezruk, M N; Kamshilin, A A; Kulchin, Yurii N

    2012-06-30

    We have proposed and analysed a scheme for the multiplexing of orthogonal dynamic holograms in photorefractive crystals which ensures almost zero cross talk between the holographic channels upon phase demodulation. A six-channel adaptive fibre-optic interferometer was built, and the detection limit for small phase fluctuations in the channels of the interferometer was determined to be 2.1 Multiplication-Sign 10{sup -8} rad W{sup 1/2} Hz{sup -1/2}. The channel multiplexing capacity of the interferometer was estimated. The formation of 70 channels such that their optical fields completely overlap in the crystal reduces the relative detection limit in the working channel by just 10 %. We found conditions under which the maximum cross talk between the channels was within the intrinsic noise level in the channels (-47 dB).

  15. Microstructure of subretinal drusenoid deposits revealed by adaptive optics imaging.

    PubMed

    Meadway, Alexander; Wang, Xiaolin; Curcio, Christine A; Zhang, Yuhua

    2014-03-01

    Subretinal drusenoid deposits (SDD), a recently recognized lesion associated with progression of age-related macular degeneration, were imaged with adaptive optics scanning laser ophthalmoscopy (AO-SLO) and optical coherence tomography (AO-OCT). AO-SLO revealed a distinct en face structure of stage 3 SDD, showing a hyporeflective annulus surrounded reflective core packed with hyperreflective dots bearing a superficial similarity to the photoreceptors in the unaffected retina. However, AO-OCT suggested that the speckled appearance over the SDD rendered by AO-SLO was the lesion material itself, rather than photoreceptors. AO-OCT assists proper interpretation and understanding of the SDD structure and the lesions' impact on surrounding photoreceptors produced by AO-SLO and vice versa. PMID:24688808

  16. Optimization-based wavefront sensorless adaptive optics for multiphoton microscopy.

    PubMed

    Antonello, Jacopo; van Werkhoven, Tim; Verhaegen, Michel; Truong, Hoa H; Keller, Christoph U; Gerritsen, Hans C

    2014-06-01

    Optical aberrations have detrimental effects in multiphoton microscopy. These effects can be curtailed by implementing model-based wavefront sensorless adaptive optics, which only requires the addition of a wavefront shaping device, such as a deformable mirror (DM) to an existing microscope. The aberration correction is achieved by maximizing a suitable image quality metric. We implement a model-based aberration correction algorithm in a second-harmonic microscope. The tip, tilt, and defocus aberrations are removed from the basis functions used for the control of the DM, as these aberrations induce distortions in the acquired images. We compute the parameters of a quadratic polynomial that is used to model the image quality metric directly from experimental input-output measurements. Finally, we apply the aberration correction by maximizing the image quality metric using the least-squares estimate of the unknown aberration. PMID:24977374

  17. A Wafer Transfer Technology for MEMS Adaptive Optics

    NASA Technical Reports Server (NTRS)

    Yang, Eui-Hyeok; Wiberg, Dean V.

    2001-01-01

    Adaptive optics systems require the combination of several advanced technologies such as precision optics, wavefront sensors, deformable mirrors, and lasers with high-speed control systems. The deformable mirror with a continuous membrane is a key component of these systems. This paper describes a new technique for transferring an entire wafer-level silicon membrane from one substrate to another. This technology is developed for the fabrication of a compact deformable mirror with a continuous facet. A 1 (mu)m thick silicon membrane, 100 mm in diameter, has been successfully transferred without using adhesives or polymers (i.e. wax, epoxy, or photoresist). Smaller or larger diameter membranes can also be transferred using this technique. The fabricated actuator membrane with an electrode gap of 1.5 (mu)m shows a vertical deflection of 0.37 (mu)m at 55 V.

  18. Design of the Dual Conjugate Adaptive Optics Test-bed

    NASA Astrophysics Data System (ADS)

    Sharf, Inna; Bell, K.; Crampton, D.; Fitzsimmons, J.; Herriot, Glen; Jolissaint, Laurent; Lee, B.; Richardson, H.; van der Kamp, D.; Veran, Jean-Pierre

    In this paper, we describe the Multi-Conjugate Adaptive Optics laboratory test-bed presently under construction at the University of Victoria, Canada. The test-bench will be used to support research in the performance of multi-conjugate adaptive optics, turbulence simulators, laser guide stars and miniaturizing adaptive optics. The main components of the test-bed include two micro-machined deformable mirrors, a tip-tilt mirror, four wavefront sensors, a source simulator, a dual-layer turbulence simulator, as well as computational and control hardware. The paper will describe in detail the opto-mechanical design of the adaptive optics module, the design of the hot-air turbulence generator and the configuration chosen for the source simulator. Below, we present a summary of these aspects of the bench. The optical and mechanical design of the test-bed has been largely driven by the particular choice of the deformable mirrors. These are continuous micro-machined mirrors manufactured by Boston Micromachines Corporation. They have a clear aperture of 3.3 mm and are deformed with 140 actuators arranged in a square grid. Although the mirrors have an open-loop bandwidth of 6.6 KHz, their shape can be updated at a sampling rate of 100 Hz. In our optical design, the mirrors are conjugated at 0km and 10 km in the atmosphere. A planar optical layout was achieved by using four off-axis paraboloids and several folding mirrors. These optics will be mounted on two solid blocks which can be aligned with respect to each other. The wavefront path design accommodates 3 monochromatic guide stars that can be placed at either 90 km or at infinity. The design relies on the natural separation of the beam into 3 parts because of differences in locations of the guide stars in the field of view. In total four wavefront sensors will be procured from Adaptive Optics Associates (AOA) or built in-house: three for the guide stars and the fourth to collect data from the science source output in

  19. An adaptive optics imaging system designed for clinical use.

    PubMed

    Zhang, Jie; Yang, Qiang; Saito, Kenichi; Nozato, Koji; Williams, David R; Rossi, Ethan A

    2015-06-01

    Here we demonstrate a new imaging system that addresses several major problems limiting the clinical utility of conventional adaptive optics scanning light ophthalmoscopy (AOSLO), including its small field of view (FOV), reliance on patient fixation for targeting imaging, and substantial post-processing time. We previously showed an efficient image based eye tracking method for real-time optical stabilization and image registration in AOSLO. However, in patients with poor fixation, eye motion causes the FOV to drift substantially, causing this approach to fail. We solve that problem here by tracking eye motion at multiple spatial scales simultaneously by optically and electronically integrating a wide FOV SLO (WFSLO) with an AOSLO. This multi-scale approach, implemented with fast tip/tilt mirrors, has a large stabilization range of ± 5.6°. Our method consists of three stages implemented in parallel: 1) coarse optical stabilization driven by a WFSLO image, 2) fine optical stabilization driven by an AOSLO image, and 3) sub-pixel digital registration of the AOSLO image. We evaluated system performance in normal eyes and diseased eyes with poor fixation. Residual image motion with incremental compensation after each stage was: 1) ~2-3 arc minutes, (arcmin) 2) ~0.5-0.8 arcmin and, 3) ~0.05-0.07 arcmin, for normal eyes. Performance in eyes with poor fixation was: 1) ~3-5 arcmin, 2) ~0.7-1.1 arcmin and 3) ~0.07-0.14 arcmin. We demonstrate that this system is capable of reducing image motion by a factor of ~400, on average. This new optical design provides additional benefits for clinical imaging, including a steering subsystem for AOSLO that can be guided by the WFSLO to target specific regions of interest such as retinal pathology and real-time averaging of registered images to eliminate image post-processing. PMID:26114033

  20. An adaptive optics imaging system designed for clinical use

    PubMed Central

    Zhang, Jie; Yang, Qiang; Saito, Kenichi; Nozato, Koji; Williams, David R.; Rossi, Ethan A.

    2015-01-01

    Here we demonstrate a new imaging system that addresses several major problems limiting the clinical utility of conventional adaptive optics scanning light ophthalmoscopy (AOSLO), including its small field of view (FOV), reliance on patient fixation for targeting imaging, and substantial post-processing time. We previously showed an efficient image based eye tracking method for real-time optical stabilization and image registration in AOSLO. However, in patients with poor fixation, eye motion causes the FOV to drift substantially, causing this approach to fail. We solve that problem here by tracking eye motion at multiple spatial scales simultaneously by optically and electronically integrating a wide FOV SLO (WFSLO) with an AOSLO. This multi-scale approach, implemented with fast tip/tilt mirrors, has a large stabilization range of ± 5.6°. Our method consists of three stages implemented in parallel: 1) coarse optical stabilization driven by a WFSLO image, 2) fine optical stabilization driven by an AOSLO image, and 3) sub-pixel digital registration of the AOSLO image. We evaluated system performance in normal eyes and diseased eyes with poor fixation. Residual image motion with incremental compensation after each stage was: 1) ~2–3 arc minutes, (arcmin) 2) ~0.5–0.8 arcmin and, 3) ~0.05–0.07 arcmin, for normal eyes. Performance in eyes with poor fixation was: 1) ~3–5 arcmin, 2) ~0.7–1.1 arcmin and 3) ~0.07–0.14 arcmin. We demonstrate that this system is capable of reducing image motion by a factor of ~400, on average. This new optical design provides additional benefits for clinical imaging, including a steering subsystem for AOSLO that can be guided by the WFSLO to target specific regions of interest such as retinal pathology and real-time averaging of registered images to eliminate image post-processing. PMID:26114033

  1. Phase aberration correction by correlation in digital holographic adaptive optics

    PubMed Central

    Liu, Changgeng; Yu, Xiao; Kim, Myung K.

