Science.gov

Sample records for adaptive optics corrected

  1. Multifocal multiphoton microscopy with adaptive optical correction

    NASA Astrophysics Data System (ADS)

    Coelho, Simao; Poland, Simon; Krstajic, Nikola; Li, David; Monypenny, James; Walker, Richard; Tyndall, David; Ng, Tony; Henderson, Robert; Ameer-Beg, Simon

    2013-02-01

    Fluorescence lifetime imaging microscopy (FLIM) is a well established approach for measuring dynamic signalling events inside living cells, including detection of protein-protein interactions. The improvement in optical penetration of infrared light compared with linear excitation due to Rayleigh scattering and low absorption have provided imaging depths of up to 1mm in brain tissue but significant image degradation occurs as samples distort (aberrate) the infrared excitation beam. Multiphoton time-correlated single photon counting (TCSPC) FLIM is a method for obtaining functional, high resolution images of biological structures. In order to achieve good statistical accuracy TCSPC typically requires long acquisition times. We report the development of a multifocal multiphoton microscope (MMM), titled MegaFLI. Beam parallelization performed via a 3D Gerchberg-Saxton (GS) algorithm using a Spatial Light Modulator (SLM), increases TCSPC count rate proportional to the number of beamlets produced. A weighted 3D GS algorithm is employed to improve homogeneity. An added benefit is the implementation of flexible and adaptive optical correction. Adaptive optics performed by means of Zernike polynomials are used to correct for system induced aberrations. Here we present results with significant improvement in throughput obtained using a novel complementary metal-oxide-semiconductor (CMOS) 1024 pixel single-photon avalanche diode (SPAD) array, opening the way to truly high-throughput FLIM.

  2. Digital adaptation algorithms of adaptive optics corrected images

    NASA Astrophysics Data System (ADS)

    Polskikh, Sergey D.; Sviridov, Konstantin N.

    2000-07-01

    The technology is considered of space object image obtainment with high angular resolution, based on the adaptive tuning of image spatial spectra (digital adaptation), corrected by adaptive optics. As the basis of the technology, the algorithm is taken of the integral equation of the I-st kind of convolution type with unknown core and imprecisely given right part. It's shown the procedure of the inverse operator construction for this equation solution is connected with minimization of nonlinear regularizing multiextremel functionals and could be realized on the base of global optimization methods. The structure of multiextremel functionals is analyzed, and the main global extremum search methods are researched. It is shown, that as the basis of the optimal construction of the channel for the obtainment of images with high resolution, the principle must be taken of the sequential reduction of the global extremum search space dimensionality, and what's more, the predetector processing of the wavefront by the adaptive optics is the first stage of this reduction. The results are given of numerical modelling including the examples of the distorted and restorated images of model objects under different signal-to-noise ratios.

  3. Free space optical communications utilizing MEMS adaptive optics correction

    NASA Astrophysics Data System (ADS)

    Thompson, Charles A.; Kartz, Michael W.; Flath, Laurence M.; Wilks, Scott C.; Young, Richard A.; Johnson, Gary W.; Ruggiero, Anthony J.

    2002-12-01

    Free space optical communications (FSO) are beginning to provide attractive alternatives to fiber-based solutions in many situations. Currently, a handful of companies provide fiberless alternatives especially aimed at corporate intranet and sporting event video. These solutions are geared toward solving the 'last mile' connectivity issues. There exists a potential need to extend this pathlength to distances much greater than a 1 km, particularly for government and military applications. For cases of long distance optical propagation, atmospheric turbulence will ultimately limit the maximum achievable data rate. In this paper, we propose a method of improved signal quality through the use of adaptive optics. In particular, we show work in progress toward a high-speed, small footprint Adaptive Optics system for horizontal and slant path laser communications. Such a system relies heavily on recent progress in Micro-Electro-Mechanical Systems (MEMS) deformable mirrors as well as improved communication and computational components.

  4. Free Space Optical Communications Utilizing MEMS Adaptive Optics Correction

    SciTech Connect

    Thompson, C A; Kartz, M W; Flath, L M; Wilks, S C; Young, R A; Johnson, G W; Ruggiero, A J

    2002-07-09

    Free space optical communications (FSO) are beginning to provide attractive alternatives to fiber-based solutions in many situations. Currently, a handful of companies provide fiberless alternatives specifically aimed at corporate intranet and sporting event video applications. These solutions are geared toward solving the ''last mile'' connectivity issues. There exists a potential need to extend this pathlength to distances much greater than a 1 km, particularly for government and military applications. For cases of long distance optical propagation, atmospheric turbulence will ultimately limit the maximum achievable data rate. In this paper, we propose a method to improve signal quality through the use of adaptive optics. In particular, we show work in progress toward a high-speed, small footprint Adaptive Optics system for horizontal and slant path laser communications. Such a system relies heavily on recent progress in Micro-Electro-Mechanical Systems (MEMS) deformable mirrors, as well as improved communication and computational components.

  5. Horizontal path laser communications employing MEMS adaptive optics correction

    NASA Astrophysics Data System (ADS)

    Thompson, Charles A.; Wilks, Scott C.; Brase, James M.; Young, Richard A.; Johnson, Gary W.; Ruggiero, Anthony J.

    2002-02-01

    Horizontal path laser communications are beginning to provide attractive alternatives for high-speed optical communications. In particular, companies are beginning to sell fiberless alternatives for intranet and sporting event video. These applications are primarily aimed at short distance applications (on the order of 1 km pathlength). There exists a potential need to extend this pathlength to distances much greater than a 1km. For cases of long distance optical propagation, atmospheric turbulence will ultimately limit the maximum achievable data rate. In this paper, we propose a method of improved signal quality through the use of adaptive optics. In particular, we show work in progress toward a high-speed, small footprint Adaptive Optics system for horizontal path laser communications. Such a system relies heavily on recent progress in Micro-Electro-Mechanical Systems (MEMS) deformable mirrors as well as improved communication and computational components. In this paper we detail two Adaptive Optics approaches for improved through-put, the first is the compensated receiver (the traditional Adaptive Optics approach), the second is the compensated transmitter/receiver. The second approach allows for correction of the optical wavefront before transmission from the transmitter and prior to detection at the receiver.

  6. Horizontal Path Laser Communications Employing MEMS Adaptive Optics Correction

    SciTech Connect

    Thompson, C A; Wilks, S C; Brase, J M; Young, R A; Johnson, G W; Ruggiero, A J

    2001-09-05

    Horizontal path laser communications are beginning to provide attractive alternatives for high-speed optical communications, In particular, companies are beginning to sell fiberless alternatives for intranet and sporting event video. These applications are primarily aimed at short distance applications (on the order of 1 km pathlength). There exists a potential need to extend this pathlength to distances much greater than a 1km. For cases of long distance optical propagation, atmospheric turbulence will ultimately limit the maximum achievable data rate. In this paper, we propose a method of improved signal quality through the use of adaptive optics. In particular, we show work in progress toward a high-speed, small footprint Adaptive Optics system for horizontal path laser communications. Such a system relies heavily on recent progress in Micro-Electro-Mechanical Systems (MEMS) deformable mirrors as well as improved communication and computational components. In this paper we detail two Adaptive Optics approaches for improved through-put, the first is the compensated receiver (the traditional Adaptive Optics approach), the second is the compensated transmitter/receiver. The second approach allows for correction of the optical wavefront before transmission from the transmitter and prior to detection at the receiver.

  7. Adaptive optic correction using silicon-based deformable mirros

    NASA Astrophysics Data System (ADS)

    Perreault, Julie A.; Bifano, Thomas G.; Levine, B. Martin

    1999-11-01

    A micromachined deformable mirror ((mu) -DMs) for optical wavefront correction is described. Design and manufacturing approaches for (mu) -DMs are detailed. The (mu) -DM employs a flexible silicon membrane supported by mechanical attachments to an array of electrostatic parallel plate actuators. Devices are fabricated through surface micromachining using polycrystalline silicon thin films. (mu) -DM membranes measuring 2 mm X 2 mm X 2 micrometers , supported by 100 actuators are described. Figures of merit include stroke of 2 micrometers , resolution of 10 nm, and frequency bandwidth DC - 7 kHz. The devices are compact, inexpensive to fabricate, exhibit no hysteresis, and use only a small fraction of the power required for conventional DMs. Performance of an adaptive optics system using a (mu) - DM was characterized in a closed-loop control experiment. Significant reduction in quasi-static wavefront phase error was achieved. Advantages and limitations of (mu) -DMs are described, in relation to conventional adaptive optics systems and to emerging applications of adaptive optics, such as high resolution correction, small aperture systems, and optical communication.

  8. Phase aberration correction by correlation in digital holographic adaptive optics

    PubMed Central

    Liu, Changgeng; Yu, Xiao; Kim, Myung K.

    2013-01-01

    We present a phase aberration correction method based on the correlation between the complex full-field and guide-star holograms in the context of digital holographic adaptive optics (DHAO). Removal of a global quadratic phase term before the correlation operation plays an important role in the correction. Correlation operation can remove the phase aberration at the entrance pupil plane and automatically refocus the corrected optical field. Except for the assumption that most aberrations lie at or close to the entrance pupil, the presented method does not impose any other constraints on the optical systems. Thus, it greatly enhances the flexibility of the optical design for DHAO systems in vision science and microscopy. Theoretical studies show that the previously proposed Fourier transform DHAO (FTDHAO) is just a special case of this general correction method, where the global quadratic phase term and a defocus term disappear. Hence, this correction method realizes the generalization of FTDHAO into arbitrary DHAO systems. The effectiveness and robustness of this method are demonstrated by simulations and experiments. PMID:23669707

  9. Adaptive Optics Correction in Real-Time for Dynamic Wavefront Errors

    DTIC Science & Technology

    1990-03-15

    This paper reports on the principles for the use of, and the experimental results obtained from, an adaptive optics system for correcting dynamic...control system. Keywords: Adaptive optics ; Wavefront sensing; Deformable mirror; Chinese translations.

  10. Solar multi-conjugate adaptive optics based on high order ground layer adaptive optics and low order high altitude correction.

    PubMed

    Zhang, Lanqiang; Guo, Youming; Rao, Changhui

    2017-02-20

    Multi-conjugate adaptive optics (MCAO) is the most promising technique currently developed to enlarge the corrected field of view of adaptive optics for astronomy. In this paper, we propose a new configuration of solar MCAO based on high order ground layer adaptive optics and low order high altitude correction, which result in a homogeneous correction effect in the whole field of view. An individual high order multiple direction Shack-Hartmann wavefront sensor is employed in the configuration to detect the ground layer turbulence for low altitude correction. Furthermore, the other low order multiple direction Shack-Hartmann wavefront sensor supplies the wavefront information caused by high layers' turbulence through atmospheric tomography for high altitude correction. Simulation results based on the system design at the 1-meter New Vacuum Solar Telescope show that the correction uniform of the new scheme is obviously improved compared to conventional solar MCAO configuration.

  11. Wavefront Error Correction with Adaptive Optics in Diabetic Retinopathy

    PubMed Central

    Valeshabad, Ali Kord; Wanek, Justin; Grant, Patricia; Lim, Jennifer I.; Chau, Felix Y.; Zelkha, Ruth; Camardo, Nicole; Shahidi, Mahnaz

    2014-01-01

    Purpose To determine the effects of diabetic retinopathy (DR), increased foveal thickness (FT), and adaptive optics (AO) on wavefront aberrations and Shack-Hartmann (SH) image quality. Methods SH aberrometry and wavefront error correction were performed with a bench-top AO retinal imaging system in 10 healthy control and 19 DR subjects. Spectral domain optical coherence tomography (SDOCT) was performed and central FT was measured. Based on the FT data in the control group, subjects in the DR group were categorized into two subgroups with normal FT (DR-NFT) or increased FT (DR-IFT). SH image quality was assessed based on spot areas and high order (HO) root mean square (RMS) and total RMS were calculated. Results There was a significant effect of DR on HO and total RMS (p = 0.01), and RMS decreased significantly after AO (p < 0.001). SH spot area was significantly affected by DR (p < 0.001), but it did not change after AO (p = 0.6). HO RMS, total RMS, and SH spot area were higher in DR subjects both before and after AO correction. In DR subgroups, HO and total RMS decreased significantly after AO (p < 0.001), while the effect of increased FT on HO and total RMS was not significant (p ≥ 0.7). There were no significant effects of increased FT and AO on SH spot area (p = 0.9). Conclusions DR subjects had higher wavefront aberrations and less compact SH spots, likely attributable to pathological changes in the ocular optics. Wavefront aberrations were significantly reduced by AO, though AO performance was suboptimal in DR subjects as compared to control subjects. PMID:24748028

  12. Holographic Adaptive Laser Optics System (HALOS): Fast, Autonomous Aberration Correction

    NASA Astrophysics Data System (ADS)

    Andersen, G.; MacDonald, K.; Gelsinger-Austin, P.

    2013-09-01

    We present an adaptive optics system which uses a multiplexed hologram to deconvolve the phase aberrations in an input beam. This wavefront characterization is extremely fast as it is based on simple measurements of the intensity of focal spots and does not require any computations. Furthermore, the system does not require a computer in the loop and is thus much cheaper, less complex and more robust as well. A fully functional, closed-loop prototype incorporating a 32-element MEMS mirror has been constructed. The unit has a footprint no larger than a laptop but runs at a bandwidth of 100kHz over an order of magnitude faster than comparable, conventional systems occupying a significantly larger volume. Additionally, since the sensing is based on parallel, all-optical processing, the speed is independent of actuator number running at the same bandwidth for one actuator as for a million. We are developing the HALOS technology with a view towards next-generation surveillance systems for extreme adaptive optics applications. These include imaging, lidar and free-space optical communications for unmanned aerial vehicles and SSA. The small volume is ideal for UAVs, while the high speed and high resolution will be of great benefit to the ground-based observation of space-based objects.

  13. LEO-to-ground optical communications link using adaptive optics correction on the OPALS downlink

    NASA Astrophysics Data System (ADS)

    Wright, Malcolm W.; Kovalik, Joseph; Morris, Jeff; Abrahamson, Matthew; Biswas, Abhijit

    2016-03-01

    The Optical PAyload for Lasercomm Science (OPALS) experiment on the International Space Station (ISS) recently demonstrated successful optical downlinks to the NASA/JPL 1-m aperture telescope at the Optical Communication Telescope Laboratory (OCTL) located near Wrightwood, CA. A large area (200 μm diameter) free space coupled avalanche photodiode (APD) detector was used to receive video and a bit patterns at 50 Mb/s. We report on a recent experiment that used an adaptive optics system at OCTL to correct for atmospherically-induced refractive index fluctuations so that the downlink from the ISS could be coupled into a single mode fiber receiver. Stable fiber coupled power was achieved over an entire pass using a self-referencing interferometer based adaptive optics system that was provided and operated by Boeing Co. and integrated to OCTL. End-to-end transmission and reconstruction of an HD video signal verified the communication performance as in the original OPALS demonstration. Coupling the signal into a single mode fiber opens the possibility for higher bandwidth and efficiency modulation schemes and serves as a pilot experiment for future implementations.

  14. Dynamic aberration correction for conformal optics using model-based wavefront sensorless adaptive optics

    NASA Astrophysics Data System (ADS)

    Han, Xinli; Dong, Bing; Li, Yan; Wang, Rui; Hu, Bin

    2016-10-01

    For missiles and airplanes with high Mach number, traditional spherical or flat window can cause a lot of air drag. Conformal window that follow the general contour of surrounding surface can substantially decrease air drag and extend operational range. However, the local shape of conformal window changes across the Field Of Regard (FOR), leading to time-varying FOR-dependent wavefront aberration and degraded image. So the correction of dynamic aberration is necessary. In this paper, model-based Wavefront Sensorless Adaptive Optics (WSAO) algorithm is investigated both by simulation and experiment for central-obscured pupil. The algorithm is proved to be effective and the correction accuracy of using DM modes is higher than Lukosz modes. For dynamic aberration in our system, the SR can be better than 0.8 when the change of looking angle is less than 2° after t seconds which is the time delay of the control system.

  15. Efficiency of MIMO configuration and adaptive optics corrections in free space optical fading channels

    NASA Astrophysics Data System (ADS)

    Hajjarian, Zeinab; Kavehrad, Mohsen; Fadlullah, Jarir

    2010-01-01

    Free Space Optical (FSO) communications is the only practical candidate for realizing universal network coverage between ground and airborne nodes, satellites, and even moon and other nearby planets. When atmosphere (be it the earth or Mars) is a part of the optical channel, attributes of scattering and turbulence bring about amplitude attenuation, and scintillation, as well as beam wander and phase aberrations at the receiving aperture. Phase screens are usually used in order to simulate the atmospheric fading channel and phase fluctuations. In this paper, different methods of generating phase screens are compared based on their accuracy and computational complexity, as in most computer simulations, a large ensemble of phase screens are required for averaging purposes. To combat the focal plane intensity fading, caused by amplitude and phase variations in the received wave-front, it is possible to replace the Single Input-Single Output (SISO) communications system with its Multiple Input Multiple Output (MIMO) equivalent, which has the same total transmit power and receiving aperture area. Another alternative is to equip the receiver with a state of the art Adaptive Optics (AO) correction system. Using average Bit Error Rate (BER), as a performance metric, effectiveness of these two approaches are compared and it is shown that while a MIMO configuration outperforms a basic AO system capable of only tilt corrections, an ideal AO system, which is able to remove higher orders of Zernike modes can asymptotically perform as well as an equivalent MIMO configuration.

  16. Design and progress toward a multi-conjugate adaptive optics system for distributed aberration correction

    SciTech Connect

    Baker, K; Olivier, S; Tucker, J; Silva, D; Gavel, D; Lim, R; Gratrix, E

    2004-08-17

    This article investigates the use of a multi-conjugate adaptive optics system to improve the field-of-view for the system. The emphasis of this research is to develop techniques to improve the performance of optical systems with applications to horizontal imaging. The design and wave optics simulations of the proposed system are given. Preliminary results from the multi-conjugate adaptive optics system are also presented. The experimental system utilizes a liquid-crystal spatial light modulator and an interferometric wave-front sensor for correction and sensing of the phase aberrations, respectively.

  17. Non-common path aberration correction in an adaptive optics scanning ophthalmoscope.

    PubMed

    Sulai, Yusufu N; Dubra, Alfredo

    2014-09-01

    The correction of non-common path aberrations (NCPAs) between the imaging and wavefront sensing channel in a confocal scanning adaptive optics ophthalmoscope is demonstrated. NCPA correction is achieved by maximizing an image sharpness metric while the confocal detection aperture is temporarily removed, effectively minimizing the monochromatic aberrations in the illumination path of the imaging channel. Comparison of NCPA estimated using zonal and modal orthogonal wavefront corrector bases provided wavefronts that differ by ~λ/20 in root-mean-squared (~λ/30 standard deviation). Sequential insertion of a cylindrical lens in the illumination and light collection paths of the imaging channel was used to compare image resolution after changing the wavefront correction to maximize image sharpness and intensity metrics. Finally, the NCPA correction was incorporated into the closed-loop adaptive optics control by biasing the wavefront sensor signals without reducing its bandwidth.

  18. Non-common path aberration correction in an adaptive optics scanning ophthalmoscope

    PubMed Central

    Sulai, Yusufu N.; Dubra, Alfredo

    2014-01-01

    The correction of non-common path aberrations (NCPAs) between the imaging and wavefront sensing channel in a confocal scanning adaptive optics ophthalmoscope is demonstrated. NCPA correction is achieved by maximizing an image sharpness metric while the confocal detection aperture is temporarily removed, effectively minimizing the monochromatic aberrations in the illumination path of the imaging channel. Comparison of NCPA estimated using zonal and modal orthogonal wavefront corrector bases provided wavefronts that differ by ~λ/20 in root-mean-squared (~λ/30 standard deviation). Sequential insertion of a cylindrical lens in the illumination and light collection paths of the imaging channel was used to compare image resolution after changing the wavefront correction to maximize image sharpness and intensity metrics. Finally, the NCPA correction was incorporated into the closed-loop adaptive optics control by biasing the wavefront sensor signals without reducing its bandwidth. PMID:25401020

  19. Correctability limitations imposed by plane-wave scintillation in multiconjugate adaptive optics.

    PubMed

    Lee, Lawton H; Baker, Gary J; Benson, Robert S

    2006-10-01

    Plane-wave scintillation is shown to impose multiconjugate adaptive optics (MCAO) correctability limitations that are independent of wavefront sensing and reconstruction. Residual phase and log-amplitude variances induced by scintillation in weak turbulence are derived using linear (diffraction-based) diffractive MCAO spatial filters or (diffraction-ignorant) geometric MCAO proportional gains as open-loop control parameters. In the case of Kolmogorov turbulence, expressions involving the Rytov variance and/or weighted C(2)(n) integrals apply. Differences in performance between diffractive MCAO and geometric MCAO resemble chromatic errors. Optimal corrections based on least squares imply irreducible performance limits that are validated by wave-optic simulations.

  20. Characterization of a tunable astigmatic fluidic lens with adaptive optics correction for compact phoropter application

    NASA Astrophysics Data System (ADS)

    Fuh, Yiin-Kuen; Huang, Chieh-Tse

    2014-07-01

    Fluidically controlled lenses which adaptively correct prescribed refractive error without mechanically moving parts are extensively applied in the ophthalmic applications. Capable of variable-focusing properties, however, the associated aberrations due to curvature change and refractive index mismatch can inherently degrade image quality severely. Here we present the experimental study of the aberrations in tunable astigmatic lens and use of adaptive optics to compensate for the wavefront errors. Characterization of the optical properties of the individual lenses is carried out by Shack-Hartmann measurements. An adaptive optics (AO) based scheme is demonstrated for three injected fluidic volumes, resulting in a substantial reduction of the wavefront errors from -0.12, -0.25, -0.32 to 0.01, -0.01, -0.20 μm, respectively, corresponding to the optical power tenability of 0.83 to 1.84 D. Furthermore, an integrated optical phoroptor consisting of adjustable astigmatic lenses and AO correction is demonstrated such that an induced refraction error of -1 D cylinder at 180° of a model eye vision is experimentally corrected.

  1. Immature visual neural system in children reflected by contrast sensitivity with adaptive optics correction

    PubMed Central

    Liu, Rong; Zhou, Jiawei; Zhao, Haoxin; Dai, Yun; Zhang, Yudong; Tang, Yong; Zhou, Yifeng

    2014-01-01

    This study aimed to explore the neural development status of the visual system of children (around 8 years old) using contrast sensitivity. We achieved this by eliminating the influence of higher order aberrations (HOAs) with adaptive optics correction. We measured HOAs, modulation transfer functions (MTFs) and contrast sensitivity functions (CSFs) of six children and five adults with both corrected and uncorrected HOAs. We found that when HOAs were corrected, children and adults both showed improvements in MTF and CSF. However, the CSF of children was still lower than the adult level, indicating the difference in contrast sensitivity between groups cannot be explained by differences in optical factors. Further study showed that the difference between the groups also could not be explained by differences in non-visual factors. With these results we concluded that the neural systems underlying vision in children of around 8 years old are still immature in contrast sensitivity. PMID:24732728

  2. FALCON: a concept to extend adaptive optics corrections to cosmological fields

    NASA Astrophysics Data System (ADS)

    Hammer, Francois; Puech, Mathieu; Assemat, Francois F.; Gendron, Eric; Sayede, Frederic; Laporte, Philippe; Marteaud, Michel; Liotard, Arnaud; Zamkotsian, Frederic

    2004-07-01

    FALCON is an original concept for a next generation spectrograph at ESO VLT or at future ELTs. It is a spectrograph including multiple small integral field units (IFUs) which can be deployed within a large field of view such as that of VLT/GIRAFFE. In FALCON, each IFU features an adaptive optics correction using off-axis natural reference stars in order to combine, in the 0.8 - 1.8 μm wavelength range, spatial and spectral resolutions (0.1 - 0.15 arcsec and R = 1000 +/- 5000). These conditions are ideally suited for distant galaxy studies, which should be done within fields of view larger than the galaxy clustering scales (4 - 9 Mpc), i.e. foV > 100 arcmin. Instead of compensating the whole field, the adaptive correction will be performed locally on each IFU. This implies to use small miniaturized devices both for adaptive optics correction and wavefront sensing. Applications to high latitude fields imply to use atmospheric tomography because the stars required for wavefront sensing will be in most of the cases far outside the isoplanatic patch.

  3. Smart microscope: an adaptive optics learning system for aberration correction in multiphoton confocal microscopy.

    PubMed

    Albert, O; Sherman, L; Mourou, G; Norris, T B; Vdovin, G

    2000-01-01

    Off-axis aberrations in a beam-scanning multiphoton confocal microscope are corrected with a deformable mirror. The optimal mirror shape for each pixel is determined by a genetic learning algorithm, in which the second-harmonic or two-photon fluorescence signal from a reference sample is maximized. The speed of the convergence is improved by use of a Zernike polynomial basis for the deformable mirror shape. This adaptive optical correction scheme is implemented in an all-reflective system by use of extremely short (10-fs) optical pulses, and it is shown that the scanning area of an f:1 off-axis parabola can be increased by nine times with this technique.

  4. Adaptive optic vision correction system using the Z-View wavefront sensor

    NASA Astrophysics Data System (ADS)

    Liu, Yueai; Warden, Laurence; Sandler, David; Dreher, Andreas

    2005-12-01

    High order aberrations in human eye can deteriorate visual acuity and contrast sensitivity. Such aberrations can not be corrected with traditional low-order (defocus and astigmatism) spectacles or contact lenses. A state-of-the-art adaptive optics vision correction system was developed using Ophthonix's Z-View diffractive wavefront sensor and a commercial miniature deformable mirror. While being measured and corrected by this system, the patient can also view a Snellen chart or a Contrast Sensitivity chart through the system in order to experience the vision benefits both in visual acuity and contrast sensitivity. Preliminary study has shown the potential that this system could be used in a doctor's office to provide patients with a subjective feel of the objective high order prescription measured on Z-View.

  5. Optical design considerations when imaging the fundus with an adaptive optics correction

    NASA Astrophysics Data System (ADS)

    Wang, Weiwei; Campbell, Melanie C. W.; Kisilak, Marsha L.; Boyd, Shelley R.

    2008-06-01

    Adaptive Optics (AO) technology has been used in confocal scanning laser ophthalmoscopes (CSLO) which are analogous to confocal scanning laser microscopes (CSLM) with advantages of real-time imaging, increased image contrast, a resistance to image degradation by scattered light, and improved optical sectioning. With AO, the instrumenteye system can have low enough aberrations for the optical quality to be limited primarily by diffraction. Diffraction-limited, high resolution imaging would be beneficial in the understanding and early detection of eye diseases such as diabetic retinopathy. However, to maintain diffraction-limited imaging, sufficient pixel sampling over the field of view is required, resulting in the need for increased data acquisition rates for larger fields. Imaging over smaller fields may be a disadvantage with clinical subjects because of fixation instability and the need to examine larger areas of the retina. Reduction in field size also reduces the amount of light sampled per pixel, increasing photon noise. For these reasons, we considered an instrument design with a larger field of view. When choosing scanners to be used in an AOCSLO, the ideal frame rate should be above the flicker fusion rate for the human observer and would also allow user control of targets projected onto the retina. In our AOCSLO design, we have studied the tradeoffs between field size, frame rate and factors affecting resolution. We will outline optical approaches to overcome some of these tradeoffs and still allow detection of the earliest changes in the fundus in diabetic retinopathy.

  6. Implementation of adaptive optics in fluorescent microscopy using wavefront sensing and correction

    NASA Astrophysics Data System (ADS)

    Azucena, Oscar; Crest, Justin; Cao, Jian; Sullivan, William; Kner, Peter; Gavel, Donald; Dillon, Daren; Olivier, Scot; Kubby, Joel

    2010-02-01

    Adaptive optics (AO) improves the quality of astronomical imaging systems by using real time measurement of the turbulent medium in the optical path using a guide star (natural or artificial) as a point source reference beacon [1]. AO has also been applied to vision science to improve the view of the human eye. This paper will address our current research focused on the improvement of fluorescent microscopy for biological imaging utilizing current AO technology. A Shack-Hartmann wavefront sensor (SHWS) is used to measure the aberration introduced by a Drosophila Melanogaster embryo with an implanted 1 micron fluorescent bead that serves as a point source reference beacon. Previous measurements of the wavefront aberrations have found an average peak-to-valley and root-mean-square (RMS) wavefront error of 0.77 micrometers and 0.15 micrometers, respectively. Measurements of the Zernike coefficients indicated that the correction of the first 14 Zernike coefficients is sufficient to correct the aberrations we measured. Here we show that a MEMS deformable mirror with 3.5 microns of stroke and 140 actuators is sufficient to correct these aberrations. The design, assembly and initial results for the use of a MEMS deformable mirror, SHWS and implanted fluorescent reference beacon for wavefront correction are discussed.

  7. Aberration correction in an adaptive free-space optical interconnect with an error diffusion algorithm

    NASA Astrophysics Data System (ADS)

    Gil-Leyva, Diego; Robertson, Brian; Wilkinson, Timothy D.; Henderson, Charley J.

    2006-06-01

    Aberration correction within a free-space optical interconnect based on a spatial light modulator for beam steering and holographic wavefront correction is presented. The wavefront sensing technique is based on an extension of a modal wavefront sensor described by Neil et al. [J. Opt. Soc. Am. A 17, 1098 (2000)], which uses a diffractive element. In this analysis such a wavefront sensor is adapted with an error diffusion algorithm that yields a low reconstruction error and fast reconfigurability. Improvement of the beam propagation quality (Strehl ratio) for different channels across the input plane is achieved. However, due to the space invariancy of the system, a trade-off among the beam propagation quality for channels is obtained. Experimental results are presented and discussed.

  8. Performance of wavefront-sensorless adaptive optics using modal and zonal correction

    NASA Astrophysics Data System (ADS)

    Anzuola, Esdras; Segel, Max; Gladysz, Szymon; Stein, Karin

    2016-10-01

    Unconventional wavefront sensing strategies are being developed to provide alternatives for measuring the wavefront deformation of a laser beam propagating through strong turbulence and/or along a horizontal-path. In this paper we present results from two "wavefront-sensorless" approaches: stochastic parallel gradient descent (SPGD) and its modal version (M-SPGD). We compare the performance of both algorithms through experimental measurements under emulated dynamic atmospheric turbulence by using the coupling efficiency in a single mode fiber as performance metric. We estimate probability density function of coupling efficiency for free-space optical links using adaptive optics (AO) as a function of key parameters such us turbulence strength and AO loop rate. We demonstrate faster convergence rate of the M-SPGD algorithm as compared to the traditional SPGD, although classic SPGD achieves higher correction. Additionally, we constrain the main temporal requirements of an AO system using wavefront-sensorless architectures.

  9. Ultra-lightweight telescope with MEMS adaptive optic for distortion correction.

    SciTech Connect

    Spahn, Olga Blum; Cowan, William D.; Shaw, Michael J.; Adams, David Price; Sweatt, William C.; Dagel, Daryl James; Grine, Alejandro J.; Mani, Seethambal S.; Resnick, Paul James; Gass, Fawn Renee; Grossetete, Grant David

    2004-12-01

    Recent world events have underscored the need for a satellite based persistent global surveillance capability. To be useful, the satellite must be able to continuously monitor objects the size of a person anywhere on the globe and do so at a low cost. One way to satisfy these requirements involves a constellation of satellites in low earth orbit capable of resolving a spot on the order of 20 cm. To reduce cost of deployment, such a system must be dramatically lighter than a traditional satellite surveillance system with a high spatial resolution. The key to meeting this requirement is a lightweight optics system with a deformable primary and secondary mirrors and an adaptive optic subsystem correction of wavefront distortion. This proposal is concerned with development of MEMS micromirrors for correction of aberrations in the primary mirror and improvement of image quality, thus reducing the optical requirements on the deployable mirrors. To meet this challenge, MEMS micromirrors must meet stringent criteria on their performance in terms of flatness, roughness and resolution of position. Using Sandia's SUMMIT foundry which provides the world's most sophisticated surface MEMS technology as well as novel designs optimized by finite element analysis will meet severe requirements on mirror travel range and accuracy.

  10. High-resolution adaptive optics scanning laser ophthalmoscope with dual deformable mirrors for large aberration correction

    SciTech Connect

    Chen, D; Jones, S M; Silva, D A; Olivier, S S

    2007-01-25

    Scanning laser ophthalmoscopes with adaptive optics (AOSLO) have been shown previously to provide a noninvasive, cellular-scale view of the living human retina. However, the clinical utility of these systems has been limited by the available deformable mirror technology. In this paper, we demonstrate that the use of dual deformable mirrors can effectively compensate large aberrations in the human retina, making the AOSLO system a viable, non-invasive, high-resolution imaging tool for clinical diagnostics. We used a bimorph deformable mirror to correct low-order aberrations with relatively large amplitudes. The bimorph mirror is manufactured by Aoptix, Inc. with 37 elements and 18 {micro}m stroke in a 10 mm aperture. We used a MEMS deformable mirror to correct high-order aberrations with lower amplitudes. The MEMS mirror is manufactured by Boston Micromachine, Inc with 144 elements and 1.5 {micro}m stroke in a 3 mm aperture. We have achieved near diffraction-limited retina images using the dual deformable mirrors to correct large aberrations up to {+-} 3D of defocus and {+-} 3D of cylindrical aberrations with test subjects. This increases the range of spectacle corrections by the AO systems by a factor of 10, which is crucial for use in the clinical environment. This ability for large phase compensation can eliminate accurate refractive error fitting for the patients, which greatly improves the system ease of use and efficiency in the clinical environment.

  11. Enhanced visual acuity and image perception following correction of highly aberrated eyes using an adaptive optics visual simulator.

    PubMed

    Rocha, Karolinne Maia; Vabre, Laurent; Chateau, Nicolas; Krueger, Ronald R

    2010-01-01

    To evaluate the changes in visual acuity and visual perception generated by correcting higher order aberrations in highly aberrated eyes using a large-stroke adaptive optics visual simulator. A crx1 Adaptive Optics Visual Simulator (Imagine Eyes) was used to correct and modify the wavefront aberrations in 12 keratoconic eyes and 8 symptomatic postoperative refractive surgery (LASIK) eyes. After measuring ocular aberrations, the device was programmed to compensate for the eye's wavefront error from the second order to the fifth order (6-mm pupil). Visual acuity was assessed through the adaptive optics system using computer-generated ETDRS opto-types and the Freiburg Visual Acuity and Contrast Test. Mean higher order aberration root-mean-square (RMS) errors in the keratoconus and symptomatic LASIK eyes were 1.88+/-0.99 microm and 1.62+/-0.79 microm (6-mm pupil), respectively. The visual simulator correction of the higher order aberrations present in the keratoconus eyes improved their visual acuity by a mean of 2 lines when compared to their best spherocylinder correction (mean decimal visual acuity with spherocylindrical correction was 0.31+/-0.18 and improved to 0.44+/-0.23 with higher order aberration correction). In the symptomatic LASIK eyes, the mean decimal visual acuity with spherocylindrical correction improved from 0.54+/-0.16 to 0.71+/-0.13 with higher order aberration correction. The visual perception of ETDRS letters was improved when correcting higher order aberrations. The adaptive optics visual simulator can effectively measure and compensate for higher order aberrations (second to fifth order), which are associated with diminished visual acuity and perception in highly aberrated eyes. The adaptive optics technology may be of clinical benefit when counseling patients with highly aberrated eyes regarding their maximum subjective potential for vision correction. Copyright 2010, SLACK Incorporated.

  12. Robust Wave-front Correction in a Small Scale Adaptive Optics System Using a Membrane Deformable Mirror

    NASA Astrophysics Data System (ADS)

    Choi, Y.; Park, S.; Baik, S.; Jung, J.; Lee, S.; Yoo, J.

    A small scale laboratory adaptive optics system using a Shack-Hartmann wave-front sensor (WFS) and a membrane deformable mirror (DM) has been built for robust image acquisition. In this study, an adaptive limited control technique is adopted to maintain the long-term correction stability of an adaptive optics system. To prevent the waste of dynamic correction range for correcting small residual wave-front distortions which are inefficient to correct, the built system tries to limit wave-front correction when a similar small difference wave-front pattern is repeatedly generated. Also, the effect of mechanical distortion in an adaptive optics system is studied and a pre-recognition method for the distortion is devised to prevent low-performance system operation. A confirmation process for a balanced work assignment among deformable mirror (DM) actuators is adopted for the pre-recognition. The corrected experimental results obtained by using a built small scale adaptive optics system are described in this paper.

  13. Accommodation with higher-order monochromatic aberrations corrected with adaptive optics

    NASA Astrophysics Data System (ADS)

    Chen, Li; Kruger, Philip B.; Hofer, Heidi; Singer, Ben; Williams, David R.

    2006-01-01

    Higher-order monochromatic aberrations in the human eye cause a difference in the appearance of stimuli at distances nearer and farther from best focus that could serve as a signed error signal for accommodation. We explored whether higher-order monochromatic aberrations affect the accommodative response to 0.5 D step changes in vergence in experiments in which these aberrations were either present as they normally are or removed with adaptive optics. Of six subjects, one could not accommodate at all for steps in either condition. One subject clearly required higher-order aberrations to accommodate at all. The remaining four subjects could accommodate in the correct direction even when higher-order aberrations were removed. No subjects improved their accommodation when higher-order aberrations were corrected, indicating that the corresponding decrease in the depth of field of the eye did not improve the accommodative response. These results are consistent with previous findings of large individual differences in the ability to accommodate in impoverished conditions. These results suggest that at least some subjects can use monochromatic higher-order aberrations to guide accommodation. They also show that some subjects can accommodate correctly when higher-order monochromatic aberrations as well as established cues to accommodation are greatly reduced.

  14. Registration of adaptive optics corrected retinal nerve fiber layer (RNFL) images

    PubMed Central

    Ramaswamy, Gomathy; Lombardo, Marco; Devaney, Nicholas

    2014-01-01

    Glaucoma is the leading cause of preventable blindness in the western world. Investigation of high-resolution retinal nerve fiber layer (RNFL) images in patients may lead to new indicators of its onset. Adaptive optics (AO) can provide diffraction-limited images of the retina, providing new opportunities for earlier detection of neuroretinal pathologies. However, precise processing is required to correct for three effects in sequences of AO-assisted, flood-illumination images: uneven illumination, residual image motion and image rotation. This processing can be challenging for images of the RNFL due to their low contrast and lack of clearly noticeable features. Here we develop specific processing techniques and show that their application leads to improved image quality on the nerve fiber bundles. This in turn improves the reliability of measures of fiber texture such as the correlation of Gray-Level Co-occurrence Matrix (GLCM). PMID:24940551

  15. Registration of adaptive optics corrected retinal nerve fiber layer (RNFL) images.

    PubMed

    Ramaswamy, Gomathy; Lombardo, Marco; Devaney, Nicholas

    2014-06-01

    Glaucoma is the leading cause of preventable blindness in the western world. Investigation of high-resolution retinal nerve fiber layer (RNFL) images in patients may lead to new indicators of its onset. Adaptive optics (AO) can provide diffraction-limited images of the retina, providing new opportunities for earlier detection of neuroretinal pathologies. However, precise processing is required to correct for three effects in sequences of AO-assisted, flood-illumination images: uneven illumination, residual image motion and image rotation. This processing can be challenging for images of the RNFL due to their low contrast and lack of clearly noticeable features. Here we develop specific processing techniques and show that their application leads to improved image quality on the nerve fiber bundles. This in turn improves the reliability of measures of fiber texture such as the correlation of Gray-Level Co-occurrence Matrix (GLCM).

  16. [Adaptive optics for ophthalmology].

    PubMed

    Saleh, M

    2016-04-01

    Adaptive optics is a technology enhancing the visual performance of an optical system by correcting its optical aberrations. Adaptive optics have already enabled several breakthroughs in the field of visual sciences, such as improvement of visual acuity in normal and diseased eyes beyond physiologic limits, and the correction of presbyopia. Adaptive optics technology also provides high-resolution, in vivo imaging of the retina that may eventually help to detect the onset of retinal conditions at an early stage and provide better assessment of treatment efficacy. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  17. Aberration correction during real time in vivo imaging of bone marrow with sensorless adaptive optics confocal microscope.

    PubMed

    Wang, Zhibin; Wei, Dan; Wei, Ling; He, Yi; Shi, Guohua; Wei, Xunbin; Zhang, Yudong

    2014-08-01

    We have demonstrated adaptive correction of specimen-induced aberration during in vivo imaging of mouse bone marrow vasculature with confocal fluorescence microscopy. Adaptive optics system was completed with wavefront sensorless correction scheme based on stochastic parallel gradient descent algorithm. Using image sharpness as the optimization metric, aberration correction was performed based upon Zernike polynomial modes. The experimental results revealed the improved signal and resolution leading to a substantially enhanced image contrast with aberration correction. The image quality of vessels at 38- and 75-μm depth increased three times and two times, respectively. The corrections allowed us to detect clearer bone marrow vasculature structures at greater contrast and improve the signal-to-noise ratio.

  18. Interferometric adaptive optics for high-power laser beam correction in fast ignition experiments

    SciTech Connect

    Homoelle, D C; Baker, K L; Patel, P K; Utterback, E; Rushford, M C; Siders, C W; Barty, C J

    2009-10-22

    We present the design for a high-speed adaptive optics system that will be used to achieve the necessary laser pointing and beam-quality performance for initial fast-ignition coupling experiments. This design makes use of a 32 x 32 pixellated MEMS device as the adaptive optic and a two-channel interferometer as the wave-front sensor. We present results from a system testbed that demonstrates improvement of the Strehl ratio from 0.09 to 0.61 and stabilization of beam pointing from {approx}75{micro}rad to <2{micro}rad.

  19. Adaptable DC offset correction

    NASA Technical Reports Server (NTRS)

    Golusky, John M. (Inventor); Muldoon, Kelly P. (Inventor)

    2009-01-01

    Methods and systems for adaptable DC offset correction are provided. An exemplary adaptable DC offset correction system evaluates an incoming baseband signal to determine an appropriate DC offset removal scheme; removes a DC offset from the incoming baseband signal based on the appropriate DC offset scheme in response to the evaluated incoming baseband signal; and outputs a reduced DC baseband signal in response to the DC offset removed from the incoming baseband signal.

  20. Increasing the Corrected Field of View of an Adaptive Optical Telescope

    DTIC Science & Technology

    1992-12-01

    Chester S. Gardner. "Experiments on laser guide stars at Mauna Kea Observatory for adaptive imaging in astronomy," Nature, 328:229-231 (1987). BIB-3 59...Roddier, F. and others. "Seeing at Mauna Kea : a joint UH-UN-NOAO-CFHT study." Ad- vanced Technology Optical Telescopes IV, Proc. SPIE1236, edited by...assumptions are made in this dissertation: 1) geometrical optics is adequate to describe propagation down through the atmosphere at a good observatory

  1. Adaptive Optics Analysis of Visual Benefit with Higher-order Aberrations Correction of Human Eye - Poster Paper

    NASA Astrophysics Data System (ADS)

    Xue, Lixia; Dai, Yun; Rao, Xuejun; Wang, Cheng; Hu, Yiyun; Liu, Qian; Jiang, Wenhan

    2008-01-01

    Higher-order aberrations correction can improve visual performance of human eye to some extent. To evaluate how much visual benefit can be obtained with higher-order aberrations correction we developed an adaptive optics vision simulator (AOVS). Dynamic real time optimized modal compensation was used to implement various customized higher-order ocular aberrations correction strategies. The experimental results indicate that higher-order aberrations correction can improve visual performance of human eye comparing with only lower-order aberration correction but the improvement degree and higher-order aberration correction strategy are different from each individual. Some subjects can acquire great visual benefit when higher-order aberrations were corrected but some subjects acquire little visual benefit even though all higher-order aberrations were corrected. Therefore, relative to general lower-order aberrations correction strategy, customized higher-order aberrations correction strategy is needed to obtain optimal visual improvement for each individual. AOVS provides an effective tool for higher-order ocular aberrations optometry for customized ocular aberrations correction.

  2. Constraining the Adaptive Optics Point-Spread Function in Crowded Fields: Measuring Photometric Aperture Corrections

    NASA Astrophysics Data System (ADS)

    Sheehy, Christopher D.; McCrady, Nate; Graham, James R.

    2006-08-01

    The point-spread function (PSF) of an adaptive optics (AO) system is often poorly known. This ignorance can lead to significant systematic errors. Since the degree of AO correction is sensitive to the observing conditions (seeing, wind speed, brightness of the wave front reference, etc.), it would be desirable to estimate the PSF from the data themselves rather than from observations of a PSF star at another time. We have developed a method to estimate the PSF delivered by an AO system in the case where the scene consists of a crowded star field. We model the modulation transfer function (MTF) of several key components of the imaging system (atmosphere filtered by an AO system, telescope pupil, and pixel array). The power spectrum of the image, even a dense star field, can be used to constrain our model, which in turn can be used to reconstruct the PSF. In the case of circularly symmetric PSFs, we demonstrate that the power spectrum of the source distribution function can be successfully removed from the measured MTF and that our fit successfully recovers input parameters from a model data set constructed from these parameters. We also show that the method yields reasonable fit parameters and a useful approximation to the PSF when applied to data from the laser guide star (LGS) AO system at the Keck Observatory. Comparison of Keck LGS AO data and Hubble Space Telescope observations with NICMOS show that photometric accuracy of a few percent can be achieved for data with Strehl ratios as low as 4%. Based on observations obtained at the W. M. Keck Observatory.

  3. Nonlinear adaptive optics: aberration correction in three photon fluorescence microscopy for mouse brain imaging

    NASA Astrophysics Data System (ADS)

    Sinefeld, David; Paudel, Hari P.; Wang, Tianyu; Wang, Mengran; Ouzounov, Dimitre G.; Bifano, Thomas G.; Xu, Chris

    2017-02-01

    Multiphoton fluorescence microscopy is a well-established technique for deep-tissue imaging with subcellular resolution. Three-photon microscopy (3PM) when combined with long wavelength excitation was shown to allow deeper imaging than two-photon microscopy (2PM) in biological tissues, such as mouse brain, because out-of-focus background light can be further reduced due to the higher order nonlinear excitation. As was demonstrated in 2PM systems, imaging depth and resolution can be improved by aberration correction using adaptive optics (AO) techniques which are based on shaping the scanning beam using a spatial light modulator (SLM). In this way, it is possible to compensate for tissue low order aberration and to some extent, to compensate for tissue scattering. Here, we present a 3PM AO microscopy system for brain imaging. Soliton self-frequency shift is used to create a femtosecond source at 1675 nm and a microelectromechanical (MEMS) SLM serves as the wavefront shaping device. We perturb the 1020 segment SLM using a modified nonlinear version of three-point phase shifting interferometry. The nonlinearity of the fluorescence signal used for feedback ensures that the signal is increasing when the spot size decreases, allowing compensation of phase errors in an iterative optimization process without direct phase measurement. We compare the performance for different orders of nonlinear feedback, showing an exponential growth in signal improvement as the nonlinear order increases. We demonstrate the impact of the method by applying the 3PM AO system for in-vivo mouse brain imaging, showing improvement in signal at 1-mm depth inside the brain.

  4. Dynamic optical aberration correction with adaptive coded apertures techniques in conformal imaging

    NASA Astrophysics Data System (ADS)

    Li, Yan; Hu, Bin; Zhang, Pengbin; Zhang, Binglong

    2015-02-01

    Conformal imaging systems are confronted with dynamic aberration in optical design processing. In classical optical designs, for combination high requirements of field of view, optical speed, environmental adaption and imaging quality, further enhancements can be achieved only by the introduction of increased complexity of aberration corrector. In recent years of computational imaging, the adaptive coded apertures techniques which has several potential advantages over more traditional optical systems is particularly suitable for military infrared imaging systems. The merits of this new concept include low mass, volume and moments of inertia, potentially lower costs, graceful failure modes, steerable fields of regard with no macroscopic moving parts. Example application for conformal imaging system design where the elements of a set of binary coded aperture masks are applied are optimization designed is presented in this paper, simulation results show that the optical performance is closely related to the mask design and the reconstruction algorithm optimization. As a dynamic aberration corrector, a binary-amplitude mask located at the aperture stop is optimized to mitigate dynamic optical aberrations when the field of regard changes and allow sufficient information to be recorded by the detector for the recovery of a sharp image using digital image restoration in conformal optical system.

  5. A correction algorithm to simultaneously control dual deformable mirrors in a woofer-tweeter adaptive optics system

    PubMed Central

    Li, Chaohong; Sredar, Nripun; Ivers, Kevin M.; Queener, Hope; Porter, Jason

    2010-01-01

    We present a direct slope-based correction algorithm to simultaneously control two deformable mirrors (DMs) in a woofer-tweeter adaptive optics system. A global response matrix was derived from the response matrices of each deformable mirror and the voltages for both deformable mirrors were calculated simultaneously. This control algorithm was tested and compared with a 2-step sequential control method in five normal human eyes using an adaptive optics scanning laser ophthalmoscope. The mean residual total root-mean-square (RMS) wavefront errors across subjects after adaptive optics (AO) correction were 0.128 ± 0.025 μm and 0.107 ± 0.033 μm for simultaneous and 2-step control, respectively (7.75-mm pupil). The mean intensity of reflectance images acquired after AO convergence was slightly higher for 2-step control. Radially-averaged power spectra calculated from registered reflectance images were nearly identical for all subjects using simultaneous or 2-step control. The correction performance of our new simultaneous dual DM control algorithm is comparable to 2-step control, but is more efficient. This method can be applied to any woofer-tweeter AO system. PMID:20721058

  6. Adaptive optics correction of a tunable fluidic lens for ophthalmic applications

    NASA Astrophysics Data System (ADS)

    Fuh, Yiin-Kuen; Lin, Ming-Xin

    2013-11-01

    Tunable fluidic lenses are utilizing curvature change via continuously adjusting injected liquid volumes to achieve variable-focusing properties. Nevertheless, the nature of curvature change and refractive index mismatch causes inherent spatial aberrations that severely degrade image quality. Here we present the experimental study of the aberrations in tunable fluidic lenses and use of adaptive optics to compensate for the wavefront errors. Adaptive optics based scheme is demonstrated for three injected liquid volumes, resulting in a substantial reduction of the wavefront errors from 0.42, 1.05, 1.49 to 0.20, 0.21, 0.23 μm, respectively, corresponding to the focal length tunability of 100-200 mm.

  7. Adaptive optics with four laser guide stars: correction of the cone effect in large telescopes.

    PubMed

    Viard, Elise; Le, Louarn Miska; Hubin, Norbert

    2002-01-01

    We study the performance of an adaptive optics (AO) system with four laser guide stars (LGSs) and a natural guide star (NGS). The residual cone effect with four LGSs is obtained by a numerical simulation. This method allows the adaptive optics system to be extended toward the visible part of the spectrum without tomographic reconstruction of three-dimensional atmospheric perturbations, resolving the cone effect in the visible. Diffraction-limited images are obtained with 17-arc ms precision in median atmospheric conditions at wavelengths longer than 600 nm. The gain achievable with such a system operated on an existing AO system is studied. For comparison, performance in terms of achievable Strehl ratio is also computed for a reasonable system composed of a 40 x 40 Shack-Hartmann wave-front sensor optimized for the I band. Typical errors of a NGS wave front are computed by use of analytical formulas. With the NGS errors and the cone effect, the Strehl ratio can reach 0.45 at 1.25 microm under good-seeing conditions with the Nasmyth Adaptive Optics System (NAOS; a 14 x 14 subpupil wave-front sensor) at the Very Large Telescope and 0.8 with a 40 x 40 Shack-Hartmann wave-front sensor.

  8. Towards a Network of Small Aperture Telescopes with Adaptive Optics Correction Capability

    NASA Astrophysics Data System (ADS)

    Cegarra Polo, M.; Lambert, A.

    2016-09-01

    A low cost and compact Adaptive Optics (AO) system for a small aperture telescope (Meade LX200ACF 16") has been developed at UNSW Canberra, where its performance is currently being evaluated. It is based on COTS components, with the exception of a real time control loop implemented in a Field Programmable Gate Array (FPGA), populated in a small form factor board which also includes the wavefront image sensor. A Graphical User Interface (GUI) running in an external computer connected to the FPGA imaging board provides the operator with control of different parameters of the AO system; results registration; and log of gradients, Zernike coefficients and deformable mirror voltages for later troubleshooting. The U.S. Air Force Academy Falcon Telescope Network (USAFA FTN) is an international network of moderate aperture telescopes (20 inches) that provides raw imagery to FTN partners [1]. The FTN supports general purpose use, including astronomy, satellite imaging and STEM (Science, Technology, Engineering and Mathematics) support. Currently 5 nodes are in operation, operated on-site or remotely, and more are to be commissioned over the next few years. One of the network nodes is located at UNSW Canberra (Australia), where the ground-based space surveillance team is currently using it for research in different areas of Space Situational Awareness (SSA). Some current and future SSA goals include geostationary satellite characterization through imaging modalities like polarimetry and real time image processing of Low Earth Orbit (LEO) objects. The fact that all FTN nodes have the same configuration facilitates the collaborative work between international teams of different nodes, so improvements and lessons learned at one site can be extended to the rest of nodes. With respect to this, preliminary studies of the imagery improvement that would be achieved with the AO system developed at UNSW, installed on a second 16 inch Meade LX200ACF telescope and compared to the

  9. Adaptive optics correction into single mode fiber for a low Earth orbiting space to ground optical communication link using the OPALS downlink.

    PubMed

    Wright, Malcolm W; Morris, Jeffery F; Kovalik, Joseph M; Andrews, Kenneth S; Abrahamson, Matthew J; Biswas, Abhijit

    2015-12-28

    An adaptive optics (AO) testbed was integrated to the Optical PAyload for Lasercomm Science (OPALS) ground station telescope at the Optical Communications Telescope Laboratory (OCTL) as part of the free space laser communications experiment with the flight system on board the International Space Station (ISS). Atmospheric turbulence induced aberrations on the optical downlink were adaptively corrected during an overflight of the ISS so that the transmitted laser signal could be efficiently coupled into a single mode fiber continuously. A stable output Strehl ratio of around 0.6 was demonstrated along with the recovery of a 50 Mbps encoded high definition (HD) video transmission from the ISS at the output of the single mode fiber. This proof of concept demonstration validates multi-Gbps optical downlinks from fast slewing low-Earth orbiting (LEO) spacecraft to ground assets in a manner that potentially allows seamless space to ground connectivity for future high data-rates network.

  10. Dynamic Aberration Correction for Conformal Window of High-Speed Aircraft Using Optimized Model-Based Wavefront Sensorless Adaptive Optics.

    PubMed

    Dong, Bing; Li, Yan; Han, Xin-Li; Hu, Bin

    2016-09-02

    For high-speed aircraft, a conformal window is used to optimize the aerodynamic performance. However, the local shape of the conformal window leads to large amounts of dynamic aberrations varying with look angle. In this paper, deformable mirror (DM) and model-based wavefront sensorless adaptive optics (WSLAO) are used for dynamic aberration correction of an infrared remote sensor equipped with a conformal window and scanning mirror. In model-based WSLAO, aberration is captured using Lukosz mode, and we use the low spatial frequency content of the image spectral density as the metric function. Simulations show that aberrations induced by the conformal window are dominated by some low-order Lukosz modes. To optimize the dynamic correction, we can only correct dominant Lukosz modes and the image size can be minimized to reduce the time required to compute the metric function. In our experiment, a 37-channel DM is used to mimic the dynamic aberration of conformal window with scanning rate of 10 degrees per second. A 52-channel DM is used for correction. For a 128 × 128 image, the mean value of image sharpness during dynamic correction is 1.436 × 10(-5) in optimized correction and is 1.427 × 10(-5) in un-optimized correction. We also demonstrated that model-based WSLAO can achieve convergence two times faster than traditional stochastic parallel gradient descent (SPGD) method.

  11. Dynamic Aberration Correction for Conformal Window of High-Speed Aircraft Using Optimized Model-Based Wavefront Sensorless Adaptive Optics

    PubMed Central

    Dong, Bing; Li, Yan; Han, Xin-li; Hu, Bin

    2016-01-01

    For high-speed aircraft, a conformal window is used to optimize the aerodynamic performance. However, the local shape of the conformal window leads to large amounts of dynamic aberrations varying with look angle. In this paper, deformable mirror (DM) and model-based wavefront sensorless adaptive optics (WSLAO) are used for dynamic aberration correction of an infrared remote sensor equipped with a conformal window and scanning mirror. In model-based WSLAO, aberration is captured using Lukosz mode, and we use the low spatial frequency content of the image spectral density as the metric function. Simulations show that aberrations induced by the conformal window are dominated by some low-order Lukosz modes. To optimize the dynamic correction, we can only correct dominant Lukosz modes and the image size can be minimized to reduce the time required to compute the metric function. In our experiment, a 37-channel DM is used to mimic the dynamic aberration of conformal window with scanning rate of 10 degrees per second. A 52-channel DM is used for correction. For a 128 × 128 image, the mean value of image sharpness during dynamic correction is 1.436 × 10−5 in optimized correction and is 1.427 × 10−5 in un-optimized correction. We also demonstrated that model-based WSLAO can achieve convergence two times faster than traditional stochastic parallel gradient descent (SPGD) method. PMID:27598161

  12. Evaluation of channel capacities of OAM-based FSO link with real-time wavefront correction by adaptive optics.

    PubMed

    Li, Ming; Cvijetic, Milorad; Takashima, Yuzuru; Yu, Zhongyuan

    2014-12-15

    We have evaluated the channel capacity of OAM-based FSO link under a strong atmospheric turbulence regime when adaptive optics (AO) are employed to correct the wavefront phase distortions of OAM modes. The turbulence is emulated by the Monte-Carlo phase screen method, which is validated by comparison with the theoretical phase structure function. Based on that, a closed-loop AO system with the capability of real-time correction is designed and validated. The simulation results show that the phase distortions of OAM modes induced by turbulence can be significantly compensated by the real-time correction of the properly designed AO. Furthermore, the crosstalk across channels is reduced drastically, while a substantial enhancement of channel capacity can be obtained when AO is deployed.

  13. Anisotropic aberration correction using region of interest based digital adaptive optics in Fourier domain OCT.

    PubMed

    Kumar, Abhishek; Kamali, Tschackad; Platzer, René; Unterhuber, Angelika; Drexler, Wolfgang; Leitgeb, Rainer A

    2015-04-01

    In this paper a numerical technique is presented to compensate for anisotropic optical aberrations, which are usually present across the lateral field of view in the out of focus regions, in high resolution optical coherence tomography and microscopy (OCT/OCM) setups. The recorded enface image field at different depths in the tomogram is digitally divided into smaller sub-regions or the regions of interest (ROIs), processed individually using subaperture based digital adaptive optics (DAO), and finally stitched together to yield a final image with a uniform diffraction limited resolution across the entire field of view (FOV). Using this method, a sub-micron lateral resolution is achieved over a depth range of 218 [Formula: see text]for a nano-particle phantom sample imaged using a fiber based point scanning spectral domain (SD) OCM system with a limited depth of focus (DOF) of ~7 [Formula: see text]at a numerical aperture (NA) of 0.6. Thus, an increase in DOF by ~30x is demonstrated in this case. The application of this method is also shown in ex vivo mouse adipose tissue.

  14. Anisotropic aberration correction using region of interest based digital adaptive optics in Fourier domain OCT

    PubMed Central

    Kumar, Abhishek; Kamali, Tschackad; Platzer, René; Unterhuber, Angelika; Drexler, Wolfgang; Leitgeb, Rainer A.

    2015-01-01

    In this paper a numerical technique is presented to compensate for anisotropic optical aberrations, which are usually present across the lateral field of view in the out of focus regions, in high resolution optical coherence tomography and microscopy (OCT/OCM) setups. The recorded enface image field at different depths in the tomogram is digitally divided into smaller sub-regions or the regions of interest (ROIs), processed individually using subaperture based digital adaptive optics (DAO), and finally stitched together to yield a final image with a uniform diffraction limited resolution across the entire field of view (FOV). Using this method, a sub-micron lateral resolution is achieved over a depth range of 218 μmfor a nano-particle phantom sample imaged using a fiber based point scanning spectral domain (SD) OCM system with a limited depth of focus (DOF) of ~7 μmat a numerical aperture (NA) of 0.6. Thus, an increase in DOF by ~30x is demonstrated in this case. The application of this method is also shown in ex vivo mouse adipose tissue. PMID:25908999

  15. Influence of adaptive-optics ocular aberration correction on visual acuity at different luminances and contrast polarities.

    PubMed

    Marcos, Susana; Sawides, Lucie; Gambra, Enrique; Dorronsoro, Carlos

    2008-10-06

    We evaluated the visual benefit of correcting astigmatism and high-order aberrations with adaptive optics (AO) on visual acuity (VA) measured at 7 different luminances (ranging from 0.8 to 50 cd/m(2)) and two contrast polarities (black letters on white background, BoW, and white letters on black background, WoB) on 7 subjects. For the BoW condition, VA increased with background luminance in both natural and AO-corrected conditions, and there was a benefit of AO correction at all luminances (by a factor of 1.29 on average across luminances). For WoB VA increased with foreground luminance but decreased for the highest luminances. In this reversed polarity condition AO correction increased VA by a factor of 1.13 on average and did not produce a visual benefit at high luminances. The improvement of VA (averaged across conditions) was significantly correlated (p = 0.04) with the amount of corrected aberrations (in terms of Strehl ratio). The improved performance with WoB targets with respect to BoW targets is decreased when correcting aberrations, suggesting a role of ocular aberrations in the differences in visual performance between contrast polarities.

  16. Lowered threshold energy for femtosecond laser induced optical breakdown in a water based eye model by aberration correction with adaptive optics

    PubMed Central

    Hansen, Anja; Géneaux, Romain; Günther, Axel; Krüger, Alexander; Ripken, Tammo

    2013-01-01

    In femtosecond laser ophthalmic surgery tissue dissection is achieved by photodisruption based on laser induced optical breakdown. In order to minimize collateral damage to the eye laser surgery systems should be optimized towards the lowest possible energy threshold for photodisruption. However, optical aberrations of the eye and the laser system distort the irradiance distribution from an ideal profile which causes a rise in breakdown threshold energy even if great care is taken to minimize the aberrations of the system during design and alignment. In this study we used a water chamber with an achromatic focusing lens and a scattering sample as eye model and determined breakdown threshold in single pulse plasma transmission loss measurements. Due to aberrations, the precise lower limit for breakdown threshold irradiance in water is still unknown. Here we show that the threshold energy can be substantially reduced when using adaptive optics to improve the irradiance distribution by spatial beam shaping. We found that for initial aberrations with a root-mean-square wave front error of only one third of the wavelength the threshold energy can still be reduced by a factor of three if the aberrations are corrected to the diffraction limit by adaptive optics. The transmitted pulse energy is reduced by 17% at twice the threshold. Furthermore, the gas bubble motions after breakdown for pulse trains at 5 kilohertz repetition rate show a more transverse direction in the corrected case compared to the more spherical distribution without correction. Our results demonstrate how both applied and transmitted pulse energy could be reduced during ophthalmic surgery when correcting for aberrations. As a consequence, the risk of retinal damage by transmitted energy and the extent of collateral damage to the focal volume could be minimized accordingly when using adaptive optics in fs-laser surgery. PMID:23761849

  17. Lowered threshold energy for femtosecond laser induced optical breakdown in a water based eye model by aberration correction with adaptive optics.

    PubMed

    Hansen, Anja; Géneaux, Romain; Günther, Axel; Krüger, Alexander; Ripken, Tammo

    2013-06-01

    In femtosecond laser ophthalmic surgery tissue dissection is achieved by photodisruption based on laser induced optical breakdown. In order to minimize collateral damage to the eye laser surgery systems should be optimized towards the lowest possible energy threshold for photodisruption. However, optical aberrations of the eye and the laser system distort the irradiance distribution from an ideal profile which causes a rise in breakdown threshold energy even if great care is taken to minimize the aberrations of the system during design and alignment. In this study we used a water chamber with an achromatic focusing lens and a scattering sample as eye model and determined breakdown threshold in single pulse plasma transmission loss measurements. Due to aberrations, the precise lower limit for breakdown threshold irradiance in water is still unknown. Here we show that the threshold energy can be substantially reduced when using adaptive optics to improve the irradiance distribution by spatial beam shaping. We found that for initial aberrations with a root-mean-square wave front error of only one third of the wavelength the threshold energy can still be reduced by a factor of three if the aberrations are corrected to the diffraction limit by adaptive optics. The transmitted pulse energy is reduced by 17% at twice the threshold. Furthermore, the gas bubble motions after breakdown for pulse trains at 5 kilohertz repetition rate show a more transverse direction in the corrected case compared to the more spherical distribution without correction. Our results demonstrate how both applied and transmitted pulse energy could be reduced during ophthalmic surgery when correcting for aberrations. As a consequence, the risk of retinal damage by transmitted energy and the extent of collateral damage to the focal volume could be minimized accordingly when using adaptive optics in fs-laser surgery.

  18. Progress on Developing Adaptive Optics-Optical Coherence Tomography for In Vivo Retinal Imaging: Monitoring and Correction of Eye Motion Artifacts.

    PubMed

    Zawadzki, Robert J; Capps, Arlie G; Kim, Dae Yu; Panorgias, Athanasios; Stevenson, Scott B; Hamann, Bernd; Werner, John S

    2014-03-01

    Recent progress in retinal image acquisition techniques, including optical coherence tomography (OCT) and scanning laser ophthalmoscopy (SLO), combined with improved performance of adaptive optics (AO) instrumentation, has resulted in improvement in the quality of in vivo images of cellular structures in the human retina. Here, we present a short review of progress on developing AO-OCT instruments. Despite significant progress in imaging speed and resolution, eye movements present during acquisition of a retinal image with OCT introduce motion artifacts into the image, complicating analysis and registration. This effect is especially pronounced in high-resolution datasets acquired with AO-OCT instruments. Several retinal tracking systems have been introduced to correct retinal motion during data acquisition. We present a method for correcting motion artifacts in AO-OCT volume data after acquisition using simultaneously captured adaptive optics-scanning laser ophthalmoscope (AO-SLO) images. We extract transverse eye motion data from the AO-SLO images, assign a motion adjustment vector to each AO-OCT A-scan, and re-sample from the scattered data back onto a regular grid. The corrected volume data improve the accuracy of quantitative analyses of microscopic structures.

  19. Multiphoton Fluorescence Microscopy with GRIN Objective Aberration Correction by Low Order Adaptive Optics

    PubMed Central

    Bortoletto, Favio; Bonoli, Carlotta; Panizzolo, Paolo; Ciubotaru, Catalin D.; Mammano, Fabio

    2011-01-01

    Graded Index (GRIN) rod microlenses are increasingly employed in the assembly of optical probes for microendoscopy applications. Confocal, two–photon and optical coherence tomography (OCT) based on GRIN optical probes permit in–vivo imaging with penetration depths into tissue up to the centimeter range. However, insertion of the probe can be complicated by the need of several alignment and focusing mechanisms along the optical path. Furthermore, resolution values are generally not limited by diffraction, but rather by optical aberrations within the endoscope probe and feeding optics. Here we describe a multiphoton confocal fluorescence imaging system equipped with a compact objective that incorporates a GRIN probe and requires no adjustment mechanisms. We minimized the effects of aberrations with optical compensation provided by a low–order electrostatic membrane mirror (EMM) inserted in the optical path of the confocal architecture, resulting in greatly enhanced image quality. PMID:21814575

  20. Analytical expression of long-exposure adaptive-optics-corrected coronagraphic image. First application to exoplanet detection.

    PubMed

    Sauvage, J-F; Mugnier, L M; Rousset, G; Fusco, T

    2010-11-01

    In this paper we derive an analytical model of a long-exposure star image for an adaptive-optics(AO)-corrected coronagraphic imaging system. This expression accounts for static aberrations upstream and downstream of the coronagraphic mask as well as turbulence residuals. It is based on the perfect coronagraph model. The analytical model is validated by means of simulations using the design and parameters of the SPHERE instrument. The analytical model is also compared to a simulated four-quadrant phase-mask coronagraph. Then, its sensitivity to a miscalibration of structure function and upstream static aberrations is studied, and the impact on exoplanet detectability is quantified. Last, a first inversion method is presented for a simulation case using a single monochromatic image with no reference. The obtained result shows a planet detectability increase by two orders of magnitude with respect to the raw image. This analytical model presents numerous potential applications in coronographic imaging, such as exoplanet direct detection, and circumstellar disk observation.

