Science.gov

Sample records for adaptive optics images

  1. Retinal Imaging: Adaptive Optics

    NASA Astrophysics Data System (ADS)

    Goncharov, A. S.; Iroshnikov, N. G.; Larichev, Andrey V.

    This chapter describes several factors influencing the performance of ophthalmic diagnostic systems with adaptive optics compensation of human eye aberration. Particular attention is paid to speckle modulation, temporal behavior of aberrations, and anisoplanatic effects. The implementation of a fundus camera with adaptive optics is considered.

  2. Extreme Adaptive Optics Planet Imager

    NASA Astrophysics Data System (ADS)

    Macintosh, B.; Graham, J. R.; Ghez, A.; Kalas, P.; Lloyd, J.; Makidon, R.; Olivier, S.; Patience, J.; Perrin, M.; Poyneer, L.; Severson, S.; Sheinis, A.; Sivaramakrishnan, A.; Troy, M.; Wallace, J.; Wilhelmsen, J.

    2002-12-01

    Direct detection of photons emitted or reflected by extrasolar planets is the next major step in extrasolar planet studies. Current adaptive optics (AO) systems, with <300 subapertures and Strehl ratio 0.4-0.7, can achieve contrast levels of 106 at 2" separations; this is sufficient to see very young planets in wide orbits but insufficient to detect solar systems more like our own. Contrast levels of 107 - 108 in the near-IR are needed to probe a significant part of the extrasolar planet phase space. The NSF Center for Adaptive Optics is carrying out a design study for a dedicated ultra-high-contrast "Extreme" adaptive optics system for an 8-10m telescope. With 3000 controlled subapertures it should achieve Strehl ratios > 0.9 in the near-IR. Using a spatially filtered wavefront sensor, the system will be optimized to control scattered light over a large radius and suppress artifacts caused static errors. We predict that it will achieve contrast levels of 107-108 around a large sample of stars (R<7-10), sufficient to detect Jupiter-like planets through their near-IR emission over a wide range of ages and masses. The system will be capable of a variety of high-contrast science including studying circumstellar dust disks at densities a factor of 10-100 lower than currently feasible and a systematic inventory of other solar systems on 10-100 AU scale. This work was supported by the NSF Science and Technology Center for Adaptive Optics, managed by UC Santa Cruz under AST-9876783. Portions of this work was performed under the auspices of the U.S. Department of Energy, under contract No. W-7405-Eng-48.

  3. Adaptive optics imaging of the retina

    PubMed Central

    Battu, Rajani; Dabir, Supriya; Khanna, Anjani; Kumar, Anupama Kiran; Roy, Abhijit Sinha

    2014-01-01

    Adaptive optics is a relatively new tool that is available to ophthalmologists for study of cellular level details. In addition to the axial resolution provided by the spectral-domain optical coherence tomography, adaptive optics provides an excellent lateral resolution, enabling visualization of the photoreceptors, blood vessels and details of the optic nerve head. We attempt a mini review of the current role of adaptive optics in retinal imaging. PubMed search was performed with key words Adaptive optics OR Retina OR Retinal imaging. Conference abstracts were searched from the Association for Research in Vision and Ophthalmology (ARVO) and American Academy of Ophthalmology (AAO) meetings. In total, 261 relevant publications and 389 conference abstracts were identified. PMID:24492503

  4. Adaptive optics imaging of the retina.

    PubMed

    Battu, Rajani; Dabir, Supriya; Khanna, Anjani; Kumar, Anupama Kiran; Roy, Abhijit Sinha

    2014-01-01

    Adaptive optics is a relatively new tool that is available to ophthalmologists for study of cellular level details. In addition to the axial resolution provided by the spectral-domain optical coherence tomography, adaptive optics provides an excellent lateral resolution, enabling visualization of the photoreceptors, blood vessels and details of the optic nerve head. We attempt a mini review of the current role of adaptive optics in retinal imaging. PubMed search was performed with key words Adaptive optics OR Retina OR Retinal imaging. Conference abstracts were searched from the Association for Research in Vision and Ophthalmology (ARVO) and American Academy of Ophthalmology (AAO) meetings. In total, 261 relevant publications and 389 conference abstracts were identified.

  5. Adaptive optics retinal imaging: emerging clinical applications.

    PubMed

    Godara, Pooja; Dubis, Adam M; Roorda, Austin; Duncan, Jacque L; Carroll, Joseph

    2010-12-01

    The human retina is a uniquely accessible tissue. Tools like scanning laser ophthalmoscopy and spectral domain-optical coherence tomography provide clinicians with remarkably clear pictures of the living retina. Although the anterior optics of the eye permit such non-invasive visualization of the retina and associated pathology, the same optics induce significant aberrations that obviate cellular-resolution imaging in most cases. Adaptive optics (AO) imaging systems use active optical elements to compensate for aberrations in the optical path between the object and the camera. When applied to the human eye, AO allows direct visualization of individual rod and cone photoreceptor cells, retinal pigment epithelium cells, and white blood cells. AO imaging has changed the way vision scientists and ophthalmologists see the retina, helping to clarify our understanding of retinal structure, function, and the etiology of various retinal pathologies. Here, we review some of the advances that were made possible with AO imaging of the human retina and discuss applications and future prospects for clinical imaging.

  6. Adaptive Optics Imaging in Laser Pointer Maculopathy.

    PubMed

    Sheyman, Alan T; Nesper, Peter L; Fawzi, Amani A; Jampol, Lee M

    2016-08-01

    The authors report multimodal imaging including adaptive optics scanning laser ophthalmoscopy (AOSLO) (Apaeros retinal image system AOSLO prototype; Boston Micromachines Corporation, Boston, MA) in a case of previously diagnosed unilateral acute idiopathic maculopathy (UAIM) that demonstrated features of laser pointer maculopathy. The authors also show the adaptive optics images of a laser pointer maculopathy case previously reported. A 15-year-old girl was referred for the evaluation of a maculopathy suspected to be UAIM. The authors reviewed the patient's history and obtained fluorescein angiography, autofluorescence, optical coherence tomography, infrared reflectance, and AOSLO. The time course of disease and clinical examination did not fit with UAIM, but the linear pattern of lesions was suspicious for self-inflicted laser pointer injury. This was confirmed on subsequent questioning of the patient. The presence of linear lesions in the macula that are best highlighted with multimodal imaging techniques should alert the physician to the possibility of laser pointer injury. AOSLO further characterizes photoreceptor damage in this condition. [Ophthalmic Surg Lasers Imaging Retina. 2016;47:782-785.].

  7. Imaging Radio Galaxies with Adaptive Optics

    NASA Astrophysics Data System (ADS)

    de Vries, W. H.; van Breugel, W. J. M.; Quirrenbach, A.; Roberts, J.; Fidkowski, K.

    2000-12-01

    We present 42 milli-arcsecond resolution Adaptive Optics near-infrared images of 3C 452 and 3C 294, two powerful radio galaxies at z=0.081 and z=1.79 respectively, obtained with the NIRSPEC/SCAM+AO instrument on the Keck telescope. The observations provide unprecedented morphological detail of radio galaxy components like nuclear dust-lanes, off-centered or binary nuclei, and merger induced starforming structures; all of which are key features in understanding galaxy formation and the onset of powerful radio emission. Complementary optical HST imaging data are used to construct high resolution color images, which, for the first time, have matching optical and near-IR resolutions. Based on these maps, the extra-nuclear structural morphologies and compositions of both galaxies are discussed. Furthermore, detailed brightness profile analysis of 3C 452 allows a direct comparison to a large literature sample of nearby ellipticals, all of which have been observed in the optical and near-IR by HST. Both the imaging data and the profile information on 3C 452 are consistent with it being a relative diminutive and well-evolved elliptical, in stark contrast to 3C 294 which seems to be in its initial formation throes with an active AGN off-centered from the main body of the galaxy. These results are discussed further within the framework of radio galaxy triggering and the formation of massive ellipticals. The work of WdV and WvB was performed under the auspices of the U.S. Department of Energy by University of California Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48. The work at UCSD has been supported by the NSF Science and Technology Center for Adaptive Optics, under agreement No. AST-98-76783.

  8. Adaptive Optics Imaging of Solar System Objects

    NASA Technical Reports Server (NTRS)

    Roddier, Francois; Owen, Toby

    1997-01-01

    Most solar system objects have never been observed at wavelengths longer than the R band with an angular resolution better than 1 sec. The Hubble Space Telescope itself has only recently been equipped to observe in the infrared. However, because of its small diameter, the angular resolution is lower than that one can now achieved from the ground with adaptive optics, and time allocated to planetary science is limited. We have been using adaptive optics (AO) on a 4-m class telescope to obtain 0.1 sec resolution images solar system objects at far red and near infrared wavelengths (0.7-2.5 micron) which best discriminate their spectral signatures. Our efforts has been put into areas of research for which high angular resolution is essential, such as the mapping of Titan and of large asteroids, the dynamics and composition of Neptune stratospheric clouds, the infrared photometry of Pluto, Charon, and close satellites previously undetected from the ground.

  9. Retinal imaging using adaptive optics technology☆

    PubMed Central

    Kozak, Igor

    2014-01-01

    Adaptive optics (AO) is a technology used to improve the performance of optical systems by reducing the effect of wave front distortions. Retinal imaging using AO aims to compensate for higher order aberrations originating from the cornea and the lens by using deformable mirror. The main application of AO retinal imaging has been to assess photoreceptor cell density, spacing, and mosaic regularity in normal and diseased eyes. Apart from photoreceptors, the retinal pigment epithelium, retinal nerve fiber layer, retinal vessel wall and lamina cribrosa can also be visualized with AO technology. Recent interest in AO technology in eye research has resulted in growing number of reports and publications utilizing this technology in both animals and humans. With the availability of first commercially available instruments we are making transformation of AO technology from a research tool to diagnostic instrument. The current challenges include imaging eyes with less than perfect optical media, formation of normative databases for acquired images such as cone mosaics, and the cost of the technology. The opportunities for AO will include more detailed diagnosis with description of some new findings in retinal diseases and glaucoma as well as expansion of AO into clinical trials which has already started. PMID:24843304

  10. Retinal imaging using adaptive optics technology.

    PubMed

    Kozak, Igor

    2014-04-01

    Adaptive optics (AO) is a technology used to improve the performance of optical systems by reducing the effect of wave front distortions. Retinal imaging using AO aims to compensate for higher order aberrations originating from the cornea and the lens by using deformable mirror. The main application of AO retinal imaging has been to assess photoreceptor cell density, spacing, and mosaic regularity in normal and diseased eyes. Apart from photoreceptors, the retinal pigment epithelium, retinal nerve fiber layer, retinal vessel wall and lamina cribrosa can also be visualized with AO technology. Recent interest in AO technology in eye research has resulted in growing number of reports and publications utilizing this technology in both animals and humans. With the availability of first commercially available instruments we are making transformation of AO technology from a research tool to diagnostic instrument. The current challenges include imaging eyes with less than perfect optical media, formation of normative databases for acquired images such as cone mosaics, and the cost of the technology. The opportunities for AO will include more detailed diagnosis with description of some new findings in retinal diseases and glaucoma as well as expansion of AO into clinical trials which has already started.

  11. Extreme Adaptive Optics Planet Imager: XAOPI

    SciTech Connect

    Macintosh, B A; Graham, J; Poyneer, L; Sommargren, G; Wilhelmsen, J; Gavel, D; Jones, S; Kalas, P; Lloyd, J; Makidon, R; Olivier, S; Palmer, D; Patience, J; Perrin, M; Severson, S; Sheinis, A; Sivaramakrishnan, A; Troy, M; Wallace, K

    2003-09-17

    Ground based adaptive optics is a potentially powerful technique for direct imaging detection of extrasolar planets. Turbulence in the Earth's atmosphere imposes some fundamental limits, but the large size of ground-based telescopes compared to spacecraft can work to mitigate this. We are carrying out a design study for a dedicated ultra-high-contrast system, the eXtreme Adaptive Optics Planet Imager (XAOPI), which could be deployed on an 8-10m telescope in 2007. With a 4096-actuator MEMS deformable mirror it should achieve Strehl >0.9 in the near-IR. Using an innovative spatially filtered wavefront sensor, the system will be optimized to control scattered light over a large radius and suppress artifacts caused by static errors. We predict that it will achieve contrast levels of 10{sup 7}-10{sup 8} at angular separations of 0.2-0.8 inches around a large sample of stars (R<7-10), sufficient to detect Jupiter-like planets through their near-IR emission over a wide range of ages and masses. We are constructing a high-contrast AO testbed to verify key concepts of our system, and present preliminary results here, showing an RMS wavefront error of <1.3 nm with a flat mirror.

  12. Adaptive Optics Imaging and Spectroscopy of Neptune

    NASA Technical Reports Server (NTRS)

    Johnson, Lindley (Technical Monitor); Sromovsky, Lawrence A.

    2005-01-01

    OBJECTIVES: We proposed to use high spectral resolution imaging and spectroscopy of Neptune in visible and near-IR spectral ranges to advance our understanding of Neptune s cloud structure. We intended to use the adaptive optics (AO) system at Mt. Wilson at visible wavelengths to try to obtain the first groundbased observations of dark spots on Neptune; we intended to use A 0 observations at the IRTF to obtain near-IR R=2000 spatially resolved spectra and near-IR A0 observations at the Keck observatory to obtain the highest spatial resolution studies of cloud feature dynamics and atmospheric motions. Vertical structure of cloud features was to be inferred from the wavelength dependent absorption of methane and hydrogen,

  13. Speckle image reconstruction of the adaptive optics solar images.

    PubMed

    Zhong, Libo; Tian, Yu; Rao, Changhui

    2014-11-17

    Speckle image reconstruction, in which the speckle transfer function (STF) is modeled as annular distribution according to the angular dependence of adaptive optics (AO) compensation and the individual STF in each annulus is obtained by the corresponding Fried parameter calculated from the traditional spectral ratio method, is used to restore the solar images corrected by AO system in this paper. The reconstructions of the solar images acquired by a 37-element AO system validate this method and the image quality is improved evidently. Moreover, we found the photometric accuracy of the reconstruction is field dependent due to the influence of AO correction. With the increase of angular separation of the object from the AO lockpoint, the relative improvement becomes approximately more and more effective and tends to identical in the regions far away the central field of view. The simulation results show this phenomenon is mainly due to the disparity of the calculated STF from the real AO STF with the angular dependence.

  14. Curvature adaptive optics and low light imaging

    NASA Astrophysics Data System (ADS)

    Ftaclas, C.; Chun, M.; Kuhn, J.; Ritter, J.

    We review the basic approach of curvature adaptive optics (AO) and show how its many advantages arise. A curvature wave front sensor (WFS) measures exactly what a curvature deformable mirror (DM) generates. This leads to the computational and operational simplicity of a nearly diagonal control matrix. The DM automatically reconstructs the wave front based on WFS curvature measurements. Thus, there is no formal wave front reconstruction. This poses an interesting challenge to post-processing of AO images. Physical continuity of the DM and the reconstruction of phase from wave front curvature data assure that each actuated region of the DM corrects local phase, tip-tilt and focus. This gain in per-channel correction efficiency, combined with the need for only one pixel per channel detector reads in the WFS allows the use of photon counting detectors for wave front sensing. We note that the use of photon counting detectors implies penalty-free combination of correction channels either in the WFS or on the DM. This effectively decouples bright and faint source performance in that one no longer predicts the other. The application of curvature AO to the low light moving target detection problem, and explore the resulting challenges to components and control systems. Rapidly moving targets impose high-speed operation posing new requirements unique to curvature components. On the plus side, curvature wave front sensors, unlike their Shack-Hartmann counterparts, are tunable for optimum sensitivity to seeing and we are examining autonomous optimization of the WFS to respond to rapid changes in seeing.

  15. Adaptive optics and phase diversity imaging for responsive space applications.

    SciTech Connect

    Smith, Mark William; Wick, David Victor

    2004-11-01

    The combination of phase diversity and adaptive optics offers great flexibility. Phase diverse images can be used to diagnose aberrations and then provide feedback control to the optics to correct the aberrations. Alternatively, phase diversity can be used to partially compensate for aberrations during post-detection image processing. The adaptive optic can produce simple defocus or more complex types of phase diversity. This report presents an analysis, based on numerical simulations, of the efficiency of different modes of phase diversity with respect to compensating for specific aberrations during post-processing. It also comments on the efficiency of post-processing versus direct aberration correction. The construction of a bench top optical system that uses a membrane mirror as an active optic is described. The results of characterization tests performed on the bench top optical system are presented. The work described in this report was conducted to explore the use of adaptive optics and phase diversity imaging for responsive space applications.

  16. A dual-modal retinal imaging system with adaptive optics

    PubMed Central

    Meadway, Alexander; Girkin, Christopher A.; Zhang, Yuhua

    2013-01-01

    An adaptive optics scanning laser ophthalmoscope (AO-SLO) is adapted to provide optical coherence tomography (OCT) imaging. The AO-SLO function is unchanged. The system uses the same light source, scanning optics, and adaptive optics in both imaging modes. The result is a dual-modal system that can acquire retinal images in both en face and cross-section planes at the single cell level. A new spectral shaping method is developed to reduce the large sidelobes in the coherence profile of the OCT imaging when a non-ideal source is used with a minimal introduction of noise. The technique uses a combination of two existing digital techniques. The thickness and position of the traditionally named inner segment/outer segment junction are measured from individual photoreceptors. In-vivo images of healthy and diseased human retinas are demonstrated. PMID:24514529

  17. Coherence-Gated Sensorless Adaptive Optics Multiphoton Retinal Imaging.

    PubMed

    Cua, Michelle; Wahl, Daniel J; Zhao, Yuan; Lee, Sujin; Bonora, Stefano; Zawadzki, Robert J; Jian, Yifan; Sarunic, Marinko V

    2016-09-07

    Multiphoton microscopy enables imaging deep into scattering tissues. The efficient generation of non-linear optical effects is related to both the pulse duration (typically on the order of femtoseconds) and the size of the focused spot. Aberrations introduced by refractive index inhomogeneity in the sample distort the wavefront and enlarge the focal spot, which reduces the multiphoton signal. Traditional approaches to adaptive optics wavefront correction are not effective in thick or multi-layered scattering media. In this report, we present sensorless adaptive optics (SAO) using low-coherence interferometric detection of the excitation light for depth-resolved aberration correction of two-photon excited fluorescence (TPEF) in biological tissue. We demonstrate coherence-gated SAO TPEF using a transmissive multi-actuator adaptive lens for in vivo imaging in a mouse retina. This configuration has significant potential for reducing the laser power required for adaptive optics multiphoton imaging, and for facilitating integration with existing systems.

  18. Coherence-Gated Sensorless Adaptive Optics Multiphoton Retinal Imaging

    PubMed Central

    Cua, Michelle; Wahl, Daniel J.; Zhao, Yuan; Lee, Sujin; Bonora, Stefano; Zawadzki, Robert J.; Jian, Yifan; Sarunic, Marinko V.

    2016-01-01

    Multiphoton microscopy enables imaging deep into scattering tissues. The efficient generation of non-linear optical effects is related to both the pulse duration (typically on the order of femtoseconds) and the size of the focused spot. Aberrations introduced by refractive index inhomogeneity in the sample distort the wavefront and enlarge the focal spot, which reduces the multiphoton signal. Traditional approaches to adaptive optics wavefront correction are not effective in thick or multi-layered scattering media. In this report, we present sensorless adaptive optics (SAO) using low-coherence interferometric detection of the excitation light for depth-resolved aberration correction of two-photon excited fluorescence (TPEF) in biological tissue. We demonstrate coherence-gated SAO TPEF using a transmissive multi-actuator adaptive lens for in vivo imaging in a mouse retina. This configuration has significant potential for reducing the laser power required for adaptive optics multiphoton imaging, and for facilitating integration with existing systems. PMID:27599635

  19. Coherence-Gated Sensorless Adaptive Optics Multiphoton Retinal Imaging

    NASA Astrophysics Data System (ADS)

    Cua, Michelle; Wahl, Daniel J.; Zhao, Yuan; Lee, Sujin; Bonora, Stefano; Zawadzki, Robert J.; Jian, Yifan; Sarunic, Marinko V.

    2016-09-01

    Multiphoton microscopy enables imaging deep into scattering tissues. The efficient generation of non-linear optical effects is related to both the pulse duration (typically on the order of femtoseconds) and the size of the focused spot. Aberrations introduced by refractive index inhomogeneity in the sample distort the wavefront and enlarge the focal spot, which reduces the multiphoton signal. Traditional approaches to adaptive optics wavefront correction are not effective in thick or multi-layered scattering media. In this report, we present sensorless adaptive optics (SAO) using low-coherence interferometric detection of the excitation light for depth-resolved aberration correction of two-photon excited fluorescence (TPEF) in biological tissue. We demonstrate coherence-gated SAO TPEF using a transmissive multi-actuator adaptive lens for in vivo imaging in a mouse retina. This configuration has significant potential for reducing the laser power required for adaptive optics multiphoton imaging, and for facilitating integration with existing systems.

  20. An adaptive optics biomicroscope for mouse retinal imaging

    NASA Astrophysics Data System (ADS)

    Biss, David P.; Webb, Robert H.; Zhou, Yaopeng; Bifano, Thomas G.; Zamiri, Parisa; Lin, Charles P.

    2007-02-01

    In studying retinal disease on a microscopic level, in vivo imaging has allowed researchers to track disease progression in a single animal over time without sacrificing large numbers of animals for statistical studies. Historically, a drawback of in vivo retinal imaging, when compared to ex vivo imaging, is decreased image resolution due to aberrations present in the mouse eye. Adaptive optics has successfully corrected phase aberrations introduced the eye in ophthalmic imaging in humans. We are using adaptive optics to correct for aberrations introduced by the mouse eye in hopes of achieving cellular resolution retinal images of mice in vivo. In addition to using a wavefront sensor to drive the adaptive optic element, we explore the using image data to correct for wavefront aberrations introduced by the mouse eye. Image data, in the form of the confocal detection pinhole intensity are used as the feedback mechanism to control the MEMS deformable mirror in the adaptive optics system. Correction for wavefront sensing and sensor-less adaptive optics systems are presented.

  1. SPECKLE NOISE SUBTRACTION AND SUPPRESSION WITH ADAPTIVE OPTICS CORONAGRAPHIC IMAGING

    SciTech Connect

    Ren Deqing; Dou Jiangpei; Zhang Xi; Zhu Yongtian

    2012-07-10

    Future ground-based direct imaging of exoplanets depends critically on high-contrast coronagraph and wave-front manipulation. A coronagraph is designed to remove most of the unaberrated starlight. Because of the wave-front error, which is inherit from the atmospheric turbulence from ground observations, a coronagraph cannot deliver its theoretical performance, and speckle noise will limit the high-contrast imaging performance. Recently, extreme adaptive optics, which can deliver an extremely high Strehl ratio, is being developed for such a challenging mission. In this publication, we show that barely taking a long-exposure image does not provide much gain for coronagraphic imaging with adaptive optics. We further discuss a speckle subtraction and suppression technique that fully takes advantage of the high contrast provided by the coronagraph, as well as the wave front corrected by the adaptive optics. This technique works well for coronagraphic imaging with conventional adaptive optics with a moderate Strehl ratio, as well as for extreme adaptive optics with a high Strehl ratio. We show how to substrate and suppress speckle noise efficiently up to the third order, which is critical for future ground-based high-contrast imaging. Numerical simulations are conducted to fully demonstrate this technique.

  2. Digital adaptive optics line-scanning confocal imaging system.

    PubMed

    Liu, Changgeng; Kim, Myung K

    2015-01-01

    A digital adaptive optics line-scanning confocal imaging (DAOLCI) system is proposed by applying digital holographic adaptive optics to a digital form of line-scanning confocal imaging system. In DAOLCI, each line scan is recorded by a digital hologram, which allows access to the complex optical field from one slice of the sample through digital holography. This complex optical field contains both the information of one slice of the sample and the optical aberration of the system, thus allowing us to compensate for the effect of the optical aberration, which can be sensed by a complex guide star hologram. After numerical aberration compensation, the corrected optical fields of a sequence of line scans are stitched into the final corrected confocal image. In DAOLCI, a numerical slit is applied to realize the confocality at the sensor end. The width of this slit can be adjusted to control the image contrast and speckle noise for scattering samples. DAOLCI dispenses with the hardware pieces, such as Shack–Hartmann wavefront sensor and deformable mirror, and the closed-loop feedbacks adopted in the conventional adaptive optics confocal imaging system, thus reducing the optomechanical complexity and cost. Numerical simulations and proof-of-principle experiments are presented that demonstrate the feasibility of this idea.

  3. Digital adaptive optics line-scanning confocal imaging system

    PubMed Central

    Liu, Changgeng; Kim, Myung K.

    2015-01-01

    Abstract. A digital adaptive optics line-scanning confocal imaging (DAOLCI) system is proposed by applying digital holographic adaptive optics to a digital form of line-scanning confocal imaging system. In DAOLCI, each line scan is recorded by a digital hologram, which allows access to the complex optical field from one slice of the sample through digital holography. This complex optical field contains both the information of one slice of the sample and the optical aberration of the system, thus allowing us to compensate for the effect of the optical aberration, which can be sensed by a complex guide star hologram. After numerical aberration compensation, the corrected optical fields of a sequence of line scans are stitched into the final corrected confocal image. In DAOLCI, a numerical slit is applied to realize the confocality at the sensor end. The width of this slit can be adjusted to control the image contrast and speckle noise for scattering samples. DAOLCI dispenses with the hardware pieces, such as Shack–Hartmann wavefront sensor and deformable mirror, and the closed-loop feedbacks adopted in the conventional adaptive optics confocal imaging system, thus reducing the optomechanical complexity and cost. Numerical simulations and proof-of-principle experiments are presented that demonstrate the feasibility of this idea. PMID:26140334

  4. Adaptive optics technology for high-resolution retinal imaging.

    PubMed

    Lombardo, Marco; Serrao, Sebastiano; Devaney, Nicholas; Parravano, Mariacristina; Lombardo, Giuseppe

    2012-12-27

    Adaptive optics (AO) is a technology used to improve the performance of optical systems by reducing the effects of optical aberrations. The direct visualization of the photoreceptor cells, capillaries and nerve fiber bundles represents the major benefit of adding AO to retinal imaging. Adaptive optics is opening a new frontier for clinical research in ophthalmology, providing new information on the early pathological changes of the retinal microstructures in various retinal diseases. We have reviewed AO technology for retinal imaging, providing information on the core components of an AO retinal camera. The most commonly used wavefront sensing and correcting elements are discussed. Furthermore, we discuss current applications of AO imaging to a population of healthy adults and to the most frequent causes of blindness, including diabetic retinopathy, age-related macular degeneration and glaucoma. We conclude our work with a discussion on future clinical prospects for AO retinal imaging.

  5. Adaptive Optics Technology for High-Resolution Retinal Imaging

    PubMed Central

    Lombardo, Marco; Serrao, Sebastiano; Devaney, Nicholas; Parravano, Mariacristina; Lombardo, Giuseppe

    2013-01-01

    Adaptive optics (AO) is a technology used to improve the performance of optical systems by reducing the effects of optical aberrations. The direct visualization of the photoreceptor cells, capillaries and nerve fiber bundles represents the major benefit of adding AO to retinal imaging. Adaptive optics is opening a new frontier for clinical research in ophthalmology, providing new information on the early pathological changes of the retinal microstructures in various retinal diseases. We have reviewed AO technology for retinal imaging, providing information on the core components of an AO retinal camera. The most commonly used wavefront sensing and correcting elements are discussed. Furthermore, we discuss current applications of AO imaging to a population of healthy adults and to the most frequent causes of blindness, including diabetic retinopathy, age-related macular degeneration and glaucoma. We conclude our work with a discussion on future clinical prospects for AO retinal imaging. PMID:23271600

  6. Next generation high resolution adaptive optics fundus imager

    NASA Astrophysics Data System (ADS)

    Fournier, P.; Erry, G. R. G.; Otten, L. J.; Larichev, A.; Irochnikov, N.

    2005-12-01

    The spatial resolution of retinal images is limited by the presence of static and time-varying aberrations present within the eye. An updated High Resolution Adaptive Optics Fundus Imager (HRAOFI) has been built based on the development from the first prototype unit. This entirely new unit was designed and fabricated to increase opto-mechanical integration and ease-of-use through a new user interface. Improved camera systems for the Shack-Hartmann sensor and for the scene image were implemented to enhance the image quality and the frequency of the Adaptive Optics (AO) control loop. An optimized illumination system that uses specific wavelength bands was applied to increase the specificity of the images. Sample images of clinical trials of retinas, taken with and without the system, are shown. Data on the performance of this system will be presented, demonstrating the ability to calculate near diffraction-limited images.

  7. Contrast-based sensorless adaptive optics for retinal imaging.

    PubMed

    Zhou, Xiaolin; Bedggood, Phillip; Bui, Bang; Nguyen, Christine T O; He, Zheng; Metha, Andrew

    2015-09-01

    Conventional adaptive optics ophthalmoscopes use wavefront sensing methods to characterize ocular aberrations for real-time correction. However, there are important situations in which the wavefront sensing step is susceptible to difficulties that affect the accuracy of the correction. To circumvent these, wavefront sensorless adaptive optics (or non-wavefront sensing AO; NS-AO) imaging has recently been developed and has been applied to point-scanning based retinal imaging modalities. In this study we show, for the first time, contrast-based NS-AO ophthalmoscopy for full-frame in vivo imaging of human and animal eyes. We suggest a robust image quality metric that could be used for any imaging modality, and test its performance against other metrics using (physical) model eyes.

  8. Contrast-based sensorless adaptive optics for retinal imaging

    PubMed Central

    Zhou, Xiaolin; Bedggood, Phillip; Bui, Bang; Nguyen, Christine T.O.; He, Zheng; Metha, Andrew

    2015-01-01

    Conventional adaptive optics ophthalmoscopes use wavefront sensing methods to characterize ocular aberrations for real-time correction. However, there are important situations in which the wavefront sensing step is susceptible to difficulties that affect the accuracy of the correction. To circumvent these, wavefront sensorless adaptive optics (or non-wavefront sensing AO; NS-AO) imaging has recently been developed and has been applied to point-scanning based retinal imaging modalities. In this study we show, for the first time, contrast-based NS-AO ophthalmoscopy for full-frame in vivo imaging of human and animal eyes. We suggest a robust image quality metric that could be used for any imaging modality, and test its performance against other metrics using (physical) model eyes. PMID:26417525

  9. eXtreme Adaptive Optics Planet Imager: Overview and status

    SciTech Connect

    Macintosh, B A; Bauman, B; Evans, J W; Graham, J; Lockwood, C; Poyneer, L; Dillon, D; Gavel, D; Green, J; Lloyd, J; Makidon, R; Olivier, S; Palmer, D; Perrin, M; Severson, S; Sheinis, A; Sivaramakrishnan, A; Sommargren, G; Soumer, R; Troy, M; Wallace, K; Wishnow, E

    2004-08-18

    As adaptive optics (AO) matures, it becomes possible to envision AO systems oriented towards specific important scientific goals rather than general-purpose systems. One such goal for the next decade is the direct imaging detection of extrasolar planets. An 'extreme' adaptive optics (ExAO) system optimized for extrasolar planet detection will have very high actuator counts and rapid update rates - designed for observations of bright stars - and will require exquisite internal calibration at the nanometer level. In addition to extrasolar planet detection, such a system will be capable of characterizing dust disks around young or mature stars, outflows from evolved stars, and high Strehl ratio imaging even at visible wavelengths. The NSF Center for Adaptive Optics has carried out a detailed conceptual design study for such an instrument, dubbed the eXtreme Adaptive Optics Planet Imager or XAOPI. XAOPI is a 4096-actuator AO system, notionally for the Keck telescope, capable of achieving contrast ratios >10{sup 7} at angular separations of 0.2-1'. ExAO system performance analysis is quite different than conventional AO systems - the spatial and temporal frequency content of wavefront error sources is as critical as their magnitude. We present here an overview of the XAOPI project, and an error budget highlighting the key areas determining achievable contrast. The most challenging requirement is for residual static errors to be less than 2 nm over the controlled range of spatial frequencies. If this can be achieved, direct imaging of extrasolar planets will be feasible within this decade.

  10. An adaptive optics imaging system designed for clinical use.

    PubMed

    Zhang, Jie; Yang, Qiang; Saito, Kenichi; Nozato, Koji; Williams, David R; Rossi, Ethan A

    2015-06-01

    Here we demonstrate a new imaging system that addresses several major problems limiting the clinical utility of conventional adaptive optics scanning light ophthalmoscopy (AOSLO), including its small field of view (FOV), reliance on patient fixation for targeting imaging, and substantial post-processing time. We previously showed an efficient image based eye tracking method for real-time optical stabilization and image registration in AOSLO. However, in patients with poor fixation, eye motion causes the FOV to drift substantially, causing this approach to fail. We solve that problem here by tracking eye motion at multiple spatial scales simultaneously by optically and electronically integrating a wide FOV SLO (WFSLO) with an AOSLO. This multi-scale approach, implemented with fast tip/tilt mirrors, has a large stabilization range of ± 5.6°. Our method consists of three stages implemented in parallel: 1) coarse optical stabilization driven by a WFSLO image, 2) fine optical stabilization driven by an AOSLO image, and 3) sub-pixel digital registration of the AOSLO image. We evaluated system performance in normal eyes and diseased eyes with poor fixation. Residual image motion with incremental compensation after each stage was: 1) ~2-3 arc minutes, (arcmin) 2) ~0.5-0.8 arcmin and, 3) ~0.05-0.07 arcmin, for normal eyes. Performance in eyes with poor fixation was: 1) ~3-5 arcmin, 2) ~0.7-1.1 arcmin and 3) ~0.07-0.14 arcmin. We demonstrate that this system is capable of reducing image motion by a factor of ~400, on average. This new optical design provides additional benefits for clinical imaging, including a steering subsystem for AOSLO that can be guided by the WFSLO to target specific regions of interest such as retinal pathology and real-time averaging of registered images to eliminate image post-processing.

  11. An adaptive optics imaging system designed for clinical use

    PubMed Central

    Zhang, Jie; Yang, Qiang; Saito, Kenichi; Nozato, Koji; Williams, David R.; Rossi, Ethan A.

    2015-01-01

    Here we demonstrate a new imaging system that addresses several major problems limiting the clinical utility of conventional adaptive optics scanning light ophthalmoscopy (AOSLO), including its small field of view (FOV), reliance on patient fixation for targeting imaging, and substantial post-processing time. We previously showed an efficient image based eye tracking method for real-time optical stabilization and image registration in AOSLO. However, in patients with poor fixation, eye motion causes the FOV to drift substantially, causing this approach to fail. We solve that problem here by tracking eye motion at multiple spatial scales simultaneously by optically and electronically integrating a wide FOV SLO (WFSLO) with an AOSLO. This multi-scale approach, implemented with fast tip/tilt mirrors, has a large stabilization range of ± 5.6°. Our method consists of three stages implemented in parallel: 1) coarse optical stabilization driven by a WFSLO image, 2) fine optical stabilization driven by an AOSLO image, and 3) sub-pixel digital registration of the AOSLO image. We evaluated system performance in normal eyes and diseased eyes with poor fixation. Residual image motion with incremental compensation after each stage was: 1) ~2–3 arc minutes, (arcmin) 2) ~0.5–0.8 arcmin and, 3) ~0.05–0.07 arcmin, for normal eyes. Performance in eyes with poor fixation was: 1) ~3–5 arcmin, 2) ~0.7–1.1 arcmin and 3) ~0.07–0.14 arcmin. We demonstrate that this system is capable of reducing image motion by a factor of ~400, on average. This new optical design provides additional benefits for clinical imaging, including a steering subsystem for AOSLO that can be guided by the WFSLO to target specific regions of interest such as retinal pathology and real-time averaging of registered images to eliminate image post-processing. PMID:26114033

  12. Performance of the Gemini Planet Imager's adaptive optics system.

    PubMed

    Poyneer, Lisa A; Palmer, David W; Macintosh, Bruce; Savransky, Dmitry; Sadakuni, Naru; Thomas, Sandrine; Véran, Jean-Pierre; Follette, Katherine B; Greenbaum, Alexandra Z; Ammons, S Mark; Bailey, Vanessa P; Bauman, Brian; Cardwell, Andrew; Dillon, Daren; Gavel, Donald; Hartung, Markus; Hibon, Pascale; Perrin, Marshall D; Rantakyrö, Fredrik T; Sivaramakrishnan, Anand; Wang, Jason J

    2016-01-10

    The Gemini Planet Imager's adaptive optics (AO) subsystem was designed specifically to facilitate high-contrast imaging. A definitive description of the system's algorithms and technologies as built is given. 564 AO telemetry measurements from the Gemini Planet Imager Exoplanet Survey campaign are analyzed. The modal gain optimizer tracks changes in atmospheric conditions. Science observations show that image quality can be improved with the use of both the spatially filtered wavefront sensor and linear-quadratic-Gaussian control of vibration. The error budget indicates that for all targets and atmospheric conditions AO bandwidth error is the largest term.

  13. Adaptive optics with pupil tracking for high resolution retinal imaging.

    PubMed

    Sahin, Betul; Lamory, Barbara; Levecq, Xavier; Harms, Fabrice; Dainty, Chris

    2012-02-01

    Adaptive optics, when integrated into retinal imaging systems, compensates for rapidly changing ocular aberrations in real time and results in improved high resolution images that reveal the photoreceptor mosaic. Imaging the retina at high resolution has numerous potential medical applications, and yet for the development of commercial products that can be used in the clinic, the complexity and high cost of the present research systems have to be addressed. We present a new method to control the deformable mirror in real time based on pupil tracking measurements which uses the default camera for the alignment of the eye in the retinal imaging system and requires no extra cost or hardware. We also present the first experiments done with a compact adaptive optics flood illumination fundus camera where it was possible to compensate for the higher order aberrations of a moving model eye and in vivo in real time based on pupil tracking measurements, without the real time contribution of a wavefront sensor. As an outcome of this research, we showed that pupil tracking can be effectively used as a low cost and practical adaptive optics tool for high resolution retinal imaging because eye movements constitute an important part of the ocular wavefront dynamics.

  14. Adaptive optics with pupil tracking for high resolution retinal imaging

    PubMed Central

    Sahin, Betul; Lamory, Barbara; Levecq, Xavier; Harms, Fabrice; Dainty, Chris

    2012-01-01

    Adaptive optics, when integrated into retinal imaging systems, compensates for rapidly changing ocular aberrations in real time and results in improved high resolution images that reveal the photoreceptor mosaic. Imaging the retina at high resolution has numerous potential medical applications, and yet for the development of commercial products that can be used in the clinic, the complexity and high cost of the present research systems have to be addressed. We present a new method to control the deformable mirror in real time based on pupil tracking measurements which uses the default camera for the alignment of the eye in the retinal imaging system and requires no extra cost or hardware. We also present the first experiments done with a compact adaptive optics flood illumination fundus camera where it was possible to compensate for the higher order aberrations of a moving model eye and in vivo in real time based on pupil tracking measurements, without the real time contribution of a wavefront sensor. As an outcome of this research, we showed that pupil tracking can be effectively used as a low cost and practical adaptive optics tool for high resolution retinal imaging because eye movements constitute an important part of the ocular wavefront dynamics. PMID:22312577

  15. Enhancing image quality in cleared tissue with adaptive optics

    NASA Astrophysics Data System (ADS)

    Reinig, Marc R.; Novak, Samuel W.; Tao, Xiaodong; Bentolila, Laurent A.; Roberts, Dustin G.; MacKenzie-Graham, Allan; Godshalk, Sirie E.; Raven, Mary A.; Knowles, David W.; Kubby, Joel

    2016-12-01

    Our ability to see fine detail at depth in tissues is limited by scattering and other refractive characteristics of the tissue. For fixed tissue, we can limit scattering with a variety of clearing protocols. This allows us to see deeper but not necessarily clearer. Refractive aberrations caused by the bulk index of refraction of the tissue and its variations continue to limit our ability to see fine detail. Refractive aberrations are made up of spherical and other Zernike modes, which can be significant at depth. Spherical aberration that is common across the imaging field can be corrected using an objective correcting collar, although this can require manual intervention. Other aberrations may vary across the imaging field and can only be effectively corrected using adaptive optics. Adaptive optics can also correct other aberrations simultaneously with the spherical aberration, eliminating manual intervention and speeding imaging. We use an adaptive optics two-photon microscope to examine the impact of the spherical and higher order aberrations on imaging and contrast the effect of compensating only for spherical aberration against compensating for the first 22 Zernike aberrations in two tissue types. Increase in image intensity by 1.6× and reduction of root mean square error by 3× are demonstrated.

  16. Imaging of retinal vasculature using adaptive optics SLO/OCT

    PubMed Central

    Felberer, Franz; Rechenmacher, Matthias; Haindl, Richard; Baumann, Bernhard; Hitzenberger, Christoph K.; Pircher, Michael

    2015-01-01

    We use our previously developed adaptive optics (AO) scanning laser ophthalmoscope (SLO)/ optical coherence tomography (OCT) instrument to investigate its capability for imaging retinal vasculature. The system records SLO and OCT images simultaneously with a pixel to pixel correspondence which allows a direct comparison between those imaging modalities. Different field of views ranging from 0.8°x0.8° up to 4°x4° are supported by the instrument. In addition a dynamic focus scheme was developed for the AO-SLO/OCT system in order to maintain the high transverse resolution throughout imaging depth. The active axial eye tracking that is implemented in the OCT channel allows time resolved measurements of the retinal vasculature in the en-face imaging plane. Vessel walls and structures that we believe correspond to individual erythrocytes could be visualized with the system. PMID:25909024

  17. Imaging of retinal vasculature using adaptive optics SLO/OCT.

    PubMed

    Felberer, Franz; Rechenmacher, Matthias; Haindl, Richard; Baumann, Bernhard; Hitzenberger, Christoph K; Pircher, Michael

    2015-04-01

    We use our previously developed adaptive optics (AO) scanning laser ophthalmoscope (SLO)/ optical coherence tomography (OCT) instrument to investigate its capability for imaging retinal vasculature. The system records SLO and OCT images simultaneously with a pixel to pixel correspondence which allows a direct comparison between those imaging modalities. Different field of views ranging from 0.8°x0.8° up to 4°x4° are supported by the instrument. In addition a dynamic focus scheme was developed for the AO-SLO/OCT system in order to maintain the high transverse resolution throughout imaging depth. The active axial eye tracking that is implemented in the OCT channel allows time resolved measurements of the retinal vasculature in the en-face imaging plane. Vessel walls and structures that we believe correspond to individual erythrocytes could be visualized with the system.

  18. Adapting smartphones for low-cost optical medical imaging

    NASA Astrophysics Data System (ADS)

    Pratavieira, Sebastião.; Vollet-Filho, José D.; Carbinatto, Fernanda M.; Blanco, Kate; Inada, Natalia M.; Bagnato, Vanderlei S.; Kurachi, Cristina

    2015-06-01

    Optical images have been used in several medical situations to improve diagnosis of lesions or to monitor treatments. However, most systems employ expensive scientific (CCD or CMOS) cameras and need computers to display and save the images, usually resulting in a high final cost for the system. Additionally, this sort of apparatus operation usually becomes more complex, requiring more and more specialized technical knowledge from the operator. Currently, the number of people using smartphone-like devices with built-in high quality cameras is increasing, which might allow using such devices as an efficient, lower cost, portable imaging system for medical applications. Thus, we aim to develop methods of adaptation of those devices to optical medical imaging techniques, such as fluorescence. Particularly, smartphones covers were adapted to connect a smartphone-like device to widefield fluorescence imaging systems. These systems were used to detect lesions in different tissues, such as cervix and mouth/throat mucosa, and to monitor ALA-induced protoporphyrin-IX formation for photodynamic treatment of Cervical Intraepithelial Neoplasia. This approach may contribute significantly to low-cost, portable and simple clinical optical imaging collection.

  19. Multiwavelength adaptive optical fundus camera and continuous retinal imaging

    NASA Astrophysics Data System (ADS)

    Yang, Han-sheng; Li, Min; Dai, Yun; Zhang, Yu-dong

    2009-08-01

    We have constructed a new version of retinal imaging system with chromatic aberration concerned and the correlated optical design presented in this article is based on the adaptive optics fundus camera modality. In our system, three typical wavelengths of 550nm, 650nm and 480nm were selected. Longitude chromatic aberration (LCA) was traded off to a minimum using ZEMAX program. The whole setup was actually evaluated on human subjects and retinal imaging was performed at continuous frame rates up to 20 Hz. Raw videos at parafovea locations were collected, and cone mosaics as well as retinal vasculature were clearly observed in one single clip. In addition, comparisons under different illumination conditions were also made to confirm our design. Image contrast and the Strehl ratio were effectively increased after dynamic correction of high order aberrations. This system is expected to bring new applications in functional imaging of human retina.

  20. Objective assessment of image quality. IV. Application to adaptive optics

    PubMed Central

    Barrett, Harrison H.; Myers, Kyle J.; Devaney, Nicholas; Dainty, Christopher

    2008-01-01

    The methodology of objective assessment, which defines image quality in terms of the performance of specific observers on specific tasks of interest, is extended to temporal sequences of images with random point spread functions and applied to adaptive imaging in astronomy. The tasks considered include both detection and estimation, and the observers are the optimal linear discriminant (Hotelling observer) and the optimal linear estimator (Wiener). A general theory of first- and second-order spatiotemporal statistics in adaptive optics is developed. It is shown that the covariance matrix can be rigorously decomposed into three terms representing the effect of measurement noise, random point spread function, and random nature of the astronomical scene. Figures of merit are developed, and computational methods are discussed. PMID:17106464

  1. Objective assessment of image quality. IV. Application to adaptive optics.

    PubMed

    Barrett, Harrison H; Myers, Kyle J; Devaney, Nicholas; Dainty, Christopher

    2006-12-01

    The methodology of objective assessment, which defines image quality in terms of the performance of specific observers on specific tasks of interest, is extended to temporal sequences of images with random point spread functions and applied to adaptive imaging in astronomy. The tasks considered include both detection and estimation, and the observers are the optimal linear discriminant (Hotelling observer) and the optimal linear estimator (Wiener). A general theory of first- and second-order spatiotemporal statistics in adaptive optics is developed. It is shown that the covariance matrix can be rigorously decomposed into three terms representing the effect of measurement noise, random point spread function, and random nature of the astronomical scene. Figures of merit are developed, and computational methods are discussed.

  2. Objective assessment of image quality. IV. Application to adaptive optics

    NASA Astrophysics Data System (ADS)

    Barrett, Harrison H.; Myers, Kyle J.; Devaney, Nicholas; Dainty, Christopher

    2006-12-01

    The methodology of objective assessment, which defines image quality in terms of the performance of specific observers on specific tasks of interest, is extended to temporal sequences of images with random point spread functions and applied to adaptive imaging in astronomy. The tasks considered include both detection and estimation, and the observers are the optimal linear discriminant (Hotelling observer) and the optimal linear estimator (Wiener). A general theory of first- and second-order spatiotemporal statistics in adaptive optics is developed. It is shown that the covariance matrix can be rigorously decomposed into three terms representing the effect of measurement noise, random point spread function, and random nature of the astronomical scene. Figures of merit are developed, and computational methods are discussed.

  3. Accuracy requirements of optical linear algebra processors in adaptive optics imaging systems.

    PubMed

    Downie, J D; Goodman, J W

    1989-10-15

    A ground-based adaptive optics imaging telescope system attempts to improve image quality by measuring and correcting for atmospherically induced wavefront aberrations. The necessary control computations during each cycle will take a finite amount of time, which adds to the residual error variance since the atmosphere continues to change during that time. Thus an optical processor may be well-suited for this task. This paper investigates this possibility by studying the accuracy requirements in a general optical processor that will make it competitive with, or superior to, a conventional digital computer for adaptive optics use.

  4. Accuracy requirements of optical linear algebra processors in adaptive optics imaging systems

    NASA Technical Reports Server (NTRS)

    Downie, John D.

    1990-01-01

    A ground-based adaptive optics imaging telescope system attempts to improve image quality by detecting and correcting for atmospherically induced wavefront aberrations. The required control computations during each cycle will take a finite amount of time. Longer time delays result in larger values of residual wavefront error variance since the atmosphere continues to change during that time. Thus an optical processor may be well-suited for this task. This paper presents a study of the accuracy requirements in a general optical processor that will make it competitive with, or superior to, a conventional digital computer for the adaptive optics application. An optimization of the adaptive optics correction algorithm with respect to an optical processor's degree of accuracy is also briefly discussed.

  5. Fourier transform digital holographic adaptive optics imaging system

    PubMed Central

    Liu, Changgeng; Yu, Xiao; Kim, Myung K.

    2013-01-01

    A Fourier transform digital holographic adaptive optics imaging system and its basic principles are proposed. The CCD is put at the exact Fourier transform plane of the pupil of the eye lens. The spherical curvature introduced by the optics except the eye lens itself is eliminated. The CCD is also at image plane of the target. The point-spread function of the system is directly recorded, making it easier to determine the correct guide-star hologram. Also, the light signal will be stronger at the CCD, especially for phase-aberration sensing. Numerical propagation is avoided. The sensor aperture has nothing to do with the resolution and the possibility of using low coherence or incoherent illumination is opened. The system becomes more efficient and flexible. Although it is intended for ophthalmic use, it also shows potential application in microscopy. The robustness and feasibility of this compact system are demonstrated by simulations and experiments using scattering objects. PMID:23262541

  6. Satellite Imaging with Adaptive Optics on a 1 M Telescope

    NASA Astrophysics Data System (ADS)

    Bennet, F.; Price, I.; Rigaut, F.; Copeland, M.

    2016-09-01

    The Research School of Astronomy and Astrophysics at the Mount Stromlo Observatory in Canberra, Australia, have been developing adaptive optic (AO) systems for space situational awareness applications. We report on the development and demonstration of an AO system for satellite imaging using a 1 m telescope. The system uses the orbiting object as a natural guide star to measure atmospheric turbulence, and a deformable mirror to provide an optical correction. The AO system utilised modern, high speed and low noise EMCCD technology on both the wavefront sensor and imaging camera to achieve high performance, achieving a Strehl ratio in excess of 30% at 870 nm. Images are post processed with lucky imaging algorithms to further improve the final image quality. We demonstrate the AO system on stellar targets and Iridium satellites, achieving a near diffraction limited full width at half maximum. A specialised realtime controller allows our system to achieve a bandwidth above 100 Hz, with the wavefront sensor and control loop running at 2 kHz. The AO systems we are developing show how ground-based optical sensors can be used to manage the space environment. AO imaging systems can be used for satellite surveillance, while laser ranging can be used to determine precise orbital data used in the critical conjunction analysis required to maintain a safe space environment. We have focused on making this system compact, expandable, and versatile. We are continuing to develop this platform for other space situational awareness applications such as geosynchronous satellite astrometry, space debris characterisation, satellite imaging, and ground-to-space laser communication.

  7. Speckle statistics in adaptive optics images at visible wavelengths

    NASA Astrophysics Data System (ADS)

    Stangalini, Marco; Pedichini, Fernando; Ambrosino, Filippo; Centrone, Mauro; Del Moro, Dario

    2016-07-01

    Residual speckles in adaptive optics (AO) images represent a well known limitation to the achievement of the contrast needed for faint stellar companions detection. Speckles in AO imagery can be the result of either residual atmospheric aberrations, not corrected by the AO, or slowly evolving aberrations induced by the optical system. In this work we take advantage of new high temporal cadence (1 ms) data acquired by the SHARK forerunner experiment at the Large Binocular Telescope (LBT), to characterize the AO residual speckles at visible waveleghts. By means of an automatic identification of speckles, we study the main statistical properties of AO residuals. In addition, we also study the memory of the process, and thus the clearance time of the atmospheric aberrations, by using information Theory. These information are useful for increasing the realism of numerical simulations aimed at assessing the instrumental performances, and for the application of post-processing techniques on AO imagery.

  8. Adaptive optics scanning laser ophthalmoscope imaging: technology update

    PubMed Central

    Merino, David; Loza-Alvarez, Pablo

    2016-01-01

    Adaptive optics (AO) retinal imaging has become very popular in the past few years, especially within the ophthalmic research community. Several different retinal techniques, such as fundus imaging cameras or optical coherence tomography systems, have been coupled with AO in order to produce impressive images showing individual cell mosaics over different layers of the in vivo human retina. The combination of AO with scanning laser ophthalmoscopy has been extensively used to generate impressive images of the human retina with unprecedented resolution, showing individual photoreceptor cells, retinal pigment epithelium cells, as well as microscopic capillary vessels, or the nerve fiber layer. Over the past few years, the technique has evolved to develop several different applications not only in the clinic but also in different animal models, thanks to technological developments in the field. These developments have specific applications to different fields of investigation, which are not limited to the study of retinal diseases but also to the understanding of the retinal function and vision science. This review is an attempt to summarize these developments in an understandable and brief manner in order to guide the reader into the possibilities that AO scanning laser ophthalmoscopy offers, as well as its limitations, which should be taken into account when planning on using it. PMID:27175057

  9. Adaptive Optics Imaging Survey of Luminous Infrared Galaxies

    SciTech Connect

    Laag, E A; Canalizo, G; van Breugel, W; Gates, E L; de Vries, W; Stanford, S A

    2006-03-13

    We present high resolution imaging observations of a sample of previously unidentified far-infrared galaxies at z < 0.3. The objects were selected by cross-correlating the IRAS Faint Source Catalog with the VLA FIRST catalog and the HST Guide Star Catalog to allow for adaptive optics observations. We found two new ULIGs (with L{sub FIR} {ge} 10{sup 12} L{sub {circle_dot}}) and 19 new LIGs (with L{sub FIR} {ge} 10{sup 11} L{sub {circle_dot}}). Twenty of the galaxies in the sample were imaged with either the Lick or Keck adaptive optics systems in H or K{prime}. Galaxy morphologies were determined using the two dimensional fitting program GALFIT and the residuals examined to look for interesting structure. The morphologies reveal that at least 30% are involved in tidal interactions, with 20% being clear mergers. An additional 50% show signs of possible interaction. Line ratios were used to determine powering mechanism; of the 17 objects in the sample showing clear emission lines--four are active galactic nuclei and seven are starburst galaxies. The rest exhibit a combination of both phenomena.