    2013-01-01

    We present a phase aberration correction method based on the correlation between the complex full-field and guide-star holograms in the context of digital holographic adaptive optics (DHAO). Removal of a global quadratic phase term before the correlation operation plays an important role in the correction. Correlation operation can remove the phase aberration at the entrance pupil plane and automatically refocus the corrected optical field. Except for the assumption that most aberrations lie at or close to the entrance pupil, the presented method does not impose any other constraints on the optical systems. Thus, it greatly enhances the flexibility of the optical design for DHAO systems in vision science and microscopy. Theoretical studies show that the previously proposed Fourier transform DHAO (FTDHAO) is just a special case of this general correction method, where the global quadratic phase term and a defocus term disappear. Hence, this correction method realizes the generalization of FTDHAO into arbitrary DHAO systems. The effectiveness and robustness of this method are demonstrated by simulations and experiments. PMID:23669707

  2. EUV imaging experiment of an adaptive optics telescope

    NASA Astrophysics Data System (ADS)

    Kitamoto, S.; Shibata, T.; Takenaka, E.; Yoshida, M.; Murakami, H.; Shishido, Y.; Gotoh, N.; Nagasaki, K.; Takei, D.; Morii, M.

    2009-08-01

    We report an experimental result of our normal-incident EUV telescope tuned to a 13.5 nm band, with an adaptive optics. The optics consists of a spherical primary mirror and a secondary mirror. Both are coated by Mo/Si multilayer. The diameter of the primary and the secondary mirrors are 80 mm and 55mm, respectively. The secondary mirror is a deformable mirror with 31 bimorph-piezo electrodes. The EUV from a laser plasma source was exposed to a Ni mesh with 31 micro-m wires. The image of this mesh was obtained by a backilluminated CCD. The reference wave was made by an optical laser source with 1 μm pin-hole. We measure the wave form of this reference wave and control the secondary mirror to get a good EUV image. Since the paths of EUV and the optical light for the reference were different from each other, we modify the target wave from to control the deformable mirror, as the EUV image is best. The higher order Zernike components of the target wave form, as well as the tilts and focus components, were added to the reference wave form made by simply calculated. We confirmed the validity of this control and performed a 2.1 arc-sec resolution.

  3. Development and optical testing of the camera, hand lens, and microscope probe with scannable laser spectroscopy (CHAMP-SLS)

    NASA Astrophysics Data System (ADS)

    Mungas, Greg S.; Gürsel, Yekta; Sepulveda, Cesar A.; Anderson, Mark; La Baw, Clayton; Johnson, Kenneth R.; Deans, Matthew; Beegle, Luther; Boynton, John

    2008-08-01

    Conducting high resolution field microscopy with coupled laser spectroscopy that can be used to selectively analyze the surface chemistry of individual pixels in a scene is an enabling capability for next generation robotic and manned spaceflight missions, civil, and military applications. In the laboratory, we use a range of imaging and surface preparation tools that provide us with in-focus images, context imaging for identifying features that we want to investigate at high magnification, and surface-optical coupling that allows us to apply optical spectroscopic analysis techniques for analyzing surface chemistry particularly at high magnifications. The camera, handlens, and microscope probe with scannable laser spectroscopy (CHAMP-SLS) is an imaging/spectroscopy instrument capable of imaging continuously from infinity down to high resolution microscopy (resolution of ~1 micron/pixel in a final camera format), the closer CHAMP-SLS is placed to a feature, the higher the resultant magnification. At hand lens to microscopic magnifications, the imaged scene can be selectively interrogated with point spectroscopic techniques such as Raman spectroscopy, microscopic Laser Induced Breakdown Spectroscopy (micro-LIBS), laser ablation mass-spectrometry, Fluorescence spectroscopy, and/or Reflectance spectroscopy. This paper summarizes the optical design, development, and testing of the CHAMP-SLS optics.

  4. Development and Optical Testing of the Camera, Hand Lens, and Microscope Probe with Scannable Laser Spectroscopy (CHAMP-SLS)

    NASA Technical Reports Server (NTRS)

    Mungas, Greg S.; Gursel, Yekta; Sepulveda, Cesar A.; Anderson, Mark; La Baw, Clayton; Johnson, Kenneth R.; Deans, Matthew; Beegle, Luther; Boynton, John

    2008-01-01

    Conducting high resolution field microscopy with coupled laser spectroscopy that can be used to selectively analyze the surface chemistry of individual pixels in a scene is an enabling capability for next generation robotic and manned spaceflight missions, civil, and military applications. In the laboratory, we use a range of imaging and surface preparation tools that provide us with in-focus images, context imaging for identifying features that we want to investigate at high magnification, and surface-optical coupling that allows us to apply optical spectroscopic analysis techniques for analyzing surface chemistry particularly at high magnifications. The camera, hand lens, and microscope probe with scannable laser spectroscopy (CHAMP-SLS) is an imaging/spectroscopy instrument capable of imaging continuously from infinity down to high resolution microscopy (resolution of approx. 1 micron/pixel in a final camera format), the closer CHAMP-SLS is placed to a feature, the higher the resultant magnification. At hand lens to microscopic magnifications, the imaged scene can be selectively interrogated with point spectroscopic techniques such as Raman spectroscopy, microscopic Laser Induced Breakdown Spectroscopy (micro-LIBS), laser ablation mass-spectrometry, Fluorescence spectroscopy, and/or Reflectance spectroscopy. This paper summarizes the optical design, development, and testing of the CHAMP-SLS optics.

  5. Image restoration of the open-loop adaptive optics retinal imaging system based on optical transfer function analysis

    NASA Astrophysics Data System (ADS)

    Yu, Lei; Qi, Yue; Li, Dayu; Xia, Mingliang; Xuan, Li

    2013-07-01

    The residual aberrations of the adaptive optics retinal imaging system will decrease the quality of the retinal images. To overcome this obstacle, we found that the optical transfer function (OTF) of the adaptive optics retinal imaging system can be described as the Levy stable distribution. Then a new method is introduced to estimate the OTF of the open-loop adaptive optics system, based on analyzing the residual aberrations of the open-loop adaptive optics system in the residual aberrations measuring mode. At last, the estimated OTF is applied to restore the retinal images of the open-loop adaptive optics retinal imaging system. The contrast and resolution of the restored image is significantly improved with the Laplacian sum (LS) from 0.0785 to 0.1480 and gray mean grads (GMG) from 0.0165 to 0.0306.

  6. Digital Pinhole Camera

    ERIC Educational Resources Information Center

    Lancor, Rachael; Lancor, Brian

    2014-01-01

    In this article we describe how the classic pinhole camera demonstration can be adapted for use with digital cameras. Students can easily explore the effects of the size of the pinhole and its distance from the sensor on exposure time, magnification, and image quality. Instructions for constructing a digital pinhole camera and our method for…

  7. Optimal control law for classical and multiconjugate adaptive optics

    NASA Astrophysics Data System (ADS)

    Le Roux, Brice; Conan, Jean-Marc; Kulcsár, Caroline; Raynaud, Henri-François; Mugnier, Laurent M.; Fusco, Thierry

    2004-07-01

    Classical adaptive optics (AO) is now a widespread technique for high-resolution imaging with astronomical ground-based telescopes. It generally uses simple and efficient control algorithms. Multiconjugate adaptive optics (MCAO) is a more recent and very promising technique that should extend the corrected field of view. This technique has not yet been experimentally validated, but simulations already show its high potential. The importance for MCAO of an optimal reconstruction using turbulence spatial statistics has already been demonstrated through open-loop simulations. We propose an optimal closed-loop control law that accounts for both spatial and temporal statistics. The prior information on the turbulence, as well as on the wave-front sensing noise, is expressed in a state-space model. The optimal phase estimation is then given by a Kalman filter. The equations describing the system are given and the underlying assumptions explained. The control law is then derived. The gain brought by this approach is demonstrated through MCAO numerical simulations representative of astronomical observation on a 8-m-class telescope in the near infrared. We also discuss the application of this control approach to classical AO. Even in classical AO, the technique could be relevant especially for future extreme AO systems.

  8. AVES: an adaptive optics visual echelle spectrograph for the VLT

    NASA Astrophysics Data System (ADS)

    Pasquini, Luca; Delabre, Bernard; Avila, Gerardo; Bonaccini, Domenico

    1998-07-01

    We present the preliminary study of a low cost, high performance spectrograph for the VLT, for observations in the V, R and I bands. This spectrograph is meant for intermediate (R equals 16,000) resolution spectroscopy of faint (sky and/or detector limited) sources, with particular emphasis on the study of solar-type (F-G) stars belonging to the nearest galaxies and to distant (or highly reddened) galactic clusters. The spectrograph is designed to use the adaptive optics (AO) systems at the VLT Telescope. Even if these AO systems will not provide diffraction limited images in the V, R and I bands, the photon concentration will still be above approximately 60% of the flux in an 0.3 arcsecond aperture for typical Paranal conditions. This makes the construction of a compact, cheap and efficient echelle spectrograph possible. AVES will outperform comparable non adaptive optic instruments by more than one magnitude for sky- and/or detector-limited observations, and it will be very suitable for observations in crowded fields.

  9. Ergodic capacity comparison of optical wireless communications using adaptive transmissions.

    PubMed

    Hassan, Md Zoheb; Hossain, Md Jahangir; Cheng, Julian

    2013-08-26

    Ergodic capacity is investigated for the optical wireless communications employing subcarrier intensity modulation with direct detection, and coherent systems with and without polarization multiplexing over the Gamma-Gamma turbulence channels. We consider three different adaptive transmission schemes: (i) variable-power, variable-rate adaptive transmission, (ii) complete channel inversion with fixed rate, and (iii) truncated channel inversion with fixed rate. For the considered systems, highly accurate series expressions for ergodic capacity are derived using a series expansion of the modified Bessel function and the Mellin transformation of the Gamma-Gamma random variable. Our asymptotic analysis reveals that the high SNR ergodic capacities of coherent, subcarrier intensity modulated, and polarization multiplexing systems gain 0.33 bits/s/Hz, 0.66 bits/s/Hz, and 0.66 bits/s/Hz respectively with 1 dB increase of average transmitted optical power. Numerical results indicate that a polarization control error less than 10° has little influence on the capacity performance of polarization multiplexing systems. PMID:24105580

  10. Overview of deformable mirror technologies for adaptive optics and astronomy

    NASA Astrophysics Data System (ADS)

    Madec, P.-Y.

