Science.gov

Sample records for adaptive optics capabilities

  1. Adaptive optics at the Subaru telescope: current capabilities and development

    NASA Astrophysics Data System (ADS)

    Guyon, Olivier; Hayano, Yutaka; Tamura, Motohide; Kudo, Tomoyuki; Oya, Shin; Minowa, Yosuke; Lai, Olivier; Jovanovic, Nemanja; Takato, Naruhisa; Kasdin, Jeremy; Groff, Tyler; Hayashi, Masahiko; Arimoto, Nobuo; Takami, Hideki; Bradley, Colin; Sugai, Hajime; Perrin, Guy; Tuthill, Peter; Mazin, Ben

    2014-08-01

    Current AO observations rely heavily on the AO188 instrument, a 188-elements system that can operate in natural or laser guide star (LGS) mode, and delivers diffraction-limited images in near-IR. In its LGS mode, laser light is transported from the solid state laser to the launch telescope by a single mode fiber. AO188 can feed several instruments: the infrared camera and spectrograph (IRCS), a high contrast imaging instrument (HiCIAO) or an optical integral field spectrograph (Kyoto-3DII). Adaptive optics development in support of exoplanet observations has been and continues to be very active. The Subaru Coronagraphic Extreme-AO (SCExAO) system, which combines extreme-AO correction with advanced coronagraphy, is in the commissioning phase, and will greatly increase Subaru Telescope's ability to image and study exoplanets. SCExAO currently feeds light to HiCIAO, and will soon be combined with the CHARIS integral field spectrograph and the fast frame MKIDs exoplanet camera, which have both been specifically designed for high contrast imaging. SCExAO also feeds two visible-light single pupil interferometers: VAMPIRES and FIRST. In parallel to these direct imaging activities, a near-IR high precision spectrograph (IRD) is under development for observing exoplanets with the radial velocity technique. Wide-field adaptive optics techniques are also being pursued. The RAVEN multi-object adaptive optics instrument was installed on Subaru telescope in early 2014. Subaru Telescope is also planning wide field imaging with ground-layer AO with the ULTIMATE-Subaru project.

  2. Telescope Adaptive Optics Code

    SciTech Connect

    Phillion, D.

    2005-07-28

    The Telescope AO Code has general adaptive optics capabilities plus specialized models for three telescopes with either adaptive optics or active optics systems. It has the capability to generate either single-layer or distributed Kolmogorov turbulence phase screens using the FFT. Missing low order spatial frequencies are added using the Karhunen-Loeve expansion. The phase structure curve is extremely dose to the theoreUcal. Secondly, it has the capability to simulate an adaptive optics control systems. The default parameters are those of the Keck II adaptive optics system. Thirdly, it has a general wave optics capability to model the science camera halo due to scintillation from atmospheric turbulence and the telescope optics. Although this capability was implemented for the Gemini telescopes, the only default parameter specific to the Gemini telescopes is the primary mirror diameter. Finally, it has a model for the LSST active optics alignment strategy. This last model is highly specific to the LSST

  3. Telescope Adaptive Optics Code

    2005-07-28

    The Telescope AO Code has general adaptive optics capabilities plus specialized models for three telescopes with either adaptive optics or active optics systems. It has the capability to generate either single-layer or distributed Kolmogorov turbulence phase screens using the FFT. Missing low order spatial frequencies are added using the Karhunen-Loeve expansion. The phase structure curve is extremely dose to the theoreUcal. Secondly, it has the capability to simulate an adaptive optics control systems. The defaultmore » parameters are those of the Keck II adaptive optics system. Thirdly, it has a general wave optics capability to model the science camera halo due to scintillation from atmospheric turbulence and the telescope optics. Although this capability was implemented for the Gemini telescopes, the only default parameter specific to the Gemini telescopes is the primary mirror diameter. Finally, it has a model for the LSST active optics alignment strategy. This last model is highly specific to the LSST« less

  4. Adaptive optics ophthalmoscopy

    PubMed Central

    Roorda, Austin; Duncan, Jacque L.

    2016-01-01

    This review starts with a brief history and description of adaptive optics (AO) technology, followed by a showcase of the latest capabilities of AO systems for imaging the human retina and an extensive review of the literature on where AO is being used clinically. The review concludes with a discussion on future directions and guidance on usage and interpretation of images from AO systems for the eye. PMID:26973867

  5. Adaptive Optical Scanning Holography

    PubMed Central

    Tsang, P. W. M.; Poon, Ting-Chung; Liu, J.-P.

    2016-01-01

    Optical Scanning Holography (OSH) is a powerful technique that employs a single-pixel sensor and a row-by-row scanning mechanism to capture the hologram of a wide-view, three-dimensional object. However, the time required to acquire a hologram with OSH is rather lengthy. In this paper, we propose an enhanced framework, which is referred to as Adaptive OSH (AOSH), to shorten the holographic recording process. We have demonstrated that the AOSH method is capable of decreasing the acquisition time by up to an order of magnitude, while preserving the content of the hologram favorably. PMID:26916866

  6. Adaptive Optical Scanning Holography.

    PubMed

    Tsang, P W M; Poon, Ting-Chung; Liu, J-P

    2016-01-01

    Optical Scanning Holography (OSH) is a powerful technique that employs a single-pixel sensor and a row-by-row scanning mechanism to capture the hologram of a wide-view, three-dimensional object. However, the time required to acquire a hologram with OSH is rather lengthy. In this paper, we propose an enhanced framework, which is referred to as Adaptive OSH (AOSH), to shorten the holographic recording process. We have demonstrated that the AOSH method is capable of decreasing the acquisition time by up to an order of magnitude, while preserving the content of the hologram favorably. PMID:26916866

  7. Atmospheric and adaptive optics

    NASA Astrophysics Data System (ADS)

    Hickson, Paul

    2014-11-01

    Atmospheric optics is the study of optical effects induced by the atmosphere on light propagating from distant sources. Of particular concern to astronomers is atmospheric turbulence, which limits the performance of ground-based telescopes. The past two decades have seen remarkable growth in the capabilities and performance of adaptive optics (AO) systems. These opto-mechanical systems actively compensate for the blurring effect of the Earth's turbulent atmosphere. By sensing, and correcting, wavefront distortion introduced by atmospheric index-of-refraction variations, AO systems can produce images with resolution approaching the diffraction limit of the telescope at near-infrared wavelengths. This review highlights the physical processes and fundamental relations of atmospheric optics that are most relevant to astronomy, and discusses the techniques used to characterize atmospheric turbulence. The fundamentals of AO are then introduced and the many types of advanced AO systems that have been developed are described. The principles of each are outlined, and the performance and limitations are examined. Aspects of photometric and astrometric measurements of AO-corrected images are considered. The paper concludes with a discussion of some of the challenges related to current and future AO systems, particularly those that will equip the next generation of large, ground-based optical and infrared telescopes.

  8. [Adaptive optics for ophthalmology].

    PubMed

    Saleh, M

    2016-04-01

    Adaptive optics is a technology enhancing the visual performance of an optical system by correcting its optical aberrations. Adaptive optics have already enabled several breakthroughs in the field of visual sciences, such as improvement of visual acuity in normal and diseased eyes beyond physiologic limits, and the correction of presbyopia. Adaptive optics technology also provides high-resolution, in vivo imaging of the retina that may eventually help to detect the onset of retinal conditions at an early stage and provide better assessment of treatment efficacy. PMID:27019970

  9. Retinal Imaging: Adaptive Optics

    NASA Astrophysics Data System (ADS)

    Goncharov, A. S.; Iroshnikov, N. G.; Larichev, Andrey V.

    This chapter describes several factors influencing the performance of ophthalmic diagnostic systems with adaptive optics compensation of human eye aberration. Particular attention is paid to speckle modulation, temporal behavior of aberrations, and anisoplanatic effects. The implementation of a fundus camera with adaptive optics is considered.

  10. Adaptive optics revisited.

    PubMed

    Babcock, H W

    1990-07-20

    From the earliest days and nights of telescopic astronomy, atmospheric turbulence has been a serious detriment to optical performance. The new technology of adaptive optics can overcome this problem by compensating for the wavefront distortion that results from turbulence. The result will be large gains in resolving power and limiting magnitude, closely approaching the theoretical limit. In other words, telescopic images will be very significantly sharpened. Rapid and accelerating progress is being made today by several groups. Adaptive optics, together with the closely related technology of active optics, seems certain to be utilized in large astronomical telescopes of the future. This may entail significant changes in telescope design. PMID:17750109

  11. Coherent Digital Holographic Adaptive Optics

    NASA Astrophysics Data System (ADS)

    Liu, Changgeng

    A new type of adaptive optics (AO) based on the principles of digital holography (DH) is proposed and developed for the use in wide-field and confocal retinal imaging. Digital holographic adaptive optics (DHAO) dispenses with the wavefront sensor and wavefront corrector of the conventional AO system. DH is an emergent imaging technology that gives direct numerical access to the phase of the optical field, thus allowing precise control and manipulation of the optical field. Incorporation of DH in an ophthalmic imaging system can lead to versatile imaging capabilities at substantially reduced complexity and cost of the instrument. A typical conventional AO system includes several critical hardware pieces: spatial light modulator, lenslet array, and a second CCD camera in addition to the camera for imaging. The proposed DHAO system replaces these hardware components with numerical processing for wavefront measurement and compensation of aberration through the principles of DH. (Abstract shortened by UMI.).

  12. Adaptive optical zoom sensor.

    SciTech Connect

    Sweatt, William C.; Bagwell, Brett E.; Wick, David Victor

    2005-11-01

    In order to optically vary the magnification of an imaging system, continuous mechanical zoom lenses require multiple optical elements and use fine mechanical motion to precisely adjust the separations between individual or groups of lenses. By incorporating active elements into the optical design, we have designed and demonstrated imaging systems that are capable of variable optical magnification with no macroscopic moving parts. Changing the effective focal length and magnification of an imaging system can be accomplished by adeptly positioning two or more active optics in the optical design and appropriately adjusting the optical power of those elements. In this application, the active optics (e.g. liquid crystal spatial light modulators or deformable mirrors) serve as variable focal-length lenses. Unfortunately, the range over which currently available devices can operate (i.e. their dynamic range) is relatively small. Therefore, the key to this concept is to create large changes in the effective focal length of the system with very small changes in the focal lengths of individual elements by leveraging the optical power of conventional optical elements surrounding the active optics. By appropriately designing the optical system, these variable focal-length lenses can provide the flexibility necessary to change the overall system focal length, and therefore magnification, that is normally accomplished with mechanical motion in conventional zoom lenses.

  13. Adaptive optical processors.

    PubMed

    Ghosh, A

    1989-06-15

    There are two different approaches for improving the accuracy of analog optical associative processors: postprocessing with a bimodal system and preprocessing with a preconditioner. These two approaches can be combined to develop an adaptive optical multiprocessor that can adjust the computational steps depending on the data and produce solutions of linear algebra problems with a specified accuracy in a given amount of time. PMID:19752909

  14. The Vulnerability of Threatened Species: Adaptive Capability and Adaptation Opportunity

    PubMed Central

    Berry, Pam; Ogawa-Onishi, Yuko; McVey, Andrew

    2013-01-01

    Global targets to halt the loss of biodiversity have not been met, and there is now an additional Aichi target for preventing the extinction of known threatened species and improving their conservation status. Climate change increasingly needs to be factored in to these, and thus there is a need to identify the extent to which it could increase species vulnerability. This paper uses the exposure, sensitivity, and adaptive capacity framework to assess the vulnerability of a selection of WWF global priority large mammals and marine species to climate change. However, it divides adaptive capacity into adaptive capability and adaptation opportunity, in order to identify whether adaptation is more constrained by the biology of the species or by its environmental setting. Lack of evidence makes it difficult to apply the framework consistently across the species, but it was found that, particularly for the terrestrial mammals, adaptation opportunities seems to be the greater constraint. This framework and analysis could be used by conservationists and those wishing to enhance the resilience of species to climate change. PMID:24833051

  15. Advanced Adaptive Optics Technology Development

    SciTech Connect

    Olivier, S

    2001-09-18

    The NSF Center for Adaptive Optics (CfAO) is supporting research on advanced adaptive optics technologies. CfAO research activities include development and characterization of micro-electro-mechanical systems (MEMS) deformable mirror (DM) technology, as well as development and characterization of high-resolution adaptive optics systems using liquid crystal (LC) spatial light modulator (SLM) technology. This paper presents an overview of the CfAO advanced adaptive optics technology development activities including current status and future plans.

  16. Adaptive compensation for an optical tracking telescope

    NASA Technical Reports Server (NTRS)

    Gilbart, J. W.; Winston, G. C.

    1974-01-01

    The application of model referenced adaptive control theory to an optical tracking telescope is discussed. The capability of the adaptive technique to compensate for mount irregularities such as inertial variations and bearing friction is demonstrated via field test results on a large tracking telescope. Results are presented which show a 6 to 1 improvement in tracking accuracy for a worst-case satellite trajectory.

  17. Driver Code for Adaptive Optics

    NASA Technical Reports Server (NTRS)

    Rao, Shanti

    2007-01-01

    A special-purpose computer code for a deformable-mirror adaptive-optics control system transmits pixel-registered control from (1) a personal computer running software that generates the control data to (2) a circuit board with 128 digital-to-analog converters (DACs) that generate voltages to drive the deformable-mirror actuators. This program reads control-voltage codes from a text file, then sends them, via the computer s parallel port, to a circuit board with four AD5535 (or equivalent) chips. Whereas a similar prior computer program was capable of transmitting data to only one chip at a time, this program can send data to four chips simultaneously. This program is in the form of C-language code that can be compiled and linked into an adaptive-optics software system. The program as supplied includes source code for integration into the adaptive-optics software, documentation, and a component that provides a demonstration of loading DAC codes from a text file. On a standard Windows desktop computer, the software can update 128 channels in 10 ms. On Real-Time Linux with a digital I/O card, the software can update 1024 channels (8 boards in parallel) every 8 ms.

  18. Adaptive Optics and NICMOS Uniqueness Space

    SciTech Connect

    Max, C.

    1999-03-22

    As part of the HST Second Decade Study a subgroup consisting of Claire Max, James Beletic, Donald McCarthy, and Keith Noll has analyzed the expected performance of near-infra-red adaptive optics systems on the new generation of 8-10 meter ground-based telescopes, for comparison with HST. In addition the subgroup has polled the adaptive optics community regarding expected adaptive optics performance over the coming five years. Responses have been received from representatives of most of the major telescopes: Gemini, VLT, Keck, LBT, and the MMT, as well as of several operational 3-4 meter telescope AO systems. The present document outlines the conclusions to date, with emphasis on aspects relevant to the NICMOS cryocooler Independent Science Review. In general the near-infra-red capabilities of the new ground-based adaptive optics systems will be complementary to the capabilities of NICMOS. For example NICMOS will have greater H-band sensitivity, broader wavelength coverage, and higher point-spread-function stability, whereas ground-based adaptive optics instruments will have higher spatial and spectral resolution. Section 2 of this report outlines the operational constraints faced by the first generation of adaptive optics (AO) systems on new 8-10 meter telescopes. Section 3 describes the areas of relative strength of near-infra-red observing from the ground via adaptive optics, compared with NICMOS. A Table gives an overview of the main strengths and weaknesses of these current-generation systems. Section 4 gives an indication of ground-based capabilities anticipated in the near future and in five to ten years. Section 5 contains a summary and conclusions.

  19. Keck adaptive optics: control subsystem

    SciTech Connect

    Brase, J.M.; An, J.; Avicola, K.

    1996-03-08

    Adaptive optics on the Keck 10 meter telescope will provide an unprecedented level of capability in high resolution ground based astronomical imaging. The system is designed to provide near diffraction limited imaging performance with Strehl {gt} 0.3 n median Keck seeing of r0 = 25 cm, T =10 msec at 500 nm wavelength. The system will be equipped with a 20 watt sodium laser guide star to provide nearly full sky coverage. The wavefront control subsystem is responsible for wavefront sensing and the control of the tip-tilt and deformable mirrors which actively correct atmospheric turbulence. The spatial sampling interval for the wavefront sensor and deformable mirror is de=0.56 m which gives us 349 actuators and 244 subapertures. This paper summarizes the wavefront control system and discusses particular issues in designing a wavefront controller for the Keck telescope.

  20. ERIS adaptive optics system design

    NASA Astrophysics Data System (ADS)

    Marchetti, Enrico; Le Louarn, Miska; Soenke, Christian; Fedrigo, Enrico; Madec, Pierre-Yves; Hubin, Norbert

    2012-07-01

    The Enhanced Resolution Imager and Spectrograph (ERIS) is the next-generation instrument planned for the Very Large Telescope (VLT) and the Adaptive Optics facility (AOF). It is an AO assisted instrument that will make use of the Deformable Secondary Mirror and the new Laser Guide Star Facility (4LGSF), and it is planned for the Cassegrain focus of the telescope UT4. The project is currently in its Phase A awaiting for approval to continue to the next phases. The Adaptive Optics system of ERIS will include two wavefront sensors (WFS) to maximize the coverage of the proposed sciences cases. The first is a high order 40x40 Pyramid WFS (PWFS) for on axis Natural Guide Star (NGS) observations. The second is a high order 40x40 Shack-Hartmann WFS for single Laser Guide Stars (LGS) observations. The PWFS, with appropriate sub-aperture binning, will serve also as low order NGS WFS in support to the LGS mode with a field of view patrolling capability of 2 arcmin diameter. Both WFSs will be equipped with the very low read-out noise CCD220 based camera developed for the AOF. The real-time reconstruction and control is provided by a SPARTA real-time platform adapted to support both WFS modes. In this paper we will present the ERIS AO system in all its main aspects: opto-mechanical design, real-time computer design, control and calibrations strategy. Particular emphasis will be given to the system performance obtained via dedicated numerical simulations.

  1. The ERIS adaptive optics system

    NASA Astrophysics Data System (ADS)

    Marchetti, Enrico; Fedrigo, Enrico; Le Louarn, Miska; Madec, Pierre-Yves; Soenke, Christian; Brast, Roland; Conzelmann, Ralf; Delabre, Bernard; Duchateau, Michel; Frank, Christoph; Klein, Barbara; Amico, Paola; Hubin, Norbert; Esposito, Simone; Antichi, Jacopo; Carbonaro, Luca; Puglisi, Alfio; Quirós-Pacheco, Fernando; Riccardi, Armando; Xompero, Marco

    2014-07-01

    The Enhanced Resolution Imager and Spectrograph (ERIS) is the new Adaptive Optics based instrument for ESO's VLT aiming at replacing NACO and SINFONI to form a single compact facility with AO fed imaging and integral field unit spectroscopic scientific channels. ERIS completes the instrument suite at the VLT adaptive telescope. In particular it is equipped with a versatile AO system that delivers up to 95% Strehl correction in K band for science observations up to 5 micron It comprises high order NGS and LGS correction enabling the observation from exoplanets to distant galaxies with a large sky coverage thanks to the coupling of the LGS WFS with the high sensitivity of its visible WFS and the capability to observe in dust embedded environment thanks to its IR low order WFS. ERIS will be installed at the Cassegrain focus of the VLT unit hosting the Adaptive Optics Facility (AOF). The wavefront correction is provided by the AOF deformable secondary mirror while the Laser Guide Star is provided by one of the four launch units of the 4 Laser Guide Star Facility for the AOF. The overall layout of the ERIS AO system is extremely compact and highly optimized: the SPIFFI spectrograph is fed directly by the Cassegrain focus and both the NIX's (IR imager) and SPIFFI's entrance windows work as visible/infrared dichroics. In this paper we describe the concept of the ERIS AO system in detail, starting from the requirements and going through the estimated performance, the opto-mechanical design and the Real-Time Computer design.

  2. New Adaptive Optics Technique Demonstrated

    NASA Astrophysics Data System (ADS)

    2007-03-01

    four AO systems for the interferometric mode of the VLT). ESO PR Photo 19b/07 ESO PR Photo 19b/07 The Globular Cluster Omega Centauri (MAD/VLT) Present AO systems can only correct the effect of atmospheric turbulence in a relative small region of the sky - typically 15 arcseconds, the correction degrading very quickly when moving away from the central axis. Engineers have therefore developed new techniques to overcome this limitation, one of which is multi-conjugate adaptive optics (MCAO). At the end of 2003, ESO, together with partners in Italy and Portugal, started the development of a MCAO Demonstrator, named MAD. "The aim of MAD is to prove the feasibility and performances of new adaptive optics techniques, such as MCAO, meant to work on large fields of view and to serve as a very powerful test tool in understanding some of the critical issues that will determine the development of future instruments, for both the VLT and the Extremely Large Telescopes," said Norbert Hubin, head of the AO group at ESO. MAD is an advanced generation adaptive optics system, capable of compensating for the atmospheric turbulence disturbance on a large field of view (FoV) on the sky. It can successfully correct a 1-2 arcmin FoV, much larger than the ~15 arcsec typically provided by the existing adaptive optics facilities. MAD was fully developed and extensively characterized by ESO using a dedicated turbulence generator (MAPS, Multi Atmospheric Phase screens and Stars) able to reproduce in the laboratory the temporal evolution and the vertical structure of the turbulence observed at the Observatory. ESO PR Photo 19c/07 ESO PR Photo 19c/07 The MCAO Concept MAD was then disassembled and shipped to Paranal for re-integration at the Nasmyth Visitor focus of UT3. The integration took about 1 month, after which the system was ready for daylight testing and further characterization. "On the night of 25 March, we could successfully close the first MCAO loop on the open cluster NGC 3293," said

  3. Adaptive Optics Communications Performance Analysis

    NASA Technical Reports Server (NTRS)

    Srinivasan, M.; Vilnrotter, V.; Troy, M.; Wilson, K.

    2004-01-01

    The performance improvement obtained through the use of adaptive optics for deep-space communications in the presence of atmospheric turbulence is analyzed. Using simulated focal-plane signal-intensity distributions, uncoded pulse-position modulation (PPM) bit-error probabilities are calculated assuming the use of an adaptive focal-plane detector array as well as an adaptively sized single detector. It is demonstrated that current practical adaptive optics systems can yield performance gains over an uncompensated system ranging from approximately 1 dB to 6 dB depending upon the PPM order and background radiation level.

  4. Phase Adaptation and Correction by Adaptive Optics

    NASA Astrophysics Data System (ADS)

    Tiziani, Hans J.

    2010-04-01

    Adaptive optical elements and systems for imaging or laser beam propagation are used for some time in particular in astronomy, where the image quality is degraded by atmospheric turbulence. In astronomical telescopes a deformable mirror is frequently used to compensate wavefront-errors due to deformations of the large mirror, vibrations as well as turbulence and hence to increase the image quality. In the last few years interesting elements like Spatial Light Modulators, SLM's, such as photorefractive crystals, liquid crystals and micro mirrors and membrane mirrors were introduced. The development of liquid crystals and micro mirrors was driven by data projectors as consumer products. They contain typically a matrix of individually addressable pixels of liquid crystals and flip mirrors respectively or more recently piston mirrors for special applications. Pixel sizes are in the order of a few microns and therefore also appropriate as active diffractive elements in digital holography or miniature masks. Although liquid crystals are mainly optimized for intensity modulation; they can be used for phase modulation. Adaptive optics is a technology for beam shaping and wavefront adaptation. The application of spatial light modulators for wavefront adaptation and correction and defect analysis as well as sensing will be discussed. Dynamic digital holograms are generated with liquid crystal devices (LCD) and used for wavefront correction as well as for beam shaping and phase manipulation, for instance. Furthermore, adaptive optics is very useful to extend the measuring range of wavefront sensors and for the wavefront adaptation in order to measure and compare the shape of high precision aspherical surfaces.

  5. Thin, nearly wireless adaptive optical device

    NASA Technical Reports Server (NTRS)

    Knowles, Gareth (Inventor); Hughes, Eli (Inventor)

    2008-01-01

    A thin, nearly wireless adaptive optical device capable of dynamically modulating the shape of a mirror in real time to compensate for atmospheric distortions and/or variations along an optical material is provided. The device includes an optical layer, a substrate, at least one electronic circuit layer with nearly wireless architecture, an array of actuators, power electronic switches, a reactive force element, and a digital controller. Actuators are aligned so that each axis of expansion and contraction intersects both substrate and reactive force element. Electronics layer with nearly wireless architecture, power electronic switches, and digital controller are provided within a thin-film substrate. The size and weight of the adaptive optical device is solely dominated by the size of the actuator elements rather than by the power distribution system.

  6. Thin, nearly wireless adaptive optical device

    NASA Technical Reports Server (NTRS)

    Knowles, Gareth (Inventor); Hughes, Eli (Inventor)

    2007-01-01

    A thin, nearly wireless adaptive optical device capable of dynamically modulating the shape of a mirror in real time to compensate for atmospheric distortions and/or variations along an optical material is provided. The device includes an optical layer, a substrate, at least one electronic circuit layer with nearly wireless architecture, an array of actuators, power electronic switches, a reactive force element, and a digital controller. Actuators are aligned so that each axis of expansion and contraction intersects both substrate and reactive force element. Electronics layer with nearly wireless architecture, power electronic switches, and digital controller are provided within a thin-film substrate. The size and weight of the adaptive optical device is solely dominated by the size of the actuator elements rather than by the power distribution system.

  7. Thin nearly wireless adaptive optical device

    NASA Technical Reports Server (NTRS)

    Knowles, Gareth J. (Inventor); Hughes, Eli (Inventor)

    2009-01-01

    A thin nearly wireless adaptive optical device capable of dynamically modulating the shape of a mirror in real time to compensate for atmospheric distortions and/or variations along an optical material is provided. The device includes an optical layer, a substrate, at least one electronic circuit layer with nearly wireless architecture, an array of actuators, power electronic switches, a reactive force element, and a digital controller. Actuators are aligned so that each axis of expansion and contraction intersects both substrate and reactive force element. Electronics layer with nearly wireless architecture, power electronic switches, and digital controller are provided within a thin-film substrate. The size and weight of the adaptive optical device is solely dominated by the size of the actuator elements rather than by the power distribution system.

  8. Optical Data Storage Capabilities of Bacteriorhodopsin

    NASA Technical Reports Server (NTRS)

    Gary, Charles

    1998-01-01

    We present several measurements of the data storage capability of bacteriorhodopsin films to help establish the baseline performance of this material as a medium for holographic data storage. In particular, we examine the decrease in diffraction efficiency with the density of holograms stored at one location in the film, and we also analyze the recording schedule needed to produce a set of equal intensity holograms at a single location in the film. Using this information along with the assumptions about the performance of the optical system, we can estimate potential data storage densities in bacteriorhodopsin.

  9. Adaptive Optics for Large Telescopes

    SciTech Connect

    Olivier, S

    2008-06-27

    The use of adaptive optics was originally conceived by astronomers seeking to correct the blurring of images made with large telescopes due to the effects of atmospheric turbulence. The basic idea is to use a device, a wave front corrector, to adjust the phase of light passing through an optical system, based on some measurement of the spatial variation of the phase transverse to the light propagation direction, using a wave front sensor. Although the original concept was intended for application to astronomical imaging, the technique can be more generally applied. For instance, adaptive optics systems have been used for several decades to correct for aberrations in high-power laser systems. At Lawrence Livermore National Laboratory (LLNL), the world's largest laser system, the National Ignition Facility, uses adaptive optics to correct for aberrations in each of the 192 beams, all of which must be precisely focused on a millimeter scale target in order to perform nuclear physics experiments.

  10. Architecture and performance of astronomical adaptive optics systems

    NASA Technical Reports Server (NTRS)

    Bloemhof, E.

    2002-01-01

    In recent years the technological advances of adaptive optics have enabled a great deal of innovative science. In this lecture I review the system-level design of modern astronomical AO instruments, and discuss their current capabilities.

  11. Adaptive optics projects at ESO

    NASA Astrophysics Data System (ADS)

    Hubin, Norbert N.; Arsenault, Robin; Bonnet, Henri; Conan, Rodolphe; Delabre, Bernard; Donaldson, Robert; Dupuy, Christophe; Fedrigo, Enrico; Ivanescu, L.; Kasper, Markus E.; Kissler-Patig, Markus; Lizon, Jean-Luis; Le Louarn, Miska; Marchetti, Enrico; Paufique, J.; Stroebele, Stefan; Tordo, Sebastien

    2003-02-01

    Over the past two years ESO has reinforced its efforts in the field of Adaptive Optics. The AO team has currently the challenging objectives to provide 8 Adaptive Optics systems for the VLT in the coming years and has now a world-leading role in that field. This paper will review all AO projects and plans. We will present an overview of the Nasmyth Adaptive Optics System (NAOS) with its infrared imager CONICA installed successfully at the VLT last year. Sodium Laser Guide Star plans will be introduced. The status of the 4 curvature AO systems (MACAO) developed for the VLT interferometer will be discussed. The status of the SINFONI AO module developed to feed the infrared integral field spectrograph (SPIFFI) will be presented. A short description of the Multi-conjugate Adaptive optics Demonstrator MAD and its instrumentation will be introduced. Finally, we will present the plans for the VLT second-generation AO systems and the researches performed in the frame of OWL.

  12. Adaptive optics assisted reconfigurable liquid-driven optical switch

    NASA Astrophysics Data System (ADS)

    Fuh, Yiin-Kuen; Huang, Wei-Chi

    2013-07-01

    This study demonstrates a mechanical-based, liquid-driven optical switch integrated with adaptive optics and a reconfigurable black liquid (dye-doped liquid). The device aperture can be continuously tuned between 0.6 and 6.9 mm, precisely achieved by a syringe pump for volume control. Adaptive optics (AO) capability and possible enhancement of the lost power intensity of the ink-polluted glass plate have also been experimentally investigated. While measuring power intensity with/without AO indicates only a marginal difference of ˜1%, a significant difference of 3 s in the response characteristic of "switching on" time can be observed. An extremely high contrast ratio of ˜105 for a red-colored light is achieved.

  13. Teaching Optics and Systems Engineering With Adaptive Optics Workbenches

    NASA Astrophysics Data System (ADS)

    Harrington, D. M.; Ammons, M.; Hunter, L.; Max, C.; Hoffmann, M.; Pitts, M.; Armstrong, J. D.

    2010-12-01

    Adaptive optics workbenches are fully functional optical systems that can be used to illustrate and teach a variety of concepts and cognitive processes. Four systems have been funded, designed and constructed by various institutions and people as part of education programs associated with the Center for Adaptive Optics, the Professional Development Program and the Institute for Scientist & Engineer Educators. Activities can range from first-year undergraduate explorations to professional level training. These workbenches have been used in many venues including the Center for Adaptive Optics AO Summer School, the Maui Community College-hosted Akamai Maui Short Course, classrooms, training of new staff in laboratories and other venues. The activity content has focused on various elements of systems thinking, characterization, feedback and system control, basic optics and optical alignment as well as advanced topics such as phase conjugation, wave-front sensing and correction concepts, and system design. The workbenches have slightly different designs and performance capabilities. We describe here outlines for several activities utilizing these different designs and some examples of common student learner outcomes and experiences.

  14. Optical axis jitter rejection for double overlapped adaptive optics systems

    NASA Astrophysics Data System (ADS)

    Luo, Qi; Luo, Xi; Li, Xinyang

    2016-04-01

    Optical axis jitters, or vibrations, which arise from wind shaking and structural oscillations of optical platforms, etc., cause a deleterious impact on the performance of adaptive optics systems. When conventional integrators are utilized to reject such high frequency and narrow-band disturbance, the benefits are quite small despite their acceptable capabilities to reject atmospheric turbulence. In our case, two suits of complete adaptive optics systems called double overlapped adaptive optics systems (DOAOS) are used to counteract both optical jitters and atmospheric turbulence. A novel algorithm aiming to remove vibrations is proposed by resorting to combine the Smith predictor and notch filer. With the help of loop shaping method, the algorithm will lead to an effective and stable controller, which makes the characteristics of error transfer function close to notch filters. On the basis of the spectral analysis of observed data, the peak frequency and bandwidth of vibrations can be identified in advance. Afterwards, the number of notch filters and their parameters will be determined using coordination descending method. The relationship between controller parameters and filtering features is discussed, and the robustness of the controller against varying parameters of the control object is investigated. Preliminary experiments are carried out to validate the proposed algorithms. The overall control performance of DOAOS is simulated. Results show that time delays are a limit of the performance, but the algorithm can be successfully implemented on our systems, which indicate that it has a great potential to reject jitters.

  15. Intelligent Optical Systems Using Adaptive Optics

    NASA Technical Reports Server (NTRS)

    Clark, Natalie

    2012-01-01

    Until recently, the phrase adaptive optics generally conjured images of large deformable mirrors being integrated into telescopes to compensate for atmospheric turbulence. However, the development of smaller, cheaper devices has sparked interest for other aerospace and commercial applications. Variable focal length lenses, liquid crystal spatial light modulators, tunable filters, phase compensators, polarization compensation, and deformable mirrors are becoming increasingly useful for other imaging applications including guidance navigation and control (GNC), coronagraphs, foveated imaging, situational awareness, autonomous rendezvous and docking, non-mechanical zoom, phase diversity, and enhanced multi-spectral imaging. The active components presented here allow flexibility in the optical design, increasing performance. In addition, the intelligent optical systems presented offer advantages in size and weight and radiation tolerance.

  16. Early Career Teachers' Resilience and Positive Adaptive Change Capabilities

    ERIC Educational Resources Information Center

    Bowles, Terry; Arnup, Jessica L.

    2016-01-01

    This research is an investigation of the link between adaptive functioning and resilience in early career teachers (ECT). Resilience is considered an important capability of teachers and research has shown that teachers who are resourceful, demonstrate agency and develop positive management strategies overcome adversity. In this research, we aim…

  17. A simplified adaptive optics system

    NASA Astrophysics Data System (ADS)

    Ivanescu, Liviu; Racine, René; Nadeau, Daniel

    2003-02-01

    Affordable adaptive optics on small telescopes allow to introduce the technology to a large community and provide opportunities to train new specialists in the field. We have developed a low order, low cost adaptive optics system for the 1.6m telescope of the Mont Megantic Observatory. The system corrects tip-tilt, focus, astigmatisms and one trefoil term. It explores a number of new approaches. The sensor receives a single out-of-focus image of the reference star. The central obstruction of the telescope can free the focus detection from the effect of seeing and allows a very small defocus. The deformable mirror is profiled so as to preserve a parabolic shape under pressure from actuators located at its edge. A separate piezoelectric platform drives the tilt mirror.

  18. Improving nonlinear modeling capabilities of functional link adaptive filters.

    PubMed

    Comminiello, Danilo; Scarpiniti, Michele; Scardapane, Simone; Parisi, Raffaele; Uncini, Aurelio

    2015-09-01

    The functional link adaptive filter (FLAF) represents an effective solution for online nonlinear modeling problems. In this paper, we take into account a FLAF-based architecture, which separates the adaptation of linear and nonlinear elements, and we focus on the nonlinear branch to improve the modeling performance. In particular, we propose a new model that involves an adaptive combination of filters downstream of the nonlinear expansion. Such combination leads to a cooperative behavior of the whole architecture, thus yielding a performance improvement, particularly in the presence of strong nonlinearities. An advanced architecture is also proposed involving the adaptive combination of multiple filters on the nonlinear branch. The proposed models are assessed in different nonlinear modeling problems, in which their effectiveness and capabilities are shown. PMID:26057613

  19. Bidirectional fiber optic cable adapter

    NASA Astrophysics Data System (ADS)

    Linehan, M.; Gee, N. B.; Taylor, R.

    1983-02-01

    The technical objective of the BIFOCS program was to develop, build, and test a full-duplex single fiber, fiber optic link, operating in the 1.0 micron to 1.6 micron region, capable of transmitting 20 Mb/s data (10 to the -9th power BER) over a range of at least 10 km, with a goal of 15 km. The link MTBF goal was 5 X 10 to the 3rd power hours and operation over a temperature range of 0 to 50 C. The fiber optic cable consisted of sections not exceeding 2 km in length joined by commercially available dry fiber optic connectors. The system performed successfully at ambient temperature over 15 km of cable.

  20. Advancing High Contrast Adaptive Optics

    NASA Astrophysics Data System (ADS)

    Ammons, M.; Poyneer, L.; GPI Team

    2014-09-01

    A long-standing challenge has been to directly image faint extrasolar planets adjacent to their host suns, which may be ~1-10 million times brighter than the planet. Several extreme AO systems designed for high-contrast observations have been tested at this point, including SPHERE, Magellan AO, PALM-3000, Project 1640, NICI, and the Gemini Planet Imager (GPI, Macintosh et al. 2014). The GPI is the world's most advanced high-contrast adaptive optics system on an 8-meter telescope for detecting and characterizing planets outside of our solar system. GPI will detect a previously unstudied population of young analogs to the giant planets of our solar system and help determine how planetary systems form. GPI employs a 44x44 woofer-tweeter adaptive optics system with a Shack-Hartmann wavefront sensor operating at 1 kHz. The controller uses Fourier-based reconstruction and modal gains optimized from system telemetry (Poyneer et al. 2005, 2007). GPI has an apodized Lyot coronal graph to suppress diffraction and a near-infrared integral field spectrograph for obtaining planetary spectra. This paper discusses current performance limitations and presents the necessary instrumental modifications and sensitivity calculations for scenarios related to high-contrast observations of non-sidereal targets.

  1. Electron density measurements for plasma adaptive optics

    NASA Astrophysics Data System (ADS)

    Neiswander, Brian W.

    Over the past 40 years, there has been growing interest in both laser communications and directed energy weapons that operate from moving aircraft. As a laser beam propagates from an aircraft in flight, it passes through boundary layers, turbulence, and shear layers in the near-region of the aircraft. These fluid instabilities cause strong density gradients which adversely affect the transmission of laser energy to a target. Adaptive optics provides corrective measures for this problem but current technology cannot respond quickly enough to be useful for high speed flight conditions. This research investigated the use of plasma as a medium for adaptive optics for aero-optics applications. When a laser beam passes through plasma, its phase is shifted proportionally to the electron density and gas heating within the plasma. As a result, plasma can be utilized as a dynamically controllable optical medium. Experiments were carried out using a cylindrical dielectric barrier discharge plasma chamber which generated a sub-atmospheric pressure, low-temperature plasma. An electrostatic model of this design was developed and revealed an important design constraint relating to the geometry of the chamber. Optical diagnostic techniques were used to characterize the plasma discharge. Single-wavelength interferometric experiments were performed and demonstrated up to 1.5 microns of optical path difference (OPD) in a 633 nm laser beam. Dual-wavelength interferometry was used to obtain time-resolved profiles of the plasma electron density and gas heating inside the plasma chamber. Furthermore, a new multi-wavelength infrared diagnostic technique was developed and proof-of-concept simulations were conducted to demonstrate the system's capabilities.

  2. Adaptive optics for peripheral vision

    NASA Astrophysics Data System (ADS)

    Rosén, R.; Lundström, L.; Unsbo, P.

    2012-07-01

    Understanding peripheral optical errors and their impact on vision is important for various applications, e.g. research on myopia development and optical correction of patients with central visual field loss. In this study, we investigated whether correction of higher order aberrations with adaptive optics (AO) improve resolution beyond what is achieved with best peripheral refractive correction. A laboratory AO system was constructed for correcting peripheral aberrations. The peripheral low contrast grating resolution acuity in the 20° nasal visual field of the right eye was evaluated for 12 subjects using three types of correction: refractive correction of sphere and cylinder, static closed loop AO correction and continuous closed loop AO correction. Running AO in continuous closed loop improved acuity compared to refractive correction for most subjects (maximum benefit 0.15 logMAR). The visual improvement from aberration correction was highly correlated with the subject's initial amount of higher order aberrations (p = 0.001, R 2 = 0.72). There was, however, no acuity improvement from static AO correction. In conclusion, correction of peripheral higher order aberrations can improve low contrast resolution, provided refractive errors are corrected and the system runs in continuous closed loop.

  3. Adaptive optics for space debris tracking

    NASA Astrophysics Data System (ADS)

    Bennet, Francis; D'Orgeville, Celine; Gao, Yue; Gardhouse, William; Paulin, Nicolas; Price, Ian; Rigaut, Francois; Ritchie, Ian T.; Smith, Craig H.; Uhlendorf, Kristina; Wang, Yanjie

    2014-07-01

    Space debris in Low Earth Orbit (LEO) is becoming an increasing threat to satellite and spacecraft. A reliable and cost effective method for detecting possible collisions between orbiting objects is required to prevent an exponential growth in the number of debris. Current RADAR survey technologies used to monitor the orbits of thousands of space debris objects are relied upon to manoeuvre operational satellites to prevent possible collisions. A complimentary technique, ground-based laser LIDAR (Light Detection and Ranging) have been used to track much smaller objects with higher accuracy than RADAR, giving greater prediction of possible collisions and avoiding unnecessary manoeuvring. Adaptive optics will play a key role in any ground based LIDAR tracking system as a cost effective way of utilising smaller ground stations or less powerful lasers. The use of high power and high energy lasers for the orbital modification of debris objects will also require an adaptive optic system to achieve the high photon intensity on the target required for photon momentum transfer and laser ablation. EOS Space Systems have pioneered the development of automated laser space debris tracking for objects in low Earth orbit. The Australian National University have been developing an adaptive optics system to improve this space debris tracking capability at the EOS Space Systems Mount Stromlo facility in Canberra, Australia. The system is integrated with the telescope and commissioned as an NGS AO system before moving on to LGS AO and tracking operations. A pulsed laser propagated through the telescope is used to range the target using time of flight data. Adaptive optics is used to increase the maximum range and number or targets available to the LIDAR system, by correcting the uplink laser beam. Such a system presents some unique challenges for adaptive optics: high power lasers reflecting off deformable mirrors, high slew rate tracking, and variable off-axis tracking correction. A

  4. A Thermo-Optic Propagation Modeling Capability.

    SciTech Connect

    Schrader, Karl; Akau, Ron

    2014-10-01

    A new theoretical basis is derived for tracing optical rays within a finite-element (FE) volume. The ray-trajectory equations are cast into the local element coordinate frame and the full finite-element interpolation is used to determine instantaneous index gradient for the ray-path integral equation. The FE methodology (FEM) is also used to interpolate local surface deformations and the surface normal vector for computing the refraction angle when launching rays into the volume, and again when rays exit the medium. The method is implemented in the Matlab(TM) environment and compared to closed- form gradient index models. A software architecture is also developed for implementing the algorithms in the Zemax(TM) commercial ray-trace application. A controlled thermal environment was constructed in the laboratory, and measured data was collected to validate the structural, thermal, and optical modeling methods.

  5. Adaptive Optics for the German Solar Telescopes

    NASA Astrophysics Data System (ADS)

    Soltau, D.; Brunner, R.; von der Lühe, O.

    Adaptive Optics is a precondition to get high resolution observations near the diffraction limit when the integration times become larger than a few milliseconds At the KIS there is a project to upgrade the Vacuum Tower Telescope at Tenerife with an adaptive optics system (KAOS = Kiepenheuer-Institut adaptives Optiksystem). The optical concept is discussed and first measurements with the KAOS wavefront sensor and their implications are presented. Considerations with respect to AO for the future GREGOR telescope are also discussed.

  6. Open loop liquid crystal adaptive optics systems: progresses and results

    NASA Astrophysics Data System (ADS)

    Cao, Zhao-liang; Mu, Quan-quan; Xu, Huan-yu; Zhang, Pei-guang; Yao, Li-shuang; Xuan, Li

    2015-10-01

    Liquid crystal wavefront corrector (LCWFC) is one of the most attractive wavefront correction devices for adaptive optics system. The main disadvantages for conventional nematic LCWFC are polarization dependence and narrow working waveband. In this paper, a polarized beam splitter (PBS) based open loop optical design and an optimized energy splitting method was used to overcome these problems respectively. The results indicate that the open loop configuration was suitable for LCWFC and the novel energy splitting method can significantly improve the detection capability of the liquid crystal adaptive optics system.

  7. Capabilities of optical coherence tomography in laryngology

    NASA Astrophysics Data System (ADS)

    Shakhov, Andrei; Terentjeva, Anna; Gladkova, Natalia D.; Snopova, Ludmila; Chumakov, Yuri; Feldchtein, Felix I.; Gelikonov, Valentin M.; Gelikonov, Grigory V.; Sergeev, Alexander M.

    1999-06-01

    We present first result of using the optical coherence tomography (OCT) in complex clinical studies in laryngology. Mucosa of the upper and middle portions of larynx is of special interest for OCT applications: it is clinically important, easily accessed by an endoscopic OCT probe, and possesses a well defined and rich tomographic structure. We have examined several tens of patients with abnormalities in vocal folds. The diagnosis was made based on clinical data including laryngoscopy and finally confirmed morphologically. When examining larynx mucosa, an endoscopic OCT probe has been introduced through a standard laryngoscope lumen, so that OCT imaging has been performed in parallel with visual observation. The OCT studies have demonstrated that in comparison with stratified healthy mucosa, carcinomatous regions have no tomographically differentiated structure, thus allowing one to exactly define the border of a tumor. Vocal nodules are imaged as poorly scattering regions without clear boundaries under preserved epithelium. Cysts of gland mucosa are seen with OCT as sharply delineated shadows at the depth of several hundred micrometers. We have also examined several patients with carcinoma after a course of radiation therapy and observed different changes in OCT images of adjoining epithelium corresponding to metaplasia, hyperplasia, and sclerosis.

  8. Mission Adaptive Uas Capabilities for Earth Science and Resource Assessment

    NASA Astrophysics Data System (ADS)

    Dunagan, S.; Fladeland, M.; Ippolito, C.; Knudson, M.; Young, Z.

    2015-04-01

    Unmanned aircraft systems (UAS) are important assets for accessing high risk airspace and incorporate technologies for sensor coordination, onboard processing, tele-communication, unconventional flight control, and ground based monitoring and optimization. These capabilities permit adaptive mission management in the face of complex requirements and chaotic external influences. NASA Ames Research Center has led a number of Earth science remote sensing missions directed at the assessment of natural resources and here we describe two resource mapping problems having mission characteristics requiring a mission adaptive capability extensible to other resource assessment challenges. One example involves the requirement for careful control over solar angle geometry for passive reflectance measurements. This constraint exists when collecting imaging spectroscopy data over vegetation for time series analysis or for the coastal ocean where solar angle combines with sea state to produce surface glint that can obscure the signal. Furthermore, the primary flight control imperative to minimize tracking error should compromise with the requirement to minimize aircraft motion artifacts in the spatial measurement distribution. A second example involves mapping of natural resources in the Earth's crust using precision magnetometry. In this case the vehicle flight path must be oriented to optimize magnetic flux gradients over a spatial domain having continually emerging features, while optimizing the efficiency of the spatial mapping task. These requirements were highlighted in recent Earth Science missions including the OCEANIA mission directed at improving the capability for spectral and radiometric reflectance measurements in the coastal ocean, and the Surprise Valley Mission directed at mapping sub-surface mineral composition and faults, using high-sensitivity magnetometry. This paper reports the development of specific aircraft control approaches to incorporate the unusual and

  9. MEMS deformable mirrors for astronomical adaptive optics

    NASA Astrophysics Data System (ADS)

    Cornelissen, S. A.; Hartzell, A. L.; Stewart, J. B.; Bifano, T. G.; Bierden, P. A.

    2010-07-01

    We report on the development of high actuator count, micro-electromechanical (MEMS) deformable mirrors designed for high order wavefront correction in ground and space-based astronomical adaptive optics instruments. The design of these polysilicon, surface-micromachined MEMS deformable mirrors builds on technology that has been used extensively to correct for ocular aberrations in retinal imaging systems and for compensation of atmospheric turbulence in free-space laser communication. These light-weight, low power deformable mirrors have an active aperture of up to 25.2mm consisting of a thin silicon membrane mirror supported by an array of 140 to 4092 electrostatic actuators which exhibit no hysteresis and have sub-nanometer repeatability making them well suited for open-loop control applications such as Multi-Object Adaptive Optics (MOAO). The continuous membrane deformable mirrors, coated with a highly reflective metal film, are capable of up to 6μm of stroke, have a surface finish of <10nm RMS with a fill factor of 99.8%. Presented in this paper are device characteristics and performance test results, as well as reliability test data and device lifetime predictions that show that trillions of actuator cycles can be achieved without failures.

  10. DKIST Adaptive Optics System: Simulation Results

    NASA Astrophysics Data System (ADS)

    Marino, Jose; Schmidt, Dirk

    2016-05-01

    The 4 m class Daniel K. Inouye Solar Telescope (DKIST), currently under construction, will be equipped with an ultra high order solar adaptive optics (AO) system. The requirements and capabilities of such a solar AO system are beyond those of any other solar AO system currently in operation. We must rely on solar AO simulations to estimate and quantify its performance.We present performance estimation results of the DKIST AO system obtained with a new solar AO simulation tool. This simulation tool is a flexible and fast end-to-end solar AO simulator which produces accurate solar AO simulations while taking advantage of current multi-core computer technology. It relies on full imaging simulations of the extended field Shack-Hartmann wavefront sensor (WFS), which directly includes important secondary effects such as field dependent distortions and varying contrast of the WFS sub-aperture images.

  11. Durham adaptive optics real-time controller.

    PubMed

    Basden, Alastair; Geng, Deli; Myers, Richard; Younger, Eddy

    2010-11-10

    The Durham adaptive optics (AO) real-time controller was initially a proof of concept design for a generic AO control system. It has since been developed into a modern and powerful central-processing-unit-based real-time control system, capable of using hardware acceleration (including field programmable gate arrays and graphical processing units), based primarily around commercial off-the-shelf hardware. It is powerful enough to be used as the real-time controller for all currently planned 8 m class telescope AO systems. Here we give details of this controller and the concepts behind it, and report on performance, including latency and jitter, which is less than 10 μs for small AO systems. PMID:21068868

  12. Adaptive optics imaging of the retina

    PubMed Central

    Battu, Rajani; Dabir, Supriya; Khanna, Anjani; Kumar, Anupama Kiran; Roy, Abhijit Sinha

    2014-01-01

    Adaptive optics is a relatively new tool that is available to ophthalmologists for study of cellular level details. In addition to the axial resolution provided by the spectral-domain optical coherence tomography, adaptive optics provides an excellent lateral resolution, enabling visualization of the photoreceptors, blood vessels and details of the optic nerve head. We attempt a mini review of the current role of adaptive optics in retinal imaging. PubMed search was performed with key words Adaptive optics OR Retina OR Retinal imaging. Conference abstracts were searched from the Association for Research in Vision and Ophthalmology (ARVO) and American Academy of Ophthalmology (AAO) meetings. In total, 261 relevant publications and 389 conference abstracts were identified. PMID:24492503

  13. FPGA-accelerated adaptive optics wavefront control

    NASA Astrophysics Data System (ADS)

    Mauch, S.; Reger, J.; Reinlein, C.; Appelfelder, M.; Goy, M.; Beckert, E.; Tünnermann, A.

    2014-03-01

    The speed of real-time adaptive optical systems is primarily restricted by the data processing hardware and computational aspects. Furthermore, the application of mirror layouts with increasing numbers of actuators reduces the bandwidth (speed) of the system and, thus, the number of applicable control algorithms. This burden turns out a key-impediment for deformable mirrors with continuous mirror surface and highly coupled actuator influence functions. In this regard, specialized hardware is necessary for high performance real-time control applications. Our approach to overcome this challenge is an adaptive optics system based on a Shack-Hartmann wavefront sensor (SHWFS) with a CameraLink interface. The data processing is based on a high performance Intel Core i7 Quadcore hard real-time Linux system. Employing a Xilinx Kintex-7 FPGA, an own developed PCie card is outlined in order to accelerate the analysis of a Shack-Hartmann Wavefront Sensor. A recently developed real-time capable spot detection algorithm evaluates the wavefront. The main features of the presented system are the reduction of latency and the acceleration of computation For example, matrix multiplications which in general are of complexity O(n3 are accelerated by using the DSP48 slices of the field-programmable gate array (FPGA) as well as a novel hardware implementation of the SHWFS algorithm. Further benefits are the Streaming SIMD Extensions (SSE) which intensively use the parallelization capability of the processor for further reducing the latency and increasing the bandwidth of the closed-loop. Due to this approach, up to 64 actuators of a deformable mirror can be handled and controlled without noticeable restriction from computational burdens.

  14. Adaptive atom-optics in atom interferometry

    NASA Astrophysics Data System (ADS)

    Marable, M. L.; Savard, T. A.; Thomas, J. E.

    1997-02-01

    We suggest a general technique for creating virtual atom-optical elements which are adaptive. The shape and position of these elements is determined by the frequency distribution for optical fields which induce transitions in a high gradient potential. This adaptive method is demonstrated in an all-optical atom interferometer, by creating either a variable optical slit or a variable optical grating which is scanned across the atomic spatial patterns to measure the fringes. This method renders mechanical motion of the interferometer elements unnecessary.

  15. Optimized micromirror arrays for adaptive optics

    NASA Astrophysics Data System (ADS)

    Michalicek, M. Adrian; Comtois, John H.; Hetherington, Dale L.

    1999-01-01

    This paper describes the design, layout, fabrication, and surface characterization of highly optimized surface micromachined micromirror devices. Design considerations and fabrication capabilities are presented. These devices are fabricated in the state-of-the-art, four-level, planarized, ultra-low-stress polysilicon process available at Sandia National Laboratories known as the Sandia Ultra-planar Multi-level MEMS Technology (SUMMiT). This enabling process permits the development of micromirror devices with near-ideal characteristics that have previously been unrealizable in standard three-layer polysilicon processes. The reduced 1 μm minimum feature sizes and 0.1 μm mask resolution make it possible to produce dense wiring patterns and irregularly shaped flexures. Likewise, mirror surfaces can be uniquely distributed and segmented in advanced patterns and often irregular shapes in order to minimize wavefront error across the pupil. The ultra-low-stress polysilicon and planarized upper layer allow designers to make larger and more complex micromirrors of varying shape and surface area within an array while maintaining uniform performance of optical surfaces. Powerful layout functions of the AutoCAD editor simplify the design of advanced micromirror arrays and make it possible to optimize devices according to the capabilities of the fabrication process. Micromirrors fabricated in this process have demonstrated a surface variance across the array from only 2-3 nm to a worst case of roughly 25 nm while boasting active surface areas of 98% or better. Combining the process planarization with a ``planarized-by-design'' approach will produce micromirror array surfaces that are limited in flatness only by the surface deposition roughness of the structural material. Ultimately, the combination of advanced process and layout capabilities have permitted the fabrication of highly optimized micromirror arrays for adaptive optics.

  16. Adaptive optical interconnects: the ADDAPT project

    NASA Astrophysics Data System (ADS)

    Henker, Ronny; Pliva, Jan; Khafaji, Mahdi; Ellinger, Frank; Toifl, Thomas; Offrein, Bert; Cevrero, Alessandro; Oezkaya, Ilter; Seifried, Marc; Ledentsov, Nikolay; Kropp, Joerg-R.; Shchukin, Vitaly; Zoldak, Martin; Halmo, Leos; Turkiewicz, Jaroslaw; Meredith, Wyn; Eddie, Iain; Georgiades, Michael; Charalambides, Savvas; Duis, Jeroen; van Leeuwen, Pieter

    2015-09-01

    Existing optical networks are driven by dynamic user and application demands but operate statically at their maximum performance. Thus, optical links do not offer much adaptability and are not very energy-efficient. In this paper a novel approach of implementing performance and power adaptivity from system down to optical device, electrical circuit and transistor level is proposed. Depending on the actual data load, the number of activated link paths and individual device parameters like bandwidth, clock rate, modulation format and gain are adapted to enable lowering the components supply power. This enables flexible energy-efficient optical transmission links which pave the way for massive reductions of CO2 emission and operating costs in data center and high performance computing applications. Within the FP7 research project Adaptive Data and Power Aware Transceivers for Optical Communications (ADDAPT) dynamic high-speed energy-efficient transceiver subsystems are developed for short-range optical interconnects taking up new adaptive technologies and methods. The research of eight partners from industry, research and education spanning seven European countries includes the investigation of several adaptive control types and algorithms, the development of a full transceiver system, the design and fabrication of optical components and integrated circuits as well as the development of high-speed, low loss packaging solutions. This paper describes and discusses the idea of ADDAPT and provides an overview about the latest research results in this field.

  17. Computational adaptive optics of the human retina

    NASA Astrophysics Data System (ADS)

    South, Fredrick A.; Liu, Yuan-Zhi; Carney, P. Scott; Boppart, Stephen A.

    2016-03-01

    It is well known that patient-specific ocular aberrations limit imaging resolution in the human retina. Previously, hardware adaptive optics (HAO) has been employed to measure and correct these aberrations to acquire high-resolution images of various retinal structures. While the resulting aberration-corrected images are of great clinical importance, clinical use of HAO has not been widespread due to the cost and complexity of these systems. We present a technique termed computational adaptive optics (CAO) for aberration correction in the living human retina without the use of hardware adaptive optics components. In CAO, complex interferometric data acquired using optical coherence tomography (OCT) is manipulated in post-processing to adjust the phase of the optical wavefront. In this way, the aberrated wavefront can be corrected. We summarize recent results in this technology for retinal imaging, including aberration-corrected imaging in multiple retinal layers and practical considerations such as phase stability and image optimization.

  18. Adaptive-optics performance of Antarctic telescopes.

    PubMed

    Lawrence, Jon S

    2004-02-20

    The performance of natural guide star adaptive-optics systems for telescopes located on the Antarctic plateau is evaluated and compared with adaptive-optics systems operated with the characteristic mid-latitude atmosphere found at Mauna Kea. A 2-m telescope with tip-tilt correction and an 8-m telescope equipped with a high-order adaptive-optics system are considered. Because of the large isoplanatic angle of the South Pole atmosphere, the anisoplanatic error associated with an adaptive-optics correction is negligible, and the achievable resolution is determined only by the fitting error associated with the number of corrected wave-front modes, which depends on the number of actuators on the deformable mirror. The usable field of view of an adaptive-optics equipped Antarctic telescope is thus orders of magnitude larger than for a similar telescope located at a mid-latitude site; this large field of view obviates the necessity for multiconjugate adaptive-optics systems that use multiple laser guide stars. These results, combined with the low infrared sky backgrounds, indicate that the Antarctic plateau is the best site on Earth at which to perform high-resolution imaging with large telescopes, either over large fields of view or with appreciable sky coverage. Preliminary site-testing results obtained recently from the Dome Concordia station indicate that this site is far superior to even the South Pole. PMID:15008551

  19. Beaconless adaptive-optics technique for HEL beam control

    NASA Astrophysics Data System (ADS)

    Khizhnyak, Anatoliy; Markov, Vladimir

    2016-05-01

    Effective performance of forthcoming laser systems capable of power delivery on a distant target requires an adaptive optics system to correct atmospheric perturbations on the laser beam. The turbulence-induced effects are responsible for beam wobbling, wandering, and intensity scintillation, resulting in degradation of the beam quality and power density on the target. Adaptive optics methods are used to compensate for these negative effects. In its turn, operation of the AOS system requires a reference wave that can be generated by the beacon on the target. This report discusses a beaconless approach for wavefront correction with its performance based on the detection of the target-scattered light. Postprocessing of the beacon-generated light field enables retrieval and detailed characterization of the turbulence-perturbed wavefront -data that is essential to control the adaptive optics module of a high-power laser system.

  20. Optical Pumping of Mesospheric Sodium: a New Measurement Capability

    NASA Technical Reports Server (NTRS)

    Heinrichs, R. M.; Jeys, T. H.; Wall, K. F.; Korn, J.; Hotaling, T. C.

    1992-01-01

    The first observation of laser-induced optical pumping in a remote sensing application is reported. We have observed a large variation in the amount of laser light resonantly backscattered from the earth's mesospheric sodium layer depending on the laser polarization. This is consistent with optical pumping of the mesospheric sodium atoms. A new lidar capability is being developed based on measurements of the rethermalization rate of the optically pumped sodium atoms. These measurements have potential applications in the fields of global warming research, spacecraft re-entry, and upper atmospheric dynamics.

  1. Small scale adaptive optics experiment systems engineering

    NASA Technical Reports Server (NTRS)

    Boykin, William H.

    1993-01-01

    Assessment of the current technology relating to the laser power beaming system which in full scale is called the Beam Transmission Optical System (BTOS). Evaluation of system integration efforts are being conducted by the various government agencies and industry. Concepts are being developed for prototypes of adaptive optics for a BTOS.

  2. Pulse front adaptive optics in multiphoton microscopy

    NASA Astrophysics Data System (ADS)

    Sun, B.; Salter, P. S.; Booth, M. J.

    2016-03-01

    The accurate focusing of ultrashort laser pulses is extremely important in multiphoton microscopy. Using adaptive optics to manipulate the incident ultrafast beam in either the spectral or spatial domain can introduce significant benefits when imaging. Here we introduce pulse front adaptive optics: manipulating an ultrashort pulse in both the spatial and temporal domains. A deformable mirror and a spatial light modulator are operated in concert to modify contours of constant intensity in space and time within an ultrashort pulse. Through adaptive control of the pulse front, we demonstrate an enhancement in the measured fluorescence from a two photon microscope.

  3. Optical Profilometers Using Adaptive Signal Processing

    NASA Technical Reports Server (NTRS)

    Hall, Gregory A.; Youngquist, Robert; Mikhael, Wasfy

    2006-01-01

    A method of adaptive signal processing has been proposed as the basis of a new generation of interferometric optical profilometers for measuring surfaces. The proposed profilometers would be portable, hand-held units. Sizes could be thus reduced because the adaptive-signal-processing method would make it possible to substitute lower-power coherent light sources (e.g., laser diodes) for white light sources and would eliminate the need for most of the optical components of current white-light profilometers. The adaptive-signal-processing method would make it possible to attain scanning ranges of the order of decimeters in the proposed profilometers.

  4. Planet detectability by an adaptive optics stellar coronagraph

    NASA Astrophysics Data System (ADS)

    Nakajima, T.

    1994-04-01

    We show the possibilities for imaging Jupiter-like planets around nearby bright stars, assuming the availability of stellar coronagraphs coupled with modest adaptive optics mounted on large ground-based telescopes. The adaptive optics sharpens the point-spread function (PSF) of the planet, permits the use of an occulting disk smaller than the seeing disk, reduces the PSF envelope of the bright star, and therefore enhances the contrast between the planet and background. We have generated the PSF of the planet and the PSF envelope of the main star, using Monte Carlo simulations based on the Kolmogorov theory of turbulence. We calculate the signal-to-noise ratio of a model planet as a function of the angular separation based on photon statistics and realistic assumptions on the system performance. We have derived a criterion for optimizing the combination of the degree of adaptive compensation and the telescope diameter. It is found that a stellar coronagraph with modest adaptive optics mounted on a large ground-based telescope will be capable of detecting Jupiter-like planets around nearby bright stars such as alpha Cen, Sirius, and Procyon at wavelengths between 0.7 and 2.2 micrometers. Near-infrared observations are preferred because usable telescopes and isoplanatic angles are larger at infrared wavelengths than optical wavelengths for a given adaptive optics system. We have also found seven other target stars around which planets will be above the detection limit.

  5. eXtreme Adaptive Optics Planet Imager: Overview and status

    SciTech Connect

    Macintosh, B A; Bauman, B; Evans, J W; Graham, J; Lockwood, C; Poyneer, L; Dillon, D; Gavel, D; Green, J; Lloyd, J; Makidon, R; Olivier, S; Palmer, D; Perrin, M; Severson, S; Sheinis, A; Sivaramakrishnan, A; Sommargren, G; Soumer, R; Troy, M; Wallace, K; Wishnow, E

    2004-08-18

    As adaptive optics (AO) matures, it becomes possible to envision AO systems oriented towards specific important scientific goals rather than general-purpose systems. One such goal for the next decade is the direct imaging detection of extrasolar planets. An 'extreme' adaptive optics (ExAO) system optimized for extrasolar planet detection will have very high actuator counts and rapid update rates - designed for observations of bright stars - and will require exquisite internal calibration at the nanometer level. In addition to extrasolar planet detection, such a system will be capable of characterizing dust disks around young or mature stars, outflows from evolved stars, and high Strehl ratio imaging even at visible wavelengths. The NSF Center for Adaptive Optics has carried out a detailed conceptual design study for such an instrument, dubbed the eXtreme Adaptive Optics Planet Imager or XAOPI. XAOPI is a 4096-actuator AO system, notionally for the Keck telescope, capable of achieving contrast ratios >10{sup 7} at angular separations of 0.2-1'. ExAO system performance analysis is quite different than conventional AO systems - the spatial and temporal frequency content of wavefront error sources is as critical as their magnitude. We present here an overview of the XAOPI project, and an error budget highlighting the key areas determining achievable contrast. The most challenging requirement is for residual static errors to be less than 2 nm over the controlled range of spatial frequencies. If this can be achieved, direct imaging of extrasolar planets will be feasible within this decade.

  6. Adaptive Optics for Industry and Medicine

    NASA Astrophysics Data System (ADS)

    Dainty, Christopher

    2008-01-01

    pt. 1. Wavefront correctors and control. Liquid crystal lenses for correction of presbyopia (Invited Paper) / Guoqiang Li and Nasser Peyghambarian. Converging and diverging liquid crystal lenses (oral paper) / Andrew X. Kirby, Philip J. W. Hands, and Gordon D. Love. Liquid lens technology for miniature imaging systems: status of the technology, performance of existing products and future trends (invited paper) / Bruno Berge. Carbon fiber reinforced polymer deformable mirrors for high energy laser applications (oral paper) / S. R. Restaino ... [et al.]. Tiny multilayer deformable mirrors (oral paper) / Tatiana Cherezova ... [et al.]. Performance analysis of piezoelectric deformable mirrors (oral paper) / Oleg Soloviev, Mikhail Loktev and Gleb Vdovin. Deformable membrane mirror with high actuator density and distributed control (oral paper) / Roger Hamelinck ... [et al.]. Characterization and closed-loop demonstration of a novel electrostatic membrane mirror using COTS membranes (oral paper) / David Dayton ... [et al.]. Electrostatic micro-deformable mirror based on polymer materials (oral paper) / Frederic Zamkotsian ... [et al.]. Recent progress in CMOS integrated MEMS A0 mirror development (oral paper) / A. Gehner ... [et al.]. Compact large-stroke piston-tip-tilt actuator and mirror (oral paper) / W. Noell ... [et al.]. MEMS deformable mirrors for high performance AO applications (oral paper) / Paul Bierden, Thomas Bifano and Steven Cornelissen. A versatile interferometric test-rig for the investigation and evaluation of ophthalmic AO systems (poster paper) / Steve Gruppetta, Jiang Jian Zhong and Luis Diaz-Santana. Woofer-tweeter adaptive optics (poster paper) / Thomas Farrell and Chris Dainty. Deformable mirrors based on transversal piezoeffect (poster paper) / Gleb Vdovin, Mikhail Loktev and Oleg Soloviev. Low-cost spatial light modulators for ophthalmic applications (poster paper) / Vincente Durán ... [et al.]. Latest MEMS DM developments and the path ahead

  7. Solar Ground-Layer Adaptive Optics

    NASA Astrophysics Data System (ADS)

    Ren, Deqing; Jolissaint, Laurent; Zhang, Xi; Dou, Jianpei; Chen, Rui; Zhao, Gang; Zhu, Yongtian

    2015-05-01

    Solar conventional adaptive optics (CAO) with one deformable-mirror uses a small field-of-view (FOV) for wave-front sensing, which yields a small corrected FOV for high-resolution imaging. Solar activities occur in a two-dimensional extended FOV and studies of solar magnetic fields need high-resolution imaging over a FOV at least 60''. Recently, solar Tomography Adaptive Optics (TAO) and Multi-Conjugate Adaptive Optics (MCAO) were being developed to overcome this problem of small AO corrected FOV. However, for both TAO and MCAO, wavefront distortions need to be tomographically reconstructed from measurements on multiple guide stars, which is a complicated and time-consuming process. Solar Ground-Layer Adaptive Optics (S-GLAO) uses one or several guide stars, and does not rely on a tomographic reconstruction of the atmospheric turbulence. In this publication, we present two unique wavefront sensing approaches for the S-GLAO. We show that our S-GLAO can deliver good to excellent performance at variable seeing conditions in the Near Infrared (NIR) J and H bands, and is much simpler to implement. We discuss details of our S-GLAO associated wavefront approaches, which make our S-GLAO a unique solution for sunspot high-resolution imaging that other current adaptive optics systems, including the solar MCAO, cannot offer.

  8. VASAO: visible all sky adaptive optics

    NASA Astrophysics Data System (ADS)

    Veillet, Christian; Lai, Olivier; Salmon, Derrick; Pique, Jean-Paul

    2006-06-01

    Building on an extensive and successful experience in Adaptive Optics (AO) and on recent developments made in its funding nations, the Canada-France-Hawaii-Telescope Corporation (CFHT) is studying the VASAO concept: an integrated AO system that would allow diffraction limited imaging of the whole sky in the visible as well as in the infrared. At the core of VASAO, Pueo-Hou (the new Pueo) is built on Pueo, the current CFHT AO bonnette. Pueo will be refurbished and improved to be able to image the isoplanetic field at 700 nm with Strehl ratios of 30% or better, making possible imaging with a resolution of 50 milliarcseconds between 500 and 700nm, and at the telescope limit of diffraction above. The polychromatic tip-tilt laser guide star currently envisioned will be generated by a single 330nm mode-less laser, and the relative position of the 330nm and 589nm artificial stars created on the mesosphere by the 330nm excitation of the sodium layer will be monitored to provide the atmospheric tip-tilt along the line of sight, following the philosophy developed for the ELP-OA project. The feasibility study of VASAO will take most of 2006 in parallel with the development of a science case making the best possible use of the unique capabilities of the system, If the feasibility study is encouraging, VASAO development could start in 2007 for a full deployment on the sky by 2011-2012.

  9. Large stroke actuators for adaptive optics

    NASA Astrophysics Data System (ADS)

    Fernández, B.; Kubby, J. A.

    2006-01-01

    In this paper we review the use of a 3-dimensional MEMS fabrication process to prototype long stroke (>10 μm) actuators as are required for use in future adaptive optics systems in astronomy and vision science. The Electrochemical Fabrication (EFAB TM) process that was used creates metal micro-structures by electroplating multiple, independently patterned layers. The process has the design freedom of rapid prototyping where multiple patterned layers are stacked to build structures with virtually any desired geometry, but in contrast has much greater precision, the capability for batch fabrication and provides parts in engineering materials such as nickel. The design freedom enabled by this process has been used to make both parallel plate and comb drive actuator deformable mirror designs that can have large vertical heights of up to 1 mm. As the thickness of the sacrificial layers used to release the actuator is specified by the designer, rather than by constraints of the fabrication process, the design of large-stroke actuators is straightforward and does not require any new process development. Since the number of material layers in the EFAB TM process is also specified by the designer it has been possible to gang multiple parallel plate actuators together to decrease the voltage required for long-stroke actuators.

  10. Adaptive optics at the PHELIX laser

    NASA Astrophysics Data System (ADS)

    Heuck, Hans-Martin; Wittrock, Ulrich; Fils, Jérôme; Borneis, Stefan; Witte, Klaus; Eisenbart, Udo; Javorkova, Dasa; Bagnoud, Vincent; Götte, Stefan; Tauschwitz, Andreas; Onkels, Eckehard

    2007-05-01

    GSI Darmstadt currently builds a high-energy petawatt Nd:glass laser system, called PHELIX (Petawatt High-Energy Laser for Heavy-Ion Experiments). PHELIX will offer the world-wide unique combination of a high current, high-energy heavy-ion beam with an intense laser beam. Aberrations due to the beam transport and due to the amplification process limit the focusability and the intensity at the target. We have investigated the aberrations of the different amplification stages. The pre-amplifier stage consists of three rod-amplifiers which cause mainly defocus, but also a small part of coma and astigmatism. The main amplifier consists of five disk amplifiers with a clear aperture of 315 mm. These large disk-amplifiers cause pump-shot aberrations which occur instantly. After a shot, the disk amplifiers need a cooling time of several hours to relax to their initial state. This limits the repetition rate and causes long-term aberrations. We will present first measurements of the pump-shot and long-term aberrations caused by the pre- and the main amplifier in a single-pass configuration. In this context, we will present the adaptive optics system which is implemented in the PHELIX beam line and discuss its capability to compensate for the pump-shot and long-term aberrations.

  11. Characterization and Operation of Liquid Crystal Adaptive Optics Phoropter

    SciTech Connect

    Awwal, A; Bauman, B; Gavel, D; Olivier, S; Jones, S; Hardy, J L; Barnes, T; Werner, J S

    2003-02-05

    Adaptive optics (AO), a mature technology developed for astronomy to compensate for the effects of atmospheric turbulence, can also be used to correct the aberrations of the eye. The classic phoropter is used by ophthalmologists and optometrists to estimate and correct the lower-order aberrations of the eye, defocus and astigmatism, in order to derive a vision correction prescription for their patients. An adaptive optics phoropter measures and corrects the aberrations in the human eye using adaptive optics techniques, which are capable of dealing with both the standard low-order aberrations and higher-order aberrations, including coma and spherical aberration. High-order aberrations have been shown to degrade visual performance for clinical subjects in initial investigations. An adaptive optics phoropter has been designed and constructed based on a Shack-Hartmann sensor to measure the aberrations of the eye, and a liquid crystal spatial light modulator to compensate for them. This system should produce near diffraction-limited optical image quality at the retina, which will enable investigation of the psychophysical limits of human vision. This paper describes the characterization and operation of the AO phoropter with results from human subject testing.