  10. Single Cell Imaging of the Chick Retina with Adaptive Optics

    PubMed Central

    Headington, Kenneth; Choi, Stacey S.; Nickla, Debora; Doble, Nathan

    2012-01-01

    Purpose The chick eye is extensively used as a model in the study of myopia and its progression; however, analysis of the photoreceptor mosaic has required the use of excised retina due to the uncorrected optical aberrations in the lens and cornea. This study implemented high resolution adaptive optics (AO) retinal imaging to visualize the chick cone mosaic in vivo. Methods The New England College of Optometry (NECO) AO fundus camera was modified to allow high resolution in vivo imaging on 2 six-week-old White Leghorn chicks (Gallus gallus domesticus) – labeled chick A and chick B. Multiple, adjacent images, each with a 2.5° field of view, were taken and subsequently montaged together. This process was repeated at varying retinal locations measured from the tip of the pecten. Automated software was used to determine the cone spacing and density at each location. Voronoi analysis was applied to determine the packing arrangement of the cones. Results In both chicks, cone photoreceptors were clearly visible at all retinal locations imaged. Cone densities measured at 36° nasal-12° superior retina from the pecten tip for chick A and 40° nasal-12° superior retina for chick B were 21,714±543 and 26,105±653 cones/mm2 respectively. For chick B, a further 11 locations immediately surrounding the pecten were imaged, with cone densities ranging from 20,980±524 to 25,148±629 cones/mm2. Conclusion In vivo analysis of the cone density and its packing characteristics are now possible in the chick eye through AO imaging, which has important implications for future studies of myopia and ocular disease research. PMID:21950701

  11. Adaptive optics image restoration algorithm based on wavefront reconstruction and adaptive total variation method

    NASA Astrophysics Data System (ADS)

    Li, Dongming; Zhang, Lijuan; Wang, Ting; Liu, Huan; Yang, Jinhua; Chen, Guifen

    2016-11-01

    To improve the adaptive optics (AO) image's quality, we study the AO image restoration algorithm based on wavefront reconstruction technology and adaptive total variation (TV) method in this paper. Firstly, the wavefront reconstruction using Zernike polynomial is used for initial estimated for the point spread function (PSF). Then, we develop our proposed iterative solutions for AO images restoration, addressing the joint deconvolution issue. The image restoration experiments are performed to verify the image restoration effect of our proposed algorithm. The experimental results show that, compared with the RL-IBD algorithm and Wiener-IBD algorithm, we can see that GMG measures (for real AO image) from our algorithm are increased by 36.92%, and 27.44% respectively, and the computation time are decreased by 7.2%, and 3.4% respectively, and its estimation accuracy is significantly improved.

  12. The simulation of adaptive optical image even and pulse noise and research of image quality evaluation

    NASA Astrophysics Data System (ADS)

    Wen, Changli; Xu, Yuannan; Xu, Rong; Liu, Changhai; Men, Tao; Niu, Wei

    2013-09-01

    As optical image becomes more and more important in adaptive optics area, and adaptive optical telescopes play a more and more important role in the detection system on the ground, and the images we get are so many that we need find a suitable method to choose good quality images automatically in order to save human power, people pay more and more attention in image's evaluation methods and their characteristics. According to different image degradation model, the applicability of different image's quality evaluation method will be different. Researchers have paid most attention in how to improve or build new method to evaluate degraded images. Now we should change our way to take some research in the models of degradation of images, the reasons of image degradation, and the relations among different degraded images and different image quality evaluation methods. In this paper, we build models of even noise and pulse noise based on their definition and get degraded images using these models, and we take research in six kinds of usual image quality evaluation methods such as square error method, sum of multi-power of grey scale method, entropy method, Fisher function method, Sobel method, and sum of grads method, and we make computer software for these methods to use easily to evaluate all kinds of images input. Then we evaluate the images' qualities with different evaluation methods and analyze the results of six kinds of methods, and finally we get many important results. Such as the characteristics of every method for evaluating qualities of degraded images of even noise, the characteristics of every method for evaluating qualities of degraded images of pulse noise, and the best method to evaluate images which affected by tow kinds of noise both and the characteristics of this method. These results are important to image's choosing automatically, and this will help we to manage the images we get through adaptive optical telescopes base on the ground.

  13. Adaptive Optics Retinal Imaging – Clinical Opportunities and Challenges

    PubMed Central

    Carroll, Joseph; Kay, David B.; Scoles, Drew; Dubra, Alfredo; Lombardo, Marco

    2014-01-01

    The array of therapeutic options available to clinicians for treating retinal disease is expanding. With these advances comes the need for better understanding of the etiology of these diseases on a cellular level as well as improved non-invasive tools for identifying the best candidates for given therapies and monitoring the efficacy of those therapies. While spectral domain optical coherence tomography (SD-OCT) offers a widely available tool for clinicians to assay the living retina, it suffers from poor lateral resolution due to the eye’s monochromatic aberrations. Adaptive optics (AO) is a technique to compensate for the eye’s aberrations and provide nearly diffraction-limited resolution. The result is the ability to visualize the living retina with cellular resolution. While AO is unquestionably a powerful research tool, many clinicians remain undecided on the clinical potential of AO imaging – putting many at a crossroads with respect to adoption of this technology. This review will briefly summarize the current state of AO retinal imaging, discuss current as well as future clinical applications of AO retinal imaging, and finally provide some discussion of research needs to facilitate more widespread clinical use. PMID:23621343

  14. Consortium for Adaptive Optics and Image Post-Processing

    DTIC Science & Technology

    2008-06-12

    optics bench laboratory is located in Kula , Maui, and is called “The Space Surveillance Simulator” (S-Cube). S-Cube is designed to simulate both the...Wheeler, Trex Maui Personnel from the Center for Adaptive Optics Contributed DURIP Maui Adaptive Optics Laboratory (S-Cube), Kula Setup Meeting (26...for Astronomy’s buildings in Kula , Maui. The move also caused a change in the scientists directly involved in the simulator as well as a change in

  15. Photometric Calibration of the Gemini South Adaptive Optics Imager

    NASA Astrophysics Data System (ADS)

    Stevenson, Sarah Anne; Rodrigo Carrasco Damele, Eleazar; Thomas-Osip, Joanna

    2017-01-01

    The Gemini South Adaptive Optics Imager (GSAOI) is an instrument available on the Gemini South telescope at Cerro Pachon, Chile, utilizing the Gemini Multi-Conjugate Adaptive Optics System (GeMS). In order to allow users to easily perform photometry with this instrument and to monitor any changes in the instrument in the future, we seek to set up a process for performing photometric calibration with standard star observations taken across the time of the instrument’s operation. We construct a Python-based pipeline that includes IRAF wrappers for reduction and combines the AstroPy photutils package and original Python scripts with the IRAF apphot and photcal packages to carry out photometry and linear regression fitting. Using the pipeline, we examine standard star observations made with GSAOI on 68 nights between 2013 and 2015 in order to determine the nightly photometric zero points in the J, H, Kshort, and K bands. This work is based on observations obtained at the Gemini Observatory, processed using the Gemini IRAF and gemini_python packages, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the National Research Council (Canada), CONICYT (Chile), Ministerio de Ciencia, Tecnología e Innovación Productiva (Argentina), and Ministério da Ciência, Tecnologia e Inovação (Brazil).

  16. In vivo imaging of human photoreceptor mosaic with wavefront sensorless adaptive optics optical coherence tomography.

    PubMed

    Wong, Kevin S K; Jian, Yifan; Cua, Michelle; Bonora, Stefano; Zawadzki, Robert J; Sarunic, Marinko V

    2015-02-01

    Wavefront sensorless adaptive optics optical coherence tomography (WSAO-OCT) is a novel imaging technique for in vivo high-resolution depth-resolved imaging that mitigates some of the challenges encountered with the use of sensor-based adaptive optics designs. This technique replaces the Hartmann Shack wavefront sensor used to measure aberrations with a depth-resolved image-driven optimization algorithm, with the metric based on the OCT volumes acquired in real-time. The custom-built ultrahigh-speed GPU processing platform and fast modal optimization algorithm presented in this paper was essential in enabling real-time, in vivo imaging of human retinas with wavefront sensorless AO correction. WSAO-OCT is especially advantageous for developing a clinical high-resolution retinal imaging system as it enables the use of a compact, low-cost and robust lens-based adaptive optics design. In this report, we describe our WSAO-OCT system for imaging the human photoreceptor mosaic in vivo. We validated our system performance by imaging the retina at several eccentricities, and demonstrated the improvement in photoreceptor visibility with WSAO compensation.

  17. In vivo imaging of human photoreceptor mosaic with wavefront sensorless adaptive optics optical coherence tomography

    PubMed Central

    Wong, Kevin S. K.; Jian, Yifan; Cua, Michelle; Bonora, Stefano; Zawadzki, Robert J.; Sarunic, Marinko V.

    2015-01-01

    Wavefront sensorless adaptive optics optical coherence tomography (WSAO-OCT) is a novel imaging technique for in vivo high-resolution depth-resolved imaging that mitigates some of the challenges encountered with the use of sensor-based adaptive optics designs. This technique replaces the Hartmann Shack wavefront sensor used to measure aberrations with a depth-resolved image-driven optimization algorithm, with the metric based on the OCT volumes acquired in real-time. The custom-built ultrahigh-speed GPU processing platform and fast modal optimization algorithm presented in this paper was essential in enabling real-time, in vivo imaging of human retinas with wavefront sensorless AO correction. WSAO-OCT is especially advantageous for developing a clinical high-resolution retinal imaging system as it enables the use of a compact, low-cost and robust lens-based adaptive optics design. In this report, we describe our WSAO-OCT system for imaging the human photoreceptor mosaic in vivo. We validated our system performance by imaging the retina at several eccentricities, and demonstrated the improvement in photoreceptor visibility with WSAO compensation. PMID:25780747

  18. High-resolution retinal imaging using adaptive optics and Fourier-domain optical coherence tomography

    DOEpatents

    Olivier, Scot S.; Werner, John S.; Zawadzki, Robert J.; Laut, Sophie P.; Jones, Steven M.

    2010-09-07

    This invention permits retinal images to be acquired at high speed and with unprecedented resolution in three dimensions (4.times.4.times.6 .mu.m). The instrument achieves high lateral resolution by using adaptive optics to correct optical aberrations of the human eye in real time. High axial resolution and high speed are made possible by the use of Fourier-domain optical coherence tomography. Using this system, we have demonstrated the ability to image microscopic blood vessels and the cone photoreceptor mosaic.

  19. Multi-modal automatic montaging of adaptive optics retinal images

    PubMed Central

    Chen, Min; Cooper, Robert F.; Han, Grace K.; Gee, James; Brainard, David H.; Morgan, Jessica I. W.

    2016-01-01

    We present a fully automated adaptive optics (AO) retinal image montaging algorithm using classic scale invariant feature transform with random sample consensus for outlier removal. Our approach is capable of using information from multiple AO modalities (confocal, split detection, and dark field) and can accurately detect discontinuities in the montage. The algorithm output is compared to manual montaging by evaluating the similarity of the overlapping regions after montaging, and calculating the detection rate of discontinuities in the montage. Our results show that the proposed algorithm has high alignment accuracy and a discontinuity detection rate that is comparable (and often superior) to manual montaging. In addition, we analyze and show the benefits of using multiple modalities in the montaging process. We provide the algorithm presented in this paper as open-source and freely available to download. PMID:28018714

  20. Multi-modal automatic montaging of adaptive optics retinal images.

    PubMed

    Chen, Min; Cooper, Robert F; Han, Grace K; Gee, James; Brainard, David H; Morgan, Jessica I W

    2016-12-01

    We present a fully automated adaptive optics (AO) retinal image montaging algorithm using classic scale invariant feature transform with random sample consensus for outlier removal. Our approach is capable of using information from multiple AO modalities (confocal, split detection, and dark field) and can accurately detect discontinuities in the montage. The algorithm output is compared to manual montaging by evaluating the similarity of the overlapping regions after montaging, and calculating the detection rate of discontinuities in the montage. Our results show that the proposed algorithm has high alignment accuracy and a discontinuity detection rate that is comparable (and often superior) to manual montaging. In addition, we analyze and show the benefits of using multiple modalities in the montaging process. We provide the algorithm presented in this paper as open-source and freely available to download.

  1. Adaptive optics retinal imaging in the living mouse eye.

    PubMed

    Geng, Ying; Dubra, Alfredo; Yin, Lu; Merigan, William H; Sharma, Robin; Libby, Richard T; Williams, David R

    2012-04-01

    Correction of the eye's monochromatic aberrations using adaptive optics (AO) can improve the resolution of in vivo mouse retinal images [Biss et al., Opt. Lett. 32(6), 659 (2007) and Alt et al., Proc. SPIE 7550, 755019 (2010)], but previous attempts have been limited by poor spot quality in the Shack-Hartmann wavefront sensor (SHWS). Recent advances in mouse eye wavefront sensing using an adjustable focus beacon with an annular beam profile have improved the wavefront sensor spot quality [Geng et al., Biomed. Opt. Express 2(4), 717 (2011)], and we have incorporated them into a fluorescence adaptive optics scanning laser ophthalmoscope (AOSLO). The performance of the instrument was tested on the living mouse eye, and images of multiple retinal structures, including the photoreceptor mosaic, nerve fiber bundles, fine capillaries and fluorescently labeled ganglion cells were obtained. The in vivo transverse and axial resolutions of the fluorescence channel of the AOSLO were estimated from the full width half maximum (FWHM) of the line and point spread functions (LSF and PSF), and were found to be better than 0.79 μm ± 0.03 μm (STD)(45% wider than the diffraction limit) and 10.8 μm ± 0.7 μm (STD)(two times the diffraction limit), respectively. The axial positional accuracy was estimated to be 0.36 μm. This resolution and positional accuracy has allowed us to classify many ganglion cell types, such as bistratified ganglion cells, in vivo.

  2. The Atmosphere of Uranus as Imaged with Keck Adaptive Optics

    NASA Astrophysics Data System (ADS)

    Hammel, H. B.; de Pater, I.; Gibbard, S. G.; Lockwood, G. W.; Rages, K.

    2004-12-01

    Adaptive optics imaging of Uranus was obtained with NIRC2 on the Keck II 10-meter telescope in October 2003 and July 2004 through J, H, and K' filters. Dozens of discrete features were detected in the atmosphere of Uranus. We report the first measurements of winds northward of +43 deg, the first direct measurement of equatorial winds, and the highest wind velocity seen yet on Uranus. At northern mid-latitudes, the winds may have accelerated when compared to earlier HST and Keck observations; southern wind speeds have not changed since Voyager measurements in 1986. The equator of Uranus exhibits a subtle wave structure, with diffuse patches roughly every 30 degs in longitude. There is no sign of a northern "polar collar" as is seen in the south, but a number of discrete features seen at the "expected" latitudes may signal its early stages of development. The largest cloud features on Uranus show complex structure extending over tens of degrees. On 4 July 2004, we detected a southern hemispheric cloud feature on Uranus at K', the first detection of a southern feature at or longward of 2 microns. H images showed an extended structure whose condensed core was co-located with the K'-bright feature. The core exhibited marked brightness variation, fading within just a few days. The initial brightness at K' indicates that the core's scattering particles reached altitudes above the 1-bar level, with the extended H feature residing below 1.1 bars. The core's rapid disappearance at K' indicates dynamical processes in the local vertical aerosol structure. HBH acknowledges support from NASA grants NAG5-11961 and NAG5-10451. IdP acknowledges support from NSF and the Technology Center for Adaptive Optics, managed by UCSC under cooperative agreement No. AST-9876783. SGG's work was performed under the auspices of the U.S. DoE National Nuclear Security Administration by the UC, LLNL under contract No. W-7405-Eng-48.

  3. Adaptive optics optical coherence tomography for in vivo mouse retinal imaging

    PubMed Central

    Zawadzki, Robert J.; Sarunic, Marinko V.

    2013-01-01

    Abstract. Small animal models of retinal diseases are important to vision research, and noninvasive high resolution in vivo rodent retinal imaging is becoming an increasingly important tool used in this field. We present a custom Fourier domain optical coherence tomography (FD-OCT) instrument for high resolution imaging of mouse retina. In order to overcome aberrations in the mouse eye, we incorporated a commercial adaptive optics system into the sample arm of the refractive FD-OCT system. Additionally, a commercially available refraction canceling lens was used to reduce lower order aberrations and specular back-reflection from the cornea. Performance of the adaptive optics (AO) system for correcting residual wavefront aberration in the mice eyes is presented. Results of AO FD-OCT images of mouse retina acquired in vivo with and without AO correction are shown as well. PMID:23644903

  4. ADAPTIVE OPTICS IMAGES OF KEPLER OBJECTS OF INTEREST

    SciTech Connect

    Adams, E. R.; Dupree, A. K.; Ciardi, D. R.; Gautier, T. N. III; Kulesa, C.; McCarthy, D.

    2012-08-15

    All transiting planets are at risk of contamination by blends with nearby, unresolved stars. Blends dilute the transit signal, causing the planet to appear smaller than it really is, or produce a false-positive detection when the target star is blended with eclipsing binary stars. This paper reports on high spatial-resolution adaptive optics images of 90 Kepler planetary candidates. Companion stars are detected as close as 0.''1 from the target star. Images were taken in the near-infrared (J and Ks bands) with ARIES on the MMT and PHARO on the Palomar Hale 200 inch telescope. Most objects (60%) have at least one star within 6'' separation and a magnitude difference of 9. Eighteen objects (20%) have at least one companion within 2'' of the target star; six companions (7%) are closer than 0.''5. Most of these companions were previously unknown, and the associated planetary candidates should receive additional scrutiny. Limits are placed on the presence of additional companions for every system observed, which can be used to validate planets statistically using the BLENDER method. Validation is particularly critical for low-mass, potentially Earth-like worlds, which are not detectable with current-generation radial velocity techniques. High-resolution images are thus a crucial component of any transit follow-up program.

  5. Adaptive Optics Images of Kepler Objects of Interest

    NASA Astrophysics Data System (ADS)

    Adams, E. R.; Ciardi, D. R.; Dupree, A. K.; Gautier, T. N., III; Kulesa, C.; McCarthy, D.

    2012-08-01

    All transiting planets are at risk of contamination by blends with nearby, unresolved stars. Blends dilute the transit signal, causing the planet to appear smaller than it really is, or produce a false-positive detection when the target star is blended with eclipsing binary stars. This paper reports on high spatial-resolution adaptive optics images of 90 Kepler planetary candidates. Companion stars are detected as close as 0farcs1 from the target star. Images were taken in the near-infrared (J and Ks bands) with ARIES on the MMT and PHARO on the Palomar Hale 200 inch telescope. Most objects (60%) have at least one star within 6'' separation and a magnitude difference of 9. Eighteen objects (20%) have at least one companion within 2'' of the target star; six companions (7%) are closer than 0farcs5. Most of these companions were previously unknown, and the associated planetary candidates should receive additional scrutiny. Limits are placed on the presence of additional companions for every system observed, which can be used to validate planets statistically using the BLENDER method. Validation is particularly critical for low-mass, potentially Earth-like worlds, which are not detectable with current-generation radial velocity techniques. High-resolution images are thus a crucial component of any transit follow-up program. Based on observations obtained at the MMT Observatory, a joint facility of the Smithsonian Institution and the University of Arizona.

  6. Keck Adaptive Optics Images of Uranus and Its Rings

    NASA Astrophysics Data System (ADS)

    de Pater, Imke; Gibbard, S. G.; Macintosh, B. A.; Roe, H. G.; Gavel, D. T.; Max, C. E.

    2002-12-01

    We present adaptive optic images of Uranus obtained with the 10-m W. M. Keck II telescope in June 2000, at wavelengths between 1 and 2.4 μm. The angular resolution of the images is ˜0.06-0.09″. We identified eight small cloud features on Uranus's disk, four of which were in the northern hemisphere. The latter features are ˜1000-2000 km in extent and located in the upper troposphere, above the methane cloud, at pressures between 0.5 and 1 bar. Our data have been combined with HST data by Hammel et al. (2001, Icarus153, 229-235); the combination of Keck and HST data allowed derivation of an accurate wind velocity profile. Our images further show Uranus's entire ring system: the asymmetric ɛ ring, as well as the three groups of inner rings (outward from Uranus): the rings 6+5+4, α+β, and the η+γ+δ rings. We derived the equivalent I/ F width and ring particle reflectivity for each group of rings. Typical particle albedos are ˜0.04-0.05, in good agreement with HST data at 0.9 μm.

  7. Wavefront sensorless adaptive optics optical coherence tomography for in vivo retinal imaging in mice

    PubMed Central

    Jian, Yifan; Xu, Jing; Gradowski, Martin A.; Bonora, Stefano; Zawadzki, Robert J.; Sarunic, Marinko V.

    2014-01-01

    We present wavefront sensorless adaptive optics (WSAO) Fourier domain optical coherence tomography (FD-OCT) for in vivo small animal retinal imaging. WSAO is attractive especially for mouse retinal imaging because it simplifies optical design and eliminates the need for wavefront sensing, which is difficult in the small animal eye. GPU accelerated processing of the OCT data permitted real-time extraction of image quality metrics (intensity) for arbitrarily selected retinal layers to be optimized. Modal control of a commercially available segmented deformable mirror (IrisAO Inc.) provided rapid convergence using a sequential search algorithm. Image quality improvements with WSAO OCT are presented for both pigmented and albino mouse retinal data, acquired in vivo. PMID:24575347

  8. Wavefront sensorless adaptive optics optical coherence tomography for in vivo retinal imaging in mice.

    PubMed

    Jian, Yifan; Xu, Jing; Gradowski, Martin A; Bonora, Stefano; Zawadzki, Robert J; Sarunic, Marinko V

    2014-02-01

    We present wavefront sensorless adaptive optics (WSAO) Fourier domain optical coherence tomography (FD-OCT) for in vivo small animal retinal imaging. WSAO is attractive especially for mouse retinal imaging because it simplifies optical design and eliminates the need for wavefront sensing, which is difficult in the small animal eye. GPU accelerated processing of the OCT data permitted real-time extraction of image quality metrics (intensity) for arbitrarily selected retinal layers to be optimized. Modal control of a commercially available segmented deformable mirror (IrisAO Inc.) provided rapid convergence using a sequential search algorithm. Image quality improvements with WSAO OCT are presented for both pigmented and albino mouse retinal data, acquired in vivo.

  9. Adaptive Optics for Satellite Imaging and Space Debris Ranging

    NASA Astrophysics Data System (ADS)

    Bennet, F.; D'Orgeville, C.; Price, I.; Rigaut, F.; Ritchie, I.; Smith, C.

    Earth's space environment is becoming crowded and at risk of a Kessler syndrome, and will require careful management for the future. Modern low noise high speed detectors allow for wavefront sensing and adaptive optics (AO) in extreme circumstances such as imaging small orbiting bodies in Low Earth Orbit (LEO). The Research School of Astronomy and Astrophysics (RSAA) at the Australian National University have been developing AO systems for telescopes between 1 and 2.5m diameter to image and range orbiting satellites and space debris. Strehl ratios in excess of 30% can be achieved for targets in LEO with an AO loop running at 2kHz, allowing the resolution of small features (<30cm) and the capability to determine object shape and spin characteristics. The AO system developed at RSAA consists of a high speed EMCCD Shack-Hartmann wavefront sensor, a deformable mirror (DM), and realtime computer (RTC), and an imaging camera. The system works best as a laser guide star system but will also function as a natural guide star AO system, with the target itself being the guide star. In both circumstances tip-tilt is provided by the target on the imaging camera. The fast tip-tilt modes are not corrected optically, and are instead removed by taking images at a moderate speed (>30Hz) and using a shift and add algorithm. This algorithm can also incorporate lucky imaging to further improve the final image quality. A similar AO system for space debris ranging is also in development in collaboration with Electro Optic Systems (EOS) and the Space Environment Management Cooperative Research Centre (SERC), at the Mount Stromlo Observatory in Canberra, Australia. The system is designed for an AO corrected upward propagated 1064nm pulsed laser beam, from which time of flight information is used to precisely range the target. A 1.8m telescope is used for both propagation and collection of laser light. A laser guide star, Shack-Hartmann wavefront sensor, and DM are used for high order

  10. Keck Adaptive Optics Imaging of Uranus and its Rings

    NASA Astrophysics Data System (ADS)

    de Pater, Imke; Roe, H.; Macintosh, B.; Gibbard, S.; Max, C.; Gavel, D.

    2000-10-01

    We observed Uranus with the recently commissioned AO/NIRSPEC system (Adaptive Optics system with the Near-Infrared echelle Spectrograph) on the 10-m W.M. Keck telescope, UT June 17 and 18, 2000. NIRSPEC allows one to take images and spectra simultaneously. Here we will discuss the images at wavelengths between 1 and 2.4 micron. Due to the location of the rings' pericenter, the rings were much brighter in the north than the south, which resulted in excellent ring images. Inside of the ɛ ring at least three more (individually slightly resolved) rings are visible: from the outside inwards these are: 1) combined δ ,γ ,η rings, 2) combined β ,α rings, and 3) combined 4,5,6 rings. On the planet itself we detected at least 8 different cloud features, five of which were in the northern hemisphere. Two features could be tracked over a 40-60 degree longitude range, and yield wind velocities of 175 +/- 35 m/s at a latitude of +30o, and of 120 +/- 40 m/s at +40o latitude. The highest latitude reached by HST NICMOS was +27o, where a velocity of 20 m/s was measured (Karkoschka, 1998). Has the wind speed changed? Or is there a very steep gradient in the profile? Our data suggest the wind profile to be similar to that derived for Neptune, though at reduced velocities. This research was supported in part by the STC Program of the National Science Foundation under Agreement No. AST-9876783, and in part under the auspices of the US Department of Energy at Lawrence Livermore National Laboratory, Univ. of Calif. under contract No. W-7405-Eng-48.

  11. Adaptive optics images. III. 87 Kepler objects of interest

    SciTech Connect

    Dressing, Courtney D.; Dupree, Andrea K.; Adams, Elisabeth R.; Kulesa, Craig; McCarthy, Don

    2014-11-01

    The Kepler mission has revolutionized our understanding of exoplanets, but some of the planet candidates identified by Kepler may actually be astrophysical false positives or planets whose transit depths are diluted by the presence of another star. Adaptive optics images made with ARIES at the MMT of 87 Kepler Objects of Interest place limits on the presence of fainter stars in or near the Kepler aperture. We detected visual companions within 1'' for 5 stars, between 1'' and 2'' for 7 stars, and between 2'' and 4'' for 15 stars. For those systems, we estimate the brightness of companion stars in the Kepler bandpass and provide approximate corrections to the radii of associated planet candidates due to the extra light in the aperture. For all stars observed, we report detection limits on the presence of nearby stars. ARIES is typically sensitive to stars approximately 5.3 Ks magnitudes fainter than the target star within 1'' and approximately 5.7 Ks magnitudes fainter within 2'', but can detect stars as faint as ΔKs = 7.5 under ideal conditions.

  12. Closed-loop optical stabilization and digital image registration in adaptive optics scanning light ophthalmoscopy.

    PubMed

    Yang, Qiang; Zhang, Jie; Nozato, Koji; Saito, Kenichi; Williams, David R; Roorda, Austin; Rossi, Ethan A

    2014-09-01

    Eye motion is a major impediment to the efficient acquisition of high resolution retinal images with the adaptive optics (AO) scanning light ophthalmoscope (AOSLO). Here we demonstrate a solution to this problem by implementing both optical stabilization and digital image registration in an AOSLO. We replaced the slow scanning mirror with a two-axis tip/tilt mirror for the dual functions of slow scanning and optical stabilization. Closed-loop optical stabilization reduced the amplitude of eye-movement related-image motion by a factor of 10-15. The residual RMS error after optical stabilization alone was on the order of the size of foveal cones: ~1.66-2.56 μm or ~0.34-0.53 arcmin with typical fixational eye motion for normal observers. The full implementation, with real-time digital image registration, corrected the residual eye motion after optical stabilization with an accuracy of ~0.20-0.25 μm or ~0.04-0.05 arcmin RMS, which to our knowledge is more accurate than any method previously reported.

  13. Closed-loop optical stabilization and digital image registration in adaptive optics scanning light ophthalmoscopy

    PubMed Central

    Yang, Qiang; Zhang, Jie; Nozato, Koji; Saito, Kenichi; Williams, David R.; Roorda, Austin; Rossi, Ethan A.

    2014-01-01

    Eye motion is a major impediment to the efficient acquisition of high resolution retinal images with the adaptive optics (AO) scanning light ophthalmoscope (AOSLO). Here we demonstrate a solution to this problem by implementing both optical stabilization and digital image registration in an AOSLO. We replaced the slow scanning mirror with a two-axis tip/tilt mirror for the dual functions of slow scanning and optical stabilization. Closed-loop optical stabilization reduced the amplitude of eye-movement related-image motion by a factor of 10–15. The residual RMS error after optical stabilization alone was on the order of the size of foveal cones: ~1.66–2.56 μm or ~0.34–0.53 arcmin with typical fixational eye motion for normal observers. The full implementation, with real-time digital image registration, corrected the residual eye motion after optical stabilization with an accuracy of ~0.20–0.25 μm or ~0.04–0.05 arcmin RMS, which to our knowledge is more accurate than any method previously reported. PMID:25401030

  14. Optical design considerations when imaging the fundus with an adaptive optics correction

    NASA Astrophysics Data System (ADS)

    Wang, Weiwei; Campbell, Melanie C. W.; Kisilak, Marsha L.; Boyd, Shelley R.

    2008-06-01

    Adaptive Optics (AO) technology has been used in confocal scanning laser ophthalmoscopes (CSLO) which are analogous to confocal scanning laser microscopes (CSLM) with advantages of real-time imaging, increased image contrast, a resistance to image degradation by scattered light, and improved optical sectioning. With AO, the instrumenteye system can have low enough aberrations for the optical quality to be limited primarily by diffraction. Diffraction-limited, high resolution imaging would be beneficial in the understanding and early detection of eye diseases such as diabetic retinopathy. However, to maintain diffraction-limited imaging, sufficient pixel sampling over the field of view is required, resulting in the need for increased data acquisition rates for larger fields. Imaging over smaller fields may be a disadvantage with clinical subjects because of fixation instability and the need to examine larger areas of the retina. Reduction in field size also reduces the amount of light sampled per pixel, increasing photon noise. For these reasons, we considered an instrument design with a larger field of view. When choosing scanners to be used in an AOCSLO, the ideal frame rate should be above the flicker fusion rate for the human observer and would also allow user control of targets projected onto the retina. In our AOCSLO design, we have studied the tradeoffs between field size, frame rate and factors affecting resolution. We will outline optical approaches to overcome some of these tradeoffs and still allow detection of the earliest changes in the fundus in diabetic retinopathy.

  15. Adaptive optics OCT using 1060nm swept source and dual deformable lenses for human retinal imaging

    NASA Astrophysics Data System (ADS)

    Jian, Yifan; Lee, Sujin; Cua, Michelle; Miao, Dongkai; Bonora, Stefano; Zawadzki, Robert J.; Sarunic, Marinko V.

    2016-03-01

    Adaptive optics concepts have been applied to the advancement of biological imaging and microscopy. In particular, AO has also been very successfully applied to cellular resolution imaging of the retina, enabling visualization of the characteristic mosaic patterns of the outer retinal layers using flood illumination fundus photography, Scanning Laser Ophthalmoscopy (SLO), and Optical Coherence Tomography (OCT). Despite the high quality of the in vivo images, there has been a limited uptake of AO imaging into the clinical environment. The high resolution afforded by AO comes at the price of limited field of view and specialized equipment. The implementation of a typical adaptive optics imaging system results in a relatively large and complex optical setup. The wavefront measurement is commonly performed using a Hartmann-Shack Wavefront Sensor (HS-WFS) placed at an image plane that is optically conjugated to the eye's pupil. The deformable mirror is also placed at a conjugate plane, relaying the wavefront corrections to the pupil. Due to the sensitivity of the HS-WFS to back-reflections, the imaging system is commonly constructed from spherical mirrors. In this project, we present a novel adaptive optics OCT retinal imaging system with significant potential to overcome many of the barriers to integration with a clinical environment. We describe in detail the implementation of a compact lens based wavefront sensorless adaptive optics (WSAO) 1060nm swept source OCT human retinal imaging system with dual deformable lenses, and present retinal images acquired in vivo from research volunteers.

  16. High resolution retinal imaging with a compact adaptive optics spectral domain optical coherence tomography system

    NASA Astrophysics Data System (ADS)

    Hammer, Daniel X.; Iftimia, Nicusor V.; Bigelow, Chad E.; Ustun, Teoman E.; Bloom, Benjamin; Ferguson, R. Daniel; Burns, Stephen A.

    2007-02-01

    Adaptive optics (AO) is used to correct ocular aberrations primarily in the cornea, lens, and tear film of every eye. Among other applications, AO allows high lateral resolution images to be acquired with scanning laser ophthalmoscopy (SLO) and optical coherence tomography (OCT). Spectral domain optical coherence tomography (SDOCT) is a high-speed imaging technique that can acquire cross-sectional scans with micron-scale axial resolution at tens to hundreds of kHz line rates. We present a compact clinical AO-SDOCT system that achieves micron-scale axial and lateral resolution of retinal structures. The system includes a line scanning laser ophthalmscope (LSLO) for simultaneous wide-field retinal viewing and selection of regions-of-interest. OCT and LSLO imaging and AO correction performance are characterized. We present a case study of a single subject with hyper-reflective lesions associated with stable, resolved central serous retinopathy to compare and contrast AO as applied to scanning laser ophthalmoscopy and optical coherence tomography. The two imaging modes are found to be complementary in terms of information on structure morphology. Both provide additional information lacking in the other. This preliminary finding points to the power of combining SLO and SDOCT in a single research instrument for exploration of disease mechanisms, retinal cellular architecture, and visual psychophysics.

  17. Retinal imaging system with adaptive optics enhanced with pupil tracking

    NASA Astrophysics Data System (ADS)

    Sahin, Betul; Lamory, Barbara; Levecq, Xavier; Vabre, Laurent; Dainty, Chris

    2011-03-01

    A compact retinal camera with adaptive optics which was designed for clinical practice was used to test a new adaptive optics control algorithm to correct for the angular ray deviations of a model eye. The new control algorithm is based on pupil movements rather than the measurement of the slopes of the wavefront with an optoelectronic sensor. The method for the control algorithm was based on the hypothesis that majority of the changes of the aberrations of the eye are due to head and eye movements and it is possible to correct for the aberrations of the eye by shifting the paraxial correction according to the new position of the pupil. Since the fixational eye movements are very small, the eye movements are assumed to be translational rather than rotational. Using the new control algorithm it was possible to simulate the aberrations of the moving model eye based on pupil tracking. The RMS of the residual wavefront error of the simulation had a magnitude similar to the RMS of the residual wavefront error of the adaptive optics correction based on optoelectronic sensor for angular ray deviations. If our hypothesis is true and other factors such as the tear film or the crystalline lens fluctuations do not cause changes in the aberrations of the eye as much as motion does, the method is expected to work in vivo as it did for a model eye which had no intrinsic factors that cause aberration changes.

  18. Imaging Foveal Microvasculature: Optical Coherence Tomography Angiography Versus Adaptive Optics Scanning Light Ophthalmoscope Fluorescein Angiography

    PubMed Central

    Mo, Shelley; Krawitz, Brian; Efstathiadis, Eleni; Geyman, Lawrence; Weitz, Rishard; Chui, Toco Y. P.; Carroll, Joseph; Dubra, Alfredo; Rosen, Richard B.

    2016-01-01

    Purpose To compare the use of optical coherence tomography angiography (OCTA) and adaptive optics scanning light ophthalmoscope fluorescein angiography (AOSLO FA) for characterizing the foveal microvasculature in healthy and vasculopathic eyes. Methods Four healthy controls and 11 vasculopathic patients (4 diabetic retinopathy, 4 retinal vein occlusion, and 3 sickle cell retinopathy) were imaged with OCTA and AOSLO FA. Foveal perfusion maps were semiautomatically skeletonized for quantitative analysis, which included foveal avascular zone (FAZ) metrics (area, perimeter, acircularity index) and vessel density in three concentric annular regions of interest. On each set of OCTA and AOSLO FA images, matching vessel segments were used for lumen diameter measurement. Qualitative image comparisons were performed by visual identification of microaneurysms, vessel loops, leakage, and vessel segments. Results Adaptive optics scanning light ophthalmoscope FA and OCTA showed no statistically significant differences in FAZ perimeter, acircularity index, and vessel densities. Foveal avascular zone area, however, showed a small but statistically significant difference of 1.8% (P = 0.004). Lumen diameter was significantly larger on OCTA (mean difference 5.7 μm, P < 0.001). Microaneurysms, fine structure of vessel loops, leakage, and some vessel segments were visible on AOSLO FA but not OCTA, while blood vessels obscured by leakage were visible only on OCTA. Conclusions Optical coherence tomography angiography is comparable to AOSLO FA at imaging the foveal microvasculature except for differences in FAZ area, lumen diameter, and some qualitative features. These results, together with its ease of use, short acquisition time, and avoidance of potentially phototoxic blue light, support OCTA as a tool for monitoring ocular pathology and detecting early disease. PMID:27409463

  19. AVES-IMCO: an adaptive optics visible spectrograph and imager/coronograph for NAOS

    NASA Astrophysics Data System (ADS)

    Beuzit, Jean-Luc; Lagrange, A.-M.; Mouillet, D.; Chauvin, G.; Stadler, E.; Charton, J.; Lacombe, F.; AVES-IMCO Team

    2001-05-01

    The NAOS adaptive optics system will very soon provide diffraction-limited images on the VLT, down to the visible wavelengths (0.020 arcseconds at 0.83 micron for instance). At the moment, the only instrument dedicated to NAOS is the CONICA spectro-imager, operating in the near-infrared from 1 to 5 microns. We are now proposing to ESO, in collaboration with an Italian group, the development of a visible spectrograph/imager/coronograph, AVES-IMCO (Adaptive Optics Visual Echelle Spectrograph and IMager/COronograph). We present here the general concept of the new instrument as well as its expected performances in the different modes.

  20. Sensorless adaptive optics system based on image second moment measurements

    NASA Astrophysics Data System (ADS)

    Agbana, Temitope E.; Yang, Huizhen; Soloviev, Oleg; Vdovin, Gleb; Verhaegen, Michel

    2016-04-01

    This paper presents experimental results of a static aberration control algorithm based on the linear relation be- tween mean square of the aberration gradient and the second moment of point spread function for the generation of control signal input for a deformable mirror (DM). Results presented in the work of Yang et al.1 suggested a good feasibility of the method for correction of static aberration for point and extended sources. However, a practical realisation of the algorithm has not been demonstrated. The goal of this article is to check the method experimentally in the real conditions of the present noise, finite dynamic range of the imaging camera, and system misalignments. The experiments have shown strong dependence of the linearity of the relationship on image noise and overall image intensity, which depends on the aberration level. Also, the restoration capability and the rate of convergence of the AO system for aberrations generated by the deformable mirror are experi- mentally investigated. The presented approach as well as the experimental results finds practical application in compensation of static aberration in adaptive microscopic imaging system.

  1. Adaptive optics ophthalmoscopy.

    PubMed

    Roorda, A

    2000-01-01

    Retinal images in the human eye are normally degraded because we are forced to use the optical system of the human eye--which is fraught with aberrations--as the objective lens. The recent application of adaptive optics technology to measure and compensate for these aberrations has produced retinal images in human eyes with unprecedented resolution. The adaptive optics ophthalmoscope is used to take pictures of photoreceptors and capillaries and to study spectral and angular tuning properties of individual photoreceptors. Application of adaptive optics technology for ophthalmoscopy promises continued progress toward understanding the basic properties of the living human retina and also for clinical applications.

  2. Image-based adaptive optics for in vivo imaging in the hippocampus

    PubMed Central

    Champelovier, D.; Teixeira, J.; Conan, J.-M.; Balla, N.; Mugnier, L. M.; Tressard, T.; Reichinnek, S.; Meimon, S.; Cossart, R.; Rigneault, H.; Monneret, S.; Malvache, A.

    2017-01-01

    Adaptive optics is a promising technique for the improvement of microscopy in tissues. A large palette of indirect and direct wavefront sensing methods has been proposed for in vivo imaging in experimental animal models. Application of most of these methods to complex samples suffers from either intrinsic and/or practical difficulties. Here we show a theoretically optimized wavefront correction method for inhomogeneously labeled biological samples. We demonstrate its performance at a depth of 200 μm in brain tissue within a sparsely labeled region such as the pyramidal cell layer of the hippocampus, with cells expressing GCamP6. This method is designed to be sample-independent thanks to an automatic axial locking on objects of interest through the use of an image-based metric that we designed. Using this method, we show an increase of in vivo imaging quality in the hippocampus. PMID:28220868

  3. Image-based adaptive optics for in vivo imaging in the hippocampus

    NASA Astrophysics Data System (ADS)

    Champelovier, D.; Teixeira, J.; Conan, J.-M.; Balla, N.; Mugnier, L. M.; Tressard, T.; Reichinnek, S.; Meimon, S.; Cossart, R.; Rigneault, H.; Monneret, S.; Malvache, A.

    2017-02-01

    Adaptive optics is a promising technique for the improvement of microscopy in tissues. A large palette of indirect and direct wavefront sensing methods has been proposed for in vivo imaging in experimental animal models. Application of most of these methods to complex samples suffers from either intrinsic and/or practical difficulties. Here we show a theoretically optimized wavefront correction method for inhomogeneously labeled biological samples. We demonstrate its performance at a depth of 200 μm in brain tissue within a sparsely labeled region such as the pyramidal cell layer of the hippocampus, with cells expressing GCamP6. This method is designed to be sample-independent thanks to an automatic axial locking on objects of interest through the use of an image-based metric that we designed. Using this method, we show an increase of in vivo imaging quality in the hippocampus.

  4. Statistical evaluation of the performance of an optimized adaptive optics arm for retinal imaging flood system

    NASA Astrophysics Data System (ADS)

    Magaña Chávez, J. L.; Medina-Márquez, J.; Valdivieso-González, L. G.; Balderas-Mata, S. E.

    2016-09-01

    In the last decade, Adaptive Optics has been used to compensate the aberrations of the eye in order to acquire high resolution retinal images. The use of high speed deformable mirrors (DMs) to accomplish this compensation in real time is of great importance. But, sometimes DMs are overused, compensating the aberrations inherent in the optical systems. In this work the evaluation of the performance of an adaptive optics system together with the imaging system will be evaluated in order to know in advance the aberrations inherent in them in order to compensate them prior the use of a DM.

  5. High-accuracy wavefront control for retinal imaging with Adaptive-Influence-Matrix Adaptive Optics

    PubMed Central

    Zou, Weiyao; Burns, Stephen A.

    2010-01-01

    We present an iterative technique for improving adaptive optics (AO) wavefront correction for retinal imaging, called the Adaptive-Influence-Matrix (AIM) method. This method is based on the fact that the deflection-to-voltage relation of common deformable mirrors used in AO are nonlinear, and the fact that in general the wavefront errors of the eye can be considered to be composed of a static, non-zero wavefront error (such as the defocus and astigmatism), and a time-varying wavefront error. The aberrated wavefront is first corrected with a generic influence matrix, providing a mirror compensation figure for the static wavefront error. Then a new influence matrix that is more accurate for the specific static wavefront error is calibrated based on the mirror compensation figure. Experimental results show that with the AIM method the AO wavefront correction accuracy can be improved significantly in comparison to the generic AO correction. The AIM method is most useful in AO modalities where there are large static contributions to the wavefront aberrations. PMID:19997241

  6. [Adaptive optics for ophthalmology].

    PubMed

    Saleh, M

    2016-04-01

    Adaptive optics is a technology enhancing the visual performance of an optical system by correcting its optical aberrations. Adaptive optics have already enabled several breakthroughs in the field of visual sciences, such as improvement of visual acuity in normal and diseased eyes beyond physiologic limits, and the correction of presbyopia. Adaptive optics technology also provides high-resolution, in vivo imaging of the retina that may eventually help to detect the onset of retinal conditions at an early stage and provide better assessment of treatment efficacy.

  7. Adaptive optics-assisted optical coherence tomography for imaging of patients with age related macular degeneration

    NASA Astrophysics Data System (ADS)

    Sudo, Kenta; Cense, Barry

    2013-03-01

    We developed an optical coherence tomography (OCT) prototype with a sample arm that uses a 3.4 mm beam, which is considerably larger than the 1.2 to 1.5 mm beam that is used in commercialized OCT systems. The system is equipped with adaptive optics (AO), and to distinguish it from traditional AO-OCT systems with a larger 6 mm beam we have coined this concept AO-assisted OCT. Compared to commercialized OCT systems, the 3.4 mm aperture combined with AO improves light collection efficiency and imaging lateral resolution. In this paper, the performance of the AOa-OCT system was compared to a standard OCT system and demonstrated for imaging of age-related macular degeneration (AMD). Measurements were performed on the retinas of three human volunteers with healthy eyes and on one eye of a patient diagnosed with AMD. The AO-assisted OCT system imaged retinal structures of healthy human eyes and a patient eye affected by AMD with higher lateral resolution and a 9° by 9° field of view. This combination of a large isoplanatic patch and high lateral resolution can be expected to fill a gap between standard OCT with a 1.2 mm beam and conventional AO-OCT with a 6 mm beam and a 1.5° by 1.5° isoplanatic patch.

  8. “Lucky Averaging”: Quality improvement on Adaptive Optics Scanning Laser Ophthalmoscope Images

    PubMed Central

    Huang, Gang; Zhong, Zhangyi; Zou, Weiyao; Burns, Stephen A.

    2012-01-01

    Adaptive optics(AO) has greatly improved retinal image resolution. However, even with AO, temporal and spatial variations in image quality still occur due to wavefront fluctuations, intra-frame focus shifts and other factors. As a result, aligning and averaging images can produce a mean image that has lower resolution or contrast than the best images within a sequence. To address this, we propose an image post-processing scheme called “lucky averaging”, analogous to lucky imaging (Fried, 1978) based on computing the best local contrast over time. Results from eye data demonstrate improvements in image quality. PMID:21964097

  9. Integrated adaptive optics optical coherence tomography and adaptive optics scanning laser ophthalmoscope system for simultaneous cellular resolution in vivo retinal imaging.

    PubMed

    Zawadzki, Robert J; Jones, Steven M; Pilli, Suman; Balderas-Mata, Sandra; Kim, Dae Yu; Olivier, Scot S; Werner, John S

    2011-06-01

    We describe an ultrahigh-resolution (UHR) retinal imaging system that combines adaptive optics Fourier-domain optical coherence tomography (AO-OCT) with an adaptive optics scanning laser ophthalmoscope (AO-SLO) to allow simultaneous data acquisition by the two modalities. The AO-SLO subsystem was integrated into the previously described AO-UHR OCT instrument with minimal changes to the latter. This was done in order to ensure optimal performance and image quality of the AO- UHR OCT. In this design both imaging modalities share most of the optical components including a common AO-subsystem and vertical scanner. One of the benefits of combining Fd-OCT with SLO includes automatic co-registration between two acquisition channels for direct comparison between retinal structures imaged by both modalities (e.g., photoreceptor mosaics or microvasculature maps). Because of differences in the detection scheme of the two systems, this dual imaging modality instrument can provide insight into retinal morphology and potentially function, that could not be accessed easily by a single system. In this paper we describe details of the components and parameters of the combined instrument, including incorporation of a novel membrane magnetic deformable mirror with increased stroke and actuator count used as a single wavefront corrector. We also discuss laser safety calculations for this multimodal system. Finally, retinal images acquired in vivo with this system are presented.

  10. Configurable adaptive optical system for imaging of ground-based targets from space

    NASA Astrophysics Data System (ADS)

    McComas, Brian K.; Friedman, Edward J.; Hooker, R. Brian; Cermak, Michael A.

    2003-03-01

    Space-based, high resolution, Earth remote sensing systems, that employ large, flexible, lightweight primary mirrors, will require active wavefront correction, in the form of active and adaptive optics, to correct for thermally and vibrationally induced deformations in the optics. These remote sensing systems typically have a large field-of-view. Unlike the adaptive optics on ground-based astronomical telescopes, which have a negligible field-of-view, the adaptive optics on these space-based remote sensing systems will be required to correct the wavefront over the entire field-of-view, which can be several degrees. The error functions for astronomical adaptive optics have been developed for the narrow field-of-view correction of atmospheric turbulence and do not address the needs of wide field space-based systems. To address these needs, a new wide field adaptive optics theory and a new error function are developed. Modeling and experimental results demonstrate the validity of the wide field adaptive optics theory and new error function. This new error function, which is a new extension of conventional adaptive optics, lead to the development of three new types of imaging systems: wide field-of-view, selectable field-of-view, and steerable field-of-view. These new systems can have nearly diffraction-limited performance across the entire field-of-view or a narrow movable region of high-resolution imaging. The factors limiting system performance will be shown. The range of applicability of the wide field adaptive optics theory is shown. The range of applicability is used to avoid limitations in system performance and to estimate the optical systems parameters, which will meet the system"s performance requirements.

  11. Live imaging using adaptive optics with fluorescent protein guide-stars

    PubMed Central

    Tao, Xiaodong; Crest, Justin; Kotadia, Shaila; Azucena, Oscar; Chen, Diana C.; Sullivan, William; Kubby, Joel

    2012-01-01

    Spatially and temporally dependent optical aberrations induced by the inhomogeneous refractive index of live samples limit the resolution of live dynamic imaging. We introduce an adaptive optical microscope with a direct wavefront sensing method using a Shack-Hartmann wavefront sensor and fluorescent protein guide-stars for live imaging. The results of imaging Drosophila embryos demonstrate its ability to correct aberrations and achieve near diffraction limited images of medial sections of large Drosophila embryos. GFP-polo labeled centrosomes can be observed clearly after correction but cannot be observed before correction. Four dimensional time lapse images are achieved with the correction of dynamic aberrations. These studies also demonstrate that the GFP-tagged centrosome proteins, Polo and Cnn, serve as excellent biological guide-stars for adaptive optics based microscopy. PMID:22772285

  12. Dynamic optical aberration correction with adaptive coded apertures techniques in conformal imaging

    NASA Astrophysics Data System (ADS)

    Li, Yan; Hu, Bin; Zhang, Pengbin; Zhang, Binglong

    2015-02-01

    Conformal imaging systems are confronted with dynamic aberration in optical design processing. In classical optical designs, for combination high requirements of field of view, optical speed, environmental adaption and imaging quality, further enhancements can be achieved only by the introduction of increased complexity of aberration corrector. In recent years of computational imaging, the adaptive coded apertures techniques which has several potential advantages over more traditional optical systems is particularly suitable for military infrared imaging systems. The merits of this new concept include low mass, volume and moments of inertia, potentially lower costs, graceful failure modes, steerable fields of regard with no macroscopic moving parts. Example application for conformal imaging system design where the elements of a set of binary coded aperture masks are applied are optimization designed is presented in this paper, simulation results show that the optical performance is closely related to the mask design and the reconstruction algorithm optimization. As a dynamic aberration corrector, a binary-amplitude mask located at the aperture stop is optimized to mitigate dynamic optical aberrations when the field of regard changes and allow sufficient information to be recorded by the detector for the recovery of a sharp image using digital image restoration in conformal optical system.

  13. High-speed adaptive optics line scan confocal retinal imaging for human eye

    PubMed Central

    Wang, Xiaolin; Zhang, Yuhua

    2017-01-01

    Purpose Continuous and rapid eye movement causes significant intraframe distortion in adaptive optics high resolution retinal imaging. To minimize this artifact, we developed a high speed adaptive optics line scan confocal retinal imaging system. Methods A high speed line camera was employed to acquire retinal image and custom adaptive optics was developed to compensate the wave aberration of the human eye’s optics. The spatial resolution and signal to noise ratio were assessed in model eye and in living human eye. The improvement of imaging fidelity was estimated by reduction of intra-frame distortion of retinal images acquired in the living human eyes with frame rates at 30 frames/second (FPS), 100 FPS, and 200 FPS. Results The device produced retinal image with cellular level resolution at 200 FPS with a digitization of 512×512 pixels/frame in the living human eye. Cone photoreceptors in the central fovea and rod photoreceptors near the fovea were resolved in three human subjects in normal chorioretinal health. Compared with retinal images acquired at 30 FPS, the intra-frame distortion in images taken at 200 FPS was reduced by 50.9% to 79.7%. Conclusions We demonstrated the feasibility of acquiring high resolution retinal images in the living human eye at a speed that minimizes retinal motion artifact. This device may facilitate research involving subjects with nystagmus or unsteady fixation due to central vision loss. PMID:28257458

  14. First steps toward 3D high resolution imaging using adaptive optics and full-field optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Blanco, Leonardo; Blavier, Marie; Glanc, Marie; Pouplard, Florence; Tick, Sarah; Maksimovic, Ivan; Chenegros, Guillaume; Mugnier, Laurent; Lacombe, Francois; Rousset, Gérard; Paques, Michel; Le Gargasson, Jean-François; Sahel, Jose-Alain

    2008-09-01

    We describe here two parts of our future 3D fundus camera coupling Adaptive Optics and full-field Optical Coherence Tomography. The first part is an Adaptive Optics flood imager installed at the Quinze-Vingts Hospital, regularly used on healthy and pathological eyes. A posteriori image reconstruction is performed, increasing the final image quality and field of view. The instrument lateral resolution is better than 2 microns. The second part is a full-field Optical Coherence Tomograph, which has demonstrated capability of performing a simple kind of "4 phases" image reconstruction of non biological samples and ex situ retinas. Final aim is to couple both parts in order to achieve 3D high resolution mapping of in vivo retinas.