    2012-07-01

    From the ardent bucklers used during the Syracuse battle to set fire to Romans’ ships to more contemporary piezoelectric deformable mirrors widely used in astronomy, from very large voice coil deformable mirrors considered in future Extremely Large Telescopes to very small and compact ones embedded in Multi Object Adaptive Optics systems, this paper aims at giving an overview of Deformable Mirror technology for Adaptive Optics and Astronomy. First the main drivers for the design of Deformable Mirrors are recalled, not only related to atmospheric aberration compensation but also to environmental conditions or mechanical constraints. Then the different technologies available today for the manufacturing of Deformable Mirrors will be described, pros and cons analyzed. A review of the Companies and Institutes with capabilities in delivering Deformable Mirrors to astronomers will be presented, as well as lessons learned from the past 25 years of technological development and operation on sky. In conclusion, perspective will be tentatively drawn for what regards the future of Deformable Mirror technology for Astronomy.

  11. Adaptive Optics Imaging Survey of Luminous Infrared Galaxies

    SciTech Connect

    Laag, E A; Canalizo, G; van Breugel, W; Gates, E L; de Vries, W; Stanford, S A

    2006-03-13

    We present high resolution imaging observations of a sample of previously unidentified far-infrared galaxies at z < 0.3. The objects were selected by cross-correlating the IRAS Faint Source Catalog with the VLA FIRST catalog and the HST Guide Star Catalog to allow for adaptive optics observations. We found two new ULIGs (with L{sub FIR} {ge} 10{sup 12} L{sub {circle_dot}}) and 19 new LIGs (with L{sub FIR} {ge} 10{sup 11} L{sub {circle_dot}}). Twenty of the galaxies in the sample were imaged with either the Lick or Keck adaptive optics systems in H or K{prime}. Galaxy morphologies were determined using the two dimensional fitting program GALFIT and the residuals examined to look for interesting structure. The morphologies reveal that at least 30% are involved in tidal interactions, with 20% being clear mergers. An additional 50% show signs of possible interaction. Line ratios were used to determine powering mechanism; of the 17 objects in the sample showing clear emission lines--four are active galactic nuclei and seven are starburst galaxies. The rest exhibit a combination of both phenomena.

  12. Turbulence profiling methods applied to ESO's adaptive optics facility

    NASA Astrophysics Data System (ADS)

    Valenzuela, Javier; Béchet, Clémentine; Garcia-Rissmann, Aurea; Gonté, Frédéric; Kolb, Johann; Le Louarn, Miska; Neichel, Benoît; Madec, Pierre-Yves; Guesalaga, Andrés.

    2014-07-01

    Two algorithms were recently studied for C2n profiling from wide-field Adaptive Optics (AO) measurements on GeMS (Gemini Multi-Conjugate AO system). They both rely on the Slope Detection and Ranging (SLODAR) approach, using spatial covariances of the measurements issued from various wavefront sensors. The first algorithm estimates the C2n profile by applying the truncated least-squares inverse of a matrix modeling the response of slopes covariances to various turbulent layer heights. In the second method, the profile is estimated by deconvolution of these spatial cross-covariances of slopes. We compare these methods in the new configuration of ESO Adaptive Optics Facility (AOF), a high-order multiple laser system under integration. For this, we use measurements simulated by the AO cluster of ESO. The impact of the measurement noise and of the outer scale of the atmospheric turbulence is analyzed. The important influence of the outer scale on the results leads to the development of a new step for outer scale fitting included in each algorithm. This increases the reliability and robustness of the turbulence strength and profile estimations.

  13. Optimal control law for classical and multiconjugate adaptive optics.

    PubMed

    Le Roux, Brice; Conan, Jean-Marc; Kulcsár, Caroline; Raynaud, Henri-François; Mugnier, Laurent M; Fusco, Thierry

    2004-07-01

    Classical adaptive optics (AO) is now a widespread technique for high-resolution imaging with astronomical ground-based telescopes. It generally uses simple and efficient control algorithms. Multiconjugate adaptive optics (MCAO) is a more recent and very promising technique that should extend the corrected field of view. This technique has not yet been experimentally validated, but simulations already show its high potential. The importance for MCAO of an optimal reconstruction using turbulence spatial statistics has already been demonstrated through open-loop simulations. We propose an optimal closed-loop control law that accounts for both spatial and temporal statistics. The prior information on the turbulence, as well as on the wave-front sensing noise, is expressed in a state-space model. The optimal phase estimation is then given by a Kalman filter. The equations describing the system are given and the underlying assumptions explained. The control law is then derived. The gain brought by this approach is demonstrated through MCAO numerical simulations representative of astronomical observation on a 8-m-class telescope in the near infrared. We also discuss the application of this control approach to classical AO. Even in classical AO, the technique could be relevant especially for future extreme AO systems. PMID:15260258

  14. Comparison of wavefront sensor models for simulation of adaptive optics.

    PubMed

    Wu, Zhiwen; Enmark, Anita; Owner-Petersen, Mette; Andersen, Torben

    2009-10-26

    The new generation of extremely large telescopes will have adaptive optics. Due to the complexity and cost of such systems, it is important to simulate their performance before construction. Most systems planned will have Shack-Hartmann wavefront sensors. Different mathematical models are available for simulation of such wavefront sensors. The choice of wavefront sensor model strongly influences computation time and simulation accuracy. We have studied the influence of three wavefront sensor models on performance calculations for a generic, adaptive optics (AO) system designed for K-band operation of a 42 m telescope. The performance of this AO system has been investigated both for reduced wavelengths and for reduced r(0) in the K band. The telescope AO system was designed for K-band operation, that is both the subaperture size and the actuator pitch were matched to a fixed value of r(0) in the K-band. We find that under certain conditions, such as investigating limiting guide star magnitude for large Strehl-ratios, a full model based on Fraunhofer propagation to the subimages is significantly more accurate. It does however require long computation times. The shortcomings of simpler models based on either direct use of average wavefront tilt over the subapertures for actuator control, or use of the average tilt to move a precalculated point spread function in the subimages are most pronounced for studies of system limitations to operating parameter variations. In the long run, efficient parallelization techniques may be developed to overcome the problem. PMID:19997286

  15. Adaptive optics sky coverage modeling for extremely large telescopes

    NASA Astrophysics Data System (ADS)

    Clare, Richard M.; Ellerbroek, Brent L.; Herriot, Glen; Véran, Jean-Pierre

    2006-12-01

    A Monte Carlo sky coverage model for laser guide star adaptive optics systems was proposed by Clare and Ellerbroek [J. Opt. Soc. Am. A 23, 418 (2006)]. We refine the model to include (i) natural guide star (NGS) statistics using published star count models, (ii) noise on the NGS measurements, (iii) the effect of telescope wind shake, (iv) a model for how the Strehl and hence NGS wavefront sensor measurement noise varies across the field, (v) the focus error due to imperfectly tracking the range to the sodium layer, (vi) the mechanical bandwidths of the tip-tilt (TT) stage and deformable mirror actuators, and (vii) temporal filtering of the NGS measurements to balance errors due to noise and servo lag. From this model, we are able to generate a TT error budget for the Thirty Meter Telescope facility narrow-field infrared adaptive optics system (NFIRAOS) and perform several design trade studies. With the current NFIRAOS design, the median TT error at the galactic pole with median seeing is calculated to be 65 nm or 1.8 mas rms.

  16. Non-iterative adaptive optical microscopy using wavefront sensing

    NASA Astrophysics Data System (ADS)

    Tao, X.; Azucena, O.; Kubby, J.

    2016-03-01

    This paper will review the development of wide-field and confocal microscopes with wavefront sensing and adaptive optics for correcting refractive aberrations and compensating scattering when imaging through thick tissues (Drosophila embryos and mouse brain tissue). To make wavefront measurements in biological specimens we have modified the laser guide-star techniques used in astronomy for measuring wavefront aberrations that occur as star light passes through Earth's turbulent atmosphere. Here sodium atoms in Earth's mesosphere, at an altitude of 95 km, are excited to fluoresce at resonance by a high-power sodium laser. The fluorescent light creates a guide-star reference beacon at the top of the atmosphere that can be used for measuring wavefront aberrations that occur as the light passes through the atmosphere. We have developed a related approach for making wavefront measurements in biological specimens using cellular structures labeled with fluorescent proteins as laser guide-stars. An example is a fluorescently labeled centrosome in a fruit fly embryo or neurons and dendrites in mouse brains. Using adaptive optical microscopy we show that the Strehl ratio, the ratio of the peak intensity of an aberrated point source relative to the diffraction limited image, can be improved by an order of magnitude when imaging deeply into live dynamic specimens, enabling near diffraction limited deep tissue imaging.

  17. Adaptive optics sky coverage modeling for extremely large telescopes.

    PubMed

    Clare, Richard M; Ellerbroek, Brent L; Herriot, Glen; Véran, Jean-Pierre

    2006-12-10

    A Monte Carlo sky coverage model for laser guide star adaptive optics systems was proposed by Clare and Ellerbroek [J. Opt. Soc. Am. A 23, 418 (2006)]. We refine the model to include (i) natural guide star (NGS) statistics using published star count models, (ii) noise on the NGS measurements, (iii) the effect of telescope wind shake, (iv) a model for how the Strehl and hence NGS wavefront sensor measurement noise varies across the field, (v) the focus error due to imperfectly tracking the range to the sodium layer, (vi) the mechanical bandwidths of the tip-tilt (TT) stage and deformable mirror actuators, and (vii) temporal filtering of the NGS measurements to balance errors due to noise and servo lag. From this model, we are able to generate a TT error budget for the Thirty Meter Telescope facility narrow-field infrared adaptive optics system (NFIRAOS) and perform several design trade studies. With the current NFIRAOS design, the median TT error at the galactic pole with median seeing is calculated to be 65 nm or 1.8 mas rms. PMID:17119597

  18. Large binocular telescope interferometer adaptive optics: on-sky performance and lessons learned

    NASA Astrophysics Data System (ADS)

    Bailey, Vanessa P.; Hinz, Philip M.; Puglisi, Alfio T.; Esposito, Simone; Vaitheeswaran, Vidhya; Skemer, Andrew J.; Defrère, Denis; Vaz, Amali; Leisenring, Jarron M.