  12. Holographic fluorescence microscopy with incoherent digital holographic adaptive optics.

    PubMed

    Jang, Changwon; Kim, Jonghyun; Clark, David C; Lee, Seungjae; Lee, Byoungho; Kim, Myung K

    2015-01-01

    Introduction of adaptive optics technology into astronomy and ophthalmology has made great contributions in these fields, allowing one to recover images blurred by atmospheric turbulence or aberrations of the eye. Similar adaptive optics improvement in microscopic imaging is also of interest to researchers using various techniques. Current technology of adaptive optics typically contains three key elements: a wavefront sensor, wavefront corrector, and controller. These hardware elements tend to be bulky, expensive, and limited in resolution, involving, for example, lenslet arrays for sensing or multiactuator deformable mirrors for correcting. We have previously introduced an alternate approach based on unique capabilities of digital holography, namely direct access to the phase profile of an optical field and the ability to numerically manipulate the phase profile. We have also demonstrated that direct access and compensation of the phase profile are possible not only with conventional coherent digital holography, but also with a new type of digital holography using incoherent light: selfinterference incoherent digital holography (SIDH). The SIDH generates a complex—i.e., amplitude plus phase—hologram from one or several interferograms acquired with incoherent light, such as LEDs, lamps, sunlight, or fluorescence. The complex point spread function can be measured using guide star illumination and it allows deterministic deconvolution of the full-field image. We present experimental demonstration of aberration compensation in holographic fluorescence microscopy using SIDH. Adaptive optics by SIDH provides new tools for improved cellular fluorescence microscopy through intact tissue layers or other types of aberrant media. PMID:26146767

  13. Holographic fluorescence microscopy with incoherent digital holographic adaptive optics

    NASA Astrophysics Data System (ADS)

    Jang, Changwon; Kim, Jonghyun; Clark, David C.; Lee, Seungjae; Lee, Byoungho; Kim, Myung K.

    2015-11-01

    Introduction of adaptive optics technology into astronomy and ophthalmology has made great contributions in these fields, allowing one to recover images blurred by atmospheric turbulence or aberrations of the eye. Similar adaptive optics improvement in microscopic imaging is also of interest to researchers using various techniques. Current technology of adaptive optics typically contains three key elements: a wavefront sensor, wavefront corrector, and controller. These hardware elements tend to be bulky, expensive, and limited in resolution, involving, for example, lenslet arrays for sensing or multiactuator deformable mirrors for correcting. We have previously introduced an alternate approach based on unique capabilities of digital holography, namely direct access to the phase profile of an optical field and the ability to numerically manipulate the phase profile. We have also demonstrated that direct access and compensation of the phase profile are possible not only with conventional coherent digital holography, but also with a new type of digital holography using incoherent light: self­interference incoherent digital holography (SIDH). The SIDH generates a complex-i.e., amplitude plus phase-hologram from one or several interferograms acquired with incoherent light, such as LEDs, lamps, sunlight, or fluorescence. The complex point spread function can be measured using guide star illumination and it allows deterministic deconvolution of the full-field image. We present experimental demonstration of aberration compensation in holographic fluorescence microscopy using SIDH. Adaptive optics by SIDH provides new tools for improved cellular fluorescence microscopy through intact tissue layers or other types of aberrant media.

  14. Adaptive Optics at Lawrence Livermore National Laboratory

    SciTech Connect

    Gavel, D T

    2003-03-10

    Adaptive optics enables high resolution imaging through the atmospheric by correcting for the turbulent air's aberrations to the light waves passing through it. The Lawrence Livermore National Laboratory for a number of years has been at the forefront of applying adaptive optics technology to astronomy on the world's largest astronomical telescopes, in particular at the Keck 10-meter telescope on Mauna Kea, Hawaii. The technology includes the development of high-speed electrically driven deformable mirrors, high-speed low-noise CCD sensors, and real-time wavefront reconstruction and control hardware. Adaptive optics finds applications in many other areas where light beams pass through aberrating media and must be corrected to maintain diffraction-limited performance. We describe systems and results in astronomy, medicine (vision science), and horizontal path imaging, all active programs in our group.

  15. Adaptive Optics Applications in Vision Science

    SciTech Connect

    Olivier, S S

    2003-03-17

    Adaptive optics can be used to correct the aberrations in the human eye caused by imperfections in the cornea and the lens and thereby, improve image quality both looking into and out of the eye. Under the auspices of the NSF Center for Adaptive Optics and the DOE Biomedical Engineering Program, Lawrence Livermore National Laboratory has joined together with leading vision science researchers around the country to develop and test new ophthalmic imaging systems using novel wavefront corrector technologies. Results of preliminary comparative evaluations of these technologies in initial system tests show promise for future clinical utility.

  16. Robust Wiener filtering for Adaptive Optics

    SciTech Connect

    Poyneer, L A

    2004-06-17

    In many applications of optical systems, the observed field in the pupil plane has a non-uniform phase component. This deviation of the phase of the field from uniform is called a phase aberration. In imaging systems this aberration will degrade the quality of the images. In the case of a large astronomical telescope, random fluctuations in the atmosphere lead to significant distortion. These time-varying distortions can be corrected using an Adaptive Optics (AO) system, which is a real-time control system composed of optical, mechanical and computational parts. Adaptive optics is also applicable to problems in vision science, laser propagation and communication. For a high-level overview, consult this web site. For an in-depth treatment of the astronomical case, consult these books.

  17. Woofer-Tweeter Adaptive Optics - Poster Paper

    NASA Astrophysics Data System (ADS)

    Farrell, T. D.; Dainty, J. C.

    2008-01-01

    An optical bench experiment has been assembled to demonstrate the concept of woofer-tweeter adaptive optics for astronomical applications. The system includes an OKO 37 actuator woofer deformable mirror combined with a Boston Micromachines 140 actuator tweeter. The goal of such a system is to achieve a higher degree of wavefront correction not currently possible due to the limitations of deformable mirror technology and cost.

  18. Pulse front control with adaptive optics

    NASA Astrophysics Data System (ADS)

    Sun, B.; Salter, P. S.; Booth, M. J.

    2016-03-01

    The focusing of ultrashort laser pulses is extremely important for processes including microscopy, laser fabrication and fundamental science. Adaptive optic elements, such as liquid crystal spatial light modulators or membrane deformable mirrors, are routinely used for the correction of aberrations in these systems, leading to improved resolution and efficiency. Here, we demonstrate that adaptive elements used with ultrashort pulses should not be considered simply in terms of wavefront modification, but that changes to the incident pulse front can also occur. We experimentally show how adaptive elements may be used to engineer pulse fronts with spatial resolution.

  19. Adaptive optics for improved retinal surgery and diagnostics

    SciTech Connect

    Humayun, M S; Sadda, S R; Thompson, C A; Olivier, S S; Kartz, M W

    2000-08-21

    It is now possible to field a compact adaptive optics (AO) system on a surgical microscope for use in retinal diagnostics and surgery. Recent developments in integrated circuit technology and optical photonics have led to the capability of building an AO system that is compact and significantly less expensive than traditional AO systems. It is foreseen that such an AO system can be integrated into a surgical microscope while maintaining a package size of a lunchbox. A prototype device can be developed in a manner that lends itself well to large-scale manufacturing.

  20. Crack monitoring capability of plastic optical fibers for concrete structures

    NASA Astrophysics Data System (ADS)

    Zhao, Jinlei; Bao, Tengfei; Chen, Rui

    2015-08-01

    Optical fibers have been widely used in structural health monitoring. Traditional silica fibers are easy to break in field applications due to their brittleness. Thus, silica fibers are proposed to be replaced by plastic optical fibers (POFs) in crack monitoring in this study. Moreover, considering the uncertainty of crack propagation direction in composite materials, the influence of the angles between fibers and cracks on the monitoring capability of plastic optical fibers is studied. A POF sensing device was designed and the relationship between light intensity loss and crack width under different fiber/crack angles was first measured through the device. Then, three-point bend tests were conducted on concrete beams. POFs were glued to the bottom surfaces of the beams and light intensity loss with crack width was measured. Experimental results showed that light intensity loss in plastic optical fibers increased with crack width increase. Therefore, application of plastic optical fibers in crack monitoring is feasible. Moreover, the results also showed that the sensitivity of the POF crack sensor decreased with the increase of angles between fibers and cracks.

  1. Holographic fluorescence microscopy with incoherent digital holographic adaptive optics

    NASA Astrophysics Data System (ADS)

    Jang, Changwon; Kim, Jonghyun; Clark, David C.; Lee, Byoungho; Kim, Myung K.

    2015-03-01

    Introduction of adaptive optics technology into astronomy and ophthalmology has made great contributions in these fields, allowing one to recover images blurred by atmospheric turbulence or aberrations of the eye. Similar adaptive optics improvement in microscopic imaging is also of interest to researchers using various techniques. Current technology of adaptive optics typically contains three key elements: wavefront sensor, wavefront corrector and controller. These hardware elements tend to be bulky, expensive, and limited in resolution, involving, e.g., lenslet arrays for sensing or multi-acuator deformable mirrors for correcting. We have previously introduced an alternate approach to adaptive optics based on unique capabilities of digital holography, namely direct access to the phase profile of an optical field and the ability to numerically manipulate the phase profile. We have also demonstrated that direct access and compensation of the phase profile is possible not only with the conventional coherent type of digital holography, but also with a new type of digital holography using incoherent light: self-interference incoherent digital holography (SIDH). The SIDH generates complex - i.e. amplitude plus phase - hologram from one or several interferograms acquired with incoherent light, such as LEDs, lamps, sunlight, or fluorescence. The complex point spread function can be measured using a guide star illumination and it allows deterministic deconvolution of the full-field image. We present experimental demonstration of aberration compensation in holographic fluorescence microscopy using SIDH. The adaptive optics by SIDH provides new tools for improved cellular fluorescence microscopy through intact tissue layers or other types of aberrant media.

  2. Demonstration of portable solar adaptive optics system

    NASA Astrophysics Data System (ADS)

    Ren, Deqing; Dong, Bing

    2012-10-01

    Solar-adaptive optics (AO) are more challenging than night-time AO, in some aspects. A portable solar adaptive optics (PSAO) system featuring compact physical size, low cost, and good performance has been proposed and developed. PSAO can serve as a visiting instrument for any existing ground-based solar telescope to improve solar image quality by replacing just a few optical components. High-level programming language, LabVIEW, is used to develop the wavefront sensing and control software, and general purpose computers are used to drive the whole system. During October 2011, the feasibility and good performance of PSAO was demonstrated with the 61-cm solar telescope at San Fernando Observatory. The image contrast and resolution are noticeably improved after AO correction.

  3. Simulating Astronomical Adaptive Optics Systems Using Yao

    NASA Astrophysics Data System (ADS)

    Rigaut, François; Van Dam, Marcos

    2013-12-01

    Adaptive Optics systems are at the heart of the coming Extremely Large Telescopes generation. Given the importance, complexity and required advances of these systems, being able to simulate them faithfully is key to their success, and thus to the success of the ELTs. The type of systems envisioned to be built for the ELTs cover most of the AO breeds, from NGS AO to multiple guide star Ground Layer, Laser Tomography and Multi-Conjugate AO systems, with typically a few thousand actuators. This represents a large step up from the current generation of AO systems, and accordingly a challenge for existing AO simulation packages. This is especially true as, in the past years, computer power has not been following Moore's law in its most common understanding; CPU clocks are hovering at about 3GHz. Although the use of super computers is a possible solution to run these simulations, being able to use smaller machines has obvious advantages: cost, access, environmental issues. By using optimised code in an already proven AO simulation platform, we were able to run complex ELT AO simulations on very modest machines, including laptops. The platform is YAO. In this paper, we describe YAO, its architecture, its capabilities, the ELT-specific challenges and optimisations, and finally its performance. As an example, execution speed ranges from 5 iterations per second for a 6 LGS 60x60 subapertures Shack-Hartmann Wavefront sensor Laser Tomography AO system (including full physical image formation and detector characteristics) up to over 30 iterations/s for a single NGS AO system.

  4. Guide star lasers for adaptive optics

    NASA Astrophysics Data System (ADS)

    Roberts, William Thomas, Jr.

    Exploitation of the imaging capabilities of the new generation of ground-based astronomical telescopes relies heavily on Adaptive Optics (AO). Current AO system designs call for sodium guide star lasers capable of producing at least eight Watts of power tuned to the peak of the sodium D2 line, with a high duty cycle to avoid saturation, and with 0.5-1.0 GHz spectral broadening. This work comprises development and testing of six candidate laser systems and materials which may afford a path to achieving these goals. An end-pumped CW dye laser producing 4.0 Watts of tuned output power was developed and used to obtain the first accurate measurement of sodium layer scattering efficiency. Methods of optimizing the laser output through improving pump overlap efficiency and reducing the number of intracavity scattering surfaces are covered. The 1181 nm fluorescence peak of Mn5+ ion in Ba5 (PO4)3Cl could be tuned and doubled to reach 589 nm. While efforts to grow this crystal were under way, the Mn5+ ion in natural apatite (Ca5(PO4)3F) was studied as a potential laser material. Fluorescence saturation measurements and transmission saturation are presented, as well as efforts to obtain CW lasing in natural apatite. A Q-switched laser color-center laser in LiF : F-2 was developed and successfully tuned and doubled to the sodium D 2 line. Broad-band lasing of 80 mW and tuned narrow-band lasing of 35 mW at 1178 nm were obtained with 275 mW of input pump power at 1064 nm. The measured thermal properties of this material indicate its potential for scaling to much higher power. A Q-switched intracavity Raman laser was developed in which CaWO 4 was used to shift a Nd:YAG laser, the frequency-doubled output of which was centered at 589.3 nm. To obtain light at 589.0 nm, a compositionally tuned pump laser of Nd : Y3Ga1.1Al3.9O 12 was produced which generated the desired shift, but was inhomogeneous broadened, limiting the tunable power of the material. Finally, temperature tuning of

  5. Increased Capabilities for Conventional Lidars using Holographic Optics

    NASA Technical Reports Server (NTRS)

    Wilkerson, Thomas D.; Hammond, Marc; Wickwar, Vincent B.

    1998-01-01

    While the field of holographic optics is relatively new, and numerous applications are still being devised and tested, there are good prospects that the use of holographic optical elements (HOEs) may revolutionize the design and applications of optical systems in various fields. This paper is not a review of HOE developments, but rather an account of a particular application, namely the extension of the scanning capabilities of conventional telescopes-in particular, lidar receivers-by means of special holographic accessories. As originally described and in a patent, and in several subsequent publications the HOE lidar was based on the concept of building into the holographic element (either a transmitting one or a reflecting one) all the optical power needed to focus a lidar return to a detector at the HOE's focal point, as well as subjecting the lidar return to both angular deflection and wavelength selection. Results will be reported on the use of Holographic Transmission Gratings (HTGs) at 532 nm and 770 nm at 45 deg. cone angle, both in the laboratory and in the atmosphere at Utah State University.

  6. Development of large aperture composite adaptive optics

    NASA Astrophysics Data System (ADS)

    Kmetik, Viliam; Vitovec, Bohumil; Jiran, Lukas; Nemcova, Sarka; Zicha, Josef; Inneman, Adolf; Mikulickova, Lenka; Pavlica, Richard

    2015-01-01

    Large aperture composite adaptive optics for laser applications is investigated in cooperation of Institute of Plasma Physic, Department of Instrumentation and Control Engineering FME CTU and 5M Ltd. We are exploring opportunity of a large-size high-power-laser deformable-mirror production using a lightweight bimorph actuated structure with a composite core. In order to produce a sufficiently large operational free aperture we are developing new technologies for production of flexible core, bimorph actuator and deformable mirror reflector. Full simulation of a deformable-mirrors structure was prepared and validated by complex testing. A deformable mirror actuation and a response of a complicated structure are investigated for an accurate control of the adaptive optics. An original adaptive optics control system and a bimorph deformable mirror driver were developed. Tests of material samples, components and sub-assemblies were completed. A subscale 120 mm bimorph deformable mirror prototype was designed, fabricated and thoroughly tested. A large-size 300 mm composite-core bimorph deformable mirror was simulated and optimized, fabrication of a prototype is carried on. A measurement and testing facility is modified to accommodate large sizes optics.

  7. The AVES adaptive optics spectrograph for the VLT: status report

    NASA Astrophysics Data System (ADS)

    Pallavicini, Roberto; Delabre, Bernard; Pasquini, Luca; Zerbi, Filippo M.; Bonanno, Giovanni; Comari, Maurizio; Conconi, Paolo; Mazzoleni, Ruben; Santin, Paolo; Damiani, Francesco; Di Marcantonio, Paolo; Franchini, Mariagrazia; Spano, Paolo; Bonifacio, P.; Catalano, Santo; Molaro, Paolo P.; Randich, S.; Rodono, Marcello

    2003-03-01

    We report on the status of AVES, the Adaptive-optics Visual Echelle Spectrograph proposed for the secondary port of the Nasmyth Adaptive Optics System (NAOS) recently installed at the VLT. AVES is an intermediate resolution (R ≍ 16,000) high-efficiency fixed- format echelle spectrograph which operates in the spectral band 500 - 1,000 nm. In addition to a high intrinsic efficiency, comparable to that of ESI at Keck II, it takes advantage of the adaptive optics correction provided by NAOS to reduce the sky and detector contribution in background-limited observations of weak sources, thus allowing a further magnitude gain with respect to comparable non-adaptive optics spectrographs. Simulations show that the instrument will be capable of reaching a magnitude V = 22.5 at S/N > 10 in two hours, two magnitudes weaker than GIRAFFE at the same resolution and 3 magnitudes weaker than the higher resolution UVES spectrograph. Imaging and coronographic functions have also been implemented in the design. We present the results of the final design study and we dicuss the technical and operational issues related to its implementation at the VLT as a visitor instrument. We also discuss the possibility of using a scaled-up non-adaptive optics version of the same design as an element of a double- or triple-arm intermediate-resolution spectrograph for the VLT. Such an option looks attractive in the context of a high-efficiency large-bandwidth (320 - 1,500 nm) spectrograph ("fast-shooter") being considered by ESO as a 2nd-generation VLT instrument.

  8. Building climate adaptation capabilities through technology and community

    NASA Astrophysics Data System (ADS)

    Murray, D.; McWhirter, J.; Intsiful, J. D.; Cozzini, S.

    2011-12-01

    To effectively plan for adaptation to changes in climate, decision makers require infrastructure and tools that will provide them with timely access to current and future climate information. For example, climate scientists and operational forecasters need to access global and regional model projections and current climate information that they can use to prepare monitoring products and reports and then publish these for the decision makers. Through the UNDP African Adaption Programme, an infrastructure is being built across Africa that will provide multi-tiered access to such information. Web accessible servers running RAMADDA, an open source content management system for geoscience information, will provide access to the information at many levels: from the raw and processed climate model output to real-time climate conditions and predictions to documents and presentation for government officials. Output from regional climate models (e.g. RegCM4) and downscaled global climate models will be accessible through RAMADDA. The Integrated Data Viewer (IDV) is being used by scientists to create visualizations that assist the understanding of climate processes and projections, using the data on these as well as external servers. Since RAMADDA is more than a data server, it is also being used as a publishing platform for the generated material that will be available and searchable by the decision makers. Users can wade through the enormous volumes of information and extract subsets for their region or project of interest. Participants from 20 countries attended workshops at ICTP during 2011. They received training on setting up and installing the servers and necessary software and are now working on deploying the systems in their respective countries. This is the first time an integrated and comprehensive approach to climate change adaptation has been widely applied in Africa. It is expected that this infrastructure will enhance North-South collaboration and improve the

  9. Applications of Adaptive Optics Scanning Laser Ophthalmoscopy

    PubMed Central

    Roorda, Austin

    2010-01-01

    Adaptive optics (AO) describes a set of tools to correct or control aberrations in any optical system. In the eye, AO allows for precise control of the ocular aberrations. If used to correct aberrations over a large pupil, for example, cellular level resolution in retinal images can be achieved. AO systems have been demonstrated for advanced ophthalmoscopy as well as for testing and/or improving vision. In fact, AO can be integrated to any ophthalmic instrument where the optics of the eye is involved, with a scope of applications ranging from phoropters to optical coherence tomography systems. In this paper, I discuss the applications and advantages of using AO in a specific system, the adaptive optics scanning laser ophthalmoscope, or AOSLO. Since the Borish award was, in part, awarded to me because of this effort, I felt it appropriate to select this as the topic for this paper. Furthermore, users of AOSLO continue to appreciate the benefits of the technology, some of which were not anticipated at the time of development, and so it is time to revisit this topic and summarize them in a single paper. PMID:20160657

  10. Iterative blind deconvolution of adaptive optics images

    NASA Astrophysics Data System (ADS)

    Liang, Ying; Rao, Changhui; Li, Mei; Geng, Zexun

    2006-04-01

    Adaptive optics (AO) technique has been extensively used for large ground-based optical telescopes to overcome the effect of atmospheric turbulence. But the correction is often partial. An iterative blind deconvolution (IBD) algorithm based on maximum-likelihood (ML) method is proposed to restore the details of the object image corrected by AO. IBD algorithm and the procedure are briefly introduced and the experiment results are presented. The results show that IBD algorithm is efficient for the restoration of some useful high-frequency of the image.

  11. Adaptive optics without guide stars (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Mertz, Jerome; Li, Jiang; Beaulieu, Devin; Paudel, Hari P.; Barankov, Roman; Bifano, Thomas G.

    2016-03-01

    Adaptive optics is a strategy to compensate for sample-induced aberrations in microscopy applications. Generally, it requires the presence of "guide stars" in the sample to serve as localized reference targets. We describe an implementation of conjugate adaptive optics that is amenable to widefield (i.e. non-scanning) microscopy, and can provide aberration corrections over potentially large fields of view without the use of guide stars. A unique feature of our implementation is that it is based on wavefront sensing with a single-shot partitioned-aperture sensor that provides large dynamic range compatible with extended samples. Combined information provided by this sensor and the imaging camera enable robust image de-blurring based on a rapid estimation of sample and aberrations obtained by closed-loop feedback. We present the theoretical principle of our technique and experimental demonstrations using both trans-illumination and fluorescence microscopes. Finally, we apply our technique to mouse brain imaging.

  12. Laser tomography adaptive optics: a performance study.

    PubMed

    Tatulli, Eric; Ramaprakash, A N

    2013-12-01

    We present an analytical derivation of the on-axis performance of adaptive optics systems using a given number of guide stars of arbitrary altitude, distributed at arbitrary angular positions in the sky. The expressions of the residual error are given for cases of both continuous and discrete turbulent atmospheric profiles. Assuming Shack-Hartmann wavefront sensing with circular apertures, we demonstrate that the error is formally described by integrals of products of three Bessel functions. We compare the performance of adaptive optics correction when using natural, sodium, or Rayleigh laser guide stars. For small diameter class telescopes (≲5 m), we show that a small number of Rayleigh beacons can provide similar performance to that of a single sodium laser, for a lower overall cost of the instrument. For bigger apertures, using Rayleigh stars may not be such a suitable alternative because of the too severe cone effect that drastically degrades the quality of the correction. PMID:24323009

  13. Adaptive Optics for Industry and Medicine

    NASA Astrophysics Data System (ADS)

    Dainty, Christopher

    2008-01-01

    pt. 1. Wavefront correctors and control. Liquid crystal lenses for correction of presbyopia (Invited Paper) / Guoqiang Li and Nasser Peyghambarian. Converging and diverging liquid crystal lenses (oral paper) / Andrew X. Kirby, Philip J. W. Hands, and Gordon D. Love. Liquid lens technology for miniature imaging systems: status of the technology, performance of existing products and future trends (invited paper) / Bruno Berge. Carbon fiber reinforced polymer deformable mirrors for high energy laser applications (oral paper) / S. R. Restaino ... [et al.]. Tiny multilayer deformable mirrors (oral paper) / Tatiana Cherezova ... [et al.]. Performance analysis of piezoelectric deformable mirrors (oral paper) / Oleg Soloviev, Mikhail Loktev and Gleb Vdovin. Deformable membrane mirror with high actuator density and distributed control (oral paper) / Roger Hamelinck ... [et al.]. Characterization and closed-loop demonstration of a novel electrostatic membrane mirror using COTS membranes (oral paper) / David Dayton ... [et al.]. Electrostatic micro-deformable mirror based on polymer materials (oral paper) / Frederic Zamkotsian ... [et al.]. Recent progress in CMOS integrated MEMS A0 mirror development (oral paper) / A. Gehner ... [et al.]. Compact large-stroke piston-tip-tilt actuator and mirror (oral paper) / W. Noell ... [et al.]. MEMS deformable mirrors for high performance AO applications (oral paper) / Paul Bierden, Thomas Bifano and Steven Cornelissen. A versatile interferometric test-rig for the investigation and evaluation of ophthalmic AO systems (poster paper) / Steve Gruppetta, Jiang Jian Zhong and Luis Diaz-Santana. Woofer-tweeter adaptive optics (poster paper) / Thomas Farrell and Chris Dainty. Deformable mirrors based on transversal piezoeffect (poster paper) / Gleb Vdovin, Mikhail Loktev and Oleg Soloviev. Low-cost spatial light modulators for ophthalmic applications (poster paper) / Vincente Durán ... [et al.]. Latest MEMS DM developments and the path ahead

  14. Adaptive Optics Imaging of Solar System Objects

    NASA Technical Reports Server (NTRS)

    Roddier, Francois; Owen, Toby

    1999-01-01

    Most solar system objects have never been observed at wavelengths longer than the R band with an angular resolution better than 1". The Hubble Space Telescope itself has only recently been equipped to observe in the infrared. However, because of its small diameter, the angular resolution is lower than that one can now achieved from the ground with adaptive optics, and time allocated to planetary science is limited. We have successfully used adaptive optics on a 4-m class telescope to obtain 0.1" resolution images of solar system objects in the far red and near infrared (0.7-2.5 microns), aE wavelengths which best discl"lmlnate their spectral signatures. Our efforts have been put into areas of research for which high angular resolution is essential.

  15. Adaptive Optics Imaging of Solar System Objects

    NASA Technical Reports Server (NTRS)

    Roddier, Francois; Owen, Toby

    1997-01-01

    Most solar system objects have never been observed at wavelengths longer than the R band with an angular resolution better than 1 sec. The Hubble Space Telescope itself has only recently been equipped to observe in the infrared. However, because of its small diameter, the angular resolution is lower than that one can now achieved from the ground with adaptive optics, and time allocated to planetary science is limited. We have been using adaptive optics (AO) on a 4-m class telescope to obtain 0.1 sec resolution images solar system objects at far red and near infrared wavelengths (0.7-2.5 micron) which best discriminate their spectral signatures. Our efforts has been put into areas of research for which high angular resolution is essential, such as the mapping of Titan and of large asteroids, the dynamics and composition of Neptune stratospheric clouds, the infrared photometry of Pluto, Charon, and close satellites previously undetected from the ground.

  16. HIGH-EFFICIENCY AUTONOMOUS LASER ADAPTIVE OPTICS

    SciTech Connect

    Baranec, Christoph; Riddle, Reed; Tendulkar, Shriharsh; Hogstrom, Kristina; Bui, Khanh; Dekany, Richard; Kulkarni, Shrinivas; Law, Nicholas M.; Ramaprakash, A. N.; Burse, Mahesh; Chordia, Pravin; Das, Hillol; Punnadi, Sujit

    2014-07-20

    As new large-scale astronomical surveys greatly increase the number of objects targeted and discoveries made, the requirement for efficient follow-up observations is crucial. Adaptive optics imaging, which compensates for the image-blurring effects of Earth's turbulent atmosphere, is essential for these surveys, but the scarcity, complexity and high demand of current systems limit their availability for following up large numbers of targets. To address this need, we have engineered and implemented Robo-AO, a fully autonomous laser adaptive optics and imaging system that routinely images over 200 objects per night with an acuity 10 times sharper at visible wavelengths than typically possible from the ground. By greatly improving the angular resolution, sensitivity, and efficiency of 1-3 m class telescopes, we have eliminated a major obstacle in the follow-up of the discoveries from current and future large astronomical surveys.

  17. Geometric view of adaptive optics control.

    PubMed

    Wiberg, Donald M; Max, Claire E; Gavel, Donald T

    2005-05-01

    The objective of an astronomical adaptive optics control system is to minimize the residual wave-front error remaining on the science-object wave fronts after being compensated for atmospheric turbulence and telescope aberrations. Minimizing the mean square wave-front residual maximizes the Strehl ratio and the encircled energy in pointlike images and maximizes the contrast and resolution of extended images. We prove the separation principle of optimal control for application to adaptive optics so as to minimize the mean square wave-front residual. This shows that the residual wave-front error attributable to the control system can be decomposed into three independent terms that can be treated separately in design. The first term depends on the geometry of the wave-front sensor(s), the second term depends on the geometry of the deformable mirror(s), and the third term is a stochastic term that depends on the signal-to-noise ratio. The geometric view comes from understanding that the underlying quantity of interest, the wave-front phase surface, is really an infinite-dimensional vector within a Hilbert space and that this vector space is projected into subspaces we can control and measure by the deformable mirrors and wave-front sensors, respectively. When the control and estimation algorithms are optimal, the residual wave front is in a subspace that is the union of subspaces orthogonal to both of these projections. The method is general in that it applies both to conventional (on-axis, ground-layer conjugate) adaptive optics architectures and to more complicated multi-guide-star- and multiconjugate-layer architectures envisaged for future giant telescopes. We illustrate the approach by using a simple example that has been worked out previously [J. Opt. Soc. Am. A 73, 1171 (1983)] for a single-conjugate, static atmosphere case and follow up with a discussion of how it is extendable to general adaptive optics architectures. PMID:15898546

  18. Dual optical frequency comb architecture with capabilities from visible to mid-infrared.

    PubMed

    Jerez, Borja; Martín-Mateos, Pedro; Prior, Estefanía; de Dios, Cristina; Acedo, Pablo

    2016-06-27

    In this paper, a new approach to dual comb generation based on well-known optical techniques (Gain-Switching and Optical Injection Locking) is presented. The architecture can be implemented using virtually every kind of continuous-wave semiconductor laser source (DFB, VCSEL, QCL) and without the necessity of electro-optic modulators. This way, a frequency-agile and adaptive dual-comb architecture is provided with potential implementation capabilities from mid-infrared to near ultraviolet. With a RF comb comprising around 70 teeth, the system is validated in the 1.5 μm region measuring the absorption feature of H13CN at 1538.523 nm with a minimum integration time of 10 μs. PMID:27410649

  19. Phase Contrast Wavefront Sensing for Adaptive Optics

    NASA Technical Reports Server (NTRS)

    Bloemhof, E. E.; Wallace, J. K.; Bloemhof, E. E.

    2004-01-01

    Most ground-based adaptive optics systems use one of a small number of wavefront sensor technologies, notably (for relatively high-order systems) the Shack-Hartmann sensor, which provides local measurements of the phase slope (first-derivative) at a number of regularly-spaced points across the telescope pupil. The curvature sensor, with response proportional to the second derivative of the phase, is also sometimes used, but has undesirable noise propagation properties during wavefront reconstruction as the number of actuators becomes large. It is interesting to consider the use for astronomical adaptive optics of the "phase contrast" technique, originally developed for microscopy by Zemike to allow convenient viewing of phase objects. In this technique, the wavefront sensor provides a direct measurement of the local value of phase in each sub-aperture of the pupil. This approach has some obvious disadvantages compared to Shack-Hartmann wavefront sensing, but has some less obvious but substantial advantages as well. Here we evaluate the relative merits in a practical ground-based adaptive optics system.

  20. Robotic visible-light laser adaptive optics

    NASA Astrophysics Data System (ADS)

    Baranec, Christoph; Riddle, Reed; Law, Nicholas; Ramaprakash, A. N.; Tendulkar, Shriharsh; Bui, Khanh; Burse, Mahesh; Chordia, Pravin; Das, Hillol; Dekany, Richard; Kulkarni, Shrinivas; Punnadi, Sujit

    2013-12-01

    Robo-AO is the first autonomous laser adaptive optics system and science instrument operating on sky. With minimal human oversight, the system robotically executes large scale surveys, monitors long-term astrophysical dynamics and characterizes newly discovered transients, all at the visible diffraction limit. The adaptive optics setup time, from the end of the telescope slew to the beginning of an observation, is a mere ~50-60 s, enabling over 200 observations per night. The first of many envisioned systems has finished 58 nights of science observing at the Palomar Observatory 60-inch (1.5 m) telescope, with over 6,400 robotic observations executed thus far. The system will be augmented in late 2013 with a low-noise wide field infrared camera, which doubles as a tip-tilt sensor, to widen the spectral bandwidth of observations and increase available sky coverage while also enabling deeper visible imaging using adaptive-optics sharpened infrared tip-tilt guide sources. Techniques applicable to larger telescope systems will also be tested: the infrared camera will be used to demonstrate advanced multiple region-of-interest tip-tilt guiding methods, and a visitor instrument port will be used for evaluation of other instrumentation, e.g. single-mode and photonic fibers to feed compact spectrographs.

  1. Adaptive optics for directly imaging planetary systems

    NASA Astrophysics Data System (ADS)

    Bailey, Vanessa Perry

    In this dissertation I present the results from five papers (including one in preparation) on giant planets, brown dwarfs, and their environments, as well as on the commissioning and optimization of the Adaptive Optics system for the Large Binocular Telescope Interferometer. The first three Chapters cover direct imaging results on several distantly-orbiting planets and brown dwarf companions. The boundary between giant planets and brown dwarf companions in wide orbits is a blurry one. In Chapter 2, I use 3--5 mum imaging of several brown dwarf companions, combined with mid-infrared photometry for each system to constrain the circum-substellar disks around the brown dwarfs. I then use this information to discuss limits on scattering events versus in situ formation. In Chapters 3 and 4, I present results from an adaptive optics imaging survey for giant planets, where the target stars were selected based on the properties of their circumstellar debris disks. Specifically, we targeted systems with debris disks whose SEDs indicated gaps, clearings, or truncations; these features may possibly be sculpted by planets. I discuss in detail one planet-mass companion discovered as part of this survey, HD 106906 b. At a projected separation of 650 AU and weighing in at 11 Jupiter masses, a companion such as this is not a common outcome of any planet or binary star formation model. In the remaining three Chapters, I discuss pre-commissioning, on-sky results, and planned work on the Large Binocular Telescope Interferometer Adaptive Optics system. Before construction of the LBT AO system was complete, I tested a prototype of LBTI's pyramid wavefront sensor unit at the MMT with synthetically-generated calibration files. I present the methodology and MMT on-sky tests in Chapter 5. In Chapter 6, I present the commissioned performance of LBTIAO. Optical imperfections within LBTI limited the quality of the science images, and I describe a simple method to use the adaptive optics system

  2. Optical Property Analyses of Plant Cells for Adaptive Optics Microscopy

    NASA Astrophysics Data System (ADS)

    Tamada, Yosuke; Murata, Takashi; Hattori, Masayuki; Oya, Shin; Hayano, Yutaka; Kamei, Yasuhiro; Hasebe, Mitsuyasu

    2014-04-01

    In astronomy, adaptive optics (AO) can be used to cancel aberrations caused by atmospheric turbulence and to perform diffraction-limited observation of astronomical objects from the ground. AO can also be applied to microscopy, to cancel aberrations caused by cellular structures and to perform high-resolution live imaging. As a step toward the application of AO to microscopy, here we analyzed the optical properties of plant cells. We used leaves of the moss Physcomitrella patens, which have a single layer of cells and are thus suitable for optical analysis. Observation of the cells with bright field and phase contrast microscopy, and image degradation analysis using fluorescent beads demonstrated that chloroplasts provide the main source of optical degradations. Unexpectedly, the cell wall, which was thought to be a major obstacle, has only a minor effect. Such information provides the basis for the application of AO to microscopy for the observation of plant cells.

  3. Compact adaptive optics line scanning ophthalmoscope

    PubMed Central

    Mujat, Mircea; Ferguson, R. Daniel; Iftimia, Nicusor; Hammer, Daniel X.

    2010-01-01

    We have developed a compact retinal imager that integrates adaptive optics (AO) into a line scanning ophthalmoscope (LSO). The bench-top AO-LSO instrument significantly reduces the size, complexity, and cost of research AO scanning laser ophthalmoscopes (AOSLOs), for the purpose of moving adaptive optics imaging more rapidly into routine clinical use. The AO-LSO produces high resolution retinal images with only one moving part and a significantly reduced instrument footprint and number of optical components. The AO-LSO has a moderate field of view (5.5 deg), which allows montages of the macula or other targets to be obtained more quickly and efficiently. In a preliminary human subjects investigation, photoreceptors could be resolved and counted within ~0.5 mm of the fovea. Photoreceptor counts matched closely to previously reported histology. The capillaries surrounding the foveal avascular zone could be resolved, as well as cells flowing within them. Individual nerve fiber bundles could be resolved, especially near the optic nerve head, as well as other structures such as the lamina cribrosa. In addition to instrument design, fabrication, and testing, software algorithms were developed for automated image registration and cone counting. PMID:19506678

  4. Reflective afocal broadband adaptive optics scanning ophthalmoscope.

    PubMed

    Dubra, Alfredo; Sulai, Yusufu

    2011-06-01

    A broadband adaptive optics scanning ophthalmoscope (BAOSO) consisting of four afocal telescopes, formed by pairs of off-axis spherical mirrors in a non-planar arrangement, is presented. The non-planar folding of the telescopes is used to simultaneously reduce pupil and image plane astigmatism. The former improves the adaptive optics performance by reducing the root-mean-square (RMS) of the wavefront and the beam wandering due to optical scanning. The latter provides diffraction limited performance over a 3 diopter (D) vergence range. This vergence range allows for the use of any broadband light source(s) in the 450-850 nm wavelength range to simultaneously image any combination of retinal layers. Imaging modalities that could benefit from such a large vergence range are optical coherence tomography (OCT), multi- and hyper-spectral imaging, single- and multi-photon fluorescence. The benefits of the non-planar telescopes in the BAOSO are illustrated by resolving the human foveal photoreceptor mosaic in reflectance using two different superluminescent diodes with 680 and 796 nm peak wavelengths, reaching the eye with a vergence of 0.76 D relative to each other. PMID:21698035

  5. Reflective afocal broadband adaptive optics scanning ophthalmoscope

    PubMed Central

    Dubra, Alfredo; Sulai, Yusufu

    2011-01-01

    A broadband adaptive optics scanning ophthalmoscope (BAOSO) consisting of four afocal telescopes, formed by pairs of off-axis spherical mirrors in a non-planar arrangement, is presented. The non-planar folding of the telescopes is used to simultaneously reduce pupil and image plane astigmatism. The former improves the adaptive optics performance by reducing the root-mean-square (RMS) of the wavefront and the beam wandering due to optical scanning. The latter provides diffraction limited performance over a 3 diopter (D) vergence range. This vergence range allows for the use of any broadband light source(s) in the 450-850 nm wavelength range to simultaneously image any combination of retinal layers. Imaging modalities that could benefit from such a large vergence range are optical coherence tomography (OCT), multi- and hyper-spectral imaging, single- and multi-photon fluorescence. The benefits of the non-planar telescopes in the BAOSO are illustrated by resolving the human foveal photoreceptor mosaic in reflectance using two different superluminescent diodes with 680 and 796 nm peak wavelengths, reaching the eye with a vergence of 0.76 D relative to each other. PMID:21698035

  6. Specialized wavefront sensors for adaptive optics

    SciTech Connect

    Neal, D.R.; Mansell, J.D.; Gruetzner, J.K.

    1995-08-01

    The performance of an adaptive optical system is strongly dependent upon correctly measuring the wavefront of the arriving light. The most common wavefront measurement techniques used to date are the shearing interferometer and the Shack-Hartmann sensor. Shack-Hartmann sensors rely on the use of lenslet arrays to sample the aperture appropriately. These have traditionally been constructed using ULM or step and repeat technology, and more recently with binary optics technology. Diffractive optics fabrication methodology can be used to remove some of the limitations of the previous technologies and can allow for low-cost production of sophisticated elements. We have investigated several different specialized wavefront sensor configurations using both Shack-Hartmann and shearing interferometer principles. We have taken advantage of the arbitrary nature of these elements to match pupil shapes of detector and telescope aperture and to introduce magnification between the lenslet array and the detector. We have fabricated elements that facilitate matching the sampling to the current atmospheric conditions. The sensors were designed using a far-field diffraction model and a photolithography layout program. They were fabricated using photolithography and RIE etching. Several different designs will be presented with some experimental results from a small-scale adaptive optics brass-board.

  7. Adaptive Optics Retinal Imaging: Emerging Clinical Applications

    PubMed Central

    Godara, Pooja; Dubis, Adam M.; Roorda, Austin; Duncan, Jacque L.; Carroll, Joseph

    2010-01-01

    The human retina is a uniquely accessible tissue. Tools like scanning laser ophthalmoscopy (SLO) and spectral domain optical coherence tomography (SD-OCT) provide clinicians with remarkably clear pictures of the living retina. While the anterior optics of the eye permit such non-invasive visualization of the retina and associated pathology, these same optics induce significant aberrations that in most cases obviate cellular-resolution imaging. Adaptive optics (AO) imaging systems use active optical elements to compensate for aberrations in the optical path between the object and the camera. Applied to the human eye, AO allows direct visualization of individual rod and cone photoreceptor cells, RPE cells, and white blood cells. AO imaging has changed the way vision scientists and ophthalmologists see the retina, helping to clarify our understanding of retinal structure, function, and the etiology of various retinal pathologies. Here we review some of the advances made possible with AO imaging of the human retina, and discuss applications and future prospects for clinical imaging. PMID:21057346

  8. Configuration management plan for the Objective Supply Capability Adaptive Resdesign (OSCAR) project

    SciTech Connect

    Rasch, K.A.; Reid, R.W.

    1997-02-01

    The Configuration Management Plan for the Object Supply Capability Adaptive Redesign (OSCAR) documents the methods used for the OSCAR project to implement configuration management and control. Specific areas addressed include the establishment of baselines and change control procedures.

  9. Integrated modeling of the GMT laser tomography adaptive optics system

    NASA Astrophysics Data System (ADS)

    Piatrou, Piotr

    2014-08-01

    Laser Tomography Adaptive Optics (LTAO) is one of adaptive optics systems planned for the Giant Magellan Telescope (GMT). End-to-end simulation tools that are able to cope with the complexity and computational burden of the AO systems to be installed on the extremely large telescopes such as GMT prove to be an integral part of the GMT LTAO system development endeavors. SL95, the Fortran 95 Simulation Library, is one of the software tools successfully used for the LTAO system end-to-end simulations. The goal of SL95 project is to provide a complete set of generic, richly parameterized mathematical models for key elements of the segmented telescope wavefront control systems including both active and adaptive optics as well as the models for atmospheric turbulence, extended light sources like Laser Guide Stars (LGS), light propagation engines and closed-loop controllers. The library is implemented as a hierarchical collection of classes capable of mutual interaction, which allows one to assemble complex wavefront control system configurations with multiple interacting control channels. In this paper we demonstrate the SL95 capabilities by building an integrated end-to-end model of the GMT LTAO system with 7 control channels: LGS tomography with Adaptive Secondary and on-instrument deformable mirrors, tip-tilt and vibration control, LGS stabilization, LGS focus control, truth sensor-based dynamic noncommon path aberration rejection, pupil position control, SLODAR-like embedded turbulence profiler. The rich parameterization of the SL95 classes allows to build detailed error budgets propagating through the system multiple errors and perturbations such as turbulence-, telescope-, telescope misalignment-, segment phasing error-, non-common path-induced aberrations, sensor noises, deformable mirror-to-sensor mis-registration, vibration, temporal errors, etc. We will present a short description of the SL95 architecture, as well as the sample GMT LTAO system simulation

  10. Pixelized Device Control Actuators for Large Adaptive Optics

    NASA Technical Reports Server (NTRS)

    Knowles, Gareth J.; Bird, Ross W.; Shea, Brian; Chen, Peter

    2009-01-01

    A fully integrated, compact, adaptive space optic mirror assembly has been developed, incorporating new advances in ultralight, high-performance composite mirrors. The composite mirrors use Q-switch matrix architecture-based pixelized control (PMN-PT) actuators, which achieve high-performance, large adaptive optic capability, while reducing the weight of present adaptive optic systems. The self-contained, fully assembled, 11x11x4-in. (approx.= 28x28x10-cm) unit integrates a very-high-performance 8-in. (approx.=20-cm) optic, and has 8-kHz true bandwidth. The assembled unit weighs less than 15 pounds (=6.8 kg), including all mechanical assemblies, power electronics, control electronics, drive electronics, face sheet, wiring, and cabling. It requires just three wires to be attached (power, ground, and signal) for full-function systems integration, and uses a steel-frame and epoxied electronics. The three main innovations are: 1. Ultralightweight composite optics: A new replication method for fabrication of very thin composite 20-cm-diameter laminate face sheets with good as-fabricated optical figure was developed. The approach is a new mandrel resin surface deposition onto previously fabricated thin composite laminates. 2. Matrix (regenerative) power topology: Waveform correction can be achieved across an entire face sheet at 6 kHz, even for large actuator counts. In practice, it was found to be better to develop a quadrant drive, that is, four quadrants of 169 actuators behind the face sheet. Each quadrant has a single, small, regenerative power supply driving all 169 actuators at 8 kHz in effective parallel. 3. Q-switch drive architecture: The Q-switch innovation is at the heart of the matrix architecture, and allows for a very fast current draw into a desired actuator element in 120 counts of a MHz clock without any actuator coupling.

  11. Adaptive optics scanning ophthalmoscopy with annular pupils

    PubMed Central

    Sulai, Yusufu N.; Dubra, Alfredo

    2012-01-01

    Annular apodization of the illumination and/or imaging pupils of an adaptive optics scanning light ophthalmoscope (AOSLO) for improving transverse resolution was evaluated using three different normalized inner radii (0.26, 0.39 and 0.52). In vivo imaging of the human photoreceptor mosaic at 0.5 and 10° from fixation indicates that the use of an annular illumination pupil and a circular imaging pupil provides the most benefit of all configurations when using a one Airy disk diameter pinhole, in agreement with the paraxial confocal microscopy theory. Annular illumination pupils with 0.26 and 0.39 normalized inner radii performed best in terms of the narrowing of the autocorrelation central lobe (between 7 and 12%), and the increase in manual and automated photoreceptor counts (8 to 20% more cones and 11 to 29% more rods). It was observed that the use of annular pupils with large inner radii can result in multi-modal cone photoreceptor intensity profiles. The effect of the annular masks on the average photoreceptor intensity is consistent with the Stiles-Crawford effect (SCE). This indicates that combinations of images of the same photoreceptors with different apodization configurations and/or annular masks can be used to distinguish cones from rods, even when the former have complex multi-modal intensity profiles. In addition to narrowing the point spread function transversally, the use of annular apodizing masks also elongates it axially, a fact that can be used for extending the depth of focus of techniques such as adaptive optics optical coherence tomography (AOOCT). Finally, the positive results from this work suggest that annular pupil apodization could be used in refractive or catadioptric adaptive optics ophthalmoscopes to mitigate undesired back-reflections. PMID:22808435

  12. Adaptive optics without altering visual perception

    PubMed Central

    DE, Koenig; NW, Hart; HJ, Hofer

    2014-01-01

    Adaptive optics combined with visual psychophysics creates the potential to study the relationship between visual function and the retina at the cellular scale. This potential is hampered, however, by visual interference from the wavefront-sensing beacon used during correction. For example, we have previously shown that even a dim, visible beacon can alter stimulus perception (Hofer, H. J., Blaschke, J., Patolia, J., & Koenig, D. E. (2012). Fixation light hue bias revisited: Implications for using adaptive optics to study color vision. Vision Research, 56, 49-56). Here we describe a simple strategy employing a longer wavelength (980nm) beacon that, in conjunction with appropriate restriction on timing and placement, allowed us to perform psychophysics when dark adapted without altering visual perception. The method was verified by comparing detection and color appearance of foveally presented small spot stimuli with and without the wavefront beacon present in 5 subjects. As an important caution, we found that significant perceptual interference can occur even with a subliminal beacon when additional measures are not taken to limit exposure. Consequently, the lack of perceptual interference should be verified for a given system, and not assumed based on invisibility of the beacon. PMID:24607992

  13. The CHARA Array Adaptive Optics Program

    NASA Astrophysics Data System (ADS)

    Ten Brummelaar, Theo; Che, Xiao; McAlister, Harold A.; Ireland, Michael; Monnier, John D.; Mourard, Denis; Ridgway, Stephen T.; sturmann, judit; Sturmann, Laszlo; Turner, Nils H.; Tuthill, Peter

    2016-01-01

    The CHARA array is an optical/near infrared interferometer consisting of six 1-meter diameter telescopes the longest baseline of which is 331 meters. With sub-millisecond angular resolution, the CHARA array is able to spatially resolve nearby stellar systems to reveal the detailed structures. To improve the sensitivity and scientific throughput, the CHARA array was funded by NSF-ATI in 2011, and by NSF-MRI in 2015, for an upgrade of adaptive optics (AO) systems to all six telescopes. The initial grant covers Phase I of the adaptive optics system, which includes an on-telescope Wavefront Sensor and non-common-path (NCP) error correction. The WFS use a fairly standard Shack-Hartman design and will initially close the tip tilt servo and log wavefront errors for use in data reduction and calibration. The second grant provides the funding for deformable mirrors for each telescope which will be used closed loop to remove atmospheric aberrations from the beams. There are then over twenty reflections after the WFS at the telescopes that bring the light several hundred meters into the beam combining laboratory. Some of these, including the delay line and beam reducing optics, are powered elements, and some of them, in particular the delay lines and telescope Coude optics, are continually moving. This means that the NCP problems in an interferometer are much greater than those found in more standard telescope systems. A second, slow AO system is required in the laboratory to correct for these NCP errors. We will breifly describe the AO system, and it's current status, as well as discuss the new science enabled by the system with a focus on our YSO program.

  14. Imaging Radio Galaxies with Adaptive Optics

    NASA Astrophysics Data System (ADS)

    de Vries, W. H.; van Breugel, W. J. M.; Quirrenbach, A.; Roberts, J.; Fidkowski, K.

    2000-12-01

    We present 42 milli-arcsecond resolution Adaptive Optics near-infrared images of 3C 452 and 3C 294, two powerful radio galaxies at z=0.081 and z=1.79 respectively, obtained with the NIRSPEC/SCAM+AO instrument on the Keck telescope. The observations provide unprecedented morphological detail of radio galaxy components like nuclear dust-lanes, off-centered or binary nuclei, and merger induced starforming structures; all of which are key features in understanding galaxy formation and the onset of powerful radio emission. Complementary optical HST imaging data are used to construct high resolution color images, which, for the first time, have matching optical and near-IR resolutions. Based on these maps, the extra-nuclear structural morphologies and compositions of both galaxies are discussed. Furthermore, detailed brightness profile analysis of 3C 452 allows a direct comparison to a large literature sample of nearby ellipticals, all of which have been observed in the optical and near-IR by HST. Both the imaging data and the profile information on 3C 452 are consistent with it being a relative diminutive and well-evolved elliptical, in stark contrast to 3C 294 which seems to be in its initial formation throes with an active AGN off-centered from the main body of the galaxy. These results are discussed further within the framework of radio galaxy triggering and the formation of massive ellipticals. The work of WdV and WvB was performed under the auspices of the U.S. Department of Energy by University of California Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48. The work at UCSD has been supported by the NSF Science and Technology Center for Adaptive Optics, under agreement No. AST-98-76783.

  15. The Adaptive Optics Summer School Laboratory Activities

    NASA Astrophysics Data System (ADS)

    Ammons, S. M.; Severson, S.; Armstrong, J. D.; Crossfield, I.; Do, T.; Fitzgerald, M.; Harrington, D.; Hickenbotham, A.; Hunter, J.; Johnson, J.; Johnson, L.; Li, K.; Lu, J.; Maness, H.; Morzinski, K.; Norton, A.; Putnam, N.; Roorda, A.; Rossi, E.; Yelda, S.

    2010-12-01

    Adaptive Optics (AO) is a new and rapidly expanding field of instrumentation, yet astronomers, vision scientists, and general AO practitioners are largely unfamiliar with the root technologies crucial to AO systems. The AO Summer School (AOSS), sponsored by the Center for Adaptive Optics, is a week-long course for training graduate students and postdoctoral researchers in the underlying theory, design, and use of AO systems. AOSS participants include astronomers who expect to utilize AO data, vision scientists who will use AO instruments to conduct research, opticians and engineers who design AO systems, and users of high-bandwidth laser communication systems. In this article we describe new AOSS laboratory sessions implemented in 2006-2009 for nearly 250 students. The activity goals include boosting familiarity with AO technologies, reinforcing knowledge of optical alignment techniques and the design of optical systems, and encouraging inquiry into critical scientific questions in vision science using AO systems as a research tool. The activities are divided into three stations: Vision Science, Fourier Optics, and the AO Demonstrator. We briefly overview these activities, which are described fully in other articles in these conference proceedings (Putnam et al., Do et al., and Harrington et al., respectively). We devote attention to the unique challenges encountered in the design of these activities, including the marriage of inquiry-like investigation techniques with complex content and the need to tune depth to a graduate- and PhD-level audience. According to before-after surveys conducted in 2008, the vast majority of participants found that all activities were valuable to their careers, although direct experience with integrated, functional AO systems was particularly beneficial.

  16. Multifocal multiphoton microscopy with adaptive optical correction

    NASA Astrophysics Data System (ADS)

    Coelho, Simao; Poland, Simon; Krstajic, Nikola; Li, David; Monypenny, James; Walker, Richard; Tyndall, David; Ng, Tony; Henderson, Robert; Ameer-Beg, Simon

    2013-02-01

    Fluorescence lifetime imaging microscopy (FLIM) is a well established approach for measuring dynamic signalling events inside living cells, including detection of protein-protein interactions. The improvement in optical penetration of infrared light compared with linear excitation due to Rayleigh scattering and low absorption have provided imaging depths of up to 1mm in brain tissue but significant image degradation occurs as samples distort (aberrate) the infrared excitation beam. Multiphoton time-correlated single photon counting (TCSPC) FLIM is a method for obtaining functional, high resolution images of biological structures. In order to achieve good statistical accuracy TCSPC typically requires long acquisition times. We report the development of a multifocal multiphoton microscope (MMM), titled MegaFLI. Beam parallelization performed via a 3D Gerchberg-Saxton (GS) algorithm using a Spatial Light Modulator (SLM), increases TCSPC count rate proportional to the number of beamlets produced. A weighted 3D GS algorithm is employed to improve homogeneity. An added benefit is the implementation of flexible and adaptive optical correction. Adaptive optics performed by means of Zernike polynomials are used to correct for system induced aberrations. Here we present results with significant improvement in throughput obtained using a novel complementary metal-oxide-semiconductor (CMOS) 1024 pixel single-photon avalanche diode (SPAD) array, opening the way to truly high-throughput FLIM.

  17. Adaptive Optics Imaging in Laser Pointer Maculopathy.

    PubMed

    Sheyman, Alan T; Nesper, Peter L; Fawzi, Amani A; Jampol, Lee M

    2016-08-01

    The authors report multimodal imaging including adaptive optics scanning laser ophthalmoscopy (AOSLO) (Apaeros retinal image system AOSLO prototype; Boston Micromachines Corporation, Boston, MA) in a case of previously diagnosed unilateral acute idiopathic maculopathy (UAIM) that demonstrated features of laser pointer maculopathy. The authors also show the adaptive optics images of a laser pointer maculopathy case previously reported. A 15-year-old girl was referred for the evaluation of a maculopathy suspected to be UAIM. The authors reviewed the patient's history and obtained fluorescein angiography, autofluorescence, optical coherence tomography, infrared reflectance, and AOSLO. The time course of disease and clinical examination did not fit with UAIM, but the linear pattern of lesions was suspicious for self-inflicted laser pointer injury. This was confirmed on subsequent questioning of the patient. The presence of linear lesions in the macula that are best highlighted with multimodal imaging techniques should alert the physician to the possibility of laser pointer injury. AOSLO further characterizes photoreceptor damage in this condition. [Ophthalmic Surg Lasers Imaging Retina. 2016;47:782-785.]. PMID:27548458

  18. The ESO Adaptive Optics Facility under Test

    NASA Astrophysics Data System (ADS)

    Arsenault, Robin; Madec, Pierre-Yves; Paufique, Jerome; La Penna, Paolo; Stroebele, Stefan; Vernet, Elise; Pirard, Jean-François; Hackenberg, Wolfgang; Kuntschner, Harald; Kolb, Johann; Muller, Nicolas; Le Louarn, Miska; Amico, Paola; Hubin, Norbert; Lizon, Jean-Louis; Ridings, Rob; Abad, Jose; Fischer, Gert; Heinz, Volker; Kiekebusch, Mario; Argomedo, Javier; Conzelmann, Ralf; Tordo, Sebastien; Donaldson, Rob; Soenke, Christian; Duhoux, Philippe; Fedrigo, Enrico; Delabre, Bernard; Jost, Andrea; Duchateau, Michel; Downing, Mark; Moreno, Javier; Manescau, Antonio; Bonaccini Calia, Domenico; Quattri, Marco; Dupuy, Christophe; Guidolin, Ivan; Comin, Mauro; Guzman, Ronald; Buzzoni, Bernard; Quentin, Jutta; Lewis, Steffan; Jolley, Paul; Kraus, Max; Pfrommer, Thomas; Garcia-Rissmann, Aurea; Biasi, Roberto; Gallieni, Daniele; Stuik, Remko

    2013-12-01

    The Adaptive Optics Facility project has received most of its subsystems in Garching and the ESO Integration Hall has become the central operation location for the next phase of the project. The main test bench ASSIST and the 2nd Generation M2-Unit (hosting the Deformable Secondary Mirror) have been granted acceptance late 2012. The DSM will now undergo a series of tests on ASSIST to qualify its optical performance which launches the System Test Phase of the AOF. The tests will validate the AO modules operation with the DSM: first the GRAAL adaptive optics module for Hawk-I in natural guide star AO mode on-axis and then its Ground Layer AO mode. This will be followed by the GALACSI (for MUSE) Wide-Field-Mode (GLAO) and then the more challenging Narrow-Field-Mode (LTAO). We will report on the status of the subsystems at the time of the conference but also on the performance of the delivered ASSIST test bench, the DSM and the 20 Watt Sodium fiber Laser pre-production unit which has validated all specifications before final manufacturing of the serial units. We will also present some considerations and tools to ensure an efficient operation of the Facility in Paranal.

  19. Global (Multi Conjugated) Adaptive Optics and beyond

    NASA Astrophysics Data System (ADS)

    Ragazzoni, Roberto

    Multi Conjugated Adaptive Optics is nowadays a well established achievement marked by the short-lived MAD at the VLT, although it still lacks the benefits of being employed in instrumentations at 8m class telescopes, with the sole exception of GeMS at GEMINI. While the next obvious extension of MCAO is reppresented by GMCAO that is briefly described, I speculate on which could be the areas where development is needed or where some outstanding achievement could have the chance to make a further leap, if not a novel revolution, in the field of ground based astronomical instrumentation.

  20. Tomographic Adaptive Optics and Turbulence Profiling

    NASA Astrophysics Data System (ADS)

    Morris, Tim

    2015-04-01

    The use of tomographic adaptive optics is fundamental to fulfilling scientific goals for many proposed instruments at major observatories. Tomographic AO uses knowledge of the atmospheric C2n profile and to date, the majority of the profiles used to design and simulate these systems have come from external turbulence profilers. The C2n profile resolution required for accurate predictions of ELT instrumentation exceeds that of existing instrumentation and here we define the requirements on these profilers for ELT support. However, tomographic AO systems can also measure C2n profiles and we highlight several cases where external profilers can provide critical functionality to support on-sky operations.

  1. Adaptive Holographic Fiber-Optic Interferometer

    NASA Astrophysics Data System (ADS)

    Kozhevnikov, Nikolai M.; Lipovskaya, Margarita J.

    1990-04-01

    Interaction of phase-modulated light beams in photorefractive local inertial responce media was analysed. Interaction of this type allows to registrate phase-modulated signals adaptively under low frequency phase disturbtion. The experiments on multimode fiber-optic interferometer with demodulation element based on photorefractive bacteriorhodopsin-doped polimer film are described. As the writing of dynamic phase hologram is an inertial process the signal fluctuations with the frequencies up to 100 Hz can be canceled. The hologram efficiencies are enough to registrate high frequency phase shifts ~10-4 radn.

  2. Characterization of Adaptive Optics at Keck Observatory

    SciTech Connect

    van Dam, M A; Macintosh, B A

    2003-07-24

    In this paper, the adaptive optics (AO) system at Keck Observatory is characterized. The AO system is described in detail. The physical parameters of the lenslets, CCD and deformable mirror, the calibration procedures and the signal processing algorithms are explained. Results of sky performance tests are presented: the AO system is shown to deliver images with an average Strehl ratio of up to 0.37 at 1.59 {micro}m using a bright guide star. An error budget that is consistent with the observed image quality is presented.

  3. Task Performance in Astronomical Adaptive Optics

    PubMed Central

    Barrett, Harrison H.; Myers, Kyle J.; Devaney, Nicholas; Dainty, J. C.; Caucci, Luca

    2010-01-01

    In objective or task-based assessment of image quality, figures of merit are defined by the performance of some specific observer on some task of scientific interest. This methodology is well established in medical imaging but is just beginning to be applied in astronomy. In this paper we survey the theory needed to understand the performance of ideal or ideal-linear (Hotelling) observers on detection tasks with adaptive-optical data. The theory is illustrated by discussing its application to detection of exoplanets from a sequence of short-exposure images. PMID:20890393

  4. Progress with the lick adaptive optics system

    SciTech Connect

    Gavel, D T; Olivier, S S; Bauman, B; Max, C E; Macintosh, B

    2000-03-01

    Progress and results of observations with the Lick Observatory Laser Guide Star Adaptive Optics System are presented. This system is optimized for diffraction-limited imaging in the near infrared, 1-2 micron wavelength bands. We describe our development efforts in a number of component areas including, a redesign of the optical bench layout, the commissioning of a new infrared science camera, and improvements to the software and user interface. There is also an ongoing effort to characterize the system performance with both natural and laser guide stars and to fold this data into a refined system model. Such a model can be used to help plan future observations, for example, predicting the point-spread function as a function of seeing and guide star magnitude.

  5. Coherence gated wavefront sensorless adaptive optics for two photon excited fluorescence retinal imaging (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Jian, Yifan; Cua, Michelle; Bonora, Stefano; Pugh, Edward N.; Zawadzki, Robert J.; Sarunic, Marinko V.

    2016-03-01

    We present a novel system for adaptive optics two photon imaging. We utilize the bandwidth of the femtosecond excitation beam to perform coherence gated imaging (OCT) of the sample. The location of the focus is directly observable in the cross sectional OCT images, and adjusted to the desired depth plane. Next, using real time volumetric OCT, we perform Wavefront Sensorless Adaptive Optics (WSAO) aberration correction using a multi-element adaptive lens capable of correcting up to 4th order Zernike polynomials. The aberration correction is performed based on an image quality metric, for example intensity. The optimization time is limited only by the OCT acquisition rate, and takes ~30s. Following aberration correction, two photon fluorescence images are acquired, and compared to results without adaptive optics correction. This technique is promising for multiphoton imaging in multi-layered, scattering samples such as eye and brain, in which traditional wavefront sensing and guide-star sensorless adaptive optics approaches may not be suitable.

  6. Adaptive optics and laser guide stars at Lick observatory

    SciTech Connect

    Brase, J.M.

    1994-11-15

    For the past several years LLNL has been developing adaptive optics systems for correction of both atmospheric turbulence effects and thermal distortions in optics for high-power lasers. Our early work focused on adaptive optics for beam control in laser isotope separation and ground-based free electron lasers. We are currently developing innovative adaptive optics and laser systems for sodium laser guide star applications at the University of California`s Lick and Keck Observeratories. This talk will describe our adaptive optics technology and some of its applications in high-resolution imaging and beam control.

  7. Imaging of retinal vasculature using adaptive optics SLO/OCT

    PubMed Central

    Felberer, Franz; Rechenmacher, Matthias; Haindl, Richard; Baumann, Bernhard; Hitzenberger, Christoph K.; Pircher, Michael

    2015-01-01

    We use our previously developed adaptive optics (AO) scanning laser ophthalmoscope (SLO)/ optical coherence tomography (OCT) instrument to investigate its capability for imaging retinal vasculature. The system records SLO and OCT images simultaneously with a pixel to pixel correspondence which allows a direct comparison between those imaging modalities. Different field of views ranging from 0.8°x0.8° up to 4°x4° are supported by the instrument. In addition a dynamic focus scheme was developed for the AO-SLO/OCT system in order to maintain the high transverse resolution throughout imaging depth. The active axial eye tracking that is implemented in the OCT channel allows time resolved measurements of the retinal vasculature in the en-face imaging plane. Vessel walls and structures that we believe correspond to individual erythrocytes could be visualized with the system. PMID:25909024

  8. Closed-loop adaptive optics using a CMOS image quality metric sensor

    NASA Astrophysics Data System (ADS)

    Ting, Chueh; Rayankula, Aditya; Giles, Michael K.; Furth, Paul M.

    2006-08-01

    When compared to a Shack-Hartmann sensor, a CMOS image sharpness sensor has the advantage of reduced complexity in a closed-loop adaptive optics system. It also has the potential to be implemented as a smart sensor using VLSI technology. In this paper, we present a novel adaptive optics testbed that uses a CMOS sharpness imager built in the New Mexico State University (NMSU) Electro-Optics Research Laboratory (EORL). The adaptive optics testbed, which includes a CMOS image quality metric sensor and a 37-channel deformable mirror, has the capability to rapidly compensate higher-order phase aberrations. An experimental performance comparison of the pinhole image sharpness feedback method and the CMOS imager is presented. The experimental data shows that the CMOS sharpness imager works well in a closed-loop adaptive optics system. Its overall performance is better than that of the pinhole method, and it has a fast response time.

  9. In vivo cellular visualization of the human retina using optical coherence tomography and adaptive optics

    SciTech Connect

    Olivier, S S; Jones, S M; Chen, D C; Zawadzki, R J; Choi, S S; Laut, S P; Werner, J S

    2006-01-05

    Optical coherence tomography (OCT) sees the human retina sharply with adaptive optics. In vivo cellular visualization of the human retina at micrometer-scale resolution is possible by enhancing Fourier-domain optical-coherence tomography with adaptive optics, which compensate for the eye's optical aberrations.

  10. Approach for reconstructing anisoplanatic adaptive optics images.

    PubMed

    Aubailly, Mathieu; Roggemann, Michael C; Schulz, Timothy J

    2007-08-20

    Atmospheric turbulence corrupts astronomical images formed by ground-based telescopes. Adaptive optics systems allow the effects of turbulence-induced aberrations to be reduced for a narrow field of view corresponding approximately to the isoplanatic angle theta(0). For field angles larger than theta(0), the point spread function (PSF) gradually degrades as the field angle increases. We present a technique to estimate the PSF of an adaptive optics telescope as function of the field angle, and use this information in a space-varying image reconstruction technique. Simulated anisoplanatic intensity images of a star field are reconstructed by means of a block-processing method using the predicted local PSF. Two methods for image recovery are used: matrix inversion with Tikhonov regularization, and the Lucy-Richardson algorithm. Image reconstruction results obtained using the space-varying predicted PSF are compared to space invariant deconvolution results obtained using the on-axis PSF. The anisoplanatic reconstruction technique using the predicted PSF provides a significant improvement of the mean squared error between the reconstructed image and the object compared to the deconvolution performed using the on-axis PSF. PMID:17712366

  11. Large aperture adaptive optics for intense lasers

    NASA Astrophysics Data System (ADS)

    Deneuville, François; Ropert, Laurent; Sauvageot, Paul; Theis, Sébastien

    2015-05-01

    ISP SYSTEM has developed a range of large aperture electro-mechanical deformable mirrors (DM) suitable for ultra short pulsed intense lasers. The design of the MD-AME deformable mirror is based on force application on numerous locations thanks to electromechanical actuators driven by stepper motors. DM design and assembly method have been adapted to large aperture beams and the performances were evaluated on a first application for a beam with a diameter of 250mm at 45° angle of incidence. A Strehl ratio above 0.9 was reached for this application. Simulations were correlated with measurements on optical bench and the design has been validated by calculation for very large aperture (up to Ø550mm). Optical aberrations up to Zernike order 5 can be corrected with a very low residual error as for actual MD-AME mirror. Amplitude can reach up to several hundreds of μm for low order corrections. Hysteresis is lower than 0.1% and linearity better than 99%. Contrary to piezo-electric actuators, the μ-AME actuators avoid print-through effects and they permit to keep the mirror shape stable even unpowered, providing a high resistance to electro-magnetic pulses. The MD-AME mirrors can be adapted to circular, square or elliptical beams and they are compatible with all dielectric or metallic coatings.

  12. Adaptive Optics with Sodium Laser Guide Stars

    NASA Astrophysics Data System (ADS)

    Lloyd-Hart, M.; Angel, J. R. P.; Jacobsen, B.; Wittman, D.; McCarthy, D.; Martinez, T.

    1994-12-01

    Adaptive optics requires a reference source of light in the sky to measure wavefront aberration introduced by atmospheric turbulence. Natural stars are ideal for this purpose, but the density of bright stars is not sufficient to provide complete sky coverage. The problem can be overcome with an artificial beacon generated from resonant backscattering off mesospheric sodium atoms exited by a low-power laser tuned to the D2 resonance. Recent experiments at the Multiple Mirror Telescope (MMT) have demonstrated for the first time that an adaptive optics system using a sodium laser guide beacon can be used to improve the imaging quality of the telescope. A beacon of mv = 10.4 was used to control the relative image motion between two of the six apertures of the MMT, while a natural star was used to measure the absolute tilt. A factor of two improvement in the K-band Strehl ratio was measured, and the resolution improved from 0(\\?.58) to 0(\\?.41) . The experiment demonstrated all the features needed for correction of telescopes of 6.5 to 8-m diameter to the diffraction limit in the near infrared with a single sodium laser beacon.

  13. Performance of adaptive optics at Lick Observatory

    SciTech Connect

    Olivier, S.S.; An, J.; Avicola, K.

    1994-03-01

    A prototype adaptive optics system has been developed at Lawrence Livermore National Laboratory (LLNL) for use at Lick Observatory. This system is based on an ITEX 69-actuator continuous-surface deformable mirror, a Kodak fast-framing intensified CCD camera, and a Mercury VME board containing four Intel i860 processors. The system has been tested using natural reference stars on the 40-inch Nickel telescope at Lick Observatory yielding up to a factor of 10 increase in image peak intensity and a factor of 6 reduction in image full width at half maximum (FWHM). These results are consistent with theoretical expectations. In order to improve performance, the intensified CCD camera will be replaced by a high-quantum-efficiency low-noise fast CCD camera built for LLNL by Adaptive Optics Associates using a chip developed by Lincoln Laboratory, and the 69-actuator deformable mirror will be replaced by a 127-actuator deformable mirror developed at LLNL. With these upgrades, the system should perform well in median seeing conditions on the 120-inch Shane telescope for observing wavelengths longer than {approximately}1 {mu}m and using natural reference stars brighter than m{sub R} {approximately} 10 or using the laser currently being developed at LLNL for use at Lick Observatory to generate a sodium-layer reference star.

  14. Extreme Adaptive Optics Planet Imager: XAOPI

    SciTech Connect

    Macintosh, B A; Graham, J; Poyneer, L; Sommargren, G; Wilhelmsen, J; Gavel, D; Jones, S; Kalas, P; Lloyd, J; Makidon, R; Olivier, S; Palmer, D; Patience, J; Perrin, M; Severson, S; Sheinis, A; Sivaramakrishnan, A; Troy, M; Wallace, K

    2003-09-17

    Ground based adaptive optics is a potentially powerful technique for direct imaging detection of extrasolar planets. Turbulence in the Earth's atmosphere imposes some fundamental limits, but the large size of ground-based telescopes compared to spacecraft can work to mitigate this. We are carrying out a design study for a dedicated ultra-high-contrast system, the eXtreme Adaptive Optics Planet Imager (XAOPI), which could be deployed on an 8-10m telescope in 2007. With a 4096-actuator MEMS deformable mirror it should achieve Strehl >0.9 in the near-IR. Using an innovative spatially filtered wavefront sensor, the system will be optimized to control scattered light over a large radius and suppress artifacts caused by static errors. We predict that it will achieve contrast levels of 10{sup 7}-10{sup 8} at angular separations of 0.2-0.8 inches around a large sample of stars (R<7-10), sufficient to detect Jupiter-like planets through their near-IR emission over a wide range of ages and masses. We are constructing a high-contrast AO testbed to verify key concepts of our system, and present preliminary results here, showing an RMS wavefront error of <1.3 nm with a flat mirror.