  15. Final Report: Deconvolution of Adaptive Optics Images of Titan, Neptune, and Uranus

    SciTech Connect

    Gibbard, S; Marchis, F

    2002-12-20

    This project involved images of Titan, Neptune, and Uranus obtained using the 10-meter W.M. Keck II Telescope and its adaptive optics system. An adaptive optics system corrects for turbulence in the Earth's atmosphere by sampling the wavefront and applying a correction based on the distortion measured for a known source within the same isoplanatic patch as the science target (for example, a point source such as a star). Adaptive optics can achieve a 10-fold increase in resolution over that obtained by images without adaptive optics (for example, Saturn's largest moon Titan is unresolved without adaptive optics but at least 10 resolution elements can be obtained across the disk in Keck adaptive optics images). The adaptive optics correction for atmospheric turbulence is not perfect; a point source is converted to a diffraction-limited core surrounded by a ''halo''. This halo is roughly the size and shape of the uncorrected point spread function one would observe without adaptive optics. In order to enhance the sharpness of the Keck images it is necessary to apply a deconvolution algorithm to the data. Many such deconvolution algorithms exist such as maximum likelihood and maximum entropy. These algorithms suffer to various degrees from noise amplification and creation of artifacts near sharp edges (''ringing''). In order to deconvolve the Keck images I have applied an algorithm specifically developed for observations of planetary bodies, the myopic deconvolution algorithm MISTRAL (''Myopic Iterative STep-preserving Restoration ALgorithm'') (Conan et al. 1998, 2000). MISTRAL was developed by ONERA (Office National d'Etudes et de Recherches Aerospatiales) and has been extensively tested on simulated and real AO observations, including observations of Titan (Coustenis et al.2001), Io (Marchis et al.2002, 2001), and asteroids (Hestroffer et al.2001, Rosenberg et al.2001, Makhoul et al.2001). Compared to more classical methods, MISTRAL avoids noise amplification and

  16. LGSD/NGSD: high speed optical CMOS imagers for E-ELT adaptive optics

    NASA Astrophysics Data System (ADS)

    Downing, Mark; Kolb, Johann; Balard, Philippe; Dierickx, Bart; Defernez, Arnaud; Feautrier, Philippe; Finger, Gert; Fryer, Martin; Gach, Jean-Luc; Guillaume, Christian; Hubin, Norbert; Jerram, Paul; Jorden, Paul; Meyer, Manfred; Payne, Andrew; Pike, Andrew; Reyes, Javier; Simpson, Robert; Stadler, Eric; Stent, Jeremy; Swift, Nick

    2014-07-01

    The success of the next generation of instruments for ELT class telescopes will depend upon improving the image quality by exploiting sophisticated Adaptive Optics (AO) systems. One of the critical components of the AO systems for the E-ELT has been identified as the optical Laser/Natural Guide Star WFS detector. The combination of large format, 1760×1680 pixels to finely sample the wavefront and the spot elongation of laser guide stars, fast frame rate of 700 frames per second (fps), low read noise (< 3e-), and high QE (> 90%) makes the development of this device extremely challenging. Design studies concluded that a highly integrated Backside Illuminated CMOS Imager built on High Resistivity silicon as the most likely technology to succeed. Two generations of the CMOS Imager are being developed: a) the already designed and manufactured NGSD (Natural Guide Star Detector), a quarter-sized pioneering device of 880×840 pixels capable of meeting first light needs of the E-ELT; b) the LGSD (Laser Guide Star Detector), the larger full size device. The detailed design is presented including the approach of using massive parallelism (70,400 ADCs) to achieve the low read noise at high pixel rates of ~3 Gpixel/s and the 88 channel LVDS 220Mbps serial interface to get the data off-chip. To enable read noise closer to the goal of 1e- to be achieved, a split wafer run has allowed the NGSD to be manufactured in the more speculative, but much lower read noise, Ultra Low Threshold Transistors in the unit cell. The NGSD has come out of production, it has been thinned to 12μm, backside processed and packaged in a custom 370pin Ceramic PGA (Pin Grid Array). First results of tests performed both at e2v and ESO are presented.

  17. Imaging human retinal pigment epithelium cells using adaptive optics optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Liu, Zhuolin; Kocaoglu, Omer P.; Turner, Timothy L.; Miller, Donald T.

    2016-03-01

    Retinal pigment epithelium (RPE) cells are vital to health of the outer retina, but are often compromised in ageing and major ocular diseases that lead to blindness. Early manifestation of RPE disruption occurs at the cellular level, and while biomarkers at this scale hold considerable promise, RPE cells have proven extremely challenging to image in the living human eye. We present a novel method based on optical coherence tomography (OCT) equipped with adaptive optics (AO) that overcomes the associated technical obstacles. The method takes advantage of the 3D resolution of AO-OCT, but more critically sub-cellular segmentation and registration that permit organelle motility to be used as a novel contrast mechanism. With this method, we successfully visualized RPE cells and characterized their 3D reflectance profile in every subject and retinal location (3° and 7° temporal to the fovea) imaged to date. We have quantified RPE packing geometry in terms of cell density, cone-to-RPE ratio, and number of nearest neighbors using Voronoi and power spectra analyses. RPE cell density (cells/mm2) showed no significant difference between 3° (4,892+/-691) and 7° (4,780+/-354). In contrast, cone-to- RPE ratio was significantly higher at 3° (3.88+/-0.52:1) than 7° (2.31+/- 0.23:1). Voronoi analysis also showed most RPE cells have six nearest neighbors, which was significantly larger than the next two most prevalent associations: five and seven. Averaged across the five subjects, prevalence of cells with six neighbors was 51.4+/-3.58% at 3°, and 54.58+/-3.01% at 7°. These results are consistent with histology and in vivo studies using other imaging modalities.

  18. Imaging retinal nerve fiber bundles using optical coherence tomography with adaptive optics.

    PubMed

    Kocaoglu, Omer P; Cense, Barry; Jonnal, Ravi S; Wang, Qiang; Lee, Sangyeol; Gao, Weihua; Miller, Donald T

    2011-08-15

    Early detection of axonal tissue loss in retinal nerve fiber layer (RNFL) is critical for effective treatment and management of diseases such as glaucoma. This study aims to evaluate the capability of ultrahigh-resolution optical coherence tomography with adaptive optics (UHR-AO-OCT) for imaging the RNFL axonal bundles (RNFBs) with 3×3×3μm(3) resolution in the eye. We used a research-grade UHR-AO-OCT system to acquire 3°×3° volumes in four normal subjects and one subject with an arcuate retinal nerve fiber layer defect (n=5; 29-62years). Cross section (B-scans) and en face (C-scan) slices extracted from the volumes were used to assess visibility and size distribution of individual RNFBs. In one subject, we reimaged the same RNFBs twice over a 7month interval and compared bundle width and thickness between the two imaging sessions. Lastly we compared images of an arcuate RNFL defect acquired with UHR-AO-OCT and commercial OCT (Heidelberg Spectralis). Individual RNFBs were distinguishable in all subjects at 3° retinal eccentricity in both cross-sectional and en face views (width: 30-50μm, thickness: 10-15μm). At 6° retinal eccentricity, RNFBs were distinguishable in three of the five subjects in both views (width: 30-45μm, thickness: 20-40μm). Width and thickness RNFB measurements taken 7months apart were strongly correlated (p<0.0005). Mean difference and standard deviation of the differences between the two measurement sessions were -0.1±4.0μm (width) and 0.3±1.5μm (thickness). UHR-AO-OCT outperformed commercial OCT in terms of clarity of the microscopic retina. To our knowledge, these are the first measurements of RNFB cross section reported in the living human eye.

  19. IMAGING WITH MULTIMODAL ADAPTIVE-OPTICS OPTICAL COHERENCE TOMOGRAPHY IN MULTIPLE EVANESCENT WHITE DOT SYNDROME: THE STRUCTURE AND FUNCTIONAL RELATIONSHIP

    PubMed Central

    Legarreta, Andrew D.; Legarreta, John E.; Nadler, Zach; Gallagher, Denise; Hammer, Daniel X.; Ferguson, R. Daniel; Iftimia, Nicusor; Wollstein, Gadi; Schuman, Joel S.

    2016-01-01

    Purpose: To elucidate the location of pathological changes in multiple evanescent white dot syndrome (MEWDS) with the use of multimodal adaptive optics (AO) imaging. Methods: A 5-year observational case study of a 24-year-old female with recurrent MEWDS. Full examination included history, Snellen chart visual acuity, pupil assessment, intraocular pressures, slit lamp evaluation, dilated fundoscopic exam, imaging with Fourier-domain optical coherence tomography (FD-OCT), blue-light fundus autofluorescence (FAF), fundus photography, fluorescein angiography, and adaptive-optics optical coherence tomography. Results: Three distinct acute episodes of MEWDS occurred during the period of follow-up. Fourier-domain optical coherence tomography and adaptive-optics imaging showed disturbance in the photoreceptor outer segments (PR OS) in the posterior pole with each flare. The degree of disturbance at the photoreceptor level corresponded to size and extent of the visual field changes. All findings were transient with delineation of the photoreceptor recovery from the outer edges of the lesion inward. Hyperautofluorescence was seen during acute flares. Increase in choroidal thickness did occur with each active flare but resolved. Conclusion: Although changes in the choroid and RPE can be observed in MEWDS, Fourier-domain optical coherence tomography, and multimodal adaptive optics imaging localized the visually significant changes seen in this disease at the level of the photoreceptors. These transient retinal changes specifically occur at the level of the inner segment ellipsoid and OS/RPE line. En face optical coherence tomography imaging provides a detailed, yet noninvasive method for following the convalescence of MEWDS and provides insight into the structural and functional relationship of this transient inflammatory retinal disease. PMID:26735319

  20. Accuracy requirements of optical linear algebra processors in adaptive optics imaging systems

    NASA Technical Reports Server (NTRS)

    Downie, John D.; Goodman, Joseph W.

    1989-01-01

    The accuracy requirements of optical processors in adaptive optics systems are determined by estimating the required accuracy in a general optical linear algebra processor (OLAP) that results in a smaller average residual aberration than that achieved with a conventional electronic digital processor with some specific computation speed. Special attention is given to an error analysis of a general OLAP with regard to the residual aberration that is created in an adaptive mirror system by the inaccuracies of the processor, and to the effect of computational speed of an electronic processor on the correction. Results are presented on the ability of an OLAP to compete with a digital processor in various situations.

  1. Adaptive optics for in vivo two-photon calcium imaging of neuronal networks

    NASA Astrophysics Data System (ADS)

    Meimon, Serge; Conan, Jean-Marc; Mugnier, Laurent M.; Michau, Vincent; Cossart, Rosa; Malvache, Arnaud

    2014-03-01

    The landscape of biomedical research in neuroscience has changed dramatically in recent years as a result of spectacular progress in dynamic microscopy. However, the optical accessibility of deep brain structures or deeper regions of the surgically exposed hippocampus (a few 100 microns typically) remains limited, due to volumic aberrations created by the sample inhomogeneities. Adaptive optics can correct for these aberrations. Our goal is to realize a novel adaptive optics module dedicated to in vivo two-photon calcium imaging of the hippocampus. The key issue in adaptive optics is the ability to perform an accurate and reliable wavefront sensing. In two- photon microscopy indirect methods are required. Two families of approaches have been proposed so far, the modal sensorless technique and a method based on pupil segmentation. We present here a formal comparison of these approaches, in particular as a function of the amount of aberrations.

  2. Robust Multi-Frame Adaptive Optics Image Restoration Algorithm Using Maximum Likelihood Estimation with Poisson Statistics.

    PubMed

    Li, Dongming; Sun, Changming; Yang, Jinhua; Liu, Huan; Peng, Jiaqi; Zhang, Lijuan

    2017-04-06

    An adaptive optics (AO) system provides real-time compensation for atmospheric turbulence. However, an AO image is usually of poor contrast because of the nature of the imaging process, meaning that the image contains information coming from both out-of-focus and in-focus planes of the object, which also brings about a loss in quality. In this paper, we present a robust multi-frame adaptive optics image restoration algorithm via maximum likelihood estimation. Our proposed algorithm uses a maximum likelihood method with image regularization as the basic principle, and constructs the joint log likelihood function for multi-frame AO images based on a Poisson distribution model. To begin with, a frame selection method based on image variance is applied to the observed multi-frame AO images to select images with better quality to improve the convergence of a blind deconvolution algorithm. Then, by combining the imaging conditions and the AO system properties, a point spread function estimation model is built. Finally, we develop our iterative solutions for AO image restoration addressing the joint deconvolution issue. We conduct a number of experiments to evaluate the performances of our proposed algorithm. Experimental results show that our algorithm produces accurate AO image restoration results and outperforms the current state-of-the-art blind deconvolution methods.

  3. Adaptive optics imaging of the outer retinal tubules in Bietti's crystalline dystrophy.

    PubMed

    Battu, R; Akkali, M C; Bhanushali, D; Srinivasan, P; Shetty, R; Berendschot, T T J M; Schouten, J S A G; Webers, C A

    2016-05-01

    PurposeTo study the outer retinal tubules using spectral domain optical coherence tomography and adaptive optics and in patients with Bietti's crystalline dystrophy.MethodsTen eyes of five subjects from five independent families with Bietti's crystalline Dystrophy (BCD) were characterized with best-corrected visual acuity (BCVA), full-field electroretinography, and fundus autofluorescence (FAF). High-resolution images were obtained with the spectral domain optical coherence tomography (SD-OCT) and adaptive optics (AO).ResultsSD-OCT showed prominent outer retinal layer loss and outer retinal tubulations at the margin of outer retinal loss. AO images displayed prominent macrotubules and microtubules with characteristic features in eight out of the 10 eyes. Crystals were present in all ten eyes. There was a reduction in the cone count in all eyes in the area outside the outer retinal tubules (ORT).ConclusionsThis study describes the morphology of the outer retinal tubules when imaged enface on the adaptive optics in patients with BCD. These findings provide insight into the macular structure of these patients. This may have prognostic implications and refine the study on the pathogenesis of BCD.

  4. Computational adaptive optics for live three-dimensional biological imaging

    PubMed Central

    Kam, Z.; Hanser, B.; Gustafsson, M. G. L.; Agard, D. A.; Sedat, J. W.

    2001-01-01

    Light microscopy of thick biological samples, such as tissues, is often limited by aberrations caused by refractive index variations within the sample itself. This problem is particularly severe for live imaging, a field of great current excitement due to the development of inherently fluorescent proteins. We describe a method of removing such aberrations computationally by mapping the refractive index of the sample using differential interference contrast microscopy, modeling the aberrations by ray tracing through this index map, and using space-variant deconvolution to remove aberrations. This approach will open possibilities to study weakly labeled molecules in difficult-to-image live specimens. PMID:11274396

  5. Wavefront sensorless approaches to adaptive optics for in vivo fluorescence imaging of mouse retina

    NASA Astrophysics Data System (ADS)

    Wahl, Daniel J.; Bonora, Stefano; Mata, Oscar S.; Haunerland, Bengt K.; Zawadzki, Robert J.; Sarunic, Marinko V.; Jian, Yifan

    2016-03-01

    Adaptive optics (AO) is necessary to correct aberrations when imaging the mouse eye with high numerical aperture. In order to obtain cellular resolution, we have implemented wavefront sensorless adaptive optics for in vivo fluorescence imaging of mouse retina. Our approach includes a lens-based system and MEMS deformable mirror for aberration correction. The AO system was constructed with a reflectance channel for structural images and fluorescence channel for functional images. The structural imaging was used in real-time for navigation on the retina using landmarks such as blood vessels. We have also implemented a tunable liquid lens to select the retinal layer of interest at which to perform the optimization. At the desired location on the mouse retina, the optimization algorithm used the fluorescence image data to drive a modal hill-climbing algorithm using an intensity or sharpness image quality metric. The optimization requires ~30 seconds to complete a search up to the 20th Zernike mode. In this report, we have demonstrated the AO performance for high-resolution images of the capillaries in a fluorescence angiography. We have also made progress on an approach to AO with pupil segmentation as a possible sensorless technique suitable for small animal retinal imaging. Pupil segmentation AO was implemented on the same ophthalmic system and imaging performance was demonstrated on fluorescent beads with induced aberrations.

  6. Adaptive optics instrument for long-range imaging. Final report

    SciTech Connect

    Crawford, T.M.

    1998-06-01

    The science and history of imaging through a turbulent atmosphere is reviewed in detail. Traditional methods for reducing the effects of turbulence are presented. A simplified method for turbulence reduction called the Sheared Coherent Interferometric Photography (SCIP) method is presented. Implementation of SCIP is discussed along with experimental results. Limitations in the use of this method are discussed along with recommendations for future improvements.

  7. Adaptive optics scanning laser ophthalmoscope with integrated wide-field retinal imaging and tracking.

    PubMed

    Ferguson, R Daniel; Zhong, Zhangyi; Hammer, Daniel X; Mujat, Mircea; Patel, Ankit H; Deng, Cong; Zou, Weiyao; Burns, Stephen A

    2010-11-01

    We have developed a new, unified implementation of the adaptive optics scanning laser ophthalmoscope (AOSLO) incorporating a wide-field line-scanning ophthalmoscope (LSO) and a closed-loop optical retinal tracker. AOSLO raster scans are deflected by the integrated tracking mirrors so that direct AOSLO stabilization is automatic during tracking. The wide-field imager and large-spherical-mirror optical interface design, as well as a large-stroke deformable mirror (DM), enable the AOSLO image field to be corrected at any retinal coordinates of interest in a field of >25 deg. AO performance was assessed by imaging individuals with a range of refractive errors. In most subjects, image contrast was measurable at spatial frequencies close to the diffraction limit. Closed-loop optical (hardware) tracking performance was assessed by comparing sequential image series with and without stabilization. Though usually better than 10 μm rms, or 0.03 deg, tracking does not yet stabilize to single cone precision but significantly improves average image quality and increases the number of frames that can be successfully aligned by software-based post-processing methods. The new optical interface allows the high-resolution imaging field to be placed anywhere within the wide field without requiring the subject to re-fixate, enabling easier retinal navigation and faster, more efficient AOSLO montage capture and stitching.

  8. Aberration estimation from single point image in a simulated adaptive optics system.

    PubMed

    Grisan, Enrico; Frassetto, Fabio; Da Deppo, Vania; Naletto, Giampiero; Ruggeri, Alfredo

    2005-01-01

    Adaptive optics has been recently applied for the development of ophthalmic devices, with the main objective of obtaining higher resolution images for diagnostic purposes or ideally correcting high-order eye aberrations. The core of every adaptive optics systems is an optical device that is able to modify the wavefront shape of the light entering a system: once the shape of the incoming wavefront has been estimated, by means of this device it is possible to correct the aberrations introduced along the optical path. The aim of this paper is to demonstrate the feasibility, although in a simulated system, of estimating and correcting the wavefront shape simply by means of an iterative software analysis of a single point source image, thus avoiding expensive wavefront sensors or the burdensome computation of the PSF of the optical system. To test the proposed algorithm, a simple optical system has been simulated with a ray-tracing software and a program to estimate the Zernike coefficients of the simulated aberration from the analysis of the source image has been developed. Numerical indexes were used to evaluate the capability of the software of correctly estimating the Zernike coefficients. Even if only defocus, astigmatism and coma were considered, the very satisfactory results obtained confirm the soundness of this new approach and encourage further work in this direction, in order to develop a system able to estimate also spherical aberration, tilt and field curvature. An implementation of this aberration estimation in a real AO system is also currently in progress.

  9. Images of photoreceptors in living primate eyes using adaptive optics two-photon ophthalmoscopy

    PubMed Central

    Hunter, Jennifer J.; Masella, Benjamin; Dubra, Alfredo; Sharma, Robin; Yin, Lu; Merigan, William H.; Palczewska, Grazyna; Palczewski, Krzysztof; Williams, David R.

    2011-01-01

    In vivo two-photon imaging through the pupil of the primate eye has the potential to become a useful tool for functional imaging of the retina. Two-photon excited fluorescence images of the macaque cone mosaic were obtained using a fluorescence adaptive optics scanning laser ophthalmoscope, overcoming the challenges of a low numerical aperture, imperfect optics of the eye, high required light levels, and eye motion. Although the specific fluorophores are as yet unknown, strong in vivo intrinsic fluorescence allowed images of the cone mosaic. Imaging intact ex vivo retina revealed that the strongest two-photon excited fluorescence signal comes from the cone inner segments. The fluorescence response increased following light stimulation, which could provide a functional measure of the effects of light on photoreceptors. PMID:21326644

  10. Determining the imaging plane of a retinal capillary layer in adaptive optical imaging

    NASA Astrophysics Data System (ADS)

    Yang, Le-Bao; Hu, Li-Fa; Li, Da-Yu; Cao, Zhao-Liang; Mu, Quan-Quan; Ma, Ji; Xuan, Li

    2016-09-01

    Even in the early stage, endocrine metabolism disease may lead to micro aneurysms in retinal capillaries whose diameters are less than 10 μm. However, the fundus cameras used in clinic diagnosis can only obtain images of vessels larger than 20 μm in diameter. The human retina is a thin and multiple layer tissue, and the layer of capillaries less than 10 μm in diameter only exists in the inner nuclear layer. The layer thickness of capillaries less than 10 μm in diameter is about 40 μm and the distance range to rod&cone cell surface is tens of micrometers, which varies from person to person. Therefore, determining reasonable capillary layer (CL) position in different human eyes is very difficult. In this paper, we propose a method to determine the position of retinal CL based on the rod&cone cell layer. The public positions of CL are recognized with 15 subjects from 40 to 59 years old, and the imaging planes of CL are calculated by the effective focal length of the human eye. High resolution retinal capillary imaging results obtained from 17 subjects with a liquid crystal adaptive optics system (LCAOS) validate our method. All of the subjects’ CLs have public positions from 127 μm to 147 μm from the rod&cone cell layer, which is influenced by the depth of focus. Project supported by the National Natural Science Foundation of China (Grant Nos. 11174274, 11174279, 61205021, 11204299, 61475152, and 61405194).

  11. Registration of adaptive optics corrected retinal nerve fiber layer (RNFL) images

    PubMed Central

    Ramaswamy, Gomathy; Lombardo, Marco; Devaney, Nicholas

    2014-01-01

    Glaucoma is the leading cause of preventable blindness in the western world. Investigation of high-resolution retinal nerve fiber layer (RNFL) images in patients may lead to new indicators of its onset. Adaptive optics (AO) can provide diffraction-limited images of the retina, providing new opportunities for earlier detection of neuroretinal pathologies. However, precise processing is required to correct for three effects in sequences of AO-assisted, flood-illumination images: uneven illumination, residual image motion and image rotation. This processing can be challenging for images of the RNFL due to their low contrast and lack of clearly noticeable features. Here we develop specific processing techniques and show that their application leads to improved image quality on the nerve fiber bundles. This in turn improves the reliability of measures of fiber texture such as the correlation of Gray-Level Co-occurrence Matrix (GLCM). PMID:24940551

  12. Photoreceptor counting and montaging of en-face retinal images from an adaptive optics fundus camera

    NASA Astrophysics Data System (ADS)

    Xue, Bai; Choi, Stacey S.; Doble, Nathan; Werner, John S.

    2007-05-01

    A fast and efficient method for quantifying photoreceptor density in images obtained with an en-face flood-illuminated adaptive optics (AO) imaging system is described. To improve accuracy of cone counting, en-face images are analyzed over extended areas. This is achieved with two separate semiautomated algorithms: (1) a montaging algorithm that joins retinal images with overlapping common features without edge effects and (2) a cone density measurement algorithm that counts the individual cones in the montaged image. The accuracy of the cone density measurement algorithm is high, with >97% agreement for a simulated retinal image (of known density, with low contrast) and for AO images from normal eyes when compared with previously reported histological data. Our algorithms do not require spatial regularity in cone packing and are, therefore, useful for counting cones in diseased retinas, as demonstrated for eyes with Stargardt's macular dystrophy and retinitis pigmentosa.

  13. Registration of adaptive optics corrected retinal nerve fiber layer (RNFL) images.

    PubMed

    Ramaswamy, Gomathy; Lombardo, Marco; Devaney, Nicholas

    2014-06-01

    Glaucoma is the leading cause of preventable blindness in the western world. Investigation of high-resolution retinal nerve fiber layer (RNFL) images in patients may lead to new indicators of its onset. Adaptive optics (AO) can provide diffraction-limited images of the retina, providing new opportunities for earlier detection of neuroretinal pathologies. However, precise processing is required to correct for three effects in sequences of AO-assisted, flood-illumination images: uneven illumination, residual image motion and image rotation. This processing can be challenging for images of the RNFL due to their low contrast and lack of clearly noticeable features. Here we develop specific processing techniques and show that their application leads to improved image quality on the nerve fiber bundles. This in turn improves the reliability of measures of fiber texture such as the correlation of Gray-Level Co-occurrence Matrix (GLCM).

  14. An adaptive-optics scanning laser ophthalmoscope for imaging murine retinal microstructure

    NASA Astrophysics Data System (ADS)

    Alt, Clemens; Biss, David P.; Tajouri, Nadja; Jakobs, Tatjana C.; Lin, Charles P.

    2010-02-01

    In vivo retinal imaging is an outstanding tool to observe biological processes unfold in real-time. The ability to image microstructure in vivo can greatly enhance our understanding of function in retinal microanatomy under normal conditions and in disease. Transgenic mice are frequently used for mouse models of retinal diseases. However, commercially available retinal imaging instruments lack the optical resolution and spectral flexibility necessary to visualize detail comprehensively. We developed an adaptive optics scanning laser ophthalmoscope (AO-SLO) specifically for mouse eyes. Our SLO is a sensor-less adaptive optics system (no Shack Hartmann sensor) that employs a stochastic parallel gradient descent algorithm to modulate a deformable mirror, ultimately aiming to correct wavefront aberrations by optimizing confocal image sharpness. The resulting resolution allows detailed observation of retinal microstructure. The AO-SLO can resolve retinal microglia and their moving processes, demonstrating that microglia processes are highly motile, constantly probing their immediate environment. Similarly, retinal ganglion cells are imaged along with their axons and sprouting dendrites. Retinal blood vessels are imaged both using evans blue fluorescence and backscattering contrast.

  15. 2-micron Adaptive Optics Images of Titan from the W.M. Keck Telescope

    NASA Astrophysics Data System (ADS)

    Gibbard, S. G.; Macintosh, B. A.; Max, C. E.; de Pater, I.; Roe, H. G.; Marchis, F.

    2001-12-01

    Saturn's largest moon Titan is the only satellite in the solar system with a substantial atmosphere, which consists mainly of nitrogen and a few percent methane. Photolysis of methane creates a hydrocarbon haze in Titan's atmosphere that is opaque to visible light. However, in the infrared there are `windows' between methane absorption bands in which the surface of Titan can be imaged. We have observed Titan over the period of 1999-2001 using the adaptive optics system on the 10-meter W.M. Keck Telescope. Using adaptive optics allows us to observe Titan with a resolution of 0.04 arcseconds, or approximately 20 resolution elements across the satellite's disk. We will report on adaptive optics images of Titan taken in 1999-2001 at K band (1.95-2.29 microns). The images are enhanced by application of the MISTRAL iterative image deconvolution routine. Using this data combined with atmospheric modeling, we are able to determine Titan's surface albedo at this wavelength and properties of its hydrocarbon haze layer. This research was supported in part by the STC Program of the National Science Foundation under Agreement No. AST-9876783, and in part under the auspices of the US Department of Energy at Lawrence Livermore National Laboratory, Univ. of Calif. under contract No. W-7405-Eng-48.

  16. Adaptive optics confocal fluorescence microscopy with direct wavefront sensing for brain tissue imaging

    NASA Astrophysics Data System (ADS)

    Tao, Xiaodong; Fernandez, Bautista; Chen, Diana C.; Azucena, Oscar; Fu, Min; Zuo, Yi; Kubby, Joel

    2011-03-01

    Recently, there has been a growing interest in deep tissue imaging for the study of neurons. Unfortunately, because of the inhomogeneous refractive index of the tissue, the aberrations degrade the resolution and brightness of the final image. In this paper, we describe an adaptive optics confocal fluorescence microscope (AOCFM) which can correct aberrations based on direct wavefront measurements using a point source reference beacon and a Shack-Hartmann Wavefront Sensor (SHWS). Mouse brain tissues with different thicknesses are tested. After correction, both the signal intensity and contrast of the image are improved.

  17. Wavefront sensorless adaptive optics fluorescence biomicroscope for in vivo retinal imaging in mice.

    PubMed

    Wahl, Daniel J; Jian, Yifan; Bonora, Stefano; Zawadzki, Robert J; Sarunic, Marinko V

    2016-01-01

    Cellular-resolution in vivo fluorescence imaging is a valuable tool for longitudinal studies of retinal function in vision research. Wavefront sensorless adaptive optics (WSAO) is a developing technology that enables high-resolution imaging of the mouse retina. In place of the conventional method of using a Shack-Hartmann wavefront sensor to measure the aberrations directly, WSAO uses an image quality metric and a search algorithm to drive the shape of the adaptive element (i.e. deformable mirror). WSAO is a robust approach to AO and it is compatible with a compact, low-cost lens-based system. In this report, we demonstrated a hill-climbing algorithm for WSAO with a variable focus lens and deformable mirror for non-invasive in vivo imaging of EGFP (enhanced green fluorescent protein) labelled ganglion cells and microglia cells in the mouse retina.

  18. Wavefront sensorless adaptive optics fluorescence biomicroscope for in vivo retinal imaging in mice

    PubMed Central

    Wahl, Daniel J.; Jian, Yifan; Bonora, Stefano; Zawadzki, Robert J.; Sarunic, Marinko V.

    2015-01-01

    Cellular-resolution in vivo fluorescence imaging is a valuable tool for longitudinal studies of retinal function in vision research. Wavefront sensorless adaptive optics (WSAO) is a developing technology that enables high-resolution imaging of the mouse retina. In place of the conventional method of using a Shack-Hartmann wavefront sensor to measure the aberrations directly, WSAO uses an image quality metric and a search algorithm to drive the shape of the adaptive element (i.e. deformable mirror). WSAO is a robust approach to AO and it is compatible with a compact, low-cost lens-based system. In this report, we demonstrated a hill-climbing algorithm for WSAO with a variable focus lens and deformable mirror for non-invasive in vivo imaging of EGFP (enhanced green fluorescent protein) labelled ganglion cells and microglia cells in the mouse retina. PMID:26819812

  19. Sodium Laser Guide Star Adaptive Optics Imaging Polarimetry of Herbig Ae/Be Stars

    SciTech Connect

    Perrin, M D; Graham, J R; Lloyd, J P; Kalas, P; Gates, E L; Gavel, D T; Pennington, D M; Max, C E

    2004-01-08

    The future of high-resolution ground-based optical and infrared astronomy requires the successful implementation of laser guide star adaptive optics systems. We present the first science results from the Lick Observatory sodium beacon laser guide star system. By coupling this system to a near-infrared (J;H;Ks bands) dual-channel imaging polarimeter, we achieve very high sensitivity to light scattered in the circumstellar enviroment of Herbig Ae/Be stars on scales of 100-300 AU. Observations of LkH{alpha} 198 reveal a highly polarized, biconical nebula 10 arcseconds in diameter (6000 AU) . We also observe a polarized jet-like feature associated with the deeply embedded source LkH{alpha} 198-IR. The star LkH{alpha} 233 presents a narrow, unpolarized dark lane dividing its characteristic butterfly-shaped polarized reflection nebulosity. This linear structure is oriented perpendicular to an optical jet and bipolar cavity and is consistent with the presence of an optically thick circumstellar disk blocking our direct view of the star. These data suggest that the evolutionary picture developed for the lower-mass T Tauri stars is also relevant to the Herbig Ae/Be stars and demonstrate the ability of laser guide star adaptive optics systems to obtain scientific results competitive with natural guide star adaptive optics or space-based telescopes.

  20. Image Quality Improvement in Adaptive Optics Scanning Laser Ophthalmoscopy Assisted Capillary Visualization Using B-spline-based Elastic Image Registration

    PubMed Central

    Uji, Akihito; Ooto, Sotaro; Hangai, Masanori; Arichika, Shigeta; Yoshimura, Nagahisa

    2013-01-01

    Purpose To investigate the effect of B-spline-based elastic image registration on adaptive optics scanning laser ophthalmoscopy (AO-SLO)-assisted capillary visualization. Methods AO-SLO videos were acquired from parafoveal areas in the eyes of healthy subjects and patients with various diseases. After nonlinear image registration, the image quality of capillary images constructed from AO-SLO videos using motion contrast enhancement was compared before and after B-spline-based elastic (nonlinear) image registration performed using ImageJ. For objective comparison of image quality, contrast-to-noise ratios (CNRS) for vessel images were calculated. For subjective comparison, experienced ophthalmologists ranked images on a 5-point scale. Results All AO-SLO videos were successfully stabilized by elastic image registration. CNR was significantly higher in capillary images stabilized by elastic image registration than in those stabilized without registration. The average ratio of CNR in images with elastic image registration to CNR in images without elastic image registration was 2.10 ± 1.73, with no significant difference in the ratio between patients and healthy subjects. Improvement of image quality was also supported by expert comparison. Conclusions Use of B-spline-based elastic image registration in AO-SLO-assisted capillary visualization was effective for enhancing image quality both objectively and subjectively. PMID:24265796

  1. Research on the liquid crystal adaptive optics system for human retinal imaging

    NASA Astrophysics Data System (ADS)

    Zhang, Lei; Tong, Shoufeng; Song, Yansong; Zhao, Xin

    2013-12-01

    The blood vessels only in Human eye retinal can be observed directly. Many diseases that are not obvious in their early symptom can be diagnosed through observing the changes of distal micro blood vessel. In order to obtain the high resolution human retinal images,an adaptive optical system for correcting the aberration of the human eye was designed by using the Shack-Hartmann wavefront sensor and the Liquid Crystal Spatial Light Modulator(LCLSM) .For a subject eye with 8m-1 (8D)myopia, the wavefront error is reduced to 0.084 λ PV and 0.12 λRMS after adaptive optics(AO) correction ,which has reached diffraction limit.The results show that the LCLSM based AO system has the ability of correcting the aberration of the human eye efficiently,and making the blurred photoreceptor cell to clearly image on a CCD camera.

  2. High-speed adaptive optics for imaging of the living human eye

    PubMed Central

    Yu, Yongxin; Zhang, Tianjiao; Meadway, Alexander; Wang, Xiaolin; Zhang, Yuhua

    2015-01-01

    The discovery of high frequency temporal fluctuation of human ocular wave aberration dictates the necessity of high speed adaptive optics (AO) correction for high resolution retinal imaging. We present a high speed AO system for an experimental adaptive optics scanning laser ophthalmoscope (AOSLO). We developed a custom high speed Shack-Hartmann wavefront sensor and maximized the wavefront detection speed based upon a trade-off among the wavefront spatial sampling density, the dynamic range, and the measurement sensitivity. We examined the temporal dynamic property of the ocular wavefront under the AOSLO imaging condition and improved the dual-thread AO control strategy. The high speed AO can be operated with a closed-loop frequency up to 110 Hz. Experiment results demonstrated that the high speed AO system can provide improved compensation for the wave aberration up to 30 Hz in the living human eye. PMID:26368408

  3. Dual-Conjugate Adaptive Optics Instrument for Wide-Field Retinal Imaging - Oral Paper

    NASA Astrophysics Data System (ADS)

    Thaung, Jörgen; Owner-Petersen, Mette; Popovic, Zoran

    2008-01-01

    To date only conventional single-conjugate adaptive optics (SCAO) systems are used to correct ocular aberrations. A major shortcoming of SCAO is the severely restricted corrected field of view. This can be solved with multi-conjugate adaptive optics (MCAO), a solution that is costly and gives bulky instruments. Another problem, especially in the study of the human eye, is unwanted light from parasitic source reflections and light from unwanted object regions. We present a dual-conjugate adaptive optics (DCAO) demonstrator that will enable wide field high resolution imaging of the human retina in vivo, implementing five retinal guide stars, two OKO micromachined membrane deformable mirrors; a 15 mm 37 channel pupil conjugate mirror, and a 40 mm 79 channel mirror conjugated to a plane in the vitreous body approximately 3 mm in front of the retina. The AO system runs with a closed-loop measurement wavelength of 835 nm. It incorporates an array of collimator lenses to spatially filter the light from all guide stars using only one adjustable iris, and a single camera to image the Hartmann patterns of multiple reference sources. Optical simulations in Zemax indicate an increase of the retinal isoplanatic patch from a radius of 0.5 degrees using SCAO to approximately 3.5 degrees or more using DCAO. The advantage of this is a clinically useful imaging area that is approximately 50 times the size of an SCAO system. This is corroborated by measurements on a model eye while performing SCAO, ground layer adaptive optics (GLAO), and DCAO correction.

  4. Adaptive Optics for Satellite and Debris Imaging in LEO and GEO

    NASA Astrophysics Data System (ADS)

    Copeland, M.; Bennet, F.; Zovaro, A.; Riguat, F.; Piatrou, P.; Korkiakoski, V.; Smith, C.

    2016-09-01

    The Research School of Astronomy and Astrophysics (RSAA) at the Australian National University has developed and Adaptive Optics (AO) system for satellite and debris imaging in low Earth orbit (LEO) and geostationary orbit (GEO). In LEO the size, shape and orientation of objects will be measured with resolution of 50 cm for objects at 800 km range at an 800 nm imaging wavelength. In GEO satellite position will be measured using precision astrometry of nearby stars. We use an AO system with a deformable mirror (DM) of 277 actuators and Shack-Hartmann wavefront sensor operating at 2 kHz. Imaging is performed at a rate of >30 Hz to reduce image blur due to tip-tilt and rotation. We use two imaging modes; a high resolution mode to obtain Nyquist sampled images and a acquisition mode with 75 arcsecond field of view to aid in finding targets.

  5. 3-D Adaptive Sparsity Based Image Compression with Applications to Optical Coherence Tomography

    PubMed Central

    Fang, Leyuan; Li, Shutao; Kang, Xudong; Izatt, Joseph A.; Farsiu, Sina

    2015-01-01

    We present a novel general-purpose compression method for tomographic images, termed 3D adaptive sparse representation based compression (3D-ASRC). In this paper, we focus on applications of 3D-ASRC for the compression of ophthalmic 3D optical coherence tomography (OCT) images. The 3D-ASRC algorithm exploits correlations among adjacent OCT images to improve compression performance, yet is sensitive to preserving their differences. Due to the inherent denoising mechanism of the sparsity based 3D-ASRC, the quality of the compressed images are often better than the raw images they are based on. Experiments on clinical-grade retinal OCT images demonstrate the superiority of the proposed 3D-ASRC over other well-known compression methods. PMID:25561591

  6. Quality metric in matched Laplacian of Gaussian response domain for blind adaptive optics image deconvolution

    NASA Astrophysics Data System (ADS)

    Guo, Shiping; Zhang, Rongzhi; Yang, Yikang; Xu, Rong; Liu, Changhai; Li, Jisheng

    2016-04-01

    Adaptive optics (AO) in conjunction with subsequent postprocessing techniques have obviously improved the resolution of turbulence-degraded images in ground-based astronomical observations or artificial space objects detection and identification. However, important tasks involved in AO image postprocessing, such as frame selection, stopping iterative deconvolution, and algorithm comparison, commonly need manual intervention and cannot be performed automatically due to a lack of widely agreed on image quality metrics. In this work, based on the Laplacian of Gaussian (LoG) local contrast feature detection operator, we propose a LoG domain matching operation to perceive effective and universal image quality statistics. Further, we extract two no-reference quality assessment indices in the matched LoG domain that can be used for a variety of postprocessing tasks. Three typical space object images with distinct structural features are tested to verify the consistency of the proposed metric with perceptual image quality through subjective evaluation.

  7. An optimized adaptive optics experimental setup for in vivo retinal imaging

    NASA Astrophysics Data System (ADS)

    Balderas-Mata, S. E.; Valdivieso González, L. G.; Ramírez Zavaleta, G.; López Olazagasti, E.; Tepichin Rodriguez, E.

    2012-10-01

    The use of Adaptive Optics (AO) in ophthalmologic instruments to image human retinas has been probed to improve the imaging lateral resolution, by correcting both static and dynamic aberrations inherent in human eyes. Typically, the configuration of the AO arm uses an infrared beam from a superluminescent diode (SLD), which is focused on the retina, acting as a point source. The back reflected light emerges through the eye optical system bringing with it the aberrations of the cornea. The aberrated wavefront is measured with a Shack - Hartmann wavefront sensor (SHWFS). However, the aberrations in the optical imaging system can reduced the performance of the wave front correction. The aim of this work is to present an optimized first stage AO experimental setup for in vivo retinal imaging. In our proposal, the imaging optical system has been designed in order to reduce spherical aberrations due to the lenses. The ANSI Standard is followed assuring the safety power levels. The performance of the system will be compared with a commercial aberrometer. This system will be used as the AO arm of a flood-illuminated fundus camera system for retinal imaging. We present preliminary experimental results showing the enhancement.

  8. Length-adaptive graph search for automatic segmentation of pathological features in optical coherence tomography images

    NASA Astrophysics Data System (ADS)

    Keller, Brenton; Cunefare, David; Grewal, Dilraj S.; Mahmoud, Tamer H.; Izatt, Joseph A.; Farsiu, Sina

    2016-07-01

    We introduce a metric in graph search and demonstrate its application for segmenting retinal optical coherence tomography (OCT) images of macular pathology. Our proposed "adjusted mean arc length" (AMAL) metric is an adaptation of the lowest mean arc length search technique for automated OCT segmentation. We compare this method to Dijkstra's shortest path algorithm, which we utilized previously in our popular graph theory and dynamic programming segmentation technique. As an illustrative example, we show that AMAL-based length-adaptive segmentation outperforms the shortest path in delineating the retina/vitreous boundary of patients with full-thickness macular holes when compared with expert manual grading.

  9. Solar tomography adaptive optics.

    PubMed

    Ren, Deqing; Zhu, Yongtian; Zhang, Xi; Dou, Jiangpei; Zhao, Gang

    2014-03-10

    Conventional solar adaptive optics uses one deformable mirror (DM) and one guide star for wave-front sensing, which seriously limits high-resolution imaging over a large field of view (FOV). Recent progress toward multiconjugate adaptive optics indicates that atmosphere turbulence induced wave-front distortion at different altitudes can be reconstructed by using multiple guide stars. To maximize the performance over a large FOV, we propose a solar tomography adaptive optics (TAO) system that uses tomographic wave-front information and uses one DM. We show that by fully taking advantage of the knowledge of three-dimensional wave-front distribution, a classical solar adaptive optics with one DM can provide an extra performance gain for high-resolution imaging over a large FOV in the near infrared. The TAO will allow existing one-deformable-mirror solar adaptive optics to deliver better performance over a large FOV for high-resolution magnetic field investigation, where solar activities occur in a two-dimensional field up to 60'', and where the near infrared is superior to the visible in terms of magnetic field sensitivity.

  10. Segmentation of the optic disk in color eye fundus images using an adaptive morphological approach.

    PubMed

    Welfer, Daniel; Scharcanski, Jacob; Kitamura, Cleyson M; Dal Pizzol, Melissa M; Ludwig, Laura W B; Marinho, Diane Ruschel

    2010-02-01

    The identification of some important retinal anatomical regions is a prerequisite for the computer aided diagnosis of several retinal diseases. In this paper, we propose a new adaptive method for the automatic segmentation of the optic disk in digital color fundus images, using mathematical morphology. The proposed method has been designed to be robust under varying illumination and image acquisition conditions, common in eye fundus imaging. Our experimental results based on two publicly available eye fundus image databases are encouraging, and indicate that our approach potentially can achieve a better performance than other known methods proposed in the literature. Using the DRIVE database (which consists of 40 retinal images), our method achieves a success rate of 100% in the correct location of the optic disk, with 41.47% of mean overlap. In the DIARETDB1 database (which consists of 89 retinal images), the optic disk is correctly located in 97.75% of the images, with a mean overlap of 43.65%.

  11. High-Contrast Imaging using Adaptive Optics for Extrasolar Planet Detection

    SciTech Connect

    Evans, Julia Wilhelmsen

    2006-01-01

    Direct imaging of extrasolar planets is an important, but challenging, next step in planetary science. Most planets identified to date have been detected indirectly--not by emitted or reflected light but through the effect of the planet on the parent star. For example, radial velocity techniques measure the doppler shift in the spectrum of the star produced by the presence of a planet. Indirect techniques only probe about 15% of the orbital parameter space of our solar system. Direct methods would probe new parameter space, and the detected light can be analyzed spectroscopically, providing new information about detected planets. High contrast adaptive optics systems, also known as Extreme Adaptive Optics (ExAO), will require contrasts of between 10-6 and 10-7 at angles of 4-24 λ/D on an 8-m class telescope to image young Jupiter-like planets still warm with the heat of formation. Contrast is defined as the intensity ratio of the dark wings of the image, where a planet might be, to the bright core of the star. Such instruments will be technically challenging, requiring high order adaptive optics with > 2000 actuators and improved diffraction suppression. Contrast is ultimately limited by residual static wavefront errors, so an extrasolar planet imager will require wavefront control with an accuracy of better than 1 nm rms within the low- to mid-spatial frequency range. Laboratory demonstrations are critical to instrument development. The ExAO testbed at the Laboratory for Adaptive Optics was designed with low wavefront error and precision optical metrology, which is used to explore contrast limits and develop the technology needed for an extrasolar planet imager. A state-of-the-art, 1024-actuator micro-electrical-mechanical-systems (MEMS) deformable mirror was installed and characterized to provide active wavefront control and test this novel technology. I present 6.5 x 10-8 contrast measurements with a prolate shaped pupil and

  12. High-resolution in-depth imaging of optically cleared thick samples using an adaptive SPIM

    PubMed Central

    Masson, Aurore; Escande, Paul; Frongia, Céline; Clouvel, Grégory; Ducommun, Bernard; Lorenzo, Corinne

    2015-01-01

    Today, Light Sheet Fluorescence Microscopy (LSFM) makes it possible to image fluorescent samples through depths of several hundreds of microns. However, LSFM also suffers from scattering, absorption and optical aberrations. Spatial variations in the refractive index inside the samples cause major changes to the light path resulting in loss of signal and contrast in the deepest regions, thus impairing in-depth imaging capability. These effects are particularly marked when inhomogeneous, complex biological samples are under study. Recently, chemical treatments have been developed to render a sample transparent by homogenizing its refractive index (RI), consequently enabling a reduction of scattering phenomena and a simplification of optical aberration patterns. One drawback of these methods is that the resulting RI of cleared samples does not match the working RI medium generally used for LSFM lenses. This RI mismatch leads to the presence of low-order aberrations and therefore to a significant degradation of image quality. In this paper, we introduce an original optical-chemical combined method based on an adaptive SPIM and a water-based clearing protocol enabling compensation for aberrations arising from RI mismatches induced by optical clearing methods and acquisition of high-resolution in-depth images of optically cleared complex thick samples such as Multi-Cellular Tumour Spheroids. PMID:26576666

  13. High-resolution in-depth imaging of optically cleared thick samples using an adaptive SPIM

    NASA Astrophysics Data System (ADS)

    Masson, Aurore; Escande, Paul; Frongia, Céline; Clouvel, Grégory; Ducommun, Bernard; Lorenzo, Corinne

    2015-11-01

    Today, Light Sheet Fluorescence Microscopy (LSFM) makes it possible to image fluorescent samples through depths of several hundreds of microns. However, LSFM also suffers from scattering, absorption and optical aberrations. Spatial variations in the refractive index inside the samples cause major changes to the light path resulting in loss of signal and contrast in the deepest regions, thus impairing in-depth imaging capability. These effects are particularly marked when inhomogeneous, complex biological samples are under study. Recently, chemical treatments have been developed to render a sample transparent by homogenizing its refractive index (RI), consequently enabling a reduction of scattering phenomena and a simplification of optical aberration patterns. One drawback of these methods is that the resulting RI of cleared samples does not match the working RI medium generally used for LSFM lenses. This RI mismatch leads to the presence of low-order aberrations and therefore to a significant degradation of image quality. In this paper, we introduce an original optical-chemical combined method based on an adaptive SPIM and a water-based clearing protocol enabling compensation for aberrations arising from RI mismatches induced by optical clearing methods and acquisition of high-resolution in-depth images of optically cleared complex thick samples such as Multi-Cellular Tumour Spheroids.

  14. Adaptive anisotropic diffusion for noise reduction of phase images in Fourier domain Doppler optical coherence tomography.

    PubMed

    Xia, Shaoyan; Huang, Yong; Peng, Shizhao; Wu, Yanfeng; Tan, Xiaodi

    2016-08-01

    Phase image in Fourier domain Doppler optical coherence tomography offers additional flow information of investigated samples, which provides valuable evidence towards accurate medical diagnosis. High quality phase images are thus desirable. We propose a noise reduction method for phase images by combining a synthetic noise estimation criteria based on local noise estimator (LNE) and distance median value (DMV) with anisotropic diffusion model. By identifying noise and signal pixels accurately and diffusing them with different coefficients respectively and adaptive iteration steps, we demonstrated the effectiveness of our proposed method in both phantom and mouse artery images. Comparison with other methods such as filtering method (mean, median filtering), wavelet method, probabilistic method and partial differential equation based methods in terms of peak signal-to-noise ratio (PSNR), equivalent number of looks (ENL) and contrast-to-noise ratio (CNR) showed the advantages of our method in reserving image energy and removing noise.

  15. Adaptive anisotropic diffusion for noise reduction of phase images in Fourier domain Doppler optical coherence tomography

    PubMed Central

    Xia, Shaoyan; Huang, Yong; Peng, Shizhao; Wu, Yanfeng; Tan, Xiaodi

    2016-01-01

    Phase image in Fourier domain Doppler optical coherence tomography offers additional flow information of investigated samples, which provides valuable evidence towards accurate medical diagnosis. High quality phase images are thus desirable. We propose a noise reduction method for phase images by combining a synthetic noise estimation criteria based on local noise estimator (LNE) and distance median value (DMV) with anisotropic diffusion model. By identifying noise and signal pixels accurately and diffusing them with different coefficients respectively and adaptive iteration steps, we demonstrated the effectiveness of our proposed method in both phantom and mouse artery images. Comparison with other methods such as filtering method (mean, median filtering), wavelet method, probabilistic method and partial differential equation based methods in terms of peak signal-to-noise ratio (PSNR), equivalent number of looks (ENL) and contrast-to-noise ratio (CNR) showed the advantages of our method in reserving image energy and removing noise. PMID:27570687

  16. Image improvement from a sodium-layer laser guide star adaptive optics system

    SciTech Connect

    Max, C. E., LLNL

    1997-06-01

    A sodium-layer laser guide star beacon with high-order adaptive optics at Lick Observatory produced a factor of 2.4 intensity increase and a factor of 2 decrease in full width at half maximum for an astronomical point source, compared with image motion compensation alone. Image full widths at half maximum were identical for laser and natural guide stars (0.3 arc seconds). The Strehl ratio with the laser guide star was 65% of that with a natural guide star. This technique should allow ground-based telescopes to attain the diffraction limit, by correcting for atmospheric distortions.

  17. Adaptive optics ophthalmoscopy.

    PubMed

    Roorda, Austin; Duncan, Jacque L

    2015-11-01

    This review starts with a brief history and description of adaptive optics (AO) technology, followed by a showcase of the latest capabilities of AO systems for imaging the human retina and an extensive review of the literature on where AO is being used clinically. The review concludes with a discussion on future directions and guidance on usage and interpretation of images from AO systems for the eye.

  18. Robotic Transit Follow-up: Adaptive Optics Imaging of Thousands of Stars

    NASA Astrophysics Data System (ADS)

    Law, Nicholas M.; Morton, T.; Baranec, C.; Riddle, R. L.; Tendulkar, S. P.; Johnson, J. A.; Bui, K.; Burse, M.; Chordia, P.; Das, H.; Dekany, R.; Kulkarni, S. R.; Punnadi, S.; Ramaprakash, A. N.; Robo-AO Collaboration

    2013-01-01

    Stars that host transiting exoplanet candidates may have close companions. If undetected, these companions can produce false-positive planets or affect the measured exoplanet characteristics. High-angular-resolution imaging is required to resolve these systems. Up to now, it has been impossible to obtain adaptive optics images of all the thousands of candidates generated by large surveys like Kepler because of the faintness of the targets and the excessive observing time required. The Robo-AO robotic laser adaptive optics system, newly-commissioned on the Palomar 60-inch telescope, is the first system capable of rapidly observing thousands of targets at high resolution. Robo-AO routinely images 200+ targets per night and produces 0.1" FWHM images in visible wavelengths similar to the Kepler passband. We are using Robo-AO to perform a stellar companion search of unprecedented size, including every Kepler planet candidate and 3,000 nearby planet-search stars. In our first observing season we have imaged over 1,000 Kepler objects of interest and 75% of the Northern stars within 25pc. We will describe the system and discuss its use for future exoplanet surveys such as TESS. We will also present the first results from the survey: a comprehensive assessment of stellar multiplicity among Kepler exoplanet hosts and the discovery of new close stellar companions around Kepler objects of interest.

  19. Multimodal adaptive optics for depth-enhanced high-resolution ophthalmic imaging

    NASA Astrophysics Data System (ADS)

    Hammer, Daniel X.; Mujat, Mircea; Iftimia, Nicusor V.; Lue, Niyom; Ferguson, R. Daniel

    2010-02-01

    We developed a multimodal adaptive optics (AO) retinal imager for diagnosis of retinal diseases, including glaucoma, diabetic retinopathy (DR), age-related macular degeneration (AMD), and retinitis pigmentosa (RP). The development represents the first ever high performance AO system constructed that combines AO-corrected scanning laser ophthalmoscopy (SLO) and swept source Fourier domain optical coherence tomography (SSOCT) imaging modes in a single compact clinical prototype platform. The SSOCT channel operates at a wavelength of 1 μm for increased penetration and visualization of the choriocapillaris and choroid, sites of major disease activity for DR and wet AMD. The system is designed to operate on a broad clinical population with a dual deformable mirror (DM) configuration that allows simultaneous low- and high-order aberration correction. The system also includes a wide field line scanning ophthalmoscope (LSO) for initial screening, target identification, and global orientation; an integrated retinal tracker (RT) to stabilize the SLO, OCT, and LSO imaging fields in the presence of rotational eye motion; and a high-resolution LCD-based fixation target for presentation to the subject of stimuli and other visual cues. The system was tested in a limited number of human subjects without retinal disease for performance optimization and validation. The system was able to resolve and quantify cone photoreceptors across the macula to within ~0.5 deg (~100-150 μm) of the fovea, image and delineate ten retinal layers, and penetrate to resolve targets deep into the choroid. In addition to instrument hardware development, analysis algorithms were developed for efficient information extraction from clinical imaging sessions, with functionality including automated image registration, photoreceptor counting, strip and montage stitching, and segmentation. The system provides clinicians and researchers with high-resolution, high performance adaptive optics imaging to help

  20. Clinical Validation of Smartphone Based Adapter: Peek Retina for Optic Disc Imaging in Kenya

    PubMed Central

    Bastawrous, Andrew; Giardini, Mario Ettore; Bolster, Nigel M; Peto, Tunde; Shah, Nisha; Livingstone, Iain AT; Weiss, Helen A.; Hu, Sen; Rono, Hillary; Kuper, Hannah; Burton, Matthew

    2017-01-01

    Importance Visualization and interpretation of the optic nerve and retina is an essential part of most physical examinations. Objectives To design and validate a smartphone-based retinal adapter enabling image capture and remote grading of the retina Design, setting and participants Validation study comparing the grading of optic nerves from smartphones images with those of a Digital Fundus Camera. Both image sets were independently graded at Moorfields Eye Hospital Reading Centre. Nested within the six-year follow-up of the Nakuru Eye Disease Cohort in Kenya: 1,460adults (2,920eyes) aged 55years and above were recruited consecutively from the Study. A sub-set of 100 optic disc images from both methods were further used to validate a grading app for the optic nerves. Main outcome(s) and measure(s) Vertical cup-to-disc-ratio (VCDR) for each test was compared, in terms of agreement (Bland-Altman & weighted Kappa) and test-retest variability (TRV). Results 2,152 optic nerve images were available from both methods (additionally 371 from reference but not Peek, 170 from Peek but not the reference and 227 from neither the reference camera or Peek). Bland-Altman analysis demonstrated a difference of the average of 0.02 with 95% limits of agreement between -0.21 and 0.17 and a weighted Kappa coefficient of 0.69 (excellent agreement). An experienced retinal photographer was compared to a lay photographer (no health care experience prior to the study) with no observable difference in image acquisition quality between them. Conclusions and relevance Non-clinical photographers using the low-cost Peek Retina adapter and smartphone were able to acquire optic nerve images at a standard that enabled comparable independent remote grading of the images to those acquired using a desktop retinal camera operated by an ophthalmic assistant. The potential for task-shifting and the detection of avoidable causes of blindness in the most at risk communities makes this an attractive public

  1. Multiphoton imaging microscopy at deeper layers with adaptive optics control of spherical aberration.

    PubMed

    Bueno, Juan M; Skorsetz, Martin; Palacios, Raquel; Gualda, Emilio J; Artal, Pablo

    2014-01-01

    Despite the inherent confocality and optical sectioning capabilities of multiphoton microscopy, three-dimensional (3-D) imaging of thick samples is limited by the specimen-induced aberrations. The combination of immersion objectives and sensorless adaptive optics (AO) techniques has been suggested to overcome this difficulty. However, a complex plane-by-plane correction of aberrations is required, and its performance depends on a set of image-based merit functions. We propose here an alternative approach to increase penetration depth in 3-D multiphoton microscopy imaging. It is based on the manipulation of the spherical aberration (SA) of the incident beam with an AO device while performing fast tomographic multiphoton imaging. When inducing SA, the image quality at best focus is reduced; however, better quality images are obtained from deeper planes within the sample. This is a compromise that enables registration of improved 3-D multiphoton images using nonimmersion objectives. Examples on ocular tissues and nonbiological samples providing different types of nonlinear signal are presented. The implementation of this technique in a future clinical instrument might provide a better visualization of corneal structures in living eyes.