    2014-07-01

    The Large Binocular Telescope Interferometer is a high contrast imager and interferometer that sits at the combined bent Gregorian focus of the LBT's dual 8.4 m apertures. The interferometric science drivers dictate 0.1" resolution with 103 - 104 contrast at 10 μm, while the 4 μm imaging science drivers require even greater contrasts, but at scales <0.2". In imaging mode, LBTI's Adaptive Optics system is already delivering 4 μm contrast of 104 - 105 at 0.3" - 0.75" in good conditions. Even in poor seeing, it can deliver up to 90% Strehl Ratio at this wavelength. However, the performance could be further improved by mitigating Non-Common Path Aberrations. Any NCPA remedy must be feasible using only the current hardware: the science camera, the wavefront sensor, and the adaptive secondary mirror. In preliminary testing, we have implemented an "eye doctor" grid search approach for astigmatism and trefoil, achieving 5% improvement in Strehl Ratio at 4 μm, with future plans to test at shorter wavelengths and with more modes. We find evidence of NCPA variability on short timescales and discuss possible upgrades to ameliorate time-variable effects.

  19. Adaptive distributed Kalman filtering with wind estimation for astronomical adaptive optics.

    PubMed

    Massioni, Paolo; Gilles, Luc; Ellerbroek, Brent

    2015-12-01

    In the framework of adaptive optics (AO) for astronomy, it is a common assumption to consider the atmospheric turbulent layers as "frozen flows" sliding according to the wind velocity profile. For this reason, having knowledge of such a velocity profile is beneficial in terms of AO control system performance. In this paper we show that it is possible to exploit the phase estimate from a Kalman filter running on an AO system in order to estimate wind velocity. This allows the update of the Kalman filter itself with such knowledge, making it adaptive. We have implemented such an adaptive controller based on the distributed version of the Kalman filter, for a realistic simulation of a multi-conjugate AO system with laser guide stars on a 30 m telescope. Simulation results show that this approach is effective and promising and the additional computational cost with respect to the distributed filter is negligible. Comparisons with a previously published slope detection and ranging wind profiler are made and the impact of turbulence profile quantization is assessed. One of the main findings of the paper is that all flavors of the adaptive distributed Kalman filter are impacted more significantly by turbulence profile quantization than the static minimum mean square estimator which does not incorporate wind profile information. PMID:26831389

  20. In vivo imaging of human photoreceptor mosaic with wavefront sensorless adaptive optics optical coherence tomography.

    PubMed

    Wong, Kevin S K; Jian, Yifan; Cua, Michelle; Bonora, Stefano; Zawadzki, Robert J; Sarunic, Marinko V

    2015-02-01

    Wavefront sensorless adaptive optics optical coherence tomography (WSAO-OCT) is a novel imaging technique for in vivo high-resolution depth-resolved imaging that mitigates some of the challenges encountered with the use of sensor-based adaptive optics designs. This technique replaces the Hartmann Shack wavefront sensor used to measure aberrations with a depth-resolved image-driven optimization algorithm, with the metric based on the OCT volumes acquired in real-time. The custom-built ultrahigh-speed GPU processing platform and fast modal optimization algorithm presented in this paper was essential in enabling real-time, in vivo imaging of human retinas with wavefront sensorless AO correction. WSAO-OCT is especially advantageous for developing a clinical high-resolution retinal imaging system as it enables the use of a compact, low-cost and robust lens-based adaptive optics design. In this report, we describe our WSAO-OCT system for imaging the human photoreceptor mosaic in vivo. We validated our system performance by imaging the retina at several eccentricities, and demonstrated the improvement in photoreceptor visibility with WSAO compensation. PMID:25780747

  1. In vivo imaging of human photoreceptor mosaic with wavefront sensorless adaptive optics optical coherence tomography

    PubMed Central

    Wong, Kevin S. K.; Jian, Yifan; Cua, Michelle; Bonora, Stefano; Zawadzki, Robert J.; Sarunic, Marinko V.

    2015-01-01

    Wavefront sensorless adaptive optics optical coherence tomography (WSAO-OCT) is a novel imaging technique for in vivo high-resolution depth-resolved imaging that mitigates some of the challenges encountered with the use of sensor-based adaptive optics designs. This technique replaces the Hartmann Shack wavefront sensor used to measure aberrations with a depth-resolved image-driven optimization algorithm, with the metric based on the OCT volumes acquired in real-time. The custom-built ultrahigh-speed GPU processing platform and fast modal optimization algorithm presented in this paper was essential in enabling real-time, in vivo imaging of human retinas with wavefront sensorless AO correction. WSAO-OCT is especially advantageous for developing a clinical high-resolution retinal imaging system as it enables the use of a compact, low-cost and robust lens-based adaptive optics design. In this report, we describe our WSAO-OCT system for imaging the human photoreceptor mosaic in vivo. We validated our system performance by imaging the retina at several eccentricities, and demonstrated the improvement in photoreceptor visibility with WSAO compensation. PMID:25780747

  2. Far Ultraviolet Refractive Index of Optical Materials for Solar Blind Channel (SBC) Filters for HST Advanced Camera for Surveys

    NASA Technical Reports Server (NTRS)

    Leviton, Douglas B.; Madison, Timothy J.; Petrone, Peter

    1998-01-01

    Refractive index measurements using the minimum deviation method have been carried out for prisms of a variety of far ultraviolet optical materials used in the manufacture of Solar Blind Channel (SBC) filters for the HST Advanced Camera for Surveys (ACS). Some of the materials measured are gaining popularity in a variety of high technology applications including high power excimer lasers and advanced microlithography optics operating in a wavelength region where high quality knowledge of optical material properties is sparse. Our measurements are of unusually high accuracy and precision for this wavelength region owing to advanced instrumentation in the large vacuum chamber of the Diffraction Grating Evaluation Facility (DGEF) at Goddard Space Flight Center (GSFC). Index values for CaF2, BaF2, LiF, and far ultraviolet grades of synthetic sapphire and synthetic fused silica are reported and compared with values from the literature.

  3. Development of adaptive optics elements for solar telescope

    NASA Astrophysics Data System (ADS)

    Lukin, V. P.; Grigor'ev, V. M.; Antoshkin, L. V.; Botugina, N. N.; Kovadlo, P. G.; Konyaev, P. A.; Kopulov, E. A.; Skomorovsky, V. I.; Trifonov, V. D.; Chuprakov, S. A.

    2012-07-01

    The devices and components of adaptive optical system ANGARA, which is developed for image correction in the Big solar vacuum telescope (BSVT) at Baykal astrophysical observatory are described. It is shown that the use of modernized adaptive system on BSVT not only reduces the turbulent atmospheric distortions of image, but also gives a possibility to improve the telescope developing new methods of solar observations. A high precision Shack-Hartmann wavefront (WF) sensor has been developed on the basis of a low-aperture off-axis diffraction lens array. The device is capable of measuring WF slopes at array sub-apertures of size 640X640 μm with an error not exceeding 4.80 arc.sec. Also the modification of this sensor for adaptive system of solar telescope using extended scenes as tracking objects, such as sunspot, pores, solar granulation and limb, is presented. The software package developed for the proposed WF sensors includes three algorithms of local WF slopes estimation (modified centroids, normalized cross-correlation and fast Fourier-demodulation), as well as three methods of WF reconstruction (modal Zernike polynomials expansion, deformable mirror response functions expansion and phase unwrapping), that can be selected during operation with accordance to the application.

  4. CRAO: a compact and refractive adaptive-optics

    NASA Astrophysics Data System (ADS)

    Fujishiro, Naofumi; Kitao, Eiji; Shimizu, Tomo; Matsui, Takuya; Ikeda, Yuji; Kawakita, Hideyo; Oya, Shin

    2014-08-01

    CRAO is a demonstrator of a compact and low-cost adaptive-optics (AO) with a double-pass lens configuration. Owing to its compact optical layout compared to conventional reflective AOs, the instrument size can be reduced to only 0.03 square meters. We plan to apply this miniaturization technique into future AOs on a variety of telescopes ranging from 1m- to 30m-class. CRAO is installed at a Nasmyth focus of the 1.3m Araki telescope at Koyama Astronomical Observatory in Kyoto Sangyo University. CRAO adopts a closed-loop single-conjugate system with wavelength coverage of 400 - 700 nm and the field of view of 30 arcsec. For low cost, we also employ commercial products on its wavefront sensor (WFS), deformable mirror (DM), and tip-tilt (TT) stage. CRAO is designed to improve the atmospheric seeing from 2.5 to 0.6arcsec under a typical condition at Koyama Astronomical Observatory with 12x12 subapertures in the WFS, 48 electrodes in the membrane DM and the control bandwidth of 200Hz. In order to examine key issues inherent in refractive optical system such as chromatic aberration, temperature aberration and ghost images, room and on-sky experiments are currently underway. CRAO has seen first light in May 2014, and we have confirmed that effects of chromatic aberration and ghost images induced by its refractive optics are negligible for at least TT correction. In this paper, we present experimental results as well as the design of optics, opto-mechanics and control system.

  5. Wavefront sensors and algorithms for adaptive optical systems

    NASA Astrophysics Data System (ADS)

    Lukin, V. P.; Botygina, N. N.; Emaleev, O. N.; Konyaev, P. A.

    2010-07-01

    The results of recent works related to techniques and algorithms for wave-front (WF) measurement using Shack-Hartmann sensors show their high efficiency in solution of very different problems of applied optics. The goal of this paper was to develop a sensitive Shack-Hartmann sensor with high precision WF measurement capability on the base of modern technology of optical elements making and new efficient methods and computational algorithms of WF reconstruction. The Shack-Hartmann sensors sensitive to small WF aberrations are used for adaptive optical systems, compensating the wave distortions caused by atmospheric turbulence. A high precision Shack-Hartmann WF sensor has been developed on the basis of a low-aperture off-axis diffraction lens array. The device is capable of measuring WF slopes at array sub-apertures of size 640×640 μm with an error not exceeding 4.80 arcsec (0.15 pixel), which corresponds to the standard deviation equal to 0.017λ at the reconstructed WF with wavelength λ . Also the modification of this sensor for adaptive system of solar telescope using extended scenes as tracking objects, such as sunspot, pores, solar granulation and limb, is presented. The software package developed for the proposed WF sensors includes three algorithms of local WF slopes estimation (modified centroids, normalized cross-correlation and fast Fourierdemodulation), as well as three methods of WF reconstruction (modal Zernike polynomials expansion, deformable mirror response functions expansion and phase unwrapping), that can be selected during operation with accordance to the application.