  1. Holographic Adaptive Optics

    NASA Astrophysics Data System (ADS)

    Andersen, G.

    For the last two decades adaptive optics has been used as a technique for correcting imaging applications and directed energy/laser targeting and laser communications systems affected by atmospheric turbulence. Typically these systems are bulky and limited to <10 kHz due to large computing overhead and limited photon efficiencies. Moreover most use zonal wavefront sensors which cannot easily handle extreme scintillation or unexpected obscuration of a pre-set aperture. Here we present a compact, lightweight adaptive optics system with the potential to operate at speeds of MHz. The system utilizes a hologram to perform an all-optical wavefront analysis that removes the need for any computer. Finally, the sensing is made on a modal basis so it is largely insensitive to scintillation and obscuration. We have constructed a prototype device and will present experimental results from our research. The holographic adaptive optics system begins with the creation of a multiplexed hologram. This hologram is created by recording the maximum and minimum response functions of every actuator in the deformable mirror against a unique focused reference beam. When a wavefront of some arbitrary phase is incident on the processed hologram, a number of focal spots are created -- one pair for each actuator in the DM. The absolute phase error at each particular actuator location is simply related to the ratio of the intensity of each pair of spots. In this way we can use an array of photodetectors to give a direct readout of phase error without the need for any calculations. The advantages of holographic adaptive optics are many. To begin with, the measurement of phase error is made all optically, so the wavefront sensor directly controls the actuators in the DM without any computers. Using fast, photon counting photodetectors allows for closed loop correction limited only by the speed of the deformable mirror which in the case of MEMS devices can be 100 kHz or more. All this can be

  2. Atmospheric and adaptive optics

    NASA Astrophysics Data System (ADS)

    Hickson, Paul

    2014-11-01

    Atmospheric optics is the study of optical effects induced by the atmosphere on light propagating from distant sources. Of particular concern to astronomers is atmospheric turbulence, which limits the performance of ground-based telescopes. The past two decades have seen remarkable growth in the capabilities and performance of adaptive optics (AO) systems. These opto-mechanical systems actively compensate for the blurring effect of the Earth's turbulent atmosphere. By sensing, and correcting, wavefront distortion introduced by atmospheric index-of-refraction variations, AO systems can produce images with resolution approaching the diffraction limit of the telescope at near-infrared wavelengths. This review highlights the physical processes and fundamental relations of atmospheric optics that are most relevant to astronomy, and discusses the techniques used to characterize atmospheric turbulence. The fundamentals of AO are then introduced and the many types of advanced AO systems that have been developed are described. The principles of each are outlined, and the performance and limitations are examined. Aspects of photometric and astrometric measurements of AO-corrected images are considered. The paper concludes with a discussion of some of the challenges related to current and future AO systems, particularly those that will equip the next generation of large, ground-based optical and infrared telescopes.

  3. Adaptive Optics for Large Telescopes

    SciTech Connect

    Olivier, S

    2008-06-27

    The use of adaptive optics was originally conceived by astronomers seeking to correct the blurring of images made with large telescopes due to the effects of atmospheric turbulence. The basic idea is to use a device, a wave front corrector, to adjust the phase of light passing through an optical system, based on some measurement of the spatial variation of the phase transverse to the light propagation direction, using a wave front sensor. Although the original concept was intended for application to astronomical imaging, the technique can be more generally applied. For instance, adaptive optics systems have been used for several decades to correct for aberrations in high-power laser systems. At Lawrence Livermore National Laboratory (LLNL), the world's largest laser system, the National Ignition Facility, uses adaptive optics to correct for aberrations in each of the 192 beams, all of which must be precisely focused on a millimeter scale target in order to perform nuclear physics experiments.

  4. Exploiting Adaptive Optics with Deformable Secondary Mirrors

    DTIC Science & Technology

    2007-03-08

    progress in tomographic wavefront sensing and altitude conjugated adaptive correction, and is a critical step forward for adaptive optics for future large...geostationary satellites, captured at the 6.5 m MMT telescope, using the deformable secondary adaptive optics system....new technology to the unique development of deformable secondary mirrors pioneered at the University of Arizona’s Center for Astronomical Adaptive

  5. Optical advantages of astigmatic aberration corrected heliostats

    NASA Astrophysics Data System (ADS)

    van Rooyen, De Wet; Schöttl, Peter; Bern, Gregor; Heimsath, Anna; Nitz, Peter

    2016-05-01

    Astigmatic aberration corrected heliostats adapt their shape in dependence of the incidence angle of the sun on the heliostat. Simulations show that this optical correction leads to a higher concentration ratio at the target and thus in a decrease in required receiver aperture in particular for smaller heliostat fields.

  6. Adaptive optics for peripheral vision

    NASA Astrophysics Data System (ADS)

    Rosén, R.; Lundström, L.; Unsbo, P.

    2012-07-01

    Understanding peripheral optical errors and their impact on vision is important for various applications, e.g. research on myopia development and optical correction of patients with central visual field loss. In this study, we investigated whether correction of higher order aberrations with adaptive optics (AO) improve resolution beyond what is achieved with best peripheral refractive correction. A laboratory AO system was constructed for correcting peripheral aberrations. The peripheral low contrast grating resolution acuity in the 20° nasal visual field of the right eye was evaluated for 12 subjects using three types of correction: refractive correction of sphere and cylinder, static closed loop AO correction and continuous closed loop AO correction. Running AO in continuous closed loop improved acuity compared to refractive correction for most subjects (maximum benefit 0.15 logMAR). The visual improvement from aberration correction was highly correlated with the subject's initial amount of higher order aberrations (p = 0.001, R 2 = 0.72). There was, however, no acuity improvement from static AO correction. In conclusion, correction of peripheral higher order aberrations can improve low contrast resolution, provided refractive errors are corrected and the system runs in continuous closed loop.

  7. Progress on Developing Adaptive Optics–Optical Coherence Tomography for In Vivo Retinal Imaging: Monitoring and Correction of Eye Motion Artifacts

    PubMed Central

    Zawadzki, Robert J.; Capps, Arlie G.; Kim, Dae Yu; Panorgias, Athanasios; Stevenson, Scott B.; Hamann, Bernd; Werner, John S.

    2014-01-01

    Recent progress in retinal image acquisition techniques, including optical coherence tomography (OCT) and scanning laser ophthalmoscopy (SLO), combined with improved performance of adaptive optics (AO) instrumentation, has resulted in improvement in the quality of in vivo images of cellular structures in the human retina. Here, we present a short review of progress on developing AO-OCT instruments. Despite significant progress in imaging speed and resolution, eye movements present during acquisition of a retinal image with OCT introduce motion artifacts into the image, complicating analysis and registration. This effect is especially pronounced in high-resolution datasets acquired with AO-OCT instruments. Several retinal tracking systems have been introduced to correct retinal motion during data acquisition. We present a method for correcting motion artifacts in AO-OCT volume data after acquisition using simultaneously captured adaptive optics-scanning laser ophthalmoscope (AO-SLO) images. We extract transverse eye motion data from the AO-SLO images, assign a motion adjustment vector to each AO-OCT A-scan, and re-sample from the scattered data back onto a regular grid. The corrected volume data improve the accuracy of quantitative analyses of microscopic structures. PMID:25544826

  8. Telescope Adaptive Optics Code

    SciTech Connect

    Phillion, D.

    2005-07-28

    The Telescope AO Code has general adaptive optics capabilities plus specialized models for three telescopes with either adaptive optics or active optics systems. It has the capability to generate either single-layer or distributed Kolmogorov turbulence phase screens using the FFT. Missing low order spatial frequencies are added using the Karhunen-Loeve expansion. The phase structure curve is extremely dose to the theoreUcal. Secondly, it has the capability to simulate an adaptive optics control systems. The default parameters are those of the Keck II adaptive optics system. Thirdly, it has a general wave optics capability to model the science camera halo due to scintillation from atmospheric turbulence and the telescope optics. Although this capability was implemented for the Gemini telescopes, the only default parameter specific to the Gemini telescopes is the primary mirror diameter. Finally, it has a model for the LSST active optics alignment strategy. This last model is highly specific to the LSST

  9. Retinal Imaging: Adaptive Optics

    NASA Astrophysics Data System (ADS)

    Goncharov, A. S.; Iroshnikov, N. G.; Larichev, Andrey V.

    This chapter describes several factors influencing the performance of ophthalmic diagnostic systems with adaptive optics compensation of human eye aberration. Particular attention is paid to speckle modulation, temporal behavior of aberrations, and anisoplanatic effects. The implementation of a fundus camera with adaptive optics is considered.

  10. Adaptive optics ophthalmoscopy.

    PubMed

    Roorda, A

    2000-01-01

    Retinal images in the human eye are normally degraded because we are forced to use the optical system of the human eye--which is fraught with aberrations--as the objective lens. The recent application of adaptive optics technology to measure and compensate for these aberrations has produced retinal images in human eyes with unprecedented resolution. The adaptive optics ophthalmoscope is used to take pictures of photoreceptors and capillaries and to study spectral and angular tuning properties of individual photoreceptors. Application of adaptive optics technology for ophthalmoscopy promises continued progress toward understanding the basic properties of the living human retina and also for clinical applications.

  11. Adaptation of adaptive optics systems.

    NASA Astrophysics Data System (ADS)

    Xin, Yu; Zhao, Dazun; Li, Chen

    1997-10-01

    In the paper, a concept of an adaptation of adaptive optical system (AAOS) is proposed. The AAOS has certain real time optimization ability against the variation of the brightness of detected objects m, atmospheric coherence length rO and atmospheric time constant τ by means of changing subaperture number and diameter, dynamic range, and system's temporal response. The necessity of AAOS using a Hartmann-Shack wavefront sensor and some technical approaches are discussed. Scheme and simulation of an AAOS with variable subaperture ability by use of both hardware and software are presented as an example of the system.

  12. Adaptive correction of ensemble forecasts

    NASA Astrophysics Data System (ADS)

    Pelosi, Anna; Battista Chirico, Giovanni; Van den Bergh, Joris; Vannitsem, Stephane

    2017-04-01

    Forecasts from numerical weather prediction (NWP) models often suffer from both systematic and non-systematic errors. These are present in both deterministic and ensemble forecasts, and originate from various sources such as model error and subgrid variability. Statistical post-processing techniques can partly remove such errors, which is particularly important when NWP outputs concerning surface weather variables are employed for site specific applications. Many different post-processing techniques have been developed. For deterministic forecasts, adaptive methods such as the Kalman filter are often used, which sequentially post-process the forecasts by continuously updating the correction parameters as new ground observations become available. These methods are especially valuable when long training data sets do not exist. For ensemble forecasts, well-known techniques are ensemble model output statistics (EMOS), and so-called "member-by-member" approaches (MBM). Here, we introduce a new adaptive post-processing technique for ensemble predictions. The proposed method is a sequential Kalman filtering technique that fully exploits the information content of the ensemble. One correction equation is retrieved and applied to all members, however the parameters of the regression equations are retrieved by exploiting the second order statistics of the forecast ensemble. We compare our new method with two other techniques: a simple method that makes use of a running bias correction of the ensemble mean, and an MBM post-processing approach that rescales the ensemble mean and spread, based on minimization of the Continuous Ranked Probability Score (CRPS). We perform a verification study for the region of Campania in southern Italy. We use two years (2014-2015) of daily meteorological observations of 2-meter temperature and 10-meter wind speed from 18 ground-based automatic weather stations distributed across the region, comparing them with the corresponding COSMO

  13. Performance of the restoration of interferometric images from the Large Binocular Telescope: the effects of angular coverage and partial adaptive optics correction

    NASA Astrophysics Data System (ADS)

    Carbillet, Marcel; Correia, Serge; Boccacci, Patrizia; Bertero, Mario

    2003-02-01

    This presentation reports the status of our study concerning the imaging properties of the Large Binocular Telescope (LBT) interferometer, and namely the effect of limited angular coverage and partial adaptive optics (AO) correction. The limitation in angular coverage, together with the correlated problem of angular smearing due to time-averaging of the interferometric images, is investigated for relevant cases depending on the declination of the observed object. Results are encouraging even in case of incomplete coverage. Partial AO-correction can result in a wide range of image quality, but can also create significant differences within a same field-of-view, especially between a suitable reference star to be used for post-observation multiple deconvolution and the observed object. Our study deals with both the problem of space-variance of the AO-corrected point-spread function, and that of global quality of the AO-correction. Uniformity, rather than global quality, is found to be the key-problem. After considering the single-conjugate AO case, we reach to some conclusions for the more interesting, and actually wide-field, case implying multi-conjugate AO. The whole study is performed on different types of object, from binary stars to diffuse objects, and a combined one with a high-dynamic range.

  14. Misalignment corrections in optical interconnects

    NASA Astrophysics Data System (ADS)

    Song, Deqiang

    Optical interconnects are considered a promising solution for long distance and high bitrate data transmissions, outperforming electrical interconnects in terms of loss and dispersion. Due to the bandwidth and distance advantage of optical interconnects, longer links have been implemented with optics. Recent studies show that optical interconnects have clear advantages even at very short distances---intra system interconnects. The biggest challenge for such optical interconnects is the alignment tolerance. Many free space optical components require very precise assembly and installation, and therefore the overall cost could be increased. This thesis studied the misalignment tolerance and possible alignment correction solutions for optical interconnects at backplane or board level. First the alignment tolerance for free space couplers was simulated and the result indicated the most critical alignments occur between the VCSEL, waveguide and microlens arrays. An in-situ microlens array fabrication method was designed and experimentally demonstrated, with no observable misalignment with the waveguide array. At the receiver side, conical lens arrays were proposed to replace simple microlens arrays for a larger angular alignment tolerance. Multilayer simulation models in CodeV were built to optimized the refractive index and shape profiles of the conical lens arrays. Conical lenses fabricated with micro injection molding machine and fiber etching were characterized. Active component VCSOA was used to correct misalignment in optical connectors between the board and backplane. The alignment correction capability were characterized for both DC and AC (1GHz) optical signal. The speed and bandwidth of the VCSOA was measured and compared with a same structure VCSEL. Based on the optical inverter being studied in our lab, an all-optical flip-flop was demonstrated using a pair of VCSOAs. This memory cell with random access ability can store one bit optical signal with set or

  15. Solar tomography adaptive optics.

    PubMed

    Ren, Deqing; Zhu, Yongtian; Zhang, Xi; Dou, Jiangpei; Zhao, Gang

    2014-03-10

    Conventional solar adaptive optics uses one deformable mirror (DM) and one guide star for wave-front sensing, which seriously limits high-resolution imaging over a large field of view (FOV). Recent progress toward multiconjugate adaptive optics indicates that atmosphere turbulence induced wave-front distortion at different altitudes can be reconstructed by using multiple guide stars. To maximize the performance over a large FOV, we propose a solar tomography adaptive optics (TAO) system that uses tomographic wave-front information and uses one DM. We show that by fully taking advantage of the knowledge of three-dimensional wave-front distribution, a classical solar adaptive optics with one DM can provide an extra performance gain for high-resolution imaging over a large FOV in the near infrared. The TAO will allow existing one-deformable-mirror solar adaptive optics to deliver better performance over a large FOV for high-resolution magnetic field investigation, where solar activities occur in a two-dimensional field up to 60'', and where the near infrared is superior to the visible in terms of magnetic field sensitivity.

  16. Solar Adaptive Optics.

    PubMed

    Rimmele, Thomas R; Marino, Jose

    Adaptive optics (AO) has become an indispensable tool at ground-based solar telescopes. AO enables the ground-based observer to overcome the adverse effects of atmospheric seeing and obtain diffraction limited observations. Over the last decade adaptive optics systems have been deployed at major ground-based solar telescopes and revitalized ground-based solar astronomy. The relatively small aperture of solar telescopes and the bright source make solar AO possible for visible wavelengths where the majority of solar observations are still performed. Solar AO systems enable diffraction limited observations of the Sun for a significant fraction of the available observing time at ground-based solar telescopes, which often have a larger aperture than equivalent space based observatories, such as HINODE. New ground breaking scientific results have been achieved with solar adaptive optics and this trend continues. New large aperture telescopes are currently being deployed or are under construction. With the aid of solar AO these telescopes will obtain observations of the highly structured and dynamic solar atmosphere with unprecedented resolution. This paper reviews solar adaptive optics techniques and summarizes the recent progress in the field of solar adaptive optics. An outlook to future solar AO developments, including a discussion of Multi-Conjugate AO (MCAO) and Ground-Layer AO (GLAO) will be given.

  17. Deformable Mirrors Correct Optical Distortions

    NASA Technical Reports Server (NTRS)

    2010-01-01

    By combining the high sensitivity of space telescopes with revolutionary imaging technologies consisting primarily of adaptive optics, the Terrestrial Planet Finder is slated to have imaging power 100 times greater than the Hubble Space Telescope. To this end, Boston Micromachines Corporation, of Cambridge, Massachusetts, received Small Business Innovation Research (SBIR) contracts from the Jet Propulsion Laboratory for space-based adaptive optical technology. The work resulted in a microelectromechanical systems (MEMS) deformable mirror (DM) called the Kilo-DM. The company now offers a full line of MEMS DMs, which are being used in observatories across the world, in laser communication, and microscopy.

  18. Correction of Distributed Optical Aberrations

    SciTech Connect

    Baker, K; Olivier, S; Carrano, C; Phillion, D

    2006-02-12

    The objective of this project was to demonstrate the use of multiple distributed deformable mirrors (DMs) to improve the performance of optical systems with distributed aberrations. This concept is expected to provide dramatic improvement in the optical performance of systems in applications where the aberrations are distributed along the optical path or within the instrument itself. Our approach used multiple actuated DMs distributed to match the aberration distribution. The project developed the algorithms necessary to determine the required corrections and simulate the performance of these multiple DM systems.

  19. Adaptive optics research at Lincoln Laboratory

    NASA Astrophysics Data System (ADS)

    Greenwood, Darryl P.; Primmerman, Charles A.

    A development history is presented for adaptive-optics methods of optical aberration measurement and correction in real time, which are applicable to the thermal blooming of high-energy laser beams, the compensation of a laser beam propagating from ground to space, and compensation by means of a synthetic beacon. Attention is given to schematics of the various adaptive optics system types, which cover the cases of cooperative and uncooperative targets. Representative research projects encompassed by the high-energy propagation range in West Palm Beach are the 'Everlaser' instrumented target vehicle, the OCULAR multidither system installation, and the Atmospheric Compensation Experiment Adaptive Optics System.

  20. Progress on the VLT Adaptive Optics Facility

    NASA Astrophysics Data System (ADS)

    Arsenault, R.; Madec, P.-Y.; Paufique, J.; Ströbele, S.; Pirard, J.-F.; Vernet, É.; Hackenberg, W.; Hubin, N.; Jochum, L.; Kuntschner, H.; Glindemann, A.; Amico, P.; Lelouarn, M.; Kolb, J.; Tordo, S.; Donaldson, R.; Sã¶Nke, C.; Bonaccini Calia, D.; Conzelmann, R.; Delabre, B.; Kiekebusch, M.; Duhoux, P.; Guidolin, I.; Quattri, M.; Guzman, R.; Buzzoni, B.; Comin, M.; Dupuy, C.; Quentin, J.; Lizon, J.-L.; Silber, A.; Jolly, P.; Manescau, A.; Hammersley, P.; Reyes, J.; Jost, A.; Duchateau, M.; Heinz, V.; Bechet, C.; Stuik, R.

    2010-12-01

    The Very Large Telescope (VLT) Adaptive Optics Facility is a project that will transform one of the VLT's Unit Telescopes into an adaptive telescope that includes a deformable mirror in its optical train. For this purpose the secondary mirror is to be replaced by a thin shell deformable mirror; it will be possible to launch four laser guide stars from the centrepiece and two adaptive optics modules are being developed to feed the instruments HAWK-I and MUSE. These modules implement innovative correction modes for seeing improvement through ground layer adaptive optics and, for high Strehl ratio performance, laser tomography adaptive correction. The performance of these modes will be tested in Europe with a custom test bench called ASSIST. The project has completed its final design phase and concluded an intense phase of procurement; the year 2011 will see the beginning of assembly, integration and tests.

  1. Advanced Adaptive Optics Control Techniques

    DTIC Science & Technology

    1979-01-01

    Optimal estimation and control methods for high energy laser adaptive optics systems are described. Three system types are examined: Active...the adaptive optics approaches and potential system implementations are recommended.

  2. Advanced Adaptive Optics Technology Development

    SciTech Connect

    Olivier, S

    2001-09-18

    The NSF Center for Adaptive Optics (CfAO) is supporting research on advanced adaptive optics technologies. CfAO research activities include development and characterization of micro-electro-mechanical systems (MEMS) deformable mirror (DM) technology, as well as development and characterization of high-resolution adaptive optics systems using liquid crystal (LC) spatial light modulator (SLM) technology. This paper presents an overview of the CfAO advanced adaptive optics technology development activities including current status and future plans.

  3. New Adaptive Optics Technique Demonstrated

    NASA Astrophysics Data System (ADS)

    2007-03-01

    First ever Multi-Conjugate Adaptive Optics at the VLT Achieves First Light On the evening of 25 March 2007, the Multi-Conjugate Adaptive Optics Demonstrator (MAD) achieved First Light at the Visitor Focus of Melipal, the third Unit Telescope of the Very Large Telescope (VLT). MAD allowed the scientists to obtain images corrected for the blurring effect of atmospheric turbulence over the full 2x2 arcminute field of view. This world premiere shows the promises of a crucial technology for Extremely Large Telescopes. ESO PR Photo 19a/07 ESO PR Photo 19a/07 The MCAO Demonstrator Telescopes on the ground suffer from the blurring effect induced by atmospheric turbulence. This turbulence causes the stars to twinkle in a way which delights the poets but frustrates the astronomers, since it blurs the fine details of the images. However, with Adaptive Optics (AO) techniques, this major drawback can be overcome so that the telescope produces images that are as sharp as theoretically possible, i.e., approaching space conditions. Adaptive Optics systems work by means of a computer-controlled deformable mirror (DM) that counteracts the image distortion induced by atmospheric turbulence. It is based on real-time optical corrections computed from image data obtained by a 'wavefront sensor' (a special camera) at very high speed, many hundreds of times each second. The concept is not new. Already in 1989, the first Adaptive Optics system ever built for Astronomy (aptly named "COME-ON") was installed on the 3.6-m telescope at the ESO La Silla Observatory, as the early fruit of a highly successful continuing collaboration between ESO and French research institutes (ONERA and Observatoire de Paris). Ten years ago, ESO initiated an Adaptive Optics program to serve the needs for its frontline VLT project. Today, the Paranal Observatory is without any doubt one of the most advanced of its kind with respect to AO with no less than 7 systems currently installed (NACO, SINFONI, CRIRES and

  4. Adaptive optics ophthalmoscopy.

    PubMed

    Roorda, Austin; Duncan, Jacque L

    2015-11-01

    This review starts with a brief history and description of adaptive optics (AO) technology, followed by a showcase of the latest capabilities of AO systems for imaging the human retina and an extensive review of the literature on where AO is being used clinically. The review concludes with a discussion on future directions and guidance on usage and interpretation of images from AO systems for the eye.

  5. Adaptive optics ophthalmoscopy

    PubMed Central

    Roorda, Austin; Duncan, Jacque L.

    2016-01-01

    This review starts with a brief history and description of adaptive optics (AO) technology, followed by a showcase of the latest capabilities of AO systems for imaging the human retina and an extensive review of the literature on where AO is being used clinically. The review concludes with a discussion on future directions and guidance on usage and interpretation of images from AO systems for the eye. PMID:26973867

  6. Sparse-aperture adaptive optics

    NASA Astrophysics Data System (ADS)

    Tuthill, Peter; Lloyd, James; Ireland, Michael; Martinache, Frantz; Monnier, John; Woodruff, Henry; ten Brummelaar, Theo; Turner, Nils; Townes, Charles

    2006-06-01

    Aperture masking interferometry and Adaptive Optics (AO) are two of the competing technologies attempting to recover diffraction-limited performance from ground-based telescopes. However, there are good arguments that these techniques should be viewed as complementary, not competitive. Masking has been shown to deliver superior PSF calibration, rejection of atmospheric noise and robust recovery of phase information through the use of closure phases. However, this comes at the penalty of loss of flux at the mask, restricting the technique to bright targets. Adaptive optics, on the other hand, can reach a fainter class of objects but suffers from the difficulty of calibration of the PSF which can vary with observational parameters such as seeing, airmass and source brightness. Here we present results from a fusion of these two techniques: placing an aperture mask downstream of an AO system. The precision characterization of the PSF enabled by sparse-aperture interferometry can now be applied to deconvolution of AO images, recovering structure from the traditionally-difficult regime within the core of the AO-corrected transfer function. Results of this program from the Palomar and Keck adaptive optical systems are presented.

  7. Adaptive-optics performance of Antarctic telescopes.

    PubMed

    Lawrence, Jon S

    2004-02-20

    The performance of natural guide star adaptive-optics systems for telescopes located on the Antarctic plateau is evaluated and compared with adaptive-optics systems operated with the characteristic mid-latitude atmosphere found at Mauna Kea. A 2-m telescope with tip-tilt correction and an 8-m telescope equipped with a high-order adaptive-optics system are considered. Because of the large isoplanatic angle of the South Pole atmosphere, the anisoplanatic error associated with an adaptive-optics correction is negligible, and the achievable resolution is determined only by the fitting error associated with the number of corrected wave-front modes, which depends on the number of actuators on the deformable mirror. The usable field of view of an adaptive-optics equipped Antarctic telescope is thus orders of magnitude larger than for a similar telescope located at a mid-latitude site; this large field of view obviates the necessity for multiconjugate adaptive-optics systems that use multiple laser guide stars. These results, combined with the low infrared sky backgrounds, indicate that the Antarctic plateau is the best site on Earth at which to perform high-resolution imaging with large telescopes, either over large fields of view or with appreciable sky coverage. Preliminary site-testing results obtained recently from the Dome Concordia station indicate that this site is far superior to even the South Pole.

  8. The ERIS adaptive optics system

    NASA Astrophysics Data System (ADS)

    Marchetti, Enrico; Fedrigo, Enrico; Le Louarn, Miska; Madec, Pierre-Yves; Soenke, Christian; Brast, Roland; Conzelmann, Ralf; Delabre, Bernard; Duchateau, Michel; Frank, Christoph; Klein, Barbara; Amico, Paola; Hubin, Norbert; Esposito, Simone; Antichi, Jacopo; Carbonaro, Luca; Puglisi, Alfio; Quirós-Pacheco, Fernando; Riccardi, Armando; Xompero, Marco

    2014-07-01

    The Enhanced Resolution Imager and Spectrograph (ERIS) is the new Adaptive Optics based instrument for ESO's VLT aiming at replacing NACO and SINFONI to form a single compact facility with AO fed imaging and integral field unit spectroscopic scientific channels. ERIS completes the instrument suite at the VLT adaptive telescope. In particular it is equipped with a versatile AO system that delivers up to 95% Strehl correction in K band for science observations up to 5 micron It comprises high order NGS and LGS correction enabling the observation from exoplanets to distant galaxies with a large sky coverage thanks to the coupling of the LGS WFS with the high sensitivity of its visible WFS and the capability to observe in dust embedded environment thanks to its IR low order WFS. ERIS will be installed at the Cassegrain focus of the VLT unit hosting the Adaptive Optics Facility (AOF). The wavefront correction is provided by the AOF deformable secondary mirror while the Laser Guide Star is provided by one of the four launch units of the 4 Laser Guide Star Facility for the AOF. The overall layout of the ERIS AO system is extremely compact and highly optimized: the SPIFFI spectrograph is fed directly by the Cassegrain focus and both the NIX's (IR imager) and SPIFFI's entrance windows work as visible/infrared dichroics. In this paper we describe the concept of the ERIS AO system in detail, starting from the requirements and going through the estimated performance, the opto-mechanical design and the Real-Time Computer design.

  9. Adaptive phase aberration correction based on imperialist competitive algorithm.

    PubMed

    Yazdani, R; Hajimahmoodzadeh, M; Fallah, H R

    2014-01-01

    We investigate numerically the feasibility of phase aberration correction in a wavefront sensorless adaptive optical system, based on the imperialist competitive algorithm (ICA). Considering a 61-element deformable mirror (DM) and the Strehl ratio as the cost function of ICA, this algorithm is employed to search the optimum surface profile of DM for correcting the phase aberrations in a solid-state laser system. The correction results show that ICA is a powerful correction algorithm for static or slowly changing phase aberrations in optical systems, such as solid-state lasers. The correction capability and the convergence speed of this algorithm are compared with those of the genetic algorithm (GA) and stochastic parallel gradient descent (SPGD) algorithm. The results indicate that these algorithms have almost the same correction capability. Also, ICA and GA are almost the same in convergence speed and SPGD is the fastest of these algorithms.

  10. Adaptive Optical Scanning Holography

    PubMed Central

    Tsang, P. W. M.; Poon, Ting-Chung; Liu, J.-P.

    2016-01-01

    Optical Scanning Holography (OSH) is a powerful technique that employs a single-pixel sensor and a row-by-row scanning mechanism to capture the hologram of a wide-view, three-dimensional object. However, the time required to acquire a hologram with OSH is rather lengthy. In this paper, we propose an enhanced framework, which is referred to as Adaptive OSH (AOSH), to shorten the holographic recording process. We have demonstrated that the AOSH method is capable of decreasing the acquisition time by up to an order of magnitude, while preserving the content of the hologram favorably. PMID:26916866

  11. Adaptive Optical Scanning Holography

    NASA Astrophysics Data System (ADS)

    Tsang, P. W. M.; Poon, Ting-Chung; Liu, J.-P.

    2016-02-01

    Optical Scanning Holography (OSH) is a powerful technique that employs a single-pixel sensor and a row-by-row scanning mechanism to capture the hologram of a wide-view, three-dimensional object. However, the time required to acquire a hologram with OSH is rather lengthy. In this paper, we propose an enhanced framework, which is referred to as Adaptive OSH (AOSH), to shorten the holographic recording process. We have demonstrated that the AOSH method is capable of decreasing the acquisition time by up to an order of magnitude, while preserving the content of the hologram favorably.

  12. Corrective Optics For Camera On Telescope

    NASA Technical Reports Server (NTRS)

    Macenka, Steven A.; Meinel, Aden B.

    1994-01-01

    Assembly of tilted, aspherical circularly symmetric mirrors used as corrective optical subsystem for camera mounted on telescope exhibiting both large spherical wave-front error and inherent off-axis astigmatism. Subsystem provides unobscured camera aperture and diffraction-limited camera performance, despite large telescope aberrations. Generic configuration applied in other optical systems in which aberations deliberately introduced into telescopes and corrected in associated cameras. Concept of corrective optical subsystem provides designer with additional degrees of freedom used to optimize optical system.

  13. Adaptive Optics at Lawrence Livermore National Laboratory

    SciTech Connect

    Gavel, D T

    2003-03-10

    Adaptive optics enables high resolution imaging through the atmospheric by correcting for the turbulent air's aberrations to the light waves passing through it. The Lawrence Livermore National Laboratory for a number of years has been at the forefront of applying adaptive optics technology to astronomy on the world's largest astronomical telescopes, in particular at the Keck 10-meter telescope on Mauna Kea, Hawaii. The technology includes the development of high-speed electrically driven deformable mirrors, high-speed low-noise CCD sensors, and real-time wavefront reconstruction and control hardware. Adaptive optics finds applications in many other areas where light beams pass through aberrating media and must be corrected to maintain diffraction-limited performance. We describe systems and results in astronomy, medicine (vision science), and horizontal path imaging, all active programs in our group.

  14. Close-loop performance of a high precision deflectometry controlled deformable mirror (DCDM) unit for wavefront correction in adaptive optics system

    NASA Astrophysics Data System (ADS)

    Huang, Lei; Zhou, Chenlu; Zhao, Wenchuan; Choi, Heejoo; Graves, Logan; Kim, Daewook

    2017-06-01

    We present a high precision deflectometry system (DS) controlled deformable mirror (DM) solution for optical system. Different from wavefront and non-wavefront system, the DS and the DM are set to be an individual integrated DCDM unit and can be installed in one base plate. In the DCDM unit, the DS can directly provide the influence functions and surface shape of the DM to the industrial computer in any adaptive optics system. As an integrated adaptive unit, the DCDM unit could be put into various optical systems to realize aberration compensation. In this paper, the configuration and principle of the DCDM unit is introduced first. Theoretical simulation on the close-loop performance of the DCDM unit is carried out. Finally, a verification experiment is proposed to verify the compensation capability of the DCDM unit.

  15. Performance of a compact adaptive-optics system.

    PubMed

    Frazier, Benjamin West; Smith, Mark; Tyson, Robert K

    2004-08-01

    The design of an adaptive-optics system for correction of a beam propagating through high-speed, unpredictable optical turbulence required the use of a robust controller rather than a conventional least-squares controller. We describe the 37-channel, 50-Hz adaptive-optical system and its performance (lambda/75 rms).

  16. Pulse front adaptive optics in two-photon microscopy.

    PubMed

    Sun, Bangshan; Salter, Patrick S; Booth, Martin J

    2015-11-01

    Adaptive optics has been extensively studied for the correction of phase front aberrations in optical systems. In systems using ultrafast lasers, distortions can also exist in the pulse front (contour of constant intensity in space and time), but until now their correction has been mostly unexplored due to technological limitations. In this Letter, we apply newly developed pulse front adaptive optics, for the first time to our knowledge, to practical compensation of a two-photon fluorescence microscope. With adaptive correction of the system-induced pulse front distortion, improvements beyond conventional phase correction are demonstrated.

  17. Integrated optomechanical analysis of adaptive optical systems

    NASA Astrophysics Data System (ADS)

    Doyle, Keith B.; Genberg, Victor L.; Michels, Gregory J.

    2004-01-01

    A method to predict performance of adaptive optical systems subject to mechanical perturbations is presented. Integrated modeling techniques coupling finite element analysis and optical design software are discussed that enable mechanical design trades of an adaptive mirror assembly based on correctability of the optical system wavefront error. This method is based on the linearity of wavefront error consistent with that caused by mechanical disturbances during operation. Optical surface sensitivities are computed based on rigid-body and higher-order surface deformations that relate mechanical surface errors to optical system wavefront error. The sensitivities are then used to determine the best-fit set of actuators to minimize the wavefront error in the optical system due to finite element derived mechanical disturbances. An example is demonstrated for a Cassegrain telescope with an active primary mirror.

  18. Keck adaptive optics: control subsystem

    SciTech Connect

    Brase, J.M.; An, J.; Avicola, K.

    1996-03-08

    Adaptive optics on the Keck 10 meter telescope will provide an unprecedented level of capability in high resolution ground based astronomical imaging. The system is designed to provide near diffraction limited imaging performance with Strehl {gt} 0.3 n median Keck seeing of r0 = 25 cm, T =10 msec at 500 nm wavelength. The system will be equipped with a 20 watt sodium laser guide star to provide nearly full sky coverage. The wavefront control subsystem is responsible for wavefront sensing and the control of the tip-tilt and deformable mirrors which actively correct atmospheric turbulence. The spatial sampling interval for the wavefront sensor and deformable mirror is de=0.56 m which gives us 349 actuators and 244 subapertures. This paper summarizes the wavefront control system and discusses particular issues in designing a wavefront controller for the Keck telescope.

  19. Liquid lens: advances in adaptive optics

    NASA Astrophysics Data System (ADS)

    Casey, Shawn Patrick

    2010-12-01

    'Liquid lens' technologies promise significant advancements in machine vision and optical communications systems. Adaptations for machine vision, human vision correction, and optical communications are used to exemplify the versatile nature of this technology. Utilization of liquid lens elements allows the cost effective implementation of optical velocity measurement. The project consists of a custom image processor, camera, and interface. The images are passed into customized pattern recognition and optical character recognition algorithms. A single camera would be used for both speed detection and object recognition.

  20. Adaptive optics in the formation of optical beams and images

    NASA Astrophysics Data System (ADS)

    Lukin, V. P.

    2014-06-01

    In connection with the wide use of optoelectronic systems, we review the development of adaptive optics as an effective tool that allows using controllable optical elements to eliminate irregular distortions that occur as light propagates in an inhomogeneous medium. The subject matter of this rapidly developing field of science and technology is described. Of the ideas under development in recent years, many have been around for quite a long time, but it is only now, with the development of an up-to-date optoelectronic element base, that they have started being widely incorporated into science and engineering practice. We discuss the development of adaptive optics from mere ideas to their application in astronomy, high-power laser physics, and medicine. The current state of adaptive optics in stellar and solar astronomy is reviewed, and some results of its use in distortion correction systems of high-power laser systems and facilities are presented.

  1. Adaptive Optics Applications in Vision Science

    SciTech Connect

    Olivier, S S

    2003-03-17

    Adaptive optics can be used to correct the aberrations in the human eye caused by imperfections in the cornea and the lens and thereby, improve image quality both looking into and out of the eye. Under the auspices of the NSF Center for Adaptive Optics and the DOE Biomedical Engineering Program, Lawrence Livermore National Laboratory has joined together with leading vision science researchers around the country to develop and test new ophthalmic imaging systems using novel wavefront corrector technologies. Results of preliminary comparative evaluations of these technologies in initial system tests show promise for future clinical utility.

  2. Binocular adaptive optics visual simulator.

    PubMed

    Fernández, Enrique J; Prieto, Pedro M; Artal, Pablo

    2009-09-01

    A binocular adaptive optics visual simulator is presented. The instrument allows for measuring and manipulating ocular aberrations of the two eyes simultaneously, while the subject performs visual testing under binocular vision. An important feature of the apparatus consists on the use of a single correcting device and wavefront sensor. Aberrations are controlled by means of a liquid-crystal-on-silicon spatial light modulator, where the two pupils of the subject are projected. Aberrations from the two eyes are measured with a single Hartmann-Shack sensor. As an example of the potential of the apparatus for the study of the impact of the eye's aberrations on binocular vision, results of contrast sensitivity after addition of spherical aberration are presented for one subject. Different binocular combinations of spherical aberration were explored. Results suggest complex binocular interactions in the presence of monochromatic aberrations. The technique and the instrument might contribute to the better understanding of binocular vision and to the search for optimized ophthalmic corrections.

  3. Pulse front control with adaptive optics

    NASA Astrophysics Data System (ADS)

    Sun, B.; Salter, P. S.; Booth, M. J.

    2016-03-01

    The focusing of ultrashort laser pulses is extremely important for processes including microscopy, laser fabrication and fundamental science. Adaptive optic elements, such as liquid crystal spatial light modulators or membrane deformable mirrors, are routinely used for the correction of aberrations in these systems, leading to improved resolution and efficiency. Here, we demonstrate that adaptive elements used with ultrashort pulses should not be considered simply in terms of wavefront modification, but that changes to the incident pulse front can also occur. We experimentally show how adaptive elements may be used to engineer pulse fronts with spatial resolution.

  4. Adaptive optics and laser guide stars at Lick observatory

    SciTech Connect

    Brase, J.M.

    1994-11-15

    For the past several years LLNL has been developing adaptive optics systems for correction of both atmospheric turbulence effects and thermal distortions in optics for high-power lasers. Our early work focused on adaptive optics for beam control in laser isotope separation and ground-based free electron lasers. We are currently developing innovative adaptive optics and laser systems for sodium laser guide star applications at the University of California`s Lick and Keck Observeratories. This talk will describe our adaptive optics technology and some of its applications in high-resolution imaging and beam control.

  5. Adaptive Optics Communications Performance Analysis

    NASA Technical Reports Server (NTRS)

    Srinivasan, M.; Vilnrotter, V.; Troy, M.; Wilson, K.

    2004-01-01

    The performance improvement obtained through the use of adaptive optics for deep-space communications in the presence of atmospheric turbulence is analyzed. Using simulated focal-plane signal-intensity distributions, uncoded pulse-position modulation (PPM) bit-error probabilities are calculated assuming the use of an adaptive focal-plane detector array as well as an adaptively sized single detector. It is demonstrated that current practical adaptive optics systems can yield performance gains over an uncompensated system ranging from approximately 1 dB to 6 dB depending upon the PPM order and background radiation level.

  6. Adaptive optical zoom sensor.

    SciTech Connect

    Sweatt, William C.; Bagwell, Brett E.; Wick, David Victor

    2005-11-01

    In order to optically vary the magnification of an imaging system, continuous mechanical zoom lenses require multiple optical elements and use fine mechanical motion to precisely adjust the separations between individual or groups of lenses. By incorporating active elements into the optical design, we have designed and demonstrated imaging systems that are capable of variable optical magnification with no macroscopic moving parts. Changing the effective focal length and magnification of an imaging system can be accomplished by adeptly positioning two or more active optics in the optical design and appropriately adjusting the optical power of those elements. In this application, the active optics (e.g. liquid crystal spatial light modulators or deformable mirrors) serve as variable focal-length lenses. Unfortunately, the range over which currently available devices can operate (i.e. their dynamic range) is relatively small. Therefore, the key to this concept is to create large changes in the effective focal length of the system with very small changes in the focal lengths of individual elements by leveraging the optical power of conventional optical elements surrounding the active optics. By appropriately designing the optical system, these variable focal-length lenses can provide the flexibility necessary to change the overall system focal length, and therefore magnification, that is normally accomplished with mechanical motion in conventional zoom lenses.

  7. Robust Wiener filtering for Adaptive Optics

    SciTech Connect

    Poyneer, L A

    2004-06-17

    In many applications of optical systems, the observed field in the pupil plane has a non-uniform phase component. This deviation of the phase of the field from uniform is called a phase aberration. In imaging systems this aberration will degrade the quality of the images. In the case of a large astronomical telescope, random fluctuations in the atmosphere lead to significant distortion. These time-varying distortions can be corrected using an Adaptive Optics (AO) system, which is a real-time control system composed of optical, mechanical and computational parts. Adaptive optics is also applicable to problems in vision science, laser propagation and communication. For a high-level overview, consult this web site. For an in-depth treatment of the astronomical case, consult these books.

  8. Adaptive Optics for Industry and Medicine

    NASA Astrophysics Data System (ADS)

    Dainty, Christopher

    2008-01-01

    pt. 1. Wavefront correctors and control. Liquid crystal lenses for correction of presbyopia (Invited Paper) / Guoqiang Li and Nasser Peyghambarian. Converging and diverging liquid crystal lenses (oral paper) / Andrew X. Kirby, Philip J. W. Hands, and Gordon D. Love. Liquid lens technology for miniature imaging systems: status of the technology, performance of existing products and future trends (invited paper) / Bruno Berge. Carbon fiber reinforced polymer deformable mirrors for high energy laser applications (oral paper) / S. R. Restaino ... [et al.]. Tiny multilayer deformable mirrors (oral paper) / Tatiana Cherezova ... [et al.]. Performance analysis of piezoelectric deformable mirrors (oral paper) / Oleg Soloviev, Mikhail Loktev and Gleb Vdovin. Deformable membrane mirror with high actuator density and distributed control (oral paper) / Roger Hamelinck ... [et al.]. Characterization and closed-loop demonstration of a novel electrostatic membrane mirror using COTS membranes (oral paper) / David Dayton ... [et al.]. Electrostatic micro-deformable mirror based on polymer materials (oral paper) / Frederic Zamkotsian ... [et al.]. Recent progress in CMOS integrated MEMS A0 mirror development (oral paper) / A. Gehner ... [et al.]. Compact large-stroke piston-tip-tilt actuator and mirror (oral paper) / W. Noell ... [et al.]. MEMS deformable mirrors for high performance AO applications (oral paper) / Paul Bierden, Thomas Bifano and Steven Cornelissen. A versatile interferometric test-rig for the investigation and evaluation of ophthalmic AO systems (poster paper) / Steve Gruppetta, Jiang Jian Zhong and Luis Diaz-Santana. Woofer-tweeter adaptive optics (poster paper) / Thomas Farrell and Chris Dainty. Deformable mirrors based on transversal piezoeffect (poster paper) / Gleb Vdovin, Mikhail Loktev and Oleg Soloviev. Low-cost spatial light modulators for ophthalmic applications (poster paper) / Vincente Durán ... [et al.]. Latest MEMS DM developments and the path ahead

  9. Adaptive optical label packet switching

    NASA Astrophysics Data System (ADS)

    Xiao, Shilin; Liu, Zhixin; Liang, Zheng; Zhao, Zhihui; Qu, Kefeng

    2007-11-01

    This paper introduces a kind of Adaptive Optical Label Packet Switching (AOLPS) technology. Based on Optical Packet Switching (OPS), AOLPS uses optical label to achieve self-routing, and the size of optical packet is self-adaptive. At the edge nodes, IP packets are fist classified into different first-in-fist-out memories (FIFOs) according to their priority levels and destinations, and then being encapsulated into optical packets. The traffic at each FIFO is real-time monitored, and the controller in edge node employs an optimal strategy to generate suitable sized packets for transmission. Large sized packets will be adopted when traffic is heavy, and small sized packets will be used when traffic is light. This self-adaptive switching granularity can greatly improve the network performance.

  10. [Examination of visual performance by adaptive optics].

    PubMed

    Weigel, D; Jungnickel, H; Babovsky, H; Kiessling, A; Kowarschik, R

    2013-12-01

    The dependence of visual quality on higher order aberrations (HOA) is highly important for refractive surgery (LASIK) as well as for the correction by vision aids. The use of the adaptive optics (AO) enables the measurement and manipulation of conventional lower order aberrations (defocus, astigmatism) and for HOAs as well. In this work, an Adaptive Optics Visual Simulator is presented that enables one to correct wave-front deformations up to the sixth order of Zernike polynomials, as well as to induce specific aberrations. The subjects observe a TFT monitor, so that a subjective rating of the visual impression is possible, as well as objective measurements. Possible applications of such an adaptive optics visual simulator are demonstrated by means of several studies in this survey paper. The main challenge was to investigate the influence of HOAs on the subjective visual impression. Thereby, the following questions have been examined among others: Does the correction of the HOAs lead to an improved visual impression? Are there ways to check the effect of HOAs, what are the effects of single HOAs on the subjective visual impression and what just-noticeable levels do they have? Three studies are presented investigating the impact of HOAs on visus, contrast sensitivity and on vision with glare as well as objective stimulus thresholds of selected HOAs. For example, by using a staircase-procedure it was possible to determine that the objective stimulus threshold for coma has a significantly lower value than the thresholds for astigmatism or trefoil. Adaptive optics enables the investigation of effects of HOAs on subjective and objective visual impression. In future, this may result in individualised corrections of refractive errors, which will improve the patient's quality of life. Georg Thieme Verlag KG Stuttgart · New York.

  11. Accuracies Of Optical Processors For Adaptive Optics

    NASA Technical Reports Server (NTRS)

    Downie, John D.; Goodman, Joseph W.

    1992-01-01

    Paper presents analysis of accuracies and requirements concerning accuracies of optical linear-algebra processors (OLAP's) in adaptive-optics imaging systems. Much faster than digital electronic processor and eliminate some residual distortion. Question whether errors introduced by analog processing of OLAP overcome advantage of greater speed. Paper addresses issue by presenting estimate of accuracy required in general OLAP that yields smaller average residual aberration of wave front than digital electronic processor computing at given speed.

  12. Dual-thread parallel control strategy for ophthalmic adaptive optics.

    PubMed

    Yu, Yongxin; Zhang, Yuhua

    To improve ophthalmic adaptive optics speed and compensate for ocular wavefront aberration of high temporal frequency, the adaptive optics wavefront correction has been implemented with a control scheme including 2 parallel threads; one is dedicated to wavefront detection and the other conducts wavefront reconstruction and compensation. With a custom Shack-Hartmann wavefront sensor that measures the ocular wave aberration with 193 subapertures across the pupil, adaptive optics has achieved a closed loop updating frequency up to 110 Hz, and demonstrated robust compensation for ocular wave aberration up to 50 Hz in an adaptive optics scanning laser ophthalmoscope.

  13. Fluorescence digital holographic adaptive optics microscopy

    NASA Astrophysics Data System (ADS)

    Man, Tianlong; Wan, Yuhong; Wang, Dayong

    2015-05-01

    Fluorescence microscopy is widely used in various of practical applications now. High resolution optical sectional microscopic imaging utilized by confocal two- or multi-photon fluorescence microscopy has became an essential tool in biological researches. However, optical aberrations introduced by nonhomogeneity refractive index of tissues degraded the resolution and brightness of the images. Here we present the implementation of self-interference digital holographic adaptive optics in fluorescence microscopy. Wavefront sensing and correction is achieved by holographic recording and numerical processing approach, dispenses with Shack-Hartmann sensor and deformable mirror-based complicated system. The operation speed of the system is enhanced using off-axis Fourier triangular holography. Both the influence of the size and axial position of the guide star on the quality of the corrected images are investigated.

  14. Overview of Advanced LIGO adaptive optics.

    PubMed

    Brooks, Aidan F; Abbott, Benjamin; Arain, Muzammil A; Ciani, Giacomo; Cole, Ayodele; Grabeel, Greg; Gustafson, Eric; Guido, Chris; Heintze, Matthew; Heptonstall, Alastair; Jacobson, Mindy; Kim, Won; King, Eleanor; Lynch, Alexander; O'Connor, Stephen; Ottaway, David; Mailand, Ken; Mueller, Guido; Munch, Jesper; Sannibale, Virginio; Shao, Zhenhua; Smith, Michael; Veitch, Peter; Vo, Thomas; Vorvick, Cheryl; Willems, Phil

    2016-10-10

    This is an overview of the adaptive optics used in Advanced LIGO (aLIGO), known as the thermal compensation system (TCS). The TCS was designed to minimize thermally induced spatial distortions in the interferometer optical modes and to provide some correction for static curvature errors in the core optics of aLIGO. The TCS is comprised of ring heater actuators, spatially tunable CO2 laser projectors, and Hartmann wavefront sensors. The system meets the requirements of correcting for nominal distortion in aLIGO to a maximum residual error of 5.4 nm rms, weighted across the laser beam, for up to 125 W of laser input power into the interferometer.

  15. Demonstration of portable solar adaptive optics system

    NASA Astrophysics Data System (ADS)

    Ren, Deqing; Dong, Bing

    2012-10-01

    Solar-adaptive optics (AO) are more challenging than night-time AO, in some aspects. A portable solar adaptive optics (PSAO) system featuring compact physical size, low cost, and good performance has been proposed and developed. PSAO can serve as a visiting instrument for any existing ground-based solar telescope to improve solar image quality by replacing just a few optical components. High-level programming language, LabVIEW, is used to develop the wavefront sensing and control software, and general purpose computers are used to drive the whole system. During October 2011, the feasibility and good performance of PSAO was demonstrated with the 61-cm solar telescope at San Fernando Observatory. The image contrast and resolution are noticeably improved after AO correction.

  16. Multiconjugate adaptive optics for the Swedish ELT

    NASA Astrophysics Data System (ADS)

    Gontcharov, Alexander; Owner-Petersen, Mette

    2000-08-01

    The Swedish ELT is intended to be a 50 m telescope with multiconjugate adaptive optics integrated directly as a crucial part of the optical design. In this paper we discuss the effects of the distributed atmospheric turbulence with regard to the choice of optimal geometry of the telescope. Originally the basic system was foreseen to be a Gregorian with an adaptive secondary correcting adequately for nearby turbulences in both the infrared and visual regions, but if the performance degradation expected from changing the basic system to a Cassegrain keeping the adaptive secondary could be accepted, the constructional costs would be significantly reduced. In order to clarify this question, a simple analytical model describing the performance employing a single deformable mirror for adaptive correction has been developed and used for analysis. The quantitative results shown here relates to a wavelength of 2.2 micrometers and are based on the seven layer atmospheric model for the Cerro Pachon site, which is believed to be a good representative of most good astronomical sites. As a consequence of the analysis no performance degradation is expected from changing the core telescope to a Cassegrain (Ritchey- Chretien). The paper presents the layout and optical performance of the new design.

  17. Adaptive Optical Filtering Techniques.

    DTIC Science & Technology

    1985-05-01

    A space inte- Perhaps the most significant application of numeri- grating implementation using a parellel output wide- cal optical processors is in O... University Press, Daiumote. 19631. 177 C-5% 41% -~~ ~~~~~ % *~ .~ . e5 e r %. % *FILMED 9-85 DTIC

  18. Applications of Adaptive Optics Scanning Laser Ophthalmoscopy

    PubMed Central

    Roorda, Austin

    2010-01-01

    Adaptive optics (AO) describes a set of tools to correct or control aberrations in any optical system. In the eye, AO allows for precise control of the ocular aberrations. If used to correct aberrations over a large pupil, for example, cellular level resolution in retinal images can be achieved. AO systems have been demonstrated for advanced ophthalmoscopy as well as for testing and/or improving vision. In fact, AO can be integrated to any ophthalmic instrument where the optics of the eye is involved, with a scope of applications ranging from phoropters to optical coherence tomography systems. In this paper, I discuss the applications and advantages of using AO in a specific system, the adaptive optics scanning laser ophthalmoscope, or AOSLO. Since the Borish award was, in part, awarded to me because of this effort, I felt it appropriate to select this as the topic for this paper. Furthermore, users of AOSLO continue to appreciate the benefits of the technology, some of which were not anticipated at the time of development, and so it is time to revisit this topic and summarize them in a single paper. PMID:20160657

  19. Optical Correction of Aphakia in Children

    PubMed Central

    Baradaran-Rafii, Alireza; Shirzadeh, Ebrahim; Eslani, Medi; Akbari, Mitra

    2014-01-01

    There are several reasons for which the correction of aphakia differs between children and adults. First, a child's eye is still growing during the first few years of life and during early childhood, the refractive elements of the eye undergo radical changes. Second, the immature visual system in young children puts them at risk of developing amblyopia if visual input is defocused or unequal between the two eyes. Third, the incidence of many complications, in which certain risks are acceptable in adults, is unacceptable in children. The optical correction of aphakia in children has changed dramatically however, accurate optical rehabilitation and postoperative supervision in pediatric cases is more difficult than adults. Treatment and optical rehabilitation in pediatric aphakic patients remains a challenge for ophthalmologists. The aim of this review is to cover issues regarding optical correction of pediatric aphakia in children; kinds of optical correction , indications, timing of intraocular lens (IOL) implantation, types of IOLs, site of implantation, IOL power calculations and selection, complications of IOL implantation in pediatric patients and finally to determine the preferred choice of optical correction. However treatment of pediatric aphakia is one step on the long road to visual rehabilitation, not the end of the journey. PMID:24982736

  20. Coherent Digital Holographic Adaptive Optics

    NASA Astrophysics Data System (ADS)

    Liu, Changgeng

    A new type of adaptive optics (AO) based on the principles of digital holography (DH) is proposed and developed for the use in wide-field and confocal retinal imaging. Digital holographic adaptive optics (DHAO) dispenses with the wavefront sensor and wavefront corrector of the conventional AO system. DH is an emergent imaging technology that gives direct numerical access to the phase of the optical field, thus allowing precise control and manipulation of the optical field. Incorporation of DH in an ophthalmic imaging system can lead to versatile imaging capabilities at substantially reduced complexity and cost of the instrument. A typical conventional AO system includes several critical hardware pieces: spatial light modulator, lenslet array, and a second CCD camera in addition to the camera for imaging. The proposed DHAO system replaces these hardware components with numerical processing for wavefront measurement and compensation of aberration through the principles of DH. (Abstract shortened by UMI.).

  1. Adaptive optics and phase diversity imaging for responsive space applications.

    SciTech Connect

    Smith, Mark William; Wick, David Victor

    2004-11-01

    The combination of phase diversity and adaptive optics offers great flexibility. Phase diverse images can be used to diagnose aberrations and then provide feedback control to the optics to correct the aberrations. Alternatively, phase diversity can be used to partially compensate for aberrations during post-detection image processing. The adaptive optic can produce simple defocus or more complex types of phase diversity. This report presents an analysis, based on numerical simulations, of the efficiency of different modes of phase diversity with respect to compensating for specific aberrations during post-processing. It also comments on the efficiency of post-processing versus direct aberration correction. The construction of a bench top optical system that uses a membrane mirror as an active optic is described. The results of characterization tests performed on the bench top optical system are presented. The work described in this report was conducted to explore the use of adaptive optics and phase diversity imaging for responsive space applications.

  2. Micromirror Arrays for Adaptive Optics

    SciTech Connect

    Carr, E.J.

    2000-08-07

    The long-range goal of this project is to develop the optical and mechanical design of a micromirror array for adaptive optics that will meet the following criteria: flat mirror surface ({lambda}/20), high fill factor (> 95%), large stroke (5-10 {micro}m), and pixel size {approx}-200 {micro}m. This will be accomplished by optimizing the mirror surface and actuators independently and then combining them using bonding technologies that are currently being developed.

  3. Color correction strategies in optical design

    NASA Astrophysics Data System (ADS)

    Pfisterer, Richard N.; Vorndran, Shelby D.

    2014-12-01

    An overview of color correction strategies is presented. Starting with basic first-order aberration theory, we identify known color corrected solutions for doublets and triplets. Reviewing the modern approaches of Robb-Mercado, Rayces-Aguilar, and C. de Albuquerque et al, we find that they confirm the existence of glass combinations for doublets and triplets that yield color corrected solutions that we already know exist. Finally we explore the use of the y, ӯ diagram in conjunction with aberration theory to identify the solution space of glasses capable of leading to color corrected solutions in arbitrary optical systems.

  4. Active Correction of Aberrations of Low-Quality Telescope Optics

    NASA Technical Reports Server (NTRS)

    Hemmati, Hamid; Chen, Yijian

    2007-01-01

    A system of active optics that includes a wavefront sensor and a deformable mirror has been demonstrated to be an effective means of partly correcting wavefront aberrations introduced by fixed optics (lenses and mirrors) in telescopes. It is envisioned that after further development, active optics would be used to reduce wavefront aberrations of about one wave or less in telescopes having aperture diameters of the order of meters or tens of meters. Although this remaining amount of aberration would be considered excessive in scientific applications in which diffraction-limited performance is required, it would be acceptable for free-space optical- communication applications at wavelengths of the order of 1 m. To prevent misunderstanding, it is important to state the following: The technological discipline of active optics, in which the primary or secondary mirror of a telescope is directly and dynamically tilted, distorted, and/or otherwise varied to reduce wavefront aberrations, has existed for decades. The term active optics does not necessarily mean the same thing as does adaptive optics, even though active optics and adaptive optics are related. The term "adaptive optics" is often used to refer to wavefront correction at speeds characterized by frequencies ranging up to between hundreds of hertz and several kilohertz high enough to enable mitigation of adverse effects of fluctuations in atmospheric refraction upon propagation of light beams. The term active optics usually appears in reference to wavefront correction at significantly lower speeds, characterized by times ranging from about 1 second to as long as minutes. Hence, the novelty of the present development lies, not in the basic concept of active or adaptive optics, but in the envisioned application of active optics in conjunction with a deformable mirror to achieve acceptably small wavefront errors in free-space optical communication systems that include multi-meter-diameter telescope mirrors that are

  5. Membrane Adaptive Optics

    DTIC Science & Technology

    2005-08-01

    F . Graff, Wave Motion in Elastic Solids, Ohio State University Press, Columbus, OH, 1975. 10. D . Malacara, ed., Optical Shop Testing, John Wiley & Sons, New York, second ed., 1992. ...Report to AFOSR mentioned earlier. -1 -0.5 0 0.5 1 Normalized Radial Coordinate ( ρ = r/a) -1 -0.5 0 0.5 1 M a x i m u m R e s i d u a l A b e...governing equations are then easily solved for the resonant frequencies, which are found to be given by the simple expression f mn = 1 2π ω

  6. Increased sky coverage with optimal correction of tilt and tilt-anisoplanatism modes in laser-guide-star multiconjugate adaptive optics.

    PubMed

    Correia, Carlos; Véran, Jean-Pierre; Herriot, Glen; Ellerbroek, Brent; Wang, Lianqi; Gilles, Luc

    2013-04-01

    Laser-guide-star multiconjugate adaptive optics (MCAO) systems require natural guide stars (NGS) to measure tilt and tilt-anisoplanatism modes. Making optimal use of the limited number of photons coming from such, generally dim, sources is mandatory to obtain reasonable sky coverage, i.e., the probability of finding asterisms amenable to NGS wavefront (WF) sensing for a predefined WF error budget. This paper presents a Strehl-optimal (minimum residual variance) spatiotemporal reconstructor merging principles of modal atmospheric tomography and optimal stochastic control theory. Simulations of NFIRAOS, the first light MCAO system for the thirty-meter telescope, using ~500 typical NGS asterisms, show that the minimum-variance (MV) controller delivers outstanding results, in particular for cases with relatively dim stars (down to magnitude 22 in the H-band), for which low-temporal frame rates (as low as 16 Hz) are required to integrate enough flux. Over all the cases tested ~21 nm rms median improvement in WF error can be achieved with the MV compared to the current baseline, a type-II controller based on a double integrator. This means that for a given level of tolerable residual WF error, the sky coverage is increased by roughly 10%, a quite significant figure. The improvement goes up to more than 20% when compared with a traditional single-integrator controller.

  7. Adaptive optics without guide stars (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Mertz, Jerome; Li, Jiang; Beaulieu, Devin; Paudel, Hari P.; Barankov, Roman; Bifano, Thomas G.

    2016-03-01

    Adaptive optics is a strategy to compensate for sample-induced aberrations in microscopy applications. Generally, it requires the presence of "guide stars" in the sample to serve as localized reference targets. We describe an implementation of conjugate adaptive optics that is amenable to widefield (i.e. non-scanning) microscopy, and can provide aberration corrections over potentially large fields of view without the use of guide stars. A unique feature of our implementation is that it is based on wavefront sensing with a single-shot partitioned-aperture sensor that provides large dynamic range compatible with extended samples. Combined information provided by this sensor and the imaging camera enable robust image de-blurring based on a rapid estimation of sample and aberrations obtained by closed-loop feedback. We present the theoretical principle of our technique and experimental demonstrations using both trans-illumination and fluorescence microscopes. Finally, we apply our technique to mouse brain imaging.

  8. Forensic application of optical correction.

    PubMed

    Collins, Randall S; Berg, Gregory E

    2008-04-01

    Prescription eyewear can be used to aid in forensic investigations. Until now, investigators and consulted eye professionals have been limited to a simple "match" or "no match" judgment. This article introduces optometry to a Web-based tool that can be used to assess the strength of a match between spectacle prescriptions and recorded patient information. Three databases with more than 385,000 individual prescriptions were used to create the Web tool that calculates the frequency with which a prescription occurs in various U.S. populations. A search for any prescription in the tool's database will result in a report of the number of times a given prescription occurred in the queried database(s) as well as the calculated frequency with which the combination of the given sphere power, cylinder power and axis are likely to occur. Practical application of the Web tool in 2 published cases has shown matches with frequency of occurrence of 5.33 x 10(-6) and 2.66 x 10(-6), respectively. This application currently is being used by the Joint POW/MIA Accounting Command Central Identification Laboratory (JPAC-CIL) and other agencies when optical materials are available in forensic settings. Further, this application currently is contributing evidence in an active murder case. The creation of this easy-to-use Web tool allows eye care professionals to provide strong statistical assessments when serving as consultants to forensic investigators.

  9. Intelligent Optical Systems Using Adaptive Optics

    NASA Technical Reports Server (NTRS)

    Clark, Natalie

    2012-01-01

    Until recently, the phrase adaptive optics generally conjured images of large deformable mirrors being integrated into telescopes to compensate for atmospheric turbulence. However, the development of smaller, cheaper devices has sparked interest for other aerospace and commercial applications. Variable focal length lenses, liquid crystal spatial light modulators, tunable filters, phase compensators, polarization compensation, and deformable mirrors are becoming increasingly useful for other imaging applications including guidance navigation and control (GNC), coronagraphs, foveated imaging, situational awareness, autonomous rendezvous and docking, non-mechanical zoom, phase diversity, and enhanced multi-spectral imaging. The active components presented here allow flexibility in the optical design, increasing performance. In addition, the intelligent optical systems presented offer advantages in size and weight and radiation tolerance.

  10. Adaptive Optics For The ESO-VLT

    NASA Astrophysics Data System (ADS)

    Merkle, Fritz

    1990-07-01

    This paper discusses the principles of adaptive optics, its performance, and its requirements for applications in astronomy to overcome limitations due to atmospheric turbulence. Guidelines for the implementation of these devices in telescopes are given in particular for the Very Large Telescope (VLT) of the European Southern Observatory. It is intended to equip each (me of the four 8-meter telescopes of the ESO- VLT, which are arranged in a linear array with an independent adaptive optical system. These systems will serve the individual and the combined Coude foci. In a first approach diffraction limited imaging for 3.5μm and longer is envisaged resulting a resolution of a few hundredths of an arcseconds. Currently, a small scale prototype adaptive system is under development. It is equipped with a 19 piezoelectric actuator deformable mirror, a Shack-Hartmann type wavefront sensor, and a dedicated wavefront computer for closing the feedback loop. This system is based on a polychromatic approach, i.e. it senses the wavefront in the visible but the adaptive correction loop works for the infrared wavelength range from .1 to 5 μm. The experience with this system will be used for the development of the final VLT systems, requiring a minimum of 150 to 200 subapertures. To solve the reference source problems experiments to generate artificial reference stars by scattering a laser pulse in the upper atmosphere are in preparation. Major developments are still necessary to solve the data processing problems which are associated with large numbers of subapertures and high correction bandwidth, especially if one plans later to extend the wavelength range towards the visible. In the VLT project adaptive optics is of particular importance for its synthetic aperture observation mode as a long baseline interferometer with resolutions in the range of a few milliarseconds on the sky. In this application a complete phasing of the telescope array is required in order to have the

  11. Design optimization of system level adaptive optical performance

    NASA Astrophysics Data System (ADS)

    Michels, Gregory J.; Genberg, Victor L.; Doyle, Keith B.; Bisson, Gary R.

    2005-09-01

    By linking predictive methods from multiple engineering disciplines, engineers are able to compute more meaningful predictions of a product's performance. By coupling mechanical and optical predictive techniques mechanical design can be performed to optimize optical performance. This paper demonstrates how mechanical design optimization using system level optical performance can be used in the development of the design of a high precision adaptive optical telescope. While mechanical design parameters are treated as the design variables, the objective function is taken to be the adaptively corrected optical imaging performance of an orbiting two-mirror telescope.

  12. Optical implementation of a unitarily correctable code

    NASA Astrophysics Data System (ADS)

    Schreiter, K. M.; Pasieka, A.; Kaltenbaek, R.; Resch, K. J.; Kribs, D. W.

    2009-08-01

    Noise poses a challenge for any real-world implementation in quantum information science. The theory of quantum error correction deals with this problem via methods to encode and recover quantum information in a way that is resilient against that noise. Unitarily correctable codes are an error correction technique wherein a single unitary recovery operation is applied without the need for an ancilla Hilbert space. Here, we present an optical implementation of a nontrivial unitarily correctable code for a noisy quantum channel with no decoherence-free subspaces or noiseless subsystems. We show that recovery of our initial states is achieved with high fidelity (≥0.97) , quantitatively proving the efficacy of this unitarily correctable code.

  13. Hybrid adaptive-optics visual simulator.

    PubMed

    Cánovas, Carmen; Prieto, Pedro M; Manzanera, Silvestre; Mira, Alejandro; Artal, Pablo

    2010-01-15

    We have developed a hybrid adaptive-optics visual simulator (HAOVS), combining two different phase-manipulation technologies: an optically addressed liquid-crystal phase modulator, relatively slow but capable of producing abrupt or discontinuous phase profiles; and a membrane deformable mirror, restricted to smooth profiles but with a temporal response allowing compensation of the eye's aberration fluctuations. As proof of concept, a phase element structured as discontinuous radial sectors was objectively tested as a function of defocus, and a correction loop was closed in a real eye. To further illustrate the capabilities of the device for visual simulation, we recorded extended images of different stimuli through the system by means of an external camera replacing the subject's eye. The HAOVS is specially intended as a tool for developing new ophthalmic optics elements, where it opens the possibility to explore designs with irregularities and/or discontinuities.

  14. Adaptive Optics Metrics & QC Scheme

    NASA Astrophysics Data System (ADS)

    Girard, Julien H.

    2017-09-01

    "There are many Adaptive Optics (AO) fed instruments on Paranal and more to come. To monitor their performances and assess the quality of the scientific data, we have developed a scheme and a set of tools and metrics adapted to each flavour of AO and each data product. Our decisions to repeat observations or not depends heavily on this immediate quality control "zero" (QC0). Atmospheric parameters monitoring can also help predict performances . At the end of the chain, the user must be able to find the data that correspond to his/her needs. In Particular, we address the special case of SPHERE."