  15. Optical Design for Extremely Large Telescope Adaptive Optics Systems

    SciTech Connect

    Bauman, B J

    2003-11-26

    Designing an adaptive optics (AO) system for extremely large telescopes (ELT's) will present new optical engineering challenges. Several of these challenges are addressed in this work, including first-order design of multi-conjugate adaptive optics (MCAO) systems, pyramid wavefront sensors (PWFS's), and laser guide star (LGS) spot elongation. MCAO systems need to be designed in consideration of various constraints, including deformable mirror size and correction height. The y,{bar y} method of first-order optical design is a graphical technique that uses a plot with marginal and chief ray heights as coordinates; the optical system is represented as a segmented line. This method is shown to be a powerful tool in designing MCAO systems. From these analyses, important conclusions about configurations are derived. PWFS's, which offer an alternative to Shack-Hartmann (SH) wavefront sensors (WFS's), are envisioned as the workhorse of layer-oriented adaptive optics. Current approaches use a 4-faceted glass pyramid to create a WFS analogous to a quad-cell SH WFS. PWFS's and SH WFS's are compared and some newly-considered similarities and PWFS advantages are presented. Techniques to extend PWFS's are offered: First, PWFS's can be extended to more pixels in the image by tiling pyramids contiguously. Second, pyramids, which are difficult to manufacture, can be replaced by less expensive lenslet arrays. An approach is outlined to convert existing SH WFS's to PWFS's for easy evaluation of PWFS's. Also, a demonstration of PWFS's in sensing varying amounts of an aberration is presented. For ELT's, the finite altitude and finite thickness of LGS's means that the LGS will appear elongated from the viewpoint of subapertures not directly under the telescope. Two techniques for dealing with LGS spot elongation in SH WFS's are presented. One method assumes that the laser will be pulsed and uses a segmented micro-electromechanical system (MEMS) to track the LGS light subaperture by

  16. Manufacturing of the ESO adaptive optics facility

    NASA Astrophysics Data System (ADS)

    Arsenault, R.,; Madec, P.-Y.; Hubin, N.; Stroebele, S.; Paufique, J.; Vernet, E.; Hackenberg, W.; Pirard, J.-F.; Jochum, L.; Glindemann, A.; Jost, A.; Conzelmann, R.; Kiekebusch, M.; Tordo, S.; Lizon, J.-L.; Donaldson, R.; Fedrigo, E.; Soenke, C.; Duchateau, M.; Bruton, A.; Delabre, B.; Downing, M.; Reyes, J.; Kolb, J.; Bechet, C.; Lelouarn, M.; Bonaccini Calia, D.; Quattri, M.; Guidolin, I.; Buzzoni, B.; Dupuy, C.; Guzman, R.; Comin, M.; Silber, A.; Quentin, J.; La Penna, P.; Manescau, A.; Jolley, P.; Heinz, V.; Duhoux, P.; Argomedo, J.; Gallieni, D.; Lazzarini, P.; Biasi, R.; Andrighettoni, M.; Angerer, G.; Pescoller, D.; Stuik, R.,; Deep, A.

    2010-07-01

    The ESO Adaptive Optics Facility (AOF) consists in an evolution of one of the ESO VLT unit telescopes to a laser driven adaptive telescope with a deformable mirror in its optical train, in this case the secondary 1.1m mirror, and four Laser Guide Stars (LGSs). This evolution implements many challenging technologies like the Deformable Secondary Mirror (DSM) including a thin shell mirror (1.1 m diameter and 2mm thin), the high power Na lasers (20W), the low Read-Out Noise (RON) WaveFront Sensor (WFS) camera (< 1e-) and SPARTA the new generation of Real Time Computers (RTC) for adaptive control. It also faces many problematic similar to any Extremely Large Telescope (ELT) and as such, will validate many technologies and solutions needed for the European ELT (E-ELT) 42m telescope. The AOF will offer a very large (7 arcmin) Field Of View (FOV) GLAO correction in J, H and K bands (GRAAL+Hawk-I), a visible integral field spectrograph with a 1 arcmin GLAO corrected FOV (GALACSI-MUSE WFM) and finally a LTAO 7.5" FOV (GALACSI-MUSE NFM). Most systems of the AOF have completed final design and are in manufacturing phase. Specific activities are linked to the modification of the 8m telescope in order to accommodate the new DSM and the 4 LGS Units assembled on its Center-Piece. A one year test period in Europe is planned to test and validate all modes and their performance followed by a commissioning phase in Paranal scheduled for 2014.

  17. Object-oriented Matlab adaptive optics toolbox

    NASA Astrophysics Data System (ADS)

    Conan, R.; Correia, C.

    2014-08-01

    Object-Oriented Matlab Adaptive Optics (OOMAO) is a Matlab toolbox dedicated to Adaptive Optics (AO) systems. OOMAO is based on a small set of classes representing the source, atmosphere, telescope, wavefront sensor, Deformable Mirror (DM) and an imager of an AO system. This simple set of classes allows simulating Natural Guide Star (NGS) and Laser Guide Star (LGS) Single Conjugate AO (SCAO) and tomography AO systems on telescopes up to the size of the Extremely Large Telescopes (ELT). The discrete phase screens that make the atmosphere model can be of infinite size, useful for modeling system performance on large time scales. OOMAO comes with its own parametric influence function model to emulate different types of DMs. The cone effect, altitude thickness and intensity profile of LGSs are also reproduced. Both modal and zonal modeling approach are implemented. OOMAO has also an extensive library of theoretical expressions to evaluate the statistical properties of turbulence wavefronts. The main design characteristics of the OOMAO toolbox are object-oriented modularity, vectorized code and transparent parallel computing. OOMAO has been used to simulate and to design the Multi-Object AO prototype Raven at the Subaru telescope and the Laser Tomography AO system of the Giant Magellan Telescope. In this paper, a Laser Tomography AO system on an ELT is simulated with OOMAO. In the first part, we set-up the class parameters and we link the instantiated objects to create the source optical path. Then we build the tomographic reconstructor and write the script for the pseudo-open-loop controller.

  18. Adaptive Optics and Lucky Imager (AOLI): presentation and first light

    NASA Astrophysics Data System (ADS)

    Velasco, S.; Rebolo, R.; Mackay, C.; Oscoz, A.; King, D. L.; Crass, J.; Díaz-Sánchez, A.; Femenía, B.; González-Escalera, V.; Labadie, L.; López, R. L.; Pérez Garrido, A.; Puga, M.; Rodríguez-Ramos, L. F.; Zuther, J.

    2015-05-01

    In this paper we present the Adaptive Optics Lucky Imager (AOLI), a state-of-the-art instrument which makes use of two well proved techniques for extremely high spatial resolution with ground-based telescopes: Lucky Imaging (LI) and Adaptive Optics (AO). AOLI comprises an AO system, including a low order non-linear curvature wavefront sensor together with a 241 actuators deformable mirror, a science array of four 1024x1024 EMCCDs, allowing a 120×120 down to 36×36" field of view, a calibration subsystem and a powerful LI software. Thanks to the revolutionary WFS, AOLI shall have the capability of using faint reference stars (I˜16.5-17.5), enabling it to be used over a much wider part of the sky than with common Shack-Hartmann AO systems. This instrument saw first light in September 2013 at William Herschel Telescope. Although the instrument was not complete, these commissioning demonstrated its feasibility, obtaining a FWHM for the best PSF of 0.151±0.005" and a plate scale of 55.0±0.3 {mas} {pix}^{-1}. Those observations served us to prove some characteristics of the interesting multiple T Tauri system LkHα 262-263, finding it to be gravitationally bounded. This interesting multiple system mixes the presence of proto-planetary discs, one proved to be double, and the first-time optically resolved pair LkHα 263AB (0.42" separation).

  19. Optical design of the adaptive optics laser guide star system

    SciTech Connect

    Bissinger, H.

    1994-11-15

    The design of an adaptive optics package for the 3 meter Lick telescope is presented. This instrument package includes a 69 actuator deformable mirror and a Hartmann type wavefront sensor operating in the visible wavelength; a quadrant detector for the tip-tile sensor and a tip-tilt mirror to stabilize atmospheric first order tip-tile errors. A high speed computer drives the deformable mirror to achieve near diffraction limited imagery. The different optical components and their individual design constraints are described. motorized stages and diagnostics tools are used to operate and maintain alignment throughout observation time from a remote control room. The expected performance are summarized and actual results of astronomical sources are presented.

  20. The Tesat transportable adaptive optical ground station

    NASA Astrophysics Data System (ADS)

    Saucke, Karen; Seiter, Christoph; Heine, Frank; Gregory, Mark; Tröndle, Daniel; Fischer, Edgar; Berkefeld, Thomas; Feriencik, Mikael; Feriencik, Marco; Richter, Ines; Meyer, Rolf

    2016-03-01

    Tesat together with Synopta have built a Transportable Adaptive Optical Ground Station (TAOGS) under contract of German Aerospace Center DLR for communication with the 1st and 2nd generation of Tesat's spaceborne Laser Communication Terminals (LCTs), which employ coherent homodyne optical communication with 1064 nm and binary phase shift keying (BPSK) modulation. The TAOGS is able to communicate with space segments on low earth orbit (LEO, high pointing and tracking dynamics, 5.625 Gbps), and with space segments on geostationary orbit (GEO, low pointing dynamics, up to 40,000 km distance, optical data rate of 2.8125 Gbps and user data rate of 1.8 Gbps). After an alignment and testing phase at the location of Izana, Tenerife, using the TDP1 LCT on geostationary Alphasat as counter terminal, the TAOGS is now fully functioning. Several up-links, down-links and bi-directional links have been performed. Experimental results of some of these links are presented. An outlook to further activities is given.

  1. The Coming of Age of Adaptive Optics

    NASA Astrophysics Data System (ADS)

    1995-10-01

    How Ground-Based Astronomers Beat the Atmosphere Adaptive Optics (AO) is the new ``wonder-weapon'' in ground-based astronomy. By means of advanced electro-optical devices at their telescopes, astronomers are now able to ``neutralize'' the image-smearing turbulence of the terrestrial atmosphere (seen by the unaided eye as the twinkling of stars) so that much sharper images can be obtained than before. In practice, this is done with computer-controlled, flexible mirrors which refocus the blurred images up to 100 times per second, i.e. at a rate that is faster than the changes in the atmospheric turbulence. This means that finer details in astronomical objects can be studied and also - because of the improved concentration of light in the telescope's focal plane - that fainter objects can be observed. At the moment, Adaptive Optics work best in the infrared part of spectrum, but at some later time it may also significantly improve observations at the shorter wavelengths of visible light. The many-sided aspects of this new technology and its impact on astronomical instrumentation was the subject of a recent AO conference [1] with over 150 participants from about 30 countries, presenting a total of more than 100 papers. The Introduction of AO Techniques into Astronomy The scope of this meeting was the design, fabrication and testing of AO systems, characterisation of the sources of atmospheric disturbance, modelling of compensation systems, individual components, astronomical AO results, non-astronomical applications, laser guide star systems, non-linear optical phase conjugation, performance evaluation, and other areas of this wide and complex field, in which front-line science and high technology come together in a new and powerful symbiosis. One of the specific goals of the meeting was to develop contacts between AO scientists and engineers in the western world and their colleagues in Russia and Asia. For the first time at a conference of this type, nine Russian

  2. Daytime adaptive optics for deep space optical communications

    NASA Technical Reports Server (NTRS)

    Wilson, Keith; Troy, M.; Srinivasan, M.; Platt, B.; Vilnrotter, V.; Wright, M.; Garkanian, V.; Hemmati, H.

    2003-01-01

    The deep space optical communications subsystem offers a higher bandwidth communications link in smaller size, lower mass, and lower power consumption subsystem than does RF. To demonstrate the benefit of this technology to deep space communications NASA plans to launch an optical telecommunications package on the 2009 Mars Telecommunications orbiter spacecraft. Current performance goals are 30-Mbps from opposition, and 1-Mbps near conjunction (-3 degrees Sun-Earth-Probe angle). Yet, near conjunction the background noise from the day sky will degrade the performance of the optical link. Spectral and spatial filtering and higher modulation formats can mitigate the effects of background sky. Narrowband spectral filters can result in loss of link margin, and higher modulation formats require higher transmitted peak powers. In contrast, spatial filtering at the receiver has the potential of being lossless while providing the required sky background rejection. Adaptive optics techniques can correct wave front aberrations caused by atmospheric turbulence and enable near-diffraction-limited performance of the receiving telescope. Such performance facilitates spatial filtering, and allows the receiver field-of-view and hence the noise from the sky background to be reduced.

  3. Asteroid Maps From Photometry And Adaptive Optics

    NASA Astrophysics Data System (ADS)

    Kaasalainen, Mikko; Marchis, F.; Carry, B.

    2007-10-01

    While disk-integrated photometry is the main source of information on most asteroids, adaptive optics can provide some disk-resolved data on many larger (main-belt) asteroids. Asteroid models from lightcurve inversion agree well with the obtained AO images (Marchis et al. 2006, Icarus 185,39), but even more detailed models can be obtained by combining the two sources in inversion. In addition to giving more detail to existing models, the approach can also be used to obtain models of asteroids for which the photometric data are yet insufficient alone. This also helps to calibrate the inversion and deconvolution processes related to the separate sources; e.g., whether features apparently revealed by AO post-processing are real or artificial. We present some examples and discuss the resolution level of topographic detail in the resulting models. Hundreds of asteroids can be mapped in this way in the near future.

  4. Adaptive Optics Imaging and Spectroscopy of Neptune

    NASA Technical Reports Server (NTRS)

    Johnson, Lindley (Technical Monitor); Sromovsky, Lawrence A.

    2005-01-01

    OBJECTIVES: We proposed to use high spectral resolution imaging and spectroscopy of Neptune in visible and near-IR spectral ranges to advance our understanding of Neptune s cloud structure. We intended to use the adaptive optics (AO) system at Mt. Wilson at visible wavelengths to try to obtain the first groundbased observations of dark spots on Neptune; we intended to use A 0 observations at the IRTF to obtain near-IR R=2000 spatially resolved spectra and near-IR A0 observations at the Keck observatory to obtain the highest spatial resolution studies of cloud feature dynamics and atmospheric motions. Vertical structure of cloud features was to be inferred from the wavelength dependent absorption of methane and hydrogen,

  5. Wavefront Control for Extreme Adaptive Optics

    SciTech Connect

    Poyneer, L A

    2003-07-16

    Current plans for Extreme Adaptive Optics systems place challenging requirements on wave-front control. This paper focuses on control system dynamics, wave-front sensing and wave-front correction device characteristics. It may be necessary to run an ExAO system after a slower, low-order AO system. Running two independent systems can result in very good temporal performance, provided specific design constraints are followed. The spatially-filtered wave-front sensor, which prevents aliasing and improves PSF sensitivity, is summarized. Different models of continuous and segmented deformable mirrors are studied. In a noise-free case, a piston-tip-tilt segmented MEMS device can achieve nearly equivalent performance to a continuous-sheet DM in compensating for a static phase aberration with use of spatial filtering.

  6. ESO adaptive optics facility progress report

    NASA Astrophysics Data System (ADS)

    Arsenault, Robin; Madec, Pierre-Yves; Paufique, Jerome; La Penna, Paolo; Stroebele, Stefan; Vernet, Elise; Pirard, Jean-Francois; Hackenberg, Wolfgang; Kuntschner, Harald; Jochum, Lieselotte; Kolb, Johann; Muller, Nicolas; Le Louarn, Miska; Amico, Paola; Hubin, Norbert; Lizon, Jean-Louis; Ridings, Rob; Abad, Jose A.; Fischer, Gert; Heinz, Volker; Kiekebusch, Mario; Argomedo, Javier; Conzelmann, Ralf; Tordo, Sebastien; Donaldson, Robert; Soenke, Christian; Duhoux, Philippe; Fedrigo, Enrico; Delabre, Bernard; Jost, Andreas; Duchateau, Michel; Downing, Mark; Moreno, Javier R.; Dorn, Reinhold; Manescau, Antonio; Bonaccini Calia, Domenico; Quattri, Marco; Dupuy, Christophe; Guidolin, Ivan M.; Comin, Mauro; Guzman, Ronald; Buzzoni, Bernard; Quentin, Jutta; Lewis, Steffan; Jolley, Paul; Kraus, Maximilian; Pfrommer, Thomas; Biasi, Roberto; Gallieni, Daniele; Bechet, Clementine; Stuik, Remko

    2012-07-01

    The ESO Adaptive Optics Facility (AOF) consists in an evolution of one of the ESO VLT unit telescopes to a laser driven adaptive telescope with a deformable mirror in its optical train. The project has completed the procurement phase and several large structures have been delivered to Garching (Germany) and are being integrated (the AO modules GRAAL and GALACSI and the ASSIST test bench). The 4LGSF Laser (TOPTICA) has undergone final design review and a pre-production unit has been built and successfully tested. The Deformable Secondary Mirror is fully integrated and system tests have started with the first science grade thin shell mirror delivered by SAGEM. The integrated modules will be tested in stand-alone mode in 2012 and upon delivery of the DSM in late 2012, the system test phase will start. A commissioning strategy has been developed and will be updated before delivery to Paranal. A substantial effort has been spent in 2011-2012 to prepare the unit telescope to receive the AOF by preparing the mechanical interfaces and upgrading the cooling and electrical network. This preparation will also simplify the final installation of the facility on the telescope. A lot of attention is given to the system calibration, how to record and correct any misalignment and control the whole facility. A plan is being developed to efficiently operate the AOF after commissioning. This includes monitoring a relevant set of atmospheric parameters for scheduling and a Laser Traffic control system to assist the operator during the night and help/support the observing block preparation.

  7. Wavefront sensors and algorithms for adaptive optical systems

    NASA Astrophysics Data System (ADS)

    Lukin, V. P.; Botygina, N. N.; Emaleev, O. N.; Konyaev, P. A.

    2010-07-01

    The results of recent works related to techniques and algorithms for wave-front (WF) measurement using Shack-Hartmann sensors show their high efficiency in solution of very different problems of applied optics. The goal of this paper was to develop a sensitive Shack-Hartmann sensor with high precision WF measurement capability on the base of modern technology of optical elements making and new efficient methods and computational algorithms of WF reconstruction. The Shack-Hartmann sensors sensitive to small WF aberrations are used for adaptive optical systems, compensating the wave distortions caused by atmospheric turbulence. A high precision Shack-Hartmann WF sensor has been developed on the basis of a low-aperture off-axis diffraction lens array. The device is capable of measuring WF slopes at array sub-apertures of size 640×640 μm with an error not exceeding 4.80 arcsec (0.15 pixel), which corresponds to the standard deviation equal to 0.017λ at the reconstructed WF with wavelength λ . Also the modification of this sensor for adaptive system of solar telescope using extended scenes as tracking objects, such as sunspot, pores, solar granulation and limb, is presented. The software package developed for the proposed WF sensors includes three algorithms of local WF slopes estimation (modified centroids, normalized cross-correlation and fast Fourierdemodulation), as well as three methods of WF reconstruction (modal Zernike polynomials expansion, deformable mirror response functions expansion and phase unwrapping), that can be selected during operation with accordance to the application.

  8. Optical Design and Optimization of Translational Reflective Adaptive Optics Ophthalmoscopes

    NASA Astrophysics Data System (ADS)

    Sulai, Yusufu N. B.

    The retina serves as the primary detector for the biological camera that is the eye. It is composed of numerous classes of neurons and support cells that work together to capture and process an image formed by the eye's optics, which is then transmitted to the brain. Loss of sight due to retinal or neuro-ophthalmic disease can prove devastating to one's quality of life, and the ability to examine the retina in vivo is invaluable in the early detection and monitoring of such diseases. Adaptive optics (AO) ophthalmoscopy is a promising diagnostic tool in early stages of development, still facing significant challenges before it can become a clinical tool. The work in this thesis is a collection of projects with the overarching goal of broadening the scope and applicability of this technology. We begin by providing an optical design approach for AO ophthalmoscopes that reduces the aberrations that degrade the performance of the AO correction. Next, we demonstrate how to further improve image resolution through the use of amplitude pupil apodization and non-common path aberration correction. This is followed by the development of a viewfinder which provides a larger field of view for retinal navigation. Finally, we conclude with the development of an innovative non-confocal light detection scheme which improves the non-invasive visualization of retinal vasculature and reveals the cone photoreceptor inner segments in healthy and diseased eyes.

  9. Adaptive optics optical coherence tomography at 1 MHz.

    PubMed

    Kocaoglu, Omer P; Turner, Timothy L; Liu, Zhuolin; Miller, Donald T

    2014-12-01

    Image acquisition speed of optical coherence tomography (OCT) remains a fundamental barrier that limits its scientific and clinical utility. Here we demonstrate a novel multi-camera adaptive optics (AO-)OCT system for ophthalmologic use that operates at 1 million A-lines/s at a wavelength of 790 nm with 5.3 μm axial resolution in retinal tissue. Central to the spectral-domain design is a novel detection channel based on four high-speed spectrometers that receive light sequentially from a 1 × 4 optical switch assembly. Absence of moving parts enables ultra-fast (50ns) and precise switching with low insertion loss (-0.18 dB per channel). This manner of control makes use of all available light in the detection channel and avoids camera dead-time, both critical for imaging at high speeds. Additional benefit in signal-to-noise accrues from the larger numerical aperture afforded by the use of AO and yields retinal images of comparable dynamic range to that of clinical OCT. We validated system performance by a series of experiments that included imaging in both model and human eyes. We demonstrated the performance of our MHz AO-OCT system to capture detailed images of individual retinal nerve fiber bundles and cone photoreceptors. This is the fastest ophthalmic OCT system we know of in the 700 to 915 nm spectral band. PMID:25574431

  10. Adaptive Detector Arrays for Optical Communications Receivers

    NASA Technical Reports Server (NTRS)

    Vilnrotter, V.; Srinivasan, M.

    2000-01-01

    The structure of an optimal adaptive array receiver for ground-based optical communications is described and its performance investigated. Kolmogorov phase screen simulations are used to model the sample functions of the focal-plane signal distribution due to turbulence and to generate realistic spatial distributions of the received optical field. This novel array detector concept reduces interference from background radiation by effectively assigning higher confidence levels at each instant of time to those detector elements that contain significant signal energy and suppressing those that do not. A simpler suboptimum structure that replaces the continuous weighting function of the optimal receiver by a hard decision on the selection of the signal detector elements also is described and evaluated. Approximations and bounds to the error probability are derived and compared with the exact calculations and receiver simulation results. It is shown that, for photon-counting receivers observing Poisson-distributed signals, performance improvements of approximately 5 dB can be obtained over conventional single-detector photon-counting receivers, when operating in high background environments.

  11. ELT oriented adaptive optics demonstration bench

    NASA Astrophysics Data System (ADS)

    LeRoux, B.; NDiaye, M.; El Hadi, K.

    2011-09-01

    We are developing an Adaptive Optics bench designed to validate experimentally new instrumental concepts dedicated to Extremely Large Telescopes (ELTs). Our AO bench is being developed with three main objectives. The first one concerns the experimental study of control solutions for two levels of correction systems, such as woofer-tweeter systems. Indeed, the use of two consecutive deformable mirrors (DM), necessary for most of AO insruments on E-ELT, rises correction and command problems to be optimized. Our two mirrors (a 140 actuators DM and a Phase Modulator LCoS mirror) are being fully characterized before closing the AO loop. The second goal is the experimental validation of the Pyramid Wave Front Sensor (PWFS) in ELTs conditions with a Laser Guide Star (LGS). The design of our PWFS is undergoing and the LGS tests will take place by the end of 2013. All these studies are led in collaboration with University of Bologna, ONERA and L2TI. The third and longer term application is the experimental validation of an optimized control law dedicated to the large number of degrees of freedom, based on Kalman filtering and studied at LAM. We present the optical design of the bench, the calibrations of the elements and the first experimental results.

  12. Large High Performance Optics for Spaceborne Missions: L-3 Brashear Experience and Capability

    NASA Technical Reports Server (NTRS)

    Canzian, Blaise; Gardopee, George; Clarkson, Andrew; Hull, Tony; Borucki, William J.

    2010-01-01

    Brashear is a division of L-3 Communications, Integrated Optical Systems. Brashear is well known for the ground-based telescopes it has manufactured at its facilities and delivered to satisfied customers. Optics from meter-class up to 8.3 meters diameter have been fabricated in Brashear's facilities. Brashear has demonstrated capabilities for large spaceborne optics. We describe in this paper both legacy and new Brashear capabilities for high performance spaceborne optics.

  13. Multiconjugate adaptive optics results from the laboratory for adaptive optics MCAO/MOAO testbed.

    PubMed

    Laag, Edward A; Ammons, S Mark; Gavel, Donald T; Kupke, Renate

    2008-08-01

    We report on the development of wavefront reconstruction and control algorithms for multiconjugate adaptive optics (MCAO) and the results of testing them in the laboratory under conditions that simulate an 8 meter class telescope. The University of California Observatories (UCO) Lick Observatory Laboratory for Adaptive Optics multiconjugate testbed allows us to test wide-field-of-view adaptive optics systems as they might be instantiated in the near future on giant telescopes. In particular, we have been investigating the performance of MCAO using five laser beacons for wavefront sensing and a minimum-variance algorithm for control of two conjugate deformable mirrors. We have demonstrated improved Strehl ratio and enlarged field-of-view performance when compared to conventional AO techniques. We have demonstrated improved MCAO performance with the implementation of a routine that minimizes the generalized isoplanatism when turbulent layers do not correspond to deformable mirror conjugate altitudes. Finally, we have demonstrated suitability of the system for closed loop operation when configured to feed back conditional mean estimates of wavefront residuals rather than the directly measured residuals. This technique has recently been referred to as the "pseudo-open-loop" control law in the literature. PMID:18677374

  14. Overview of deformable mirror technologies for adaptive optics and astronomy

    NASA Astrophysics Data System (ADS)

    Madec, P.-Y.

    2012-07-01

    From the ardent bucklers used during the Syracuse battle to set fire to Romans’ ships to more contemporary piezoelectric deformable mirrors widely used in astronomy, from very large voice coil deformable mirrors considered in future Extremely Large Telescopes to very small and compact ones embedded in Multi Object Adaptive Optics systems, this paper aims at giving an overview of Deformable Mirror technology for Adaptive Optics and Astronomy. First the main drivers for the design of Deformable Mirrors are recalled, not only related to atmospheric aberration compensation but also to environmental conditions or mechanical constraints. Then the different technologies available today for the manufacturing of Deformable Mirrors will be described, pros and cons analyzed. A review of the Companies and Institutes with capabilities in delivering Deformable Mirrors to astronomers will be presented, as well as lessons learned from the past 25 years of technological development and operation on sky. In conclusion, perspective will be tentatively drawn for what regards the future of Deformable Mirror technology for Astronomy.

  15. An adaptive optics imaging system designed for clinical use.

    PubMed

    Zhang, Jie; Yang, Qiang; Saito, Kenichi; Nozato, Koji; Williams, David R; Rossi, Ethan A

    2015-06-01

    Here we demonstrate a new imaging system that addresses several major problems limiting the clinical utility of conventional adaptive optics scanning light ophthalmoscopy (AOSLO), including its small field of view (FOV), reliance on patient fixation for targeting imaging, and substantial post-processing time. We previously showed an efficient image based eye tracking method for real-time optical stabilization and image registration in AOSLO. However, in patients with poor fixation, eye motion causes the FOV to drift substantially, causing this approach to fail. We solve that problem here by tracking eye motion at multiple spatial scales simultaneously by optically and electronically integrating a wide FOV SLO (WFSLO) with an AOSLO. This multi-scale approach, implemented with fast tip/tilt mirrors, has a large stabilization range of ± 5.6°. Our method consists of three stages implemented in parallel: 1) coarse optical stabilization driven by a WFSLO image, 2) fine optical stabilization driven by an AOSLO image, and 3) sub-pixel digital registration of the AOSLO image. We evaluated system performance in normal eyes and diseased eyes with poor fixation. Residual image motion with incremental compensation after each stage was: 1) ~2-3 arc minutes, (arcmin) 2) ~0.5-0.8 arcmin and, 3) ~0.05-0.07 arcmin, for normal eyes. Performance in eyes with poor fixation was: 1) ~3-5 arcmin, 2) ~0.7-1.1 arcmin and 3) ~0.07-0.14 arcmin. We demonstrate that this system is capable of reducing image motion by a factor of ~400, on average. This new optical design provides additional benefits for clinical imaging, including a steering subsystem for AOSLO that can be guided by the WFSLO to target specific regions of interest such as retinal pathology and real-time averaging of registered images to eliminate image post-processing. PMID:26114033

  16. An adaptive optics imaging system designed for clinical use

    PubMed Central

    Zhang, Jie; Yang, Qiang; Saito, Kenichi; Nozato, Koji; Williams, David R.; Rossi, Ethan A.

    2015-01-01

    Here we demonstrate a new imaging system that addresses several major problems limiting the clinical utility of conventional adaptive optics scanning light ophthalmoscopy (AOSLO), including its small field of view (FOV), reliance on patient fixation for targeting imaging, and substantial post-processing time. We previously showed an efficient image based eye tracking method for real-time optical stabilization and image registration in AOSLO. However, in patients with poor fixation, eye motion causes the FOV to drift substantially, causing this approach to fail. We solve that problem here by tracking eye motion at multiple spatial scales simultaneously by optically and electronically integrating a wide FOV SLO (WFSLO) with an AOSLO. This multi-scale approach, implemented with fast tip/tilt mirrors, has a large stabilization range of ± 5.6°. Our method consists of three stages implemented in parallel: 1) coarse optical stabilization driven by a WFSLO image, 2) fine optical stabilization driven by an AOSLO image, and 3) sub-pixel digital registration of the AOSLO image. We evaluated system performance in normal eyes and diseased eyes with poor fixation. Residual image motion with incremental compensation after each stage was: 1) ~2–3 arc minutes, (arcmin) 2) ~0.5–0.8 arcmin and, 3) ~0.05–0.07 arcmin, for normal eyes. Performance in eyes with poor fixation was: 1) ~3–5 arcmin, 2) ~0.7–1.1 arcmin and 3) ~0.07–0.14 arcmin. We demonstrate that this system is capable of reducing image motion by a factor of ~400, on average. This new optical design provides additional benefits for clinical imaging, including a steering subsystem for AOSLO that can be guided by the WFSLO to target specific regions of interest such as retinal pathology and real-time averaging of registered images to eliminate image post-processing. PMID:26114033

  17. Liquid-crystal prisms for tip-tilt adaptive optics.

    PubMed

    Love, G D; Major, J V; Purvis, A

    1994-08-01

    Results from an electrically addressed liquid-crystal cell producing continuous phase profiles are presented. The adaptive deflection of a beam of light for use in a tip-tilt adaptive optics system is demonstrated. We compare the optical performance of liquid-crystal prisms with experimental data on atmospheric seeing at the William Herschel Telescope. PMID:19844566

  18. Proposed Multiconjugate Adaptive Optics Experiment at Lick Observatory

    SciTech Connect

    Bauman, B J; Gavel, D T; Flath, L M; Hurd, R L; Max, C E; Olivier, S S

    2001-08-15

    While the theory behind design of multiconjugate adaptive optics (MCAO) systems is growing, there is still a paucity of experience building and testing such instruments. We propose using the Lick adaptive optics (AO) system as a basis for demonstrating the feasibility/workability of MCAO systems, testing underlying assumptions, and experimenting with different approaches to solving MCAO system issues.

  19. Development of adaptive optics elements for solar telescope

    NASA Astrophysics Data System (ADS)

    Lukin, V. P.; Grigor'ev, V. M.; Antoshkin, L. V.; Botugina, N. N.; Kovadlo, P. G.; Konyaev, P. A.; Kopulov, E. A.; Skomorovsky, V. I.; Trifonov, V. D.; Chuprakov, S. A.

    2012-07-01

    The devices and components of adaptive optical system ANGARA, which is developed for image correction in the Big solar vacuum telescope (BSVT) at Baykal astrophysical observatory are described. It is shown that the use of modernized adaptive system on BSVT not only reduces the turbulent atmospheric distortions of image, but also gives a possibility to improve the telescope developing new methods of solar observations. A high precision Shack-Hartmann wavefront (WF) sensor has been developed on the basis of a low-aperture off-axis diffraction lens array. The device is capable of measuring WF slopes at array sub-apertures of size 640X640 μm with an error not exceeding 4.80 arc.sec. Also the modification of this sensor for adaptive system of solar telescope using extended scenes as tracking objects, such as sunspot, pores, solar granulation and limb, is presented. The software package developed for the proposed WF sensors includes three algorithms of local WF slopes estimation (modified centroids, normalized cross-correlation and fast Fourier-demodulation), as well as three methods of WF reconstruction (modal Zernike polynomials expansion, deformable mirror response functions expansion and phase unwrapping), that can be selected during operation with accordance to the application.

  20. Adaptive optics optical coherence tomography with dynamic retinal tracking

    PubMed Central

    Kocaoglu, Omer P.; Ferguson, R. Daniel; Jonnal, Ravi S.; Liu, Zhuolin; Wang, Qiang; Hammer, Daniel X.; Miller, Donald T.

    2014-01-01

    Adaptive optics optical coherence tomography (AO-OCT) is a highly sensitive and noninvasive method for three dimensional imaging of the microscopic retina. Like all in vivo retinal imaging techniques, however, it suffers the effects of involuntary eye movements that occur even under normal fixation. In this study we investigated dynamic retinal tracking to measure and correct eye motion at KHz rates for AO-OCT imaging. A customized retina tracking module was integrated into the sample arm of the 2nd-generation Indiana AO-OCT system and images were acquired on three subjects. Analyses were developed based on temporal amplitude and spatial power spectra in conjunction with strip-wise registration to independently measure AO-OCT tracking performance. After optimization of the tracker parameters, the system was found to correct eye movements up to 100 Hz and reduce residual motion to 10 µm root mean square. Between session precision was 33 µm. Performance was limited by tracker-generated noise at high temporal frequencies. PMID:25071963

  1. Adaptive optics optical coherence tomography with dynamic retinal tracking.

    PubMed

    Kocaoglu, Omer P; Ferguson, R Daniel; Jonnal, Ravi S; Liu, Zhuolin; Wang, Qiang; Hammer, Daniel X; Miller, Donald T

    2014-07-01

    Adaptive optics optical coherence tomography (AO-OCT) is a highly sensitive and noninvasive method for three dimensional imaging of the microscopic retina. Like all in vivo retinal imaging techniques, however, it suffers the effects of involuntary eye movements that occur even under normal fixation. In this study we investigated dynamic retinal tracking to measure and correct eye motion at KHz rates for AO-OCT imaging. A customized retina tracking module was integrated into the sample arm of the 2nd-generation Indiana AO-OCT system and images were acquired on three subjects. Analyses were developed based on temporal amplitude and spatial power spectra in conjunction with strip-wise registration to independently measure AO-OCT tracking performance. After optimization of the tracker parameters, the system was found to correct eye movements up to 100 Hz and reduce residual motion to 10 µm root mean square. Between session precision was 33 µm. Performance was limited by tracker-generated noise at high temporal frequencies. PMID:25071963

  2. The research and development of the adaptive optics in ophthalmology

    NASA Astrophysics Data System (ADS)

    Wu, Chuhan; Zhang, Xiaofang; Chen, Weilin

    2015-08-01

    Recently the combination of adaptive optics and ophthalmology has made great progress and become highly effective. The retina disease is diagnosed by retina imaging technique based on scanning optical system, so the scanning of eye requires optical system characterized by great ability of anti-moving and optical aberration correction. The adaptive optics possesses high level of adaptability and is available for real time imaging, which meets the requirement of medical retina detection with accurate images. Now the Scanning Laser Ophthalmoscope and the Optical Coherence Tomography are widely used, which are the core techniques in the area of medical retina detection. Based on the above techniques, in China, a few adaptive optics systems used for eye medical scanning have been designed by some researchers from The Institute of Optics And Electronics of CAS(The Chinese Academy of Sciences); some foreign research institutions have adopted other methods to eliminate the interference of eye moving and optical aberration; there are many relevant patents at home and abroad. In this paper, the principles and relevant technique details of the Scanning Laser Ophthalmoscope and the Optical Coherence Tomography are described. And the recent development and progress of adaptive optics in the field of eye retina imaging are analyzed and summarized.

  3. Optimized modal tomography in adaptive optics

    NASA Astrophysics Data System (ADS)

    Tokovinin, A.; Le Louarn, M.; Viard, E.; Hubin, N.; Conan, R.

    2001-11-01

    The performance of modal Multi-Conjugate Adaptive Optics systems correcting a finite number of Zernike modes is studied using a second-order statistical analysis. Both natural and laser guide stars (GS) are considered. An optimized command matrix is computed from the covariances of atmospheric signals and noise, to minimize the residual phase variance averaged over the field of view. An efficient way to calculate atmospheric covariances of Zernike modes and their projections is found. The modal covariance code is shown to reproduce the known results on anisoplanatism and the cone effect with single GS. It is then used to study the error of wave-front estimation from several off-axis GSs (tomography). With increasing radius of the GS constellation Theta , the tomographic error increases quadratically at small Theta , then linearly at larger Theta when incomplete overlap of GS beams in the upper atmospheric layers provides the major contribution to this error, especially on low-order modes. It is demonstrated that the quality of turbulence correction with two deformable mirrors is practically independent of the conjugation altitude of the second mirror, as long as the command matrix is optimized for each configuration.

  4. Adaptive optics and phase diversity imaging for responsive space applications.

    SciTech Connect

    Smith, Mark William; Wick, David Victor

    2004-11-01

    The combination of phase diversity and adaptive optics offers great flexibility. Phase diverse images can be used to diagnose aberrations and then provide feedback control to the optics to correct the aberrations. Alternatively, phase diversity can be used to partially compensate for aberrations during post-detection image processing. The adaptive optic can produce simple defocus or more complex types of phase diversity. This report presents an analysis, based on numerical simulations, of the efficiency of different modes of phase diversity with respect to compensating for specific aberrations during post-processing. It also comments on the efficiency of post-processing versus direct aberration correction. The construction of a bench top optical system that uses a membrane mirror as an active optic is described. The results of characterization tests performed on the bench top optical system are presented. The work described in this report was conducted to explore the use of adaptive optics and phase diversity imaging for responsive space applications.

  5. Advancing Unmanned Aircraft Sensor Collection and Communication Capabilities with Optical Communications

    NASA Astrophysics Data System (ADS)

    Lukaczyk, T.

    2015-12-01

    Unmanned aircraft systems (UAS) are now being used for monitoring climate change over both land and seas. Their uses include monitoring of cloud conditions and atmospheric composition of chemicals and aerosols due to pollution, dust storms, fires, volcanic activity and air-sea fluxes. Additional studies of carbon flux are important for various ecosystem studies of both marine and terrestrial environments specifically, and can be related to climate change dynamics. Many measurements are becoming more complex as additional sensors become small enough to operate on more widely available small UAS. These include interferometric radars as well as scanning and fan-beam lidar systems which produce data streams even greater than those of high resolution video. These can be used to precisely map surfaces of the earth, ocean or ice features that are important for a variety of earth system studies. As these additional sensor capabilities are added to UAS the ability to transmit data back to ground or ship monitoring sites is limited by traditional wireless communication protocols. We describe results of tests of optical communication systems that provide significantly greater communication bandwidths for UAS, and discuss both the bandwidth and effective range of these systems, as well as their power and weight requirements both for systems on UAS, as well as those of ground-based receiver stations. We justify our additional use of Delay and Disruption Tolerant Networking (DTN) communication protocols with optical communication methods to ensure security and continuity of command and control operations. Finally, we discuss the implications for receiving, geo-referencing, archiving and displaying data streams from sensors communicated via optical communication to better enable real-time anomaly detection and adaptive sampling capabilities using multiple UAS or other unmanned or manned systems.

  6. Adaptive optics for daytime deep space laser communications to Mars

    NASA Technical Reports Server (NTRS)

    Wilson, Keith E.; Wright, Malcolm; Lee, Shinkhak; Troy, Mitchell

    2005-01-01

    This paper describes JPL research in adaptive optics (AO) to reduce the daytime background noise on a Mars-to-Earth optical communications link. AO can reduce atmosphere-induced wavefront aberrations, and enable single mode receiver operation thereby buying back margin in the deep space optical communications link.

  7. Testing the Apodized Pupil Lyot Coronagraph on the Laboratory for Adaptive Optics Extreme Adaptive Optics Testbed

    NASA Astrophysics Data System (ADS)

    Thomas, Sandrine J.; Soummer, Rémi; Dillon, Daren; Macintosh, Bruce; Gavel, Donald; Sivaramakrishnan, Anand

    2011-10-01

    We present testbed results of the Apodized Pupil Lyot Coronagraph (APLC) at the Laboratory for Adaptive Optics (LAO). These results are part of the validation and tests of the coronagraph and of the Extreme Adaptive Optics (ExAO) for the Gemini Planet Imager (GPI). The apodizer component is manufactured with a halftone technique using black chrome microdots on glass. Testing this APLC (like any other coronagraph) requires extremely good wavefront correction, which is obtained to the 1 nm rms level using the microelectricalmechanical systems (MEMS) technology, on the ExAO visible testbed of the LAO at the University of Santa Cruz. We used an APLC coronagraph without central obstruction, both with a reference super-polished flat mirror and with the MEMS to obtain one of the first images of a dark zone in a coronagraphic image with classical adaptive optics using a MEMS deformable mirror (without involving dark hole algorithms). This was done as a complementary test to the GPI coronagraph testbed at American Museum of Natural History, which studied the coronagraph itself without wavefront correction. Because we needed a full aperture, the coronagraph design is very different from the GPI design. We also tested a coronagraph with central obstruction similar to that of GPI. We investigated the performance of the APLC coronagraph and more particularly the effect of the apodizer profile accuracy on the contrast. Finally, we compared the resulting contrast to predictions made with a wavefront propagation model of the testbed to understand the effects of phase and amplitude errors on the final contrast.

  8. TESTING THE APODIZED PUPIL LYOT CORONAGRAPH ON THE LABORATORY FOR ADAPTIVE OPTICS EXTREME ADAPTIVE OPTICS TESTBED

    SciTech Connect

    Thomas, Sandrine J.; Dillon, Daren; Gavel, Donald; Macintosh, Bruce; Sivaramakrishnan, Anand E-mail: dillon@ucolick.org E-mail: soummer@stsci.edu E-mail: anand@amnh.org

    2011-10-15

    We present testbed results of the Apodized Pupil Lyot Coronagraph (APLC) at the Laboratory for Adaptive Optics (LAO). These results are part of the validation and tests of the coronagraph and of the Extreme Adaptive Optics (ExAO) for the Gemini Planet Imager (GPI). The apodizer component is manufactured with a halftone technique using black chrome microdots on glass. Testing this APLC (like any other coronagraph) requires extremely good wavefront correction, which is obtained to the 1 nm rms level using the microelectricalmechanical systems (MEMS) technology, on the ExAO visible testbed of the LAO at the University of Santa Cruz. We used an APLC coronagraph without central obstruction, both with a reference super-polished flat mirror and with the MEMS to obtain one of the first images of a dark zone in a coronagraphic image with classical adaptive optics using a MEMS deformable mirror (without involving dark hole algorithms). This was done as a complementary test to the GPI coronagraph testbed at American Museum of Natural History, which studied the coronagraph itself without wavefront correction. Because we needed a full aperture, the coronagraph design is very different from the GPI design. We also tested a coronagraph with central obstruction similar to that of GPI. We investigated the performance of the APLC coronagraph and more particularly the effect of the apodizer profile accuracy on the contrast. Finally, we compared the resulting contrast to predictions made with a wavefront propagation model of the testbed to understand the effects of phase and amplitude errors on the final contrast.

  9. First steps toward 3D high resolution imaging using adaptive optics and full-field optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Blanco, Leonardo; Blavier, Marie; Glanc, Marie; Pouplard, Florence; Tick, Sarah; Maksimovic, Ivan; Chenegros, Guillaume; Mugnier, Laurent; Lacombe, Francois; Rousset, Gérard; Paques, Michel; Le Gargasson, Jean-François; Sahel, Jose-Alain

    2008-09-01

    We describe here two parts of our future 3D fundus camera coupling Adaptive Optics and full-field Optical Coherence Tomography. The first part is an Adaptive Optics flood imager installed at the Quinze-Vingts Hospital, regularly used on healthy and pathological eyes. A posteriori image reconstruction is performed, increasing the final image quality and field of view. The instrument lateral resolution is better than 2 microns. The second part is a full-field Optical Coherence Tomograph, which has demonstrated capability of performing a simple kind of "4 phases" image reconstruction of non biological samples and ex situ retinas. Final aim is to couple both parts in order to achieve 3D high resolution mapping of in vivo retinas.

  10. Project management plan for the Objective Supply Capability Adaptive Redesign (OSCAR) project

    SciTech Connect

    Rasch, K.A.; Reid, R.W.

    1997-02-01

    This document establishes the project management plan for design and development of the Object Supply Capability Adaptive Redesign (OSCAR) Project. The purpose of the project management plan is to document the plans, goals, directions, commitments, approaches, and decisions that relate to guiding a project throughout its life cycle. Special attention is given to project goals, deliverables, sponsor and project standards, project resources, schedule, and cost estimates.

  11. Optical memory system having a long seek capability

    SciTech Connect

    Hsieh, D.; LaBudde, E.V.

    1984-02-14

    A high density optical storage system is disclosed which employs a laser beam for reading data in a track on a rotating optical disk containing a large number of closely spaced concentric tracks. When a long seek operation is to be provided, track following is suspended and a linear motor drives a galvanometer-controlled mirror to a new position corresponding to a new track called for by the long seek operation. Arrival at the new position is determined by detecting when both the velocity of the linear motor and the difference between current and desired positions are below predetermined maximum values indicating that a stable condition has been reached, after which track following operation is resumed. The linear motor also operates during track following in response to the detected angular position of the mirror so as to cause movement of the mirror in a direction which reduces the mirror deflection required to maintain the beam accurately following the track.

  12. Electro-optic polymer waveguide grating with fast tuning capability.

    PubMed

    Wang, Yi-Ping; Chen, Jian-Ping; Li, Xin-Wan; Zhou, Jun-He; Shen, Hao; Zhang, Xiao-Hong; Ye, Ai-Lun

    2005-06-10

    A novel fast tunable electro-optic (EO) polymer waveguide grating is proposed and designed. Its resonant wavelength can be linearly tuned via the first-order EO effect with a high sensitivity of 6.1 pm/V. We find that the spectrum characteristics of EO polymer waveguide gratings depend strongly on many grating parameters, such as refractive-index modulation, modulation function, grating period, and period number. Material selection, fabrication technology, EO tuning ability, and polarization dependence of EO polymer waveguide gratings are also discussed. Such a waveguide grating not only overcomes the disadvantages of fiber-optic gratings, such as slow wavelength tuning ability and large-scale integration inconvenience, but also has many advantages, such as high resonant-wavelength tuning sensitivity, the same fabrication technology used for semiconductors, and polarization independence. PMID:16007840

  13. A low-cost compact metric adaptive optics system

    NASA Astrophysics Data System (ADS)

    Mansell, Justin D.; Henderson, Brian; Wiesner, Brennen; Praus, Robert; Coy, Steve

    2007-09-01

    The application of adaptive optics has been hindered by the cost, size, and complexity of the systems. We describe here progress we have made toward creating low-cost compact turn-key adaptive optics systems. We describe our new low-cost deformable mirror technology developed using polymer membranes, the associated USB interface drive electronics, and different ways that this technology can be configured into a low-cost compact adaptive optics system. We also present results of a parametric study of the stochastic parallel gradient descent (SPGD) control algorithm.

  14. Is ESO's adaptive optics facility suited for MCAO?

    NASA Astrophysics Data System (ADS)

    Marchetti, Enrico; Amico, Paola; Fedrigo, Enrico; Glindemann, Andreas; Hubin, Norbert; La Penna, Paolo; Le Louarn, Miska; Madec, Pierre-Yves

    2010-07-01

    As of 2013, the ESO's VLT will be equipped with the Adaptive Optics Facility for Ground Layer and Laser Tomography adaptive optics assisted imaging and spectroscopy, using a Deformable Secondary Mirror and four Laser Guide Stars. Following the successful experience of the MAD demonstrator, we initiated a speculative study to evaluate the performance gain obtained by implementing a type of Multi-Conjugate Adaptive Optics correction that benefits from the unique features provided by the AOF. In this paper we present the basic concept and provide a first estimation of the correction performance obtained in the near infrared.

  15. Adaptive optics parallel near-confocal scanning ophthalmoscopy.

    PubMed

    Lu, Jing; Gu, Boyu; Wang, Xiaolin; Zhang, Yuhua

    2016-08-15

    We present an adaptive optics parallel near-confocal scanning ophthalmoscope (AOPCSO) using a digital micromirror device (DMD). The imaging light is modulated to be a line of point sources by the DMD, illuminating the retina simultaneously. By using a high-speed line camera to acquire the image and using adaptive optics to compensate the ocular wave aberration, the AOPCSO can image the living human eye with cellular level resolution at the frame rate of 100 Hz. AOPCSO has been demonstrated with improved spatial resolution in imaging of the living human retina compared with adaptive optics line scan ophthalmoscopy. PMID:27519106

  16. The curvature adaptive optics system modeling

    NASA Astrophysics Data System (ADS)

    Yang, Qiang

    A curvature adaptive optics (AO) simulation system has been built. The simulation is based on the Hokupa'a-36 AO system for the NASA IRTF 3m telescope and the Hokupa'a-85 AO system for the Gemini Near Infrared Coronagraphic Imager. Several sub-models are built separately for the AO simulation system, and they are: (1) generation and propagation of atmospheric phase screens, (2) the bimorph deformable mirror (DM), (3) the curvature wave-front sensor (CWFS), (4) generation of response functions, interaction matrices and calculation of command matrices, (5) Fresnel propagation from the DM pupil to the lenslet pupil, (6) AO servo loop, and (7) post processing. The AO simulation system is then applied to the effects of DM hysteresis, and to the optimization of DM actuator patterns for the Hokupa'a-85 and Hokupa'a-36 AO systems. In the first application, an enhancing Coleman-Hodgdon model is introduced to approximate the hysteresis curves, and then the Lambert W function is introduced to calculate the inverse of the Coleman-Hodgdon equation. Step response, transfer functions and Strehl Ratios from the AO system have been compared under the cases with/without DM hysteresis. The servo-loop results show that the bandwidth of an AO system is improved greatly after the DM hysteresis is corrected. In the second application, many issues of the bimorph mirror will be considered to optimize the DM patterns, and they include the type and length of the edge benders, gap size of electrodes, DM size, and DM curvature limit.

  17. Isoplanatism in a multiconjugate adaptive optics system.

    PubMed

    Tokovinin, A; Le Louarn, M; Sarazin, M

    2000-10-01

    Turbulence correction in a large field of view by use of an adaptive optics imaging system with several deformable mirrors (DM's) conjugated to various heights is considered. The residual phase variance is computed for an optimized linear algorithm in which a correction of each turbulent layer is achieved by applying a combination of suitably smoothed and scaled input phase screens to all DM's. Finite turbulence outer scale and finite spatial resolution of the DM's are taken into account. A general expression for the isoplanatic angle thetaM of a system with M mirrors is derived in the limiting case of infinitely large apertures and Kolmogorov turbulence. Like Fried's isoplanatic angle theta0,thetaM is a function only of the turbulence vertical profile, is scalable with wavelength, and is independent of the telescope diameter. Use of angle thetaM permits the gain in the field of view due to the increased number of DM's to be quantified and their optimal conjugate heights to be found. Calculations with real turbulence profiles show that with three DM's a gain of 7-10x is possible, giving the typical and best isoplanatic field-of-view radii of 16 and 30 arcseconds, respectively, at lambda = 0.5 microm. It is shown that in the actual systems the isoplanatic field will be somewhat larger than thetaM owing to the combined effects of finite aperture diameter, finite outer scale, and optimized wave-front spatial filtering. However, this additional gain is not dramatic; it is less than 1.5x for large-aperture telescopes. PMID:11028530

  18. Design of the Dual Conjugate Adaptive Optics Test-bed

    NASA Astrophysics Data System (ADS)

    Sharf, Inna; Bell, K.; Crampton, D.; Fitzsimmons, J.; Herriot, Glen; Jolissaint, Laurent; Lee, B.; Richardson, H.; van der Kamp, D.; Veran, Jean-Pierre

    order to quantify the quality of the correction achieved with the DM's. A mini-wavescope, also supplied by AOA, will be part of the test-bed and is intended for use as an auxilliary tool for system calibration and identification. The foreoptics of the complete layout emulates a 32 cm, F/40 telescope, which itself was scaled down from an 8 meter telescope, while maintaining a 2' field of view. The foreoptics entrance beam diameter is 30 mm. The tip-tilt mirror procured from Ball Aerospace is placed at 0km in the foreoptics, before the deformable mirrors. A turbulence generator and a source simulator must be constructed for the test-bed since it is intended for use as a stand-alone research facility. Several concepts were considered for the turbulence generator: a holographic simulator, a spatial light modulator based on liquid-crystal technology, a phase plate based simulator and the hot-air turbulence generator. The latter was identified as the most suitable concept for our facility, after comparing the versatility, capabilities, and cost of the alternatives. The proposed design follows closely that developed by [Jolissaint, 2000] and aims to produce turbulence with Cn2 delta h ~ O (10-10) and D/r0 of approximately 8. With an appropriately designed fold of the beam, a single hot-air turbulator can be used to provide both turbulence layers for the beam. The source simulator will accommodate three guide stars with a fixed triangular geometry and a white science source that can be placed at an arbitrary location in the field of view. The guide stars can be located either at infinity to emulate NGS, or at 90 km to emulate sodium backscatter produced with lasers in a real adaptive optics system. Since the GS are held fixed above the turbulence, they can also be used to derive tip-tilt information, thus obviating the need for Natural Guide Stars. The dual-layer adaptive optics test-bed presented in this poster is expected to be fully operational by the middle of 2002. Parts

  19. Adaptive optics and the eye (super resolution OCT)

    PubMed Central

    Miller, D T; Kocaoglu, O P; Wang, Q; Lee, S

    2011-01-01

    The combination of adaptive optics (AO) and optical coherence tomography (OCT) was first reported 8 years ago and has undergone tremendous technological advances since then. The technical benefits of adding AO to OCT (increased lateral resolution, smaller speckle, and enhanced sensitivity) increase the imaging capability of OCT in ways that make it well suited for three-dimensional (3D) cellular imaging in the retina. Today, AO–OCT systems provide ultrahigh 3D resolution (3 × 3 × 3 μm3) and ultrahigh speed (up to an order of magnitude faster than commercial OCT). AO–OCT systems have been used to capture volume images of retinal structures, previously only visible with histology, and are being used for studying clinical conditions. Here, we present representative examples of cellular structures that can be visualized with AO–OCT. We overview three studies from our laboratory that used ultrahigh-resolution AO–OCT to measure the cross-sectional profiles of individual bundles in the retinal nerve fiber layer; the diameters of foveal capillaries that define the terminal rim of the foveal avascular zone; and the spacing and length of individual cone photoreceptor outer segments as close as 0.5° from the fovea center. PMID:21390066

  20. Coherence-Gated Sensorless Adaptive Optics Multiphoton Retinal Imaging

    PubMed Central

    Cua, Michelle; Wahl, Daniel J.; Zhao, Yuan; Lee, Sujin; Bonora, Stefano; Zawadzki, Robert J.; Jian, Yifan; Sarunic, Marinko V.

    2016-01-01

    Multiphoton microscopy enables imaging deep into scattering tissues. The efficient generation of non-linear optical effects is related to both the pulse duration (typically on the order of femtoseconds) and the size of the focused spot. Aberrations introduced by refractive index inhomogeneity in the sample distort the wavefront and enlarge the focal spot, which reduces the multiphoton signal. Traditional approaches to adaptive optics wavefront correction are not effective in thick or multi-layered scattering media. In this report, we present sensorless adaptive optics (SAO) using low-coherence interferometric detection of the excitation light for depth-resolved aberration correction of two-photon excited fluorescence (TPEF) in biological tissue. We demonstrate coherence-gated SAO TPEF using a transmissive multi-actuator adaptive lens for in vivo imaging in a mouse retina. This configuration has significant potential for reducing the laser power required for adaptive optics multiphoton imaging, and for facilitating integration with existing systems. PMID:27599635

  1. Coherence-Gated Sensorless Adaptive Optics Multiphoton Retinal Imaging.

    PubMed

    Cua, Michelle; Wahl, Daniel J; Zhao, Yuan; Lee, Sujin; Bonora, Stefano; Zawadzki, Robert J; Jian, Yifan; Sarunic, Marinko V

    2016-01-01

    Multiphoton microscopy enables imaging deep into scattering tissues. The efficient generation of non-linear optical effects is related to both the pulse duration (typically on the order of femtoseconds) and the size of the focused spot. Aberrations introduced by refractive index inhomogeneity in the sample distort the wavefront and enlarge the focal spot, which reduces the multiphoton signal. Traditional approaches to adaptive optics wavefront correction are not effective in thick or multi-layered scattering media. In this report, we present sensorless adaptive optics (SAO) using low-coherence interferometric detection of the excitation light for depth-resolved aberration correction of two-photon excited fluorescence (TPEF) in biological tissue. We demonstrate coherence-gated SAO TPEF using a transmissive multi-actuator adaptive lens for in vivo imaging in a mouse retina. This configuration has significant potential for reducing the laser power required for adaptive optics multiphoton imaging, and for facilitating integration with existing systems. PMID:27599635

  2. Sensorless adaptive optics implementation in widefield optical sectioning microscopy inside in vivo Drosophila brain

    NASA Astrophysics Data System (ADS)

    Pedrazzani, Mélanie; Loriette, Vincent; Tchenio, Paul; Benrezzak, Sakina; Nutarelli, Daniele; Fragola, Alexandra

    2016-03-01

    We present an implementation of a sensorless adaptive optics loop in a widefield fluorescence microscope. This setup is designed to compensate for aberrations induced by the sample on both excitation and emission pathways. It allows fast optical sectioning inside a living Drosophila brain. We present a detailed characterization of the system performances. We prove that the gain brought to optical sectioning by realizing structured illumination microscopy with adaptive optics down to 50 μm deep inside living Drosophila brain.

  3. Sensorless adaptive optics implementation in widefield optical sectioning microscopy inside in vivo Drosophila brain.

    PubMed

    Pedrazzani, Mélanie; Loriette, Vincent; Tchenio, Paul; Benrezzak, Sakina; Nutarelli, Daniele; Fragola, Alexandra

    2016-03-01

    We present an implementation of a sensorless adaptive optics loop in a widefield fluorescence microscope. This setup is designed to compensate for aberrations induced by the sample on both excitation and emission pathways. It allows fast optical sectioning inside a living Drosophila brain. We present a detailed characterization of the system performances. We prove that the gain brought to optical sectioning by realizing structured illumination microscopy with adaptive optics down to 50 μm deep inside living Drosophila brain. PMID:26968001

  4. Structured illumination assisted microdeflectometry with optical depth scanning capability.

    PubMed

    Lu, Sheng-Huei; Hua, Hong

    2016-09-01

    Microdeflectometry is a powerful noncontact tool for measuring nanometer defects on a freeform surface. However, it requires a time-consuming process to take measurements at different depths for an extended depth of field (EDOF) and lacks surface information for integrating the measured gradient data to height. We propose an optical depth scanning technique to speed up the measurement process and introduce the structured illumination technique to efficiently determine the focused data among 3D observation and provide surface orientations for reconstructing an unknown surface shape. We demonstrated 3D measurements with an equivalent surface height sensitivity of 7.21 nm and an EDOF of at least 250 μm, which is 15 times that of the diffraction limited depth range. PMID:27607986

  5. How adaptive optics may have won the Cold War

    NASA Astrophysics Data System (ADS)

    Tyson, Robert K.

    2013-05-01

    While there are many theories and studies concerning the end of the Cold War, circa 1990, I postulate that one of the contributors to the result was the development of adaptive optics. The emergence of directed energy weapons, specifically space-based and ground-based high energy lasers made practicable with adaptive optics, showed that a successful defense against inter-continental ballistic missiles was not only possible, but achievable in a reasonable period of time.

  6. Solar adaptive optics at the Observatorio del Teide, Tenerife

    NASA Astrophysics Data System (ADS)

    Soltau, Dirk; Berkefeld, Thomas; Schmidt, Dirk; von der Lühe, Oskar

    2013-10-01

    Observing the Sun with high angular resolution is difficult because the turbulence in the atmosphere is strongest during day time. In this paper we describe the principles of solar adaptive optics exemplified by the two German solar telescopes VTT and GREGOR at the Observatorio del Teide. With theses systems we obtain near diffraction limited images of the Sun. Ways to overcome the limits of conventional AO by applying multiconjugate adaptive optics (MCAO) are shown.

  7. Astronomy Applications of Adaptive Optics at Lawrence Livermore National Laboratory

    SciTech Connect

    Bauman, B J; Gavel, D T

    2003-04-23

    Astronomical applications of adaptive optics at Lawrence Livermore National Laboratory (LLNL) has a history that extends from 1984. The program started with the Lick Observatory Adaptive Optics system and has progressed through the years to lever-larger telescopes: Keck, and now the proposed CELT (California Extremely Large Telescope) 30m telescope. LLNL AO continues to be at the forefront of AO development and science.

  8. Laser guide star adaptive optics: Present and future

    SciTech Connect

    Olivier, S.S.; Max, C.E.

    1993-03-01

    Feasibility demonstrations using one to two meter telescopes have confirmed the utility of laser beacons as wavefront references for adaptive optics systems. Laser beacon architectures suitable for the new generation of eight and ten meter telescopes are presently under study. This paper reviews the concept of laser guide star adaptive optics and the progress that has been made by groups around the world implementing such systems. A description of the laser guide star program at LLNL and some experimental results is also presented.

  9. Near infra-red astronomy with adaptive optics and laser guide stars at the Keck Observatory

    SciTech Connect

    Max, C.E.; Gavel, D.T.; Olivier, S.S.

    1995-08-03

    A laser guide star adaptive optics system is being built for the W. M. Keck Observatory`s 10-meter Keck II telescope. Two new near infra-red instruments will be used with this system: a high-resolution camera (NIRC 2) and an echelle spectrometer (NIRSPEC). The authors describe the expected capabilities of these instruments for high-resolution astronomy, using adaptive optics with either a natural star or a sodium-layer laser guide star as a reference. They compare the expected performance of these planned Keck adaptive optics instruments with that predicted for the NICMOS near infra-red camera, which is scheduled to be installed on the Hubble Space Telescope in 1997.

  10. Adaptive optics in digital micromirror based confocal microscopy

    NASA Astrophysics Data System (ADS)

    Pozzi, P.; Wilding, D.; Soloviev, O.; Vdovin, G.; Verhaegen, M.

    2016-03-01

    This proceeding reports early results in the development of a new technique for adaptive optics in confocal microscopy. The term adaptive optics refers to the branch of optics in which an active element in the optical system is used to correct inhomogeneities in the media through which light propagates. In its most classical form, mostly used in astronomical imaging, adaptive optics is achieved through a closed loop in which the actuators of a deformable mirror are driven by a wavefront sensor. This approach is severely limited in fluorescence microscopy, as the use of a wavefront sensor requires the presence of a bright, point like source in the field of view, a condition rarely satisfied in microscopy samples. Previously reported approaches to adaptive optics in fluorescence microscopy are therefore limited to the inclusion of fluorescent microspheres in the sample, to use as bright stars for wavefront sensors, or time consuming sensorless optimization procedures, requiring several seconds of optimization before the acquisition of a single image. We propose an alternative approach to the problem, implementing sensorless adaptive optics in a Programmable array microscope. A programmable array microscope is a microscope based on a digital micromirror device, in which the single elements of the micromirror act both as point sources and pinholes.

  11. Morphofunctional parameters and adaptation capabilities of students at the beginning of the third millennium.

    PubMed

    Negasheva, Marina A; Mishkova, T A

    2005-07-01

    On the basis of comprehensive anthropometrical observation of 1st and 2nd year students from different faculties of Moscow State University (MSU) carried out in 2002-2003, functional characteristics of the cardiovascular system (systolic and diastolic blood pressure, heart rate) were investigated in 205 young men and 327 young women along with traditional morphological parameters. In comparisons of contemporary young men and women with their peers, whose characteristics were obtained in the course of investigations carried out over the period 1920-1990, secular trends towards an increase of body length and a worsening of strength indices were detected. Evaluation and comparative analysis of adaptation capabilities of students were carried out based on screening and assessment of adaptation potential using the Bayevsky method (1987). It was shown that the parameters of physical development and the level of adaptation of an organism to environmental conditions can be used as additional markers for determination of the health status of contemporary students for early prevention of some diseases, improvement of their physical status and increase of adaptation potentials. PMID:16079587

  12. Conceptual design for a user-friendly adaptive optics system at Lick Observatory

    SciTech Connect

    Bissinger, H.D.; Olivier, S.; Max, C.

    1996-03-08

    In this paper, we present a conceptual design for a general-purpose adaptive optics system, usable with all Cassegrain facility instruments on the 3 meter Shane telescope at the University of California`s Lick Observatory located on Mt. Hamilton near San Jose, California. The overall design goal for this system is to take the sodium-layer laser guide star adaptive optics technology out of the demonstration stage and to build a user-friendly astronomical tool. The emphasis will be on ease of calibration, improved stability and operational simplicity in order to allow the system to be run routinely by observatory staff. A prototype adaptive optics system and a 20 watt sodium-layer laser guide star system have already been built at Lawrence Livermore National Laboratory for use at Lick Observatory. The design presented in this paper is for a next- generation adaptive optics system that extends the capabilities of the prototype system into the visible with more degrees of freedom. When coupled with a laser guide star system that is upgraded to a power matching the new adaptive optics system, the combined system will produce diffraction-limited images for near-IR cameras. Atmospheric correction at wavelengths of 0.6-1 mm will significantly increase the throughput of the most heavily used facility instrument at Lick, the Kast Spectrograph, and will allow it to operate with smaller slit widths and deeper limiting magnitudes. 8 refs., 2 figs.

  13. An adaptive optic for correcting low-order wavefront aberrations

    SciTech Connect

    Thompson, C A; Wilhelmsen, J

    1999-09-02

    Adaptive Optics used for correcting low-order wavefront aberrations were tested and compared using interferometry, beam propagation, and a far-field test. Results confirm that the design and manufacturing specifications were met. Experimental data also confirms theoretical performance expectations, indicating the usefulness of these optics (especially in a laser-beam processing system), and identifying the resulting differences between the two fabrication methods used to make the optics.

  14. Amplitude variations on the Extreme Adaptive Optics testbed

    SciTech Connect

    Evans, J; Thomas, S; Dillon, D; Gavel, D; Phillion, D; Macintosh, B

    2007-08-14

    High-contrast adaptive optics systems, such as those needed to image extrasolar planets, are known to require excellent wavefront control and diffraction suppression. At the Laboratory for Adaptive Optics on the Extreme Adaptive Optics testbed, we have already demonstrated wavefront control of better than 1 nm rms within controllable spatial frequencies. Corresponding contrast measurements, however, are limited by amplitude variations, including those introduced by the micro-electrical-mechanical-systems (MEMS) deformable mirror. Results from experimental measurements and wave optic simulations of amplitude variations on the ExAO testbed are presented. We find systematic intensity variations of about 2% rms, and intensity variations with the MEMS to be 6%. Some errors are introduced by phase and amplitude mixing because the MEMS is not conjugate to the pupil, but independent measurements of MEMS reflectivity suggest that some error is introduced by small non-uniformities in the reflectivity.

  15. Wavefront sensorless adaptive optics ophthalmoscopy in the human eye

    NASA Astrophysics Data System (ADS)

    Hofer, Heidi; Sredar, Nripun; Queener, Hope; Li, Chaohong; Porter, Jason

    2011-07-01

    Wavefront sensor noise and fidelity place a fundamental limit on achievable image quality in current adaptive optics ophthalmoscopes. Additionally, the wavefront sensor `beacon' can interfere with visual experiments. We demonstrate real-time (25 Hz), wavefront sensorless adaptive optics imaging in the living human eye with image quality rivaling that of wavefront sensor based control in the same system. A stochastic parallel gradient descent algorithm directly optimized the mean intensity in retinal image frames acquired with a confocal adaptive optics scanning laser ophthalmoscope (AOSLO). When imaging through natural, undilated pupils, both control methods resulted in comparable mean image intensities. However, when imaging through dilated pupils, image intensity was generally higher following wavefront sensor-based control. Despite the typically reduced intensity, image contrast was higher, on average, with sensorless control. Wavefront sensorless control is a viable option for imaging the living human eye and future refinements of this technique may result in even greater optical gains.

  16. High-resolution adaptive optics test bed for vision science

    NASA Astrophysics Data System (ADS)

    Wilks, Scott C.; Thompson, Charles A.; Olivier, Scot S.; Bauman, Brian J.; Flath, Laurence M.; Silva, Dennis A.; Sawvel, Robert M.; Barnes, Thomas B.; Werner, John S.

    2002-02-01

    We discuss the design and implementation of a low-cost, high-resolution adaptive optics test-bed for vision research. It is well known that high-order aberrations in the human eye reduce optical resolution and limit visual acuity. However, the effects of aberration-free eyesight on vision are only now beginning to be studied using adaptive optics to sense and correct the aberrations in the eye. We are developing a high-resolution adaptive optics system for this purpose using a Hamamatsu Parallel Aligned Nematic Liquid Crystal Spatial Light Modulator. Phase-wrapping is used to extend the effective stroke of the device, and the wavefront sensing and wavefront correction are done at different wavelengths. Issues associated with these techniques will be discussed.

  17. In vivo high-resolution retinal imaging using adaptive optics.

    PubMed

    Seyedahmadi, Babak Jian; Vavvas, Demetrios

    2010-01-01

    Retinal imaging with conventional methods is only able to overcome the lowest order of aberration, defocus and astigmatism. The human eye is fraught with higher order of aberrations. Since we are forced to use the human optical system in retinal imaging, the images are degraded. In addition, all of these distortions are constantly changing due to head/eye movement and change in accommodation. Adaptive optics is a promising technology introduced in the field of ophthalmology to measure and compensate for these aberrations. High-resolution obtained by adaptive optics enables us to view and image the retinal photoreceptors, retina pigment epithelium, and identification of cone subclasses in vivo. In this review we will be discussing the basic technology of adaptive optics and hardware requirement in addition to clinical applications of such technology. PMID:21090998

  18. A dual-modal retinal imaging system with adaptive optics

    PubMed Central

    Meadway, Alexander; Girkin, Christopher A.; Zhang, Yuhua

    2013-01-01

    An adaptive optics scanning laser ophthalmoscope (AO-SLO) is adapted to provide optical coherence tomography (OCT) imaging. The AO-SLO function is unchanged. The system uses the same light source, scanning optics, and adaptive optics in both imaging modes. The result is a dual-modal system that can acquire retinal images in both en face and cross-section planes at the single cell level. A new spectral shaping method is developed to reduce the large sidelobes in the coherence profile of the OCT imaging when a non-ideal source is used with a minimal introduction of noise. The technique uses a combination of two existing digital techniques. The thickness and position of the traditionally named inner segment/outer segment junction are measured from individual photoreceptors. In-vivo images of healthy and diseased human retinas are demonstrated. PMID:24514529

  19. Horizontal Path Laser Communications Employing MEMS Adaptive Optics Correction

    SciTech Connect

    Thompson, C A; Wilks, S C; Brase, J M; Young, R A; Johnson, G W; Ruggiero, A J

    2001-09-05

    Horizontal path laser communications are beginning to provide attractive alternatives for high-speed optical communications, In particular, companies are beginning to sell fiberless alternatives for intranet and sporting event video. These applications are primarily aimed at short distance applications (on the order of 1 km pathlength). There exists a potential need to extend this pathlength to distances much greater than a 1km. For cases of long distance optical propagation, atmospheric turbulence will ultimately limit the maximum achievable data rate. In this paper, we propose a method of improved signal quality through the use of adaptive optics. In particular, we show work in progress toward a high-speed, small footprint Adaptive Optics system for horizontal path laser communications. Such a system relies heavily on recent progress in Micro-Electro-Mechanical Systems (MEMS) deformable mirrors as well as improved communication and computational components. In this paper we detail two Adaptive Optics approaches for improved through-put, the first is the compensated receiver (the traditional Adaptive Optics approach), the second is the compensated transmitter/receiver. The second approach allows for correction of the optical wavefront before transmission from the transmitter and prior to detection at the receiver.