  6. Static and predictive tomographic reconstruction for wide-field multi-object adaptive optics systems.

    PubMed

    Correia, C; Jackson, K; Véran, J-P; Andersen, D; Lardière, O; Bradley, C

    2014-01-01

    Multi-object adaptive optics (MOAO) systems are still in their infancy: their complex optical designs for tomographic, wide-field wavefront sensing, coupled with open-loop (OL) correction, make their calibration a challenge. The correction of a discrete number of specific directions in the field allows for streamlined application of a general class of spatio-angular algorithms, initially proposed in Whiteley et al. [J. Opt. Soc. Am. A15, 2097 (1998)], which is compatible with partial on-line calibration. The recent Learn & Apply algorithm from Vidal et al. [J. Opt. Soc. Am. A27, A253 (2010)] can then be reinterpreted in a broader framework of tomographic algorithms and is shown to be a special case that exploits the particulars of OL and aperture-plane phase conjugation. An extension to embed a temporal prediction step to tackle sky-coverage limitations is discussed. The trade-off between lengthening the camera integration period, therefore increasing system lag error, and the resulting improvement in SNR can be shifted to higher guide-star magnitudes by introducing temporal prediction. The derivation of the optimal predictor and a comparison to suboptimal autoregressive models is provided using temporal structure functions. It is shown using end-to-end simulations of Raven, the MOAO science, and technology demonstrator for the 8 m Subaru telescope that prediction allows by itself the use of 1-magnitude-fainter guide stars. PMID:24561945

  7. Interpretation of Flood-Illuminated Adaptive Optics Images in Subjects with Retinitis Pigmentosa.

    PubMed

    Gale, Michael J; Feng, Shu; Titus, Hope E; Smith, Travis B; Pennesi, Mark E

    2016-01-01

    The purpose of this study was to correlate features on flood-illuminated adaptive optics (AO) images with color fundus, fundus autofluorescence (FAF) and spectral domain optical coherence tomography (SD-OCT) images in patients with retinitis pigmentosa (RP). We imaged 39 subjects diagnosed with RP using the rtx1™ flood-illuminated AO camera from Imagine Eyes (Orsay, France). We observed a correlation between hyper-autofluoresence changes on FAF, disruption of the interdigitation zone (IZ) on SD-OCT and loss of reflective cone profiles on AO. Four main patterns of cone-reflectivity were seen on AO: presumed healthy cone mosaics, hypo-reflective blurred cone-like structures, higher frequency disorganized hyper-reflective spots, and lower frequency hypo-reflective spots. These regions were correlated to progressive phases of cone photoreceptor degeneration observed using SD-OCT and FAF. These results help provide interpretation of en face images obtained by flood-illuminated AO in subjects with RP. However, significant ambiguity remains as to what truly constitutes a cone, especially in areas of degeneration. With further refinements in technology, flood illuminated AO imaging has the potential to provide rapid, standardized, longitudinal and lower cost imaging in patients with retinal degeneration. PMID:26427424

  8. Advanced wavefront correction technology for the next generation of adaptive optics equipped ophthalmic instrumentation

    NASA Astrophysics Data System (ADS)

    Doble, Nathan; Helmbrecht, Michael; Hart, Matthew; Juneau, Thor

    2005-04-01

    Adaptive optics (AO) is becoming increasingly important in improving system resolution in flood illuminated fundus cameras, confocal laser scanning ophthalmoscopes (cSLO) and optical coherence tomography (OCT). For the latter two cases, AO also provides an increase in the throughput light levels. The flood and cSLO modalities have allowed for the routine, in-vivo visualization of individual cone photoreceptor cells and real time blood flow measurements of single leukocyte cells. Most recently, evidence of the rod mosaic has also been observed. A key component in all of these systems is the deformable mirror (DM) that provides the correction of the high order aberrations. The majority of these systems to-date have utilized large, expensive DMs originally designed for astronomy. This paper details ongoing work at Iris AO, Inc in which advanced fabrication techniques based on microelectromechanical systems (MEMS) are being leveraged. This approach yields extremely compact DMs that offer higher performance and lower cost, coupled with the ability for batch fabrication. The Iris AO design uses an array of individually addressable hexagonal segments than can each be moved in three orthogonal directions. Such a design allows for superior ocular wavefront fitting performance and very high stroke (>10 microns). Additionally, our DMs can be fabricated with diameters that are an order of magnitude smaller than conventional non-MEMS techniques.

  9. MEMS segmented-based adaptive optics scanning laser ophthalmoscope

    PubMed Central

    Manzanera, Silvestre; Helmbrecht, Michael A.; Kempf, Carl J.; Roorda, Austin

    2011-01-01

    The performance of a MEMS (micro-electro-mechanical-system) segmented deformable mirror was evaluated in an adaptive optics (AO) scanning laser ophthalmoscope. The tested AO mirror (Iris AO, Inc, Berkeley, CA) is composed of 37 hexagonal segments that allow piston/tip/tilt motion up to 5 μm stroke and ±5 mrad angle over a 3.5 mm optical aperture. The control system that implements the closed-loop operation employs a 1:1 matched 37-lenslet Shack-Hartmann wavefront sensor whose measurements are used to apply modal corrections to the deformable mirror. After a preliminary evaluation of the AO mirror optical performance, retinal images from 4 normal subjects over a 0.9°x0.9° field size were acquired through a 6.4 mm ocular pupil, showing resolved retinal features at the cellular level. Cone photoreceptors were observed as close as 0.25 degrees from the foveal center. In general, the quality of these images is comparable to that obtained using deformable mirrors based on different technologies. PMID:21559132

  10. LEO-to-ground optical communications link using adaptive optics correction on the OPALS downlink

    NASA Astrophysics Data System (ADS)

    Wright, Malcolm W.; Kovalik, Joseph; Morris, Jeff; Abrahamson, Matthew; Biswas, Abhijit

    2016-03-01

    The Optical PAyload for Lasercomm Science (OPALS) experiment on the International Space Station (ISS) recently demonstrated successful optical downlinks to the NASA/JPL 1-m aperture telescope at the Optical Communication Telescope Laboratory (OCTL) located near Wrightwood, CA. A large area (200 μm diameter) free space coupled avalanche photodiode (APD) detector was used to receive video and a bit patterns at 50 Mb/s. We report on a recent experiment that used an adaptive optics system at OCTL to correct for atmospherically-induced refractive index fluctuations so that the downlink from the ISS could be coupled into a single mode fiber receiver. Stable fiber coupled power was achieved over an entire pass using a self-referencing interferometer based adaptive optics system that was provided and operated by Boeing Co. and integrated to OCTL. End-to-end transmission and reconstruction of an HD video signal verified the communication performance as in the original OPALS demonstration. Coupling the signal into a single mode fiber opens the possibility for higher bandwidth and efficiency modulation schemes and serves as a pilot experiment for future implementations.

  11. Precision Optical Gauging With Image Sensing Camera And Programmable Microprocessor Controller

    NASA Astrophysics Data System (ADS)

    West, , Perry; Mauritz, Karl

    1980-08-01

    An effective approach to the design of a line scan camera controller is covered in this paper. Primary features of the controller, other than the microprocessor operation, which are covered, include camera data compression and presentation to the microprocessor, mathematical capability for efficient mensuration, real-time capability for machine and process interface, and steps to make the hardware more versatile in order to complement the flexibility of software. A detailed example is given in the application of the controller to the production sizing and grading of spherical bearing rollers under the dual constraints of high thruput (2400 rollers/hour) and high accuracy (50 microinches).

  12. Extended depth of focus adaptive optics spectral domain optical coherence tomography

    PubMed Central

    Sasaki, Kazuhiro; Kurokawa, Kazuhiro; Makita, Shuichi; Yasuno, Yoshiaki

    2012-01-01

    We present an adaptive optics spectral domain optical coherence tomography (AO-SDOCT) with a long focal range by active phase modulation of the pupil. A long focal range is achieved by introducing AO-controlled third-order spherical aberration (SA). The property of SA and its effects on focal range are investigated in detail using the Huygens-Fresnel principle, beam profile measurement and OCT imaging of a phantom. The results indicate that the focal range is extended by applying SA, and the direction of extension can be controlled by the sign of applied SA. Finally, we demonstrated in vivo human retinal imaging by altering the applied SA. PMID:23082278

  13. Design and analysis of filter-based optical systems for spectral responsivity estimation of digital video cameras

    NASA Astrophysics Data System (ADS)

    Chang, Gao-Wei; Jian, Hong-Da; Yeh, Zong-Mu; Cheng, Chin-Pao

    2004-02-01

    For estimating spectral responsivities of digital video cameras, a filter-based optical system is designed with sophisticated filter selections, in this paper. The filter consideration in the presence of noise is central to the optical systems design, since the spectral filters primarily prescribe the structure of the perturbed system. A theoretical basis is presented to confirm that sophisticated filter selections can make this system as insensitive to noise as possible. Also, we propose a filter selection method based on the orthogonal-triangular (QR) decomposition with column pivoting (QRCP). To investigate the noise effects, we assess the estimation errors between the actual and estimated spectral responsivities, with the different signal-to-noise ratio (SNR) levels of an eight-bit/channel camera. Simulation results indicate that the proposed method yields satisfactory estimation accuracy. That is, the filter-based optical system with the spectral filters selected from the QRCP-based method is much less sensitive to noise than those with other filters from different selections.