  2. High-resolution retinal imaging through open-loop adaptive optics.

    PubMed

    Li, Chao; Xia, Mingliang; Li, Dayu; Mu, Quanquan; Xuan, Li

    2010-01-01

    Using the liquid crystal spatial light modulator (LC-SLM) as the wavefront corrector, an open-loop adaptive optics (AO) system for fundus imaging in vivo is constructed. Compared with the LC-SLM closed-loop AO system, the light energy efficiency is increased by a factor of 2, which is helpful for the safety of fundus illumination in vivo. In our experiment, the subjective accommodation method is used to precorrect the defocus aberration, and three subjects with different myopia 0, -3, and -5 D are tested. Although the residual wavefront error after correction cannot to detected, the fundus images adequately demonstrate that the imaging system reaches the resolution of a single photoreceptor cell through the open-loop correction. Without dilating and cyclopleging the eye, the continuous imaging for 8 s is recorded for one of the subjects.

  3. High-resolution retinal imaging through open-loop adaptive optics

    NASA Astrophysics Data System (ADS)

    Li, Chao; Xia, Mingliang; Li, Dayu; Mu, Quanquan; Xuan, Li

    2010-07-01

    Using the liquid crystal spatial light modulator (LC-SLM) as the wavefront corrector, an open-loop adaptive optics (AO) system for fundus imaging in vivo is constructed. Compared with the LC-SLM closed-loop AO system, the light energy efficiency is increased by a factor of 2, which is helpful for the safety of fundus illumination in vivo. In our experiment, the subjective accommodation method is used to precorrect the defocus aberration, and three subjects with different myopia 0, -3, and -5 D are tested. Although the residual wavefront error after correction cannot to detected, the fundus images adequately demonstrate that the imaging system reaches the resolution of a single photoreceptor cell through the open-loop correction. Without dilating and cyclopleging the eye, the continuous imaging for 8 s is recorded for one of the subjects.

  4. Adaptive Sensor Optimization and Cognitive Image Processing Using Autonomous Optical Neuroprocessors

    SciTech Connect

    CAMERON, STEWART M.

    2001-10-01

    Measurement and signal intelligence demands has created new requirements for information management and interoperability as they affect surveillance and situational awareness. Integration of on-board autonomous learning and adaptive control structures within a remote sensing platform architecture would substantially improve the utility of intelligence collection by facilitating real-time optimization of measurement parameters for variable field conditions. A problem faced by conventional digital implementations of intelligent systems is the conflict between a distributed parallel structure on a sequential serial interface functionally degrading bandwidth and response time. In contrast, optically designed networks exhibit the massive parallelism and interconnect density needed to perform complex cognitive functions within a dynamic asynchronous environment. Recently, all-optical self-organizing neural networks exhibiting emergent collective behavior which mimic perception, recognition, association, and contemplative learning have been realized using photorefractive holography in combination with sensory systems for feature maps, threshold decomposition, image enhancement, and nonlinear matched filters. Such hybrid information processors depart from the classical computational paradigm based on analytic rules-based algorithms and instead utilize unsupervised generalization and perceptron-like exploratory or improvisational behaviors to evolve toward optimized solutions. These systems are robust to instrumental systematics or corrupting noise and can enrich knowledge structures by allowing competition between multiple hypotheses. This property enables them to rapidly adapt or self-compensate for dynamic or imprecise conditions which would be unstable using conventional linear control models. By incorporating an intelligent optical neuroprocessor in the back plane of an imaging sensor, a broad class of high-level cognitive image analysis problems including geometric

  5. Stochastic parallel gradient descent based adaptive optics used for a high contrast imaging coronagraph

    NASA Astrophysics Data System (ADS)

    Dong, Bing; Ren, De-Qing; Zhang, Xi

    2011-08-01

    An adaptive optics (AO) system based on a stochastic parallel gradient descent (SPGD) algorithm is proposed to reduce the speckle noises in the optical system of a stellar coronagraph in order to further improve the contrast. The principle of the SPGD algorithm is described briefly and a metric suitable for point source imaging optimization is given. The feasibility and good performance of the SPGD algorithm is demonstrated by an experimental system featured with a 140-actuator deformable mirror and a Hartmann-Shark wavefront sensor. Then the SPGD based AO is applied to a liquid crystal array (LCA) based coronagraph to improve the contrast. The LCA can modulate the incoming light to generate a pupil apodization mask of any pattern. A circular stepped pattern is used in our preliminary experiment and the image contrast shows improvement from 10-3 to 10-4.5 at an angular distance of 2λ/D after being corrected by SPGD based AO.

  6. Retinal imaging with polarization-sensitive optical coherence tomography and adaptive optics

    PubMed Central

    Cense, Barry; Gao, Weihua; Brown, Jeffrey M.; Jones, Steven M.; Jonnal, Ravi S.; Mujat, Mircea; Park, B. Hyle; de Boer, Johannes F.; Miller, Donald T.

    2011-01-01

    Various layers of the retina are well known to alter the polarization state of light. Such changes in polarization may be a sensitive indicator of tissue structure and function, and as such have gained increased clinical attention. Here we demonstrate a polarization-sensitive optical coherence tomography (PS-OCT) system that incorporates adaptive optics (AO) in the sample arm and a single line scan camera in the detection arm. We quantify the benefit of AO for PS-OCT in terms of signal-to-noise, lateral resolution, and speckle size. Double pass phase retardation per unit depth values ranging from 0.25°/µm to 0.65°/µm were found in the birefringent nerve fiber layer at 6° eccentricity, superior to the fovea, with the highest values being noticeably higher than previously reported with PS-OCT around the optic nerve head. Moreover, fast axis orientation and degree of polarization uniformity measurements made with AO-PS-OCT demonstrate polarization scrambling in the retinal pigment epithelium at the highest resolution reported to date. PMID:19997405

  7. Calibrating IR optical densities for the Gemini Planet Imager extreme adaptive optics coronagraph apodizers

    NASA Astrophysics Data System (ADS)

    Sivaramakrishnan, Anand; Soummer, Rémi; Carr, G. Lawrence; Dorrer, Christophe; Bolognesi, Allen; Zimmerman, Neil; Oppenheimer, Ben R.; Roberts, Robin; Greenbaum, Alexandra

    2009-08-01

    High contrast imaging sometimes uses apodized masks in coronagraphs to suppress diffracted starlight from a bright source in order to observe its environs. Continuously graded opacity material and metallic half-tone dots are two possible apodizers fabrication techniques. In the latter approach if dot sizes are comparable to the wavelength of the light, surface plasmon effects can complicate the optical density (OD) vs. superficial dot density relation. OD can also be a complicated function of wavelength. We measured half-tone microdot screens' and continuous materials' transmissions. Our set-up replicated the f/ 64 optical configuration of the Gemini Planet Imager's Apodized Pupil Lyot Coronagraph pupil plane, where we plan to place our pupil plane masks. Our half-tone samples were fabricated with 2, 5, and 10 micron dot sizes, our continuous greyscale was High Energy Electron Beam Sensitive (HEBS) glass (Canyon Materials Inc.). We present optical density (OD) vs. wavelength curves for our half-tone and continuous greyscale samples 1.1 - 2.5 μm wavelength range. Direct measurements of the beam intensity in the far field using a Fourier Transform Infrared Spectrograph on Beamline U4IR at Brookhaven National Laboratory's National Synchrotron Light Source (NSLS) provided transmission spectra of test patches and apodizers. We report the on-axis IR transmission spectra through screens composed of metallic dots that are comparable in size with the wavelength of the light used, over a range of optical densities. We also measured departures from simple theory describing the array of satellite spots created by thin periodic grids in the pupil of the system. Such spots are used for photometry and astrometry in coronagraphic situations. Our results pertain to both ground and space based coronagraphs that use spatially variable attenuation, typically in focal plane or pupil plane masks.

  8. Automatic detection of cone photoreceptors in split detector adaptive optics scanning light ophthalmoscope images

    PubMed Central

    Cunefare, David; Cooper, Robert F.; Higgins, Brian; Katz, David F.; Dubra, Alfredo; Carroll, Joseph; Farsiu, Sina

    2016-01-01

    Quantitative analysis of the cone photoreceptor mosaic in the living retina is potentially useful for early diagnosis and prognosis of many ocular diseases. Non-confocal split detector based adaptive optics scanning light ophthalmoscope (AOSLO) imaging reveals the cone photoreceptor inner segment mosaics often not visualized on confocal AOSLO imaging. Despite recent advances in automated cone segmentation algorithms for confocal AOSLO imagery, quantitative analysis of split detector AOSLO images is currently a time-consuming manual process. In this paper, we present the fully automatic adaptive filtering and local detection (AFLD) method for detecting cones in split detector AOSLO images. We validated our algorithm on 80 images from 10 subjects, showing an overall mean Dice’s coefficient of 0.95 (standard deviation 0.03), when comparing our AFLD algorithm to an expert grader. This is comparable to the inter-observer Dice’s coefficient of 0.94 (standard deviation 0.04). To the best of our knowledge, this is the first validated, fully-automated segmentation method which has been applied to split detector AOSLO images. PMID:27231641

  9. Automatic detection of cone photoreceptors in split detector adaptive optics scanning light ophthalmoscope images.

    PubMed

    Cunefare, David; Cooper, Robert F; Higgins, Brian; Katz, David F; Dubra, Alfredo; Carroll, Joseph; Farsiu, Sina

    2016-05-01

    Quantitative analysis of the cone photoreceptor mosaic in the living retina is potentially useful for early diagnosis and prognosis of many ocular diseases. Non-confocal split detector based adaptive optics scanning light ophthalmoscope (AOSLO) imaging reveals the cone photoreceptor inner segment mosaics often not visualized on confocal AOSLO imaging. Despite recent advances in automated cone segmentation algorithms for confocal AOSLO imagery, quantitative analysis of split detector AOSLO images is currently a time-consuming manual process. In this paper, we present the fully automatic adaptive filtering and local detection (AFLD) method for detecting cones in split detector AOSLO images. We validated our algorithm on 80 images from 10 subjects, showing an overall mean Dice's coefficient of 0.95 (standard deviation 0.03), when comparing our AFLD algorithm to an expert grader. This is comparable to the inter-observer Dice's coefficient of 0.94 (standard deviation 0.04). To the best of our knowledge, this is the first validated, fully-automated segmentation method which has been applied to split detector AOSLO images.

  10. Interpretation of Flood-Illuminated Adaptive Optics Images in Subjects with Retinitis Pigmentosa.

    PubMed

    Gale, Michael J; Feng, Shu; Titus, Hope E; Smith, Travis B; Pennesi, Mark E

    2016-01-01

    The purpose of this study was to correlate features on flood-illuminated adaptive optics (AO) images with color fundus, fundus autofluorescence (FAF) and spectral domain optical coherence tomography (SD-OCT) images in patients with retinitis pigmentosa (RP). We imaged 39 subjects diagnosed with RP using the rtx1™ flood-illuminated AO camera from Imagine Eyes (Orsay, France). We observed a correlation between hyper-autofluoresence changes on FAF, disruption of the interdigitation zone (IZ) on SD-OCT and loss of reflective cone profiles on AO. Four main patterns of cone-reflectivity were seen on AO: presumed healthy cone mosaics, hypo-reflective blurred cone-like structures, higher frequency disorganized hyper-reflective spots, and lower frequency hypo-reflective spots. These regions were correlated to progressive phases of cone photoreceptor degeneration observed using SD-OCT and FAF. These results help provide interpretation of en face images obtained by flood-illuminated AO in subjects with RP. However, significant ambiguity remains as to what truly constitutes a cone, especially in areas of degeneration. With further refinements in technology, flood illuminated AO imaging has the potential to provide rapid, standardized, longitudinal and lower cost imaging in patients with retinal degeneration.

  11. Adaptive wiener image restoration kernel

    SciTech Connect

    Yuan, Ding

    2007-06-05

    A method and device for restoration of electro-optical image data using an adaptive Wiener filter begins with constructing imaging system Optical Transfer Function, and the Fourier Transformations of the noise and the image. A spatial representation of the imaged object is restored by spatial convolution of the image using a Wiener restoration kernel.

  12. Experimental design for the eXtreme Adaptive Optics Planet Imager (XAOPI)

    NASA Astrophysics Data System (ADS)

    Graham, J. R.; Macintosh, B.; Ghez, A.; Kalas, P.; Lloyd, J.; Makidon, R.; Olivier, S.; Patience, J.; Perrin, M.; Poyneer, L.; Severson, S.; Sheinis, A.; Sivaramakrishnan, A.; Troy, M.; Wallace, J.; Wilhelmsen, J.

    2002-12-01

    Direct detection of the light emitted by extra-solar planets represents the next major hurdle in the study of extra-solar planets. The NSF Center for Adaptive Optics is carrying out a design study for a dedicated ultra-high-contrast "extreme" adaptive optics (ExAO) planet imager for an 8-m class telescope. The phase space for such a system is large and trade studies are required to choose optimal values of fundamental parameters such as the telescope diameter and delivered Strehl ratio. To predict the performance of hypothetical AO systems we use models based on Kolmogorov phase screens and Fourier optics. We incorporate additional noise sources such as wavefront measurement error and time-lag errors, and distinguish between the different speckle decorrelation times of each independent error source. To compute a figure of merit for a particular AO system we need to predict the distribution of contrast and angular separation on the sky for planets. There is a large and growing of sample of precision radial velocity detected planets, which can be used to constrain the orbital elements and masses of the underlying population. When combined with the star formation history of the solar neighborhood (or ages of local, young associations), cooling curves and young planet model atmospheres this information can be used to predict how many systems can be detected with different experimental designs. We present results which allow us to evaluate the impact of different AO design choices, observing wavelengths, and target selection. Our technique also allows us to compare and quantify the selection effects associated with precision radial velocity, astrometric and direct imaging searches. This work was supported by the NSF Science and Technology Center for Adaptive Optics, managed by UC Santa Cruz under AST-9876783. Portions of this work was performed under the auspices of the U.S. Department of Energy, under contract No. W-7405-Eng-48.

  13. Direct detection of extrasolar planets with the eXtreme Adaptive Optics Planet Imager

    NASA Astrophysics Data System (ADS)

    Macintosh, B. A.; Graham, J. R.; Duchene, G.; Jones, S.; Kalas, P.; Lloyd, J.; Makidon, R. B.; Olivier, S.; Palmer, D.; Perrin, M.; Poyneer, L.; Sheinis, A.; Sivaramakrishnan, A.; Severson, S.; Sommargren, G.; Troy, M.; Wallace, J. K.

    2003-05-01

    Current radial-velocity searches for extrasolar planets, though powerful, are fundamentally constrained in the range of orbits they can access by the need for a near-complete orbital period: the largest detectable semi-major axis only grows with time to the 2/3 power. In the next several decades, radial velocity detection will barely reach planets with orbits comparable to Saturn. However, planets in our solar system exist at wider separations and dusty disks frequently exceed 100 AU, some with evidence for perturbing planets in wide orbits. To probe the 5-100 AU range different techniques are needed. Direct detection of photons emitted by extrasolar planets is one such technique, but requires contrast levels of 107-109 at near-infrared wavelengths. We have designed an adaptive optics (AO) system capable of reaching these contrasts. XAOPI, the eXtreme Adaptive Optics Planet Imager, is a proposed 4096-actuator adaptive optics system for an 8-10m telescope. It will achieve Strehl ratios >0.9, and is optimized to remove scattered light from 0.2-1 arcseconds, even light scattered by errors in a segmented primary mirror. Simulations predict that it will achieve contrast ratios of 107 -108 for target stars with R<7. Monte Carlo analysis of target samples shows that this allows detection of near-IR emission from warm extrasolar planets younger and/or more massive than Jupiter around a significant sample of target stars. We will examine the scientific rationale for, and capabilities of, this proposed instrument. This work has been supported by the National Science Foundation Science and Technology Center for Adaptive Optics, managed by the University of California at Santa Cruz under cooperative agreement No. AST - 987 Portions of this work were also performed under the auspices of the U.S. Department of Energy, National Nuclear Security Administration by the University of California, Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48.

  14. Circumnuclear Shock and Starburst in NGC 6240: Near-Infrared Imaging and Spectroscopy with Adaptive Optics

    NASA Astrophysics Data System (ADS)

    Bogdanović, Tamara; Ge, Jian; Max, Claire E.; Raschke, Lynne M.

    2003-11-01

    We have obtained adaptive optics, high spatial resolution (0.15"), K-band spectra and images of the region around the two active nuclei in NGC 6240, which show the presence of circumnuclear shocks. The data are consistent with thermal excitation being the dominant mechanism in the nuclear region. UV fluorescence and associative detachment may also contribute to the fraction of energy emitted through molecular hydrogen transitions. The near-IR continuum emission appears closely associated with the two active nuclei. The morphological similarities between the near-IR images and the Chandra X-ray images indicate that the same mechanisms may be responsible for the emission in the near-IR and X-ray bands.

  15. Adaptive Optics Imaging of Neptune with the W.M. Keck Telescope

    NASA Astrophysics Data System (ADS)

    Macintosh, B.; Max, C. E.; Roe, H.; Gibbard, S.; Gavel, D.; Acton, S.; Lai, O.; Wizinowich, P.; de Pater, I.; Ghez, A.; Baines, K.

    1999-09-01

    We present near-IR images of Neptune with a resolution of 0.05 arcseconds obtained with the new adaptive optics (AO) system at the 10-m W.M. Keck II telescope. The resolution and contrast of these images allows us to fit radiative transfer models to Neptune's clear atmosphere, completely uncontaminated by scattered light from bright storms or bands. We can measure for the first time the precise infrared spatial extent of storm features and calculate their reflectance in broad-band and methane-absorption near-IR bandpasses. The images show many bands and cloud features, and detect a bright southern-hemisphere complex that may be associated with a large dark spot similar to that seen by Voyager. These observations demonstrate that AO on an 8-10 meter telescope is a powerful new tool for studying objects in the outer solar system, surpassing the resolution of the NICMOS instrument on the Hubble Space Telescope by a factor of 2-4. This research was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract W-7405-ENG-48. It was supported in part by NASA grant NRA-97-OSS-04-98-053(R3281). The adaptive optics system on the Keck II telescope was funded by the W.M. Keck foundation under a grant to the California Association for Research in Astronomy, and by NASA.

  16. MAD Adaptive Optics Imaging of High-luminosity Quasars: A Pilot Project

    NASA Astrophysics Data System (ADS)

    Liuzzo, E.; Falomo, R.; Paiano, S.; Treves, A.; Uslenghi, M.; Arcidiacono, C.; Baruffolo, A.; Diolaiti, E.; Farinato, J.; Lombini, M.; Moretti, A.; Ragazzoni, R.; Brast, R.; Donaldson, R.; Kolb, J.; Marchetti, E.; Tordo, S.

    2016-08-01

    We present near-IR images of five luminous quasars at z ˜ 2 and one at z ˜ 4 obtained with an experimental adaptive optics (AO) instrument at the European Southern Observatory Very Large Telescope. The observations are part of a program aimed at demonstrating the capabilities of multi-conjugated adaptive optics imaging combined with the use of natural guide stars for high spatial resolution studies on large telescopes. The observations were mostly obtained under poor seeing conditions but in two cases. In spite of these nonoptimal conditions, the resulting images of point sources have cores of FWHM ˜ 0.2 arcsec. We are able to characterize the host galaxy properties for two sources and set stringent upper limits to the galaxy luminosity for the others. We also report on the expected capabilities for investigating the host galaxies of distant quasars with AO systems coupled with future Extremely Large Telescopes. Detailed simulations show that it will be possible to characterize compact (2-3 kpc) quasar host galaxies for quasi-stellar objects at z = 2 with nucleus K-magnitude spanning from 15 to 20 (corresponding to absolute magnitude -31 to -26) and host galaxies that are 4 mag fainter than their nuclei.

  17. Comparison of adaptive optics scanning light ophthalmoscopic fluorescein angiography and offset pinhole imaging.

    PubMed

    Chui, Toco Y P; Dubow, Michael; Pinhas, Alexander; Shah, Nishit; Gan, Alexander; Weitz, Rishard; Sulai, Yusufu N; Dubra, Alfredo; Rosen, Richard B

    2014-04-01

    Recent advances to the adaptive optics scanning light ophthalmoscope (AOSLO) have enabled finer in vivo assessment of the human retinal microvasculature. AOSLO confocal reflectance imaging has been coupled with oral fluorescein angiography (FA), enabling simultaneous acquisition of structural and perfusion images. AOSLO offset pinhole (OP) imaging combined with motion contrast post-processing techniques, are able to create a similar set of structural and perfusion images without the use of exogenous contrast agent. In this study, we evaluate the similarities and differences of the structural and perfusion images obtained by either method, in healthy control subjects and in patients with retinal vasculopathy including hypertensive retinopathy, diabetic retinopathy, and retinal vein occlusion. Our results show that AOSLO OP motion contrast provides perfusion maps comparable to those obtained with AOSLO FA, while AOSLO OP reflectance images provide additional information such as vessel wall fine structure not as readily visible in AOSLO confocal reflectance images. AOSLO OP offers a non-invasive alternative to AOSLO FA without the need for any exogenous contrast agent.

  18. Developing a new software package for PSF estimation and fitting of adaptive optics images

    NASA Astrophysics Data System (ADS)

    Schreiber, Laura; Diolaiti, Emiliano; Sollima, Antonio; Arcidiacono, Carmelo; Bellazzini, Michele; Ciliegi, Paolo; Falomo, Renato; Foppiani, Italo; Greggio, Laura; Lanzoni, Barbara; Lombini, Matteo; Montegriffo, Paolo; Dalessandro, Emanuele; Massari, Davide

    2012-07-01

    Adaptive Optics (AO) images are characterized by structured Point Spread Function (PSF), with sharp core and extended halo, and by significant variations across the field of view. In order to enable the extraction of high-precision quantitative information and improve the scientific exploitation of AO data, efforts in the PSF modeling and in the integration of suitable models in a code for image analysis are needed. We present the current status of a study on the modeling of AO PSFs based on observational data taken with present telescopes (VLT and LBT). The methods under development include parametric models and hybrid (i.e. analytical / numerical) models adapted to various types of PSFs that can show up in AO images. The specific features of AO data, such as the mainly radial variation of the PSF with respect to the guide star position in single-reference AO, are taken into account as much as possible. The final objective of this project is the development of a flexible software package, based on the Starfinder code (Diolaiati et Al 2000), specifically dedicated to the PSF estimation and to the astrometric and photometric analysis of AO images with complex and spatially variable PSF.

  19. Strategies to overcome photobleaching in algorithm-based adaptive optics for nonlinear in-vivo imaging.

    PubMed

    Caroline Müllenbroich, M; McGhee, Ewan J; Wright, Amanda J; Anderson, Kurt I; Mathieson, Keith

    2014-01-01

    We have developed a nonlinear adaptive optics microscope utilizing a deformable membrane mirror (DMM) and demonstrated its use in compensating for system- and sample-induced aberrations. The optimum shape of the DMM was determined with a random search algorithm optimizing on either two photon fluorescence or second harmonic signals as merit factors. We present here several strategies to overcome photobleaching issues associated with lengthy optimization routines by adapting the search algorithm and the experimental methodology. Optimizations were performed on extrinsic fluorescent dyes, fluorescent beads loaded into organotypic tissue cultures and the intrinsic second harmonic signal of these cultures. We validate the approach of using these preoptimized mirror shapes to compile a robust look-up table that can be applied for imaging over several days and through a variety of tissues. In this way, the photon exposure to the fluorescent cells under investigation is limited to imaging. Using our look-up table approach, we show signal intensity improvement factors ranging from 1.7 to 4.1 in organotypic tissue cultures and freshly excised mouse tissue. Imaging zebrafish in vivo, we demonstrate signal improvement by a factor of 2. This methodology is easily reproducible and could be applied to many photon starved experiments, for example fluorescent life time imaging, or when photobleaching is a concern.

  20. Laser Guide Star Adaptive Optics Imaging Polarimetry of Herbig Ae/Be Stars

    NASA Astrophysics Data System (ADS)

    Perrin, Marshall D.; Graham, James R.; Kalas, Paul; Lloyd, James P.; Max, Claire E.; Gavel, Donald T.; Pennington, Deanna M.; Gates, Elinor L.

    2004-02-01

    We have used laser guide star adaptive optics and a near-infrared dual-channel imaging polarimeter to observe light scattered in the circumstellar environment of Herbig Ae/Be stars on scales of 100 to 300 astronomical units. We revealed a strongly polarized, biconical nebula 10 arc seconds (6000 astronomical units) in diameter around the star LkHα 198 and also observed a polarized jet-like feature associated with the deeply embedded source LkHα 198-IR. The star LkHα 233 presents a narrow, unpolarized dark lane consistent with an optically thick circumstellar disk blocking our direct view of the star. These data show that the lower-mass T Tauri and intermediate mass Herbig Ae/Be stars share a common evolutionary sequence.

  1. Pupil-transformation multiconjugate adaptive optics for solar high-resolution imaging

    NASA Astrophysics Data System (ADS)

    Ren, Deqing; Zhang, Xi; Dou, Jiangpei; Zhu, Yongtian; Broadfoot, Robert; Chapman, Julius

    2016-09-01

    We propose a multiconjugate adaptive optics (MCAO) system called pupil-transformation MCAO (PT-MCAO) for solar high-angular resolution imaging over a large field of view. The PT-MCAO, consisting of two deformable mirrors (DMs), uses a Shack-Hartmann wavefront sensor located on the telescope pupil to measure the wavefront slopes from several guide stars. The average slopes are used to control the first DM conjugated on the telescope aperture by a solar ground-layer adaptive optics (AO) approach while the remaining slopes are used to control the second DM conjugated on a high altitude by a conventional solar AO via a geometric PT. The PT-MCAO uses a similar hardware configuration as the conventional star-oriented MCAO. However, a distinctive feature of our PT-MCAO is that it avoids the construction of tomography wavefront, which is a time-consuming and complex process for the solar real-time atmospheric turbulence correction. For the PT-MCAO, current widely used and fully understood conventional solar AO closed-loop control algorithms can be directly used to control the two DMs, which greatly reduces the real-time calculation power requirement and makes the PT-MCAO easy to implement. In this publication, we discuss the PT-MCAO methodology, its unique features, and compare its performance with that of the conventional solar star-oriented MCAO systems, which demonstrate that the PT-MCAO can be immediately used for solar high-resolution imaging.

  2. Performance assessment of a pupil tracking system for adaptive optics retinal imaging

    NASA Astrophysics Data System (ADS)

    Sahin, Betul; Harms, Fabrice; Lamory, Barbara

    2008-09-01

    Adaptive Optics (AO) is particularly suitable for correction of aberrations that change over time - a necessity for high resolution imaging of the retina. The rapidly changing aberrations originating from eye movements require wavefront sensors (WFS) with high repetition rates. Our approach is enhancing aberration correction by integrating a Pupil Tracking System (PTS) into the AO loop of the retinal imaging system. In this study we assessed the performance of the PTS developed for this purpose. Tests have demonstrated that the device achieves an accuracy of <15 μm in a +/-2 mm range of eye movements with a standard deviation <10 μm. PTS can tolerate +/-5 mm defocus with an increase of 4 μm in mean standard deviation. In vivo measurements done with temporarily paralyzed pupils have resulted in a precision of approximately 13 μm.

  3. Near-IR Imaging and Spectroscopy of NGC 6240 with Adaptive Optics

    NASA Astrophysics Data System (ADS)

    Bogdanovic, T.; Ge, J.; Max, C. E.; Brandt, N. W.

    2001-12-01

    We have obtained high spatial resolution (0.15 arcsec) spectra and images in the near-infrared (NIR) of the nuclear region in NGC 6240 galaxy at the Lick 3m telescope with adaptive optics. Results from our data analysis clearly show the dominant starburst population around the nuclear region detected in prominent molecular hydrogen emission. We have also detected UV-fluorescent lines in the region of the southern nucleus which may be contributed either from a large population of hot stars or a very energetic nuclear source. H2 narrow band imaging (2.12 μ m) shows the presence of a shock and also disturbed morphology of the nuclear region. NGC 6240 is a composite galaxy hosting a luminous starburst and an active galactic nucleus (AGN) obscured by gas and dust. It is at cosmological redshift z=0.0245 and is a convenient prototype of powerful high-redshift starburst galaxies with active nuclei.

  4. Influence of wave-front sampling in adaptive optics retinal imaging

    PubMed Central

    Laslandes, Marie; Salas, Matthias; Hitzenberger, Christoph K.; Pircher, Michael

    2017-01-01

    A wide range of sampling densities of the wave-front has been used in retinal adaptive optics (AO) instruments, compared to the number of corrector elements. We developed a model in order to characterize the link between number of actuators, number of wave-front sampling points and AO correction performance. Based on available data from aberration measurements in the human eye, 1000 wave-fronts were generated for the simulations. The AO correction performance in the presence of these representative aberrations was simulated for different deformable mirror and Shack Hartmann wave-front sensor combinations. Predictions of the model were experimentally tested through in vivo measurements in 10 eyes including retinal imaging with an AO scanning laser ophthalmoscope. According to our study, a ratio between wavefront sampling points and actuator elements of 2 is sufficient to achieve high resolution in vivo images of photoreceptors. PMID:28271004

  5. Analysis of spatial lamellar distribution from adaptive-optics second harmonic generation corneal images.

    PubMed

    Bueno, Juan M; Palacios, Raquel; Chessey, Mary K; Ginis, Harilaos

    2013-07-01

    The spatial organization of stromal collagen of ex-vivo corneas has been quantified in adaptive-optics second harmonic generation (SHG) images by means of an optimized Fourier transform (FT) based analysis. At a particular depth location, adjacent lamellae often present similar orientations and run parallel to the corneal surface. However this pattern might be combined with interweaved collagen bundles leading to crosshatched structures with different orientations. The procedure here reported provides us with both principal and crosshatched angles. This is also able to automatically distinguish a random distribution from a cross-shaped one, since it uses the ratio of the axes lengths of the best-fitted ellipse of the FT data as an auxiliary parameter. The technique has successfully been applied to SHG images of healthy corneas (both stroma and Bowman's layer) of different species and to corneas undergoing cross-linking treatment.

  6. Extreme AO: The future of high-contrast imaging with adaptive optics

    NASA Astrophysics Data System (ADS)

    Macintosh, B.

    2001-05-01

    Title: Extreme AO: The future of high-contrast-imaging with adaptive optics. Adaptive optics (AO) partially cancels wavefront aberrations caused by atmospheric turbulence and can allow ground-basd telescope to reach their full diffraction-limited resolution. A fundamental limitation of all AO systems is that they have little effect on the atmospheric scattered light halo beyond a control radius roughly given by the wavelength of interest divided by the effective actuator spaceing d; for typical modern AO systems, d=60 cm and the control radius is about 0.6 arcseconds at H band. AO can still enhance contrast even beyond this radius, especially for point-source companions, by concentrating the light from the companion into a diffraction-limited spike, but the residual light remains a limitation on our ability to carry out high-contrast imaging from the ground. We will discuss potential improvements to AO over the next decade and the science they will enable. First, in the near term, high-order AO systems will soon be operational on most 8-10 m telescopes; such systems are theoretically capable of directly detecting extrasolar planets in wide (20-150 AU) orbits, and the capabilities and limitations of these systems will be discussed. Second, in the moderate term, new instrument technologies could substantially increase the performance of these systems, including exotic phase-based coronagraphs or "dark speckle" techniques. Third, it will soon be possible to construct "extreme" adaptive optics (EAO) systems, with many thousand actuators and d=5-20cm, capable of more deeply surpressing the atmospheric halo out to a much larger radius than current systems. Coronagraphs and EAO will substantially increase our sensitivity to diffuse circumstellar dust and could conceivably reach the contrast levels necessary to see giant plants around a handful of nearby stars. Finally, within a decade construction should be underway on next-generation extremely large (25-100 m) telescopes

  7. An Automated Reference Frame Selection (ARFS) Algorithm for Cone Imaging with Adaptive Optics Scanning Light Ophthalmoscopy

    PubMed Central

    Salmon, Alexander E.; Cooper, Robert F.; Langlo, Christopher S.; Baghaie, Ahmadreza; Dubra, Alfredo; Carroll, Joseph

    2017-01-01

    Purpose To develop an automated reference frame selection (ARFS) algorithm to replace the subjective approach of manually selecting reference frames for processing adaptive optics scanning light ophthalmoscope (AOSLO) videos of cone photoreceptors. Methods Relative distortion was measured within individual frames before conducting image-based motion tracking and sorting of frames into distinct spatial clusters. AOSLO images from nine healthy subjects were processed using ARFS and human-derived reference frames, then aligned to undistorted AO-flood images by nonlinear registration and the registration transformations were compared. The frequency at which humans selected reference frames that were rejected by ARFS was calculated in 35 datasets from healthy subjects, and subjects with achromatopsia, albinism, or retinitis pigmentosa. The level of distortion in this set of human-derived reference frames was assessed. Results The average transformation vector magnitude required for registration of AOSLO images to AO-flood images was significantly reduced from 3.33 ± 1.61 pixels when using manual reference frame selection to 2.75 ± 1.60 pixels (mean ± SD) when using ARFS (P = 0.0016). Between 5.16% and 39.22% of human-derived frames were rejected by ARFS. Only 2.71% to 7.73% of human-derived frames were ranked in the top 5% of least distorted frames. Conclusion ARFS outperforms expert observers in selecting minimally distorted reference frames in AOSLO image sequences. The low success rate in human frame choice illustrates the difficulty in subjectively assessing image distortion. Translational Relevance Manual reference frame selection represented a significant barrier to a fully automated image-processing pipeline (including montaging, cone identification, and metric extraction). The approach presented here will aid in the clinical translation of AOSLO imaging. PMID:28392976

  8. Penetrating the Homunculus -- Near-Infrared Adaptive Optics Images of Eta Carinae

    NASA Astrophysics Data System (ADS)

    Martin, John C.; Artigau, E.; Davidson, K.; Humphreys, R. M.; Chesneau, O.; Smith, N.

    2010-01-01

    We present the extraordinary near-infrared images of Eta Carinae obtained with the Near-Infrared Coronagraphic Camera (NICI) with adaptive optics on the Gemini South telescope just after Eta Car's 2009 spectroscopic event. The K-band continuum and continuum-subtracted narrow-band Br-gamma and H2 images show a three-winged pattern outlined by bright emitting dust in the innermost region of the ejecta around the central star. This intriguing pattern was first noticed by Chesneau et al. (2005) from earlier VLT/NaCO images and was named the "butterfly nebula.” In contrast the with the Br-gamma and H2 images, the [Fe II] image does not follow the outline of the "butterfly wings,” but instead shows a much broader, bipolar distribution traced to about 2 arcsec from the star. We suggest that the [Fe II] emission is tracing the "little Homunculus" previously observed only spectroscopically, and attributed to a bipolar outflow from Eta Car's second eruption in the 1890's. The nature of the "butterfly nebula" is debated and may be due to an ouflow or to an equatorial torus. Kinematic data is needed to measure or set limits on its expansion, age and orientation within the larger Homunculus. In this poster we also report the results of our measurements of the transverse motions of the knots and filaments that outline the "butterfly."

  9. Optimization of the open-loop liquid crystal adaptive optics retinal imaging system

    NASA Astrophysics Data System (ADS)

    Kong, Ningning; Li, Chao; Xia, Mingliang; Li, Dayu; Qi, Yue; Xuan, Li

    2012-02-01

    An open-loop adaptive optics (AO) system for retinal imaging was constructed using a liquid crystal spatial light modulator (LC-SLM) as the wavefront compensator. Due to the dispersion of the LC-SLM, there was only one illumination source for both aberration detection and retinal imaging in this system. To increase the field of view (FOV) for retinal imaging, a modified mechanical shutter was integrated into the illumination channel to control the size of the illumination spot on the fundus. The AO loop was operated in a pulsing mode, and the fundus was illuminated twice by two laser impulses in a single AO correction loop. As a result, the FOV for retinal imaging was increased to 1.7-deg without compromising the aberration detection accuracy. The correction precision of the open-loop AO system was evaluated in a closed-loop configuration; the residual error is approximately 0.0909λ (root-mean-square, RMS), and the Strehl ratio ranges to 0.7217. Two subjects with differing rates of myopia (-3D and -5D) were tested. High-resolution images of capillaries and photoreceptors were obtained.

  10. Optimization of the open-loop liquid crystal adaptive optics retinal imaging system.

    PubMed

    Kong, Ningning; Li, Chao; Xia, Mingliang; Li, Dayu; Qi, Yue; Xuan, Li

    2012-02-01

    An open-loop adaptive optics (AO) system for retinal imaging was constructed using a liquid crystal spatial light modulator (LC-SLM) as the wavefront compensator. Due to the dispersion of the LC-SLM, there was only one illumination source for both aberration detection and retinal imaging in this system. To increase the field of view (FOV) for retinal imaging, a modified mechanical shutter was integrated into the illumination channel to control the size of the illumination spot on the fundus. The AO loop was operated in a pulsing mode, and the fundus was illuminated twice by two laser impulses in a single AO correction loop. As a result, the FOV for retinal imaging was increased to 1.7-deg without compromising the aberration detection accuracy. The correction precision of the open-loop AO system was evaluated in a closed-loop configuration; the residual error is approximately 0.0909λ (root-mean-square, RMS), and the Strehl ratio ranges to 0.7217. Two subjects with differing rates of myopia (-3D and -5D) were tested. High-resolution images of capillaries and photoreceptors were obtained.

  11. 3D imaging of cone photoreceptors over extended time periods using optical coherence tomography with adaptive optics

    NASA Astrophysics Data System (ADS)

    Kocaoglu, Omer P.; Lee, Sangyeol; Jonnal, Ravi S.; Wang, Qiang; Herde, Ashley E.; Besecker, Jason; Gao, Weihua; Miller, Donald T.

    2011-03-01

    Optical coherence tomography with adaptive optics (AO-OCT) is a highly sensitive, noninvasive method for 3D imaging of the microscopic retina. The purpose of this study is to advance AO-OCT technology by enabling repeated imaging of cone photoreceptors over extended periods of time (days). This sort of longitudinal imaging permits monitoring of 3D cone dynamics in both normal and diseased eyes, in particular the physiological processes of disc renewal and phagocytosis, which are disrupted by retinal diseases such as age related macular degeneration and retinitis pigmentosa. For this study, the existing AO-OCT system at Indiana underwent several major hardware and software improvements to optimize system performance for 4D cone imaging. First, ultrahigh speed imaging was realized using a Basler Sprint camera. Second, a light source with adjustable spectrum was realized by integration of an Integral laser (Femto Lasers, λc=800nm, ▵λ=160nm) and spectral filters in the source arm. For cone imaging, we used a bandpass filter with λc=809nm and ▵λ=81nm (2.6 μm nominal axial resolution in tissue, and 167 KHz A-line rate using 1,408 px), which reduced the impact of eye motion compared to previous AO-OCT implementations. Third, eye motion artifacts were further reduced by custom ImageJ plugins that registered (axially and laterally) the volume videos. In two subjects, cone photoreceptors were imaged and tracked over a ten day period and their reflectance and outer segment (OS) lengths measured. High-speed imaging and image registration/dewarping were found to reduce eye motion to a fraction of a cone width (1 μm root mean square). The pattern of reflections in the cones was found to change dramatically and occurred on a spatial scale well below the resolution of clinical instruments. Normalized reflectance of connecting cilia (CC) and OS posterior tip (PT) of an exemplary cone was 54+/-4, 47+/-4, 48+/-6, 50+/-5, 56+/-1% and 46+/-4, 53+/-4, 52+/-6, 50+/-5, 44

  12. In Vivo Imaging of the Human Retinal Pigment Epithelial Mosaic Using Adaptive Optics Enhanced Indocyanine Green Ophthalmoscopy

    PubMed Central

    Tam, Johnny; Liu, Jianfei; Dubra, Alfredo; Fariss, Robert

    2016-01-01

    Purpose The purpose of this study was to establish that retinal pigment epithelial (RPE) cells take up indocyanine green (ICG) dye following systemic injection and that adaptive optics enhanced indocyanine green ophthalmoscopy (AO-ICG) enables direct visualization of the RPE mosaic in the living human eye. Methods A customized adaptive optics scanning light ophthalmoscope (AOSLO) was used to acquire high-resolution retinal fluorescence images of residual ICG dye in human subjects after intravenous injection at the standard clinical dose. Simultaneously, multimodal AOSLO images were also acquired, which included confocal reflectance, nonconfocal split detection, and darkfield. Imaging was performed in 6 eyes of three healthy subjects with no history of ocular or systemic diseases. In addition, histologic studies in mice were carried out. Results The AO-ICG channel successfully resolved individual RPE cells in human subjects at various time points, including 20 minutes and 2 hours after dye administration. Adaptive optics-ICG images of RPE revealed detail which could be correlated with AO dark-field images of the same cells. Interestingly, there was a marked heterogeneity in the fluorescence of individual RPE cells. Confirmatory histologic studies in mice corroborated the specific uptake of ICG by the RPE layer at a late time point after systemic ICG injection. Conclusions Adaptive optics-enhanced imaging of ICG dye provides a novel way to visualize and assess the RPE mosaic in the living human eye alongside images of the overlying photoreceptors and other cells. PMID:27564519

  13. SD-OCT and Adaptive Optics Imaging of Outer Retinal Tubulation

    PubMed Central

    King, Brett J.; Sapoznik, Kaitlyn A.; Elsner, Ann E.; Gast, Thomas J.; Papay, Joel A.; Clark, Christopher A.; Burns, Stephen A.

    2017-01-01

    ABSTRACT Purpose To investigate outer retinal tubulation (ORT) using spectral domain optical coherence tomography (SD-OCT) and an adaptive optics scanning laser ophthalmoscope (AOSLO). To document the frequency of ORT in atrophic retinal conditions and quantify ORT dimensions versus adjacent retinal layers. Methods SD-OCT images were reviewed for the presence of retinal atrophy, scarring, and/or exudation. The greatest width of each ORT was quantified. Inner and outer retinal thicknesses adjacent to and within the area of ORT were measured for 18 patients. AOSLO imaged ORTs in five subjects with direct and scattered light imaging. Results ORT was identified in 47 of 76 subjects (61.8%) and in 65 eyes via SD-OCT in a wide range of conditions and ages, and in peripapillary atrophy. ORTs appeared as finger-like projections in atrophy, seen in the en face images. AOSLO showed some ORTs with bright cones that guide light within atrophic areas. Multiply scattered light mode AOSLO visualized variegated lines (18–35 μm) radiating from ORTs. The ORTs’ width on OCT b-scan images varied from 70 to 509 μm. The inner retina at the ORT was significantly thinner than the adjacent retina, 135 vs.170 μm (P = .004), whereas the outer retina was significantly thicker, 115 vs. 80 μm (P = .03). Conclusions ORTs are quite common in eyes with retinal atrophy in various disorders. ORTs demonstrate surviving photoreceptors in tubular structures found within otherwise nonsupportive atrophic areas that lack retinal pigment epithelium and choriocapillaris. PMID:27984506

  14. Laser Guidestar Satellite for Ground-based Adaptive Optics Imaging of Geosynchronous Satellites

    NASA Astrophysics Data System (ADS)

    Marlow, W.; Carlton, A.; Yoon, H.; Clark, J.; Haughwout, C.; Cahoy, K.; Males, J.; Close, L.; Morzinski, K.

    2016-09-01

    In this study, we assess the utility of using a maneuverable nanosatellite laser guidestar from a geostationary equatorial orbit to enable ground-based, adaptive optics imaging of geosynchronous satellites with next-generation extremely large telescopes. The concept for a satellite guide star was rst discussed in the literature by Greenaway in the early 1990s, and expanded upon by Albert in 2012. With a satellite-based laser as an adaptive optics guidestar, the source laser does not need to scatter, and is well above atmospheric turbulence. When viewed from the ground through a turbulent atmosphere, the angular size of the satellite guidestar is much smaller than a back-scattered source. Advances in small satellite technology and capability allow us to revisit the concept on a 6U CubeSat, measuring 10 cm by 20 cm by 30 cm. We show that a system that uses a satellite-based laser transmitter can be relatively low power (1 W transmit power), operated intermittently, and requires little propellant to relocate within the geosynchronous belt. We present results of a design study on the feasibility of a small satellite guidestar and highlight the potential benets to the space situational awareness community.

  15. Jacobi-like method for a control algorithm in adaptive-optics imaging

    NASA Astrophysics Data System (ADS)

    Pitsianis, Nikos P.; Ellerbroek, Brent L.; Van Loan, Charles; Plemmons, Robert J.

    1998-10-01

    A study is made of a non-smooth optimization problem arising in adaptive-optics, which involves the real-time control of a deformable mirror designed to compensate for atmospheric turbulence and other dynamic image degradation factors. One formulation of this problem yields a functional f(U) equals (Sigma) iequals1n maxj[(UTMjU)ii] to be maximized over orthogonal matrices U for a fixed collection of n X n symmetric matrices Mj. We consider first the situation which can arise in practical applications where the matrices Mj are nearly pairwise commutative. Besides giving useful bounds, results for this case lead to a simple corollary providing a theoretical closed-form solution for globally maximizing f if the Mj are simultaneously diagonalizable. However, even here conventional optimization methods for maximizing f are not practical in a real-time environment. The genal optimization problem is quite difficult and is approached using a heuristic Jacobi-like algorithm. Numerical test indicate that the algorithm provides an effective means to optimize performance for some important adaptive-optics systems.

  16. The Robo-AO KOI Survey: Laser Adaptive Optics Imaging of Every Kepler Exoplanet Candidate

    NASA Astrophysics Data System (ADS)

    Ziegler, Carl; Law, Nicholas M.; Baranec, Christoph; Morton, Tim; Riddle, Reed L.

    2016-01-01

    The Robo-AO Kepler Planetary Candidate Survey is observing every Kepler planet candidate host star (KOI) with laser adaptive optics imaging to hunt for blended nearby stars which may be physically associated companions. With the unparalleled efficiency provided by the first fully robotic adaptive optics system, we perform the critical search for nearby stars (0.15" to 4.0" separation with contrasts up to 6 magnitudes) that pollute the observed planetary transit signal, contributing to inaccurate planetary characteristics or astrophysical false positives. We present approximately 3300 high resolution observations of Kepler planetary hosts from 2012-2015, with ~500 observed nearby stars. We measure an overall nearby star probability rate of 16.2±0.8%. With this large dataset, we are uniquely able to explore broad correlations between multiple star systems and the properties of the planets which they host. We then use these clues for insight into the formation and evolution of these exotic systems. Several KOIs of particular interest will be discussed, including possible quadruple star systems hosting planets and updated properties for possible rocky planets orbiting in the habitable zone.

  17. The Robo-AO KOI survey: laser adaptive optics imaging of every Kepler exoplanet candidate

    NASA Astrophysics Data System (ADS)

    Ziegler, Carl; Law, Nicholas M.; Baranec, Christoph; Morton, Tim; Riddle, Reed; Atkinson, Dani; Nofi, Larissa

    2016-07-01

    The Robo-AO Kepler Planetary Candidate Survey is observing every Kepler planet candidate host star (KOI) with laser adaptive optics imaging to hunt for blended nearby stars which may be physically associated companions. With the unparalleled efficiency provided by the first fully robotic adaptive optics system, we perform the critical search for nearby stars (0.15" to 4.0" separation with contrasts up to 6 magnitudes) that dilute the observed planetary transit signal, contributing to inaccurate planetary characteristics or astrophysical false positives. We present 3313 high resolution observations of Kepler planetary hosts from 2012-2015, discovering 479 nearby stars. We measure an overall nearby star probability rate of 14.5+/-0.8%. With this large data set, we are uniquely able to explore broad correlations between multiple star systems and the properties of the planets which they host, providing insight into the formation and evolution of planetary systems in our galaxy. Several KOIs of particular interest will be discussed, including possible quadruple star systems hosting planets and updated properties for possible rocky planets orbiting with in their star's habitable zone.

  18. Eye-pupil displacement and prediction: effects on residual wavefront in adaptive optics retinal imaging

    PubMed Central

    Kulcsár, Caroline; Raynaud, Henri-François; Garcia-Rissmann, Aurea

    2016-01-01

    This paper studies the effect of pupil displacements on the best achievable performance of retinal imaging adaptive optics (AO) systems, using 52 trajectories of horizontal and vertical displacements sampled at 80 Hz by a pupil tracker (PT) device on 13 different subjects. This effect is quantified in the form of minimal root mean square (rms) of the residual phase affecting image formation, as a function of the delay between PT measurement and wavefront correction. It is shown that simple dynamic models identified from data can be used to predict horizontal and vertical pupil displacements with greater accuracy (in terms of average rms) over short-term time horizons. The potential impact of these improvements on residual wavefront rms is investigated. These results allow to quantify the part of disturbances corrected by retinal imaging systems that are caused by relative displacements of an otherwise fixed or slowy-varying subject-dependent aberration. They also suggest that prediction has a limited impact on wavefront rms and that taking into account PT measurements in real time improves the performance of AO retinal imaging systems. PMID:27231607

  19. Eye-pupil displacement and prediction: effects on residual wavefront in adaptive optics retinal imaging.

    PubMed

    Kulcsár, Caroline; Raynaud, Henri-François; Garcia-Rissmann, Aurea

    2016-03-01

    This paper studies the effect of pupil displacements on the best achievable performance of retinal imaging adaptive optics (AO) systems, using 52 trajectories of horizontal and vertical displacements sampled at 80 Hz by a pupil tracker (PT) device on 13 different subjects. This effect is quantified in the form of minimal root mean square (rms) of the residual phase affecting image formation, as a function of the delay between PT measurement and wavefront correction. It is shown that simple dynamic models identified from data can be used to predict horizontal and vertical pupil displacements with greater accuracy (in terms of average rms) over short-term time horizons. The potential impact of these improvements on residual wavefront rms is investigated. These results allow to quantify the part of disturbances corrected by retinal imaging systems that are caused by relative displacements of an otherwise fixed or slowy-varying subject-dependent aberration. They also suggest that prediction has a limited impact on wavefront rms and that taking into account PT measurements in real time improves the performance of AO retinal imaging systems.

  20. Adaptive Optics with a Liquid-Crystal-on-Silicon Spatial Light Modulator and Its Behavior in Retinal Imaging

    NASA Astrophysics Data System (ADS)

    Shirai, Tomohiro; Takeno, Kohei; Arimoto, Hidenobu; Furukawa, Hiromitsu

    2009-07-01

    An adaptive optics system with a brand-new device of a liquid-crystal-on-silicon (LCOS) spatial light modulator (SLM) and its behavior in in vivo imaging of the human retina are described. We confirmed by experiments that closed-loop correction of ocular aberrations of the subject's eye was successfully achieved at the rate of 16.7 Hz in our system to obtain a clear retinal image in real time. The result suggests that an LCOS SLM is one of the promising candidates for a wavefront corrector in a prospective commercial ophthalmic instrument with adaptive optics.

  1. Adaptive optics imaging of QSO host galaxies with Hokupa'a on the Gemini North telescope

    NASA Astrophysics Data System (ADS)

    Guyon, O.; Sanders, D. B.; Stockton, A.; Baudoz, P.; Potter, D.

    2001-05-01

    We report the initial results of a new near-infrared imaging survey of quasar hosts using the University of Hawaii Hokupa'a Adaptive Optics system on the 8.2m Gemini-North telescope. J,H,K' images of a complete subsample ( 25) of nearby (z <0.3), "bona-fide" optically selected (MB < -23; Ho = 50, qo=0; Schmidt & Green 1983) QSOs are being taken in order to obtain accurate host galaxy magnitudes and colors and to determine two-dimensional structure. In the initial phase of our observations we found that PSF subtraction residuals were severely limiting our ability to characterize the host galaxy. However we were able to obtain a significant increase in stability of the PSF by turning off the Cassegrain rotator during observations (see Roth et al. contribution at this meeting). Our sample of Palomar-Green Bright QSOs includes both radio quiet and radio loud objects plus objects spanning the full range of observed "infrared excess" continuum emission. One of the most surprising results has been the detection of modest scale (3-5" 5 kpc diameter) "bars" and/or circumnuclear "disks" that were not evident in previous one-dimensional profile analyses. These structures may be related to the reservoir of fuel needed to power the QSO and may provide important clues concerning the origin and evolution of QSO hosts.

  2. Adaptive optics for direct detection of extrasolar planets: the Gemini Planet Imager

    NASA Astrophysics Data System (ADS)

    Macintosh, Bruce; Graham, James; Palmer, David; Doyon, Rene; Gavel, Don; Larkin, James; Oppenheimer, Ben; Saddlemyer, Leslie; Wallace, J. Kent; Bauman, Brian; Erikson, Darren; Poyneer, Lisa; Sivaramakrishnan, Anand; Soummer, Rémi; Veran, Jean-Pierre

    2007-04-01

    The direct detection of photons emitted or reflected by extrasolar planets, spatially resolved from their parent star, is a major frontier in the study of other solar systems. Direct detection will provide statistical information on planets in 5 50 AU orbits, inaccessible to current Doppler searches, and allow spectral characterization of radius, temperature, surface gravity, and perhaps composition. Achieving this will require new, dedicated, high-contrast instruments. One such system under construction is the Gemini Planet Imager (GPI). This combines a high-order/high-speed adaptive optics system to control wavefront errors from the Earth's atmosphere, an advanced coronagraph to block diffraction, ultrasmooth optics, a precision infrared interferometer to measure and correct systematic errors, and a integral field spectrograph/polarimeter to image and characterize target planetary systems. We predict that GPI will be able to detect planets with brightness less than 10-7 of their parent star, sufficient to observe warm self-luminous planets around a large population of targets. To cite this article: B. Macintosh et al., C. R. Physique 8 (2007).