  15. Adaptive optics optical coherence tomography in glaucoma.

    PubMed

    Dong, Zachary M; Wollstein, Gadi; Wang, Bo; Schuman, Joel S

    2017-03-01

    Since the introduction of commercial optical coherence tomography (OCT) systems, the ophthalmic imaging modality has rapidly expanded and it has since changed the paradigm of visualization of the retina and revolutionized the management and diagnosis of neuro-retinal diseases, including glaucoma. OCT remains a dynamic and evolving imaging modality, growing from time-domain OCT to the improved spectral-domain OCT, adapting novel image analysis and processing methods, and onto the newer swept-source OCT and the implementation of adaptive optics (AO) into OCT. The incorporation of AO into ophthalmic imaging modalities has enhanced OCT by improving image resolution and quality, particularly in the posterior segment of the eye. Although OCT previously captured in-vivo cross-sectional images with unparalleled high resolution in the axial direction, monochromatic aberrations of the eye limit transverse or lateral resolution to about 15-20 μm and reduce overall image quality. In pairing AO technology with OCT, it is now possible to obtain diffraction-limited resolution images of the optic nerve head and retina in three-dimensions, increasing resolution down to a theoretical 3 μm(3). It is now possible to visualize discrete structures within the posterior eye, such as photoreceptors, retinal nerve fiber layer bundles, the lamina cribrosa, and other structures relevant to glaucoma. Despite its limitations and barriers to widespread commercialization, the expanding role of AO in OCT is propelling this technology into clinical trials and onto becoming an invaluable modality in the clinician's arsenal.

  16. Coherence-Gated Sensorless Adaptive Optics Multiphoton Retinal Imaging

    PubMed Central

    Cua, Michelle; Wahl, Daniel J.; Zhao, Yuan; Lee, Sujin; Bonora, Stefano; Zawadzki, Robert J.; Jian, Yifan; Sarunic, Marinko V.

    2016-01-01

    Multiphoton microscopy enables imaging deep into scattering tissues. The efficient generation of non-linear optical effects is related to both the pulse duration (typically on the order of femtoseconds) and the size of the focused spot. Aberrations introduced by refractive index inhomogeneity in the sample distort the wavefront and enlarge the focal spot, which reduces the multiphoton signal. Traditional approaches to adaptive optics wavefront correction are not effective in thick or multi-layered scattering media. In this report, we present sensorless adaptive optics (SAO) using low-coherence interferometric detection of the excitation light for depth-resolved aberration correction of two-photon excited fluorescence (TPEF) in biological tissue. We demonstrate coherence-gated SAO TPEF using a transmissive multi-actuator adaptive lens for in vivo imaging in a mouse retina. This configuration has significant potential for reducing the laser power required for adaptive optics multiphoton imaging, and for facilitating integration with existing systems. PMID:27599635

  17. Coherence-Gated Sensorless Adaptive Optics Multiphoton Retinal Imaging

    NASA Astrophysics Data System (ADS)

    Cua, Michelle; Wahl, Daniel J.; Zhao, Yuan; Lee, Sujin; Bonora, Stefano; Zawadzki, Robert J.; Jian, Yifan; Sarunic, Marinko V.

    2016-09-01

    Multiphoton microscopy enables imaging deep into scattering tissues. The efficient generation of non-linear optical effects is related to both the pulse duration (typically on the order of femtoseconds) and the size of the focused spot. Aberrations introduced by refractive index inhomogeneity in the sample distort the wavefront and enlarge the focal spot, which reduces the multiphoton signal. Traditional approaches to adaptive optics wavefront correction are not effective in thick or multi-layered scattering media. In this report, we present sensorless adaptive optics (SAO) using low-coherence interferometric detection of the excitation light for depth-resolved aberration correction of two-photon excited fluorescence (TPEF) in biological tissue. We demonstrate coherence-gated SAO TPEF using a transmissive multi-actuator adaptive lens for in vivo imaging in a mouse retina. This configuration has significant potential for reducing the laser power required for adaptive optics multiphoton imaging, and for facilitating integration with existing systems.

  18. Coherence-Gated Sensorless Adaptive Optics Multiphoton Retinal Imaging.

    PubMed

    Cua, Michelle; Wahl, Daniel J; Zhao, Yuan; Lee, Sujin; Bonora, Stefano; Zawadzki, Robert J; Jian, Yifan; Sarunic, Marinko V

    2016-09-07

    Multiphoton microscopy enables imaging deep into scattering tissues. The efficient generation of non-linear optical effects is related to both the pulse duration (typically on the order of femtoseconds) and the size of the focused spot. Aberrations introduced by refractive index inhomogeneity in the sample distort the wavefront and enlarge the focal spot, which reduces the multiphoton signal. Traditional approaches to adaptive optics wavefront correction are not effective in thick or multi-layered scattering media. In this report, we present sensorless adaptive optics (SAO) using low-coherence interferometric detection of the excitation light for depth-resolved aberration correction of two-photon excited fluorescence (TPEF) in biological tissue. We demonstrate coherence-gated SAO TPEF using a transmissive multi-actuator adaptive lens for in vivo imaging in a mouse retina. This configuration has significant potential for reducing the laser power required for adaptive optics multiphoton imaging, and for facilitating integration with existing systems.

  19. Extreme Adaptive Optics Planet Imager

    NASA Astrophysics Data System (ADS)

    Macintosh, B.; Graham, J. R.; Ghez, A.; Kalas, P.; Lloyd, J.; Makidon, R.; Olivier, S.; Patience, J.; Perrin, M.; Poyneer, L.; Severson, S.; Sheinis, A.; Sivaramakrishnan, A.; Troy, M.; Wallace, J.; Wilhelmsen, J.

    2002-12-01

    Direct detection of photons emitted or reflected by extrasolar planets is the next major step in extrasolar planet studies. Current adaptive optics (AO) systems, with <300 subapertures and Strehl ratio 0.4-0.7, can achieve contrast levels of 106 at 2" separations; this is sufficient to see very young planets in wide orbits but insufficient to detect solar systems more like our own. Contrast levels of 107 - 108 in the near-IR are needed to probe a significant part of the extrasolar planet phase space. The NSF Center for Adaptive Optics is carrying out a design study for a dedicated ultra-high-contrast "Extreme" adaptive optics system for an 8-10m telescope. With 3000 controlled subapertures it should achieve Strehl ratios > 0.9 in the near-IR. Using a spatially filtered wavefront sensor, the system will be optimized to control scattered light over a large radius and suppress artifacts caused static errors. We predict that it will achieve contrast levels of 107-108 around a large sample of stars (R<7-10), sufficient to detect Jupiter-like planets through their near-IR emission over a wide range of ages and masses. The system will be capable of a variety of high-contrast science including studying circumstellar dust disks at densities a factor of 10-100 lower than currently feasible and a systematic inventory of other solar systems on 10-100 AU scale. This work was supported by the NSF Science and Technology Center for Adaptive Optics, managed by UC Santa Cruz under AST-9876783. Portions of this work was performed under the auspices of the U.S. Department of Energy, under contract No. W-7405-Eng-48.

  20. Driver Code for Adaptive Optics

    NASA Technical Reports Server (NTRS)

    Rao, Shanti

    2007-01-01

    A special-purpose computer code for a deformable-mirror adaptive-optics control system transmits pixel-registered control from (1) a personal computer running software that generates the control data to (2) a circuit board with 128 digital-to-analog converters (DACs) that generate voltages to drive the deformable-mirror actuators. This program reads control-voltage codes from a text file, then sends them, via the computer s parallel port, to a circuit board with four AD5535 (or equivalent) chips. Whereas a similar prior computer program was capable of transmitting data to only one chip at a time, this program can send data to four chips simultaneously. This program is in the form of C-language code that can be compiled and linked into an adaptive-optics software system. The program as supplied includes source code for integration into the adaptive-optics software, documentation, and a component that provides a demonstration of loading DAC codes from a text file. On a standard Windows desktop computer, the software can update 128 channels in 10 ms. On Real-Time Linux with a digital I/O card, the software can update 1024 channels (8 boards in parallel) every 8 ms.

  1. The CHARA Array Adaptive Optics Program

    NASA Astrophysics Data System (ADS)

    Ten Brummelaar, Theo; Che, Xiao; McAlister, Harold A.; Ireland, Michael; Monnier, John D.; Mourard, Denis; Ridgway, Stephen T.; sturmann, judit; Sturmann, Laszlo; Turner, Nils H.; Tuthill, Peter

    2016-01-01

    The CHARA array is an optical/near infrared interferometer consisting of six 1-meter diameter telescopes the longest baseline of which is 331 meters. With sub-millisecond angular resolution, the CHARA array is able to spatially resolve nearby stellar systems to reveal the detailed structures. To improve the sensitivity and scientific throughput, the CHARA array was funded by NSF-ATI in 2011, and by NSF-MRI in 2015, for an upgrade of adaptive optics (AO) systems to all six telescopes. The initial grant covers Phase I of the adaptive optics system, which includes an on-telescope Wavefront Sensor and non-common-path (NCP) error correction. The WFS use a fairly standard Shack-Hartman design and will initially close the tip tilt servo and log wavefront errors for use in data reduction and calibration. The second grant provides the funding for deformable mirrors for each telescope which will be used closed loop to remove atmospheric aberrations from the beams. There are then over twenty reflections after the WFS at the telescopes that bring the light several hundred meters into the beam combining laboratory. Some of these, including the delay line and beam reducing optics, are powered elements, and some of them, in particular the delay lines and telescope Coude optics, are continually moving. This means that the NCP problems in an interferometer are much greater than those found in more standard telescope systems. A second, slow AO system is required in the laboratory to correct for these NCP errors. We will breifly describe the AO system, and it's current status, as well as discuss the new science enabled by the system with a focus on our YSO program.

  2. Specialized wavefront sensors for adaptive optics

    NASA Astrophysics Data System (ADS)

    Neal, Daniel R.; Mansell, J. D.; Gruetzner, James K.; Morgan, R.; Warren, Mial E.

    1995-08-01

    The performance of an adaptive optical system is strongly dependent upon correctly measuring the wavefront of the arriving light. The most common wavefront measurement techniques used to date are the shearing interferometer and the Shack-Hartmann sensor. Shack-Hartmann sensors rely on the use of lenslet arrays to sample the aperture appropriately. These have traditionally been constructed using MLM or step and repeat technology, and more recently with binary optics technology. Diffractive optics fabrication methodology can be used to remove some of the limitations of the previous technologies and can allow for low-cost production of sophisticated elements. We have investigated several different specialized wavefront sensor configurations using both Shack-Hartmann and shearing interferometer principles. We have taken advantage of the arbitrary nature of these elements to match pupil shapes of detector and telescope aperture and to introduce magnification between the lenslet array and the detector. We have fabricated elements that facilitate matching the sampling to the current atmospheric conditions. The sensors were designed using a far-field diffraction model and a photolithography layout program. They were fabricated using photolithography and RIE etching. Several different designs are presented with some experimental results from a small-scale adaptive optics brass-board.

  3. Image correction in magneto-optical microscopy

    NASA Astrophysics Data System (ADS)

    Paturi, P.; Larsen, B. Hvolbæk; Jacobsen, B. A.; Andersen, N. H.

    2003-06-01

    An image-processing procedure that assures correct determination of the magnetic field distribution of magneto-optical images is presented. The method remedies image faults resulting from sources that are proportional to the incident light intensity, such as different types of defects in the indicator film and unevenness of light, as well as additive signals from detector bias, external light sources, etc. When properly corrected a better measurement of the local magnetic field can be made, even in the case of heavily damaged films. For superconductors the magnetic field distributions may be used for accurate determination of the current distributions without the spurious current loops associated with defects in the films.

  4. Fast, compact, autonomous holographic adaptive optics.

    PubMed

    Andersen, Geoff; Gelsinger-Austin, Paul; Gaddipati, Ravi; Gaddipati, Phani; Ghebremichael, Fassil

    2014-04-21

    We present a closed-loop adaptive optics system based on a holographic sensing method. The system uses a multiplexed holographic recording of the response functions of each actuator in a deformable mirror. By comparing the output intensity measured in a pair of photodiodes, the absolute phase can be measured over each actuator location. From this a feedback correction signal is applied to the input beam without need for a computer. The sensing and correction is applied to each actuator in parallel, so the bandwidth is independent of the number of actuator. We demonstrate a breadboard system using a 32-actuator MEMS deformable mirror capable of operating at over 10 kHz without a computer in the loop.

  5. An adaptive optics biomicroscope for mouse retinal imaging

    NASA Astrophysics Data System (ADS)

    Biss, David P.; Webb, Robert H.; Zhou, Yaopeng; Bifano, Thomas G.; Zamiri, Parisa; Lin, Charles P.

    2007-02-01

    In studying retinal disease on a microscopic level, in vivo imaging has allowed researchers to track disease progression in a single animal over time without sacrificing large numbers of animals for statistical studies. Historically, a drawback of in vivo retinal imaging, when compared to ex vivo imaging, is decreased image resolution due to aberrations present in the mouse eye. Adaptive optics has successfully corrected phase aberrations introduced the eye in ophthalmic imaging in humans. We are using adaptive optics to correct for aberrations introduced by the mouse eye in hopes of achieving cellular resolution retinal images of mice in vivo. In addition to using a wavefront sensor to drive the adaptive optic element, we explore the using image data to correct for wavefront aberrations introduced by the mouse eye. Image data, in the form of the confocal detection pinhole intensity are used as the feedback mechanism to control the MEMS deformable mirror in the adaptive optics system. Correction for wavefront sensing and sensor-less adaptive optics systems are presented.

  6. Large aperture adaptive optics for intense lasers

    NASA Astrophysics Data System (ADS)

    Deneuville, François; Ropert, Laurent; Sauvageot, Paul; Theis, Sébastien

    2015-05-01

    ISP SYSTEM has developed a range of large aperture electro-mechanical deformable mirrors (DM) suitable for ultra short pulsed intense lasers. The design of the MD-AME deformable mirror is based on force application on numerous locations thanks to electromechanical actuators driven by stepper motors. DM design and assembly method have been adapted to large aperture beams and the performances were evaluated on a first application for a beam with a diameter of 250mm at 45° angle of incidence. A Strehl ratio above 0.9 was reached for this application. Simulations were correlated with measurements on optical bench and the design has been validated by calculation for very large aperture (up to Ø550mm). Optical aberrations up to Zernike order 5 can be corrected with a very low residual error as for actual MD-AME mirror. Amplitude can reach up to several hundreds of μm for low order corrections. Hysteresis is lower than 0.1% and linearity better than 99%. Contrary to piezo-electric actuators, the μ-AME actuators avoid print-through effects and they permit to keep the mirror shape stable even unpowered, providing a high resistance to electro-magnetic pulses. The MD-AME mirrors can be adapted to circular, square or elliptical beams and they are compatible with all dielectric or metallic coatings.

  7. Acousto-Optic Adaptive Processing (AOAP).

    DTIC Science & Technology

    1983-12-01

    I ~.sls Phe Report December 1963 •- ACOUSTO - OPTIC ADAPTIVE <PROCESSING (AOAP) General Electric Company W. A. Penn, D. R. Morgan, A. Aridgides and M. L...numnber) Optical signal processing Acousto - optical modulators Adaptive signal processing - Adaptive sidelobe cancellation 20. ABSTRACT (Contnue an...required operations of multiplication and time delay are provided by acousto - optical (AO) delay lines. The required time integraticO is provided by

  8. The research and development of the adaptive optics in ophthalmology

    NASA Astrophysics Data System (ADS)

    Wu, Chuhan; Zhang, Xiaofang; Chen, Weilin

    2015-08-01

    Recently the combination of adaptive optics and ophthalmology has made great progress and become highly effective. The retina disease is diagnosed by retina imaging technique based on scanning optical system, so the scanning of eye requires optical system characterized by great ability of anti-moving and optical aberration correction. The adaptive optics possesses high level of adaptability and is available for real time imaging, which meets the requirement of medical retina detection with accurate images. Now the Scanning Laser Ophthalmoscope and the Optical Coherence Tomography are widely used, which are the core techniques in the area of medical retina detection. Based on the above techniques, in China, a few adaptive optics systems used for eye medical scanning have been designed by some researchers from The Institute of Optics And Electronics of CAS(The Chinese Academy of Sciences); some foreign research institutions have adopted other methods to eliminate the interference of eye moving and optical aberration; there are many relevant patents at home and abroad. In this paper, the principles and relevant technique details of the Scanning Laser Ophthalmoscope and the Optical Coherence Tomography are described. And the recent development and progress of adaptive optics in the field of eye retina imaging are analyzed and summarized.

  9. Adjustable Focus Optical Correction Lens (AFOCL)

    NASA Technical Reports Server (NTRS)

    Peters, Bruce R.

    2001-01-01

    This report describes a metrology plan that was developed for the characterization of PLZT-based devices, such as the Adjustable Focus Optical Correction Lens (AFOCL) in support of and as part of the deliverables for NASA contract NAS8-00118. The areas to be investigated include intensiometric effects (those that limit or alter the intensity of the light transmitted through the optic); interferometric effects (the phase change induced through the optic); and polarimetric effects (evaluating the differential lag between two polarization states propagating through the optic). These distinct phenomena are often coupled together in real applications consequently, there is a need to develop different standardized testing apparatus to: (1) isolate one effect from another; (2) gather information for understanding the physical effects; (3) anchor wavefront corrector modeling efforts; (4) develop the ability to decouple different effects; (5) demonstrate the suitability of PLZT technology to perform wavefront correction. The Center for Applied Optics (CAO) at the University of Alabama in Huntsville (UAH) is skilled in the characterization of transmission wavefront shaping devices using traditional interferometers available within the CAO Optical Metrology Laboratory and their Advanced Polarization Test Facility. Besides the imaging and interferometers available, the polarimetry facility has at its disposal, a Mueller Matrix Imaging Polarimeter (MMIP) which is well suited to the characterization of SLMs, polarizers, and thin film coatings within the visible and near-IR spectrums. In addition, the phase-shifting interferometry facilities at NASA-MSFC and the unique interferometers they processes are some of the most advanced available and may be of value especially for performing real-time optical performance evaluation of AFOCL test components.

  10. Electron density measurements for plasma adaptive optics

    NASA Astrophysics Data System (ADS)

    Neiswander, Brian W.

    Over the past 40 years, there has been growing interest in both laser communications and directed energy weapons that operate from moving aircraft. As a laser beam propagates from an aircraft in flight, it passes through boundary layers, turbulence, and shear layers in the near-region of the aircraft. These fluid instabilities cause strong density gradients which adversely affect the transmission of laser energy to a target. Adaptive optics provides corrective measures for this problem but current technology cannot respond quickly enough to be useful for high speed flight conditions. This research investigated the use of plasma as a medium for adaptive optics for aero-optics applications. When a laser beam passes through plasma, its phase is shifted proportionally to the electron density and gas heating within the plasma. As a result, plasma can be utilized as a dynamically controllable optical medium. Experiments were carried out using a cylindrical dielectric barrier discharge plasma chamber which generated a sub-atmospheric pressure, low-temperature plasma. An electrostatic model of this design was developed and revealed an important design constraint relating to the geometry of the chamber. Optical diagnostic techniques were used to characterize the plasma discharge. Single-wavelength interferometric experiments were performed and demonstrated up to 1.5 microns of optical path difference (OPD) in a 633 nm laser beam. Dual-wavelength interferometry was used to obtain time-resolved profiles of the plasma electron density and gas heating inside the plasma chamber. Furthermore, a new multi-wavelength infrared diagnostic technique was developed and proof-of-concept simulations were conducted to demonstrate the system's capabilities.

  11. Accuracy requirements of optical linear algebra processors in adaptive optics imaging systems

    NASA Technical Reports Server (NTRS)

    Downie, John D.

    1990-01-01

    A ground-based adaptive optics imaging telescope system attempts to improve image quality by detecting and correcting for atmospherically induced wavefront aberrations. The required control computations during each cycle will take a finite amount of time. Longer time delays result in larger values of residual wavefront error variance since the atmosphere continues to change during that time. Thus an optical processor may be well-suited for this task. This paper presents a study of the accuracy requirements in a general optical processor that will make it competitive with, or superior to, a conventional digital computer for the adaptive optics application. An optimization of the adaptive optics correction algorithm with respect to an optical processor's degree of accuracy is also briefly discussed.

  12. Test Target for Adaptive Optics.

    DTIC Science & Technology

    adaptive optics comprising, in the preferred embodiment, a plurality of nine adjacent, stacked, and aligned rows of a multiplicity of alternate opaque sections and transparent sections in a repeating bar pattern, with all sections being positioned on a flat transparent medium (such as film or glass), and with each opaque section being an opaque bar and with each transparent section being a transparent bar. Each row has a different spatial frequency than any other of the nine rows, with the spatial frequency of any one row being of a different multiple of the row having the

  13. [Wavefront analysis and adaptive optics].

    PubMed

    Stevens, J D; Sekundo, W

    2003-08-01

    In this paper we attempt to provide an overview of the principles of wavefront measurement. We also discuss the operational principles of different systems currently present on the market including their advantages and disadvantages. Moreover, we speculate on current and possible future implications of this new technology in the laser refractive surgery. Adaptive optics are explained in the context of "customized ablation" and preoperative verification of the desired results. Finally, the first international clinical results of wavefront guided excimer laser surgery are reviewed and critically commented.

  14. Retinal imaging with adaptive optics full-field OCT

    NASA Astrophysics Data System (ADS)

    Xiao, Peng; Fink, Mathias; Boccara, A. Claude

    2017-02-01

    Adaptive optics full-filed OCT (FFOCT) with a transmissive liquid crystal spatial light modulator (LCSLM) as wavefront corrector is used without strict plane conjugation for low order aberrations corrections. We validated experimentally that FFOCT resolution is independent of aberrations and only reduce the signal level. A signal based sensorless algorithm was thus applied for wavefront distortion compensation. Image quality improvements by the wavefront sensorless control of the LCSLM were evaluated on in vitro samples. By replacing the FFOCT sample arm objective with an artificial eye used to train ophthalmologists, adaptive optics retinal imaging was achieved. In vivo experiments using a liquid lens to correct focus and astigmatism are underway.

  15. Figure correction of multilayer coated optics

    DOEpatents

    Chapman; Henry N. , Taylor; John S.

    2010-02-16

    A process is provided for producing near-perfect optical surfaces, for EUV and soft-x-ray optics. The method involves polishing or otherwise figuring the multilayer coating that has been deposited on an optical substrate, in order to correct for errors in the figure of the substrate and coating. A method such as ion-beam milling is used to remove material from the multilayer coating by an amount that varies in a specified way across the substrate. The phase of the EUV light that is reflected from the multilayer will be affected by the amount of multilayer material removed, but this effect will be reduced by a factor of 1-n as compared with height variations of the substrate, where n is the average refractive index of the multilayer.

  16. Optical transfer functions derived from solar adaptive optics system data.

    PubMed

    Wöger, Friedrich

    2010-04-01

    Adaptive optics (AO) systems installed at large ground-based telescopes partially correct Earth's atmosphere, making post facto image reconstruction techniques necessary to produce diffraction-limited observations. To achieve accurate photometry in the reconstructed images, some post facto techniques require knowledge of transfer functions that describe the optical system. I present a new, fast method for the estimation of the long-exposure and speckle transfer functions from data gathered by a solar AO system simultaneously with the observations. The results of the presented method are tested with extensive analytical models, demonstrating that the estimation is robust for situations where the AO system is performing with Strehl ratios larger than 45%. Application to observations of solar granulation produces reconstructed images that are photometrically in agreement with earlier results.

  17. Adaptive optics without altering visual perception

    PubMed Central

    DE, Koenig; NW, Hart; HJ, Hofer

    2014-01-01

    Adaptive optics combined with visual psychophysics creates the potential to study the relationship between visual function and the retina at the cellular scale. This potential is hampered, however, by visual interference from the wavefront-sensing beacon used during correction. For example, we have previously shown that even a dim, visible beacon can alter stimulus perception (Hofer, H. J., Blaschke, J., Patolia, J., & Koenig, D. E. (2012). Fixation light hue bias revisited: Implications for using adaptive optics to study color vision. Vision Research, 56, 49-56). Here we describe a simple strategy employing a longer wavelength (980nm) beacon that, in conjunction with appropriate restriction on timing and placement, allowed us to perform psychophysics when dark adapted without altering visual perception. The method was verified by comparing detection and color appearance of foveally presented small spot stimuli with and without the wavefront beacon present in 5 subjects. As an important caution, we found that significant perceptual interference can occur even with a subliminal beacon when additional measures are not taken to limit exposure. Consequently, the lack of perceptual interference should be verified for a given system, and not assumed based on invisibility of the beacon. PMID:24607992

  18. Chromaticity correction for a muon collider optics

    SciTech Connect

    Alexahin, Y.; Gianfelice-Wendt, E.; Kapin, V.; /Fermilab

    2011-03-01

    Muon Collider (MC) is a promising candidate for the next energy frontier machine. However, in order to obtain peak luminosity in the 10{sup 34} cm{sup 2}s{sup -1} range the collider lattice designmust satisfy a number of stringent requirements. In particular the expected large momentum spread of the muon beam and the very small {beta}* call for a careful correction of the chromatic effects. Here we present a particular solution for the interaction region (IR) optics whose distinctive feature is a three-sextupole local chromatic correction scheme. The scheme may be applied to other future machines where chromatic effects are expected to be large. The expected large muon energy spread requires the optics to be stable over a wide range of momenta whereas the required luminosity calls for {beta}* in the mm range. To avoid luminosity degradation due to hour-glass effect, the bunch length must be comparatively small. To keep the needed RF voltage within feasible limits the momentum compaction factor must be small over the wide range of momenta. A low {beta}* means high sensitivity to alignment and field errors of the Interaction Region (IR) quadrupoles and large chromatic effects which limit the momentum range of optics stability and require strong correction sextupoles, which eventually limit the Dynamic Aperture (DA). Finally, the ring circumference should be as small as possible, luminosity being inversely proportional to the collider length. A promising solution for a 1.5 TeV center of mass energy MC with {beta}* = 1 m in both planes has been proposed. This {beta}* value has been chosen as a compromise between luminosity and feasibility based on the magnet design and energy deposition considerations. The proposed solution for the IR optics together with a new flexible momentum compaction arc cell design allows to satisfy all requirements and is relatively insensitive to the beam-beam effect.

  19. Characterization and Operation of Liquid Crystal Adaptive Optics Phoropter

    SciTech Connect

    Awwal, A; Bauman, B; Gavel, D; Olivier, S; Jones, S; Hardy, J L; Barnes, T; Werner, J S

    2003-02-05

    Adaptive optics (AO), a mature technology developed for astronomy to compensate for the effects of atmospheric turbulence, can also be used to correct the aberrations of the eye. The classic phoropter is used by ophthalmologists and optometrists to estimate and correct the lower-order aberrations of the eye, defocus and astigmatism, in order to derive a vision correction prescription for their patients. An adaptive optics phoropter measures and corrects the aberrations in the human eye using adaptive optics techniques, which are capable of dealing with both the standard low-order aberrations and higher-order aberrations, including coma and spherical aberration. High-order aberrations have been shown to degrade visual performance for clinical subjects in initial investigations. An adaptive optics phoropter has been designed and constructed based on a Shack-Hartmann sensor to measure the aberrations of the eye, and a liquid crystal spatial light modulator to compensate for them. This system should produce near diffraction-limited optical image quality at the retina, which will enable investigation of the psychophysical limits of human vision. This paper describes the characterization and operation of the AO phoropter with results from human subject testing.

  20. Optical Design and Optimization of Translational Reflective Adaptive Optics Ophthalmoscopes

    NASA Astrophysics Data System (ADS)

    Sulai, Yusufu N. B.

    The retina serves as the primary detector for the biological camera that is the eye. It is composed of numerous classes of neurons and support cells that work together to capture and process an image formed by the eye's optics, which is then transmitted to the brain. Loss of sight due to retinal or neuro-ophthalmic disease can prove devastating to one's quality of life, and the ability to examine the retina in vivo is invaluable in the early detection and monitoring of such diseases. Adaptive optics (AO) ophthalmoscopy is a promising diagnostic tool in early stages of development, still facing significant challenges before it can become a clinical tool. The work in this thesis is a collection of projects with the overarching goal of broadening the scope and applicability of this technology. We begin by providing an optical design approach for AO ophthalmoscopes that reduces the aberrations that degrade the performance of the AO correction. Next, we demonstrate how to further improve image resolution through the use of amplitude pupil apodization and non-common path aberration correction. This is followed by the development of a viewfinder which provides a larger field of view for retinal navigation. Finally, we conclude with the development of an innovative non-confocal light detection scheme which improves the non-invasive visualization of retinal vasculature and reveals the cone photoreceptor inner segments in healthy and diseased eyes.

  1. ERIS adaptive optics system design

    NASA Astrophysics Data System (ADS)

    Marchetti, Enrico; Le Louarn, Miska; Soenke, Christian; Fedrigo, Enrico; Madec, Pierre-Yves; Hubin, Norbert

    2012-07-01

    The Enhanced Resolution Imager and Spectrograph (ERIS) is the next-generation instrument planned for the Very Large Telescope (VLT) and the Adaptive Optics facility (AOF). It is an AO assisted instrument that will make use of the Deformable Secondary Mirror and the new Laser Guide Star Facility (4LGSF), and it is planned for the Cassegrain focus of the telescope UT4. The project is currently in its Phase A awaiting for approval to continue to the next phases. The Adaptive Optics system of ERIS will include two wavefront sensors (WFS) to maximize the coverage of the proposed sciences cases. The first is a high order 40x40 Pyramid WFS (PWFS) for on axis Natural Guide Star (NGS) observations. The second is a high order 40x40 Shack-Hartmann WFS for single Laser Guide Stars (LGS) observations. The PWFS, with appropriate sub-aperture binning, will serve also as low order NGS WFS in support to the LGS mode with a field of view patrolling capability of 2 arcmin diameter. Both WFSs will be equipped with the very low read-out noise CCD220 based camera developed for the AOF. The real-time reconstruction and control is provided by a SPARTA real-time platform adapted to support both WFS modes. In this paper we will present the ERIS AO system in all its main aspects: opto-mechanical design, real-time computer design, control and calibrations strategy. Particular emphasis will be given to the system performance obtained via dedicated numerical simulations.

  2. Manufacturing of the ESO adaptive optics facility

    NASA Astrophysics Data System (ADS)

    Arsenault, R.,; Madec, P.-Y.; Hubin, N.; Stroebele, S.; Paufique, J.; Vernet, E.; Hackenberg, W.; Pirard, J.-F.; Jochum, L.; Glindemann, A.; Jost, A.; Conzelmann, R.; Kiekebusch, M.; Tordo, S.; Lizon, J.-L.; Donaldson, R.; Fedrigo, E.; Soenke, C.; Duchateau, M.; Bruton, A.; Delabre, B.; Downing, M.; Reyes, J.; Kolb, J.; Bechet, C.; Lelouarn, M.; Bonaccini Calia, D.; Quattri, M.; Guidolin, I.; Buzzoni, B.; Dupuy, C.; Guzman, R.; Comin, M.; Silber, A.; Quentin, J.; La Penna, P.; Manescau, A.; Jolley, P.; Heinz, V.; Duhoux, P.; Argomedo, J.; Gallieni, D.; Lazzarini, P.; Biasi, R.; Andrighettoni, M.; Angerer, G.; Pescoller, D.; Stuik, R.,; Deep, A.

    2010-07-01

    The ESO Adaptive Optics Facility (AOF) consists in an evolution of one of the ESO VLT unit telescopes to a laser driven adaptive telescope with a deformable mirror in its optical train, in this case the secondary 1.1m mirror, and four Laser Guide Stars (LGSs). This evolution implements many challenging technologies like the Deformable Secondary Mirror (DSM) including a thin shell mirror (1.1 m diameter and 2mm thin), the high power Na lasers (20W), the low Read-Out Noise (RON) WaveFront Sensor (WFS) camera (< 1e-) and SPARTA the new generation of Real Time Computers (RTC) for adaptive control. It also faces many problematic similar to any Extremely Large Telescope (ELT) and as such, will validate many technologies and solutions needed for the European ELT (E-ELT) 42m telescope. The AOF will offer a very large (7 arcmin) Field Of View (FOV) GLAO correction in J, H and K bands (GRAAL+Hawk-I), a visible integral field spectrograph with a 1 arcmin GLAO corrected FOV (GALACSI-MUSE WFM) and finally a LTAO 7.5" FOV (GALACSI-MUSE NFM). Most systems of the AOF have completed final design and are in manufacturing phase. Specific activities are linked to the modification of the 8m telescope in order to accommodate the new DSM and the 4 LGS Units assembled on its Center-Piece. A one year test period in Europe is planned to test and validate all modes and their performance followed by a commissioning phase in Paranal scheduled for 2014.

  3. Further Studies on Nonlinear Adaptive Optics,

    DTIC Science & Technology

    1981-04-01

    AD-A9 167 SCIENCE APPLICATIONS INC LA JOLLA CA F/9 20/6 A-A*9 16 FURTHER STUDIES ON NONLINEAR ADAPTIVE OPTICS , 1W _ ASFE APR SI A ELCI. J1 NAGEL. D...FURTHER STUDIES ON NONLINEAR ADAPTIVE OPTICS Apr 8l 7 Submitted to: Director of Physics Air Force Office of Scientific Research ATTN: NP Bldg. 410...1 I STATEMENT OF WORK ...... .. .................... I-I II NONLINEAR ADAPTIVE OPTICS SUMMARY

  4. EPIC optical design, calibration, and data correction

    NASA Astrophysics Data System (ADS)

    Cede, A.; Kowalewski, M. G.

    2016-12-01

    The Deep Space Climate Observatory (DSCOVR) observes Space Weather and Earth's Climate from a unique position at the Lagrange 1 point, where it can continuously see the sunlit-side of the Earth. The Earth Polychromatic Imaging Camera (EPIC) on board of DSCOVR takes images of the Earth in 10 ultraviolet and visible channels approximately every 75 minutes. The measurement are converted into color images and also into global maps of atmospheric parameters such as ozone and sulfur dioxide columns, aerosol properties, cloud distribution, height and thickness, as well as surface parameters such as vegetation and leaf area index. This presentation gives an overview of the EPIC optical design, the calibrations performed, and the corrections applied to the raw data to obtain corrected count rates.

  5. Beaconless adaptive-optics technique for HEL beam control

    NASA Astrophysics Data System (ADS)

    Khizhnyak, Anatoliy; Markov, Vladimir

    2016-05-01

    Effective performance of forthcoming laser systems capable of power delivery on a distant target requires an adaptive optics system to correct atmospheric perturbations on the laser beam. The turbulence-induced effects are responsible for beam wobbling, wandering, and intensity scintillation, resulting in degradation of the beam quality and power density on the target. Adaptive optics methods are used to compensate for these negative effects. In its turn, operation of the AOS system requires a reference wave that can be generated by the beacon on the target. This report discusses a beaconless approach for wavefront correction with its performance based on the detection of the target-scattered light. Postprocessing of the beacon-generated light field enables retrieval and detailed characterization of the turbulence-perturbed wavefront -data that is essential to control the adaptive optics module of a high-power laser system.

  6. Adjustable Focus Optical Correction Lens (AFOCL)

    NASA Technical Reports Server (NTRS)

    Peters, Bruce R.

    2001-01-01

    This report describes the activities and accomplishments along with the status of the characterization of a PLZT-based Adjustable Focus Optical Correction Lens (AFOCL) test device. The activities described in this report were undertaken by members of the Center for Applied Optics (CAO) at the University of Alabama in Huntsville (UAH) under NASA Contract NAS8-00188. The effort was led by Dr. Bruce Peters as the Principal Investigator and supported by Dr. Patrick Reardon, Ms. Deborah Bailey, and graduate student Mr. Jeremy Wong. The activities outlined for the first year of the contract were to identify vendors and procure a test device along with performing the initial optical characterization of the test device. This activity has been successfully executed and test results are available and preliminary information was published at the SPIE Photonics West Conference in San Jose, January 2001. The paper, "Preliminary investigation of an active PLZT lens," was well received and generated response with several questions from the audience. A PLZT test device has been commercially procured from an outside vendor: The University of California in San Diego (UCSD) in partnership with New Interconnect Packaging Technologies (NIPT) Inc. The device has been subjected to several tests to characterize the optical performance of the device at wavelengths of interest. The goal was to evaluate the AFOCL similar to a conventional lens and measure any optical aberrations present due to the PLZT material as a deviation in the size of the diffraction limited spot (blur), the presence of diffracted energy into higher orders surrounding the focused spot (a variation in Strehl), and/or a variation or spread in the location of the focused energy away from the optical axis (a bias towards optical wedge, spherical, comma, or other higher order aberrations). While data has been collected indicative of the imaging quality of the AFOCL test device, it was not possible to fully characterize the

  7. Daytime adaptive optics for deep space optical communications

    NASA Technical Reports Server (NTRS)

    Wilson, Keith; Troy, M.; Srinivasan, M.; Platt, B.; Vilnrotter, V.; Wright, M.; Garkanian, V.; Hemmati, H.

    2003-01-01

    The deep space optical communications subsystem offers a higher bandwidth communications link in smaller size, lower mass, and lower power consumption subsystem than does RF. To demonstrate the benefit of this technology to deep space communications NASA plans to launch an optical telecommunications package on the 2009 Mars Telecommunications orbiter spacecraft. Current performance goals are 30-Mbps from opposition, and 1-Mbps near conjunction (-3 degrees Sun-Earth-Probe angle). Yet, near conjunction the background noise from the day sky will degrade the performance of the optical link. Spectral and spatial filtering and higher modulation formats can mitigate the effects of background sky. Narrowband spectral filters can result in loss of link margin, and higher modulation formats require higher transmitted peak powers. In contrast, spatial filtering at the receiver has the potential of being lossless while providing the required sky background rejection. Adaptive optics techniques can correct wave front aberrations caused by atmospheric turbulence and enable near-diffraction-limited performance of the receiving telescope. Such performance facilitates spatial filtering, and allows the receiver field-of-view and hence the noise from the sky background to be reduced.

  8. Daytime adaptive optics for deep space optical communications

    NASA Technical Reports Server (NTRS)

    Wilson, Keith; Troy, M.; Srinivasan, M.; Platt, B.; Vilnrotter, V.; Wright, M.; Garkanian, V.; Hemmati, H.

    2003-01-01

    The deep space optical communications subsystem offers a higher bandwidth communications link in smaller size, lower mass, and lower power consumption subsystem than does RF. To demonstrate the benefit of this technology to deep space communications NASA plans to launch an optical telecommunications package on the 2009 Mars Telecommunications orbiter spacecraft. Current performance goals are 30-Mbps from opposition, and 1-Mbps near conjunction (-3 degrees Sun-Earth-Probe angle). Yet, near conjunction the background noise from the day sky will degrade the performance of the optical link. Spectral and spatial filtering and higher modulation formats can mitigate the effects of background sky. Narrowband spectral filters can result in loss of link margin, and higher modulation formats require higher transmitted peak powers. In contrast, spatial filtering at the receiver has the potential of being lossless while providing the required sky background rejection. Adaptive optics techniques can correct wave front aberrations caused by atmospheric turbulence and enable near-diffraction-limited performance of the receiving telescope. Such performance facilitates spatial filtering, and allows the receiver field-of-view and hence the noise from the sky background to be reduced.

  9. Kalman filter based control for Adaptive Optics

    NASA Astrophysics Data System (ADS)

    Petit, Cyril; Quiros-Pacheco, Fernando; Conan, Jean-Marc; Kulcsár, Caroline; Raynaud, Henri-François; Fusco, Thierry

    2004-12-01

    Classical Adaptive Optics suffer from a limitation of the corrected Field Of View. This drawback has lead to the development of MultiConjugated Adaptive Optics. While the first MCAO experimental set-ups are presently under construction, little attention has been paid to the control loop. This is however a key element in the optimization process especially for MCAO systems. Different approaches have been proposed in recent articles for astronomical applications : simple integrator, Optimized Modal Gain Integrator and Kalman filtering. We study here Kalman filtering which seems a very promising solution. Following the work of Brice Leroux, we focus on a frequential characterization of kalman filters, computing a transfer matrix. The result brings much information about their behaviour and allows comparisons with classical controllers. It also appears that straightforward improvements of the system models can lead to static aberrations and vibrations filtering. Simulation results are proposed and analysed thanks to our frequential characterization. Related problems such as model errors, aliasing effect reduction or experimental implementation and testing of Kalman filter control loop on a simplified MCAO experimental set-up could be then discussed.

  10. Accuracy requirements of optical linear algebra processors in adaptive optics imaging systems.

    PubMed

    Downie, J D; Goodman, J W

    1989-10-15

    A ground-based adaptive optics imaging telescope system attempts to improve image quality by measuring and correcting for atmospherically induced wavefront aberrations. The necessary control computations during each cycle will take a finite amount of time, which adds to the residual error variance since the atmosphere continues to change during that time. Thus an optical processor may be well-suited for this task. This paper investigates this possibility by studying the accuracy requirements in a general optical processor that will make it competitive with, or superior to, a conventional digital computer for adaptive optics use.

  11. Adaptive optics ophthalmoscopy: results and applications.

    PubMed

    Pallikaris, A

    2005-01-01

    The living human eye's optical aberrations set a limit to retinal imaging in the clinical setting. Progress in the field of adaptive optics has offered unique solutions to this problem. The purpose of this review is to summarize the most recent advances in adaptive optics ophthalmoscopy. Adaptive optics technology has been combined with flood illumination imaging, confocal scanning laser ophthalmoscopy, and optical coherence tomography for the high resolution imaging of the retina. The advent of adaptive optics technology has provided the technical platform for the compensation of the eye's aberration and made possible the observation of single cones, small capillaries, nerve fibers, and leukocyte dynamics as well as the ultrastructure of the optic nerve head lamina cribrosa in vivo. Detailed imaging of retinal infrastructure provides valuable information for the study of retinal physiology and pathology.

  12. Wavefront Control for Extreme Adaptive Optics

    SciTech Connect

    Poyneer, L A

    2003-07-16

    Current plans for Extreme Adaptive Optics systems place challenging requirements on wave-front control. This paper focuses on control system dynamics, wave-front sensing and wave-front correction device characteristics. It may be necessary to run an ExAO system after a slower, low-order AO system. Running two independent systems can result in very good temporal performance, provided specific design constraints are followed. The spatially-filtered wave-front sensor, which prevents aliasing and improves PSF sensitivity, is summarized. Different models of continuous and segmented deformable mirrors are studied. In a noise-free case, a piston-tip-tilt segmented MEMS device can achieve nearly equivalent performance to a continuous-sheet DM in compensating for a static phase aberration with use of spatial filtering.

  13. Wavefront control for extreme adaptive optics

    NASA Astrophysics Data System (ADS)

    Poyneer, Lisa A.; Macintosh, Bruce A.

    2003-12-01

    Current plans for Extreme Adaptive Optics systems place challenging requirements on wave-front control. This paper focuses on control system dynamics, wave-front sensing and wave-front correction device characteristics. It may be necessary to run an ExAO system after a slower, low-order AO system. Running two independent systems can result in very good temporal performance, provided specific design constraints are followed. The spatially-filtered wave-front sensor, which prevents aliasing and improves PSF sensitivity, is summarized. Different models of continuous and segmented deformable mirrors are studied. In a noise-free case, a piston-tip-tilt segmented MEMS device can achieve nearly equivalent performance to a continuous-sheet DM in compensating for a static phase aberration with use of spatial filtering.

  14. Adaptive optical microscope for brain imaging in vivo

    NASA Astrophysics Data System (ADS)

    Wang, Kai

    2017-04-01

    The optical heterogeneity of biological tissue imposes a major limitation to acquire detailed structural and functional information deep in the biological specimens using conventional microscopes. To restore optimal imaging performance, we developed an adaptive optical microscope based on direct wavefront sensing technique. This microscope can reliably measure and correct biological samples induced aberration. We demonstrated its performance and application in structural and functional brain imaging in various animal models, including fruit fly, zebrafish and mouse.

  15. Optical Design for Extremely Large Telescope Adaptive Optics Systems

    SciTech Connect

    Bauman, Brian J.

    2003-01-01

    Designing an adaptive optics (AO) system for extremely large telescopes (ELT's) will present new optical engineering challenges. Several of these challenges are addressed in this work, including first-order design of multi-conjugate adaptive optics (MCAO) systems, pyramid wavefront sensors (PWFS's), and laser guide star (LGS) spot elongation. MCAO systems need to be designed in consideration of various constraints, including deformable mirror size and correction height. The y,{bar y} method of first-order optical design is a graphical technique that uses a plot with marginal and chief ray heights as coordinates; the optical system is represented as a segmented line. This method is shown to be a powerful tool in designing MCAO systems. From these analyses, important conclusions about configurations are derived. PWFS's, which offer an alternative to Shack-Hartmann (SH) wavefront sensors (WFS's), are envisioned as the workhorse of layer-oriented adaptive optics. Current approaches use a 4-faceted glass pyramid to create a WFS analogous to a quad-cell SH WFS. PWFS's and SH WFS's are compared and some newly-considered similarities and PWFS advantages are presented. Techniques to extend PWFS's are offered: First, PWFS's can be extended to more pixels in the image by tiling pyramids contiguously. Second, pyramids, which are difficult to manufacture, can be replaced by less expensive lenslet arrays. An approach is outlined to convert existing SH WFS's to PWFS's for easy evaluation of PWFS's. Also, a demonstration of PWFS's in sensing varying amounts of an aberration is presented. For ELT's, the finite altitude and finite thickness of LGS's means that the LGS will appear elongated from the viewpoint of subapertures not directly under the telescope. Two techniques for dealing with LGS spot elongation in SH WFS's are presented. One method assumes that the laser will be pulsed and uses a segmented micro-electromechanical system (MEMS) to track the LGS light subaperture by

  16. Adaptive optics optical coherence tomography with dynamic retinal tracking

    PubMed Central

    Kocaoglu, Omer P.; Ferguson, R. Daniel; Jonnal, Ravi S.; Liu, Zhuolin; Wang, Qiang; Hammer, Daniel X.; Miller, Donald T.

    2014-01-01

    Adaptive optics optical coherence tomography (AO-OCT) is a highly sensitive and noninvasive method for three dimensional imaging of the microscopic retina. Like all in vivo retinal imaging techniques, however, it suffers the effects of involuntary eye movements that occur even under normal fixation. In this study we investigated dynamic retinal tracking to measure and correct eye motion at KHz rates for AO-OCT imaging. A customized retina tracking module was integrated into the sample arm of the 2nd-generation Indiana AO-OCT system and images were acquired on three subjects. Analyses were developed based on temporal amplitude and spatial power spectra in conjunction with strip-wise registration to independently measure AO-OCT tracking performance. After optimization of the tracker parameters, the system was found to correct eye movements up to 100 Hz and reduce residual motion to 10 µm root mean square. Between session precision was 33 µm. Performance was limited by tracker-generated noise at high temporal frequencies. PMID:25071963

  17. Adaptive optics optical coherence tomography with dynamic retinal tracking.

    PubMed

    Kocaoglu, Omer P; Ferguson, R Daniel; Jonnal, Ravi S; Liu, Zhuolin; Wang, Qiang; Hammer, Daniel X; Miller, Donald T

    2014-07-01

    Adaptive optics optical coherence tomography (AO-OCT) is a highly sensitive and noninvasive method for three dimensional imaging of the microscopic retina. Like all in vivo retinal imaging techniques, however, it suffers the effects of involuntary eye movements that occur even under normal fixation. In this study we investigated dynamic retinal tracking to measure and correct eye motion at KHz rates for AO-OCT imaging. A customized retina tracking module was integrated into the sample arm of the 2nd-generation Indiana AO-OCT system and images were acquired on three subjects. Analyses were developed based on temporal amplitude and spatial power spectra in conjunction with strip-wise registration to independently measure AO-OCT tracking performance. After optimization of the tracker parameters, the system was found to correct eye movements up to 100 Hz and reduce residual motion to 10 µm root mean square. Between session precision was 33 µm. Performance was limited by tracker-generated noise at high temporal frequencies.

  18. Digital adaptive optics line-scanning confocal imaging system

    PubMed Central

    Liu, Changgeng; Kim, Myung K.

    2015-01-01

    Abstract. A digital adaptive optics line-scanning confocal imaging (DAOLCI) system is proposed by applying digital holographic adaptive optics to a digital form of line-scanning confocal imaging system. In DAOLCI, each line scan is recorded by a digital hologram, which allows access to the complex optical field from one slice of the sample through digital holography. This complex optical field contains both the information of one slice of the sample and the optical aberration of the system, thus allowing us to compensate for the effect of the optical aberration, which can be sensed by a complex guide star hologram. After numerical aberration compensation, the corrected optical fields of a sequence of line scans are stitched into the final corrected confocal image. In DAOLCI, a numerical slit is applied to realize the confocality at the sensor end. The width of this slit can be adjusted to control the image contrast and speckle noise for scattering samples. DAOLCI dispenses with the hardware pieces, such as Shack–Hartmann wavefront sensor and deformable mirror, and the closed-loop feedbacks adopted in the conventional adaptive optics confocal imaging system, thus reducing the optomechanical complexity and cost. Numerical simulations and proof-of-principle experiments are presented that demonstrate the feasibility of this idea. PMID:26140334

  19. Digital adaptive optics line-scanning confocal imaging system.

    PubMed

    Liu, Changgeng; Kim, Myung K

    2015-01-01

    A digital adaptive optics line-scanning confocal imaging (DAOLCI) system is proposed by applying digital holographic adaptive optics to a digital form of line-scanning confocal imaging system. In DAOLCI, each line scan is recorded by a digital hologram, which allows access to the complex optical field from one slice of the sample through digital holography. This complex optical field contains both the information of one slice of the sample and the optical aberration of the system, thus allowing us to compensate for the effect of the optical aberration, which can be sensed by a complex guide star hologram. After numerical aberration compensation, the corrected optical fields of a sequence of line scans are stitched into the final corrected confocal image. In DAOLCI, a numerical slit is applied to realize the confocality at the sensor end. The width of this slit can be adjusted to control the image contrast and speckle noise for scattering samples. DAOLCI dispenses with the hardware pieces, such as Shack–Hartmann wavefront sensor and deformable mirror, and the closed-loop feedbacks adopted in the conventional adaptive optics confocal imaging system, thus reducing the optomechanical complexity and cost. Numerical simulations and proof-of-principle experiments are presented that demonstrate the feasibility of this idea.

  20. Digital adaptive optics line-scanning confocal imaging system

    NASA Astrophysics Data System (ADS)

    Liu, Changgeng; Kim, Myung K.

    2015-11-01

    A digital adaptive optics line-scanning confocal imaging (DAOLCI) system is proposed by applying digital holographic adaptive optics to a digital form of line-scanning confocal imaging system. In DAOLCI, each line scan is recorded by a digital hologram, which allows access to the complex optical field from one slice of the sample through digital holography. This complex optical field contains both the information of one slice of the sample and the optical aberration of the system, thus allowing us to compensate for the effect of the optical aberration, which can be sensed by a complex guide star hologram. After numerical aberration compensation, the corrected optical fields of a sequence of line scans are stitched into the final corrected confocal image. In DAOLCI, a numerical slit is applied to realize the confocality at the sensor end. The width of this slit can be adjusted to control the image contrast and speckle noise for scattering samples. DAOLCI dispenses with the hardware pieces, such as Shack-Hartmann wavefront sensor and deformable mirror, and the closed-loop feedbacks adopted in the conventional adaptive optics confocal imaging system, thus reducing the optomechanical complexity and cost. Numerical simulations and proof-of-principle experiments are presented that demonstrate the feasibility of this idea.

  1. Wavefront correction and high-resolution in vivo OCT imaging with an objective integrated multi-actuator adaptive lens.

    PubMed

    Bonora, Stefano; Jian, Yifan; Zhang, Pengfei; Zam, Azhar; Pugh, Edward N; Zawadzki, Robert J; Sarunic, Marinko V

    2015-08-24

    Adaptive optics is rapidly transforming microscopy and high-resolution ophthalmic imaging. The adaptive elements commonly used to control optical wavefronts are liquid crystal spatial light modulators and deformable mirrors. We introduce a novel Multi-actuator Adaptive Lens that can correct aberrations to high order, and which has the potential to increase the spread of adaptive optics to many new applications by simplifying its integration with existing systems. Our method combines an adaptive lens with an imaged-based optimization control that allows the correction of images to the diffraction limit, and provides a reduction of hardware complexity with respect to existing state-of-the-art adaptive optics systems. The Multi-actuator Adaptive Lens design that we present can correct wavefront aberrations up to the 4th order of the Zernike polynomial characterization. The performance of the Multi-actuator Adaptive Lens is demonstrated in a wide field microscope, using a Shack-Hartmann wavefront sensor for closed loop control. The Multi-actuator Adaptive Lens and image-based wavefront-sensorless control were also integrated into the objective of a Fourier Domain Optical Coherence Tomography system for in vivo imaging of mouse retinal structures. The experimental results demonstrate that the insertion of the Multi-actuator Objective Lens can generate arbitrary wavefronts to correct aberrations down to the diffraction limit, and can be easily integrated into optical systems to improve the quality of aberrated images.

  2. Wavefront correction and high-resolution in vivo OCT imaging with an objective integrated multi-actuator adaptive lens

    PubMed Central

    Bonora, Stefano; Jian, Yifan; Zhang, Pengfei; Zam, Azhar; Pugh, Edward N.; Zawadzki, Robert J.; Sarunic, Marinko V.

    2015-01-01

    Adaptive optics is rapidly transforming microscopy and high-resolution ophthalmic imaging. The adaptive elements commonly used to control optical wavefronts are liquid crystal spatial light modulators and deformable mirrors. We introduce a novel Multi-actuator Adaptive Lens that can correct aberrations to high order, and which has the potential to increase the spread of adaptive optics to many new applications by simplifying its integration with existing systems. Our method combines an adaptive lens with an imaged-based optimization control that allows the correction of images to the diffraction limit, and provides a reduction of hardware complexity with respect to existing state-of-the-art adaptive optics systems. The Multi-actuator Adaptive Lens design that we present can correct wavefront aberrations up to the 4th order of the Zernike polynomial characterization. The performance of the Multi-actuator Adaptive Lens is demonstrated in a wide field microscope, using a Shack-Hartmann wavefront sensor for closed loop control. The Multi-actuator Adaptive Lens and image-based wavefront-sensorless control were also integrated into the objective of a Fourier Domain Optical Coherence Tomography system for in vivo imaging of mouse retinal structures. The experimental results demonstrate that the insertion of the Multi-actuator Objective Lens can generate arbitrary wavefronts to correct aberrations down to the diffraction limit, and can be easily integrated into optical systems to improve the quality of aberrated images. PMID:26368169

  3. Laser beacon adaptive optics for power beaming applications

    NASA Astrophysics Data System (ADS)

    Fugate, Robert Q.

    1994-05-01

    This paper discusses the laser beam control system requirements for power beaming applications. Power beaming applications include electric and thermal engine propulsion for orbit transfer, station changing, and recharging batteries. Beam control includes satellite acquisition, high accuracy tracking, higher order atmospheric compensation using adaptive optics, and precision point-ahead. Beam control may also include local laser beam clean-up with a low order adaptive optics system. This paper also presents results of tracking and higher-order correction experiments on astronomical objects. The results were obtained with a laser beacon adaptive optics system at Phillips Laboratory's Starfire Optical Range near Albuquerque, NM. At a wavelength of 0.85 micrometers , we have achieved Strehl ratios of approximately 0.50 using laser beacons and approximately 0.65 using natural stars for exposures longer than one minute on objects of approximately 8th magnitude. The resulting point spread function has a full width half maximum (FWHM) of 0.13 arcsec.

  4. Adaptive self-correcting control system

    SciTech Connect

    Ellis, S.H.

    1984-01-03

    A control system for regulating a controlled device or process, such as a turbofan engine, produces independent multiple estimates of one or more controlled variables of the device or process by combining the signals from a plurality of feedback sensors, which provide information related to the controlled variables, in weighted nonordered pairs. The independent multiple estimates of each controlled variable are combined into a weighted average, and individual estimates which differ by more than a specified amount from the weighted average are edited and temporarily removed from consideration. A revised weighted average value of each controlled variable is then produced, and this value is used to limit or control operation of the device or process. Adaptive trim is provided to compensate for changes in the device or process being controlled, such as engine deterioration, by slowly trimming each individual estimate toward the mean, and includes error compensation which constrains the weighted sum of the adaptive trims to equal zero, thereby preventing the adaptive trim from changing the operating level of the device or process. A secondary editing circuit based on a majority rule principle identifies a failed feedback sensor and permanently excludes all individual estimates of the controlled variable based on the failed sensor. Editing boundaries are increased and adaptive trim rate is varied when a transient occurs in the operation of the device or process. Further transient compensation may be required for a system with more severe transient requirements, and this invention includes compensation to selected feedback parameters such as turbine temperature to account for differences between steady state and transient values.

  5. Adaptive optics imaging of the retina.

    PubMed

    Battu, Rajani; Dabir, Supriya; Khanna, Anjani; Kumar, Anupama Kiran; Roy, Abhijit Sinha

    2014-01-01

    Adaptive optics is a relatively new tool that is available to ophthalmologists for study of cellular level details. In addition to the axial resolution provided by the spectral-domain optical coherence tomography, adaptive optics provides an excellent lateral resolution, enabling visualization of the photoreceptors, blood vessels and details of the optic nerve head. We attempt a mini review of the current role of adaptive optics in retinal imaging. PubMed search was performed with key words Adaptive optics OR Retina OR Retinal imaging. Conference abstracts were searched from the Association for Research in Vision and Ophthalmology (ARVO) and American Academy of Ophthalmology (AAO) meetings. In total, 261 relevant publications and 389 conference abstracts were identified.

  6. Adaptive optics imaging of the retina

    PubMed Central

    Battu, Rajani; Dabir, Supriya; Khanna, Anjani; Kumar, Anupama Kiran; Roy, Abhijit Sinha

    2014-01-01

    Adaptive optics is a relatively new tool that is available to ophthalmologists for study of cellular level details. In addition to the axial resolution provided by the spectral-domain optical coherence tomography, adaptive optics provides an excellent lateral resolution, enabling visualization of the photoreceptors, blood vessels and details of the optic nerve head. We attempt a mini review of the current role of adaptive optics in retinal imaging. PubMed search was performed with key words Adaptive optics OR Retina OR Retinal imaging. Conference abstracts were searched from the Association for Research in Vision and Ophthalmology (ARVO) and American Academy of Ophthalmology (AAO) meetings. In total, 261 relevant publications and 389 conference abstracts were identified. PMID:24492503

  7. Adaptive optics in digital micromirror based confocal microscopy

    NASA Astrophysics Data System (ADS)

    Pozzi, P.; Wilding, D.; Soloviev, O.; Vdovin, G.; Verhaegen, M.

    2016-03-01

    This proceeding reports early results in the development of a new technique for adaptive optics in confocal microscopy. The term adaptive optics refers to the branch of optics in which an active element in the optical system is used to correct inhomogeneities in the media through which light propagates. In its most classical form, mostly used in astronomical imaging, adaptive optics is achieved through a closed loop in which the actuators of a deformable mirror are driven by a wavefront sensor. This approach is severely limited in fluorescence microscopy, as the use of a wavefront sensor requires the presence of a bright, point like source in the field of view, a condition rarely satisfied in microscopy samples. Previously reported approaches to adaptive optics in fluorescence microscopy are therefore limited to the inclusion of fluorescent microspheres in the sample, to use as bright stars for wavefront sensors, or time consuming sensorless optimization procedures, requiring several seconds of optimization before the acquisition of a single image. We propose an alternative approach to the problem, implementing sensorless adaptive optics in a Programmable array microscope. A programmable array microscope is a microscope based on a digital micromirror device, in which the single elements of the micromirror act both as point sources and pinholes.

  8. Real-Time Optical Aberration Correction with a Ferroelectric Liquid-Crystal Spatial Light Modulator

    NASA Astrophysics Data System (ADS)

    Birch, Philip M.; Gourlay, James; Love, Gordon D.; Purvis, Alan

    1998-04-01

    Real-time correction of an optically aberrated wave front by use of a 10 10 ferroelectric liquid-crystal spatial light modulator as the correction device and a point-diffraction interferometer as the wave-front sensor is demonstrated. This type of interferometer requires no reference arm and so can be used, in theory, in an astronomical adaptive-optics system. We discuss some of the unusual features of the point-diffraction interferometer for wave-front sensing.

  9. Adaptive optics simulation of intraocular lenses with modified spherical aberration.

    PubMed

    Piers, Patricia A; Fernandez, Enrique J; Manzanera, Silvestre; Norrby, Sverker; Artal, Pablo

    2004-12-01

    Adaptive optics systems can be used to investigate the potential visual benefit associated with correcting ocular wave-front aberration. In this study, adaptive optics techniques were used to evaluate the potential advantages and disadvantages associated with intraocular lenses (IOLs) with modified spherical aberration profiles. An adaptive optics vision simulator was constructed that allows psychophysical tests to be performed while viewing targets through any desired ocular wave-front profile. With this simulator, the subjective visual performance of four subjects was assessed by letter acuity and contrast sensitivity (at 3, 6, and 15 cyc/deg) for two different values of induced spherical aberration. The values of spherical aberration were chosen to reproduce two conditions: the average amount measured in pseudophakic patients with implanted IOLs having spherical surfaces and the complete correction of the individual's spherical aberration. Visual performance was assessed in both white and green light, at best focus and for defocus of +/-0.5 and +/-1.0 D. There was an average improvement in visual acuity associated with the correction of spherical aberration of 10% and 38% measured in white and green light, respectively. Similarly, average contrast sensitivity measurements improved 32% and 57% in white and green light. When spherical aberration was corrected, visual performance was as good as or better than for the normal spherical aberration case for defocus as large as +/-1 D. Correcting ocular spherical aberration improves spatial vision in the best-focus position without compromising the subjective tolerance to defocus.

  10. Intracavity adaptive correction of a 10 kW, solid-state, heat-capacity laser

    SciTech Connect

    LaFortune, K N; Hurd, R L; Brase, J M; Yamamoto, R M

    2004-05-13

    The Solid-State, Heat-Capacity Laser (SSHCL), under development at Lawrence Livermore National Laboratory (LLNL) is a large aperture (100 cm{sup 2}), confocal, unstable resonator requiring near-diffraction-limited beam quality. There are two primary sources of the aberrations in the system: residual, static aberrations from the fabrication of the optical components and predictable, time-dependent, thermally-induced index gradients within the gain medium. A deformable mirror placed within the cavity is used to correct the aberrations that are sensed externally with a Shack-Hartmann wavefront sensor. Although the complexity of intracavity adaptive correction is greater than that of external correction, it enables control of the mode growth within the resonator, resulting in the ability to correct a more aberrated system longer. The overall system design, measurement techniques and correction algorithms are discussed. Experimental results from initial correction of the static aberrations and dynamic correction of the time-dependent aberrations are presented.

  11. Testing the Apodized Pupil Lyot Coronagraph on the Laboratory for Adaptive Optics Extreme Adaptive Optics Testbed

    NASA Astrophysics Data System (ADS)

    Thomas, Sandrine J.; Soummer, Rémi; Dillon, Daren; Macintosh, Bruce; Gavel, Donald; Sivaramakrishnan, Anand

    2011-10-01

    We present testbed results of the Apodized Pupil Lyot Coronagraph (APLC) at the Laboratory for Adaptive Optics (LAO). These results are part of the validation and tests of the coronagraph and of the Extreme Adaptive Optics (ExAO) for the Gemini Planet Imager (GPI). The apodizer component is manufactured with a halftone technique using black chrome microdots on glass. Testing this APLC (like any other coronagraph) requires extremely good wavefront correction, which is obtained to the 1 nm rms level using the microelectricalmechanical systems (MEMS) technology, on the ExAO visible testbed of the LAO at the University of Santa Cruz. We used an APLC coronagraph without central obstruction, both with a reference super-polished flat mirror and with the MEMS to obtain one of the first images of a dark zone in a coronagraphic image with classical adaptive optics using a MEMS deformable mirror (without involving dark hole algorithms). This was done as a complementary test to the GPI coronagraph testbed at American Museum of Natural History, which studied the coronagraph itself without wavefront correction. Because we needed a full aperture, the coronagraph design is very different from the GPI design. We also tested a coronagraph with central obstruction similar to that of GPI. We investigated the performance of the APLC coronagraph and more particularly the effect of the apodizer profile accuracy on the contrast. Finally, we compared the resulting contrast to predictions made with a wavefront propagation model of the testbed to understand the effects of phase and amplitude errors on the final contrast.

  12. TESTING THE APODIZED PUPIL LYOT CORONAGRAPH ON THE LABORATORY FOR ADAPTIVE OPTICS EXTREME ADAPTIVE OPTICS TESTBED

    SciTech Connect

    Thomas, Sandrine J.; Dillon, Daren; Gavel, Donald; Macintosh, Bruce; Sivaramakrishnan, Anand E-mail: dillon@ucolick.org E-mail: soummer@stsci.edu E-mail: anand@amnh.org

    2011-10-15

    We present testbed results of the Apodized Pupil Lyot Coronagraph (APLC) at the Laboratory for Adaptive Optics (LAO). These results are part of the validation and tests of the coronagraph and of the Extreme Adaptive Optics (ExAO) for the Gemini Planet Imager (GPI). The apodizer component is manufactured with a halftone technique using black chrome microdots on glass. Testing this APLC (like any other coronagraph) requires extremely good wavefront correction, which is obtained to the 1 nm rms level using the microelectricalmechanical systems (MEMS) technology, on the ExAO visible testbed of the LAO at the University of Santa Cruz. We used an APLC coronagraph without central obstruction, both with a reference super-polished flat mirror and with the MEMS to obtain one of the first images of a dark zone in a coronagraphic image with classical adaptive optics using a MEMS deformable mirror (without involving dark hole algorithms). This was done as a complementary test to the GPI coronagraph testbed at American Museum of Natural History, which studied the coronagraph itself without wavefront correction. Because we needed a full aperture, the coronagraph design is very different from the GPI design. We also tested a coronagraph with central obstruction similar to that of GPI. We investigated the performance of the APLC coronagraph and more particularly the effect of the apodizer profile accuracy on the contrast. Finally, we compared the resulting contrast to predictions made with a wavefront propagation model of the testbed to understand the effects of phase and amplitude errors on the final contrast.

  13. Adaptive Optics at the World's Biggest Optical Telescope

    NASA Astrophysics Data System (ADS)

    Hart, M.; Esposito, S.; Rabien, S.

    2010-09-01

    The Large Binocular Telescope (LBT) on Mt. Graham, Arizona, comprises two 8.4 m primary mirrors on a common mount. The two apertures will be co-phased to create a single telescope with 110 m2 of collecting area and 22.7 m baseline. From the outset, adaptive optics (AO) was incorporated into the design through two adaptive secondary mirrors (ASM), each 91 cm in diameter with 672 actuators, which feed all of the instruments mounted at the telescope's four pairs of Gregorian foci. The first ASM has now seen first light on sky with natural guide stars. Strehl ratios at 1.6 μm under average seeing are estimated to be ~80%, and diffraction-limited performance is maintained for stars down to magnitude 15. At the same time, pioneering work at the 6.5 m MMT telescope has for the first time shown the compelling benefits of ground-layer AO compensation. This technique relies on the signals from multiple laser beacons to sense and correct aberration arising close to the telescope with the result that near IR seeing is reduced by a factor of 2-3 over a field of many arc minutes. Building on these efforts at both telescopes, a project is underway to enhance the LBT's AO capability by the addition of wavefront sensing with multiple laser guide stars. The Advanced Rayleigh Ground-layer adaptive Optics System (ARGOS) is now in the construction phase. We provide an overview of ARGOS and how it foreshadows AO systems destined for the 30 m class telescopes of tomorrow.

  14. Adaptive optics center of excellence for national security

    NASA Astrophysics Data System (ADS)

    Agrawal, Brij

    2014-06-01

    This paper provides an overview of research at the Adaptive Optics Center of Excellence for national security (AOCoE) at the Naval Postgraduate School (NPS). The Center was established in 2011 with the sponsorship of the Office of Naval Research, National Reconnaissance Office, and Air Force research Laboratory. Research is in two areas: Segmented Mirror telescope (SMT) for imaging satellites and High Energy Laser Beam Control. SMT consists of a 3 meter diameter telescope with six segments and each segment has actuators for surface control and segment alignment. SMT research areas include developing improved techniques for surface control and segment alignment, and reduction in segment vibration by using tuned mass dampers. Research is also performed in adding a deformable mirror into the SMT optical path to correct for residual beam aberration not corrected by the primary mirror actuators. For high energy laser beam control the research areas are acquisition, tracking, and pointing, optical beam jitter control, and application of adaptive optics for correcting beam aberration due to air turbulence. The current focus is on adaptive optics for deep turbulence.