  14. A Crowd-Sourcing Indoor Localization Algorithm via Optical Camera on a Smartphone Assisted by Wi-Fi Fingerprint RSSI

    PubMed Central

    Chen, Wei; Wang, Weiping; Li, Qun; Chang, Qiang; Hou, Hongtao

    2016-01-01

    Indoor positioning based on existing Wi-Fi fingerprints is becoming more and more common. Unfortunately, the Wi-Fi fingerprint is susceptible to multiple path interferences, signal attenuation, and environmental changes, which leads to low accuracy. Meanwhile, with the recent advances in charge-coupled device (CCD) technologies and the processing speed of smartphones, indoor positioning using the optical camera on a smartphone has become an attractive research topic; however, the major challenge is its high computational complexity; as a result, real-time positioning cannot be achieved. In this paper we introduce a crowd-sourcing indoor localization algorithm via an optical camera and orientation sensor on a smartphone to address these issues. First, we use Wi-Fi fingerprint based on the K Weighted Nearest Neighbor (KWNN) algorithm to make a coarse estimation. Second, we adopt a mean-weighted exponent algorithm to fuse optical image features and orientation sensor data as well as KWNN in the smartphone to refine the result. Furthermore, a crowd-sourcing approach is utilized to update and supplement the positioning database. We perform several experiments comparing our approach with other positioning algorithms on a common smartphone to evaluate the performance of the proposed sensor-calibrated algorithm, and the results demonstrate that the proposed algorithm could significantly improve accuracy, stability, and applicability of positioning. PMID:27007379

  15. A Crowd-Sourcing Indoor Localization Algorithm via Optical Camera on a Smartphone Assisted by Wi-Fi Fingerprint RSSI.

    PubMed

    Chen, Wei; Wang, Weiping; Li, Qun; Chang, Qiang; Hou, Hongtao

    2016-01-01

    Indoor positioning based on existing Wi-Fi fingerprints is becoming more and more common. Unfortunately, the Wi-Fi fingerprint is susceptible to multiple path interferences, signal attenuation, and environmental changes, which leads to low accuracy. Meanwhile, with the recent advances in charge-coupled device (CCD) technologies and the processing speed of smartphones, indoor positioning using the optical camera on a smartphone has become an attractive research topic; however, the major challenge is its high computational complexity; as a result, real-time positioning cannot be achieved. In this paper we introduce a crowd-sourcing indoor localization algorithm via an optical camera and orientation sensor on a smartphone to address these issues. First, we use Wi-Fi fingerprint based on the K Weighted Nearest Neighbor (KWNN) algorithm to make a coarse estimation. Second, we adopt a mean-weighted exponent algorithm to fuse optical image features and orientation sensor data as well as KWNN in the smartphone to refine the result. Furthermore, a crowd-sourcing approach is utilized to update and supplement the positioning database. We perform several experiments comparing our approach with other positioning algorithms on a common smartphone to evaluate the performance of the proposed sensor-calibrated algorithm, and the results demonstrate that the proposed algorithm could significantly improve accuracy, stability, and applicability of positioning. PMID:27007379

  16. Design and comparison of 8x8 optical switches with adaptive wavelength routing algorithm

    NASA Astrophysics Data System (ADS)

    Tsao, Shyh-Lin; Lu, Yu M.

    2001-12-01

    In this paper, some wavelength routers with various 8 X 8 optical wavelength-switching networks are designed. All of the wavelength routers have three stages architecture. We also analyze the wavelength crosstalk, SNR and BER for various 8 X 8 optical switching networks for adaptive wavelength routing choice. The analysis shows the performance adaptive of routing networks. The 8 X 8 dilated Benes optical switches that adaptive router closed will the best performance among the wavelength routers.

  17. Aerial camera auto focusing system

    NASA Astrophysics Data System (ADS)

    Wang, Xuan; Lan, Gongpu; Gao, Xiaodong; Liang, Wei

    2012-10-01

    Before the aerial photographic task, the cameras focusing work should be performed at first to compensate the defocus caused by the changes of the temperature, pressure etc. A new method of aerial camera auto focusing is proposed through traditional photoelectric self-collimation combined with image processing method. Firstly, the basic principles of optical self-collimation and image processing are introduced. Secondly, the limitations of the two are illustrated and the benefits of the new method are detailed. Then the basic principle, the system composition and the implementation of this new method are presented. Finally, the data collection platform is set up reasonably and the focus evaluation function curve is draw. The results showed that: the method can be used in the Aerial camera focusing field, adapt to the aviation equipment trends of miniaturization and lightweight .This paper is helpful to the further work of accurate and automatic focusing.

  18. Evaluating intensified camera systems

    SciTech Connect

    S. A. Baker

    2000-06-30

    This paper describes image evaluation techniques used to standardize camera system characterizations. The authors group is involved with building and fielding several types of camera systems. Camera types include gated intensified cameras, multi-frame cameras, and streak cameras. Applications range from X-ray radiography to visible and infrared imaging. Key areas of performance include sensitivity, noise, and resolution. This team has developed an analysis tool, in the form of image processing software, to aid an experimenter in measuring a set of performance metrics for their camera system. These performance parameters are used to identify a camera system's capabilities and limitations while establishing a means for camera system comparisons. The analysis tool is used to evaluate digital images normally recorded with CCD cameras. Electro-optical components provide fast shuttering and/or optical gain to camera systems. Camera systems incorporate a variety of electro-optical components such as microchannel plate (MCP) or proximity focused diode (PFD) image intensifiers; electro-static image tubes; or electron-bombarded (EB) CCDs. It is often valuable to evaluate the performance of an intensified camera in order to determine if a particular system meets experimental requirements.

  19. Towards advanced study of Active Galactic Nuclei with visible light adaptive optics

    NASA Astrophysics Data System (ADS)

    Ammons, Stephen Mark

    It is thought that the immense energies associated with accretion of matter onto black holes in Active Galactic Nuclei (AGN) and Quasi-Stellar Objects (QSOs) may "feedback," via intense photon flux or outward motion of gas, and affect certain properties of the host galaxy. In particular, AGN feedback may contribute to "quenching," or ceasing, of star formation by the expulsion or heating of cold gas, causing the host galaxy to evolve onto the red sequence (e.g., Di Matteo et al. 2005, Hopkins et al. 2006). I probe for the effects of feedback on the stellar populations of 60 X-ray-selected AGN hosts at a redshift of 1 in the Great Observatories Origins Deep Survey (GOODS) Southern field. Combining high spatial resolution optical imaging from the Hubble Space Telescope Advanced Camera for Surveys (HST ACS), and high spatial resolution near infrared data from Keck Laser Guide Star Adaptive Optics (AO) and HST Near-Infrared Camera and Multi-Object Spectrograph (NICMOS), I test for the presence of young stars on sub-kiloparsec scales, independent of dust extinction. Testing for correlations between near-ultraviolet/optical ( NUV- R ) colors and gradients and X-ray parameters such as hardness ratio and luminosity reveals new information about the nature of AGN-driven feedback. These AGN hosts display color gradients in rest-frame NUV - R as far inward as ~400 pc, suggesting stellar mixtures with nonuniform age distributions. There is little (< 0.3 mags) difference between the NUV - R gradients of the obscured (hard in X-ray) sources and the unobscured (soft in X-ray) sources, suggesting that the unobscured sources are not increasingly quenched of star formation. I compare the NUV - R colors of spiral galaxies that host AGN to non-active spirals, finding similar color gradients, but redder colors. These observations support the notion that unobscured intermediate-luminosity AGN hosts do not appear to be increasingly quenched of star formation relative to obscured sources

  20. Novel fundus camera design

    NASA Astrophysics Data System (ADS)

    Dehoog, Edward A.

    A fundus camera a complex optical system that makes use of the principle of reflex free indirect ophthalmoscopy to image the retina. Despite being in existence as early as 1900's, little has changed in the design of a fundus camera and there is minimal information about the design principles utilized. Parameters and specifications involved in the design of fundus camera are determined and their affect on system performance are discussed. Fundus cameras incorporating different design methods are modeled and a performance evaluation based on design parameters is used to determine the effectiveness of each design strategy. By determining the design principles involved in the fundus camera, new cameras can be designed to include specific imaging modalities such as optical coherence tomography, imaging spectroscopy and imaging polarimetry to gather additional information about properties and structure of the retina. Design principles utilized to incorporate such modalities into fundus camera systems are discussed. Design, implementation and testing of a snapshot polarimeter fundus camera are demonstrated.

  1. Develop techniques for ion implantation of PLZT for adaptive optics

    NASA Astrophysics Data System (ADS)

    Craig, R. A.; Batishko, C. R.; Brimhall, J. L.; Pawlewicz, W. T.; Stahl, K. A.

    1989-11-01

    Battelle Pacific Northwest Laboratory (PNL) conducted research into the preparation and characterization of ion-implanted adaptive optic elements based on lead-lanthanum-zirconate-titanate (PLZT). Over the 4-yr effort beginning FY 1985, the ability to increase the photosensitivity of PLZT and extend it to longer wavelengths was developed. The emphasis during the last two years was to develop a model to provide a basis for choosing implantation species and parameters. Experiments which probe the electronic structure were performed on virgin and implanted PLZT samples. Also performed were experiments designed to connect the developing conceptual model with the experimental results. The emphasis in FY 1988 was to extend the photosensitivity out to diode laser wavelengths. The experiments and modelling effort indicate that manganese will form appropriate intermediate energy states to achieve the longer wavelength photosensitivity. Preliminary experiments were also conducted to deposit thin film PLZT.