  3. Adaptive Optics for Direct Detection of Extrasolar Planets: The Gemini Planet Imager

    SciTech Connect

    Macintosh, B; Graham, J; Palmer, D; Doyon, R; Gavel, D; Larkin, J; Oppenheimer, B; Saddlemyer, L; Wallace, J K; Bauman, B; Erikson, D; Poyneer, L; Sivaramakrishnan, A; Soummer, R; Veran, J

    2007-04-24

    The direct detection of photons emitted or reflected by extrasolar planets, spatially resolved from their parent star, is a major frontier in the study of other solar systems. Direct detection will provide statistical information on planets in 5-50 AU orbits, inaccessible to current Doppler searches, and allow spectral characterization of radius, temperature, surface gravity, and perhaps composition. Achieving this will require new dedicated high-contrast instruments. One such system under construction is the Gemini Planet Imager (GPI.) This combines a high-order/high-speed adaptive optics system to control wavefront errors from the Earth's atmosphere, an advanced coronagraph to block diffraction, ultrasmooth optics, a precision infrared interferometer to measure and correct systematic errors, and a integral field spectrograph/polarimeter to image and characterize target planetary systems. We predict that GPI will be able to detect planets with brightness less than 10{sup -7} of their parent star, sufficient to observe warm self-luminous planets around a large population of targets.

  4. Adaptive optics retinal imaging reveals S-cone dystrophy in tritan color-vision deficiency

    NASA Astrophysics Data System (ADS)

    Baraas, Rigmor C.; Carroll, Joseph; Gunther, Karen L.; Chung, Mina; Williams, David R.; Foster, David H.; Neitz, Maureen

    2007-05-01

    Tritan color-vision deficiency is an autosomal dominant disorder associated with mutations in the short-wavelength-sensitive- (S-) cone-pigment gene. An unexplained feature of the disorder is that individuals with the same mutation manifest different degrees of deficiency. To date, it has not been possible to examine whether any loss of S-cone function is accompanied by physical disruption in the cone mosaic. Two related tritan subjects with the same novel mutation in their S-cone-opsin gene, but different degrees of deficiency, were examined. Adaptive optics was used to obtain high-resolution retinal images, which revealed distinctly different S-cone mosaics consistent with their discrepant phenotypes. In addition, a significant disruption in the regularity of the overall cone mosaic was observed in the subject completely lacking S-cone function. These results taken together with other recent findings from molecular genetics indicate that, with rare exceptions, tritan deficiency is progressive in nature.

  5. Retinal cell imaging in myopic chickens using adaptive optics multiphoton microscopy

    PubMed Central

    Bueno, Juan M.; Palacios, Raquel; Giakoumaki, Anastasia; Gualda, Emilio J.; Schaeffel, Frank; Artal, Pablo

    2014-01-01

    Abnormal eye growth induced by visual deprivation can modify the structure and density of the retinal cells. We have used an adaptive optics multiphoton microscope to image photoreceptors (PRs) and ganglion cells (GCs) at different retinal locations in unstained retinas of chicken eyes with about 10D of myopia and their normal-sighted fellow eyes. In all samples, the local averaged inter-PR distance increased with eccentricity. No significant differences in PR density were found between control and myopic eyes. GC density declined in myopic eyes compared to control eyes and the inter-cell distance increased. In normal eyes, the size of the GC cell bodies increased approximately two-fold between the area centralis and the peripheral retina. In myopic eyes, this trend was preserved but the GC bodies were larger at each retinal location, compared to control eyes. Obviously, GC morphology is changing when the retinal area is enlarged in myopic eyes. PMID:24688804

  6. A Study of Planetary System Formation and Evolution Using a Dual Channel Adaptive Optics Imaging Polarimeter

    NASA Technical Reports Server (NTRS)

    Potter, Daniel E.

    2003-01-01

    The award I received from the Graduate Student Research Program in 2001, and the renewal award in 2002, supported the gathering and processing of my thesis data, and the presentation of my scientific results at astronomy conferences. Ultimately, this led to a successful defense of my PhD thesis. In the thesis work, I built, calibrated, and observed with the first dual imaging polarimeter ever used in series with a high order adaptive optics system and on an 8 meter class telescope. The instrument was arguably the most sensitive instrument for the high-contrast detection of the scattered light from circumstellar disks. The success of the instrument has provided the impetus for the construction of several similar simultaneous adaptive optics imaging polarimeters. In the course of the observations, a number of circumstellar disks were resolved for the first time in their scattered light, such as the disk around the classical T-tauri stars, LkCa 15 and LkHa 262. A sample of 24 young, nearby, solar-analog stars were observed with the instrument in search of the scattered light signature from debris disks around these stars. Although none of the stars revealed any obvious scattered light signatures, a meaningful limit was placed on the dust population around these stars. Also, a brown dwarf binary system was found to be a companion to one of the solar-analog stars observed, HD130948. A careful monitoring of the orbit of the binary brown dwarf will result in a dynamical mass determination of the objects, providing a valuable calibration of the physical models explaining brown dwarf evolution.

  7. Adaptive optics microscopy enhances image quality in deep layers of CLARITY processed brains of YFP-H mice

    NASA Astrophysics Data System (ADS)

    Reinig, Marc R.; Novack, Samuel W.; Tao, Xiaodong; Ermini, Florian; Bentolila, Laurent A.; Roberts, Dustin G.; MacKenzie-Graham, Allan; Godshalk, S. E.; Raven, M. A.; Kubby, Joel

    2016-03-01

    Optical sectioning of biological tissues has become the method of choice for three-dimensional histological analyses. This is particularly important in the brain were neurons can extend processes over large distances and often whole brain tracing of neuronal processes is desirable. To allow deeper optical penetration, which in fixed tissue is limited by scattering and refractive index mismatching, tissue-clearing procedures such as CLARITY have been developed. CLARITY processed brains have a nearly uniform refractive index and three-dimensional reconstructions at cellular resolution have been published. However, when imaging in deep layers at submicron resolution some limitations caused by residual refractive index mismatching become apparent, as the resulting wavefront aberrations distort the microscopic image. The wavefront can be corrected with adaptive optics. Here, we investigate the wavefront aberrations at different depths in CLARITY processed mouse brains and demonstrate the potential of adaptive optics to enable higher resolution and a better signal-to-noise ratio. Our adaptive optics system achieves high-speed measurement and correction of the wavefront with an open-loop control using a wave front sensor and a deformable mirror. Using adaptive optics enhanced microscopy, we demonstrate improved image quality wavefront, point spread function, and signal to noise in the cortex of YFP-H mice.

  8. PENETRATING THE HOMUNCULUS-NEAR-INFRARED ADAPTIVE OPTICS IMAGES OF ETA CARINAE

    SciTech Connect

    Artigau, Etienne; Martin, John C.; Humphreys, Roberta M.; Davidson, Kris; Chesneau, Olivier; Smith, Nathan

    2011-06-15

    Near-infrared adaptive optics imaging with the Near-Infrared Coronagraphic Imager (NICI) and NaCO reveal what appears to be a three-winged or lobed pattern, the 'butterfly nebula', outlined by bright Br{gamma} and H{sub 2} emission and light scattered by dust. In contrast, the [Fe II] emission does not follow the outline of the wings, but shows an extended bipolar distribution which is tracing the Little Homunculus ejected in {eta} Car's second or lesser eruption in the 1890s. Proper motions measured from the combined NICI and NaCO images together with radial velocities show that the knots and filaments that define the bright rims of the butterfly were ejected at two different epochs corresponding approximately to the great eruption and the second eruption. Most of the material is spatially distributed 10{sup 0}-20{sup 0} above and below the equatorial plane apparently behind the Little Homunculus and the larger SE lobe. The equatorial debris either has a wide opening angle or the clumps were ejected at different latitudes relative to the plane. The butterfly is not a coherent physical structure or equatorial torus but spatially separate clumps and filaments ejected at different times, and now 2000-4000 AU from the star.

  9. A fully automatic framework for cell segmentation on non-confocal adaptive optics images

    NASA Astrophysics Data System (ADS)

    Liu, Jianfei; Dubra, Alfredo; Tam, Johnny

    2016-03-01

    By the time most retinal diseases are diagnosed, macroscopic irreversible cellular loss has already occurred. Earlier detection of subtle structural changes at the single photoreceptor level is now possible, using the adaptive optics scanning light ophthalmoscope (AOSLO). This work aims to develop a fully automatic segmentation framework to extract cell boundaries from non-confocal split-detection AOSLO images of the cone photoreceptor mosaic in the living human eye. Significant challenges include anisotropy, heterogeneous cell regions arising from shading effects, and low contrast between cells and background. To overcome these challenges, we propose the use of: 1) multi-scale Hessian response to detect heterogeneous cell regions, 2) convex hulls to create boundary templates, and 3) circularlyconstrained geodesic active contours to refine cell boundaries. We acquired images from three healthy subjects at eccentric retinal regions and manually contoured cells to generate ground-truth for evaluating segmentation accuracy. Dice coefficient, relative absolute area difference, and average contour distance were 82±2%, 11±6%, and 2.0±0.2 pixels (Mean±SD), respectively. We find that strong shading effects from vessels are a main factor that causes cell oversegmentation and false segmentation of non-cell regions. Our segmentation algorithm can automatically and accurately segment photoreceptor cells on non-confocal AOSLO images, which is the first step in longitudinal tracking of cellular changes in the individual eye over the time course of disease progression.

  10. Coherent Digital Holographic Adaptive Optics

    NASA Astrophysics Data System (ADS)

    Liu, Changgeng

    A new type of adaptive optics (AO) based on the principles of digital holography (DH) is proposed and developed for the use in wide-field and confocal retinal imaging. Digital holographic adaptive optics (DHAO) dispenses with the wavefront sensor and wavefront corrector of the conventional AO system. DH is an emergent imaging technology that gives direct numerical access to the phase of the optical field, thus allowing precise control and manipulation of the optical field. Incorporation of DH in an ophthalmic imaging system can lead to versatile imaging capabilities at substantially reduced complexity and cost of the instrument. A typical conventional AO system includes several critical hardware pieces: spatial light modulator, lenslet array, and a second CCD camera in addition to the camera for imaging. The proposed DHAO system replaces these hardware components with numerical processing for wavefront measurement and compensation of aberration through the principles of DH. (Abstract shortened by UMI.).

  11. Adaptive Optics Imaging of Neptune and Titan with the W.M. Keck Telescope

    NASA Astrophysics Data System (ADS)

    Max, C.; Macintosh, B.; Gibbard, S.; Roe, H.; de Pater, I.; Ghez, A.; Acton, S.; Wizinowich, P.; Lai, O.

    1999-12-01

    We present near-IR images of Neptune and Titan with a resolution of 0.05 and 0.04 arc seconds respectively, obtained with the new adaptive optics (AO) system at the 10-m Keck II telescope. The resolution and contrast of these images allows us to fit radiative transfer atmospheric models including latitudinal and longitudinal variations. In the case of Neptune the images show both circumferential bands and bright cloud or storm features. We first model Neptune's clear atmosphere, un- contaminated by scattered light from the bright storms and bands. We can measure for the first time the precise infrared spatial extent of storm features and calculate their reflectance in broad-band and methane-absorption near-IR band-passes. These data allow us to model the changed haze distribution within the storm, relative to the clear atmosphere. In the case of Titan we use a radiative transfer model incorporating fractal haze properties, and are able to separate the contributions of Titan's atmosphere and surface to determine the optical depth of Titan's haze layer and to construct surface albedo maps. We find that Titan's trailing hemisphere is overall very dark, with a surface reflectance <0.05 consistent with the presence of solid or liquid hydrocarbons or perhaps very large-grained ice. The leading hemisphere is brighter, but with dark patches of very low albedo similar to the trailing hemisphere. These observations demonstrate that AO on an 8-10 meter telescope is a powerful new tool for the quantitative study of objects in the outer solar system, surpassing the resolution of the NICMOS instrument on the Hubble Space Telescope by a factor of 2-4. This research was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract W-7405-ENG-48.

  12. Holographic Adaptive Optics

    NASA Astrophysics Data System (ADS)

    Andersen, G.

    For the last two decades adaptive optics has been used as a technique for correcting imaging applications and directed energy/laser targeting and laser communications systems affected by atmospheric turbulence. Typically these systems are bulky and limited to <10 kHz due to large computing overhead and limited photon efficiencies. Moreover most use zonal wavefront sensors which cannot easily handle extreme scintillation or unexpected obscuration of a pre-set aperture. Here we present a compact, lightweight adaptive optics system with the potential to operate at speeds of MHz. The system utilizes a hologram to perform an all-optical wavefront analysis that removes the need for any computer. Finally, the sensing is made on a modal basis so it is largely insensitive to scintillation and obscuration. We have constructed a prototype device and will present experimental results from our research. The holographic adaptive optics system begins with the creation of a multiplexed hologram. This hologram is created by recording the maximum and minimum response functions of every actuator in the deformable mirror against a unique focused reference beam. When a wavefront of some arbitrary phase is incident on the processed hologram, a number of focal spots are created -- one pair for each actuator in the DM. The absolute phase error at each particular actuator location is simply related to the ratio of the intensity of each pair of spots. In this way we can use an array of photodetectors to give a direct readout of phase error without the need for any calculations. The advantages of holographic adaptive optics are many. To begin with, the measurement of phase error is made all optically, so the wavefront sensor directly controls the actuators in the DM without any computers. Using fast, photon counting photodetectors allows for closed loop correction limited only by the speed of the deformable mirror which in the case of MEMS devices can be 100 kHz or more. All this can be

  13. Telescope Adaptive Optics Code

    SciTech Connect

    Phillion, D.

    2005-07-28

    The Telescope AO Code has general adaptive optics capabilities plus specialized models for three telescopes with either adaptive optics or active optics systems. It has the capability to generate either single-layer or distributed Kolmogorov turbulence phase screens using the FFT. Missing low order spatial frequencies are added using the Karhunen-Loeve expansion. The phase structure curve is extremely dose to the theoreUcal. Secondly, it has the capability to simulate an adaptive optics control systems. The default parameters are those of the Keck II adaptive optics system. Thirdly, it has a general wave optics capability to model the science camera halo due to scintillation from atmospheric turbulence and the telescope optics. Although this capability was implemented for the Gemini telescopes, the only default parameter specific to the Gemini telescopes is the primary mirror diameter. Finally, it has a model for the LSST active optics alignment strategy. This last model is highly specific to the LSST

  14. Adaptive optimization of reference intensity for optical coherence imaging using galvanometric mirror tilting method

    NASA Astrophysics Data System (ADS)

    Kim, Ji-hyun; Han, Jae-Ho; Jeong, Jichai

    2015-09-01

    Integration time and reference intensity are important factors for achieving high signal-to-noise ratio (SNR) and sensitivity in optical coherence tomography (OCT). In this context, we present an adaptive optimization method of reference intensity for OCT setup. The reference intensity is automatically controlled by tilting a beam position using a Galvanometric scanning mirror system. Before sample scanning, the OCT system acquires two dimensional intensity map with normalized intensity and variables in color spaces using false-color mapping. Then, the system increases or decreases reference intensity following the map data for optimization with a given algorithm. In our experiments, the proposed method successfully corrected the reference intensity with maintaining spectral shape, enabled to change integration time without manual calibration of the reference intensity, and prevented image degradation due to over-saturation and insufficient reference intensity. Also, SNR and sensitivity could be improved by increasing integration time with automatic adjustment of the reference intensity. We believe that our findings can significantly aid in the optimization of SNR and sensitivity for optical coherence tomography systems.

  15. Robotic laser adaptive optics imaging of 715 Kepler exoplanet candidates using Robo-AO

    SciTech Connect

    Law, Nicholas M.; Ziegler, Carl; Morton, Tim; Riddle, Reed; Tendulkar, Shriharsh P.; Bui, Khanh; Dekany, Richard G.; Kulkarni, Shrinivas; Punnadi, Sujit; Baranec, Christoph; Ravichandran, Ganesh; Johnson, John Asher; Burse, Mahesh P.; Das, H. K.; Ramaprakash, A. N.

    2014-08-10

    The Robo-AO Kepler Planetary Candidate Survey is observing every Kepler planet candidate host star with laser adaptive optics imaging to search for blended nearby stars, which may be physically associated companions and/or responsible for transit false positives. In this paper, we present the results from the 2012 observing season, searching for stars close to 715 Kepler planet candidate hosts. We find 53 companions, 43 of which are new discoveries. We detail the Robo-AO survey data reduction methods including a method of using the large ensemble of target observations as mutual point-spread-function references, along with a new automated companion-detection algorithm designed for large adaptive optics surveys. Our survey is sensitive to objects from ≈0.''15 to 2.''5 separation, with magnitude differences up to Δm ≈ 6. We measure an overall nearby-star probability for Kepler planet candidates of 7.4% ± 1.0%, and calculate the effects of each detected nearby star on the Kepler-measured planetary radius. We discuss several Kepler Objects of Interest (KOIs) of particular interest, including KOI-191 and KOI-1151, which are both multi-planet systems with detected stellar companions whose unusual planetary system architecture might be best explained if they are 'coincident multiple' systems, with several transiting planets shared between the two stars. Finally, we find 98% confidence evidence that short-period giant planets are two to three times more likely than longer-period planets to be found in wide stellar binaries.

  16. Robotic Laser Adaptive Optics Imaging of 715 Kepler Exoplanet Candidates Using Robo-AO

    NASA Astrophysics Data System (ADS)

    Law, Nicholas M.; Morton, Tim; Baranec, Christoph; Riddle, Reed; Ravichandran, Ganesh; Ziegler, Carl; Johnson, John Asher; Tendulkar, Shriharsh P.; Bui, Khanh; Burse, Mahesh P.; Das, H. K.; Dekany, Richard G.; Kulkarni, Shrinivas; Punnadi, Sujit; Ramaprakash, A. N.

    2014-08-01

    The Robo-AO Kepler Planetary Candidate Survey is observing every Kepler planet candidate host star with laser adaptive optics imaging to search for blended nearby stars, which may be physically associated companions and/or responsible for transit false positives. In this paper, we present the results from the 2012 observing season, searching for stars close to 715 Kepler planet candidate hosts. We find 53 companions, 43 of which are new discoveries. We detail the Robo-AO survey data reduction methods including a method of using the large ensemble of target observations as mutual point-spread-function references, along with a new automated companion-detection algorithm designed for large adaptive optics surveys. Our survey is sensitive to objects from ≈0.''15 to 2.''5 separation, with magnitude differences up to Δm ≈ 6. We measure an overall nearby-star probability for Kepler planet candidates of 7.4% ± 1.0%, and calculate the effects of each detected nearby star on the Kepler-measured planetary radius. We discuss several Kepler Objects of Interest (KOIs) of particular interest, including KOI-191 and KOI-1151, which are both multi-planet systems with detected stellar companions whose unusual planetary system architecture might be best explained if they are "coincident multiple" systems, with several transiting planets shared between the two stars. Finally, we find 98% confidence evidence that short-period giant planets are two to three times more likely than longer-period planets to be found in wide stellar binaries.

  17. Wide-field retinal optical coherence tomography with wavefront sensorless adaptive optics for enhanced imaging of targeted regions

    PubMed Central

    Polans, James; Keller, Brenton; Carrasco-Zevallos, Oscar M.; LaRocca, Francesco; Cole, Elijah; Whitson, Heather E.; Lad, Eleonora M.; Farsiu, Sina; Izatt, Joseph A.

    2016-01-01

    The peripheral retina of the human eye offers a unique opportunity for assessment and monitoring of ocular diseases. We have developed a novel wide-field (>70°) optical coherence tomography system (WF-OCT) equipped with wavefront sensorless adaptive optics (WSAO) for enhancing the visualization of smaller (<25°) targeted regions in the peripheral retina. We iterated the WSAO algorithm at the speed of individual OCT B-scans (~20 ms) by using raw spectral interferograms to calculate the optimization metric. Our WSAO approach with a 3 mm beam diameter permitted primarily low- but also high- order peripheral wavefront correction in less than 10 seconds. In preliminary imaging studies in five normal human subjects, we quantified statistically significant changes with WSAO correction, corresponding to a 10.4% improvement in average pixel brightness (signal) and 7.0% improvement in high frequency content (resolution) when visualizing 1 mm (~3.5°) B-scans of the peripheral (>23°) retina. We demonstrated the ability of our WF-OCT system to acquire non wavefront-corrected wide-field images rapidly, which could then be used to locate regions of interest, zoom into targeted features, and visualize the same region at different time points. A pilot clinical study was conducted on seven healthy volunteers and two subjects with prodromal Alzheimer’s disease which illustrated the capability to image Drusen-like pathologies as far as 32.5° from the fovea in un-averaged volume scans. This work suggests that the proposed combination of WF-OCT and WSAO may find applications in the diagnosis and treatment of ocular, and potentially neurodegenerative, diseases of the peripheral retina, including diabetes and Alzheimer’s disease. PMID:28101398

  18. Wide-field retinal optical coherence tomography with wavefront sensorless adaptive optics for enhanced imaging of targeted regions.

    PubMed

    Polans, James; Keller, Brenton; Carrasco-Zevallos, Oscar M; LaRocca, Francesco; Cole, Elijah; Whitson, Heather E; Lad, Eleonora M; Farsiu, Sina; Izatt, Joseph A

    2017-01-01

    The peripheral retina of the human eye offers a unique opportunity for assessment and monitoring of ocular diseases. We have developed a novel wide-field (>70°) optical coherence tomography system (WF-OCT) equipped with wavefront sensorless adaptive optics (WSAO) for enhancing the visualization of smaller (<25°) targeted regions in the peripheral retina. We iterated the WSAO algorithm at the speed of individual OCT B-scans (~20 ms) by using raw spectral interferograms to calculate the optimization metric. Our WSAO approach with a 3 mm beam diameter permitted primarily low- but also high- order peripheral wavefront correction in less than 10 seconds. In preliminary imaging studies in five normal human subjects, we quantified statistically significant changes with WSAO correction, corresponding to a 10.4% improvement in average pixel brightness (signal) and 7.0% improvement in high frequency content (resolution) when visualizing 1 mm (~3.5°) B-scans of the peripheral (>23°) retina. We demonstrated the ability of our WF-OCT system to acquire non wavefront-corrected wide-field images rapidly, which could then be used to locate regions of interest, zoom into targeted features, and visualize the same region at different time points. A pilot clinical study was conducted on seven healthy volunteers and two subjects with prodromal Alzheimer's disease which illustrated the capability to image Drusen-like pathologies as far as 32.5° from the fovea in un-averaged volume scans. This work suggests that the proposed combination of WF-OCT and WSAO may find applications in the diagnosis and treatment of ocular, and potentially neurodegenerative, diseases of the peripheral retina, including diabetes and Alzheimer's disease.

  19. LGSD/NGSD: high speed visible CMOS imagers for E-ELT adaptive optics

    NASA Astrophysics Data System (ADS)

    Downing, Mark; Kolb, Johann; Dierickx, Bart; Defernez, Arnaud; Feautrier, Philippe; Fryer, Martin; Gach, Jean-Luc; Jerram, Paul; Jorden, Paul; Meyer, Manfred; Pike, Andrew; Reyes, Javier; Stadler, Eric; Swift, Nick

    2016-08-01

    The success of the next generation of instruments for ELT class telescopes will depend upon improving the image quality by exploiting sophisticated Adaptive Optics (AO) systems. One of the critical components of the AO systems for the European Extremely Large Telescope (E-ELT) has been identified as the Large Visible Laser/Natural Guide Star AO Wavefront Sensing (WFS) detector. The combination of large format, 1600x1600 pixels to finely sample the wavefront and the spot elongation of laser guide stars (LGS), fast frame rate of 700 frames per second (fps), low read noise (< 3e-), and high QE (> 90%) makes the development of this device extremely challenging. Results of design studies concluded that a highly integrated Backside Illuminated CMOS Imager built on High Resistivity silicon as the most suitable technology. Two generations of the CMOS Imager are planned: a) a smaller `pioneering' device of > 800x800 pixels capable of meeting first light needs of the E-ELT. The NGSD, the topic of this paper, is the first iteration of this device; b) the larger full sized device called LGSD. The NGSD has come out of production, it has been thinned to 12μm, backside processed and packaged in a custom 370pin Ceramic PGA (Pin Grid Array). Results of comprehensive tests performed both at e2v and ESO are presented that validate the choice of CMOS Imager as the correct technology for the E-ELT Large Visible WFS Detector. These results along with plans for a second iteration to improve two issues of hot pixels and cross-talk are presented.

  20. Image based deformable mirror control for adaptive optics in satellite telescope

    NASA Astrophysics Data System (ADS)

    Miyamura, Norihide

    2012-07-01

    We are developing an adaptive optics system for earth observing remote sensing sensor. In this system, high spatial resolution has to be achieved by a lightweight sensor system due to the launcher’s requirements. Moreover, simple hardware architecture has to be selected to achieve high reliability. Image based AOS realize these requirements without wavefront sensor. In remote sensing, it is difficult to use a reference point source unless the satellite controls its attitude toward a star or it has a reference point source in itself. We propose the control algorithm of the deformable mirror on the basis of the extended scene instead of the point source. In our AOS, a cost function is defined using acquired images on the basis of the contrast in spatial or Fourier domain. The cost function is optimized varying the input signal of each actuator of the deformable mirror. In our system, the deformable mirror has 140 actuators. We use basis functions to reduce the number of the input parameters to realize real-time control. We constructed the AOS for laboratory test, and proved that the modulated wavefront by DM almost consists with the ideal one by directly measured using a Shack- Hartmann wavefront sensor as a reference.

  1. Laser guide star adaptive optics imaging polarimetry of Herbig Ae/Be stars

    NASA Astrophysics Data System (ADS)

    Perrin, Marshall D.; Graham, James R.; Kalas, Paul; Lloyd, James P.; Max, Claire E.; Gavel, Donald T.; Pennington, Deanna M.; Gates, Elinor L.

    2004-10-01

    Current and future large telescopes depend critically on laser guide star adaptive optics (LGS AO) to achieve their scientific goals. However, there are still relatively few scientific results reported from existing LGS AO systems. We present some of the first science results from the Lick Observatory sodium beacon LGS AO system. We achieve high sensitivity to light scattered in the circumstellar enviroment of Herbig Ae/Be stars on scales of 100-200 AU by coupling the LGS AO system to a near-infrared (J,H,Ks bands) dual channel imaging polarimeter. We describe the design, implementation, and performance of this instrument. The dominant noise source near bright stars in AO images is a "seeing halo" of uncorrected speckles, and since these speckles are unpolarized, dual-channel polarimetry achieves a significant contrast gain. Our observations reveal a wide range of morphologies, including bipolar nebulosities with and without outflow-evacuated cavities and disk-mediated interaction among members of a binary. These data suggest that the evolutionary picture developed for the lower-mass T Tauri stars is also relevant to the Herbig Ae/Be stars, and demonstrate the ability of LGS AO systems to enhance the scientific capabilities of even modest sized telescopes.

  2. ABISM: an interactive image quality assessment tool for adaptive optics instruments

    NASA Astrophysics Data System (ADS)

    Girard, Julien H.; Tourneboeuf, Martin

    2016-07-01

    ABISM (Automatic Background Interactive Strehl Meter) is a interactive tool to evaluate the image quality of astronomical images. It works on seeing-limited point spread functions (PSF) but was developed in particular for diffraction-limited PSF produced by adaptive optics (AO) systems. In the VLT service mode (SM) operations framework, ABISM is designed to help support astronomers or telescope and instruments operators (TIOs) to quickly measure the Strehl ratio (SR) during or right after an observing block (OB) to evaluate whether it meets the requirements/predictions or whether is has to be repeated and will remain in the SM queue. It's a Python-based tool with a graphical user interface (GUI) that can be used with little AO knowledge. The night astronomer (NA) or Telescope and Instrument Operator (TIO) can launch ABISM in one click and the program is able to read keywords from the FITS header to avoid mistakes. A significant effort was also put to make ABISM as robust (and forgiven) with a high rate of repeatability. As a matter of fact, ABISM is able to automatically correct for bad pixels, eliminate stellar neighbours and estimate/fit properly the background, etc.

  3. Full Adaptive Optics Images of ADS 9731 and MU Cassiopeiae: Orbits and Masses

    NASA Astrophysics Data System (ADS)

    Drummond, Jack D.; Christou, Julian C.; Fugate, Robert Q.

    1995-09-01

    The double double ADS 9731 and the nearby Population II astrometric binary μ Cas have been imaged with full adaptive optics employed at the 1.5 m telescope belonging to the USAF Phillips Laboratory's Starfire Optical Range near Albuquerque, New Mexico. On 1994 May 4 at a wavelength of 0.85 μm, the Δmag values and separations for ADS 9731 components AB were observed to be 2.19 and 1".27, 0.90 and 1".55 for CD, and 0.40 and 14".8 between A and C. Combining these observations with earlier ones, we have obtained circular, highly inclined, long-period (834 and 1230 yr) preliminary orbits for both pairs and derived their masses along with other astrophysical quantities. However, consideration of stellar evolutionary models leads to a disagreement in the derived distance to the system (108.1 pc) and/or masses, which will perhaps be resolved by subsequent orbital refinement. The first ever real-time images at short wavelengths (<1 μm) of the faint companion to the astrometric binary μ Cas A component were easily made at 0.85 microns on 1994 August 28 and October 22, with movement noted between the two dates. The Δmag value was determined to be 4.9±0.1, and the separation on the two dates was 0".73 and 0".66. Combining our measurements with astrometric data from both Sproul and Allegheny Observatories, we make a simultaneous fit for a new master orbit and find masses of 0.742±0.059 and 0.173±0.011 Msun for A and B, respectively. From further analysis we derive a presumably primordial helium abundance f6r μ Cas of Y = 0.24±0.07 for an assumed age of 1010 yr and the latest measured metallicity of Z = 0.0021.

  4. Adaptive Optics Imaging and Spectroscopy of Cygnus A. I. Evidence for a Minor Merger

    NASA Astrophysics Data System (ADS)

    Canalizo, Gabriela; Max, Claire; Whysong, David; Antonucci, Robert; Dahm, Scott E.

    2003-11-01

    We present Keck II adaptive optics near-infrared imaging and spectroscopic observations of the central regions of the powerful radio galaxy Cyg A. The 0.05" resolution images clearly show an unresolved nucleus between two spectacular ionization/scattering cones. We report the discovery of a relatively bright (K'~19) secondary point source 0.4" or 400 pc in projection southwest of the radio nucleus. The object is also visible in archival Hubble Space Telescope optical images, although it is easily confused with the underlying structure of the host. Although the near-infrared colors of this secondary point source are roughly consistent with those of an L dwarf, its spectrum and optical-to-infrared spectral energy distribution (SED) virtually rule out the possibility that it may be any foreground projected object. We conclude that the secondary point source is likely to be an extragalactic object associated with Cyg A. We consider several interpretations of the nature of this object, including: a young star cluster peering through the dust at the edge of one of the ionization cones; an older, large globular cluster; a compact cloud of dust or electrons that is acting as a mirror of the hidden active nucleus; and the dense core of a gas-stripped satellite galaxy that is merging with the giant elliptical host. The data presented here are most consistent with the minor merger scenario. The spectra and SED of the object suggest that it may be a densely packed conglomeration of older stars heavily extincted by dust, and its high luminosity and compact nature are consistent with those of a satellite that has been stripped to its tidal radius. Further spectroscopic observations are nevertheless necessary to confirm this possibility. Based on observations with the NASA/ESA Hubble Space Telescope, obtained from the data archive at the Space Telescope Science Institute. STScI is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS

  5. Adaptation of adaptive optics systems.

    NASA Astrophysics Data System (ADS)

    Xin, Yu; Zhao, Dazun; Li, Chen

    1997-10-01

    In the paper, a concept of an adaptation of adaptive optical system (AAOS) is proposed. The AAOS has certain real time optimization ability against the variation of the brightness of detected objects m, atmospheric coherence length rO and atmospheric time constant τ by means of changing subaperture number and diameter, dynamic range, and system's temporal response. The necessity of AAOS using a Hartmann-Shack wavefront sensor and some technical approaches are discussed. Scheme and simulation of an AAOS with variable subaperture ability by use of both hardware and software are presented as an example of the system.

  6. Adaptive Optics for Large Telescopes

    SciTech Connect

    Olivier, S

    2008-06-27

    The use of adaptive optics was originally conceived by astronomers seeking to correct the blurring of images made with large telescopes due to the effects of atmospheric turbulence. The basic idea is to use a device, a wave front corrector, to adjust the phase of light passing through an optical system, based on some measurement of the spatial variation of the phase transverse to the light propagation direction, using a wave front sensor. Although the original concept was intended for application to astronomical imaging, the technique can be more generally applied. For instance, adaptive optics systems have been used for several decades to correct for aberrations in high-power laser systems. At Lawrence Livermore National Laboratory (LLNL), the world's largest laser system, the National Ignition Facility, uses adaptive optics to correct for aberrations in each of the 192 beams, all of which must be precisely focused on a millimeter scale target in order to perform nuclear physics experiments.

  7. Penetrating the Homunculus—Near-Infrared Adaptive Optics Images of Eta Carinae

    NASA Astrophysics Data System (ADS)

    Artigau, Étienne; Martin, John C.; Humphreys, Roberta M.; Davidson, Kris; Chesneau, Olivier; Smith, Nathan

    2011-06-01

    Near-infrared adaptive optics imaging with the Near-Infrared Coronagraphic Imager (NICI) and NaCO reveal what appears to be a three-winged or lobed pattern, the "butterfly nebula," outlined by bright Brγ and H2 emission and light scattered by dust. In contrast, the [Fe II] emission does not follow the outline of the wings, but shows an extended bipolar distribution which is tracing the Little Homunculus ejected in η Car's second or lesser eruption in the 1890s. Proper motions measured from the combined NICI and NaCO images together with radial velocities show that the knots and filaments that define the bright rims of the butterfly were ejected at two different epochs corresponding approximately to the great eruption and the second eruption. Most of the material is spatially distributed 10°-20° above and below the equatorial plane apparently behind the Little Homunculus and the larger SE lobe. The equatorial debris either has a wide opening angle or the clumps were ejected at different latitudes relative to the plane. The butterfly is not a coherent physical structure or equatorial torus but spatially separate clumps and filaments ejected at different times, and now 2000-4000 AU from the star. Based on observations obtained at the Gemini Observatory (program ID: GS-2008B-DD-6), which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the Science and Technology Facilities Council (United Kingdom), the National Research Council (Canada), CONICYT (Chile), the Australian Research Council (Australia), Ministério da Ciência e Tecnologia (Brazil), and Ministerio de Ciencia, Tecnología e Innovación Productiva (Argentina).

  8. First significant image improvement from a sodium-layer laser guide star adaptive optics system at Lick Observatory

    SciTech Connect

    Olivier, S.S.; Max, C.E.; Friedman, H.W.; An, J.; Avicola, K.; Beeman, B.V.; Bissinger, H.D.; Brase, J.M.; Erbert, G.V.; Gavel, D.T.; Kanz, K.; Macintosh, B.; Neeb, K.P.; Waltjen, K.E.

    1997-07-14

    Atmospheric turbulence severely limits the resolution of ground-based telescopes. Adaptive optics can correct for the aberrations caused by the atmosphere, but requires a bright wavefront reference source in close angular proximity to the object being imaged. Since natural reference stars of the necessary brightness are relatively rare, methods of generating artificial reference beacons have been under active investigation for more than a decade. In this paper, we report the first significant image improvement achieved using a sodium-layer laser guide star as a wavefront reference for a high- order adaptive optics system. An artificial beacon was created by resonant scattering from atomic sodium in the mesosphere, at an altitude of 95 km. Using this laser guide star, an adaptive optics system on the 3 m Shane Telescope at Lick Observatory produced a factor of 2.4 increase in peak intensity and a factor of 2 decrease in full width at half maximum of a stellar image, compared with image motion compensation alone. The Strehl ratio when using the laser guide star as the reference was 65% of that obtained with a natural guide star, and the image full widths at half maximum were identical, 0.3 arc sec, using either the laser or the natural guide star. This sodium-layer laser guide star technique holds great promise for the world`s largest telescopes. 24 refs., 4 figs., 1 tab.

  9. Understanding the changes of cone reflectance in adaptive optics flood illumination retinal images over three years.

    PubMed

    Mariotti, Letizia; Devaney, Nicholas; Lombardo, Giuseppe; Lombardo, Marco

    2016-07-01

    Although there is increasing interest in the investigation of cone reflectance variability, little is understood about its characteristics over long time scales. Cone detection and its automation is now becoming a fundamental step in the assessment and monitoring of the health of the retina and in the understanding of the photoreceptor physiology. In this work we provide an insight into the cone reflectance variability over time scales ranging from minutes to three years on the same eye, and for large areas of the retina (≥ 2.0 × 2.0 degrees) at two different retinal eccentricities using a commercial adaptive optics (AO) flood illumination retinal camera. We observed that the difference in reflectance observed in the cones increases with the time separation between the data acquisitions and this may have a negative impact on algorithms attempting to track cones over time. In addition, we determined that displacements of the light source within 0.35 mm of the pupil center, which is the farthest location from the pupil center used by operators of the AO camera to acquire high-quality images of the cone mosaic in clinical studies, does not significantly affect the cone detection and density estimation.

  10. Understanding the changes of cone reflectance in adaptive optics flood illumination retinal images over three years

    PubMed Central

    Mariotti, Letizia; Devaney, Nicholas; Lombardo, Giuseppe; Lombardo, Marco

    2016-01-01

    Although there is increasing interest in the investigation of cone reflectance variability, little is understood about its characteristics over long time scales. Cone detection and its automation is now becoming a fundamental step in the assessment and monitoring of the health of the retina and in the understanding of the photoreceptor physiology. In this work we provide an insight into the cone reflectance variability over time scales ranging from minutes to three years on the same eye, and for large areas of the retina (≥ 2.0 × 2.0 degrees) at two different retinal eccentricities using a commercial adaptive optics (AO) flood illumination retinal camera. We observed that the difference in reflectance observed in the cones increases with the time separation between the data acquisitions and this may have a negative impact on algorithms attempting to track cones over time. In addition, we determined that displacements of the light source within 0.35 mm of the pupil center, which is the farthest location from the pupil center used by operators of the AO camera to acquire high-quality images of the cone mosaic in clinical studies, does not significantly affect the cone detection and density estimation. PMID:27446708

  11. The Orion fingers: Near-IR adaptive optics imaging of an explosive protostellar outflow

    NASA Astrophysics Data System (ADS)

    Bally, John; Ginsburg, Adam; Silvia, Devin; Youngblood, Allison

    2015-07-01

    Aims: Adaptive optics (AO) images are used to test the hypothesis that the explosive BN/KL outflow from the Orion OMC1 cloud core was powered by the dynamical decay of a non-hierarchical system of massive stars. Methods: Narrow-band H2, [Fe ii], and broad-band Ks obtained with the Gemini South multi-conjugate AO system GeMS and near-IR imager GSAOI are presented. The images reach resolutions of 0.08 to 0.10'', close to the 0.07'' diffraction limit of the 8-m telescope at 2.12 μm. Comparison with previous AO-assisted observations of sub-fields and other ground-based observations enable measurements of proper motions and the investigation of morphological changes in H2 and [Fe ii] features with unprecedented precision. The images are compared with numerical simulations of compact, high-density clumps moving ~103 times their own diameter through a lower density medium at Mach 103. Results: Several sub-arcsecond H2 features and many [Fe ii] "fingertips" on the projected outskirts of the flow show proper motions of ~300 km s-1. High-velocity, sub-arcsecond H2 knots ("bullets") are seen as far as 140'' from their suspected ejection site. If these knots propagated through the dense Orion A cloud, their survival sets a lower bound on their densities of order 107 cm-3, consistent with an origin within a few au of a massive star and accelerated by a final multi-body dynamic encounter that ejected the BN object and radio source I from OMC1 about 500 yr ago. Conclusions: Over 120 high-velocity bow-shocks propagating in nearly all directions from the OMC1 cloud core provide evidence for an explosive origin for the BN/KL outflow triggered by the dynamic decay of a non-hierarchical system of massive stars. Such events may be linked to the origin of runaway, massive stars. The final set of FITS files is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/579/A130

  12. Adaptive optics optical coherence tomography in glaucoma.

    PubMed

    Dong, Zachary M; Wollstein, Gadi; Wang, Bo; Schuman, Joel S

    2017-03-01

    Since the introduction of commercial optical coherence tomography (OCT) systems, the ophthalmic imaging modality has rapidly expanded and it has since changed the paradigm of visualization of the retina and revolutionized the management and diagnosis of neuro-retinal diseases, including glaucoma. OCT remains a dynamic and evolving imaging modality, growing from time-domain OCT to the improved spectral-domain OCT, adapting novel image analysis and processing methods, and onto the newer swept-source OCT and the implementation of adaptive optics (AO) into OCT. The incorporation of AO into ophthalmic imaging modalities has enhanced OCT by improving image resolution and quality, particularly in the posterior segment of the eye. Although OCT previously captured in-vivo cross-sectional images with unparalleled high resolution in the axial direction, monochromatic aberrations of the eye limit transverse or lateral resolution to about 15-20 μm and reduce overall image quality. In pairing AO technology with OCT, it is now possible to obtain diffraction-limited resolution images of the optic nerve head and retina in three-dimensions, increasing resolution down to a theoretical 3 μm(3). It is now possible to visualize discrete structures within the posterior eye, such as photoreceptors, retinal nerve fiber layer bundles, the lamina cribrosa, and other structures relevant to glaucoma. Despite its limitations and barriers to widespread commercialization, the expanding role of AO in OCT is propelling this technology into clinical trials and onto becoming an invaluable modality in the clinician's arsenal.

  13. Intelligent Optical Systems Using Adaptive Optics

    NASA Technical Reports Server (NTRS)

    Clark, Natalie

    2012-01-01

    Until recently, the phrase adaptive optics generally conjured images of large deformable mirrors being integrated into telescopes to compensate for atmospheric turbulence. However, the development of smaller, cheaper devices has sparked interest for other aerospace and commercial applications. Variable focal length lenses, liquid crystal spatial light modulators, tunable filters, phase compensators, polarization compensation, and deformable mirrors are becoming increasingly useful for other imaging applications including guidance navigation and control (GNC), coronagraphs, foveated imaging, situational awareness, autonomous rendezvous and docking, non-mechanical zoom, phase diversity, and enhanced multi-spectral imaging. The active components presented here allow flexibility in the optical design, increasing performance. In addition, the intelligent optical systems presented offer advantages in size and weight and radiation tolerance.

  14. Robust optical flow using adaptive Lorentzian filter for image reconstruction under noisy condition

    NASA Astrophysics Data System (ADS)

    Kesrarat, Darun; Patanavijit, Vorapoj

    2017-02-01

    In optical flow for motion allocation, the efficient result in Motion Vector (MV) is an important issue. Several noisy conditions may cause the unreliable result in optical flow algorithms. We discover that many classical optical flows algorithms perform better result under noisy condition when combined with modern optimized model. This paper introduces effective robust models of optical flow by using Robust high reliability spatial based optical flow algorithms using the adaptive Lorentzian norm influence function in computation on simple spatial temporal optical flows algorithm. Experiment on our proposed models confirm better noise tolerance in optical flow's MV under noisy condition when they are applied over simple spatial temporal optical flow algorithms as a filtering model in simple frame-to-frame correlation technique. We illustrate the performance of our models by performing an experiment on several typical sequences with differences in movement speed of foreground and background where the experiment sequences are contaminated by the additive white Gaussian noise (AWGN) at different noise decibels (dB). This paper shows very high effectiveness of noise tolerance models that they are indicated by peak signal to noise ratio (PSNR).

  15. Keck adaptive optics images of Jupiter's north polar cap and Northern Red Oval

    NASA Astrophysics Data System (ADS)

    de Pater, Imke; Wong, Michael H.; de Kleer, Katherine; Hammel, Heidi B.; Ádámkovics, Máté; Conrad, Al

    2011-06-01

    We present observations at near-infrared wavelengths (1-5 μm) of Jupiter's north polar region and Northern Red Oval (NN-LRS-1). The observations were taken with the near-infrared camera NIRC2 coupled to the adaptive optics system on the 10-m W.M. Keck Telescope on UT 21 August 2010. At 5-μm Jupiter's disk reveals considerable structure, including small bright rings which appear to surround all small vortices. It is striking, though, that no such ring is seen around the Northern Red Oval. In de Pater et al. [2010a. Icarus 210, 742-762], we showed that such rings also exist around all small vortices in Jupiter's southern hemisphere, and are absent around the Great Red Spot and Red Oval BA. We show here that the vertical structure and extent of the Northern Red Oval is very similar to that of Jupiter's Red Oval BA. These new observations of the Northern Red Oval, therefore, support the idea of a dichotomy between small and large anticyclones, in which ovals larger than about two Rossby deformation radii do not have 5-μm bright rings. In de Pater et al. [2010a. Icarus 210, 742-762], we explained this difference in terms of the secondary circulations within the vortices. We further compare the brightness distribution of our new 5-μm images with previously published radio observations of Jupiter, highlighting the depletion of NH 3 gas over areas that are bright at 5 μm.

  16. ADAPTIVE OPTICS IMAGES. II. 12 KEPLER OBJECTS OF INTEREST AND 15 CONFIRMED TRANSITING PLANETS

    SciTech Connect

    Adams, E. R.; Dupree, A. K.; Kulesa, C.; McCarthy, D.

    2013-07-01

    All transiting planet observations are at risk of contamination from nearby, unresolved stars. Blends dilute the transit signal, causing the planet to appear smaller than it really is, or producing a false positive detection when the target star is blended with an eclipsing binary. High spatial resolution adaptive optics images are an effective way of resolving most blends. Here we present visual companions and detection limits for 12 Kepler planet candidate host stars, of which 4 have companions within 4''. One system (KOI 1537) consists of two similar-magnitude stars separated by 0.''1, while KOI 174 has a companion at 0.''5. In addition, observations were made of 15 transiting planets that were previously discovered by other surveys. The only companion found within 1'' of a known planet is the previously identified companion to WASP-2b. An additional four systems have companions between 1'' and 4'': HAT-P-30b (3.''7, {Delta}Ks = 2.9), HAT-P-32b (2.''9, {Delta}Ks = 3.4), TrES-1b (2.''3, {Delta}Ks = 7.7), and WASP-P-33b (1.''9, {Delta}Ks = 5.5), some of which have not been reported previously. Depending on the spatial resolution of the transit photometry for these systems, these companion stars may require a reassessment of the planetary parameters derived from transit light curves. For all systems observed, we report the limiting magnitudes beyond which additional fainter objects located 0.''1-4'' from the target may still exist.

  17. White Light Schlieren Optics Using Bacteriorhodopsin as an Adaptive Image Grid

    NASA Technical Reports Server (NTRS)

    Peale, Robert; Ruffin, Boh; Donahue, Jeff; Barrett, Carolyn

    1996-01-01

    A Schlieren apparatus using a bacteriorhodopsin film as an adaptive image grid with white light illumination is demonstrated for the first time. The time dependent spectral properties of the film are characterized. Potential applications include a single-ended Schlieren system for leak detection.

  18. Progress on Developing Adaptive Optics-Optical Coherence Tomography for In Vivo Retinal Imaging: Monitoring and Correction of Eye Motion Artifacts.

    PubMed

    Zawadzki, Robert J; Capps, Arlie G; Kim, Dae Yu; Panorgias, Athanasios; Stevenson, Scott B; Hamann, Bernd; Werner, John S

    2014-03-01

    Recent progress in retinal image acquisition techniques, including optical coherence tomography (OCT) and scanning laser ophthalmoscopy (SLO), combined with improved performance of adaptive optics (AO) instrumentation, has resulted in improvement in the quality of in vivo images of cellular structures in the human retina. Here, we present a short review of progress on developing AO-OCT instruments. Despite significant progress in imaging speed and resolution, eye movements present during acquisition of a retinal image with OCT introduce motion artifacts into the image, complicating analysis and registration. This effect is especially pronounced in high-resolution datasets acquired with AO-OCT instruments. Several retinal tracking systems have been introduced to correct retinal motion during data acquisition. We present a method for correcting motion artifacts in AO-OCT volume data after acquisition using simultaneously captured adaptive optics-scanning laser ophthalmoscope (AO-SLO) images. We extract transverse eye motion data from the AO-SLO images, assign a motion adjustment vector to each AO-OCT A-scan, and re-sample from the scattered data back onto a regular grid. The corrected volume data improve the accuracy of quantitative analyses of microscopic structures.

  19. Concept for image-guided vitreo-retinal fs-laser surgery: adaptive optics and optical coherence tomography for laser beam shaping and positioning

    NASA Astrophysics Data System (ADS)

    Matthias, Ben; Brockmann, Dorothee; Hansen, Anja; Horke, Konstanze; Knoop, Gesche; Gewohn, Timo; Zabic, Miroslav; Krüger, Alexander; Ripken, Tammo

    2015-03-01

    Fs-lasers are well established in ophthalmic surgery as high precision tools for corneal flap cutting during laser in situ keratomileusis (LASIK) and increasingly utilized for cutting the crystalline lens, e.g. in assisting cataract surgery. For addressing eye structures beyond the cornea, an intraoperative depth resolved imaging is crucial to the safety and success of the surgical procedure due to interindividual anatomical disparities. Extending the field of application even deeper to the posterior eye segment, individual eye aberrations cannot be neglected anymore and surgery with fs-laser is impaired by focus degradation. Our demonstrated concept for image-guided vitreo-retinal fs-laser surgery combines adaptive optics (AO) for spatial beam shaping and optical coherence tomography (OCT) for focus positioning guidance. The laboratory setup comprises an adaptive optics assisted 800 nm fs-laser system and is extended by a Fourier domain optical coherence tomography system. Phantom structures are targeted, which mimic tractional epiretinal membranes in front of excised porcine retina within an eye model. AO and OCT are set up to share the same scanning and focusing optics. A Hartmann-Shack sensor is employed for aberration measurement and a deformable mirror for aberration correction. By means of adaptive optics the threshold energy for laser induced optical breakdown is lowered and cutting precision is increased. 3D OCT imaging of typical ocular tissue structures is achieved with sufficient resolution and the images can be used for orientation of the fs-laser beam. We present targeted dissection of the phantom structures and its evaluation regarding retinal damage.

  20. Adaptive optical zoom sensor.

    SciTech Connect

    Sweatt, William C.; Bagwell, Brett E.; Wick, David Victor

    2005-11-01

    In order to optically vary the magnification of an imaging system, continuous mechanical zoom lenses require multiple optical elements and use fine mechanical motion to precisely adjust the separations between individual or groups of lenses. By incorporating active elements into the optical design, we have designed and demonstrated imaging systems that are capable of variable optical magnification with no macroscopic moving parts. Changing the effective focal length and magnification of an imaging system can be accomplished by adeptly positioning two or more active optics in the optical design and appropriately adjusting the optical power of those elements. In this application, the active optics (e.g. liquid crystal spatial light modulators or deformable mirrors) serve as variable focal-length lenses. Unfortunately, the range over which currently available devices can operate (i.e. their dynamic range) is relatively small. Therefore, the key to this concept is to create large changes in the effective focal length of the system with very small changes in the focal lengths of individual elements by leveraging the optical power of conventional optical elements surrounding the active optics. By appropriately designing the optical system, these variable focal-length lenses can provide the flexibility necessary to change the overall system focal length, and therefore magnification, that is normally accomplished with mechanical motion in conventional zoom lenses.

  1. Retinal damage in chloroquine maculopathy, revealed by high resolution imaging: a case report utilizing adaptive optics scanning laser ophthalmoscopy.

    PubMed

    Bae, Eun Jin; Kim, Kyoung Rae; Tsang, Stephen H; Park, Sung Pyo; Chang, Stanley

    2014-02-01

    A 53-year-old Asian woman was treated with hydroxychloroquine and chloroquine for lupus erythematosus. Within a few years, she noticed circle-shaped shadows in her central vision. Upon examination, the patient's visual acuity was 20 / 25 in both eyes. Humphrey visual field (HVF) testing revealed a central visual defect, and fundoscopy showed a ring-shaped area of parafoveal retinal pigment epithelium depigmentation. Fundus autofluorescence imaging showed a hypofluorescent lesion consistent with bull's eye retinopathy. Adaptive optics scanning laser ophthalmoscope (AO-SLO) revealed patch cone mosaic lesions, in which cones were missing or lost. In addition, the remaining cones consisted of asymmetrical shapes and sizes that varied in brightness. Unlike previous studies employing deformable mirrors for wavefront aberration correction, our AO-SLO approach utilized dual liquid crystal on silicon spatial light modulators. Thus, by using AO-SLO, we were able to create a photographic montage consisting of high quality images. Disrupted cone AO-SLO images were matched with visual field test results and functional deficits were associated with a precise location on the montage, which allowed correlation of histological findings with functional changes determined by HVF. We also investigated whether adaptive optics imaging was more sensitive to anatomical changes compared with spectral-domain optical coherence tomography.

  2. Solar Adaptive Optics.

    PubMed

    Rimmele, Thomas R; Marino, Jose

    Adaptive optics (AO) has become an indispensable tool at ground-based solar telescopes. AO enables the ground-based observer to overcome the adverse effects of atmospheric seeing and obtain diffraction limited observations. Over the last decade adaptive optics systems have been deployed at major ground-based solar telescopes and revitalized ground-based solar astronomy. The relatively small aperture of solar telescopes and the bright source make solar AO possible for visible wavelengths where the majority of solar observations are still performed. Solar AO systems enable diffraction limited observations of the Sun for a significant fraction of the available observing time at ground-based solar telescopes, which often have a larger aperture than equivalent space based observatories, such as HINODE. New ground breaking scientific results have been achieved with solar adaptive optics and this trend continues. New large aperture telescopes are currently being deployed or are under construction. With the aid of solar AO these telescopes will obtain observations of the highly structured and dynamic solar atmosphere with unprecedented resolution. This paper reviews solar adaptive optics techniques and summarizes the recent progress in the field of solar adaptive optics. An outlook to future solar AO developments, including a discussion of Multi-Conjugate AO (MCAO) and Ground-Layer AO (GLAO) will be given.

  3. Optical image compression based on adaptive directional prediction discrete wavelet transform

    NASA Astrophysics Data System (ADS)

    Zhang, Libao; Qiu, Bingchang

    2013-11-01

    The traditional lifting wavelet transform cannot effectively reconstruct the nonhorizontal and nonvertical high-frequency information of an image. In this paper, we present a new image compression method based on adaptive directional prediction discrete wavelet transform (ADP-DWT). We first design a directional prediction model to obtain the optimal transform direction of the lifting wavelet. Then, we execute the directional lifting transform along the optimal transform direction. The edge and texture energy can be reduced in the nonhorizontal and nonvertical directions of the high-frequency sub-bands. Finally, the wavelet coefficients are coded with the set partitioning in hierarchical trees (SPIHT) algorithm. The new method holds the advantages of both adaptive directional lifting (ADL) and direction-adaptive discrete wavelet transform (DA-DWT), and the computational complexity is far lower than that in these methods. For the images containing regular and fine textures or edges, the coding preformance of ADP-DWT is better than that of ADL and DA-DWT.