  15. Adaptive optics for laser space debris removal

    NASA Astrophysics Data System (ADS)

    Bennet, Francis; Conan, Rodolphe; D'Orgeville, Celine; Dawson, Murray; Paulin, Nicolas; Price, Ian; Rigaut, Francois; Ritchie, Ian; Smith, Craig; Uhlendorf, Kristina

    2012-07-01

    Space debris in low Earth orbit below 1500km is becoming an increasing threat to satellites and spacecrafts. Radar and laser tracking are currently used to monitor the orbits of thousands of space debris and active satellites are able to use this information to manoeuvre out of the way of a predicted collision. However, many satellites are not able to manoeuvre and debris-on debris collisions are becoming a signicant contributor to the growing space debris population. The removal of the space debris from orbit is the preferred and more denitive solution. Space debris removal may be achieved through laser ablation, whereby a high power laser corrected with an adaptive optics system could, in theory, allow ablation of the debris surface and so impart a remote thrust on the targeted object. The goal of this is to avoid collisions between space debris to prevent an exponential increase in the number of space debris objects. We are developing an experiment to demonstrate the feasibility of laser ablation for space debris removal. This laser ablation demonstrator utilises a pulsed sodium laser to probe the atmosphere ahead of the space debris and the sun re ection of the space debris is used to provide atmospheric tip{tilt information. A deformable mirror is then shaped to correct an infrared laser beam on the uplink path to the debris. We present here the design and the expected performance of the system.

  16. Accuracy requirements of optical linear algebra processors in adaptive optics imaging systems

    NASA Technical Reports Server (NTRS)

    Downie, John D.; Goodman, Joseph W.

    1989-01-01

    The accuracy requirements of optical processors in adaptive optics systems are determined by estimating the required accuracy in a general optical linear algebra processor (OLAP) that results in a smaller average residual aberration than that achieved with a conventional electronic digital processor with some specific computation speed. Special attention is given to an error analysis of a general OLAP with regard to the residual aberration that is created in an adaptive mirror system by the inaccuracies of the processor, and to the effect of computational speed of an electronic processor on the correction. Results are presented on the ability of an OLAP to compete with a digital processor in various situations.

  17. Adaptive optics without altering visual perception.

    PubMed

    Koenig, D E; Hart, N W; Hofer, H J

    2014-04-01

    Adaptive optics combined with visual psychophysics creates the potential to study the relationship between visual function and the retina at the cellular scale. This potential is hampered, however, by visual interference from the wavefront-sensing beacon used during correction. For example, we have previously shown that even a dim, visible beacon can alter stimulus perception (Hofer et al., 2012). Here we describe a simple strategy employing a longer wavelength (980nm) beacon that, in conjunction with appropriate restriction on timing and placement, allowed us to perform psychophysics when dark adapted without altering visual perception. The method was verified by comparing detection and color appearance of foveally presented small spot stimuli with and without the wavefront beacon present in 5 subjects. As an important caution, we found that significant perceptual interference can occur even with a subliminal beacon when additional measures are not taken to limit exposure. Consequently, the lack of perceptual interference should be verified for a given system, and not assumed based on invisibility of the beacon. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Adaptive optics program at TMT

    NASA Astrophysics Data System (ADS)

    Boyer, C.; Adkins, Sean; Andersen, David R.; Atwood, Jenny; Bo, Yong; Byrnes, Peter; Caputa, Kris; Cavaco, Jeff; Ellerbroek, Brent; Gilles, Luc; Gregory, James; Herriot, Glen; Hickson, Paul; Ljusic, Zoran; Manter, Darren; Marois, Christian; Otárola, Angel; Pagès, Hubert; Schoeck, Matthias; Sinquin, Jean-Christophe; Smith, Malcolm; Spano, Paolo; Szeto, Kei; Tang, Jinlong; Travouillon, Tony; Véran, Jean-Pierre; Wang, Lianqi; Wei, Kai

    2014-07-01

    The TMT first light Adaptive Optics (AO) facility consists of the Narrow Field Infra-Red AO System (NFIRAOS) and the associated Laser Guide Star Facility (LGSF). NFIRAOS is a 60 × 60 laser guide star (LGS) multi-conjugate AO (MCAO) system, which provides uniform, diffraction-limited performance in the J, H, and K bands over 17-30 arc sec diameter fields with 50 per cent sky coverage at the galactic pole, as required to support the TMT science cases. NFIRAOS includes two deformable mirrors, six laser guide star wavefront sensors, and three low-order, infrared, natural guide star wavefront sensors within each client instrument. The first light LGSF system includes six sodium lasers required to generate the NFIRAOS laser guide stars. In this paper, we will provide an update on the progress in designing, modeling and validating the TMT first light AO systems and their components over the last two years. This will include pre-final design and prototyping activities for NFIRAOS, preliminary design and prototyping activities for the LGSF, design and prototyping for the deformable mirrors, fabrication and tests for the visible detectors, benchmarking and comparison of different algorithms and processing architecture for the Real Time Controller (RTC) and development and tests of prototype candidate lasers. Comprehensive and detailed AO modeling is continuing to support the design and development of the first light AO facility. Main modeling topics studied during the last two years include further studies in the area of wavefront error budget, sky coverage, high precision astrometry for the galactic center and other observations, high contrast imaging with NFIRAOS and its first light instruments, Point Spread Function (PSF) reconstruction for LGS MCAO, LGS photon return and sophisticated low order mode temporal filtering.

  19. ESO adaptive optics facility progress report

    NASA Astrophysics Data System (ADS)

    Arsenault, Robin; Madec, Pierre-Yves; Paufique, Jerome; La Penna, Paolo; Stroebele, Stefan; Vernet, Elise; Pirard, Jean-Francois; Hackenberg, Wolfgang; Kuntschner, Harald; Jochum, Lieselotte; Kolb, Johann; Muller, Nicolas; Le Louarn, Miska; Amico, Paola; Hubin, Norbert; Lizon, Jean-Louis; Ridings, Rob; Abad, Jose A.; Fischer, Gert; Heinz, Volker; Kiekebusch, Mario; Argomedo, Javier; Conzelmann, Ralf; Tordo, Sebastien; Donaldson, Robert; Soenke, Christian; Duhoux, Philippe; Fedrigo, Enrico; Delabre, Bernard; Jost, Andreas; Duchateau, Michel; Downing, Mark; Moreno, Javier R.; Dorn, Reinhold; Manescau, Antonio; Bonaccini Calia, Domenico; Quattri, Marco; Dupuy, Christophe; Guidolin, Ivan M.; Comin, Mauro; Guzman, Ronald; Buzzoni, Bernard; Quentin, Jutta; Lewis, Steffan; Jolley, Paul; Kraus, Maximilian; Pfrommer, Thomas; Biasi, Roberto; Gallieni, Daniele; Bechet, Clementine; Stuik, Remko

    2012-07-01

    The ESO Adaptive Optics Facility (AOF) consists in an evolution of one of the ESO VLT unit telescopes to a laser driven adaptive telescope with a deformable mirror in its optical train. The project has completed the procurement phase and several large structures have been delivered to Garching (Germany) and are being integrated (the AO modules GRAAL and GALACSI and the ASSIST test bench). The 4LGSF Laser (TOPTICA) has undergone final design review and a pre-production unit has been built and successfully tested. The Deformable Secondary Mirror is fully integrated and system tests have started with the first science grade thin shell mirror delivered by SAGEM. The integrated modules will be tested in stand-alone mode in 2012 and upon delivery of the DSM in late 2012, the system test phase will start. A commissioning strategy has been developed and will be updated before delivery to Paranal. A substantial effort has been spent in 2011-2012 to prepare the unit telescope to receive the AOF by preparing the mechanical interfaces and upgrading the cooling and electrical network. This preparation will also simplify the final installation of the facility on the telescope. A lot of attention is given to the system calibration, how to record and correct any misalignment and control the whole facility. A plan is being developed to efficiently operate the AOF after commissioning. This includes monitoring a relevant set of atmospheric parameters for scheduling and a Laser Traffic control system to assist the operator during the night and help/support the observing block preparation.

  20. TOPICAL REVIEW: Inverse problems in astronomical adaptive optics

    NASA Astrophysics Data System (ADS)

    Ellerbroek, B. L.; Vogel, C. R.

    2009-06-01

    Adaptive optics (AO) is a technology used in ground-based astronomy to correct for the wavefront aberrations and loss of image quality caused by atmospheric turbulence. Provided some difficult technical problems can be overcome, AO will enable future astronomers to achieve nearly diffraction-limited performance with the extremely large telescopes that are currently under development, thereby greatly improving spatial resolution, spectral resolution and observing efficiency which will be achieved. The goal of this topical review is to present to the inverse problems community a representative sample of these problems. In this review, we first present a tutorial overview of the mathematical models and techniques used in current AO systems. We then examine in detail the following topics: laser guidestar adaptive optics, multi-conjugate and multi-object adaptive optics, high-contrast imaging and deformable mirror modeling and parameter identification.

  1. Perceptual Adaptation to the Correction of Natural Astigmatism

    PubMed Central

    Vinas, Maria; Sawides, Lucie; de Gracia, Pablo; Marcos, Susana

    2012-01-01

    Background The visual system adjusts to changes in the environment, as well as to changes within the observer, adapting continuously to maintain a match between visual coding and visual environment. We evaluated whether the perception of oriented blur is biased by the native astigmatism, and studied the time course of the after-effects following spectacle correction of astigmatism in habitually non-corrected astigmats. Methods and Findings We tested potential shifts of the perceptual judgments of blur orientation in 21 subjects. The psychophysical test consisted on a single interval orientation identification task in order to measure the perceived isotropic point (astigmatism level for which the image did not appear oriented to the subject) from images artificially blurred with constant blur strength (B = 1.5 D), while modifying the orientation of the blur according to the axis of natural astigmatism of the subjects. Measurements were performed after neutral (gray field) adaptation on naked eyes under full correction of low and high order aberrations. Longitudinal measurements (up to 6 months) were performed in three groups of subjects: non-astigmats and corrected and uncorrected astigmats. Uncorrected astigmats were provided with proper astigmatic correction immediately after the first session. Non-astigmats did not show significant bias in their perceived neutral point, while in astigmatic subjects the perceived neutral point was significantly biased, typically towards their axis of natural astigmatism. Previously uncorrected astigmats shifted significantly their perceived neutral point towards more isotropic images shortly (2 hours) after astigmatic correction wear, and, once stabilized, remained constant after 6 months. The shift of the perceived neutral point after correction of astigmatism was highly correlated with the amount of natural astigmatism. Conclusions Non-corrected astigmats appear to be naturally adapted to their astigmatism, and astigmatic

  2. Adaptive optical interconnects: the ADDAPT project

    NASA Astrophysics Data System (ADS)

    Henker, Ronny; Pliva, Jan; Khafaji, Mahdi; Ellinger, Frank; Toifl, Thomas; Offrein, Bert; Cevrero, Alessandro; Oezkaya, Ilter; Seifried, Marc; Ledentsov, Nikolay; Kropp, Joerg-R.; Shchukin, Vitaly; Zoldak, Martin; Halmo, Leos; Turkiewicz, Jaroslaw; Meredith, Wyn; Eddie, Iain; Georgiades, Michael; Charalambides, Savvas; Duis, Jeroen; van Leeuwen, Pieter

    2015-09-01

    Existing optical networks are driven by dynamic user and application demands but operate statically at their maximum performance. Thus, optical links do not offer much adaptability and are not very energy-efficient. In this paper a novel approach of implementing performance and power adaptivity from system down to optical device, electrical circuit and transistor level is proposed. Depending on the actual data load, the number of activated link paths and individual device parameters like bandwidth, clock rate, modulation format and gain are adapted to enable lowering the components supply power. This enables flexible energy-efficient optical transmission links which pave the way for massive reductions of CO2 emission and operating costs in data center and high performance computing applications. Within the FP7 research project Adaptive Data and Power Aware Transceivers for Optical Communications (ADDAPT) dynamic high-speed energy-efficient transceiver subsystems are developed for short-range optical interconnects taking up new adaptive technologies and methods. The research of eight partners from industry, research and education spanning seven European countries includes the investigation of several adaptive control types and algorithms, the development of a full transceiver system, the design and fabrication of optical components and integrated circuits as well as the development of high-speed, low loss packaging solutions. This paper describes and discusses the idea of ADDAPT and provides an overview about the latest research results in this field.

  3. Curvature adaptive optics and low light imaging

    NASA Astrophysics Data System (ADS)

    Ftaclas, C.; Chun, M.; Kuhn, J.; Ritter, J.

    We review the basic approach of curvature adaptive optics (AO) and show how its many advantages arise. A curvature wave front sensor (WFS) measures exactly what a curvature deformable mirror (DM) generates. This leads to the computational and operational simplicity of a nearly diagonal control matrix. The DM automatically reconstructs the wave front based on WFS curvature measurements. Thus, there is no formal wave front reconstruction. This poses an interesting challenge to post-processing of AO images. Physical continuity of the DM and the reconstruction of phase from wave front curvature data assure that each actuated region of the DM corrects local phase, tip-tilt and focus. This gain in per-channel correction efficiency, combined with the need for only one pixel per channel detector reads in the WFS allows the use of photon counting detectors for wave front sensing. We note that the use of photon counting detectors implies penalty-free combination of correction channels either in the WFS or on the DM. This effectively decouples bright and faint source performance in that one no longer predicts the other. The application of curvature AO to the low light moving target detection problem, and explore the resulting challenges to components and control systems. Rapidly moving targets impose high-speed operation posing new requirements unique to curvature components. On the plus side, curvature wave front sensors, unlike their Shack-Hartmann counterparts, are tunable for optimum sensitivity to seeing and we are examining autonomous optimization of the WFS to respond to rapid changes in seeing.

  4. Effect of adaptive optical system on the capability of lidar detection in atmosphere

    NASA Astrophysics Data System (ADS)

    Tan, Xue-chun; Wu, Zhi-chao; Liang, Zhu

    2009-05-01

    Since atmosphere turbulence has an effect on laser propagation, it causes wavefront error usually , changes intensity and coherence of laser, disturbs detection of lidar. The adaptive optical system has broad application in the field of laser transmission because it can adjust characters of optical system ,detect and correct the wavefront error at the same time. Adaptive optics technology uses deformable mirrors to perform dynamic phase modulation and endow optical system the ability to decrease the influence of dynamic wavefront errors. In this paper ,a correction method of the micro-miniature adaptive optical system based on Micro Electromechanical System (MEMS) technology is proposed by analyzing the working theory of the adaptive optical system. An experimental system including deformable mirror based on Micro Electromechanical System (MEMS) technology is designed to correct a factitious wavefront error.The influence function and voltage-deflection curve are researched, and the voltage control matrix is educed. By using the voltage control , the static wavefront aberration is corrected. Several important capabilities of deformable mirrors is tested. With the voltage control matrix, the corrected capability of the adaptive optical system is achieved successfully .The experimental results show that the adaptive optical system can preferably correct the wavefront error, that has small volume and steady capability, and greatly improve the capability of lidar detection.

  5. Enhancing image quality in cleared tissue with adaptive optics

    NASA Astrophysics Data System (ADS)

    Reinig, Marc R.; Novak, Samuel W.; Tao, Xiaodong; Bentolila, Laurent A.; Roberts, Dustin G.; MacKenzie-Graham, Allan; Godshalk, Sirie E.; Raven, Mary A.; Knowles, David W.; Kubby, Joel

    2016-12-01

    Our ability to see fine detail at depth in tissues is limited by scattering and other refractive characteristics of the tissue. For fixed tissue, we can limit scattering with a variety of clearing protocols. This allows us to see deeper but not necessarily clearer. Refractive aberrations caused by the bulk index of refraction of the tissue and its variations continue to limit our ability to see fine detail. Refractive aberrations are made up of spherical and other Zernike modes, which can be significant at depth. Spherical aberration that is common across the imaging field can be corrected using an objective correcting collar, although this can require manual intervention. Other aberrations may vary across the imaging field and can only be effectively corrected using adaptive optics. Adaptive optics can also correct other aberrations simultaneously with the spherical aberration, eliminating manual intervention and speeding imaging. We use an adaptive optics two-photon microscope to examine the impact of the spherical and higher order aberrations on imaging and contrast the effect of compensating only for spherical aberration against compensating for the first 22 Zernike aberrations in two tissue types. Increase in image intensity by 1.6× and reduction of root mean square error by 3× are demonstrated.

  6. Retinal imaging system with adaptive optics enhanced with pupil tracking

    NASA Astrophysics Data System (ADS)

    Sahin, Betul; Lamory, Barbara; Levecq, Xavier; Vabre, Laurent; Dainty, Chris

    2011-03-01

    A compact retinal camera with adaptive optics which was designed for clinical practice was used to test a new adaptive optics control algorithm to correct for the angular ray deviations of a model eye. The new control algorithm is based on pupil movements rather than the measurement of the slopes of the wavefront with an optoelectronic sensor. The method for the control algorithm was based on the hypothesis that majority of the changes of the aberrations of the eye are due to head and eye movements and it is possible to correct for the aberrations of the eye by shifting the paraxial correction according to the new position of the pupil. Since the fixational eye movements are very small, the eye movements are assumed to be translational rather than rotational. Using the new control algorithm it was possible to simulate the aberrations of the moving model eye based on pupil tracking. The RMS of the residual wavefront error of the simulation had a magnitude similar to the RMS of the residual wavefront error of the adaptive optics correction based on optoelectronic sensor for angular ray deviations. If our hypothesis is true and other factors such as the tear film or the crystalline lens fluctuations do not cause changes in the aberrations of the eye as much as motion does, the method is expected to work in vivo as it did for a model eye which had no intrinsic factors that cause aberration changes.

  7. Enhancing image quality in cleared tissue with adaptive optics.

    PubMed

    Reinig, Marc R; Novak, Samuel W; Tao, Xiaodong; Bentolila, Laurent A; Roberts, Dustin G; MacKenzie-Graham, Allan; Godshalk, Sirie E; Raven, Mary A; Knowles, David W; Kubby, Joel

    2016-12-01

    Our ability to see fine detail at depth in tissues is limited by scattering and other refractive characteristics of the tissue. For fixed tissue, we can limit scattering with a variety of clearing protocols. This allows us to see deeper but not necessarily clearer. Refractive aberrations caused by the bulk index of refraction of the tissue and its variations continue to limit our ability to see fine detail. Refractive aberrations are made up of spherical and other Zernike modes, which can be significant at depth. Spherical aberration that is common across the imaging field can be corrected using an objective correcting collar, although this can require manual intervention. Other aberrations may vary across the imaging field and can only be effectively corrected using adaptive optics. Adaptive optics can also correct other aberrations simultaneously with the spherical aberration, eliminating manual intervention and speeding imaging. We use an adaptive optics two-photon microscope to examine the impact of the spherical and higher order aberrations on imaging and contrast the effect of compensating only for spherical aberration against compensating for the first 22 Zernike aberrations in two tissue types. Increase in image intensity by 1.6× and reduction of root mean square error by 3× are demonstrated.

  8. Adaptive Optics Technology for High-Resolution Retinal Imaging

    PubMed Central

    Lombardo, Marco; Serrao, Sebastiano; Devaney, Nicholas; Parravano, Mariacristina; Lombardo, Giuseppe

    2013-01-01

    Adaptive optics (AO) is a technology used to improve the performance of optical systems by reducing the effects of optical aberrations. The direct visualization of the photoreceptor cells, capillaries and nerve fiber bundles represents the major benefit of adding AO to retinal imaging. Adaptive optics is opening a new frontier for clinical research in ophthalmology, providing new information on the early pathological changes of the retinal microstructures in various retinal diseases. We have reviewed AO technology for retinal imaging, providing information on the core components of an AO retinal camera. The most commonly used wavefront sensing and correcting elements are discussed. Furthermore, we discuss current applications of AO imaging to a population of healthy adults and to the most frequent causes of blindness, including diabetic retinopathy, age-related macular degeneration and glaucoma. We conclude our work with a discussion on future clinical prospects for AO retinal imaging. PMID:23271600

  9. Adaptive optics technology for high-resolution retinal imaging.

    PubMed

    Lombardo, Marco; Serrao, Sebastiano; Devaney, Nicholas; Parravano, Mariacristina; Lombardo, Giuseppe

    2012-12-27

    Adaptive optics (AO) is a technology used to improve the performance of optical systems by reducing the effects of optical aberrations. The direct visualization of the photoreceptor cells, capillaries and nerve fiber bundles represents the major benefit of adding AO to retinal imaging. Adaptive optics is opening a new frontier for clinical research in ophthalmology, providing new information on the early pathological changes of the retinal microstructures in various retinal diseases. We have reviewed AO technology for retinal imaging, providing information on the core components of an AO retinal camera. The most commonly used wavefront sensing and correcting elements are discussed. Furthermore, we discuss current applications of AO imaging to a population of healthy adults and to the most frequent causes of blindness, including diabetic retinopathy, age-related macular degeneration and glaucoma. We conclude our work with a discussion on future clinical prospects for AO retinal imaging.

  10. Low-Order Adaptive Optics for Free-Space Optoelectronic Interconnects

    NASA Astrophysics Data System (ADS)

    Gourlay, James; Yang, Tsung-Yi; Ishikawa, Masatoshi; Walker, Andrew C.

    2000-02-01

    The concept of adaptive optics for improving the cost performance of free-space optoelectronic interconnects is discussed. Adaptive optics as a design option for optical interconnect systems is presented and discussed. A practical demonstrator that performs low-order correction was built and tested. Slowly varying misalignments, including thermal effects, were compensated for in a 622-Mbit s free-space optical data link.

  11. SPECKLE NOISE SUBTRACTION AND SUPPRESSION WITH ADAPTIVE OPTICS CORONAGRAPHIC IMAGING

    SciTech Connect

    Ren Deqing; Dou Jiangpei; Zhang Xi; Zhu Yongtian

    2012-07-10

    Future ground-based direct imaging of exoplanets depends critically on high-contrast coronagraph and wave-front manipulation. A coronagraph is designed to remove most of the unaberrated starlight. Because of the wave-front error, which is inherit from the atmospheric turbulence from ground observations, a coronagraph cannot deliver its theoretical performance, and speckle noise will limit the high-contrast imaging performance. Recently, extreme adaptive optics, which can deliver an extremely high Strehl ratio, is being developed for such a challenging mission. In this publication, we show that barely taking a long-exposure image does not provide much gain for coronagraphic imaging with adaptive optics. We further discuss a speckle subtraction and suppression technique that fully takes advantage of the high contrast provided by the coronagraph, as well as the wave front corrected by the adaptive optics. This technique works well for coronagraphic imaging with conventional adaptive optics with a moderate Strehl ratio, as well as for extreme adaptive optics with a high Strehl ratio. We show how to substrate and suppress speckle noise efficiently up to the third order, which is critical for future ground-based high-contrast imaging. Numerical simulations are conducted to fully demonstrate this technique.

  12. An Algebraic Model of Adaptive Optics for Continuous-Wave Thermal Blooming.

    DTIC Science & Technology

    1979-01-01

    blooming. The aberrations modeled generally include those applied by an adaptive optics system to compensate the naturally occurring ones. For the...results when applied to thermal blooming. However, the analysis suggests novel remedies that will tend to optimize the corrections made, thus better realizing the full potential of adaptive optics . (Author)

  13. Small scale adaptive optics experiment systems engineering

    NASA Technical Reports Server (NTRS)

    Boykin, William H.

    1993-01-01

    Assessment of the current technology relating to the laser power beaming system which in full scale is called the Beam Transmission Optical System (BTOS). Evaluation of system integration efforts are being conducted by the various government agencies and industry. Concepts are being developed for prototypes of adaptive optics for a BTOS.

  14. Optics Corrections with LOCO in the Fermilab Booster

    SciTech Connect

    Tan, Cheng-Yang; Prost, Lionel; Seiya, Kiyomi; Triplett, A. Kent

    2016-06-01

    The optics of the Fermilab Booster has been corrected with LOCO (Linear Optics from Closed Orbits). However, the first corrections did not show any improvement in capture efficiency at injection. A detailed analysis of the results showed that the problem lay in the MADX optics file. Both the quadrupole and chromatic strengths were originally set as constants independent of beam energy. However, careful comparison between the measured and calculated tunes and chromatcity show that these strengths are energy dependent. After the MADX model was modified with these new energy dependent strengths, the LOCO corrected lattice has been applied to Booster. The effect of the corrected lattice will be discussed here.

  15. Enhanced link availability for free space optical time-frequency transfer using adaptive optic terminals

    NASA Astrophysics Data System (ADS)

    Petrillo, Keith G.; Dennis, Michael L.; Juarez, Juan C.; Souza, Katherine T.; Baumann, Esther; Bergeron, Hugo; Coddington, Ian; Deschenes, Jean-Daniel; Giorgetta, Fabrizio R.; Newbury, Nathan R.; Sinclair, Laura C.; Swann, William C.

    2016-05-01

    Optical time and frequency transfer offers extremely high precision wireless synchronization across multiple platforms for untethered distributed systems. While large apertures provide antenna gain for wireless systems which leads to robust link budgets and operation over increased distance, turbulence disrupts the beam and limits the full realization of the antenna gain. Adaptive optics can correct for phase distortions due to turbulence which potentially increases the total gain of the aperture to that for diffraction-limited operation. Here, we explore the use of adaptive optics terminals for free-space time and frequency transfer. We find that the requirement of reciprocity in a two-way time and frequency transfer link is maintained during the phase compensation of adaptive optics, and that the enhanced link budget due to aperture gain allows for potential system operation over ranges of at least tens of kilometers.

  16. Toward Adaptive Optic Mitigation of Aero-Optic Effects

    DTIC Science & Technology

    2009-02-27

    photography .[43] Tyson developed expressions for the "gain" of a deformable mirror removing Zernike modes within an aperture. [35] The following...R.K., Principles of Adaptive Optics, Academic Press, Inc., San Diego, 1991. 9. Tyson, R.K., The status of astronomical adaptive optics systems...pin-hole photography The London, Edinburg and Dublin philosophical magazine and journal of science 31 87-99 44. Siegenthaler, J., Guidelines for

  17. Computational adaptive optics for broadband optical interferometric tomography of biological tissue.

    PubMed

    Adie, Steven G; Graf, Benedikt W; Ahmad, Adeel; Carney, P Scott; Boppart, Stephen A

    2012-05-08

    Aberrations in optical microscopy reduce image resolution and contrast, and can limit imaging depth when focusing into biological samples. Static correction of aberrations may be achieved through appropriate lens design, but this approach does not offer the flexibility of simultaneously correcting aberrations for all imaging depths, nor the adaptability to correct for sample-specific aberrations for high-quality tomographic optical imaging. Incorporation of adaptive optics (AO) methods have demonstrated considerable improvement in optical image contrast and resolution in noninterferometric microscopy techniques, as well as in optical coherence tomography. Here we present a method to correct aberrations in a tomogram rather than the beam of a broadband optical interferometry system. Based on Fourier optics principles, we correct aberrations of a virtual pupil using Zernike polynomials. When used in conjunction with the computed imaging method interferometric synthetic aperture microscopy, this computational AO enables object reconstruction (within the single scattering limit) with ideal focal-plane resolution at all depths. Tomographic reconstructions of tissue phantoms containing subresolution titanium-dioxide particles and of ex vivo rat lung tissue demonstrate aberration correction in datasets acquired with a highly astigmatic illumination beam. These results also demonstrate that imaging with an aberrated astigmatic beam provides the advantage of a more uniform depth-dependent signal compared to imaging with a standard gaussian beam. With further work, computational AO could enable the replacement of complicated and expensive optical hardware components with algorithms implemented on a standard desktop computer, making high-resolution 3D interferometric tomography accessible to a wider group of users and nonspecialists.

  18. Contrast-based sensorless adaptive optics for retinal imaging.

    PubMed

    Zhou, Xiaolin; Bedggood, Phillip; Bui, Bang; Nguyen, Christine T O; He, Zheng; Metha, Andrew

    2015-09-01

    Conventional adaptive optics ophthalmoscopes use wavefront sensing methods to characterize ocular aberrations for real-time correction. However, there are important situations in which the wavefront sensing step is susceptible to difficulties that affect the accuracy of the correction. To circumvent these, wavefront sensorless adaptive optics (or non-wavefront sensing AO; NS-AO) imaging has recently been developed and has been applied to point-scanning based retinal imaging modalities. In this study we show, for the first time, contrast-based NS-AO ophthalmoscopy for full-frame in vivo imaging of human and animal eyes. We suggest a robust image quality metric that could be used for any imaging modality, and test its performance against other metrics using (physical) model eyes.

  19. Atmospheric dispersion in very large telescopes with adaptive optics

    NASA Astrophysics Data System (ADS)

    Wynne, Charles G.

    1997-02-01

    Current work on correcting the effects of atmospheric turbulence on telescope imagery, so as to approach the diffraction limit, requires attention to related effects to exploit it fully. In particular adaptive optics, which acts by means of a flexible mirror, is therefore colour-blind, and requires a hitherto unknown level of correction of atmospheric dispersion if it is to be used more than a few degrees from zenith. Adaptive optics can only operate over a very limited field angle and wavelength range. Fine fast auto-guiding can give substantially improved imagery, over wider field angles and wavelength range, requiring higher performance dispersion correctors than heretofore. This note describes a dispersion corrector to meet both these needs.

  20. Contrast-based sensorless adaptive optics for retinal imaging

    PubMed Central

    Zhou, Xiaolin; Bedggood, Phillip; Bui, Bang; Nguyen, Christine T.O.; He, Zheng; Metha, Andrew

    2015-01-01

    Conventional adaptive optics ophthalmoscopes use wavefront sensing methods to characterize ocular aberrations for real-time correction. However, there are important situations in which the wavefront sensing step is susceptible to difficulties that affect the accuracy of the correction. To circumvent these, wavefront sensorless adaptive optics (or non-wavefront sensing AO; NS-AO) imaging has recently been developed and has been applied to point-scanning based retinal imaging modalities. In this study we show, for the first time, contrast-based NS-AO ophthalmoscopy for full-frame in vivo imaging of human and animal eyes. We suggest a robust image quality metric that could be used for any imaging modality, and test its performance against other metrics using (physical) model eyes. PMID:26417525

  1. Pulse front adaptive optics in multiphoton microscopy

    NASA Astrophysics Data System (ADS)

    Sun, B.; Salter, P. S.; Booth, M. J.

    2016-03-01

    The accurate focusing of ultrashort laser pulses is extremely important in multiphoton microscopy. Using adaptive optics to manipulate the incident ultrafast beam in either the spectral or spatial domain can introduce significant benefits when imaging. Here we introduce pulse front adaptive optics: manipulating an ultrashort pulse in both the spatial and temporal domains. A deformable mirror and a spatial light modulator are operated in concert to modify contours of constant intensity in space and time within an ultrashort pulse. Through adaptive control of the pulse front, we demonstrate an enhancement in the measured fluorescence from a two photon microscope.

  2. Optical Profilometers Using Adaptive Signal Processing

    NASA Technical Reports Server (NTRS)

    Hall, Gregory A.; Youngquist, Robert; Mikhael, Wasfy

    2006-01-01

    A method of adaptive signal processing has been proposed as the basis of a new generation of interferometric optical profilometers for measuring surfaces. The proposed profilometers would be portable, hand-held units. Sizes could be thus reduced because the adaptive-signal-processing method would make it possible to substitute lower-power coherent light sources (e.g., laser diodes) for white light sources and would eliminate the need for most of the optical components of current white-light profilometers. The adaptive-signal-processing method would make it possible to attain scanning ranges of the order of decimeters in the proposed profilometers.

  3. Isoplanatism in a multiconjugate adaptive optics system.

    PubMed

    Tokovinin, A; Le Louarn, M; Sarazin, M

    2000-10-01

    Turbulence correction in a large field of view by use of an adaptive optics imaging system with several deformable mirrors (DM's) conjugated to various heights is considered. The residual phase variance is computed for an optimized linear algorithm in which a correction of each turbulent layer is achieved by applying a combination of suitably smoothed and scaled input phase screens to all DM's. Finite turbulence outer scale and finite spatial resolution of the DM's are taken into account. A general expression for the isoplanatic angle thetaM of a system with M mirrors is derived in the limiting case of infinitely large apertures and Kolmogorov turbulence. Like Fried's isoplanatic angle theta0,thetaM is a function only of the turbulence vertical profile, is scalable with wavelength, and is independent of the telescope diameter. Use of angle thetaM permits the gain in the field of view due to the increased number of DM's to be quantified and their optimal conjugate heights to be found. Calculations with real turbulence profiles show that with three DM's a gain of 7-10x is possible, giving the typical and best isoplanatic field-of-view radii of 16 and 30 arcseconds, respectively, at lambda = 0.5 microm. It is shown that in the actual systems the isoplanatic field will be somewhat larger than thetaM owing to the combined effects of finite aperture diameter, finite outer scale, and optimized wave-front spatial filtering. However, this additional gain is not dramatic; it is less than 1.5x for large-aperture telescopes.

  4. Optimization-based wavefront sensorless adaptive optics for multiphoton microscopy.

    PubMed

    Antonello, Jacopo; van Werkhoven, Tim; Verhaegen, Michel; Truong, Hoa H; Keller, Christoph U; Gerritsen, Hans C

    2014-06-01

    Optical aberrations have detrimental effects in multiphoton microscopy. These effects can be curtailed by implementing model-based wavefront sensorless adaptive optics, which only requires the addition of a wavefront shaping device, such as a deformable mirror (DM) to an existing microscope. The aberration correction is achieved by maximizing a suitable image quality metric. We implement a model-based aberration correction algorithm in a second-harmonic microscope. The tip, tilt, and defocus aberrations are removed from the basis functions used for the control of the DM, as these aberrations induce distortions in the acquired images. We compute the parameters of a quadratic polynomial that is used to model the image quality metric directly from experimental input-output measurements. Finally, we apply the aberration correction by maximizing the image quality metric using the least-squares estimate of the unknown aberration.

  5. Holographic fluorescence microscopy with incoherent digital holographic adaptive optics.

    PubMed

    Jang, Changwon; Kim, Jonghyun; Clark, David C; Lee, Seungjae; Lee, Byoungho; Kim, Myung K

    2015-01-01

    Introduction of adaptive optics technology into astronomy and ophthalmology has made great contributions in these fields, allowing one to recover images blurred by atmospheric turbulence or aberrations of the eye. Similar adaptive optics improvement in microscopic imaging is also of interest to researchers using various techniques. Current technology of adaptive optics typically contains three key elements: a wavefront sensor, wavefront corrector, and controller. These hardware elements tend to be bulky, expensive, and limited in resolution, involving, for example, lenslet arrays for sensing or multiactuator deformable mirrors for correcting. We have previously introduced an alternate approach based on unique capabilities of digital holography, namely direct access to the phase profile of an optical field and the ability to numerically manipulate the phase profile. We have also demonstrated that direct access and compensation of the phase profile are possible not only with conventional coherent digital holography, but also with a new type of digital holography using incoherent light: selfinterference incoherent digital holography (SIDH). The SIDH generates a complex—i.e., amplitude plus phase—hologram from one or several interferograms acquired with incoherent light, such as LEDs, lamps, sunlight, or fluorescence. The complex point spread function can be measured using guide star illumination and it allows deterministic deconvolution of the full-field image. We present experimental demonstration of aberration compensation in holographic fluorescence microscopy using SIDH. Adaptive optics by SIDH provides new tools for improved cellular fluorescence microscopy through intact tissue layers or other types of aberrant media.

  6. Holographic fluorescence microscopy with incoherent digital holographic adaptive optics

    NASA Astrophysics Data System (ADS)

    Jang, Changwon; Kim, Jonghyun; Clark, David C.; Lee, Seungjae; Lee, Byoungho; Kim, Myung K.

    2015-11-01

    Introduction of adaptive optics technology into astronomy and ophthalmology has made great contributions in these fields, allowing one to recover images blurred by atmospheric turbulence or aberrations of the eye. Similar adaptive optics improvement in microscopic imaging is also of interest to researchers using various techniques. Current technology of adaptive optics typically contains three key elements: a wavefront sensor, wavefront corrector, and controller. These hardware elements tend to be bulky, expensive, and limited in resolution, involving, for example, lenslet arrays for sensing or multiactuator deformable mirrors for correcting. We have previously introduced an alternate approach based on unique capabilities of digital holography, namely direct access to the phase profile of an optical field and the ability to numerically manipulate the phase profile. We have also demonstrated that direct access and compensation of the phase profile are possible not only with conventional coherent digital holography, but also with a new type of digital holography using incoherent light: self­interference incoherent digital holography (SIDH). The SIDH generates a complex-i.e., amplitude plus phase-hologram from one or several interferograms acquired with incoherent light, such as LEDs, lamps, sunlight, or fluorescence. The complex point spread function can be measured using guide star illumination and it allows deterministic deconvolution of the full-field image. We present experimental demonstration of aberration compensation in holographic fluorescence microscopy using SIDH. Adaptive optics by SIDH provides new tools for improved cellular fluorescence microscopy through intact tissue layers or other types of aberrant media.

  7. The ERIS adaptive optics system

    NASA Astrophysics Data System (ADS)

    Riccardi, A.; Esposito, S.; Agapito, G.; Antichi, J.; Biliotti, V.; Blain, C.; Briguglio, R.; Busoni, L.; Carbonaro, L.; Di Rico, G.; Giordano, C.; Pinna, E.; Puglisi, A.; Spanò, P.; Xompero, M.; Baruffolo, A.; Kasper, M.; Egner, S.; Suàrez Valles, M.; Soenke, C.; Downing, M.; Reyes, J.

    2016-07-01

    ERIS is the new AO instrument for VLT-UT4 led by a Consortium of Max-Planck Institut fuer Extraterrestrische Physik, UK-ATC, ETH-Zurich, ESO and INAF. The ERIS AO system provides NGS mode to deliver high contrast correction and LGS mode to extend high Strehl performance to large sky coverage. The AO module includes NGS and LGS wavefront sensors and, with VLT-AOF Deformable Secondary Mirror and Laser Facility, will provide AO correction to the high resolution imager NIX (1-5um) and the IFU spectrograph SPIFFIER (1-2.5um). In this paper we present the preliminary design of the ERIS AO system and the estimated correction performance.

  8. Anisoplanatism in adaptive optics systems due to pupil aberrations

    SciTech Connect

    Bauman, B

    2005-08-01

    Adaptive optics systems typically include an optical relay that simultaneously images the science field to be corrected and also a set of pupil planes conjugate to the deformable mirror of the system. Often, in the optical spaces where DM's are placed, the pupils are aberrated, leading to a displacement and/or distortion of the pupil that varies according to field position--producing a type of anisoplanatism, i.e., a degradation of the AO correction with field angle. The pupil aberration phenomenon is described and expressed in terms of Seidel aberrations. An expression for anisoplanatism as a function of pupil distortion is derived, an example of an off-axis parabola is given, and a convenient method for controlling pupil-aberration-generated anisoplanatism is proposed.

  9. Beam shaping for laser-based adaptive optics in astronomy.

    PubMed

    Béchet, Clémentine; Guesalaga, Andrés; Neichel, Benoit; Fesquet, Vincent; González-Núñez, Héctor; Zúñiga, Sebastián; Escarate, Pedro; Guzman, Dani

    2014-06-02

    The availability and performance of laser-based adaptive optics (AO) systems are strongly dependent on the power and quality of the laser beam before being projected to the sky. Frequent and time-consuming alignment procedures are usually required in the laser systems with free-space optics to optimize the beam. Despite these procedures, significant distortions of the laser beam have been observed during the first two years of operation of the Gemini South multi-conjugate adaptive optics system (GeMS). A beam shaping concept with two deformable mirrors is investigated in order to provide automated optimization of the laser quality for astronomical AO. This study aims at demonstrating the correction of quasi-static aberrations of the laser, in both amplitude and phase, testing a prototype of this two-deformable mirror concept on GeMS. The paper presents the results of the preparatory study before the experimental phase. An algorithm to control amplitude and phase correction, based on phase retrieval techniques, is presented with a novel unwrapping method. Its performance is assessed via numerical simulations, using aberrations measured at GeMS as reference. The results predict effective amplitude and phase correction of the laser distortions with about 120 actuators per mirror and a separation of 1.4 m between the mirrors. The spot size is estimated to be reduced by up to 15% thanks to the correction. In terms of AO noise level, this has the same benefit as increasing the photon flux by 40%.

  10. ARGOS - the Laser Star Adaptive Optics for LBT

    NASA Astrophysics Data System (ADS)

    Rabien, S.; Barl, L.; Beckmann, U.; Blümchen, T.; Bonaglia, M.; Borelli, J. L.; Brynnel, J.; Busoni, L.; Carbonaro, L.; Conot, C.; Davies, R.; Deysenroth, M.; Durney, O.; Elberich, M.; Esposito, S.; Gasho, V.; Gässler, W.; Gemperlein, H.; Genzel, R.; Green, R.; Haug, M.; Lloyd Hart, M.; Hubbard, P.; Kanneganti, S.; Kulas, M.; Noenickx, J.; Peter, D.; Quirrenbach, A.; Rademacher, M.; Rix, H. W.; Salinari, P.; Schwab, C.; Storm, J.; Strüder, L.; Thiel, M.; Weigelt, G.; Ziegleder, J.; de Xivry, G. Orban

    2011-09-01

    We will present the design and status of ARGOS - the Laser Guide Star adaptive optics facility for the Large Binocular Telescope. By projecting a constellation of multiple laser guide stars above each of the 8.4m primary mirrors of the LBT, ARGOS in its ground layer mode will enable a wide field adaptive optics correction for multi object spectroscopy. ARGOS implements high power pulsed green lasers and makes use of Rayleigh scattering for the guide star creation. The geometric relations of this setup in guide star height vs. primary diameter are quite comparable to an ELT with sodium guide stars. The use of LBT's adaptive secondary mirror, gated wavefront sensors, a prime focus calibration system and the laser constellation shows several aspects that may be used as pathfinding technology for the planned ELTs. In already planned upgrade steps with a hybrid Sodium-Rayleigh combination ARGOS will enable MCAO and MOAO implementations at LBT allowing unique astronomical observations.

  11. Adaptive optical two-photon microscopy using autofluorescent guide stars.

    PubMed

    Tao, Xiaodong; Norton, Andrew; Kissel, Matthew; Azucena, Oscar; Kubby, Joel

    2013-12-01

    We demonstrate a fast, direct wavefront-sensing method for dynamic in vivo adaptive optical two-photon microscopy. By using a Shack-Hartmann wavefront sensor and open-loop control, the system provides high-speed wavefront measurement and correction. To measure the wavefront in the middle of a Drosophila embryo at early stages, autofluorescence from endogenous fluorophores in the yolk were used as reference guide stars. The method was tested through live imaging of a Drosophila embryo. The aberration in the middle of the embryo was measured directly for the first time. After correction, the contrast and signal intensity of the structure in the middle of the embryo was improved.

  12. Adaptive optics optical coherence tomography for in vivo mouse retinal imaging

    PubMed Central

    Zawadzki, Robert J.; Sarunic, Marinko V.

    2013-01-01

    Abstract. Small animal models of retinal diseases are important to vision research, and noninvasive high resolution in vivo rodent retinal imaging is becoming an increasingly important tool used in this field. We present a custom Fourier domain optical coherence tomography (FD-OCT) instrument for high resolution imaging of mouse retina. In order to overcome aberrations in the mouse eye, we incorporated a commercial adaptive optics system into the sample arm of the refractive FD-OCT system. Additionally, a commercially available refraction canceling lens was used to reduce lower order aberrations and specular back-reflection from the cornea. Performance of the adaptive optics (AO) system for correcting residual wavefront aberration in the mice eyes is presented. Results of AO FD-OCT images of mouse retina acquired in vivo with and without AO correction are shown as well. PMID:23644903

  13. Modeling for deformable mirrors and the adaptive optics optimization program

    SciTech Connect

    Henesian, M.A.; Haney, S.W.; Trenholme, J.B.; Thomas, M.

    1997-03-18

    We discuss aspects of adaptive optics optimization for large fusion laser systems such as the 192-arm National Ignition Facility (NIF) at LLNL. By way of example, we considered the discrete actuator deformable mirror and Hartmann sensor system used on the Beamlet laser. Beamlet is a single-aperture prototype of the 11-0-5 slab amplifier design for NIF, and so we expect similar optical distortion levels and deformable mirror correction requirements. We are now in the process of developing a numerically efficient object oriented C++ language implementation of our adaptive optics and wavefront sensor code, but this code is not yet operational. Results are based instead on the prototype algorithms, coded-up in an interpreted array processing computer language.

  14. Retinal imaging with a combined adaptive optics/optical coherence tomography and adaptive optics/scanning laser ophthalmoscopy system

    NASA Astrophysics Data System (ADS)

    Zawadzki, Robert J.; Jones, Steven M.; Pilli, Suman; Kim, Dae Yu; Olivier, Scot S.; Werner, John S.

    2010-02-01

    We describe results of retinal imaging with a novel instrument that combines adaptive optics - Fourier-domain optical coherence tomography (AO-OCT) with an adaptive optics scanning laser ophthalmoscope (AO-SLO). One of the benefits of combining Fd-OCT with SLO includes automatic co-registration between the two imaging modalities and the potential for correcting lateral and transversal eye motion resulting in motion artifact-free volumetric retinal imaging. Additionally this allows for direct comparison between retinal structures that can be imaged with both modalities (e.g., photoreceptor mosaics or microvasculature maps). This dual imaging modality could provide insight into some retinal properties that could not be accessed by a single imaging system. Additionally, extension of OCT and SLO beyond structural imaging may open new avenues for diagnostics and testing in ophthalmology. In particular, non-invasive vasculature mapping with these modalities holds promise of replacing fluorescein angiography in vascular identification. Several new improvements of our system are described, including results of testing a novel 97-actuator deformable mirror and AO-SLO light intensity modulation.

  15. High-resolution retinal imaging with micro adaptive optics system.

    PubMed

    Niu, Saisai; Shen, Jianxin; Liang, Chun; Zhang, Yunhai; Li, Bangming

    2011-08-01

    Based on the dynamic characteristics of human eye aberration, a microadaptive optics retina imaging system set is established for real-time wavefront measurement and correction. This paper analyzes the working principles of a 127-unit Hartmann-Shack wavefront sensor and a 37-channel micromachine membrane deformable mirror adopted in the system. The proposed system achieves wavefront reconstruction through the adaptive centroid detection method and the mode reconstruction algorithm of Zernike polynomials, so that human eye aberration can be measured accurately. Meanwhile, according to the adaptive optics aberration correction control model, a closed-loop iterative aberration correction algorithm based on Smith control is presented to realize efficient and real-time correction of human eye aberration with different characteristics, and characteristics of the time domain of the system are also optimized. According to the experiment results tested on a USAF 1951 standard resolution target and a living human retina (subject ZHY), the resolution of the system can reach 3.6 LP/mm, and the human eye wavefront aberration of 0.728λ (λ=785 nm) can be corrected to 0.081λ in root mean square (RMS) so as to achieve the diffraction limit (Strehl ratio is 0.866), then high-resolution retina images are obtained.

  16. Adaptive optics confocal microscopy using direct wavefront sensing.

    PubMed

    Tao, Xiaodong; Fernandez, Bautista; Azucena, Oscar; Fu, Min; Garcia, Denise; Zuo, Yi; Chen, Diana C; Kubby, Joel

    2011-04-01

    Optical aberrations due to the inhomogeneous refractive index of tissue degrade the resolution and brightness of images in deep-tissue imaging. We introduce a confocal fluorescence microscope with adaptive optics, which can correct aberrations based on direct wavefront measurements using a Shack-Hartmann wavefront sensor with a fluorescent bead used as a point source reference beacon. The results show a 4.3× improvement in the Strehl ratio and a 240% improvement in the signal intensity for fixed mouse tissues at depths of up to 100 μm.

  17. Adaptive optical imaging through complex living plant cells

    NASA Astrophysics Data System (ADS)

    Tamada, Yosuke; Hayano, Yutaka; Murata, Takashi; Oya, Shin; Honma, Yusuke; Kanazawa, Minoru; Miura, Noriaki; Hasebe, Mitsuyasu; Kamei, Yasuhiro; Hattori, Masayuki

    2017-04-01

    Live-cell imaging using fluorescent molecules is now essential for biological researches. However, images of living cells are accompanied with blur, which becomes stronger according to the depth inside the cells and tissues. This image blur is caused by the disturbance on light that goes through optically inhomogeneous living cells and tissues. Here, we show adaptive optics (AO) imaging of living plant cells. AO has been developed in astronomy to correct the disturbance on light caused by atmospheric turbulence. We developed AO microscope effective for the observation of living plant cells with strong disturbance by chloroplasts, and successfully obtained clear images inside plant cells.

  18. Computational adaptive optics for broadband optical interferometric tomography of biological tissue

    NASA Astrophysics Data System (ADS)

    Boppart, Stephen A.

    2015-03-01

    High-resolution real-time tomography of biological tissues is important for many areas of biological investigations and medical applications. Cellular level optical tomography, however, has been challenging because of the compromise between transverse imaging resolution and depth-of-field, the system and sample aberrations that may be present, and the low imaging sensitivity deep in scattering tissues. The use of computed optical imaging techniques has the potential to address several of these long-standing limitations and challenges. Two related techniques are interferometric synthetic aperture microscopy (ISAM) and computational adaptive optics (CAO). Through three-dimensional Fourierdomain resampling, in combination with high-speed OCT, ISAM can be used to achieve high-resolution in vivo tomography with enhanced depth sensitivity over a depth-of-field extended by more than an order-of-magnitude, in realtime. Subsequently, aberration correction with CAO can be performed in a tomogram, rather than to the optical beam of a broadband optical interferometry system. Based on principles of Fourier optics, aberration correction with CAO is performed on a virtual pupil using Zernike polynomials, offering the potential to augment or even replace the more complicated and expensive adaptive optics hardware with algorithms implemented on a standard desktop computer. Interferometric tomographic reconstructions are characterized with tissue phantoms containing sub-resolution scattering particles, and in both ex vivo and in vivo biological tissue. This review will collectively establish the foundation for high-speed volumetric cellular-level optical interferometric tomography in living tissues.

  19. Adaptive bad pixel correction algorithm for IRFPA based on PCNN

    NASA Astrophysics Data System (ADS)

    Leng, Hanbing; Zhou, Zuofeng; Cao, Jianzhong; Yi, Bo; Yan, Aqi; Zhang, Jian

    2013-10-01

    Bad pixels and response non-uniformity are the primary obstacles when IRFPA is used in different thermal imaging systems. The bad pixels of IRFPA include fixed bad pixels and random bad pixels. The former is caused by material or manufacture defect and their positions are always fixed, the latter is caused by temperature drift and their positions are always changing. Traditional radiometric calibration-based bad pixel detection and compensation algorithm is only valid to the fixed bad pixels. Scene-based bad pixel correction algorithm is the effective way to eliminate these two kinds of bad pixels. Currently, the most used scene-based bad pixel correction algorithm is based on adaptive median filter (AMF). In this algorithm, bad pixels are regarded as image noise and then be replaced by filtered value. However, missed correction and false correction often happens when AMF is used to handle complex infrared scenes. To solve this problem, a new adaptive bad pixel correction algorithm based on pulse coupled neural networks (PCNN) is proposed. Potential bad pixels are detected by PCNN in the first step, then image sequences are used periodically to confirm the real bad pixels and exclude the false one, finally bad pixels are replaced by the filtered result. With the real infrared images obtained from a camera, the experiment results show the effectiveness of the proposed algorithm.

  20. High-resolution retinal imaging using adaptive optics and Fourier-domain optical coherence tomography

    DOEpatents

    Olivier, Scot S.; Werner, John S.; Zawadzki, Robert J.; Laut, Sophie P.; Jones, Steven M.

    2010-09-07

    This invention permits retinal images to be acquired at high speed and with unprecedented resolution in three dimensions (4.times.4.times.6 .mu.m). The instrument achieves high lateral resolution by using adaptive optics to correct optical aberrations of the human eye in real time. High axial resolution and high speed are made possible by the use of Fourier-domain optical coherence tomography. Using this system, we have demonstrated the ability to image microscopic blood vessels and the cone photoreceptor mosaic.

  1. Adaptive dispersion formula for index interpolation and chromatic aberration correction.

    PubMed

    Li, Chia-Ling; Sasián, José

    2014-01-13

    This paper defines and discusses a glass dispersion formula that is adaptive. The formula exhibits superior convergence with a minimum number of coefficients. Using this formula we rationalize the correction of chromatic aberration per spectrum order. We compare the formula with the Sellmeier and Buchdahl formulas for glasses in the Schott catalogue. The six coefficient adaptive formula is found to be the most accurate with an average maximum index of refraction error of 2.91 × 10(-6) within the visible band.

  2. Adaptive Optical Linear Algebra Processors

    DTIC Science & Technology

    1988-11-15

    which was very small, CNR = CGS = 10-5). For this case study, only r=3 Newton - Rapshon iterations were required for convergence. Thus, the algorithm...realizations of the Newton -Raphson method for nonlinear equations and a new optical LU direct decomposition and Gauss-Seidel iterative solution to the...We linearize the nonlinear equations by the Newton -Raphson method, which generates a set of LAEs that we solve by iterative and direct methods. We

  3. Thin, nearly wireless adaptive optical device

    NASA Technical Reports Server (NTRS)

    Knowles, Gareth (Inventor); Hughes, Eli (Inventor)

    2008-01-01

    A thin, nearly wireless adaptive optical device capable of dynamically modulating the shape of a mirror in real time to compensate for atmospheric distortions and/or variations along an optical material is provided. The device includes an optical layer, a substrate, at least one electronic circuit layer with nearly wireless architecture, an array of actuators, power electronic switches, a reactive force element, and a digital controller. Actuators are aligned so that each axis of expansion and contraction intersects both substrate and reactive force element. Electronics layer with nearly wireless architecture, power electronic switches, and digital controller are provided within a thin-film substrate. The size and weight of the adaptive optical device is solely dominated by the size of the actuator elements rather than by the power distribution system.

  4. Thin nearly wireless adaptive optical device

    NASA Technical Reports Server (NTRS)

    Knowles, Gareth J. (Inventor); Hughes, Eli (Inventor)

    2009-01-01

    A thin nearly wireless adaptive optical device capable of dynamically modulating the shape of a mirror in real time to compensate for atmospheric distortions and/or variations along an optical material is provided. The device includes an optical layer, a substrate, at least one electronic circuit layer with nearly wireless architecture, an array of actuators, power electronic switches, a reactive force element, and a digital controller. Actuators are aligned so that each axis of expansion and contraction intersects both substrate and reactive force element. Electronics layer with nearly wireless architecture, power electronic switches, and digital controller are provided within a thin-film substrate. The size and weight of the adaptive optical device is solely dominated by the size of the actuator elements rather than by the power distribution system.

  5. Thin, nearly wireless adaptive optical device

    NASA Technical Reports Server (NTRS)

    Knowles, Gareth (Inventor); Hughes, Eli (Inventor)

    2007-01-01

    A thin, nearly wireless adaptive optical device capable of dynamically modulating the shape of a mirror in real time to compensate for atmospheric distortions and/or variations along an optical material is provided. The device includes an optical layer, a substrate, at least one electronic circuit layer with nearly wireless architecture, an array of actuators, power electronic switches, a reactive force element, and a digital controller. Actuators are aligned so that each axis of expansion and contraction intersects both substrate and reactive force element. Electronics layer with nearly wireless architecture, power electronic switches, and digital controller are provided within a thin-film substrate. The size and weight of the adaptive optical device is solely dominated by the size of the actuator elements rather than by the power distribution system.

  6. Adaptive optics requirements definition for TMT

    NASA Astrophysics Data System (ADS)

    Dekany, Richard G.; Britton, Matthew C.; Gavel, Don T.; Ellerbroek, Brent L.; Herriot, Glen; Max, Claire E.; Veran, Jean-Pierre

    2004-10-01

    The scientific return on adaptive optics on large telescopes has generated a new vocabulary of different adaptive optics (AO) modalities. Multiobject AO (MOAO), multiconjugate AO (MCAO), ground-layer AO (GLAO), and extreme contrast AO (ExAO) each require complex new extensions in functional requirements beyond the experience gained with systems operational on large telescopes today. Because of this potential for increased complexity, a more formal requirements development process is recommended. We describe a methodology for requirements definition under consideration and summarize the current scientific prioritization of TMT AO capabilities.

  7. Adaptive ranging for optical coherence tomography

    PubMed Central

    Iftimia, N. V.; Bouma, B. E.; de Boer, J. F.; Park, B. H.; Cense, B.; Tearney, G. J.

    2009-01-01

    At present, optical coherence tomography systems have a limited imaging depth or axial scan range, making diagnosis of large diameter arterial vessels and hollow organs difficult. Adaptive ranging is a feedback technique where image data is utilized to adjust the coherence gate offset and range. In this paper, we demonstrate an adaptive optical coherence tomography system with a 7.0 mm range. By matching the imaging depth to the approximately 1.5 mm penetration depth in tissue, a 3 dB sensitivity improvement over conventional imaging systems with a 3.0 mm imaging depth was realized. PMID:19483942

  8. Adaptive optics vision simulation and perceptual learning system based on a 35-element bimorph deformable mirror.

    PubMed

    Dai, Yun; Zhao, Lina; Xiao, Fei; Zhao, Haoxin; Bao, Hua; Zhou, Hong; Zhou, Yifeng; Zhang, Yudong

    2015-02-10

    An adaptive optics visual simulation combined with a perceptual learning (PL) system based on a 35-element bimorph deformable mirror (DM) was established. The larger stroke and smaller size of the bimorph DM made the system have larger aberration correction or superposition ability and be more compact. By simply modifying the control matrix or the reference matrix, select correction or superposition of aberrations was realized in real time similar to a conventional adaptive optics closed-loop correction. PL function was first integrated in addition to conventional adaptive optics visual simulation. PL training undertaken with high-order aberrations correction obviously improved the visual function of adult anisometropic amblyopia. The preliminary application of high-order aberrations correction with PL training on amblyopia treatment was being validated with a large scale population, which might have great potential in amblyopia treatment and visual performance maintenance.

  9. Adaptive optics two-photon scanning laser fluorescence microscopy

    NASA Astrophysics Data System (ADS)

    Zhou, Yaopeng; Bifano, Thomas; Lin, Charles

    2011-03-01

    Two-photon fluorescence microscopy provides a powerful tool for deep tissue imaging. However, optical aberrations from illumination beam path limit imaging depth and resolution. Adaptive Optics (AO) is found to be useful to compensate for optical aberrations and improve image resolution and contrast from two-photon excitation. We have developed an AO system relying on a MEMS Deformable Mirror (DM) to compensate the optical aberrations in a two-photon scanning laser fluorescence microscope. The AO system utilized a Zernike polynomial based stochastic parallel gradient descent (SPGD) algorithm to optimize the DM shape for wavefront correction. The developed microscope is applied for subsurface imaging of mouse bone marrow. It was demonstrated that AO allows 80% increase in fluorescence signal intensity from bone cavities 145um below the surface. The AO-enhanced microscope provides cellular level images of mouse bone marrow at depths exceeding those achievable without AO.

  10. Smart adaptive optic systems using spatial light modulators.

    PubMed

    Clark, N; Banish, M; Ranganath, H S

    1999-01-01

    Many factors contribute to the aberrations induced in an optical system. Atmospheric turbulence between the object and the imaging system, physical or thermal perturbations in optical elements degrade the system's point spread function, and misaligned optics are the primary sources of aberrations that affect image quality. The design of a nonconventional real-time adaptive optic system using a micro-mirror device for wavefront correction is presented. The unconventional compensated imaging system presented offers advantages in speed, cost, power consumption, and weight. A pulsed-coupled neural network is used to as a preprocessor to enhance the performance of the wavefront sensor for low-light applications. Modeling results that characterize the system performance are presented.

  11. Adaptive optical antennas: design and evaluation

    NASA Astrophysics Data System (ADS)

    Weyrauch, Thomas; Vorontsov, Mikhail A.; Carhart, Gary W.; Simonova, Galina V.; Beresnev, Leonid A.; Polnau, Ernst E.

    2007-09-01

    We present the design and evaluation of compact adaptive optical antennas with apertures diameters of 16 mm and 100 mm for 5Gbit/s-class free-space optical communication systems. The antennas provide a bi-directional optically transparent link between fiber-optical wavelength-division multiplex systems and allow for mitigation of atmospheric-turbulence induced wavefront phase distortions with adaptive optics components. Beam steering is implemented in the antennas either with mirrors on novel tip/tilt platforms or a fiber-tip positioning system, both enabling operation bandwidths of more than 1 kHz. Bimorph piezoelectric actuated deformable mirrors are used for low-order phase-distortion compensation. An imaging system is integrated in the antennas for coarse pointing and tracking. Beam steering and wavefront control is based on blind maximization of the received signal level using a stochastic parallel gradient descent algorithm. The adaptive optics control architecture allowed the use of feedback signals provided locally within each transceiver system and remotely by the opposite transceiver system via an RF link. First atmospheric compensation results from communication experiments over a 250 m near-ground propagation path are presented.

  12. Holographic fluorescence microscopy with incoherent digital holographic adaptive optics

    NASA Astrophysics Data System (ADS)

    Jang, Changwon; Kim, Jonghyun; Clark, David C.; Lee, Byoungho; Kim, Myung K.

    2015-03-01

    Introduction of adaptive optics technology into astronomy and ophthalmology has made great contributions in these fields, allowing one to recover images blurred by atmospheric turbulence or aberrations of the eye. Similar adaptive optics improvement in microscopic imaging is also of interest to researchers using various techniques. Current technology of adaptive optics typically contains three key elements: wavefront sensor, wavefront corrector and controller. These hardware elements tend to be bulky, expensive, and limited in resolution, involving, e.g., lenslet arrays for sensing or multi-acuator deformable mirrors for correcting. We have previously introduced an alternate approach to adaptive optics based on unique capabilities of digital holography, namely direct access to the phase profile of an optical field and the ability to numerically manipulate the phase profile. We have also demonstrated that direct access and compensation of the phase profile is possible not only with the conventional coherent type of digital holography, but also with a new type of digital holography using incoherent light: self-interference incoherent digital holography (SIDH). The SIDH generates complex - i.e. amplitude plus phase - hologram from one or several interferograms acquired with incoherent light, such as LEDs, lamps, sunlight, or fluorescence. The complex point spread function can be measured using a guide star illumination and it allows deterministic deconvolution of the full-field image. We present experimental demonstration of aberration compensation in holographic fluorescence microscopy using SIDH. The adaptive optics by SIDH provides new tools for improved cellular fluorescence microscopy through intact tissue layers or other types of aberrant media.

  13. Adaptive Optics for Radio Interferometers

    NASA Astrophysics Data System (ADS)

    Woody, David P.; Bock, Douglas; Lamb, James W.; Plambeck, Richard; Wootten, Al; Paine, Scott; Butler, Bryan; Carpenter, John

    2009-03-01

    Radio interferometry has the potential to achieve milliarcsecond resolution of important astrophysical processes, but a significant impediment, particularly at millimeter and submillimeter wavelengths, is the scintillation due to turbulence in the troposphere. Since this is largely due to water vapor, considerable effort has been put into measuring absolute humidity along the line of sight of observations to derive corrections for the delay fluctuations. Alternatively, measurement of atmospheric delay variations by observing a bright point-like calibrator close to the science target has been investigated as a more direct probe of refractive index changes. While great strides have been made in the instrumentation and application of the results, the goal of a robust, reliable seeing correction remains elusive. Full realization of the potentials of these techniques will require a concerted effort to understand the complex behavior of the atmosphere, including the wet and dry components. Over the next few years we expect close collaboration among the radio astronomy community, as well as the meteorological community, to achieve significant progress towards routine high-resolution interferometry.

  14. Coherent Optical Adaptive Techniques (COAT)

    DTIC Science & Technology

    1973-02-01

    E o U rt UJ c t- 3 c o ■p t) c u •H +» ft o \\ o •d H & ■H to ■ o 10 ..,. J,.-. ..»^-^A^.^-. mfiiTflMaaj— ft ! -^^ lUMI IJI...13) 2 2 2 J,(Tidp) array r n=-oo e e ^ a Jl( XR ^o +yo j o vo E 5 n--ae 0 n\\/-N , TTD XB - i 0 sinc XR Xo ( ft ...was found that the acousto-optic Bragg cell functioning as a frequency modulator can meet the unlimited dynamic range and bandwidth requirements

  15. Layer-oriented adaptive optics for solar telescopes.

    PubMed

    Kellerer, Aglaé

    2012-08-10

    First multiconjugate adaptive-optical (MCAO) systems are currently being installed on solar telescopes. The aim of these systems is to increase the corrected field of view with respect to conventional adaptive optics. However, this first generation is based on a star-oriented approach, and it is then difficult to increase the size of the field of view beyond 60-80 arc sec in diameter. We propose to implement the layer-oriented approach in solar MCAO systems by use of wide-field Shack-Hartmann wavefront sensors conjugated to the strongest turbulent layers. The wavefront distortions are averaged over a wide field: the signal from distant turbulence is attenuated and the tomographic reconstruction is thus done optically. The system consists of independent correction loops, which only need to account for local turbulence: the subapertures can be enlarged and the correction frequency reduced. Most importantly, a star-oriented MCAO system becomes more complex with increasing field size, while the layer-oriented approach benefits from larger fields and will therefore be an attractive solution for the future generation of solar MCAO systems.

  16. Robustness of channel-adapted quantum error correction

    SciTech Connect

    Ballo, Gabor; Gurin, Peter

    2009-07-15

    A quantum channel models the interaction between the system we are interested in and its environment. Such a model can capture the main features of the interaction, but, because of the complexity of the environment, we cannot assume that it is fully accurate. We study the robustness of quantum error correction operations against completely unexpected and subsequently undetermined type of channel uncertainties. We find that a channel-adapted optimal error correction operation does not only give the best possible channel fidelity but it is more robust against channel alterations than any other error correction operation. Our results are valid for Pauli channels and stabilizer codes, but based on some numerical results, we believe that very similar conclusions can be drawn also in the general case.

  17. Holographic optical system for aberration corrections in laser Doppler velocimetry

    NASA Technical Reports Server (NTRS)

    Kim, R. C.; Case, S. K.; Schock, H. J.

    1985-01-01

    An optical system containing multifaceted holographic optical elements (HOEs) has been developed to correct for aberrations introduced by nonflat windows in laser Doppler velocimetry. The multifacet aberration correction approach makes it possible to record on one plate many sets of adjacent HOEs that address different measurement volume locations. By using 5-mm-diameter facets, it is practical to place 10-20 sets of holograms on one 10 x 12.5-cm plate, so that the procedure of moving the entire optical system to examine different locations may not be necessary. The holograms are recorded in dichromated gelatin and therefore are nonabsorptive and suitable for use with high-power argon laser beams. Low f-number optics coupled with a 90-percent efficient distortion-correcting hologram in the collection side of the system yield high optical efficiency.

  18. Implementations of adaptive associative optical computing elements

    NASA Astrophysics Data System (ADS)

    Fisher, Arthur D.; Lee, John N.; Fukuda, Robert C.

    1986-01-01

    The present optical implementations for heteroassociative memory modules, which are capable of real time adaptive learning, are pertinent to the eventual construction of large, multimodule associative/neural network architectures that can consider problems in the acquisition, transformation, matching/recognition, and manipulation of large amounts of data in parallel. These modules offer such performance features as convergence to the least-squares-optimum pseudoinverse association, accumulative and gated learning, forgetfulness of unused associations, resistance to dynamic-range saturation, and compensation of optical system aberrations. Optics uniquely furnish the massive parallel interconnection paths required to cascade and interconnect a number of modules to form the more sophisticated multiple module architectures.

  19. Adaptive Optics at the World’s Biggest Optical Telescope

    DTIC Science & Technology

    2010-09-01

    bottom up. The reflective, and deformable, component of each of the LBT’s mirrors is a concave Zerodur shell, 1.6 mm in average thickness and 911 mm in...Physik, 85748 Garching, Germany ABSTRACT The Large Binocular Telescope (LBT) on Mt. Graham, Arizona, comprises two 8.4 m primary mirrors on a...adaptive optics (AO) was incorporated into the design through two adaptive secondary mirrors (ASM), each 91 cm in diameter with 672 actuators, which feed

  20. Method and apparatus for optical phase error correction

    DOEpatents

    DeRose, Christopher; Bender, Daniel A.