  2. Chromatic effects of the atmosphere on astronomical adaptive optics.

    PubMed

    Devaney, Nicholas; Goncharov, Alexander V; Dainty, J Christopher

    2008-03-10

    The atmosphere introduces chromatic errors that may limit the performance of adaptive optics (AO) systems on large telescopes. Various aspects of this problem have been considered in the literature over the past two decades. It is necessary to revisit this problem in order to examine the effect on currently planned systems, including very high-order AO on current 8-10 m class telescopes and on future 30-42 m extremely large telescopes. We review the literature on chromatic effects and combine an analysis of all effects in one place. We examine implications for AO and point out some effects that should be taken into account in the design of future systems. In particular we show that attention should be paid to chromatic pupil shifts, which may arise in components such as atmospheric dispersion compensators. PMID:18327278

  3. Wavefront sensor and wavefront corrector matching in adaptive optics

    PubMed Central

    Dubra, Alfredo

    2016-01-01

    Matching wavefront correctors and wavefront sensors by minimizing the condition number and mean wavefront variance is proposed. The particular cases of two continuous-sheet deformable mirrors and a Shack-Hartmann wavefront sensor with square packing geometry are studied in the presence of photon noise, background noise and electronics noise. Optimal number of lenslets across each actuator are obtained for both deformable mirrors, and a simple experimental procedure for optimal alignment is described. The results show that high-performance adaptive optics can be achieved even with low cost off-the-shelf Shack-Hartmann arrays with lenslet spacing that do not necessarily match those of the wavefront correcting elements. PMID:19532513

  4. The Giant Magellan Telescope Laser Tomography Adaptive Optics System

    NASA Astrophysics Data System (ADS)

    Conan, Rodolphe; Bennet, Francis; Bouchez, Antonin; Van Dam, Marcos; Espeland, Brady; Gardouse, Warren; D'Orgeville, Celine; Paulin, N.; Piatrou, Piotr; Price, I.; Rigaut, François; Trancho, Gelys; Uhlendorf, Kristina

    2013-12-01

    Laser tomography adaptive optics (LTAO) will allow Extremely Large Telescope to get nearly diffraction limited images over a large fraction of the sky.For such systems, the sky coverage is limited by the number of natural guide star (NGS) suitable to estimate the tip and tilt (TT) modes of the atmosphere.The LTAO system of the Giant Magellan Telescope is using a single NGS which detector is located within the instrument. A deformable mirror (DM) in open--loop corrects the anisoplanatism error of the NGS wavefront.The DM command is derived from an off-axis tomographic reconstruction using the measurements from the Laser Guide Star wavefront sensors.The paper describes the tomography algorithm, a minimum variance reconstructor in the wavefront sensor space.The detail of the control architecture is shown including the TT, the focus and the truth sensors.As a conclusion, we will report on the expected sky coverage and performance of the system.

  5. AFIRE: fiber Raman laser for laser guide star adaptive optics

    NASA Astrophysics Data System (ADS)

    Bonaccini Calia, D.; Hackenberg, W.; Chernikov, S.; Feng, Y.; Taylor, L.

    2006-06-01

    Future adaptive optics systems will benefit from multiple sodium laser guide stars in achieving satisfactory sky coverage in combination with uniform and high-Strehl correction over a large field of view. For this purpose ESO is developing with industry AFIRE, a turn-key, rack-mounted 589-nm laser source based on a fiber Raman laser. The fiber laser will deliver the beam directly at the projector telescope. The required output power is in the order of 10 W in air per sodium laser guide star, in a diffraction-limited beam and with a bandwidth of < 2 GHz. This paper presents the design and first demonstration results obtained with the AFIRE breadboard. 4.2W CW at 589nm have so far been achieved with a ~20% SHG conversion efficiency.

  6. Wavefront sensorless adaptive optics temporal focusing-based multiphoton microscopy

    PubMed Central

    Chang, Chia-Yuan; Cheng, Li-Chung; Su, Hung-Wei; Hu, Yvonne Yuling; Cho, Keng-Chi; Yen, Wei-Chung; Xu, Chris; Dong, Chen Yuan; Chen, Shean-Jen

    2014-01-01

    Temporal profile distortions reduce excitation efficiency and image quality in temporal focusing-based multiphoton microscopy. In order to compensate the distortions, a wavefront sensorless adaptive optics system (AOS) was integrated into the microscope. The feedback control signal of the AOS was acquired from local image intensity maximization via a hill-climbing algorithm. The control signal was then utilized to drive a deformable mirror in such a way as to eliminate the distortions. With the AOS correction, not only is the axial excitation symmetrically refocused, but the axial resolution with full two-photon excited fluorescence (TPEF) intensity is also maintained. Hence, the contrast of the TPEF image of a R6G-doped PMMA thin film is enhanced along with a 3.7-fold increase in intensity. Furthermore, the TPEF image quality of 1μm fluorescent beads sealed in agarose gel at different depths is improved. PMID:24940539

  7. Measurements of contrast sensitivity by an adaptive optics visual simulator

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Tatsuo; Ucikawa, Keiji

    2015-08-01

    We developed an adaptive optics visual simulator (AOVS) to study the relationship between the contrast sensitivity and higher-order wavefront aberrations of human eyes. A desired synthetic aberration was virtually generated on a subject eye by the AOVS, and red laser light was used to measure the aberrations. The contrast sensitivity was measured in a psychophysical experiment using visual stimulus patterns provided by a large-contrast-range imaging system, which included two liquid crystal displays illuminated by red light emitting diodes from the backside. The diameter of the pupil was set to 4 mm by an artificial aperture, and the retinal illuminance of the stimulus image was controlled to 10 Td. Experiments conducted with four normal subjects revealed that their contrast sensitivity to a high-spatial-frequency vertical sinusoidal grating pattern was lower in the presence of a horizontal coma aberration than in the presence of a vertical coma or no aberrations ( p < 0.02, Nagai method).

  8. Status of point spread function determination for Keck adaptive optics

    NASA Astrophysics Data System (ADS)

    Ragland, S.; Jolissaint, L.; Wizinowich, P.; Neyman, C.

    2014-07-01

    There is great interest in the adaptive optics (AO) science community to overcome the limitations imposed by incomplete knowledge of the point spread function (PSF). To address this limitation a program has been initiated at the W. M. Keck Observatory (WMKO) to demonstrate PSF determination for observations obtained with Keck AO science instruments. This paper aims to give a broad view of the progress achieved in this area. The concept and the implementation are briefly described. The results from on-sky on-axis NGS AO measurements using the NIRC2 science instrument are presented. On-sky performance of the technique is illustrated by comparing the reconstructed PSFs to NIRC2 PSFs. Accuracy of the reconstructed PSFs in terms of Strehl ratio and FWHM are discussed. Science cases for the first phase of science verification have been identified. More technical details of the program are presented elsewhere in the conference.

  9. Multiple Object Adaptive Optics: Mixed NGS/LGS tomography

    NASA Astrophysics Data System (ADS)

    Morris, Tim; Gendron, Eric; Basden, Alastair; Martin, Olivier; Osborn, James; Henry, David; Hubert, Zoltan; Sivo, Gaetano; Gratadour, Damien; Chemla, Fanny; Sevin, Arnaud; Cohen, Matthieu; Younger, Eddy; Vidal, Fabrice; Wilson, Richard; Batterley, Tim; Bitenc, Urban; Reeves, Andrew; Bharmal, Nazim; Raynaud, Henri-François; Kulcsar, Caroline; Conan, Jean-Marc; Guzman, Dani; De Cos Juez, Javier; Huet, Jean-Michel; Perret, Denis; Dickson, Colin; Atkinson, David; Baillie, Tom; Longmore, Andy; Todd, Stephen; Talbot, Gordon; Morris, Simon; Myers, Richard; Rousset, Gérard

    2013-12-01

    Open-loop adaptive optics has been successfully demonstrated on-sky by several groups, including the fully tomographic MOAO demonstration made using CANARY. MOAO instrumentation such as RAVEN will deliver the first astronomical science and other planned instruments aim to extend both open-loop AO performance and the number of corrected fields. Many of these planned systems rely on the use of tomographic open-loop LGS wavefront sensing. Here we present results from the combined NGS/LGS tomographic CANARY system and then compare the NGS- and LGS-based tomographic system performance. We identify the major system performance drivers, and highlight some potential routes for further exploitation of open-loop tomographic AO.

  10. Kalman filtering to suppress spurious signals in Adaptive Optics control

    SciTech Connect

    Poyneer, L; Veran, J P

    2010-03-29

    In many scenarios, an Adaptive Optics (AO) control system operates in the presence of temporally non-white noise. We use a Kalman filter with a state space formulation that allows suppression of this colored noise, hence improving residual error over the case where the noise is assumed to be white. We demonstrate the effectiveness of this new filter in the case of the estimated Gemini Planet Imager tip-tilt environment, where there are both common-path and non-common path vibrations. We discuss how this same framework can also be used to suppress spatial aliasing during predictive wavefront control assuming frozen flow in a low-order AO system without a spatially filtered wavefront sensor, and present experimental measurements from Altair that clearly reveal these aliased components.

  11. Multi-channel measurement for hetero-core optical fiber sensor by using CMOS camera

    NASA Astrophysics Data System (ADS)

    Koyama, Yuya; Nishiyama, Michiko; Watanabe, Kazuhiro

    2015-07-01

    Fiber optic smart structures have been developed over several decades by the recent fiber optic sensor technology. Optical intensity-based sensors, which use LD or LEDs, can be suitable for the monitor system to be simple and cost effective. In this paper, a novel fiber optic smart structure with human-like perception has been demonstrated by using intensity-based hetero-core optical fiber sensors system with the CMOS detector. The optical intensity from the hetero-core optical fiber bend sensor is obtained as luminance spots indicated by the optical power distributions. A number of optical intensity spots are simultaneously readout by taking a picture of luminance pattern. To recognize the state of fiber optic smart structure with the hetero-core optical fibers, the template matching process is employed with Sum of Absolute Differences (SAD). A fiber optic smart glove having five optic fiber nerves have been employed to monitor hand postures. Three kinds of hand postures have been recognized by means of the template matching process. A body posture monitoring has also been developed by placing the wearable hetero-core optical fiber bend sensors on the body segments. In order for the CMOS system to be a human brain-like, the luminescent spots in the obtained picture were arranged to make the pattern corresponding to the position of body segments. As a result, it was successfully demonstrated that the proposed fiber optic smart structure could recognize eight kinds of body postures. The developed system will give a capability of human brain-like processing to the existing fiber optic smart structures.

  12. Proposed adaptive optics system for Vainu Bappu Telescope

    NASA Astrophysics Data System (ADS)

    Saxena, A. K.; Chinnappan, V.; Lancelot, J. P.