  20. Adaptive optical biocompact disk for molecular recognition

    NASA Astrophysics Data System (ADS)

    Peng, Leilei; Varma, Manoj M.; Regnier, Fred E.; Nolte, David D.

    2005-05-01

    We report the use of adaptive interferometry to detect a monolayer of protein immobilized in a periodic pattern on a spinning glass disk. A photorefractive quantum-well device acting as an adaptive beam mixer in a two-wave mixing geometry stabilizes the interferometric quadrature in the far field. Phase modulation generated by the spinning biolayer pattern in the probe beam is detected as a homodyne signal free of amplitude modulation. Binding between antibodies and immobilized antigens in a two-analyte immunoassay was tested with high specificity and without observable cross reactivity.

  1. Digital adaptive optics line-scanning confocal imaging system.

    PubMed

    Liu, Changgeng; Kim, Myung K

    2015-01-01

    A digital adaptive optics line-scanning confocal imaging (DAOLCI) system is proposed by applying digital holographic adaptive optics to a digital form of line-scanning confocal imaging system. In DAOLCI, each line scan is recorded by a digital hologram, which allows access to the complex optical field from one slice of the sample through digital holography. This complex optical field contains both the information of one slice of the sample and the optical aberration of the system, thus allowing us to compensate for the effect of the optical aberration, which can be sensed by a complex guide star hologram. After numerical aberration compensation, the corrected optical fields of a sequence of line scans are stitched into the final corrected confocal image. In DAOLCI, a numerical slit is applied to realize the confocality at the sensor end. The width of this slit can be adjusted to control the image contrast and speckle noise for scattering samples. DAOLCI dispenses with the hardware pieces, such as Shack–Hartmann wavefront sensor and deformable mirror, and the closed-loop feedbacks adopted in the conventional adaptive optics confocal imaging system, thus reducing the optomechanical complexity and cost. Numerical simulations and proof-of-principle experiments are presented that demonstrate the feasibility of this idea. PMID:26140334

  2. Digital adaptive optics line-scanning confocal imaging system

    NASA Astrophysics Data System (ADS)

    Liu, Changgeng; Kim, Myung K.

    2015-11-01

    A digital adaptive optics line-scanning confocal imaging (DAOLCI) system is proposed by applying digital holographic adaptive optics to a digital form of line-scanning confocal imaging system. In DAOLCI, each line scan is recorded by a digital hologram, which allows access to the complex optical field from one slice of the sample through digital holography. This complex optical field contains both the information of one slice of the sample and the optical aberration of the system, thus allowing us to compensate for the effect of the optical aberration, which can be sensed by a complex guide star hologram. After numerical aberration compensation, the corrected optical fields of a sequence of line scans are stitched into the final corrected confocal image. In DAOLCI, a numerical slit is applied to realize the confocality at the sensor end. The width of this slit can be adjusted to control the image contrast and speckle noise for scattering samples. DAOLCI dispenses with the hardware pieces, such as Shack-Hartmann wavefront sensor and deformable mirror, and the closed-loop feedbacks adopted in the conventional adaptive optics confocal imaging system, thus reducing the optomechanical complexity and cost. Numerical simulations and proof-of-principle experiments are presented that demonstrate the feasibility of this idea.

  3. SPECKLE NOISE SUBTRACTION AND SUPPRESSION WITH ADAPTIVE OPTICS CORONAGRAPHIC IMAGING

    SciTech Connect

    Ren Deqing; Dou Jiangpei; Zhang Xi; Zhu Yongtian

    2012-07-10

    Future ground-based direct imaging of exoplanets depends critically on high-contrast coronagraph and wave-front manipulation. A coronagraph is designed to remove most of the unaberrated starlight. Because of the wave-front error, which is inherit from the atmospheric turbulence from ground observations, a coronagraph cannot deliver its theoretical performance, and speckle noise will limit the high-contrast imaging performance. Recently, extreme adaptive optics, which can deliver an extremely high Strehl ratio, is being developed for such a challenging mission. In this publication, we show that barely taking a long-exposure image does not provide much gain for coronagraphic imaging with adaptive optics. We further discuss a speckle subtraction and suppression technique that fully takes advantage of the high contrast provided by the coronagraph, as well as the wave front corrected by the adaptive optics. This technique works well for coronagraphic imaging with conventional adaptive optics with a moderate Strehl ratio, as well as for extreme adaptive optics with a high Strehl ratio. We show how to substrate and suppress speckle noise efficiently up to the third order, which is critical for future ground-based high-contrast imaging. Numerical simulations are conducted to fully demonstrate this technique.

  4. An adaptive interferometer for optical testing .

    NASA Astrophysics Data System (ADS)

    Pariani, G.; Colella, L.; Bertarelli, C.; Aliverti, M.; Riva, M.; Bianco, A.

    Interferometry is a well-established technique to test optical elements. However, its use is challenging in the case of free-form and aspheric elements, due to the lack of the reference optics. The proposed idea concerns the development of a versatile interferometer, where its reference arm is equipped with a reprogrammable Computer Generated Hologram. This principle takes advantage from our study on photochromic materials for optical applications, which shows a strong and reversible modulation of transparency in the visible region. The encoding of the desired hologram can be done off-line, or directly into the interferometer, and different patterns may be realized sequentially after the erasing of the previous hologram. We report on the present state of the research and on the future perspectives. skip=5pt

  5. A Parallel Ocean Model With Adaptive Mesh Refinement Capability For Global Ocean Prediction

    SciTech Connect

    Herrnstein, A

    2005-09-08

    An ocean model with adaptive mesh refinement (AMR) capability is presented for simulating ocean circulation on decade time scales. The model closely resembles the LLNL ocean general circulation model with some components incorporated from other well known ocean models when appropriate. Spatial components are discretized using finite differences on a staggered grid where tracer and pressure variables are defined at cell centers and velocities at cell vertices (B-grid). Horizontal motion is modeled explicitly with leapfrog and Euler forward-backward time integration, and vertical motion is modeled semi-implicitly. New AMR strategies are presented for horizontal refinement on a B-grid, leapfrog time integration, and time integration of coupled systems with unequal time steps. These AMR capabilities are added to the LLNL software package SAMRAI (Structured Adaptive Mesh Refinement Application Infrastructure) and validated with standard benchmark tests. The ocean model is built on top of the amended SAMRAI library. The resulting model has the capability to dynamically increase resolution in localized areas of the domain. Limited basin tests are conducted using various refinement criteria and produce convergence trends in the model solution as refinement is increased. Carbon sequestration simulations are performed on decade time scales in domains the size of the North Atlantic and the global ocean. A suggestion is given for refinement criteria in such simulations. AMR predicts maximum pH changes and increases in CO{sub 2} concentration near the injection sites that are virtually unattainable with a uniform high resolution due to extremely long run times. Fine scale details near the injection sites are achieved by AMR with shorter run times than the finest uniform resolution tested despite the need for enhanced parallel performance. The North Atlantic simulations show a reduction in passive tracer errors when AMR is applied instead of a uniform coarse resolution. No

  6. Assessment of the present NASA optical metrology capabilities and recommendations for establishing an in-house NASA Optical Metrology Group

    NASA Technical Reports Server (NTRS)

    Parks, Robert E.

    1991-01-01

    An investigation into when it was first recognized that there was a deficiency in NASA optical metrology oversight capability, why this deficiency existed unnoticed for so long, and a proposal for correcting the problem is presented. It is explained why this optical metrology oversight is so critical to program success and at the same time, why it is difficult to establish due to the nature of the technology. The solution proposed is the establishment of an Optics Metrology Group within the NASA/MSFC Optics Branch with a line of authority from NASA S & MA.

  7. Accuracy requirements of optical linear algebra processors in adaptive optics imaging systems

    NASA Technical Reports Server (NTRS)

    Downie, John D.

    1990-01-01

    A ground-based adaptive optics imaging telescope system attempts to improve image quality by detecting and correcting for atmospherically induced wavefront aberrations. The required control computations during each cycle will take a finite amount of time. Longer time delays result in larger values of residual wavefront error variance since the atmosphere continues to change during that time. Thus an optical processor may be well-suited for this task. This paper presents a study of the accuracy requirements in a general optical processor that will make it competitive with, or superior to, a conventional digital computer for the adaptive optics application. An optimization of the adaptive optics correction algorithm with respect to an optical processor's degree of accuracy is also briefly discussed.

  8. Gemini South Adaptive Optics Imager (GSAOI) at Gemini South - Commissioning and Fist Science Results

    NASA Astrophysics Data System (ADS)

    Pessev, Peter; Carrasco, R.; Winge, C.; McGregor, P.; Edwards, M.; Rigaut, F.; Neichel, B.; Young, P.; Artigau, E.; Mauro, F.

    2013-01-01

    The Gemini South Adaptive Optics Imager (GSAOI) is the imaging camera to be used with the Multi-Conjugate Adaptive Optics system (GeMS) at Gemini South. GeMS and GSAOI are capable of delivering a diffraction limited images in the Near-Ifrared (0.9-2.5 micrometers) over an 85" square field of view. The focal plane of the instrument is covered by 2 x 2 array of HAWAII 2RG detectors and has a plate scale of 0.02". The instrument optics are all-refractive and coupled with the superb spatial resolution take a full advantage of the unprecedented image quality delivered by GeMS. GSAOI went through several commissioning runs during the southern summer of 2011/2012. In this presentation a brief summary of the system is provided, along with relevant commissioning information and some preliminary science results.

  9. PSF halo reduction in adaptive optics using dynamic pupil masking.

    PubMed

    Osborn, James; Myers, Richard M; Love, Gordon D

    2009-09-28

    We describe a method to reduce residual speckles in an adaptive optics system which add to the halo of the point spread function (PSF). The halo is particularly problematic in astronomical applications involving the detection of faint companions. Areas of the pupil are selected where the residual wavefront aberrations are large and these are masked using a spatial light modulator. The method is also suitable for smaller telescopes without adaptive optics as a relatively simple method to increase the resolution of the telescope. We describe the principle of the technique and show simulation results. PMID:19907514

  10. Frequency based design of modal controllers for adaptive optics systems.

    PubMed

    Agapito, Guido; Battistelli, Giorgio; Mari, Daniele; Selvi, Daniela; Tesi, Alberto; Tesi, Pietro

    2012-11-19

    This paper addresses the problem of reducing the effects of wavefront distortions in ground-based telescopes within a "Modal-Control" framework. The proposed approach allows the designer to optimize the Youla parameter of a given modal controller with respect to a relevant adaptive optics performance criterion defined on a "sampled" frequency domain. This feature makes it possible to use turbulence/vibration profiles of arbitrary complexity (even empirical power spectral densities from data), while keeping the controller order at a moderate value. Effectiveness of the proposed solution is also illustrated through an adaptive optics numerical simulator. PMID:23187567

  11. ShaneAO: an enhanced adaptive optics and IR imaging system for the Lick Observatory 3-meter telescope

    NASA Astrophysics Data System (ADS)

    Kupke, Renate; Gavel, Donald; Roskosi, Constance; Cabak, Gerald; Cowley, David; Dillon, Daren; Gates, Elinor L.; McGurk, Rosalie; Norton, Andrew; Peck, Michael; Ratliff, Christopher; Reinig, Marco

    2012-07-01

    The Lick Observatory 3-meter telescope has a history of serving as a testbed for innovative adaptive optics techniques. In 1996, it became one of the first astronomical observatories to employ laser guide star (LGS) adaptive optics as a facility instrument available to the astronomy community. Work on a second-generation LGS adaptive optics system, ShaneAO, is well underway, with plans to deploy on telescope in 2013. In this paper we discuss key design features and implementation plans for the ShaneAO adaptive optics system. Once again, the Shane 3-m will host a number of new techniques and technologies vital to the development of future adaptive optics systems on larger telescopes. Included is a woofer-tweeter based wavefront correction system incorporating a voice-coil actuated, low spatial and temporal bandwidth, high stroke deformable mirror in conjunction with a high order, high bandwidth MEMs deformable mirror. The existing dye laser, in operation since 1996, will be replaced with a fiber laser recently developed at Lawrence Livermore National Laboratories. The system will also incorporate a high-sensitivity, high bandwidth wavefront sensor camera. Enhanced IR performance will be achieved by replacing the existing PICNIC infrared array with an Hawaii 2RG. The updated ShaneAO system will provide opportunities to test predictive control algorithms for adaptive optics. Capabilities for astronomical spectroscopy, polarimetry, and visible-light adaptive optical astronomy will be supported.

  12. Adaptive Optics Technology for High-Resolution Retinal Imaging

    PubMed Central

    Lombardo, Marco; Serrao, Sebastiano; Devaney, Nicholas; Parravano, Mariacristina; Lombardo, Giuseppe

    2013-01-01

    Adaptive optics (AO) is a technology used to improve the performance of optical systems by reducing the effects of optical aberrations. The direct visualization of the photoreceptor cells, capillaries and nerve fiber bundles represents the major benefit of adding AO to retinal imaging. Adaptive optics is opening a new frontier for clinical research in ophthalmology, providing new information on the early pathological changes of the retinal microstructures in various retinal diseases. We have reviewed AO technology for retinal imaging, providing information on the core components of an AO retinal camera. The most commonly used wavefront sensing and correcting elements are discussed. Furthermore, we discuss current applications of AO imaging to a population of healthy adults and to the most frequent causes of blindness, including diabetic retinopathy, age-related macular degeneration and glaucoma. We conclude our work with a discussion on future clinical prospects for AO retinal imaging. PMID:23271600

  13. Focusing a NIR adaptive optics imager; experience with GSAOI

    NASA Astrophysics Data System (ADS)

    Doolan, Matthew; Bloxham, Gabe; Conroy, Peter; Jones, Damien; McGregor, Peter; Stevanovic, Dejan; Van Harmelen, Jan; Waldron, Liam E.; Waterson, Mark; Zhelem, Ross

    2006-06-01

    The Gemini South Adaptive Optics Imager (GSAOI) to be used with the Multi-Conjugate Adaptive Optics (MCAO) system at Gemini South is currently in the final stages of assembly and testing. GSAOI uses a suite of 26 different filters, made from both BK7 and Fused Silica substrates. These filters, located in a non-collimated beam, work as active optical elements. The optical design was undertaken to ensure that both the filter substrates both focused longitudinally at the same point. During the testing of the instrument it was found that longitudinal focus was filter dependant. The methods used to investigate this are outlined in the paper. These investigations identified several possible causes for the focal shift including substrate material properties in cryogenic conditions and small amounts of residual filter power.

  14. GPU-based computational adaptive optics for volumetric optical coherence microscopy

    NASA Astrophysics Data System (ADS)

    Tang, Han; Mulligan, Jeffrey A.; Untracht, Gavrielle R.; Zhang, Xihao; Adie, Steven G.

    2016-03-01

    Optical coherence tomography (OCT) is a non-invasive imaging technique that measures reflectance from within biological tissues. Current higher-NA optical coherence microscopy (OCM) technologies with near cellular resolution have limitations on volumetric imaging capabilities due to the trade-offs between resolution vs. depth-of-field and sensitivity to aberrations. Such trade-offs can be addressed using computational adaptive optics (CAO), which corrects aberration computationally for all depths based on the complex optical field measured by OCT. However, due to the large size of datasets plus the computational complexity of CAO and OCT algorithms, it is a challenge to achieve high-resolution 3D-OCM reconstructions at speeds suitable for clinical and research OCM imaging. In recent years, real-time OCT reconstruction incorporating both dispersion and defocus correction has been achieved through parallel computing on graphics processing units (GPUs). We add to these methods by implementing depth-dependent aberration correction for volumetric OCM using plane-by-plane phase deconvolution. Following both defocus and aberration correction, our reconstruction algorithm achieved depth-independent transverse resolution of 2.8 um, equal to the diffraction-limited focal plane resolution. We have translated the CAO algorithm to a CUDA code implementation and tested the speed of the software in real-time using two GPUs - NVIDIA Quadro K600 and Geforce TITAN Z. For a data volume containing 4096×256×256 voxels, our system's processing speed can keep up with the 60 kHz acquisition rate of the line-scan camera, and takes 1.09 seconds to simultaneously update the CAO correction for 3 en face planes at user-selectable depths.

  15. Phase-sensitive imaging of the outer retina using optical coherence tomography and adaptive optics

    PubMed Central

    Jonnal, Ravi S.; Kocaoglu, Omer P.; Wang, Qiang; Lee, Sangyeol; Miller, Donald T.

    2011-01-01

    The cone photoreceptor’s outer segment (OS) experiences changes in optical path length, both in response to visible stimuli and as a matter of its daily course of renewal and shedding. These changes are of interest, to quantify function in healthy cells and assess dysfunction in diseased ones. While optical coherence tomography (OCT), combined with adaptive optics (AO), has permitted unprecedented three-dimensional resolution in the living retina, it has not generally been able to measure these OS dynamics, whose scale is smaller than OCT’s axial resolution of a few microns. A possible solution is to take advantage of the phase information encoded in the OCT signal. Phase-sensitive implementations of spectral-domain optical coherence tomography (SD-OCT) have been demonstrated, capable of resolving sample axial displacements much smaller than the imaging wavelength, but these have been limited to ex vivo samples. In this paper we present a novel technique for retrieving phase information from OCT volumes of the outer retina. The key component of our technique is quantification of phase differences within the retina. We provide a quantitative analysis of such phase information and show that–when combined with appropriate methods for filtering and unwrapping–it can improve the sensitivity to OS length change by more than an order of magnitude, down to 45 nm, slightly thicker than a single OS disc. We further show that phase sensitivity drops off with retinal eccentricity, and that the best location for phase imaging is close to the fovea. We apply the technique to the measurement of sub-resolution changes in the OS over matters of hours. Using custom software for registration and tracking, these microscopic changes are monitored in hundreds of cones over time. In two subjects, the OS was found to have average elongation rates of 150 nm/hr, values which agree with our previous findings. PMID:22254172

  16. Army National Guard (ARNG) Objective Supply Capability Adaptive Redesign (OSCAR) end-user manual

    SciTech Connect

    Pelath, R.P.; Rasch, K.A.

    1997-12-01

    The Objective Supply Capability Adaptive Redesign (OSCAR) project is designed to identify and develop programs which automate requirements not included in standard army systems. This includes providing automated interfaces between standard army systems at the National Guard Bureau (NGB) level and at the state/territory level. As part of the OSCAR project, custom software has been installed at NGB to streamline management of major end items. This software allows item managers to provide automated disposition on excess equipment to states operating the Standard Army Retail Supply System Objective (SARSS-O). It also accelerates movement of excess assets to improve the readiness of the Army National Guard (ARNG)--while reducing excess on hand. The purpose of the End-User Manual is to provide direction and guidance to the customer for implementing the ARNG Excess Management Program.

  17. Modelling MEMS deformable mirrors for astronomical adaptive optics

    NASA Astrophysics Data System (ADS)

    Blain, Celia

    As of July 2012, 777 exoplanets have been discovered utilizing mainly indirect detection techniques. The direct imaging of exoplanets is the next goal for astronomers, because it will reveal the diversity of planets and planetary systems, and will give access to the exoplanet's chemical composition via spectroscopy. With this spectroscopic knowledge, astronomers will be able to know, if a planet is terrestrial and, possibly, even find evidence of life. With so much potential, this branch of astronomy has also captivated the general public attention. The direct imaging of exoplanets remains a challenging task, due to (i) the extremely high contrast between the parent star and the orbiting exoplanet and (ii) their small angular separation. For ground-based observatories, this task is made even more difficult, due to the presence of atmospheric turbulence. High Contrast Imaging (HCI) instruments have been designed to meet this challenge. HCI instruments are usually composed of a coronagraph coupled with the full onaxis corrective capability of an Extreme Adaptive Optics (ExAO) system. An efficient coronagraph separates the faint planet's light from the much brighter starlight, but the dynamic boiling speckles, created by the stellar image, make exoplanet detection impossible without the help of a wavefront correction device. The Subaru Coronagraphic Extreme Adaptive Optics (SCExAO) system is a high performance HCI instrument developed at Subaru Telescope. The wavefront control system of SCExAO consists of three wavefront sensors (WFS) coupled with a 1024- actuator Micro-Electro-Mechanical-System (MEMS) deformable mirror (DM). MEMS DMs offer a large actuator density, allowing high count DMs to be deployed in small size beams. Therefore, MEMS DMs are an attractive technology for Adaptive Optics (AO) systems and are particularly well suited for HCI instruments employing ExAO technologies. SCExAO uses coherent light modulation in the focal plane introduced by the DM, for

  18. Increase in the compensated field of view with a double-conjugate adaptive-optics system.

    PubMed

    Baharav, Y; Shamir, J

    1995-04-20

    We analyze and quantify the capabilities and limitations of a double-conjugate adaptive-optics system. In the proposed system the contribution of two turbulent layers is treated separately, with Rayleigh guide stars for the bottom layer, sodium guide stars for the top layer, and two adaptive mirrors conjugate to the respective layers. The system substantially increases the compensated field of view. We give calculated results for the estimated number of guide stars needed, the wave-front sensor, and the adaptive-mirror resolution. Simulation results are also presented, and the residual error remaining after correction in our proposed system is compared with a conventional single-adaptive-mirror system. PMID:21037756

  19. Simulated apoptosis/neurogenesis regulates learning and memory capabilities of adaptive neural networks.

    PubMed

    Chambers, R Andrew; Potenza, Marc N; Hoffman, Ralph E; Miranker, Willard

    2004-04-01

    Characterization of neuronal death and neurogenesis in the adult brain of birds, humans, and other mammals raises the possibility that neuronal turnover represents a special form of neuroplasticity associated with stress responses, cognition, and the pathophysiology and treatment of psychiatric disorders. Multilayer neural network models capable of learning alphabetic character representations via incremental synaptic connection strength changes were used to assess additional learning and memory effects incurred by simulation of coordinated apoptotic and neurogenic events in the middle layer. Using a consistent incremental learning capability across all neurons and experimental conditions, increasing the number of middle layer neurons undergoing turnover increased network learning capacity for new information, and increased forgetting of old information. Simulations also showed that specific patterns of neural turnover based on individual neuronal connection characteristics, or the temporal-spatial pattern of neurons chosen for turnover during new learning impacts new learning performance. These simulations predict that apoptotic and neurogenic events could act together to produce specific learning and memory effects beyond those provided by ongoing mechanisms of connection plasticity in neuronal populations. Regulation of rates as well as patterns of neuronal turnover may serve an important function in tuning the informatic properties of plastic networks according to novel informational demands. Analogous regulation in the hippocampus may provide for adaptive cognitive and emotional responses to novel and stressful contexts, or operate suboptimally as a basis for psychiatric disorders. The implications of these elementary simulations for future biological and neural modeling research on apoptosis and neurogenesis are discussed. PMID:14702022

  20. Development of an MRE adaptive tuned vibration absorber with self-sensing capability

    NASA Astrophysics Data System (ADS)

    Sun, Shuaishuai; Yang, Jian; Li, Weihua; Deng, Huaxia; Du, Haiping; Alici, Gursel

    2015-09-01

    In this paper, self-sensing technology was introduced into an adaptive tuned vibration absorber, incorporating a laminated magnetorheological elastomer (MRE) structure, a hybrid magnetic system and a self-sensing component. The adoption of the laminated MRE structure and the hybrid magnetic system enables the absorber to have higher lateral flexibility and a wider effective frequency range. The integration of the self-sensing capability allows the absorber to operate without sensors and, at the same time, greatly reduces costs, required space and maintenance. A series of experiments were conducted to measure the frequency shift property, to verify the self-sensing capability and to evaluate its effectiveness on vibration reduction. The experimental results show that the natural frequency of the proposed absorber can be changed to 4.8 Hz at -3 A and 11.3 Hz at 3 A from 8.5 Hz at 0 A, the frequency of the self-sensed voltage equals the excitation frequency and, more importantly, the vibration control effectiveness of the self-sensing MRE absorber is experimentally verified and it is more effective on vibration reduction than a passive absorber.

  1. Adaptive Planning: Understanding Organizational Workload to Capability/ Capacity through Modeling and Simulation

    NASA Technical Reports Server (NTRS)

    Hase, Chris

    2010-01-01

    In August 2003, the Secretary of Defense (SECDEF) established the Adaptive Planning (AP) initiative [1] with an objective of reducing the time necessary to develop and revise Combatant Commander (COCOM) contingency plans and increase SECDEF plan visibility. In addition to reducing the traditional plan development timeline from twenty-four months to less than twelve months (with a goal of six months)[2], AP increased plan visibility to Department of Defense (DoD) leadership through In-Progress Reviews (IPRs). The IPR process, as well as the increased number of campaign and contingency plans COCOMs had to develop, increased the workload while the number of planners remained fixed. Several efforts from collaborative planning tools to streamlined processes were initiated to compensate for the increased workload enabling COCOMS to better meet shorter planning timelines. This paper examines the Joint Strategic Capabilities Plan (JSCP) directed contingency planning and staffing requirements assigned to a combatant commander staff through the lens of modeling and simulation. The dynamics of developing a COCOM plan are captured with an ExtendSim [3] simulation. The resulting analysis provides a quantifiable means by which to measure a combatant commander staffs workload associated with development and staffing JSCP [4] directed contingency plans with COCOM capability/capacity. Modeling and simulation bring significant opportunities in measuring the sensitivity of key variables in the assessment of workload to capability/capacity analysis. Gaining an understanding of the relationship between plan complexity, number of plans, planning processes, and number of planners with time required for plan development provides valuable information to DoD leadership. Through modeling and simulation AP leadership can gain greater insight in making key decisions on knowing where to best allocate scarce resources in an effort to meet DoD planning objectives.

  2. Improved Testing Capability and Adaptability Through the Use of Wireless Sensors

    NASA Technical Reports Server (NTRS)

    Solano, Wanda M.

    2003-01-01

    From the first Saturn V rocket booster (S-II-T) testing in 1966 and the routine Space Shuttle Main Engine (SSME) testing beginning in 1975, to more recent test programs such as the X-33 Aerospike Engine, the Integrated Powerhead Development (IPD) program, and the Hybrid Sounding Rocket (HYSR), Stennis Space Center (SSC) continues to be a premier location for conducting large-scale testing. Central to each test program is the capability for sensor systems to deliver reliable measurements and high quality data, while also providing a means to monitor the test stand area to the highest degree of safety and sustainability. Sensor wiring is routed along piping and through cable trenches, making its way from the engine test area, through the test stand area and to the signal conditioning building before final transfer to the test control center. When sensor requirements lie outside the reach of the routine sensor cable routing, the use of wireless sensor networks becomes particularly attractive due to their versatility and ease of installation. As part of an on-going effort to enhance the testing capabilities of Stennis Space Center, the Test Technology and Development group has found numerous applications for its sensor-adaptable wireless sensor suite. While not intended for critical engine measurements or control loops, in-house hardware and software development of the sensor suite can provide improved testing capability for a range of applications including the safety monitoring of propellant storage barrels and as an experimental test-bed for embedded health monitoring paradigms.

  3. Adaptive subwavelength control of nano-optical fields.

    PubMed

    Aeschlimann, Martin; Bauer, Michael; Bayer, Daniela; Brixner, Tobias; García de Abajo, F Javier; Pfeiffer, Walter; Rohmer, Martin; Spindler, Christian; Steeb, Felix

    2007-03-15

    Adaptive shaping of the phase and amplitude of femtosecond laser pulses has been developed into an efficient tool for the directed manipulation of interference phenomena, thus providing coherent control over various quantum-mechanical systems. Temporal resolution in the femtosecond or even attosecond range has been demonstrated, but spatial resolution is limited by diffraction to approximately half the wavelength of the light field (that is, several hundred nanometres). Theory has indicated that the spatial limitation to coherent control can be overcome with the illumination of nanostructures: the spatial near-field distribution was shown to depend on the linear chirp of an irradiating laser pulse. An extension of this idea to adaptive control, combining multiparameter pulse shaping with a learning algorithm, demonstrated the generation of user-specified optical near-field distributions in an optimal and flexible fashion. Shaping of the polarization of the laser pulse provides a particularly efficient and versatile nano-optical manipulation method. Here we demonstrate the feasibility of this concept experimentally, by tailoring the optical near field in the vicinity of silver nanostructures through adaptive polarization shaping of femtosecond laser pulses and then probing the lateral field distribution by two-photon photoemission electron microscopy. In this combination of adaptive control and nano-optics, we achieve subwavelength dynamic localization of electromagnetic intensity on the nanometre scale and thus overcome the spatial restrictions of conventional optics. This experimental realization of theoretical suggestions opens a number of perspectives in coherent control, nano-optics, nonlinear spectroscopy, and other research fields in which optical investigations are carried out with spatial or temporal resolution. PMID:17361179

  4. Adaptive optical system for astronomical applications

    NASA Astrophysics Data System (ADS)

    Merkle, F.; Bille, J.; Freischlad, K.; Frieben, M.; Jahn, G.; Reischmann, H.-L.

    The active optical system being developed for use with the 0.75-m RC telescope at the Landessternwarte in Heidelberg, FRG, is discussed. A 5-cm electrostatically deformable aluminum-coated polymer mirror (sensitivity 0.05 microns/V, maximum local tilt 3 microns/5 mm) is mounted in a gimbal with piezoelectric-actuator tilt control. The mirror control systems being tested are a modified shearing interferometer with crosstalk-compensated feedback and Fourier-modulus wavefront computation, both using a 32 x 32 diode array as detector. Modal phase compensation is achieved using Zernike polynomials and Karhunen-Loeve functions; the correction for the tilt terms of the series expansion is left to the overall-tilt compensation unit, for which preliminary test results are shown.

  5. Use of electrochromic materials in adaptive optics.

    SciTech Connect

    Kammler, Daniel R.; Sweatt, William C.; Verley, Jason C.; Yelton, William Graham

    2005-07-01

    Electrochromic (EC) materials are used in 'smart' windows that can be darkened by applying a voltage across an EC stack on the window. The associated change in refractive index (n) in the EC materials might allow their use in tunable or temperature-insensitive Fabry-Perot filters and transmissive-spatial-light-modulators (SLMs). The authors are conducting a preliminary evaluation of these materials in many applications, including target-in-the-loop systems. Data on tungsten oxide, WO{sub 3}, the workhorse EC material, indicate that it's possible to achieve modest changes in n with only slight increases in absorption between the visible and {approx}10 {micro}m. This might enable construction of a tunable Fabry-Perot filter consisting of an active EC layer (e.g. WO{sub 3}) and a proton conductor (e.g.Ta{sub 2}O{sub 5}) sandwiched between two gold electrodes. A SLM might be produced by replacing the gold with a transparent conductor (e.g. ITO). This SLM would allow broad-band operation like a micromirror array. Since it's a transmission element, simple optical designs like those in liquid-crystal systems would be possible. Our team has fabricated EC stacks and characterized their switching speed and optical properties (n, k). We plan to study the interplay between process parameters, film properties, and performance characteristics associated with the FP-filter and then extend what we learn to SLMs. Our goals are to understand whether the changes in absorption associated with changes in n are acceptable, and whether it's possible to design an EC-stack that's fast enough to be interesting. We'll present our preliminary findings regarding the potential viability of EC materials for target-in-the-loop applications.

  6. Optic flow improves adaptability of spatiotemporal characteristics during split-belt locomotor adaptation with tactile stimulation.

    PubMed

    Eikema, Diderik Jan A; Chien, Jung Hung; Stergiou, Nicholas; Myers, Sara A; Scott-Pandorf, Melissa M; Bloomberg, Jacob J; Mukherjee, Mukul

    2016-02-01

    Human locomotor adaptation requires feedback and feed-forward control processes to maintain an appropriate walking pattern. Adaptation may require the use of visual and proprioceptive input to decode altered movement dynamics and generate an appropriate response. After a person transfers from an extreme sensory environment and back, as astronauts do when they return from spaceflight, the prolonged period required for re-adaptation can pose a significant burden. In our previous paper, we showed that plantar tactile vibration during a split-belt adaptation task did not interfere with the treadmill adaptation however, larger overground transfer effects with a slower decay resulted. Such effects, in the absence of visual feedback (of motion) and perturbation of tactile feedback, are believed to be due to a higher proprioceptive gain because, in the absence of relevant external dynamic cues such as optic flow, reliance on body-based cues is enhanced during gait tasks through multisensory integration. In this study, we therefore investigated the effect of optic flow on tactile-stimulated split-belt adaptation as a paradigm to facilitate the sensorimotor adaptation process. Twenty healthy young adults, separated into two matched groups, participated in the study. All participants performed an overground walking trial followed by a split-belt treadmill adaptation protocol. The tactile group (TC) received vibratory plantar tactile stimulation only, whereas the virtual reality and tactile group (VRT) received an additional concurrent visual stimulation: a moving virtual corridor, inducing perceived self-motion. A post-treadmill overground trial was performed to determine adaptation transfer. Interlimb coordination of spatiotemporal and kinetic variables was quantified using symmetry indices and analyzed using repeated-measures ANOVA. Marked changes of step length characteristics were observed in both groups during split-belt adaptation. Stance and swing time symmetries were

  7. Development of a scalable generic platform for adaptive optics real time control

    NASA Astrophysics Data System (ADS)

    Surendran, Avinash; Burse, Mahesh P.; Ramaprakash, A. N.; Parihar, Padmakar

    2015-06-01

    The main objective of the present project is to explore the viability of an adaptive optics control system based exclusively on Field Programmable Gate Arrays (FPGAs), making strong use of their parallel processing capability. In an Adaptive Optics (AO) system, the generation of the Deformable Mirror (DM) control voltages from the Wavefront Sensor (WFS) measurements is usually through the multiplication of the wavefront slopes with a predetermined reconstructor matrix. The ability to access several hundred hard multipliers and memories concurrently in an FPGA allows performance far beyond that of a modern CPU or GPU for tasks with a well-defined structure such as Adaptive Optics control. The target of the current project is to generate a signal for a real time wavefront correction, from the signals coming from a Wavefront Sensor, wherein the system would be flexible to accommodate all the current Wavefront Sensing techniques and also the different methods which are used for wavefront compensation. The system should also accommodate for different data transmission protocols (like Ethernet, USB, IEEE 1394 etc.) for transmitting data to and from the FPGA device, thus providing a more flexible platform for Adaptive Optics control. Preliminary simulation results for the formulation of the platform, and a design of a fully scalable slope computer is presented.

  8. A portable solar adaptive optics system: software and laboratory developments

    NASA Astrophysics Data System (ADS)

    Ren, Deqing; Penn, Matt; Plymate, Claude; Wang, Haimin; Zhang, Xi; Dong, Bing; Brown, Nathan; Denio, Andrew

    2010-07-01

    We present our recent process on a portable solar adaptive Optics system, which is aimed for diffraction-limited imaging in the 1.0 ~ 5.0-μm infrared wavelength range with any solar telescope with an aperture size up to 1.6 meters. The realtime wave-front sensing, image processing and computation are based on a commercial multi-core personal computer. The software is developed in LabVIEW. Combining the power of multi-core imaging processing and LabVIEW parallel programming, we show that our solar adaptive optics can achieve excellent performance that is competitive with other systems. In addition, the LabVIEW's block diagram based programming is especially suitable for rapid development of a prototype system, which makes a low-cost and high-performance system possible. Our adaptive optics system is flexible; it can work with any telescope with or without central obstruction with any aperture size in the range of 0.6~1.6 meters. In addition, the whole system is compact and can be brought to a solar observatory to perform associated scientific observations. According to our knowledge, this is the first adaptive optics that adopts the LabVIEW high-level programming language with a multi-core commercial personal computer, and includes the unique features discussed above.

  9. Auto-aligning stimulated emission depletion microscope using adaptive optics

    PubMed Central

    Gould, Travis J.; Kromann, Emil B.; Burke, Daniel; Booth, Martin J.; Bewersdorf, Joerg

    2013-01-01

    Stimulated emission depletion (STED) microscopy provides diffraction-unlimited resolution in fluorescence microscopy. Imaging at the nanoscale, however, requires precise alignment of the depletion and excitation laser foci of the STED microscope. We demonstrate here that adaptive optics can be implemented to automatically align STED and confocal images with a precision of 4.3 ± 2.3 nm. PMID:23722769

  10. Laser guide stars and adaptive optics for astronomy

    SciTech Connect

    Max, C.E.

    1992-07-15

    Five papers are included: feasibility experiment for sodium-alyer laser guide stars at LLNL; system design for a high power sodium beacon laser; sodium guide star adaptive optics system for astronomical imaging in the visible and near-infrared; high frame-rate, large field wavefront sensor; and resolution limits for ground-based astronomical imaging. Figs, tabs, refs.

  11. Observing techniques for astronomical laser guide star adaptive optics

    SciTech Connect

    Max, C.E.; Macintosh, B.; Olivier, S.S.; Gavel, D.T.; Friedman, H.W.

    1998-05-01

    We discuss astronomical observing requirements and their implementation using sodium-layer laser guide star adaptive optics. Specific issues requiring implementation include the ability to place the astronomical object at different locations within the field of view; reliable subtraction of Rayleigh-scattered light; efficient focusing; and stable point-spread-function characterization.

  12. Adaptive optics center of excellence for national security

    NASA Astrophysics Data System (ADS)

    Agrawal, Brij

    2014-06-01

    This paper provides an overview of research at the Adaptive Optics Center of Excellence for national security (AOCoE) at the Naval Postgraduate School (NPS). The Center was established in 2011 with the sponsorship of the Office of Naval Research, National Reconnaissance Office, and Air Force research Laboratory. Research is in two areas: Segmented Mirror telescope (SMT) for imaging satellites and High Energy Laser Beam Control. SMT consists of a 3 meter diameter telescope with six segments and each segment has actuators for surface control and segment alignment. SMT research areas include developing improved techniques for surface control and segment alignment, and reduction in segment vibration by using tuned mass dampers. Research is also performed in adding a deformable mirror into the SMT optical path to correct for residual beam aberration not corrected by the primary mirror actuators. For high energy laser beam control the research areas are acquisition, tracking, and pointing, optical beam jitter control, and application of adaptive optics for correcting beam aberration due to air turbulence. The current focus is on adaptive optics for deep turbulence.

  13. Characterization of a tunable astigmatic fluidic lens with adaptive optics correction for compact phoropter application

    NASA Astrophysics Data System (ADS)

    Fuh, Yiin-Kuen; Huang, Chieh-Tse

    2014-07-01

    Fluidically controlled lenses which adaptively correct prescribed refractive error without mechanically moving parts are extensively applied in the ophthalmic applications. Capable of variable-focusing properties, however, the associated aberrations due to curvature change and refractive index mismatch can inherently degrade image quality severely. Here we present the experimental study of the aberrations in tunable astigmatic lens and use of adaptive optics to compensate for the wavefront errors. Characterization of the optical properties of the individual lenses is carried out by Shack-Hartmann measurements. An adaptive optics (AO) based scheme is demonstrated for three injected fluidic volumes, resulting in a substantial reduction of the wavefront errors from -0.12, -0.25, -0.32 to 0.01, -0.01, -0.20 μm, respectively, corresponding to the optical power tenability of 0.83 to 1.84 D. Furthermore, an integrated optical phoroptor consisting of adjustable astigmatic lenses and AO correction is demonstrated such that an induced refraction error of -1 D cylinder at 180° of a model eye vision is experimentally corrected.

  14. Adaptive wide-field optical tomography

    NASA Astrophysics Data System (ADS)

    Venugopal, Vivek; Intes, Xavier

    2013-03-01

    We describe a wide-field optical tomography technique, which allows the measurement-guided optimization of illumination patterns for enhanced reconstruction performances. The iterative optimization of the excitation pattern aims at reducing the dynamic range in photons transmitted through biological tissue. It increases the number of measurements collected with high photon counts resulting in a dataset with improved tomographic information. Herein, this imaging technique is applied to time-resolved fluorescence molecular tomography for preclinical studies. First, the merit of this approach is tested by in silico studies in a synthetic small animal model for typical illumination patterns. Second, the applicability of this approach in tomographic imaging is validated in vitro using a small animal phantom with two fluorescent capillaries occluded by a highly absorbing inclusion. The simulation study demonstrates an improvement of signal transmitted (˜2 orders of magnitude) through the central portion of the small animal model for all patterns considered. A corresponding improvement in the signal at the emission wavelength by 1.6 orders of magnitude demonstrates the applicability of this technique for fluorescence molecular tomography. The successful discrimination and localization (˜1 mm error) of the two objects with higher resolution using the optimized patterns compared with nonoptimized illumination establishes the improvement in reconstruction performance when using this technique.

  15. An approach to fabrication of large adaptive optics mirrors

    NASA Astrophysics Data System (ADS)

    Schwartz, Eric; Rey, Justin; Blaszak, David; Cavaco, Jeffrey

    2014-07-01

    For more than two decades, Northrop Grumman Xinetics has been the principal supplier of small deformable mirrors that enable adaptive optical (AO) systems for the ground-based astronomical telescope community. With today's drive toward extremely large aperture systems, and the desire of telescope designers to include adaptive optics in the main optical path of the telescope, Xinetics has recognized the need for large active mirrors with the requisite bandwidth and actuator stoke. Presented in this paper is the proposed use of Northrop Grumman Xinetics' large, ultra-lightweight Silicon Carbide substrates with surface parallel actuation of sufficient spatial density and bandwidth to meet the requirements of tomorrow's AO systems, while reducing complexity and cost.

  16. Adaptive optics assisted Fourier domain OCT with balanced detection

    NASA Astrophysics Data System (ADS)

    Meadway, A.; Bradu, A.; Hathaway, M.; Van der Jeught, S.; Rosen, R. B.; Podoleanu, A. Gh.

    2011-03-01

    Two factors are of importance to optical coherence tomography (OCT), resolution and sensitivity. Adaptive optics improves the resolution of a system by correcting for aberrations causing distortions in the wave-front. Balanced detection has been used in time domain OCT systems by removing excess photon noise, however it has not been used in Fourier domain systems, as the cameras used in the spectrometers saturated before excess photon noise becomes a problem. Advances in camera technology mean that this is no longer the case and balanced detection can now be used to improve the signal to noise ratio in a Fourier domain (FD) OCT system. An FD-OCT system, enhanced with adaptive optics, is presented and is used to show the improvement that balanced detection can provide. The signal to noise ratios of single camera detection and balanced detection are assessed and in-vivo retinal images are acquired to demonstrate better image quality when using balance detection.

  17. Modeling for deformable mirrors and the adaptive optics optimization program

    SciTech Connect

    Henesian, M.A.; Haney, S.W.; Trenholme, J.B.; Thomas, M.

    1997-03-18

    We discuss aspects of adaptive optics optimization for large fusion laser systems such as the 192-arm National Ignition Facility (NIF) at LLNL. By way of example, we considered the discrete actuator deformable mirror and Hartmann sensor system used on the Beamlet laser. Beamlet is a single-aperture prototype of the 11-0-5 slab amplifier design for NIF, and so we expect similar optical distortion levels and deformable mirror correction requirements. We are now in the process of developing a numerically efficient object oriented C++ language implementation of our adaptive optics and wavefront sensor code, but this code is not yet operational. Results are based instead on the prototype algorithms, coded-up in an interpreted array processing computer language.

  18. Improved visualization of outer retinal morphology with aberration cancelling reflective optical design for adaptive optics - optical coherence tomography

    PubMed Central

    Lee, Sang-Hyuck; Werner, John S.; Zawadzki, Robert J.

    2013-01-01

    We present an aberration cancelling optical design for a reflective adaptive optics - optical coherence tomography (AO-OCT) retinal imaging system. The optical performance of this instrument is compared to our previous multimodal AO-OCT/AO-SLO retinal imaging system. The feasibility of new instrumentation for improved visualization of microscopic retinal structures is discussed. Examples of images acquired with this new AO-OCT instrument are presented. PMID:24298411

  19. Group-multicast capable optical virtual private ring with contention avoidance

    NASA Astrophysics Data System (ADS)

    Peng, Yunfeng; Du, Shu; Long, Keping

    2008-11-01

    A ring based optical virtual private network (OVPN) employing contention sensing and avoidance is proposed to deliver multiple-to-multiple group-multicast traffic. The network architecture is presented and its operation principles as well as performance are investigated. The main contribution of this article is the presentation of an innovative group-multicast capable OVPN architecture with technologies available today.

  20. Adaptive Optics for the Thirty Meter Telescope

    NASA Astrophysics Data System (ADS)

    Ellerbroek, Brent

    2013-12-01

    This paper provides an overview of the progress made since the last AO4ELT conference towards developing the first-light AO architecture for the Thirty Meter Telescope (TMT). The Preliminary Design of the facility AO system NFIRAOS has been concluded by the Herzberg Institute of Astrophysics. Work on the client Infrared Imaging Spectrograph (IRIS) has progressed in parallel, including a successful Conceptual Design Review and prototyping of On-Instrument WFS (OIWFS) hardware. Progress on the design for the Laser Guide Star Facility (LGSF) continues at the Institute of Optics and Electronics in Chengdu, China, including the final acceptance of the Conceptual Design and modest revisions for the updated TMT telescope structure. Design and prototyping activities continue for lasers, wavefront sensing detectors, detector readout electronics, real-time control (RTC) processors, and deformable mirrors (DMs) with their associated drive electronics. Highlights include development of a prototype sum frequency guide star laser at the Technical Institute of Physics and Chemistry (Beijing); fabrication/test of prototype natural- and laser-guide star wavefront sensor CCDs for NFIRAOS by MIT Lincoln Laboratory and W.M. Keck Observatory; a trade study of RTC control algorithms and processors, with prototyping of GPU and FPGA architectures by TMT and the Dominion Radio Astrophysical Observatory; and fabrication/test of a 6x60 actuator DM prototype by CILAS. Work with the University of British Columbia LIDAR is continuing, in collaboration with ESO, to measure the spatial/temporal variability of the sodium layer and characterize the sodium coupling efficiency of several guide star laser systems. AO performance budgets have been further detailed. Modeling topics receiving particular attention include performance vs. computational cost tradeoffs for RTC algorithms; optimizing performance of the tip/tilt, plate scale, and sodium focus tracking loops controlled by the NGS on

  1. Adaptive Optics for Satellite Imaging and Space Debris Ranging

    NASA Astrophysics Data System (ADS)

    Bennet, F.; D'Orgeville, C.; Price, I.; Rigaut, F.; Ritchie, I.; Smith, C.

    Earth's space environment is becoming crowded and at risk of a Kessler syndrome, and will require careful management for the future. Modern low noise high speed detectors allow for wavefront sensing and adaptive optics (AO) in extreme circumstances such as imaging small orbiting bodies in Low Earth Orbit (LEO). The Research School of Astronomy and Astrophysics (RSAA) at the Australian National University have been developing AO systems for telescopes between 1 and 2.5m diameter to image and range orbiting satellites and space debris. Strehl ratios in excess of 30% can be achieved for targets in LEO with an AO loop running at 2kHz, allowing the resolution of small features (<30cm) and the capability to determine object shape and spin characteristics. The AO system developed at RSAA consists of a high speed EMCCD Shack-Hartmann wavefront sensor, a deformable mirror (DM), and realtime computer (RTC), and an imaging camera. The system works best as a laser guide star system but will also function as a natural guide star AO system, with the target itself being the guide star. In both circumstances tip-tilt is provided by the target on the imaging camera. The fast tip-tilt modes are not corrected optically, and are instead removed by taking images at a moderate speed (>30Hz) and using a shift and add algorithm. This algorithm can also incorporate lucky imaging to further improve the final image quality. A similar AO system for space debris ranging is also in development in collaboration with Electro Optic Systems (EOS) and the Space Environment Management Cooperative Research Centre (SERC), at the Mount Stromlo Observatory in Canberra, Australia. The system is designed for an AO corrected upward propagated 1064nm pulsed laser beam, from which time of flight information is used to precisely range the target. A 1.8m telescope is used for both propagation and collection of laser light. A laser guide star, Shack-Hartmann wavefront sensor, and DM are used for high order

  2. Adaptive optics high resolution spectroscopy: present status and future direction

    SciTech Connect

    Alcock, C; Angel, R; Ciarlo, D; Fugate, R O; Ge, J; Kuzmenko, P; Lloyd-Hart, M; Macintosh, B; Najita, J; Woolf, N

    1999-07-27

    High resolution spectroscopy experiments with visible adaptive optics (AO) telescopes at Starfire Optical Range and Mt. Wilson have demonstrated that spectral resolution can be routinely improved by a factor of - 10 over the seeing-limited case with no extra light losses at visible wavelengths. With large CCDs now available, a very wide wavelength range can be covered in a single exposure. In the near future, most large ground-based telescopes will be equipped with powerful A0 systems. Most of these systems are aimed primarily at diffraction-limited operation in the near IR. An exciting new opportunity will thus open up for high resolution IR spectroscopy. Immersion echelle gratings with much coarser grooves being developed by us at LLNL will play a critical role in achieving high spectral resolution with a compact and low cost IR cryogenically cooled spectrograph and simultaneous large wavelength coverage on relatively small IR detectors. We have constructed a new A0 optimized spectrograph at Steward Observatory to provide R = 200,000 in the optical, which is being commissioned at the Starfire Optical Range 3.5m telescope. We have completed the optical design of the LLNL IR Immersion Spectrograph (LISPEC) to take advantage of improved silicon etching technology. Key words: adaptive optics, spectroscopy, high resolution, immersion gratings

  3. Accuracy requirements of optical linear algebra processors in adaptive optics imaging systems

    NASA Technical Reports Server (NTRS)

    Downie, John D.; Goodman, Joseph W.

    1989-01-01

    The accuracy requirements of optical processors in adaptive optics systems are determined by estimating the required accuracy in a general optical linear algebra processor (OLAP) that results in a smaller average residual aberration than that achieved with a conventional electronic digital processor with some specific computation speed. Special attention is given to an error analysis of a general OLAP with regard to the residual aberration that is created in an adaptive mirror system by the inaccuracies of the processor, and to the effect of computational speed of an electronic processor on the correction. Results are presented on the ability of an OLAP to compete with a digital processor in various situations.

  4. Improving Coastal Ocean Color Validation Capabilities through Application of Inherent Optical Properties (IOPs)

    NASA Technical Reports Server (NTRS)

    Mannino, Antonio

    2008-01-01

    Understanding how the different components of seawater alter the path of incident sunlight through scattering and absorption is essential to using remotely sensed ocean color observations effectively. This is particularly apropos in coastal waters where the different optically significant components (phytoplankton, detrital material, inorganic minerals, etc.) vary widely in concentration, often independently from one another. Inherent Optical Properties (IOPs) form the link between these biogeochemical constituents and the Apparent Optical Properties (AOPs). understanding this interrelationship is at the heart of successfully carrying out inversions of satellite-measured radiance to biogeochemical properties. While sufficient covariation of seawater constituents in case I waters typically allows empirical algorithms connecting AOPs and biogeochemical parameters to behave well, these empirical algorithms normally do not hold for case I1 regimes (Carder et al. 2003). Validation in the context of ocean color remote sensing refers to in-situ measurements used to verify or characterize algorithm products or any assumption used as input to an algorithm. In this project, validation capabilities are considered those measurement capabilities, techniques, methods, models, etc. that allow effective validation. Enhancing current validation capabilities by incorporating state-of-the-art IOP measurements and optical models is the purpose of this work. Involved in this pursuit is improving core IOP measurement capabilities (spectral, angular, spatio-temporal resolutions), improving our understanding of the behavior of analytical AOP-IOP approximations in complex coastal waters, and improving the spatial and temporal resolution of biogeochemical data for validation by applying biogeochemical-IOP inversion models so that these parameters can be computed from real-time IOP sensors with high sampling rates. Research cruises supported by this project provides for collection and

  5. Optical see-through head-mounted display with occlusion capability

    NASA Astrophysics Data System (ADS)

    Gao, Chunyu; Lin, Yuxiang; Hua, Hong

    2013-05-01

    Lack of mutual occlusion capability between computer-rendered and real objects is one of fundamental problems for most existing optical see-through head-mounted displays (OST-HMD). Without the proper occlusion management, the virtual view through an OST-HMD appears "ghost-like", floating in the real world. To address this challenge, we have developed an innovative optical scheme that uniquely combines the eyepiece and see-through relay optics to achieve an occlusion-capable OST-HMD system with a very compelling form factor and high optical performances. The proposed display system was based on emerging freeform optical design technologies and was designed for highly efficient liquid crystal on silicon (LCoS) type spatial light modulator (SLM) and bright Organic LED (OLED) microdisplay. The proposed display technology was capable of working in both indoor and outdoor environments. Our current design offered a 1280x1024 color resolution based on 0.8" microdisplay and SLM. The MTF values for the majority of the fields at the cutoff frequency of 40lps/mm, which is determined by the pixel size of the microdisplay, are better than 15%. The design achieved a diagonal FOV of 40 degrees, 31.7 degrees horizontally and 25.6 degrees vertically, an exit pupil diameter of 8mm (non-vignetted), and an eye clearance of 18mm. The optics weights about 20 grams per eye. Our proposed occlusion capable OST-HMD system can easily find myriads of applications in various military and commercial sectors such as military training, gaming and entertainment.

  6. Solar adaptive optics with the DKIST: status report

    NASA Astrophysics Data System (ADS)

    Johnson, Luke C.; Cummings, Keith; Drobilek, Mark; Gregory, Scott; Hegwer, Steve; Johansson, Erik; Marino, Jose; Richards, Kit; Rimmele, Thomas; Sekulic, Predrag; Wöger, Friedrich

    2014-08-01

    The DKIST wavefront correction system will be an integral part of the telescope, providing active alignment control, wavefront correction, and jitter compensation to all DKIST instruments. The wavefront correction system will operate in four observing modes, diffraction-limited, seeing-limited on-disk, seeing-limited coronal, and limb occulting with image stabilization. Wavefront correction for DKIST includes two major components: active optics to correct low-order wavefront and alignment errors, and adaptive optics to correct wavefront errors and high-frequency jitter caused by atmospheric turbulence. The adaptive optics system is built around a fast tip-tilt mirror and a 1600 actuator deformable mirror, both of which are controlled by an FPGA-based real-time system running at 2 kHz. It is designed to achieve on-axis Strehl of 0.3 at 500 nm in median seeing (r0 = 7 cm) and Strehl of 0.6 at 630 nm in excellent seeing (r0 = 20 cm). We present the current status of the DKIST high-order adaptive optics, focusing on system design, hardware procurements, and error budget management.

  7. Laser beacon adaptive optics for power beaming applications

    SciTech Connect

    Fugate, R.Q.

    1994-12-31

    This paper discusses the laser beam control system requirements for power beaming applications. Power beaming applications include electric and thermal engine propulsion for orbit transfer, station changing, and recharging batteries. Beam control includes satellite acquisition, high accuracy tracking, higher order atmospheric compensation using adaptive optics, and precision point-ahead. Beam control may also include local laser beam clean-up with a low order adaptive optics system. This paper also presents results of tracking and higher-order correction experiments on astronomical objects. The results were obtained with a laser beacon adaptive optics system at Phillips Laboratory`s Starfire Optical Range near Albuquerque, NM. At a wavelength of 0.85 {mu}m, the author has achieved Strehl ratios of {approximately}0.50 using laser beacons and {approximately}0.65 using natural stars for exposures longer than one minute on objects of {approximately}8{sup th} magnitude. The resulting point spread function has a full width half maximum (FWHM) of 0.13 arcsec.

  8. Deploying the testbed for the VLT adaptive optics facility: ASSIST

    NASA Astrophysics Data System (ADS)

    Stuik, Remko; La Penna, Paolo; Dupuy, Christophe; de Haan, Menno; Arsenault, Robin; Boland, Wilfried; Elswijk, Eddy; ter Horst, Rik; Hubin, Norbert; Madec, Pierre-Yves; Molster, Frank; Wiegers, Emiel

    2012-07-01

    The ESO Very Large Telescope Adaptive Optics Facility (VLT-AOF) will transform the VLT Unit Telescope 4 to an Adaptive Telescope. In absence of an intermediate focus before the Adaptive Secondary in this Ritchey-Chrétien type telescope and in order to reduce the testing and calibration of the system on-sky, ASSIST, The Adaptive Secondary Setup and Instrument STimulator, was developed. It provides an off-sky testing facility for the ESO AOF and will provide a full testing environment for three elements of the VLT Adaptive Optics Facility: the Deformable Secondary Mirror (DSM) and the AO modules for MUSE and HAWK-I (GALACSI and GRAAL). ASSIST was delivered to ESO Garching, where it was assembled and tested. Currently ASSIST is being integrated with the Deformable Secondary Mirror, the first step in the full system testing of the two AO systems for the VLT AOF on ASSIST. This paper briefly reviews the design and properties of ASSIST and reports on the first results of ASSIST in stand-alone mode.

  9. An adaptive optics approach for laser beam correction in turbulence utilizing a modified plenoptic camera

    NASA Astrophysics Data System (ADS)

    Ko, Jonathan; Wu, Chensheng; Davis, Christopher C.

    2015-09-01

    Adaptive optics has been widely used in the field of astronomy to correct for atmospheric turbulence while viewing images of celestial bodies. The slightly distorted incoming wavefronts are typically sensed with a Shack-Hartmann sensor and then corrected with a deformable mirror. Although this approach has proven to be effective for astronomical purposes, a new approach must be developed when correcting for the deep turbulence experienced in ground to ground based optical systems. We propose the use of a modified plenoptic camera as a wavefront sensor capable of accurately representing an incoming wavefront that has been significantly distorted by strong turbulence conditions (C2n <10-13 m- 2/3). An intelligent correction algorithm can then be developed to reconstruct the perturbed wavefront and use this information to drive a deformable mirror capable of correcting the major distortions. After the large distortions have been corrected, a secondary mode utilizing more traditional adaptive optics algorithms can take over to fine tune the wavefront correction. This two-stage algorithm can find use in free space optical communication systems, in directed energy applications, as well as for image correction purposes.

  10. Femtosecond infrared intrastromal ablation and backscattering-mode adaptive-optics multiphoton microscopy in chicken corneas

    PubMed Central

    Gualda, Emilio J.; Vázquez de Aldana, Javier R.; Martínez-García, M. Carmen; Moreno, Pablo; Hernández-Toro, Juan; Roso, Luis; Artal, Pablo; Bueno, Juan M.

    2011-01-01

    The performance of femtosecond (fs) laser intrastromal ablation was evaluated with backscattering-mode adaptive-optics multiphoton microscopy in ex vivo chicken corneas. The pulse energy of the fs source used for ablation was set to generate two different ablation patterns within the corneal stroma at a certain depth. Intrastromal patterns were imaged with a custom adaptive-optics multiphoton microscope to determine the accuracy of the procedure and verify the outcomes. This study demonstrates the potential of using fs pulses as surgical and monitoring techniques to systematically investigate intratissue ablation. Further refinement of the experimental system by combining both functions into a single fs laser system would be the basis to establish new techniques capable of monitoring corneal surgery without labeling in real-time. Since the backscattering configuration has also been optimized, future in vivo implementations would also be of interest in clinical environments involving corneal ablation procedures. PMID:22076258

  11. Quality assurance plan for the Objective Supply Capability Adaptive Redesign (OSCAR) project

    SciTech Connect

    Stewart, K.A.; Rasch, K.A.; Reid, R.W.

    1996-11-01

    This document establishes the Quality Assurance Plan (QAP) for the National Guard Bureau Objective Supply Capability Adaptive Redesign (OSCAR) project activities under the Oak Ridge National Laboratory (ORNL) management. It defines the requirements and assigns responsibilities for ensuring, with a high degree of confidence, that project objectives will be achieved as planned. The QAP outlined herein is responsive to and meets the Quality Assurance Program standards for the U.S. Department of Energy (DOE), Lockheed Martin Energy Research Corporation and ORNL and the ORNL Computing, Robotics, and Education Directorate (CRE). This document is intended to be in compliance with DOE Order 5700.6C, Quality Assurance Program, and the ORNL Standard Practice Procedure, SPP X-QA-8, Quality Assurance for ORNL Computing Software. This standard allows individual organizations to apply the stated requirements in a flexible manner suitable to the type of activity involved. Section I of this document provides an introduction to the OSCAR project QAP; Sections 2 and 3 describe the specific aspects of quality assurance as applicable to the OSCAR project. Section 4 describes the project approach to risk management. The Risk Management Matrix given in Appendix A is a tool to assess, prioritize, and prevent problems before they occur. Therefore, the matrix will be reviewed and revised on a periodic basis.

  12. Smart adaptive optic systems using spatial light modulators.

    PubMed

    Clark, N; Banish, M; Ranganath, H S

    1999-01-01

    Many factors contribute to the aberrations induced in an optical system. Atmospheric turbulence between the object and the imaging system, physical or thermal perturbations in optical elements degrade the system's point spread function, and misaligned optics are the primary sources of aberrations that affect image quality. The design of a nonconventional real-time adaptive optic system using a micro-mirror device for wavefront correction is presented. The unconventional compensated imaging system presented offers advantages in speed, cost, power consumption, and weight. A pulsed-coupled neural network is used to as a preprocessor to enhance the performance of the wavefront sensor for low-light applications. Modeling results that characterize the system performance are presented. PMID:18252558

  13. Adaptive optics two-photon scanning laser fluorescence microscopy

    NASA Astrophysics Data System (ADS)

    Zhou, Yaopeng; Bifano, Thomas; Lin, Charles

    2011-03-01

    Two-photon fluorescence microscopy provides a powerful tool for deep tissue imaging. However, optical aberrations from illumination beam path limit imaging depth and resolution. Adaptive Optics (AO) is found to be useful to compensate for optical aberrations and improve image resolution and contrast from two-photon excitation. We have developed an AO system relying on a MEMS Deformable Mirror (DM) to compensate the optical aberrations in a two-photon scanning laser fluorescence microscope. The AO system utilized a Zernike polynomial based stochastic parallel gradient descent (SPGD) algorithm to optimize the DM shape for wavefront correction. The developed microscope is applied for subsurface imaging of mouse bone marrow. It was demonstrated that AO allows 80% increase in fluorescence signal intensity from bone cavities 145um below the surface. The AO-enhanced microscope provides cellular level images of mouse bone marrow at depths exceeding those achievable without AO.

  14. Two cascaded SOAs used as intensity modulators for adaptively modulated optical OFDM signals in optical access networks.

    PubMed

    Hamié, Ali; Hamzé, Mohamad; Taki, Haidar; Makouk, Layaly; Sharaiha, Ammar; Alaeddine, Ali; Al Housseini, Ali; Giacoumidis, Elias; Tang, J M

    2014-06-30

    Detailed theoretical and numerical investigations of the transmission performance of adaptively modulated optical orthogonal frequency division multiplexed (AMOOFDM) signals are undertaken, for the first time, in optical amplification and chromatic dispersion (CD) compensation free single mode fiber (SMF) intensity-modulated and direct-detection (IMDD) systems using two cascaded semiconductor optical amplifiers in a counterpropagating configuration as an intensity modulator (TC-SOA-CC-IM). A theoretical model describing the characteristics of this configuration is developed. Extensive performance comparisons are also made between the TC-SOA-CC and the single SOA intensity modulators. It is shown that, the TC-SOA-CC reaches its strongly saturated region using a lower input optical power much faster than the single SOA resulting in significantly reduced effective carrier lifetime and thus wide TC-SOA-CC bandwidths. It is shown that at low input optical power, we can increase the signal line rate almost 115% which will be more than twice the transmission performance offered by single SOA. In addition, the TC-SOA-CC-IM is capable of supporting signal line rates higher than corresponding to the SOA-IM by using 10dB lower input optical powers. For long transmission distance, the TC-SOA-CC-IM has much stronger CD compensation capability compared to the SOA-IM. In addition the use of TC-SOA-CC-IM is more effective regarding the capability to benefit from the CD compensation for shorter distances starting at 60km SMF, whilst for the SOA-IM starting at 90km. PMID:24977835

  15. Fast calibration of high-order adaptive optics systems

    NASA Astrophysics Data System (ADS)

    Kasper, Markus; Fedrigo, Enrico; Looze, Douglas P.; Bonnet, Henri; Ivanescu, Liviu; Oberti, Sylvain

    2004-06-01

    We present a new method of calibrating adaptive optics systems that greatly reduces the required calibration time or, equivalently, improves the signal-to-noise ratio. The method uses an optimized actuation scheme with Hadamard patterns and does not scale with the number of actuators for a given noise level in the wave-front sensor channels. It is therefore highly desirable for high-order systems and/or adaptive secondary systems on a telescope without a Gregorian focal plane. In the latter case, the measurement noise is increased by the effects of the turbulent atmosphere when one is calibrating on a natural guide star.

  16. Fast calibration of high-order adaptive optics systems.

    PubMed

    Kasper, Markus; Fedrigo, Enrico; Looze, Douglas P; Bonnet, Henri; Ivanescu, Liviu; Oberti, Sylvain

    2004-06-01

    We present a new method of calibrating adaptive optics systems that greatly reduces the required calibration time or, equivalently, improves the signal-to-noise ratio. The method uses an optimized actuation scheme with Hadamard patterns and does not scale with the number of actuators for a given noise level in the wavefront sensor channels. It is therefore highly desirable for high-order systems and/or adaptive secondary systems on a telescope without a Gregorian focal plane. In the latter case, the measurement noise is increased by the effects of the turbulent atmosphere when one is calibrating on a natural guide star. PMID:15191182

  17. Infinite impulse response modal filtering in visible adaptive optics

    NASA Astrophysics Data System (ADS)

    Agapito, G.; Arcidiacono, C.; Quirós-Pacheco, F.; Puglisi, A.; Esposito, S.

    2012-07-01

    Diffraction limited resolution adaptive optics (AO) correction in visible wavelengths requires a high performance control. In this paper we investigate infinite impulse response filters that optimize the wavefront correction: we tested these algorithms through full numerical simulations of a single-conjugate AO system comprising an adaptive secondary mirror with 1127 actuators and a pyramid wavefront sensor (WFS). The actual practicability of the algorithms depends on both robustness and knowledge of the real system: errors in the system model may even worsen the performance. In particular we checked the robustness of the algorithms in different conditions, proving that the proposed method can reject both disturbance and calibration errors.

  18. Adaptive Quality of Transmission Control in Elastic Optical Network

    NASA Astrophysics Data System (ADS)

    Cai, Xinran

    Optical fiber communication is becoming increasingly important due to the burgeoning demand in the internet capacity. However, traditional wavelength division multiplexing (WDM) technique fails to address such demand because of its inefficient spectral utilization. As a result, elastic optical networking (EON) has been under extensive investigation recently. Such network allows sub-wavelength and super-wavelength channel accommodation, and mitigates the stranded bandwidth problem in the WDM network. In addition, elastic optical network is also able to dynamically allocate the spectral resources of the network based on channel conditions and impairments, and adaptively control the quality of transmission of a channel. This application requires two aspects to be investigated: an efficient optical performance monitoring scheme and networking control and management algorithms to reconfigure the network in a dynamic fashion. This thesis focuses on the two aspects discussed above about adaptive QoT control. We demonstrated a supervisory channel method for optical signal to noise ratio (OSNR) and chromatic dispersion (CD) monitoring. In addition, our proof-of-principle testbed experiments show successful impairment aware reconfiguration of the network with modulation format switching (MFS) only and MFS combined with lightpath rerouting (LR) for hundred-GHz QPSK superchannels undergoing time-varying OSNR impairment.

  19. MEMS-based extreme adaptive optics for planet detection

    NASA Astrophysics Data System (ADS)

    Macintosh, Bruce; Graham, James; Oppenheimer, Ben; Poyneer, Lisa; Sivaramakrishnan, Anand; Veran, Jean-Pierre

    2006-01-01

    The next major step in the study of extrasolar planets will be the direct detection, resolved from their parent star, of a significant sample of Jupiter-like extrasolar giant planets. Such detection will open up new parts of the extrasolar planet distribution and allow spectroscopic characterization of the planets themselves. Detecting Jovian planets at 5-50 AU scale orbiting nearby stars requires adaptive optics systems and coronagraphs an order of magnitude more powerful than those available today - the realm of "Extreme" adaptive optics. We present the basic requirements and design for such a system, the Gemini Planet Imager (GPI.) GPI will require a MEMS-based deformable mirror with good surface quality, 2-4 micron stroke (operated in tandem with a conventional low-order "woofer" mirror), and a fully-functional 48-actuator-diameter aperture.

  20. Contrast-based sensorless adaptive optics for retinal imaging.

    PubMed

    Zhou, Xiaolin; Bedggood, Phillip; Bui, Bang; Nguyen, Christine T O; He, Zheng; Metha, Andrew

    2015-09-01

    Conventional adaptive optics ophthalmoscopes use wavefront sensing methods to characterize ocular aberrations for real-time correction. However, there are important situations in which the wavefront sensing step is susceptible to difficulties that affect the accuracy of the correction. To circumvent these, wavefront sensorless adaptive optics (or non-wavefront sensing AO; NS-AO) imaging has recently been developed and has been applied to point-scanning based retinal imaging modalities. In this study we show, for the first time, contrast-based NS-AO ophthalmoscopy for full-frame in vivo imaging of human and animal eyes. We suggest a robust image quality metric that could be used for any imaging modality, and test its performance against other metrics using (physical) model eyes. PMID:26417525

  1. Next generation high resolution adaptive optics fundus imager

    NASA Astrophysics Data System (ADS)

    Fournier, P.; Erry, G. R. G.; Otten, L. J.; Larichev, A.; Irochnikov, N.

    2005-12-01

    The spatial resolution of retinal images is limited by the presence of static and time-varying aberrations present within the eye. An updated High Resolution Adaptive Optics Fundus Imager (HRAOFI) has been built based on the development from the first prototype unit. This entirely new unit was designed and fabricated to increase opto-mechanical integration and ease-of-use through a new user interface. Improved camera systems for the Shack-Hartmann sensor and for the scene image were implemented to enhance the image quality and the frequency of the Adaptive Optics (AO) control loop. An optimized illumination system that uses specific wavelength bands was applied to increase the specificity of the images. Sample images of clinical trials of retinas, taken with and without the system, are shown. Data on the performance of this system will be presented, demonstrating the ability to calculate near diffraction-limited images.

  2. MEMS-based extreme adaptive optics for planet detection

    SciTech Connect

    Macintosh, B A; Graham, J R; Oppenheimer, B; Poyneer, L; Sivaramakrishnan, A; Veran, J

    2005-11-18

    The next major step in the study of extrasolar planets will be the direct detection, resolved from their parent star, of a significant sample of Jupiter-like extrasolar giant planets. Such detection will open up new parts of the extrasolar planet distribution and allow spectroscopic characterization of the planets themselves. Detecting Jovian planets at 5-50 AU scale orbiting nearby stars requires adaptive optics systems and coronagraphs an order of magnitude more powerful than those available today--the realm of ''Extreme'' adaptive optics. We present the basic requirements and design for such a system, the Gemini Planet Imager (GPI.) GPI will require a MEMS-based deformable mirror with good surface quality, 2-4 micron stroke (operated in tandem with a conventional low-order ''woofer'' mirror), and a fully-functional 48-actuator-diameter aperture.

  3. Titan in the Infrared with Adaptive Optics. An Overview

    NASA Astrophysics Data System (ADS)

    Hirtzig, M.; Coustenis, A.; Gendron, E.; Drossart, P.; Negrão, A.; Combes, M.; Lai, O.; Rannou, P.; Hartung, M.

    For the past ten years or more, Adaptive Optics have allowed astronomers to harvest precious information about Titan, shrouded from view by its own thick atmosphere and blurred by the turbulence of the Earth's atmosphere. As the later is reduced by the use of Adaptive Optics, the atmosphere of Titan can be probed in the near-infrared and furthermore, thanks to the presence of methane -- windows -- the surface can be detected. We present here an overview of the latest results gathered on both Titan's atmosphere, and surface : seasonal, diurnal and meteorological features appear on the AO images. Maps of the surface were also built, a compulsory tool to constrain the chemical composition of this mysterious surface.

  4. Neptune and Titan Observed with Keck Telescope Adaptive Optics

    SciTech Connect

    Max, C.E.; Macintosh, B.A.; Gibbard, S.; Gavel, D.T.; Roe, H.; De Pater, I.; Ghez, A.M.; Acton, S.; Wizinowich, P.L.; Lai, O.

    2000-05-05

    The authors report on observations taken during engineering science validation time using the new adaptive optics system at the 10-m Keck II Telescope. They observe Neptune and Titan at near-infrared wavelengths. These objects are ideal for adaptive optics imaging because they are bright and small, yet have many diffraction-limited resolution elements across their disks. In addition Neptune and Titan have prominent physical features, some of which change markedly with time. They have observed infrared-bright storms on Neptune, and very low-albedo surface regions on Titan, Saturn's largest moon, Spatial resolution on Neptune and Titan was 0.05-0.06 and 0.04-0.05 arc sec, respectively.