    2014-09-02

    The phase value of a phase-sensitive optical device, which includes an optical transport region, is modified by laser processing. At least a portion of the optical transport region is exposed to a laser beam such that the phase value is changed from a first phase value to a second phase value, where the second phase value is different from the first phase value. The portion of the optical transport region that is exposed to the laser beam can be a surface of the optical transport region or a portion of the volume of the optical transport region. In an embodiment of the invention, the phase value of the optical device is corrected by laser processing. At least a portion of the optical transport region is exposed to a laser beam until the phase value of the optical device is within a specified tolerance of a target phase value.

  1. Lens-based wavefront sensorless adaptive optics swept source OCT

    NASA Astrophysics Data System (ADS)

    Jian, Yifan; Lee, Sujin; Ju, Myeong Jin; Heisler, Morgan; Ding, Weiguang; Zawadzki, Robert J.; Bonora, Stefano; Sarunic, Marinko V.

    2016-06-01

    Optical coherence tomography (OCT) has revolutionized modern ophthalmology, providing depth resolved images of the retinal layers in a system that is suited to a clinical environment. Although the axial resolution of OCT system, which is a function of the light source bandwidth, is sufficient to resolve retinal features at a micrometer scale, the lateral resolution is dependent on the delivery optics and is limited by ocular aberrations. Through the combination of wavefront sensorless adaptive optics and the use of dual deformable transmissive optical elements, we present a compact lens-based OCT system at an imaging wavelength of 1060 nm for high resolution retinal imaging. We utilized a commercially available variable focal length lens to correct for a wide range of defocus commonly found in patient’s eyes, and a novel multi-actuator adaptive lens for aberration correction to achieve near diffraction limited imaging performance at the retina. With a parallel processing computational platform, high resolution cross-sectional and en face retinal image acquisition and display was performed in real time. In order to demonstrate the system functionality and clinical utility, we present images of the photoreceptor cone mosaic and other retinal layers acquired in vivo from research subjects.

  2. Lens-based wavefront sensorless adaptive optics swept source OCT

    PubMed Central

    Jian, Yifan; Lee, Sujin; Ju, Myeong Jin; Heisler, Morgan; Ding, Weiguang; Zawadzki, Robert J.; Bonora, Stefano; Sarunic, Marinko V.

    2016-01-01

    Optical coherence tomography (OCT) has revolutionized modern ophthalmology, providing depth resolved images of the retinal layers in a system that is suited to a clinical environment. Although the axial resolution of OCT system, which is a function of the light source bandwidth, is sufficient to resolve retinal features at a micrometer scale, the lateral resolution is dependent on the delivery optics and is limited by ocular aberrations. Through the combination of wavefront sensorless adaptive optics and the use of dual deformable transmissive optical elements, we present a compact lens-based OCT system at an imaging wavelength of 1060 nm for high resolution retinal imaging. We utilized a commercially available variable focal length lens to correct for a wide range of defocus commonly found in patient’s eyes, and a novel multi-actuator adaptive lens for aberration correction to achieve near diffraction limited imaging performance at the retina. With a parallel processing computational platform, high resolution cross-sectional and en face retinal image acquisition and display was performed in real time. In order to demonstrate the system functionality and clinical utility, we present images of the photoreceptor cone mosaic and other retinal layers acquired in vivo from research subjects. PMID:27278853

  3. Multiconjugate adaptive optics at the Vacuum Tower Telescope, Tenerife

    NASA Astrophysics Data System (ADS)

    Berkefeld, Thomas; Soltau, Dirk; von der Luehe, Oskar

    2002-02-01

    We present the optical setup and wavefront reconstruction algorithms for the multi-conjugate adaptive optics (MCAO) system at the 70 cm German Vacuum Tower Telescope (VTT), Observatorio del Teide, Tenerife. The system is designed to increase the corrected field of view (FOV) from about 10 arcseconds to 30 arcseconds in the visible. It will consist of two Shack-Hartmann wavefront sensors (WFS) and two deformable mirrors (DMs). Both wavefront sensors will be situated in the pupil plane of the telescope. One determines the high order wavefront aberrations for the center of the FOV, the other measures only low order wavefront aberrations, but covers a large FOV in each subaperture. A 35 actuator bimorph mirror and a micro mirror will correct the ground layer and the tropopause, respectively. The system will have first light in early 2002. Scientific operation is expected to start in the second half of 2002.

  4. Adaptive Optics: A Pandora's box for Photometry

    NASA Astrophysics Data System (ADS)

    Roberts, L. C., Jr.; ten Brummelaar, T. A.; Mason, B. D.

    1998-01-01

    In conjunction with the long running CHARA speckle program, CHARA has begun using Adaptive Optics to study binary stars. Most of this work has focused on determining differential magnitudes for binary stars. CHARA was awarded six nights on the 1.5 meter at the Starfire Optical Range (SOR) in 1995. Since then CHARA has begun observing with the Mt Wilson Institute Adaptive Optics (MWI-AO) system on the Hooker 100-inch telescope at Mt. Wilson Observatory. While attempting to estimate error bars on the differential magnitudes it was noticed that frames of the same object taken sequentially produce discrepant images and results. As this may be related to the specific AO system comparisons between SOR and MWI-AO data are made for stars that were observed with both systems. Also, comparisons are made between stars observed multiple times with the MWI-AO system. The results of this investigation are presented.

  5. Time-sharing wave-front-sensing adaptive optics.

    PubMed

    Hou, Jing

    2004-02-01

    Based on the concept of common-path/common-mode adaptive optics, the time-sharing wave-front-sensing adaptive optics system contains only one Hartmann-Shack (H-S) wave-front sensor, which detects two aberrations in the beam path alternately. After data fusion of the two aberrations, the actuator voltage of the deformable mirror (DM) is obtained. How the disturbances of the slope data and the response matrix influence the DM's actuator voltage in the data fusion methods is discussed, and the effective upper limits are given. Feasible data fusion methods are tested, and experiments verify that the performance of the system is good. The time-sharing technique is limited in sampling rate and is suitable only for corrections of slowly changing phases, because the H-S wave-front sensor's sampling frequency must be adequate for the alternate detection of two aberrations.

  6. The AVES adaptive optics spectrograph for the VLT: status report

    NASA Astrophysics Data System (ADS)

    Pallavicini, Roberto; Delabre, Bernard; Pasquini, Luca; Zerbi, Filippo M.; Bonanno, Giovanni; Comari, Maurizio; Conconi, Paolo; Mazzoleni, Ruben; Santin, Paolo; Damiani, Francesco; Di Marcantonio, Paolo; Franchini, Mariagrazia; Spano, Paolo; Bonifacio, P.; Catalano, Santo; Molaro, Paolo P.; Randich, S.; Rodono, Marcello

    2003-03-01

    We report on the status of AVES, the Adaptive-optics Visual Echelle Spectrograph proposed for the secondary port of the Nasmyth Adaptive Optics System (NAOS) recently installed at the VLT. AVES is an intermediate resolution (R ≍ 16,000) high-efficiency fixed- format echelle spectrograph which operates in the spectral band 500 - 1,000 nm. In addition to a high intrinsic efficiency, comparable to that of ESI at Keck II, it takes advantage of the adaptive optics correction provided by NAOS to reduce the sky and detector contribution in background-limited observations of weak sources, thus allowing a further magnitude gain with respect to comparable non-adaptive optics spectrographs. Simulations show that the instrument will be capable of reaching a magnitude V = 22.5 at S/N > 10 in two hours, two magnitudes weaker than GIRAFFE at the same resolution and 3 magnitudes weaker than the higher resolution UVES spectrograph. Imaging and coronographic functions have also been implemented in the design. We present the results of the final design study and we dicuss the technical and operational issues related to its implementation at the VLT as a visitor instrument. We also discuss the possibility of using a scaled-up non-adaptive optics version of the same design as an element of a double- or triple-arm intermediate-resolution spectrograph for the VLT. Such an option looks attractive in the context of a high-efficiency large-bandwidth (320 - 1,500 nm) spectrograph ("fast-shooter") being considered by ESO as a 2nd-generation VLT instrument.

  7. Configurable adaptive optical system for imaging of ground-based targets from space

    NASA Astrophysics Data System (ADS)

    McComas, Brian K.; Friedman, Edward J.; Hooker, R. Brian; Cermak, Michael A.

    2003-03-01

    Space-based, high resolution, Earth remote sensing systems, that employ large, flexible, lightweight primary mirrors, will require active wavefront correction, in the form of active and adaptive optics, to correct for thermally and vibrationally induced deformations in the optics. These remote sensing systems typically have a large field-of-view. Unlike the adaptive optics on ground-based astronomical telescopes, which have a negligible field-of-view, the adaptive optics on these space-based remote sensing systems will be required to correct the wavefront over the entire field-of-view, which can be several degrees. The error functions for astronomical adaptive optics have been developed for the narrow field-of-view correction of atmospheric turbulence and do not address the needs of wide field space-based systems. To address these needs, a new wide field adaptive optics theory and a new error function are developed. Modeling and experimental results demonstrate the validity of the wide field adaptive optics theory and new error function. This new error function, which is a new extension of conventional adaptive optics, lead to the development of three new types of imaging systems: wide field-of-view, selectable field-of-view, and steerable field-of-view. These new systems can have nearly diffraction-limited performance across the entire field-of-view or a narrow movable region of high-resolution imaging. The factors limiting system performance will be shown. The range of applicability of the wide field adaptive optics theory is shown. The range of applicability is used to avoid limitations in system performance and to estimate the optical systems parameters, which will meet the system"s performance requirements.

  8. The Haskins Optically Corrected Ultrasound System

    ERIC Educational Resources Information Center

    Whalen, D. H.; Iskarous, Khalil; Tiede, Mark K.; Ostry, David J.; Lehnert-LeHouillier, Heike; Vatikiotis-Bateson, Eric; Hailey, Donald S.

    2005-01-01

    The tongue is critical in the production of speech, yet its nature has made it difficult to measure. Not only does its ability to attain complex shapes make it difficult to track, it is also largely hidden from view during speech. The present article describes a new combination of optical tracking and ultrasound imaging that allows for a…

  9. The Haskins Optically Corrected Ultrasound System

    ERIC Educational Resources Information Center

    Whalen, D. H.; Iskarous, Khalil; Tiede, Mark K.; Ostry, David J.; Lehnert-LeHouillier, Heike; Vatikiotis-Bateson, Eric; Hailey, Donald S.

    2005-01-01

    The tongue is critical in the production of speech, yet its nature has made it difficult to measure. Not only does its ability to attain complex shapes make it difficult to track, it is also largely hidden from view during speech. The present article describes a new combination of optical tracking and ultrasound imaging that allows for a…

  10. Performance evaluation of a sensorless adaptive optics multiphoton microscope.

    PubMed

    Skorsetz, Martin; Artal, Pablo; Bueno, Juan M

    2016-03-01

    A wavefront sensorless adaptive optics technique was combined with a custom-made multiphoton microscope to correct for specimen-induced aberrations. A liquid-crystal-on-silicon (LCoS) modulator was used to systematically generate Zernike modes during image recording. The performance of the instrument was evaluated in samples providing different nonlinear signals and the benefit of correcting higher order aberrations was always noticeable (in both contrast and resolution). The optimum aberration pattern was stable in time for the samples here involved. For a particular depth location within the sample, the wavefront to be precompensated was independent on the size of the imaged area (up to ∼ 360 × 360 μm(2)). The mode combination optimizing the recorded image depended on the Zernike correction control sequence; however, the final images hardly differed. At deeper locations, a noticeable dominance of spherical aberration was found. The influence of other aberration terms was also compared to the effect of the spherical aberration.

  11. Closed loop adaptive optics for microscopy without a wavefront sensor.

    PubMed

    Kner, Peter; Winoto, Lukman; Agard, David A; Sedat, John W

    2010-02-24

    A three-dimensional wide-field image of a small fluorescent bead contains more than enough information to accurately calculate the wavefront in the microscope objective back pupil plane using the phase retrieval technique. The phase-retrieved wavefront can then be used to set a deformable mirror to correct the point-spread function (PSF) of the microscope without the use of a wavefront sensor. This technique will be useful for aligning the deformable mirror in a widefield microscope with adaptive optics and could potentially be used to correct aberrations in samples where small fluorescent beads or other point sources are used as reference beacons. Another advantage is the high resolution of the retrieved wavefont as compared with current Shack-Hartmann wavefront sensors. Here we demonstrate effective correction of the PSF in 3 iterations. Starting from a severely aberrated system, we achieve a Strehl ratio of 0.78 and a greater than 10-fold increase in maximum intensity.

  12. Laser beacon adaptive optics for power beaming applications

    SciTech Connect

    Fugate, R.Q.

    1994-12-31

    This paper discusses the laser beam control system requirements for power beaming applications. Power beaming applications include electric and thermal engine propulsion for orbit transfer, station changing, and recharging batteries. Beam control includes satellite acquisition, high accuracy tracking, higher order atmospheric compensation using adaptive optics, and precision point-ahead. Beam control may also include local laser beam clean-up with a low order adaptive optics system. This paper also presents results of tracking and higher-order correction experiments on astronomical objects. The results were obtained with a laser beacon adaptive optics system at Phillips Laboratory`s Starfire Optical Range near Albuquerque, NM. At a wavelength of 0.85 {mu}m, the author has achieved Strehl ratios of {approximately}0.50 using laser beacons and {approximately}0.65 using natural stars for exposures longer than one minute on objects of {approximately}8{sup th} magnitude. The resulting point spread function has a full width half maximum (FWHM) of 0.13 arcsec.

  13. Adaptive holography for optical sensing applications

    NASA Astrophysics Data System (ADS)

    Residori, S.; Bortolozzo, U.; Peigné, A.; Molin, S.; Nouchi, P.; Dolfi, D.; Huignard, J. P.

    2016-03-01

    Adaptive holography is a promising method for high sensitivity phase modulation measurements in the presence of slow perturbations from the environment. The technique is based on the use of a nonlinear recombining medium, here an optically addressed spatial light modulator specifically realized to operate at 1.55 μm. Owing to the physical mechanisms involved, the interferometer adapts to slow phase variations within a range of 5-10 Hz, thus filtering out low frequency noise while transmitting higher frequency phase modulations. We present the basic principles of the adaptive interferometer and show that it can be used in association with a sensing fiber in order to detect phase modulations. Finally, a phase-OTDR architecture using the adaptive holographic interferometer is presented and shown to allows the detection of localized perturbations along the sensing fiber.

  14. Correct optical measurement of scattering samples

    SciTech Connect

    Ferber, J.; Platzer, W.

    1994-12-31

    Advanced glazing materials are used in many different applications. Honeycomb structures, aerogels, thermotropic layers, selective coatings are just a few examples. Light scattering is often observed in these materials, sometimes unwanted and at a rather low level, sometimes intended, e.g., in architectural glass with white diffusion patterns. In order to develop and use such kinds of materials efficiently, it is of great importance to know their optical properties. Errors in performing optical measurements of scattering samples are analyzed. Measurements are described from a Perkin-Elmer Lambda-9 spectrophotometer with an integrating sphere of 15 cm diameter for spectral data between 300 and 2,500 nm and from a 65 cm integrating sphere for broadband data on larger samples. The influence of the size of the illuminated sample area, the size of the sphere ports and sample thickness are investigated. Results are compared with Monte Carlo simulations.

  15. Adaptive optics assisted reconfigurable liquid-driven optical switch

    NASA Astrophysics Data System (ADS)

    Fuh, Yiin-Kuen; Huang, Wei-Chi

    2013-07-01

    This study demonstrates a mechanical-based, liquid-driven optical switch integrated with adaptive optics and a reconfigurable black liquid (dye-doped liquid). The device aperture can be continuously tuned between 0.6 and 6.9 mm, precisely achieved by a syringe pump for volume control. Adaptive optics (AO) capability and possible enhancement of the lost power intensity of the ink-polluted glass plate have also been experimentally investigated. While measuring power intensity with/without AO indicates only a marginal difference of ˜1%, a significant difference of 3 s in the response characteristic of "switching on" time can be observed. An extremely high contrast ratio of ˜105 for a red-colored light is achieved.

  16. Adaptive aberration correction using a triode hyperbolic electron mirror.

    PubMed

    Fitzgerald, J P S; Word, R C; Könenkamp, R

    2011-01-01

    A converging electron mirror can be used to compensate spherical and chromatic aberrations in an electron microscope. This paper presents an analytical solution to a novel triode (three electrode) hyperbolic mirror as an improvement to the well-known diode (two electrode) hyperbolic mirror for aberration correction. A weakness of the diode mirror is a lack of flexibility in changing the chromatic and spherical aberration coefficients independently without changes in the mirror geometry. In order to remove this limitation, a third electrode can be added. We calculate the optical properties of the resulting triode mirror analytically on the basis of a simple model field distribution. We present the optical properties-the object/image distance, z(0), and the coefficients of spherical and chromatic aberration, C(s) and C(c), of both mirror types from an analysis of electron trajectories in the mirror field. From this analysis, we demonstrate that while the properties of both designs are similar, the additional parameters in the triode mirror improve the range of aberration that can be corrected. The triode mirror is also able to provide a dynamic adjustment range of chromatic aberration for fixed spherical aberration and focal length, or any permutation of these three parameters. While the dynamic range depends on the values of aberration correction needed, a nominal 10% tuning range is possible for most configurations accompanied by less than 1% change in the other two properties.

  17. Development of large aperture composite adaptive optics

    NASA Astrophysics Data System (ADS)

    Kmetik, Viliam; Vitovec, Bohumil; Jiran, Lukas; Nemcova, Sarka; Zicha, Josef; Inneman, Adolf; Mikulickova, Lenka; Pavlica, Richard

    2015-01-01

    Large aperture composite adaptive optics for laser applications is investigated in cooperation of Institute of Plasma Physic, Department of Instrumentation and Control Engineering FME CTU and 5M Ltd. We are exploring opportunity of a large-size high-power-laser deformable-mirror production using a lightweight bimorph actuated structure with a composite core. In order to produce a sufficiently large operational free aperture we are developing new technologies for production of flexible core, bimorph actuator and deformable mirror reflector. Full simulation of a deformable-mirrors structure was prepared and validated by complex testing. A deformable mirror actuation and a response of a complicated structure are investigated for an accurate control of the adaptive optics. An original adaptive optics control system and a bimorph deformable mirror driver were developed. Tests of material samples, components and sub-assemblies were completed. A subscale 120 mm bimorph deformable mirror prototype was designed, fabricated and thoroughly tested. A large-size 300 mm composite-core bimorph deformable mirror was simulated and optimized, fabrication of a prototype is carried on. A measurement and testing facility is modified to accommodate large sizes optics.

  18. Compact MEMS-based adaptive optics: optical coherence tomography for clinical use

    NASA Astrophysics Data System (ADS)

    Chen, Diana C.; Olivier, Scot S.; Jones, Steven M.; Zawadzki, Robert J.; Evans, Julia W.; Choi, Stacey S.; Werner, John S.

    2008-02-01

    We describe a compact MEMS-based adaptive optics (AO) optical coherence tomography (OCT) system with improved AO performance and ease of clinical use. A typical AO system consists of a Shack-Hartmann wavefront sensor and a deformable mirror that measures and corrects the ocular and system aberrations. Because of limitations on current deformable mirror technologies, the amount of real-time ocular-aberration compensation is restricted and small in previous AO-OCT instruments. In this instrument, we incorporate an optical apparatus to correct the spectacle aberrations of the patients such as myopia, hyperopia and astigmatism. This eliminates the tedious process of using trial lenses in clinical imaging. Different amount of spectacle aberration compensation was achieved by motorized stages and automated with the AO computer for ease of clinical use. In addition, the compact AO-OCT was optimized to have minimum system aberrations to reduce AO registration errors and improve AO performance.

  19. Compact MEMS-based Adaptive Optics Optical Coherence Tomography for Clinical Use

    SciTech Connect

    Chen, D; Olivier, S; Jones, S; Zawadzki, R; Evans, J; Choi, S; Werner, J

    2008-02-04

    We describe a compact MEMS-based adaptive optics (AO) optical coherence tomography system with improved AO performance and ease of clinical use. A typical AO system consists of a Shack-Hartmann wavefront sensor and a deformable mirror that measures and corrects the ocular and system aberrations. Because of the limitation on the current deformable mirror technologies, the amount of real-time ocular-aberration compensation is restricted and small in the previous AO-OCT instruments. In this instrument, we proposed to add an optical apparatus to correct the spectacle aberrations of the patients such as myopia, hyperopia and astigmatism. This eliminated the tedious process of the trial lenses in clinical imaging. Different amount of spectacle aberration compensation was achieved by motorized stages and automated with the AO computer for ease of clinical use. In addition, the compact AO-OCT was optimized to have minimum system aberrations to reduce AO registration errors and improve AO performance.

  20. Subaperture correlation based digital adaptive optics for full field optical coherence tomography.

    PubMed

    Kumar, Abhishek; Drexler, Wolfgang; Leitgeb, Rainer A

    2013-05-06

    This paper proposes a sub-aperture correlation based numerical phase correction method for interferometric full field imaging systems provided the complex object field information can be extracted. This method corrects for the wavefront aberration at the pupil/ Fourier transform plane without the need of any adaptive optics, spatial light modulators (SLM) and additional cameras. We show that this method does not require the knowledge of any system parameters. In the simulation study, we consider a full field swept source OCT (FF SSOCT) system to show the working principle of the algorithm. Experimental results are presented for a technical and biological sample to demonstrate the proof of the principle.

  1. Automated interferometric synthetic aperture microscopy and computational adaptive optics for improved optical coherence tomography.

    PubMed

    Xu, Yang; Liu, Yuan-Zhi; Boppart, Stephen A; Carney, P Scott

    2016-03-10

    In this paper, we introduce an algorithm framework for the automation of interferometric synthetic aperture microscopy (ISAM). Under this framework, common processing steps such as dispersion correction, Fourier domain resampling, and computational adaptive optics aberration correction are carried out as metrics-assisted parameter search problems. We further present the results of this algorithm applied to phantom and biological tissue samples and compare with manually adjusted results. With the automated algorithm, near-optimal ISAM reconstruction can be achieved without manual adjustment. At the same time, the technical barrier for the nonexpert using ISAM imaging is also significantly lowered.

  2. Suppression of Speckles at High Adaptive Correction Using Speckle Symmetry

    NASA Technical Reports Server (NTRS)

    Bloemhof, Eric E.

    2006-01-01

    Focal-plane speckles set important sensitivity limits on ground- or space-based imagers and coronagraphs that may be used to search for faint companions, perhaps ultimately including exoplanets, around stars. As speckles vary with atmospheric fluctuations or with drifting beamtrain aberrations, they contribute speckle noise proportional to their full amplitude. Schemes to suppress speckles are thus of great interest. At high adaptive correction, speckles organize into species, represented by algebraic terms in the expansion of the phase exponential, that have distinct spatial symmetry, even or odd, under spatial inversion. Filtering speckle patterns by symmetry may eliminate a disproportionate fraction of the speckle noise while blocking (only) half of the image signal from the off-axis companion being sought. The fraction of speckle power and hence of speckle noise in each term will vary with degree of correction, and so also will the net symmetry in the speckle pattern.

  3. Efficient hybrid ARQ protocols with adaptive forward error correction

    NASA Astrophysics Data System (ADS)

    Kallel, Samir

    1994-02-01

    In this paper, efficient Stop-and-Wait, Go-Back-N , and Selective-Repeat hybrid ARQ protocols with Adaptive Forward Error Correction (AFEC) using convolutional coding are proposed and analyzed. The basic idea is to vary the coding rate for error correction according to system parameters, such as the signal-to-noise ratio, the round trip delay, and the buffer size at the receiver, so as to maximize the throughput efficiency. The performances of the proposed ARQ protocols are evaluated for two channel models: a non-fading and an ideally-interleaved Rayleigh-fading additive white Gaussian noise channel. In all cases, it is found that the hybrid ARQ protocols with AFEC yield a comparatively high throughput under all channel conditions.

  4. Suppression of Speckles at High Adaptive Correction Using Speckle Symmetry

    NASA Technical Reports Server (NTRS)

    Bloemhof, Eric E.

    2006-01-01

    Focal-plane speckles set important sensitivity limits on ground- or space-based imagers and coronagraphs that may be used to search for faint companions, perhaps ultimately including exoplanets, around stars. As speckles vary with atmospheric fluctuations or with drifting beamtrain aberrations, they contribute speckle noise proportional to their full amplitude. Schemes to suppress speckles are thus of great interest. At high adaptive correction, speckles organize into species, represented by algebraic terms in the expansion of the phase exponential, that have distinct spatial symmetry, even or odd, under spatial inversion. Filtering speckle patterns by symmetry may eliminate a disproportionate fraction of the speckle noise while blocking (only) half of the image signal from the off-axis companion being sought. The fraction of speckle power and hence of speckle noise in each term will vary with degree of correction, and so also will the net symmetry in the speckle pattern.

  5. Wide field of view adaptive optical system for lightweight deployable telescope technologies

    NASA Astrophysics Data System (ADS)

    McComas, Brian K.; Cermak, Michael A.; Friedman, Edward J.

    2003-02-01

    A NASA research contract (NAS1-00116) was awarded to Ball Aerospace & Technologies Corp. in January 2000 to study wide field-of-view adaptive optical systems. These systems will be required on future high resolution Earth remote sensing systems that employ large, flexible, lightweight, deployed primary mirrors. The deformations from these primary mirrors will introduce aberrations into the optical system, which must be removed by corrective optics. For economic reasons, these remote sensing systems must have a large field-of-view (a few degrees). Unlike ground-based adaptive optical systems, which have a negligible field-of-view, the adaptive optics on these space-based remote sensing systems will be required to correct for the deformations in the primary mirror over the entire field-of-view. A new error function, which is an enhancement to conventional adaptive optics, for wide field-of-view optical systems will be introduced. This paper will present the goals of the NASA research project and its progress. The initial phase of this research project is a demonstration of the wide field-of-view adaptive optics theory. A breadboard has been designed and built for this purpose. The design and assembly of the breadboard will be presented, along with the final results for this phase of the research project. Finally, this paper will show the applicability of wide field-of-view adaptive optics to space-based astronomical systems.

  6. Adaptive color correction based on object color classification

    NASA Astrophysics Data System (ADS)

    Kotera, Hiroaki; Morimoto, Tetsuro; Yasue, Nobuyuki; Saito, Ryoichi

    1998-09-01

    An adaptive color management strategy depending on the image contents is proposed. Pictorial color image is classified into different object areas with clustered color distribution. Euclidian or Mahalanobis color distance measures, and maximum likelihood method based on Bayesian decision rule, are introduced to the classification. After the classification process, each clustered pixels are projected onto principal component space by Hotelling transform and the color corrections are performed for the principal components to be matched each other in between the individual clustered color areas of original and printed images.

  7. Optical artefact characterization and correction in volumetric scintillation dosimetry

    PubMed Central

    Robertson, Daniel; Hui, Cheukkai; Archambault, Louis; Mohan, Radhe; Beddar, Sam

    2014-01-01

    The goals of this study were (1) to characterize the optical artefacts affecting measurement accuracy in a volumetric liquid scintillation detector, and (2) to develop methods to correct for these artefacts. The optical artefacts addressed were photon scattering, refraction, camera perspective, vignetting, lens distortion, the lens point spread function, stray radiation, and noise in the camera. These artefacts were evaluated by theoretical and experimental means, and specific correction strategies were developed for each artefact. The effectiveness of the correction methods was evaluated by comparing raw and corrected images of the scintillation light from proton pencil beams against validated Monte Carlo calculations. Blurring due to the lens and refraction at the scintillator tank-air interface were found to have the largest effect on the measured light distribution, and lens aberrations and vignetting were important primarily at the image edges. Photon scatter in the scintillator was not found to be a significant source of artefacts. The correction methods effectively mitigated the artefacts, increasing the average gamma analysis pass rate from 66% to 98% for gamma criteria of 2% dose difference and 2 mm distance to agreement. We conclude that optical artefacts cause clinically meaningful errors in the measured light distribution, and we have demonstrated effective strategies for correcting these optical artefacts. PMID:24321820

  8. Optical artefact characterization and correction in volumetric scintillation dosimetry

    NASA Astrophysics Data System (ADS)

    Robertson, Daniel; Hui, Cheukkai; Archambault, Louis; Mohan, Radhe; Beddar, Sam

    2014-01-01

    The goals of this study were (1) to characterize the optical artefacts affecting measurement accuracy in a volumetric liquid scintillator detector, and (2) to develop methods to correct for these artefacts. The optical artefacts addressed were photon scattering, refraction, camera perspective, vignetting, lens distortion, the lens point spread function, stray radiation, and noise in the camera. These artefacts were evaluated by theoretical and experimental means, and specific correction strategies were developed for each artefact. The effectiveness of the correction methods was evaluated by comparing raw and corrected images of the scintillation light from proton pencil beams against validated Monte Carlo calculations. Blurring due to the lens and refraction at the scintillator tank-air interface were found to have the largest effect on the measured light distribution, and lens aberrations and vignetting were important primarily at the image edges. Photon scatter in the scintillator was not found to be a significant source of artefacts. The correction methods effectively mitigated the artefacts, increasing the average gamma analysis pass rate from 66% to 98% for gamma criteria of 2% dose difference and 2 mm distance to agreement. We conclude that optical artefacts cause clinically meaningful errors in the measured light distribution, and we have demonstrated effective strategies for correcting these optical artefacts.

  9. [Technical principles of adaptive optics in ophthalmology].

    PubMed

    Reiniger, J L; Domdei, N; Holz, F G; Harmening, W M

    2017-03-01

    During the last 25 years ophthalmic imaging has undergone a revolution. This review gives an overview of the possibilities of adaptive optics (AO) for ophthalmic imaging technologies and their development and illustrates that the role of ophthalmic imaging changed from the documentation of obvious abnormalities to the detection of microscopic yet significant conspicuities. This enables earlier and more precise diagnoses. The implementation of AO for imaging systems like fundus cameras, scanning laser ophthalmoscopy and optical coherence tomography has gained in importance. In recent years a couple of companies started developing commercially available AO systems, thus, indicating a future use in clinical routine.

  10. Lens based adaptive optics scanning laser ophthalmoscope.

    PubMed

    Felberer, Franz; Kroisamer, Julia-Sophie; Hitzenberger, Christoph K; Pircher, Michael

    2012-07-30

    We present an alternative approach for an adaptive optics scanning laser ophthalmoscope (AO-SLO). In contrast to other commonly used AO-SLO instruments, the imaging optics consist of lenses. Images of the fovea region of 5 healthy volunteers are recorded. The system is capable to resolve human foveal cones in 3 out of 5 healthy volunteers. Additionally, we investigated the capability of the system to support larger scanning angles (up to 5°) on the retina. Finally, in order to demonstrate the performance of the instrument images of rod photoreceptors are presented.

  11. Improved scatter correction using adaptive scatter kernel superposition

    NASA Astrophysics Data System (ADS)

    Sun, M.; Star-Lack, J. M.

    2010-11-01

    Accurate scatter correction is required to produce high-quality reconstructions of x-ray cone-beam computed tomography (CBCT) scans. This paper describes new scatter kernel superposition (SKS) algorithms for deconvolving scatter from projection data. The algorithms are designed to improve upon the conventional approach whose accuracy is limited by the use of symmetric kernels that characterize the scatter properties of uniform slabs. To model scatter transport in more realistic objects, nonstationary kernels, whose shapes adapt to local thickness variations in the projection data, are proposed. Two methods are introduced: (1) adaptive scatter kernel superposition (ASKS) requiring spatial domain convolutions and (2) fast adaptive scatter kernel superposition (fASKS) where, through a linearity approximation, convolution is efficiently performed in Fourier space. The conventional SKS algorithm, ASKS, and fASKS, were tested with Monte Carlo simulations and with phantom data acquired on a table-top CBCT system matching the Varian On-Board Imager (OBI). All three models accounted for scatter point-spread broadening due to object thickening, object edge effects, detector scatter properties and an anti-scatter grid. Hounsfield unit (HU) errors in reconstructions of a large pelvis phantom with a measured maximum scatter-to-primary ratio over 200% were reduced from -90 ± 58 HU (mean ± standard deviation) with no scatter correction to 53 ± 82 HU with SKS, to 19 ± 25 HU with fASKS and to 13 ± 21 HU with ASKS. HU accuracies and measured contrast were similarly improved in reconstructions of a body-sized elliptical Catphan phantom. The results show that the adaptive SKS methods offer significant advantages over the conventional scatter deconvolution technique.

  12. Optics measurements and corrections at RHIC

    SciTech Connect

    Bai M.; Aronson, J.; Blaskiewicz, M.; Luo, Y.; Robert-Demolaize, G.; White, S.

    2012-05-20

    The further improvement of RHIC luminosity performance requires more precise understanding of the RHIC modeling. Hence, it is necessary to minimize the beta-beat, deviation of measured beta function from the calculated beta functions based on an model. The correction of betabeat also opens up the possibility of exploring operating RHIC polarized protons at a working point near integer, a prefered choice for both luminosity as well as beam polarization. The segment-by-segment technique for reducing beta-beat demonstrated in the LHC operation for reducing the beta-beat was first tested in RHIC during its polarized proton operation in 2011. It was then fully implemented during the RHIC polarized proton operation in 2012. This paper reports the commissioning results. Future plan is also presented.

  13. The development of an adaptive optics system and its application to biological microscope

    NASA Astrophysics Data System (ADS)

    Hattori, Masayuki; Tamada, Yosuke

    2016-10-01

    The improvement of the optical devices in this decade, such as the MEMS-SLM ( Micro Electro Mechanical Systems- Spatial Light Modulator ) and wave front sensor with micro lens device, is making adaptive optics commonly available. It also gives the new basis of the design of adaptive optics with the improved accuracy and the compactness. We have developed an adaptive optics bench from such a point of view, and the application to the optical microscope has attained effective results in the observation of the live cell samples. In this presentation, our recent results will be shown. The result includes analysis of blur by the fine structures in biological sample and result of the image correction by the adaptive optics.

  14. Optical Property Analyses of Plant Cells for Adaptive Optics Microscopy

    NASA Astrophysics Data System (ADS)

    Tamada, Yosuke; Murata, Takashi; Hattori, Masayuki; Oya, Shin; Hayano, Yutaka; Kamei, Yasuhiro; Hasebe, Mitsuyasu

    2014-04-01

    In astronomy, adaptive optics (AO) can be used to cancel aberrations caused by atmospheric turbulence and to perform diffraction-limited observation of astronomical objects from the ground. AO can also be applied to microscopy, to cancel aberrations caused by cellular structures and to perform high-resolution live imaging. As a step toward the application of AO to microscopy, here we analyzed the optical properties of plant cells. We used leaves of the moss Physcomitrella patens, which have a single layer of cells and are thus suitable for optical analysis. Observation of the cells with bright field and phase contrast microscopy, and image degradation analysis using fluorescent beads demonstrated that chloroplasts provide the main source of optical degradations. Unexpectedly, the cell wall, which was thought to be a major obstacle, has only a minor effect. Such information provides the basis for the application of AO to microscopy for the observation of plant cells.

  15. High-efficiency Autonomous Laser Adaptive Optics

    NASA Astrophysics Data System (ADS)

    Baranec, Christoph; Riddle, Reed; Law, Nicholas M.; Ramaprakash, A. N.; Tendulkar, Shriharsh; Hogstrom, Kristina; Bui, Khanh; Burse, Mahesh; Chordia, Pravin; Das, Hillol; Dekany, Richard; Kulkarni, Shrinivas; Punnadi, Sujit

    2014-07-01

    As new large-scale astronomical surveys greatly increase the number of objects targeted and discoveries made, the requirement for efficient follow-up observations is crucial. Adaptive optics imaging, which compensates for the image-blurring effects of Earth's turbulent atmosphere, is essential for these surveys, but the scarcity, complexity and high demand of current systems limit their availability for following up large numbers of targets. To address this need, we have engineered and implemented Robo-AO, a fully autonomous laser adaptive optics and imaging system that routinely images over 200 objects per night with an acuity 10 times sharper at visible wavelengths than typically possible from the ground. By greatly improving the angular resolution, sensitivity, and efficiency of 1-3 m class telescopes, we have eliminated a major obstacle in the follow-up of the discoveries from current and future large astronomical surveys.

  16. Adaptive Optics Imaging of Solar System Objects

    NASA Technical Reports Server (NTRS)

    Roddier, Francois; Owen, Toby

    1997-01-01

    Most solar system objects have never been observed at wavelengths longer than the R band with an angular resolution better than 1 sec. The Hubble Space Telescope itself has only recently been equipped to observe in the infrared. However, because of its small diameter, the angular resolution is lower than that one can now achieved from the ground with adaptive optics, and time allocated to planetary science is limited. We have been using adaptive optics (AO) on a 4-m class telescope to obtain 0.1 sec resolution images solar system objects at far red and near infrared wavelengths (0.7-2.5 micron) which best discriminate their spectral signatures. Our efforts has been put into areas of research for which high angular resolution is essential, such as the mapping of Titan and of large asteroids, the dynamics and composition of Neptune stratospheric clouds, the infrared photometry of Pluto, Charon, and close satellites previously undetected from the ground.

  17. HIGH-EFFICIENCY AUTONOMOUS LASER ADAPTIVE OPTICS

    SciTech Connect

    Baranec, Christoph; Riddle, Reed; Tendulkar, Shriharsh; Hogstrom, Kristina; Bui, Khanh; Dekany, Richard; Kulkarni, Shrinivas; Law, Nicholas M.; Ramaprakash, A. N.; Burse, Mahesh; Chordia, Pravin; Das, Hillol; Punnadi, Sujit

    2014-07-20

    As new large-scale astronomical surveys greatly increase the number of objects targeted and discoveries made, the requirement for efficient follow-up observations is crucial. Adaptive optics imaging, which compensates for the image-blurring effects of Earth's turbulent atmosphere, is essential for these surveys, but the scarcity, complexity and high demand of current systems limit their availability for following up large numbers of targets. To address this need, we have engineered and implemented Robo-AO, a fully autonomous laser adaptive optics and imaging system that routinely images over 200 objects per night with an acuity 10 times sharper at visible wavelengths than typically possible from the ground. By greatly improving the angular resolution, sensitivity, and efficiency of 1-3 m class telescopes, we have eliminated a major obstacle in the follow-up of the discoveries from current and future large astronomical surveys.

  18. Adaptive Optics Imaging of Solar System Objects

    NASA Technical Reports Server (NTRS)

    Roddier, Francois; Owen, Toby

    1999-01-01

    Most solar system objects have never been observed at wavelengths longer than the R band with an angular resolution better than 1". The Hubble Space Telescope itself has only recently been equipped to observe in the infrared. However, because of its small diameter, the angular resolution is lower than that one can now achieved from the ground with adaptive optics, and time allocated to planetary science is limited. We have successfully used adaptive optics on a 4-m class telescope to obtain 0.1" resolution images of solar system objects in the far red and near infrared (0.7-2.5 microns), aE wavelengths which best discl"lmlnate their spectral signatures. Our efforts have been put into areas of research for which high angular resolution is essential.

  19. Adaptive optics for direct laser writing with plasma emission aberration sensing.

    PubMed

    Jesacher, Alexander; Marshall, Graham D; Wilson, Tony; Booth, Martin J

    2010-01-18

    Aberrations affect the focal spot quality in direct laser write applications when focusing through a refractive index mismatch. Closed loop adaptive optics can correct these aberrations if a suitable feedback signal can be found. Focusing an ultrafast laser beam into transparent dielectric material can lead to plasma formation in the focal region. We report using the supercontinuum emitted by such a plasma to measure the optical aberrations, the subsequent aberration correction using a spatial light modulator and the fabrication of nanostructures using the corrected optical system.

  20. Extragalactic Fields Optimized for Adaptive Optics

    DTIC Science & Technology

    2011-03-01

    observatories (including those on Mauna Kea ). Before proceeding with a detailed analysis, it is instructive to note that many positions in the sky likely...4Gemini Observatory , Southern Operations Center, c/o AURA, Casilla 603,La Serena, Chile. sObservatories of the Carnegie Institution of Washington...United States Naval Observatory , 3450 Massachusetts Avenue, NW, Washington, DC 20392-5420. 348 galaxies in these fields require adaptive optics (AO

  1. Geometric view of adaptive optics control

    NASA Astrophysics Data System (ADS)

    Wiberg, Donald M.; Max, Claire E.; Gavel, Donald T.

    2005-05-01

    The objective of an astronomical adaptive optics control system is to minimize the residual wave-front error remaining on the science-object wave fronts after being compensated for atmospheric turbulence and telescope aberrations. Minimizing the mean square wave-front residual maximizes the Strehl ratio and the encircled energy in pointlike images and maximizes the contrast and resolution of extended images. We prove the separation principle of optimal control for application to adaptive optics so as to minimize the mean square wave-front residual. This shows that the residual wave-front error attributable to the control system can be decomposed into three independent terms that can be treated separately in design. The first term depends on the geometry of the wave-front sensor(s), the second term depends on the geometry of the deformable mirror(s), and the third term is a stochastic term that depends on the signal-to-noise ratio. The geometric view comes from understanding that the underlying quantity of interest, the wave-front phase surface, is really an infinite-dimensional vector within a Hilbert space and that this vector space is projected into subspaces we can control and measure by the deformable mirrors and wave-front sensors, respectively. When the control and estimation algorithms are optimal, the residual wave front is in a subspace that is the union of subspaces orthogonal to both of these projections. The method is general in that it applies both to conventional (on-axis, ground-layer conjugate) adaptive optics architectures and to more complicated multi-guide-star- and multiconjugate-layer architectures envisaged for future giant telescopes. We illustrate the approach by using a simple example that has been worked out previously [J. Opt. Soc. Am. A73, 1171 (1983)] for a single-conjugate, static atmosphere case and follow up with a discussion of how it is extendable to general adaptive optics architectures.

  2. Adaptive aberration correction of GRIN lenses for confocal endomicroscopy

    PubMed Central

    Lee, W. M.; Yun, S. H.

    2012-01-01

    Graded-index (GRIN) lenses serve as a key component for miniature endoscopes because of their small diameters and ease of assembly. However, the nonaplanatic nature of GRIN lenses causes inherent spatial aberrations that lower image resolution and sharpness. Here we present the diagnosis of the aberrations in GRIN probes and the use of adaptive optics to compensate for the wavefront errors in the endoscope. Two different operation schemes based on preset and in situ measurements are demonstrated, both resulting in a substantial reduction of the wavefront error from 0.42 to <0.1 μm. PMID:22139258

  3. Pixelized Device Control Actuators for Large Adaptive Optics

    NASA Technical Reports Server (NTRS)

    Knowles, Gareth J.; Bird, Ross W.; Shea, Brian; Chen, Peter

    2009-01-01

    A fully integrated, compact, adaptive space optic mirror assembly has been developed, incorporating new advances in ultralight, high-performance composite mirrors. The composite mirrors use Q-switch matrix architecture-based pixelized control (PMN-PT) actuators, which achieve high-performance, large adaptive optic capability, while reducing the weight of present adaptive optic systems. The self-contained, fully assembled, 11x11x4-in. (approx.= 28x28x10-cm) unit integrates a very-high-performance 8-in. (approx.=20-cm) optic, and has 8-kHz true bandwidth. The assembled unit weighs less than 15 pounds (=6.8 kg), including all mechanical assemblies, power electronics, control electronics, drive electronics, face sheet, wiring, and cabling. It requires just three wires to be attached (power, ground, and signal) for full-function systems integration, and uses a steel-frame and epoxied electronics. The three main innovations are: 1. Ultralightweight composite optics: A new replication method for fabrication of very thin composite 20-cm-diameter laminate face sheets with good as-fabricated optical figure was developed. The approach is a new mandrel resin surface deposition onto previously fabricated thin composite laminates. 2. Matrix (regenerative) power topology: Waveform correction can be achieved across an entire face sheet at 6 kHz, even for large actuator counts. In practice, it was found to be better to develop a quadrant drive, that is, four quadrants of 169 actuators behind the face sheet. Each quadrant has a single, small, regenerative power supply driving all 169 actuators at 8 kHz in effective parallel. 3. Q-switch drive architecture: The Q-switch innovation is at the heart of the matrix architecture, and allows for a very fast current draw into a desired actuator element in 120 counts of a MHz clock without any actuator coupling.

  4. Correction of Rayleigh Scattering Effects in Cloud Optical Thickness Retrievals

    NASA Technical Reports Server (NTRS)

    Wang, Meng-Hua; King, Michael D.

    1997-01-01

    We present results that demonstrate the effects of Rayleigh scattering on the 9 retrieval of cloud optical thickness at a visible wavelength (0.66 Am). The sensor-measured radiance at a visible wavelength (0.66 Am) is usually used to infer remotely the cloud optical thickness from aircraft or satellite instruments. For example, we find that without removing Rayleigh scattering effects, errors in the retrieved cloud optical thickness for a thin water cloud layer (T = 2.0) range from 15 to 60%, depending on solar zenith angle and viewing geometry. For an optically thick cloud (T = 10), on the other hand, errors can range from 10 to 60% for large solar zenith angles (0-60 deg) because of enhanced Rayleigh scattering. It is therefore particularly important to correct for Rayleigh scattering contributions to the reflected signal from a cloud layer both (1) for the case of thin clouds and (2) for large solar zenith angles and all clouds. On the basis of the single scattering approximation, we propose an iterative method for effectively removing Rayleigh scattering contributions from the measured radiance signal in cloud optical thickness retrievals. The proposed correction algorithm works very well and can easily be incorporated into any cloud retrieval algorithm. The Rayleigh correction method is applicable to cloud at any pressure, providing that the cloud top pressure is known to within +/- 100 bPa. With the Rayleigh correction the errors in retrieved cloud optical thickness are usually reduced to within 3%. In cases of both thin cloud layers and thick ,clouds with large solar zenith angles, the errors are usually reduced by a factor of about 2 to over 10. The Rayleigh correction algorithm has been tested with simulations for realistic cloud optical and microphysical properties with different solar and viewing geometries. We apply the Rayleigh correction algorithm to the cloud optical thickness retrievals from experimental data obtained during the Atlantic

  5. Correction of Rayleigh Scattering Effects in Cloud Optical Thickness Retrievals

    NASA Technical Reports Server (NTRS)

    Wang, Meng-Hua; King, Michael D.

    1997-01-01

    We present results that demonstrate the effects of Rayleigh scattering on the 9 retrieval of cloud optical thickness at a visible wavelength (0.66 Am). The sensor-measured radiance at a visible wavelength (0.66 Am) is usually used to infer remotely the cloud optical thickness from aircraft or satellite instruments. For example, we find that without removing Rayleigh scattering effects, errors in the retrieved cloud optical thickness for a thin water cloud layer (T = 2.0) range from 15 to 60%, depending on solar zenith angle and viewing geometry. For an optically thick cloud (T = 10), on the other hand, errors can range from 10 to 60% for large solar zenith angles (0-60 deg) because of enhanced Rayleigh scattering. It is therefore particularly important to correct for Rayleigh scattering contributions to the reflected signal from a cloud layer both (1) for the case of thin clouds and (2) for large solar zenith angles and all clouds. On the basis of the single scattering approximation, we propose an iterative method for effectively removing Rayleigh scattering contributions from the measured radiance signal in cloud optical thickness retrievals. The proposed correction algorithm works very well and can easily be incorporated into any cloud retrieval algorithm. The Rayleigh correction method is applicable to cloud at any pressure, providing that the cloud top pressure is known to within +/- 100 bPa. With the Rayleigh correction the errors in retrieved cloud optical thickness are usually reduced to within 3%. In cases of both thin cloud layers and thick ,clouds with large solar zenith angles, the errors are usually reduced by a factor of about 2 to over 10. The Rayleigh correction algorithm has been tested with simulations for realistic cloud optical and microphysical properties with different solar and viewing geometries. We apply the Rayleigh correction algorithm to the cloud optical thickness retrievals from experimental data obtained during the Atlantic

  6. Corrective optics space telescope axial replacement alignment system

    NASA Astrophysics Data System (ADS)

    Slusher, Robert B.; Satter, Michael J.; Kaplan, Michael L.; Martella, Mark A.; Freymiller, Ed D.; Buzzetta, Victor

    1993-10-01

    To facilitate the accurate placement and alignment of the corrective optics space telescope axial replacement (COSTAR) structure, mechanisms, and optics, the COSTAR Alignment System (CAS) has been designed and assembled. It consists of a 20-foot optical bench, support structures for holding and aligning the COSTAR instrument at various stages of assembly, a focal plane target fixture (FPTF) providing an accurate reference to the as-built Hubble Space Telescope (HST) focal plane, two alignment translation stages with interchangeable alignment telescopes and alignment lasers, and a Zygo Mark IV interferometer with a reference sphere custom designed to allow accurate double-pass operation of the COSTAR correction optics. The system is used to align the fixed optical bench (FOB), the track, the deployable optical bench (DOB), the mechanisms, and the optics to ensure that the correction mirrors are all located in the required positions and orientations on-orbit after deployment. In this paper, the layout of the CAS is presented and the various alignment operations are listed along with the relevant alignment requirements. In addition, calibration of the necessary support structure elements and alignment aids is described, including the two-axis translation stages, the latch positions, the FPTF, and the COSTAR-mounted alignment cubes.

  7. NAOMI: adaptive optics at the WHT

    NASA Astrophysics Data System (ADS)

    Benn, Chris R.; Blanken, Maarten; Bevil, Craige; Els, Sebastian; Goodsell, Stephen; Gregory, Tom; Jolley, Paul; Longmore, Andy J.; Martin, Olivier; Myers, Richard M.; Ostensen, Roy; Rees, Simon; Rutten, Rene G. M.; Soechting, Ilona; Talbot, Gordon; Tulloch, Simon M.

    2004-10-01

    NAOMI is the AO system of the 4.2-m William Herschel Telescope on La Palma. It delivers near-diffraction-limited images in the IR, and a significantly improved PSF at optical wavelengths. The science cameras currently comprise an IR imager (INGRID), an optical integral-field spectrograph (OASIS) and a coronagraph which may be placed in the light path to either instrument. 19 science programmes were observed during 2002-3. Observing overheads are small, with as much as 60% of the night spent integrating on science targets. In late 2004 this year, the WFS will be equipped with a low-noise L3 CCD, giving a gain of a factor of 2 in S:N for faint guide stars. A Rayleigh laser guide star is under development, with first light expected summer 2006, providing a unique facility: AO-corrected optical integral-field spectroscopy anywhere on the northern sky.

  8. Robotic visible-light laser adaptive optics

    NASA Astrophysics Data System (ADS)

    Baranec, Christoph; Riddle, Reed; Law, Nicholas; Ramaprakash, A. N.; Tendulkar, Shriharsh; Bui, Khanh; Burse, Mahesh; Chordia, Pravin; Das, Hillol; Dekany, Richard; Kulkarni, Shrinivas; Punnadi, Sujit

    2013-12-01

    Robo-AO is the first autonomous laser adaptive optics system and science instrument operating on sky. With minimal human oversight, the system robotically executes large scale surveys, monitors long-term astrophysical dynamics and characterizes newly discovered transients, all at the visible diffraction limit. The adaptive optics setup time, from the end of the telescope slew to the beginning of an observation, is a mere ~50-60 s, enabling over 200 observations per night. The first of many envisioned systems has finished 58 nights of science observing at the Palomar Observatory 60-inch (1.5 m) telescope, with over 6,400 robotic observations executed thus far. The system will be augmented in late 2013 with a low-noise wide field infrared camera, which doubles as a tip-tilt sensor, to widen the spectral bandwidth of observations and increase available sky coverage while also enabling deeper visible imaging using adaptive-optics sharpened infrared tip-tilt guide sources. Techniques applicable to larger telescope systems will also be tested: the infrared camera will be used to demonstrate advanced multiple region-of-interest tip-tilt guiding methods, and a visitor instrument port will be used for evaluation of other instrumentation, e.g. single-mode and photonic fibers to feed compact spectrographs.

  9. Phase Contrast Wavefront Sensing for Adaptive Optics

    NASA Technical Reports Server (NTRS)

    Bloemhof, E. E.; Wallace, J. K.; Bloemhof, E. E.

    2004-01-01

    Most ground-based adaptive optics systems use one of a small number of wavefront sensor technologies, notably (for relatively high-order systems) the Shack-Hartmann sensor, which provides local measurements of the phase slope (first-derivative) at a number of regularly-spaced points across the telescope pupil. The curvature sensor, with response proportional to the second derivative of the phase, is also sometimes used, but has undesirable noise propagation properties during wavefront reconstruction as the number of actuators becomes large. It is interesting to consider the use for astronomical adaptive optics of the "phase contrast" technique, originally developed for microscopy by Zemike to allow convenient viewing of phase objects. In this technique, the wavefront sensor provides a direct measurement of the local value of phase in each sub-aperture of the pupil. This approach has some obvious disadvantages compared to Shack-Hartmann wavefront sensing, but has some less obvious but substantial advantages as well. Here we evaluate the relative merits in a practical ground-based adaptive optics system.

  10. CAOS: Code for Adaptive Optics Systems

    NASA Astrophysics Data System (ADS)

    Carbillet, M.; Verinaud, C.; Femenia, B.; Riccardi, A.; Fini, L.

    2011-06-01

    The CAOS "system" (where CAOS stands for Code for Adaptive Optics Systems) is properly said a Problem Solving Environment (PSE). It is essentially composed of a graphical programming interface (the CAOS Application Builder) which can load different packages (set of modules). Current publicly distributed packages are the Software Package CAOS (the original adaptive optics package), the Software Package AIRY (an image-reconstruction-oriented package - AIRY stands for Astronomical Image Restoration with interferometrY), the Software Package PAOLAC (a simple CAOS interface for the analytic IDL code PAOLA developed by Laurent Jolissaint - PAOLAC stands for PAOLA within Caos), and a couple of private packages (not publicly distributed but restricted to the corresponding consortia): SPHERE (especially developed for the VLT planet finder SPHERE), and AIRY-LN (a specialized version of AIRY for the LBT instrument LINC-NIRVANA). Another package is also being developed: MAOS (that stands for Multiconjugate Adaptive Optics Simulations), developed for multi-reference multiconjugate AO studies purpose but still in a beta-version form.

  11. Adaptive Optics Retinal Imaging: Emerging Clinical Applications

    PubMed Central

    Godara, Pooja; Dubis, Adam M.; Roorda, Austin; Duncan, Jacque L.; Carroll, Joseph

    2010-01-01

    The human retina is a uniquely accessible tissue. Tools like scanning laser ophthalmoscopy (SLO) and spectral domain optical coherence tomography (SD-OCT) provide clinicians with remarkably clear pictures of the living retina. While the anterior optics of the eye permit such non-invasive visualization of the retina and associated pathology, these same optics induce significant aberrations that in most cases obviate cellular-resolution imaging. Adaptive optics (AO) imaging systems use active optical elements to compensate for aberrations in the optical path between the object and the camera. Applied to the human eye, AO allows direct visualization of individual rod and cone photoreceptor cells, RPE cells, and white blood cells. AO imaging has changed the way vision scientists and ophthalmologists see the retina, helping to clarify our understanding of retinal structure, function, and the etiology of various retinal pathologies. Here we review some of the advances made possible with AO imaging of the human retina, and discuss applications and future prospects for clinical imaging. PMID:21057346

  12. Adaptive optics retinal imaging: emerging clinical applications.

    PubMed

    Godara, Pooja; Dubis, Adam M; Roorda, Austin; Duncan, Jacque L; Carroll, Joseph

    2010-12-01

    The human retina is a uniquely accessible tissue. Tools like scanning laser ophthalmoscopy and spectral domain-optical coherence tomography provide clinicians with remarkably clear pictures of the living retina. Although the anterior optics of the eye permit such non-invasive visualization of the retina and associated pathology, the same optics induce significant aberrations that obviate cellular-resolution imaging in most cases. Adaptive optics (AO) imaging systems use active optical elements to compensate for aberrations in the optical path between the object and the camera. When applied to the human eye, AO allows direct visualization of individual rod and cone photoreceptor cells, retinal pigment epithelium cells, and white blood cells. AO imaging has changed the way vision scientists and ophthalmologists see the retina, helping to clarify our understanding of retinal structure, function, and the etiology of various retinal pathologies. Here, we review some of the advances that were made possible with AO imaging of the human retina and discuss applications and future prospects for clinical imaging.

  13. Coherence gating and adaptive optics in the eye

    NASA Astrophysics Data System (ADS)

    Miller, Donald T.; Qu, Junle; Jonnal, Ravi S.; Thorn, Karen E.

    2003-07-01

    An en face coherence gated camera equipped with adaptive optics (AO) has been constructed for imaging single cells in the living human retina. The high axial resolution of coherence gating combined with the high transverse resolution of AO provides a powerful imaging tool whose image quality can surpass either methodology performing alone. The AO system relies on a 37-actuator Xinetics mirror and a Shack-Hartmann wavefront sensor that executes up to 22 corrections per second. The coherence gate is realized with a free-space Michelson interferometer that employs a scientific-grade 12-bit CCD array for recording 2-D retinal interferograms. Images were collected of microstructures the size of single cells in the in vivo retina. Early results suggest that a coherence gated adaptive optics camera should substantially improve our ability to detect single cells in the retina over the current state-of-the-art AO retina cameras, including conventional flood illuminated and confocal scanning laser ophthalmoscopes. To our knowledge, this is the first effort to combine coherence gating and adaptive optics.

  14. Reflective afocal broadband adaptive optics scanning ophthalmoscope

    PubMed Central

    Dubra, Alfredo; Sulai, Yusufu

    2011-01-01

    A broadband adaptive optics scanning ophthalmoscope (BAOSO) consisting of four afocal telescopes, formed by pairs of off-axis spherical mirrors in a non-planar arrangement, is presented. The non-planar folding of the telescopes is used to simultaneously reduce pupil and image plane astigmatism. The former improves the adaptive optics performance by reducing the root-mean-square (RMS) of the wavefront and the beam wandering due to optical scanning. The latter provides diffraction limited performance over a 3 diopter (D) vergence range. This vergence range allows for the use of any broadband light source(s) in the 450-850 nm wavelength range to simultaneously image any combination of retinal layers. Imaging modalities that could benefit from such a large vergence range are optical coherence tomography (OCT), multi- and hyper-spectral imaging, single- and multi-photon fluorescence. The benefits of the non-planar telescopes in the BAOSO are illustrated by resolving the human foveal photoreceptor mosaic in reflectance using two different superluminescent diodes with 680 and 796 nm peak wavelengths, reaching the eye with a vergence of 0.76 D relative to each other. PMID:21698035

  15. Adaptive optics on a shoe string

    NASA Astrophysics Data System (ADS)

    Restaino, Sergio R.; Payne, Don M.

    1998-12-01

    There are two main ways to mitigate the effects of atmospheric turbulence on an imaging system. A post factor approach, where data are opportunely acquired and processed in order to increase the overall resolution attainable by the optical system, speckle imaging is an example of such technique. The other approach is to use an adaptive optics system that will compensate for atmospheric effects before the data are recorded. Of course, the situation is not sharply distinct. Hybrid approaches have been proposed and demonstrated. Other approaches that are a mid-way between the two are also possible. The basic idea of static and dynamic pupil masking will be presented. Experimental results based on point sources and extended objects will be presented. Advantages and limitations of such technique will be discussed. Finally some new ideas involving fiber optics and liquid crystals will be presented.

  16. Modeling of Optical Aberration Correction using a Liquid Crystal Device

    NASA Technical Reports Server (NTRS)

    Xinghua, Wang; Bin, Wang; McManamon, Paul F.; Pouch, John J.; Miranda, Felix A.

    2006-01-01

    Gruneisen (sup 1-3), has shown that small, light weight, liquid crystal based devices can correct for the optical distortion caused by an imperfect primary mirror in a telescope and has discussed the efficiency of this correction. In this paper we expand on that work and propose a semi-analytical approach for quantifying the efficiency of a liquid crystal based wavefront corrector for this application.

  17. Deformation of multilayers and optical surfaces in soft x-ray adaptive optics (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Wylie-van Eerd, Benjamin J.; Yuan, Huiyu; Houwman, Evert; Antonov, Oleksandr; Louis, Eric; Yakshin, Andrey E.; Rijnders, Guus J. H. M.; Bijkerk, Fred

    2016-09-01

    Adaptive optics are of great utility in improving the resolving power of imaging and projection systems. In EUV lithography systems, for example, an adaptive optic can correct for wavefront deformation and decrease the feature size of integrated circuits that the system is in practice able to print. Piezoelectric thin films can be shown to accurately deform their surface with the sub-Angstrom precision required in order to compensate for wavefront deformation in EUV lithographic systems. However, in order to develop this from concept to working device, reflective coatings must be grown on top of the piezoelectric layer. Normal incidence EUV adaptive optics must meet the challenge of manipulating multilayer reflective coatings, while simultaneously preserving over many cycles the finely tuned structural properties that result in high XUV reflectivity. At this moment there are many unanswered questions in the literature about the behavior of an EUV multilayer under strain and the interaction of piezoelectric elements with multilayers. In this talk, we will present modelling of the response of multilayers to inhomogeneous strains that may be expected in a normal-incidence EUV adaptive optic, and preliminary experimental results.

  18. Adaptive Optics Educational Outreach and the Giant Segmented Mirror Telescope

    NASA Astrophysics Data System (ADS)

    Sparks, R. T.; Pompea, S. M.; Walker, C. E.

    2008-06-01

    One of the limiting factors in telescope performance is atmospheric seeing. Atmospheric seeing limits the resolution of ground based optical telescopes. Even telescopes in good locations on top of mountains cannot achieve diffraction-limited resolution. Until recently, the only way to overcome this limitation was to use space-based telescopes. Adaptive Optics (AO) is a collection of technologies that measure the turbulence of Earth's atmosphere and compensate for the turbulence, resulting in high-resolution images without the expense and complexity of space based telescopes. Our Hands-On Optics program has developed activities that teach students how telescopes form images and make observations about the resolution of a telescope. We are developing materials for high school students to use in the study of adaptive optics. These activities include various ways to illustrate atmospheric distortion by using everyday materials such as bubble wrap and mineral oil. We will also illustrate how to demonstrate the workings of a Shack-Hartman sensor to measure atmospheric distortion through the use of a unique model. We will also show activities illustrating two techniques astronomers use to improve the image: tip-tilt mirrors and deformable mirrors. We are developing an activity where students learn how to use a tip-tilt mirror to keep an image focused at one point on a screen. The culminating activity has students learn to use a deformable mirror to correct a distorted wavefront. These activities are being developed in conjunction with the Education program for the Giant Segmented Mirror Telescope (GSMT).

  19. Deterministic form correction of extreme freeform optical surfaces

    NASA Astrophysics Data System (ADS)

    Lynch, Timothy P.; Myer, Brian W.; Medicus, Kate; DeGroote Nelson, Jessica

    2015-10-01

    The blistering pace of recent technological advances has led lens designers to rely increasingly on freeform optical components as crucial pieces of their designs. As these freeform components increase in geometrical complexity and continue to deviate further from traditional optical designs, the optical manufacturing community must rethink their fabrication processes in order to keep pace. To meet these new demands, Optimax has developed a variety of new deterministic freeform manufacturing processes. Combining traditional optical fabrication techniques with cutting edge technological innovations has yielded a multifaceted manufacturing approach that can successfully handle even the most extreme freeform optical surfaces. In particular, Optimax has placed emphasis on refining the deterministic form correction process. By developing many of these procedures in house, changes can be implemented quickly and efficiently in order to rapidly converge on an optimal manufacturing method. Advances in metrology techniques allow for rapid identification and quantification of irregularities in freeform surfaces, while deterministic correction algorithms precisely target features on the part and drastically reduce overall correction time. Together, these improvements have yielded significant advances in the realm of freeform manufacturing. With further refinements to these and other aspects of the freeform manufacturing process, the production of increasingly radical freeform optical components is quickly becoming a reality.

  20. Limits of spherical blur determined with an adaptive optics mirror.

    PubMed

    Atchison, David A; Guo, Huanqing; Fisher, Scott W

    2009-05-01

    We extended an earlier study (Vision Research, 45, 1967-1974, 2005) in which we investigated limits at which induced blur of letter targets becomes noticeable, troublesome and objectionable. Here we used a deformable adaptive optics mirror to vary spherical defocus for conditions of a white background with correction of astigmatism; a white background with reduction of all aberrations other than defocus; and a monochromatic background with reduction of all aberrations other than defocus. We used seven cyclopleged subjects, lines of three high-contrast letters as targets, 3-6 mm artificial pupils, and 0.1-0.6 logMAR letter sizes. Subjects used a method of adjustment to control the defocus component of the mirror to set the 'just noticeable', 'just troublesome' and 'just objectionable' defocus levels. For the white-no adaptive optics condition combined with 0.1 logMAR letter size, mean 'noticeable' blur limits were +/-0.30, +/-0.24 and +/-0.23 D at 3, 4 and 6 mm pupils, respectively. White-adaptive optics and monochromatic-adaptive optics conditions reduced blur limits by 8% and 20%, respectively. Increasing pupil size from 3-6 mm decreased blur limits by 29%, and increasing letter size increased blur limits by 79%. Ratios of troublesome to noticeable, and of objectionable to noticeable, blur limits were 1.9 and 2.7 times, respectively. The study shows that the deformable mirror can be used to vary defocus in vision experiments. Overall, the results of noticeable, troublesome and objectionable blur agreed well with those of the previous study. Attempting to reduce higher-order aberrations or chromatic aberrations, reduced blur limits to only a small extent.

  1. Adaptive optics scanning ophthalmoscopy with annular pupils.

    PubMed

    Sulai, Yusufu N; Dubra, Alfredo

    2012-07-01

    Annular apodization of the illumination and/or imaging pupils of an adaptive optics scanning light ophthalmoscope (AOSLO) for improving transverse resolution was evaluated using three different normalized inner radii (0.26, 0.39 and 0.52). In vivo imaging of the human photoreceptor mosaic at 0.5 and 10° from fixation indicates that the use of an annular illumination pupil and a circular imaging pupil provides the most benefit of all configurations when using a one Airy disk diameter pinhole, in agreement with the paraxial confocal microscopy theory. Annular illumination pupils with 0.26 and 0.39 normalized inner radii performed best in terms of the narrowing of the autocorrelation central lobe (between 7 and 12%), and the increase in manual and automated photoreceptor counts (8 to 20% more cones and 11 to 29% more rods). It was observed that the use of annular pupils with large inner radii can result in multi-modal cone photoreceptor intensity profiles. The effect of the annular masks on the average photoreceptor intensity is consistent with the Stiles-Crawford effect (SCE). This indicates that combinations of images of the same photoreceptors with different apodization configurations and/or annular masks can be used to distinguish cones from rods, even when the former have complex multi-modal intensity profiles. In addition to narrowing the point spread function transversally, the use of annular apodizing masks also elongates it axially, a fact that can be used for extending the depth of focus of techniques such as adaptive optics optical coherence tomography (AOOCT). Finally, the positive results from this work suggest that annular pupil apodization could be used in refractive or catadioptric adaptive optics ophthalmoscopes to mitigate undesired back-reflections.