  4. Adaptive Optics Imaging of Healthy and Abnormal Regions of Retinal Nerve Fiber Bundles of Patients With Glaucoma

    PubMed Central

    Chen, Monica F.; Chui, Toco Y. P.; Alhadeff, Paula; Rosen, Richard B.; Ritch, Robert; Dubra, Alfredo; Hood, Donald C.

    2015-01-01

    Purpose. To better understand the nature of glaucomatous damage of the macula, especially the structural changes seen between relatively healthy and clearly abnormal (AB) retinal regions, using an adaptive optics scanning light ophthalmoscope (AO-SLO). Methods. Adaptive optics SLO images and optical coherence tomography (OCT) vertical line scans were obtained on one eye of seven glaucoma patients, with relatively deep local arcuate defects on the 10-2 visual field test in one (six eyes) or both hemifields (one eye). Based on the OCT images, the retinal nerve fiber (RNF) layer was divided into two regions: (1) within normal limits (WNL), relative RNF layer thickness within mean control values ±2 SD; and (2) AB, relative thickness less than −2 SD value. Results. As seen on AO-SLO, the pattern of AB RNF bundles near the border of the WNL and AB regions differed across eyes. There were normal-appearing bundles in the WNL region of all eyes and AB-appearing bundles near the border with the AB region. This region with AB bundles ranged in extent from a few bundles to the entire AB region in the case of one eye. All other eyes had a large AB region without bundles. However, in two of these eyes, a few bundles were seen within this region of otherwise missing bundles. Conclusions. The AO-SLO images revealed details of glaucomatous damage that are difficult, if not impossible, to see with current OCT technology. Adaptive optics SLO may prove useful in following progression in clinical trials, or in disease management, if AO-SLO becomes widely available and easy to use. PMID:25574048

  5. Noiseless imaging detector for adaptive optics with kHz frame rates

    NASA Astrophysics Data System (ADS)

    Vallerga, John V.; McPhate, Jason; Mikulec, Bettina; Tremsin, Anton; Clark, Allan; Siegmund, Oswald

    2004-10-01

    A new hybrid optical detector is described that has many of the attributes desired for the next generation AO wavefront sensors. The detector consists of a proximity focused MCP read out by four multi-pixel application specific integrated circuit (ASIC) chips developed at CERN ("Medipix2") with individual pixels that amplify, discriminate and count input events. The detector has 512 x 512 pixels, zero readout noise (photon counting) and can be read out at 1kHz frame rates. The Medipix2 readout chips can be electronically shuttered down to a temporal window of a few microseconds with an accuracy of 10 nanoseconds. When used in a Shack-Hartman style wavefront sensor, it should be able to centroid approximately 5000 spots using 7 x 7 pixel sub-apertures resulting in very linear, off-null error correction terms. The quantum efficiency depends on the optical photocathode chosen for the bandpass of interest. A three year development effort for this detector technology has just been funded as part of the first Adaptive Optics Development Program managed by the National Optical Astronomy Observatory.

  6. PUEO NUI: feasible and fast upgrade of the CFHT adaptive optics system for high-dynamic range imaging

    NASA Astrophysics Data System (ADS)

    Lai, Olivier; Ménard, François; Cuillandre, Jean-Charles

    2003-02-01

    Rethinking the efficient use of 4m-class telescopes in the dawning era of larger facilities is a timely but challenging debate. The extensive use of PUEO for imaging (and now spectroscopy) has kept CFHT at the forefront of scientific research with adaptive optics since its commissioning in 1996. Even though larger facilities are now starting to think about ways of implementing high order AO systems, we believe the medium size of the CFHT and the excellent quality of our site on Mauna Kea is a perfect combination to reach the highest performances with a high order AO system. The fields of application of high order adaptive optics are exciting: They include extremely high contrast imaging and coronography in the near-infrared and diffraction-limited imaging in the optical, with the corresponding gain in angular resolution. Specific science examples are described in and adjacent paper (Menard et al, these proceedings (4839-133)), and planned instrumentation in the form of four quadrant coronograph or existing dual (or triple) wavelength imagers (such as TRIDENT) would benefit tremendously from >90% Strehl ratios in the K band. Simulations of a high order (104 electrodes) curvature system have been performed and produce the required performance and are presented in an adjacent paper (Lai & Craven-Bartle, (4860-28)). Technologically, the system is quite simple and re-uses most of the opto-mechanics of the existing PUEO. Deformable mirrors and real time computers are well within existing (and commercially available) specifications. An innovative solution of using a dedicated low read noise CCD camera (specifically for curvature systems) overcomes the potential cost drawbacks of using avalanche photo-diodes (APDs). This detector is described in detail in an adjacent paper (Cuillandre et al, these proceedings (4839-31)).

  7. Advanced Adaptive Optics Control Techniques

    DTIC Science & Technology

    1979-01-01

    Optimal estimation and control methods for high energy laser adaptive optics systems are described. Three system types are examined: Active...the adaptive optics approaches and potential system implementations are recommended.

  8. Advanced Adaptive Optics Technology Development

    SciTech Connect

    Olivier, S

    2001-09-18

    The NSF Center for Adaptive Optics (CfAO) is supporting research on advanced adaptive optics technologies. CfAO research activities include development and characterization of micro-electro-mechanical systems (MEMS) deformable mirror (DM) technology, as well as development and characterization of high-resolution adaptive optics systems using liquid crystal (LC) spatial light modulator (SLM) technology. This paper presents an overview of the CfAO advanced adaptive optics technology development activities including current status and future plans.

  9. Optical Beam Control Using Adaptive Optics

    DTIC Science & Technology

    2005-12-01

    30 1. Principles of Operation......................................................................31 VI. USING ZERNIKE POLYNOMIALS TO...help patience in helping me to understand the underlying principles of optics. xiv THIS PAGE INTENTIONALLY...correct this using adaptive optics. Adaptive Optics first got its start in 215 AD with the destruction of the Roman Fleet by Archimedes (Lamberson

  10. NEAR-INFRARED ADAPTIVE OPTICS IMAGING OF INFRARED LUMINOUS GALAXIES: THE BRIGHTEST CLUSTER MAGNITUDE-STAR FORMATION RATE RELATION

    SciTech Connect

    Randriamanakoto, Z.; Väisänen, P.; Escala, A.; Kankare, E.; Kotilainen, J.; Mattila, S.; Ryder, S.

    2013-10-01

    We have established a relation between the brightest super star cluster (SSC) magnitude in a galaxy and the host star formation rate (SFR) for the first time in the near-infrared (NIR). The data come from a statistical sample of ∼40 luminous IR galaxies (LIRGs) and starbursts utilizing K-band adaptive optics imaging. While expanding the observed relation to longer wavelengths, less affected by extinction effects, it also pushes to higher SFRs. The relation we find, M{sub K} ∼ –2.6log SFR, is similar to that derived previously in the optical and at lower SFRs. It does not, however, fit the optical relation with a single optical to NIR color conversion, suggesting systematic extinction and/or age effects. While the relation is broadly consistent with a size-of-sample explanation, we argue physical reasons for the relation are likely as well. In particular, the scatter in the relation is smaller than expected from pure random sampling strongly suggesting physical constraints. We also derive a quantifiable relation tying together cluster-internal effects and host SFR properties to possibly explain the observed brightest SSC magnitude versus SFR dependency.

  11. Analytical expression of long-exposure adaptive-optics-corrected coronagraphic image. First application to exoplanet detection.

    PubMed

    Sauvage, J-F; Mugnier, L M; Rousset, G; Fusco, T

    2010-11-01

    In this paper we derive an analytical model of a long-exposure star image for an adaptive-optics(AO)-corrected coronagraphic imaging system. This expression accounts for static aberrations upstream and downstream of the coronagraphic mask as well as turbulence residuals. It is based on the perfect coronagraph model. The analytical model is validated by means of simulations using the design and parameters of the SPHERE instrument. The analytical model is also compared to a simulated four-quadrant phase-mask coronagraph. Then, its sensitivity to a miscalibration of structure function and upstream static aberrations is studied, and the impact on exoplanet detectability is quantified. Last, a first inversion method is presented for a simulation case using a single monochromatic image with no reference. The obtained result shows a planet detectability increase by two orders of magnitude with respect to the raw image. This analytical model presents numerous potential applications in coronographic imaging, such as exoplanet direct detection, and circumstellar disk observation.

  12. Adaptive Optical Scanning Holography

    PubMed Central

    Tsang, P. W. M.; Poon, Ting-Chung; Liu, J.-P.

    2016-01-01

    Optical Scanning Holography (OSH) is a powerful technique that employs a single-pixel sensor and a row-by-row scanning mechanism to capture the hologram of a wide-view, three-dimensional object. However, the time required to acquire a hologram with OSH is rather lengthy. In this paper, we propose an enhanced framework, which is referred to as Adaptive OSH (AOSH), to shorten the holographic recording process. We have demonstrated that the AOSH method is capable of decreasing the acquisition time by up to an order of magnitude, while preserving the content of the hologram favorably. PMID:26916866

  13. Adaptive Optical Scanning Holography

    NASA Astrophysics Data System (ADS)

    Tsang, P. W. M.; Poon, Ting-Chung; Liu, J.-P.

    2016-02-01

    Optical Scanning Holography (OSH) is a powerful technique that employs a single-pixel sensor and a row-by-row scanning mechanism to capture the hologram of a wide-view, three-dimensional object. However, the time required to acquire a hologram with OSH is rather lengthy. In this paper, we propose an enhanced framework, which is referred to as Adaptive OSH (AOSH), to shorten the holographic recording process. We have demonstrated that the AOSH method is capable of decreasing the acquisition time by up to an order of magnitude, while preserving the content of the hologram favorably.

  14. Sodium guide star adaptive optics system for astronomical imaging in the visible and near-infrared

    SciTech Connect

    Gavel, D.T.; Morris, J.R. ); Vernon, R.G. )

    1992-03-01

    We are building an adaptive-optic telescope system that is based on the use of an artificial guide star created by laser-induced fluorescence of the sodium mesospheric layer. This paper discusses the system design for mid-visible to near-infrared compensation of a one meter telescope at Livermore and near-infrared compensation of the ten meter Keck telescope at Mauna Kea. We calculate the expected Strehl ratio and resolution for a 69 channel deformable mirror system and also for a possible 241 channel system upgrade. With the 69 actuator system we expect near diffraction limited resolution, about 0.2 arcsec, with a Strehl ratio of about 0.5 at [lambda]=0.8,[mu]m on the 1m telescope, and resolution of about 0.05 arcsec with a Strehl ratio of about 0.5 at [lambda]=2.0 [mu]m on the 10m telescope. Resolution will be limited by the performance of the tip/tilt correction loop, which uses an off-axis natural guide star as a reference. The effects which degrade tip/tilt correction are described in a companion paper. At Livermore, our design uses an existing high power (1 kW) laser source, which is expected to provide an approximately 6'th magnitude artificial guide star. This strong beacon signal allows a short integration time in the wavefront sensor so that temporal changes in the atmospheric turbulence can be tracked accurately. For Mauna Kea, we explore how the system to be built for the Livermore site would perform in the infrared, assuming a 100 W laser source.

  15. Sodium guide star adaptive optics system for astronomical imaging in the visible and near-infrared

    SciTech Connect

    Gavel, D.T.; Morris, J.R.; Vernon, R.G.

    1992-03-01

    We are building an adaptive-optic telescope system that is based on the use of an artificial guide star created by laser-induced fluorescence of the sodium mesospheric layer. This paper discusses the system design for mid-visible to near-infrared compensation of a one meter telescope at Livermore and near-infrared compensation of the ten meter Keck telescope at Mauna Kea. We calculate the expected Strehl ratio and resolution for a 69 channel deformable mirror system and also for a possible 241 channel system upgrade. With the 69 actuator system we expect near diffraction limited resolution, about 0.2 arcsec, with a Strehl ratio of about 0.5 at {lambda}=0.8,{mu}m on the 1m telescope, and resolution of about 0.05 arcsec with a Strehl ratio of about 0.5 at {lambda}=2.0 {mu}m on the 10m telescope. Resolution will be limited by the performance of the tip/tilt correction loop, which uses an off-axis natural guide star as a reference. The effects which degrade tip/tilt correction are described in a companion paper. At Livermore, our design uses an existing high power (1 kW) laser source, which is expected to provide an approximately 6`th magnitude artificial guide star. This strong beacon signal allows a short integration time in the wavefront sensor so that temporal changes in the atmospheric turbulence can be tracked accurately. For Mauna Kea, we explore how the system to be built for the Livermore site would perform in the infrared, assuming a 100 W laser source.

  16. Sodium guide star adaptive optics system for astronomical imaging in the visible and near-infrared

    SciTech Connect

    Gavel, D.T.; Morris, J.R. ); Vernon, R.G. )

    1992-08-01

    We are building an adaptive-optic telescope system that is based on the use of an artificial guide star created by laser-induced fluorescence of the sodium mesospheric layer. This paper discusses the system design for mid-visible to near-infrared compensation of a one meter telescope at Livermore and near-infrared compensation of the ten meter Keck telescope at Mauna Kea. We calculate the expected Strehl ratio and resolution for a 69 channel deformable mirror system and also for a possible 24 channel system upgrade. With the 69 actuator system we expect near diffraction limited resolution, about 0.2 arcsec, with a Strehl ratio of about 0.5 at {gamma}=0.8 {mu}m on the 1m telescope, and resolution of about 0.05 arcsec with a Strehl ratio of about 0.5 at {gamma}=2.0 {mu}m on the 10m telescope. Resolution will be limited by the performance of the tip/tilt correction loop, which uses an off-axis natural guide star as a reference. At Livermore, our design uses an existing high power (1 kW) laser source, which is expected to provide an approximately 6th magnitude artificial guide star. This strong beacon signal allows a short integration time in the wavefront sensor so that temporal changes in the atmospheric turbulence can be tracked accurately. For Mauna Kea, we explore how the system to be built for the Livermore site would perform in the infrared, assuming a 100 W laser source.

  17. Sparse-aperture adaptive optics

    NASA Astrophysics Data System (ADS)

    Tuthill, Peter; Lloyd, James; Ireland, Michael; Martinache, Frantz; Monnier, John; Woodruff, Henry; ten Brummelaar, Theo; Turner, Nils; Townes, Charles

    2006-06-01

    Aperture masking interferometry and Adaptive Optics (AO) are two of the competing technologies attempting to recover diffraction-limited performance from ground-based telescopes. However, there are good arguments that these techniques should be viewed as complementary, not competitive. Masking has been shown to deliver superior PSF calibration, rejection of atmospheric noise and robust recovery of phase information through the use of closure phases. However, this comes at the penalty of loss of flux at the mask, restricting the technique to bright targets. Adaptive optics, on the other hand, can reach a fainter class of objects but suffers from the difficulty of calibration of the PSF which can vary with observational parameters such as seeing, airmass and source brightness. Here we present results from a fusion of these two techniques: placing an aperture mask downstream of an AO system. The precision characterization of the PSF enabled by sparse-aperture interferometry can now be applied to deconvolution of AO images, recovering structure from the traditionally-difficult regime within the core of the AO-corrected transfer function. Results of this program from the Palomar and Keck adaptive optical systems are presented.

  18. Passive adaptive imaging through turbulence

    NASA Astrophysics Data System (ADS)

    Tofsted, David

    2016-05-01

    Standard methods for improved imaging system performance under degrading optical turbulence conditions typically involve active adaptive techniques or post-capture image processing. Here, passive adaptive methods are considered where active sources are disallowed, a priori. Theoretical analyses of short-exposure turbulence impacts indicate that varying aperture sizes experience different degrees of turbulence impacts. Smaller apertures often outperform larger aperture systems as turbulence strength increases. This suggests a controllable aperture system is advantageous. In addition, sub-aperture sampling of a set of training images permits the system to sense tilts in different sub-aperture regions through image acquisition and image cross-correlation calculations. A four sub-aperture pattern supports corrections involving five realizable operating modes (beyond tip and tilt) for removing aberrations over an annular pattern. Progress to date will be discussed regarding development and field trials of a prototype system.

  19. ADAPTIVE OPTICS IMAGING OF VY CANIS MAJORIS AT 2-5 μm WITH LBT/LMIRCam

    SciTech Connect

    Shenoy, Dinesh P.; Jones, Terry J.; Humphreys, Roberta M.; Marengo, Massimo; Leisenring, Jarron M.; Nelson, Matthew J.; Wilson, John C.; Skrutskie, Michael F.; Hinz, Philip M.; Hoffmann, William F.; Bailey, Vanessa; Skemer, Andrew; Rodigas, Timothy; Vaitheeswaran, Vidhya

    2013-10-01

    We present adaptive optics images of the extreme red supergiant VY Canis Majoris in the K{sub s} , L', and M bands (2.15-4.8 μm) made with LMIRCam on the Large Binocular Telescope. The peculiar ''Southwest Clump'' previously imaged from 1 to 2.2 μm appears prominently in all three filters. We find its brightness is due almost entirely to scattering, with the contribution of thermal emission limited to at most 25%. We model its brightness as optically thick scattering from silicate dust grains using typical size distributions. We find a lower limit mass for this single feature of 5 × 10{sup –3} M {sub ☉} to 2.5 × 10{sup –2} M {sub ☉} depending on the assumed gas-to-dust ratio. The presence of the Clump as a distinct feature with no apparent counterpart on the other side of the star is suggestive of an ejection event from a localized region of the star and is consistent with VY CMa's history of asymmetric high-mass-loss events.

  20. Physics and Advanced Technologies LDRD Final Report:Adaptive Optics Imaging and Spectroscopy of the Solar System

    SciTech Connect

    Gibbard, S; Max, C; Macintosh, B; Grossman, A

    2004-01-21

    This focus of this project was the investigation of the planets Uranus and Neptune and Saturn's moon Titan using adaptive optics imaging and spectroscopy at the 10-meter W.M. Keck Telescopes. These bodies share a common type of atmosphere, one that is rich in methane and has a hydrocarbon haze layer produced by methane photolysis. Neptune and Uranus have atmospheric features which change on short timescales; we have investigated their altitude, composition, and connection to events occurring deeper in the planets' tropospheres. Titan has a solid surface located under its atmosphere, the composition of which is still quite uncertain. With spectra that sample the vertical structure of the atmosphere and narrowband observations that selectively probe Titan's surface we have determined the surface reflectivity of Titan at near-infrared wavelengths.

  1. DM/LCWFC based adaptive optics system for large aperture telescopes imaging from visible to infrared waveband.

    PubMed

    Sun, Fei; Cao, Zhaoliang; Wang, Yukun; Zhang, Caihua; Zhang, Xingyun; Liu, Yong; Mu, Quanquan; Xuan, Li

    2016-11-28

    Almost all the deformable mirror (DM) based adaptive optics systems (AOSs) used on large aperture telescopes work at the infrared waveband due to the limitation of the number of actuators. To extend the imaging waveband to the visible, we propose a DM and Liquid crystal wavefront corrector (DM/LCWFC) combination AOS. The LCWFC is used to correct the high frequency aberration corresponding to the visible waveband and the aberrations of the infrared are corrected by the DM. The calculated results show that, to a 10 m telescope, DM/LCWFC AOS which contains a 1538 actuators DM and a 404 × 404 pixels LCWFC is equivalent to a DM based AOS with 4057 actuators. It indicates that the DM/LCWFC AOS is possible to work from visible to infrared for larger aperture telescopes. The simulations and laboratory experiment are performed for a 2 m telescope. The experimental results show that, after correction, near diffraction limited resolution USAF target images are obtained at the wavebands of 0.7-0.9 μm, 0.9-1.5 μm and 1.5-1.7 μm respectively. Therefore, the DM/LCWFC AOS may be used to extend imaging waveband of larger aperture telescope to the visible. It is very appropriate for the observation of spatial objects and the scientific research in astronomy.

  2. Foveated Wide Field-of-View Imaging for Missile Warning/Tracking using Adaptive Optics

    DTIC Science & Technology

    2007-11-30

    Topical Meeting On Optics of Liquid Crystals, OLC 2007, Puebla , Mexico (October 2007) 13. A. Parish, S. Gauza, S.T. Wu, J. Dziaduszek, and R. Dabrowski...New fluorinated terphenyl isothiocyanate liquid crystals” 12th International Topical Meeting On Optics of Liquid Crystals, OLC 2007, Puebla , Mexico

  3. New Adaptive Optics Technique Demonstrated

    NASA Astrophysics Data System (ADS)

    2007-03-01

    First ever Multi-Conjugate Adaptive Optics at the VLT Achieves First Light On the evening of 25 March 2007, the Multi-Conjugate Adaptive Optics Demonstrator (MAD) achieved First Light at the Visitor Focus of Melipal, the third Unit Telescope of the Very Large Telescope (VLT). MAD allowed the scientists to obtain images corrected for the blurring effect of atmospheric turbulence over the full 2x2 arcminute field of view. This world premiere shows the promises of a crucial technology for Extremely Large Telescopes. ESO PR Photo 19a/07 ESO PR Photo 19a/07 The MCAO Demonstrator Telescopes on the ground suffer from the blurring effect induced by atmospheric turbulence. This turbulence causes the stars to twinkle in a way which delights the poets but frustrates the astronomers, since it blurs the fine details of the images. However, with Adaptive Optics (AO) techniques, this major drawback can be overcome so that the telescope produces images that are as sharp as theoretically possible, i.e., approaching space conditions. Adaptive Optics systems work by means of a computer-controlled deformable mirror (DM) that counteracts the image distortion induced by atmospheric turbulence. It is based on real-time optical corrections computed from image data obtained by a 'wavefront sensor' (a special camera) at very high speed, many hundreds of times each second. The concept is not new. Already in 1989, the first Adaptive Optics system ever built for Astronomy (aptly named "COME-ON") was installed on the 3.6-m telescope at the ESO La Silla Observatory, as the early fruit of a highly successful continuing collaboration between ESO and French research institutes (ONERA and Observatoire de Paris). Ten years ago, ESO initiated an Adaptive Optics program to serve the needs for its frontline VLT project. Today, the Paranal Observatory is without any doubt one of the most advanced of its kind with respect to AO with no less than 7 systems currently installed (NACO, SINFONI, CRIRES and

  4. Novel Adaptive Optics concepts : wavefront sensing with sodium laser guide stars at Extemely Large Telescopes and simultaneous differential imaging

    NASA Astrophysics Data System (ADS)

    Kellner, Stephan Albert

    2005-12-01

    Since more than 15 years, Adaptive Optics (AO) is a proven concept to reach diffraction limited imaging at modern astronomical telescopes. In the case of next generation telescopes (Extremely Large Telescopes (ELTs)) with aperture diameters of up to 100m, sodium laser guide star based multi-conjugated-AO systems will be a basic requirement to exploit their full capability in terms of resolution and light concentration. A drawback of such an approach emerges in the finite distance and vertical extent of the sodium beacon in the mesosphere with respect to the telescope. This induces effects such as perspective elongation, where conventional wavefront sensing mechanisms will fail. Although several engineering concepts are under development to counteract these constraints at the cost of overall light efficiency and increased system complexity, this thesis proposes a novel kind of wavefront sensing technique to overcome the imposed limitations in a more natural way. The sensing technique is composed of two independently working sensors, a reflective rod and a mask with circular slits, each a representative of a novel wavefront sensor class, the so called z-invariant and Inverse Bessel Beam technique. Both are discussed in this thesis with a focus on the Inverse Bessel Beam technique. The latter is compared to alternative concepts such as temporal gating, with respect to the photon efficiency. Furthermore, the reflective rod was tested for its feasibility in laboratory conditions and in a more realistic environment at the William Herschel Telescope (WHT) at La Palma. With this test run its sensing principle has been verified. A novel technique already intensively used at 8m class telescopes is Simultaneous Differential Imaging. The direct detection of giant extra-solar planets is and will be a major science driver for galactic astronomy in the coming years. Modern telescope facilities such as the VLT reach, by means of adaptive optics, potentially the capability in terms

  5. The ERIS adaptive optics system

    NASA Astrophysics Data System (ADS)

    Marchetti, Enrico; Fedrigo, Enrico; Le Louarn, Miska; Madec, Pierre-Yves; Soenke, Christian; Brast, Roland; Conzelmann, Ralf; Delabre, Bernard; Duchateau, Michel; Frank, Christoph; Klein, Barbara; Amico, Paola; Hubin, Norbert; Esposito, Simone; Antichi, Jacopo; Carbonaro, Luca; Puglisi, Alfio; Quirós-Pacheco, Fernando; Riccardi, Armando; Xompero, Marco

    2014-07-01

    The Enhanced Resolution Imager and Spectrograph (ERIS) is the new Adaptive Optics based instrument for ESO's VLT aiming at replacing NACO and SINFONI to form a single compact facility with AO fed imaging and integral field unit spectroscopic scientific channels. ERIS completes the instrument suite at the VLT adaptive telescope. In particular it is equipped with a versatile AO system that delivers up to 95% Strehl correction in K band for science observations up to 5 micron It comprises high order NGS and LGS correction enabling the observation from exoplanets to distant galaxies with a large sky coverage thanks to the coupling of the LGS WFS with the high sensitivity of its visible WFS and the capability to observe in dust embedded environment thanks to its IR low order WFS. ERIS will be installed at the Cassegrain focus of the VLT unit hosting the Adaptive Optics Facility (AOF). The wavefront correction is provided by the AOF deformable secondary mirror while the Laser Guide Star is provided by one of the four launch units of the 4 Laser Guide Star Facility for the AOF. The overall layout of the ERIS AO system is extremely compact and highly optimized: the SPIFFI spectrograph is fed directly by the Cassegrain focus and both the NIX's (IR imager) and SPIFFI's entrance windows work as visible/infrared dichroics. In this paper we describe the concept of the ERIS AO system in detail, starting from the requirements and going through the estimated performance, the opto-mechanical design and the Real-Time Computer design.

  6. High-Resolution Imaging by Adaptive Optics Scanning Laser Ophthalmoscopy Reveals Two Morphologically Distinct Types of Retinal Hard Exudates

    PubMed Central

    Yamaguchi, Muneo; Nakao, Shintaro; Kaizu, Yoshihiro; Kobayashi, Yoshiyuki; Nakama, Takahito; Arima, Mitsuru; Yoshida, Shigeo; Oshima, Yuji; Takeda, Atsunobu; Ikeda, Yasuhiro; Mukai, Shizuo; Ishibashi, Tatsuro; Sonoda, Koh-hei

    2016-01-01

    Histological studies from autopsy specimens have characterized hard exudates as a composition of lipid-laden macrophages or noncellular materials including lipid and proteinaceous substances (hyaline substances). However, the characteristics of hard exudates in living patients have not been examined due to insufficient resolution of existing equipment. In this study, we used adaptive optics scanning laser ophthalmoscopy (AO-SLO) to examine the characteristics of hard exudates in patients with retinal vascular diseases. High resolution imaging using AO-SLO enables morphological classification of retinal hard exudates into two types, which could not be distinguished either on fundus examination or by spectral domain optical coherence tomography (SD-OCT). One, termed a round type, consisted of an accumulation of spherical particles (average diameter of particles: 26.9 ± 4.4 μm). The other, termed an irregular type, comprised an irregularly shaped hyper-reflective deposition. The retinal thickness in regions with round hard exudates was significantly greater than the thickness in regions with irregular hard exudates (P = 0.01 →0.02). This differentiation of retinal hard exudates in patients by AO-SLO may help in understanding the pathogenesis and clinical prognosis of retinal vascular diseases. PMID:27641223

  7. Keck adaptive optics: control subsystem

    SciTech Connect

    Brase, J.M.; An, J.; Avicola, K.

    1996-03-08

    Adaptive optics on the Keck 10 meter telescope will provide an unprecedented level of capability in high resolution ground based astronomical imaging. The system is designed to provide near diffraction limited imaging performance with Strehl {gt} 0.3 n median Keck seeing of r0 = 25 cm, T =10 msec at 500 nm wavelength. The system will be equipped with a 20 watt sodium laser guide star to provide nearly full sky coverage. The wavefront control subsystem is responsible for wavefront sensing and the control of the tip-tilt and deformable mirrors which actively correct atmospheric turbulence. The spatial sampling interval for the wavefront sensor and deformable mirror is de=0.56 m which gives us 349 actuators and 244 subapertures. This paper summarizes the wavefront control system and discusses particular issues in designing a wavefront controller for the Keck telescope.

  8. Liquid lens: advances in adaptive optics

    NASA Astrophysics Data System (ADS)

    Casey, Shawn Patrick

    2010-12-01

    'Liquid lens' technologies promise significant advancements in machine vision and optical communications systems. Adaptations for machine vision, human vision correction, and optical communications are used to exemplify the versatile nature of this technology. Utilization of liquid lens elements allows the cost effective implementation of optical velocity measurement. The project consists of a custom image processor, camera, and interface. The images are passed into customized pattern recognition and optical character recognition algorithms. A single camera would be used for both speed detection and object recognition.

  9. Adaptive Optics Imaging of the CLASS Gravitational Lens System B1359+154 with the Canada-France-Hawaii Telescope.

    PubMed

    Rusin; Hall; Nichol; Marlow; Richards; Myers

    2000-04-20

    We present adaptive optics imaging of the CLASS gravitational lens system B1359+154 obtained with the Canada-France-Hawaii Telescope (CFHT) in the infrared K band. The observations show at least three brightness peaks within the ring of lensed images, which we identify as emission from multiple lensing galaxies. The results confirm the suspected compound nature of the lens, as deduced from preliminary mass modeling. The detection of several additional nearby galaxies suggests that B1359+154 is lensed by the compact core of a small galaxy group. We attempted to produce an updated lens model based on the CFHT observations and new 5 GHz radio data obtained with the MERLIN array, but there are too few constraints to construct a realistic model at this time. The uncertainties inherent with modeling compound lenses make B1359+154 a challenging target for Hubble constant determination through the measurement of differential time delays. However, time delays will offer additional constraints to help pin down the mass model. This lens system therefore presents a unique opportunity to directly measure the mass distribution of a galaxy group at intermediate redshift.

  10. Robo-AO Kepler Planetary Candidate Survey. III. Adaptive Optics Imaging of 1629 Kepler Exoplanet Candidate Host Stars

    NASA Astrophysics Data System (ADS)

    Ziegler, Carl; Law, Nicholas M.; Morton, Tim; Baranec, Christoph; Riddle, Reed; Atkinson, Dani; Baker, Anna; Roberts, Sarah; Ciardi, David R.

    2017-02-01

    The Robo-AO Kepler Planetary Candidate Survey is observing every Kepler planet candidate host star with laser adaptive optics imaging to search for blended nearby stars, which may be physically associated companions and/or responsible for transit false positives. In this paper, we present the results of our search for stars nearby 1629 Kepler planet candidate hosts. With survey sensitivity to objects as close as ∼0.″15, and magnitude differences Δm ≤slant 6, we find 223 stars in the vicinity of 206 target KOIs; 209 of these nearby stars have not been previously imaged in high resolution. We measure an overall nearby-star probability for Kepler planet candidates of 12.6 % +/- 0.9 % at separations between 0.″15 and 4.″0. Particularly interesting KOI systems are discussed, including 26 stars with detected companions that host rocky, habitable zone candidates and five new candidate planet-hosting quadruple star systems. We explore the broad correlations between planetary systems and stellar binarity, using the combined data set of Baranec et al. and this paper. Our previous 2σ result of a low detected nearby star fraction of KOIs hosting close-in giant planets is less apparent in this larger data set. We also find a significant correlation between detected nearby star fraction and KOI number, suggesting possible variation between early and late Kepler data releases.

  11. THE FIRST CIRCUMSTELLAR DISK IMAGED IN SILHOUETTE AT VISIBLE WAVELENGTHS WITH ADAPTIVE OPTICS: MagAO IMAGING OF ORION 218-354

    SciTech Connect

    Follette, Katherine B.; Close, Laird M.; Males, Jared R.; Wu, Ya-Lin; Morzinski, Katie M.; Hinz, Philip; Rodigas, Timothy J.; Kopon, Derek; Puglisi, Alfio; Esposito, Simone; Riccardi, Armando; Pinna, Enrico; Xompero, Marco; Briguglio, Runa

    2013-09-20

    We present high-resolution adaptive optics (AO) corrected images of the silhouette disk Orion 218-354 taken with Magellan AO (MagAO) and its visible light camera, VisAO, in simultaneous differential imaging mode at Hα. This is the first image of a circumstellar disk seen in silhouette with AO and is among the first visible light AO results in the literature. We derive the disk extent, geometry, intensity, and extinction profiles and find, in contrast with previous work, that the disk is likely optically thin at Hα. Our data provide an estimate of the column density in primitive, ISM-like grains as a function of radius in the disk. We estimate that only ∼10% of the total submillimeter derived disk mass lies in primitive, unprocessed grains. We use our data, Monte Carlo radiative transfer modeling, and previous results from the literature to make the first self-consistent multiwavelength model of Orion 218-354. We find that we are able to reproduce the 1-1000 μm spectral energy distribution with a ∼2-540 AU disk of the size, geometry, small versus large grain proportion, and radial mass profile indicated by our data. This inner radius is a factor of ∼15 larger than the sublimation radius of the disk, suggesting that it is likely cleared in the very interior.

  12. [Technical principles of adaptive optics in ophthalmology].

    PubMed

    Reiniger, J L; Domdei, N; Holz, F G; Harmening, W M

    2017-03-01

    During the last 25 years ophthalmic imaging has undergone a revolution. This review gives an overview of the possibilities of adaptive optics (AO) for ophthalmic imaging technologies and their development and illustrates that the role of ophthalmic imaging changed from the documentation of obvious abnormalities to the detection of microscopic yet significant conspicuities. This enables earlier and more precise diagnoses. The implementation of AO for imaging systems like fundus cameras, scanning laser ophthalmoscopy and optical coherence tomography has gained in importance. In recent years a couple of companies started developing commercially available AO systems, thus, indicating a future use in clinical routine.

  13. ADAPTIVE OPTICS IMAGING OF QUASI-STELLAR OBJECTS WITH DOUBLE-PEAKED NARROW LINES: ARE THEY DUAL ACTIVE GALACTIC NUCLEI?

    SciTech Connect

    Rosario, D. J.; McGurk, R. C.; Max, C. E.; Shields, G. A.; Smith, K. L.; Ammons, S. M. E-mail: mcgurk@ucsc.edu E-mail: shieldsga@mail.utexas.edu E-mail: ammons@as.arizona.edu

    2011-09-20

    Active galaxies hosting two accreting and merging supermassive black holes (SMBHs)-dual active galactic nuclei (AGNs)-are predicted by many current and popular models of black-hole-galaxy co-evolution. We present here the results of a program that has identified a set of probable dual AGN candidates based on near-infrared laser guide star adaptive optics imaging with the Keck II telescope. These candidates are selected from a complete sample of radio-quiet quasi-stellar objects (QSOs) drawn from the Sloan Digital Sky Survey (SDSS), which show double-peaked narrow AGN emission lines. Of the 12 AGNs imaged, we find 6 with double galaxy structure, of which four are in galaxy mergers. We measure the ionization of the two velocity components in the narrow AGN lines to test the hypothesis that both velocity components come from an active nucleus. The combination of a well-defined parent sample and high-quality imaging allows us to place constraints on the fraction of SDSS QSOs that host dual accreting black holes separated on kiloparsec scales: {approx}0.3%-0.65%. We derive from this fraction the time spent in a QSO phase during a typical merger and find a value that is much lower than estimates that arise from QSO space densities and galaxy merger statistics. We discuss possible reasons for this difference. Finally, we compare the SMBH mass distributions of single and dual AGNs and find little difference between the two within the limited statistics of our program, hinting that most SMBH growth happens in the later stages of a merger process.

  14. Adaptive Optics Applications in Vision Science

    SciTech Connect

    Olivier, S S

    2003-03-17

    Adaptive optics can be used to correct the aberrations in the human eye caused by imperfections in the cornea and the lens and thereby, improve image quality both looking into and out of the eye. Under the auspices of the NSF Center for Adaptive Optics and the DOE Biomedical Engineering Program, Lawrence Livermore National Laboratory has joined together with leading vision science researchers around the country to develop and test new ophthalmic imaging systems using novel wavefront corrector technologies. Results of preliminary comparative evaluations of these technologies in initial system tests show promise for future clinical utility.

  15. Adaptive Image Denoising by Mixture Adaptation

    NASA Astrophysics Data System (ADS)

    Luo, Enming; Chan, Stanley H.; Nguyen, Truong Q.

    2016-10-01

    We propose an adaptive learning procedure to learn patch-based image priors for image denoising. The new algorithm, called the Expectation-Maximization (EM) adaptation, takes a generic prior learned from a generic external database and adapts it to the noisy image to generate a specific prior. Different from existing methods that combine internal and external statistics in ad-hoc ways, the proposed algorithm is rigorously derived from a Bayesian hyper-prior perspective. There are two contributions of this paper: First, we provide full derivation of the EM adaptation algorithm and demonstrate methods to improve the computational complexity. Second, in the absence of the latent clean image, we show how EM adaptation can be modified based on pre-filtering. Experimental results show that the proposed adaptation algorithm yields consistently better denoising results than the one without adaptation and is superior to several state-of-the-art algorithms.

  16. Adaptive Image Denoising by Mixture Adaptation.

    PubMed

    Luo, Enming; Chan, Stanley H; Nguyen, Truong Q

    2016-10-01

    We propose an adaptive learning procedure to learn patch-based image priors for image denoising. The new algorithm, called the expectation-maximization (EM) adaptation, takes a generic prior learned from a generic external database and adapts it to the noisy image to generate a specific prior. Different from existing methods that combine internal and external statistics in ad hoc ways, the proposed algorithm is rigorously derived from a Bayesian hyper-prior perspective. There are two contributions of this paper. First, we provide full derivation of the EM adaptation algorithm and demonstrate methods to improve the computational complexity. Second, in the absence of the latent clean image, we show how EM adaptation can be modified based on pre-filtering. The experimental results show that the proposed adaptation algorithm yields consistently better denoising results than the one without adaptation and is superior to several state-of-the-art algorithms.

  17. Progress on Developing Adaptive Optics–Optical Coherence Tomography for In Vivo Retinal Imaging: Monitoring and Correction of Eye Motion Artifacts

    PubMed Central

    Zawadzki, Robert J.; Capps, Arlie G.; Kim, Dae Yu; Panorgias, Athanasios; Stevenson, Scott B.; Hamann, Bernd; Werner, John S.

    2014-01-01

    Recent progress in retinal image acquisition techniques, including optical coherence tomography (OCT) and scanning laser ophthalmoscopy (SLO), combined with improved performance of adaptive optics (AO) instrumentation, has resulted in improvement in the quality of in vivo images of cellular structures in the human retina. Here, we present a short review of progress on developing AO-OCT instruments. Despite significant progress in imaging speed and resolution, eye movements present during acquisition of a retinal image with OCT introduce motion artifacts into the image, complicating analysis and registration. This effect is especially pronounced in high-resolution datasets acquired with AO-OCT instruments. Several retinal tracking systems have been introduced to correct retinal motion during data acquisition. We present a method for correcting motion artifacts in AO-OCT volume data after acquisition using simultaneously captured adaptive optics-scanning laser ophthalmoscope (AO-SLO) images. We extract transverse eye motion data from the AO-SLO images, assign a motion adjustment vector to each AO-OCT A-scan, and re-sample from the scattered data back onto a regular grid. The corrected volume data improve the accuracy of quantitative analyses of microscopic structures. PMID:25544826

  18. First Light Adaptive Optics Images from the Keck II Telescope: A New Era of High Angular Resolution Imagery

    NASA Astrophysics Data System (ADS)

    Wizinowich, P.; Acton, D. S.; Shelton, C.; Stomski, P.; Gathright, J.; Ho, K.; Lupton, W.; Tsubota, K.; Lai, O.; Max, C.; Brase, J.; An, J.; Avicola, K.; Olivier, S.; Gavel, D.; Macintosh, B.; Ghez, A.; Larkin, J.

    2000-03-01

    Adaptive optics (AO) is a technology that corrects in real time for the blurring effects of atmospheric turbulence, in principle allowing Earth-bound telescopes to achieve their diffraction limit and to ``see'' as clearly as if they were in space. The power of AO using natural guide stars has been amply demonstrated in recent years on telescopes up to 3-4 m in diameter. The next breakthrough in astronomical resolution was expected to occur with the implementation of AO on the new generation of large, 8-10 m diameter telescopes. In this paper we report the initial results from the first of these AO systems, now coming on line on the 10 m diameter Keck II Telescope. The results include the highest angular resolution images ever obtained from a single telescope (0.022" and 0.040" at 0.85 and 1.65 μm wavelengths, respectively), as well as tests of system performance on three astronomical targets.

  19. What Is Optical Imaging?

    ERIC Educational Resources Information Center

    Hespos, Susan J.

    2010-01-01

    This article introduces a promising new methodology called optical imaging. Optical imaging is used for measuring changes in cortical blood flow due to functional activation. The article outlines the pros and cons of using optical imaging for studying the brain correlates of perceptual, cognitive, and language development in infants and young…

  20. ERIS adaptive optics system design

    NASA Astrophysics Data System (ADS)

    Marchetti, Enrico; Le Louarn, Miska; Soenke, Christian; Fedrigo, Enrico; Madec, Pierre-Yves; Hubin, Norbert

    2012-07-01

    The Enhanced Resolution Imager and Spectrograph (ERIS) is the next-generation instrument planned for the Very Large Telescope (VLT) and the Adaptive Optics facility (AOF). It is an AO assisted instrument that will make use of the Deformable Secondary Mirror and the new Laser Guide Star Facility (4LGSF), and it is planned for the Cassegrain focus of the telescope UT4. The project is currently in its Phase A awaiting for approval to continue to the next phases. The Adaptive Optics system of ERIS will include two wavefront sensors (WFS) to maximize the coverage of the proposed sciences cases. The first is a high order 40x40 Pyramid WFS (PWFS) for on axis Natural Guide Star (NGS) observations. The second is a high order 40x40 Shack-Hartmann WFS for single Laser Guide Stars (LGS) observations. The PWFS, with appropriate sub-aperture binning, will serve also as low order NGS WFS in support to the LGS mode with a field of view patrolling capability of 2 arcmin diameter. Both WFSs will be equipped with the very low read-out noise CCD220 based camera developed for the AOF. The real-time reconstruction and control is provided by a SPARTA real-time platform adapted to support both WFS modes. In this paper we will present the ERIS AO system in all its main aspects: opto-mechanical design, real-time computer design, control and calibrations strategy. Particular emphasis will be given to the system performance obtained via dedicated numerical simulations.

  1. Adaptive Optics at Lawrence Livermore National Laboratory

    SciTech Connect

    Gavel, D T

    2003-03-10

    Adaptive optics enables high resolution imaging through the atmospheric by correcting for the turbulent air's aberrations to the light waves passing through it. The Lawrence Livermore National Laboratory for a number of years has been at the forefront of applying adaptive optics technology to astronomy on the world's largest astronomical telescopes, in particular at the Keck 10-meter telescope on Mauna Kea, Hawaii. The technology includes the development of high-speed electrically driven deformable mirrors, high-speed low-noise CCD sensors, and real-time wavefront reconstruction and control hardware. Adaptive optics finds applications in many other areas where light beams pass through aberrating media and must be corrected to maintain diffraction-limited performance. We describe systems and results in astronomy, medicine (vision science), and horizontal path imaging, all active programs in our group.

  2. Adaptive-optics performance of Antarctic telescopes.

    PubMed

    Lawrence, Jon S

    2004-02-20

    The performance of natural guide star adaptive-optics systems for telescopes located on the Antarctic plateau is evaluated and compared with adaptive-optics systems operated with the characteristic mid-latitude atmosphere found at Mauna Kea. A 2-m telescope with tip-tilt correction and an 8-m telescope equipped with a high-order adaptive-optics system are considered. Because of the large isoplanatic angle of the South Pole atmosphere, the anisoplanatic error associated with an adaptive-optics correction is negligible, and the achievable resolution is determined only by the fitting error associated with the number of corrected wave-front modes, which depends on the number of actuators on the deformable mirror. The usable field of view of an adaptive-optics equipped Antarctic telescope is thus orders of magnitude larger than for a similar telescope located at a mid-latitude site; this large field of view obviates the necessity for multiconjugate adaptive-optics systems that use multiple laser guide stars. These results, combined with the low infrared sky backgrounds, indicate that the Antarctic plateau is the best site on Earth at which to perform high-resolution imaging with large telescopes, either over large fields of view or with appreciable sky coverage. Preliminary site-testing results obtained recently from the Dome Concordia station indicate that this site is far superior to even the South Pole.

  3. Robo-AO Kepler Planetary Candidate Survey. II. Adaptive Optics Imaging of 969 Kepler Exoplanet Candidate Host Stars

    NASA Astrophysics Data System (ADS)

    Baranec, Christoph; Ziegler, Carl; Law, Nicholas M.; Morton, Tim; Riddle, Reed; Atkinson, Dani; Schonhut, Jessica; Crepp, Justin

    2016-07-01

    We initiated the Robo-AO Kepler Planetary Candidate Survey in 2012 to observe each Kepler exoplanet candidate host star with high angular resolution, visible light, laser adaptive optics (AOs) imaging. Our goal is to find nearby stars lying in Kepler's photometric apertures that are responsible for the relatively high probability of false-positive exoplanet detections and that cause underestimates of the size of transit radii. Our comprehensive survey will also shed light on the effects of stellar multiplicity on exoplanet properties and will identify rare exoplanetary architectures. In this second part of our ongoing survey, we observed an additional 969 Kepler planet candidate hosts and we report blended stellar companions up to {{Δ }}m≈ 6 that contribute to Kepler's measured light curves. We found 203 companions within ˜4″ of 181 of the Kepler stars, of which 141 are new discoveries. We measure the nearby star probability for this sample of Kepler planet candidate host stars to be 10.6% ± 1.1% at angular separations up to 2.″5, significantly higher than the 7.4% ± 1.0% probability discovered in our initial sample of 715 stars; we find the probability increases to 17.6% ± 1.5% out to a separation of 4.″0. The median position of Kepler Objects of Interest (KOIs) observed in this survey are 1.°1 closer to the galactic plane, which may account for some of the nearby star probability enhancement. We additionally detail 50 Keck AO images of Robo-AO observed KOIs in order to confirm 37 companions detected at a <5σ significance level and to obtain additional infrared photometry on higher significance detected companions.

  4. [Progress in optical imaging].

    PubMed

    Bremer, C; Ntziachristos, V; Mahmood, U; Tung, C H; Weissleder, R

    2001-02-01

    Different optical imaging technologies have significantly progressed over the last years. Besides advances in imaging techniques and image reconstruction, new "smart" optical contrast agents have been developed which can be used to detect molecular targets (such as endogenous enzymes) in vivo. The combination of novel imaging technologies coupled with smart agents bears great diagnostic potential both clinically and experimentally. This overview outlines the basic principles of optical imaging and summarizes the current state of the art.

  5. Robust Wiener filtering for Adaptive Optics

    SciTech Connect

    Poyneer, L A

    2004-06-17

    In many applications of optical systems, the observed field in the pupil plane has a non-uniform phase component. This deviation of the phase of the field from uniform is called a phase aberration. In imaging systems this aberration will degrade the quality of the images. In the case of a large astronomical telescope, random fluctuations in the atmosphere lead to significant distortion. These time-varying distortions can be corrected using an Adaptive Optics (AO) system, which is a real-time control system composed of optical, mechanical and computational parts. Adaptive optics is also applicable to problems in vision science, laser propagation and communication. For a high-level overview, consult this web site. For an in-depth treatment of the astronomical case, consult these books.

  6. Lens based adaptive optics scanning laser ophthalmoscope.

    PubMed

    Felberer, Franz; Kroisamer, Julia-Sophie; Hitzenberger, Christoph K; Pircher, Michael

    2012-07-30

    We present an alternative approach for an adaptive optics scanning laser ophthalmoscope (AO-SLO). In contrast to other commonly used AO-SLO instruments, the imaging optics consist of lenses. Images of the fovea region of 5 healthy volunteers are recorded. The system is capable to resolve human foveal cones in 3 out of 5 healthy volunteers. Additionally, we investigated the capability of the system to support larger scanning angles (up to 5°) on the retina. Finally, in order to demonstrate the performance of the instrument images of rod photoreceptors are presented.

  7. SEEDS ADAPTIVE OPTICS IMAGING OF THE ASYMMETRIC TRANSITION DISK OPH IRS 48 IN SCATTERED LIGHT

    SciTech Connect

    Follette, Katherine B.; Close, Laird M.; Grady, Carol A.; Swearingen, Jeremy R.; Sitko, Michael L.; Champney, Elizabeth H.; Van der Marel, Nienke; Maaskant, Koen; Min, Michiel; Takami, Michihiro; Kuchner, Marc J; McElwain, Michael W.; Muto, Takayuki; Mayama, Satoshi; Fukagawa, Misato; Russell, Ray W.; Kudo, Tomoyuki; Kusakabe, Nobuhiko; Hashimoto, Jun; Abe, Lyu; and others

    2015-01-10

    We present the first resolved near-infrared imagery of the transition disk Oph IRS 48 (WLY 2-48), which was recently observed with ALMA to have a strongly asymmetric submillimeter flux distribution. H-band polarized intensity images show a ∼60 AU radius scattered light cavity with two pronounced arcs of emission, one from northeast to southeast and one smaller, fainter, and more distant arc in the northwest. K-band scattered light imagery reveals a similar morphology, but with a clear third arc along the southwestern rim of the disk cavity. This arc meets the northwestern arc at nearly a right angle, revealing the presence of a spiral arm or local surface brightness deficit in the disk, and explaining the east-west brightness asymmetry in the H-band data. We also present 0.8-5.4 μm IRTF SpeX spectra of this object, which allow us to constrain the spectral class to A0 ± 1 and measure a low mass accretion rate of 10{sup –8.5} M {sub ☉} yr{sup –1}, both consistent with previous estimates. We investigate a variety of reddening laws in order to fit the multiwavelength spectral energy distribution of Oph IRS 48 and find a best fit consistent with a younger, higher luminosity star than previous estimates.

  8. Adaptive optical filter

    SciTech Connect

    Whittemore, Stephen Richard

    2013-09-10

    Imaging systems include a detector and a spatial light modulator (SLM) that is coupled so as to control image intensity at the detector based on predetermined detector limits. By iteratively adjusting SLM element values, image intensity at one or all detector elements or portions of an imaging detector can be controlled to be within limits. The SLM can be secured to the detector at a spacing such that the SLM is effectively at an image focal plane. In some applications, the SLM can be adjusted to impart visible or hidden watermarks to images or to reduce image intensity at one or a selected set of detector elements so as to reduce detector blooming

  9. DIFFRACTION-LIMITED VISIBLE LIGHT IMAGES OF ORION TRAPEZIUM CLUSTER WITH THE MAGELLAN ADAPTIVE SECONDARY ADAPTIVE OPTICS SYSTEM (MagAO)

    SciTech Connect

    Close, L. M.; Males, J. R.; Morzinski, K.; Kopon, D.; Follette, K.; Rodigas, T. J.; Hinz, P.; Wu, Y-L.; Puglisi, A.; Esposito, S.; Riccardi, A.; Pinna, E.; Xompero, M.; Briguglio, R.; Uomoto, A; Hare, T.

    2013-09-10

    We utilized the new high-order (250-378 mode) Magellan Adaptive Optics system (MagAO) to obtain very high spatial resolution observations in ''visible light'' with MagAO's VisAO CCD camera. In the good-median seeing conditions of Magellan (0.''5-0.''7), we find MagAO delivers individual short exposure images as good as 19 mas optical resolution. Due to telescope vibrations, long exposure (60 s) r' (0.63 {mu}m) images are slightly coarser at FWHM = 23-29 mas (Strehl {approx}28%) with bright (R < 9 mag) guide stars. These are the highest resolution filled-aperture images published to date. Images of the young ({approx}1 Myr) Orion Trapezium {theta}{sup 1} Ori A, B, and C cluster members were obtained with VisAO. In particular, the 32 mas binary {theta}{sup 1} Ori C{sub 1} C{sub 2} was easily resolved in non-interferometric images for the first time. The relative positions of the bright trapezium binary stars were measured with {approx}0.6-5 mas accuracy. We are now sensitive to relative proper motions of just {approx}0.2 mas yr{sup -1} ({approx}0.4 km s{sup -1} at 414 pc)-this is a {approx}2-10 Multiplication-Sign improvement in orbital velocity accuracy compared to previous efforts. For the first time, we see clear motion of the barycenter of {theta}{sup 1} Ori B{sub 2} B{sub 3} about {theta}{sup 1} Ori B{sub 1}. All five members of the {theta}{sup 1} Ori B system appear likely to be a gravitationally bound ''mini cluster'', but we find that not all the orbits can be both circular and co-planar. The lowest mass member of the {theta}{sup 1} Ori B system (B{sub 4}; mass {approx}0.2 M{sub Sun }) has a very clearly detected motion (at 4.1 {+-} 1.3 km s{sup -1}; correlation = 99.9%) w.r.t. B{sub 1}. Previous work has suggested that B{sub 4} and B{sub 3} are on long-term unstable orbits and will be ejected from this ''mini cluster''. However, our new ''baseline'' model of the {theta}{sup 1} Ori B system suggests a more hierarchical system than previously thought, and so

  10. HIGH-EFFICIENCY AUTONOMOUS LASER ADAPTIVE OPTICS

    SciTech Connect

    Baranec, Christoph; Riddle, Reed; Tendulkar, Shriharsh; Hogstrom, Kristina; Bui, Khanh; Dekany, Richard; Kulkarni, Shrinivas; Law, Nicholas M.; Ramaprakash, A. N.; Burse, Mahesh; Chordia, Pravin; Das, Hillol; Punnadi, Sujit

    2014-07-20

    As new large-scale astronomical surveys greatly increase the number of objects targeted and discoveries made, the requirement for efficient follow-up observations is crucial. Adaptive optics imaging, which compensates for the image-blurring effects of Earth's turbulent atmosphere, is essential for these surveys, but the scarcity, complexity and high demand of current systems limit their availability for following up large numbers of targets. To address this need, we have engineered and implemented Robo-AO, a fully autonomous laser adaptive optics and imaging system that routinely images over 200 objects per night with an acuity 10 times sharper at visible wavelengths than typically possible from the ground. By greatly improving the angular resolution, sensitivity, and efficiency of 1-3 m class telescopes, we have eliminated a major obstacle in the follow-up of the discoveries from current and future large astronomical surveys.