  5. Adaptive Optics Control Strategies for Extremely Large Telescopes

    SciTech Connect

    Gavel, D T

    2001-07-26

    Adaptive optics for the 30-100 meter class telescopes now being considered will require an extension in almost every area of AO system component technology. In this paper, we present scaling laws and strawman error budgets for AO systems on extremely large telescopes (ELTs) and discuss the implications for component technology and computational architecture. In the component technology area, we discuss the advanced efforts being pursued at the NSF Center for Adaptive Optics (CfAO) in the development of large number of degrees of freedom deformable mirrors, wavefront sensors, and guidestar lasers. It is important to note that the scaling of present wavefront reconstructor algorithms will become computationally intractable for ELTs and will require the development of new algorithms and advanced numerical mathematics techniques. We present the computational issues and discuss the characteristics of new algorithmic approaches that show promise in scaling to ELT AO systems.

  6. Adaptation technology between IP layer and optical layer in optical Internet

    NASA Astrophysics Data System (ADS)

    Ji, Yuefeng; Li, Hua; Sun, Yongmei

    2001-10-01

    Wavelength division multiplexing (WDM) optical network provides a platform with high bandwidth capacity and is supposed to be the backbone infrastructure supporting the next-generation high-speed multi-service networks (ATM, IP, etc.). In the foreseeable future, IP will be the predominant data traffic, to make fully use of the bandwidth of the WDM optical network, many attentions have been focused on IP over WDM, which has been proposed as the most promising technology for new kind of network, so-called Optical Internet. According to OSI model, IP is in the 3rd layer (network layer) and optical network is in the 1st layer (physical layer), so the key issue is what adaptation technology should be used in the 2nd layer (data link layer). In this paper, firstly, we analyze and compare the current adaptation technologies used in backbone network nowadays. Secondly, aiming at the drawbacks of above technologies, we present a novel adaptation protocol (DONA) between IP layer and optical layer in Optical Internet and describe it in details. Thirdly, the gigabit transmission adapter (GTA) we accomplished based on the novel protocol is described. Finally, we set up an experiment platform to apply and verify the DONA and GTA, the results and conclusions of the experiment are given.

  7. LIFT: analysis of performance in a laser assisted adaptive optics

    NASA Astrophysics Data System (ADS)

    Plantet, Cedric; Meimon, Serge; Conan, Jean-Marc; Neichel, Benoît; Fusco, Thierry

    2014-08-01

    Laser assisted adaptive optics systems rely on Laser Guide Star (LGS) Wave-Front Sensors (WFS) for high order aberration measurements, and rely on Natural Guide Stars (NGS) WFS to complement the measurements on low orders such as tip-tilt and focus. The sky-coverage of the whole system is therefore related to the limiting magnitude of the NGS WFS. We have recently proposed LIFT, a novel phase retrieval WFS technique, that allows a 1 magnitude gain over the usually used 2×2 Shack-Hartmann WFS. After an in-lab validation, LIFT's concept has been demonstrated on sky in open loop on GeMS (the Gemini Multiconjugate adaptive optics System at Gemini South). To complete its validation, LIFT now needs to be operated in closed loop in a laser assisted adaptive optics system. The present work gives a detailed analysis of LIFT's behavior in presence of high order residuals and how to limit aliasing effects on the tip/tilt/focus estimation. Also, we study the high orders' impact on noise propagation. For this purpose, we simulate a multiconjugate adaptive optics loop representative of a GeMS-like 5 LGS configuration. The residual high orders are derived from a Fourier based simulation. We demonstrate that LIFT keeps a high performance gain over the Shack-Hartmann 2×2 whatever the turbulence conditions. Finally, we show the first simulation of a closed loop with LIFT estimating turbulent tip/tilt and focus residuals that could be induced by sodium layer's altitude variations.

  8. LGSD/NGSD: high speed optical CMOS imagers for E-ELT adaptive optics

    NASA Astrophysics Data System (ADS)

    Downing, Mark; Kolb, Johann; Balard, Philippe; Dierickx, Bart; Defernez, Arnaud; Feautrier, Philippe; Finger, Gert; Fryer, Martin; Gach, Jean-Luc; Guillaume, Christian; Hubin, Norbert; Jerram, Paul; Jorden, Paul; Meyer, Manfred; Payne, Andrew; Pike, Andrew; Reyes, Javier; Simpson, Robert; Stadler, Eric; Stent, Jeremy; Swift, Nick

    2014-07-01

    The success of the next generation of instruments for ELT class telescopes will depend upon improving the image quality by exploiting sophisticated Adaptive Optics (AO) systems. One of the critical components of the AO systems for the E-ELT has been identified as the optical Laser/Natural Guide Star WFS detector. The combination of large format, 1760×1680 pixels to finely sample the wavefront and the spot elongation of laser guide stars, fast frame rate of 700 frames per second (fps), low read noise (< 3e-), and high QE (> 90%) makes the development of this device extremely challenging. Design studies concluded that a highly integrated Backside Illuminated CMOS Imager built on High Resistivity silicon as the most likely technology to succeed. Two generations of the CMOS Imager are being developed: a) the already designed and manufactured NGSD (Natural Guide Star Detector), a quarter-sized pioneering device of 880×840 pixels capable of meeting first light needs of the E-ELT; b) the LGSD (Laser Guide Star Detector), the larger full size device. The detailed design is presented including the approach of using massive parallelism (70,400 ADCs) to achieve the low read noise at high pixel rates of ~3 Gpixel/s and the 88 channel LVDS 220Mbps serial interface to get the data off-chip. To enable read noise closer to the goal of 1e- to be achieved, a split wafer run has allowed the NGSD to be manufactured in the more speculative, but much lower read noise, Ultra Low Threshold Transistors in the unit cell. The NGSD has come out of production, it has been thinned to 12μm, backside processed and packaged in a custom 370pin Ceramic PGA (Pin Grid Array). First results of tests performed both at e2v and ESO are presented.

  9. Adaptive optics optical coherence tomography for measuring phase and reflectance dynamics of photoreceptors

    NASA Astrophysics Data System (ADS)

    Kocaoglu, Omer P.; Jonnal, Ravi S.; Lee, Sangyeol; Wang, Qiang; Liu, Zhuolin; Miller, Donald T.

    2012-03-01

    Optical coherence tomography with adaptive optics (AO-OCT) is a noninvasive method for imaging the living retina at the microscopic level. We used AO-OCT technology to follow changes in cone photoreceptor outer segment (OS) length and reflectance. To substantially increase sensitivity of the length measurements, a novel phase retrieval technique was demonstrated, capable of detecting changes on a nanometer scale. We acquired volume videos of 0.65°x0.65° retinal patches at 1.5° temporal to the fovea over 75 and 105 minutes in two subjects. Volumes were dewarped and registered, after which the cone intensity, OS length, and referenced phase difference were tracked over time. The reflections from inner segment/OS junction (IS/OS) and posterior tips of OS (PT) showed significant intensity variations over time. In contrast, the OS length as measured from the intensity images did not change, indicative of a highly stable OS length at least down to the level of the system's axial resolution (3μm). Smaller axial changes, however, were detected with our phase retrieval technique. Specifically, the PT-IS/OS phase difference for the same cones showed significant variation, suggesting real sub-wavelength changes in OS length of 125+/-46 nm/hr for the 22 cones followed. We believe these length changes are due to the normal renewal process of the cone OS that elongate the OS at a rate of about 100 nm/hr. The phase difference measurements were strongly correlated among Alines within the same cone (0.65 radians standard deviation) corresponding to a length sensitivity of 31 nm, or ~100 times smaller than the axial resolution of our system.

  10. NFIRAOS: TMT narrow field near-infrared facility adaptive optics

    NASA Astrophysics Data System (ADS)

    Herriot, Glen; Hickson, Paul; Ellerbroek, B. L.; Andersen, D. A.; Davidge, T.; Erickson, D. A.; Powell, I. P.; Clare, R.; Gilles, L.; Boyer, C.; Smith, M.; Saddlemyer, L.; Véran, J.-P.

    2006-06-01

    Although many of the instruments planned for the TMT (Thirty Meter Telescope) have their own closely-coupled adaptive optics systems, TMT will also have a facility Adaptive Optics (AO) system, NFIRAOS, feeding three instruments on the Nasmyth platform. This Narrow-Field Infrared Adaptive Optics System, employs conventional deformable mirrors with large diameters of about 300 mm. The requirements for NFIRAOS include 1.0-2.5 microns wavelength range, 30 arcsecond diameter science field of view (FOV), excellent sky coverage, and diffraction-limited atmospheric turbulence compensation (specified at 133 nm RMS including residual telescope and science instrument errors.) The reference design for NFIRAOS includes six sodium laser guide stars over a 70 arcsecond FOV, and multiple infrared tip/tilt sensors and a natural guide star focus sensor within instruments. Larger telescopes require greater deformable mirror (DM) stroke. Although initially NFIRAOS will correct a 10 arcsecond science field, it uses two deformable mirrors in series, partly to provide sufficient stroke for atmospheric correction over the 30 m telescope aperture, but mainly to improve sky coverage by sharpening near-IR natural guide stars over a 2 arcminute diameter "technical" field. The planned upgrade to full performance includes replacing the ground-conjugated DM with a higher actuator density, and using a deformable telescope secondary mirror as a "woofer." NFIRAOS feeds three live instruments: a near-Infrared integral field Imaging spectrograph, a near-infrared echelle spectrograph, and after upgrading NFIRAOS to full multi-conjugation, a wide field (30 arcsecond) infrared camera.

  11. Adaptive optics with pupil tracking for high resolution retinal imaging

    PubMed Central

    Sahin, Betul; Lamory, Barbara; Levecq, Xavier; Harms, Fabrice; Dainty, Chris

    2012-01-01

    Adaptive optics, when integrated into retinal imaging systems, compensates for rapidly changing ocular aberrations in real time and results in improved high resolution images that reveal the photoreceptor mosaic. Imaging the retina at high resolution has numerous potential medical applications, and yet for the development of commercial products that can be used in the clinic, the complexity and high cost of the present research systems have to be addressed. We present a new method to control the deformable mirror in real time based on pupil tracking measurements which uses the default camera for the alignment of the eye in the retinal imaging system and requires no extra cost or hardware. We also present the first experiments done with a compact adaptive optics flood illumination fundus camera where it was possible to compensate for the higher order aberrations of a moving model eye and in vivo in real time based on pupil tracking measurements, without the real time contribution of a wavefront sensor. As an outcome of this research, we showed that pupil tracking can be effectively used as a low cost and practical adaptive optics tool for high resolution retinal imaging because eye movements constitute an important part of the ocular wavefront dynamics. PMID:22312577

  12. Performance of laser guide star adaptive optics at Lick Observatory

    SciTech Connect

    Olivier, S.S.; An, J.; Avicola, K.

    1995-07-19

    A sodium-layer laser guide star adaptive optics system has been developed at Lawrence Livermore National Laboratory (LLNL) for use on the 3-meter Shane telescope at Lick Observatory. The system is based on a 127-actuator continuous-surface deformable mirror, a Hartmann wavefront sensor equipped with a fast-framing low-noise CCD camera, and a pulsed solid-state-pumped dye laser tuned to the atomic sodium resonance line at 589 nm. The adaptive optics system has been tested on the Shane telescope using natural reference stars yielding up to a factor of 12 increase in image peak intensity and a factor of 6.5 reduction in image full width at half maximum (FWHM). The results are consistent with theoretical expectations. The laser guide star system has been installed and operated on the Shane telescope yielding a beam with 22 W average power at 589 nm. Based on experimental data, this laser should generate an 8th magnitude guide star at this site, and the integrated laser guide star adaptive optics system should produce images with Strehl ratios of 0.4 at 2.2 {mu}m in median seeing and 0.7 at 2.2 {mu}m in good seeing.

  13. Performance of a MEMS-base Adaptive Optics Optical Coherency Tomography System

    SciTech Connect

    Evans, J; Zadwadzki, R J; Jones, S; Olivier, S; Opkpodu, S; Werner, J S

    2008-01-16

    We have demonstrated that a microelectrical mechanical systems (MEMS) deformable mirror can be flattened to < 1 nm RMS within controllable spatial frequencies over a 9.2-mm aperture making it a viable option for high-contrast adaptive optics systems (also known as Extreme Adaptive Optics). The Extreme Adaptive Optics Testbed at UC Santa Cruz is being used to investigate and develop technologies for high-contrast imaging, especially wavefront control. A phase shifting diffraction interferometer (PSDI) measures wavefront errors with sub-nm precision and accuracy for metrology and wavefront control. Consistent flattening, required testing and characterization of the individual actuator response, including the effects of dead and low-response actuators. Stability and repeatability of the MEMS devices was also tested. An error budget for MEMS closed loop performance will summarize MEMS characterization.

  14. Performance assessment of MEMS adaptive optics in tactical airborne systems

    NASA Astrophysics Data System (ADS)

    Tyson, Robert K.

    1999-09-01

    Tactical airborne electro-optical systems are severely constrained by weight, volume, power, and cost. Micro- electrical-mechanical adaptive optics provide a solution that addresses the engineering realities without compromising spatial and temporal compensation requirements. Through modeling and analysis, we determined that substantial benefits could be gained for laser designators, ladar, countermeasures, and missile seekers. The developments potential exists for improving seeker imagery resolution 20 percent, extending countermeasures keep-out range by a factor of 5, doubling the range for ladar detection and identification, and compensating for supersonic and hypersonic aircraft boundary layers. Innovative concepts are required for atmospheric pat hand boundary layer compensation. We have developed design that perform these tasks using high speed scene-based wavefront sensing, IR aerosol laser guide stars, and extended-object wavefront beacons. We have developed a number of adaptive optics system configurations that met the spatial resolution requirements and we have determined that sensing and signal processing requirements can be met. With the help of micromachined deformable mirrors and sensor, we will be able to integrate the systems into existing airborne pods and missiles as well as next generation electro-optical systems.

  15. Holographic Adaptive Laser Optics System (HALOS): Fast, Autonomous Aberration Correction

    NASA Astrophysics Data System (ADS)

    Andersen, G.; MacDonald, K.; Gelsinger-Austin, P.

    2013-09-01

    We present an adaptive optics system which uses a multiplexed hologram to deconvolve the phase aberrations in an input beam. This wavefront characterization is extremely fast as it is based on simple measurements of the intensity of focal spots and does not require any computations. Furthermore, the system does not require a computer in the loop and is thus much cheaper, less complex and more robust as well. A fully functional, closed-loop prototype incorporating a 32-element MEMS mirror has been constructed. The unit has a footprint no larger than a laptop but runs at a bandwidth of 100kHz over an order of magnitude faster than comparable, conventional systems occupying a significantly larger volume. Additionally, since the sensing is based on parallel, all-optical processing, the speed is independent of actuator number running at the same bandwidth for one actuator as for a million. We are developing the HALOS technology with a view towards next-generation surveillance systems for extreme adaptive optics applications. These include imaging, lidar and free-space optical communications for unmanned aerial vehicles and SSA. The small volume is ideal for UAVs, while the high speed and high resolution will be of great benefit to the ground-based observation of space-based objects.

  16. Lens-based wavefront sensorless adaptive optics swept source OCT

    NASA Astrophysics Data System (ADS)

    Jian, Yifan; Lee, Sujin; Ju, Myeong Jin; Heisler, Morgan; Ding, Weiguang; Zawadzki, Robert J.; Bonora, Stefano; Sarunic, Marinko V.

    2016-06-01

    Optical coherence tomography (OCT) has revolutionized modern ophthalmology, providing depth resolved images of the retinal layers in a system that is suited to a clinical environment. Although the axial resolution of OCT system, which is a function of the light source bandwidth, is sufficient to resolve retinal features at a micrometer scale, the lateral resolution is dependent on the delivery optics and is limited by ocular aberrations. Through the combination of wavefront sensorless adaptive optics and the use of dual deformable transmissive optical elements, we present a compact lens-based OCT system at an imaging wavelength of 1060 nm for high resolution retinal imaging. We utilized a commercially available variable focal length lens to correct for a wide range of defocus commonly found in patient’s eyes, and a novel multi-actuator adaptive lens for aberration correction to achieve near diffraction limited imaging performance at the retina. With a parallel processing computational platform, high resolution cross-sectional and en face retinal image acquisition and display was performed in real time. In order to demonstrate the system functionality and clinical utility, we present images of the photoreceptor cone mosaic and other retinal layers acquired in vivo from research subjects.

  17. Lens-based wavefront sensorless adaptive optics swept source OCT

    PubMed Central

    Jian, Yifan; Lee, Sujin; Ju, Myeong Jin; Heisler, Morgan; Ding, Weiguang; Zawadzki, Robert J.; Bonora, Stefano; Sarunic, Marinko V.

    2016-01-01

    Optical coherence tomography (OCT) has revolutionized modern ophthalmology, providing depth resolved images of the retinal layers in a system that is suited to a clinical environment. Although the axial resolution of OCT system, which is a function of the light source bandwidth, is sufficient to resolve retinal features at a micrometer scale, the lateral resolution is dependent on the delivery optics and is limited by ocular aberrations. Through the combination of wavefront sensorless adaptive optics and the use of dual deformable transmissive optical elements, we present a compact lens-based OCT system at an imaging wavelength of 1060 nm for high resolution retinal imaging. We utilized a commercially available variable focal length lens to correct for a wide range of defocus commonly found in patient’s eyes, and a novel multi-actuator adaptive lens for aberration correction to achieve near diffraction limited imaging performance at the retina. With a parallel processing computational platform, high resolution cross-sectional and en face retinal image acquisition and display was performed in real time. In order to demonstrate the system functionality and clinical utility, we present images of the photoreceptor cone mosaic and other retinal layers acquired in vivo from research subjects. PMID:27278853

  18. Lens-based wavefront sensorless adaptive optics swept source OCT.

    PubMed

    Jian, Yifan; Lee, Sujin; Ju, Myeong Jin; Heisler, Morgan; Ding, Weiguang; Zawadzki, Robert J; Bonora, Stefano; Sarunic, Marinko V

    2016-01-01

    Optical coherence tomography (OCT) has revolutionized modern ophthalmology, providing depth resolved images of the retinal layers in a system that is suited to a clinical environment. Although the axial resolution of OCT system, which is a function of the light source bandwidth, is sufficient to resolve retinal features at a micrometer scale, the lateral resolution is dependent on the delivery optics and is limited by ocular aberrations. Through the combination of wavefront sensorless adaptive optics and the use of dual deformable transmissive optical elements, we present a compact lens-based OCT system at an imaging wavelength of 1060 nm for high resolution retinal imaging. We utilized a commercially available variable focal length lens to correct for a wide range of defocus commonly found in patient's eyes, and a novel multi-actuator adaptive lens for aberration correction to achieve near diffraction limited imaging performance at the retina. With a parallel processing computational platform, high resolution cross-sectional and en face retinal image acquisition and display was performed in real time. In order to demonstrate the system functionality and clinical utility, we present images of the photoreceptor cone mosaic and other retinal layers acquired in vivo from research subjects. PMID:27278853

  19. Possibilities of joint application of adaptive optics technique and nonlinear optical phase conjugation to compensate for turbulent distortions

    NASA Astrophysics Data System (ADS)

    Lukin, V. P.; Kanev, F. Yu; Kulagin, O. V.

    2016-05-01

    The efficiency of integrating the nonlinear optical technique based on forming a reverse wavefront and the conventional adaptive optics into a unified complex (for example, for adaptive focusing of quasi-cw laser radiation) is demonstrated. Nonlinear optical phase conjugation may provide more exact information about the phase fluctuations in the corrected wavefront in comparison with the adaptive optics methods. At the same time, the conventional methods of adaptive optics provide an efficient control of a laser beam projected onto a target for a rather long time.

  20. A portable modular optical sensor capable of measuring complex multi-axis strain fields

    NASA Astrophysics Data System (ADS)

    Zhao, Weixin; Beck, B. Terry; Peterman, Robert J.; Wu, Chih-Hang J.

    2012-10-01

    This paper presents a portable optical sensor capable of measuring complex multi-axis strain fields without the need for special surface preparation or stringent sensor-to-surface alignment. The sensor consists of three to four electronic speckle photography (ESP) modules. The design of each modular element is based on a previously developed 5-axis (five degree of freedom) surface displacement measurement technique, and is able to measure two dimensional in-plane surface movement, unaffected by other degrees of freedom (displacement and rotation) movement. Identical modular strain elements are arranged in a Rosette grid layout so that accurate and robust multi-axis surface strain measurement can be achieved. Experiments were conducted to demonstrate the multi-axis strain field measurement capability of this optical sensor by using a test bed that provided a known directional planar strain field, and excellent results were obtained. In particular, experiments have shown that the principle strain can be accurately extracted independent of the orientation of the device. This portable optical sensor will allow precise non-contact measurement of practical complex strain fields such as those encountered in bridge abutments, and portions of beams near critical infrastructure support locations; in other words, wherever plane strains depart from uni-axial behavior. Its unique hand-held portable capability offers distinct advantages over laboratory strain measurement setups, allowing accurate robust non-contact measurements to be achieved even in a harsh field application environment.

  1. Thermally tuneable optical modulator adapted for differential signaling

    DOEpatents

    Zortman, William A.

    2016-01-12

    An apparatus for optical modulation is provided. The apparatus includes a modulator structure and a heater structure. The modulator structure comprises a ring or disk optical resonator having a closed curvilinear periphery and a pair of oppositely doped semiconductor regions within and/or adjacent to the optical resonator and conformed to modify the optical length of the optical resonator upon application of a bias voltage. The heater structure comprises a relatively resistive annulus of semiconductor material enclosed between an inner disk and an outer annulus of relatively conductive semiconductor material. The inner disk and the outer annulus are adapted as contact regions for a heater activation current. The heater structure is situated within the periphery of the optical resonator such that in operation, at least a portion of the resonator is heated by radial conductive heat flow from the heater structure. The apparatus further includes a substantially annular isolation region of dielectric or relatively resistive semiconductor material interposed between the heater structure and the modulator structure. The isolation region is effective to electrically isolate the bias voltage from the heater activation current.

  2. Anisoplanatism in adaptive optics systems due to pupil aberrations

    SciTech Connect

    Bauman, B

    2005-08-01

    Adaptive optics systems typically include an optical relay that simultaneously images the science field to be corrected and also a set of pupil planes conjugate to the deformable mirror of the system. Often, in the optical spaces where DM's are placed, the pupils are aberrated, leading to a displacement and/or distortion of the pupil that varies according to field position--producing a type of anisoplanatism, i.e., a degradation of the AO correction with field angle. The pupil aberration phenomenon is described and expressed in terms of Seidel aberrations. An expression for anisoplanatism as a function of pupil distortion is derived, an example of an off-axis parabola is given, and a convenient method for controlling pupil-aberration-generated anisoplanatism is proposed.

  3. Manufacturing of glassy thin shell for adaptive optics: results achieved

    NASA Astrophysics Data System (ADS)

    Poutriquet, F.; Rinchet, A.; Carel, J.-L.; Leplan, H.; Ruch, E.; Geyl, R.; Marque, G.

    2012-07-01

    Glassy thin shells are key components for the development of adaptive optics and are part of future & innovative projects such as ELT. However, manufacturing thin shells is a real challenge. Even though optical requirements for the front face - or optical face - are relaxed compared to conventional passive mirrors, requirements concerning thickness uniformity are difficult to achieve. In addition, process has to be completely re-defined as thin mirror generates new manufacturing issues. In particular, scratches and digs requirement is more difficult as this could weaken the shell, handling is also an important issue due to the fragility of the mirror. Sagem, through REOSC program, has recently manufactured different types of thin shells in the frame of European projects: E-ELT M4 prototypes and VLT Deformable Secondary Mirror (VLT DSM).

  4. Measurements of Binary Stars with the Starfire Optical Range Adaptive Optics Systems

    NASA Astrophysics Data System (ADS)

    Barnaby, David; Spillar, Earl; Christou, Julian C.; Drummond, Jack D.

    2000-01-01

    To investigate the relative photometry produced by adaptive optics within the isoplanatic patch, we observed four binaries, 10 UMa, φ UMa, 81 Cnc, and κ UMa, with adaptive optics using natural guide stars on the 3.5 m telescope, as well as one binary, β Del, with adaptive optics using a laser guide star on the 1.5 m telescope at the Starfire Optical Range. Iterative blind deconvolution (IBD) and parametric blind deconvolution (PBD) techniques were used to postprocess the data, which produced consistent results for position angles, separations, and magnitude differences. We also conducted simulations that verify the agreement between IBD and PBD and compared their measurements to truth data. From the results of both observations and simulations, we conclude that adaptive optics is well suited for providing not only position angles and separations for close binaries, but also good relative magnitudes without quadrant ambiguity. From the observations, we find that the secondary of 81 Cnc (separation=0.12") appears to be 0.12 mag brighter than the primary at 0.85 μm and is, therefore, cooler. We also derive a new orbit for κ UMa (separation=0.067"). Our results for β Del (ADS 14073) have significantly improved precision compared with the 1998 analyses of the same data by ten Brummelaar and colleagues and by Roberts, ten Brummelaar, and Mason.

  5. Adaptive-optics optical coherence tomography processing using a graphics processing unit.

    PubMed

    Shafer, Brandon A; Kriske, Jeffery E; Kocaoglu, Omer P; Turner, Timothy L; Liu, Zhuolin; Lee, John Jaehwan; Miller, Donald T

    2014-01-01

    Graphics processing units are increasingly being used for scientific computing for their powerful parallel processing abilities, and moderate price compared to super computers and computing grids. In this paper we have used a general purpose graphics processing unit to process adaptive-optics optical coherence tomography (AOOCT) images in real time. Increasing the processing speed of AOOCT is an essential step in moving the super high resolution technology closer to clinical viability. PMID:25570838

  6. High-resolution adaptive optics scanning laser ophthalmoscope with multiple deformable mirrors

    DOEpatents

    Chen, Diana C.; Olivier, Scot S.; Jones; Steven M.

    2010-02-23

    An adaptive optics scanning laser ophthalmoscopes is introduced to produce non-invasive views of the human retina. The use of dual deformable mirrors improved the dynamic range for correction of the wavefront aberrations compared with the use of the MEMS mirror alone, and improved the quality of the wavefront correction compared with the use of the bimorph mirror alone. The large-stroke bimorph deformable mirror improved the capability for axial sectioning with the confocal imaging system by providing an easier way to move the focus axially through different layers of the retina.

  7. Computational adaptive optics for broadband optical interferometric tomography of biological tissue

    NASA Astrophysics Data System (ADS)

    Boppart, Stephen A.

    2015-03-01

    High-resolution real-time tomography of biological tissues is important for many areas of biological investigations and medical applications. Cellular level optical tomography, however, has been challenging because of the compromise between transverse imaging resolution and depth-of-field, the system and sample aberrations that may be present, and the low imaging sensitivity deep in scattering tissues. The use of computed optical imaging techniques has the potential to address several of these long-standing limitations and challenges. Two related techniques are interferometric synthetic aperture microscopy (ISAM) and computational adaptive optics (CAO). Through three-dimensional Fourierdomain resampling, in combination with high-speed OCT, ISAM can be used to achieve high-resolution in vivo tomography with enhanced depth sensitivity over a depth-of-field extended by more than an order-of-magnitude, in realtime. Subsequently, aberration correction with CAO can be performed in a tomogram, rather than to the optical beam of a broadband optical interferometry system. Based on principles of Fourier optics, aberration correction with CAO is performed on a virtual pupil using Zernike polynomials, offering the potential to augment or even replace the more complicated and expensive adaptive optics hardware with algorithms implemented on a standard desktop computer. Interferometric tomographic reconstructions are characterized with tissue phantoms containing sub-resolution scattering particles, and in both ex vivo and in vivo biological tissue. This review will collectively establish the foundation for high-speed volumetric cellular-level optical interferometric tomography in living tissues.

  8. Trans-radial upper extremity amputees are capable of adapting to a novel dynamic environment.

    PubMed

    Schabowsky, Christopher N; Dromerick, Alexander W; Holley, Rahsaan J; Monroe, Brian; Lum, Peter S

    2008-07-01

    This study investigated differences in adaptation to a novel dynamic environment between eight trans-radial upper extremity (UE) prosthetic users and eight naive, neurologically intact subjects. Participants held onto the handle of a robotic manipulandum and executed reaching movements within a horizontal plane following a pseudo-random sequence of targets. Curl field perturbations were imposed by the robot motors, and we compared the rate and quality of adaptation between the prosthetic and control subjects. Adaptation was quantitatively assessed by peak error, defined as the maximum orthogonal distance between an observed trajectory and an ideal straight trajectory. Initial exposure to the curl field resulted in large errors, and as the subjects adapted to the novel environment, the errors decreased. During the early phase of adaptation, group differences in the rate of motor adaptation were not significant. However, during late learning, both error magnitude and variability were larger in the prosthetic group. The quality of adaptation, as indicated by the magnitude of the aftereffects, was similar between groups. We conclude that in persons with trans-radial arm amputation, motor adaptation to curl fields during reaching is similar to unimpaired individuals. These findings are discussed in relation to mechanisms of motor adaptation, neural plasticity following an upper extremity amputation (UEA), and potential motor recovery therapies for prosthetic users. PMID:18443766

  9. Integration and bench testing for the GRAVITY Coudé IR adaptive optics (CIAO) wavefront sensor

    NASA Astrophysics Data System (ADS)

    Deen, C.; Yang, P.; Huber, A.; Suarez-Valles, M.; Hippler, S.; Brandner, W.; Gendron, E.; Clénet, Y.; Kendrew, S.; Glauser, A.; Klein, R.; Laun, W.; Lenzen, R.; Neumann, U.; Panduro, J.; Ramos, J.; Rohloff, R.-R.; Salzinger, A.; Zimmerman, N.; Henning, T.; Perraut, K.; Perrin, G.; Straubmeier, C.; Amorim, A.; Eisenhauer, F.

    2014-08-01

    GRAVITY, a second generation instrument for the Very Large Telescope Interferometer (VLTI), will provide an astrometric precision of order 10 micro-arcseconds, an imaging resolution of 4 milli-arcseconds, and low/medium resolution spectro-interferometry. These improvements to the VLTI represent a major upgrade to its current infrared interferometric capabilities, allowing detailed study of obscured environments (e.g. the Galactic Center, young dusty planet-forming disks, dense stellar cores, AGN, etc...). Crucial to the final performance of GRAVITY, the Coudé IR Adaptive Optics (CIAO) system will correct for the effects of the atmosphere at each of the VLT Unit Telescopes. CIAO consists of four new infrared Shack-Hartmann wavefront sensors (WFS) and associated real-time computers/software which will provide infrared wavefront sensing from 1.45-2.45 microns, allowing AO corrections even in regions where optically bright reference sources are scarce. We present here the latest progress on the GRAVITY wavefront sensors. We describe the adaptation and testing of a light-weight version of the ESO Standard Platform for Adaptive optics Real Time Applications (SPARTA-Light) software architecture to the needs of GRAVITY. We also describe the latest integration and test milestones for construction of the initial wave front sensor.

  10. Graphite/Cyanate Ester Face Sheets for Adaptive Optics

    NASA Technical Reports Server (NTRS)

    Bennett, Harold; Shaffer, Joseph; Romeo, Robert

    2008-01-01

    It has been proposed that thin face sheets of wide-aperture deformable mirrors in adaptive-optics systems be made from a composite material consisting of cyanate ester filled with graphite. This composite material appears to offer an attractive alternative to low-thermal-expansion glasses that are used in some conventional optics and have been considered for adaptive-optics face sheets. Adaptive-optics face sheets are required to have maximum linear dimensions of the order of meters or even tens of meters for some astronomical applications. If the face sheets were to be made from low-thermal-expansion glasses, then they would also be required to have thicknesses of the order of a millimeter so as to obtain the optimum compromise between the stiffness needed for support and the flexibility needed to enable deformation to controlled shapes by use of actuators. It is difficult to make large glass sheets having thicknesses less than 3 mm, and 3-mm-thick glass sheets are too stiff to be deformable to the shapes typically required for correction of wavefronts of light that has traversed the terrestrial atmosphere. Moreover, the primary commercially produced candidate low-thermal-expansion glass is easily fractured when in the form of thin face sheets. Graphite-filled cyanate ester has relevant properties similar to those of the low-expansion glasses. These properties include a coefficient of thermal expansion (CTE) of the order of a hundredth of the CTEs of other typical mirror materials. The Young s modulus (which quantifies stiffness in tension and compression) of graphite-filled cyanate ester is also similar to the Young's moduli of low-thermal-expansion glasses. However, the fracture toughness of graphite-filled cyanate ester is much greater than that of the primary candidate low-thermal-expansion glass. Therefore, graphite-filled cyanate ester could be made into nearly unbreakable face sheets, having maximum linear dimensions greater than a meter and thicknesses of

  11. Closed-loop adaptive optics using a spatial light modulator for sensing and compensating of optical aberrations in ophthalmic applications

    NASA Astrophysics Data System (ADS)

    Akondi, Vyas; Jewel, Md. Atikur Rahman; Vohnsen, Brian

    2014-09-01

    Sensing and compensating of optical aberrations in closed-loop mode using a single spatial light modulator (SLM) for ophthalmic applications is demonstrated. Notwithstanding the disadvantages of the SLM, in certain cases, this multitasking capability of the device makes it advantageous over existing deformable mirrors (DMs), which are expensive and in general used for aberration compensation alone. A closed-loop adaptive optics (AO) system based on a single SLM was built. Beam resizing optics were used to utilize the large active area of the device and hence make it feasible to generate 137 active subapertures for wavefront sensing. While correcting Zernike aberrations up to fourth order introduced with the help of a DM (for testing purposes), diffraction-limited resolution was achieved. It is shown that matched filter and intensity-weighted centroiding techniques stand out among others. Closed-loop wavefront correction of aberrations in backscattered light from the eyes of three healthy human subjects was demonstrated after satisfactory results were obtained using an artificial eye, which was simulated with a short focal length lens and a sheet of white paper as diffuser. It is shown that the closed-loop AO system based on a single SLM is capable of diffraction-limited correction for ophthalmic applications.

  12. Adapting smartphones for low-cost optical medical imaging

    NASA Astrophysics Data System (ADS)

    Pratavieira, Sebastião.; Vollet-Filho, José D.; Carbinatto, Fernanda M.; Blanco, Kate; Inada, Natalia M.; Bagnato, Vanderlei S.; Kurachi, Cristina

    2015-06-01

    Optical images have been used in several medical situations to improve diagnosis of lesions or to monitor treatments. However, most systems employ expensive scientific (CCD or CMOS) cameras and need computers to display and save the images, usually resulting in a high final cost for the system. Additionally, this sort of apparatus operation usually becomes more complex, requiring more and more specialized technical knowledge from the operator. Currently, the number of people using smartphone-like devices with built-in high quality cameras is increasing, which might allow using such devices as an efficient, lower cost, portable imaging system for medical applications. Thus, we aim to develop methods of adaptation of those devices to optical medical imaging techniques, such as fluorescence. Particularly, smartphones covers were adapted to connect a smartphone-like device to widefield fluorescence imaging systems. These systems were used to detect lesions in different tissues, such as cervix and mouth/throat mucosa, and to monitor ALA-induced protoporphyrin-IX formation for photodynamic treatment of Cervical Intraepithelial Neoplasia. This approach may contribute significantly to low-cost, portable and simple clinical optical imaging collection.

  13. Beam shaping for laser-based adaptive optics in astronomy.

    PubMed

    Béchet, Clémentine; Guesalaga, Andrés; Neichel, Benoit; Fesquet, Vincent; González-Núñez, Héctor; Zúñiga, Sebastián; Escarate, Pedro; Guzman, Dani

    2014-06-01

    The availability and performance of laser-based adaptive optics (AO) systems are strongly dependent on the power and quality of the laser beam before being projected to the sky. Frequent and time-consuming alignment procedures are usually required in the laser systems with free-space optics to optimize the beam. Despite these procedures, significant distortions of the laser beam have been observed during the first two years of operation of the Gemini South multi-conjugate adaptive optics system (GeMS). A beam shaping concept with two deformable mirrors is investigated in order to provide automated optimization of the laser quality for astronomical AO. This study aims at demonstrating the correction of quasi-static aberrations of the laser, in both amplitude and phase, testing a prototype of this two-deformable mirror concept on GeMS. The paper presents the results of the preparatory study before the experimental phase. An algorithm to control amplitude and phase correction, based on phase retrieval techniques, is presented with a novel unwrapping method. Its performance is assessed via numerical simulations, using aberrations measured at GeMS as reference. The results predict effective amplitude and phase correction of the laser distortions with about 120 actuators per mirror and a separation of 1.4 m between the mirrors. The spot size is estimated to be reduced by up to 15% thanks to the correction. In terms of AO noise level, this has the same benefit as increasing the photon flux by 40%. PMID:24921496

  14. Extreme Adaptive Optics Testbed: Results and Future Work

    SciTech Connect

    Evans, J W; Sommargren, G; Poyneer, L; Macintosh, B; Severson, S; Dillon, D; Sheinis, A; Palmer, D; Kasdin, J; Olivier, S

    2004-07-15

    'Extreme' adaptive optics systems are optimized for ultra-high-contrast applications, such as ground-based extrasolar planet detection. The Extreme Adaptive Optics Testbed at UC Santa Cruz is being used to investigate and develop technologies for high-contrast imaging, especially wavefront control. A simple optical design allows us to minimize wavefront error and maximize the experimentally achievable contrast before progressing to a more complex set-up. A phase shifting diffraction interferometer is used to measure wavefront errors with sub-nm precision and accuracy. We have demonstrated RMS wavefront errors of <1.3 nm and a contrast of >10{sup -7} over a substantial region using a shaped pupil. Current work includes the installation and characterization of a 1024-actuator Micro-Electro-Mechanical- Systems (MEMS) deformable mirror, manufactured by Boston Micro-Machines, which will be used for wavefront control. In our initial experiments we can flatten the deformable mirror to 1.8-nm RMS wavefront error within a control radius of 5-13 cycles per aperture. Ultimately this testbed will be used to test all aspects of the system architecture for an extrasolar planet-finding AO system.

  15. Layer-oriented adaptive optics for solar telescopes.

    PubMed

    Kellerer, Aglaé

    2012-08-10

    First multiconjugate adaptive-optical (MCAO) systems are currently being installed on solar telescopes. The aim of these systems is to increase the corrected field of view with respect to conventional adaptive optics. However, this first generation is based on a star-oriented approach, and it is then difficult to increase the size of the field of view beyond 60-80 arc sec in diameter. We propose to implement the layer-oriented approach in solar MCAO systems by use of wide-field Shack-Hartmann wavefront sensors conjugated to the strongest turbulent layers. The wavefront distortions are averaged over a wide field: the signal from distant turbulence is attenuated and the tomographic reconstruction is thus done optically. The system consists of independent correction loops, which only need to account for local turbulence: the subapertures can be enlarged and the correction frequency reduced. Most importantly, a star-oriented MCAO system becomes more complex with increasing field size, while the layer-oriented approach benefits from larger fields and will therefore be an attractive solution for the future generation of solar MCAO systems. PMID:22885589

  16. Studying the star formation process with adaptive optics

    NASA Astrophysics Data System (ADS)

    Menard, Francois; Dougados, Catherine; Duchene, Gaspard; Bouvier, Jerome; Duvert, Gilles; Lavalley, Claudia; Monin, Jean-Louis; Beuzit, Jean-Luc

    2000-07-01

    Young Stellar Objects (YSOs) are the builders of worlds. During its infancy, a star transforms ordinary interstellar dust particles into astronomical gold: planets to say the process is complex, and largely unknown to data. Yet, violent and spectacular events of mass ejection are witnessed, disks in keplerian rotation are detected, multiple stars dancing around each other are found. These are as many traces of the stellar and planet formation process. The high angular resolution provided by adaptive optics, and the related gain in sensitivity, have allowed major breakthrough discoveries to be made in each of these specific fields and our understanding of the various physical processes involved in the formation of a star has leaped forward tremendously over the last few years. In the following, meant as a report of the progress made recently in star formation due to adaptive optics, we will describe new results obtained at optical and near- infrared wavelengths, in imaging and spectroscopic modes. Our images of accretion disks and ionized stellar jets permit direct measurements of many physical parameters and shed light into the physics of the accretion and ejection processes. Although the accretion/ejection process so fundamental to star formation is usually studied around single objects, most of young stars form as part of multiple systems. We also present our findings on how the fraction of stars in binary systems evolves with age. The implications of these results on the conditions under which these stars must have formed are discussed.

  17. High-resolution retinal imaging using adaptive optics and Fourier-domain optical coherence tomography

    DOEpatents

    Olivier, Scot S.; Werner, John S.; Zawadzki, Robert J.; Laut, Sophie P.; Jones, Steven M.

    2010-09-07

    This invention permits retinal images to be acquired at high speed and with unprecedented resolution in three dimensions (4.times.4.times.6 .mu.m). The instrument achieves high lateral resolution by using adaptive optics to correct optical aberrations of the human eye in real time. High axial resolution and high speed are made possible by the use of Fourier-domain optical coherence tomography. Using this system, we have demonstrated the ability to image microscopic blood vessels and the cone photoreceptor mosaic.

  18. Optical design of the Big Bear Solar Observatory's multi-conjugate adaptive optics system

    NASA Astrophysics Data System (ADS)

    Zhang, Xianyu; Gorceix, Nicolas; Schmidt, Dirk; Goode, Philip R.; Cao, Wenda; Rimmele, Thomas R.; Coulter, Roy

    2014-07-01

    A multi-conjugate adaptive optics (MCAO) system is being built for the world's largest aperture 1.6m solar telescope, New Solar Telescope, at the Big Bear Solar Observatory (BBSO). The BBSO MCAO system employs three deformable mirrors to enlarge the corrected field of view. In order to characterize the MCAO performance with different optical configurations and DM conjugated altitudes, the BBSO MCAO setup also needs to be flexible. In this paper, we present the optical design of the BBSO MCAO system.

  19. Pixelwise-adaptive blind optical flow assuming nonstationary statistics.

    PubMed

    Foroosh, Hassan

    2005-02-01

    In this paper, we address some of the major issues in optical flow within a new framework assuming nonstationary statistics for the motion field and for the errors. Problems addressed include the preservation of discontinuities, model/data errors, outliers, confidence measures, and performance evaluation. In solving these problems, we assume that the statistics of the motion field and the errors are not only spatially varying, but also unknown. We, thus, derive a blind adaptive technique based on generalized cross validation for estimating an independent regularization parameter for each pixel. Our formulation is pixelwise and combines existing first- and second-order constraints with a new second-order temporal constraint. We derive a new confidence measure for an adaptive rejection of erroneous and outlying motion vectors, and compare our results to other techniques in the literature. A new performance measure is also derived for estimating the signal-to-noise ratio for real sequences when the ground truth is unknown. PMID:15700527

  20. Objective assessment of image quality. IV. Application to adaptive optics

    PubMed Central

    Barrett, Harrison H.; Myers, Kyle J.; Devaney, Nicholas; Dainty, Christopher

    2008-01-01

    The methodology of objective assessment, which defines image quality in terms of the performance of specific observers on specific tasks of interest, is extended to temporal sequences of images with random point spread functions and applied to adaptive imaging in astronomy. The tasks considered include both detection and estimation, and the observers are the optimal linear discriminant (Hotelling observer) and the optimal linear estimator (Wiener). A general theory of first- and second-order spatiotemporal statistics in adaptive optics is developed. It is shown that the covariance matrix can be rigorously decomposed into three terms representing the effect of measurement noise, random point spread function, and random nature of the astronomical scene. Figures of merit are developed, and computational methods are discussed. PMID:17106464

  1. Night Myopia Studied with an Adaptive Optics Visual Analyzer

    PubMed Central

    Artal, Pablo; Schwarz, Christina; Cánovas, Carmen; Mira-Agudelo, Alejandro

    2012-01-01

    Purpose Eyes with distant objects in focus in daylight are thought to become myopic in dim light. This phenomenon, often called “night myopia” has been studied extensively for several decades. However, despite its general acceptance, its magnitude and causes are still controversial. A series of experiments were performed to understand night myopia in greater detail. Methods We used an adaptive optics instrument operating in invisible infrared light to elucidate the actual magnitude of night myopia and its main causes. The experimental setup allowed the manipulation of the eye's aberrations (and particularly spherical aberration) as well as the use of monochromatic and polychromatic stimuli. Eight subjects with normal vision monocularly determined their best focus position subjectively for a Maltese cross stimulus at different levels of luminance, from the baseline condition of 20 cd/m2 to the lowest luminance of 22×10−6 cd/m2. While subjects performed the focusing tasks, their eye's defocus and aberrations were continuously measured with the 1050-nm Hartmann-Shack sensor incorporated in the adaptive optics instrument. The experiment was repeated for a variety of controlled conditions incorporating specific aberrations of the eye and chromatic content of the stimuli. Results We found large inter-subject variability and an average of −0.8 D myopic shift for low light conditions. The main cause responsible for night myopia was the accommodation shift occurring at low light levels. Other factors, traditionally suggested to explain night myopia, such as chromatic and spherical aberrations, have a much smaller effect in this mechanism. Conclusions An adaptive optics visual analyzer was applied to study the phenomenon of night myopia. We found that the defocus shift occurring in dim light is mainly due to accommodation errors. PMID:22768343

  2. Application of network control systems for adaptive optics

    NASA Astrophysics Data System (ADS)

    Eager, Robert J.

    2008-04-01

    The communication architecture for most pointing, tracking, and high order adaptive optics control systems has been based on a centralized point-to-point and bus based approach. With the increased use of larger arrays and multiple sensors, actuators and processing nodes, these evolving systems require decentralized control, modularity, flexibility redundancy, integrated diagnostics, dynamic resource allocation, and ease of maintenance to support a wide range of experiments. Network control systems provide all of these critical functionalities. This paper begins with a quick overview of adaptive optics as a control system and communication architecture. It then provides an introduction to network control systems, identifying the key design areas that impact system performance. The paper then discusses the performance test results of a fielded network control system used to implement an adaptive optics system comprised of: a 10KHz, 32x32 spatial selfreferencing interferometer wave front sensor, a 705 channel "Tweeter" deformable mirror, a 177 channel "Woofer" deformable mirror, ten processing nodes, and six data acquisition nodes. The reconstructor algorithm utilized a modulo-2pi wave front phase measurement and a least-squares phase un-wrapper with branch point correction. The servo control algorithm is a hybrid of exponential and infinite impulse response controllers, with tweeter-to-woofer saturation offloading. This system achieved a first-pixel-out to last-mirror-voltage latency of 86 microseconds, with the network accounting for 4 microseconds of the measured latency. Finally, the extensibility of this architecture will be illustrated, by detailing the integration of a tracking sub-system into the existing network.

  3. NFIRAOS: TMT facility adaptive optics with conventional DMs

    NASA Astrophysics Data System (ADS)

    Herriot, Glen; Hickson, Paul; Ellerbroek, B. L.; Andersen, David A.; Davidge, T.; Erickson, D. A.; Powell, I. P.; Clare, R.; Smith, M.; Saddlemyer, L.; Veran, J.-P.

    2005-08-01

    Although many of the instruments planned for the TMT (Thirty Meter Telescope) have their own closely-coupled adaptive optics systems, TMT will also have a facility Adaptive Optics (AO) system feeding three instruments on the Nasmyth platform. For this Narrow-Field Infrared Adaptive Optics System, NFIRAOS (pronounced nefarious), the TMT project considered two architectures. One, described in this paper, employs conventional deformable mirrors with large diameters of about 300 mm and this is the reference design adopted by the TMT project. An alternative design based on MEMS was also studied, and is being presented separately in this conference. The requirements for NFIRAOS include 0.8-5 microns wavelength range, 30 arcsecond diameter output field of view (FOV), excellent sky coverage, and diffraction- limited atmospheric turbulence compensation (specified at 133 nm RMS including residual telescope and science instrument errors.) The reference design for NFIRAOS includes multiple sodium laser guide stars over a 70 arcsecond FOV, and an infrared tip/tilt/focus/astigmatism natural guide star sensor within instruments. Larger telescopes require greater deformable mirror (DM) stroke. Although initially NFIRAOS will correct a 10 arcsecond science field, it uses two deformable mirrors in series, partly to provide sufficient stroke for atmospheric correction over the 30 m telescope aperture, but mainly to partially correct a 2 arcminute diameter "technical" field to sharpen near-IR natural guide stars and improve sky coverage. The planned upgrade to full performance includes replacing the groundconjugated DM with a higher actuator density, and using a deformable telescope secondary mirror as a "woofer." NFIRAOS incorporates an instrument rotator and selection of three live instruments: a near-Infrared integral field Imaging spectrograph, a near-infrared echelle spectrograph, and after upgrading NFIRAOS to full multi-conjugation, a wide field (30 arcsecond) infrared camera.

  4. Performance of keck adaptive optics with sodium laser guide star

    SciTech Connect

    Gavel, D.T.; Olivier, S.; Brase, J.

    1996-03-08

    The Keck telescope adaptive optics system is designed to optimize performance in he 1 to 3 micron region of observation wavelengths (J, H, and K astronomical bands). The system uses a 249 degree of freedom deformable mirror, so that the interactuator spacing is 56 cm as mapped onto the 10 meter aperture. 56 cm is roughly equal to r0 at 1.4 microns, which implies the wavefront fitting error is 0.52 ({lambda}/2{pi})({ital d}/{ital r}{sub 0}){sup 5/6} = 118 nm rms. This is sufficient to produce a system Strehl of 0.74 at 1.4 microns if all other sources of error are negligible, which would be the case with a bright natural guidestar and very high control bandwidth. Other errors associated with the adaptive optics will however contribute to Strehl degradation, namely, servo bandwidth error due to inability to reject all temporal frequencies of the aberrated wavefront, wavefront measurement error due to finite signal-to-noise ratio in the wavefront sensor, and, in the case of a laser guidestar, the so-called cone effect where rays from the guidestar beacon fail to sample some of the upper atmosphere turbulence. Cone effect is mitigated considerably by the use of the very high altitude sodium laser guidestar (90 km altitude), as opposed to Rayleigh beacons at 20 km. However, considering the Keck telescope`s large aperture, this is still the dominating wavefront error contributor in the current adaptive optics system design.

  5. Self-characterization of linear and nonlinear adaptive optics systems.

    PubMed

    Hampton, Peter J; Conan, Rodolphe; Keskin, Onur; Bradley, Colin; Agathoklis, Pan

    2008-01-10

    We present methods used to determine the linear or nonlinear static response and the linear dynamic response of an adaptive optics (AO) system. This AO system consists of a nonlinear microelectromechanical systems deformable mirror (DM), a linear tip-tilt mirror (TTM), a control computer, and a Shack-Hartmann wavefront sensor. The system is modeled using a single-input-single-output structure to determine the one-dimensional transfer function of the dynamic response of the chain of system hardware. An AO system has been shown to be able to characterize its own response without additional instrumentation. Experimentally determined models are given for a TTM and a DM. PMID:18188192

  6. Adaptive optics system for the IRSOL solar observatory

    NASA Astrophysics Data System (ADS)

    Ramelli, Renzo; Bucher, Roberto; Rossini, Leopoldo; Bianda, Michele; Balemi, Silvano

    2010-07-01

    We present a low cost adaptive optics system developed for the solar observatory at Istituto Ricerche Solari Locarno (IRSOL), Switzerland. The Shack-Hartmann Wavefront Sensor is based on a Dalsa CCD camera with 256 pixels × 256 pixels working at 1kHz. The wavefront compensation is obtained by a deformable mirror with 37 actuators and a Tip-Tilt mirror. A real time control software has been developed on a RTAI-Linux PC. Scicos/Scilab based software has been realized for an online analysis of the system behavior. The software is completely open source.

  7. Third MACAO-VLTI Curvature Adaptive Optics System now installed

    NASA Astrophysics Data System (ADS)

    Arsenault, R.; Donaldson, R.; Dupuy, C.; Fedrigo, E.; Hubin, N.; Ivanescu, L.; Kasper, M.; Oberti, S.; Paufique, J.; Rossi, S.; Silber, A.; Delabre, B.; Lizon, J.-L.; Gigan, P.

    2004-09-01

    IN JULY of this year the MACAO team returned to Paranal for the third time to install another MACAOVLTI system. These are 4 identical 60 element curvature adaptive optics systems, located in the Coudé room of each UT whose aim is to feed a turbulence corrected wavefront to the VLTI Recombination Laboratory. This time the activities took place on Yepun (UT4). The naming convention has been to associate the MACAO-VLTI number to the UT number where it is installed. Therefore, although we speak here of MACAO#4, it is the third system installed in Paranal.

  8. Performance predictions for the Keck telescope adaptive optics system

    SciTech Connect

    Gavel, D.T.; Olivier, S.S.

    1995-08-07

    The second Keck ten meter telescope (Keck-11) is slated to have an infrared-optimized adaptive optics system in the 1997--1998 time frame. This system will provide diffraction-limited images in the 1--3 micron region and the ability to use a diffraction-limited spectroscopy slit. The AO system is currently in the preliminary design phase and considerable analysis has been performed in order to predict its performance under various seeing conditions. In particular we have investigated the point-spread function, energy through a spectroscopy slit, crowded field contrast, object limiting magnitude, field of view, and sky coverage with natural and laser guide stars.

  9. Performance of the Gemini Planet Imager's adaptive optics system.

    PubMed

    Poyneer, Lisa A; Palmer, David W; Macintosh, Bruce; Savransky, Dmitry; Sadakuni, Naru; Thomas, Sandrine; Véran, Jean-Pierre; Follette, Katherine B; Greenbaum, Alexandra Z; Ammons, S Mark; Bailey, Vanessa P; Bauman, Brian; Cardwell, Andrew; Dillon, Daren; Gavel, Donald; Hartung, Markus; Hibon, Pascale; Perrin, Marshall D; Rantakyrö, Fredrik T; Sivaramakrishnan, Anand; Wang, Jason J

    2016-01-10

    The Gemini Planet Imager's adaptive optics (AO) subsystem was designed specifically to facilitate high-contrast imaging. A definitive description of the system's algorithms and technologies as built is given. 564 AO telemetry measurements from the Gemini Planet Imager Exoplanet Survey campaign are analyzed. The modal gain optimizer tracks changes in atmospheric conditions. Science observations show that image quality can be improved with the use of both the spatially filtered wavefront sensor and linear-quadratic-Gaussian control of vibration. The error budget indicates that for all targets and atmospheric conditions AO bandwidth error is the largest term. PMID:26835769

  10. Fourier transform digital holographic adaptive optics imaging system

    PubMed Central

    Liu, Changgeng; Yu, Xiao; Kim, Myung K.

    2013-01-01

    A Fourier transform digital holographic adaptive optics imaging system and its basic principles are proposed. The CCD is put at the exact Fourier transform plane of the pupil of the eye lens. The spherical curvature introduced by the optics except the eye lens itself is eliminated. The CCD is also at image plane of the target. The point-spread function of the system is directly recorded, making it easier to determine the correct guide-star hologram. Also, the light signal will be stronger at the CCD, especially for phase-aberration sensing. Numerical propagation is avoided. The sensor aperture has nothing to do with the resolution and the possibility of using low coherence or incoherent illumination is opened. The system becomes more efficient and flexible. Although it is intended for ophthalmic use, it also shows potential application in microscopy. The robustness and feasibility of this compact system are demonstrated by simulations and experiments using scattering objects. PMID:23262541

  11. Six-channel adaptive fibre-optic interferometer

    SciTech Connect

    Romashko, R V; Bezruk, M N; Kamshilin, A A; Kulchin, Yurii N

    2012-06-30

    We have proposed and analysed a scheme for the multiplexing of orthogonal dynamic holograms in photorefractive crystals which ensures almost zero cross talk between the holographic channels upon phase demodulation. A six-channel adaptive fibre-optic interferometer was built, and the detection limit for small phase fluctuations in the channels of the interferometer was determined to be 2.1 Multiplication-Sign 10{sup -8} rad W{sup 1/2} Hz{sup -1/2}. The channel multiplexing capacity of the interferometer was estimated. The formation of 70 channels such that their optical fields completely overlap in the crystal reduces the relative detection limit in the working channel by just 10 %. We found conditions under which the maximum cross talk between the channels was within the intrinsic noise level in the channels (-47 dB).

  12. Multiwavelength adaptive optical fundus camera and continuous retinal imaging

    NASA Astrophysics Data System (ADS)

    Yang, Han-sheng; Li, Min; Dai, Yun; Zhang, Yu-dong

    2009-08-01

    We have constructed a new version of retinal imaging system with chromatic aberration concerned and the correlated optical design presented in this article is based on the adaptive optics fundus camera modality. In our system, three typical wavelengths of 550nm, 650nm and 480nm were selected. Longitude chromatic aberration (LCA) was traded off to a minimum using ZEMAX program. The whole setup was actually evaluated on human subjects and retinal imaging was performed at continuous frame rates up to 20 Hz. Raw videos at parafovea locations were collected, and cone mosaics as well as retinal vasculature were clearly observed in one single clip. In addition, comparisons under different illumination conditions were also made to confirm our design. Image contrast and the Strehl ratio were effectively increased after dynamic correction of high order aberrations. This system is expected to bring new applications in functional imaging of human retina.

  13. Microstructure of subretinal drusenoid deposits revealed by adaptive optics imaging.

    PubMed

    Meadway, Alexander; Wang, Xiaolin; Curcio, Christine A; Zhang, Yuhua

    2014-03-01

    Subretinal drusenoid deposits (SDD), a recently recognized lesion associated with progression of age-related macular degeneration, were imaged with adaptive optics scanning laser ophthalmoscopy (AO-SLO) and optical coherence tomography (AO-OCT). AO-SLO revealed a distinct en face structure of stage 3 SDD, showing a hyporeflective annulus surrounded reflective core packed with hyperreflective dots bearing a superficial similarity to the photoreceptors in the unaffected retina. However, AO-OCT suggested that the speckled appearance over the SDD rendered by AO-SLO was the lesion material itself, rather than photoreceptors. AO-OCT assists proper interpretation and understanding of the SDD structure and the lesions' impact on surrounding photoreceptors produced by AO-SLO and vice versa. PMID:24688808

  14. Optimization-based wavefront sensorless adaptive optics for multiphoton microscopy.

    PubMed

    Antonello, Jacopo; van Werkhoven, Tim; Verhaegen, Michel; Truong, Hoa H; Keller, Christoph U; Gerritsen, Hans C

    2014-06-01

    Optical aberrations have detrimental effects in multiphoton microscopy. These effects can be curtailed by implementing model-based wavefront sensorless adaptive optics, which only requires the addition of a wavefront shaping device, such as a deformable mirror (DM) to an existing microscope. The aberration correction is achieved by maximizing a suitable image quality metric. We implement a model-based aberration correction algorithm in a second-harmonic microscope. The tip, tilt, and defocus aberrations are removed from the basis functions used for the control of the DM, as these aberrations induce distortions in the acquired images. We compute the parameters of a quadratic polynomial that is used to model the image quality metric directly from experimental input-output measurements. Finally, we apply the aberration correction by maximizing the image quality metric using the least-squares estimate of the unknown aberration. PMID:24977374

  15. A Wafer Transfer Technology for MEMS Adaptive Optics

    NASA Technical Reports Server (NTRS)

    Yang, Eui-Hyeok; Wiberg, Dean V.

    2001-01-01

    Adaptive optics systems require the combination of several advanced technologies such as precision optics, wavefront sensors, deformable mirrors, and lasers with high-speed control systems. The deformable mirror with a continuous membrane is a key component of these systems. This paper describes a new technique for transferring an entire wafer-level silicon membrane from one substrate to another. This technology is developed for the fabrication of a compact deformable mirror with a continuous facet. A 1 (mu)m thick silicon membrane, 100 mm in diameter, has been successfully transferred without using adhesives or polymers (i.e. wax, epoxy, or photoresist). Smaller or larger diameter membranes can also be transferred using this technique. The fabricated actuator membrane with an electrode gap of 1.5 (mu)m shows a vertical deflection of 0.37 (mu)m at 55 V.

  16. Phase aberration correction by correlation in digital holographic adaptive optics

    PubMed Central

    Liu, Changgeng; Yu, Xiao; Kim, Myung K.

    2013-01-01

    We present a phase aberration correction method based on the correlation between the complex full-field and guide-star holograms in the context of digital holographic adaptive optics (DHAO). Removal of a global quadratic phase term before the correlation operation plays an important role in the correction. Correlation operation can remove the phase aberration at the entrance pupil plane and automatically refocus the corrected optical field. Except for the assumption that most aberrations lie at or close to the entrance pupil, the presented method does not impose any other constraints on the optical systems. Thus, it greatly enhances the flexibility of the optical design for DHAO systems in vision science and microscopy. Theoretical studies show that the previously proposed Fourier transform DHAO (FTDHAO) is just a special case of this general correction method, where the global quadratic phase term and a defocus term disappear. Hence, this correction method realizes the generalization of FTDHAO into arbitrary DHAO systems. The effectiveness and robustness of this method are demonstrated by simulations and experiments. PMID:23669707

  17. EUV imaging experiment of an adaptive optics telescope

    NASA Astrophysics Data System (ADS)

    Kitamoto, S.; Shibata, T.; Takenaka, E.; Yoshida, M.; Murakami, H.; Shishido, Y.; Gotoh, N.; Nagasaki, K.; Takei, D.; Morii, M.

    2009-08-01

    We report an experimental result of our normal-incident EUV telescope tuned to a 13.5 nm band, with an adaptive optics. The optics consists of a spherical primary mirror and a secondary mirror. Both are coated by Mo/Si multilayer. The diameter of the primary and the secondary mirrors are 80 mm and 55mm, respectively. The secondary mirror is a deformable mirror with 31 bimorph-piezo electrodes. The EUV from a laser plasma source was exposed to a Ni mesh with 31 micro-m wires. The image of this mesh was obtained by a backilluminated CCD. The reference wave was made by an optical laser source with 1 μm pin-hole. We measure the wave form of this reference wave and control the secondary mirror to get a good EUV image. Since the paths of EUV and the optical light for the reference were different from each other, we modify the target wave from to control the deformable mirror, as the EUV image is best. The higher order Zernike components of the target wave form, as well as the tilts and focus components, were added to the reference wave form made by simply calculated. We confirmed the validity of this control and performed a 2.1 arc-sec resolution.

  18. Rapid production of structural color images with optical data storage capabilities

    NASA Astrophysics Data System (ADS)

    Rezaei, Mohamad; Jiang, Hao; Qarehbaghi, Reza; Naghshineh, Mohammad; Kaminska, Bozena

    2015-03-01

    In this paper, we present novel methods to produce structural color image for any given color picture using a pixelated generic stamp named nanosubstrate. The nanosubstrate is composed of prefabricated arrays of red, green and blue subpixels. Each subpixel has nano-gratings and/or sub-wavelength structures which give structural colors through light diffraction. Micro-patterning techniques were implemented to produce the color images from the nanosubstrate by selective activation of subpixels. The nano-grating structures can be nanohole arrays, which after replication are converted to nanopillar arrays or vice versa. It has been demonstrated that visible and invisible data can be easily stored using these fabrication methods and the information can be easily read. Therefore the techniques can be employed to produce personalized and customized color images for applications in optical document security and publicity, and can also be complemented by combined optical data storage capabilities.

  19. Dual purpose optical instrument capable of simultaneously acting as spectrometer and diffractometer

    NASA Technical Reports Server (NTRS)

    Dasgupta, K.; Schnopper, H. W.; Metzger, A. E. (Inventor)

    1969-01-01

    A dual purpose optical instrument is described capable of simultaneously acting as a spectrometer and diffractometer to respectively perform elemental and structural analysis of an unknown sample. The diffractometer portion of the instrument employs a modified form of Seeman-Bohlin focusing which involves providing a line source of X-rays, a sample, and a detector, all on the same focal circle. The spectrometer portion of the instrument employs a fixedly mounted X-ray energy detector mounted outside of the plane of the focal circle.

  20. Image restoration of the open-loop adaptive optics retinal imaging system based on optical transfer function analysis

    NASA Astrophysics Data System (ADS)

    Yu, Lei; Qi, Yue; Li, Dayu; Xia, Mingliang; Xuan, Li

    2013-07-01

    The residual aberrations of the adaptive optics retinal imaging system will decrease the quality of the retinal images. To overcome this obstacle, we found that the optical transfer function (OTF) of the adaptive optics retinal imaging system can be described as the Levy stable distribution. Then a new method is introduced to estimate the OTF of the open-loop adaptive optics system, based on analyzing the residual aberrations of the open-loop adaptive optics system in the residual aberrations measuring mode. At last, the estimated OTF is applied to restore the retinal images of the open-loop adaptive optics retinal imaging system. The contrast and resolution of the restored image is significantly improved with the Laplacian sum (LS) from 0.0785 to 0.1480 and gray mean grads (GMG) from 0.0165 to 0.0306.

  1. Interferometric adaptive optics for high-power laser pointing, wavefront control, and phasing

    NASA Astrophysics Data System (ADS)

    Baker, K. L.; Stappaerts, E. A.; Homoelle, D. C.; Henesian, M. A.; Bliss, E. S.; Siders, C. W.; Barty, C. P. J.

    2009-02-01

    Implementing the capability to perform fast ignition experiments, as well as, radiography experiments on the National Ignition Facility (NIF) places stringent requirements on the control of each of the beam's pointing and overall wavefront quality. One quad of the NIF beams, 4 beam pairs, will be utilized for these experiments and hydrodynamic and particle-in-cell simulations indicate that for the fast ignition experiments, these beams will be required to deliver 50%(4.0 kJ) of their total energy(7.96 kJ) within a 40 μm diameter spot at the end of a fast ignition cone target. This requirement implies a stringent pointing and overall phase conjugation error budget on the adaptive optics system used to correct these beam lines. The overall encircled energy requirement is more readily met by phasing of the beams in pairs but still requires high Strehl ratios, Sr, and RMS tip/tilt errors of approximately one μrad. To accomplish this task we have designed an interferometric adaptive optics system capable of beam pointing, high Strehl ratio and beam phasing with a single pixilated MEMS deformable mirror and interferometric wave-front sensor. We present the design of a testbed used to evaluate the performance of this wave-front sensor below along with simulations of its expected performance level.

  2. Interferometric adaptive optics for high power laser pointing, wave-front control and phasing

    SciTech Connect

    Baker, K L; Stappaerts, E A; Homoelle, D C; Henesian, M A; Bliss, E S; Siders, C W; Barty, C J

    2009-01-21

    Implementing the capability to perform fast ignition experiments, as well as, radiography experiments on the National Ignition Facility (NIF) places stringent requirements on the control of each of the beam's pointing and overall wavefront quality. One quad of the NIF beams, 4 beam pairs, will be utilized for these experiments and hydrodynamic and particle-in-cell simulations indicate that for the fast ignition experiments, these beams will be required to deliver 50% (4.0 kJ) of their total energy (7.96 kJ) within a 40 {micro}m diameter spot at the end of a fast ignition cone target. This requirement implies a stringent pointing and overall phase conjugation error budget on the adaptive optics system used to correct these beam lines. The overall encircled energy requirement is more readily met by phasing of the beams in pairs but still requires high Strehl ratios, Sr, and rms tip/tilt errors of approximately one {micro}rad. To accomplish this task we have designed an interferometric adaptive optics system capable of beam pointing, high Strehl ratio and beam phasing with a single pixilated MEMS deformable mirror and interferometric wave-front sensor. We present the design of a testbed used to evaluate the performance of this wave-front sensor below along with simulations of its expected performance level.

  3. MAD Adaptive Optics Imaging of High-luminosity Quasars: A Pilot Project

    NASA Astrophysics Data System (ADS)

    Liuzzo, E.; Falomo, R.; Paiano, S.; Treves, A.; Uslenghi, M.; Arcidiacono, C.; Baruffolo, A.; Diolaiti, E.; Farinato, J.; Lombini, M.; Moretti, A.; Ragazzoni, R.; Brast, R.; Donaldson, R.; Kolb, J.; Marchetti, E.; Tordo, S.

    2016-08-01

    We present near-IR images of five luminous quasars at z ∼ 2 and one at z ∼ 4 obtained with an experimental adaptive optics (AO) instrument at the European Southern Observatory Very Large Telescope. The observations are part of a program aimed at demonstrating the capabilities of multi-conjugated adaptive optics imaging combined with the use of natural guide stars for high spatial resolution studies on large telescopes. The observations were mostly obtained under poor seeing conditions but in two cases. In spite of these nonoptimal conditions, the resulting images of point sources have cores of FWHM ∼ 0.2 arcsec. We are able to characterize the host galaxy properties for two sources and set stringent upper limits to the galaxy luminosity for the others. We also report on the expected capabilities for investigating the host galaxies of distant quasars with AO systems coupled with future Extremely Large Telescopes. Detailed simulations show that it will be possible to characterize compact (2–3 kpc) quasar host galaxies for quasi-stellar objects at z = 2 with nucleus K-magnitude spanning from 15 to 20 (corresponding to absolute magnitude ‑31 to ‑26) and host galaxies that are 4 mag fainter than their nuclei.

  4. Adaptive optics SLO/OCT for 3D imaging of human photoreceptors in vivo

    PubMed Central

    Felberer, Franz; Kroisamer, Julia-Sophie; Baumann, Bernhard; Zotter, Stefan; Schmidt-Erfurth, Ursula; Hitzenberger, Christoph K.; Pircher, Michael

    2014-01-01

    We present a new instrument that is capable of imaging human photoreceptors in three dimensions. To achieve high lateral resolution, the system incorporates an adaptive optics system. The high axial resolution is achieved through the implementation of optical coherence tomography (OCT). The instrument records simultaneously both, scanning laser ophthalmoscope (SLO) and OCT en-face images, with a pixel to pixel correspondence. The information provided by the SLO is used to correct for transverse eye motion in post-processing. In order to correct for axial eye motion, the instrument is equipped with a high speed axial eye tracker. In vivo images of foveal cones as well as images recorded at an eccentricity from the fovea showing cones and rods are presented. PMID:24575339

  5. Active eye-tracking for an adaptive optics scanning laser ophthalmoscope

    PubMed Central

    Sheehy, Christy K.; Tiruveedhula, Pavan; Sabesan, Ramkumar; Roorda, Austin

    2015-01-01

    We demonstrate a system that combines a tracking scanning laser ophthalmoscope (TSLO) and an adaptive optics scanning laser ophthalmoscope (AOSLO) system resulting in both optical (hardware) and digital (software) eye-tracking capabilities. The hybrid system employs the TSLO for active eye-tracking at a rate up to 960 Hz for real-time stabilization of the AOSLO system. AOSLO videos with active eye-tracking signals showed, at most, an amplitude of motion of 0.20 arcminutes for horizontal motion and 0.14 arcminutes for vertical motion. Subsequent real-time digital stabilization limited residual motion to an average of only 0.06 arcminutes (a 95% reduction). By correcting for high amplitude, low frequency drifts of the eye, the active TSLO eye-tracking system enabled the AOSLO system to capture high-resolution retinal images over a larger range of motion than previously possible with just the AOSLO imaging system alone. PMID:26203370

  6. Optimal control law for classical and multiconjugate adaptive optics

    NASA Astrophysics Data System (ADS)

    Le Roux, Brice; Conan, Jean-Marc; Kulcsár, Caroline; Raynaud, Henri-François; Mugnier, Laurent M.; Fusco, Thierry

    2004-07-01

    Classical adaptive optics (AO) is now a widespread technique for high-resolution imaging with astronomical ground-based telescopes. It generally uses simple and efficient control algorithms. Multiconjugate adaptive optics (MCAO) is a more recent and very promising technique that should extend the corrected field of view. This technique has not yet been experimentally validated, but simulations already show its high potential. The importance for MCAO of an optimal reconstruction using turbulence spatial statistics has already been demonstrated through open-loop simulations. We propose an optimal closed-loop control law that accounts for both spatial and temporal statistics. The prior information on the turbulence, as well as on the wave-front sensing noise, is expressed in a state-space model. The optimal phase estimation is then given by a Kalman filter. The equations describing the system are given and the underlying assumptions explained. The control law is then derived. The gain brought by this approach is demonstrated through MCAO numerical simulations representative of astronomical observation on a 8-m-class telescope in the near infrared. We also discuss the application of this control approach to classical AO. Even in classical AO, the technique could be relevant especially for future extreme AO systems.

  7. AVES: an adaptive optics visual echelle spectrograph for the VLT

    NASA Astrophysics Data System (ADS)

    Pasquini, Luca; Delabre, Bernard; Avila, Gerardo; Bonaccini, Domenico

    1998-07-01

    We present the preliminary study of a low cost, high performance spectrograph for the VLT, for observations in the V, R and I bands. This spectrograph is meant for intermediate (R equals 16,000) resolution spectroscopy of faint (sky and/or detector limited) sources, with particular emphasis on the study of solar-type (F-G) stars belonging to the nearest galaxies and to distant (or highly reddened) galactic clusters. The spectrograph is designed to use the adaptive optics (AO) systems at the VLT Telescope. Even if these AO systems will not provide diffraction limited images in the V, R and I bands, the photon concentration will still be above approximately 60% of the flux in an 0.3 arcsecond aperture for typical Paranal conditions. This makes the construction of a compact, cheap and efficient echelle spectrograph possible. AVES will outperform comparable non adaptive optic instruments by more than one magnitude for sky- and/or detector-limited observations, and it will be very suitable for observations in crowded fields.