  2. Adaptive optics scanning ophthalmoscopy with annular pupils

    PubMed Central

    Sulai, Yusufu N.; Dubra, Alfredo

    2012-01-01

    Annular apodization of the illumination and/or imaging pupils of an adaptive optics scanning light ophthalmoscope (AOSLO) for improving transverse resolution was evaluated using three different normalized inner radii (0.26, 0.39 and 0.52). In vivo imaging of the human photoreceptor mosaic at 0.5 and 10° from fixation indicates that the use of an annular illumination pupil and a circular imaging pupil provides the most benefit of all configurations when using a one Airy disk diameter pinhole, in agreement with the paraxial confocal microscopy theory. Annular illumination pupils with 0.26 and 0.39 normalized inner radii performed best in terms of the narrowing of the autocorrelation central lobe (between 7 and 12%), and the increase in manual and automated photoreceptor counts (8 to 20% more cones and 11 to 29% more rods). It was observed that the use of annular pupils with large inner radii can result in multi-modal cone photoreceptor intensity profiles. The effect of the annular masks on the average photoreceptor intensity is consistent with the Stiles-Crawford effect (SCE). This indicates that combinations of images of the same photoreceptors with different apodization configurations and/or annular masks can be used to distinguish cones from rods, even when the former have complex multi-modal intensity profiles. In addition to narrowing the point spread function transversally, the use of annular apodizing masks also elongates it axially, a fact that can be used for extending the depth of focus of techniques such as adaptive optics optical coherence tomography (AOOCT). Finally, the positive results from this work suggest that annular pupil apodization could be used in refractive or catadioptric adaptive optics ophthalmoscopes to mitigate undesired back-reflections. PMID:22808435

  3. Based on ground station adaptive optics for laser communications demonstration platform structures

    NASA Astrophysics Data System (ADS)

    Zhang, Lei; Tong, Shoufeng; Wang, Haozeng; Yang, Hongkun

    2013-08-01

    With the rapid development of modern science and technology in astronomical imaging, optical communications, optical radar, optical information processing, high-precision ranging, tracking, guidance, and remote sensing, light waves propagating in the medium, especially in the turbulent atmosphere spread more and more important. Atmospheric turbulence is one of the main factors which have influence on the performance of a laser communication system. Adaptive optics technology is an important means to solve the problem of atmospheric turbulence. This paper states how adaptive optics technique can be used in space laser communication system to compensate atmospheric turbulence when laser beam transmission through it. The core content of adaptive optics is correct laser beam wave-front disturbance in real-time,with it to enhance optical system imaging quality and the next aim is reach the level of diffraction limitation. Adaptive optics system consists of wave-front detection, wave-front control and wave-front correction . The demo platform including: atmospheric turbulence simulation unit、adaptive correction unit、signal transmitting and receiving unit. Liquid crystal spatial light modulator applications in adaptive optics system and the turbulence simulation system introduced. And used zernike polynomials method to produce atmospheric turbulence phase screen simulation analysis. Simulation results show that: in the low spatial frequency components, the atmospheric turbulence phase screen generated by Zernike polynomial method consistent with the theoretical values, but in the high spatial frequency components, the simulation results with large difference between the theoretical values. In addition, the simulation results also show that: we can change the distribution of turbulence in the atmospheric turbulence phase screen by increasing the Zernike polynomials of orders or change the receiving apertures, but to calculate the large calculate the complex and

  4. Real-time optical motion correction for diffusion tensor imaging.

    PubMed

    Aksoy, Murat; Forman, Christoph; Straka, Matus; Skare, Stefan; Holdsworth, Samantha; Hornegger, Joachim; Bammer, Roland

    2011-08-01

    Head motion is a fundamental problem in brain MRI. The problem is further compounded in diffusion tensor imaging because of long acquisition times, and the sensitivity of the tensor computation to even small misregistration. To combat motion artifacts in diffusion tensor imaging, a novel real-time prospective motion correction method was introduced using an in-bore monovision system. The system consists of a camera mounted on the head coil and a self-encoded checkerboard marker that is attached to the patient's forehead. Our experiments showed that optical prospective motion correction is more effective at removing motion artifacts compared to image-based retrospective motion correction. Statistical analysis revealed a significant improvement in similarity between diffusion data acquired at different time points when prospective correction was used compared to retrospective correction (P<0.001). Copyright © 2011 Wiley-Liss, Inc.

  5. Real-time Optical Motion Correction for Diffusion Tensor Imaging

    PubMed Central

    Aksoy, Murat; Forman, Christoph; Straka, Matus; Skare, Stefan; Holdsworth, Samantha; Hornegger, Joachim; Bammer, Roland

    2011-01-01

    Head motion is a fundamental problem in brain MRI. The problem is further compounded in diffusion tensor imaging (DTI) because of long acquisition times, and the sensitivity of the tensor computation to even small misregistration. To combat motion artifacts in DTI, a novel real-time prospective motion correction method was introduced using an in-bore monovision system. The system consists of a camera mounted on the head coil and a self-encoded checkerboard marker that is attached to the patient’s forehead. Our experiments showed that optical prospective motion correction is more effective at removing motion artifacts compared to image-based retrospective motion correction. Statistical analysis revealed a significant improvement in similarity between diffusion data acquired at different time points when prospective correction was used compared to retrospective correction (p<0.001). PMID:21432898

  6. Optical correction reduces simulator sickness in a driving environment.

    PubMed

    Bridgeman, Bruce; Blaesi, Sabine; Campusano, Richard

    2014-12-01

    We propose and test a method to reduce simulator sickness. Prolonged work in driving simulators often leads to nausea and other symptoms summarized as simulator sickness. Visual/vestibular mismatches are a frequently addressed cause; we investigate another possibility, mismatch between actual distance to a screen and depicted distances in the simulator's graphics. Drivers negotiated a figure-8 course in a photorealistic simulator. They reported discomfort and vection every 10 minutes up to 40 min. A correction group wore optometric test frames with + 1.75 diopter lenses and prisms to converge parallel lines of sight on a screen 56 cm from the driver's eyes, preserving the normal accommodative convergence-to-accommodation (AC/A) ratio. A control group wore neutral lenses in the same test frames. In other experiments head tilt simulated vestibular experience on curves. The optical correction significantly reduced simulator sickness measured on a 10-point discomfort scale, where I is no problem and 10 is about to vomit. Vection ratings were similar for correction and control groups. Some drivers failed to complete the course because of high discomfort ratings, crashes, or other causes. Head tilt in the direction opposite each curve while wearing the correction did not affect discomfort, while tilt in the same direction as each curve made simulator sickness worse. Optical corrections can significantly reduce simulator sickness, though they do not eliminate it. Head tilt while driving is not recommended. Application: Simple optical corrections in spectacle frames, easily purchased at any optical facility, should be used in screen-based driving simulators. Strength of the correction depends on distance from the driver to the screen.

  7. Experiment of space laser communication based on adaptive optics system

    NASA Astrophysics Data System (ADS)

    Xiong, Zhun; Ai, Yong; Chen, Jin; Chen, Erhu; Wu, Yunyun

    2011-11-01

    The adaptive optics(AO) technology is adopted in the demo experiment of indoor space laser communication system. In transmit terminal, 650nm beacon and 1550nm signal beam with OOK modulation propagate through atmosphere turbulence simulator which simulate the laser's propagation in real atmosphere conditions. The AO system corrects real time wave-front information. In received terminal, signal intensity is collected and the bit error rate(BER) is recorded. Experiment data is obtained in different status of the AO system. Combined with signal beam wave-front reconstructed and image quality of far-field laser spot, results show that the received average power of communication system increases when using the AO system to correct low-order aberration. Also it rejects signal fading and makes the BER lower.

  8. Experiment of space laser communication based on adaptive optics system

    NASA Astrophysics Data System (ADS)

    Xiong, Zhun; Ai, Yong; Chen, Jin; Chen, Erhu; Wu, Yunyun

    2012-02-01

    The adaptive optics(AO) technology is adopted in the demo experiment of indoor space laser communication system. In transmit terminal, 650nm beacon and 1550nm signal beam with OOK modulation propagate through atmosphere turbulence simulator which simulate the laser's propagation in real atmosphere conditions. The AO system corrects real time wave-front information. In received terminal, signal intensity is collected and the bit error rate(BER) is recorded. Experiment data is obtained in different status of the AO system. Combined with signal beam wave-front reconstructed and image quality of far-field laser spot, results show that the received average power of communication system increases when using the AO system to correct low-order aberration. Also it rejects signal fading and makes the BER lower.

  9. Speckle image reconstruction of the adaptive optics solar images.

    PubMed

    Zhong, Libo; Tian, Yu; Rao, Changhui

    2014-11-17

    Speckle image reconstruction, in which the speckle transfer function (STF) is modeled as annular distribution according to the angular dependence of adaptive optics (AO) compensation and the individual STF in each annulus is obtained by the corresponding Fried parameter calculated from the traditional spectral ratio method, is used to restore the solar images corrected by AO system in this paper. The reconstructions of the solar images acquired by a 37-element AO system validate this method and the image quality is improved evidently. Moreover, we found the photometric accuracy of the reconstruction is field dependent due to the influence of AO correction. With the increase of angular separation of the object from the AO lockpoint, the relative improvement becomes approximately more and more effective and tends to identical in the regions far away the central field of view. The simulation results show this phenomenon is mainly due to the disparity of the calculated STF from the real AO STF with the angular dependence.

  10. The Adaptive Optics Summer School Laboratory Activities

    NASA Astrophysics Data System (ADS)

    Ammons, S. M.; Severson, S.; Armstrong, J. D.; Crossfield, I.; Do, T.; Fitzgerald, M.; Harrington, D.; Hickenbotham, A.; Hunter, J.; Johnson, J.; Johnson, L.; Li, K.; Lu, J.; Maness, H.; Morzinski, K.; Norton, A.; Putnam, N.; Roorda, A.; Rossi, E.; Yelda, S.

    2010-12-01

    Adaptive Optics (AO) is a new and rapidly expanding field of instrumentation, yet astronomers, vision scientists, and general AO practitioners are largely unfamiliar with the root technologies crucial to AO systems. The AO Summer School (AOSS), sponsored by the Center for Adaptive Optics, is a week-long course for training graduate students and postdoctoral researchers in the underlying theory, design, and use of AO systems. AOSS participants include astronomers who expect to utilize AO data, vision scientists who will use AO instruments to conduct research, opticians and engineers who design AO systems, and users of high-bandwidth laser communication systems. In this article we describe new AOSS laboratory sessions implemented in 2006-2009 for nearly 250 students. The activity goals include boosting familiarity with AO technologies, reinforcing knowledge of optical alignment techniques and the design of optical systems, and encouraging inquiry into critical scientific questions in vision science using AO systems as a research tool. The activities are divided into three stations: Vision Science, Fourier Optics, and the AO Demonstrator. We briefly overview these activities, which are described fully in other articles in these conference proceedings (Putnam et al., Do et al., and Harrington et al., respectively). We devote attention to the unique challenges encountered in the design of these activities, including the marriage of inquiry-like investigation techniques with complex content and the need to tune depth to a graduate- and PhD-level audience. According to before-after surveys conducted in 2008, the vast majority of participants found that all activities were valuable to their careers, although direct experience with integrated, functional AO systems was particularly beneficial.

  11. Imaging Radio Galaxies with Adaptive Optics

    NASA Astrophysics Data System (ADS)

    de Vries, W. H.; van Breugel, W. J. M.; Quirrenbach, A.; Roberts, J.; Fidkowski, K.

    2000-12-01

    We present 42 milli-arcsecond resolution Adaptive Optics near-infrared images of 3C 452 and 3C 294, two powerful radio galaxies at z=0.081 and z=1.79 respectively, obtained with the NIRSPEC/SCAM+AO instrument on the Keck telescope. The observations provide unprecedented morphological detail of radio galaxy components like nuclear dust-lanes, off-centered or binary nuclei, and merger induced starforming structures; all of which are key features in understanding galaxy formation and the onset of powerful radio emission. Complementary optical HST imaging data are used to construct high resolution color images, which, for the first time, have matching optical and near-IR resolutions. Based on these maps, the extra-nuclear structural morphologies and compositions of both galaxies are discussed. Furthermore, detailed brightness profile analysis of 3C 452 allows a direct comparison to a large literature sample of nearby ellipticals, all of which have been observed in the optical and near-IR by HST. Both the imaging data and the profile information on 3C 452 are consistent with it being a relative diminutive and well-evolved elliptical, in stark contrast to 3C 294 which seems to be in its initial formation throes with an active AGN off-centered from the main body of the galaxy. These results are discussed further within the framework of radio galaxy triggering and the formation of massive ellipticals. The work of WdV and WvB was performed under the auspices of the U.S. Department of Energy by University of California Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48. The work at UCSD has been supported by the NSF Science and Technology Center for Adaptive Optics, under agreement No. AST-98-76783.

  12. Development of laser guide stars and adaptive optics for large astronomical telescopes

    SciTech Connect

    Max, C.E.; Avicola, K.; Bissinger, H.; Brase, J.M.; Gavel, D.T.; Friedman, H.; Morris, J.R.; Olivier, S.S.; Rapp, D.; Salmon, J.T.; Waltjen, K.

    1992-06-29

    We describe a feasibility experiment to demonstrate high-order adaptive optics using a sodium-layer laser guide star. We use the copper-vapor-pumped dye lasers developed for LLNL`s atomic Vapor Laser Isotope Separation program to create the laser guide star. Closed-loop adaptive corrections will be accomplished using a 69-subaperture adaptive optics system on a one-meter telescope at LLNL. The laser bream is projected upwards from a beam director approximately 5 meters away from the main telescope, and is expected to form a spot 1-2 meters in diameter at the atmospheric sodium layer (95 km altitude). We describe the overall system architecture and adaptive optics components, and analyze the expected performance. Our long-term goal is to develop sodium-layer laser guide stars and adaptive optics for large astronomical telescopes. We discuss preliminary design trade-offs for the Keck Telescope at Mauna Kea.

  13. Development of laser guide stars and adaptive optics for large astronomical telescopes

    SciTech Connect

    Max, C.E.; Avicola, K.; Bissinger, H.; Brase, J.M.; Gavel, D.T.; Friedman, H.; Morris, J.R.; Olivier, S.S.; Rapp, D.; Salmon, J.T.; Waltjen, K.

    1992-06-29

    We describe a feasibility experiment to demonstrate high-order adaptive optics using a sodium-layer laser guide star. We use the copper-vapor-pumped dye lasers developed for LLNL's atomic Vapor Laser Isotope Separation program to create the laser guide star. Closed-loop adaptive corrections will be accomplished using a 69-subaperture adaptive optics system on a one-meter telescope at LLNL. The laser bream is projected upwards from a beam director approximately 5 meters away from the main telescope, and is expected to form a spot 1-2 meters in diameter at the atmospheric sodium layer (95 km altitude). We describe the overall system architecture and adaptive optics components, and analyze the expected performance. Our long-term goal is to develop sodium-layer laser guide stars and adaptive optics for large astronomical telescopes. We discuss preliminary design trade-offs for the Keck Telescope at Mauna Kea.

  14. Adaptive Optics for Ground-based Hypertelescopes

    NASA Astrophysics Data System (ADS)

    Labeyrie, Antoine; Borkowski, Virginie; Martinache, Franz; Arnold, Luc; Dejonghe, Julien; Riaud, Pierre; Lardière, Olivier; Gillet, Sophie

    Hypertelescopes, which may be considered as "exploded" versions of an OWL or other ELT, can in principle reach aperture sizes exceeding 1-10 kilometers. They utilize a multi-aperture diluted array and produce direct images through a densified exit pupil. Variants with a flat (the hypertelescope version of the Optical Very Large Array) or spherical (Arecibo-like CARLINA concept) site are studied. Adaptive optics is a major requirement for obtaining direct snapshot images at high resolution. Ways of adapting the Shack-Hartmann and curvature sensing methods for diluted apertures have been proposed. We explore the feasibility of applying 3D Fourier transforms to the dispersed images for extracting the path difference and phase information. With a spherical site, the numerous stars observable simultaneously at large angles can presumably help in the way of atmospheric tomography. Similar optics, equipped with a coronagraph, is proposed to NASA for the Terrestrial Planet Finder. The 3D Fourier transform algorithm also appears applicable in this case for fringe acquisition and π/100 phasing.

  15. Adaptive Optics Imaging in Laser Pointer Maculopathy.

    PubMed

    Sheyman, Alan T; Nesper, Peter L; Fawzi, Amani A; Jampol, Lee M

    2016-08-01

    The authors report multimodal imaging including adaptive optics scanning laser ophthalmoscopy (AOSLO) (Apaeros retinal image system AOSLO prototype; Boston Micromachines Corporation, Boston, MA) in a case of previously diagnosed unilateral acute idiopathic maculopathy (UAIM) that demonstrated features of laser pointer maculopathy. The authors also show the adaptive optics images of a laser pointer maculopathy case previously reported. A 15-year-old girl was referred for the evaluation of a maculopathy suspected to be UAIM. The authors reviewed the patient's history and obtained fluorescein angiography, autofluorescence, optical coherence tomography, infrared reflectance, and AOSLO. The time course of disease and clinical examination did not fit with UAIM, but the linear pattern of lesions was suspicious for self-inflicted laser pointer injury. This was confirmed on subsequent questioning of the patient. The presence of linear lesions in the macula that are best highlighted with multimodal imaging techniques should alert the physician to the possibility of laser pointer injury. AOSLO further characterizes photoreceptor damage in this condition. [Ophthalmic Surg Lasers Imaging Retina. 2016;47:782-785.]. Copyright 2016, SLACK Incorporated.

  16. The ESO Adaptive Optics Facility under Test

    NASA Astrophysics Data System (ADS)

    Arsenault, Robin; Madec, Pierre-Yves; Paufique, Jerome; La Penna, Paolo; Stroebele, Stefan; Vernet, Elise; Pirard, Jean-François; Hackenberg, Wolfgang; Kuntschner, Harald; Kolb, Johann; Muller, Nicolas; Le Louarn, Miska; Amico, Paola; Hubin, Norbert; Lizon, Jean-Louis; Ridings, Rob; Abad, Jose; Fischer, Gert; Heinz, Volker; Kiekebusch, Mario; Argomedo, Javier; Conzelmann, Ralf; Tordo, Sebastien; Donaldson, Rob; Soenke, Christian; Duhoux, Philippe; Fedrigo, Enrico; Delabre, Bernard; Jost, Andrea; Duchateau, Michel; Downing, Mark; Moreno, Javier; Manescau, Antonio; Bonaccini Calia, Domenico; Quattri, Marco; Dupuy, Christophe; Guidolin, Ivan; Comin, Mauro; Guzman, Ronald; Buzzoni, Bernard; Quentin, Jutta; Lewis, Steffan; Jolley, Paul; Kraus, Max; Pfrommer, Thomas; Garcia-Rissmann, Aurea; Biasi, Roberto; Gallieni, Daniele; Stuik, Remko

    2013-12-01

    The Adaptive Optics Facility project has received most of its subsystems in Garching and the ESO Integration Hall has become the central operation location for the next phase of the project. The main test bench ASSIST and the 2nd Generation M2-Unit (hosting the Deformable Secondary Mirror) have been granted acceptance late 2012. The DSM will now undergo a series of tests on ASSIST to qualify its optical performance which launches the System Test Phase of the AOF. The tests will validate the AO modules operation with the DSM: first the GRAAL adaptive optics module for Hawk-I in natural guide star AO mode on-axis and then its Ground Layer AO mode. This will be followed by the GALACSI (for MUSE) Wide-Field-Mode (GLAO) and then the more challenging Narrow-Field-Mode (LTAO). We will report on the status of the subsystems at the time of the conference but also on the performance of the delivered ASSIST test bench, the DSM and the 20 Watt Sodium fiber Laser pre-production unit which has validated all specifications before final manufacturing of the serial units. We will also present some considerations and tools to ensure an efficient operation of the Facility in Paranal.

  17. BP artificial neural network based wave front correction for sensor-less free space optics communication

    NASA Astrophysics Data System (ADS)

    Li, Zhaokun; Zhao, Xiaohui

    2017-02-01

    The sensor-less adaptive optics (AO) is one of the most promising methods to compensate strong wave front disturbance in free space optics communication (FSO). The back propagation (BP) artificial neural network is applied for the sensor-less AO system to design a distortion correction scheme in this study. This method only needs one or a few online measurements to correct the wave front distortion compared with other model-based approaches, by which the real-time capacity of the system is enhanced and the Strehl Ratio (SR) is largely improved. Necessary comparisons in numerical simulation with other model-based and model-free correction methods proposed in Refs. [6,8,9,10] are given to show the validity and advantage of the proposed method.

  18. Speckle statistics in adaptive optics images at visible wavelengths

    NASA Astrophysics Data System (ADS)

    Stangalini, Marco; Pedichini, Fernando; Ambrosino, Filippo; Centrone, Mauro; Del Moro, Dario

    2016-07-01

    Residual speckles in adaptive optics (AO) images represent a well known limitation to the achievement of the contrast needed for faint stellar companions detection. Speckles in AO imagery can be the result of either residual atmospheric aberrations, not corrected by the AO, or slowly evolving aberrations induced by the optical system. In this work we take advantage of new high temporal cadence (1 ms) data acquired by the SHARK forerunner experiment at the Large Binocular Telescope (LBT), to characterize the AO residual speckles at visible waveleghts. By means of an automatic identification of speckles, we study the main statistical properties of AO residuals. In addition, we also study the memory of the process, and thus the clearance time of the atmospheric aberrations, by using information Theory. These information are useful for increasing the realism of numerical simulations aimed at assessing the instrumental performances, and for the application of post-processing techniques on AO imagery.

  19. Fourier transform digital holographic adaptive optics imaging system

    PubMed Central

    Liu, Changgeng; Yu, Xiao; Kim, Myung K.

    2013-01-01

    A Fourier transform digital holographic adaptive optics imaging system and its basic principles are proposed. The CCD is put at the exact Fourier transform plane of the pupil of the eye lens. The spherical curvature introduced by the optics except the eye lens itself is eliminated. The CCD is also at image plane of the target. The point-spread function of the system is directly recorded, making it easier to determine the correct guide-star hologram. Also, the light signal will be stronger at the CCD, especially for phase-aberration sensing. Numerical propagation is avoided. The sensor aperture has nothing to do with the resolution and the possibility of using low coherence or incoherent illumination is opened. The system becomes more efficient and flexible. Although it is intended for ophthalmic use, it also shows potential application in microscopy. The robustness and feasibility of this compact system are demonstrated by simulations and experiments using scattering objects. PMID:23262541

  20. Limits on Lyot coronagraphy with AEOS adaptive optics telescope

    NASA Astrophysics Data System (ADS)

    Sivaramakrishnan, A.; Makidon, R. B.; Lloyd, J. P.; Oppenheimer, B. R.; Graham, J. R.; Kalas, P. G.; Macintosh, B. A.; Max, C. E.; Baudoz, P.; Kuhn, J.; Potter, D.

    2001-05-01

    The 3.6m Air Force Electo-Optical System telescope is the most advanced adaptive optics (AO) system available to the astronomical community. Its 941-channel AO system feeds several stable instrument platforms at a very slow Cassegrain focus. Its small secondary obscuration makes it ideal for AO coronagraphy. We present estimates of current and theoretical limits on dynamic range using a diffraction-limited Lyot coronagraph optimized for the 3.6m AEOS telescope. We incorporate both the effects of imperfect AO correction of the wavefront and telescope guiding errors in our simulations. We calculate limits on faint companion detection (in the H-band) for this system at separations between 0.36 and 1.3 arcseconds.

  1. Multiwavelength adaptive optical fundus camera and continuous retinal imaging

    NASA Astrophysics Data System (ADS)

    Yang, Han-sheng; Li, Min; Dai, Yun; Zhang, Yu-dong

    2009-08-01

    We have constructed a new version of retinal imaging system with chromatic aberration concerned and the correlated optical design presented in this article is based on the adaptive optics fundus camera modality. In our system, three typical wavelengths of 550nm, 650nm and 480nm were selected. Longitude chromatic aberration (LCA) was traded off to a minimum using ZEMAX program. The whole setup was actually evaluated on human subjects and retinal imaging was performed at continuous frame rates up to 20 Hz. Raw videos at parafovea locations were collected, and cone mosaics as well as retinal vasculature were clearly observed in one single clip. In addition, comparisons under different illumination conditions were also made to confirm our design. Image contrast and the Strehl ratio were effectively increased after dynamic correction of high order aberrations. This system is expected to bring new applications in functional imaging of human retina.

  2. Fourier transform digital holographic adaptive optics imaging system.

    PubMed

    Liu, Changgeng; Yu, Xiao; Kim, Myung K

    2012-12-10

    A Fourier transform digital holographic adaptive optics imaging system and its basic principles are proposed. The CCD is put at the exact Fourier transform plane of the pupil of the eye lens. The spherical curvature introduced by the optics except the eye lens itself is eliminated. The CCD is also at image plane of the target. The point-spread function of the system is directly recorded, making it easier to determine the correct guide-star hologram. Also, the light signal will be stronger at the CCD, especially for phase-aberration sensing. Numerical propagation is avoided. The sensor aperture has nothing to do with the resolution and the possibility of using low coherence or incoherent illumination is opened. The system becomes more efficient and flexible. Although it is intended for ophthalmic use, it also shows potential application in microscopy. The robustness and feasibility of this compact system are demonstrated by simulations and experiments using scattering objects.

  3. Adaptive optics retinal scanner for one-micrometer light source.

    PubMed

    Kurokawa, Kazuhiro; Tamada, Daiki; Makita, Shuichi; Yasuno, Yoshiaki

    2010-01-18

    We developed an adaptive optics (AO) retinal scanner by using a light source with a center wavelength of 1-microm. In a recent study on optical coherence tomography (OCT), it was proved that 1-microm light provided higher image contrast of deep region of the eye than 840-nm light. Further, high lateral resolution retinal images were obtained with AO. In this study, we performed measurements on two normal subjects in the AO-SLO mode and analyzed its performance toward developing the AO-OCT. With AO correction, we found that the residual RMS wavefront error of ocular aberration was less than 0.1 microm. We also found that the AO retinal scanner in the AO-SLO mode enabled enhanced observation of photoreceptor mosaic.

  4. Correction of Phase Distortion by Nonlinear Optical Techniques

    DTIC Science & Technology

    1979-03-01

    experimentally that the fraction of nonconju- gato return when using SBS for correction is below measurement limits. • Developed systems applications...saturation 2 properties at optical power densities of less than 500 mW/cm" at 488 nm + 2 (Ar laser) and at slightly higher powers (^ 2 W/cm ) at SOI nm

  5. Adaptive optics wide-field microscopy using direct wavefront sensing

    NASA Astrophysics Data System (ADS)

    Azucena, Oscar A.

    I present a new technique for measuring and correcting the wavefront aberrations introduced when imaging through thick biological samples. The aberrations are due to the inhomogeneous nature of the biological samples and immersion media. In particular are the small changes in the index of refraction from point to point as the light travels through the thick tissue. The technique uses existing Adaptive Optics (AO) technology and incorporates it into a wide-field microscope. The apparatus consists of a Shack-Hartmann Wavefront Sensor (SHWS) to measure wavefronts emitted by a fluorescent light source within the biological tissue. A Micro-Electro-Mechanical System (MEMS) deformable mirror (DM) is used to correct the aberrations via a feedback control system. The advantage of this method is that the reference source can be the object that is being imaged or a spectrally separate object in the sample, the only requirements being that the reference source is sufficiently bright and has a small spatial extension when imaged by the SHWS. I will describe in detail the developments of the Adaptive Optics Wide-field Microscope (AOWFM) and its performance.

  6. NAOMI: a new adaptive optics module for interferometry

    NASA Astrophysics Data System (ADS)

    Aller-Carpentier, Emmanuel; Dorn, Reinhold; Delplancke-Stroebele, Francoise; Paufique, Jérome; Andolfato, Luigi; Dupuy, Christophe; Fedrigo, Enrico; Gitton, Philippe; Jolley, Paul; Lilley, Paul; Le Louarn, Miska; Duc, Than P.; Rakich, Andrew; Reyes, Javier; Ridings, Robert; Woillez, Julien; Marchetti, Enrico; Suarez Valles, Marcos; Schmid, Christian; Hubin, Norbert; Berger, Jean-Philippe; Quentin, Jutta; Delabre, Bernard-Alexis; McLay, Stewart; Pasquini, Luca

    2014-07-01

    The New Adaptive Optics Module for Interferometry (NAOMI)1 is the future low order adaptive optics system to be developed for and installed at the ESO 1.8 m Auxiliary Telescopes (ATs). The four ATs2 are designed for interferometry which they are essentially dedicated for. Currently the AT's are equipped with a fast, visible tip-tilt sensor called STRAP3 (System for Tip/tilt Removal with Avalanche Photodiodes), and the corrections are applied through a tip-tilt mirror. The goal is to equip all four ATs with a low-order Shack-Hartmann system operating in the visible for the VLTI dual feed light beams in place of the current tip-tilt correction. Because of the limited size of the ATs (1.8m diameter), a low-order system will be sufficient. The goal is to concentrate the energy into a coherent core and to make the encircled energy (into the single mode fibers) stable and less dependent on the atmospheric conditions in order to increase the sensitivity of the interferometric instruments. The system will use the ESO real time computer platform Sparta-light as the baseline. This paper presents the preliminary design concept and outlines the benefits to current and future VLTI instruments.

  7. Live imaging using adaptive optics with fluorescent protein guide-stars

    PubMed Central

    Tao, Xiaodong; Crest, Justin; Kotadia, Shaila; Azucena, Oscar; Chen, Diana C.; Sullivan, William; Kubby, Joel

    2012-01-01

    Spatially and temporally dependent optical aberrations induced by the inhomogeneous refractive index of live samples limit the resolution of live dynamic imaging. We introduce an adaptive optical microscope with a direct wavefront sensing method using a Shack-Hartmann wavefront sensor and fluorescent protein guide-stars for live imaging. The results of imaging Drosophila embryos demonstrate its ability to correct aberrations and achieve near diffraction limited images of medial sections of large Drosophila embryos. GFP-polo labeled centrosomes can be observed clearly after correction but cannot be observed before correction. Four dimensional time lapse images are achieved with the correction of dynamic aberrations. These studies also demonstrate that the GFP-tagged centrosome proteins, Polo and Cnn, serve as excellent biological guide-stars for adaptive optics based microscopy. PMID:22772285

  8. Live imaging using adaptive optics with fluorescent protein guide-stars.

    PubMed

    Tao, Xiaodong; Crest, Justin; Kotadia, Shaila; Azucena, Oscar; Chen, Diana C; Sullivan, William; Kubby, Joel

    2012-07-02

    Spatially and temporally dependent optical aberrations induced by the inhomogeneous refractive index of live samples limit the resolution of live dynamic imaging. We introduce an adaptive optical microscope with a direct wavefront sensing method using a Shack-Hartmann wavefront sensor and fluorescent protein guide-stars for live imaging. The results of imaging Drosophila embryos demonstrate its ability to correct aberrations and achieve near diffraction limited images of medial sections of large Drosophila embryos. GFP-polo labeled centrosomes can be observed clearly after correction but cannot be observed before correction. Four dimensional time lapse images are achieved with the correction of dynamic aberrations. These studies also demonstrate that the GFP-tagged centrosome proteins, Polo and Cnn, serve as excellent biological guide-stars for adaptive optics based microscopy.

  9. High-accuracy wavefront control for retinal imaging with Adaptive-Influence-Matrix Adaptive Optics

    PubMed Central

    Zou, Weiyao; Burns, Stephen A.

    2010-01-01

    We present an iterative technique for improving adaptive optics (AO) wavefront correction for retinal imaging, called the Adaptive-Influence-Matrix (AIM) method. This method is based on the fact that the deflection-to-voltage relation of common deformable mirrors used in AO are nonlinear, and the fact that in general the wavefront errors of the eye can be considered to be composed of a static, non-zero wavefront error (such as the defocus and astigmatism), and a time-varying wavefront error. The aberrated wavefront is first corrected with a generic influence matrix, providing a mirror compensation figure for the static wavefront error. Then a new influence matrix that is more accurate for the specific static wavefront error is calibrated based on the mirror compensation figure. Experimental results show that with the AIM method the AO wavefront correction accuracy can be improved significantly in comparison to the generic AO correction. The AIM method is most useful in AO modalities where there are large static contributions to the wavefront aberrations. PMID:19997241

  10. Harnessing Adaptive Optics for Space Debris Collision Mitigation

    NASA Astrophysics Data System (ADS)

    Zovaro, A.; Bennet, F.; Copeland, M.; Rigaut, F.; d'Orgeville, C.; Grosse, D.

    2016-09-01

    Human kind's continued use of space depends upon minimising the build-up of debris in low Earth-orbit (LEO). Preventing collisions between satellites and debris is essential given that a single collision can generate thousands of new debris objects. However, in-orbit manoeuvring of satellites is extremely expensive and shortens their operational life. Adjusting the orbits of debris objects instead of satellites would shift the responsibility of collision avoidance away from satellite operators altogether, thereby offering a superior solution. The Research School of Astronomy and Astrophysics at the Australian National University, partnered with Electro Optic Systems (EOS) Space Systems, Lockheed Martin Corporation and the Space Environment Research Centre (SERC) Limited, are developing the Adaptive Optics Tracking and Pushing (AOTP) system. AOTP will be used to perturb the orbits of debris objects using photon pressure from a 10 kW IR laser beam launched from the 1.8 m telescope at Mount. Stromlo Observatory, Australia. Initial simulations predict that AOTP will be able to displace debris objects 10 cm in size by up to 100 m with several overhead passes. An operational demonstrator is planned for 2019. Turbulence will distort the laser beam as it propagates through the atmosphere, resulting in a lower photon flux on the target and reduced pointing accuracy. To mitigate these effects, adaptive optics (AO) will be used to apply wavefront correction to the beam prior to launch. A unique challenge in designing the AO system arises from the high slew rate needed to track objects in LEO, which in turn requires laser guide star AO for satisfactory wavefront correction. The optical design and results from simulations of estimated performance of AOTP will be presented. In particular, design considerations associated with the high-power laser will be detailed.

  11. In vivo cellular visualization of the human retina using optical coherence tomography and adaptive optics

    SciTech Connect

    Olivier, S S; Jones, S M; Chen, D C; Zawadzki, R J; Choi, S S; Laut, S P; Werner, J S

    2006-01-05

    Optical coherence tomography (OCT) sees the human retina sharply with adaptive optics. In vivo cellular visualization of the human retina at micrometer-scale resolution is possible by enhancing Fourier-domain optical-coherence tomography with adaptive optics, which compensate for the eye's optical aberrations.

  12. High-Resolution Adaptive Optics Test-Bed for Vision Science

    SciTech Connect

    Wilks, S C; Thomspon, C A; Olivier, S S; Bauman, B J; Barnes, T; Werner, J S

    2001-09-27

    We discuss the design and implementation of a low-cost, high-resolution adaptive optics test-bed for vision research. It is well known that high-order aberrations in the human eye reduce optical resolution and limit visual acuity. However, the effects of aberration-free eyesight on vision are only now beginning to be studied using adaptive optics to sense and correct the aberrations in the eye. We are developing a high-resolution adaptive optics system for this purpose using a Hamamatsu Parallel Aligned Nematic Liquid Crystal Spatial Light Modulator. Phase-wrapping is used to extend the effective stroke of the device, and the wavefront sensing and wavefront correction are done at different wavelengths. Issues associated with these techniques will be discussed.

  13. Wave optics propagation code for multiconjugate adaptive optics

    NASA Astrophysics Data System (ADS)

    Ellerbroek, Brent L.; Cochran, Gregory

    2002-02-01

    We describe the purpose, theory, implementation and sample results of a wave optics propagation simulation developed to study multi-conjugate adaptive optics (MCAQ) for 4-10m class telescopes. This code was more specifically developed to assess the impact of diffraction effects and a variety of implementation error sources upon the performance of the Gemini-South MCAO system. These errors include: Hartmann sensing with extended and elongated laser guide stars, optical propagation effects through the optics and atmosphere, laser guide star (LGS) projection through the atmosphere, deformable mirror (DM) and wave front sensor (WFS) misregistration, and calibration for non-common path errors. The code may be run in either a wave optics or geometric propagation mode to allow the code to be anchored against linear analytical models and to explicitly evaluate the impact of diffraction effects. The code is written in MATLAB, and complete simulations of the Gemini-South MCAO design (including 3 deformable mirrors with 769 actuators, 5 LGS WFS with 1020 subapertures, 3 tip/tilt natural guide star (NGS) WFS, and 50 meter phase screens with 1/32nd meter resolution) are possible using a Pentium III but require 1 to 6 days. Sample results are presented for Gemini-South MCAO as well as simpler AO systems. Several possibilities for parallelizing the code for faster execution and the modeling of extremely large telescopes (ELT's) are discussed.

  14. Adaptive offset correction for intracortical brain-computer interfaces.

    PubMed

    Homer, Mark L; Perge, Janos A; Black, Michael J; Harrison, Matthew T; Cash, Sydney S; Hochberg, Leigh R

    2014-03-01

    Intracortical brain-computer interfaces (iBCIs) decode intended movement from neural activity for the control of external devices such as a robotic arm. Standard approaches include a calibration phase to estimate decoding parameters. During iBCI operation, the statistical properties of the neural activity can depart from those observed during calibration, sometimes hindering a user's ability to control the iBCI. To address this problem, we adaptively correct the offset terms within a Kalman filter decoder via penalized maximum likelihood estimation. The approach can handle rapid shifts in neural signal behavior (on the order of seconds) and requires no knowledge of the intended movement. The algorithm, called multiple offset correction algorithm (MOCA), was tested using simulated neural activity and evaluated retrospectively using data collected from two people with tetraplegia operating an iBCI. In 19 clinical research test cases, where a nonadaptive Kalman filter yielded relatively high decoding errors, MOCA significantly reduced these errors ( 10.6 ± 10.1% ; p < 0.05, pairwise t-test). MOCA did not significantly change the error in the remaining 23 cases where a nonadaptive Kalman filter already performed well. These results suggest that MOCA provides more robust decoding than the standard Kalman filter for iBCIs.

  15. Comparison of several stochastic parallel optimization algorithms for adaptive optics system without a wavefront sensor

    NASA Astrophysics Data System (ADS)

    Yang, Huizhen; Li, Xinyang

    2011-04-01

    Optimizing the system performance metric directly is an important method for correcting wavefront aberrations in an adaptive optics (AO) system where wavefront sensing methods are unavailable or ineffective. An appropriate "Deformable Mirror" control algorithm is the key to successful wavefront correction. Based on several stochastic parallel optimization control algorithms, an adaptive optics system with a 61-element Deformable Mirror (DM) is simulated. Genetic Algorithm (GA), Stochastic Parallel Gradient Descent (SPGD), Simulated Annealing (SA) and Algorithm Of Pattern Extraction (Alopex) are compared in convergence speed and correction capability. The results show that all these algorithms have the ability to correct for atmospheric turbulence. Compared with least squares fitting, they almost obtain the best correction achievable for the 61-element DM. SA is the fastest and GA is the slowest in these algorithms. The number of perturbation by GA is almost 20 times larger than that of SA, 15 times larger than SPGD and 9 times larger than Alopex.

  16. Progress with the lick adaptive optics system

    SciTech Connect

    Gavel, D T; Olivier, S S; Bauman, B; Max, C E; Macintosh, B

    2000-03-01

    Progress and results of observations with the Lick Observatory Laser Guide Star Adaptive Optics System are presented. This system is optimized for diffraction-limited imaging in the near infrared, 1-2 micron wavelength bands. We describe our development efforts in a number of component areas including, a redesign of the optical bench layout, the commissioning of a new infrared science camera, and improvements to the software and user interface. There is also an ongoing effort to characterize the system performance with both natural and laser guide stars and to fold this data into a refined system model. Such a model can be used to help plan future observations, for example, predicting the point-spread function as a function of seeing and guide star magnitude.

  17. Progress with the Lick adaptive optics system

    NASA Astrophysics Data System (ADS)

    Gavel, Donald T.; Olivier, Scot S.; Bauman, Brian J.; Max, Claire E.; Macintosh, Bruce A.

    2000-07-01

    Progress and results of observations with the Lick Observatory Laser Guide Star Adaptive Optics System are presented. This system is optimized for diffraction-limited imaging in the near infrared, 1 - 2 micron wavelength bands. We describe our development efforts in a number of component areas including, a redesign of the optical bench layout, the commissioning of a new infrared science camera, and improvements to the software and user interface. There is also an ongoing effort to characterize the system performance with both natural and laser guide stars and to fold this data into a refined system model. Such a model can be used to help plan future observations, for example, predicting the point-spread function as a function of seeing and guide star magnitude.

  18. Adaptive optics ophthalmologic systems using dual deformable mirrors

    SciTech Connect

    Jones, S; Olivier, S; Chen, D; Sadda, S; Joeres, S; Zawadzki, R; Werner, J S; Miller, D

    2007-02-01

    Adaptive Optics (AO) have been increasingly combined with a variety of ophthalmic instruments over the last decade to provide cellular-level, in-vivo images of the eye. The use of MEMS deformable mirrors in these instruments has recently been demonstrated to reduce system size and cost while improving performance. However, currently available MEMS mirrors lack the required range of motion for correcting large ocular aberrations, such as defocus and astigmatism. In order to address this problem, we have developed an AO system architecture that uses two deformable mirrors, in a woofer/tweeter arrangement, with a bimorph mirror as the woofer and a MEMS mirror as the tweeter. This setup provides several advantages, including extended aberration correction range, due to the large stroke of the bimorph mirror, high order aberration correction using the MEMS mirror, and additionally, the ability to ''focus'' through the retina. This AO system architecture is currently being used in four instruments, including an Optical Coherence Tomography (OCT) system and a retinal flood-illuminated imaging system at the UC Davis Medical Center, a Scanning Laser Ophthalmoscope (SLO) at the Doheny Eye Institute, and an OCT system at Indiana University. The design, operation and evaluation of this type of AO system architecture will be presented.

  19. Characterization of Adaptive Optics at Keck Observatory

    SciTech Connect

    van Dam, M A; Macintosh, B A

    2003-07-24

    In this paper, the adaptive optics (AO) system at Keck Observatory is characterized. The AO system is described in detail. The physical parameters of the lenslets, CCD and deformable mirror, the calibration procedures and the signal processing algorithms are explained. Results of sky performance tests are presented: the AO system is shown to deliver images with an average Strehl ratio of up to 0.37 at 1.59 {micro}m using a bright guide star. An error budget that is consistent with the observed image quality is presented.

  20. Task performance in astronomical adaptive optics

    NASA Astrophysics Data System (ADS)

    Barrett, Harrison H.; Myers, Kyle J.; Devaney, Nicholas; Dainty, J. C.; Caucci, Luca

    2006-06-01

    In objective or task-based assessment of image quality, figures of merit are defined by the performance of some specific observer on some task of scientific interest. This methodology is well established in medical imaging but is just beginning to be applied in astronomy. In this paper we survey the theory needed to understand the performance of ideal or ideal-linear (Hotelling) observers on detection tasks with adaptive-optical data. The theory is illustrated by discussing its application to detection of exoplanets from a sequence of short-exposure images.

  1. Adaptive Holographic Fiber-Optic Interferometer

    NASA Astrophysics Data System (ADS)

    Kozhevnikov, Nikolai M.; Lipovskaya, Margarita J.

    1990-04-01

    Interaction of phase-modulated light beams in photorefractive local inertial responce media was analysed. Interaction of this type allows to registrate phase-modulated signals adaptively under low frequency phase disturbtion. The experiments on multimode fiber-optic interferometer with demodulation element based on photorefractive bacteriorhodopsin-doped polimer film are described. As the writing of dynamic phase hologram is an inertial process the signal fluctuations with the frequencies up to 100 Hz can be canceled. The hologram efficiencies are enough to registrate high frequency phase shifts ~10-4 radn.

  2. In vivo imaging of human photoreceptor mosaic with wavefront sensorless adaptive optics optical coherence tomography

    PubMed Central

    Wong, Kevin S. K.; Jian, Yifan; Cua, Michelle; Bonora, Stefano; Zawadzki, Robert J.; Sarunic, Marinko V.

    2015-01-01

    Wavefront sensorless adaptive optics optical coherence tomography (WSAO-OCT) is a novel imaging technique for in vivo high-resolution depth-resolved imaging that mitigates some of the challenges encountered with the use of sensor-based adaptive optics designs. This technique replaces the Hartmann Shack wavefront sensor used to measure aberrations with a depth-resolved image-driven optimization algorithm, with the metric based on the OCT volumes acquired in real-time. The custom-built ultrahigh-speed GPU processing platform and fast modal optimization algorithm presented in this paper was essential in enabling real-time, in vivo imaging of human retinas with wavefront sensorless AO correction. WSAO-OCT is especially advantageous for developing a clinical high-resolution retinal imaging system as it enables the use of a compact, low-cost and robust lens-based adaptive optics design. In this report, we describe our WSAO-OCT system for imaging the human photoreceptor mosaic in vivo. We validated our system performance by imaging the retina at several eccentricities, and demonstrated the improvement in photoreceptor visibility with WSAO compensation. PMID:25780747

  3. In vivo imaging of human photoreceptor mosaic with wavefront sensorless adaptive optics optical coherence tomography.

    PubMed

    Wong, Kevin S K; Jian, Yifan; Cua, Michelle; Bonora, Stefano; Zawadzki, Robert J; Sarunic, Marinko V

    2015-02-01

    Wavefront sensorless adaptive optics optical coherence tomography (WSAO-OCT) is a novel imaging technique for in vivo high-resolution depth-resolved imaging that mitigates some of the challenges encountered with the use of sensor-based adaptive optics designs. This technique replaces the Hartmann Shack wavefront sensor used to measure aberrations with a depth-resolved image-driven optimization algorithm, with the metric based on the OCT volumes acquired in real-time. The custom-built ultrahigh-speed GPU processing platform and fast modal optimization algorithm presented in this paper was essential in enabling real-time, in vivo imaging of human retinas with wavefront sensorless AO correction. WSAO-OCT is especially advantageous for developing a clinical high-resolution retinal imaging system as it enables the use of a compact, low-cost and robust lens-based adaptive optics design. In this report, we describe our WSAO-OCT system for imaging the human photoreceptor mosaic in vivo. We validated our system performance by imaging the retina at several eccentricities, and demonstrated the improvement in photoreceptor visibility with WSAO compensation.

  4. Optical mapping near-eye three-dimensional display with correct focus cues

    NASA Astrophysics Data System (ADS)

    Cui, Wei; Gao, Liang

    2017-07-01

    We present an optical mapping near-eye (OMNI) three-dimensional display method for wearable devices. By dividing a display screen into different sub-panels and optically mapping them to various depths, we create a multiplane volumetric image with correct focus cues for depth perception. The resultant system can drive the eye's accommodation to the distance that is consistent with binocular stereopsis, thereby alleviating the vergence-accommodation conflict, the primary cause for eye fatigue and discomfort. Compared with the previous methods, the OMNI display offers prominent advantages in adaptability, image dynamic range, and refresh rate.

  5. Superpenetration optical microscopy by iterative multiphoton adaptive compensation technique

    PubMed Central

    Tang, Jianyong; Germain, Ronald N.; Cui, Meng

    2012-01-01

    Biological tissues are rarely transparent, presenting major challenges for deep tissue optical microscopy. The achievable imaging depth is fundamentally limited by wavefront distortions caused by aberration and random scattering. Here, we report an iterative wavefront compensation technique that takes advantage of the nonlinearity of multiphoton signals to determine and compensate for these distortions and to focus light inside deep tissues. Different from conventional adaptive optics methods, this technique can rapidly measure highly complicated wavefront distortions encountered in deep tissue imaging and provide compensations for not only aberration but random scattering. The technique is tested with a variety of highly heterogeneous biological samples including mouse brain tissue, skull, and lymph nodes. We show that high quality three-dimensional imaging can be realized at depths beyond the reach of conventional multiphoton microscopy and adaptive optics methods, albeit over restricted distances for a given correction. Moreover, the required laser excitation power can be greatly reduced in deep tissues, deviating from the power requirement of ballistic light excitation and thus significantly reducing photo damage to the biological tissue. PMID:22586078

  6. Optics measurement and correction for the Relativistic Heavy Ion Collider

    NASA Astrophysics Data System (ADS)

    Shen, Xiaozhe

    The quality of beam optics is of great importance for the performance of a high energy accelerator like the Relativistic Heavy Ion Collider (RHIC). The turn-by-turn (TBT) beam position monitor (BPM) data can be used to derive beam optics. However, the accuracy of the derived beam optics is often limited by the performance and imperfections of instruments as well as measurement methods and conditions. Therefore, a robust and model-independent data analysis method is highly desired to extract noise-free information from TBT BPM data. As a robust signal-processing technique, an independent component analysis (ICA) algorithm called second order blind identification (SOBI) has been proven to be particularly efficient in extracting physical beam signals from TBT BPM data even in the presence of instrument's noise and error. We applied the SOBI ICA algorithm to RHIC during the 2013 polarized proton operation to extract accurate linear optics from TBT BPM data of AC dipole driven coherent beam oscillation. From the same data, a first systematic estimation of RHIC BPM noise performance was also obtained by the SOBI ICA algorithm, and showed a good agreement with the RHIC BPM configurations. Based on the accurate linear optics measurement, a beta-beat response matrix correction method and a scheme of using horizontal closed orbit bumps at sextupoles for arc beta-beat correction were successfully applied to reach a record-low beam optics error at RHIC. This thesis presents principles of the SOBI ICA algorithm and theory as well as experimental results of optics measurement and correction at RHIC.

  7. Adaptive optics at the Subaru telescope: current capabilities and development

    NASA Astrophysics Data System (ADS)

    Guyon, Olivier; Hayano, Yutaka; Tamura, Motohide; Kudo, Tomoyuki; Oya, Shin; Minowa, Yosuke; Lai, Olivier; Jovanovic, Nemanja; Takato, Naruhisa; Kasdin, Jeremy; Groff, Tyler; Hayashi, Masahiko; Arimoto, Nobuo; Takami, Hideki; Bradley, Colin; Sugai, Hajime; Perrin, Guy; Tuthill, Peter; Mazin, Ben

    2014-08-01

    Current AO observations rely heavily on the AO188 instrument, a 188-elements system that can operate in natural or laser guide star (LGS) mode, and delivers diffraction-limited images in near-IR. In its LGS mode, laser light is transported from the solid state laser to the launch telescope by a single mode fiber. AO188 can feed several instruments: the infrared camera and spectrograph (IRCS), a high contrast imaging instrument (HiCIAO) or an optical integral field spectrograph (Kyoto-3DII). Adaptive optics development in support of exoplanet observations has been and continues to be very active. The Subaru Coronagraphic Extreme-AO (SCExAO) system, which combines extreme-AO correction with advanced coronagraphy, is in the commissioning phase, and will greatly increase Subaru Telescope's ability to image and study exoplanets. SCExAO currently feeds light to HiCIAO, and will soon be combined with the CHARIS integral field spectrograph and the fast frame MKIDs exoplanet camera, which have both been specifically designed for high contrast imaging. SCExAO also feeds two visible-light single pupil interferometers: VAMPIRES and FIRST. In parallel to these direct imaging activities, a near-IR high precision spectrograph (IRD) is under development for observing exoplanets with the radial velocity technique. Wide-field adaptive optics techniques are also being pursued. The RAVEN multi-object adaptive optics instrument was installed on Subaru telescope in early 2014. Subaru Telescope is also planning wide field imaging with ground-layer AO with the ULTIMATE-Subaru project.

  8. Optical design for the Narrow Field InfraRed Adaptive Optics System (NFIRAOS) Petite on the Thirty Meter Telescope

    SciTech Connect

    Bauman, B; Gavel, D; Dekany, R; Ellerbroek, B

    2005-08-02

    We describe an exploratory optical design for the Narrow Field InfraRed Adaptive Optics (AO) System (NFIRAOS) Petite, a proposed adaptive optics system for the Thirty Meter Telescope Project. NFIRAOS will feed infrared spectrograph and wide-field imaging instruments with a diffraction limited beam. The adaptive optics system will require multi-guidestar tomographic wavefront sensing and multi-conjugate AO correction. The NFIRAOS Petite design specifications include two small 60 mm diameter deformable mirrors (DM's) used in a woofer/tweeter or multiconjugate arrangement. At least one DM would be a micro-electromechanical system (MEMS) DM. The AO system would correct a 10 to 30 arcsec diameter science field as well as laser guide stars (LGS's) located within a 60 arcsec diameter field and low-order or tip/tilt natural guide stars (NGS's) within a 60 arcsec diameter field. The WFS's are located downstream of the DM's so that they can be operated in true closed-loop, which is not necessarily a given in extremely large telescope adaptive optics design. The WFS's include adjustable corrector elements which correct the static aberrations of the AO relay due to field position and LGS distance height.

  9. GPU-based computational adaptive optics for volumetric optical coherence microscopy

    NASA Astrophysics Data System (ADS)

    Tang, Han; Mulligan, Jeffrey A.; Untracht, Gavrielle R.; Zhang, Xihao; Adie, Steven G.

    2016-03-01

    Optical coherence tomography (OCT) is a non-invasive imaging technique that measures reflectance from within biological tissues. Current higher-NA optical coherence microscopy (OCM) technologies with near cellular resolution have limitations on volumetric imaging capabilities due to the trade-offs between resolution vs. depth-of-field and sensitivity to aberrations. Such trade-offs can be addressed using computational adaptive optics (CAO), which corrects aberration computationally for all depths based on the complex optical field measured by OCT. However, due to the large size of datasets plus the computational complexity of CAO and OCT algorithms, it is a challenge to achieve high-resolution 3D-OCM reconstructions at speeds suitable for clinical and research OCM imaging. In recent years, real-time OCT reconstruction incorporating both dispersion and defocus correction has been achieved through parallel computing on graphics processing units (GPUs). We add to these methods by implementing depth-dependent aberration correction for volumetric OCM using plane-by-plane phase deconvolution. Following both defocus and aberration correction, our reconstruction algorithm achieved depth-independent transverse resolution of 2.8 um, equal to the diffraction-limited focal plane resolution. We have translated the CAO algorithm to a CUDA code implementation and tested the speed of the software in real-time using two GPUs - NVIDIA Quadro K600 and Geforce TITAN Z. For a data volume containing 4096×256×256 voxels, our system's processing speed can keep up with the 60 kHz acquisition rate of the line-scan camera, and takes 1.09 seconds to simultaneously update the CAO correction for 3 en face planes at user-selectable depths.

  10. Extreme Adaptive Optics Planet Imager: XAOPI

    SciTech Connect

    Macintosh, B A; Graham, J; Poyneer, L; Sommargren, G; Wilhelmsen, J; Gavel, D; Jones, S; Kalas, P; Lloyd, J; Makidon, R; Olivier, S; Palmer, D; Patience, J; Perrin, M; Severson, S; Sheinis, A; Sivaramakrishnan, A; Troy, M; Wallace, K

    2003-09-17

    Ground based adaptive optics is a potentially powerful technique for direct imaging detection of extrasolar planets. Turbulence in the Earth's atmosphere imposes some fundamental limits, but the large size of ground-based telescopes compared to spacecraft can work to mitigate this. We are carrying out a design study for a dedicated ultra-high-contrast system, the eXtreme Adaptive Optics Planet Imager (XAOPI), which could be deployed on an 8-10m telescope in 2007. With a 4096-actuator MEMS deformable mirror it should achieve Strehl >0.9 in the near-IR. Using an innovative spatially filtered wavefront sensor, the system will be optimized to control scattered light over a large radius and suppress artifacts caused by static errors. We predict that it will achieve contrast levels of 10{sup 7}-10{sup 8} at angular separations of 0.2-0.8 inches around a large sample of stars (R<7-10), sufficient to detect Jupiter-like planets through their near-IR emission over a wide range of ages and masses. We are constructing a high-contrast AO testbed to verify key concepts of our system, and present preliminary results here, showing an RMS wavefront error of <1.3 nm with a flat mirror.

  11. Performance of adaptive optics at Lick Observatory

    SciTech Connect

    Olivier, S.S.; An, J.; Avicola, K.

    1994-03-01

    A prototype adaptive optics system has been developed at Lawrence Livermore National Laboratory (LLNL) for use at Lick Observatory. This system is based on an ITEX 69-actuator continuous-surface deformable mirror, a Kodak fast-framing intensified CCD camera, and a Mercury VME board containing four Intel i860 processors. The system has been tested using natural reference stars on the 40-inch Nickel telescope at Lick Observatory yielding up to a factor of 10 increase in image peak intensity and a factor of 6 reduction in image full width at half maximum (FWHM). These results are consistent with theoretical expectations. In order to improve performance, the intensified CCD camera will be replaced by a high-quantum-efficiency low-noise fast CCD camera built for LLNL by Adaptive Optics Associates using a chip developed by Lincoln Laboratory, and the 69-actuator deformable mirror will be replaced by a 127-actuator deformable mirror developed at LLNL. With these upgrades, the system should perform well in median seeing conditions on the 120-inch Shane telescope for observing wavelengths longer than {approximately}1 {mu}m and using natural reference stars brighter than m{sub R} {approximately} 10 or using the laser currently being developed at LLNL for use at Lick Observatory to generate a sodium-layer reference star.

  12. Combined conjugate and pupil adaptive optics in widefield microscopy

    NASA Astrophysics Data System (ADS)

    Beaulieu, Devin R.

    Traditionally, adaptive optics (AO) systems for microscopy have focused on AO at the pupil plane, however this produces poor performance in samples with both spatially-variant aberrations, such as non-flat sample interfaces, and spatially-invariant aberrations, such as spherical aberration due to a difference between the sample index of refraction and the sample for which the objective was designed. Here, we demonstrate well-corrected, wide field-of-view (FOV) microscopy by simultaneously correcting the two types of aberrations using two AO loops. Such an approach is necessary in wide-field applications where both types of aberration may be present, as each AO loop can only fully correct one type of aberration. Wide FOV corrections are demonstrated in a trans-illumination microscope equipped with two deformable mirrors (DMs), using a partitioned aperture wavefront (PAW) sensor to directly control the DM conjugated to the sample interface and a sensor-less genetic algorithm to control the DM conjugated to the objective's pupil.

  13. Optical design of the adaptive optics laser guide star system

    SciTech Connect

    Bissinger, H.

    1994-11-15

    The design of an adaptive optics package for the 3 meter Lick telescope is presented. This instrument package includes a 69 actuator deformable mirror and a Hartmann type wavefront sensor operating in the visible wavelength; a quadrant detector for the tip-tile sensor and a tip-tilt mirror to stabilize atmospheric first order tip-tile errors. A high speed computer drives the deformable mirror to achieve near diffraction limited imagery. The different optical components and their individual design constraints are described. motorized stages and diagnostics tools are used to operate and maintain alignment throughout observation time from a remote control room. The expected performance are summarized and actual results of astronomical sources are presented.

  14. Adaptive optics for reduced threshold energy in femtosecond laser induced optical breakdown in water based eye model

    NASA Astrophysics Data System (ADS)

    Hansen, Anja; Krueger, Alexander; Ripken, Tammo

    2013-03-01

    In ophthalmic microsurgery tissue dissection is achieved using femtosecond laser pulses to create an optical breakdown. For vitreo-retinal applications the irradiance distribution in the focal volume is distorted by the anterior components of the eye causing a raised threshold energy for breakdown. In this work, an adaptive optics system enables spatial beam shaping for compensation of aberrations and investigation of wave front influence on optical breakdown. An eye model was designed to allow for aberration correction as well as detection of optical breakdown. The eye model consists of an achromatic lens for modeling the eye's refractive power, a water chamber for modeling the tissue properties, and a PTFE sample for modeling the retina's scattering properties. Aberration correction was performed using a deformable mirror in combination with a Hartmann-Shack-sensor. The influence of an adaptive optics aberration correction on the pulse energy required for photodisruption was investigated using transmission measurements for determination of the breakdown threshold and video imaging of the focal region for study of the gas bubble dynamics. The threshold energy is considerably reduced when correcting for the aberrations of the system and the model eye. Also, a raise in irradiance at constant pulse energy was shown for the aberration corrected case. The reduced pulse energy lowers the potential risk of collateral damage which is especially important for retinal safety. This offers new possibilities for vitreo-retinal surgery using femtosecond laser pulses.

  15. Holographically corrected telescope for high-bandwidth optical communications.

    PubMed

    Andersen, G; Knize, R J

    1999-11-20

    We present a design for an optical data communications receiver-transmitter pair based on the holographic correction of a large diameter, poor-quality, reflecting primary mirror. The telescope has a narrow bandwidth (<0.1 nm) with good signal frequency isolation (>60 dB) and is scalable to meter-class apertures. We demonstrate the correction of a reflector telescope with over 2000 waves of aberration to diffraction-limited operation, capable of handling data transmission rates up to 100 GHz.

  16. Object-oriented Matlab adaptive optics toolbox

    NASA Astrophysics Data System (ADS)

    Conan, R.; Correia, C.

    2014-08-01

    Object-Oriented Matlab Adaptive Optics (OOMAO) is a Matlab toolbox dedicated to Adaptive Optics (AO) systems. OOMAO is based on a small set of classes representing the source, atmosphere, telescope, wavefront sensor, Deformable Mirror (DM) and an imager of an AO system. This simple set of classes allows simulating Natural Guide Star (NGS) and Laser Guide Star (LGS) Single Conjugate AO (SCAO) and tomography AO systems on telescopes up to the size of the Extremely Large Telescopes (ELT). The discrete phase screens that make the atmosphere model can be of infinite size, useful for modeling system performance on large time scales. OOMAO comes with its own parametric influence function model to emulate different types of DMs. The cone effect, altitude thickness and intensity profile of LGSs are also reproduced. Both modal and zonal modeling approach are implemented. OOMAO has also an extensive library of theoretical expressions to evaluate the statistical properties of turbulence wavefronts. The main design characteristics of the OOMAO toolbox are object-oriented modularity, vectorized code and transparent parallel computing. OOMAO has been used to simulate and to design the Multi-Object AO prototype Raven at the Subaru telescope and the Laser Tomography AO system of the Giant Magellan Telescope. In this paper, a Laser Tomography AO system on an ELT is simulated with OOMAO. In the first part, we set-up the class parameters and we link the instantiated objects to create the source optical path. Then we build the tomographic reconstructor and write the script for the pseudo-open-loop controller.

  17. Modeling of Adaptive Optics-Based Free-Space Communications Systems

    SciTech Connect

    Wilks, S C; Morris, J R; Brase, J M; Olivier, S S; Henderson, J R; Thyompson, C; Kartz, M; Ruggiero, A J

    2002-08-06

    We introduce a wave-optics based simulation code written for air-optic laser communications links, that includes a detailed model of an adaptive optics compensation system. We present the results obtained by this model, where the phase of a communications laser beam is corrected, after it propagates through a turbulent atmosphere. The phase of the received laser beam is measured using a Shack-Hartmann wavefront sensor, and the correction method utilizes a MEMS mirror. Strehl improvement and amount of power coupled to the receiving fiber for both 1 km horizontal and 28 km slant paths are presented.

  18. Scientific programs in adaptive optics: an overview and commentary

    NASA Astrophysics Data System (ADS)

    Ridgway, Stephen T.

    1998-09-01

    Following extensive development effort, approximately a dozen adaptive optics facilities are now available for research in astronomy, and a similar number is nearing competition or in advanced planning. The scientific productivity, measured by research papers, is rapidly increasing. From a survey of published research and a review of research provisionally discuss the contribution of natural guide star adaptive optics to astronomy. The most active research topics for adaptive optics astronomy have been in solar system studies and in the observation of young stars and star forming regions. The benefit of adaptive optics most prominently exercised in these observations has been high resolution imagery, and the most common area of concern is the point spread function. The scientific success supports the position that adaptive optics will son be required for large telescopes to remain competitive in certain research areas. At the same time, most areas of astronomy research remain untouched by adaptive optics techniques.

  19. Effect of the Keck telescope`s segmented primary on the performance on the Keck adaptive optics system

    SciTech Connect

    Gavel, D.

    1997-06-01

    The 349 degree of freedom Keck adaptive optics system will be mapped on to the 36 segment Keck primary mirror. Each telescope segment is independently controlled in piston and tilt by an active control system and each segment also has its own set of aberrations. This presents a unique set of problems for the Keck adaptive optics system, not encountered with continuous primaries. To a certain extent the low order segment aberrations, beginning with focus, can be corrected statically by the adaptive optic system. However, the discontinuous surface at the segment edges present special problems in sensing and correcting wavefront with laser guide stars or natural guide stars.

  20. Large Field of View, Modular, Stabilized, Adaptive-Optics-Based Scanning Laser Ophthalmoscope

    PubMed Central

    Burns, Stephen A.; Tumbar, Remy; Elsner, Ann E.; Ferguson, Daniel; Hammer, Daniel X.

    2007-01-01

    We describe the design and performance of an adaptive optics retinal imager that is optimized for use during dynamic correction for eye movements. The system incorporates a retinal tracker and stabilizer, a wide field line scan Scanning Laser Ophthalmocsope (SLO), and a high resolution MEMS based adaptive optics SLO. The detection system incorporates selection and positioning of confocal apertures, allowing measurement of images arising from different portions of the double pass retinal point spread function (psf). System performance was excellent. The adaptive optics increased the brightness and contrast for small confocal apertures by more than 2x, and decreased the brightness of images obtained with displaced apertures, confirming the ability of the adaptive optics system to improve the pointspread function. The retinal image was stabilized to within 18 microns 90% of the time. Stabilization was sufficient for cross-correlation techniques to automatically align the images. PMID:17429477

  1. The numerical simulation tool for the MAORY multiconjugate adaptive optics system

    NASA Astrophysics Data System (ADS)

    Arcidiacono, C.; Schreiber, L.; Bregoli, G.; Diolaiti, E.; Foppiani, I.; Agapito, G.; Puglisi, A.; Xompero, M.; Oberti, S.; Cosentino, G.; Lombini, M.; Butler, R. C.; Ciliegi, P.; Cortecchia, F.; Patti, M.; Esposito, S.; Feautrier, P.

    2016-07-01

    The Multiconjugate Adaptive Optics RelaY (MAORY) is and Adaptive Optics module to be mounted on the ESO European-Extremely Large Telescope (E-ELT). It is an hybrid Natural and Laser Guide System that will perform the correction of the atmospheric turbulence volume above the telescope feeding the Multi-AO Imaging Camera for Deep Observations Near Infrared spectro-imager (MICADO). We developed an end-to-end Monte- Carlo adaptive optics simulation tool to investigate the performance of a the MAORY and the calibration, acquisition, operation strategies. MAORY will implement Multiconjugate Adaptive Optics combining Laser Guide Stars (LGS) and Natural Guide Stars (NGS) measurements. The simulation tool implement the various aspect of the MAORY in an end to end fashion. The code has been developed using IDL and use libraries in C++ and CUDA for efficiency improvements. Here we recall the code architecture, we describe the modeled instrument components and the control strategies implemented in the code.

  2. Retinal imaging using adaptive optics technology☆

    PubMed Central

    Kozak, Igor

    2014-01-01

    Adaptive optics (AO) is a technology used to improve the performance of optical systems by reducing the effect of wave front distortions. Retinal imaging using AO aims to compensate for higher order aberrations originating from the cornea and the lens by using deformable mirror. The main application of AO retinal imaging has been to assess photoreceptor cell density, spacing, and mosaic regularity in normal and diseased eyes. Apart from photoreceptors, the retinal pigment epithelium, retinal nerve fiber layer, retinal vessel wall and lamina cribrosa can also be visualized with AO technology. Recent interest in AO technology in eye research has resulted in growing number of reports and publications utilizing this technology in both animals and humans. With the availability of first commercially available instruments we are making transformation of AO technology from a research tool to diagnostic instrument. The current challenges include imaging eyes with less than perfect optical media, formation of normative databases for acquired images such as cone mosaics, and the cost of the technology. The opportunities for AO will include more detailed diagnosis with description of some new findings in retinal diseases and glaucoma as well as expansion of AO into clinical trials which has already started. PMID:24843304

  3. Retinal imaging using adaptive optics technology.

    PubMed

    Kozak, Igor

    2014-04-01

    Adaptive optics (AO) is a technology used to improve the performance of optical systems by reducing the effect of wave front distortions. Retinal imaging using AO aims to compensate for higher order aberrations originating from the cornea and the lens by using deformable mirror. The main application of AO retinal imaging has been to assess photoreceptor cell density, spacing, and mosaic regularity in normal and diseased eyes. Apart from photoreceptors, the retinal pigment epithelium, retinal nerve fiber layer, retinal vessel wall and lamina cribrosa can also be visualized with AO technology. Recent interest in AO technology in eye research has resulted in growing number of reports and publications utilizing this technology in both animals and humans. With the availability of first commercially available instruments we are making transformation of AO technology from a research tool to diagnostic instrument. The current challenges include imaging eyes with less than perfect optical media, formation of normative databases for acquired images such as cone mosaics, and the cost of the technology. The opportunities for AO will include more detailed diagnosis with description of some new findings in retinal diseases and glaucoma as well as expansion of AO into clinical trials which has already started.