  11. High-efficiency Autonomous Laser Adaptive Optics

    NASA Astrophysics Data System (ADS)

    Baranec, Christoph; Riddle, Reed; Law, Nicholas M.; Ramaprakash, A. N.; Tendulkar, Shriharsh; Hogstrom, Kristina; Bui, Khanh; Burse, Mahesh; Chordia, Pravin; Das, Hillol; Dekany, Richard; Kulkarni, Shrinivas; Punnadi, Sujit

    2014-07-01

    As new large-scale astronomical surveys greatly increase the number of objects targeted and discoveries made, the requirement for efficient follow-up observations is crucial. Adaptive optics imaging, which compensates for the image-blurring effects of Earth's turbulent atmosphere, is essential for these surveys, but the scarcity, complexity and high demand of current systems limit their availability for following up large numbers of targets. To address this need, we have engineered and implemented Robo-AO, a fully autonomous laser adaptive optics and imaging system that routinely images over 200 objects per night with an acuity 10 times sharper at visible wavelengths than typically possible from the ground. By greatly improving the angular resolution, sensitivity, and efficiency of 1-3 m class telescopes, we have eliminated a major obstacle in the follow-up of the discoveries from current and future large astronomical surveys.

  12. Adaptive Optics for Industry and Medicine

    NASA Astrophysics Data System (ADS)

    Dainty, Christopher

    2008-01-01

    pt. 1. Wavefront correctors and control. Liquid crystal lenses for correction of presbyopia (Invited Paper) / Guoqiang Li and Nasser Peyghambarian. Converging and diverging liquid crystal lenses (oral paper) / Andrew X. Kirby, Philip J. W. Hands, and Gordon D. Love. Liquid lens technology for miniature imaging systems: status of the technology, performance of existing products and future trends (invited paper) / Bruno Berge. Carbon fiber reinforced polymer deformable mirrors for high energy laser applications (oral paper) / S. R. Restaino ... [et al.]. Tiny multilayer deformable mirrors (oral paper) / Tatiana Cherezova ... [et al.]. Performance analysis of piezoelectric deformable mirrors (oral paper) / Oleg Soloviev, Mikhail Loktev and Gleb Vdovin. Deformable membrane mirror with high actuator density and distributed control (oral paper) / Roger Hamelinck ... [et al.]. Characterization and closed-loop demonstration of a novel electrostatic membrane mirror using COTS membranes (oral paper) / David Dayton ... [et al.]. Electrostatic micro-deformable mirror based on polymer materials (oral paper) / Frederic Zamkotsian ... [et al.]. Recent progress in CMOS integrated MEMS A0 mirror development (oral paper) / A. Gehner ... [et al.]. Compact large-stroke piston-tip-tilt actuator and mirror (oral paper) / W. Noell ... [et al.]. MEMS deformable mirrors for high performance AO applications (oral paper) / Paul Bierden, Thomas Bifano and Steven Cornelissen. A versatile interferometric test-rig for the investigation and evaluation of ophthalmic AO systems (poster paper) / Steve Gruppetta, Jiang Jian Zhong and Luis Diaz-Santana. Woofer-tweeter adaptive optics (poster paper) / Thomas Farrell and Chris Dainty. Deformable mirrors based on transversal piezoeffect (poster paper) / Gleb Vdovin, Mikhail Loktev and Oleg Soloviev. Low-cost spatial light modulators for ophthalmic applications (poster paper) / Vincente Durán ... [et al.]. Latest MEMS DM developments and the path ahead

  13. Compressive Optical Image Encryption

    PubMed Central

    Li, Jun; Sheng Li, Jiao; Yang Pan, Yang; Li, Rong

    2015-01-01

    An optical image encryption technique based on compressive sensing using fully optical means has been proposed. An object image is first encrypted to a white-sense stationary noise pattern using a double random phase encoding (DRPE) method in a Mach-Zehnder interferometer. Then, the encrypted image is highly compressed to a signal using single-pixel compressive holographic imaging in the optical domain. At the receiving terminal, the encrypted image is reconstructed well via compressive sensing theory, and the original image can be decrypted with three reconstructed holograms and the correct keys. The numerical simulations show that the method is effective and suitable for optical image security transmission in future all-optical networks because of the ability of completely optical implementation and substantially smaller hologram data volume. PMID:25992946

  14. Compressive optical image encryption.

    PubMed

    Li, Jun; Sheng Li, Jiao; Yang Pan, Yang; Li, Rong

    2015-05-20

    An optical image encryption technique based on compressive sensing using fully optical means has been proposed. An object image is first encrypted to a white-sense stationary noise pattern using a double random phase encoding (DRPE) method in a Mach-Zehnder interferometer. Then, the encrypted image is highly compressed to a signal using single-pixel compressive holographic imaging in the optical domain. At the receiving terminal, the encrypted image is reconstructed well via compressive sensing theory, and the original image can be decrypted with three reconstructed holograms and the correct keys. The numerical simulations show that the method is effective and suitable for optical image security transmission in future all-optical networks because of the ability of completely optical implementation and substantially smaller hologram data volume.

  15. High-Resolution Imaging of Parafoveal Cones in Different Stages of Diabetic Retinopathy Using Adaptive Optics Fundus Camera

    PubMed Central

    Soliman, Mohamed Kamel; Hassan, Muhammad; Hanout, Mostafa; Graf, Frank; High, Robin; Do, Diana V.; Nguyen, Quan Dong; Sepah, Yasir J.

    2016-01-01

    Purpose To assess cone density as a marker of early signs of retinopathy in patients with type II diabetes mellitus. Methods An adaptive optics (AO) retinal camera (rtx1™; Imagine Eyes, Orsay, France) was used to acquire images of parafoveal cones from patients with type II diabetes mellitus with or without retinopathy and from healthy controls with no known systemic or ocular disease. Cone mosaic was captured at 0° and 2°eccentricities along the horizontal and vertical meridians. The density of the parafoveal cones was calculated within 100×100-μm squares located at 500-μm from the foveal center along the orthogonal meridians. Manual corrections of the automated counting were then performed by 2 masked graders. Cone density measurements were evaluated with ANOVA that consisted of one between-subjects factor, stage of retinopathy and the within-subject factors. The ANOVA model included a complex covariance structure to account for correlations between the levels of the within-subject factors. Results Ten healthy participants (20 eyes) and 25 patients (29 eyes) with type II diabetes mellitus were recruited in the study. The mean (± standard deviation [SD]) age of the healthy participants (Control group), patients with diabetes without retinopathy (No DR group), and patients with diabetic retinopathy (DR group) was 55 ± 8, 53 ± 8, and 52 ± 9 years, respectively. The cone density was significantly lower in the moderate nonproliferative diabetic retinopathy (NPDR) and severe NPDR/proliferative DR groups compared to the Control, No DR, and mild NPDR groups (P < 0.05). No correlation was found between cone density and the level of hemoglobin A1c (HbA1c) or the duration of diabetes. Conclusions The extent of photoreceptor loss on AO imaging may correlate positively with severity of DR in patients with type II diabetes mellitus. Photoreceptor loss may be more pronounced among patients with advanced stages of DR due to higher risk of macular edema and its

  16. Split image optical display

    DOEpatents

    Veligdan, James T.

    2005-05-31

    A video image is displayed from an optical panel by splitting the image into a plurality of image components, and then projecting the image components through corresponding portions of the panel to collectively form the image. Depth of the display is correspondingly reduced.

  17. Split image optical display

    DOEpatents

    Veligdan, James T.

    2007-05-29

    A video image is displayed from an optical panel by splitting the image into a plurality of image components, and then projecting the image components through corresponding portions of the panel to collectively form the image. Depth of the display is correspondingly reduced.

  18. Demonstration of portable solar adaptive optics system

    NASA Astrophysics Data System (ADS)

    Ren, Deqing; Dong, Bing

    2012-10-01

    Solar-adaptive optics (AO) are more challenging than night-time AO, in some aspects. A portable solar adaptive optics (PSAO) system featuring compact physical size, low cost, and good performance has been proposed and developed. PSAO can serve as a visiting instrument for any existing ground-based solar telescope to improve solar image quality by replacing just a few optical components. High-level programming language, LabVIEW, is used to develop the wavefront sensing and control software, and general purpose computers are used to drive the whole system. During October 2011, the feasibility and good performance of PSAO was demonstrated with the 61-cm solar telescope at San Fernando Observatory. The image contrast and resolution are noticeably improved after AO correction.

  19. Cats: Optical to Near-Infrared Colors of the Bulge and Disk of Two z = 0.7 Galaxies Using Hubble Space Telescope and Keck Laser Adaptive Optics Imaging

    NASA Astrophysics Data System (ADS)

    Steinbring, E.; Melbourne, J.; Metevier, A. J.; Koo, D. C.; Chun, M. R.; Simard, L.; Larkin, J. E.; Max, C. E.

    2008-10-01

    We have employed laser guide star (LGS) adaptive optics (AO) on the Keck II telescope to obtain near-infrared (NIR) images in the Extended Groth Strip deep galaxy survey field. This is a continuation of our Center for Adaptive Optics Treasury Survey program of targeting 0.5 < z < 1 galaxies where existing images with the Hubble Space Telescope (HST) are already in hand. Our AO field has already been imaged by the Advanced Camera for Surveys and the Near Infrared Camera and Multiobject Spectrograph (NICMOS). Our AO images at 2.2 μm (K') are comparable in depth to those from the HST, have Strehl ratios up to 0.4, and full width at half-maximum resolutions superior to that from NICMOS. By sampling the field with the LGS at different positions, we obtain better quality AO images than with an immovable natural guide star. As examples of the power of adding LGS AO to HST data, we study the optical to NIR colors and color gradients of the bulge and disk of two galaxies in the field with z = 0.7. All authors except L.S. are affiliated with the Center for Adaptive Optics.

  20. Adaptive optics parallel near-confocal scanning ophthalmoscopy.

    PubMed

    Lu, Jing; Gu, Boyu; Wang, Xiaolin; Zhang, Yuhua

    2016-08-15

    We present an adaptive optics parallel near-confocal scanning ophthalmoscope (AOPCSO) using a digital micromirror device (DMD). The imaging light is modulated to be a line of point sources by the DMD, illuminating the retina simultaneously. By using a high-speed line camera to acquire the image and using adaptive optics to compensate the ocular wave aberration, the AOPCSO can image the living human eye with cellular level resolution at the frame rate of 100 Hz. AOPCSO has been demonstrated with improved spatial resolution in imaging of the living human retina compared with adaptive optics line scan ophthalmoscopy.

  1. Adaptive optics and laser guide stars at Lick observatory

    SciTech Connect

    Brase, J.M.

    1994-11-15

    For the past several years LLNL has been developing adaptive optics systems for correction of both atmospheric turbulence effects and thermal distortions in optics for high-power lasers. Our early work focused on adaptive optics for beam control in laser isotope separation and ground-based free electron lasers. We are currently developing innovative adaptive optics and laser systems for sodium laser guide star applications at the University of California`s Lick and Keck Observeratories. This talk will describe our adaptive optics technology and some of its applications in high-resolution imaging and beam control.

  2. Adaptive optics without guide stars (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Mertz, Jerome; Li, Jiang; Beaulieu, Devin; Paudel, Hari P.; Barankov, Roman; Bifano, Thomas G.

    2016-03-01

    Adaptive optics is a strategy to compensate for sample-induced aberrations in microscopy applications. Generally, it requires the presence of "guide stars" in the sample to serve as localized reference targets. We describe an implementation of conjugate adaptive optics that is amenable to widefield (i.e. non-scanning) microscopy, and can provide aberration corrections over potentially large fields of view without the use of guide stars. A unique feature of our implementation is that it is based on wavefront sensing with a single-shot partitioned-aperture sensor that provides large dynamic range compatible with extended samples. Combined information provided by this sensor and the imaging camera enable robust image de-blurring based on a rapid estimation of sample and aberrations obtained by closed-loop feedback. We present the theoretical principle of our technique and experimental demonstrations using both trans-illumination and fluorescence microscopes. Finally, we apply our technique to mouse brain imaging.

  3. Fluorescent scanning laser ophthalmoscopy for cellular resolution in vivo mouse retinal imaging: benefits and drawbacks of implementing adaptive optics (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Zhang, Pengfei; Goswami, Mayank; Pugh, Edward N.; Zawadzki, Robert J.

    2016-03-01

    Scanning Laser Ophthalmoscopy (SLO) is a very important imaging tool in ophthalmology research. By combing with Adaptive Optics (AO) technique, AO-SLO can correct for ocular aberrations resulting in cellular level resolution, allowing longitudinal studies of single cells morphology in the living eyes. The numerical aperture (NA) sets the optical resolution that can be achieve in the "classical" imaging systems. Mouse eye has more than twice NA of the human eye, thus offering theoretically higher resolution. However, in most SLO based imaging systems the imaging beam size at mouse pupil sets the NA of that instrument, while most of the AO-SLO systems use almost the full NA of the mouse eye. In this report, we first simulated the theoretical resolution that can be achieved in vivo for different imaging beam sizes (different NA), assumingtwo cases: no aberrations and aberrations based on published mouse ocular wavefront data. Then we imaged mouse retinas with our custom build SLO system using different beam sizes to compare these results with theory. Further experiments include comparison of the SLO and AO-SLO systems for imaging different type of fluorescently labeled cells (microglia, ganglion, photoreceptors, etc.). By comparing those results and taking into account systems complexity and ease of use, the benefits and drawbacks of two imaging systems will be discussed.

  4. Fully parallel adaptive finite element simulation using the simplified spherical harmonics approximations for frequency-domain fluorescence-enhanced optical imaging

    NASA Astrophysics Data System (ADS)

    Lu, Yujie; Zhu, Banghe; Shen, Haiou; Rasmussen, John C.; Wang, Ge; Sevick-Muraca, Eva M.

    2011-03-01

    Fluorescence-enhanced optical imaging/tomography may play an important role in preclinical research and clinical diagnostics as a type of optical molecular. Time- and frequency-domain measurement can acquire more measurement information, reducing the ill-posedness and improving the reconstruction quality of fluorescence-enhanced optical tomography. Although the diffusion approximation (DA) theory has been extensively in optical imaging, high-order photon migration models must be further investigated for application to complex and small tissue volumes. In this paper, a frequency-domain fully parallel adaptive finite element solver is developed with the simplified spherical harmonics (SPN) approximations. To fully evaluate the performance of the SPN approximations, a fast tetrahedron-based Monte Carlo simulator suitable for complex heterogeneous geometries is developed using the convolution strategy to realize the simulation of the fluorescence excitation and emission. With simple and real digital mouse phantoms, the results show that the significant precision and speed improvements are obtained from the parallel adaptive mesh evolution strategy.

  5. 15 Gbit/s indoor optical wireless systems employing fast adaptation and imaging reception in a realistic environment

    NASA Astrophysics Data System (ADS)

    Alsaadi, Fuad E.

    2016-03-01

    Optical wireless systems are promising candidates for next-generation indoor communication networks. Optical wireless technology offers freedom from spectrum regulations and, compared to current radio-frequency networks, higher data rates and increased security. This paper presents a fast adaptation method for multibeam angle and delay adaptation systems and a new spot-diffusing geometry, and also considers restrictions needed for complying with eye safety regulations. The fast adaptation algorithm reduces the computational load required to reconfigure the transmitter in the case of transmitter and/or receiver mobility. The beam clustering approach enables the transmitter to assign power to spots within the pixel's field of view (FOV) and increases the number of such spots. Thus, if the power per spot is restricted to comply with eye safety standards, the new approach, in which more spots are visible within the FOV of the pixel, leads to enhanced signal-to-noise ratio (SNR). Simulation results demonstrate that the techniques proposed in this paper lead to SNR improvements that enable reliable operation at data rates as high as 15 Gbit/s. These results are based on simulation and not on actual measurements or experiments.

  6. Comparison of the human multifocal electroretinogram a-wave response and adaptive optics imaging of cone photoreceptor numbers

    NASA Astrophysics Data System (ADS)

    Klein, Michael W.

    Studies that have used pharmacological agents in non human primates (e.g., Hood et al., IOVS 2002) indicate that electrical activity of cone photoreceptors, depolarizing cone bipolar cells and horizontal cells are all likely to contribute to the multifocal electroretinogram (mfERG) a-wave. The purpose of this study was to examine the relationship between the mfERG a-wave and co-localized cone spatial density individually measured in young healthy human subjects. mfERGs (0.1-300Hz) were recorded from 4 subjects (20-29 years) with a system from Veris Science (EDI, Inc.) using 2.4 degree unstretched hexagons from 206 retinal locations presented at 30 frames per m-step on a 75Hz monitor with m-sequence exponent of 9 and flash strength 9.9 cd-s/m 2. mfERG a-wave amplitude was measured from baseline at 10 milliseconds on the leading edge of the a-wave. In vivo cone images were obtained at 24 retinal locations using a custom-built Adaptive Optics Confocal Scanning Laser Ophthalmoscope. Cone spatial density was measured from a 100x100mum centered on the mfERG hexagons at 24 retinal locations. mfERG a-wave amplitude as well as cone density reduced with increase in retinal eccentricity from the fovea and the a-wave amplitude and cone density were positively correlated for each subject (r2=0.35 to 0.49 and p = 0.0049 to 0.0002). The coefficient of variation (CV) of the mfERG a-wave amplitude across subjects at each retinal location (16-62%) was larger than the CV of the cone density (8-37%) at the same location. The results indicate that underlying cone density accounts for a significant portion (up to nearly 70%) of the variance in the mfERG a-wave amplitude across retinal eccentricity. Other factors likely contribute to the variance (approximately 30%) of the measured mfERG parameters.

  7. Adaptive optical antennas: design and evaluation

    NASA Astrophysics Data System (ADS)

    Weyrauch, Thomas; Vorontsov, Mikhail A.; Carhart, Gary W.; Simonova, Galina V.; Beresnev, Leonid A.; Polnau, Ernst E.

    2007-09-01

    We present the design and evaluation of compact adaptive optical antennas with apertures diameters of 16 mm and 100 mm for 5Gbit/s-class free-space optical communication systems. The antennas provide a bi-directional optically transparent link between fiber-optical wavelength-division multiplex systems and allow for mitigation of atmospheric-turbulence induced wavefront phase distortions with adaptive optics components. Beam steering is implemented in the antennas either with mirrors on novel tip/tilt platforms or a fiber-tip positioning system, both enabling operation bandwidths of more than 1 kHz. Bimorph piezoelectric actuated deformable mirrors are used for low-order phase-distortion compensation. An imaging system is integrated in the antennas for coarse pointing and tracking. Beam steering and wavefront control is based on blind maximization of the received signal level using a stochastic parallel gradient descent algorithm. The adaptive optics control architecture allowed the use of feedback signals provided locally within each transceiver system and remotely by the opposite transceiver system via an RF link. First atmospheric compensation results from communication experiments over a 250 m near-ground propagation path are presented.

  8. Optical Property Analyses of Plant Cells for Adaptive Optics Microscopy

    NASA Astrophysics Data System (ADS)

    Tamada, Yosuke; Murata, Takashi; Hattori, Masayuki; Oya, Shin; Hayano, Yutaka; Kamei, Yasuhiro; Hasebe, Mitsuyasu

    2014-04-01

    In astronomy, adaptive optics (AO) can be used to cancel aberrations caused by atmospheric turbulence and to perform diffraction-limited observation of astronomical objects from the ground. AO can also be applied to microscopy, to cancel aberrations caused by cellular structures and to perform high-resolution live imaging. As a step toward the application of AO to microscopy, here we analyzed the optical properties of plant cells. We used leaves of the moss Physcomitrella patens, which have a single layer of cells and are thus suitable for optical analysis. Observation of the cells with bright field and phase contrast microscopy, and image degradation analysis using fluorescent beads demonstrated that chloroplasts provide the main source of optical degradations. Unexpectedly, the cell wall, which was thought to be a major obstacle, has only a minor effect. Such information provides the basis for the application of AO to microscopy for the observation of plant cells.

  9. Adaptive-optics SLO imaging combined with widefield OCT and SLO enables precise 3D localization of fluorescent cells in the mouse retina.

    PubMed

    Zawadzki, Robert J; Zhang, Pengfei; Zam, Azhar; Miller, Eric B; Goswami, Mayank; Wang, Xinlei; Jonnal, Ravi S; Lee, Sang-Hyuck; Kim, Dae Yu; Flannery, John G; Werner, John S; Burns, Marie E; Pugh, Edward N

    2015-06-01

    Adaptive optics scanning laser ophthalmoscopy (AO-SLO) has recently been used to achieve exquisite subcellular resolution imaging of the mouse retina. Wavefront sensing-based AO typically restricts the field of view to a few degrees of visual angle. As a consequence the relationship between AO-SLO data and larger scale retinal structures and cellular patterns can be difficult to assess. The retinal vasculature affords a large-scale 3D map on which cells and structures can be located during in vivo imaging. Phase-variance OCT (pv-OCT) can efficiently image the vasculature with near-infrared light in a label-free manner, allowing 3D vascular reconstruction with high precision. We combined widefield pv-OCT and SLO imaging with AO-SLO reflection and fluorescence imaging to localize two types of fluorescent cells within the retinal layers: GFP-expressing microglia, the resident macrophages of the retina, and GFP-expressing cone photoreceptor cells. We describe in detail a reflective afocal AO-SLO retinal imaging system designed for high resolution retinal imaging in mice. The optical performance of this instrument is compared to other state-of-the-art AO-based mouse retinal imaging systems. The spatial and temporal resolution of the new AO instrumentation was characterized with angiography of retinal capillaries, including blood-flow velocity analysis. Depth-resolved AO-SLO fluorescent images of microglia and cone photoreceptors are visualized in parallel with 469 nm and 663 nm reflectance images of the microvasculature and other structures. Additional applications of the new instrumentation are discussed.

  10. Adaptive-optics SLO imaging combined with widefield OCT and SLO enables precise 3D localization of fluorescent cells in the mouse retina

    PubMed Central

    Zawadzki, Robert J.; Zhang, Pengfei; Zam, Azhar; Miller, Eric B.; Goswami, Mayank; Wang, Xinlei; Jonnal, Ravi S.; Lee, Sang-Hyuck; Kim, Dae Yu; Flannery, John G.; Werner, John S.; Burns, Marie E.; Pugh, Edward N.

    2015-01-01

    Adaptive optics scanning laser ophthalmoscopy (AO-SLO) has recently been used to achieve exquisite subcellular resolution imaging of the mouse retina. Wavefront sensing-based AO typically restricts the field of view to a few degrees of visual angle. As a consequence the relationship between AO-SLO data and larger scale retinal structures and cellular patterns can be difficult to assess. The retinal vasculature affords a large-scale 3D map on which cells and structures can be located during in vivo imaging. Phase-variance OCT (pv-OCT) can efficiently image the vasculature with near-infrared light in a label-free manner, allowing 3D vascular reconstruction with high precision. We combined widefield pv-OCT and SLO imaging with AO-SLO reflection and fluorescence imaging to localize two types of fluorescent cells within the retinal layers: GFP-expressing microglia, the resident macrophages of the retina, and GFP-expressing cone photoreceptor cells. We describe in detail a reflective afocal AO-SLO retinal imaging system designed for high resolution retinal imaging in mice. The optical performance of this instrument is compared to other state-of-the-art AO-based mouse retinal imaging systems. The spatial and temporal resolution of the new AO instrumentation was characterized with angiography of retinal capillaries, including blood-flow velocity analysis. Depth-resolved AO-SLO fluorescent images of microglia and cone photoreceptors are visualized in parallel with 469 nm and 663 nm reflectance images of the microvasculature and other structures. Additional applications of the new instrumentation are discussed. PMID:26114038

  11. The research and development of the adaptive optics in ophthalmology

    NASA Astrophysics Data System (ADS)

    Wu, Chuhan; Zhang, Xiaofang; Chen, Weilin

    2015-08-01

    Recently the combination of adaptive optics and ophthalmology has made great progress and become highly effective. The retina disease is diagnosed by retina imaging technique based on scanning optical system, so the scanning of eye requires optical system characterized by great ability of anti-moving and optical aberration correction. The adaptive optics possesses high level of adaptability and is available for real time imaging, which meets the requirement of medical retina detection with accurate images. Now the Scanning Laser Ophthalmoscope and the Optical Coherence Tomography are widely used, which are the core techniques in the area of medical retina detection. Based on the above techniques, in China, a few adaptive optics systems used for eye medical scanning have been designed by some researchers from The Institute of Optics And Electronics of CAS(The Chinese Academy of Sciences); some foreign research institutions have adopted other methods to eliminate the interference of eye moving and optical aberration; there are many relevant patents at home and abroad. In this paper, the principles and relevant technique details of the Scanning Laser Ophthalmoscope and the Optical Coherence Tomography are described. And the recent development and progress of adaptive optics in the field of eye retina imaging are analyzed and summarized.

  12. Adaptive optics on a shoe string

    NASA Astrophysics Data System (ADS)

    Restaino, Sergio R.; Payne, Don M.

    1998-12-01

    There are two main ways to mitigate the effects of atmospheric turbulence on an imaging system. A post factor approach, where data are opportunely acquired and processed in order to increase the overall resolution attainable by the optical system, speckle imaging is an example of such technique. The other approach is to use an adaptive optics system that will compensate for atmospheric effects before the data are recorded. Of course, the situation is not sharply distinct. Hybrid approaches have been proposed and demonstrated. Other approaches that are a mid-way between the two are also possible. The basic idea of static and dynamic pupil masking will be presented. Experimental results based on point sources and extended objects will be presented. Advantages and limitations of such technique will be discussed. Finally some new ideas involving fiber optics and liquid crystals will be presented.

  13. Adaptive optics program at TMT

    NASA Astrophysics Data System (ADS)

    Boyer, C.; Adkins, Sean; Andersen, David R.; Atwood, Jenny; Bo, Yong; Byrnes, Peter; Caputa, Kris; Cavaco, Jeff; Ellerbroek, Brent; Gilles, Luc; Gregory, James; Herriot, Glen; Hickson, Paul; Ljusic, Zoran; Manter, Darren; Marois, Christian; Otárola, Angel; Pagès, Hubert; Schoeck, Matthias; Sinquin, Jean-Christophe; Smith, Malcolm; Spano, Paolo; Szeto, Kei; Tang, Jinlong; Travouillon, Tony; Véran, Jean-Pierre; Wang, Lianqi; Wei, Kai

    2014-07-01

    The TMT first light Adaptive Optics (AO) facility consists of the Narrow Field Infra-Red AO System (NFIRAOS) and the associated Laser Guide Star Facility (LGSF). NFIRAOS is a 60 × 60 laser guide star (LGS) multi-conjugate AO (MCAO) system, which provides uniform, diffraction-limited performance in the J, H, and K bands over 17-30 arc sec diameter fields with 50 per cent sky coverage at the galactic pole, as required to support the TMT science cases. NFIRAOS includes two deformable mirrors, six laser guide star wavefront sensors, and three low-order, infrared, natural guide star wavefront sensors within each client instrument. The first light LGSF system includes six sodium lasers required to generate the NFIRAOS laser guide stars. In this paper, we will provide an update on the progress in designing, modeling and validating the TMT first light AO systems and their components over the last two years. This will include pre-final design and prototyping activities for NFIRAOS, preliminary design and prototyping activities for the LGSF, design and prototyping for the deformable mirrors, fabrication and tests for the visible detectors, benchmarking and comparison of different algorithms and processing architecture for the Real Time Controller (RTC) and development and tests of prototype candidate lasers. Comprehensive and detailed AO modeling is continuing to support the design and development of the first light AO facility. Main modeling topics studied during the last two years include further studies in the area of wavefront error budget, sky coverage, high precision astrometry for the galactic center and other observations, high contrast imaging with NFIRAOS and its first light instruments, Point Spread Function (PSF) reconstruction for LGS MCAO, LGS photon return and sophisticated low order mode temporal filtering.

  14. Multifocal multiphoton microscopy with adaptive optical correction

    NASA Astrophysics Data System (ADS)

    Coelho, Simao; Poland, Simon; Krstajic, Nikola; Li, David; Monypenny, James; Walker, Richard; Tyndall, David; Ng, Tony; Henderson, Robert; Ameer-Beg, Simon

    2013-02-01

    Fluorescence lifetime imaging microscopy (FLIM) is a well established approach for measuring dynamic signalling events inside living cells, including detection of protein-protein interactions. The improvement in optical penetration of infrared light compared with linear excitation due to Rayleigh scattering and low absorption have provided imaging depths of up to 1mm in brain tissue but significant image degradation occurs as samples distort (aberrate) the infrared excitation beam. Multiphoton time-correlated single photon counting (TCSPC) FLIM is a method for obtaining functional, high resolution images of biological structures. In order to achieve good statistical accuracy TCSPC typically requires long acquisition times. We report the development of a multifocal multiphoton microscope (MMM), titled MegaFLI. Beam parallelization performed via a 3D Gerchberg-Saxton (GS) algorithm using a Spatial Light Modulator (SLM), increases TCSPC count rate proportional to the number of beamlets produced. A weighted 3D GS algorithm is employed to improve homogeneity. An added benefit is the implementation of flexible and adaptive optical correction. Adaptive optics performed by means of Zernike polynomials are used to correct for system induced aberrations. Here we present results with significant improvement in throughput obtained using a novel complementary metal-oxide-semiconductor (CMOS) 1024 pixel single-photon avalanche diode (SPAD) array, opening the way to truly high-throughput FLIM.

  15. Statistics of intensity in adaptive-optics images and their usefulness for detection and photometry of exoplanets.

    PubMed

    Gladysz, Szymon; Yaitskova, Natalia; Christou, Julian C

    2010-11-01

    This paper is an introduction to the problem of modeling the probability density function of adaptive-optics speckle. We show that with the modified Rician distribution one cannot describe the statistics of light on axis. A dual solution is proposed: the modified Rician distribution for off-axis speckle and gamma-based distribution for the core of the point spread function. From these two distributions we derive optimal statistical discriminators between real sources and quasi-static speckles. In the second part of the paper the morphological difference between the two probability density functions is used to constrain a one-dimensional, "blind," iterative deconvolution at the position of an exoplanet. Separation of the probability density functions of signal and speckle yields accurate differential photometry in our simulations of the SPHERE planet finder instrument.

  16. Adaptive optics scanning ophthalmoscopy with annular pupils.

    PubMed

    Sulai, Yusufu N; Dubra, Alfredo

    2012-07-01

    Annular apodization of the illumination and/or imaging pupils of an adaptive optics scanning light ophthalmoscope (AOSLO) for improving transverse resolution was evaluated using three different normalized inner radii (0.26, 0.39 and 0.52). In vivo imaging of the human photoreceptor mosaic at 0.5 and 10° from fixation indicates that the use of an annular illumination pupil and a circular imaging pupil provides the most benefit of all configurations when using a one Airy disk diameter pinhole, in agreement with the paraxial confocal microscopy theory. Annular illumination pupils with 0.26 and 0.39 normalized inner radii performed best in terms of the narrowing of the autocorrelation central lobe (between 7 and 12%), and the increase in manual and automated photoreceptor counts (8 to 20% more cones and 11 to 29% more rods). It was observed that the use of annular pupils with large inner radii can result in multi-modal cone photoreceptor intensity profiles. The effect of the annular masks on the average photoreceptor intensity is consistent with the Stiles-Crawford effect (SCE). This indicates that combinations of images of the same photoreceptors with different apodization configurations and/or annular masks can be used to distinguish cones from rods, even when the former have complex multi-modal intensity profiles. In addition to narrowing the point spread function transversally, the use of annular apodizing masks also elongates it axially, a fact that can be used for extending the depth of focus of techniques such as adaptive optics optical coherence tomography (AOOCT). Finally, the positive results from this work suggest that annular pupil apodization could be used in refractive or catadioptric adaptive optics ophthalmoscopes to mitigate undesired back-reflections.

  17. Exploiting Adaptive Optics with Deformable Secondary Mirrors

    DTIC Science & Technology

    2007-03-08

    progress in tomographic wavefront sensing and altitude conjugated adaptive correction, and is a critical step forward for adaptive optics for future large...geostationary satellites, captured at the 6.5 m MMT telescope, using the deformable secondary adaptive optics system....new technology to the unique development of deformable secondary mirrors pioneered at the University of Arizona’s Center for Astronomical Adaptive

  18. Gemini Frontier Fields: Wide-field Adaptive Optics Ks-band Imaging of the Galaxy Clusters MACS J0416.1-2403 and Abell 2744

    NASA Astrophysics Data System (ADS)

    Schirmer, M.; Carrasco, E. R.; Pessev, P.; Garrel, V.; Winge, C.; Neichel, B.; Vidal, F.

    2015-04-01

    We have observed two of the six Frontier Fields galaxy clusters, MACS J0416.1-2403 and Abell 2744, using the Gemini Multi-Conjugate Adaptive Optics System (GeMS) and the Gemini South Adaptive Optics Imager (GSAOI). With 0.″ 08-0.″ 10 FWHM our data are nearly diffraction-limited over a 100\\prime\\prime × 100\\prime\\prime wide area. GeMS/GSAOI complements the Hubble Space Telescope (HST) redwards of 1.6 μm with twice the angular resolution. We reach a 5σ depth of {{K}s}˜ 25.6 mag (AB) for compact sources. In this paper, we describe the observations, data processing, and initial public data release. We provide fully calibrated, co-added images matching the native GSAOI pixel scale as well as the larger plate scales of the HST release, adding to the legacy value of the Frontier Fields. Our work demonstrates that even for fields at high galactic latitude where natural guide stars are rare, current multi-conjugated adaptive optics technology at 8 m telescopes has opened a new window on the distant universe. Observations of a third Frontier Field, Abell 370, are planned. Based on observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the Science and Technology Facilities Council (United Kingdom), the National Research Council (Canada), CONICYT (Chile), the Australian Research Council (Australia), Ministério da Ciência, Tecnologia e Inovação (Brazil) and Ministerio de Ciencia, Tecnología e Innovación Productiva (Argentina). Based on observations made with ESO Telescopes at the La Silla and Paranal Observatories, Chile.

  19. Driver Code for Adaptive Optics

    NASA Technical Reports Server (NTRS)

    Rao, Shanti

    2007-01-01

    A special-purpose computer code for a deformable-mirror adaptive-optics control system transmits pixel-registered control from (1) a personal computer running software that generates the control data to (2) a circuit board with 128 digital-to-analog converters (DACs) that generate voltages to drive the deformable-mirror actuators. This program reads control-voltage codes from a text file, then sends them, via the computer s parallel port, to a circuit board with four AD5535 (or equivalent) chips. Whereas a similar prior computer program was capable of transmitting data to only one chip at a time, this program can send data to four chips simultaneously. This program is in the form of C-language code that can be compiled and linked into an adaptive-optics software system. The program as supplied includes source code for integration into the adaptive-optics software, documentation, and a component that provides a demonstration of loading DAC codes from a text file. On a standard Windows desktop computer, the software can update 128 channels in 10 ms. On Real-Time Linux with a digital I/O card, the software can update 1024 channels (8 boards in parallel) every 8 ms.

  20. Ultrasound Assisted Optical Imaging

    DTIC Science & Technology

    2003-05-01

    Two new diffusive optical imaging systems have been built for improved portability and shorter data acquisition time. We are conducting clinical... diffusive optical tomography. We have validated the feasibility of such an approach by simulations and experiments. We are planning to use this new

  1. Vision science and adaptive optics, the state of the field.

    PubMed

    Marcos, Susana; Werner, John S; Burns, Stephen A; Merigan, William H; Artal, Pablo; Atchison, David A; Hampson, Karen M; Legras, Richard; Lundstrom, Linda; Yoon, Geungyoung; Carroll, Joseph; Choi, Stacey S; Doble, Nathan; Dubis, Adam M; Dubra, Alfredo; Elsner, Ann; Jonnal, Ravi; Miller, Donald T; Paques, Michel; Smithson, Hannah E; Young, Laura K; Zhang, Yuhua; Campbell, Melanie; Hunter, Jennifer; Metha, Andrew; Palczewska, Grazyna; Schallek, Jesse; Sincich, Lawrence C

    2017-03-01

    Adaptive optics is a relatively new field, yet it is spreading rapidly and allows new questions to be asked about how the visual system is organized. The editors of this feature issue have posed a series of question to scientists involved in using adaptive optics in vision science. The questions are focused on three main areas. In the first we investigate the use of adaptive optics for psychophysical measurements of visual system function and for improving the optics of the eye. In the second, we look at the applications and impact of adaptive optics on retinal imaging and its promise for basic and applied research. In the third, we explore how adaptive optics is being used to improve our understanding of the neurophysiology of the visual system.

  2. Improved visualization of outer retinal morphology with aberration cancelling reflective optical design for adaptive optics - optical coherence tomography

    PubMed Central

    Lee, Sang-Hyuck; Werner, John S.; Zawadzki, Robert J.

    2013-01-01

    We present an aberration cancelling optical design for a reflective adaptive optics - optical coherence tomography (AO-OCT) retinal imaging system. The optical performance of this instrument is compared to our previous multimodal AO-OCT/AO-SLO retinal imaging system. The feasibility of new instrumentation for improved visualization of microscopic retinal structures is discussed. Examples of images acquired with this new AO-OCT instrument are presented. PMID:24298411

  3. Adaptive Optics for Ground-based Hypertelescopes

    NASA Astrophysics Data System (ADS)

    Labeyrie, Antoine; Borkowski, Virginie; Martinache, Franz; Arnold, Luc; Dejonghe, Julien; Riaud, Pierre; Lardière, Olivier; Gillet, Sophie

    Hypertelescopes, which may be considered as "exploded" versions of an OWL or other ELT, can in principle reach aperture sizes exceeding 1-10 kilometers. They utilize a multi-aperture diluted array and produce direct images through a densified exit pupil. Variants with a flat (the hypertelescope version of the Optical Very Large Array) or spherical (Arecibo-like CARLINA concept) site are studied. Adaptive optics is a major requirement for obtaining direct snapshot images at high resolution. Ways of adapting the Shack-Hartmann and curvature sensing methods for diluted apertures have been proposed. We explore the feasibility of applying 3D Fourier transforms to the dispersed images for extracting the path difference and phase information. With a spherical site, the numerous stars observable simultaneously at large angles can presumably help in the way of atmospheric tomography. Similar optics, equipped with a coronagraph, is proposed to NASA for the Terrestrial Planet Finder. The 3D Fourier transform algorithm also appears applicable in this case for fringe acquisition and π/100 phasing.

  4. Scientific Objectives and Design Study of an Adaptive Optics Visual Echelle Spectrograph and Imager Coronograph (AVES-IMCO) for the NAOS Visitor Focus at the VLT

    NASA Astrophysics Data System (ADS)

    Pallavicini, Roberto; Zerbi, Filippo; Beuzit, Jean-Luc; Bonanno, Giovanni; Bonifacio, Piercarlo; Comari, Maurizio; Conconi, Paolo; Delabre, Bernard; Franchini, Mariagrazia; Marcantonio, Paolo Di; Lagrange, Anne-Marie; Mazzoleni, Ruben; Molaro, Paolo; Pasquini, Luca; Santin, Paolo

    We present the scientific case for an Adaptive Optics Visual Echelle Spectrograph and Imager Coronograph (AVES-IMCO) that we propose as a visitor instrument for the secondary port of NAOS at the VLT. We show that such an instrument would be ideal for intermediate resolution (R=16,000) spectroscopy of faint sky-limited objects down to a magnitude of V=24.0 and will complement very effectively the near-IR imaging capabilities of CONICA. We present examples of science programmes that could be carried out with such an instrument and which cannot be addressed with existing VLT instruments. We also report on the result of a two-year design study of the instrument, with specific reference to its use as parallel instrument of NAOS.

  5. Geometric view of adaptive optics control

    NASA Astrophysics Data System (ADS)

    Wiberg, Donald M.; Max, Claire E.; Gavel, Donald T.

    2005-05-01

    The objective of an astronomical adaptive optics control system is to minimize the residual wave-front error remaining on the science-object wave fronts after being compensated for atmospheric turbulence and telescope aberrations. Minimizing the mean square wave-front residual maximizes the Strehl ratio and the encircled energy in pointlike images and maximizes the contrast and resolution of extended images. We prove the separation principle of optimal control for application to adaptive optics so as to minimize the mean square wave-front residual. This shows that the residual wave-front error attributable to the control system can be decomposed into three independent terms that can be treated separately in design. The first term depends on the geometry of the wave-front sensor(s), the second term depends on the geometry of the deformable mirror(s), and the third term is a stochastic term that depends on the signal-to-noise ratio. The geometric view comes from understanding that the underlying quantity of interest, the wave-front phase surface, is really an infinite-dimensional vector within a Hilbert space and that this vector space is projected into subspaces we can control and measure by the deformable mirrors and wave-front sensors, respectively. When the control and estimation algorithms are optimal, the residual wave front is in a subspace that is the union of subspaces orthogonal to both of these projections. The method is general in that it applies both to conventional (on-axis, ground-layer conjugate) adaptive optics architectures and to more complicated multi-guide-star- and multiconjugate-layer architectures envisaged for future giant telescopes. We illustrate the approach by using a simple example that has been worked out previously [J. Opt. Soc. Am. A73, 1171 (1983)] for a single-conjugate, static atmosphere case and follow up with a discussion of how it is extendable to general adaptive optics architectures.

  6. Fast simulated annealing and adaptive Monte Carlo sampling based parameter optimization for dense optical-flow deformable image registration of 4DCT lung anatomy

    NASA Astrophysics Data System (ADS)

    Dou, Tai H.; Min, Yugang; Neylon, John; Thomas, David; Kupelian, Patrick; Santhanam, Anand P.

    2016-03-01

    Deformable image registration (DIR) is an important step in radiotherapy treatment planning. An optimal input registration parameter set is critical to achieve the best registration performance with the specific algorithm. Methods In this paper, we investigated a parameter optimization strategy for Optical-flow based DIR of the 4DCT lung anatomy. A novel fast simulated annealing with adaptive Monte Carlo sampling algorithm (FSA-AMC) was investigated for solving the complex non-convex parameter optimization problem. The metric for registration error for a given parameter set was computed using landmark-based mean target registration error (mTRE) between a given volumetric image pair. To reduce the computational time in the parameter optimization process, a GPU based 3D dense optical-flow algorithm was employed for registering the lung volumes. Numerical analyses on the parameter optimization for the DIR were performed using 4DCT datasets generated with breathing motion models and open-source 4DCT datasets. Results showed that the proposed method efficiently estimated the optimum parameters for optical-flow and closely matched the best registration parameters obtained using an exhaustive parameter search method.

  7. Applications of Adaptive Optics Scanning Laser Ophthalmoscopy

    PubMed Central

    Roorda, Austin

    2010-01-01

    Adaptive optics (AO) describes a set of tools to correct or control aberrations in any optical system. In the eye, AO allows for precise control of the ocular aberrations. If used to correct aberrations over a large pupil, for example, cellular level resolution in retinal images can be achieved. AO systems have been demonstrated for advanced ophthalmoscopy as well as for testing and/or improving vision. In fact, AO can be integrated to any ophthalmic instrument where the optics of the eye is involved, with a scope of applications ranging from phoropters to optical coherence tomography systems. In this paper, I discuss the applications and advantages of using AO in a specific system, the adaptive optics scanning laser ophthalmoscope, or AOSLO. Since the Borish award was, in part, awarded to me because of this effort, I felt it appropriate to select this as the topic for this paper. Furthermore, users of AOSLO continue to appreciate the benefits of the technology, some of which were not anticipated at the time of development, and so it is time to revisit this topic and summarize them in a single paper. PMID:20160657

  8. Acousto-Optic Adaptive Processing (AOAP).

    DTIC Science & Technology

    1983-12-01

    I ~.sls Phe Report December 1963 •- ACOUSTO - OPTIC ADAPTIVE <PROCESSING (AOAP) General Electric Company W. A. Penn, D. R. Morgan, A. Aridgides and M. L...numnber) Optical signal processing Acousto - optical modulators Adaptive signal processing - Adaptive sidelobe cancellation 20. ABSTRACT (Contnue an...required operations of multiplication and time delay are provided by acousto - optical (AO) delay lines. The required time integraticO is provided by

  9. Hybrid adaptive-optics visual simulator.

    PubMed

    Cánovas, Carmen; Prieto, Pedro M; Manzanera, Silvestre; Mira, Alejandro; Artal, Pablo

    2010-01-15

    We have developed a hybrid adaptive-optics visual simulator (HAOVS), combining two different phase-manipulation technologies: an optically addressed liquid-crystal phase modulator, relatively slow but capable of producing abrupt or discontinuous phase profiles; and a membrane deformable mirror, restricted to smooth profiles but with a temporal response allowing compensation of the eye's aberration fluctuations. As proof of concept, a phase element structured as discontinuous radial sectors was objectively tested as a function of defocus, and a correction loop was closed in a real eye. To further illustrate the capabilities of the device for visual simulation, we recorded extended images of different stimuli through the system by means of an external camera replacing the subject's eye. The HAOVS is specially intended as a tool for developing new ophthalmic optics elements, where it opens the possibility to explore designs with irregularities and/or discontinuities.

  10. Design optimization of system level adaptive optical performance

    NASA Astrophysics Data System (ADS)

    Michels, Gregory J.; Genberg, Victor L.; Doyle, Keith B.; Bisson, Gary R.

    2005-09-01

    By linking predictive methods from multiple engineering disciplines, engineers are able to compute more meaningful predictions of a product's performance. By coupling mechanical and optical predictive techniques mechanical design can be performed to optimize optical performance. This paper demonstrates how mechanical design optimization using system level optical performance can be used in the development of the design of a high precision adaptive optical telescope. While mechanical design parameters are treated as the design variables, the objective function is taken to be the adaptively corrected optical imaging performance of an orbiting two-mirror telescope.

  11. Adaptive optics optical coherence tomography at 1 MHz

    PubMed Central

    Kocaoglu, Omer P.; Turner, Timothy L.; Liu, Zhuolin; Miller, Donald T.

    2014-01-01

    Image acquisition speed of optical coherence tomography (OCT) remains a fundamental barrier that limits its scientific and clinical utility. Here we demonstrate a novel multi-camera adaptive optics (AO-)OCT system for ophthalmologic use that operates at 1 million A-lines/s at a wavelength of 790 nm with 5.3 μm axial resolution in retinal tissue. Central to the spectral-domain design is a novel detection channel based on four high-speed spectrometers that receive light sequentially from a 1 × 4 optical switch assembly. Absence of moving parts enables ultra-fast (50ns) and precise switching with low insertion loss (−0.18 dB per channel). This manner of control makes use of all available light in the detection channel and avoids camera dead-time, both critical for imaging at high speeds. Additional benefit in signal-to-noise accrues from the larger numerical aperture afforded by the use of AO and yields retinal images of comparable dynamic range to that of clinical OCT. We validated system performance by a series of experiments that included imaging in both model and human eyes. We demonstrated the performance of our MHz AO-OCT system to capture detailed images of individual retinal nerve fiber bundles and cone photoreceptors. This is the fastest ophthalmic OCT system we know of in the 700 to 915 nm spectral band. PMID:25574431

  12. Adaptive optics optical coherence tomography at 1 MHz.

    PubMed

    Kocaoglu, Omer P; Turner, Timothy L; Liu, Zhuolin; Miller, Donald T

    2014-12-01

    Image acquisition speed of optical coherence tomography (OCT) remains a fundamental barrier that limits its scientific and clinical utility. Here we demonstrate a novel multi-camera adaptive optics (AO-)OCT system for ophthalmologic use that operates at 1 million A-lines/s at a wavelength of 790 nm with 5.3 μm axial resolution in retinal tissue. Central to the spectral-domain design is a novel detection channel based on four high-speed spectrometers that receive light sequentially from a 1 × 4 optical switch assembly. Absence of moving parts enables ultra-fast (50ns) and precise switching with low insertion loss (-0.18 dB per channel). This manner of control makes use of all available light in the detection channel and avoids camera dead-time, both critical for imaging at high speeds. Additional benefit in signal-to-noise accrues from the larger numerical aperture afforded by the use of AO and yields retinal images of comparable dynamic range to that of clinical OCT. We validated system performance by a series of experiments that included imaging in both model and human eyes. We demonstrated the performance of our MHz AO-OCT system to capture detailed images of individual retinal nerve fiber bundles and cone photoreceptors. This is the fastest ophthalmic OCT system we know of in the 700 to 915 nm spectral band.

  13. Test Target for Adaptive Optics.

    DTIC Science & Technology

    adaptive optics comprising, in the preferred embodiment, a plurality of nine adjacent, stacked, and aligned rows of a multiplicity of alternate opaque sections and transparent sections in a repeating bar pattern, with all sections being positioned on a flat transparent medium (such as film or glass), and with each opaque section being an opaque bar and with each transparent section being a transparent bar. Each row has a different spatial frequency than any other of the nine rows, with the spatial frequency of any one row being of a different multiple of the row having the

  14. Retinal Optical Coherence Tomography Imaging

    NASA Astrophysics Data System (ADS)

    Drexler, Wolfgang; Fujimoto, James G.

    The eye is essentially transparent, transmitting light with only minimal optical attenuation and scattering providing easy optical access to the anterior segment as well as the retina. For this reason, ophthalmic and especially retinal imaging has been not only the first but also most successful clinical application for optical coherence tomography (OCT). This chapter focuses on the development of OCT technology for retinal imaging. OCT has significantly improved the potential for early diagnosis, understanding of retinal disease pathogenesis, as well as monitoring disease progression and response to therapy. Development of ultrabroad bandwidth light sources and high-speed detection techniques has enabled significant improvements in ophthalmic OCT imaging performance, demonstrating the potential of three-dimensional, ultrahigh-resolution OCT (UHR OCT) to perform noninvasive optical biopsy of the living human retina, i.e., the in vivo visualization of microstructural, intraretinal morphology in situ approaching the resolution of conventional histopathology. Significant improvements in axial resolution and speed not only enable three-dimensional rendering of retinal volumes but also high-definition, two-dimensional tomograms, topographic thickness maps of all major intraretinal layers, as well as volumetric quantification of pathologic intraretinal changes. These advances in OCT technology have also been successfully applied in several animal models of retinal pathologies. The development of light sources emitting at alternative wavelengths, e.g., around #1,060 nm, not only enabled three-dimensional OCT imaging with enhanced choroidal visualization but also improved OCT performance in cataract patients due to reduced scattering losses in this wavelength region. Adaptive optics using deformable mirror technology, with unique high stroke to correct higher-order ocular aberrations, with specially designed optics to compensate chromatic aberration of the human eye, in

  15. Robotic visible-light laser adaptive optics

    NASA Astrophysics Data System (ADS)

    Baranec, Christoph; Riddle, Reed; Law, Nicholas; Ramaprakash, A. N.; Tendulkar, Shriharsh; Bui, Khanh; Burse, Mahesh; Chordia, Pravin; Das, Hillol; Dekany, Richard; Kulkarni, Shrinivas; Punnadi, Sujit

    2013-12-01

    Robo-AO is the first autonomous laser adaptive optics system and science instrument operating on sky. With minimal human oversight, the system robotically executes large scale surveys, monitors long-term astrophysical dynamics and characterizes newly discovered transients, all at the visible diffraction limit. The adaptive optics setup time, from the end of the telescope slew to the beginning of an observation, is a mere ~50-60 s, enabling over 200 observations per night. The first of many envisioned systems has finished 58 nights of science observing at the Palomar Observatory 60-inch (1.5 m) telescope, with over 6,400 robotic observations executed thus far. The system will be augmented in late 2013 with a low-noise wide field infrared camera, which doubles as a tip-tilt sensor, to widen the spectral bandwidth of observations and increase available sky coverage while also enabling deeper visible imaging using adaptive-optics sharpened infrared tip-tilt guide sources. Techniques applicable to larger telescope systems will also be tested: the infrared camera will be used to demonstrate advanced multiple region-of-interest tip-tilt guiding methods, and a visitor instrument port will be used for evaluation of other instrumentation, e.g. single-mode and photonic fibers to feed compact spectrographs.

  16. Ferroelectric optical image comparator

    DOEpatents

    Butler, M.A.; Land, C.E.; Martin, S.J.; Pfeifer, K.B.

    1993-11-30

    A ferroelectric optical image comparator has a lead lanthanum zirconate titanate thin-film device which is constructed with a semi-transparent or transparent conductive first electrode on one side of the thin film, a conductive metal second electrode on the other side of the thin film, and the second electrode is in contact with a nonconducting substrate. A photoinduced current in the device represents the dot product between a stored image and an image projected onto the first electrode. One-dimensional autocorrelations are performed by measuring this current while displacing the projected image. 7 figures.

  17. Ferroelectric optical image comparator

    DOEpatents

    Butler, Michael A.; Land, Cecil E.; Martin, Stephen J.; Pfeifer, Kent B.

    1993-01-01

    A ferroelectric optical image comparator has a lead lanthanum zirconate titanate thin-film device which is constructed with a semi-transparent or transparent conductive first electrode on one side of the thin film, a conductive metal second electrode on the other side of the thin film, and the second electrode is in contact with a nonconducting substrate. A photoinduced current in the device represents the dot product between a stored image and an image projected onto the first electrode. One-dimensional autocorrelations are performed by measuring this current while displacing the projected image.

  18. Sodium guide star adaptive optics system for astronomical imaging in the visible and near-infrared. Revision 1

    SciTech Connect

    Gavel, D.T.; Morris, J.R.; Vernon, R.G.

    1992-08-01

    We are building an adaptive-optic telescope system that is based on the use of an artificial guide star created by laser-induced fluorescence of the sodium mesospheric layer. This paper discusses the system design for mid-visible to near-infrared compensation of a one meter telescope at Livermore and near-infrared compensation of the ten meter Keck telescope at Mauna Kea. We calculate the expected Strehl ratio and resolution for a 69 channel deformable mirror system and also for a possible 24 channel system upgrade. With the 69 actuator system we expect near diffraction limited resolution, about 0.2 arcsec, with a Strehl ratio of about 0.5 at {gamma}=0.8 {mu}m on the 1m telescope, and resolution of about 0.05 arcsec with a Strehl ratio of about 0.5 at {gamma}=2.0 {mu}m on the 10m telescope. Resolution will be limited by the performance of the tip/tilt correction loop, which uses an off-axis natural guide star as a reference. At Livermore, our design uses an existing high power (1 kW) laser source, which is expected to provide an approximately 6th magnitude artificial guide star. This strong beacon signal allows a short integration time in the wavefront sensor so that temporal changes in the atmospheric turbulence can be tracked accurately. For Mauna Kea, we explore how the system to be built for the Livermore site would perform in the infrared, assuming a 100 W laser source.