  8. Ergodic capacity comparison of optical wireless communications using adaptive transmissions.

    PubMed

    Hassan, Md Zoheb; Hossain, Md Jahangir; Cheng, Julian

    2013-08-26

    Ergodic capacity is investigated for the optical wireless communications employing subcarrier intensity modulation with direct detection, and coherent systems with and without polarization multiplexing over the Gamma-Gamma turbulence channels. We consider three different adaptive transmission schemes: (i) variable-power, variable-rate adaptive transmission, (ii) complete channel inversion with fixed rate, and (iii) truncated channel inversion with fixed rate. For the considered systems, highly accurate series expressions for ergodic capacity are derived using a series expansion of the modified Bessel function and the Mellin transformation of the Gamma-Gamma random variable. Our asymptotic analysis reveals that the high SNR ergodic capacities of coherent, subcarrier intensity modulated, and polarization multiplexing systems gain 0.33 bits/s/Hz, 0.66 bits/s/Hz, and 0.66 bits/s/Hz respectively with 1 dB increase of average transmitted optical power. Numerical results indicate that a polarization control error less than 10° has little influence on the capacity performance of polarization multiplexing systems. PMID:24105580

  9. Adaptive Optics Imaging Survey of Luminous Infrared Galaxies

    SciTech Connect

    Laag, E A; Canalizo, G; van Breugel, W; Gates, E L; de Vries, W; Stanford, S A

    2006-03-13

    We present high resolution imaging observations of a sample of previously unidentified far-infrared galaxies at z < 0.3. The objects were selected by cross-correlating the IRAS Faint Source Catalog with the VLA FIRST catalog and the HST Guide Star Catalog to allow for adaptive optics observations. We found two new ULIGs (with L{sub FIR} {ge} 10{sup 12} L{sub {circle_dot}}) and 19 new LIGs (with L{sub FIR} {ge} 10{sup 11} L{sub {circle_dot}}). Twenty of the galaxies in the sample were imaged with either the Lick or Keck adaptive optics systems in H or K{prime}. Galaxy morphologies were determined using the two dimensional fitting program GALFIT and the residuals examined to look for interesting structure. The morphologies reveal that at least 30% are involved in tidal interactions, with 20% being clear mergers. An additional 50% show signs of possible interaction. Line ratios were used to determine powering mechanism; of the 17 objects in the sample showing clear emission lines--four are active galactic nuclei and seven are starburst galaxies. The rest exhibit a combination of both phenomena.

  10. Turbulence profiling methods applied to ESO's adaptive optics facility

    NASA Astrophysics Data System (ADS)

    Valenzuela, Javier; Béchet, Clémentine; Garcia-Rissmann, Aurea; Gonté, Frédéric; Kolb, Johann; Le Louarn, Miska; Neichel, Benoît; Madec, Pierre-Yves; Guesalaga, Andrés.

    2014-07-01

    Two algorithms were recently studied for C2n profiling from wide-field Adaptive Optics (AO) measurements on GeMS (Gemini Multi-Conjugate AO system). They both rely on the Slope Detection and Ranging (SLODAR) approach, using spatial covariances of the measurements issued from various wavefront sensors. The first algorithm estimates the C2n profile by applying the truncated least-squares inverse of a matrix modeling the response of slopes covariances to various turbulent layer heights. In the second method, the profile is estimated by deconvolution of these spatial cross-covariances of slopes. We compare these methods in the new configuration of ESO Adaptive Optics Facility (AOF), a high-order multiple laser system under integration. For this, we use measurements simulated by the AO cluster of ESO. The impact of the measurement noise and of the outer scale of the atmospheric turbulence is analyzed. The important influence of the outer scale on the results leads to the development of a new step for outer scale fitting included in each algorithm. This increases the reliability and robustness of the turbulence strength and profile estimations.

  11. Optimal control law for classical and multiconjugate adaptive optics.

    PubMed

    Le Roux, Brice; Conan, Jean-Marc; Kulcsár, Caroline; Raynaud, Henri-François; Mugnier, Laurent M; Fusco, Thierry

    2004-07-01

    Classical adaptive optics (AO) is now a widespread technique for high-resolution imaging with astronomical ground-based telescopes. It generally uses simple and efficient control algorithms. Multiconjugate adaptive optics (MCAO) is a more recent and very promising technique that should extend the corrected field of view. This technique has not yet been experimentally validated, but simulations already show its high potential. The importance for MCAO of an optimal reconstruction using turbulence spatial statistics has already been demonstrated through open-loop simulations. We propose an optimal closed-loop control law that accounts for both spatial and temporal statistics. The prior information on the turbulence, as well as on the wave-front sensing noise, is expressed in a state-space model. The optimal phase estimation is then given by a Kalman filter. The equations describing the system are given and the underlying assumptions explained. The control law is then derived. The gain brought by this approach is demonstrated through MCAO numerical simulations representative of astronomical observation on a 8-m-class telescope in the near infrared. We also discuss the application of this control approach to classical AO. Even in classical AO, the technique could be relevant especially for future extreme AO systems. PMID:15260258

  12. Comparison of wavefront sensor models for simulation of adaptive optics.

    PubMed

    Wu, Zhiwen; Enmark, Anita; Owner-Petersen, Mette; Andersen, Torben

    2009-10-26

    The new generation of extremely large telescopes will have adaptive optics. Due to the complexity and cost of such systems, it is important to simulate their performance before construction. Most systems planned will have Shack-Hartmann wavefront sensors. Different mathematical models are available for simulation of such wavefront sensors. The choice of wavefront sensor model strongly influences computation time and simulation accuracy. We have studied the influence of three wavefront sensor models on performance calculations for a generic, adaptive optics (AO) system designed for K-band operation of a 42 m telescope. The performance of this AO system has been investigated both for reduced wavelengths and for reduced r(0) in the K band. The telescope AO system was designed for K-band operation, that is both the subaperture size and the actuator pitch were matched to a fixed value of r(0) in the K-band. We find that under certain conditions, such as investigating limiting guide star magnitude for large Strehl-ratios, a full model based on Fraunhofer propagation to the subimages is significantly more accurate. It does however require long computation times. The shortcomings of simpler models based on either direct use of average wavefront tilt over the subapertures for actuator control, or use of the average tilt to move a precalculated point spread function in the subimages are most pronounced for studies of system limitations to operating parameter variations. In the long run, efficient parallelization techniques may be developed to overcome the problem. PMID:19997286

  13. Adaptive optics sky coverage modeling for extremely large telescopes

    NASA Astrophysics Data System (ADS)

    Clare, Richard M.; Ellerbroek, Brent L.; Herriot, Glen; Véran, Jean-Pierre

    2006-12-01

    A Monte Carlo sky coverage model for laser guide star adaptive optics systems was proposed by Clare and Ellerbroek [J. Opt. Soc. Am. A 23, 418 (2006)]. We refine the model to include (i) natural guide star (NGS) statistics using published star count models, (ii) noise on the NGS measurements, (iii) the effect of telescope wind shake, (iv) a model for how the Strehl and hence NGS wavefront sensor measurement noise varies across the field, (v) the focus error due to imperfectly tracking the range to the sodium layer, (vi) the mechanical bandwidths of the tip-tilt (TT) stage and deformable mirror actuators, and (vii) temporal filtering of the NGS measurements to balance errors due to noise and servo lag. From this model, we are able to generate a TT error budget for the Thirty Meter Telescope facility narrow-field infrared adaptive optics system (NFIRAOS) and perform several design trade studies. With the current NFIRAOS design, the median TT error at the galactic pole with median seeing is calculated to be 65 nm or 1.8 mas rms.

  14. Non-iterative adaptive optical microscopy using wavefront sensing

    NASA Astrophysics Data System (ADS)

    Tao, X.; Azucena, O.; Kubby, J.

    2016-03-01

    This paper will review the development of wide-field and confocal microscopes with wavefront sensing and adaptive optics for correcting refractive aberrations and compensating scattering when imaging through thick tissues (Drosophila embryos and mouse brain tissue). To make wavefront measurements in biological specimens we have modified the laser guide-star techniques used in astronomy for measuring wavefront aberrations that occur as star light passes through Earth's turbulent atmosphere. Here sodium atoms in Earth's mesosphere, at an altitude of 95 km, are excited to fluoresce at resonance by a high-power sodium laser. The fluorescent light creates a guide-star reference beacon at the top of the atmosphere that can be used for measuring wavefront aberrations that occur as the light passes through the atmosphere. We have developed a related approach for making wavefront measurements in biological specimens using cellular structures labeled with fluorescent proteins as laser guide-stars. An example is a fluorescently labeled centrosome in a fruit fly embryo or neurons and dendrites in mouse brains. Using adaptive optical microscopy we show that the Strehl ratio, the ratio of the peak intensity of an aberrated point source relative to the diffraction limited image, can be improved by an order of magnitude when imaging deeply into live dynamic specimens, enabling near diffraction limited deep tissue imaging.

  15. Adaptive optics sky coverage modeling for extremely large telescopes.

    PubMed

    Clare, Richard M; Ellerbroek, Brent L; Herriot, Glen; Véran, Jean-Pierre

    2006-12-10

    A Monte Carlo sky coverage model for laser guide star adaptive optics systems was proposed by Clare and Ellerbroek [J. Opt. Soc. Am. A 23, 418 (2006)]. We refine the model to include (i) natural guide star (NGS) statistics using published star count models, (ii) noise on the NGS measurements, (iii) the effect of telescope wind shake, (iv) a model for how the Strehl and hence NGS wavefront sensor measurement noise varies across the field, (v) the focus error due to imperfectly tracking the range to the sodium layer, (vi) the mechanical bandwidths of the tip-tilt (TT) stage and deformable mirror actuators, and (vii) temporal filtering of the NGS measurements to balance errors due to noise and servo lag. From this model, we are able to generate a TT error budget for the Thirty Meter Telescope facility narrow-field infrared adaptive optics system (NFIRAOS) and perform several design trade studies. With the current NFIRAOS design, the median TT error at the galactic pole with median seeing is calculated to be 65 nm or 1.8 mas rms. PMID:17119597

  16. A Real-Time Capable Software-Defined Receiver Using GPU for Adaptive Anti-Jam GPS Sensors

    PubMed Central

    Seo, Jiwon; Chen, Yu-Hsuan; De Lorenzo, David S.; Lo, Sherman; Enge, Per; Akos, Dennis; Lee, Jiyun

    2011-01-01

    Due to their weak received signal power, Global Positioning System (GPS) signals are vulnerable to radio frequency interference. Adaptive beam and null steering of the gain pattern of a GPS antenna array can significantly increase the resistance of GPS sensors to signal interference and jamming. Since adaptive array processing requires intensive computational power, beamsteering GPS receivers were usually implemented using hardware such as field-programmable gate arrays (FPGAs). However, a software implementation using general-purpose processors is much more desirable because of its flexibility and cost effectiveness. This paper presents a GPS software-defined radio (SDR) with adaptive beamsteering capability for anti-jam applications. The GPS SDR design is based on an optimized desktop parallel processing architecture using a quad-core Central Processing Unit (CPU) coupled with a new generation Graphics Processing Unit (GPU) having massively parallel processors. This GPS SDR demonstrates sufficient computational capability to support a four-element antenna array and future GPS L5 signal processing in real time. After providing the details of our design and optimization schemes for future GPU-based GPS SDR developments, the jamming resistance of our GPS SDR under synthetic wideband jamming is presented. Since the GPS SDR uses commercial-off-the-shelf hardware and processors, it can be easily adopted in civil GPS applications requiring anti-jam capabilities. PMID:22164116

  17. Adaptive distributed Kalman filtering with wind estimation for astronomical adaptive optics.

    PubMed

    Massioni, Paolo; Gilles, Luc; Ellerbroek, Brent

    2015-12-01

    In the framework of adaptive optics (AO) for astronomy, it is a common assumption to consider the atmospheric turbulent layers as "frozen flows" sliding according to the wind velocity profile. For this reason, having knowledge of such a velocity profile is beneficial in terms of AO control system performance. In this paper we show that it is possible to exploit the phase estimate from a Kalman filter running on an AO system in order to estimate wind velocity. This allows the update of the Kalman filter itself with such knowledge, making it adaptive. We have implemented such an adaptive controller based on the distributed version of the Kalman filter, for a realistic simulation of a multi-conjugate AO system with laser guide stars on a 30 m telescope. Simulation results show that this approach is effective and promising and the additional computational cost with respect to the distributed filter is negligible. Comparisons with a previously published slope detection and ranging wind profiler are made and the impact of turbulence profile quantization is assessed. One of the main findings of the paper is that all flavors of the adaptive distributed Kalman filter are impacted more significantly by turbulence profile quantization than the static minimum mean square estimator which does not incorporate wind profile information. PMID:26831389

  18. In vivo imaging of human photoreceptor mosaic with wavefront sensorless adaptive optics optical coherence tomography.

    PubMed

    Wong, Kevin S K; Jian, Yifan; Cua, Michelle; Bonora, Stefano; Zawadzki, Robert J; Sarunic, Marinko V

    2015-02-01

    Wavefront sensorless adaptive optics optical coherence tomography (WSAO-OCT) is a novel imaging technique for in vivo high-resolution depth-resolved imaging that mitigates some of the challenges encountered with the use of sensor-based adaptive optics designs. This technique replaces the Hartmann Shack wavefront sensor used to measure aberrations with a depth-resolved image-driven optimization algorithm, with the metric based on the OCT volumes acquired in real-time. The custom-built ultrahigh-speed GPU processing platform and fast modal optimization algorithm presented in this paper was essential in enabling real-time, in vivo imaging of human retinas with wavefront sensorless AO correction. WSAO-OCT is especially advantageous for developing a clinical high-resolution retinal imaging system as it enables the use of a compact, low-cost and robust lens-based adaptive optics design. In this report, we describe our WSAO-OCT system for imaging the human photoreceptor mosaic in vivo. We validated our system performance by imaging the retina at several eccentricities, and demonstrated the improvement in photoreceptor visibility with WSAO compensation. PMID:25780747

  19. In vivo imaging of human photoreceptor mosaic with wavefront sensorless adaptive optics optical coherence tomography

    PubMed Central

    Wong, Kevin S. K.; Jian, Yifan; Cua, Michelle; Bonora, Stefano; Zawadzki, Robert J.; Sarunic, Marinko V.

    2015-01-01

    Wavefront sensorless adaptive optics optical coherence tomography (WSAO-OCT) is a novel imaging technique for in vivo high-resolution depth-resolved imaging that mitigates some of the challenges encountered with the use of sensor-based adaptive optics designs. This technique replaces the Hartmann Shack wavefront sensor used to measure aberrations with a depth-resolved image-driven optimization algorithm, with the metric based on the OCT volumes acquired in real-time. The custom-built ultrahigh-speed GPU processing platform and fast modal optimization algorithm presented in this paper was essential in enabling real-time, in vivo imaging of human retinas with wavefront sensorless AO correction. WSAO-OCT is especially advantageous for developing a clinical high-resolution retinal imaging system as it enables the use of a compact, low-cost and robust lens-based adaptive optics design. In this report, we describe our WSAO-OCT system for imaging the human photoreceptor mosaic in vivo. We validated our system performance by imaging the retina at several eccentricities, and demonstrated the improvement in photoreceptor visibility with WSAO compensation. PMID:25780747

  20. The Magellan Telescope Deformable Secondary Adaptive Optics System

    NASA Astrophysics Data System (ADS)

    Close, Laird M.; Gasho, V.; Kopon, D.; Males, J.; Hinz, P.; Hare, T.

    2009-05-01

    We present the adaptive optics system for the 6.5m Magellan Telescope. The Magellan telescope is a 6.5m Gregorian telescope located in southern Chile at Las Campanas Observatory. The Gregorian design allows for an adaptive secondary mirror that can be tested off-sky in a straight-forward manner. We have fabricated a 85 cm diameter aspheric adaptive secondary with our subcontractors and partners. This secondary has 585 actuators with 1 msec response times. The secondary will allow low emissivity AO science. We will achieve very high Strehls ( 98%) in the Mid-IR (8-26 microns) imaged with the BLINC/MIRAC4 Mid-IR camera. This will allow the first "super-resolution" Mid-IR studies of dusty southern objects. We will employ a high order (585 mode) pyramid wavefront sensor similar to that used in the Large Binocular Telescope AO systems. The relatively high actuator count for a 6.5m telescope will allow modest Strehls to be obtained in the visible. Our visible light AO CCD camera is fed by a beamsplitter piggy backed on the wavefront sensor system. We have addressed several difficult issues with 20 milliarcsec diffraction-limited imaging in the visible with our VisAO system. The Magellan AO system successfully passed PDR in December 2008 and should have first light in early 2011.

  1. CRAO: a compact and refractive adaptive-optics

    NASA Astrophysics Data System (ADS)

    Fujishiro, Naofumi; Kitao, Eiji; Shimizu, Tomo; Matsui, Takuya; Ikeda, Yuji; Kawakita, Hideyo; Oya, Shin

    2014-08-01

    CRAO is a demonstrator of a compact and low-cost adaptive-optics (AO) with a double-pass lens configuration. Owing to its compact optical layout compared to conventional reflective AOs, the instrument size can be reduced to only 0.03 square meters. We plan to apply this miniaturization technique into future AOs on a variety of telescopes ranging from 1m- to 30m-class. CRAO is installed at a Nasmyth focus of the 1.3m Araki telescope at Koyama Astronomical Observatory in Kyoto Sangyo University. CRAO adopts a closed-loop single-conjugate system with wavelength coverage of 400 - 700 nm and the field of view of 30 arcsec. For low cost, we also employ commercial products on its wavefront sensor (WFS), deformable mirror (DM), and tip-tilt (TT) stage. CRAO is designed to improve the atmospheric seeing from 2.5 to 0.6arcsec under a typical condition at Koyama Astronomical Observatory with 12x12 subapertures in the WFS, 48 electrodes in the membrane DM and the control bandwidth of 200Hz. In order to examine key issues inherent in refractive optical system such as chromatic aberration, temperature aberration and ghost images, room and on-sky experiments are currently underway. CRAO has seen first light in May 2014, and we have confirmed that effects of chromatic aberration and ghost images induced by its refractive optics are negligible for at least TT correction. In this paper, we present experimental results as well as the design of optics, opto-mechanics and control system.

  2. High-resolution in-depth imaging of optically cleared thick samples using an adaptive SPIM

    PubMed Central

    Masson, Aurore; Escande, Paul; Frongia, Céline; Clouvel, Grégory; Ducommun, Bernard; Lorenzo, Corinne

    2015-01-01

    Today, Light Sheet Fluorescence Microscopy (LSFM) makes it possible to image fluorescent samples through depths of several hundreds of microns. However, LSFM also suffers from scattering, absorption and optical aberrations. Spatial variations in the refractive index inside the samples cause major changes to the light path resulting in loss of signal and contrast in the deepest regions, thus impairing in-depth imaging capability. These effects are particularly marked when inhomogeneous, complex biological samples are under study. Recently, chemical treatments have been developed to render a sample transparent by homogenizing its refractive index (RI), consequently enabling a reduction of scattering phenomena and a simplification of optical aberration patterns. One drawback of these methods is that the resulting RI of cleared samples does not match the working RI medium generally used for LSFM lenses. This RI mismatch leads to the presence of low-order aberrations and therefore to a significant degradation of image quality. In this paper, we introduce an original optical-chemical combined method based on an adaptive SPIM and a water-based clearing protocol enabling compensation for aberrations arising from RI mismatches induced by optical clearing methods and acquisition of high-resolution in-depth images of optically cleared complex thick samples such as Multi-Cellular Tumour Spheroids. PMID:26576666

  3. High-resolution in-depth imaging of optically cleared thick samples using an adaptive SPIM

    NASA Astrophysics Data System (ADS)

    Masson, Aurore; Escande, Paul; Frongia, Céline; Clouvel, Grégory; Ducommun, Bernard; Lorenzo, Corinne

    2015-11-01

    Today, Light Sheet Fluorescence Microscopy (LSFM) makes it possible to image fluorescent samples through depths of several hundreds of microns. However, LSFM also suffers from scattering, absorption and optical aberrations. Spatial variations in the refractive index inside the samples cause major changes to the light path resulting in loss of signal and contrast in the deepest regions, thus impairing in-depth imaging capability. These effects are particularly marked when inhomogeneous, complex biological samples are under study. Recently, chemical treatments have been developed to render a sample transparent by homogenizing its refractive index (RI), consequently enabling a reduction of scattering phenomena and a simplification of optical aberration patterns. One drawback of these methods is that the resulting RI of cleared samples does not match the working RI medium generally used for LSFM lenses. This RI mismatch leads to the presence of low-order aberrations and therefore to a significant degradation of image quality. In this paper, we introduce an original optical-chemical combined method based on an adaptive SPIM and a water-based clearing protocol enabling compensation for aberrations arising from RI mismatches induced by optical clearing methods and acquisition of high-resolution in-depth images of optically cleared complex thick samples such as Multi-Cellular Tumour Spheroids.

  4. Adaptive unscented Kalman filter based state of energy and power capability estimation approach for lithium-ion battery

    NASA Astrophysics Data System (ADS)

    Zhang, Weige; Shi, Wei; Ma, Zeyu

    2015-09-01

    Accurate estimations of battery energy and available power capability are of great of importance for realizing an efficient and reliable operation of electric vehicles. To improve the estimation accuracy and reliability for battery state of energy and power capability, a novel model-based joint estimation approach has been proposed against uncertain external operating conditions and internal degradation status of battery cells. Firstly, it proposes a three-dimensional response surface open circuit voltage model to calibrate the estimation inaccuracies of battery state of energy. Secondly, the adaptive unscented Kalman filter (AUKF) is employed to develop a novel model-based joint state estimator for battery state of energy and power capability. The AUKF algorithm utilizes the well-known features of the Kalman filter but employs the method of unscented transform (UT) and adaptive error covariance matching technology to improve the state estimation accuracy. Thirdly, the proposed joint estimator has been verified by a LiFePO4 lithium-ion battery cell under different operating temperatures and aging levels. The result indicates that the estimation errors of battery voltage and state-of-energy are less than 2% even if given a large erroneous initial value, which makes the state of available power capability predict more accurate and reliable for the electric vehicles application.

  5. Wavefront detection method of a single-sensor based adaptive optics system.

    PubMed

    Wang, Chongchong; Hu, Lifa; Xu, Huanyu; Wang, Yukun; Li, Dayu; Wang, Shaoxin; Mu, Quanquan; Yang, Chengliang; Cao, Zhaoliang; Lu, Xinghai; Xuan, Li

    2015-08-10

    In adaptive optics system (AOS) for optical telescopes, the reported wavefront sensing strategy consists of two parts: a specific sensor for tip-tilt (TT) detection and another wavefront sensor for other distortions detection. Thus, a part of incident light has to be used for TT detection, which decreases the light energy used by wavefront sensor and eventually reduces the precision of wavefront correction. In this paper, a single Shack-Hartmann wavefront sensor based wavefront measurement method is presented for both large amplitude TT and other distortions' measurement. Experiments were performed for testing the presented wavefront method and validating the wavefront detection and correction ability of the single-sensor based AOS. With adaptive correction, the root-mean-square of residual TT was less than 0.2 λ, and a clear image was obtained in the lab. Equipped on a 1.23-meter optical telescope, the binary stars with angle distance of 0.6″ were clearly resolved using the AOS. This wavefront measurement method removes the separate TT sensor, which not only simplifies the AOS but also saves light energy for subsequent wavefront sensing and imaging, and eventually improves the detection and imaging capability of the AOS. PMID:26367988

  6. Difference, Adapted Physical Activity and Human Development: Potential Contribution of Capabilities Approach

    ERIC Educational Resources Information Center

    Silva, Carla Filomena; Howe, P. David

    2012-01-01

    This paper is a call to Adapted Physical Activity (APA) professionals to increase the reflexive nature of their practice. Drawing upon Foucault's concept of governmentality (1977) APA action may work against its own publicized goals of empowerment and self-determination. To highlight these inconsistencies, we will draw upon historical and social…

  7. MEMS segmented-based adaptive optics scanning laser ophthalmoscope

    PubMed Central

    Manzanera, Silvestre; Helmbrecht, Michael A.; Kempf, Carl J.; Roorda, Austin

    2011-01-01

    The performance of a MEMS (micro-electro-mechanical-system) segmented deformable mirror was evaluated in an adaptive optics (AO) scanning laser ophthalmoscope. The tested AO mirror (Iris AO, Inc, Berkeley, CA) is composed of 37 hexagonal segments that allow piston/tip/tilt motion up to 5 μm stroke and ±5 mrad angle over a 3.5 mm optical aperture. The control system that implements the closed-loop operation employs a 1:1 matched 37-lenslet Shack-Hartmann wavefront sensor whose measurements are used to apply modal corrections to the deformable mirror. After a preliminary evaluation of the AO mirror optical performance, retinal images from 4 normal subjects over a 0.9°x0.9° field size were acquired through a 6.4 mm ocular pupil, showing resolved retinal features at the cellular level. Cone photoreceptors were observed as close as 0.25 degrees from the foveal center. In general, the quality of these images is comparable to that obtained using deformable mirrors based on different technologies. PMID:21559132

  8. LEO-to-ground optical communications link using adaptive optics correction on the OPALS downlink

    NASA Astrophysics Data System (ADS)

    Wright, Malcolm W.; Kovalik, Joseph; Morris, Jeff; Abrahamson, Matthew; Biswas, Abhijit

    2016-03-01

    The Optical PAyload for Lasercomm Science (OPALS) experiment on the International Space Station (ISS) recently demonstrated successful optical downlinks to the NASA/JPL 1-m aperture telescope at the Optical Communication Telescope Laboratory (OCTL) located near Wrightwood, CA. A large area (200 μm diameter) free space coupled avalanche photodiode (APD) detector was used to receive video and a bit patterns at 50 Mb/s. We report on a recent experiment that used an adaptive optics system at OCTL to correct for atmospherically-induced refractive index fluctuations so that the downlink from the ISS could be coupled into a single mode fiber receiver. Stable fiber coupled power was achieved over an entire pass using a self-referencing interferometer based adaptive optics system that was provided and operated by Boeing Co. and integrated to OCTL. End-to-end transmission and reconstruction of an HD video signal verified the communication performance as in the original OPALS demonstration. Coupling the signal into a single mode fiber opens the possibility for higher bandwidth and efficiency modulation schemes and serves as a pilot experiment for future implementations.

  9. Extended depth of focus adaptive optics spectral domain optical coherence tomography

    PubMed Central

    Sasaki, Kazuhiro; Kurokawa, Kazuhiro; Makita, Shuichi; Yasuno, Yoshiaki

    2012-01-01

    We present an adaptive optics spectral domain optical coherence tomography (AO-SDOCT) with a long focal range by active phase modulation of the pupil. A long focal range is achieved by introducing AO-controlled third-order spherical aberration (SA). The property of SA and its effects on focal range are investigated in detail using the Huygens-Fresnel principle, beam profile measurement and OCT imaging of a phantom. The results indicate that the focal range is extended by applying SA, and the direction of extension can be controlled by the sign of applied SA. Finally, we demonstrated in vivo human retinal imaging by altering the applied SA. PMID:23082278

  10. Ultra-lightweight telescope with MEMS adaptive optic for distortion correction.

    SciTech Connect

    Spahn, Olga Blum; Cowan, William D.; Shaw, Michael J.; Adams, David Price; Sweatt, William C.; Dagel, Daryl James; Grine, Alejandro J.; Mani, Seethambal S.; Resnick, Paul James; Gass, Fawn Renee; Grossetete, Grant David

    2004-12-01

    Recent world events have underscored the need for a satellite based persistent global surveillance capability. To be useful, the satellite must be able to continuously monitor objects the size of a person anywhere on the globe and do so at a low cost. One way to satisfy these requirements involves a constellation of satellites in low earth orbit capable of resolving a spot on the order of 20 cm. To reduce cost of deployment, such a system must be dramatically lighter than a traditional satellite surveillance system with a high spatial resolution. The key to meeting this requirement is a lightweight optics system with a deformable primary and secondary mirrors and an adaptive optic subsystem correction of wavefront distortion. This proposal is concerned with development of MEMS micromirrors for correction of aberrations in the primary mirror and improvement of image quality, thus reducing the optical requirements on the deployable mirrors. To meet this challenge, MEMS micromirrors must meet stringent criteria on their performance in terms of flatness, roughness and resolution of position. Using Sandia's SUMMIT foundry which provides the world's most sophisticated surface MEMS technology as well as novel designs optimized by finite element analysis will meet severe requirements on mirror travel range and accuracy.

  11. KAPAO: a MEMS-based natural guide star adaptive optics system

    NASA Astrophysics Data System (ADS)

    Severson, Scott A.; Choi, Philip I.; Contreras, Daniel S.; Gilbreth, Blaine N.; Littleton, Erik; McGonigle, Lorcan P.; Morrison, William A.; Rudy, Alex R.; Wong, Jonathan R.; Xue, Andrew; Spjut, Erik; Baranec, Christoph; Riddle, Reed

    2013-03-01

    We describe KAPAO, our project to develop and deploy a low-cost, remote-access, natural guide star adaptive optics (AO) system for the Pomona College Table Mountain Observatory (TMO) 1-meter telescope. We use a commercially available 140-actuator BMC MEMS deformable mirror and a version of the Robo-AO control software developed by Caltech and IUCAA. We have structured our development around the rapid building and testing of a prototype system, KAPAO-Alpha, while simultaneously designing our more capable final system, KAPAO-Prime. The main differences between these systems are the prototype's reliance on off-the-shelf optics and a single visible-light science camera versus the final design's improved throughput and capabilities due to the use of custom optics and dual-band, visible and near-infrared imaging. In this paper, we present the instrument design and on-sky closed-loop testing of KAPAO-Alpha as well as our plans for KAPAO-Prime. The primarily undergraduate-education nature of our partner institutions, both public (Sonoma State University) and private (Pomona and Harvey Mudd Colleges), has enabled us to engage physics, astronomy, and engineering undergraduates in all phases of this project. This material is based upon work supported by the National Science Foundation under Grant No. 0960343.

  12. Design and comparison of 8x8 optical switches with adaptive wavelength routing algorithm

    NASA Astrophysics Data System (ADS)

    Tsao, Shyh-Lin; Lu, Yu M.

    2001-12-01

    In this paper, some wavelength routers with various 8 X 8 optical wavelength-switching networks are designed. All of the wavelength routers have three stages architecture. We also analyze the wavelength crosstalk, SNR and BER for various 8 X 8 optical switching networks for adaptive wavelength routing choice. The analysis shows the performance adaptive of routing networks. The 8 X 8 dilated Benes optical switches that adaptive router closed will the best performance among the wavelength routers.

  13. Fiber-Optic Sensor with Simultaneous Temperature, Pressure, and Chemical Sensing Capabilities

    SciTech Connect

    Kennedy, Jermaine L.

    2009-03-12

    This project aimed to develop a multifunctional sensor suitable for process control application in chemical and petrochemical industries. Specifically, the objective was to demonstrate a fiber optic sensing system capable of simultaneous temperature, pressure, and chemical composition determinations based on a single strand of sapphire optical fiber. These capabilities were to be achieved through the incorporation of a phosphor and a Bragg grating into the fiber, as well as the exploitation of the evanescent field interaction of the optical radiation inside the fiber with the surrounding chemical medium. The integration of the three functions into a single probe, compared to having three separate probes, would not only substantially reduce the cost of the combined system, but would also minimize the intrusion into the reactor. Such a device can potentially increase the energy efficiency in the manufacture of chemical and petrochemical products, as well as reduce waste and lead to improved quality. In accordance with the proposed research plan, the individual temperature, pressure and chemical sensors where fabricated and characterized first. Then towards the end of the program, an integrated system was implemented. The sapphire fibers were grown on a laser heated pedestal growth system. The temperature sensor was based on the fluorescence decay principle, which exploits the temperature dependence of the fluorescence decay rate of the selected phosphor. For this project, Cr3+ was chosen as the phosphor, and it was incorporated into the sapphire fiber by coating a short length of the source rod with a thin layer of Cr2O3. After the viability of the technique was established and the growth parameters optimized, the temperature sensor was characterized up to 300 °C and its long term stability was verified. The chemical sensor determined the concentration of chemicals through evanescent field absorption. Techniques to increase the

  14. A new x-ray optics laboratory (XROL) at the ALS: mission, arrangement, metrology capabilities, performance, and future plans

    NASA Astrophysics Data System (ADS)

    Yashchuk, Valeriy V.; Artemiev, Nikolay A.; Lacey, Ian; McKinney, Wayne R.; Padmore, Howard A.

    2014-09-01

    The X-Ray Optics Laboratory (XROL) at the Advanced Light Source (ALS), a unique optical metrology lab, has been recently moved to a new, dedicated clean-room facility that provides improved environmental and instrumental conditions vitally required for high accuracy metrology with state-of-the-art X-ray optics. Besides the ALS, the XROL serves several DOE labs that lack dedicated on-site optical metrology capabilities, including the Linac Coherent Light Source (LCLS) at SLAC and LBNL's Center for X-Ray Optics (CXRO). The major role of XROL is to proactively support the development and optimal beamline use of x-ray optics. The application of different instruments available in the lab enables separate, often complementary, investigations and addresses of different potential sources of error affecting beamline performance. At the beamline, all the perturbations combine to produce a cumulative effect on the performance of the optic that makes it difficult to optimize the optic's operational performance. Ex situ metrology allows us to address the majority of the problems before the installation of the optic at a beamline, and to provide feedback on design and guidelines for the best usage of optics. We will review the ALS XROL mission, lab design and arrangement, ex situ metrology capabilities and performance, as well as the future plans for instrumentation upgrades. The discussion will be illustrated with the results of a broad spectrum of measurements of x-ray optics and optical systems performed at the XROL.

  15. 45-channel monolithically integrated, high-temperature capable optical receiver with a total data rate of 140 Gbit/s

    NASA Astrophysics Data System (ADS)

    Zimmermann, Horst; Swoboda, Robert; Förtsch, Michael

    2015-06-01

    A monolithically integrated optical receiver in 0.6 μm bipolar complementary metal oxide semiconductor (BiCMOS) technology with 45 channels, each working at a data rate of 3.125 Gbit/s, is described. The optical receiver uses integrated pin photodiodes with a diameter of 90 μm. This parallel optical silicon receiver is capable of operating at 100°C. The parallel optical receiver consumes less than 950 mW in total and each of its channels achieve an optical sensitivity of -17.5 dBm at 850 nm wavelength and a bit error ratio of 10-9.

  16. Develop techniques for ion implantation of PLZT for adaptive optics

    NASA Astrophysics Data System (ADS)

    Craig, R. A.; Batishko, C. R.; Brimhall, J. L.; Pawlewicz, W. T.; Stahl, K. A.

    1989-11-01

    Battelle Pacific Northwest Laboratory (PNL) conducted research into the preparation and characterization of ion-implanted adaptive optic elements based on lead-lanthanum-zirconate-titanate (PLZT). Over the 4-yr effort beginning FY 1985, the ability to increase the photosensitivity of PLZT and extend it to longer wavelengths was developed. The emphasis during the last two years was to develop a model to provide a basis for choosing implantation species and parameters. Experiments which probe the electronic structure were performed on virgin and implanted PLZT samples. Also performed were experiments designed to connect the developing conceptual model with the experimental results. The emphasis in FY 1988 was to extend the photosensitivity out to diode laser wavelengths. The experiments and modelling effort indicate that manganese will form appropriate intermediate energy states to achieve the longer wavelength photosensitivity. Preliminary experiments were also conducted to deposit thin film PLZT.

  17. Chromatic effects of the atmosphere on astronomical adaptive optics.

    PubMed

    Devaney, Nicholas; Goncharov, Alexander V; Dainty, J Christopher

    2008-03-10

    The atmosphere introduces chromatic errors that may limit the performance of adaptive optics (AO) systems on large telescopes. Various aspects of this problem have been considered in the literature over the past two decades. It is necessary to revisit this problem in order to examine the effect on currently planned systems, including very high-order AO on current 8-10 m class telescopes and on future 30-42 m extremely large telescopes. We review the literature on chromatic effects and combine an analysis of all effects in one place. We examine implications for AO and point out some effects that should be taken into account in the design of future systems. In particular we show that attention should be paid to chromatic pupil shifts, which may arise in components such as atmospheric dispersion compensators. PMID:18327278

  18. Wavefront sensor and wavefront corrector matching in adaptive optics

    PubMed Central

    Dubra, Alfredo

    2016-01-01

    Matching wavefront correctors and wavefront sensors by minimizing the condition number and mean wavefront variance is proposed. The particular cases of two continuous-sheet deformable mirrors and a Shack-Hartmann wavefront sensor with square packing geometry are studied in the presence of photon noise, background noise and electronics noise. Optimal number of lenslets across each actuator are obtained for both deformable mirrors, and a simple experimental procedure for optimal alignment is described. The results show that high-performance adaptive optics can be achieved even with low cost off-the-shelf Shack-Hartmann arrays with lenslet spacing that do not necessarily match those of the wavefront correcting elements. PMID:19532513

  19. The Giant Magellan Telescope Laser Tomography Adaptive Optics System

    NASA Astrophysics Data System (ADS)

    Conan, Rodolphe; Bennet, Francis; Bouchez, Antonin; Van Dam, Marcos; Espeland, Brady; Gardouse, Warren; D'Orgeville, Celine; Paulin, N.; Piatrou, Piotr; Price, I.; Rigaut, François; Trancho, Gelys; Uhlendorf, Kristina

    2013-12-01

    Laser tomography adaptive optics (LTAO) will allow Extremely Large Telescope to get nearly diffraction limited images over a large fraction of the sky.For such systems, the sky coverage is limited by the number of natural guide star (NGS) suitable to estimate the tip and tilt (TT) modes of the atmosphere.The LTAO system of the Giant Magellan Telescope is using a single NGS which detector is located within the instrument. A deformable mirror (DM) in open--loop corrects the anisoplanatism error of the NGS wavefront.The DM command is derived from an off-axis tomographic reconstruction using the measurements from the Laser Guide Star wavefront sensors.The paper describes the tomography algorithm, a minimum variance reconstructor in the wavefront sensor space.The detail of the control architecture is shown including the TT, the focus and the truth sensors.As a conclusion, we will report on the expected sky coverage and performance of the system.

  20. Performance of the Keck Observatory adaptive optics system

    SciTech Connect

    van Dam, M A; Mignant, D L; Macintosh, B A

    2004-01-19

    In this paper, the adaptive optics (AO) system at the W.M. Keck Observatory is characterized. The authors calculate the error budget of the Keck AO system operating in natural guide star mode with a near infrared imaging camera. By modeling the control loops and recording residual centroids, the measurement noise and band-width errors are obtained. The error budget is consistent with the images obtained. Results of sky performance tests are presented: the AO system is shown to deliver images with average Strehl ratios of up to 0.37 at 1.58 {micro}m using a bright guide star and 0.19 for a magnitude 12 star.

  1. AFIRE: fiber Raman laser for laser guide star adaptive optics

    NASA Astrophysics Data System (ADS)

    Bonaccini Calia, D.; Hackenberg, W.; Chernikov, S.; Feng, Y.; Taylor, L.

    2006-06-01

    Future adaptive optics systems will benefit from multiple sodium laser guide stars in achieving satisfactory sky coverage in combination with uniform and high-Strehl correction over a large field of view. For this purpose ESO is developing with industry AFIRE, a turn-key, rack-mounted 589-nm laser source based on a fiber Raman laser. The fiber laser will deliver the beam directly at the projector telescope. The required output power is in the order of 10 W in air per sodium laser guide star, in a diffraction-limited beam and with a bandwidth of < 2 GHz. This paper presents the design and first demonstration results obtained with the AFIRE breadboard. 4.2W CW at 589nm have so far been achieved with a ~20% SHG conversion efficiency.

  2. Wavefront sensorless adaptive optics temporal focusing-based multiphoton microscopy

    PubMed Central

    Chang, Chia-Yuan; Cheng, Li-Chung; Su, Hung-Wei; Hu, Yvonne Yuling; Cho, Keng-Chi; Yen, Wei-Chung; Xu, Chris; Dong, Chen Yuan; Chen, Shean-Jen

    2014-01-01

    Temporal profile distortions reduce excitation efficiency and image quality in temporal focusing-based multiphoton microscopy. In order to compensate the distortions, a wavefront sensorless adaptive optics system (AOS) was integrated into the microscope. The feedback control signal of the AOS was acquired from local image intensity maximization via a hill-climbing algorithm. The control signal was then utilized to drive a deformable mirror in such a way as to eliminate the distortions. With the AOS correction, not only is the axial excitation symmetrically refocused, but the axial resolution with full two-photon excited fluorescence (TPEF) intensity is also maintained. Hence, the contrast of the TPEF image of a R6G-doped PMMA thin film is enhanced along with a 3.7-fold increase in intensity. Furthermore, the TPEF image quality of 1μm fluorescent beads sealed in agarose gel at different depths is improved. PMID:24940539

  3. Measurements of contrast sensitivity by an adaptive optics visual simulator

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Tatsuo; Ucikawa, Keiji

    2015-08-01

    We developed an adaptive optics visual simulator (AOVS) to study the relationship between the contrast sensitivity and higher-order wavefront aberrations of human eyes. A desired synthetic aberration was virtually generated on a subject eye by the AOVS, and red laser light was used to measure the aberrations. The contrast sensitivity was measured in a psychophysical experiment using visual stimulus patterns provided by a large-contrast-range imaging system, which included two liquid crystal displays illuminated by red light emitting diodes from the backside. The diameter of the pupil was set to 4 mm by an artificial aperture, and the retinal illuminance of the stimulus image was controlled to 10 Td. Experiments conducted with four normal subjects revealed that their contrast sensitivity to a high-spatial-frequency vertical sinusoidal grating pattern was lower in the presence of a horizontal coma aberration than in the presence of a vertical coma or no aberrations ( p < 0.02, Nagai method).

  4. Status of point spread function determination for Keck adaptive optics

    NASA Astrophysics Data System (ADS)

    Ragland, S.; Jolissaint, L.; Wizinowich, P.; Neyman, C.

    2014-07-01

    There is great interest in the adaptive optics (AO) science community to overcome the limitations imposed by incomplete knowledge of the point spread function (PSF). To address this limitation a program has been initiated at the W. M. Keck Observatory (WMKO) to demonstrate PSF determination for observations obtained with Keck AO science instruments. This paper aims to give a broad view of the progress achieved in this area. The concept and the implementation are briefly described. The results from on-sky on-axis NGS AO measurements using the NIRC2 science instrument are presented. On-sky performance of the technique is illustrated by comparing the reconstructed PSFs to NIRC2 PSFs. Accuracy of the reconstructed PSFs in terms of Strehl ratio and FWHM are discussed. Science cases for the first phase of science verification have been identified. More technical details of the program are presented elsewhere in the conference.

  5. Multiple Object Adaptive Optics: Mixed NGS/LGS tomography

    NASA Astrophysics Data System (ADS)

    Morris, Tim; Gendron, Eric; Basden, Alastair; Martin, Olivier; Osborn, James; Henry, David; Hubert, Zoltan; Sivo, Gaetano; Gratadour, Damien; Chemla, Fanny; Sevin, Arnaud; Cohen, Matthieu; Younger, Eddy; Vidal, Fabrice; Wilson, Richard; Batterley, Tim; Bitenc, Urban; Reeves, Andrew; Bharmal, Nazim; Raynaud, Henri-François; Kulcsar, Caroline; Conan, Jean-Marc; Guzman, Dani; De Cos Juez, Javier; Huet, Jean-Michel; Perret, Denis; Dickson, Colin; Atkinson, David; Baillie, Tom; Longmore, Andy; Todd, Stephen; Talbot, Gordon; Morris, Simon; Myers, Richard; Rousset, Gérard

    2013-12-01

    Open-loop adaptive optics has been successfully demonstrated on-sky by several groups, including the fully tomographic MOAO demonstration made using CANARY. MOAO instrumentation such as RAVEN will deliver the first astronomical science and other planned instruments aim to extend both open-loop AO performance and the number of corrected fields. Many of these planned systems rely on the use of tomographic open-loop LGS wavefront sensing. Here we present results from the combined NGS/LGS tomographic CANARY system and then compare the NGS- and LGS-based tomographic system performance. We identify the major system performance drivers, and highlight some potential routes for further exploitation of open-loop tomographic AO.

  6. Kalman filtering to suppress spurious signals in Adaptive Optics control

    SciTech Connect

    Poyneer, L; Veran, J P

    2010-03-29

    In many scenarios, an Adaptive Optics (AO) control system operates in the presence of temporally non-white noise. We use a Kalman filter with a state space formulation that allows suppression of this colored noise, hence improving residual error over the case where the noise is assumed to be white. We demonstrate the effectiveness of this new filter in the case of the estimated Gemini Planet Imager tip-tilt environment, where there are both common-path and non-common path vibrations. We discuss how this same framework can also be used to suppress spatial aliasing during predictive wavefront control assuming frozen flow in a low-order AO system without a spatially filtered wavefront sensor, and present experimental measurements from Altair that clearly reveal these aliased components.

  7. Proposed adaptive optics system for Vainu Bappu Telescope

    NASA Astrophysics Data System (ADS)

    Saxena, A. K.; Chinnappan, V.; Lancelot, J. P.

    It is known that the atmospheric turbulence spreads the star image as produced by the medium and large size optical telescopes by many orders resulting in reduction in the resolution of these telescopes. Adaptive optics system can partially or substantially sharpen the image thus improving the resolution and throughput of these telescopes. The atmospheric degradation can be effectively represented by Fried's parameter. We have measured Fried's parameter at very short intervals using speckle interferometer at VBT. Based on this input, an on-line wavefront error measurement and correction system was developed and tested in the laboratory. Low cost, high speed wavefront sensor using CMOS imager and Shack-Hartman lenslet array was developed and tested in the laboratory which could be used for on-line correction experiments. The wavefront errors are computed in terms of Zernike coefficients. MEMS based adaptive mirror with 37 actuators was used for the correction of higher order aberrations. Finite element analysis was carried out to know the mechanical properties and the influence function of the mirror. In-house developed Long Trace Profilometer was used to measure the surface produced by the mirror for various combination of actuator voltages and gave good insight about the behaviour of the mirror. An aberrated wavefront was captured by the wave-front sensor and the computed Zernike polynomials were used for correction of the wavefront. It is found that the peak intensity has increased about 3.8 times with reduction in size of the image. Now, the plan is to make a version that can be mounted at the cassegrain focus of the telescope. Here we deal with the low cost approach used in design; new algorithms developed for wavefront error computation from noisy data, speed optimization and related issues and the interface problems for using the system in the telescope.

  8. Adaptive optics retinal imaging in the living mouse eye

    PubMed Central

    Geng, Ying; Dubra, Alfredo; Yin, Lu; Merigan, William H.; Sharma, Robin; Libby, Richard T.; Williams, David R.

    2012-01-01

    Correction of the eye’s monochromatic aberrations using adaptive optics (AO) can improve the resolution of in vivo mouse retinal images [Biss et al., Opt. Lett. 32(6), 659 (2007) and Alt et al., Proc. SPIE 7550, 755019 (2010)], but previous attempts have been limited by poor spot quality in the Shack-Hartmann wavefront sensor (SHWS). Recent advances in mouse eye wavefront sensing using an adjustable focus beacon with an annular beam profile have improved the wavefront sensor spot quality [Geng et al., Biomed. Opt. Express 2(4), 717 (2011)], and we have incorporated them into a fluorescence adaptive optics scanning laser ophthalmoscope (AOSLO). The performance of the instrument was tested on the living mouse eye, and images of multiple retinal structures, including the photoreceptor mosaic, nerve fiber bundles, fine capillaries and fluorescently labeled ganglion cells were obtained. The in vivo transverse and axial resolutions of the fluorescence channel of the AOSLO were estimated from the full width half maximum (FWHM) of the line and point spread functions (LSF and PSF), and were found to be better than 0.79 μm ± 0.03 μm (STD)(45% wider than the diffraction limit) and 10.8 μm ± 0.7 μm (STD)(two times the diffraction limit), respectively. The axial positional accuracy was estimated to be 0.36 μm. This resolution and positional accuracy has allowed us to classify many ganglion cell types, such as bistratified ganglion cells, in vivo. PMID:22574260

  9. Flexibility of syntrophic enzyme systems in Desulfovibrio species ensures their adaptation capability to environmental changes.

    PubMed

    Meyer, Birte; Kuehl, Jennifer V; Deutschbauer, Adam M; Arkin, Adam P; Stahl, David A

    2013-11-01

    The mineralization of organic matter in anoxic environments relies on the cooperative activities of hydrogen producers and consumers obligately linked by interspecies metabolite exchange in syntrophic consortia that may include sulfate reducing species such as Desulfovibrio. To evaluate the metabolic flexibility of syntrophic Desulfovibrio to adapt to naturally fluctuating methanogenic environments, we studied Desulfovibrio alaskensis strain G20 grown in chemostats under respiratory and syntrophic conditions with alternative methanogenic partners, Methanococcus maripaludis and Methanospirillum hungatei, at different growth rates. Comparative whole-genome transcriptional analyses, complemented by G20 mutant strain growth experiments and physiological data, revealed a significant influence of both energy source availability (as controlled by dilution rate) and methanogen on the electron transfer systems, ratios of interspecies electron carriers, energy generating systems, and interspecies physical associations. A total of 68 genes were commonly differentially expressed under syntrophic versus respiratory lifestyle. Under low-energy (low-growth-rate) conditions, strain G20 further had the capacity to adapt to the metabolism of its methanogenic partners, as shown by its differing gene expression of enzymes involved in the direct metabolic interactions (e.g., periplasmic hydrogenases) and the ratio shift in electron carriers used for interspecies metabolite exchange (hydrogen/formate). A putative monomeric [Fe-Fe] hydrogenase and Hmc (high-molecular-weight-cytochrome c3) complex-linked reverse menaquinone (MQ) redox loop become increasingly important for the reoxidation of the lactate-/pyruvate oxidation-derived redox pair, DsrC(red) and Fd(red), relative to the Qmo-MQ-Qrc (quinone-interacting membrane-bound oxidoreductase; quinone-reducing complex) loop. Together, these data underscore the high enzymatic and metabolic adaptive flexibility that likely sustains

  10. Flexibility of Syntrophic Enzyme Systems in Desulfovibrio Species Ensures Their Adaptation Capability to Environmental Changes

    PubMed Central

    Meyer, Birte; Kuehl, Jennifer V.; Deutschbauer, Adam M.; Arkin, Adam P.

    2013-01-01

    The mineralization of organic matter in anoxic environments relies on the cooperative activities of hydrogen producers and consumers obligately linked by interspecies metabolite exchange in syntrophic consortia that may include sulfate reducing species such as Desulfovibrio. To evaluate the metabolic flexibility of syntrophic Desulfovibrio to adapt to naturally fluctuating methanogenic environments, we studied Desulfovibrio alaskensis strain G20 grown in chemostats under respiratory and syntrophic conditions with alternative methanogenic partners, Methanococcus maripaludis and Methanospirillum hungatei, at different growth rates. Comparative whole-genome transcriptional analyses, complemented by G20 mutant strain growth experiments and physiological data, revealed a significant influence of both energy source availability (as controlled by dilution rate) and methanogen on the electron transfer systems, ratios of interspecies electron carriers, energy generating systems, and interspecies physical associations. A total of 68 genes were commonly differentially expressed under syntrophic versus respiratory lifestyle. Under low-energy (low-growth-rate) conditions, strain G20 further had the capacity to adapt to the metabolism of its methanogenic partners, as shown by its differing gene expression of enzymes involved in the direct metabolic interactions (e.g., periplasmic hydrogenases) and the ratio shift in electron carriers used for interspecies metabolite exchange (hydrogen/formate). A putative monomeric [Fe-Fe] hydrogenase and Hmc (high-molecular-weight-cytochrome c3) complex-linked reverse menaquinone (MQ) redox loop become increasingly important for the reoxidation of the lactate-/pyruvate oxidation-derived redox pair, DsrCred and Fdred, relative to the Qmo-MQ-Qrc (quinone-interacting membrane-bound oxidoreductase; quinone-reducing complex) loop. Together, these data underscore the high enzymatic and metabolic adaptive flexibility that likely sustains Desulfovibrio

  11. Closed-loop optical stabilization and digital image registration in adaptive optics scanning light ophthalmoscopy

    PubMed Central

    Yang, Qiang; Zhang, Jie; Nozato, Koji; Saito, Kenichi; Williams, David R.; Roorda, Austin; Rossi, Ethan A.

    2014-01-01

    Eye motion is a major impediment to the efficient acquisition of high resolution retinal images with the adaptive optics (AO) scanning light ophthalmoscope (AOSLO). Here we demonstrate a solution to this problem by implementing both optical stabilization and digital image registration in an AOSLO. We replaced the slow scanning mirror with a two-axis tip/tilt mirror for the dual functions of slow scanning and optical stabilization. Closed-loop optical stabilization reduced the amplitude of eye-movement related-image motion by a factor of 10–15. The residual RMS error after optical stabilization alone was on the order of the size of foveal cones: ~1.66–2.56 μm or ~0.34–0.53 arcmin with typical fixational eye motion for normal observers. The full implementation, with real-time digital image registration, corrected the residual eye motion after optical stabilization with an accuracy of ~0.20–0.25 μm or ~0.04–0.05 arcmin RMS, which to our knowledge is more accurate than any method previously reported. PMID:25401030

  12. The Design and Capabilities of the EXIST Optical and Infra-Red Telescope (IRT)

    NASA Technical Reports Server (NTRS)

    Kutyrev, A S.; Moseley, S. H.; Golisano, C.; Gong, Q.; Allen, B. T.; Gehrels, N.; Grindlay, J. E.; Hong, J. S.; Woodgate, B. E.

    2010-01-01

    The Infra-Red Telescope is a critical element of the EXIST (Energetic X-Ray Imaging Survey Telescope) observatory. The primary goal of the IRT is to obtain photometric and spectroscopic measurements of high redshift (> or =6) gamma ray reaching to the epoque of reionization. The photometric and spectral capabilities of the IRT will allow to use GRB afterglow as probes of the composition and ionization state of the intergalactic medium of the young universe. A prompt follow up (within three minutes) of the transient discovered by the EXIST makes IRT a unique tool for detection and study of these events in the infrared and optical wavelength, which is particularly valuable at wavelengths unavailable to the ground based observatories. We present the results of the mission study development on the IRT as part of the EXIST observatory. Keywords: infrared spectroscopy, space telescope, gamma ray bursts, early universe

  13. Adaptable Poly(ethylene glycol) Microspheres Capable of Mixed-mode Degradation

    PubMed Central

    Parlato, Matthew; Johnson, Alexander; Hudalla, Gregory A.; Murphy, William L.

    2013-01-01

    Here we present a simple, degradable PEG microsphere system formed from a water-in-water emulsion process. Microsphere network degradation and erosion were controlled by adjusting the number of hydrolytically labile sites, by varying the PEG molecular weight, and by adjusting the emulsion conditions. Microsphere size was also controllable by adjusting the polymer formulation. Furthermore, we demonstrate that alternative degradation and erosion mechanisms, such as proteolytic degradation, can be incorporated into PEG microspheres, resulting in mixed-mode degradation. Due to the adaptability of this approach, it may serve as an attractive option for emerging tissue engineering, drug delivery, and gene delivery applications. PMID:23958780

  14. Binary stars observed with adaptive optics at the starfire optical range

    SciTech Connect

    Drummond, Jack D.

    2014-03-01

    In reviewing observations taken of binary stars used as calibration objects for non-astronomical purposes with adaptive optics on the 3.5 m Starfire Optical Range telescope over the past 2 years, one-fifth of them were found to be off-orbit. In order to understand such a high number of discrepant position angles and separations, all previous observations in the Washington Double Star Catalog for these rogue binaries were obtained from the Naval Observatory. Adding our observations to these yields new orbits for all, resolving the discrepancies. We have detected both components of γ Gem for the first time, and we have shown that 7 Cam is an optical pair, not physically bound.

  15. Signal to noise ratio of free space homodyne coherent optical communication after adaptive optics compensation

    NASA Astrophysics Data System (ADS)

    Huang, Jian; Mei, Haiping; Deng, Ke; Kang, Li; Zhu, Wenyue; Yao, Zhoushi

    2015-12-01

    Designing and evaluating the adaptive optics system for coherent optical communication link through atmosphere requires to distinguish the effects of the residual wavefront and disturbed amplitude to the signal to noise ratio. Based on the new definition of coherent efficiency, a formula of signal to noise ratio for describing the performance of coherent optical communication link after wavefront compensation is derived in the form of amplitude non-uniformity and wavefront error separated. A beam quality metric is deduced mathematically to evaluate the effect of disturbed amplitude to the signal to noise ratio. Experimental results show that the amplitude fluctuation on the receiver aperture may reduce the signal to noise ratio about 24% on average when Fried coherent length r0=16 cm.

  16. Compact MEMS-based adaptive optics: optical coherence tomography for clinical use

    NASA Astrophysics Data System (ADS)

    Chen, Diana C.; Olivier, Scot S.; Jones, Steven M.; Zawadzki, Robert J.; Evans, Julia W.; Choi, Stacey S.; Werner, John S.

    2008-02-01

    We describe a compact MEMS-based adaptive optics (AO) optical coherence tomography (OCT) system with improved AO performance and ease of clinical use. A typical AO system consists of a Shack-Hartmann wavefront sensor and a deformable mirror that measures and corrects the ocular and system aberrations. Because of limitations on current deformable mirror technologies, the amount of real-time ocular-aberration compensation is restricted and small in previous AO-OCT instruments. In this instrument, we incorporate an optical apparatus to correct the spectacle aberrations of the patients such as myopia, hyperopia and astigmatism. This eliminates the tedious process of using trial lenses in clinical imaging. Different amount of spectacle aberration compensation was achieved by motorized stages and automated with the AO computer for ease of clinical use. In addition, the compact AO-OCT was optimized to have minimum system aberrations to reduce AO registration errors and improve AO performance.

  17. Compact MEMS-based Adaptive Optics Optical Coherence Tomography for Clinical Use

    SciTech Connect

    Chen, D; Olivier, S; Jones, S; Zawadzki, R; Evans, J; Choi, S; Werner, J

    2008-02-04

    We describe a compact MEMS-based adaptive optics (AO) optical coherence tomography system with improved AO performance and ease of clinical use. A typical AO system consists of a Shack-Hartmann wavefront sensor and a deformable mirror that measures and corrects the ocular and system aberrations. Because of the limitation on the current deformable mirror technologies, the amount of real-time ocular-aberration compensation is restricted and small in the previous AO-OCT instruments. In this instrument, we proposed to add an optical apparatus to correct the spectacle aberrations of the patients such as myopia, hyperopia and astigmatism. This eliminated the tedious process of the trial lenses in clinical imaging. Different amount of spectacle aberration compensation was achieved by motorized stages and automated with the AO computer for ease of clinical use. In addition, the compact AO-OCT was optimized to have minimum system aberrations to reduce AO registration errors and improve AO performance.

  18. On the rejection of vibrations in adaptive optics systems

    NASA Astrophysics Data System (ADS)

    Muradore, Riccardo; Pettazzi, Lorenzo; Fedrigo, Enrico; Clare, Richard

    2012-07-01

    In modern adaptive optics systems, lightly damped sinusoidal oscillations resulting from telescope structural vibrations have a significant deleterious impact on the quality of the image collected at the detector plane. Such oscillations are often at frequencies beyond the bandwidth of the wave-front controller that therefore is either incapable of rejecting them or might even amplify their detrimental impact on the overall AO performance. A technique for the rejection of periodic disturbances acting at the output of unknown plants, which has been recently presented in literature, has been adapted to the problem of rejecting vibrations in AO loops. The proposed methodology aims at estimating phase and amplitude of the harmonic disturbance together with the response of the unknown plant at the frequency of vibration. On the basis of such estimates, a control signal is generated to cancel out the periodic perturbation. Additionally, the algorithm can be easily extended to cope with unexpected time variations of the vibrations frequency by adding a frequency tracking module based either on a simple PLL architecture or on a classical extended Kalman filter. Oversampling can be also easily introduced to efficiently correct for vibrations approaching the sampling frequency. The approach presented in this contribution is compared against a different algorithm for vibration rejection available in literature, in order to identify drawbacks and advantages. Finally, the performance of the proposed vibration cancellation technique has been tested in realistic scenarios defined exploiting tip/tilt measurements from MACAO and NACO

  19. Optical fabrication of the MMT adaptive secondary mirror

    NASA Astrophysics Data System (ADS)

    Martin, Hubert M.; Burge, James H.; Del Vecchio, Ciro; Dettmann, Lee R.; Miller, Stephen M.; Smith, Bryan K.; Wildi, Francois P.

    2000-07-01

    We describe the optical fabrication of the adaptive secondary mirror for the MMT. The 640 mm f/15 secondary consists of a flexible glass shell, 1.8 mm thick, whose shape is controlled by 336 electromagnetic actuators. It is designed to give diffraction-limited images at a wavelength of 1 micron. For generating and polishing, the shell was supported by attaching it to a rigid glass blocking body with a thin layer of pitch. It could then be figured and measured using techniques developed for rigid secondaries. The highly aspheric surface was polished with a 30 cm stressed lap and small passive tools, and measured using a swing-arm profilometer and a holographic test plate. The goal for fabrication was to produce diffraction-limited images in the visible, after simulated adaptive correction using only a small fraction of the typical actuator forces. This translates into a surface accuracy of less than 19 nm rms with correction forces of less than 0.05 N rms. We achieved a surface accuracy of 8 nm rms after simulated correction with forces of 0.02 N rms.

  20. Adaptive compressed sensing for spectral-domain optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Wang, Yi; Chen, Xiaodong; Wang, Ting; Li, Hongxiao; Yu, Daoyin

    2014-03-01

    Spectral-domain optical coherence tomography (SD-OCT) is a non-contact and non-invasive method for measuring the change of biological tissues caused by pathological changes of body. CCD with huge number of pixels is usually used in SD-OCT to increase the detecting depth, thus enhancing the hardness of data transmission and storage. The usage of compressed sensing (CS) in SD-OCT is able to reduce the trouble of large data transfer and storage, thus eliminating the complexity of processing system. The traditional CS uses the same sampling model for SD-OCT images of different tissue, leading to reconstruction images with different quality. We proposed a CS with adaptive sampling model. The new model is based on uniform sampling model, and the interference spectral of SD-OCT is considered to adjust the local sampling ratio. Compared with traditional CS, adaptive CS can modify the sampling model for images of different tissue according to different interference spectral, getting reconstruction images with high quality without changing sampling model.

  1. Polymer-based micro deformable mirror for adaptive optics applications

    NASA Astrophysics Data System (ADS)

    Zamkotsian, Frederic; Conedera, Veronique; Liotard, Arnaud; Schroeder, Andreas; Fabre, Norbert; Camon, Henri; Lanzoni, Patrick

    2005-01-01

    Next generation giant telescopes as well as next generation instrumentation for 10m-class telescopes relies on the availability of highly performing adaptive optical systems, for studying new fields like circumstellar disks and extrasolar planets. These systems require deformable mirrors with very challenging parameters, including number of actuators up to 250 000 and inter-actuator spacing around 500μm. MOEMS-based devices are promising for future deformable mirrors. However, only limited strokes for large driving voltages have been demonstrated. In order to overcome these limitations, we are currently developing a micro-deformable mirror based on an array of electrostatic actuators with attachment posts to a continuous mirror on top. The originality of our approach lies in the elaboration of a sacrificial layer and of a structural layer made of polymer materials, using low-temperature process. This process allows the realization of high optical quality mirrors on top of an actuator array made with various techniques. We have developed the first polymer piston-motion actuator in order to reach high strokes for low driving voltages: a 10μm thick mobile plate with four springs attached to the substrate, and with an air gap of 10μm exhibits a piston motion of 2μm for 30V. Preliminary comparison with FEM models show very good agreement and design of a complete polymer-based MDM looks possible.

  2. Adaptive Optics Retinal Imaging – Clinical Opportunities and Challenges

    PubMed Central

    Carroll, Joseph; Kay, David B.; Scoles, Drew; Dubra, Alfredo; Lombardo, Marco

    2014-01-01

    The array of therapeutic options available to clinicians for treating retinal disease is expanding. With these advances comes the need for better understanding of the etiology of these diseases on a cellular level as well as improved non-invasive tools for identifying the best candidates for given therapies and monitoring the efficacy of those therapies. While spectral domain optical coherence tomography (SD-OCT) offers a widely available tool for clinicians to assay the living retina, it suffers from poor lateral resolution due to the eye’s monochromatic aberrations. Adaptive optics (AO) is a technique to compensate for the eye’s aberrations and provide nearly diffraction-limited resolution. The result is the ability to visualize the living retina with cellular resolution. While AO is unquestionably a powerful research tool, many clinicians remain undecided on the clinical potential of AO imaging – putting many at a crossroads with respect to adoption of this technology. This review will briefly summarize the current state of AO retinal imaging, discuss current as well as future clinical applications of AO retinal imaging, and finally provide some discussion of research needs to facilitate more widespread clinical use. PMID:23621343

  3. Optimal mirror deformation for multi conjugate adaptive optics systems

    NASA Astrophysics Data System (ADS)

    Raffetseder, S.; Ramlau, R.; Yudytskiy, M.

    2016-02-01

    Multi conjugate adaptive optics (MCAO) is a system planned for all future extremely large telescopes to compensate in real-time for the optical distortions caused by atmospheric turbulence over a wide field of view. The principles of MCAO are based on two inverse problems: a stable tomographic reconstruction of the turbulence profile followed by the optimal alignment of multiple deformable mirrors (DMs), conjugated to different altitudes in the atmosphere. We present a novel method to treat the optimal mirror deformation problem for MCAO. Contrary to the standard approach where the problem is formulated over a discrete set of optimization directions we focus on the solution of the continuous optimization problem. In the paper we study the existence and uniqueness of the solution and present a Tikhonov based regularization method. This approach gives us the flexibility to apply quadrature rules for a more sophisticated discretization scheme. Using numerical simulations in the context of the European extremely large telescope we show that our method leads to a significant improvement in the reconstruction quality over the standard approach and allows to reduce the numerical burden on the computer performing the computations.

  4. Adaptive optics ophthalmologic systems using dual deformable mirrors

    SciTech Connect

    Jones, S; Olivier, S; Chen, D; Sadda, S; Joeres, S; Zawadzki, R; Werner, J S; Miller, D

    2007-02-01

    Adaptive Optics (AO) have been increasingly combined with a variety of ophthalmic instruments over the last decade to provide cellular-level, in-vivo images of the eye. The use of MEMS deformable mirrors in these instruments has recently been demonstrated to reduce system size and cost while improving performance. However, currently available MEMS mirrors lack the required range of motion for correcting large ocular aberrations, such as defocus and astigmatism. In order to address this problem, we have developed an AO system architecture that uses two deformable mirrors, in a woofer/tweeter arrangement, with a bimorph mirror as the woofer and a MEMS mirror as the tweeter. This setup provides several advantages, including extended aberration correction range, due to the large stroke of the bimorph mirror, high order aberration correction using the MEMS mirror, and additionally, the ability to ''focus'' through the retina. This AO system architecture is currently being used in four instruments, including an Optical Coherence Tomography (OCT) system and a retinal flood-illuminated imaging system at the UC Davis Medical Center, a Scanning Laser Ophthalmoscope (SLO) at the Doheny Eye Institute, and an OCT system at Indiana University. The design, operation and evaluation of this type of AO system architecture will be presented.

  5. ESO adaptive optics facility progress and first laboratory test results

    NASA Astrophysics Data System (ADS)

    Arsenault, Robin; Madec, Pierre-Yves; Paufique, Jérome; La Penna, Paolo; Stroebele, Stefan; Vernet, Elise; Pirard, Jean-Francois; Hackenberg, Wolfgang; Kuntschner, Harald; Kolb, Johann; Muller, Nicolas; Garcia-Rissmann, Aurea; Le Louarn, Miska; Amico, Paola; Hubin, Norbert; Lizon, Jean-Louis; Ridings, Rob; Haguenauer, Pierre; Abad, Jose A.; Fischer, Gerhard; Heinz, Volker; Kiekebusch, Mario; Argomedo, Javier; Conzelmann, Ralf; Tordo, Sebastien; Donaldson, Rob; Soenke, Christian; Duhoux, Philippe; Fedrigo, Enrico; Delabre, Bernard; Jost, Andrea; Duchateau, Michel; Downing, Mark; Reyes Moreno, Javier; Manescau, Antonio; Bonaccini Calia, Domenico; Quattri, Marco; Dupuy, Christophe; Guidolin, Ivan M.; Comin, Mauro; Guzman, Ronald; Buzzoni, Bernard; Quentin, Jutta; Lewis, Steffan; Jolley, Paul; Kraus, Max; Pfrommer, Thomas; Biasi, Roberto; Gallieni, Daniele; Stuik, Remko; Kaenders, Wilhelm; Ernstberger, Bernhard; Friedenauer, Axel

    2014-07-01

    The Adaptive Optics Facility project is completing the integration of its systems at ESO Headquarters in Garching. The main test bench ASSIST and the 2nd Generation M2-Unit (hosting the Deformable Secondary Mirror) have been granted acceptance late 2012. The DSM has undergone a series of tests on ASSIST in 2013 which have validated its optical performance and launched the System Test Phase of the AOF. This has been followed by the performance evaluation of the GRAAL natural guide star mode on-axis and will continue in 2014 with its Ground Layer AO mode. The GALACSI module (for MUSE) Wide-Field-Mode (GLAO) and the more challenging Narrow-Field-Mode (LTAO) will then be tested. The AOF has also taken delivery of the second scientific thin shell mirror and the first 22 Watt Sodium laser Unit. We will report on the system tests status, the performances evaluated on the ASSIST bench and advancement of the 4Laser Guide Star Facility. We will also present the near future plans for commissioning on the telescope and some considerations on tools to ensure an efficient operation of the Facility in Paranal.

  6. Adaptive optics scanning laser ophthalmoscope imaging: technology update

    PubMed Central

    Merino, David; Loza-Alvarez, Pablo

    2016-01-01

    Adaptive optics (AO) retinal imaging has become very popular in the past few years, especially within the ophthalmic research community. Several different retinal techniques, such as fundus imaging cameras or optical coherence tomography systems, have been coupled with AO in order to produce impressive images showing individual cell mosaics over different layers of the in vivo human retina. The combination of AO with scanning laser ophthalmoscopy has been extensively used to generate impressive images of the human retina with unprecedented resolution, showing individual photoreceptor cells, retinal pigment epithelium cells, as well as microscopic capillary vessels, or the nerve fiber layer. Over the past few years, the technique has evolved to develop several different applications not only in the clinic but also in different animal models, thanks to technological developments in the field. These developments have specific applications to different fields of investigation, which are not limited to the study of retinal diseases but also to the understanding of the retinal function and vision science. This review is an attempt to summarize these developments in an understandable and brief manner in order to guide the reader into the possibilities that AO scanning laser ophthalmoscopy offers, as well as its limitations, which should be taken into account when planning on using it. PMID:27175057

  7. Adaptive optics scanning laser ophthalmoscope imaging: technology update.

    PubMed

    Merino, David; Loza-Alvarez, Pablo

    2016-01-01

    Adaptive optics (AO) retinal imaging has become very popular in the past few years, especially within the ophthalmic research community. Several different retinal techniques, such as fundus imaging cameras or optical coherence tomography systems, have been coupled with AO in order to produce impressive images showing individual cell mosaics over different layers of the in vivo human retina. The combination of AO with scanning laser ophthalmoscopy has been extensively used to generate impressive images of the human retina with unprecedented resolution, showing individual photoreceptor cells, retinal pigment epithelium cells, as well as microscopic capillary vessels, or the nerve fiber layer. Over the past few years, the technique has evolved to develop several different applications not only in the clinic but also in different animal models, thanks to technological developments in the field. These developments have specific applications to different fields of investigation, which are not limited to the study of retinal diseases but also to the understanding of the retinal function and vision science. This review is an attempt to summarize these developments in an understandable and brief manner in order to guide the reader into the possibilities that AO scanning laser ophthalmoscopy offers, as well as its limitations, which should be taken into account when planning on using it. PMID:27175057

  8. Adaptive Sensor Optimization and Cognitive Image Processing Using Autonomous Optical Neuroprocessors

    SciTech Connect

    CAMERON, STEWART M.