  4. Optical spectroscopy with a near-single-mode fiber-feed and adaptive optics

    NASA Astrophysics Data System (ADS)

    Ge, Jian; Angel, J. Roger P.; Shelton, J. Christopher

    1998-07-01

    We report on first astronomical results with a cross-dispersed optical echelle spectrograph fed by a near single-mode fiber. We also present on a novel design of a new adaptive optics (AO) optimized fiber-fed cross-dispersed echelle spectrograph. The spectrograph is designed to match with AO corrected images in the optical bands provided by such as the Mt. Wilson 100 inch, Starfire Optical Range 3.5 m AO telescopes. Ultimately, it will be installed at the 6.5 m MMT, when this has high resolution AO correcting the optical spectrum. The spectrograph, fed by a 10 micron fused silica fiber, is unique in that the entire spectrum from 0.4 micron to 1.0 micron will be almost completely covered at resolution 200,000 in one exposure. The detector is a 2k X 4k AR coated back illuminated CCD with 15 micron pixel size. The close order spacing allowed by the sharp AO image makes the full cover possible. A 250 X 125 mm(superscript 2) Milton Roy R2 echelle grating with 23.2 grooves mm(superscript -1) and a blaze angle of 63.5 deg provides main dispersion. A double pass BK7 prism with 21 deg wedge angle provides cross dispersion, covering the spectrum from order 193 to 77. The spectrograph is used in the quasi- Littrow configuration with an off-axis Maksutov collimator/camera. The fiber feeds the AO corrected beams from the telescope Cassegrain focus to the spectrograph, which is set up on an optical bench. The spectrograph will be used mainly to study line profiles of solar type stars, to explore problems of indirect detection of planets and also study interstellar medium, circumstellar medium and metal abundance and isotopic ratios of extremely metal-poor stars.

  5. Adaptive sound speed correction for abdominal ultrasonography: preliminary results

    NASA Astrophysics Data System (ADS)

    Jin, Sungmin; Kang, Jeeun; Song, Tai-Kyung; Yoo, Yangmo

    2013-03-01

    Ultrasonography has been conducting a critical role in assessing abdominal disorders due to its noninvasive, real-time, low cost, and deep penetrating capabilities. However, for imaging obese patients with a thick fat layer, it is challenging to achieve appropriate image quality with a conventional beamforming (CON) method due to phase aberration caused by the difference between sound speeds (e.g., 1580 and 1450m/s for liver and fat, respectively). For this, various sound speed correction (SSC) methods that estimate the accumulated sound speed for a region-of interest (ROI) have been previously proposed. However, with the SSC methods, the improvement in image quality was limited only for a specific depth of ROI. In this paper, we present the adaptive sound speed correction (ASSC) method, which can enhance the image quality for whole depths by using estimated sound speeds from two different depths in the lower layer. Since these accumulated sound speeds contain the respective contributions of layers, an optimal sound speed for each depth can be estimated by solving contribution equations. To evaluate the proposed method, the phantom study was conducted with pre-beamformed radio-frequency (RF) data acquired with a SonixTouch research package (Ultrasonix Corp., Canada) with linear and convex probes from the gel pad-stacked tissue mimicking phantom (Parker Lab. Inc., USA and Model539, ATS, USA) whose sound speeds are 1610 and 1450m/s, respectively. From the study, compared to the CON and SSC methods, the ASSC method showed the improved spatial resolution and information entropy contrast (IEC) for convex and linear array transducers, respectively. These results indicate that the ASSC method can be applied for enhancing image quality when imaging obese patients in abdominal ultrasonography.

  6. Update on Optical Design of Adaptive Optics System at Lick Observatory

    SciTech Connect

    Bauman, B J; Gavel, D T; Waltjen, K E; Freeze, G J; Hurd, R L; Gates, E I; Max, C E; Olivier, S S; Pennington, D M

    2001-07-31

    In 1999, we presented our plan to upgrade the adaptive optics (AO) system on the Lick Observatory Shane telescope (3m) from a prototype instrument pressed into field service to a facility instrument. This paper updates the progress of that plan and details several important improvements in the alignment and calibration of the AO bench. The paper also includes a discussion of the problems seen in the original design of the tip/tilt (t/t) sensor used in laser guide star mode, and how these problems were corrected with excellent results.

  7. Update on optical design of adaptive optics system at Lick Observatory

    NASA Astrophysics Data System (ADS)

    Bauman, Brian J.; Gavel, Donald T.; Waltjen, Kenneth E.; Freeze, Gary J.; Hurd, Randall L.; Gates, Elinor L.; Max, Claire E.; Olivier, Scot S.; Pennington, Deanna M.

    2002-02-01

    In 1999, we presented our plan to upgrade the adaptive optics (AO) system on the Lick Observatory Shane telescope (3m) from a prototype instrument pressed into field service to a facility instrument. This paper updates the progress of that plan and details several important improvements in the alignment and calibration of the AO bench. The paper also includes a discussion of the problems seen in the original design of the tip/tilt (t/t) sensor used in laser guide star mode, and how these problems were corrected with excellent results.

  8. Method based on video imaging to correct the consistency of multi-optical axes

    NASA Astrophysics Data System (ADS)

    Wang, Ning; Li, Ya-can; Fan, Jing-fan; Jiang, Yu-hua; Fan, Fan; Jin, Wei-qi; Wang, Xia

    2010-10-01

    The multi-sensor photoelectric systems, which collect laser ranging, laser-guided radiation, visible light imaging and thermal imaging as a whole, are widely used at modern weaponry platform. The consistency detection of optical axis has become a key to measure these systems' functions. According to the multi-optic-axis consistency detection's requirements, this paper puts forward a new method based on video imaging to correct the consistency of multi-optical axes. This method abandons the traditional methods based on the numerous refractions and reflections between many optical components. It takes laser axis as the base and obtains the exposure point of laser beam in the scene through video imaging technology. Then, by contrasting the exposure point and the TV's optical axis reticle, the TV's optical axis and the laser axis can be adjusted and kept in consistency in the form of electric reticle. According to this method, a set of portable imaging detector prototype that can be used to detect the consistency of multi-optical axes in the outfield has been made. This prototype can achieve the consistency detection of CCD imaging system and thermal imaging system by adjusting them with the laser range finder axis/laser irradiation axis separately. This prototype makes it simple and straightforward to adjust the optical axes by the way of imaging. With easy operation, environmental adaptability and compact structure, this system is suitable for the outfield testing and expected to be used for multi-optic-axis consistency detection online.

  9. First-order design of off-axis reflective ophthalmic adaptive optics systems using afocal telescopes.

    PubMed

    Gómez-Vieyra, Armando; Dubra, Alfredo; Malacara-Hernández, Daniel; Williams, David R

    2009-10-12

    Expressions for minimal astigmatism in image and pupil planes in off-axis afocal reflective telescopes formed by pairs of spherical mirrors are presented. These formulae which are derived from the marginal ray fan equation can be used for designing laser cavities, spectrographs and adaptive optics retinal imaging systems. The use, range and validity of these formulae are limited by spherical aberration and coma for small and large angles respectively. This is discussed using examples from adaptive optics retinal imaging systems. The performance of the resulting optical designs are evaluated and compared against the configurations with minimal wavefront RMS, using the defocus-corrected wavefront RMS as a metric.

  10. Fluorescent correlation spectroscopy measurements with adaptive optics in the intercellular space of spheroids.

    PubMed

    Leroux, Charles-Edouard; Monnier, Sylvain; Wang, Irène; Cappello, Giovanni; Delon, Antoine

    2014-10-01

    In this study we demonstrate the use of adaptive optics to correct the biasing effects of optical aberrations when measuring the dynamics of molecules diffusing between cells in multicellular spheroids. Our results indicate that, on average, adaptive optics leads to a reduction of the 3D size of the point spread function that is statistically significant in terms of measured number of molecules and diffusion time. The sensorless approach, which uses the molecular brightness as optimization metric, is validated in a complex, highly heterogeneous, biological environment. This work paves the way towards the design of accurate diffusion measurements of molecules in thick biological specimens.

  11. Experimental analysis of adaptive optics compensation in free-space coherent laser communications

    NASA Astrophysics Data System (ADS)

    Anzuola, Esdras; Belmonte, Aniceto

    2016-09-01

    In this work we present a practical, experimental analysis of the effects of adaptive optics compensation on the performance of free-space coherent optical receivers. In order to fulfill this objective, we have developed a laboratory test bed for simulating atmospheric turbulence using Kolmogorov statistics; we have implemented a digital-signal-processing-based phase shift keying heterodyne coherent receiver; and we have integrated a compact module operating a low-cost adaptive optics system that applies modal and zonal wavefront correction. We have checked our experimental results against previously reported analytical models describing the performance of coherent receivers using atmospheric compensation techniques.

  12. Deriving comprehensive error breakdown for wide field adaptive optics systems using end-to-end simulations

    NASA Astrophysics Data System (ADS)

    Ferreira, F.; Gendron, E.; Rousset, G.; Gratadour, D.

    2016-07-01

    The future European Extremely Large Telescope (E-ELT) adaptive optics (AO) systems will aim at wide field correction and large sky coverage. Their performance will be improved by using post processing techniques, such as point spread function (PSF) deconvolution. The PSF estimation involves characterization of the different error sources in the AO system. Such error contributors are difficult to estimate: simulation tools are a good way to do that. We have developed in COMPASS (COMputing Platform for Adaptive opticS Systems), an end-to-end simulation tool using GPU (Graphics Processing Unit) acceleration, an estimation tool that provides a comprehensive error budget by the outputs of a single simulation run.

  13. The Coming of Age of Adaptive Optics

    NASA Astrophysics Data System (ADS)

    1995-10-01

    How Ground-Based Astronomers Beat the Atmosphere Adaptive Optics (AO) is the new ``wonder-weapon'' in ground-based astronomy. By means of advanced electro-optical devices at their telescopes, astronomers are now able to ``neutralize'' the image-smearing turbulence of the terrestrial atmosphere (seen by the unaided eye as the twinkling of stars) so that much sharper images can be obtained than before. In practice, this is done with computer-controlled, flexible mirrors which refocus the blurred images up to 100 times per second, i.e. at a rate that is faster than the changes in the atmospheric turbulence. This means that finer details in astronomical objects can be studied and also - because of the improved concentration of light in the telescope's focal plane - that fainter objects can be observed. At the moment, Adaptive Optics work best in the infrared part of spectrum, but at some later time it may also significantly improve observations at the shorter wavelengths of visible light. The many-sided aspects of this new technology and its impact on astronomical instrumentation was the subject of a recent AO conference [1] with over 150 participants from about 30 countries, presenting a total of more than 100 papers. The Introduction of AO Techniques into Astronomy The scope of this meeting was the design, fabrication and testing of AO systems, characterisation of the sources of atmospheric disturbance, modelling of compensation systems, individual components, astronomical AO results, non-astronomical applications, laser guide star systems, non-linear optical phase conjugation, performance evaluation, and other areas of this wide and complex field, in which front-line science and high technology come together in a new and powerful symbiosis. One of the specific goals of the meeting was to develop contacts between AO scientists and engineers in the western world and their colleagues in Russia and Asia. For the first time at a conference of this type, nine Russian

  14. Clear widens the field for observations of the Sun with multi-conjugate adaptive optics

    NASA Astrophysics Data System (ADS)

    Schmidt, Dirk; Gorceix, Nicolas; Goode, Philip R.; Marino, Jose; Rimmele, Thomas; Berkefeld, Thomas; Wöger, Friedrich; Zhang, Xianyu; Rigaut, François; von der Lühe, Oskar

    2017-01-01

    The multi-conjugate adaptive optics (MCAO) pathfinder Clear on the New Solar Telescope in Big Bear Lake has provided the first-ever MCAO-corrected observations of the Sun that show a clearly and visibly widened corrected field of view compared to quasi-simultaneous observations with classical adaptive optics (CAO) correction. Clear simultaneously uses three deformable mirrors, each conjugated to a different altitude, to compensate for atmospheric turbulence. While the MCAO correction was most effective over an angle that is approximately three times wider than the angle that was corrected by CAO, the full 53'' field of view did benefit from MCAO correction. We further demonstrate that ground-layer-only correction is attractive for solar observations as a complementary flavor of adaptive optics for observational programs that require homogenous seeing improvement over a wide field rather than diffraction-limited resolution. We show illustrative images of solar granulation and of a sunspot obtained on different days in July 2016, and present a brief quantitative analysis of the generalized Fried parameters of the images. The movies associated to Fig. 1 are available at http://www.aanda.org

  15. Foundry Microfabrication of Deformable Mirrors for Adaptive Optics

    DTIC Science & Technology

    1998-04-28

    FOUNDRY MICROFABRICATION OF DEFORMABLE MIRRORS FOR ADAPTIVE OPTICS DISSERTATION William D. Cowan, Major, USAF AFIT/DS/ENG/98-07 The views...Adaptive Optics William D. Cowan, MSEE, BSEE Major, USAF Approved: ^rVC/C-^* •ŕ . ; "Chain ^_ Victor M. Bright, Ph.D., Committee’Ch irman AFIT...DEFORMABLE MIRRORS FOR ADAPTIVE OPTICS DISSERTATION Presented to the Faculty of the Graduate School of Engineering of the Air Force Institute of

  16. Adaptive Offset Correction for Intracortical Brain Computer Interfaces

    PubMed Central

    Homer, Mark L.; Perge, János A.; Black, Michael J.; Harrison, Matthew T.; Cash, Sydney S.; Hochberg, Leigh R.

    2014-01-01

    Intracortical brain computer interfaces (iBCIs) decode intended movement from neural activity for the control of external devices such as a robotic arm. Standard approaches include a calibration phase to estimate decoding parameters. During iBCI operation, the statistical properties of the neural activity can depart from those observed during calibration, sometimes hindering a user’s ability to control the iBCI. To address this problem, we adaptively correct the offset terms within a Kalman filter decoder via penalized maximum likelihood estimation. The approach can handle rapid shifts in neural signal behavior (on the order of seconds) and requires no knowledge of the intended movement. The algorithm, called MOCA, was tested using simulated neural activity and evaluated retrospectively using data collected from two people with tetraplegia operating an iBCI. In 19 clinical research test cases, where a nonadaptive Kalman filter yielded relatively high decoding errors, MOCA significantly reduced these errors (10.6 ±10.1%; p<0.05, pairwise t-test). MOCA did not significantly change the error in the remaining 23 cases where a nonadaptive Kalman filter already performed well. These results suggest that MOCA provides more robust decoding than the standard Kalman filter for iBCIs. PMID:24196868

  17. Correction on the effect of numerical aperture in optical scatterometry

    NASA Astrophysics Data System (ADS)

    Li, Weiqi; Liu, Shiyuan; Zhang, Chuanwei; Chen, Xiuguo; Gu, Honggang

    2013-10-01

    Optical scatterometry, also referred to as optical critical dimension (OCD) metrology, has been introduced for critical dimension (CD) monitoring and overlay metrology with great success in recent years. Forward modeling to calculate the optical signature from the measured diffractive structure is one of the most important issues in OCD metrology. To simplify the forward modeling approach, such as rigorous coupled-wave analysis (RCWA), the incidence and azimuthal angles are usually assumed to be constant. However, since some focusing elements, such as focusing lens or parabolic mirrors with finite numerical aperture (NA), are always used to gain a sufficient small spot size onto the sample, this assumption is not true in the whole exit pupil of the focusing elements, leading to a modeling error in forward modeling, and finally leading to a fitting error in OCD metrology. In this paper, we propose a correction method with consideration of the effect of NA to decrease the modeling error in the forward modeling. The correction method is an average integral method based on Gaussian quadrature in two dimensions inside a circle, and is performed on forward modeling with varied incidence and azimuthal angles over the exit pupil. Experiments performed on silicon gratings with a Mueller matrix polarimeter have demonstrated that the proposed correction method achieves a higher accuracy in OCD metrology.

  18. Graphite/Cyanate Ester Face Sheets for Adaptive Optics

    NASA Technical Reports Server (NTRS)

    Bennett, Harold; Shaffer, Joseph; Romeo, Robert

    2008-01-01

    It has been proposed that thin face sheets of wide-aperture deformable mirrors in adaptive-optics systems be made from a composite material consisting of cyanate ester filled with graphite. This composite material appears to offer an attractive alternative to low-thermal-expansion glasses that are used in some conventional optics and have been considered for adaptive-optics face sheets. Adaptive-optics face sheets are required to have maximum linear dimensions of the order of meters or even tens of meters for some astronomical applications. If the face sheets were to be made from low-thermal-expansion glasses, then they would also be required to have thicknesses of the order of a millimeter so as to obtain the optimum compromise between the stiffness needed for support and the flexibility needed to enable deformation to controlled shapes by use of actuators. It is difficult to make large glass sheets having thicknesses less than 3 mm, and 3-mm-thick glass sheets are too stiff to be deformable to the shapes typically required for correction of wavefronts of light that has traversed the terrestrial atmosphere. Moreover, the primary commercially produced candidate low-thermal-expansion glass is easily fractured when in the form of thin face sheets. Graphite-filled cyanate ester has relevant properties similar to those of the low-expansion glasses. These properties include a coefficient of thermal expansion (CTE) of the order of a hundredth of the CTEs of other typical mirror materials. The Young s modulus (which quantifies stiffness in tension and compression) of graphite-filled cyanate ester is also similar to the Young's moduli of low-thermal-expansion glasses. However, the fracture toughness of graphite-filled cyanate ester is much greater than that of the primary candidate low-thermal-expansion glass. Therefore, graphite-filled cyanate ester could be made into nearly unbreakable face sheets, having maximum linear dimensions greater than a meter and thicknesses of

  19. Adaptive interferometric null testing for unknown freeform optics metrology.

    PubMed

    Huang, Lei; Choi, Heejoo; Zhao, Wenchuan; Graves, Logan R; Kim, Dae Wook

    2016-12-01

    We report an adaptive interferometric null testing method for overcoming the dynamic range limitations of conventional null testing approaches during unknown freeform optics metrology or optics manufacturing processes that require not-yet-completed surface measurements to guide the next fabrication process. In the presented adaptive method, a deformable mirror functions as an adaptable null component for an unknown optical surface. The optimal deformable mirror's shape is determined by the stochastic parallel gradient descent algorithm and controlled by a deflectometry system. An adaptive interferometric null testing setup was constructed, and its metrology data successfully demonstrated superb adaptive capability in measuring an unknown surface.

  20. Effects and correction of magneto-optic spatial light modulator phase errors in an optical correlator

    NASA Technical Reports Server (NTRS)

    Downie, John D.; Hine, Butler P.; Reid, Max B.

    1992-01-01

    The optical phase errors introduced into an optical correlator by the input and filter plane magnetooptic spatial light modulators have been studied. The magnitude of these phase errors is measured and characterized, their effects on the correlation results are evaluated, and a means of correction by a design modification of the binary phase-only optical-filter function is presented. The efficacy of the phase-correction technique is quantified and is found to restore the correlation characteristics to those obtained in the absence of errors, to a high degree. The phase errors of other correlator system elements are also discussed and treated in a similar fashion.

  1. Adaptive optics optical coherence tomography at 1 MHz

    PubMed Central

    Kocaoglu, Omer P.; Turner, Timothy L.; Liu, Zhuolin; Miller, Donald T.

    2014-01-01

    Image acquisition speed of optical coherence tomography (OCT) remains a fundamental barrier that limits its scientific and clinical utility. Here we demonstrate a novel multi-camera adaptive optics (AO-)OCT system for ophthalmologic use that operates at 1 million A-lines/s at a wavelength of 790 nm with 5.3 μm axial resolution in retinal tissue. Central to the spectral-domain design is a novel detection channel based on four high-speed spectrometers that receive light sequentially from a 1 × 4 optical switch assembly. Absence of moving parts enables ultra-fast (50ns) and precise switching with low insertion loss (−0.18 dB per channel). This manner of control makes use of all available light in the detection channel and avoids camera dead-time, both critical for imaging at high speeds. Additional benefit in signal-to-noise accrues from the larger numerical aperture afforded by the use of AO and yields retinal images of comparable dynamic range to that of clinical OCT. We validated system performance by a series of experiments that included imaging in both model and human eyes. We demonstrated the performance of our MHz AO-OCT system to capture detailed images of individual retinal nerve fiber bundles and cone photoreceptors. This is the fastest ophthalmic OCT system we know of in the 700 to 915 nm spectral band. PMID:25574431

  2. Adaptive optics optical coherence tomography at 1 MHz.

    PubMed

    Kocaoglu, Omer P; Turner, Timothy L; Liu, Zhuolin; Miller, Donald T

    2014-12-01

    Image acquisition speed of optical coherence tomography (OCT) remains a fundamental barrier that limits its scientific and clinical utility. Here we demonstrate a novel multi-camera adaptive optics (AO-)OCT system for ophthalmologic use that operates at 1 million A-lines/s at a wavelength of 790 nm with 5.3 μm axial resolution in retinal tissue. Central to the spectral-domain design is a novel detection channel based on four high-speed spectrometers that receive light sequentially from a 1 × 4 optical switch assembly. Absence of moving parts enables ultra-fast (50ns) and precise switching with low insertion loss (-0.18 dB per channel). This manner of control makes use of all available light in the detection channel and avoids camera dead-time, both critical for imaging at high speeds. Additional benefit in signal-to-noise accrues from the larger numerical aperture afforded by the use of AO and yields retinal images of comparable dynamic range to that of clinical OCT. We validated system performance by a series of experiments that included imaging in both model and human eyes. We demonstrated the performance of our MHz AO-OCT system to capture detailed images of individual retinal nerve fiber bundles and cone photoreceptors. This is the fastest ophthalmic OCT system we know of in the 700 to 915 nm spectral band.

  3. High resolution retinal imaging with a compact adaptive optics spectral domain optical coherence tomography system

    NASA Astrophysics Data System (ADS)

    Hammer, Daniel X.; Iftimia, Nicusor V.; Bigelow, Chad E.; Ustun, Teoman E.; Bloom, Benjamin; Ferguson, R. Daniel; Burns, Stephen A.

    2007-02-01

    Adaptive optics (AO) is used to correct ocular aberrations primarily in the cornea, lens, and tear film of every eye. Among other applications, AO allows high lateral resolution images to be acquired with scanning laser ophthalmoscopy (SLO) and optical coherence tomography (OCT). Spectral domain optical coherence tomography (SDOCT) is a high-speed imaging technique that can acquire cross-sectional scans with micron-scale axial resolution at tens to hundreds of kHz line rates. We present a compact clinical AO-SDOCT system that achieves micron-scale axial and lateral resolution of retinal structures. The system includes a line scanning laser ophthalmscope (LSLO) for simultaneous wide-field retinal viewing and selection of regions-of-interest. OCT and LSLO imaging and AO correction performance are characterized. We present a case study of a single subject with hyper-reflective lesions associated with stable, resolved central serous retinopathy to compare and contrast AO as applied to scanning laser ophthalmoscopy and optical coherence tomography. The two imaging modes are found to be complementary in terms of information on structure morphology. Both provide additional information lacking in the other. This preliminary finding points to the power of combining SLO and SDOCT in a single research instrument for exploration of disease mechanisms, retinal cellular architecture, and visual psychophysics.

  4. Closed-loop optical stabilization and digital image registration in adaptive optics scanning light ophthalmoscopy.

    PubMed

    Yang, Qiang; Zhang, Jie; Nozato, Koji; Saito, Kenichi; Williams, David R; Roorda, Austin; Rossi, Ethan A

    2014-09-01

    Eye motion is a major impediment to the efficient acquisition of high resolution retinal images with the adaptive optics (AO) scanning light ophthalmoscope (AOSLO). Here we demonstrate a solution to this problem by implementing both optical stabilization and digital image registration in an AOSLO. We replaced the slow scanning mirror with a two-axis tip/tilt mirror for the dual functions of slow scanning and optical stabilization. Closed-loop optical stabilization reduced the amplitude of eye-movement related-image motion by a factor of 10-15. The residual RMS error after optical stabilization alone was on the order of the size of foveal cones: ~1.66-2.56 μm or ~0.34-0.53 arcmin with typical fixational eye motion for normal observers. The full implementation, with real-time digital image registration, corrected the residual eye motion after optical stabilization with an accuracy of ~0.20-0.25 μm or ~0.04-0.05 arcmin RMS, which to our knowledge is more accurate than any method previously reported.

  5. Closed-loop optical stabilization and digital image registration in adaptive optics scanning light ophthalmoscopy

    PubMed Central

    Yang, Qiang; Zhang, Jie; Nozato, Koji; Saito, Kenichi; Williams, David R.; Roorda, Austin; Rossi, Ethan A.

    2014-01-01

    Eye motion is a major impediment to the efficient acquisition of high resolution retinal images with the adaptive optics (AO) scanning light ophthalmoscope (AOSLO). Here we demonstrate a solution to this problem by implementing both optical stabilization and digital image registration in an AOSLO. We replaced the slow scanning mirror with a two-axis tip/tilt mirror for the dual functions of slow scanning and optical stabilization. Closed-loop optical stabilization reduced the amplitude of eye-movement related-image motion by a factor of 10–15. The residual RMS error after optical stabilization alone was on the order of the size of foveal cones: ~1.66–2.56 μm or ~0.34–0.53 arcmin with typical fixational eye motion for normal observers. The full implementation, with real-time digital image registration, corrected the residual eye motion after optical stabilization with an accuracy of ~0.20–0.25 μm or ~0.04–0.05 arcmin RMS, which to our knowledge is more accurate than any method previously reported. PMID:25401030

  6. Optically buffered Jones-matrix-based multifunctional optical coherence tomography with polarization mode dispersion correction

    PubMed Central

    Hong, Young-Joo; Makita, Shuichi; Sugiyama, Satoshi; Yasuno, Yoshiaki

    2014-01-01

    Polarization mode dispersion (PMD) degrades the performance of Jones-matrix-based polarization-sensitive multifunctional optical coherence tomography (JM-OCT). The problem is specially acute for optically buffered JM-OCT, because the long fiber in the optical buffering module induces a large amount of PMD. This paper aims at presenting a method to correct the effect of PMD in JM-OCT. We first mathematically model the PMD in JM-OCT and then derive a method to correct the PMD. This method is a combination of simple hardware modification and subsequent software correction. The hardware modification is introduction of two polarizers which transform the PMD into global complex modulation of Jones matrix. Subsequently, the software correction demodulates the global modulation. The method is validated with an experimentally obtained point spread function with a mirror sample, as well as by in vivo measurement of a human retina. PMID:25657888

  7. Adaptive Optics Imaging and Spectroscopy of Neptune

    NASA Technical Reports Server (NTRS)

    Johnson, Lindley (Technical Monitor); Sromovsky, Lawrence A.

    2005-01-01

    OBJECTIVES: We proposed to use high spectral resolution imaging and spectroscopy of Neptune in visible and near-IR spectral ranges to advance our understanding of Neptune s cloud structure. We intended to use the adaptive optics (AO) system at Mt. Wilson at visible wavelengths to try to obtain the first groundbased observations of dark spots on Neptune; we intended to use A 0 observations at the IRTF to obtain near-IR R=2000 spatially resolved spectra and near-IR A0 observations at the Keck observatory to obtain the highest spatial resolution studies of cloud feature dynamics and atmospheric motions. Vertical structure of cloud features was to be inferred from the wavelength dependent absorption of methane and hydrogen,

  8. Automatic low-order aberration correction based on geometrical optics for slab lasers.

    PubMed

    Yu, Xin; Dong, Lizhi; Lai, Boheng; Yang, Ping; Liu, Yong; Kong, Qingfeng; Yang, Kangjian; Tang, Guomao; Xu, Bing

    2017-02-20

    In this paper, we present a method based on geometry optics to simultaneously correct low-order aberrations and reshape the beams of slab lasers. A coaxial optical system with three lenses is adapted. The positions of the three lenses are directly calculated based on the beam parameters detected by wavefront sensors. The initial sizes of the input beams are 1.8  mm×11  mm, and peak-to-valley (PV) values of the wavefront range up to several tens of microns. After automatic correction, the dimensions may reach nearly 22  mm×22  mm as expected, and PV values of the wavefront are less than 2 μm. The effectiveness and precision of this method are verified with experiments.

  9. FPGA-accelerated adaptive optics wavefront control

    NASA Astrophysics Data System (ADS)

    Mauch, S.; Reger, J.; Reinlein, C.; Appelfelder, M.; Goy, M.; Beckert, E.; Tünnermann, A.

    2014-03-01

    The speed of real-time adaptive optical systems is primarily restricted by the data processing hardware and computational aspects. Furthermore, the application of mirror layouts with increasing numbers of actuators reduces the bandwidth (speed) of the system and, thus, the number of applicable control algorithms. This burden turns out a key-impediment for deformable mirrors with continuous mirror surface and highly coupled actuator influence functions. In this regard, specialized hardware is necessary for high performance real-time control applications. Our approach to overcome this challenge is an adaptive optics system based on a Shack-Hartmann wavefront sensor (SHWFS) with a CameraLink interface. The data processing is based on a high performance Intel Core i7 Quadcore hard real-time Linux system. Employing a Xilinx Kintex-7 FPGA, an own developed PCie card is outlined in order to accelerate the analysis of a Shack-Hartmann Wavefront Sensor. A recently developed real-time capable spot detection algorithm evaluates the wavefront. The main features of the presented system are the reduction of latency and the acceleration of computation For example, matrix multiplications which in general are of complexity O(n3 are accelerated by using the DSP48 slices of the field-programmable gate array (FPGA) as well as a novel hardware implementation of the SHWFS algorithm. Further benefits are the Streaming SIMD Extensions (SSE) which intensively use the parallelization capability of the processor for further reducing the latency and increasing the bandwidth of the closed-loop. Due to this approach, up to 64 actuators of a deformable mirror can be handled and controlled without noticeable restriction from computational burdens.

  10. Non-iterative adaptive optical microscopy using wavefront sensing

    NASA Astrophysics Data System (ADS)

    Tao, X.; Azucena, O.; Kubby, J.

    2016-03-01

    This paper will review the development of wide-field and confocal microscopes with wavefront sensing and adaptive optics for correcting refractive aberrations and compensating scattering when imaging through thick tissues (Drosophila embryos and mouse brain tissue). To make wavefront measurements in biological specimens we have modified the laser guide-star techniques used in astronomy for measuring wavefront aberrations that occur as star light passes through Earth's turbulent atmosphere. Here sodium atoms in Earth's mesosphere, at an altitude of 95 km, are excited to fluoresce at resonance by a high-power sodium laser. The fluorescent light creates a guide-star reference beacon at the top of the atmosphere that can be used for measuring wavefront aberrations that occur as the light passes through the atmosphere. We have developed a related approach for making wavefront measurements in biological specimens using cellular structures labeled with fluorescent proteins as laser guide-stars. An example is a fluorescently labeled centrosome in a fruit fly embryo or neurons and dendrites in mouse brains. Using adaptive optical microscopy we show that the Strehl ratio, the ratio of the peak intensity of an aberrated point source relative to the diffraction limited image, can be improved by an order of magnitude when imaging deeply into live dynamic specimens, enabling near diffraction limited deep tissue imaging.

  11. Optimal control law for classical and multiconjugate adaptive optics.

    PubMed

    Le Roux, Brice; Conan, Jean-Marc; Kulcsár, Caroline; Raynaud, Henri-François; Mugnier, Laurent M; Fusco, Thierry

    2004-07-01

    Classical adaptive optics (AO) is now a widespread technique for high-resolution imaging with astronomical ground-based telescopes. It generally uses simple and efficient control algorithms. Multiconjugate adaptive optics (MCAO) is a more recent and very promising technique that should extend the corrected field of view. This technique has not yet been experimentally validated, but simulations already show its high potential. The importance for MCAO of an optimal reconstruction using turbulence spatial statistics has already been demonstrated through open-loop simulations. We propose an optimal closed-loop control law that accounts for both spatial and temporal statistics. The prior information on the turbulence, as well as on the wave-front sensing noise, is expressed in a state-space model. The optimal phase estimation is then given by a Kalman filter. The equations describing the system are given and the underlying assumptions explained. The control law is then derived. The gain brought by this approach is demonstrated through MCAO numerical simulations representative of astronomical observation on a 8-m-class telescope in the near infrared. We also discuss the application of this control approach to classical AO. Even in classical AO, the technique could be relevant especially for future extreme AO systems.

  12. Vision science and adaptive optics, the state of the field.

    PubMed

    Marcos, Susana; Werner, John S; Burns, Stephen A; Merigan, William H; Artal, Pablo; Atchison, David A; Hampson, Karen M; Legras, Richard; Lundstrom, Linda; Yoon, Geungyoung; Carroll, Joseph; Choi, Stacey S; Doble, Nathan; Dubis, Adam M; Dubra, Alfredo; Elsner, Ann; Jonnal, Ravi; Miller, Donald T; Paques, Michel; Smithson, Hannah E; Young, Laura K; Zhang, Yuhua; Campbell, Melanie; Hunter, Jennifer; Metha, Andrew; Palczewska, Grazyna; Schallek, Jesse; Sincich, Lawrence C

    2017-03-01

    Adaptive optics is a relatively new field, yet it is spreading rapidly and allows new questions to be asked about how the visual system is organized. The editors of this feature issue have posed a series of question to scientists involved in using adaptive optics in vision science. The questions are focused on three main areas. In the first we investigate the use of adaptive optics for psychophysical measurements of visual system function and for improving the optics of the eye. In the second, we look at the applications and impact of adaptive optics on retinal imaging and its promise for basic and applied research. In the third, we explore how adaptive optics is being used to improve our understanding of the neurophysiology of the visual system. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Increase in the compensated field of view with a double-conjugate adaptive-optics system.

    PubMed

    Baharav, Y; Shamir, J

    1995-04-20

    We analyze and quantify the capabilities and limitations of a double-conjugate adaptive-optics system. In the proposed system the contribution of two turbulent layers is treated separately, with Rayleigh guide stars for the bottom layer, sodium guide stars for the top layer, and two adaptive mirrors conjugate to the respective layers. The system substantially increases the compensated field of view. We give calculated results for the estimated number of guide stars needed, the wave-front sensor, and the adaptive-mirror resolution. Simulation results are also presented, and the residual error remaining after correction in our proposed system is compared with a conventional single-adaptive-mirror system.

  14. Adaptive optics for the CHARA array

    NASA Astrophysics Data System (ADS)

    ten Brummelaar, Theo A.; Sturmann, Laszlo; Sturmann, Judit; Ridgway, Stephen T.; Monnier, John D.; Ireland, Michael J.; Che, Xiao; McAlister, Harold A.; Turner, Nils H.; Tuthill, P. G.

    2012-07-01

    The CHARA Array is a six telescope optical/IR interferometer run by the Center for High Angular Resolution Astronomy of Georgia State University and is located at Mount Wilson Observatory just to the north of Los Angeles California. The CHARA Array has the largest operational baselines in the world and has been in regular use for scientific observations since 2004. In 2011 we received funding from the NSF to begin work on Adaptive Optics for our six telescopes. Phase I of this project, fully funded by the NSF grant, consists of designing and building wavefront sensors for each telescope that will also serve as tip/tilt detectors. Having tip/tilt at the telescopes, instead of in the laboratory, will add several magnitudes of sensitivity to this system. Phase I also includes a slow wavefront sensor in the laboratory to measure non-common path errors and small deformable mirrors in the laboratory to remove static and slowly changing aberrations. Phase II of the project will allow us to place high-speed deformable mirrors at the telescopes thereby enabling full closed loop operation. We are currently seeking funding for Phase II. This paper will describe the scientific rational and design of the system and give the current status of the project.

  15. Adaptive Detector Arrays for Optical Communications Receivers

    NASA Technical Reports Server (NTRS)

    Vilnrotter, V.; Srinivasan, M.

    2000-01-01

    The structure of an optimal adaptive array receiver for ground-based optical communications is described and its performance investigated. Kolmogorov phase screen simulations are used to model the sample functions of the focal-plane signal distribution due to turbulence and to generate realistic spatial distributions of the received optical field. This novel array detector concept reduces interference from background radiation by effectively assigning higher confidence levels at each instant of time to those detector elements that contain significant signal energy and suppressing those that do not. A simpler suboptimum structure that replaces the continuous weighting function of the optimal receiver by a hard decision on the selection of the signal detector elements also is described and evaluated. Approximations and bounds to the error probability are derived and compared with the exact calculations and receiver simulation results. It is shown that, for photon-counting receivers observing Poisson-distributed signals, performance improvements of approximately 5 dB can be obtained over conventional single-detector photon-counting receivers, when operating in high background environments.

  16. Diffraction limited focal spot in the interaction chamber using phase retrieval adaptive optics

    NASA Astrophysics Data System (ADS)

    Lefaudeux, Nicolas; Lavergne, Emeric; Monchoce, Sylvain; Levecq, Xavier

    2014-03-01

    In order to provide the end user with a diffraction limited collimated beam, adaptive optics phase correction systems are now a standard feature of ultra intense laser facilities. Generally speaking, these systems are based on a deformable mirror controlled in closed loop configuration in order to correct the aberrations of the beam measured by the wavefront sensor. Such implementation corrects for most of the aberrations of the laser. However, the aberrations of the optical elements located downstream of the wavefront sensor are not measured and therefore not corrected by the adaptive optics loop while they are degrading the final focal spot. We present an improved correction strategy and results based on a combination of both usual closed loop and phase retrieval in order to reach the diffraction limit at the focal spot inside the interaction chamber. The off axis parabola alignment camera located at the focal spot is used in combination of the deformable mirror and wavefront sensor to get images of the focal spot. The residual aberrations of the focal spot are measured by a Phase Retrieval algorithm using the acquired focal spot images. Then the adaptive optics loop is run in order to precompensate for these aberrations, which leads to diffraction limited focal spot in the interaction chamber.

  17. Performance evaluation of adaptive optics for atmospheric coherent laser communications.

    PubMed

    Liu, Chao; Chen, Shanqiu; Li, XinYang; Xian, Hao

    2014-06-30

    With extremely high sensitivity, the coherent laser communications has a large potential to be used in the long-range and high data-rate free space communication links. However, for the atmospheric turbulent links, the most significant factor that limits the performance of the coherent laser communications is the effect of atmospheric turbulence. In this paper, we try to integrate the adaptive optics (AO) to the coherent laser communications and analyze the performances. It is shown that, when the atmospheric turbulence condition D/r0 is not larger than 1, can the coherent laser communication system works well without the correction of an AO system. When it is in the gentle turbulent condition (around D/r0 = 2), only the tip and tilt correction can improve the mixing efficiency and the bit-error rate (BER) significantly. In the moderate (around D/r0 = 10) or relatively strong (around D/r0 = 17) turbulent condition, the AO system has to correct about 9 or 35 turbulent modes or more respectively to achieve a favorable performance. In conclusion, we have demonstrated that the AO technique has great potential to improve the performances of the atmospheric coherent laser communications.

  18. Closed loop adaptive optics for microscopy without a wavefront sensor

    PubMed Central

    Kner, Peter; Winoto, Lukman; Agard, David A.; Sedat, John W.

    2013-01-01

    A three-dimensional wide-field image of a small fluorescent bead contains more than enough information to accurately calculate the wavefront in the microscope objective back pupil plane using the phase retrieval technique. The phase-retrieved wavefront can then be used to set a deformable mirror to correct the point-spread function (PSF) of the microscope without the use of a wavefront sensor. This technique will be useful for aligning the deformable mirror in a widefield microscope with adaptive optics and could potentially be used to correct aberrations in samples where small fluorescent beads or other point sources are used as reference beacons. Another advantage is the high resolution of the retrieved wavefont as compared with current Shack-Hartmann wavefront sensors. Here we demonstrate effective correction of the PSF in 3 iterations. Starting from a severely aberrated system, we achieve a Strehl ratio of 0.78 and a greater than 10-fold increase in maximum intensity. PMID:24392198

  19. Adaptive optics scanning laser ophthalmoscope for stabilized retinal imaging

    PubMed Central

    Hammer, Daniel X.; Ferguson, R. Daniel; Bigelow, Chad E.; Iftimia, Nicusor V.; Ustun, Teoman E.; Burns, Stephen A.

    2010-01-01

    A retinal imaging instrument that integrates adaptive optics (AO), scanning laser ophthalmoscopy (SLO), and retinal tracking components was built and tested. The system uses a Hartmann-Shack wave-front sensor (HS-WS) and MEMS-based deformable mirror (DM) for AO-correction of high-resolution, confocal SLO images. The system includes a wide-field line-scanning laser ophthalmoscope for easy orientation of the high-magnification SLO raster. The AO system corrected ocular aberrations to <0.1 μm RMS wave-front error. An active retinal tracking with custom processing board sensed and corrected eye motion with a bandwidth exceeding 1 kHz. We demonstrate tracking accuracy down to 6 μm RMS for some subjects (typically performance: 10–15 μm RMS). The system has the potential to become an important tool to clinicians and researchers for vision studies and the early detection and treatment of retinal diseases. PMID:19516480

  20. Optical tracking with two markers for robust prospective motion correction for brain imaging.

    PubMed

    Singh, Aditya; Zahneisen, Benjamin; Keating, Brian; Herbst, Michael; Chang, Linda; Zaitsev, Maxim; Ernst, Thomas

    2015-12-01

    Prospective motion correction (PMC) during brain imaging using camera-based tracking of a skin-attached marker may suffer from problems including loss of marker visibility due to the coil and false correction due to non-rigid-body facial motion, such as frowning or squinting. A modified PMC system is introduced to mitigate these problems and increase the robustness of motion correction. The method relies on simultaneously tracking two markers, each providing six degrees of freedom, that are placed on the forehead. This allows us to track head motion when one marker is obscured and detect skin movements to prevent false corrections. Experiments were performed to compare the performance of the two-marker motion correction technique to the previous single-marker approach. Experiments validate the theory developed for adaptive marker tracking and skin movement detection, and demonstrate improved image quality during obstruction of the line-of-sight of one marker when subjects squint or when subjects squint and move simultaneously. The proposed methods eliminate two common failure modes of PMC and substantially improve the robustness of PMC, and they can be applied to other optical tracking systems capable of tracking multiple markers. The methods presented can be adapted to the use of more than two markers.

  1. Adaptive optics for confocal laser scanning microscopy with adjustable pinhole

    NASA Astrophysics Data System (ADS)

    Yoo, Han Woong; van Royen, Martin E.; van Cappellen, Wiggert A.; Houtsmuller, Adriaan B.; Verhaegen, Michel; Schitter, Georg

    2016-04-01

    The pinhole plays an important role in confocal laser scanning microscopy (CLSM) for adaptive optics (AO) as well as in imaging, where the size of the pinhole denotes a trade-off between out-of-focus rejection and wavefront distortion. This contribution proposes an AO system for a commercial CLSM with an adjustable square pinhole to cope with such a trade-off. The proposed adjustable pinhole enables to calibrate the AO system and to evaluate the imaging performance. Experimental results with fluorescence beads on the coverslip and at a depth of 40 μm in the human hepatocellular carcinoma cell spheroid demonstrate that the proposed AO system can improve the image quality by the proposed calibration method. The proposed pinhole intensity ratio also indicates the image improvement by the AO correction in intensity as well as resolution.

  2. Wavefront sensorless adaptive optics temporal focusing-based multiphoton microscopy

    PubMed Central

    Chang, Chia-Yuan; Cheng, Li-Chung; Su, Hung-Wei; Hu, Yvonne Yuling; Cho, Keng-Chi; Yen, Wei-Chung; Xu, Chris; Dong, Chen Yuan; Chen, Shean-Jen

    2014-01-01

    Temporal profile distortions reduce excitation efficiency and image quality in temporal focusing-based multiphoton microscopy. In order to compensate the distortions, a wavefront sensorless adaptive optics system (AOS) was integrated into the microscope. The feedback control signal of the AOS was acquired from local image intensity maximization via a hill-climbing algorithm. The control signal was then utilized to drive a deformable mirror in such a way as to eliminate the distortions. With the AOS correction, not only is the axial excitation symmetrically refocused, but the axial resolution with full two-photon excited fluorescence (TPEF) intensity is also maintained. Hence, the contrast of the TPEF image of a R6G-doped PMMA thin film is enhanced along with a 3.7-fold increase in intensity. Furthermore, the TPEF image quality of 1μm fluorescent beads sealed in agarose gel at different depths is improved. PMID:24940539

  3. Wavefront sensorless adaptive optics temporal focusing-based multiphoton microscopy.

    PubMed

    Chang, Chia-Yuan; Cheng, Li-Chung; Su, Hung-Wei; Hu, Yvonne Yuling; Cho, Keng-Chi; Yen, Wei-Chung; Xu, Chris; Dong, Chen Yuan; Chen, Shean-Jen

    2014-06-01

    Temporal profile distortions reduce excitation efficiency and image quality in temporal focusing-based multiphoton microscopy. In order to compensate the distortions, a wavefront sensorless adaptive optics system (AOS) was integrated into the microscope. The feedback control signal of the AOS was acquired from local image intensity maximization via a hill-climbing algorithm. The control signal was then utilized to drive a deformable mirror in such a way as to eliminate the distortions. With the AOS correction, not only is the axial excitation symmetrically refocused, but the axial resolution with full two-photon excited fluorescence (TPEF) intensity is also maintained. Hence, the contrast of the TPEF image of a R6G-doped PMMA thin film is enhanced along with a 3.7-fold increase in intensity. Furthermore, the TPEF image quality of 1μm fluorescent beads sealed in agarose gel at different depths is improved.

  4. Status of the DKIST system for solar adaptive optics

    NASA Astrophysics Data System (ADS)

    Johnson, Luke C.; Cummings, Keith; Drobilek, Mark; Johansson, Erik; Marino, Jose; Richards, Kit; Rimmele, Thomas; Sekulic, Predrag; Wöger, Friedrich

    2016-07-01

    When the Daniel K. Inouye Solar Telescope (DKIST) achieves first light in 2019, it will deliver the highest spatial resolution images of the solar atmosphere ever recorded. Additionally, the DKIST will observe the Sun with unprecedented polarimetric sensitivity and spectral resolution, spurring a leap forward in our understanding of the physical processes occurring on the Sun. The DKIST wavefront correction system will provide active alignment control and jitter compensation for all six of the DKIST science instruments. Five of the instruments will also be fed by a conventional adaptive optics (AO) system, which corrects for high frequency jitter and atmospheric wavefront disturbances. The AO system is built around an extended-source correlating Shack-Hartmann wavefront sensor, a Physik Instrumente fast tip-tilt mirror (FTTM) and a Xinetics 1600-actuator deformable mirror (DM), which are controlled by an FPGA-based real-time system running at 1975 Hz. It is designed to achieve on-axis Strehl of 0.3 at 500 nm in median seeing (r0 = 7 cm) and Strehl of 0.6 at 630 nm in excellent seeing (r0 = 20 cm). The DKIST wavefront correction team has completed the design phase and is well into the fabrication phase. The FTTM and DM have both been delivered to the DKIST laboratory in Boulder, CO. The real-time controller has been completed and is able to read out the camera and deliver commands to the DM with a total latency of approximately 750 μs. All optics and optomechanics, including many high-precision custom optics, mounts, and stages, are completed or nearing the end of the fabrication process and will soon undergo rigorous acceptance testing. Before installing the wavefront correction system at the telescope, it will be assembled as a testbed in the laboratory. In the lab, performance tests beginning with component-level testing and continuing to full system testing will ensure that the wavefront correction system meets all performance requirements. Further work in the

  5. Low-cost adaptive directly modulated optical OFDM based on semiconductor optical amplifier

    NASA Astrophysics Data System (ADS)

    Kashany-Mizrahi, Inbal; Sadot, Dan

    2013-10-01

    Low cost optical OFDM has great potential for next generation optical access networks and PONs, due to its high flexibility in bandwidth manipulation, and high spectral efficiency. Here, a low cost optical OFDM is proposed, based on adaptive direct modulation semiconductor optical amplifier. Adaptive current loading techniques for PAPR (peak to average power ratio) reduction are proposed and analyzed. Simulations show that the proposed adaptive techniques enable significant BER improvement.

  6. MEMS segmented-based adaptive optics scanning laser ophthalmoscope

    PubMed Central

    Manzanera, Silvestre; Helmbrecht, Michael A.; Kempf, Carl J.; Roorda, Austin

    2011-01-01

    The performance of a MEMS (micro-electro-mechanical-system) segmented deformable mirror was evaluated in an adaptive optics (AO) scanning laser ophthalmoscope. The tested AO mirror (Iris AO, Inc, Berkeley, CA) is composed of 37 hexagonal segments that allow piston/tip/tilt motion up to 5 μm stroke and ±5 mrad angle over a 3.5 mm optical aperture. The control system that implements the closed-loop operation employs a 1:1 matched 37-lenslet Shack-Hartmann wavefront sensor whose measurements are used to apply modal corrections to the deformable mirror. After a preliminary evaluation of the AO mirror optical performance, retinal images from 4 normal subjects over a 0.9°x0.9° field size were acquired through a 6.4 mm ocular pupil, showing resolved retinal features at the cellular level. Cone photoreceptors were observed as close as 0.25 degrees from the foveal center. In general, the quality of these images is comparable to that obtained using deformable mirrors based on different technologies. PMID:21559132

  7. Adaptive x-ray optics development at AOA-Xinetics

    NASA Astrophysics Data System (ADS)

    Lillie, Charles F.; Cavaco, Jeff L.; Brooks, Audrey D.; Ezzo, Kevin; Pearson, David D.; Wellman, John A.

    2013-05-01

    Grazing-incidence optics for X-ray applications require extremely smooth surfaces with precise mirror figures to provide well focused beams and small image spot sizes for astronomical telescopes and laboratory test facilities. The required precision has traditionally been achieved by time-consuming grinding and polishing of thick substrates with frequent pauses for precise metrology to check the mirror figure. More recently, substrates with high quality surface finish and figures have become available at reasonable cost, and techniques have been developed to mechanically adjust the figure of these traditionally polished substrates for ground-based applications. The beam-bending techniques currently in use are mechanically complex, however, with little control over mid-spatial frequency errors. AOA-Xinetics has been developing been developing techniques for shaping grazing incidence optics with surface-normal and surface-parallel electrostrictive Lead magnesium niobate (PMN) actuators bonded to mirror substrates for several years. These actuators are highly reliable; exhibit little to no hysteresis, aging or creep; and can be closely spaced to correct low and mid-spatial frequency errors in a compact package. In this paper we discuss recent development of adaptive x-ray optics at AOA-Xinetics.

  8. Kinematic markers dissociate error correction from sensorimotor realignment during prism adaptation.

    PubMed

    O'Shea, Jacinta; Gaveau, Valérie; Kandel, Matthieu; Koga, Kazuo; Susami, Kenji; Prablanc, Claude; Rossetti, Yves

    2014-03-01

    This study investigated the motor control mechanisms that enable healthy individuals to adapt their pointing movements during prism exposure to a rightward optical shift. In the prism adaptation literature, two processes are typically distinguished. Strategic motor adjustments are thought to drive the pattern of rapid endpoint error correction typically observed during the early stage of prism exposure. This is distinguished from so-called 'true sensorimotor realignment', normally measured with a different pointing task, at the end of prism exposure, which reveals a compensatory leftward 'prism after-effect'. Here, we tested whether each mode of motor compensation - strategic adjustments versus 'true sensorimotor realignment' - could be distinguished, by analyzing patterns of kinematic change during prism exposure. We hypothesized that fast feedforward versus slower feedback error corrective processes would map onto two distinct phases of the reach trajectory. Specifically, we predicted that feedforward adjustments would drive rapid compensation of the initial (acceleration) phase of the reach, resulting in the rapid reduction of endpoint errors typically observed early during prism exposure. By contrast, we expected visual-proprioceptive realignment to unfold more slowly and to reflect feedback influences during the terminal (deceleration) phase of the reach. The results confirmed these hypotheses. Rapid error reduction during the early stage of prism exposure was achieved by trial-by-trial adjustments of the motor plan, which were proportional to the endpoint error feedback from the previous trial. By contrast, compensation of the terminal reach phase unfolded slowly across the duration of prism exposure. Even after 100 trials of pointing through prisms, adaptation was incomplete, with participants continuing to exhibit a small rightward shift in both the reach endpoints and in the terminal phase of reach trajectories. Individual differences in the degree of

  9. Proposed multiconjugate adaptive optics experiment at Lick Observatory

    NASA Astrophysics Data System (ADS)

    Bauman, Brian J.; Gavel, Donald T.; Flath, Laurence M.; Hurd, Randall L.; Max, Claire E.; Olivier, Scot S.

    2002-02-01

    While the theory behind design of multiconjugate adaptive optics (MCAO) systems is growing, there is still a paucity of experience building and testing such instruments. We propose using the Lick adaptive optics (AO) system as a basis for demonstrating the feasibility/workability of MCAO systems, testing underlying assumptions, and experimenting with different approaches to solving MCAO system issues.

  10. Proposed Multiconjugate Adaptive Optics Experiment at Lick Observatory

    SciTech Connect

    Bauman, B J; Gavel, D T; Flath, L M; Hurd, R L; Max, C E; Olivier, S S

    2001-08-15

    While the theory behind design of multiconjugate adaptive optics (MCAO) systems is growing, there is still a paucity of experience building and testing such instruments. We propose using the Lick adaptive optics (AO) system as a basis for demonstrating the feasibility/workability of MCAO systems, testing underlying assumptions, and experimenting with different approaches to solving MCAO system issues.

  11. New adaptive optics control strategy for petawatt-class laser chains

    NASA Astrophysics Data System (ADS)

    Varkentina, N.; Dovillaire, G.; Legrand, J.; Beaugrand, G.; Stefanon, I.; Treimany, P.; Levecq, X.

    2017-08-01

    A new generation of ultra-high intensity femtosecond petawatt- and above-class lasers requires new approaches to wavefront corrections. New challenges for adaptive optics consist in overcoming the constraints of potentially bigger diameters, larger amplitude aberrations, faster optics, higher risk of damaging optical components and faster and easier maintenance. Here we present a new technology of a mechanical deformable mirror, which has a large stroke, high temporal stability, low hysteresis, no printthrough effect, easy, safe and fast maintenance and an operating frequency up to 10 Hz. We propose the full correction of the final focal spot in the target chamber by a combination of a standard adaptive optics system, a simple focal plane camera and a phase retrieval correction process. We test the reliability of the correction system in terms of intensity variation and wavefront stability. We further verify correction robustness of the method on a large spectral bandwidth and finally perform a focal spot correction on a terawatt laser system in both low and high-power regimes.

  12. Frequency-domain optical mammography: edge effect corrections.

    PubMed

    Fantini, S; Franceschini, M A; Gaida, G; Gratton, E; Jess, H; Mantulin, W W; Moesta, K T; Schlag, P M; Kaschke, M

    1996-01-01

    We have investigated the problem of edge effects in laser-beam transillumination scanning of the human breast. Edge effects arise from tissue thickness variability along the scanned area, and from lateral photon losses through the sides of the breast. Edge effects can be effectively corrected in frequency-domain measurements by employing a two-step procedure: (1) use of the phase information to calculate an effective tissue thickness for each pixel location; (2) application of the knowledge of tissue thickness to calculate an edge-corrected optical image from the ac signal image. The measurements were conducted with a light mammography apparatus (LIMA) designed for feasibility tests in the clinical environment. Operating in the frequency-domain (110 MHz), this instrument performs a transillumination optical scan at two wavelengths (685 and 825 nm). We applied the proposed two-step procedure to data from breast phantoms and from human breasts. The processed images provide higher contrast and detectability in optical mammography with respect to raw data breast images.

  13. Adaptive optics for in vivo two-photon calcium imaging of neuronal networks

    NASA Astrophysics Data System (ADS)

    Meimon, Serge; Conan, Jean-Marc; Mugnier, Laurent M.; Michau, Vincent; Cossart, Rosa; Malvache, Arnaud

    2014-03-01

    The landscape of biomedical research in neuroscience has changed dramatically in recent years as a result of spectacular progress in dynamic microscopy. However, the optical accessibility of deep brain structures or deeper regions of the surgically exposed hippocampus (a few 100 microns typically) remains limited, due to volumic aberrations created by the sample inhomogeneities. Adaptive optics can correct for these aberrations. Our goal is to realize a novel adaptive optics module dedicated to in vivo two-photon calcium imaging of the hippocampus. The key issue in adaptive optics is the ability to perform an accurate and reliable wavefront sensing. In two- photon microscopy indirect methods are required. Two families of approaches have been proposed so far, the modal sensorless technique and a method based on pupil segmentation. We present here a formal comparison of these approaches, in particular as a function of the amount of aberrations.

  14. Aberration estimation from single point image in a simulated adaptive optics system.

    PubMed

    Grisan, Enrico; Frassetto, Fabio; Da Deppo, Vania; Naletto, Giampiero; Ruggeri, Alfredo

    2005-01-01

    Adaptive optics has been recently applied for the development of ophthalmic devices, with the main objective of obtaining higher resolution images for diagnostic purposes or ideally correcting high-order eye aberrations. The core of every adaptive optics systems is an optical device that is able to modify the wavefront shape of the light entering a system: once the shape of the incoming wavefront has been estimated, by means of this device it is possible to correct the aberrations introduced along the optical path. The aim of this paper is to demonstrate the feasibility, although in a simulated system, of estimating and correcting the wavefront shape simply by means of an iterative software analysis of a single point source image, thus avoiding expensive wavefront sensors or the burdensome computation of the PSF of the optical system. To test the proposed algorithm, a simple optical system has been simulated with a ray-tracing software and a program to estimate the Zernike coefficients of the simulated aberration from the analysis of the source image has been developed. Numerical indexes were used to evaluate the capability of the software of correctly estimating the Zernike coefficients. Even if only defocus, astigmatism and coma were considered, the very satisfactory results obtained confirm the soundness of this new approach and encourage further work in this direction, in order to develop a system able to estimate also spherical aberration, tilt and field curvature. An implementation of this aberration estimation in a real AO system is also currently in progress.

  15. Grayscale and proportion-corrected optical coherence tomography images.

    PubMed

    Ishikawa, H; Gürses-Ozden, R; Hoh, S T; Dou, H L; Liebmann, J M; Ritch, R

    2000-01-01

    The commercially available optical coherence tomography (OCT) scanner displays images in a pre-set window regardless of the projected scan length on the retinal surface. The aim of this study was to demonstrate the true dimensions of proportion-corrected OCT images and the additional information present in grayscale images. OCT raw data were exported to an IBM-compatible PC and processed to show grayscale and proportion-corrected images using an automated software of our own design. Eyes with cystoid macular edema and retinal pigment detachment were analyzed. Grayscale images showed a finer gradation of signal reflectance. Scan lengths of 2, 4, 6, and 8 mm on the retinal surface showed different qualitative appearances using proportion-corrected software from the printed or on-screen images. Grayscale OCT images can be used to demonstrate additional information not present in false-color images. The disparity between the standard OCT image format and proportion-corrected images emphasizes the need for quantitative rather than qualitative evaluation of retinal dimensions and internal reflectance.

  16. Optimized micromirror arrays for adaptive optics

    NASA Astrophysics Data System (ADS)

    Michalicek, M. Adrian; Comtois, John H.; Hetherington, Dale L.

    1999-01-01

    This paper describes the design, layout, fabrication, and surface characterization of highly optimized surface micromachined micromirror devices. Design considerations and fabrication capabilities are presented. These devices are fabricated in the state-of-the-art, four-level, planarized, ultra-low-stress polysilicon process available at Sandia National Laboratories known as the Sandia Ultra-planar Multi-level MEMS Technology (SUMMiT). This enabling process permits the development of micromirror devices with near-ideal characteristics that have previously been unrealizable in standard three-layer polysilicon processes. The reduced 1 μm minimum feature sizes and 0.1 μm mask resolution make it possible to produce dense wiring patterns and irregularly shaped flexures. Likewise, mirror surfaces can be uniquely distributed and segmented in advanced patterns and often irregular shapes in order to minimize wavefront error across the pupil. The ultra-low-stress polysilicon and planarized upper layer allow designers to make larger and more complex micromirrors of varying shape and surface area within an array while maintaining uniform performance of optical surfaces. Powerful layout functions of the AutoCAD editor simplify the design of advanced micromirror arrays and make it possible to optimize devices according to the capabilities of the fabrication process. Micromirrors fabricated in this process have demonstrated a surface variance across the array from only 2-3 nm to a worst case of roughly 25 nm while boasting active surface areas of 98% or better. Combining the process planarization with a ``planarized-by-design'' approach will produce micromirror array surfaces that are limited in flatness only by the surface deposition roughness of the structural material. Ultimately, the combination of advanced process and layout capabilities have permitted the fabrication of highly optimized micromirror arrays for adaptive optics.

  17. Optimized micromirror arrays for adaptive optics

    SciTech Connect

    Michalicek, M. Adrian Comtois, John H. Hetherington, Dale L.

    1999-01-01

    This paper describes the design, layout, fabrication, and surface characterization of highly optimized surface micromachined micromirror devices. Design considerations and fabrication capabilities are presented. These devices are fabricated in the state-of-the-art, four-level, planarized, ultra-low-stress polysilicon process available at Sandia National Laboratories known as the Sandia Ultra-planar Multi-level MEMS Technology (SUMMiT). This enabling process permits the development of micromirror devices with near-ideal characteristics that have previously been unrealizable in standard three-layer polysilicon processes. The reduced 1 {mu}m minimum feature sizes and 0.1 {mu}m mask resolution make it possible to produce dense wiring patterns and irregularly shaped flexures. Likewise, mirror surfaces can be uniquely distributed and segmented in advanced patterns and often irregular shapes in order to minimize wavefront error across the pupil. The ultra-low-stress polysilicon and planarized upper layer allow designers to make larger and more complex micromirrors of varying shape and surface area within an array while maintaining uniform performance of optical surfaces. Powerful layout functions of the AutoCAD editor simplify the design of advanced micromirror arrays and make it possible to optimize devices according to the capabilities of the fabrication process. Micromirrors fabricated in this process have demonstrated a surface variance across the array from only 2{endash}3 nm to a worst case of roughly 25 nm while boasting active surface areas of 98{percent} or better. Combining the process planarization with a {open_quotes}planarized-by-design{close_quotes} approach will produce micromirror array surfaces that are limited in flatness only by the surface deposition roughness of the structural material. Ultimately, the combination of advanced process and layout capabilities have permitted the fabrication of highly optimized micromirror arrays for adaptive optics

  18. A new analysis for diffraction correction in optical interferometry

    NASA Astrophysics Data System (ADS)

    Mana, G.; Massa, E.; Sasso, C. P.; Andreas, B.; Kuetgens, U.

    2017-08-01

    Dimensional measurements by laser interferometry require a correction because of diffraction, which makes the fringe period different from the wavelength of a plane wave. The fractional correction—from parts in 10-7 to parts in 10-9, depending on the beam collimation—is half the central second moment of the angular power-spectrum of the beam, a generalization of the divergence concept. We report new insights into the second moment measurement and their consequences on the measurement of the silicon lattice parameter by combined x-ray and optical interferometry.

  19. Hot-air optical turbulence generator for the testing of adaptive optics systems: principles and characterization

    NASA Astrophysics Data System (ADS)

    Keskin, Onur; Jolissaint, Laurent; Bradley, Colin

    2006-07-01

    A statistically repeatable, hot-air optical turbulence generator, based on the forced mixing of two air flows with different temperatures, is described. Characterization results show that it is possible to generate any turbulence strength up to CN2 Δh≈6×10-10m1/3, allowing a ratio of beam diameter to Fried's parameter as large as D/r0≈25 for one crossing through the turbulator or D/r0≈38 for two crossings. The outer scale (L0≈133±60 mm) is found to be compatible with the turbulator mixing chamber size (170 mm), and the inner scale (l0≈7.6±3.8 mm) is compatible with the values in the literature for the free atmosphere. The temporal power spectrum analysis of the centroid of the focused image shows good agreement with Kolmogorov's theory. Therefore the device can be used with confidence to emulate realistic turbulence in a controlled manner. A calibrated CN2 profile, both in layer altitude and strength, is necessary for the testing of off-axis adaptive optics correction (multiconjugate adaptive optics). Testing was done to calibrate the CN2 profile using the slope detection and ranging technique. The first results, with only one layer, show the validity of the approach and indicate that a multiple-pass scheme is viable with a few modifications of the current setup.

  20. Hot-air optical turbulence generator for the testing of adaptive optics systems: principles and characterization.

    PubMed

    Keskin, Onur; Jolissaint, Laurent; Bradley, Colin

    2006-07-10

    A statistically repeatable, hot-air optical turbulence generator, based on the forced mixing of two air flows with different temperatures, is described. Characterization results show that it is possible to generate any turbulence strength up to CN2 Dh approximately 6 x 10(-10) m1/3, allowing a ratio of beam diameter to Fried's parameter as large as D/r0 approximately 25 for one crossing through the turbulator or D/r0 approximately 38 for two crossings. The outer scale (L0 approximately 133 +/- 60 mm) is found to be compatible with the turbulator mixing chamber size (170 mm), and the inner scale (l0 approximately 7.6 +/- 3.8 mm) is compatible with the values in the literature for the free atmosphere. The temporal power spectrum analysis of the centroid of the focused image shows good agreement with Kolmogorov's theory. Therefore the device can be used with confidence to emulate realistic turbulence in a controlled manner. A calibrated CN2 profile, both in layer altitude and strength, is necessary for the testing of off-axis adaptive optics correction (multiconjugate adaptive optics). Testing was done to calibrate the CN2 profile using the slope detection and ranging technique. The first results, with only one layer, show the validity of the approach and indicate that a multiple-pass scheme is viable with a few modifications of the current setup.

  1. Optical proximity correction using a multilayer perceptron neural network

    NASA Astrophysics Data System (ADS)

    Luo, Rui

    2013-07-01

    Optical proximity correction (OPC) is one of the resolution enhancement techniques (RETs) in optical lithography, where the mask pattern is modified to improve the output pattern fidelity. Algorithms are needed to generate the modified mask pattern automatically and efficiently. In this paper, a multilayer perceptron (MLP) neural network (NN) is used to synthesize the mask pattern. We employ the pixel-based approach in this work. The MLP takes the pixel values of the desired output wafer pattern as input, and outputs the optimal mask pixel values. The MLP is trained with the backpropagation algorithm, with a training set retrieved from the desired output pattern, and the optimal mask pattern obtained by the model-based method. After training, the MLP is able to generate the optimal mask pattern non-iteratively with good pattern fidelity.

  2. Computational adaptive optics for broadband interferometric tomography of tissues and cells

    NASA Astrophysics Data System (ADS)

    Adie, Steven G.; Mulligan, Jeffrey A.

    2016-03-01

    Adaptive optics (AO) can shape aberrated optical wavefronts to physically restore the constructive interference needed for high-resolution imaging. With access to the complex optical field, however, many functions of optical hardware can be achieved computationally, including focusing and the compensation of optical aberrations to restore the constructive interference required for diffraction-limited imaging performance. Holography, which employs interferometric detection of the complex optical field, was developed based on this connection between hardware and computational image formation, although this link has only recently been exploited for 3D tomographic imaging in scattering biological tissues. This talk will present the underlying imaging science behind computational image formation with optical coherence tomography (OCT) -- a beam-scanned version of broadband digital holography. Analogous to hardware AO (HAO), we demonstrate computational adaptive optics (CAO) and optimization of the computed pupil correction in 'sensorless mode' (Zernike polynomial corrections with feedback from image metrics) or with the use of 'guide-stars' in the sample. We discuss the concept of an 'isotomic volume' as the volumetric extension of the 'isoplanatic patch' introduced in astronomical AO. Recent CAO results and ongoing work is highlighted to point to the potential biomedical impact of computed broadband interferometric tomography. We also discuss the advantages and disadvantages of HAO vs. CAO for the effective shaping of optical wavefronts, and highlight opportunities for hybrid approaches that synergistically combine the unique advantages of hardware and computational methods for rapid volumetric tomography with cellular resolution.