    It is known that the atmospheric turbulence spreads the star image as produced by the medium and large size optical telescopes by many orders resulting in reduction in the resolution of these telescopes. Adaptive optics system can partially or substantially sharpen the image thus improving the resolution and throughput of these telescopes. The atmospheric degradation can be effectively represented by Fried's parameter. We have measured Fried's parameter at very short intervals using speckle interferometer at VBT. Based on this input, an on-line wavefront error measurement and correction system was developed and tested in the laboratory. Low cost, high speed wavefront sensor using CMOS imager and Shack-Hartman lenslet array was developed and tested in the laboratory which could be used for on-line correction experiments. The wavefront errors are computed in terms of Zernike coefficients. MEMS based adaptive mirror with 37 actuators was used for the correction of higher order aberrations. Finite element analysis was carried out to know the mechanical properties and the influence function of the mirror. In-house developed Long Trace Profilometer was used to measure the surface produced by the mirror for various combination of actuator voltages and gave good insight about the behaviour of the mirror. An aberrated wavefront was captured by the wave-front sensor and the computed Zernike polynomials were used for correction of the wavefront. It is found that the peak intensity has increased about 3.8 times with reduction in size of the image. Now, the plan is to make a version that can be mounted at the cassegrain focus of the telescope. Here we deal with the low cost approach used in design; new algorithms developed for wavefront error computation from noisy data, speed optimization and related issues and the interface problems for using the system in the telescope.

  13. Adaptive optics retinal imaging in the living mouse eye

    PubMed Central

    Geng, Ying; Dubra, Alfredo; Yin, Lu; Merigan, William H.; Sharma, Robin; Libby, Richard T.; Williams, David R.

    2012-01-01

    Correction of the eye’s monochromatic aberrations using adaptive optics (AO) can improve the resolution of in vivo mouse retinal images [Biss et al., Opt. Lett. 32(6), 659 (2007) and Alt et al., Proc. SPIE 7550, 755019 (2010)], but previous attempts have been limited by poor spot quality in the Shack-Hartmann wavefront sensor (SHWS). Recent advances in mouse eye wavefront sensing using an adjustable focus beacon with an annular beam profile have improved the wavefront sensor spot quality [Geng et al., Biomed. Opt. Express 2(4), 717 (2011)], and we have incorporated them into a fluorescence adaptive optics scanning laser ophthalmoscope (AOSLO). The performance of the instrument was tested on the living mouse eye, and images of multiple retinal structures, including the photoreceptor mosaic, nerve fiber bundles, fine capillaries and fluorescently labeled ganglion cells were obtained. The in vivo transverse and axial resolutions of the fluorescence channel of the AOSLO were estimated from the full width half maximum (FWHM) of the line and point spread functions (LSF and PSF), and were found to be better than 0.79 μm ± 0.03 μm (STD)(45% wider than the diffraction limit) and 10.8 μm ± 0.7 μm (STD)(two times the diffraction limit), respectively. The axial positional accuracy was estimated to be 0.36 μm. This resolution and positional accuracy has allowed us to classify many ganglion cell types, such as bistratified ganglion cells, in vivo. PMID:22574260

  14. Closed-loop optical stabilization and digital image registration in adaptive optics scanning light ophthalmoscopy

    PubMed Central

    Yang, Qiang; Zhang, Jie; Nozato, Koji; Saito, Kenichi; Williams, David R.; Roorda, Austin; Rossi, Ethan A.

    2014-01-01

    Eye motion is a major impediment to the efficient acquisition of high resolution retinal images with the adaptive optics (AO) scanning light ophthalmoscope (AOSLO). Here we demonstrate a solution to this problem by implementing both optical stabilization and digital image registration in an AOSLO. We replaced the slow scanning mirror with a two-axis tip/tilt mirror for the dual functions of slow scanning and optical stabilization. Closed-loop optical stabilization reduced the amplitude of eye-movement related-image motion by a factor of 10–15. The residual RMS error after optical stabilization alone was on the order of the size of foveal cones: ~1.66–2.56 μm or ~0.34–0.53 arcmin with typical fixational eye motion for normal observers. The full implementation, with real-time digital image registration, corrected the residual eye motion after optical stabilization with an accuracy of ~0.20–0.25 μm or ~0.04–0.05 arcmin RMS, which to our knowledge is more accurate than any method previously reported. PMID:25401030

  15. Binary stars observed with adaptive optics at the starfire optical range

    SciTech Connect

    Drummond, Jack D.

    2014-03-01

    In reviewing observations taken of binary stars used as calibration objects for non-astronomical purposes with adaptive optics on the 3.5 m Starfire Optical Range telescope over the past 2 years, one-fifth of them were found to be off-orbit. In order to understand such a high number of discrepant position angles and separations, all previous observations in the Washington Double Star Catalog for these rogue binaries were obtained from the Naval Observatory. Adding our observations to these yields new orbits for all, resolving the discrepancies. We have detected both components of γ Gem for the first time, and we have shown that 7 Cam is an optical pair, not physically bound.

  16. Signal to noise ratio of free space homodyne coherent optical communication after adaptive optics compensation

    NASA Astrophysics Data System (ADS)

    Huang, Jian; Mei, Haiping; Deng, Ke; Kang, Li; Zhu, Wenyue; Yao, Zhoushi

    2015-12-01

    Designing and evaluating the adaptive optics system for coherent optical communication link through atmosphere requires to distinguish the effects of the residual wavefront and disturbed amplitude to the signal to noise ratio. Based on the new definition of coherent efficiency, a formula of signal to noise ratio for describing the performance of coherent optical communication link after wavefront compensation is derived in the form of amplitude non-uniformity and wavefront error separated. A beam quality metric is deduced mathematically to evaluate the effect of disturbed amplitude to the signal to noise ratio. Experimental results show that the amplitude fluctuation on the receiver aperture may reduce the signal to noise ratio about 24% on average when Fried coherent length r0=16 cm.

  17. Compact MEMS-based adaptive optics: optical coherence tomography for clinical use

    NASA Astrophysics Data System (ADS)

    Chen, Diana C.; Olivier, Scot S.; Jones, Steven M.; Zawadzki, Robert J.; Evans, Julia W.; Choi, Stacey S.; Werner, John S.

    2008-02-01

    We describe a compact MEMS-based adaptive optics (AO) optical coherence tomography (OCT) system with improved AO performance and ease of clinical use. A typical AO system consists of a Shack-Hartmann wavefront sensor and a deformable mirror that measures and corrects the ocular and system aberrations. Because of limitations on current deformable mirror technologies, the amount of real-time ocular-aberration compensation is restricted and small in previous AO-OCT instruments. In this instrument, we incorporate an optical apparatus to correct the spectacle aberrations of the patients such as myopia, hyperopia and astigmatism. This eliminates the tedious process of using trial lenses in clinical imaging. Different amount of spectacle aberration compensation was achieved by motorized stages and automated with the AO computer for ease of clinical use. In addition, the compact AO-OCT was optimized to have minimum system aberrations to reduce AO registration errors and improve AO performance.

  18. Compact MEMS-based Adaptive Optics Optical Coherence Tomography for Clinical Use

    SciTech Connect

    Chen, D; Olivier, S; Jones, S; Zawadzki, R; Evans, J; Choi, S; Werner, J

    2008-02-04

    We describe a compact MEMS-based adaptive optics (AO) optical coherence tomography system with improved AO performance and ease of clinical use. A typical AO system consists of a Shack-Hartmann wavefront sensor and a deformable mirror that measures and corrects the ocular and system aberrations. Because of the limitation on the current deformable mirror technologies, the amount of real-time ocular-aberration compensation is restricted and small in the previous AO-OCT instruments. In this instrument, we proposed to add an optical apparatus to correct the spectacle aberrations of the patients such as myopia, hyperopia and astigmatism. This eliminated the tedious process of the trial lenses in clinical imaging. Different amount of spectacle aberration compensation was achieved by motorized stages and automated with the AO computer for ease of clinical use. In addition, the compact AO-OCT was optimized to have minimum system aberrations to reduce AO registration errors and improve AO performance.

  19. On the rejection of vibrations in adaptive optics systems

    NASA Astrophysics Data System (ADS)

    Muradore, Riccardo; Pettazzi, Lorenzo; Fedrigo, Enrico; Clare, Richard

    2012-07-01

    In modern adaptive optics systems, lightly damped sinusoidal oscillations resulting from telescope structural vibrations have a significant deleterious impact on the quality of the image collected at the detector plane. Such oscillations are often at frequencies beyond the bandwidth of the wave-front controller that therefore is either incapable of rejecting them or might even amplify their detrimental impact on the overall AO performance. A technique for the rejection of periodic disturbances acting at the output of unknown plants, which has been recently presented in literature, has been adapted to the problem of rejecting vibrations in AO loops. The proposed methodology aims at estimating phase and amplitude of the harmonic disturbance together with the response of the unknown plant at the frequency of vibration. On the basis of such estimates, a control signal is generated to cancel out the periodic perturbation. Additionally, the algorithm can be easily extended to cope with unexpected time variations of the vibrations frequency by adding a frequency tracking module based either on a simple PLL architecture or on a classical extended Kalman filter. Oversampling can be also easily introduced to efficiently correct for vibrations approaching the sampling frequency. The approach presented in this contribution is compared against a different algorithm for vibration rejection available in literature, in order to identify drawbacks and advantages. Finally, the performance of the proposed vibration cancellation technique has been tested in realistic scenarios defined exploiting tip/tilt measurements from MACAO and NACO

  20. Optical fabrication of the MMT adaptive secondary mirror

    NASA Astrophysics Data System (ADS)

    Martin, Hubert M.; Burge, James H.; Del Vecchio, Ciro; Dettmann, Lee R.; Miller, Stephen M.; Smith, Bryan K.; Wildi, Francois P.

    2000-07-01

    We describe the optical fabrication of the adaptive secondary mirror for the MMT. The 640 mm f/15 secondary consists of a flexible glass shell, 1.8 mm thick, whose shape is controlled by 336 electromagnetic actuators. It is designed to give diffraction-limited images at a wavelength of 1 micron. For generating and polishing, the shell was supported by attaching it to a rigid glass blocking body with a thin layer of pitch. It could then be figured and measured using techniques developed for rigid secondaries. The highly aspheric surface was polished with a 30 cm stressed lap and small passive tools, and measured using a swing-arm profilometer and a holographic test plate. The goal for fabrication was to produce diffraction-limited images in the visible, after simulated adaptive correction using only a small fraction of the typical actuator forces. This translates into a surface accuracy of less than 19 nm rms with correction forces of less than 0.05 N rms. We achieved a surface accuracy of 8 nm rms after simulated correction with forces of 0.02 N rms.