    2001-10-01

    Measurement and signal intelligence demands has created new requirements for information management and interoperability as they affect surveillance and situational awareness. Integration of on-board autonomous learning and adaptive control structures within a remote sensing platform architecture would substantially improve the utility of intelligence collection by facilitating real-time optimization of measurement parameters for variable field conditions. A problem faced by conventional digital implementations of intelligent systems is the conflict between a distributed parallel structure on a sequential serial interface functionally degrading bandwidth and response time. In contrast, optically designed networks exhibit the massive parallelism and interconnect density needed to perform complex cognitive functions within a dynamic asynchronous environment. Recently, all-optical self-organizing neural networks exhibiting emergent collective behavior which mimic perception, recognition, association, and contemplative learning have been realized using photorefractive holography in combination with sensory systems for feature maps, threshold decomposition, image enhancement, and nonlinear matched filters. Such hybrid information processors depart from the classical computational paradigm based on analytic rules-based algorithms and instead utilize unsupervised generalization and perceptron-like exploratory or improvisational behaviors to evolve toward optimized solutions. These systems are robust to instrumental systematics or corrupting noise and can enrich knowledge structures by allowing competition between multiple hypotheses. This property enables them to rapidly adapt or self-compensate for dynamic or imprecise conditions which would be unstable using conventional linear control models. By incorporating an intelligent optical neuroprocessor in the back plane of an imaging sensor, a broad class of high-level cognitive image analysis problems including geometric

  9. Comparison of 26 sphingomonad genomes reveals diverse environmental adaptations and biodegradative capabilities.

    PubMed

    Aylward, Frank O; McDonald, Bradon R; Adams, Sandra M; Valenzuela, Alejandra; Schmidt, Rebeccah A; Goodwin, Lynne A; Woyke, Tanja; Currie, Cameron R; Suen, Garret; Poulsen, Michael

    2013-06-01

    Sphingomonads comprise a physiologically versatile group within the Alphaproteobacteria that includes strains of interest for biotechnology, human health, and environmental nutrient cycling. In this study, we compared 26 sphingomonad genome sequences to gain insight into their ecology, metabolic versatility, and environmental adaptations. Our multilocus phylogenetic and average amino acid identity (AAI) analyses confirm that Sphingomonas, Sphingobium, Sphingopyxis, and Novosphingobium are well-resolved monophyletic groups with the exception of Sphingomonas sp. strain SKA58, which we propose belongs to the genus Sphingobium. Our pan-genomic analysis of sphingomonads reveals numerous species-specific open reading frames (ORFs) but few signatures of genus-specific cores. The organization and coding potential of the sphingomonad genomes appear to be highly variable, and plasmid-mediated gene transfer and chromosome-plasmid recombination, together with prophage- and transposon-mediated rearrangements, appear to play prominent roles in the genome evolution of this group. We find that many of the sphingomonad genomes encode numerous oxygenases and glycoside hydrolases, which are likely responsible for their ability to degrade various recalcitrant aromatic compounds and polysaccharides, respectively. Many of these enzymes are encoded on megaplasmids, suggesting that they may be readily transferred between species. We also identified enzymes putatively used for the catabolism of sulfonate and nitroaromatic compounds in many of the genomes, suggesting that plant-based compounds or chemical contaminants may be sources of nitrogen and sulfur. Many of these sphingomonads appear to be adapted to oligotrophic environments, but several contain genomic features indicative of host associations. Our work provides a basis for understanding the ecological strategies employed by sphingomonads and their role in environmental nutrient cycling. PMID:23563954

  10. Validation through simulations of a C_n^2 profiler for the ESO/VLT Adaptive Optics Facility

    NASA Astrophysics Data System (ADS)

    Garcia-Rissmann, A.; Guesalaga, A.; Kolb, J.; Le Louarn, M.; Madec, P.-Y.; Neichel, B.

    2015-04-01

    The Adaptive Optics Facility (AOF) project envisages transforming one of the VLT units into an adaptive telescope and providing its ESO (European Southern Observatory) second generation instruments with turbulence-corrected wavefronts. For MUSE and HAWK-I this correction will be achieved through the GALACSI and GRAAL AO modules working in conjunction with a 1170 actuators deformable secondary mirror (DSM) and the new Laser Guide Star Facility (4LGSF). Multiple wavefront sensors will enable GLAO (ground layer adaptive optics) and LTAO (laser tomography adaptive optics) capabilities, whose performance can greatly benefit from a knowledge about the stratification of the turbulence in the atmosphere. This work, totally based on end-to-end simulations, describes the validation tests conducted on a C_n^2 profiler adapted for the AOF specifications. Because an absolute profile calibration is strongly dependent on a reliable knowledge of turbulence parameters r0 and L0, the tests presented here refer only to normalized output profiles. Uncertainties in the input parameters inherent to the code are tested as well as the profiler response to different turbulence distributions. It adopts a correction for the unseen turbulence, critical for the GRAAL mode, and highlights the effects of masking out parts of the corrected wavefront on the results. Simulations of data with typical turbulence profiles from Paranal were input to the profiler, showing that it is possible to identify reliably the input features for all the AOF modes.

  11. Spatio-angular minimum-variance tomographic controller for multi-object adaptive-optics systems.

    PubMed

    Correia, Carlos M; Jackson, Kate; Véran, Jean-Pierre; Andersen, David; Lardière, Olivier; Bradley, Colin

    2015-06-10

    Multi-object astronomical adaptive optics (MOAO) is now a mature wide-field observation mode to enlarge the adaptive-optics-corrected field in a few specific locations over tens of arcminutes. The work-scope provided by open-loop tomography and pupil conjugation is amenable to a spatio-angular linear-quadratic-Gaussian (SA-LQG) formulation aiming to provide enhanced correction across the field with improved performance over static reconstruction methods and less stringent computational complexity scaling laws. Starting from our previous work [J. Opt. Soc. Am. A31, 101 (2014)10.1364/JOSAA.31.000101JOAOD61084-7529], we use stochastic time-progression models coupled to approximate sparse measurement operators to outline a suitable SA-LQG formulation capable of delivering near optimal correction. Under the spatio-angular framework the wavefronts are never explicitly estimated in the volume, providing considerable computational savings on 10-m-class telescopes and beyond. We find that for Raven, a 10-m-class MOAO system with two science channels, the SA-LQG improves the limiting magnitude by two stellar magnitudes when both the Strehl ratio and the ensquared energy are used as figures of merit. The sky coverage is therefore improved by a factor of ~5. PMID:26192825

  12. Binocular adaptive optics visual simulator: understanding the impact of aberrations on actual vision

    NASA Astrophysics Data System (ADS)

    Fernández, Enrique J.; Prieto, Pedro M.; Artal, Pablo

    2010-02-01

    A novel adaptive optics system is presented for the study of vision. The apparatus is capable for binocular operation. The binocular adaptive optics visual simulator permits measuring and manipulating ocular aberrations of the two eyes simultaneously. Aberrations can be corrected, or modified, while the subject performs visual testing under binocular vision. One of the most remarkable features of the apparatus consists on the use of a single correcting device, and a single wavefront sensor (Hartmann-Shack). Both the operation and the total cost of the instrument largely benefit from this attribute. The correcting device is a liquid-crystal-on-silicon (LCOS) spatial light modulator. The basic performance of the visual simulator consists in the simultaneous projection of the two eyes' pupils onto both the corrector and sensor. Examples of the potential of the apparatus for the study of the impact of the aberrations under binocular vision are presented. Measurements of contrast sensitivity with modified combinations of spherical aberration through focus are shown. Special attention was paid on the simulation of monovision, where one eye is corrected for far vision while the other is focused at near distance. The results suggest complex binocular interactions. The apparatus can be dedicated to the better understanding of the vision mechanism, which might have an important impact in developing new protocols and treatments for presbyopia. The technique and the instrument might contribute to search optimized ophthalmic corrections.

  13. Experimental demonstration of laser tomographic adaptive optics on a 30-meter telescope at 800 nm

    NASA Astrophysics Data System (ADS)

    Ammons, S., Mark; Johnson, Luke; Kupke, Renate; Gavel, Donald T.; Max, Claire E.

    2010-07-01

    A critical goal in the next decade is to develop techniques that will extend Adaptive Optics correction to visible wavelengths on Extremely Large Telescopes (ELTs). We demonstrate in the laboratory the highly accurate atmospheric tomography necessary to defeat the cone effect on ELTs, an essential milestone on the path to this capability. We simulate a high-order Laser Tomographic AO System for a 30-meter telescope with the LTAO/MOAO testbed at UCSC. Eight Sodium Laser Guide Stars (LGSs) are sensed by 99x99 Shack-Hartmann wavefront sensors over 75". The AO system is diffraction-limited at a science wavelength of 800 nm (S ~ 6-9%) over a field of regard of 20" diameter. Openloop WFS systematic error is observed to be proportional to the total input atmospheric disturbance and is nearly the dominant error budget term (81 nm RMS), exceeded only by tomographic wavefront estimation error (92 nm RMS). The total residual wavefront error for this experiment is comparable to that expected for wide-field tomographic adaptive optics systems of similar wavefront sensor order and LGS constellation geometry planned for Extremely Large Telescopes.

  14. Testing and integrating the laser system of ARGOS: the ground layer adaptive optics for LBT

    NASA Astrophysics Data System (ADS)

    Loose, C.; Rabien, S.; Barl, L.; Borelli, J.; Deysenroth, M.; Gaessler, W.; Gemperlein, H.; Honsberg, M.; Kulas, M.; Lederer, R.; Raab, W.; Rahmer, G.; Ziegleder, J.

    2012-07-01

    The Laser Guide Star facility ARGOS will provide Ground Layer Adaptive Optics to the Large Binocular Telescope (LBT). The system operates three pulsed laser beacons above each of the two primary mirrors, which are Rayleigh scattered in 12km height. This enables correction over a wide field of view, using the adaptive secondary mirror of the LBT. The ARGOS laser system is designed around commercially available, pulsed Nd:YAG lasers working at 532 nm. In preparation for a successful commissioning, it is important to ascertain that the specifications are met for every component of the laser system. The testing of assembled, optical subsystems is likewise necessary. In particular it is required to confirm a high output power, beam quality and pulse stability of the beacons. In a second step, the integrated laser system along with its electronic cabinets are installed on a telescope simulator. This unit is capable of carrying the whole assembly and can be tilted to imitate working conditions at the LBT. It allows alignment and functionality testing of the entire system, ensuring that flexure compensation and system diagnosis work properly in different orientations.

  15. Device for adapting continuously variable transmissions to infinitely variable transmissions with forward-neutral-reverse capabilities

    DOEpatents

    Wilkes, Donald F.; Purvis, James W.; Miller, A. Keith

    1997-01-01

    An infinitely variable transmission is capable of operating between a maximum speed in one direction and a minimum speed in an opposite direction, including a zero output angular velocity, while being supplied with energy at a constant angular velocity. Input energy is divided between a first power path carrying an orbital set of elements and a second path that includes a variable speed adjustment mechanism. The second power path also connects with the orbital set of elements in such a way as to vary the rate of angular rotation thereof. The combined effects of power from the first and second power paths are combined and delivered to an output element by the orbital element set. The transmission can be designed to operate over a preselected ratio of forward to reverse output speeds.

  16. Integrated adaptive optics optical coherence tomography and adaptive optics scanning laser ophthalmoscope system for simultaneous cellular resolution in vivo retinal imaging

    PubMed Central

    Zawadzki, Robert J.; Jones, Steven M.; Pilli, Suman; Balderas-Mata, Sandra; Kim, Dae Yu; Olivier, Scot S.; Werner, John S.

    2011-01-01

    We describe an ultrahigh-resolution (UHR) retinal imaging system that combines adaptive optics Fourier-domain optical coherence tomography (AO-OCT) with an adaptive optics scanning laser ophthalmoscope (AO-SLO) to allow simultaneous data acquisition by the two modalities. The AO-SLO subsystem was integrated into the previously described AO-UHR OCT instrument with minimal changes to the latter. This was done in order to ensure optimal performance and image quality of the AO- UHR OCT. In this design both imaging modalities share most of the optical components including a common AO-subsystem and vertical scanner. One of the benefits of combining Fd-OCT with SLO includes automatic co-registration between two acquisition channels for direct comparison between retinal structures imaged by both modalities (e.g., photoreceptor mosaics or microvasculature maps). Because of differences in the detection scheme of the two systems, this dual imaging modality instrument can provide insight into retinal morphology and potentially function, that could not be accessed easily by a single system. In this paper we describe details of the components and parameters of the combined instrument, including incorporation of a novel membrane magnetic deformable mirror with increased stroke and actuator count used as a single wavefront corrector. We also discuss laser safety calculations for this multimodal system. Finally, retinal images acquired in vivo with this system are presented. PMID:21698028

  17. Enabling technologies for visible adaptive optics: the Magellan adaptive secondary VisAO camera

    NASA Astrophysics Data System (ADS)

    Kopon, Derek; Males, Jared; Close, Laird M.; Gasho, Victor

    2009-08-01

    Since its beginnings, diffraction-limited ground-based adaptive optics (AO) imaging has been limited to wavelengths in the near IR (λ>1μm) and longer. Visible AO (λ>1μm) has proven to be difficult because shorter wavelengths require wavefront correction on very short spatial and temporal scales. The pupil must be sampled very finely, which requires dense actuator spacing and fine wavefront sampling with large dynamic range. In addition, atmospheric dispersion is much more significant in the visible than in the near-IR. Imaging over a broad visible band requires a very good Atmospheric Dispersion Corrector (ADC). Even with these technologies, our AO simulations using the CAOS code, combined with the optical and site parameters for the 6.5m Magellan telescope, demonstrate a large temporal variability of visible (λ=0.7μm) Strehl on timescales of 50 ms. Over several hundred milliseconds, the visible Strehl can be as high at 50% and as low as 10%. Taking advantage of periods of high Strehl requires either the ability to read out the CCD very fast, thereby introducing significant amounts of read-noise, or the use of a fast asynchronous shutter that can block the low-Strehl light. Our Magellan VisAO camera will use an advanced ADC, a high-speed shutter, and our 585 actuator adaptive secondary to achieve broadband (0.5-1.0 μm) diffraction limited images on the 6.5m Magellan Clay telescope in Chile at Las Campanas Observatory. These will be the sharpest and deepest visible direct images taken to date with a resolution of 17 mas, a factor of 2.7 better than the diffraction limit of the Hubble Space Telescope.

  18. High-Resolution Adaptive Optics Scanning Laser Ophthalmoscope with Dual Deformable Mirrors

    SciTech Connect

    Chen, D C; Jones, S M; Silva, D A; Olivier, S S

    2006-08-11

    Adaptive optics scanning laser ophthalmoscope (AO SLO) has demonstrated superior optical quality of non-invasive view of the living retina, but with limited capability of aberration compensation. In this paper, we demonstrate that the use of dual deformable mirrors can effectively compensate large aberrations in the human retina. We used a bimorph mirror to correct large-stroke, low-order aberrations and a MEMS mirror to correct low-stroke, high-order aberration. The measured ocular RMS wavefront error of a test subject was 240 nm without AO compensation. We were able to reduce the RMS wavefront error to 90 nm in clinical settings using one deformable mirror for the phase compensation and further reduced the wavefront error to 48 nm using two deformable mirrors. Compared with that of a single-deformable-mirror SLO system, dual AO SLO offers much improved dynamic range and better correction of the wavefront aberrations. The use of large-stroke deformable mirrors provided the system with the capability of axial sectioning different layers of the retina. We have achieved diffraction-limited in-vivo retinal images of targeted retinal layers such as photoreceptor layer, blood vessel layer and nerve fiber layers with the combined phase compensation of the two deformable mirrors in the AO SLO.

  19. Real-time wavefront control for the PALM-3000 high order adaptive optics system

    NASA Astrophysics Data System (ADS)

    Truong, Tuan N.; Bouchez, Antonin H.; Dekany, Richard G.; Shelton, Jean C.; Troy, Mitchell; Angione, John R.; Burruss, Rick S.; Cromer, John L.; Guiwits, Stephen R.; Roberts, Jennifer E.

    2008-07-01

    We present a cost-effective scalable real-time wavefront control architecture based on off-the-shelf graphics processing units hosted in an ultra-low latency, high-bandwidth interconnect PC cluster environment composed of modules written in the component-oriented language of nesC. We demonstrate the architecture is capable of supporting the most computation and memory intensive wavefront reconstruction method (vector-matrix-multiply) at frame rates up to 2 KHz with latency under 250 μs for the PALM-3000 adaptive optics systems, a state-of-the-art upgrade on the 5.1 meter Hale Telescope that consists of a 64x64 subaperture Shack-Hartmann wavefront sensor and a 3368 active actuator high order deformable mirror in series with a 349 actuator "woofer" DM. This architecture can easily scale up to support larger AO systems at higher rates and lower latency.

  20. Performance Testing of an Off-Limb Solar Adaptive Optics System

    NASA Astrophysics Data System (ADS)

    Taylor, G. E.; Schmidt, D.; Marino, J.; Rimmele, T. R.; McAteer, R. T. J.

    2015-06-01

    Long-exposure spectro-polarimetry in the near-infrared is a preferred method to measure the magnetic field and other physical properties of solar prominences. In the past, it has been very difficult to observe prominences in this way with sufficient spatial resolution to fully understand their dynamical properties. Solar prominences contain highly transient structures, visible only at small spatial scales; hence they must be observed at sub-arcsecond resolution, with a high temporal cadence. An adaptive optics (AO) system capable of directly locking on to prominence structure away from the solar limb has the potential to allow for diffraction-limited spectro-polarimetry of solar prominences. We show the performance of the off-limb AO system and its expected performance at the desired science wavelength Ca ii 8542 Å.

  1. A theory of cerebellar cortex and adaptive motor control based on two types of universal function approximation capability.

    PubMed

    Fujita, Masahiko

    2016-03-01

    Lesions of the cerebellum result in large errors in movements. The cerebellum adaptively controls the strength and timing of motor command signals depending on the internal and external environments of movements. The present theory describes how the cerebellar cortex can control signals for accurate and timed movements. A model network of the cerebellar Golgi and granule cells is shown to be equivalent to a multiple-input (from mossy fibers) hierarchical neural network with a single hidden layer of threshold units (granule cells) that receive a common recurrent inhibition (from a Golgi cell). The weighted sum of the hidden unit signals (Purkinje cell output) is theoretically analyzed regarding the capability of the network to perform two types of universal function approximation. The hidden units begin firing as the excitatory inputs exceed the recurrent inhibition. This simple threshold feature leads to the first approximation theory, and the network final output can be any continuous function of the multiple inputs. When the input is constant, this output becomes stationary. However, when the recurrent unit activity is triggered to decrease or the recurrent inhibition is triggered to increase through a certain mechanism (metabotropic modulation or extrasynaptic spillover), the network can generate any continuous signals for a prolonged period of change in the activity of recurrent signals, as the second approximation theory shows. By incorporating the cerebellar capability of two such types of approximations to a motor system, in which learning proceeds through repeated movement trials with accompanying corrections, accurate and timed responses for reaching the target can be adaptively acquired. Simple models of motor control can solve the motor error vs. sensory error problem, as well as the structural aspects of credit (or error) assignment problem. Two physiological experiments are proposed for examining the delay and trace conditioning of eyelid responses, as

  2. Precision targeting with a tracking adaptive optics scanning laser ophthalmoscope

    NASA Astrophysics Data System (ADS)

    Hammer, Daniel X.; Ferguson, R. Daniel; Bigelow, Chad E.; Iftimia, Nicusor V.; Ustun, Teoman E.; Noojin, Gary D.; Stolarski, David J.; Hodnett, Harvey M.; Imholte, Michelle L.; Kumru, Semih S.; McCall, Michelle N.; Toth, Cynthia A.; Rockwell, Benjamin A.

    2006-02-01

    Precise targeting of retinal structures including retinal pigment epithelial cells, feeder vessels, ganglion cells, photoreceptors, and other cells important for light transduction may enable earlier disease intervention with laser therapies and advanced methods for vision studies. A novel imaging system based upon scanning laser ophthalmoscopy (SLO) with adaptive optics (AO) and active image stabilization was designed, developed, and tested in humans and animals. An additional port allows delivery of aberration-corrected therapeutic/stimulus laser sources. The system design includes simultaneous presentation of non-AO, wide-field (~40 deg) and AO, high-magnification (1-2 deg) retinal scans easily positioned anywhere on the retina in a drag-and-drop manner. The AO optical design achieves an error of <0.45 waves (at 800 nm) over +/-6 deg on the retina. A MEMS-based deformable mirror (Boston Micromachines Inc.) is used for wave-front correction. The third generation retinal tracking system achieves a bandwidth of greater than 1 kHz allowing acquisition of stabilized AO images with an accuracy of ~10 μm. Normal adult human volunteers and animals with previously-placed lesions (cynomolgus monkeys) were tested to optimize the tracking instrumentation and to characterize AO imaging performance. Ultrafast laser pulses were delivered to monkeys to characterize the ability to precisely place lesions and stimulus beams. Other advanced features such as real-time image averaging, automatic highresolution mosaic generation, and automatic blink detection and tracking re-lock were also tested. The system has the potential to become an important tool to clinicians and researchers for early detection and treatment of retinal diseases.

  3. Update on Optical Design of Adaptive Optics System at Lick Observatory

    SciTech Connect

    Bauman, B J; Gavel, D T; Waltjen, K E; Freeze, G J; Hurd, R L; Gates, E I; Max, C E; Olivier, S S; Pennington, D M

    2001-07-31

    In 1999, we presented our plan to upgrade the adaptive optics (AO) system on the Lick Observatory Shane telescope (3m) from a prototype instrument pressed into field service to a facility instrument. This paper updates the progress of that plan and details several important improvements in the alignment and calibration of the AO bench. The paper also includes a discussion of the problems seen in the original design of the tip/tilt (t/t) sensor used in laser guide star mode, and how these problems were corrected with excellent results.

  4. Automated interferometric synthetic aperture microscopy and computational adaptive optics for improved optical coherence tomography.

    PubMed

    Xu, Yang; Liu, Yuan-Zhi; Boppart, Stephen A; Carney, P Scott

    2016-03-10

    In this paper, we introduce an algorithm framework for the automation of interferometric synthetic aperture microscopy (ISAM). Under this framework, common processing steps such as dispersion correction, Fourier domain resampling, and computational adaptive optics aberration correction are carried out as metrics-assisted parameter search problems. We further present the results of this algorithm applied to phantom and biological tissue samples and compare with manually adjusted results. With the automated algorithm, near-optimal ISAM reconstruction can be achieved without manual adjustment. At the same time, the technical barrier for the nonexpert using ISAM imaging is also significantly lowered. PMID:26974799

  5. LSPV+7, a branch-point-tolerant reconstructor for strong turbulence adaptive optics.

    PubMed

    Steinbock, Michael J; Hyde, Milo W; Schmidt, Jason D

    2014-06-20

    Optical wave propagation through long paths of extended turbulence presents unique challenges to adaptive optics (AO) systems. As scintillation and branch points develop in the beacon phase, challenges arise in accurately unwrapping the received wavefront and optimizing the reconstructed phase with respect to branch cut placement on a continuous facesheet deformable mirror. Several applications are currently restricted by these capability limits: laser communication, laser weapons, remote sensing, and ground-based astronomy. This paper presents a set of temporally evolving AO simulations comparing traditional least-squares reconstruction techniques to a complex-exponential reconstructor and several other reconstructors derived from the postprocessing congruence operation. The reconstructors' behavior in closed-loop operation is compared and discussed, providing several insights into the fundamental strengths and limitations of each reconstructor type. This research utilizes a self-referencing interferometer (SRI) as the high-order wavefront sensor, driving a traditional linear control law in conjunction with a cooperative point source beacon. The SRI model includes practical optical considerations and frame-by-frame fiber coupling effects to allow for realistic noise modeling. The "LSPV+7" reconstructor is shown to offer the best performance in terms of Strehl ratio and correction stability-outperforming the traditional least-squares reconstructed system by an average of 120% in the studied scenarios. Utilizing a continuous facesheet deformable mirror, these reconstructors offer significant AO performance improvements in strong turbulence applications without the need for segmented deformable mirrors. PMID:24979411

  6. KAPAO: A Natural Guide Star Adaptive Optics System for Small Aperture Telescopes

    NASA Astrophysics Data System (ADS)

    Severson, Scott A.; Choi, P. I.; Spjut, E.; Contreras, D. S.; Gilbreth, B. N.; McGonigle, L. P.; Morrison, W. A.; Rudy, A. R.; Xue, A.; Baranec, C.; Riddle, R.

    2012-05-01

    We describe KAPAO, our project to develop and deploy a low-cost, remote-access, natural guide star adaptive optics system for the Pomona College Table Mountain Observatory (TMO) 1-meter telescope. The system will offer simultaneous dual-band, diffraction-limited imaging at visible and near-infrared wavelengths and will deliver an order-of-magnitude improvement in point source sensitivity and angular resolution relative to the current TMO seeing limits. We have adopted off-the-shelf core hardware components to ensure reliability, minimize costs and encourage replication efforts. These components include a MEMS deformable mirror, a Shack-Hartmann wavefront sensor and a piezo-electric tip-tilt mirror. We present: project motivation, goals and milestones; the instrument optical design; the instrument opto-mechanical design and tolerances; and an overview of KAPAO Alpha, our on-the-sky testbed using off-the-shelf optics. Beyond the expanded scientific capabilities enabled by AO-enhanced resolution and sensitivity, the interdisciplinary nature of the instrument development effort provides an exceptional opportunity to train a broad range of undergraduate STEM students in AO technologies and techniques. The breadth of our collaboration, which includes both public (Sonoma State University) and private (Pomona and Harvey Mudd Colleges) undergraduate institutions has enabled us to engage students ranging from physics, astronomy, engineering and computer science in the all stages of this project. This material is based upon work supported by the National Science Foundation under Grant No. 0960343.

  7. Three-dimensional STED microscopy of aberrating tissue using dual adaptive optics.

    PubMed

    Patton, Brian R; Burke, Daniel; Owald, David; Gould, Travis J; Bewersdorf, Joerg; Booth, Martin J

    2016-04-18

    When imaging through tissue, the optical inhomogeneities of the sample generate aberrations that can prevent effective Stimulated Emission Depletion (STED) imaging. This is particularly problematic for 3D-enhanced STED. We present here an adaptive optics implementation that incorporates two adaptive optic elements to enable correction in all beam paths, allowing performance improvement in thick tissue samples. We use this to demonstrate 3D STED imaging of complex structures in Drosophila melanogaster brains. PMID:27137319

  8. Optical spectroscopy with a near-single-mode fiber-feed and adaptive optics

    NASA Astrophysics Data System (ADS)

    Ge, Jian; Angel, J. Roger P.; Shelton, J. Christopher

    1998-07-01

    We report on first astronomical results with a cross-dispersed optical echelle spectrograph fed by a near single-mode fiber. We also present on a novel design of a new adaptive optics (AO) optimized fiber-fed cross-dispersed echelle spectrograph. The spectrograph is designed to match with AO corrected images in the optical bands provided by such as the Mt. Wilson 100 inch, Starfire Optical Range 3.5 m AO telescopes. Ultimately, it will be installed at the 6.5 m MMT, when this has high resolution AO correcting the optical spectrum. The spectrograph, fed by a 10 micron fused silica fiber, is unique in that the entire spectrum from 0.4 micron to 1.0 micron will be almost completely covered at resolution 200,000 in one exposure. The detector is a 2k X 4k AR coated back illuminated CCD with 15 micron pixel size. The close order spacing allowed by the sharp AO image makes the full cover possible. A 250 X 125 mm(superscript 2) Milton Roy R2 echelle grating with 23.2 grooves mm(superscript -1) and a blaze angle of 63.5 deg provides main dispersion. A double pass BK7 prism with 21 deg wedge angle provides cross dispersion, covering the spectrum from order 193 to 77. The spectrograph is used in the quasi- Littrow configuration with an off-axis Maksutov collimator/camera. The fiber feeds the AO corrected beams from the telescope Cassegrain focus to the spectrograph, which is set up on an optical bench. The spectrograph will be used mainly to study line profiles of solar type stars, to explore problems of indirect detection of planets and also study interstellar medium, circumstellar medium and metal abundance and isotopic ratios of extremely metal-poor stars.

  9. Imaging modal content of cone photoreceptors using adaptive optics optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Liu, Zhuolin; Kocaoglu, Omer P.; Turner, Timothy L.; Miller, Donald T.

    2015-03-01

    It has been long established that photoreceptors capture light based on the principles of optical waveguiding. Yet after decades of experimental and theoretical investigations considerable uncertainty remains, even for the most basic prediction as to whether photoreceptors support more than a single waveguide mode. To test for modal behavior in human cone photoreceptors, we took advantage of adaptive-optics optical coherence tomography (AO-OCT, λc=785 nm) to noninvasively image in three dimensions the reflectance profiles generated in the inner and outer segments (IS, OS) of cones. Mode content was examined over a range of cone diameters by imaging cones from 0.6° to 10° retinal eccentricity (n = 1802). Fundamental to the method was extraction of reflections at the cone IS/OS junction and cone outer segment tip (COST). Modal content properties of size, circularity and orientation were quantified using second moment analysis. Analysis of the cone reflections indicates waveguide properties of cone IS and OS depend on segment diameter. Cone IS was found to support a single mode near the fovea (<=3°) and multiple modes further away (<4°). In contrast, no evidence of multiple modes was found in the cone OSs. The IS/OS and COST reflections share a common optical aperture, are most circular near the fovea, and show no orientation preference.

  10. A Reflective Gaussian Coronagraph for Extreme Adaptive Optics: Laboratory Performance

    NASA Astrophysics Data System (ADS)

    Park, Ryeojin; Close, Laird M.; Siegler, Nick; Nielsen, Eric L.; Stalcup, Thomas

    2006-11-01

    We report laboratory results of a coronagraphic test bench to assess the intensity reduction differences between a ``Gaussian'' tapered focal plane coronagraphic mask and a classical hard-edged ``top hat'' function mask at extreme adaptive optics (ExAO) Strehl ratios of ~94%. However, unlike a traditional coronagraph design, we insert a reflective focal plane mask at 45° to the optical axis. We also use an intermediate secondary mask (mask 2) before a final image in order to block additional mask-edge-diffracted light. The test bench simulates the optical train of ground-based telescopes (in particular, the 8.1 m Gemini North Telescope). It includes one spider vane, different mask radii (r = 1.9λ/D, 3.7λ/D, and 7.4λ/D), and two types of reflective focal plane masks (hard-edged top-hat and Gaussian tapered profiles). In order to investigate the relative performance of these competing coronagraphic designs with regard to extrasolar planet detection sensitivity, we utilize the simulation of realistic extrasolar planet populations (Nielsen et al.). With an appropriate translation of our laboratory results to expected telescope performance, a Gaussian tapered mask radius of 3.7λ/D with an additional mask (mask 2) performs best (highest planet detection sensitivity). For a full survey with this optimal design, the simulation predicts that ~30% more planets would be detected than with a top-hat function mask of similar size with mask 2. Using the best design, the point contrast ratio between the stellar point-spread function (PSF) peak and the coronagraphic PSF at 10λ/D (0.4" in the H band if D = 8.1 m) is ~10 times higher than a classical Lyot top-hat coronagraph. Hence, we find that a Gaussian apodized mask with an additional blocking mask is superior (~10 times higher contrast) to the use of a classical Lyot coronagraph for ExAO-like Strehl ratios.

  11. AdapTube: Adaptive Optics animations for tutorial purpose

    NASA Astrophysics Data System (ADS)

    Dima, Marco; Ragazzoni, Roberto; Bergomi, Maria; Farinato, Jacopo; Magrin, Demetrio; Marafatto, Luca; Viotto, Valentina

    2013-12-01

    As it happens in most scientific fields, many Adaptive Optics concepts and instrumental layouts are not easily understandable. Both in outreach and in the framework of addressing experts, computer graphics (CG) and, in particular, animation can aid the speaker and the auditor to simplify concept description, translating them into a more direct message. This paper presents a few examples of how some instruments, as Shack-Hartmann and Pyramid wavefront sensors, or concepts, like MCAO and MOAO, have been depicted and sometimes compared in a more intuitive way, emphasizing differences, pros and cons. Some example linking animation to the real world are also outlined, pushing the boundaries of the way a complicated concept can be illustrated embedding complex drawings into the explanation of a human. The used CG software, which is completely open source and will be presented and briefly described, turns out to be a valid communication tool to highlight what, on a piece of paper, could seem obscure. This poster aims at showing how concepts, such as Pyramid WFS, GLAO, MCAO and GMCAO, sometimes very difficult to explain on paper, can be much more easily outlined by means of dedicated animation SW. Blender is a very powerful freeware SW, used by our group since years to make tutorial videos and explanatory movies, a few examples of which are presented here.

  12. Combined conjugate and pupil adaptive optics in widefield microscopy

    NASA Astrophysics Data System (ADS)

    Beaulieu, Devin R.

    Traditionally, adaptive optics (AO) systems for microscopy have focused on AO at the pupil plane, however this produces poor performance in samples with both spatially-variant aberrations, such as non-flat sample interfaces, and spatially-invariant aberrations, such as spherical aberration due to a difference between the sample index of refraction and the sample for which the objective was designed. Here, we demonstrate well-corrected, wide field-of-view (FOV) microscopy by simultaneously correcting the two types of aberrations using two AO loops. Such an approach is necessary in wide-field applications where both types of aberration may be present, as each AO loop can only fully correct one type of aberration. Wide FOV corrections are demonstrated in a trans-illumination microscope equipped with two deformable mirrors (DMs), using a partitioned aperture wavefront (PAW) sensor to directly control the DM conjugated to the sample interface and a sensor-less genetic algorithm to control the DM conjugated to the objective's pupil.

  13. High-contrast, adaptive-optics simulations for HARMONI

    NASA Astrophysics Data System (ADS)

    Gladysz, Szymon; Thatte, Niranjan A.; Salter, Graeme; Clarke, Fraser; Tecza, Matthias; Jolissaint, Laurent; Galle, Roberto Baena

    2011-09-01

    HARMONI is a proposed visible and near-infrared integral field spectrograph for the European Extremely Large Telescope. We are exploring the potential of using HARMONI for high-contrast science, e.g. observations of exoplanets. Although HARMONI is not fed by extreme adaptive optics we show that substantial contrasts can be achieved by combining single-conjugate AO with coronagraphy and post-processing of the hyperspectral data cube using spectral deconvolution. HARMONI will be well suited for follow-up spectroscopy of planets detected by 8m class instruments, emphasizing their characterisation. We implement models of telescope aberrations: due to wind buffeting on M1, due to windshake on M2, due to rolled segment edges, as well as the ones resulting from M1 phasing and individual segment warping affected by thermal and gravity effects. Additionally, we investigate the impact of post-AO differential aberrations. We also look at possible improvements to spectral deconvolution which is our method of choice for data post-processing. Finally, we make predictions of achievable contrast which translates to the ability to characterise various types of exoplanets in detail.

  14. Adaptive optics images. III. 87 Kepler objects of interest

    SciTech Connect

    Dressing, Courtney D.; Dupree, Andrea K.; Adams, Elisabeth R.; Kulesa, Craig; McCarthy, Don

    2014-11-01

    The Kepler mission has revolutionized our understanding of exoplanets, but some of the planet candidates identified by Kepler may actually be astrophysical false positives or planets whose transit depths are diluted by the presence of another star. Adaptive optics images made with ARIES at the MMT of 87 Kepler Objects of Interest place limits on the presence of fainter stars in or near the Kepler aperture. We detected visual companions within 1'' for 5 stars, between 1'' and 2'' for 7 stars, and between 2'' and 4'' for 15 stars. For those systems, we estimate the brightness of companion stars in the Kepler bandpass and provide approximate corrections to the radii of associated planet candidates due to the extra light in the aperture. For all stars observed, we report detection limits on the presence of nearby stars. ARIES is typically sensitive to stars approximately 5.3 Ks magnitudes fainter than the target star within 1'' and approximately 5.7 Ks magnitudes fainter within 2'', but can detect stars as faint as ΔKs = 7.5 under ideal conditions.

  15. Method for removing tilt control in adaptive optics systems

    DOEpatents

    Salmon, J.T.

    1998-04-28

    A new adaptive optics system and method of operation are disclosed, whereby the method removes tilt control, and includes the steps of using a steering mirror to steer a wavefront in the desired direction, for aiming an impinging aberrated light beam in the direction of a deformable mirror. The deformable mirror has its surface deformed selectively by means of a plurality of actuators, and compensates, at least partially, for existing aberrations in the light beam. The light beam is split into an output beam and a sample beam, and the sample beam is sampled using a wavefront sensor. The sampled signals are converted into corresponding electrical signals for driving a controller, which, in turn, drives the deformable mirror in a feedback loop in response to the sampled signals, for compensating for aberrations in the wavefront. To this purpose, a displacement error (gradient) of the wavefront is measured, and adjusted by a modified gain matrix, which satisfies the following equation: G{prime} = (I{minus}X(X{sup T} X){sup {minus}1}X{sup T})G(I{minus}A). 3 figs.

  16. Method for removing tilt control in adaptive optics systems

    DOEpatents

    Salmon, Joseph Thaddeus

    1998-01-01

    A new adaptive optics system and method of operation, whereby the method removes tilt control, and includes the steps of using a steering mirror to steer a wavefront in the desired direction, for aiming an impinging aberrated light beam in the direction of a deformable mirror. The deformable mirror has its surface deformed selectively by means of a plurality of actuators, and compensates, at least partially, for existing aberrations in the light beam. The light beam is split into an output beam and a sample beam, and the sample beam is sampled using a wavefront sensor. The sampled signals are converted into corresponding electrical signals for driving a controller, which, in turn, drives the deformable mirror in a feedback loop in response to the sampled signals, for compensating for aberrations in the wavefront. To this purpose, a displacement error (gradient) of the wavefront is measured, and adjusted by a modified gain matrix, which satisfies the following equation: G'=(I-X(X.sup.T X).sup.-1 X.sup.T)G(I-A)

  17. Adaptive optics fundus camera using a liquid crystal phase modulator

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Tatsuo; Nakazawa, Naoki; Bessho, Kenichiro; Kitaguchi, Yoshiyuki; Maeda, Naoyuki; Fujikado, Takashi; Mihashi, Toshifumi

    2008-05-01

    We have developed an adaptive optics (AO) fundus camera to obtain high resolution retinal images of eyes. We use a liquid crystal phase modulator to compensate the aberrations of the eye for better resolution and better contrast in the images. The liquid crystal phase modulator has a wider dynamic range to compensate aberrations than most mechanical deformable mirrors and its linear phase generation makes it easy to follow eye movements. The wavefront aberration was measured in real time with a sampling rate of 10 Hz and the closed loop system was operated at around 2 Hz. We developed software tools to align consecutively obtained images. From our experiments with three eyes, the aberrations of normal eyes were reduced to less than 0.1 μm (RMS) in less than three seconds by the liquid crystal phase modulator. We confirmed that this method was adequate for measuring eyes with large aberrations including keratoconic eyes. Finally, using the liquid crystal phase modulator, high resolution images of retinas could be obtained.

  18. Development of a novel translation micromirror for adaptive optics

    NASA Astrophysics Data System (ADS)

    He, Siyuan; Ben Mrad, Ridha

    2003-10-01

    Conventional translation micromirrors for adaptive optics use attractive electrostatic force and therefore have two limitations: 1) the stroke is limited to less than one third of the initial gap distance between the mirror plate and the substrate. Normally the stroke is in the range of submicrometers; 2) stiction happens during operation. A novel translation micromirror, which uses a repulsive electrostatic force, is presented in this paper. This novel translation micromirror completely overcomes the limitations associated with conventional translation micromirrors and its stroke is not limited by the initial gap distance between the mirror plate and the substrate and therefore is able to achieve a much larger vertical stroke to modulate lights over a wider spectrum than that achieved by conventional translation micromirrors. The novel translation micromirror has no stiction problem and is highly compatible with mature surface micromachining technology. An analytical model is derived for the novel translation micromirror and prototypes are fabricated. The prototype of the novel translation micromirror, which is deliberately not optimized so it could be fabricated using MUMPS, achieved a vertical stroke of 1.75μm using a driving voltage of 50 volts, which is three times the stroke of conventional MUMPS translation micromirrors. It is expected that if standard surface micromachining is used instead of MUMPs, the design of the novel translation micromirror can be optimized and a much larger vertical stroke can be achieved.

  19. Adaptive Optics Images. III. 87 Kepler Objects of Interest

    NASA Astrophysics Data System (ADS)

    Dressing, Courtney D.; Adams, Elisabeth R.; Dupree, Andrea K.; Kulesa, Craig; McCarthy, Don

    2014-11-01

    The Kepler mission has revolutionized our understanding of exoplanets, but some of the planet candidates identified by Kepler may actually be astrophysical false positives or planets whose transit depths are diluted by the presence of another star. Adaptive optics images made with ARIES at the MMT of 87 Kepler Objects of Interest place limits on the presence of fainter stars in or near the Kepler aperture. We detected visual companions within 1'' for 5 stars, between 1'' and 2'' for 7 stars, and between 2'' and 4'' for 15 stars. For those systems, we estimate the brightness of companion stars in the Kepler bandpass and provide approximate corrections to the radii of associated planet candidates due to the extra light in the aperture. For all stars observed, we report detection limits on the presence of nearby stars. ARIES is typically sensitive to stars approximately 5.3\\, {{Ks}} magnitudes fainter than the target star within 1'' and approximately 5.7\\, {{Ks}} magnitudes fainter within 2'', but can detect stars as faint as ΔKs = 7.5 under ideal conditions. Observations reported here were obtained at the MMT Observatory, a joint facility of the Smithsonian Institution and the University of Arizona.

  20. Focusing adaptive-optics for neutron spectroscopy at extreme conditions

    SciTech Connect

    Simeoni, G. G.; Valicu, R. G.; Borchert, G.; Böni, P.; Rasmussen, N. G.; Yang, F.; Kordel, T.; Holland-Moritz, D.; Kargl, F.; Meyer, A.

    2015-12-14

    Neutron Spectroscopy employing extreme-conditions sample environments is nowadays a crucial tool for the understanding of fundamental scientific questions as well as for the investigation of materials and chemical-physical properties. For all these kinds of studies, an increased neutron flux over a small sample area is needed. The prototype of a focusing neutron guide component, developed and produced completely at the neutron source FRM II in Garching (Germany), has been installed at the time-of-flight (TOF) disc-chopper neutron spectrometer TOFTOF and came into routine-operation. The design is based on the compressed Archimedes' mirror concept for finite-size divergent sources. It represents a unique device combining the supermirror technology with Adaptive Optics, suitable for broad-bandwidth thermal-cold TOF neutron spectroscopy (here optimized for 1.4–10 Å). It is able to squeeze the beam cross section down to a square centimeter, with a more than doubled signal-to-background ratio, increased efficiency at high scattering angles, and improved symmetry of the elastic resolution function. We present a comparison between the simulated and measured beam cross sections, as well as the performance of the instrument within real experiments. This work intends to show the unprecedented opportunities achievable at already existing instruments, along with useful guidelines for the design and construction of next-generation neutron spectrometers.

  1. Focusing adaptive-optics for neutron spectroscopy at extreme conditions

    NASA Astrophysics Data System (ADS)

    Simeoni, G. G.; Valicu, R. G.; Borchert, G.; Böni, P.; Rasmussen, N. G.; Yang, F.; Kordel, T.; Holland-Moritz, D.; Kargl, F.; Meyer, A.

    2015-12-01

    Neutron Spectroscopy employing extreme-conditions sample environments is nowadays a crucial tool for the understanding of fundamental scientific questions as well as for the investigation of materials and chemical-physical properties. For all these kinds of studies, an increased neutron flux over a small sample area is needed. The prototype of a focusing neutron guide component, developed and produced completely at the neutron source FRM II in Garching (Germany), has been installed at the time-of-flight (TOF) disc-chopper neutron spectrometer TOFTOF and came into routine-operation. The design is based on the compressed Archimedes' mirror concept for finite-size divergent sources. It represents a unique device combining the supermirror technology with Adaptive Optics, suitable for broad-bandwidth thermal-cold TOF neutron spectroscopy (here optimized for 1.4-10 Å). It is able to squeeze the beam cross section down to a square centimeter, with a more than doubled signal-to-background ratio, increased efficiency at high scattering angles, and improved symmetry of the elastic resolution function. We present a comparison between the simulated and measured beam cross sections, as well as the performance of the instrument within real experiments. This work intends to show the unprecedented opportunities achievable at already existing instruments, along with useful guidelines for the design and construction of next-generation neutron spectrometers.

  2. Interaction matrix uncertainty in active (and adaptive) optics.

    PubMed

    Macmynowski, Douglas G

    2009-04-10

    Uncertainty in the interaction matrix between sensors and actuators can lead to performance degradation or instability in control of segmented mirrors (typically the telescope primary). The interaction matrix is ill conditioned, and thus the position estimate required for control can be highly sensitive to small errors in knowledge of the matrix, due to uncertainty or temporal variations. The robustness to different types of uncertainty is bounded here using the small gain theorem and structured singular values. The control is quite robust to moderate uncertainty in actuator gain, sensor gain, or the ratio of sensor dihedral and height sensitivity. However, the control is extremely sensitive to small errors in geometry, with the maximum error that can be tolerated scaling inversely with the number of segments. The same tools can be applied to adaptive optics; however, the interaction matrix here is better conditioned and so uncertainty is less of an issue, with the tolerable error scaling inversely with the square root of the number of actuators. PMID:19363549

  3. Adaptive optics for ultra short pulsed lasers in UHV environment

    NASA Astrophysics Data System (ADS)

    Deneuville, Francois; Ropert, Laurent; Sauvageot, Paul; Theis, Sébastien

    2015-02-01

    ISP SYSTEM has developed an electro-mechanical deformable mirror compatible with Ultra High Vacuum environment, suitable for ultra short pulsed lasers. The design of the MD-AME deformable mirror is based on force application on numerous locations. μ-AME actuators are driven by stepper motors, and their patented special design allows controlling the force with a very high accuracy. Materials and assembly method have been adapted to UHV constraints and the performances were evaluated on a first application for a beam with a diameter of 250mm. A Strehl ratio above 0.9 was reached for this application. Optical aberrations up to Zernike order 5 can be corrected with a very low residual error as for standard MD-AME mirror. Amplitude can reach up to several hundreds of μm for low order corrections. Hysteresis is lower than 0.1% and linearity better than 99%. Contrary to piezo-electric actuators, the μ-AME actuators avoid print-through effects and they permit to keep the mirror shape stable even unpowered, providing a high resistance to electro-magnetic pulses. The deformable mirror design allows changing easily an actuator or even the membrane if needed, in order to improve the facility availability. They are designed for circular, square or elliptical aperture from 30mm up to 500mm or more, with incidence angle from 0° to 45°. They can be equipped with passive or active cooling for high power lasers with high repetition rate.

  4. ADAPTIVE OPTICS IMAGES OF KEPLER OBJECTS OF INTEREST

    SciTech Connect

    Adams, E. R.; Dupree, A. K.; Ciardi, D. R.; Gautier, T. N. III; Kulesa, C.; McCarthy, D.

    2012-08-15

    All transiting planets are at risk of contamination by blends with nearby, unresolved stars. Blends dilute the transit signal, causing the planet to appear smaller than it really is, or produce a false-positive detection when the target star is blended with eclipsing binary stars. This paper reports on high spatial-resolution adaptive optics images of 90 Kepler planetary candidates. Companion stars are detected as close as 0.''1 from the target star. Images were taken in the near-infrared (J and Ks bands) with ARIES on the MMT and PHARO on the Palomar Hale 200 inch telescope. Most objects (60%) have at least one star within 6'' separation and a magnitude difference of 9. Eighteen objects (20%) have at least one companion within 2'' of the target star; six companions (7%) are closer than 0.''5. Most of these companions were previously unknown, and the associated planetary candidates should receive additional scrutiny. Limits are placed on the presence of additional companions for every system observed, which can be used to validate planets statistically using the BLENDER method. Validation is particularly critical for low-mass, potentially Earth-like worlds, which are not detectable with current-generation radial velocity techniques. High-resolution images are thus a crucial component of any transit follow-up program.

  5. Performance evaluation of a sensorless adaptive optics multiphoton microscope.

    PubMed

    Skorsetz, Martin; Artal, Pablo; Bueno, Juan M

    2016-03-01

    A wavefront sensorless adaptive optics technique was combined with a custom-made multiphoton microscope to correct for specimen-induced aberrations. A liquid-crystal-on-silicon (LCoS) modulator was used to systematically generate Zernike modes during image recording. The performance of the instrument was evaluated in samples providing different nonlinear signals and the benefit of correcting higher order aberrations was always noticeable (in both contrast and resolution). The optimum aberration pattern was stable in time for the samples here involved. For a particular depth location within the sample, the wavefront to be precompensated was independent on the size of the imaged area (up to ∼ 360 × 360 μm(2)). The mode combination optimizing the recorded image depended on the Zernike correction control sequence; however, the final images hardly differed. At deeper locations, a noticeable dominance of spherical aberration was found. The influence of other aberration terms was also compared to the effect of the spherical aberration. PMID:26469361

  6. AN ADAPTIVE OPTICS SURVEY FOR CLOSE PROTOSTELLAR BINARIES

    SciTech Connect

    Connelley, Michael S.; Reipurth, Bo; Tokunaga, Alan T.

    2009-11-15

    In order to test the hypothesis that Class I protostellar binary stars are a product of ejections during the dynamical decay of nonhierarchical multiple systems, we combined the results of new adaptive optics (AO) observations of Class I protostars with our previously published AO data to investigate whether Class I protostars with a widely separated companion (r > 200 AU) are more likely to also have a close companion (r < 200 AU). In total, we observed 47 embedded young stellar objects (YSOs) with either the Subaru natural guide star AO system or the Keck laser guide star AO system. We found that targets with a widely separated companion within 5000 AU are not more likely to have a close companion. However, targets with another YSO within a projected separation of 25,000 AU are much more likely to have a close companion. Most importantly, every target with a close companion has another YSO within a projected separation of 25,000 AU. We came to the same conclusions after considering a restricted sample of targets within 500 pc and close companions wider than 50 AU to minimize incompleteness effects. The Orion star-forming region was found to have an excess of both close binaries and YSOs within 25,000 AU compared to other star-forming regions. We interpret these observations as strong evidence that many close Class I binary stars form via ejections and that many of the ejected stars become unbound during the Class I phase.

  7. Imaging performance analysis of adaptive optical telescopes using laser guide stars.

    PubMed

    Welsh, B M

    1991-12-01

    The use of laser guide stars in conjunction with adaptive optical telescopes offers the possibility of nearly diffraction-limited imaging performance from large, ground-based telescopes. We investigate the expected imaging performance of an adaptive telescope, using laser guide stars created in the mesospheric sodium (Na) layer. A 2-3-m class telescope is analyzed for the case of a single, on-axis guide star at an altitude of 92 km (the nominal height of the mesospheric Na layer). We analyze an annular telescope pupil with approximately 15 wave-front sensor subapertures and mirror actuators spanning the pupil diameter. The imaging performance is quantified in terms of the pupil-averaged rms wave-front error, the optical transfer function, the point spread function, the Strehl ratio, and finally the angular resolution. The performance analysis takes into account the degradation caused by the limitation of the wave-front sensor as well as the deformable mirror. These limitations include the finite spacing and size of the wave-front sensor subapertures and the spacing and influence function of the mirror actuators. The effects of anisoplanatism and shot noise are also included in the analysis. The results of the investigation indicate that a 3-m adaptive telescope using a single Na guide star is capable of achieving a Strehl ratio of 0.57 and an angular resolution nearly matching that of diffraction-limited performance (0.05 arcsec). This performance is achieved assuming that r(0) = 20 cm and a 5-W laser is used to create the guide star. The effect of variations in seeing conditions and guide star brightness is also investigated. PMID:20717316

  8. A multi-parameter optical fiber sensor with interrogation and discrimination capabilities

    NASA Astrophysics Data System (ADS)

    Zhan, Yage; Wu, Hua; Yang, Qinyu; Pei, Jincheng; Yang, Xichun

    2009-11-01

    A multi-parameter and multi-function, but low-cost, optical fiber grating sensor with self-interrogation and self-discrimination capabilities is presented theoretically and experimentally. The sensor bases on three fiber Bragg gratings (FBG) and one fiber long period grating (LPG). Strain, vibration, pressure, ordinary temperature (-10 to 100 °C) and high temperature (100-800 °C) can be measured by the sensor. When high temperature (100-800 °C) is measured, the LPG is used as a high temperture sensor head and FBG 1 is used as an interrogation element. Alternatively, when one of the other four measurands is measured, FBG 1 (or FBG 2) is used as a sensor head and LPG is used as an interrogation element. When two of the other four measurands are measured simultaneously, FBG 1 and FBG 2 are used as sensor heads and LPG is used as a shared interrogation element. FBG 3 is used as a reference element to eliminate the errors resulted from light source fluctuation and the cross-sensitivity between measurand and environmental temperature. The measurands can be interrogated according to the signals of the photodiodes (PDs), which are related to the relative wavelength shift of the LPG and the FBGs. Experimental results agree well with theoretical analyses. The interrogation scheme is immune to light source fluctuation and the cross-sensitivity between measurands and enviromental temperature, and also the dynamic range is large.

  9. Fast whole-brain optical tomography capable of automated slice-collection (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Yuan, Jing; Jiang, Tao; Deng, Lei; Long, Beng; Peng, Jie; Luo, Qingming; Gong, Hui

    2016-03-01

    Acquiring brain-wide composite information of neuroanatomical and molecular phenotyping is crucial to understand brain functions. However, current whole-brain imaging methods based on mechnical sectioning haven't achieved brain-wide acquisition of both neuroanatomical and molecular phenotyping due to the lack of appropriate whole-brain immunostaining of embedded samples. Here, we present a novel strategy of acquiring brain-wide structural and molecular maps in the same brain, combining whole-brain imaging and subsequent immunostaining of automated-collected slices. We developed a whole-brain imaging system capable of automatically imaging and then collecting imaged tissue slices in order. The system contains three parts: structured illumination microscopy for high-throughput optical sectioning, vibratome for high-precision sectioning and slice-collection device for automated collecting of tissue slices. Through our system, we could acquire a whole-brain dataset of agarose-embedded mouse brain at lateral resolution of 0.33 µm with z-interval sampling of 100 µm in 9 h, and automatically collect the imaged slices in sequence. Subsequently, we performed immunohistochemistry of the collected slices in the routine way. We acquired mouse whole-brain imaging datasets of multiple specific types of neurons, proteins and gene expression profiles. We believe our method could accelerate systematic analysis of brain anatomical structure with specific proteins or genes expression information and understanding how the brain processes information and generates behavior.

  10. The jet of the BL Lacertae object PKS 0521-365 in the near-IR: MAD adaptive optics observations

    NASA Astrophysics Data System (ADS)

    Falomo, R.; Pian, E.; Treves, A.; Giovannini, G.; Venturi, T.; Moretti, A.; Arcidiacono, C.; Farinato, J.; Ragazzoni, R.; Diolaiti, E.; Lombini, M.; Tavecchio, F.; Brast, R.; Donaldson, R.; Kolb, J.; Marchetti, E.; Tordo, S.

    2009-07-01

    Context: BL Lac objects are low-power active nuclei exhibiting a variety of peculiar properties caused by the presence of a relativistic jet and orientation effects. Aims: We present adaptive optics near-IR images at high spatial resolution of the nearby BL Lac object PKS 0521-365, which is known to display a prominent jet both at radio and optical frequencies. Methods: The observations were obtained in Ks-band using the ESO multi-conjugated adaptive optics demonstrator at the Very Large Telescope. This allowed us to obtain images with 0.1 arcsec effective resolution. We performed a detailed analysis of the jet and its related features from the near-IR images, and combined them with images previously obtained with HST in the R band and by a re-analysis of VLA radio maps. Results: We find a remarkable similarity in the structure of the jet at radio, near-IR, and optical wavelengths. The broad-band emission of the jet knots is dominated by synchrotron radiation, while the nucleus also exhibits a significant inverse Compton component. We discovered the near-IR counterpart of the radio hotspot and found that the near-IR flux is consistent with being a synchrotron emission from radio to X-ray wavelengths. The bright red object (red-tip), detached but well aligned with the jet, is well resolved in the near-IR and has a linear light profile. Since it has no radio counterpart, we propose that it is a background galaxy not associated with the jet. Conclusions: The new adaptive optics near-IR images and previous observations at other frequencies allow us to study the complex environment around the remarkable BL Lac object PKS 0521-365. These data exemplify the capabilities of multi conjugate adaptive optics observations of extragalactic extended sources. Based on observations collected at ESO, Paranal, Chile, as part of MAD Guaranteed Time Observations.

  11. The Adaptive Optics System for the New 6.5 Meter MMT Optical/Infrared Telescope

    NASA Astrophysics Data System (ADS)

    McGuire, Patrick C.; Lloyd-Hart, Michael; Angel, J. Roger P.; Angeli, George Z.; Johnson, Robert L.; Fitz-Patrick, Bruce C.; Davison, Warren B.; Sarlot, Roland J.; Bresloff, Cyndy J.; Hughes, John M.; Miller, Steve M.; Schaller, Phillip; Wildi, Francois P.; Kenworthy, Matthew A.; Cordova, Richard M.; Rademacher, Matthew L.; Rascon, Mario H.; Langlois, Maud; Roberts, Thomas; McCarthy, Don; Burge, James H.; Rhoadarmer, Troy A.; Shelton, J. Christopher; Jacobsen, Bruce; Salinari, Piero; Brusa, Guido; Del Vecchio, Ciro; Biasi, Roberto; Gallieni, Daniele; Sandler, David G.; Barrett, Todd K.

    1999-10-01

    The Multiple Mirror Telescope (MMT) is currently being upgraded to a single 6.5 meter diameter mirror and should see first light at prime focus in September 1999. We are constructing an F/15 adaptive optics (AO) system which will be an integral part of the new MMT with first light in early 2000, removing the effect of atmospheric turbulence so that images near the diffraction limit in the near-infrared can be achieved. The deformable element of this system is a 64 cm diameter secondary mirror composed of a 1.8 mm thick thin glass shell and 336 voice coil actuators operating at 1 kHz. This is the first system that uses the secondary mirror as the correcting element, which means thermal background is minimized. We will primarily present an overview of the adaptive optics technique, followed by select results which will include the laboratory testing of the AO system components with a solid secondary, data taken with the wavefront sensor camera at prime focus of the new MMT, and tests of the secondary mirror control system.

  12. Are integral controllers adapted to the new era of ELT adaptive optics?

    NASA Astrophysics Data System (ADS)

    Conan, J.-M.; Raynaud, H.-F.; Kulcsár, C.; Meimon, S.

    2011-09-01

    With ELTs we are now entering a new era in adaptive optics developments. Meeting unprecedented level of performance with incredibly complex systems implies reconsidering AO concepts at all levels, including controller design. Concentrating mainly on temporal aspects, one may wonder if integral controllers remain an adequate solution. This question is all the more important that, with ever larger degrees of freedom, one may be tempted to discard more sophisticated approaches because they are deemed too complex to implement. The respective performance of integrator versus LQG control should therefore be carefully evaluated in the ELT context. We recall for instance the impressive correction improvement brought by such controllers for the rejection of windshake and vibration components. LQG controller significantly outperforms the integrator because its disturbance rejection transfer function closely matches the energy concentration, respectively at low temporal frequencies for windshake, and around localized resonant peaks for vibrations. The application to turbulent modes should also be investigated, especially for very low spatial frequencies now explored on the huge ELT pupil. The questions addressed here are: 1/ How do integral and LQG controllers compare in terms of performance for a given sampling frequency and noise level?; 2/ Could we relax sampling frequency with LQG control?; 3/ Does a mode to mode adaptation of temporal rejection bring significant performance improvement?; 4/ Which modes particularly benefit from this fine tuning of the rejection transfer function? Based on a simplified ELT AO configuration, and through a simple analytical formulation, performance is evaluated for several control approaches. Various assumptions concerning the perturbation parameters (seeing and outer-scale value, windshake amplitude) are considered. Bode's integral theorem allows intuitive understanding of the results. Practical implementation and computation complexity

  13. Development of laser guide stars and adaptive optics for large astronomical telescopes

    SciTech Connect

    Max, C.E.; Avicola, K.; Bissinger, H.; Brase, J.M.; Gavel, D.T.; Friedman, H.; Morris, J.R.; Olivier, S.S.; Rapp, D.; Salmon, J.T.; Waltjen, K.

    1992-06-29

    We describe a feasibility experiment to demonstrate high-order adaptive optics using a sodium-layer laser guide star. We use the copper-vapor-pumped dye lasers developed for LLNL's atomic Vapor Laser Isotope Separation program to create the laser guide star. Closed-loop adaptive corrections will be accomplished using a 69-subaperture adaptive optics system on a one-meter telescope at LLNL. The laser bream is projected upwards from a beam director approximately 5 meters away from the main telescope, and is expected to form a spot 1-2 meters in diameter at the atmospheric sodium layer (95 km altitude). We describe the overall system architecture and adaptive optics components, and analyze the expected performance. Our long-term goal is to develop sodium-layer laser guide stars and adaptive optics for large astronomical telescopes. We discuss preliminary design trade-offs for the Keck Telescope at Mauna Kea.

  14. Development of laser guide stars and adaptive optics for large astronomical telescopes

    SciTech Connect

    Max, C.E.; Avicola, K.; Bissinger, H.; Brase, J.M.; Gavel, D.T.; Friedman, H.; Morris, J.R.; Olivier, S.S.; Rapp, D.; Salmon, J.T.; Waltjen, K.

    1992-06-29

    We describe a feasibility experiment to demonstrate high-order adaptive optics using a sodium-layer laser guide star. We use the copper-vapor-pumped dye lasers developed for LLNL`s atomic Vapor Laser Isotope Separation program to create the laser guide star. Closed-loop adaptive corrections will be accomplished using a 69-subaperture adaptive optics system on a one-meter telescope at LLNL. The laser bream is projected upwards from a beam director approximately 5 meters away from the main telescope, and is expected to form a spot 1-2 meters in diameter at the atmospheric sodium layer (95 km altitude). We describe the overall system architecture and adaptive optics components, and analyze the expected performance. Our long-term goal is to develop sodium-layer laser guide stars and adaptive optics for large astronomical telescopes. We discuss preliminary design trade-offs for the Keck Telescope at Mauna Kea.

  15. Adaptive optics optical coherence tomography at 120,000 depth scans/s for non-invasive cellular phenotyping of the living human retina

    PubMed Central

    Torti, Cristiano; Považay, Boris; Hofer, Bernd; Unterhuber, Angelika; Carroll, Joseph; Ahnelt, Peter Kurt; Drexler, Wolfgang

    2012-01-01

    This paper presents a successful combination of ultra-high speed (120,000 depth scans/s), ultra-high resolution optical coherence tomography with adaptive optics and an achromatizing lens for compensation of monochromatic and longitudinal chromatic ocular aberrations, respectively, allowing for non-invasive volumetric imaging in normal and pathologic human retinas at cellular resolution. The capability of this imaging system is demonstrated here through preliminary studies by probing cellular intraretinal structures that have not been accessible so far with in vivo, non-invasive, label-free imaging techniques, including pigment epithelial cells, micro-vasculature of the choriocapillaris, single nerve fibre bundles and collagenous plates of the lamina cribrosa in the optic nerve head. In addition, the volumetric extent of cone loss in two colour-blinds could be quantified for the first time. This novel technique provides opportunities to enhance the understanding of retinal pathogenesis and early diagnosis of retinal diseases. PMID:19997159

  16. Multiple laser guide stars (LGS) for multiple conjugate adaptive optics (MCAO)

    NASA Astrophysics Data System (ADS)

    Jones, Katharine J.

    2012-10-01

    For wavefront sensing and control, the most extensive use of Mult-Conjugate Adaptive Optics (MCAO) systems for extended-path aberration compensation lies with the use of multiple Laser Guide Stars (LGS) for Multi-Conjugate Adaptive Optics (MCAO). Ground-based adaptive optics systems were initially developed by the Starfire Optical Range (SOR) in 1983. Both Rayleigh guide stars and Na guide stars have been developed. More recently, both laser systems, Na LGS at 93 km and Rayleigh guide stars at 20 km, are being combined in the Large Binocular Telescope (LBT) for multiple LGS for Multiple Conjugate Adaptive Optics (MCAO) (M. Hart et al, 2011). Each side of the LBT has 3 Rayleigh LGS which are projected into two triangular constellations. A sodium LGS will be added to each aperture using the same launch optics as the Rayleigh beacons. This will combine low altitude Rayleigh LGS and high altitude Na laser guide stars into a uniquely powerful tomographic wavefront sensing system for Multi-Conjugate Adaptive Optics. Other observatories have used either Rayleigh guide stars or Na guide stars. ESO VLT has 4 Na LGS. MMT has 5 Rayleigh guide stars. Gemini Multi-Conjugate Adaptive Optics System (GEMS) has 5 Na LGS. The many multiple LGS MCAO observatories will be compared for effective design and projected performance.

  17. THE INNER KILOPARSEC OF Mrk 273 WITH KECK ADAPTIVE OPTICS

    SciTech Connect

    U, Vivian; Sanders, David; Kewley, Lisa; Medling, Anne; Max, Claire; Armus, Lee; Iwasawa, Kazushi; Evans, Aaron; Fazio, Giovanni

    2013-10-01

    There is X-ray, optical, and mid-infrared imaging and spectroscopic evidence that the late-stage ultraluminous infrared galaxy merger Mrk 273 hosts a powerful active galactic nucleus (AGN). However, the exact location of the AGN and the nature of the nucleus have been difficult to determine due to dust obscuration and the limited wavelength coverage of available high-resolution data. Here we present near-infrared integral-field spectra and images of the nuclear region of Mrk 273 taken with OSIRIS and NIRC2 on the Keck II Telescope with laser guide star adaptive optics. We observe three spatially resolved components, and analyze the nuclear molecular and ionized gas emission lines and their kinematics. We confirm the presence of the hard X-ray AGN in the southwest nucleus. In the north nucleus, we find a strongly rotating gas disk whose kinematics indicate a central black hole of mass 1.04 ± 0.1 × 10{sup 9} M{sub ☉}. The H{sub 2} emission line shows an increase in velocity dispersion along the minor axis in both directions, and an increased flux with negative velocities in the southeast direction; this provides direct evidence for a collimated molecular outflow along the axis of rotation of the disk. The third spatially distinct component appears to the southeast, 640 and 750 pc from the north and southwest nuclei, respectively. This component is faint in continuum emission but shows several strong emission line features, including [Si VI] 1.964 μm which traces an extended coronal-line region. The geometry of the [Si VI] emission combined with shock models and energy arguments suggest that [Si VI] in the southeast component must be at least partly ionized by the SW AGN or a putative AGN in the northern disk, either through photoionization or through shock-heating from strong AGN- and circumnuclear-starburst-driven outflows. This lends support to a scenario in which Mrk 273 may be a dual AGN system.

  18. The optical design of a visible adaptive optics system for the Magellan Telescope

    NASA Astrophysics Data System (ADS)

    Kopon, Derek

    The Magellan Adaptive Optics system will achieve first light in November of 2012. This AO system contains several subsystems including the 585-actuator concave adaptive secondary mirror, the Calibration Return Optic (CRO) alignment and calibration system, the CLIO 1-5 microm IR science camera, the movable guider camera and active optics assembly, and the W-Unit, which contains both the Pyramid Wavefront Sensor (PWFS) and the VisAO visible science camera. In this dissertation, we present details of the design, fabrication, assembly, alignment, and laboratory performance of the VisAO camera and its optical components. Many of these components required a custom design, such as the Spectral Differential Imaging Wollaston prisms and filters and the coronagraphic spots. One component, the Atmospheric Dispersion Corrector (ADC), required a unique triplet design that had until now never been fabricated and tested on sky. We present the design, laboratory, and on-sky results for our triplet ADC. We also present details of the CRO test setup and alignment. Because Magellan is a Gregorian telescope, the ASM is a concave ellipsoidal mirror. By simulating a star with a white light point source at the far conjugate, we can create a double-pass test of the whole system without the need for a real on-sky star. This allows us to test the AO system closed loop in the Arcetri test tower at its nominal design focal length and optical conjugates. The CRO test will also allow us to calibrate and verify the system off-sky at the Magellan telescope during commissioning and periodically thereafter. We present a design for a possible future upgrade path for a new visible Integral Field Spectrograph. By integrating a fiber array bundle at the VisAO focal plane, we can send light to a pre-existing facility spectrograph, such as LDSS3, which will allow 20 mas spatial sampling and R˜1,800 spectra over the band 0.6-1.05 microm. This would be the highest spatial resolution IFU to date, either

  19. Error Budget Analysis for an Adaptive Optics Optical Coherence Tomography System

    PubMed Central

    Evans, Julia W.; Zawadzki, Robert J.; Jones, Steven M.; Olivier, Scot S.; Werner, John S.

    2009-01-01

    The combination of adaptive optics (AO) technology with optical coherence tomography (OCT) instrumentation for imaging the retina has proven to be a valuable tool for clinicians and researchers in understanding the healthy and diseased eye. The micrometer-isotropic resolution achieved by such a system allows imaging of the retina at a cellular level, however imaging of some cell types remains elusive. Improvement in contrast rather than resolution is needed and can be achieved through better AO correction of wavefront aberration. A common tool for assessing and ultimately improving AO system performance is the development of an error budget. Specifically, this is a list of the magnitude of the constituent residual errors of an optical system so that resources can be directed towards efficient performance improvement. Here we present an error budget developed for the UC Davis AO-OCT instrument indicating that bandwidth and controller errors are the limiting errors of our AO system, which should be corrected first to improve performance. We also discuss the scaling of error sources for different subjects and the need to improve the robustness of the system by addressing subject variability. PMID:19654784

  20. Retinal imaging with polarization-sensitive optical coherence tomography and adaptive optics

    PubMed Central

    Cense, Barry; Gao, Weihua; Brown, Jeffrey M.; Jones, Steven M.; Jonnal, Ravi S.; Mujat, Mircea; Park, B. Hyle; de Boer, Johannes F.; Miller, Donald T.

    2011-01-01

    Various layers of the retina are well known to alter the polarization state of light. Such changes in polarization may be a sensitive indicator of tissue structure and function, and as such have gained increased clinical attention. Here we demonstrate a polarization-sensitive optical coherence tomography (PS-OCT) system that incorporates adaptive optics (AO) in the sample arm and a single line scan camera in the detection arm. We quantify the benefit of AO for PS-OCT in terms of signal-to-noise, lateral resolution, and speckle size. Double pass phase retardation per unit depth values ranging from 0.25°/µm to 0.65°/µm were found in the birefringent nerve fiber layer at 6° eccentricity, superior to the fovea, with the highest values being noticeably higher than previously reported with PS-OCT around the optic nerve head. Moreover, fast axis orientation and degree of polarization uniformity measurements made with AO-PS-OCT demonstrate polarization scrambling in the retinal pigment epithelium at the highest resolution reported to date. PMID:19997405

  1. Polymer-based micro-deformable mirror for adaptive optics

    NASA Astrophysics Data System (ADS)

    Liotard, Arnaud; Zamkotsian, Frederic; Conedera, Veronique; Fabre, Norbert; Lanzoni, Patrick; Camon, Henri; Chazallet, Frederic

    2006-01-01

    Highly performing adaptive optical (AO) systems are mandatory for next generation giant telescopes as well as next generation instrumentation for 10m-class telescopes, for studying new fields like circumstellar disks and extra-solar planets. These systems require deformable mirrors with very challenging parameters, including number of actuators up to 250 000 and inter-actuator spacing around 500μm. MOEMS-based devices are promising for future deformable mirrors. We are currently developing a micro-deformable mirror (MDM) based on an array of electrostatic actuators with attachment posts to a continuous mirror on top. In order to reach large stroke for low driving voltage, the originality of our approach lies in the elaboration of a sacrificial layer and of a structural layer made of polymer materials. We have developed the first polymer piston-motion actuator: a 10μm thick mobile plate with four springs attached to the substrate, and with an air gap of 10μm exhibits a piston motion of 2μm for 30V, and measured resonance frequency of 6.5kHz is well suited for AO systems. The electrostatic force provides a non-linear actuation, while AO systems are based on linear matrices operations. We have successfully developed a dedicated 14-bit electronics in order to "linearize" the actuation. Actual location of the actuator versus expected location of the actuator is obtained with a standard deviation of 21 nm. Comparison with FEM models shows very good agreement, and design of a complete polymer-based MDM has been done.