  3. Final Report: Deconvolution of Adaptive Optics Images of Titan, Neptune, and Uranus

    SciTech Connect

    Gibbard, S; Marchis, F

    2002-12-20

    This project involved images of Titan, Neptune, and Uranus obtained using the 10-meter W.M. Keck II Telescope and its adaptive optics system. An adaptive optics system corrects for turbulence in the Earth's atmosphere by sampling the wavefront and applying a correction based on the distortion measured for a known source within the same isoplanatic patch as the science target (for example, a point source such as a star). Adaptive optics can achieve a 10-fold increase in resolution over that obtained by images without adaptive optics (for example, Saturn's largest moon Titan is unresolved without adaptive optics but at least 10 resolution elements can be obtained across the disk in Keck adaptive optics images). The adaptive optics correction for atmospheric turbulence is not perfect; a point source is converted to a diffraction-limited core surrounded by a ''halo''. This halo is roughly the size and shape of the uncorrected point spread function one would observe without adaptive optics. In order to enhance the sharpness of the Keck images it is necessary to apply a deconvolution algorithm to the data. Many such deconvolution algorithms exist such as maximum likelihood and maximum entropy. These algorithms suffer to various degrees from noise amplification and creation of artifacts near sharp edges (''ringing''). In order to deconvolve the Keck images I have applied an algorithm specifically developed for observations of planetary bodies, the myopic deconvolution algorithm MISTRAL (''Myopic Iterative STep-preserving Restoration ALgorithm'') (Conan et al. 1998, 2000). MISTRAL was developed by ONERA (Office National d'Etudes et de Recherches Aerospatiales) and has been extensively tested on simulated and real AO observations, including observations of Titan (Coustenis et al.2001), Io (Marchis et al.2002, 2001), and asteroids (Hestroffer et al.2001, Rosenberg et al.2001, Makhoul et al.2001). Compared to more classical methods, MISTRAL avoids noise amplification and

  4. Modelling the application of adaptive optics to wide-field microscope live imaging.

    PubMed

    Kam, Zvi; Kner, Peter; Agard, David; Sedat, John W

    2007-04-01

    Wide-field fluorescence microscopy is an essential tool in modern cell biology. Unfortunately the image quality of fluorescence microscopes is often significantly degraded due to aberrations that occur under normal imaging conditions. In this article, we examine the use of adaptive optics technology to dynamically correct these problems to achieve close to ideal diffraction limited performance. Simultaneously, this technology also allows ultra-rapid focusing without having to move either the stage or the objective lens. We perform optical simulations to demonstrate the degree of correction that can be achieved.

  5. Data-based online nonlinear extremum-seeker for wavefront sensorless adaptive optics OCT (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Jian, Yifan; Verstraete, Hans R. G. W.; Heisler, Morgan; Ju, Myeong Jin; Wahl, Daniel J.; Bliek, Laurens; Kalkman, Jeroen; Bonora, Stefano; Verhaegen, Michel; Sarunic, Marinko V.

    2017-02-01

    Adaptive optics has been successfully applied to cellular resolution imaging of the retina, enabling visualization of the characteristic mosaic patterns of the outer retina. Wavefront sensorless adaptive optics (WSAO) is a novel technique that facilitates high resolution ophthalmic imaging; it replaces the Hartmann-Shack Wavefront Sensor with an image-driven optimization algorithm and mitigates some the challenges encountered with sensor-based designs. However, WSAO generally requires longer time to perform aberrations correction than the conventional closed-loop adaptive optics. When used for in vivo retinal imaging applications, motion artifacts during the WSAO optimization process will affect the quality of the aberration correction. A faster converging optimization scheme needs to be developed to account for rapid temporal variation of the wavefront and continuously apply corrections. In this project, we investigate the Databased Online Nonlinear Extremum-seeker (DONE), a novel non-linear multivariate optimization algorithm in combination with in vivo human WSAO OCT imaging. We also report both hardware and software updates of our compact lens based WSAO 1060nm swept source OCT human retinal imaging system, including real time retinal layer segmentation and tracking (ILM and RPE), hysteresis correction for the multi-actuator adaptive lens, precise synchronization control for the 200kHz laser source, and a zoom lens unit for rapid switching of the field of view. Cross sectional images of the retinal layers and en face images of the cone photoreceptor mosaic acquired in vivo from research volunteers before and after WSAO optimization are presented.

  6. Interferometric velocity measurements through a fluctuating gas-liquid interface employing adaptive optics.

    PubMed

    Büttner, Lars; Leithold, Christoph; Czarske, Jürgen

    2013-12-16

    Optical transmission through fluctuating interfaces of mediums with different refractive indexes is limited by the occurring distortions. Temporal fluctuations of such distortions deteriorate optical measurements. In order to overcome this shortcoming we propose the use of adaptive optics. For the first time, an interferometric velocity measurement technique with embedded adaptive optics is presented for flow velocity measurements through a fluctuating air-water interface. A low order distortion correction technique using a fast deformable mirror and a Hartmann-Shack camera with high frame rate is employed. The obtained high control bandwidth enables precise measurements also at fast fluctuating media interfaces. This methodology paves the way for several kinds of optical flow measurements in various complex environments.

  7. [Visual quality needs to be improved in non-surgical optical correction].

    PubMed

    Xie, Peiying

    2016-01-01

    Optical correction is the basis of optometry. Optimized visual quality through optical correction is more challenging and more scientific as visual quality is becoming more closely related to social integration and development. There are many visual quality problems associated with various non-surgical optical correction methods in different aspects and degrees. This article discusses in depth some of the problems regarding optical correction with spectacles for different age groups, from children to seniors. The use of soft contact lenses, rigid gas-permeable contact lenses, and orthokeratology lenses is also evaluated. Moreover, some suggestions and recommendations on promoting visual quality through optical correction are provided.

  8. Optical Design of Adaptive Optics Confocal Scanning Laser Ophthalmoscope with Two Deformable Mirrors.

    PubMed

    Yang, Jinsheng; Wang, Yuanyuan; Rao, Xuejun; Wei, Ling; Li, Xiqi; He, Yi

    2017-01-01

    We describe the optical design of a confocal scanning laser ophthalmoscope with two deformable mirrors. Spherical mirrors are used for pupil relay. Defocus aberration of the human eye is corrected by a Badal focusing structure and astigmatism aberration is corrected by a deformable mirror. The main optical system achieves a diffraction-limited performance through the entire scanning field (6 mm pupil, 3 degrees on pupil plane). The performance of the optical system, with correction of defocus and astigmatism, is also evaluated.

  9. Simulation of DKIST solar adaptive optics system

    NASA Astrophysics Data System (ADS)

    Marino, Jose; Carlisle, Elizabeth; Schmidt, Dirk

    2016-07-01

    Solar adaptive optics (AO) simulations are a valuable tool to guide the design and optimization process of current and future solar AO and multi-conjugate AO (MCAO) systems. Solar AO and MCAO systems rely on extended object cross-correlating Shack-Hartmann wavefront sensors to measure the wavefront. Accurate solar AO simulations require computationally intensive operations, which have until recently presented a prohibitive computational cost. We present an update on the status of a solar AO and MCAO simulation tool being developed at the National Solar Observatory. The simulation tool is a multi-threaded application written in the C++ language that takes advantage of current large multi-core CPU computer systems and fast ethernet connections to provide accurate full simulation of solar AO and MCAO systems. It interfaces with KAOS, a state of the art solar AO control software developed by the Kiepenheuer-Institut fuer Sonnenphysik, that provides reliable AO control. We report on the latest results produced by the solar AO simulation tool.

  10. Adaptive Optics Imaging of Exoplanet Host Stars

    NASA Astrophysics Data System (ADS)

    Herman, Miranda; Waaler, Mason; Patience, Jennifer; Ward-Duong, Kimberly; Rajan, Abhijith; McCarthy, Don; Kulesa, Craig; Wilson, Paul A.

    2016-01-01

    With the Arizona Infrared imager and Echelle Spectrograph (ARIES) instrument on the 6.5m MMT telescope, we obtained high angular resolution adaptive optics images of 12 exoplanet host stars. The targets are all systems with exoplanets in extremely close orbits such that the planets transit the host stars and cause regular brightness changes in the stars. The transit depth of the light curve is used to infer the radius and, in combination with radial velocity measurements, the density of the planet, but the results can be biased if the light from the host star is the combined light of a pair of stars in a binary system or a chance alignment of two stars. Given the high frequency of binary star systems and the increasing number of transit exoplanet discoveries from Kepler, K2, and anticipated discoveries with the Transiting Exoplanet Survey Satellite (TESS), this is a crucial point to consider when interpreting exoplanet properties. Companions were identified around five of the twelve targets at separations close enough that the brightness measurements of these host stars are in fact the combined brightness of two stars. Images of the resolved stellar systems and reanalysis of the exoplanet properties accounting for the presence of two stars are presented.

  11. Turbulence profiling for adaptive optics tomographic reconstructors

    NASA Astrophysics Data System (ADS)

    Laidlaw, Douglas J.; Osborn, James; Wilson, Richard W.; Morris, Timothy J.; Butterley, Timothy; Reeves, Andrew P.; Townson, Matthew J.; Gendron, Éric; Vidal, Fabrice; Morel, Carine

    2016-07-01

    To approach optimal performance advanced Adaptive Optics (AO) systems deployed on ground-based telescopes must have accurate knowledge of atmospheric turbulence as a function of altitude. Stereo-SCIDAR is a high-resolution stereoscopic instrument dedicated to this measure. Here, its profiles are directly compared to internal AO telemetry atmospheric profiling techniques for CANARY (Vidal et al. 20141), a Multi-Object AO (MOAO) pathfinder on the William Herschel Telescope (WHT), La Palma. In total twenty datasets are analysed across July and October of 2014. Levenberg-Marquardt fitting algorithms dubbed Direct Fitting and Learn 2 Step (L2S; Martin 20142) are used in the recovery of profile information via covariance matrices - respectively attaining average Pearson product-moment correlation coefficients with stereo-SCIDAR of 0.2 and 0.74. By excluding the measure of covariance between orthogonal Wavefront Sensor (WFS) slopes these results have revised values of 0.65 and 0.2. A data analysis technique that combines L2S and SLODAR is subsequently introduced that achieves a correlation coefficient of 0.76.

  12. KAPAO: A Pomona College Adaptive Optics Instrument

    NASA Astrophysics Data System (ADS)

    Choi, Philip I.; Severson, S. A.; Rudy, A. R.; Gilbreth, B. N.; Contreras, D. S.; McGonigle, L. P.; Chin, R. M.; Horn, B.; Hoidn, O.; Spjut, E.; Baranec, C.; Riddle, R.

    2011-01-01

    We describe our project (KAPAO) to develop and deploy a low-cost, remote-access, natural guide star adaptive optics system for the Pomona College Table Mountain Observatory (TMO) 1-meter telescope. The system will offer simultaneous dual-band, diffraction-limited imaging at visible and near-infrared wavelengths and will deliver an order-of-magnitude improvement in point source sensitivity and angular resolution relative to the current TMO seeing limits. In order to ensure reliability, minimize costs and encourage replication efforts, off-the-shelf components that include a MEMS deformable mirror, a Shack-Hartmann wavefront sensor and a piezo-electric tip-tilt mirror are being adopted for the core hardware elements. We present: the instrument design; performance predictions based on AO simulations; and the current status of the testbed instrument and high-speed control system. Beyond the expanded scientific capabilities enabled by AO-enhanced resolution and sensitivity, the interdisciplinary nature of the instrument development effort provides an exceptional opportunity to train a broad range of undergraduate STEM students in AO technologies and techniques. The breadth of our collaboration, which includes both public (Sonoma State University) and private (Pomona and Harvey Mudd Colleges) undergraduate institutions has enabled us to engage students ranging from physics, astronomy, engineering and computer science in the early stages of this project. This material is based upon work supported by the National Science Foundation under Grant No. 0960343.

  13. Research on the liquid crystal adaptive optics system for human retinal imaging

    NASA Astrophysics Data System (ADS)

    Zhang, Lei; Tong, Shoufeng; Song, Yansong; Zhao, Xin

    2013-12-01

    The blood vessels only in Human eye retinal can be observed directly. Many diseases that are not obvious in their early symptom can be diagnosed through observing the changes of distal micro blood vessel. In order to obtain the high resolution human retinal images,an adaptive optical system for correcting the aberration of the human eye was designed by using the Shack-Hartmann wavefront sensor and the Liquid Crystal Spatial Light Modulator(LCLSM) .For a subject eye with 8m-1 (8D)myopia, the wavefront error is reduced to 0.084 λ PV and 0.12 λRMS after adaptive optics(AO) correction ,which has reached diffraction limit.The results show that the LCLSM based AO system has the ability of correcting the aberration of the human eye efficiently,and making the blurred photoreceptor cell to clearly image on a CCD camera.

  14. Three-dimensional focusing through scattering media using conjugate adaptive optics with remote focusing (CAORF).

    PubMed

    Tao, Xiaodong; Lam, Tuwin; Zhu, Bingzhao; Li, Qinggele; Reinig, Marc R; Kubby, Joel

    2017-05-01

    The small correction volume for conventional wavefront shaping methods limits their application in biological imaging through scattering media. We demonstrate large volume wavefront shaping through a scattering layer with a single correction by conjugate adaptive optics and remote focusing (CAORF). The remote focusing module can maintain the conjugation between the adaptive optical (AO) element and the scattering layer during three-dimensional scanning. This new configuration provides a wider correction volume by better utilization of the memory effect in a fast three-dimensional laser scanning microscope. Our results show that the proposed system can provide 10 times wider axial field of view compared with a conventional conjugate AO system when 16,384 segments are used on a spatial light modulator. We also demonstrate three-dimensional fluorescence imaging, multi-spot patterning through a scattering layer and two-photon imaging through mouse skull tissue.

  15. Mixed sensitivity H-infinity control of an adaptive optics system

    NASA Astrophysics Data System (ADS)

    Song, Dingan; Li, Xinyang; Peng, Zhenming

    2016-09-01

    Design of the controller of an adaptive optical system is very complex because its model is usually with uncertainty. To deal with uncertainty and to improve robust stability, the mixed sensitivity H∞ control has been introduced to design the controller. In order to testify the validity, wavefront aberration correction capability as well as the robust stability has been compared between the mixed sensitivity H∞ controller and the classic integral controller. The computer simulation results demonstrate that the system with the mixed sensitivity H∞ controller, though it cannot guarantee a better correction performance, has greater robust stability than the one with the classic integral controller. That is to say, greater robust stability is achieved at the expense of the correction capability in the system with H∞ controller. Moreover, the greater the uncertainty is, the more proceeds the mixed sensitivity H∞ controller will produce. It proves the efficiency of the mixed sensitivity H∞ controller in dealing with uncertainty in adaptive optics system.

  16. Wavefront sensorless adaptive optics OCT with the DONE algorithm for in vivo human retinal imaging [Invited].

    PubMed

    Verstraete, Hans R G W; Heisler, Morgan; Ju, Myeong Jin; Wahl, Daniel; Bliek, Laurens; Kalkman, Jeroen; Bonora, Stefano; Jian, Yifan; Verhaegen, Michel; Sarunic, Marinko V

    2017-04-01

    In this report, which is an international collaboration of OCT, adaptive optics, and control research, we demonstrate the Data-based Online Nonlinear Extremum-seeker (DONE) algorithm to guide the image based optimization for wavefront sensorless adaptive optics (WFSL-AO) OCT for in vivo human retinal imaging. The ocular aberrations were corrected using a multi-actuator adaptive lens after linearization of the hysteresis in the piezoelectric actuators. The DONE algorithm succeeded in drastically improving image quality and the OCT signal intensity, up to a factor seven, while achieving a computational time of 1 ms per iteration, making it applicable for many high speed applications. We demonstrate the correction of five aberrations using 70 iterations of the DONE algorithm performed over 2.8 s of continuous volumetric OCT acquisition. Data acquired from an imaging phantom and in vivo from human research volunteers are presented.

  17. Adaptive optics in spinning disk microscopy: improved contrast and brightness by a simple and fast method.

    PubMed

    Fraisier, V; Clouvel, G; Jasaitis, A; Dimitrov, A; Piolot, T; Salamero, J

    2015-09-01

    Multiconfocal microscopy gives a good compromise between fast imaging and reasonable resolution. However, the low intensity of live fluorescent emitters is a major limitation to this technique. Aberrations induced by the optical setup, especially the mismatch of the refractive index and the biological sample itself, distort the point spread function and further reduce the amount of detected photons. Altogether, this leads to impaired image quality, preventing accurate analysis of molecular processes in biological samples and imaging deep in the sample. The amount of detected fluorescence can be improved with adaptive optics. Here, we used a compact adaptive optics module (adaptive optics box for sectioning optical microscopy), which was specifically designed for spinning disk confocal microscopy. The module overcomes undesired anomalies by correcting for most of the aberrations in confocal imaging. Existing aberration detection methods require prior illumination, which bleaches the sample. To avoid multiple exposures of the sample, we established an experimental model describing the depth dependence of major aberrations. This model allows us to correct for those aberrations when performing a z-stack, gradually increasing the amplitude of the correction with depth. It does not require illumination of the sample for aberration detection, thus minimizing photobleaching and phototoxicity. With this model, we improved both signal-to-background ratio and image contrast. Here, we present comparative studies on a variety of biological samples. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.

  18. Sub-ångstrom resolution using aberration corrected electron optics

    NASA Astrophysics Data System (ADS)

    Batson, P. E.; Dellby, N.; Krivanek, O. L.

    2002-08-01

    Following the invention of electron optics during the 1930s, lens aberrations have limited the achievable spatial resolution to about 50 times the wavelength of the imaging electrons. This situation is similar to that faced by Leeuwenhoek in the seventeenth century, whose work to improve the quality of glass lenses led directly to his discovery of the ubiquitous ``animalcules'' in canal water, the first hints of the cellular basis of life. The electron optical aberration problem was well understood from the start, but more than 60 years elapsed before a practical correction scheme for electron microscopy was demonstrated, and even then the remaining chromatic aberrations still limited the resolution. We report here the implementation of a computer-controlled aberration correction system in a scanning transmission electron microscope, which is less sensitive to chromatic aberration. Using this approach, we achieve an electron probe smaller than 1Å. This performance, about 20 times the electron wavelength at 120keV energy, allows dynamic imaging of single atoms, clusters of a few atoms, and single atomic layer `rafts' of atoms coexisting with Au islands on a carbon substrate. This technique should also allow atomic column imaging of semiconductors, for detection of single dopant atoms, using an electron beam with energy below the damage threshold for silicon.

  19. Impact of scanner signatures on optical proximity correction

    NASA Astrophysics Data System (ADS)

    Tyminski, Jacek K.; Matsuyama, Tomoyuki; Lu, Yen-Liang; Lai, Jun-Cheng; Chen, Kao-Tun; Mai, Yung-Ching; Su, Irene; Bailey, George

    2010-04-01

    Low pass filtering of mask diffraction orders, in the projection tools used in microelectronics industry, leads to a range of optical proximity effects, OPEs, impacting integrated circuit pattern images. These predictable OPEs can be corrected with various, model-based optical proximity correction methodologies, OPCs , the success of which strongly depends on the completeness of the imaging models they use. The image formation in scanners is driven by the illuminator settings and the projection lens NA, and modified by the scanner engineering impacts due to: 1) the illuminator signature, i.e. the distributions of illuminator field amplitude and phase, 2) the projection lens signatures representing projection lens aberration residue and the flare, and 3) the reticle and the wafer scan synchronization signatures. For 4x nm integrated circuits, these scanner impacts modify the critical dimensions of the pattern images at the level comparable to the required image tolerances. Therefore, to reach the required accuracy, the OPC models have to imbed the scanner illuminator, projection lens, and synchronization signatures. To study their effects on imaging, we set up imaging models without and with scanner signatures, and we used them to predict OPEs and to conduct the OPC of a poly gate level of 4x nm flash memory. This report presents analysis of the scanner signature impacts on OPEs and OPCs of critical patterns in the flash memory gate levels.

  20. SCORE Imaging: Specimen in a Corrected Optical Rotational Enclosure

    PubMed Central

    Petzold, Andrew M.; Bedell, Victoria M.; Boczek, Nicole J.; Essner, Jeffrey J.; Balciunas, Darius; Clark, Karl J.

    2010-01-01

    Abstract Visual data collection is paramount for the majority of scientific research. The added transparency of the zebrafish (Danio rerio) allows for a greater detail of complex biological research that accompanies seemingly simple observational tools. We developed a visual data analysis and collection approach that takes advantage of the cylindrical nature of the zebrafish allowing for an efficient and effective method for image capture that we call Specimen in a Corrected Optical Rotational Enclosure imaging. To achieve a nondistorted image, zebrafish were placed in a fluorinated ethylene propylene tube with a surrounding optically corrected imaging solution (water). By similarly matching the refractive index of the housing (fluorinated ethylene propylene tubing) to that of the inner liquid and outer liquid (water), distortion was markedly reduced, producing a crisp imagable specimen that is able to be fully rotated 360°. A similar procedure was established for fixed zebrafish embryos using convenient, readily available borosilicate capillaries surrounded by 75% glycerol. The method described here could be applied to chemical genetic screening and other related high-throughput methods within the fish community and among other scientific fields. PMID:20528262

  1. Improvement of optical proximity-effect correction model accuracy by hybrid optical proximity-effect correction modeling and shrink correction technique for 10-nm node process

    NASA Astrophysics Data System (ADS)

    Hitomi, Keiichiro; Halle, Scott; Miller, Marshal; Graur, Ioana; Saulnier, Nicole; Dunn, Derren; Okai, Nobuhiro; Hotta, Shoji; Yamaguchi, Atuko; Komuro, Hitoshi; Ishimoto, Toru; Koshihara, Shunsuke; Hojo, Yutaka

    2016-07-01

    The model accuracy of optical proximity-effect correction (OPC) was investigated by two modeling methods for a 10-nm node process. The first method is to use contours of two-dimensional structures extracted from critical dimension-scanning electron microscope (CD-SEM) images combined with conventional CDs of one-dimensional structures. The accuracy of this hybrid OPC model was compared with that of a conventional OPC model, which was created with only CD data, in terms of root-mean-square (RMS) error for metal and contact layers of 10-nm node logic devices. Results showed improvement of model accuracy with the use of hybrid OPC modeling by 23% for contact layer and 18% for metal layer, respectively. The second method is to apply a correction technique for resist shrinkage caused by CD-SEM measurement to extracted contours for improving OPC model accuracy. The accuracy of OPC model with shrink correction was compared with that without shrink correction, and total RMS error was decreased by 12% by using the shrink correction technique. It can be concluded that the use of CD-SEM contours and the shrink correction of contours are effective to improve the accuracy of OPC model for the 10-nm node process.

  2. Sensor-less aberration correction in optical imaging systems using blind optimization

    NASA Astrophysics Data System (ADS)

    Avanaki, Mohammad R. N.; Mazraeh Khoshki, R.; Hojjatoleslami, S. A.; Podoleanu, A. Gh.

    2012-02-01

    The imperfection of optical devices in an optical imaging system deteriorates wavefront which results in aberration. This reduces the optical signal to noise ratio of the imaging system and the quality of the produced images. Adaptive optics composed of wavefront sensor (WFS) and deformable mirror (DM) is a straightforward solution for this problem. The need for a WFS in an AO system, raises the cost of the overall system, and there are also instances when they cannot be used, such as in microscopy. Moreover stray reflections from lens surfaces affect the performance of the WFS. In this paper, we describe a blind optimization technique with an in-expensive electronics without using the WFS to correct the aberration in order to achieve better quality images. The correction system includes an electromagnetic DM from Imagine, Mirao52d, with 52 actuators which are controlled by particle swarm optimization (PSO) algorithm. The results of the application of simulated annealing (SA), and genetic algorithm (GA) techniques that we have implemented in the sensor-less AO are used for comparison.

  3. Preliminary use of nematic liquid crystal adaptive optics with a 2.16-meter reflecting telescope.

    PubMed

    Cao, Zhaoliang; Mu, Quanquan; Hu, Lifa; Li, Dayu; Peng, Zenghui; Liu, Yonggang; Xuan, Li

    2009-02-16

    A nematic liquid crystal adaptive optics system (NLC AOS) was assembled for a 2.16-m telescope to correct for atmospheric turbulence. LC AOS was designed and optimized with Zemax optical software. Second, an adaptive correction experiment was performed in the laboratory to test the performance of the NLC AOS. After the correction, the peak to valley (PV) and root mean square (RMS) of the wavefront were down to 0.2 lambda (lambda=633 nm) and 0.05 lambda, respectively. Finally, the star of Pollux (beta Gem) was tracked using the 2.16-m Reflecting Telescope, and real time correction of the atmospheric turbulence was performed with the NLC AOS. After the adaptive correction, the average PV and RMS of the wavefront were reduced from 11 lambda and 2.5 lambda to 2.3 lambda and 0.6 lambda, respectively. Although the intensity distribution of the beta Gem was converged and its peak was sharp, a halo still existed around the peak. These results indicated that the NLC AOS only partially corrected the vertical atmospheric turbulence. The limitations of our NLC AOS are discussed and some proposals are made.

  4. SOUL: the Single conjugated adaptive Optics Upgrade for LBT

    NASA Astrophysics Data System (ADS)

    Pinna, E.; Esposito, S.; Hinz, P.; Agapito, G.; Bonaglia, M.; Puglisi, A.; Xompero, M.; Riccardi, A.; Briguglio, R.; Arcidiacono, C.; Carbonaro, L.; Fini, L.; Montoya, M.; Durney, O.

    2016-07-01

    We present here SOUL: the Single conjugated adaptive Optics Upgrade for LBT. Soul will upgrade the wavefront sensors replacing the existing CCD detector with an EMCCD camera and the rest of the system in order to enable the closed loop operations at a faster cycle rate and with higher number of slopes. Thanks to reduced noise, higher number of pixel and framerate, we expect a gain (for a given SR) around 1.5-2 magnitudes at all wavelengths in the range 7.5 correction at short wavelength will be greatly improved (SR>70% in I-band and 0.6asec seeing) and the sky coverage will be multiplied by a factor 5 at all galactic latitudes. Upgrading the SCAO systems at all the 4 focal stations, SOUL will provide these benefits in 2017 to the LBTI interferometer and in 2018 to the 2 LUCI NIR spectro-imagers. In the same year the SOUL correction will be exploited also by the new generation of LBT instruments: V-SHARK, SHARK-NIR and iLocater.

  5. Adaptive optics for ultra short pulsed lasers in UHV environment

    NASA Astrophysics Data System (ADS)

    Deneuville, Francois; Ropert, Laurent; Sauvageot, Paul; Theis, Sébastien

    2015-02-01

    ISP SYSTEM has developed an electro-mechanical deformable mirror compatible with Ultra High Vacuum environment, suitable for ultra short pulsed lasers. The design of the MD-AME deformable mirror is based on force application on numerous locations. μ-AME actuators are driven by stepper motors, and their patented special design allows controlling the force with a very high accuracy. Materials and assembly method have been adapted to UHV constraints and the performances were evaluated on a first application for a beam with a diameter of 250mm. A Strehl ratio above 0.9 was reached for this application. Optical aberrations up to Zernike order 5 can be corrected with a very low residual error as for standard MD-AME mirror. Amplitude can reach up to several hundreds of μm for low order corrections. Hysteresis is lower than 0.1% and linearity better than 99%. Contrary to piezo-electric actuators, the μ-AME actuators avoid print-through effects and they permit to keep the mirror shape stable even unpowered, providing a high resistance to electro-magnetic pulses. The deformable mirror design allows changing easily an actuator or even the membrane if needed, in order to improve the facility availability. They are designed for circular, square or elliptical aperture from 30mm up to 500mm or more, with incidence angle from 0° to 45°. They can be equipped with passive or active cooling for high power lasers with high repetition rate.

  6. Adaptive deformation correction of depth from defocus for object reconstruction.

    PubMed

    Li, Ang; Tjahjadi, Tardi; Staunton, Richard

    2014-12-01

    The accuracy of three-dimensional object reconstruction using depth from defocus (DfD) can be severely reduced by elliptical lens deformation. This paper presents two correction methods, correction by deformation cancellation (CDC) and correction by least squares fit (CLSF). CDC works by subtracting the current deformed depth value by a prestored deformed value, and CLSF by mapping the deformed values to the expected values. Each method is followed by a smoothing algorithm to address the low-texture problem of DfD. Experiments using four DfD methods on real images show that the proposed methods effectively and efficiently eliminate the deformation.

  7. Wavefront sensorless adaptive optics versus sensor-based adaptive optics for in vivo fluorescence retinal imaging (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Wahl, Daniel J.; Zhang, Pengfei; Jian, Yifan; Bonora, Stefano; Sarunic, Marinko V.; Zawadzki, Robert J.

    2017-02-01

    Adaptive optics (AO) is essential for achieving diffraction limited resolution in large numerical aperture (NA) in-vivo retinal imaging in small animals. Cellular-resolution in-vivo imaging of fluorescently labeled cells is highly desirable for studying pathophysiology in animal models of retina diseases in pre-clinical vision research. Currently, wavefront sensor-based (WFS-based) AO is widely used for retinal imaging and has demonstrated great success. However, the performance can be limited by several factors including common path errors, wavefront reconstruction errors and an ill-defined reference plane on the retina. Wavefront sensorless (WFS-less) AO has the advantage of avoiding these issues at the cost of algorithmic execution time. We have investigated WFS-less AO on a fluorescence scanning laser ophthalmoscopy (fSLO) system that was originally designed for WFS-based AO. The WFS-based AO uses a Shack-Hartmann WFS and a continuous surface deformable mirror in a closed-loop control system to measure and correct for aberrations induced by the mouse eye. The WFS-less AO performs an open-loop modal optimization with an image quality metric. After WFS-less AO aberration correction, the WFS was used as a control of the closed-loop WFS-less AO operation. We can easily switch between WFS-based and WFS-less control of the deformable mirror multiple times within an imaging session for the same mouse. This allows for a direct comparison between these two types of AO correction for fSLO. Our results demonstrate volumetric AO-fSLO imaging of mouse retinal cells labeled with GFP. Most significantly, we have analyzed and compared the aberration correction results for WFS-based and WFS-less AO imaging.

  8. Design of the Dual Conjugate Adaptive Optics Test-bed

    NASA Astrophysics Data System (ADS)

    Sharf, Inna; Bell, K.; Crampton, D.; Fitzsimmons, J.; Herriot, Glen; Jolissaint, Laurent; Lee, B.; Richardson, H.; van der Kamp, D.; Veran, Jean-Pierre

    order to quantify the quality of the correction achieved with the DM's. A mini-wavescope, also supplied by AOA, will be part of the test-bed and is intended for use as an auxilliary tool for system calibration and identification. The foreoptics of the complete layout emulates a 32 cm, F/40 telescope, which itself was scaled down from an 8 meter telescope, while maintaining a 2' field of view. The foreoptics entrance beam diameter is 30 mm. The tip-tilt mirror procured from Ball Aerospace is placed at 0km in the foreoptics, before the deformable mirrors. A turbulence generator and a source simulator must be constructed for the test-bed since it is intended for use as a stand-alone research facility. Several concepts were considered for the turbulence generator: a holographic simulator, a spatial light modulator based on liquid-crystal technology, a phase plate based simulator and the hot-air turbulence generator. The latter was identified as the most suitable concept for our facility, after comparing the versatility, capabilities, and cost of the alternatives. The proposed design follows closely that developed by [Jolissaint, 2000] and aims to produce turbulence with Cn2 delta h ~ O (10-10) and D/r0 of approximately 8. With an appropriately designed fold of the beam, a single hot-air turbulator can be used to provide both turbulence layers for the beam. The source simulator will accommodate three guide stars with a fixed triangular geometry and a white science source that can be placed at an arbitrary location in the field of view. The guide stars can be located either at infinity to emulate NGS, or at 90 km to emulate sodium backscatter produced with lasers in a real adaptive optics system. Since the GS are held fixed above the turbulence, they can also be used to derive tip-tilt information, thus obviating the need for Natural Guide Stars. The dual-layer adaptive optics test-bed presented in this poster is expected to be fully operational by the middle of 2002. Parts

  9. An adaptive transmission system for optical wireless communication

    NASA Astrophysics Data System (ADS)

    Junwei, Zhu; Yong, Ai; Yingfeng, Ge

    2005-08-01

    In this paper, an adaptive transmission system with a special multiplex core for the optical wireless communication (OWC) is proposed, which can adjust the transmission mode automatically according to the channel status information (CSI). The atmosphere channel is a time-variable channel in which link performance could be affected by weather and scintillation. Adaptive transmission (AT) technique is introduced to solve the problem. Certain CSI that can evaluate the quality of atmosphere channel should be chosen to vary the transmission mode of OWC terminals in order to confront bad weather condition and maximize average throughput of transceiver. Considering that the system can choose suitable communication bit-rate, transmission power and with or without channel coding and some other flexible features, the special multiplex core has been used to guarantee the data to be multiplexed correctly. The data can be packaged into fixed length frame with the channel ID. Data stream is buffered by Dual-port FIFO with multi-clock feature and multiplexed by a smart controller with a certain algorithm. The special system structure makes it possible to replace the data interface without any change of the rest parts.

  10. Status of the ARGOS ground layer adaptive optics system

    NASA Astrophysics Data System (ADS)

    Gässler, Wolfgang; Rabien, Sebastian; Esposito, Simone; Lloyd-Hart, Michael; Barl, Lothar; Beckmann, Udo; Bluemchen, Thomas; Bonaglia, Marco; Borelli, José Luis; Brusa, Guido; Brynnel, Joar; Buschkamp, Peter; Busoni, Lorenzo; Carbonaro, Luca; Connot, Claus; Davies, Richard; Deysenroth, Matthias; Durney, Olivier; Green, Richard; Gemperlein, Hans; Gasho, Victor; Haug, Marcus; Hubbard, Pete; Ihle, Sebastian; Kulas, Martin; Lederer, Reinhard; Lewis, Jason; Loose, Christina; Lehmitz, Michael; Noenickx, Jamison; Nussbaum, Edmund; Orban de Xivry, Gilles; Peter, Diethard; Quirrenbach, Andreas; Rademacher, Matt; Raab, Walfried; Storm, Jesper; Schwab, Christian; Vaitheeswaran, Vidhya; Ziegleder, Julian

    2012-07-01

    ARGOS the Advanced Rayleigh guided Ground layer adaptive Optics System for the LBT (Large Binocular Telescope) is built by a German-Italian-American consortium. It will be a seeing reducer correcting the turbulence in the lower atmosphere over a field of 2' radius. In such way we expect to improve the spatial resolution over the seeing of about a factor of two and more and to increase the throughput for spectroscopy accordingly. In its initial implementation, ARGOS will feed the two near-infrared spectrograph and imager - LUCI I and LUCI II. The system consist of six Rayleigh lasers - three per eye of the LBT. The lasers are launched from the back of the adaptive secondary mirror of the LBT. ARGOS has one wavefront sensor unit per primary mirror of the LBT, each of the units with three Shack-Hartmann sensors, which are imaged on one detector. In 2010 and 2011, we already mounted parts of the instrument at the telescope to provide an environment for the main sub-systems. The commissioning of the instrument will start in 2012 in a staged approach. We will give an overview of ARGOS and its goals and report about the status and new challenges we encountered during the building phase. Finally we will give an outlook of the upcoming work, how we will operate it and further possibilities the system enables by design.

  11. On the rejection of vibrations in adaptive optics systems

    NASA Astrophysics Data System (ADS)

    Muradore, Riccardo; Pettazzi, Lorenzo; Fedrigo, Enrico; Clare, Richard

    2012-07-01

    In modern adaptive optics systems, lightly damped sinusoidal oscillations resulting from telescope structural vibrations have a significant deleterious impact on the quality of the image collected at the detector plane. Such oscillations are often at frequencies beyond the bandwidth of the wave-front controller that therefore is either incapable of rejecting them or might even amplify their detrimental impact on the overall AO performance. A technique for the rejection of periodic disturbances acting at the output of unknown plants, which has been recently presented in literature, has been adapted to the problem of rejecting vibrations in AO loops. The proposed methodology aims at estimating phase and amplitude of the harmonic disturbance together with the response of the unknown plant at the frequency of vibration. On the basis of such estimates, a control signal is generated to cancel out the periodic perturbation. Additionally, the algorithm can be easily extended to cope with unexpected time variations of the vibrations frequency by adding a frequency tracking module based either on a simple PLL architecture or on a classical extended Kalman filter. Oversampling can be also easily introduced to efficiently correct for vibrations approaching the sampling frequency. The approach presented in this contribution is compared against a different algorithm for vibration rejection available in literature, in order to identify drawbacks and advantages. Finally, the performance of the proposed vibration cancellation technique has been tested in realistic scenarios defined exploiting tip/tilt measurements from MACAO and NACO

  12. Status of the PALM-3000 high order adaptive optics instrument

    NASA Astrophysics Data System (ADS)

    Burruss, Rick S.; Dekany, Richard G.; Roberts, Jennifer E.; Shelton, J. C.; Wallace, J. K.; Tesch, Jonathan A.; Palmer, Dean L.; Hale, David; Bartos, Randall; Rykoski, Kevin M.; Heffner, Carolyn M.; Eriksen, Jamey E.; Vescelus, Fred

    2014-07-01

    We report on the status of PALM-3000, the second generation adaptive optics instrument for the 5.1 meter Hale telescope at Palomar Observatory. PALM-3000 was released as a facility class instrument in October 2011, and has since been used on the Hale telescope a total of over 250 nights. In the past year, the PALM-3000 team introduced several instrument upgrades, including the release of the 32x32 pupil sampling mode which allows for correction on fainter guide stars, the upgrade of wavefront sensor relay optics, the diagnosis and repair of hardware problems, and the release of software improvements. We describe the performance of the PALM-3000 instrument as a result of these upgrades, and provide on-sky results. In the 32x32 pupil sampling mode (15.8 cm per subaperture), we have achieved K-band strehl ratios as high as 11% on a 14.4 mv star, and in the 64x64 pupil sampling mode (8.1 cm per subaperture), we have achieved K-band strehl ratios as high as 86% on stars brighter than 7th mv.

  13. Design and performance optimization of fiber optic adaptive filters

    NASA Astrophysics Data System (ADS)

    Paparao, Palacharla; Ghosh, Anjan; Allen, Susan D.

    1991-05-01

    The design of the least-mean-square algorithm-based fiber optic adaptive filters for processing guided lightwave signals in real time is described. Fiber optic adaptive filters can learn to change their parameters or to process a set of characteristics of the input signal. The realization employs as few electronic devices as possible and uses optical computation to utilize the advantages of optics in the processing speed, parallelism, and interconnection. The convergence or learning characteristics of the adaptive filtering process are analyzed as a function of the filter parameters and the fiber optic hardware errors. From this analysis it is found that the effects of the optical round-off errors and noise can be reduced, and the learning speed can be comparatively increased through an optimal selection of the filter parameters.

  14. Adaptive optics parallel near-confocal scanning ophthalmoscopy.

    PubMed

    Lu, Jing; Gu, Boyu; Wang, Xiaolin; Zhang, Yuhua

    2016-08-15

    We present an adaptive optics parallel near-confocal scanning ophthalmoscope (AOPCSO) using a digital micromirror device (DMD). The imaging light is modulated to be a line of point sources by the DMD, illuminating the retina simultaneously. By using a high-speed line camera to acquire the image and using adaptive optics to compensate the ocular wave aberration, the AOPCSO can image the living human eye with cellular level resolution at the frame rate of 100 Hz. AOPCSO has been demonstrated with improved spatial resolution in imaging of the living human retina compared with adaptive optics line scan ophthalmoscopy.

  15. Adaptive Optics Parallel Near-Confocal Scanning Ophthalmoscopy

    PubMed Central

    Lu, Jing; Gu, Boyu; Wang, Xiaolin; Zhang, Yuhua

    2016-01-01

    We present an adaptive optics parallel confocal scanning ophthalmoscope (AOPCSO) using a digital micromirror device (DMD). The imaging light is modulated to be a line of point sources by the DMD, illuminating the retina simultaneously. By using a high speed line camera to acquire the image and using adaptive optics to compensate ocular wave aberration, the AOPCSO can image the living human eye with cellular level resolution at the frame rate of 100 Hz. AOPCSO has been demonstrated with improved spatial resolution in imaging of the living human retina compared with adaptive optics line scan ophthalmoscopy. PMID:27519106

  16. Lick Observatory's Shane telescope adaptive optics system (ShaneAO): research directions and progress

    NASA Astrophysics Data System (ADS)

    Gavel, Donald T.; Kupke, Renate; Rudy, Alexander R.; Srinath, Srikar; Dillon, Daren; Poyneer, Lisa A.

    2016-07-01

    We present a review of the ongoing research activity surrounding the adaptive optics system at the Shane telescope (ShaneAO) particularly the R&D efforts on the technology and algorithms for that will advance AO into wider application for astronomy. We are pursuing the AO challenges for whole sky coverage diffraction-limited correction down to visible science wavelengths. This demands high-order wavefront correction and bright artificial laser beacons. We present recent advancements in the development of MEMS based AO correction, woofer-tweeter architecture, wind-predictive wavefront control algorithms, atmospheric characterization, and a pulsed fiber amplifier guide star laser tuned for optical pumping of the sodium layer. We present the latest on-sky results from the new AO system and present status and experimental plans for the optical pumping guide star laser.

  17. Electrical test structures for the characterisation of optical proximity correction

    NASA Astrophysics Data System (ADS)

    Tsiamis, Andreas; Smith, Stewart; McCallum, Martin; Hourd, Andrew C.; Stevenson, J. Tom M.; Walton, Anthony J.

    2007-02-01

    Simple electrical test structures have been designed that will allow the characterisation of corner serif forms of optical proximity correction. The structures measure the resistance of a short length of conducting track with a right angled corner. Varying amounts of OPC can be applied to the outer and inner corners of the feature and the effect on the resistance of the track measured. These structures have been simulated and the results are presented in this paper. In addition a preliminary test mask has been fabricated which has test structures suitable for on-mask electrical measurement. Measurement results from these structures are also presented. Furthermore structures have been characterised using an optical microscope, a dedicated optical mask metrology system, an AFM scanner and finally a FIB system. In the future the test mask will be used to print the structures using a step and scan lithography tool so that they can be measured on-wafer. Correlation of the mask and wafer results will provide a great deal of information about the e ects of OPC at the CAD level and the impact on the final printed features.

  18. Wavefront sensorless adaptive optics optical coherence tomography for multiphoton retinal imaging (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Wahl, Daniel J.; Cua, Michelle; Lee, Sujin; Bonora, Stefano; Zawadzki, Robert J.; Jian, Yifan; Sarunic, Marinko V.

    2017-02-01

    Two-photon excited fluorescence (TPEF) for in-vivo retinal imaging is an emerging tool for vision science. TPEF has multiple benefits in comparison to conventional confocal fluorescence scanning laser ophthalmoscopy for retinal imaging, including better axial resolution and the ability to use infrared excitation light for imaging the highly photosensitive tissue in the retina. TPEF is very sensitive to the focused spot size, which is enlarged by aberrations induced by the refractive elements of the mouse eye when imaging with a large numerical aperture. Our system begins with a femtosecond pulsed laser for two-photon excitation, which is also sufficiently spectrally broadband to allow for an optical coherence tomography (OCT) sub-system to guide aberration correction. The OCT system operated at 1 volumes/second with our custom GPU accelerated real-time processing. Our lens-based optical design features two deformable elements, one with large stroke for focus control on the retina and the other with multiple actuators for aberration correction. Our wavefront-sensorless adaptive optics (SAO) is driven by a modal search with a sharpness quality metric on the en-face OCT image of the selected retinal layer. After optimization, the speed was increased to 10 fps for TPEF imaging to allow for streaming and averaging 200 frames per image. To demonstrate the system capabilities, we performed in-vivo retinal fluorescein angiography using TPEF. Our results demonstrate depth-resolved aberration correction with the SAO-OCT to increase the TPEF signal intensity. We also present TPEF at multiple vascular layers in the mouse retina alongside the volumetric OCT to localize the vessels.

  19. Adaptive optics OCT using 1060nm swept source and dual deformable lenses for human retinal imaging

    NASA Astrophysics Data System (ADS)

    Jian, Yifan; Lee, Sujin; Cua, Michelle; Miao, Dongkai; Bonora, Stefano; Zawadzki, Robert J.; Sarunic, Marinko V.

    2016-03-01

    Adaptive optics concepts have been applied to the advancement of biological imaging and microscopy. In particular, AO has also been very successfully applied to cellular resolution imaging of the retina, enabling visualization of the characteristic mosaic patterns of the outer retinal layers using flood illumination fundus photography, Scanning Laser Ophthalmoscopy (SLO), and Optical Coherence Tomography (OCT). Despite the high quality of the in vivo images, there has been a limited uptake of AO imaging into the clinical environment. The high resolution afforded by AO comes at the price of limited field of view and specialized equipment. The implementation of a typical adaptive optics imaging system results in a relatively large and complex optical setup. The wavefront measurement is commonly performed using a Hartmann-Shack Wavefront Sensor (HS-WFS) placed at an image plane that is optically conjugated to the eye's pupil. The deformable mirror is also placed at a conjugate plane, relaying the wavefront corrections to the pupil. Due to the sensitivity of the HS-WFS to back-reflections, the imaging system is commonly constructed from spherical mirrors. In this project, we present a novel adaptive optics OCT retinal imaging system with significant potential to overcome many of the barriers to integration with a clinical environment. We describe in detail the implementation of a compact lens based wavefront sensorless adaptive optics (WSAO) 1060nm swept source OCT human retinal imaging system with dual deformable lenses, and present retinal images acquired in vivo from research volunteers.

  20. Precision targeting with a tracking adaptive optics scanning laser ophthalmoscope

    NASA Astrophysics Data System (ADS)

    Hammer, Daniel X.; Ferguson, R. Daniel; Bigelow, Chad E.; Iftimia, Nicusor V.; Ustun, Teoman E.; Noojin, Gary D.; Stolarski, David J.; Hodnett, Harvey M.; Imholte, Michelle L.; Kumru, Semih S.; McCall, Michelle N.; Toth, Cynthia A.; Rockwell, Benjamin A.

    2006-02-01

    Precise targeting of retinal structures including retinal pigment epithelial cells, feeder vessels, ganglion cells, photoreceptors, and other cells important for light transduction may enable earlier disease intervention with laser therapies and advanced methods for vision studies. A novel imaging system based upon scanning laser ophthalmoscopy (SLO) with adaptive optics (AO) and active image stabilization was designed, developed, and tested in humans and animals. An additional port allows delivery of aberration-corrected therapeutic/stimulus laser sources. The system design includes simultaneous presentation of non-AO, wide-field (~40 deg) and AO, high-magnification (1-2 deg) retinal scans easily positioned anywhere on the retina in a drag-and-drop manner. The AO optical design achieves an error of <0.45 waves (at 800 nm) over +/-6 deg on the retina. A MEMS-based deformable mirror (Boston Micromachines Inc.) is used for wave-front correction. The third generation retinal tracking system achieves a bandwidth of greater than 1 kHz allowing acquisition of stabilized AO images with an accuracy of ~10 μm. Normal adult human volunteers and animals with previously-placed lesions (cynomolgus monkeys) were tested to optimize the tracking instrumentation and to characterize AO imaging performance. Ultrafast laser pulses were delivered to monkeys to characterize the ability to precisely place lesions and stimulus beams. Other advanced features such as real-time image averaging, automatic highresolution mosaic generation, and automatic blink detection and tracking re-lock were also tested. The system has the potential to become an important tool to clinicians and researchers for early detection and treatment of retinal diseases.

  1. Simulating Astronomical Adaptive Optics Systems Using Yao

    NASA Astrophysics Data System (ADS)

    Rigaut, François; Van Dam, Marcos

    2013-12-01

    Adaptive Optics systems are at the heart of the coming Extremely Large Telescopes generation. Given the importance, complexity and required advances of these systems, being able to simulate them faithfully is key to their success, and thus to the success of the ELTs. The type of systems envisioned to be built for the ELTs cover most of the AO breeds, from NGS AO to multiple guide star Ground Layer, Laser Tomography and Multi-Conjugate AO systems, with typically a few thousand actuators. This represents a large step up from the current generation of AO systems, and accordingly a challenge for existing AO simulation packages. This is especially true as, in the past years, computer power has not been following Moore's law in its most common understanding; CPU clocks are hovering at about 3GHz. Although the use of super computers is a possible solution to run these simulations, being able to use smaller machines has obvious advantages: cost, access, environmental issues. By using optimised code in an already proven AO simulation platform, we were able to run complex ELT AO simulations on very modest machines, including laptops. The platform is YAO. In this paper, we describe YAO, its architecture, its capabilities, the ELT-specific challenges and optimisations, and finally its performance. As an example, execution speed ranges from 5 iterations per second for a 6 LGS 60x60 subapertures Shack-Hartmann Wavefront sensor Laser Tomography AO system (including full physical image formation and detector characteristics) up to over 30 iterations/s for a single NGS AO system.

  2. Sensorless adaptive optics implementation in widefield optical sectioning microscopy inside in vivo Drosophila brain

    NASA Astrophysics Data System (ADS)

    Pedrazzani, Mélanie; Loriette, Vincent; Tchenio, Paul; Benrezzak, Sakina; Nutarelli, Daniele; Fragola, Alexandra

    2016-03-01

    We present an implementation of a sensorless adaptive optics loop in a widefield fluorescence microscope. This setup is designed to compensate for aberrations induced by the sample on both excitation and emission pathways. It allows fast optical sectioning inside a living Drosophila brain. We present a detailed characterization of the system performances. We prove that the gain brought to optical sectioning by realizing structured illumination microscopy with adaptive optics down to 50 μm deep inside living Drosophila brain.

  3. Sensorless adaptive optics implementation in widefield optical sectioning microscopy inside in vivo Drosophila brain.

    PubMed

    Pedrazzani, Mélanie; Loriette, Vincent; Tchenio, Paul; Benrezzak, Sakina; Nutarelli, Daniele; Fragola, Alexandra

    2016-03-01

    We present an implementation of a sensorless adaptive optics loop in a widefield fluorescence microscope. This setup is designed to compensate for aberrations induced by the sample on both excitation and emission pathways. It allows fast optical sectioning inside a living Drosophila brain. We present a detailed characterization of the system performances. We prove that the gain brought to optical sectioning by realizing structured illumination microscopy with adaptive optics down to 50 μm deep inside living Drosophila brain.

  4. Adaptive optics retinal imaging in the living mouse eye.

    PubMed

    Geng, Ying; Dubra, Alfredo; Yin, Lu; Merigan, William H; Sharma, Robin; Libby, Richard T; Williams, David R

    2012-04-01

    Correction of the eye's monochromatic aberrations using adaptive optics (AO) can improve the resolution of in vivo mouse retinal images [Biss et al., Opt. Lett. 32(6), 659 (2007) and Alt et al., Proc. SPIE 7550, 755019 (2010)], but previous attempts have been limited by poor spot quality in the Shack-Hartmann wavefront sensor (SHWS). Recent advances in mouse eye wavefront sensing using an adjustable focus beacon with an annular beam profile have improved the wavefront sensor spot quality [Geng et al., Biomed. Opt. Express 2(4), 717 (2011)], and we have incorporated them into a fluorescence adaptive optics scanning laser ophthalmoscope (AOSLO). The performance of the instrument was tested on the living mouse eye, and images of multiple retinal structures, including the photoreceptor mosaic, nerve fiber bundles, fine capillaries and fluorescently labeled ganglion cells were obtained. The in vivo transverse and axial resolutions of the fluorescence channel of the AOSLO were estimated from the full width half maximum (FWHM) of the line and point spread functions (LSF and PSF), and were found to be better than 0.79 μm ± 0.03 μm (STD)(45% wider than the diffraction limit) and 10.8 μm ± 0.7 μm (STD)(two times the diffraction limit), respectively. The axial positional accuracy was estimated to be 0.36 μm. This resolution and positional accuracy has allowed us to classify many ganglion cell types, such as bistratified ganglion cells, in vivo.

  5. Adaptive optics retinal imaging in the living mouse eye

    PubMed Central

    Geng, Ying; Dubra, Alfredo; Yin, Lu; Merigan, William H.; Sharma, Robin; Libby, Richard T.; Williams, David R.

    2012-01-01

    Correction of the eye’s monochromatic aberrations using adaptive optics (AO) can improve the resolution of in vivo mouse retinal images [Biss et al., Opt. Lett. 32(6), 659 (2007) and Alt et al., Proc. SPIE 7550, 755019 (2010)], but previous attempts have been limited by poor spot quality in the Shack-Hartmann wavefront sensor (SHWS). Recent advances in mouse eye wavefront sensing using an adjustable focus beacon with an annular beam profile have improved the wavefront sensor spot quality [Geng et al., Biomed. Opt. Express 2(4), 717 (2011)], and we have incorporated them into a fluorescence adaptive optics scanning laser ophthalmoscope (AOSLO). The performance of the instrument was tested on the living mouse eye, and images of multiple retinal structures, including the photoreceptor mosaic, nerve fiber bundles, fine capillaries and fluorescently labeled ganglion cells were obtained. The in vivo transverse and axial resolutions of the fluorescence channel of the AOSLO were estimated from the full width half maximum (FWHM) of the line and point spread functions (LSF and PSF), and were found to be better than 0.79 μm ± 0.03 μm (STD)(45% wider than the diffraction limit) and 10.8 μm ± 0.7 μm (STD)(two times the diffraction limit), respectively. The axial positional accuracy was estimated to be 0.36 μm. This resolution and positional accuracy has allowed us to classify many ganglion cell types, such as bistratified ganglion cells, in vivo. PMID:22574260

  6. Comparative Study of Neural Network Frameworks for the Next Generation of Adaptive Optics Systems.

    PubMed

    González-Gutiérrez, Carlos; Santos, Jesús Daniel; Martínez-Zarzuela, Mario; Basden, Alistair G; Osborn, James; Díaz-Pernas, Francisco Javier; De Cos Juez, Francisco Javier

    2017-06-02

    Many of the next generation of adaptive optics systems on large and extremely large telescopes require tomographic techniques in order to correct for atmospheric turbulence over a large field of view. Multi-object adaptive optics is one such technique. In this paper, different implementations of a tomographic reconstructor based on a machine learning architecture named "CARMEN" are presented. Basic concepts of adaptive optics are introduced first, with a short explanation of three different control systems used on real telescopes and the sensors utilised. The operation of the reconstructor, along with the three neural network frameworks used, and the developed CUDA code are detailed. Changes to the size of the reconstructor influence the training and execution time of the neural network. The native CUDA code turns out to be the best choice for all the systems, although some of the other frameworks offer good performance under certain circumstances.

  7. Comparative Study of Neural Network Frameworks for the Next Generation of Adaptive Optics Systems

    PubMed Central

    González-Gutiérrez, Carlos; Santos, Jesús Daniel; Martínez-Zarzuela, Mario; Basden, Alistair G.; Osborn, James; Díaz-Pernas, Francisco Javier; De Cos Juez, Francisco Javier

    2017-01-01

    Many of the next generation of adaptive optics systems on large and extremely large telescopes require tomographic techniques in order to correct for atmospheric turbulence over a large field of view. Multi-object adaptive optics is one such technique. In this paper, different implementations of a tomographic reconstructor based on a machine learning architecture named “CARMEN” are presented. Basic concepts of adaptive optics are introduced first, with a short explanation of three different control systems used on real telescopes and the sensors utilised. The operation of the reconstructor, along with the three neural network frameworks used, and the developed CUDA code are detailed. Changes to the size of the reconstructor influence the training and execution time of the neural network. The native CUDA code turns out to be the best choice for all the systems, although some of the other frameworks offer good performance under certain circumstances. PMID:28574426

  8. Benefit of adaptive FEC in shared backup path protected elastic optical network.

    PubMed

    Guo, Hong; Dai, Hua; Wang, Chao; Li, Yongcheng; Bose, Sanjay K; Shen, Gangxiang

    2015-07-27

    We apply an adaptive forward error correction (FEC) allocation strategy to an Elastic Optical Network (EON) operated with shared backup path protection (SBPP). To maximize the protected network capacity that can be carried, an Integer Linear Programing (ILP) model and a spectrum window plane (SWP)-based heuristic algorithm are developed. Simulation results show that the FEC coding overhead required by the adaptive FEC scheme is significantly lower than that needed by a fixed FEC allocation strategy resulting in higher network capacity for the adaptive strategy. The adaptive FEC allocation strategy can also significantly outperform the fixed FEC allocation strategy both in terms of the spare capacity redundancy and the average FEC coding overhead needed per optical channel. The proposed heuristic algorithm is efficient and not only performs closer to the ILP model but also does much better than the shortest-path algorithm.

  9. Orbit, optics and chromaticity correction for PS2 negative momentum compaction lattices

    SciTech Connect

    Papaphilippou,Y.; Barranco, J.; Bartmann, W.; Benedikt, M.; Carli, C.; de Maria, R.; Peggs, S.; Trbojevic, D.

    2009-05-04

    The effect of magnet misalignments in the beam orbit and linear optics functions are reviewed and correction schemes are applied to the negative momentum compaction lattice of PS2. Chromaticity correction schemes are also proposed and tested with respect to off-momentum optics properties. The impact of the correction schemes in the dynamic aperture of the lattice is finally evaluated.

  10. Interferometric adaptive optics testbed for laser pointing, wave-front control and phasing.

    PubMed

    Baker, K L; Homoelle, D; Utternback, E; Stappaerts, E A; Siders, C W; Barty, C P J

    2009-09-14

    Implementing the capability to perform fast ignition experiments, as well as, radiography experiments on the National Ignition Facility (NIF) places stringent requirements on the control of each of the beam's pointing, intra-beam phasing and overall wave-front quality. In this article experimental results are presented which were taken on an interferometric adaptive optics testbed that was designed and built to test the capabilities of such a system to control phasing, pointing and higher order beam aberrations. These measurements included quantification of the reduction in Strehl ratio incurred when using the MEMS device to correct for pointing errors in the system. The interferometric adaptive optics system achieved a Strehl ratio of 0.83 when correcting for a piston, tip/tilt error between two adjacent rectangular apertures, the geometry expected for the National ignition Facility. The interferometric adaptive optics system also achieved a Strehl ratio of 0.66 when used to correct for a phase plate aberration of similar magnitude as expected from simulations of the ARC beam line. All of these corrections included measuring both the upstream and downstream aberrations in the testbed and applying the sum of these two measurements in open-loop to the MEMS deformable mirror.

  11. Modelling MEMS deformable mirrors for astronomical adaptive optics

    NASA Astrophysics Data System (ADS)

    Blain, Celia

    As of July 2012, 777 exoplanets have been discovered utilizing mainly indirect detection techniques. The direct imaging of exoplanets is the next goal for astronomers, because it will reveal the diversity of planets and planetary systems, and will give access to the exoplanet's chemical composition via spectroscopy. With this spectroscopic knowledge, astronomers will be able to know, if a planet is terrestrial and, possibly, even find evidence of life. With so much potential, this branch of astronomy has also captivated the general public attention. The direct imaging of exoplanets remains a challenging task, due to (i) the extremely high contrast between the parent star and the orbiting exoplanet and (ii) their small angular separation. For ground-based observatories, this task is made even more difficult, due to the presence of atmospheric turbulence. High Contrast Imaging (HCI) instruments have been designed to meet this challenge. HCI instruments are usually composed of a coronagraph coupled with the full onaxis corrective capability of an Extreme Adaptive Optics (ExAO) system. An efficient coronagraph separates the faint planet's light from the much brighter starlight, but the dynamic boiling speckles, created by the stellar image, make exoplanet detection impossible without the help of a wavefront correction device. The Subaru Coronagraphic Extreme Adaptive Optics (SCExAO) system is a high performance HCI instrument developed at Subaru Telescope. The wavefront control system of SCExAO consists of three wavefront sensors (WFS) coupled with a 1024- actuator Micro-Electro-Mechanical-System (MEMS) deformable mirror (DM). MEMS DMs offer a large actuator density, allowing high count DMs to be deployed in small size beams. Therefore, MEMS DMs are an attractive technology for Adaptive Optics (AO) systems and are particularly well suited for HCI instruments employing ExAO technologies. SCExAO uses coherent light modulation in the focal plane introduced by the DM, for

  12. Video-rate optical flow corrected intraoperative functional fluorescence imaging.

    PubMed

    Koch, Maximilian; Glatz, Jürgen; Ermolayev, Vladimir; de Vries, Elisabeth G E; van Dam, Gooitzen M; Englmeier, Karl-Hans; Ntziachristos, Vasilis

    2014-04-01

    Intraoperative fluorescence molecular imaging based on targeted fluorescence agents is an emerging approach to improve surgical and endoscopic imaging and guidance. Short exposure times per frame and implementation at video rates are necessary to provide continuous feedback to the physician and avoid motion artifacts. However, fast imaging implementations also limit the sensitivity of fluorescence detection. To improve on detection sensitivity in video rate fluorescence imaging, we considered herein an optical flow technique applied to texture-rich color images. This allows the effective accumulation of fluorescence signals over longer, virtual exposure times. The proposed correction scheme is shown to improve signal-to-noise ratios both in phantom experiments and in vivo tissue imaging.

  13. Satellite Imaging with Adaptive Optics on a 1 M Telescope

    NASA Astrophysics Data System (ADS)

    Bennet, F.; Price, I.; Rigaut, F.; Copeland, M.

    2016-09-01

    The Research School of Astronomy and Astrophysics at the Mount Stromlo Observatory in Canberra, Australia, have been developing adaptive optic (AO) systems for space situational awareness applications. We report on the development and demonstration of an AO system for satellite imaging using a 1 m telescope. The system uses the orbiting object as a natural guide star to measure atmospheric turbulence, and a deformable mirror to provide an optical correction. The AO system utilised modern, high speed and low noise EMCCD technology on both the wavefront sensor and imaging camera to achieve high performance, achieving a Strehl ratio in excess of 30% at 870 nm. Images are post processed with lucky imaging algorithms to further improve the final image quality. We demonstrate the AO system on stellar targets and Iridium satellites, achieving a near diffraction limited full width at half maximum. A specialised realtime controller allows our system to achieve a bandwidth above 100 Hz, with the wavefront sensor and control loop running at 2 kHz. The AO systems we are developing show how ground-based optical sensors can be used to manage the space environment. AO imaging systems can be used for satellite surveillance, while laser ranging can be used to determine precise orbital data used in the critical conjunction analysis required to maintain a safe space environment. We have focused on making this system compact, expandable, and versatile. We are continuing to develop this platform for other space situational awareness applications such as geosynchronous satellite astrometry, space debris characterisation, satellite imaging, and ground-to-space laser communication.

  14. Solar adaptive optics: specificities, lessons learned, and open alternatives

    NASA Astrophysics Data System (ADS)

    Montilla, I.; Marino, J.; Asensio Ramos, A.; Collados, M.; Montoya, L.; Tallon, M.

    2016-07-01

    First on sky adaptive optics experiments were performed on the Dunn Solar Telescope on 1979, with a shearing interferometer and limited success. Those early solar adaptive optics efforts forced to custom-develop many components, such as Deformable Mirrors and WaveFront Sensors, which were not available at that time. Later on, the development of the correlation Shack-Hartmann marked a breakthrough in solar adaptive optics. Since then, successful Single Conjugate Adaptive Optics instruments have been developed for many solar telescopes, i.e. the National Solar Observatory, the Vacuum Tower Telescope and the Swedish Solar Telescope. Success with the Multi Conjugate Adaptive Optics systems for GREGOR and the New Solar Telescope has proved to be more difficult to attain. Such systems have a complexity not only related to the number of degrees of freedom, but also related to the specificities of the Sun, used as reference, and the sensing method. The wavefront sensing is performed using correlations on images with a field of view of 10", averaging wavefront information from different sky directions, affecting the sensing and sampling of high altitude turbulence. Also due to the low elevation at which solar observations are performed we have to include generalized fitting error and anisoplanatism, as described by Ragazzoni and Rigaut, as non-negligible error sources in the Multi Conjugate Adaptive Optics error budget. For the development of the next generation Multi Conjugate Adaptive Optics systems for the Daniel K. Inouye Solar Telescope and the European Solar Telescope we still need to study and understand these issues, to predict realistically the quality of the achievable reconstruction. To improve their designs other open issues have to be assessed, i.e. possible alternative sensing methods to avoid the intrinsic anisoplanatism of the wide field correlation Shack-Hartmann, new parameters to estimate the performance of an adaptive optics solar system, alternatives to

  15. How adaptive optics may have won the Cold War

    NASA Astrophysics Data System (ADS)

    Tyson, Robert K.

    2013-05-01

    While there are many theories and studies concerning the end of the Cold War, circa 1990, I postulate that one of the contributors to the result was the development of adaptive optics. The emergence of directed energy weapons, specifically space-based and ground-based high energy lasers made practicable with adaptive optics, showed that a successful defense against inter-continental ballistic missiles was not only possible, but achievable in a reasonable period of time.

  16. Laser guide star adaptive optics: Present and future

    SciTech Connect

    Olivier, S.S.; Max, C.E.

    1993-03-01

    Feasibility demonstrations using one to two meter telescopes have confirmed the utility of laser beacons as wavefront references for adaptive optics systems. Laser beacon architectures suitable for the new generation of eight and ten meter telescopes are presently under study. This paper reviews the concept of laser guide star adaptive optics and the progress that has been made by groups around the world implementing such systems. A description of the laser guide star program at LLNL and some experimental results is also presented.

  17. Solar adaptive optics at the Observatorio del Teide, Tenerife

    NASA Astrophysics Data System (ADS)

    Soltau, Dirk; Berkefeld, Thomas; Schmidt, Dirk; von der Lühe, Oskar

    2013-10-01

    Observing the Sun with high angular resolution is difficult because the turbulence in the atmosphere is strongest during day time. In this paper we describe the principles of solar adaptive optics exemplified by the two German solar telescopes VTT and GREGOR at the Observatorio del Teide. With theses systems we obtain near diffraction limited images of the Sun. Ways to overcome the limits of conventional AO by applying multiconjugate adaptive optics (MCAO) are shown.

  18. Astronomy Applications of Adaptive Optics at Lawrence Livermore National Laboratory

    SciTech Connect

    Bauman, B J; Gavel, D T

    2003-04-23

    Astronomical applications of adaptive optics at Lawrence Livermore National Laboratory (LLNL) has a history that extends from 1984. The program started with the Lick Observatory Adaptive Optics system and has progressed through the years to lever-larger telescopes: Keck, and now the proposed CELT (California Extremely Large Telescope) 30m telescope. LLNL AO continues to be at the forefront of AO development and science.

  19. Conceptual design for a user-friendly adaptive optics system at Lick Observatory

    SciTech Connect

    Bissinger, H.D.; Olivier, S.; Max, C.

    1996-03-08

    In this paper, we present a conceptual design for a general-purpose adaptive optics system, usable with all Cassegrain facility instruments on the 3 meter Shane telescope at the University of California`s Lick Observatory located on Mt. Hamilton near San Jose, California. The overall design goal for this system is to take the sodium-layer laser guide star adaptive optics technology out of the demonstration stage and to build a user-friendly astronomical tool. The emphasis will be on ease of calibration, improved stability and operational simplicity in order to allow the system to be run routinely by observatory staff. A prototype adaptive optics system and a 20 watt sodium-layer laser guide star system have already been built at Lawrence Livermore National Laboratory for use at Lick Observatory. The design presented in this paper is for a next- generation adaptive optics system that extends the capabilities of the prototype system into the visible with more degrees of freedom. When coupled with a laser guide star system that is upgraded to a power matching the new adaptive optics system, the combined system will produce diffraction-limited images for near-IR cameras. Atmospheric correction at wavelengths of 0.6-1 mm will significantly increase the throughput of the most heavily used facility instrument at Lick, the Kast Spectrograph, and will allow it to operate with smaller slit widths and deeper limiting magnitudes. 8 refs., 2 figs.

  20. Stray-Light Correction of the Marine Optical Buoy

    NASA Technical Reports Server (NTRS)

    Brown, Steven W.; Johnson, B. Carol; Flora, Stephanie J.; Feinholz, Michael E.; Yarbrough, Mark A.; Barnes, Robert A.; Kim, Yong Sung; Lykke, Keith R.; Clark, Dennis K.

    2003-01-01

    In ocean-color remote sensing, approximately 90% of the flux at the sensor originates from atmospheric scattering, with the water-leaving radiance contributing the remaining 10% of the total flux. Consequently, errors in the measured top-of-the atmosphere radiance are magnified a factor of 10 in the determination of water-leaving radiance. Proper characterization of the atmosphere is thus a critical part of the analysis of ocean-color remote sensing data. It has always been necessary to calibrate the ocean-color satellite sensor vicariously, using in situ, ground-based results, independent of the status of the pre-flight radiometric calibration or the utility of on-board calibration strategies. Because the atmosphere contributes significantly to the measured flux at the instrument sensor, both the instrument and the atmospheric correction algorithm are simultaneously calibrated vicariously. The Marine Optical Buoy (MOBY), deployed in support of the Earth Observing System (EOS) since 1996, serves as the primary calibration station for a variety of ocean-color satellite instruments, including the Sea-viewing Wide Field-of-view Sensor (SeaWiFS), the Moderate Resolution Imaging Spectroradiometer (MODIS), the Japanese Ocean Color Temperature Scanner (OCTS) , and the French Polarization and Directionality of the Earth's Reflectances (POLDER). MOBY is located off the coast of Lanai, Hawaii. The site was selected to simplify the application of the atmospheric correction algorithms. Vicarious calibration using MOBY data allows for a thorough comparison and merger of ocean-color data from these multiple sensors.