  2. Cone photoreceptor definition on adaptive optics retinal imaging

    PubMed Central

    Muthiah, Manickam Nick; Gias, Carlos; Chen, Fred Kuanfu; Zhong, Joe; McClelland, Zoe; Sallo, Ferenc B; Peto, Tunde; Coffey, Peter J; da Cruz, Lyndon

    2014-01-01

    Aims To quantitatively analyse cone photoreceptor matrices on images captured on an adaptive optics (AO) camera and assess their correlation to well-established parameters in the retinal histology literature. Methods High resolution retinal images were acquired from 10 healthy subjects, aged 20–35 years old, using an AO camera (rtx1, Imagine Eyes, France). Left eye images were captured at 5° of retinal eccentricity, temporal to the fovea for consistency. In three subjects, images were also acquired at 0, 2, 3, 5 and 7° retinal eccentricities. Cone photoreceptor density was calculated following manual and automated counting. Inter-photoreceptor distance was also calculated. Voronoi domain and power spectrum analyses were performed for all images. Results At 5° eccentricity, the cone density (cones/mm2 mean±SD) was 15.3±1.4×103 (automated) and 13.9±1.0×103 (manual) and the mean inter-photoreceptor distance was 8.6±0.4 μm. Cone density decreased and inter-photoreceptor distance increased with increasing retinal eccentricity from 2 to 7°. A regular hexagonal cone photoreceptor mosaic pattern was seen at 2, 3 and 5° of retinal eccentricity. Conclusions Imaging data acquired from the AO camera match cone density, intercone distance and show the known features of cone photoreceptor distribution in the pericentral retina as reported by histology, namely, decreasing density values from 2 to 7° of eccentricity and the hexagonal packing arrangement. This confirms that AO flood imaging provides reliable estimates of pericentral cone photoreceptor distribution in normal subjects. PMID:24729030

  3. The Potential of Extreme Adaptive Optics Systems for Asteroid Studies

    NASA Astrophysics Data System (ADS)

    Marchis, F.; Vega, D.

    2014-12-01

    New Adaptive optics (AO) systems, called Extreme AO systemsare becoming available this year on two 8m-class telescopes. Both the Gemini Planet Imager (GPI) on the Gemini South Telescope and SPHERE on the Very Large Telescope provide an almost perfect correction of the atmospheric turbulences and are equipped with low-resolution integral field spectrograph and a polarimeter. We will present the analysis of observations of (2) Pallas which was observed with GPI in direct imaging (without coronagraph) on March 22 2014 in Y, J, H, and K1 filters (from 0.95 to 2.19 μm) spectroscopically with a resolution varying from 34 to 70. The 540-km asteroid is well resolved and irregular. An ellipse of 540±9 mas and 470±9 mas fits its silhouette. The surface of the asteroid is mostly featureless but small differences of colors is currently being analyzed. No moons with a diameter larger than 0.5 km and at less than 1.2" were detected on these observations. We will discuss the future contributions of these Extreme AO systems, including SPHERE most recent observations, for the study of large main-belt asteroids addressing the number of targets that can be observed and comparing their on-sky efficiency with previous AO systems. Key scientific questions such as the possible differentiation of the primary of multiple asteroids (e.g. 45 Eugenia by Beauvalet and Marchis, Icarus, 2014 or 87 Sylvia in Berthier et al., Icarus, 2014), and the origin of these systems by comparison of the color of the moons and the primary (e.g. Marchis et al., AGU 2013) could be answered through intensive surveys conducted with these new AO systems.

  4. Probing other solar systems with current and future adaptive optics

    SciTech Connect

    Macintosh, B; Marois, C; Phillion, D; Poyneer, L; Graham, J; Zuckerman, B; Gavel, D; Veran, J; Wilhelmsen-Evans, J; Mellis, C

    2008-09-08

    Over the past decade, the study of extrasolar planets through indirect techniques--primarily Doppler measurements--has revolutionized our understanding of other solar systems. The next major step in this field will be the direct detection and characterization, via imaging and spectroscopy, of the planets themselves. To achieve this, we must separate the light from the faint planet from the extensive glare of its parent star. We pursued this goal using the current generation of adaptive optics (AO) systems on large ground-based telescopes, using infrared imaging to search for the thermal emission from young planets and developing image processing techniques to distinguish planets from telescope-induced artifacts. Our new Angular Differential Imaging (ADI) technique, which uses the sidereal rotation of the Earth and telescope, is now standard for ground-based high-contrast imaging. Although no young planets were found in our surveys, we placed the strongest limits yet on giant planets in wide orbits (>30 AU) around young stars and characterized planetary companion candidates. The imaging of planetary companions on solar-system-like scales (5-30 AU) will require a new generation of advanced AO systems that are an order of magnitude more powerful than the LLNL-built Keck AO system. We worked to develop and test the key technologies needed for these systems, including a spatially-filtered wavefront sensor, efficient and accurate wavefront reconstruction algorithms, and precision AO wavefront control at the sub-nm level. LLNL has now been selected by the Gemini Observatory to lead the construction of the Gemini Planet Imager, a $24M instrument that will be the most advanced AO system in the world.

  5. FPGA-accelerated adaptive optics wavefront control part II

    NASA Astrophysics Data System (ADS)

    Mauch, S.; Barth, A.; Reger, J.; Reinlein, C.; Appelfelder, M.; Beckert, E.

    2015-03-01

    We present progressive work that is based on our recently developed rapid control prototyping system (RCP), designed for the implementation of high-performance adaptive optical control algorithms using a continuous de-formable mirror (DM). The RCP system, presented in 2014, is resorting to a Xilinx Kintex-7 Field Programmable Gate Array (FPGA), placed on a self-developed PCIe card, and installed on a high-performance computer that runs a hard real-time Linux operating system. For this purpose, algorithms for the efficient evaluation of data from a Shack-Hartmann wavefront sensor (SHWFS) on an FPGA have been developed. The corresponding analog input and output cards are designed for exploiting the maximum possible performance while not being constrained to a specific DM and control algorithm due to the RCP approach. In this second part of our contribution, we focus on recent results that we achieved with this novel experimental setup. By presenting results which are far superior to the former ones, we further justify the deployment of the RCP system and its required time and resources. We conducted various experiments for revealing the effective performance, i.e. the maximum manageable complexity in the controller design that may be achieved in real-time without performance losses. A detailed analysis of the hidden latencies is carried out, showing that these latencies have been drastically reduced. In addition, a series of concepts relating the evaluation of the wavefront as well as designing and synthesizing a wavefront are thoroughly investigated with the goal to overcome some of the prevalent limitations. Furthermore, principal results regarding the closed-loop performance of the low-speed dynamics of the integrated heater in a DM concept are illustrated in detail; to be combined with the piezo-electric high-speed actuators in the next step

  6. Photoevaporating stellar envelopes observed with Rayleigh beacon adaptive optics

    NASA Technical Reports Server (NTRS)

    Mccullough, P. R.; Fugate, R. Q.; Christou, J. C.; Ellerbroek, B. L.; Higgins, C. H.; Spinhirne, J. M.; Cleis, R. A.; Moroney, J. F.

    1995-01-01

    We present H-alpha and I-band images of a approximately 1 min diameter field centered on theta(sup 1) C Ori made with a unique adaptive optics system that uses either starlight or Rayleigh-backscattered laser light to correct for atmospheric wavefront distortion. Approximately one-half of the stars in this region are positionally associated with knots of ionized gas, which are interpreted as photoevaporating envelopes of low-mass stars. The acronyms 'partially ionized globule' (PIGs), external ionized (accretion) disks in the environs of radiation sources (EIDERs), or protoplanetary disks (ProPlyDs) all refer to these same knots. The H-alpha fluxes of the PIGs are proportional to their 2 cm radio continumm flux densities, and for nearly all the ionized knots, the 2 cm brightness temperatures are consistent with theta(sup 1) C Ori as the primary source of ionization. The comet-like morphology of the bright nebulosities is modeled as the result of an equilibrium between photoionization, recombination, and shadowing. The radii of the ionized 'head' of the cometary PIGs grow with distance from theta(sup 1) C Ori; the radii range from approximately less than or equal to 0.05 sec to approximately 0.25 sec. We interpret the size-distance relationship as evidence that the envelopes all have the same density profile and mass-loss rate within a factor of 2. Faint, arcuate wisps are observed 1 sec to 2 sec distance from some of the cometary nebulosities; these are modeled as bow shocks caused by the wind from theta(sup 1) C Ori. The positions of the stars associated with the PIGs in the observational H-R diagram indicate they are pre-main-sequence stars with masses less than approximately 3 solar mass, with approximately 1 solar mass being typical. Their medium I-K color is 2.9.

  7. Ultrahigh-speed ultrahigh-resolution adaptive optics: optical coherence tomography system for in-vivo small animal retinal imaging

    NASA Astrophysics Data System (ADS)

    Jian, Yifan; Xu, Jing; Zawadzki, Robert J.; Sarunic, Marinko V.

    2013-03-01

    Small animal models of human retinal diseases are a critical component of vision research. In this report, we present an ultrahigh-resolution ultrahigh-speed adaptive optics optical coherence tomography (AO-OCT) system for small animal retinal imaging (mouse, fish, etc.). We adapted our imaging system to different types of small animals in accordance with the optical properties of their eyes. Results of AO-OCT images of small animal retinas acquired with AO correction are presented. Cellular structures including nerve fiber bundles, capillary networks and detailed double-cone photoreceptors are visualized.

  8. An FPGA-based High Speed Parallel Signal Processing System for Adaptive Optics Testbed

    NASA Astrophysics Data System (ADS)

    Kim, H.; Choi, Y.; Yang, Y.

    In this paper a state-of-the-art FPGA (Field Programmable Gate Array) based high speed parallel signal processing system (SPS) for adaptive optics (AO) testbed with 1 kHz wavefront error (WFE) correction frequency is reported. The AO system consists of Shack-Hartmann sensor (SHS) and deformable mirror (DM), tip-tilt sensor (TTS), tip-tilt mirror (TTM) and an FPGA-based high performance SPS to correct wavefront aberrations. The SHS is composed of 400 subapertures and the DM 277 actuators with Fried geometry, requiring high speed parallel computing capability SPS. In this study, the target WFE correction speed is 1 kHz; therefore, it requires massive parallel computing capabilities as well as strict hard real time constraints on measurements from sensors, matrix computation latency for correction algorithms, and output of control signals for actuators. In order to meet them, an FPGA based real-time SPS with parallel computing capabilities is proposed. In particular, the SPS is made up of a National Instrument's (NI's) real time computer and five FPGA boards based on state-of-the-art Xilinx Kintex 7 FPGA. Programming is done with NI's LabView environment, providing flexibility when applying different algorithms for WFE correction. It also facilitates faster programming and debugging environment as compared to conventional ones. One of the five FPGA's is assigned to measure TTS and calculate control signals for TTM, while the rest four are used to receive SHS signal, calculate slops for each subaperture and correction signal for DM. With this parallel processing capabilities of the SPS the overall closed-loop WFE correction speed of 1 kHz has been achieved. System requirements, architecture and implementation issues are described; furthermore, experimental results are also given.

  9. Scientific goals for the MMT's multi-laser-guided adaptive optics

    NASA Astrophysics Data System (ADS)

    Lloyd-Hart, Michael; Stalcup, Thomas; Baranec, Christoph; Milton, N. Mark; Rademacher, Matthew; Snyder, Miguel; Meyer, Michael; Eisenstein, Daniel

    2006-06-01

    The MMT's five Rayleigh laser guide star system has successfully demonstrated open loop wavefront sensing for both ground-layer and laser tomography adaptive optics (AO). Closed loop correction is expected for the first time in the autumn of 2006. The program is moving into its second phase: construction of a permanent facility to feed AO instruments now used with the telescope's existing natural star AO system. The new facility will preserve the thermal cleanliness afforded by the system's adaptive secondary mirror. With the present laser power of 4 W in each of the Rayleigh beacons, we will first offer ground-layer correction over a 2 arcmin field in J, H, and K bands, with expected image quality routinely 0.2 arcsec or better. Later, we will also offer imaging and spectroscopy from 1.5 to 4.8 μm with a tomographically corrected diffraction limited beam. The development of these techniques will lead to a facility all-sky capability at the MMT for both ground-layer and diffraction-limited imaging, and will be a critical advance in the tools necessary for extremely large telescopes of the future, particularly the Giant Magellan Telescope. We describe the present state of system development, planned progress to completion, and highlight the early scientific applications.

  10. Design and progress toward a multi-conjugate adaptive optics system for distributed aberration correction

    SciTech Connect

    Baker, K; Olivier, S; Tucker, J; Silva, D; Gavel, D; Lim, R; Gratrix, E

    2004-08-17

    This article investigates the use of a multi-conjugate adaptive optics system to improve the field-of-view for the system. The emphasis of this research is to develop techniques to improve the performance of optical systems with applications to horizontal imaging. The design and wave optics simulations of the proposed system are given. Preliminary results from the multi-conjugate adaptive optics system are also presented. The experimental system utilizes a liquid-crystal spatial light modulator and an interferometric wave-front sensor for correction and sensing of the phase aberrations, respectively.

  11. Anisotropic optical flow algorithm based on self-adaptive cellular neural network

    NASA Astrophysics Data System (ADS)

    Zhang, Congxuan; Chen, Zhen; Li, Ming; Sun, Kaiqiong

    2013-01-01

    An anisotropic optical flow estimation method based on self-adaptive cellular neural networks (CNN) is proposed. First, a novel optical flow energy function which contains a robust data term and an anisotropic smoothing term is projected. Next, the CNN model which has the self-adaptive feedback operator and threshold is presented according to the Euler-Lagrange partial differential equations of the proposed optical flow energy function. Finally, the elaborate evaluation experiments indicate the significant effects of the various proposed strategies for optical flow estimation, and the comparison results with the other methods show that the proposed algorithm has better performance in computing accuracy and efficiency.

  12. High-performance oscillators employing adaptive optics comprised of discrete elements

    NASA Astrophysics Data System (ADS)

    Jackel, Steven M.; Moshe, Inon; Lavi, Raphael

    1999-05-01

    Flashlamp pumped oscillators utilizing Nd:Cr:GSGG or Nd:YAG rods were stabilized against varying levels of thermal focusing by use of a Variable Radius Mirror (VRM). In its simplest form, the VRM consisted of a lens followed by a concave mirror. Separation of the two elements controlled the radius of curvature of the reflected phase front. Addition of a concave-convex variable-separation cylindrical lens pair, allowed astigmatism to be corrected. These distributed optical elements together with a computer controlled servo system formed an adaptive optic capable of correcting the varying thermal focusing and astigmatism encountered in a Nd:YAG confocal unstable resonator (0 - 30 W) and in Nd:Cr:GSGG stable (hemispherical or concave- convex) resonators so that high beam quality could be maintained over the entire operating range. By utilizing resonators designed to eliminate birefringence losses, high efficiency could also be maintained. The ability to eliminate thermally induced losses in GSGG allows operating power to be increased into the range where thermal fracture is a factor. We present some results on the effect of surface finish (fine grind, grooves, chemical etch strengthening) on fracture limit and high gain operation.

  13. Application of adaptive optics for controlling the NIF laser performance and spot size

    NASA Astrophysics Data System (ADS)

    Sacks, Richard A.; Auerbach, Jerome M.; Bliss, Erlan S.; Henesian, Mark A.; Lawson, Janice K.; Manes, Kenneth R.; Renard, P. A.; Salmon, J. Thaddeus; Trenholme, John B.; Williams, Wade H.; Winters, Scott; Zacharias, Richard A.

    1999-07-01

    The National Ignition Facility (NIF) laser will use a 192- beam multi-pass architecture capable of delivering several MJ of UV energy in temporal phase formats varying from sub- ns square to 20 ns precisely-defined high-contrast shapes. Each beam wavefront will be subjected to effects of optics inhomogeneities, figuring errors, mounting distortions, prompt and slow thermal effects from flashlamps, driven and passive air-path turbulence, and gravity-driven deformations. A 39-actuator intra-cavity deformable mirror, controlled by data from a 77-lenslet Hartman sensor will be used to correct these wavefront aberrations and thus to assure that stringent farfield spot requirements are met. We have developed numerical models for the expected distortions, the operation of the adaptive optics systems, and the anticipated effects on beam propagation, component damage, frequency conversion, and target-plane energy distribution. These models have been extensively validated against data from LLNL's Beamlet, and Amplab lasers. We review the expected beam wavefront aberrations and their potential for adverse effects on the laser performance, describe our model of the corrective system operation, and display our predictions for corrected-beam operation of the NIF laser.

  14. Numerical Simulations of Optical Turbulence Using an Advanced Atmospheric Prediction Model: Implications for Adaptive Optics Design

    NASA Astrophysics Data System (ADS)

    Alliss, R.

    2014-09-01

    Optical turbulence (OT) acts to distort light in the atmosphere, degrading imagery from astronomical telescopes and reducing the data quality of optical imaging and communication links. Some of the degradation due to turbulence can be corrected by adaptive optics. However, the severity of optical turbulence, and thus the amount of correction required, is largely dependent upon the turbulence at the location of interest. Therefore, it is vital to understand the climatology of optical turbulence at such locations. In many cases, it is impractical and expensive to setup instrumentation to characterize the climatology of OT, so numerical simulations become a less expensive and convenient alternative. The strength of OT is characterized by the refractive index structure function Cn2, which in turn is used to calculate atmospheric seeing parameters. While attempts have been made to characterize Cn2 using empirical models, Cn2 can be calculated more directly from Numerical Weather Prediction (NWP) simulations using pressure, temperature, thermal stability, vertical wind shear, turbulent Prandtl number, and turbulence kinetic energy (TKE). In this work we use the Weather Research and Forecast (WRF) NWP model to generate Cn2 climatologies in the planetary boundary layer and free atmosphere, allowing for both point-to-point and ground-to-space seeing estimates of the Fried Coherence length (ro) and other seeing parameters. Simulations are performed using a multi-node linux cluster using the Intel chip architecture. The WRF model is configured to run at 1km horizontal resolution and centered on the Mauna Loa Observatory (MLO) of the Big Island. The vertical resolution varies from 25 meters in the boundary layer to 500 meters in the stratosphere. The model top is 20 km. The Mellor-Yamada-Janjic (MYJ) TKE scheme has been modified to diagnose the turbulent Prandtl number as a function of the Richardson number, following observations by Kondo and others. This modification

  15. Adaptive Optics Facility Status Report: When First Light Is Produced Rather Than Captured

    NASA Astrophysics Data System (ADS)

    Arsenault, R.; Madec, P.-Y.; Vernet, E.; Hackenberg, W.; Bonaccini Calia, D.; La Penna, P.; Paufique, J.; Kuntschner, H.; Pirard, J.-F.; Sarazin, M.; Haguenauer, P.; Hubin, N.; Vera, I.

    2016-06-01

    First light for the 4 Laser Guide Star Facility (4LGSF) took place in Paranal on 26 April 2016 with four laser units in operation for the first time. A combined test with the first laser guide star unit and the Ground Layer Adaptive optics Assisted by Lasers (GRAAL) instrument in October 2015 demonstrated the whole acquisition sequence of the Adaptive Optics Facility (AOF). Many tools that will support the operation of the AOF for science observations have meanwhile been implemented. GALACSI was granted Provisional Acceptance in Europe in April 2016, completing the system tests and qualification in Garching of the adaptive optics modules GRAAL and GALACSI (Ground Atmospheric Layer Adaptive Optics for Spectroscopic Imaging), their real-time computers and the deformable secondary mirror (DSM). Results of tests both in the laboratory and on sky are presented. The installation of the DSM and GALACSI will be completed by early 2017, to be followed by commissioning of all AOF systems.

  16. Monte Carlo modelling of multiconjugate adaptive optics performance on the European Extremely Large Telescope

    NASA Astrophysics Data System (ADS)

    Basden, A. G.

    2015-11-01

    The performance of a wide-field adaptive optics system depends on input design parameters. Here we investigate the performance of a multiconjugate adaptive optics system design for the European Extremely Large Telescope, using an end-to-end Monte Carlo adaptive optics simulation tool, DASP (Durham adaptive optics simulation platform). We consider parameters such as the number of laser guide stars, sodium layer depth, wavefront sensor pixel scale, number of deformable mirrors (DMs), mirror conjugation and actuator pitch. We provide potential areas where costs savings can be made, and investigate trade-offs between performance and cost. We conclude that a six-laser guide star system using three DMs seems to be a sweet spot for performance and cost compromise.

  17. An adaptive threshold detector and channel parameter estimator for deep space optical communications

    NASA Technical Reports Server (NTRS)

    Arabshahi, P.; Mukai, R.; Yan, T. -Y.

    2001-01-01

    This paper presents a method for optimal adaptive setting of ulse-position-modulation pulse detection thresholds, which minimizes the total probability of error for the dynamically fading optical fee space channel.

  18. Multi-laser-guided adaptive optics for the Large Binocular Telescope

    NASA Astrophysics Data System (ADS)

    Lloyd-Hart, M.; Angel, R.; Green, R.; Stalcup, T.; Milton, N. M.; Powell, K.

    2007-09-01

    We describe the conceptual design of an advanced laser guide star facility (LGSF) for the Large Binocular Telescope (LBT), to be built in collaboration with the LBT's international partners. The highest priority goal for the facility is the correction of ground-layer turbulence, providing partial seeing compensation in the near IR bands over a 4' field. In the H band, GLAO is projected to improve the median seeing from 0.55" to 0.2". The new facility will build on the LBT's natural guide star AO system, integrated into the telescope with correction by adaptive secondary mirrors, and will draw on Arizona's experience in the construction of the first multi-laser adaptive optics (AO) system at the 6.5 m MMT. The LGSF will use four Rayleigh beacons at 532 nm, projected to an altitude of 25 km, on each of the two 8.4 m component telescopes. Initial use of the system for ground layer correction will deliver image quality well matched to the LBT's two LUCIFER near IR instruments. They will be used for direct imaging over a 4'×4' field and will offer a unique capability in high resolution multi-object spectroscopy. The LGSF is designed to include long-term upgrade paths. Coherent imaging at the combined focus of the two apertures will be exploited by the LBT Interferometer in the thermal IR. Using the same launch optics, an axial sodium or Rayleigh beacon can be added to each constellation, for tomographic wavefront reconstruction and diffraction limited imaging over the usual isoplanatic patch. In the longer term, a second DM conjugated to high altitude is foreseen for the LBT's LINC-NIRVANA instrument, which would extend the coherent diffraction-limited field to an arcminute in diameter with multi-conjugate AO.

  19. Operational concept of the VLT's adaptive optics facility and its instruments

    NASA Astrophysics Data System (ADS)

    Kuntschner, H.; Amico, P.; Kolb, J.; Madec, P. Y.; Arsenault, R.; Sarazin, M.; Summers, D.

    2012-09-01

    The ESO Adaptive Optics Facility (AOF) will transform UT4 of the VLT into a laser driven adaptive telescope in which the corrective optics, specifically the deformable secondary mirror, and the four Laser Guide Star units are integrated. Three instruments, with their own AO modules to provide field selection capabilities and wavefront sensing, will make use of this system to provide a variety of observing modes that span from large field IR imaging with GLAO, to integral field visible spectroscopy with both GLAO and LTAO, to SCAO high Strehl imaging and spectroscopy. Each of these observing modes carries its specific demands on observing conditions. Optimal use of telescope night-time, with such a high in demand and versatile instruments suite, is mandatory to maintain and even improve upon the scientific output of the facility. This implies that the standard VLT model for operations must be updated to cover these partly new demands. In particular, we discuss three key aspects: (1) the need for an upgrade of the site monitoring facilities to provide the operators with real-time information on the environmental conditions, including the ground layer strength, and their evolution throughout the night; (2) a set of tools and procedures to effectively use these data to optimize the short-term scheduling (i.e. with granularity of one night) of the telescope and (3) the upgrade of the current laser beam avoidance software to better cope with the AOF operational scheme, where the four laser units are continuously operated as long as the atmospheric conditions allow.

  20. Observation of cone and rod photoreceptors in normal subjects and patients using a new generation adaptive optics scanning laser ophthalmoscope

    PubMed Central

    Merino, David; Duncan, Jacque L.; Tiruveedhula, Pavan; Roorda, Austin

    2011-01-01

    We demonstrate the capability of a new generation adaptive optics scanning laser ophthalmoscope (AOSLO) to resolve cones and rods in normal subjects, and confirm our findings by comparing cone and rod spacing with published histology measurements. Cone and rod spacing measurements are also performed on AOSLO images from two different diseased eyes, one affected by achromatopsia and the other by acute zonal occult outer retinopathy (AZOOR). The potential of AOSLO technology in the study of these and other retinal diseases is illustrated. PMID:21833357

  1. Adaptive Integrated Optical Bragg Grating in Semiconductor Waveguide Suitable for Optical Signal Processing

    NASA Astrophysics Data System (ADS)

    Moniem, T. A.

    2016-05-01

    This article presents a methodology for an integrated Bragg grating using an alloy of GaAs, AlGaAs, and InGaAs with a controllable refractive index to obtain an adaptive Bragg grating suitable for many applications on optical processing and adaptive control systems, such as limitation and filtering. The refractive index of a Bragg grating is controlled by using an external electric field for controlling periodic modulation of the refractive index of the active waveguide region. The designed Bragg grating has refractive indices programmed by using that external electric field. This article presents two approaches for designing the controllable refractive indices active region of a Bragg grating. The first approach is based on the modification of a planar micro-strip structure of the iGaAs traveling wave as the active region, and the second is based on the modification of self-assembled InAs/GaAs quantum dots of an alloy from GaAs and InGaAs with a GaP traveling wave. The overall design and results are discussed through numerical simulation by using the finite-difference time-domain, plane wave expansion, and opto-wave simulation methods to confirm its operation and feasibility.

  2. High resolution mesospheric sodium properties for adaptive optics applications

    NASA Astrophysics Data System (ADS)

    Pfrommer, T.; Hickson, P.

    2014-05-01

    Context. The performance of laser guide star adaptive optics (AO) systems for large optical and infrared telescopes is affected by variability of the sodium layer, located at altitudes between 80 and 120 km in the upper mesosphere and lower thermosphere. The abundance and density structure of the atomic sodium found in this region is subject to local and global weather effects, planetary and gravity waves and magnetic storms, and is variable on time scales down to tens of milliseconds, a range relevant to AO. Aims: It is therefore important to characterize the structure and dynamical evolution of the sodium region on small, as well as large spatial and temporal scales. Parameters of particular importance for AO are the mean sodium altitude, sodium layer width and the temporal power spectrum of the centroid altitude. Methods: We have conducted a three-year campaign employing a high-resolution lidar system installed on the 6-m Large Zenith Telescope (LZT) located near Vancouver, Canada. During this period, 112 nights of useful data were obtained. Results: The vertical density profile of atomic sodium shows remarkable structure and variability. Smooth Gaussian-shaped profiles rarely occur. Multiple internal layers are frequently found. These layers often have sharp lower edges, with scale heights of just a few hundred meters, and tend to drift downwards at a typical rate of one kilometer every two to three hours. Individual layers can persist for many hours, but their density and internal structure can be highly variable. Sporadic layers are seen reaching peak densities several times the average, often in just a few minutes. Coherent vertical oscillations are often found, typically extending over tens of kilometers in altitude. Regions of turbulence are evident and Kelvin-Helmholtz instability are sometimes seen. The mean value of the centroid altitude is found to be 90.8 ± 0.1 km. The sodium layer width was determined by computing the altitude range that contains a

  3. Comparison of cooperative and non-cooperative adaptive optics reference performance for propagation with thermal blooming effects

    NASA Astrophysics Data System (ADS)

    Edwards, Brian E.; Nitkowski, Arthur; Lawrence, Ryan; Horton, Kasey; Higgs, Charles

    2004-10-01

    Atmospheric turbulence and laser-induced thermal blooming effects can degrade the beam quality of a high-energy laser (HEL) weapon, and ultimately limit the amount of energy deliverable to a target. Lincoln Laboratory has built a thermal blooming laboratory capable of emulating atmospheric thermal blooming and turbulence effects for tactical HEL systems. The HEL weapon emulation hardware includes an adaptive optics beam delivery system, which utilizes a Shack-Hartman wavefront sensor and a 349 actuator deformable mirror. For this experiment, the laboratory was configured to emulate an engagement scenario consisting of sea skimming target approaching directly toward the HEL weapon at a range of 10km. The weapon utilizes a 1.5m aperture and radiates at a 1.62 micron wavelength. An adaptive optics reference beam was provided as either a point source located at the target (cooperative) or a projected point source reflected from the target (uncooperative). Performance of the adaptive optics system was then compared between reference sources. Results show that, for operating conditions with a thermal blooming distortion number of 75 and weak turbulence (Rytov of 0.02 and D/ro of 3), cooperative beacon AO correction experiences Phase Compensation Instability, resulting in lower performance than a simple, open-loop condition. The uncooperative beacon resulted in slightly better performance than the open-loop condition.

  4. Optical Communication System for Remote Monitoring and Adaptive Control of Distributed Ground Sensors Exhibiting Collective Intelligence

    SciTech Connect

    Cameron, S.M.; Stantz, K.M.; Trahan, M.W.; Wagner, J.S.

    1998-11-01

    Comprehensive management of the battle-space has created new requirements in information management, communication, and interoperability as they effect surveillance and situational awareness. The objective of this proposal is to expand intelligent controls theory to produce a uniquely powerful implementation of distributed ground-based measurement incorporating both local collective behavior, and interoperative global optimization for sensor fusion and mission oversight. By using a layered hierarchal control architecture to orchestrate adaptive reconfiguration of autonomous robotic agents, we can improve overall robustness and functionality in dynamic tactical environments without information bottlenecks. In this concept, each sensor is equipped with a miniaturized optical reflectance modulator which is interactively monitored as a remote transponder using a covert laser communication protocol from a remote mothership or operative. Robot data-sharing at the ground level can be leveraged with global evaluation criteria, including terrain overlays and remote imaging data. Information sharing and distributed intelli- gence opens up a new class of remote-sensing applications in which small single-function autono- mous observers at the local level can collectively optimize and measure large scale ground-level signals. AS the need for coverage and the number of agents grows to improve spatial resolution, cooperative behavior orchestrated by a global situational awareness umbrella will be an essential ingredient to offset increasing bandwidth requirements within the net. A system of the type described in this proposal will be capable of sensitively detecting, tracking, and mapping spatial distributions of measurement signatures which are non-stationary or obscured by clutter and inter- fering obstacles by virtue of adaptive reconfiguration. This methodology could be used, for example, to field an adaptive ground-penetrating radar for detection of underground structures in

  5. Adaptive optics-assisted optical coherence tomography for imaging of patients with age related macular degeneration

    NASA Astrophysics Data System (ADS)

    Sudo, Kenta; Cense, Barry

    2013-03-01

    We developed an optical coherence tomography (OCT) prototype with a sample arm that uses a 3.4 mm beam, which is considerably larger than the 1.2 to 1.5 mm beam that is used in commercialized OCT systems. The system is equipped with adaptive optics (AO), and to distinguish it from traditional AO-OCT systems with a larger 6 mm beam we have coined this concept AO-assisted OCT. Compared to commercialized OCT systems, the 3.4 mm aperture combined with AO improves light collection efficiency and imaging lateral resolution. In this paper, the performance of the AOa-OCT system was compared to a standard OCT system and demonstrated for imaging of age-related macular degeneration (AMD). Measurements were performed on the retinas of three human volunteers with healthy eyes and on one eye of a patient diagnosed with AMD. The AO-assisted OCT system imaged retinal structures of healthy human eyes and a patient eye affected by AMD with higher lateral resolution and a 9° by 9° field of view. This combination of a large isoplanatic patch and high lateral resolution can be expected to fill a gap between standard OCT with a 1.2 mm beam and conventional AO-OCT with a 6 mm beam and a 1.5° by 1.5° isoplanatic patch.

  6. Spectral Domain Optical Coherence Tomography and Adaptive Optics: Imaging Photoreceptor Layer Morphology to Interpret Preclinical Phenotypes

    PubMed Central

    Rha, Jungtae; Dubis, Adam M.; Wagner-Schuman, Melissa; Tait, Diane M.; Godara, Pooja; Schroeder, Brett; Stepien, Kimberly

    2012-01-01

    Recent years have seen the emergence of advances in imaging technology that enable in vivo evaluation of the living retina. Two of the more promising techniques, spectral domain optical coherence tomography (SD-OCT) and adaptive optics (AO) fundus imaging provide complementary views of the retinal tissue. SD-OCT devices have high axial resolution, allowing assessment of retinal lamination, while the high lateral resolution of AO allows visualization of individual cells. The potential exists to use one modality to interpret results from the other. As a proof of concept, we examined the retina of a 32 year-old male, previously diagnosed with a red-green color vision defect. Previous AO imaging revealed numerous gaps throughout his cone mosaic, indicating that the structure of a subset of cones had been compromised. Whether the affected cells had completely degenerated or were simply morphologically deviant was not clear. Here an AO fundus camera was used to re-examine the retina (~6 years after initial exam) and SD-OCT to examine retinal lamination. The static nature of the cone mosaic disruption combined with the normal lamination on SD-OCT suggests that the affected cones are likely still present. PMID:20238030

  7. Adaptive optics-optical coherence tomography: optimizing visualization of microscopic retinal structures in three dimensions

    NASA Astrophysics Data System (ADS)

    Zawadzki, Robert J.; Choi, Stacey S.; Jones, Steven M.; Oliver, Scot S.; Werner, John S.

    2007-05-01

    Adaptive optics-optical coherence tomography (AO-OCT) permits improved imaging of microscopic retinal structures by combining the high lateral resolution of AO with the high axial resolution of OCT, resulting in the narrowest three-dimensional (3D) point-spread function (PSF) of all in vivo retinal imaging techniques. Owing to the high volumetric resolution of AO-OCT systems, it is now possible, for the first time, to acquire images of 3D cellular structures in the living retina. Thus, with AO-OCT, those retinal structures that are not visible with AO or OCT alone (e.g., bundles of retinal nerve fiber layers, 3D mosaic of photoreceptors, 3D structure of microvasculature, and detailed structure of retinal disruptions) can be visualized. Our current AO-OCT instrumentation uses spectrometer-based Fourier-domain OCT technology and two-deformable-mirror-based AO wavefront correction. We describe image processing methods that help to remove motion artifacts observed in volumetric data, followed by innovative data visualization techniques [including two-dimensional (2D) and 3D representations]. Finally, examples of microscopic retinal structures that are acquired with the University of California Davis AO-OCT system are presented.

  8. The Adaptive Optics Lucky Imager: Diffraction limited imaging at visible wavelengths with large ground-based telescopes

    NASA Astrophysics Data System (ADS)

    Crass, Jonathan; Mackay, Craig; King, David; Rebolo-López, Rafael; Labadie, Lucas; Puga, Marta; Oscoz, Alejandro; González Escalera, Victor; Pérez Garrido, Antonio; López, Roberto; Pérez-Prieto, Jorge; Rodríguez-Ramos, Luis; Velasco, Sergio; Villó, Isidro

    2015-01-01

    One of the continuing challenges facing astronomers today is the need to obtain ever higher resolution images of the sky. Whether studying nearby crowded fields or distant objects, with increased resolution comes the ability to probe systems in more detail and advance our understanding of the Universe. Obtaining these high-resolution images at visible wavelengths however has previously been limited to the Hubble Space Telescope (HST) due to atmospheric effects limiting the spatial resolution of ground-based telescopes to a fraction of their potential. With HST now having a finite lifespan, it is prudent to investigate other techniques capable of providing these kind of observations from the ground. Maintaining this capability is one of the goals of the Adaptive Optics Lucky Imager (AOLI).Achieving the highest resolutions requires the largest telescope apertures, however, this comes at the cost of increased atmospheric distortion. To overcome these atmospheric effects, there are two main techniques employed today: adaptive optics (AO) and lucky imaging. These techniques individually are unable to provide diffraction limited imaging in the visible on large ground-based telescopes; AO currently only works at infrared wavelengths while lucky imaging reduces in effectiveness on telescopes greater than 2.5 metres in diameter. The limitations of both techniques can be overcome by combing them together to provide diffraction limited imaging at visible wavelengths on the ground.The Adaptive Optics Lucky Imager is being developed as a European collaboration and combines AO and lucky imaging in a dedicated instrument for the first time. Initially for use on the 4.2 metre William Herschel Telescope, AOLI uses a low-order adaptive optics system to reduce the effects of atmospheric turbulence before imaging with a lucky imaging based science detector. The AO system employs a novel type of wavefront sensor, the non-linear Curvature Wavefront Sensor (nlCWFS) which provides

  9. Sensorless adaptive optics and the effect of field of view in biological second harmonic generation microscopy

    NASA Astrophysics Data System (ADS)

    Vandendriessche, Stefaan; Vanbel, Maarten K.; Verbiest, Thierry

    2014-05-01

    In light of the population aging in many developed countries, there is a great economical interest in improving the speed and cost-efficiency of healthcare. Clinical diagnosis tools are key to these improvements, with biophotonics providing a means to achieve them. Standard optical microscopy of in vitro biological samples has been an important diagnosis tool since the invention of the microscope, with well known resolution limits. Nonlinear optical imaging improves on the resolution limits of linear microscopy, while providing higher contrast images and a greater penetration depth due to the red-shifted incident light compared to standard optical microscopy. It also provides information on molecular orientation and chirality. Adaptive optics can improve the quality of nonlinear optical images. We analyzed the effect of sensorless adaptive optics on the quality of the nonlinear optical images of biological samples. We demonstrate that care needs to be taken when using a large field of view. Our findings provide information on how to improve the quality of nonlinear optical imaging, and can be generalized to other in vitro biological samples. The image quality improvements achieved by adaptive optics should help speed up clinical diagnostics in vitro, while increasing their accuracy and helping decrease detection limits. The same principles apply to in vivo biological samples, and in the future it may be possible to extend these findings to other nonlinear optical effects used in biological imaging.

  10. Faraday-effect light-valve arrays for adaptive optical instruments

    SciTech Connect

    Hirleman, E.D.; Dellenback, P.A.

    1987-01-01

    The ability to adapt to a range of measurement conditions by autonomously configuring software or hardware on-line will be an important attribute of next-generation intelligent sensors. This paper reviews the characteristics of spatial light modulators (SLM) with an emphasis on potential integration into adaptive optical instruments. The paper focuses on one type of SLM, a magneto-optic device based on the Faraday effect. Finally, the integration of the Faraday-effect SLM into a laser-diffraction particle-sizing instrument giving it some ability to adapt to the measurement context is discussed.

  11. Three dimensional laser microfabrication in diamond using a dual adaptive optics system.

    PubMed

    Simmonds, Richard D; Salter, Patrick S; Jesacher, Alexander; Booth, Martin J

    2011-11-21

    Femtosecond laser fabrication of controlled three dimensional structures deep in the bulk of diamond is facilitated by a dual adaptive optics system. A deformable mirror is used in parallel with a liquid crystal spatial light modulator to compensate the extreme aberrations caused by the refractive index mismatch between the diamond and the objective immersion medium. It is shown that aberration compensation is essential for the generation of controlled micron-scale features at depths greater than 200 μm, and the dual adaptive optics approach demonstrates increased fabrication efficiency relative to experiments using a single adaptive element. PMID:22109438

  12. Membrane dish analysis: A summary of structural and optical analysis capabilities

    SciTech Connect

    Steele, C.R.; Balch, C.D.; Jorgensen, G.J.; Wendelin, T.; Lewandowski, A.

    1991-11-01

    Research at SERI within the Department of Energy's Solar Thermal Technology Program has focused on the development of membrane dish concentrators for space and terrestrial power applications. As potentially lightweight, inexpensive, high-performance structures, they are excellent candidates for space-deployable energy sources as well as cost-effective terrestrial energy concepts. A thorough engineering research treatment of these types of structures consists primarily of two parts: (1) structural mechanics of the membrane and ring support and (2) analysis and characterization of the concentrator optical performance. It is important to understand the effects of the membrane's structure and support system on the optical performance of the concentrator. This requires an interface between appropriate structural and optical models. Until recently, such models and the required interface have not existed. This report documents research that has been conducted at SERI in this area. It is a compilation of several papers describing structural models of membrane dish structures and optical models used to predict dish concentrator optical and thermal performance. The structural models were developed under SERI subcontract by Dr. Steele and Dr. Balch of Stanford University. The optical model was developed in-house by SERI staff. In addition, the interface between the models is described. It allows easy and thorough characterization of membrane dish systems from the mechanics to the resulting optical performance. The models described herein have been and continue to be extremely useful to SERI, industry, and universities involved with the modeling and analysis of lightweight membrane concentrators for solar thermal applications.

  13. Computer simulations of a new three rods ion optic (TRIPOLE) with high focusing and mass filtering capabilities.

    PubMed

    Salazar, Gary Abdiel; Masujima, Tsutomu

    2007-03-01

    A novel three rod (tripole) ion optic to which three AC voltages with symmetrically delayed phase shifts were applied to each electrode. We studied its ion guiding, focusing, and mass filtering capabilities by SIMION ver. 7.0 computer simulations. An electric field mathematical model was developed to calculate the pseudopotential of the tripole radial AC force. The tripole showed stable ion guiding for wide ranges of AC amplitude; better collisional focusing than hexapole and octapole and similar focusing as quadrupole (rod pole). Also, the ion optic clearly showed interesting mass filtering potential when the phase shift was asymmetrically delayed. The symmetric shape of the pseudopotential field explained the tripole ion guiding and focusing capabilities. For mass filtering, the pseudopotential was asymmetric and its effect was balanced with DC voltage to separate the ions, depending in their masses. The resolution was much lower than quadrupole but useful when rough filtering was required. PMID:17142055

  14. Optical design for the narrow field infrared adaptive optics system (NFIRAOS) petite on the thirty meter telescope

    NASA Astrophysics Data System (ADS)

    Bauman, Brian J.; Gavel, Donald T.; Dekany, Richard G.; Ellerbroek, Brent L.

    2005-08-01

    We describe an exploratory optical design for the Narrow Field InfraRed Adaptive Optics (AO) System (NFIRAOS) Petite, a proposed adaptive optics system for the Thirty Meter Telescope Project. NFIRAOS will feed infrared spectrograph and wide-field imaging instruments with a diffraction limited beam. The adaptive optics system will require multi-guidestar tomographic wavefront sensing (WFS) and multi-conjugate AO correction. The NFIRAOS Petite design specifications include two small 60 mm diameter deformable mirrors (DM's) used in a woofer/tweeter or multiconjugate arrangement. At least one DM would be a micro-electromechanical system (MEMS) DM. The AO system would correct a 10 to 30 arcsec diameter science field as well as laser guide stars (LGS's) located within a 60 arcsec diameter field and low-order or tip/tilt natural guide stars (NGS's) within a 60 arcsec diameter field. The WFS's are located downstream of the DM's so that they can be operated in true closed-loop, which is not necessarily a given in extremely large telescope adaptive optics design. The WFS's include adjustable corrector elements which correct the static aberrations of the AO relay due to field position and LGS distance height.

  15. Optical design for the Narrow Field InfraRed Adaptive Optics System (NFIRAOS) Petite on the Thirty Meter Telescope

    SciTech Connect

    Bauman, B; Gavel, D; Dekany, R; Ellerbroek, B

    2005-08-02

    We describe an exploratory optical design for the Narrow Field InfraRed Adaptive Optics (AO) System (NFIRAOS) Petite, a proposed adaptive optics system for the Thirty Meter Telescope Project. NFIRAOS will feed infrared spectrograph and wide-field imaging instruments with a diffraction limited beam. The adaptive optics system will require multi-guidestar tomographic wavefront sensing and multi-conjugate AO correction. The NFIRAOS Petite design specifications include two small 60 mm diameter deformable mirrors (DM's) used in a woofer/tweeter or multiconjugate arrangement. At least one DM would be a micro-electromechanical system (MEMS) DM. The AO system would correct a 10 to 30 arcsec diameter science field as well as laser guide stars (LGS's) located within a 60 arcsec diameter field and low-order or tip/tilt natural guide stars (NGS's) within a 60 arcsec diameter field. The WFS's are located downstream of the DM's so that they can be operated in true closed-loop, which is not necessarily a given in extremely large telescope adaptive optics design. The WFS's include adjustable corrector elements which correct the static aberrations of the AO relay due to field position and LGS distance height.

  16. First-order design of off-axis reflective ophthalmic adaptive optics systems using afocal telescopes.

    PubMed

    Gómez-Vieyra, Armando; Dubra, Alfredo; Malacara-Hernández, Daniel; Williams, David R

    2009-10-12

    Expressions for minimal astigmatism in image and pupil planes in off-axis afocal reflective telescopes formed by pairs of spherical mirrors are presented. These formulae which are derived from the marginal ray fan equation can be used for designing laser cavities, spectrographs and adaptive optics retinal imaging systems. The use, range and validity of these formulae are limited by spherical aberration and coma for small and large angles respectively. This is discussed using examples from adaptive optics retinal imaging systems. The performance of the resulting optical designs are evaluated and compared against the configurations with minimal wavefront RMS, using the defocus-corrected wavefront RMS as a metric. PMID:20372626

  17. High-Resolution Adaptive Optics Test-Bed for Vision Science

    SciTech Connect

    Wilks, S C; Thomspon, C A; Olivier, S S; Bauman, B J; Barnes, T; Werner, J S

    2001-09-27

    We discuss the design and implementation of a low-cost, high-resolution adaptive optics test-bed for vision research. It is well known that high-order aberrations in the human eye reduce optical resolution and limit visual acuity. However, the effects of aberration-free eyesight on vision are only now beginning to be studied using adaptive optics to sense and correct the aberrations in the eye. We are developing a high-resolution adaptive optics system for this purpose using a Hamamatsu Parallel Aligned Nematic Liquid Crystal Spatial Light Modulator. Phase-wrapping is used to extend the effective stroke of the device, and the wavefront sensing and wavefront correction are done at different wavelengths. Issues associated with these techniques will be discussed.

  18. Retinal imaging with adaptive optics scanning laser ophthalmoscopy in unexplained central ring scotoma.

    PubMed

    Joeres, Sandra; Jones, Steven M; Chen, Diana C; Silva, Dennis; Olivier, Scot; Fawzi, Amani; Castellarin, Alessandro; Sadda, Srinivas R

    2008-04-01

    Adaptive optics scanning laser ophthalmoscopy allows for noninvasive, in vivo visualization of retinal abnormalities at a cellular level. We herein describe for the first time, to our knowledge, the utility of high-resolution retinal imaging in studying the photoreceptor mosaic in an otherwise unexplained visual disturbance. Imaging of the cone mosaic was performed in a 64-year-old man with a unilateral ringlike paracentral distortion that could not be explained using common clinical imaging instruments. Adaptive optics scanning laser ophthalmoscopy findings revealed a parafoveal circular abnormality of the cone mosaic approximately 3 degrees in diameter that corresponded to the ring of visual disturbance. Visualization of the cone mosaic with adaptive optics scanning laser ophthalmoscopy can reveal photoreceptor damage that may not be detectable with standard imaging devices. Optical axial sectioning of the retina may help in identifying and localizing abnormalities within the retinal layers. PMID:18413527

  19. Development and Analysis of a Waffle Constrained Reconstructor (WCR) for Fried Geometry Adaptive Optics Systems

    NASA Astrophysics Data System (ADS)

    Praus, R.

    2014-09-01

    A common difficulty of Fried geometry-based adaptive optics is the build-up of the unsensed spatial wavefront mode called waffle. This paper presents a Fried geometry wavefront reconstructor matrix which ameliorates the impact the waffle mode in closed-loop adaptive optics systems. Typical waffle suppression algorithms employ spatial filters that can adversely affect the adaptive optics system's ability to correct the highest spatial frequencies. Because it is not based on spatial filtering techniques, but on algebraic constraints in the development of the reconstructor matrix itself, the waffle constrained reconstructor does not sacrifice correction of high spatial frequencies in order to reduce waffle. This paper will provide the mathematical development of the waffle constrained reconstructor and provide analysis of its closed-loop performance as compared to other recontructors utilizing high-fidelity wave-optics simulations.

  20. Adaptive optics for deeper imaging of biological samples.

    PubMed

    Girkin, John M; Poland, Simon; Wright, Amanda J

    2009-02-01

    Optical microscopy has been a cornerstone of life science investigations since its first practical application around 400 years ago with the goal being subcellular resolution, three-dimensional images, at depth, in living samples. Nonlinear microscopy brought this dream a step closer, but as one images more deeply the material through which you image can greatly distort the view. By using optical devices, originally developed for astronomy, whose optical properties can be changed in real time, active compensation for sample-induced aberrations is possible. Submicron resolution images are now routinely recorded from depths over 1mm into tissue. Such active optical elements can also be used to keep conventional microscopes, both confocal and widefield, in optimal alignment. PMID:19272766

  1. Electroactive and Optically Adaptive Bionanocomposite for Reconfigurable Microlens.

    PubMed

    Sadasivuni, Kishor Kumar; Ponnamma, Deepalekshmi; Ko, Hyun-U; Zhai, Lindong; Kim, Hyun-Chan; Kim, Jaehwan

    2016-05-26

    This paper introduces an electroactive bionanocomposite based on poly(diethylene glycol adipate) (PDEGA) and cellulose nanocrystals (CNCs). The bionanocomposites were made using CNCs extracted from cotton and by optimizing its concentration in terms of the optical transmittance and viscosity. The characteristic properties of the materials were analyzed using contact angle measurements and Fourier transformation infrared spectra. Using the PDEGA/CNC bionanocomposite at a very low concentration of CNCs, a configurable lens having a robust, self-contained tunable optical structure was developed. The shape and curvature of the soft PDEGA/CNC device were controlled by applying voltage, and the focal length was measured. The simple structure, high optical transparency, biodegradability, thermal stability, high durability, and low power consumption make the new material particularly useful in fabricating a reconfigurable lens for future electronic and optical devices. PMID:27163166

  2. Imaging human retinal pigment epithelium cells using adaptive optics optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Liu, Zhuolin; Kocaoglu, Omer P.; Turner, Timothy L.; Miller, Donald T.

    2016-03-01

    Retinal pigment epithelium (RPE) cells are vital to health of the outer retina, but are often compromised in ageing and major ocular diseases that lead to blindness. Early manifestation of RPE disruption occurs at the cellular level, and while biomarkers at this scale hold considerable promise, RPE cells have proven extremely challenging to image in the living human eye. We present a novel method based on optical coherence tomography (OCT) equipped with adaptive optics (AO) that overcomes the associated technical obstacles. The method takes advantage of the 3D resolution of AO-OCT, but more critically sub-cellular segmentation and registration that permit organelle motility to be used as a novel contrast mechanism. With this method, we successfully visualized RPE cells and characterized their 3D reflectance profile in every subject and retinal location (3° and 7° temporal to the fovea) imaged to date. We have quantified RPE packing geometry in terms of cell density, cone-to-RPE ratio, and number of nearest neighbors using Voronoi and power spectra analyses. RPE cell density (cells/mm2) showed no significant difference between 3° (4,892+/-691) and 7° (4,780+/-354). In contrast, cone-to- RPE ratio was significantly higher at 3° (3.88+/-0.52:1) than 7° (2.31+/- 0.23:1). Voronoi analysis also showed most RPE cells have six nearest neighbors, which was significantly larger than the next two most prevalent associations: five and seven. Averaged across the five subjects, prevalence of cells with six neighbors was 51.4+/-3.58% at 3°, and 54.58+/-3.01% at 7°. These results are consistent with histology and in vivo studies using other imaging modalities.

  3. Adaptive optics OCT using 1060nm swept source and dual deformable lenses for human retinal imaging

    NASA Astrophysics Data System (ADS)

    Jian, Yifan; Lee, Sujin; Cua, Michelle; Miao, Dongkai; Bonora, Stefano; Zawadzki, Robert J.; Sarunic, Marinko V.

    2016-03-01

    Adaptive optics concepts have been applied to the advancement of biological imaging and microscopy. In particular, AO has also been very successfully applied to cellular resolution imaging of the retina, enabling visualization of the characteristic mosaic patterns of the outer retinal layers using flood illumination fundus photography, Scanning Laser Ophthalmoscopy (SLO), and Optical Coherence Tomography (OCT). Despite the high quality of the in vivo images, there has been a limited uptake of AO imaging into the clinical environment. The high resolution afforded by AO comes at the price of limited field of view and specialized equipment. The implementation of a typical adaptive optics imaging system results in a relatively large and complex optical setup. The wavefront measurement is commonly performed using a Hartmann-Shack Wavefront Sensor (HS-WFS) placed at an image plane that is optically conjugated to the eye's pupil. The deformable mirror is also placed at a conjugate plane, relaying the wavefront corrections to the pupil. Due to the sensitivity of the HS-WFS to back-reflections, the imaging system is commonly constructed from spherical mirrors. In this project, we present a novel adaptive optics OCT retinal imaging system with significant potential to overcome many of the barriers to integration with a clinical environment. We describe in detail the implementation of a compact lens based wavefront sensorless adaptive optics (WSAO) 1060nm swept source OCT human retinal imaging system with dual deformable lenses, and present retinal images acquired in vivo from research volunteers.

  4. A simplified free-space adaptive optics system against atmospheric turbulence

    NASA Astrophysics Data System (ADS)

    Sharma, Sanjay

    2012-03-01

    Optical free-space communications have the distinct advantages over conventional radio frequency and microwave systems in terms of information capacity and increased security. However, optical carrier frequencies drastically suffer due to atmospheric turbulence. This effect is a random process and time-varying process; therefore, it is very difficult to overcome the effect. Adaptive optics is the technology used to mitigate chaotic optical wave-front distortions in real time by measuring the wave-front distortion with the help of a sensor and then adapting the wave-front corrector to lessen the phase distortions and ultimately to recover a closely approximated signal to its original counterpart. But these systems are too expensive and large. This study employs the various aspects of Adaptive Optics system, such as wave-front corrector, wave-front sensors and analytical analysis of open and closed-loop systems using loop equations, in order to make free-space optics communication links more vulnerable against atmospheric turbulence and wave-front phase distributions. The purpose of this study is to investigate a wave-front sensorless adaptive optics system, which would provide reduced complexity, size and cost.

  5. Membrane dish analysis: A summary of structural and optical analysis capabilities

    SciTech Connect

    Steele, C.R.; Balch, C.D.; Jorgensen, G.J.; Wendelin, T.; Lewandowski, A.

    1991-11-01

    Research at SERI within the Department of Energy`s Solar Thermal Technology Program has focused on the development of membrane dish concentrators for space and terrestrial power applications. As potentially lightweight, inexpensive, high-performance structures, they are excellent candidates for space-deployable energy sources as well as cost-effective terrestrial energy concepts. A thorough engineering research treatment of these types of structures consists primarily of two parts: (1) structural mechanics of the membrane and ring support and (2) analysis and characterization of the concentrator optical performance. It is important to understand the effects of the membrane`s structure and support system on the optical performance of the concentrator. This requires an interface between appropriate structural and optical models. Until recently, such models and the required interface have not existed. This report documents research that has been conducted at SERI in this area. It is a compilation of several papers describing structural models of membrane dish structures and optical models used to predict dish concentrator optical and thermal performance. The structural models were developed under SERI subcontract by Dr. Steele and Dr. Balch of Stanford University. The optical model was developed in-house by SERI staff. In addition, the interface between the models is described. It allows easy and thorough characterization of membrane dish systems from the mechanics to the resulting optical performance. The models described herein have been and continue to be extremely useful to SERI, industry, and universities involved with the modeling and analysis of lightweight membrane concentrators for solar thermal applications.

  6. Characterization Of High-Stroke High-Aspect Ratio Micro Electro Mechanical Systems Deformable Mirrors For Adaptive Optics

    NASA Astrophysics Data System (ADS)

    Bouchti, Mohamed Amine

    Adaptive optics MEMS deformable mirror, in conjunction with Shack Hartman wave front sensor and real-time controller, is capable of correcting time-varying aberrations in imaging applications through manipulating its mirror surface. Adaptive optics systems in astronomy for next generation large telescopes (30 meter primary mirrors) require a high stroke of 10microm of mechanical displacement. This required stroke would be achieved by MEMS deformable mirrors fabricated with high aspect ratio techniques. This thesis will review the designs of various types of high aspect actuators consisting of folded springs with rectangular and circular membranes as well as X-beam actuators. Finite element analysis (FEA) simulations of these designs have shown the ability of each design to achieve a stroke of approximately 9.4 microm. Also, FEA simulations proved that the X-beam actuators provide the best spring support while preventing tilting. In addition, this thesis will discuss device characterization and voltage vs. displacement test results for the high aspect ratio gold MEMS 16 x 16 X-beam actuators deformable mirror that has been bonded and packaged. The results have shown that the device is capable of achieving approximately 5.5 microm in individual actuator testing and 7microm in dual actuator testing.

  7. Development of Infrared Phase Closure Capability in the Infrared-Optical Telescope Array (IOTA)

    NASA Technical Reports Server (NTRS)

    Traub, Wesley A.

    2002-01-01

    We completed all major fabrication and testing for the third telescope and phase-closure operation at the Infrared-Optical Telescope Array (IOTA) during this period. In particular we successfully tested the phase-closure operation, using a laboratory light source illuminating the full delay-line optical paths, and using an integrated-optic beam combiner coupled to our Picnic-detector camera. This demonstration is an important and near-final milestone achievement. As of this writing, however, several tasks yet remain, owing to development snags and weather, so the final proof of success, phase-closure observation of a star, is now expected to occur in early 2002, soon after this report has been submitted.

  8. Mesenchymal Stromal Cells Induce Peculiar Alternatively Activated Macrophages Capable of Dampening Both Innate and Adaptive Immune Responses.

    PubMed

    Chiossone, Laura; Conte, Romana; Spaggiari, Grazia Maria; Serra, Martina; Romei, Cristina; Bellora, Francesca; Becchetti, Flavio; Andaloro, Antonio; Moretta, Lorenzo; Bottino, Cristina

    2016-07-01

    Mesenchymal stromal cells (MSCs) support hematopoiesis and exert immunoregulatory activities. Here, we analyzed the functional outcome of the interactions between MSCs and monocytes/macrophages. We showed that MSCs supported the survival of monocytes that underwent differentiation into macrophages, in the presence of macrophage colony-stimulating factor. However, MSCs skewed their polarization toward a peculiar M2-like functional phenotype (M(MSC) ), through a prostaglandin E2-dependent mechanism. M(MSC) were characterized by high expression of scavenger receptors, increased phagocytic capacity, and high production of interleukin (IL)-10 and transforming growth factor-β. These cytokines contributed to the immunoregulatory properties of M(MSC) , which differed from those of typical IL-4-induced macrophages (M2). In particular, interacting with activated natural killer (NK) cells, M(MSC) inhibited both the expression of activating molecules such as NKp44, CD69, and CD25 and the production of IFNγ, while M2 affected only IFNγ production. Moreover, M(MSC) inhibited the proliferation of CD8(+) T cells in response to allogeneic stimuli and induced the expansion of regulatory T cells (Tregs). Toll-like receptor engagement reverted the phenotypic and functional features of M(MSC) to those of M1 immunostimulatory/proinflammatory macrophages. Overall our data show that MSCs induce the generation of a novel type of alternatively activated macrophages capable of suppressing both innate and adaptive immune responses. These findings may help to better understand the role of MSCs in healthy tissues and inflammatory diseases including cancer, and provide clues for novel therapeutic approaches. Stem Cells 2016;34:1909-1921. PMID:27015881

  9. Final Report: Deconvolution of Adaptive Optics Images of Titan, Neptune, and Uranus

    SciTech Connect

    Gibbard, S; Marchis, F

    2002-12-20

    This project involved images of Titan, Neptune, and Uranus obtained using the 10-meter W.M. Keck II Telescope and its adaptive optics system. An adaptive optics system corrects for turbulence in the Earth's atmosphere by sampling the wavefront and applying a correction based on the distortion measured for a known source within the same isoplanatic patch as the science target (for example, a point source such as a star). Adaptive optics can achieve a 10-fold increase in resolution over that obtained by images without adaptive optics (for example, Saturn's largest moon Titan is unresolved without adaptive optics but at least 10 resolution elements can be obtained across the disk in Keck adaptive optics images). The adaptive optics correction for atmospheric turbulence is not perfect; a point source is converted to a diffraction-limited core surrounded by a ''halo''. This halo is roughly the size and shape of the uncorrected point spread function one would observe without adaptive optics. In order to enhance the sharpness of the Keck images it is necessary to apply a deconvolution algorithm to the data. Many such deconvolution algorithms exist such as maximum likelihood and maximum entropy. These algorithms suffer to various degrees from noise amplification and creation of artifacts near sharp edges (''ringing''). In order to deconvolve the Keck images I have applied an algorithm specifically developed for observations of planetary bodies, the myopic deconvolution algorithm MISTRAL (''Myopic Iterative STep-preserving Restoration ALgorithm'') (Conan et al. 1998, 2000). MISTRAL was developed by ONERA (Office National d'Etudes et de Recherches Aerospatiales) and has been extensively tested on simulated and real AO observations, including observations of Titan (Coustenis et al.2001), Io (Marchis et al.2002, 2001), and asteroids (Hestroffer et al.2001, Rosenberg et al.2001, Makhoul et al.2001). Compared to more classical methods, MISTRAL avoids noise amplification and

  10. Quality evaluation of adaptive optical image based on DCT and Rényi entropy

    NASA Astrophysics Data System (ADS)

    Xu, Yuannan; Li, Junwei; Wang, Jing; Deng, Rong; Dong, Yanbing

    2015-04-01

    The adaptive optical telescopes play a more and more important role in the detection system on the ground, and the adaptive optical images are so many that we need find a suitable method of quality evaluation to choose good quality images automatically in order to save human power. It is well known that the adaptive optical images are no-reference images. In this paper, a new logarithmic evaluation method based on the use of the discrete cosine transform(DCT) and Rényi entropy for the adaptive optical images is proposed. Through the DCT using one or two dimension window, the statistical property of Rényi entropy for images is studied. The different directional Rényi entropy maps of an input image containing different information content are obtained. The mean values of different directional Rényi entropy maps are calculated. For image quality evaluation, the different directional Rényi entropy and its standard deviation corresponding to region of interest is selected as an indicator for the anisotropy of the images. The standard deviation of different directional Rényi entropy is obtained as the quality evaluation value for adaptive optical image. Experimental results show the proposed method that the sorting quality matches well with the visual inspection.

  11. Magnetic smart material application to adaptive x-ray optics

    NASA Astrophysics Data System (ADS)

    Ulmer, M. P.; Graham, Michael E.; Vaynman, Semyon; Cao, J.; Takacs, Peter Z.

    2010-09-01

    We discuss a technique of shape modification that can be applied to thin walled ({100-400 micron thickness) electroformed replicated optics or slumped glass optics to improve the near net shape of the mirror as well as the midfrequency ripple. The process involves sputter deposition of a magnetic smart material (MSM) film onto a permanently magnetic material. The MSM material exhibits strains about 400 times stronger than ordinary ferromagnetic materials. The deformation process involves a magnetic write head which traverses the surface, and under the guidance of active metrology feedback, locally magnetizes the surface to impart strain where needed. Designs and basic concepts as applied to space borne X-ray optics will be described.

  12. Design of a Compact, Bimorph Deformable Mirror-Based Adaptive Optics Scanning Laser Ophthalmoscope.

    PubMed

    He, Yi; Deng, Guohua; Wei, Ling; Li, Xiqi; Yang, Jinsheng; Shi, Guohua; Zhang, Yudong

    2016-01-01

    We have designed, constructed and tested an adaptive optics scanning laser ophthalmoscope (AOSLO) using a bimorph mirror. The simulated AOSLO system achieves diffraction-limited criterion through all the raster scanning fields (6.4 mm pupil, 3° × 3° on pupil). The bimorph mirror-based AOSLO corrected ocular aberrations in model eyes to less than 0.1 μm RMS wavefront error with a closed-loop bandwidth of a few Hz. Facilitated with a bimorph mirror at a stroke of ±15 μm with 35 elements and an aperture of 20 mm, the new AOSLO system has a size only half that of the first-generation AOSLO system. The significant increase in stroke allows for large ocular aberrations such as defocus in the range of ±600° and astigmatism in the range of ±200°, thereby fully exploiting the AO correcting capabilities for diseased human eyes in the future. PMID:27526166

  13. Optical design trade-offs of the multi conjugate adaptive optics relay for the European Extremely Large Telescope

    NASA Astrophysics Data System (ADS)

    Lombini, Matteo; Diolaiti, Emiliano; De Rosa, Adriano

    2014-08-01

    The scope of this paper is to describe some possible design concepts of the post optical relay inside the multi conjugate adaptive optics module for the European Extremely Large Telescope. The module is planned to be placed at the Nasmyth focus of the telescope. The optical relay must re-image the telescope focal plane with diffraction limited performance and low geometric distortion, for a field of view of 75" and for a wavelength range between 0.8 and 2.4μm. A technical annular field of view with inner diameter of 75" and outer diameter of 160" to search 3 for natural guide stars is also required. Wavefront sensing is performed by means of 6 laser guide stars arranged on a circle of at least 120" diameter while wavefront correction is performed by two deformable mirrors inside the relay, in addition to the telescope adaptive mirror. The final optical design will be a trade-off among adaptive optics performance, optical interface requirements, mechanical interface requirements and technological feasibility of key hardware components. The size of the deformable mirrors and the image quality of the layer conjugates are important design drivers, related to the design of the collimating optics after the input focal plane and to the deformable mirrors tilt respect to the chief ray. The optical interface at the output focal plane must be acceptable for the client instruments, in terms of field curvature, focal ratio and exit pupil position. The number of optical surfaces inside the relay has to be as small as possible to limit thermal background. Splitting of the laser guide star channel from the science light channel may be achieved either in wavelength, by means of a dichroic placed close to a pupil image, or in field, by means of an perforated dichroic placed at an intermediate focal plane. The laser guide star beams have to be focused with acceptable optical performance on a fixed image plane compensating the effects of the sodium layer range variation with Zenith

  14. Application of fluidic lens technology to an adaptive holographic optical element see-through autophoropter

    NASA Astrophysics Data System (ADS)

    Chancy, Carl H.

    A device for performing an objective eye exam has been developed to automatically determine ophthalmic prescriptions. The closed loop fluidic auto-phoropter has been designed, modeled, fabricated and tested for the automatic measurement and correction of a patient's prescriptions. The adaptive phoropter is designed through the combination of a spherical-powered fluidic lens and two cylindrical fluidic lenses that are orientated 45o relative to each other. In addition, the system incorporates Shack-Hartmann wavefront sensing technology to identify the eye's wavefront error and corresponding prescription. Using the wavefront error information, the fluidic auto-phoropter nulls the eye's lower order wavefront error by applying the appropriate volumes to the fluidic lenses. The combination of the Shack-Hartmann wavefront sensor the fluidic auto-phoropter allows for the identification and control of spherical refractive error, as well as cylinder error and axis; thus, creating a truly automated refractometer and corrective system. The fluidic auto-phoropter is capable of correcting defocus error ranging from -20D to 20D and astigmatism from -10D to 10D. The transmissive see-through design allows for the observation of natural scenes through the system at varying object planes with no additional imaging optics in the patient's line of sight. In this research, two generations of the fluidic auto-phoropter are designed and tested; the first generation uses traditional glass optics for the measurement channel. The second generation of the fluidic auto-phoropter takes advantage of the progress in the development of holographic optical elements (HOEs) to replace all the traditional glass optics. The addition of the HOEs has enabled the development of a more compact, inexpensive and easily reproducible system without compromising its performance. Additionally, the fluidic lenses were tested during a National Aeronautics Space Administration (NASA) parabolic flight campaign, to

  15. Low-cost high performance adaptive optics real-time controller in free space optical communication system

    NASA Astrophysics Data System (ADS)

    Chen, Shanqiu; Liu, Chao; Zhao, Enyi; Xian, Hao; Xu, Bing; Ye, Yutang

    2014-11-01

    This paper proposed a low-cost and high performance adaptive optics real-time controller in free space optical communication system. Real-time controller is constructed with a 4-core CPU with Linux operation system patched with Real-Time Application Interface (RTAI) and a frame-grabber, and the whole cost is below $6000. Multi-core parallel processing scheme and SSE instruction optimization for reconstruction process result in about 5 speedup, and overall processing time for this 137-element adaptive optic system can reach below 100 us and with latency about 50 us by utilizing streamlined processing scheme, which meet the requirement of processing at frequency over 1709 Hz. Real-time data storage system designed by circle buffer make this system to store consecutive image frames and provide an approach to analysis the image data and intermediate data such as slope information.

  16. Capabilities of wind tunnels with two-adaptive walls to minimize boundary interference in 3-D model testing

    NASA Technical Reports Server (NTRS)

    Rebstock, Rainer; Lee, Edwin E., Jr.

    1989-01-01

    An initial wind tunnel test was made to validate a new wall adaptation method for 3-D models in test sections with two adaptive walls. First part of the adaptation strategy is an on-line assessment of wall interference at the model position. The wall induced blockage was very small at all test conditions. Lift interference occurred at higher angles of attack with the walls set aerodynamically straight. The adaptation of the top and bottom tunnel walls is aimed at achieving a correctable flow condition. The blockage was virtually zero throughout the wing planform after the wall adjustment. The lift curve measured with the walls adapted agreed very well with interference free data for Mach 0.7, regardless of the vertical position of the wing in the test section. The 2-D wall adaptation can significantly improve the correctability of 3-D model data. Nevertheless, residual spanwise variations of wall interference are inevitable.

  17. Status of the PALM-3000 high-order adaptive optics system

    NASA Astrophysics Data System (ADS)

    Bouchez, Antonin H.; Dekany, Richard G.; Angione, John R.; Baranec, Christoph; Bui, Khanh; Burruss, Rick S.; Crepp, Justin R.; Croner, Ernest E.; Cromer, John L.; Guiwits, Stephen R.; Hale, David D. S.; Henning, John R.; Palmer, Dean; Roberts, Jennifer E.; Troy, Mitchell; Truong, Tuan N.; Zolkower, Jeffry

    2009-08-01

    The PALM-3000 upgrade to the Palomar Adaptive Optics system on the 5.1 meter Hale telescope will deliver extreme adaptive optics correction in near-infrared wavelengths and diffraction-limited images in visible wavelengths. PALM-3000 will use a 3388-actuator tweeter and a 241-actuator woofer deformable mirror, a Shack-Hartmann wavefront sensor with selectable pupil sampling, and an innovative wavefront control computer based on a cluster of 17 graphics processing units to correct wavefront aberrations at scales as fine as 8.1 cm at the telescope pupil using natural guide stars. The system is currently undergoing integration and testing, with deployment at Palomar Observatory planned in early 2011. We present the detailed design of key aspects of the adaptive optics system, and the current status of the deformable mirror characterization, wavefront sensor performance, and testbed activities.

  18. Sky coverage modeling for the whole sky for laser guide star multiconjugate adaptive optics.

    PubMed

    Wang, Lianqi; Andersen, David; Ellerbroek, Brent

    2012-06-01

    The scientific productivity of laser guide star adaptive optics systems strongly depends on the sky coverage, which describes the probability of finding natural guide stars for the tip/tilt wavefront sensor(s) to achieve a certain performance. Knowledge of the sky coverage is also important for astronomers planning their observations. In this paper, we present an efficient method to compute the sky coverage for the laser guide star multiconjugate adaptive optics system, the Narrow Field Infrared Adaptive Optics System (NFIRAOS), being designed for the Thirty Meter Telescope project. We show that NFIRAOS can achieve more than 70% sky coverage over most of the accessible sky with the requirement of 191 nm total rms wavefront. PMID:22695611

  19. Extreme Adaptive Optics Testbed: Performance and Characterization of a 1024 Deformable Mirror

    SciTech Connect

    Evans, J W; Morzinski, K; Severson, S; Poyneer, L; Macintosh, B; Dillon, D; REza, L; Gavel, D; Palmer, D

    2005-10-30

    We have demonstrated that a microelectrical mechanical systems (MEMS) deformable mirror can be flattened to < 1 nm RMS within controllable spatial frequencies over a 9.2-mm aperture making it a viable option for high-contrast adaptive optics systems (also known as Extreme Adaptive Optics). The Extreme Adaptive Optics Testbed at UC Santa Cruz is being used to investigate and develop technologies for high-contrast imaging, especially wavefront control. A phase shifting diffraction interferometer (PSDI) measures wavefront errors with sub-nm precision and accuracy for metrology and wavefront control. Consistent flattening, required testing and characterization of the individual actuator response, including the effects of dead and low-response actuators. Stability and repeatability of the MEMS devices was also tested. An error budget for MEMS closed loop performance will summarize MEMS characterization.

  20. Wide field adaptive optics laboratory demonstration with closed-loop tomographic control.

    PubMed

    Costille, Anne; Petit, Cyril; Conan, Jean-Marc; Kulcsár, Caroline; Raynaud, Henri-François; Fusco, Thierry

    2010-03-01

    HOMER, the new bench developed at ONERA devoted to wide field adaptive optics (WFAO) laboratory research, has allowed the first experimental validations of multi-conjugate adaptive optics (MCAO) and laser tomography adaptive optics (LTAO) concepts with a linear quadratic Gaussian (LQG) control approach. Results obtained in LTAO in closed loop show the significant gain in performance brought by LQG control, which allows tomographic reconstruction. We present a calibration and model identification strategy. Experimental results are shown to be consistent with end-to-end simulations. These results are very encouraging and demonstrate robustness of performance with respect to inevitable experimental uncertainties. They represent a first step for the study of very large telescope (VLT) and extremely large telescopes (ELT) instruments. PMID:20208937