  19. Further Studies on Nonlinear Adaptive Optics,

    DTIC Science & Technology

    1981-04-01

    AD-A9 167 SCIENCE APPLICATIONS INC LA JOLLA CA F/9 20/6 A-A*9 16 FURTHER STUDIES ON NONLINEAR ADAPTIVE OPTICS , 1W _ ASFE APR SI A ELCI. J1 NAGEL. D...FURTHER STUDIES ON NONLINEAR ADAPTIVE OPTICS Apr 8l 7 Submitted to: Director of Physics Air Force Office of Scientific Research ATTN: NP Bldg. 410...1 I STATEMENT OF WORK ...... .. .................... I-I II NONLINEAR ADAPTIVE OPTICS SUMMARY

  20. Solar adaptive optics at the Observatorio del Teide, Tenerife

    NASA Astrophysics Data System (ADS)

    Soltau, Dirk; Berkefeld, Thomas; Schmidt, Dirk; von der Lühe, Oskar

    2013-10-01

    Observing the Sun with high angular resolution is difficult because the turbulence in the atmosphere is strongest during day time. In this paper we describe the principles of solar adaptive optics exemplified by the two German solar telescopes VTT and GREGOR at the Observatorio del Teide. With theses systems we obtain near diffraction limited images of the Sun. Ways to overcome the limits of conventional AO by applying multiconjugate adaptive optics (MCAO) are shown.

  1. Optical imaging. Expansion microscopy.

    PubMed

    Chen, Fei; Tillberg, Paul W; Boyden, Edward S

    2015-01-30

    In optical microscopy, fine structural details are resolved by using refraction to magnify images of a specimen. We discovered that by synthesizing a swellable polymer network within a specimen, it can be physically expanded, resulting in physical magnification. By covalently anchoring specific labels located within the specimen directly to the polymer network, labels spaced closer than the optical diffraction limit can be isotropically separated and optically resolved, a process we call expansion microscopy (ExM). Thus, this process can be used to perform scalable superresolution microscopy with diffraction-limited microscopes. We demonstrate ExM with apparent ~70-nanometer lateral resolution in both cultured cells and brain tissue, performing three-color superresolution imaging of ~10(7) cubic micrometers of the mouse hippocampus with a conventional confocal microscope.

  2. Progress with the lick adaptive optics system

    SciTech Connect

    Gavel, D T; Olivier, S S; Bauman, B; Max, C E; Macintosh, B

    2000-03-01

    Progress and results of observations with the Lick Observatory Laser Guide Star Adaptive Optics System are presented. This system is optimized for diffraction-limited imaging in the near infrared, 1-2 micron wavelength bands. We describe our development efforts in a number of component areas including, a redesign of the optical bench layout, the commissioning of a new infrared science camera, and improvements to the software and user interface. There is also an ongoing effort to characterize the system performance with both natural and laser guide stars and to fold this data into a refined system model. Such a model can be used to help plan future observations, for example, predicting the point-spread function as a function of seeing and guide star magnitude.

  3. Progress with the Lick adaptive optics system

    NASA Astrophysics Data System (ADS)

    Gavel, Donald T.; Olivier, Scot S.; Bauman, Brian J.; Max, Claire E.; Macintosh, Bruce A.

    2000-07-01

    Progress and results of observations with the Lick Observatory Laser Guide Star Adaptive Optics System are presented. This system is optimized for diffraction-limited imaging in the near infrared, 1 - 2 micron wavelength bands. We describe our development efforts in a number of component areas including, a redesign of the optical bench layout, the commissioning of a new infrared science camera, and improvements to the software and user interface. There is also an ongoing effort to characterize the system performance with both natural and laser guide stars and to fold this data into a refined system model. Such a model can be used to help plan future observations, for example, predicting the point-spread function as a function of seeing and guide star magnitude.

  4. Performance of the restoration of interferometric images from the Large Binocular Telescope: the effects of angular coverage and partial adaptive optics correction

    NASA Astrophysics Data System (ADS)

    Carbillet, Marcel; Correia, Serge; Boccacci, Patrizia; Bertero, Mario

    2003-02-01

    This presentation reports the status of our study concerning the imaging properties of the Large Binocular Telescope (LBT) interferometer, and namely the effect of limited angular coverage and partial adaptive optics (AO) correction. The limitation in angular coverage, together with the correlated problem of angular smearing due to time-averaging of the interferometric images, is investigated for relevant cases depending on the declination of the observed object. Results are encouraging even in case of incomplete coverage. Partial AO-correction can result in a wide range of image quality, but can also create significant differences within a same field-of-view, especially between a suitable reference star to be used for post-observation multiple deconvolution and the observed object. Our study deals with both the problem of space-variance of the AO-corrected point-spread function, and that of global quality of the AO-correction. Uniformity, rather than global quality, is found to be the key-problem. After considering the single-conjugate AO case, we reach to some conclusions for the more interesting, and actually wide-field, case implying multi-conjugate AO. The whole study is performed on different types of object, from binary stars to diffuse objects, and a combined one with a high-dynamic range.

  5. Performance of adaptive optics at Lick Observatory

    SciTech Connect

    Olivier, S.S.; An, J.; Avicola, K.

    1994-03-01

    A prototype adaptive optics system has been developed at Lawrence Livermore National Laboratory (LLNL) for use at Lick Observatory. This system is based on an ITEX 69-actuator continuous-surface deformable mirror, a Kodak fast-framing intensified CCD camera, and a Mercury VME board containing four Intel i860 processors. The system has been tested using natural reference stars on the 40-inch Nickel telescope at Lick Observatory yielding up to a factor of 10 increase in image peak intensity and a factor of 6 reduction in image full width at half maximum (FWHM). These results are consistent with theoretical expectations. In order to improve performance, the intensified CCD camera will be replaced by a high-quantum-efficiency low-noise fast CCD camera built for LLNL by Adaptive Optics Associates using a chip developed by Lincoln Laboratory, and the 69-actuator deformable mirror will be replaced by a 127-actuator deformable mirror developed at LLNL. With these upgrades, the system should perform well in median seeing conditions on the 120-inch Shane telescope for observing wavelengths longer than {approximately}1 {mu}m and using natural reference stars brighter than m{sub R} {approximately} 10 or using the laser currently being developed at LLNL for use at Lick Observatory to generate a sodium-layer reference star.

  6. Pupil-segmentation-based adaptive optical microscopy with full-pupil illumination.

    PubMed

    Milkie, Daniel E; Betzig, Eric; Ji, Na

    2011-11-01

    Optical aberrations deteriorate the performance of microscopes. Adaptive optics can be used to improve imaging performance via wavefront shaping. Here, we demonstrate a pupil-segmentation based adaptive optical approach with full-pupil illumination. When implemented in a two-photon fluorescence microscope, it recovers diffraction-limited performance and improves imaging signal and resolution.

  7. Laser guide stars and adaptive optics for astronomy

    SciTech Connect

    Max, C.E.

    1992-07-15

    Five papers are included: feasibility experiment for sodium-alyer laser guide stars at LLNL; system design for a high power sodium beacon laser; sodium guide star adaptive optics system for astronomical imaging in the visible and near-infrared; high frame-rate, large field wavefront sensor; and resolution limits for ground-based astronomical imaging. Figs, tabs, refs.

  8. Adaptive optics optical coherence tomography with dynamic retinal tracking

    PubMed Central

    Kocaoglu, Omer P.; Ferguson, R. Daniel; Jonnal, Ravi S.; Liu, Zhuolin; Wang, Qiang; Hammer, Daniel X.; Miller, Donald T.

    2014-01-01

    Adaptive optics optical coherence tomography (AO-OCT) is a highly sensitive and noninvasive method for three dimensional imaging of the microscopic retina. Like all in vivo retinal imaging techniques, however, it suffers the effects of involuntary eye movements that occur even under normal fixation. In this study we investigated dynamic retinal tracking to measure and correct eye motion at KHz rates for AO-OCT imaging. A customized retina tracking module was integrated into the sample arm of the 2nd-generation Indiana AO-OCT system and images were acquired on three subjects. Analyses were developed based on temporal amplitude and spatial power spectra in conjunction with strip-wise registration to independently measure AO-OCT tracking performance. After optimization of the tracker parameters, the system was found to correct eye movements up to 100 Hz and reduce residual motion to 10 µm root mean square. Between session precision was 33 µm. Performance was limited by tracker-generated noise at high temporal frequencies. PMID:25071963

  9. Adaptive optics optical coherence tomography with dynamic retinal tracking.

    PubMed

    Kocaoglu, Omer P; Ferguson, R Daniel; Jonnal, Ravi S; Liu, Zhuolin; Wang, Qiang; Hammer, Daniel X; Miller, Donald T

    2014-07-01

    Adaptive optics optical coherence tomography (AO-OCT) is a highly sensitive and noninvasive method for three dimensional imaging of the microscopic retina. Like all in vivo retinal imaging techniques, however, it suffers the effects of involuntary eye movements that occur even under normal fixation. In this study we investigated dynamic retinal tracking to measure and correct eye motion at KHz rates for AO-OCT imaging. A customized retina tracking module was integrated into the sample arm of the 2nd-generation Indiana AO-OCT system and images were acquired on three subjects. Analyses were developed based on temporal amplitude and spatial power spectra in conjunction with strip-wise registration to independently measure AO-OCT tracking performance. After optimization of the tracker parameters, the system was found to correct eye movements up to 100 Hz and reduce residual motion to 10 µm root mean square. Between session precision was 33 µm. Performance was limited by tracker-generated noise at high temporal frequencies.

  10. Simultaneous imaging of multiple focal planes for three-dimensional microscopy using ultra-high-speed adaptive optics.

    PubMed

    Duocastella, Martí; Sun, Bo; Arnold, Craig B

    2012-05-01

    Traditional white-light and fluorescent imaging techniques provide powerful methods to extract high-resolution information from two-dimensional (2-D) sections, but to retrieve information from a three-dimensional (3-D) volume they require relatively slow scanning methods that result in increased acquisition time. Using an ultra-high speed liquid lens, we circumvent this problem by simultaneously acquiring images from multiple focal planes. We demonstrate this method by imaging microparticles and cells flowing in 3-D microfluidic channels.

  11. Adaptive optics research at Lincoln Laboratory

    NASA Astrophysics Data System (ADS)

    Greenwood, Darryl P.; Primmerman, Charles A.

    A development history is presented for adaptive-optics methods of optical aberration measurement and correction in real time, which are applicable to the thermal blooming of high-energy laser beams, the compensation of a laser beam propagating from ground to space, and compensation by means of a synthetic beacon. Attention is given to schematics of the various adaptive optics system types, which cover the cases of cooperative and uncooperative targets. Representative research projects encompassed by the high-energy propagation range in West Palm Beach are the 'Everlaser' instrumented target vehicle, the OCULAR multidither system installation, and the Atmospheric Compensation Experiment Adaptive Optics System.

  12. Imaging an Adapted Dentoalveolar Complex

    PubMed Central

    Herber, Ralf-Peter; Fong, Justine; Lucas, Seth A.; Ho, Sunita P.

    2012-01-01

    Adaptation of a rat dentoalveolar complex was illustrated using various imaging modalities. Micro-X-ray computed tomography for 3D modeling, combined with complementary techniques, including image processing, scanning electron microscopy, fluorochrome labeling, conventional histology (H&E, TRAP), and immunohistochemistry (RANKL, OPN) elucidated the dynamic nature of bone, the periodontal ligament-space, and cementum in the rat periodontium. Tomography and electron microscopy illustrated structural adaptation of calcified tissues at a higher resolution. Ongoing biomineralization was analyzed using fluorochrome labeling, and by evaluating attenuation profiles using virtual sections from 3D tomographies. Osteoclastic distribution as a function of anatomical location was illustrated by combining histology, immunohistochemistry, and tomography. While tomography and SEM provided past resorption-related events, future adaptive changes were deduced by identifying matrix biomolecules using immunohistochemistry. Thus, a dynamic picture of the dentoalveolar complex in rats was illustrated. PMID:22567314

  13. An adaptive filter for smoothing noisy radar images

    NASA Technical Reports Server (NTRS)

    Frost, V. S.; Stiles, J. A.; Shanmugam, K. S.; Holtzman, J. C.; Smith, S. A.

    1981-01-01

    A spatial domain adaptive Wiener filter for smoothing radar images corrupted by multiplicative noise is presented. The filter is optimum in a minimum mean squared error sense, computationally efficient, and preserves edges in the image better than other filters. The proposed algorithm can also be used for processing optical images with illumination variations that have a multiplicative effect.

  14. Adaptive optics in digital micromirror based confocal microscopy

    NASA Astrophysics Data System (ADS)

    Pozzi, P.; Wilding, D.; Soloviev, O.; Vdovin, G.; Verhaegen, M.

    2016-03-01

    This proceeding reports early results in the development of a new technique for adaptive optics in confocal microscopy. The term adaptive optics refers to the branch of optics in which an active element in the optical system is used to correct inhomogeneities in the media through which light propagates. In its most classical form, mostly used in astronomical imaging, adaptive optics is achieved through a closed loop in which the actuators of a deformable mirror are driven by a wavefront sensor. This approach is severely limited in fluorescence microscopy, as the use of a wavefront sensor requires the presence of a bright, point like source in the field of view, a condition rarely satisfied in microscopy samples. Previously reported approaches to adaptive optics in fluorescence microscopy are therefore limited to the inclusion of fluorescent microspheres in the sample, to use as bright stars for wavefront sensors, or time consuming sensorless optimization procedures, requiring several seconds of optimization before the acquisition of a single image. We propose an alternative approach to the problem, implementing sensorless adaptive optics in a Programmable array microscope. A programmable array microscope is a microscope based on a digital micromirror device, in which the single elements of the micromirror act both as point sources and pinholes.

  15. Optical Design and Optimization of Translational Reflective Adaptive Optics Ophthalmoscopes

    NASA Astrophysics Data System (ADS)

    Sulai, Yusufu N. B.

    The retina serves as the primary detector for the biological camera that is the eye. It is composed of numerous classes of neurons and support cells that work together to capture and process an image formed by the eye's optics, which is then transmitted to the brain. Loss of sight due to retinal or neuro-ophthalmic disease can prove devastating to one's quality of life, and the ability to examine the retina in vivo is invaluable in the early detection and monitoring of such diseases. Adaptive optics (AO) ophthalmoscopy is a promising diagnostic tool in early stages of development, still facing significant challenges before it can become a clinical tool. The work in this thesis is a collection of projects with the overarching goal of broadening the scope and applicability of this technology. We begin by providing an optical design approach for AO ophthalmoscopes that reduces the aberrations that degrade the performance of the AO correction. Next, we demonstrate how to further improve image resolution through the use of amplitude pupil apodization and non-common path aberration correction. This is followed by the development of a viewfinder which provides a larger field of view for retinal navigation. Finally, we conclude with the development of an innovative non-confocal light detection scheme which improves the non-invasive visualization of retinal vasculature and reveals the cone photoreceptor inner segments in healthy and diseased eyes.

  16. Binocular adaptive optics visual simulator.

    PubMed

    Fernández, Enrique J; Prieto, Pedro M; Artal, Pablo

    2009-09-01

    A binocular adaptive optics visual simulator is presented. The instrument allows for measuring and manipulating ocular aberrations of the two eyes simultaneously, while the subject performs visual testing under binocular vision. An important feature of the apparatus consists on the use of a single correcting device and wavefront sensor. Aberrations are controlled by means of a liquid-crystal-on-silicon spatial light modulator, where the two pupils of the subject are projected. Aberrations from the two eyes are measured with a single Hartmann-Shack sensor. As an example of the potential of the apparatus for the study of the impact of the eye's aberrations on binocular vision, results of contrast sensitivity after addition of spherical aberration are presented for one subject. Different binocular combinations of spherical aberration were explored. Results suggest complex binocular interactions in the presence of monochromatic aberrations. The technique and the instrument might contribute to the better understanding of binocular vision and to the search for optimized ophthalmic corrections.

  17. The Coming of Age of Adaptive Optics

    NASA Astrophysics Data System (ADS)

    1995-10-01

    How Ground-Based Astronomers Beat the Atmosphere Adaptive Optics (AO) is the new ``wonder-weapon'' in ground-based astronomy. By means of advanced electro-optical devices at their telescopes, astronomers are now able to ``neutralize'' the image-smearing turbulence of the terrestrial atmosphere (seen by the unaided eye as the twinkling of stars) so that much sharper images can be obtained than before. In practice, this is done with computer-controlled, flexible mirrors which refocus the blurred images up to 100 times per second, i.e. at a rate that is faster than the changes in the atmospheric turbulence. This means that finer details in astronomical objects can be studied and also - because of the improved concentration of light in the telescope's focal plane - that fainter objects can be observed. At the moment, Adaptive Optics work best in the infrared part of spectrum, but at some later time it may also significantly improve observations at the shorter wavelengths of visible light. The many-sided aspects of this new technology and its impact on astronomical instrumentation was the subject of a recent AO conference [1] with over 150 participants from about 30 countries, presenting a total of more than 100 papers. The Introduction of AO Techniques into Astronomy The scope of this meeting was the design, fabrication and testing of AO systems, characterisation of the sources of atmospheric disturbance, modelling of compensation systems, individual components, astronomical AO results, non-astronomical applications, laser guide star systems, non-linear optical phase conjugation, performance evaluation, and other areas of this wide and complex field, in which front-line science and high technology come together in a new and powerful symbiosis. One of the specific goals of the meeting was to develop contacts between AO scientists and engineers in the western world and their colleagues in Russia and Asia. For the first time at a conference of this type, nine Russian

  18. Optical Design for Extremely Large Telescope Adaptive Optics Systems

    SciTech Connect

    Bauman, Brian J.

    2003-01-01

    Designing an adaptive optics (AO) system for extremely large telescopes (ELT's) will present new optical engineering challenges. Several of these challenges are addressed in this work, including first-order design of multi-conjugate adaptive optics (MCAO) systems, pyramid wavefront sensors (PWFS's), and laser guide star (LGS) spot elongation. MCAO systems need to be designed in consideration of various constraints, including deformable mirror size and correction height. The y,{bar y} method of first-order optical design is a graphical technique that uses a plot with marginal and chief ray heights as coordinates; the optical system is represented as a segmented line. This method is shown to be a powerful tool in designing MCAO systems. From these analyses, important conclusions about configurations are derived. PWFS's, which offer an alternative to Shack-Hartmann (SH) wavefront sensors (WFS's), are envisioned as the workhorse of layer-oriented adaptive optics. Current approaches use a 4-faceted glass pyramid to create a WFS analogous to a quad-cell SH WFS. PWFS's and SH WFS's are compared and some newly-considered similarities and PWFS advantages are presented. Techniques to extend PWFS's are offered: First, PWFS's can be extended to more pixels in the image by tiling pyramids contiguously. Second, pyramids, which are difficult to manufacture, can be replaced by less expensive lenslet arrays. An approach is outlined to convert existing SH WFS's to PWFS's for easy evaluation of PWFS's. Also, a demonstration of PWFS's in sensing varying amounts of an aberration is presented. For ELT's, the finite altitude and finite thickness of LGS's means that the LGS will appear elongated from the viewpoint of subapertures not directly under the telescope. Two techniques for dealing with LGS spot elongation in SH WFS's are presented. One method assumes that the laser will be pulsed and uses a segmented micro-electromechanical system (MEMS) to track the LGS light subaperture by

  19. Progress on the VLT Adaptive Optics Facility

    NASA Astrophysics Data System (ADS)

    Arsenault, R.; Madec, P.-Y.; Paufique, J.; Ströbele, S.; Pirard, J.-F.; Vernet, É.; Hackenberg, W.; Hubin, N.; Jochum, L.; Kuntschner, H.; Glindemann, A.; Amico, P.; Lelouarn, M.; Kolb, J.; Tordo, S.; Donaldson, R.; Sã¶Nke, C.; Bonaccini Calia, D.; Conzelmann, R.; Delabre, B.; Kiekebusch, M.; Duhoux, P.; Guidolin, I.; Quattri, M.; Guzman, R.; Buzzoni, B.; Comin, M.; Dupuy, C.; Quentin, J.; Lizon, J.-L.; Silber, A.; Jolly, P.; Manescau, A.; Hammersley, P.; Reyes, J.; Jost, A.; Duchateau, M.; Heinz, V.; Bechet, C.; Stuik, R.

    2010-12-01

    The Very Large Telescope (VLT) Adaptive Optics Facility is a project that will transform one of the VLT's Unit Telescopes into an adaptive telescope that includes a deformable mirror in its optical train. For this purpose the secondary mirror is to be replaced by a thin shell deformable mirror; it will be possible to launch four laser guide stars from the centrepiece and two adaptive optics modules are being developed to feed the instruments HAWK-I and MUSE. These modules implement innovative correction modes for seeing improvement through ground layer adaptive optics and, for high Strehl ratio performance, laser tomography adaptive correction. The performance of these modes will be tested in Europe with a custom test bench called ASSIST. The project has completed its final design phase and concluded an intense phase of procurement; the year 2011 will see the beginning of assembly, integration and tests.

  20. Methods for investigating the local spatial anisotropy and the preferred orientation of cones in adaptive optics retinal images

    PubMed Central

    Cooper, Robert F.; Lombardo, Marco; Carroll, Joseph; Sloan, Kenneth R.; Lombardo, Giuseppe

    2016-01-01

    The ability to non-invasively image the cone photoreceptor mosaic holds significant potential as a diagnostic for retinal disease. Central to the realization of this potential is the development of sensitive metrics for characterizing the organization of the mosaic. Here we evaluated previously-described (Pum et al., 1990) and newly-developed (Fourier- and Radon-based) methods of measuring cone orientation in both simulated and real images of the parafoveal cone mosaic. The proposed algorithms correlated well across both simulated and real mosaics, suggesting that each algorithm would provide an accurate description of individual photoreceptor orientation. Despite the high agreement between algorithms, each performed differently in response to image intensity variation and cone coordinate jitter. The integration property of the Fourier transform allowed the Fourier-based method to be resistant to cone coordinate jitter and perform the most robustly of all three algorithms. Conversely, when there is good image quality but unreliable cone identification, the Radon algorithm performed best. Finally, in cases where both the image and cone coordinate reliability was excellent, the method of Pum et al. (1990) performed best. These descriptors are complementary to conventional descriptive metrics of the cone mosaic, such as cell density and spacing, and have the potential to aid in the detection of photoreceptor pathology. PMID:27484961

  1. Investigation of Adaptive Optics Imaging Biomarkers for Detecting Pathological Changes of the Cone Mosaic in Patients with Type 1 Diabetes Mellitus

    PubMed Central

    Lombardo, Marco; Parravano, Mariacristina; Serrao, Sebastiano; Ziccardi, Lucia; Giannini, Daniela; Lombardo, Giuseppe

    2016-01-01

    Purpose To investigate a set of adaptive optics (AO) imaging biomarkers for the assessment of changes of the cone mosaic spatial arrangement in patients with type 1 diabetes mellitus (DM1). Methods 16 patients with ≥20/20 visual acuity and a diagnosis of DM1 in the past 8 years to 37 years and 20 age-matched healthy volunteers were recruited in this study. Cone density, cone spacing and Voronoi diagrams were calculated on 160x160 μm images of the cone mosaic acquired with an AO flood illumination retinal camera at 1.5 degrees eccentricity from the fovea along all retinal meridians. From the cone spacing measures and Voronoi diagrams, the linear dispersion index (LDi) and the heterogeneity packing index (HPi) were computed respectively. Logistic regression analysis was conducted to discriminate DM1 patients without diabetic retinopathy from controls using the cone metrics as predictors. Results Of the 16 DM1 patients, eight had no signs of diabetic retinopathy (noDR) and eight had mild nonproliferative diabetic retinopathy (NPDR) on fundoscopy. On average, cone density, LDi and HPi values were significantly different (P<0.05) between noDR or NPDR eyes and controls, with these differences increasing with duration of diabetes. However, each cone metric alone was not sufficiently sensitive to discriminate entirely between membership of noDR cases and controls. The complementary use of all the three cone metrics in the logistic regression model gained 100% accuracy to identify noDR cases with respect to controls. Conclusion The present set of AO imaging biomarkers identified reliably abnormalities in the spatial arrangement of the parafoveal cones in DM1 patients, even when no signs of diabetic retinopathy were seen on fundoscopy. PMID:26963392

  2. Wide field strip-imaging optical system

    NASA Technical Reports Server (NTRS)

    Vaughan, Arthur H. (Inventor)

    1994-01-01

    A strip imaging wide angle optical system is provided. The optical system is provided with a 'virtual' material stop to avoid aberrational effects inherent in wide angle optical systems. The optical system includes a spherical mirror section for receiving light from a 180-degree strip or arc of a target image. Light received by the spherical mirror section is reflected to a frusto-conical mirror section for subsequent rereflection to a row of optical fibers. Each optical fiber transmits a portion of the received light to a detector. The optical system exploits the narrow cone of acceptance associated with optical fibers to substantially eliminate vignetting effects inherent in wide-angle systems. Further, the optical system exploits the narrow cone of acceptance of the optical fibers to substantially limit spherical aberration. The optical system is ideally suited for any application wherein a 180-degree strip image need be detected, and is particularly well adapted for use in hostile environments such as in planetary exploration.

  3. TOPICAL REVIEW: Inverse problems in astronomical adaptive optics

    NASA Astrophysics Data System (ADS)

    Ellerbroek, B. L.; Vogel, C. R.

    2009-06-01

    Adaptive optics (AO) is a technology used in ground-based astronomy to correct for the wavefront aberrations and loss of image quality caused by atmospheric turbulence. Provided some difficult technical problems can be overcome, AO will enable future astronomers to achieve nearly diffraction-limited performance with the extremely large telescopes that are currently under development, thereby greatly improving spatial resolution, spectral resolution and observing efficiency which will be achieved. The goal of this topical review is to present to the inverse problems community a representative sample of these problems. In this review, we first present a tutorial overview of the mathematical models and techniques used in current AO systems. We then examine in detail the following topics: laser guidestar adaptive optics, multi-conjugate and multi-object adaptive optics, high-contrast imaging and deformable mirror modeling and parameter identification.

  4. Object-oriented Matlab adaptive optics toolbox

    NASA Astrophysics Data System (ADS)

    Conan, R.; Correia, C.

    2014-08-01

    Object-Oriented Matlab Adaptive Optics (OOMAO) is a Matlab toolbox dedicated to Adaptive Optics (AO) systems. OOMAO is based on a small set of classes representing the source, atmosphere, telescope, wavefront sensor, Deformable Mirror (DM) and an imager of an AO system. This simple set of classes allows simulating Natural Guide Star (NGS) and Laser Guide Star (LGS) Single Conjugate AO (SCAO) and tomography AO systems on telescopes up to the size of the Extremely Large Telescopes (ELT). The discrete phase screens that make the atmosphere model can be of infinite size, useful for modeling system performance on large time scales. OOMAO comes with its own parametric influence function model to emulate different types of DMs. The cone effect, altitude thickness and intensity profile of LGSs are also reproduced. Both modal and zonal modeling approach are implemented. OOMAO has also an extensive library of theoretical expressions to evaluate the statistical properties of turbulence wavefronts. The main design characteristics of the OOMAO toolbox are object-oriented modularity, vectorized code and transparent parallel computing. OOMAO has been used to simulate and to design the Multi-Object AO prototype Raven at the Subaru telescope and the Laser Tomography AO system of the Giant Magellan Telescope. In this paper, a Laser Tomography AO system on an ELT is simulated with OOMAO. In the first part, we set-up the class parameters and we link the instantiated objects to create the source optical path. Then we build the tomographic reconstructor and write the script for the pseudo-open-loop controller.

  5. Testing the Apodized Pupil Lyot Coronagraph on the Laboratory for Adaptive Optics Extreme Adaptive Optics Testbed

    NASA Astrophysics Data System (ADS)

    Thomas, Sandrine J.; Soummer, Rémi; Dillon, Daren; Macintosh, Bruce; Gavel, Donald; Sivaramakrishnan, Anand

    2011-10-01

    We present testbed results of the Apodized Pupil Lyot Coronagraph (APLC) at the Laboratory for Adaptive Optics (LAO). These results are part of the validation and tests of the coronagraph and of the Extreme Adaptive Optics (ExAO) for the Gemini Planet Imager (GPI). The apodizer component is manufactured with a halftone technique using black chrome microdots on glass. Testing this APLC (like any other coronagraph) requires extremely good wavefront correction, which is obtained to the 1 nm rms level using the microelectricalmechanical systems (MEMS) technology, on the ExAO visible testbed of the LAO at the University of Santa Cruz. We used an APLC coronagraph without central obstruction, both with a reference super-polished flat mirror and with the MEMS to obtain one of the first images of a dark zone in a coronagraphic image with classical adaptive optics using a MEMS deformable mirror (without involving dark hole algorithms). This was done as a complementary test to the GPI coronagraph testbed at American Museum of Natural History, which studied the coronagraph itself without wavefront correction. Because we needed a full aperture, the coronagraph design is very different from the GPI design. We also tested a coronagraph with central obstruction similar to that of GPI. We investigated the performance of the APLC coronagraph and more particularly the effect of the apodizer profile accuracy on the contrast. Finally, we compared the resulting contrast to predictions made with a wavefront propagation model of the testbed to understand the effects of phase and amplitude errors on the final contrast.

  6. TESTING THE APODIZED PUPIL LYOT CORONAGRAPH ON THE LABORATORY FOR ADAPTIVE OPTICS EXTREME ADAPTIVE OPTICS TESTBED

    SciTech Connect

    Thomas, Sandrine J.; Dillon, Daren; Gavel, Donald; Macintosh, Bruce; Sivaramakrishnan, Anand E-mail: dillon@ucolick.org E-mail: soummer@stsci.edu E-mail: anand@amnh.org

    2011-10-15

    We present testbed results of the Apodized Pupil Lyot Coronagraph (APLC) at the Laboratory for Adaptive Optics (LAO). These results are part of the validation and tests of the coronagraph and of the Extreme Adaptive Optics (ExAO) for the Gemini Planet Imager (GPI). The apodizer component is manufactured with a halftone technique using black chrome microdots on glass. Testing this APLC (like any other coronagraph) requires extremely good wavefront correction, which is obtained to the 1 nm rms level using the microelectricalmechanical systems (MEMS) technology, on the ExAO visible testbed of the LAO at the University of Santa Cruz. We used an APLC coronagraph without central obstruction, both with a reference super-polished flat mirror and with the MEMS to obtain one of the first images of a dark zone in a coronagraphic image with classical adaptive optics using a MEMS deformable mirror (without involving dark hole algorithms). This was done as a complementary test to the GPI coronagraph testbed at American Museum of Natural History, which studied the coronagraph itself without wavefront correction. Because we needed a full aperture, the coronagraph design is very different from the GPI design. We also tested a coronagraph with central obstruction similar to that of GPI. We investigated the performance of the APLC coronagraph and more particularly the effect of the apodizer profile accuracy on the contrast. Finally, we compared the resulting contrast to predictions made with a wavefront propagation model of the testbed to understand the effects of phase and amplitude errors on the final contrast.

  7. Holographic Optical Coherence Imaging

    NASA Astrophysics Data System (ADS)

    Nolte, David D.; Jeong, Kwan; Turek, John; French, Paul M. W.

    This chapter gives an overview of the principles of holographic OCI. It begins with a description of off-axis holography as spatial heterodyne detection and continues with the origin and role of speckle in multichannel illumination of tissue. Image-domain holography (IDH) and Fourier-domain holography (FDH) are described. Holography in the Fourier domain has the capability for phase-contrast imaging that can acquire small sub-wavelength displacements despite long coherence length. The trade-offs between photorefractive and digital holography are discussed. The chief biological target is multicellular spheroids, specifically rat osteogenic sarcomas that are grown in vitro. After describing the physiological and optical properties of these spheroids, results from holographic OCI are presented using both photorefractive and digital holography.

  8. A Detailed Gravitational Lens Model Based on Submillimeter Array and Keck Adaptive Optics Imaging of a Herschel-ATLAS Submillimeter Galaxy at z = 4.243

    NASA Astrophysics Data System (ADS)

    Bussmann, R. S.; Gurwell, M. A.; Fu, Hai; Smith, D. J. B.; Dye, S.; Auld, R.; Baes, M.; Baker, A. J.; Bonfield, D.; Cava, A.; Clements, D. L.; Cooray, A.; Coppin, K.; Dannerbauer, H.; Dariush, A.; De Zotti, G.; Dunne, L.; Eales, S.; Fritz, J.; Hopwood, R.; Ibar, E.; Ivison, R. J.; Jarvis, M. J.; Kim, S.; Leeuw, L. L.; Maddox, S.; Michałowski, M. J.; Negrello, M.; Pascale, E.; Pohlen, M.; Riechers, D. A.; Rigby, E.; Scott, Douglas; Temi, P.; Van der Werf, P. P.; Wardlow, J.; Wilner, D.; Verma, A.

    2012-09-01

    We present high-spatial resolution imaging obtained with the Submillimeter Array (SMA) at 880 μm and the Keck adaptive optics (AO) system at the K S-band of a gravitationally lensed submillimeter galaxy (SMG) at z = 4.243 discovered in the Herschel Astrophysical Terahertz Large Area Survey. The SMA data (angular resolution ≈0farcs6) resolve the dust emission into multiple lensed images, while the Keck AO K S-band data (angular resolution ≈0farcs1) resolve the lens into a pair of galaxies separated by 0farcs3. We present an optical spectrum of the foreground lens obtained with the Gemini-South telescope that provides a lens redshift of z lens = 0.595 ± 0.005. We develop and apply a new lens modeling technique in the visibility plane that shows that the SMG is magnified by a factor of μ = 4.1 ± 0.2 and has an intrinsic infrared (IR) luminosity of L IR = (2.1 ± 0.2) × 1013 L ⊙. We measure a half-light radius of the background source of r s = 4.4 ± 0.5 kpc which implies an IR luminosity surface density of ΣIR = (3.4 ± 0.9) × 1011 L ⊙ kpc-2, a value that is typical of z > 2 SMGs but significantly lower than IR luminous galaxies at z ~ 0. The two lens galaxies are compact (r lens ≈ 0.9 kpc) early-types with Einstein radii of θE1 = 0.57 ± 0.01 and θE2 = 0.40 ± 0.01 that imply masses of M lens1 = (7.4 ± 0.5) × 1010 M ⊙ and M lens2 = (3.7 ± 0.3) × 1010 M ⊙. The two lensing galaxies are likely about to undergo a dissipationless merger, and the mass and size of the resultant system should be similar to other early-type galaxies at z ~ 0.6. This work highlights the importance of high spatial resolution imaging in developing models of strongly lensed galaxies discovered by Herschel. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.

  9. A DETAILED GRAVITATIONAL LENS MODEL BASED ON SUBMILLIMETER ARRAY AND KECK ADAPTIVE OPTICS IMAGING OF A HERSCHEL-ATLAS SUBMILLIMETER GALAXY AT z = 4.243 {sup ,} {sup ,}

    SciTech Connect

    Bussmann, R. S.; Gurwell, M. A.; Fu Hai; Cooray, A.; Smith, D. J. B.; Bonfield, D.; Dunne, L.; Dye, S.; Eales, S.; Auld, R.; Baes, M.; Fritz, J.; Baker, A. J.; Cava, A.; Clements, D. L.; Dariush, A.; Coppin, K.; Dannerbauer, H.; De Zotti, G.; Hopwood, R.; and others

    2012-09-10

    We present high-spatial resolution imaging obtained with the Submillimeter Array (SMA) at 880 {mu}m and the Keck adaptive optics (AO) system at the K{sub S}-band of a gravitationally lensed submillimeter galaxy (SMG) at z = 4.243 discovered in the Herschel Astrophysical Terahertz Large Area Survey. The SMA data (angular resolution Almost-Equal-To 0.''6) resolve the dust emission into multiple lensed images, while the Keck AO K{sub S}-band data (angular resolution Almost-Equal-To 0.''1) resolve the lens into a pair of galaxies separated by 0.''3. We present an optical spectrum of the foreground lens obtained with the Gemini-South telescope that provides a lens redshift of z{sub lens} = 0.595 {+-} 0.005. We develop and apply a new lens modeling technique in the visibility plane that shows that the SMG is magnified by a factor of {mu} = 4.1 {+-} 0.2 and has an intrinsic infrared (IR) luminosity of L{sub IR} = (2.1 {+-} 0.2) Multiplication-Sign 10{sup 13} L{sub Sun }. We measure a half-light radius of the background source of r{sub s} = 4.4 {+-} 0.5 kpc which implies an IR luminosity surface density of {Sigma}{sub IR} (3.4 {+-} 0.9) Multiplication-Sign 10{sup 11} L{sub Sun} kpc{sup -2}, a value that is typical of z > 2 SMGs but significantly lower than IR luminous galaxies at z {approx} 0. The two lens galaxies are compact (r{sub lens} Almost-Equal-To 0.9 kpc) early-types with Einstein radii of {theta}{sub E1} 0.57 {+-} 0.01 and {theta}{sub E2} = 0.40 {+-} 0.01 that imply masses of M{sub lens1} = (7.4 {+-} 0.5) Multiplication-Sign 10{sup 10} M{sub Sun} and M{sub lens2} = (3.7 {+-} 0.3) Multiplication-Sign 10{sup 10} M{sub Sun }. The two lensing galaxies are likely about to undergo a dissipationless merger, and the mass and size of the resultant system should be similar to other early-type galaxies at z {approx} 0.6. This work highlights the importance of high spatial resolution imaging in developing models of strongly lensed galaxies discovered by Herschel.

  10. Adaptive optical interconnects: the ADDAPT project

    NASA Astrophysics Data System (ADS)

    Henker, Ronny; Pliva, Jan; Khafaji, Mahdi; Ellinger, Frank; Toifl, Thomas; Offrein, Bert; Cevrero, Alessandro; Oezkaya, Ilter; Seifried, Marc; Ledentsov, Nikolay; Kropp, Joerg-R.; Shchukin, Vitaly; Zoldak, Martin; Halmo, Leos; Turkiewicz, Jaroslaw; Meredith, Wyn; Eddie, Iain; Georgiades, Michael; Charalambides, Savvas; Duis, Jeroen; van Leeuwen, Pieter

    2015-09-01

    Existing optical networks are driven by dynamic user and application demands but operate statically at their maximum performance. Thus, optical links do not offer much adaptability and are not very energy-efficient. In this paper a novel approach of implementing performance and power adaptivity from system down to optical device, electrical circuit and transistor level is proposed. Depending on the actual data load, the number of activated link paths and individual device parameters like bandwidth, clock rate, modulation format and gain are adapted to enable lowering the components supply power. This enables flexible energy-efficient optical transmission links which pave the way for massive reductions of CO2 emission and operating costs in data center and high performance computing applications. Within the FP7 research project Adaptive Data and Power Aware Transceivers for Optical Communications (ADDAPT) dynamic high-speed energy-efficient transceiver subsystems are developed for short-range optical interconnects taking up new adaptive technologies and methods. The research of eight partners from industry, research and education spanning seven European countries includes the investigation of several adaptive control types and algorithms, the development of a full transceiver system, the design and fabrication of optical components and integrated circuits as well as the development of high-speed, low loss packaging solutions. This paper describes and discusses the idea of ADDAPT and provides an overview about the latest research results in this field.

  11. Adaptive Optics Imaging of the Circumbinary Disk around the T Tauri Binary UY Aurigae: Estimates of the Binary Mass and Circumbinary Dust Grain Size Distribution

    NASA Astrophysics Data System (ADS)

    Close, L. M.; Dutrey, A.; Roddier, F.; Guilloteau, S.; Roddier, C.; Northcott, M.; Ménard, F.; Duvert, G.; Graves, J. E.; Potter, D.

    1998-05-01

    We have obtained high-resolution (FWHM = 0.15") deep images of the UY Aur binary at J, H, and K' with the University of Hawaii adaptive optics instrument. We clearly detect an R ~ 500 AU circumbinary disk discovered with millimeter interferometry, making UY Aur the second young binary with a confirmed circumbinary disk. It appears that the disk is inclined ~42° from face on. We find that the near side of the disk is brighter than the far side by factors of 2.6, 2.7, and 6.5 times at K', H, and J, respectively. The original GG Tau circumbinary disk has been reexamined and is found to have similar flux ratios of 1.5, 2.6, and 3.6 at K', H, and J, respectively. A realistic power-law distribution (p = 4.7) of spherical dust aggregates (composed of silicates, amorphous carbon, and graphite) that reproduces the observed ISM extinction curve also predicts these observed flux ratios from Mie scattering theory. We find the observed preference of forward-scattering over back-scattering is well fitted (global χ2 minimization) by Mie scattering off particles in the range amin = 0.03 μm to amax = 0.5-0.6 μm. The existence of a significant population of grain radii larger than 0.6 μm is not supported by the scattering observations. Based on the observed disk inclination we derive an orbit for UY Aur where the mass for the binary is 1.6+0.47-0.67 M⊙. Based on the observed K7 and M0 spectral types for UY Aur A and B, accretion disk models for the inner disks around the central stars were constructed. The models suggest that small (lower limit R ~ 5-10 AU) inner disks exist around B and A. It appears that B is accreting ~5 times faster than A, and that both inner disks may be exhausted in ~102-103 yr without replenishment from the outer circumbinary disk. Our images suggest that these inner disks may indeed be resupplied with material through thin streamers of material that penetrate inside the circumbinary disk. Currently it appears that such a streamer may be a close to UY

  12. Adaptive optics capabilities at the Large Binocular Telescope Observatory

    NASA Astrophysics Data System (ADS)

    Christou, J. C.; Brusa, G.; Conrad, A.; Esposito, S.; Herbst, T.; Hinz, P.; Hill, J. M.; Miller, D. L.; Rabien, S.; Rahmer, G.; Taylor, G. E.; Veillet, C.; Zhang, X.

    2016-07-01

    We present an overview of the current and future adaptive optics systems at the LBTO along with the current and planned science instruments they feed. All the AO systems make use of the two 672 actuator adaptive secondary mirrors. They are (1) FLAO (NGS/SCAO) feeding the LUCI NIR imagers/spectrographs; (2) LBTI/AO (NGS/SCAO) feeding the NIR/MIR imagers and LBTI beam combiner; (3) the ARGOS LGS GLAO system feeding LUCIs; and (4) LINC-NIRVANA - an NGS/MCAO imager and interferometer system. AO performance of the current systems is presented along with proposed performances for the newer systems taking into account the future instrumentation.

  13. Adaptive Optics imaging of small cloud features on Neptune: zonal wind variability and detections of oscillations in longitude

    NASA Astrophysics Data System (ADS)

    Martin, S. C.; de Pater, I.; Gibbard, S. G.; Marcus, P.; Roe, H. G.; Macintosh, B. A.; Max, C. E.

    2004-11-01

    We present the results of an imaging experiment designed to track the motions of clouds in the upper atmosphere of Neptune. Images were taken in H band (1.4-1.8 microns) with a resolution of .06 arcseconds using the NIRSPEC/AO system on the W. M. Keck II telescope August 20 2001 UT. This dataset is unique in that it is densely sampled in time: 56 images were taken during 4 hours, and the time interval between images ranged from 1 to 32 minutes. The positions as a function of time were determined for 51 cloud features at southern midlatitudes (15-50 degrees South.) In this region, cloud features are visually organized into bands of clouds that almost follow lines of constant latitude. The two major findings of this analysis are: 1. The drift rates of clouds (as determined from the linear fit of longitude versus time curves) are highly variable for a given latitude band. Rotation periods range over several hours per cloud band, yielding relative velocities that are in some cases supersonic. 2. Graphs of longitude versus time are not strictly linear but rather show an oscillation in longitude. We have subtracted the linear drift rate and made empirical fits to the residuals of 12 features which have the longest time baselines of observations. Amplitudes of oscillations are 2-4 degrees of longitude, and periods are comparable to the 4 hour observation time. This is the first detection of small oscillations in the atmosphere of Neptune. Sromovsky, Limaye and Frye (1993) measured oscillations of much greater amplitudes and periods in the Great Dark Spot (GDS) and in the Second Dark Spot (DS2) of Neptune using Voyager data. This research was supported in part by the STC Program of the National Science Foundation under Agreement No. AST-9876783, and in part under the auspices of the US Department of Energy at Lawrence Livermore National Laboratory, Univ. of Calif. under contract No. W-7405-Eng-48. Data presented herein were obtained at the W.M. Keck Observatory, which is

  14. Amplitude variations on the Extreme Adaptive Optics testbed

    SciTech Connect

    Evans, J; Thomas, S; Dillon, D; Gavel, D; Phillion, D; Macintosh, B

    2007-08-14

    High-contrast adaptive optics systems, such as those needed to image extrasolar planets, are known to require excellent wavefront control and diffraction suppression. At the Laboratory for Adaptive Optics on the Extreme Adaptive Optics testbed, we have already demonstrated wavefront control of better than 1 nm rms within controllable spatial frequencies. Corresponding contrast measurements, however, are limited by amplitude variations, including those introduced by the micro-electrical-mechanical-systems (MEMS) deformable mirror. Results from experimental measurements and wave optic simulations of amplitude variations on the ExAO testbed are presented. We find systematic intensity variations of about 2% rms, and intensity variations with the MEMS to be 6%. Some errors are introduced by phase and amplitude mixing because the MEMS is not conjugate to the pupil, but independent measurements of MEMS reflectivity suggest that some error is introduced by small non-uniformities in the reflectivity.

  15. Hessian-LoG filtering for enhancement and detection of photoreceptor cells in adaptive optics retinal images.

    PubMed

    Lazareva, Anfisa; Liatsis, Panos; Rauscher, Franziska G

    2016-01-01

    Automated analysis of retinal images plays a vital role in the examination, diagnosis, and prognosis of healthy and pathological retinas. Retinal disorders and the associated visual loss can be interpreted via quantitative correlations, based on measurements of photoreceptor loss. Therefore, it is important to develop reliable tools for identification of photoreceptor cells. In this paper, an automated algorithm is proposed, based on the use of the Hessian-Laplacian of Gaussian filter, which allows enhancement and detection of photoreceptor cells. The performance of the proposed technique is evaluated on both synthetic and high-resolution retinal images, in terms of packing density. The results on the synthetic data were compared against ground truth as well as cone counts obtained by the Li and Roorda algorithm. For the synthetic datasets, our method showed an average detection accuracy of 98.8%, compared to 93.9% for the Li and Roorda approach. The packing density estimates calculated on the retinal datasets were validated against manual counts and the results obtained by a proprietary software from Imagine Eyes and the Li and Roorda algorithm. Among the tested methods, the proposed approach showed the closest agreement with manual counting.

  16. Holographic fluorescence microscopy with incoherent digital holographic adaptive optics.

    PubMed

    Jang, Changwon; Kim, Jonghyun; Clark, David C; Lee, Seungjae; Lee, Byoungho; Kim, Myung K

    2015-01-01

    Introduction of adaptive optics technology into astronomy and ophthalmology has made great contributions in these fields, allowing one to recover images blurred by atmospheric turbulence or aberrations of the eye. Similar adaptive optics improvement in microscopic imaging is also of interest to researchers using various techniques. Current technology of adaptive optics typically contains three key elements: a wavefront sensor, wavefront corrector, and controller. These hardware elements tend to be bulky, expensive, and limited in resolution, involving, for example, lenslet arrays for sensing or multiactuator deformable mirrors for correcting. We have previously introduced an alternate approach based on unique capabilities of digital holography, namely direct access to the phase profile of an optical field and the ability to numerically manipulate the phase profile. We have also demonstrated that direct access and compensation of the phase profile are possible not only with conventional coherent digital holography, but also with a new type of digital holography using incoherent light: selfinterference incoherent digital holography (SIDH). The SIDH generates a complex—i.e., amplitude plus phase—hologram from one or several interferograms acquired with incoherent light, such as LEDs, lamps, sunlight, or fluorescence. The complex point spread function can be measured using guide star illumination and it allows deterministic deconvolution of the full-field image. We present experimental demonstration of aberration compensation in holographic fluorescence microscopy using SIDH. Adaptive optics by SIDH provides new tools for improved cellular fluorescence microscopy through intact tissue layers or other types of aberrant media.

  17. Holographic fluorescence microscopy with incoherent digital holographic adaptive optics

    NASA Astrophysics Data System (ADS)

    Jang, Changwon; Kim, Jonghyun; Clark, David C.; Lee, Seungjae; Lee, Byoungho; Kim, Myung K.

    2015-11-01

    Introduction of adaptive optics technology into astronomy and ophthalmology has made great contributions in these fields, allowing one to recover images blurred by atmospheric turbulence or aberrations of the eye. Similar adaptive optics improvement in microscopic imaging is also of interest to researchers using various techniques. Current technology of adaptive optics typically contains three key elements: a wavefront sensor, wavefront corrector, and controller. These hardware elements tend to be bulky, expensive, and limited in resolution, involving, for example, lenslet arrays for sensing or multiactuator deformable mirrors for correcting. We have previously introduced an alternate approach based on unique capabilities of digital holography, namely direct access to the phase profile of an optical field and the ability to numerically manipulate the phase profile. We have also demonstrated that direct access and compensation of the phase profile are possible not only with conventional coherent digital holography, but also with a new type of digital holography using incoherent light: self­interference incoherent digital holography (SIDH). The SIDH generates a complex-i.e., amplitude plus phase-hologram from one or several interferograms acquired with incoherent light, such as LEDs, lamps, sunlight, or fluorescence. The complex point spread function can be measured using guide star illumination and it allows deterministic deconvolution of the full-field image. We present experimental demonstration of aberration compensation in holographic fluorescence microscopy using SIDH. Adaptive optics by SIDH provides new tools for improved cellular fluorescence microscopy through intact tissue layers or other types of aberrant media.

  18. Solar adaptive optics: specificities, lessons learned, and open alternatives

    NASA Astrophysics Data System (ADS)

    Montilla, I.; Marino, J.; Asensio Ramos, A.; Collados, M.; Montoya, L.; Tallon, M.

    2016-07-01

    First on sky adaptive optics experiments were performed on the Dunn Solar Telescope on 1979, with a shearing interferometer and limited success. Those early solar adaptive optics efforts forced to custom-develop many components, such as Deformable Mirrors and WaveFront Sensors, which were not available at that time. Later on, the development of the correlation Shack-Hartmann marked a breakthrough in solar adaptive optics. Since then, successful Single Conjugate Adaptive Optics instruments have been developed for many solar telescopes, i.e. the National Solar Observatory, the Vacuum Tower Telescope and the Swedish Solar Telescope. Success with the Multi Conjugate Adaptive Optics systems for GREGOR and the New Solar Telescope has proved to be more difficult to attain. Such systems have a complexity not only related to the number of degrees of freedom, but also related to the specificities of the Sun, used as reference, and the sensing method. The wavefront sensing is performed using correlations on images with a field of view of 10", averaging wavefront information from different sky directions, affecting the sensing and sampling of high altitude turbulence. Also due to the low elevation at which solar observations are performed we have to include generalized fitting error and anisoplanatism, as described by Ragazzoni and Rigaut, as non-negligible error sources in the Multi Conjugate Adaptive Optics error budget. For the development of the next generation Multi Conjugate Adaptive Optics systems for the Daniel K. Inouye Solar Telescope and the European Solar Telescope we still need to study and understand these issues, to predict realistically the quality of the achievable reconstruction. To improve their designs other open issues have to be assessed, i.e. possible alternative sensing methods to avoid the intrinsic anisoplanatism of the wide field correlation Shack-Hartmann, new parameters to estimate the performance of an adaptive optics solar system, alternatives to

  19. Small scale adaptive optics experiment systems engineering

    NASA Technical Reports Server (NTRS)

    Boykin, William H.

    1993-01-01

    Assessment of the current technology relating to the laser power beaming system which in full scale is called the Beam Transmission Optical System (BTOS). Evaluation of system integration efforts are being conducted by the various government agencies and industry. Concepts are being developed for prototypes of adaptive optics for a BTOS.

  20. Optical Profilometers Using Adaptive Signal Processing

    NASA Technical Reports Server (NTRS)

    Hall, Gregory A.; Youngquist, Robert; Mikhael, Wasfy

    2006-01-01

    A method of adaptive signal processing has been proposed as the basis of a new generation of interferometric optical profilometers for measuring surfaces. The proposed profilometers would be portable, hand-held units. Sizes could be thus reduced because the adaptive-signal-processing method would make it possible to substitute lower-power coherent light sources (e.g., laser diodes) for white light sources and would eliminate the need for most of the optical components of current white-light profilometers. The adaptive-signal-processing method would make it possible to attain scanning ranges of the order of decimeters in the proposed profilometers.

  1. Toward Adaptive Optic Mitigation of Aero-Optic Effects

    DTIC Science & Technology

    2009-02-27

    photography .[43] Tyson developed expressions for the "gain" of a deformable mirror removing Zernike modes within an aperture. [35] The following...R.K., Principles of Adaptive Optics, Academic Press, Inc., San Diego, 1991. 9. Tyson, R.K., The status of astronomical adaptive optics systems...pin-hole photography The London, Edinburg and Dublin philosophical magazine and journal of science 31 87-99 44. Siegenthaler, J., Guidelines for

  2. The Surface of Titan from Adaptive Optics Observations

    NASA Astrophysics Data System (ADS)

    Gibbard, S. G.; Macintosh, B.; Max, C.; Roe, H.; de Pater, I.; Young, E. F.; McKay, C. P.

    Saturn's largest moon Titan is the only satellite in the solar system with a substantial atmosphere. Photolysis of methane creates a hydrocarbon haze in Titan's atmosphere that is opaque to visible light. The new adaptive optics system on the 10-meter W.M. Keck Telescope enables us to observe Titan with a resolution of 0.04 arcseconds, or 20 resolution elements across the disk. By observing at near-infrared wavelengths that are methane band windows we can see through Titan's hydrocarbon haze to the surface beneath. Recent adaptive optics images of Titan both in broadband (J, H, and K) filters and in narrowband filters that selectively probe Titan's surface and atmosphere allow us to determine surface albedo and properties of the hydrocarbon haze layer. Future observations will include high-resolution spectroscopy coupled with adaptive optics to obtain spectra of individual surface features.

  3. Wavelet methods in multi-conjugate adaptive optics

    NASA Astrophysics Data System (ADS)

    Helin, T.; Yudytskiy, M.

    2013-08-01

    The next generation ground-based telescopes rely heavily on adaptive optics for overcoming the limitation of atmospheric turbulence. In the future adaptive optics modalities, like multi-conjugate adaptive optics (MCAO), atmospheric tomography is the major mathematical and computational challenge. In this severely ill-posed problem, a fast and stable reconstruction algorithm is needed that can take into account many real-life phenomena of telescope imaging. We introduce a novel reconstruction method for the atmospheric tomography problem and demonstrate its performance and flexibility in the context of MCAO. Our method is based on using locality properties of compactly supported wavelets, both in the spatial and frequency domains. The reconstruction in the atmospheric tomography problem is obtained by solving the Bayesian MAP estimator with a conjugate-gradient-based algorithm. An accelerated algorithm with preconditioning is also introduced. Numerical performance is demonstrated on the official end-to-end simulation tool OCTOPUS of European Southern Observatory.

  4. Subaru adaptive-optics high-spatial-resolution infrared K- and L'-band imaging search for deeply buried dual AGNs in merging galaxies

    SciTech Connect

    Imanishi, Masatoshi; Saito, Yuriko

    2014-01-01

    We present the results of infrared K- (2.2 μm) and L'-band (3.8 μm) high-spatial-resolution (<0.''2) imaging observations of nearby gas- and dust-rich infrared luminous merging galaxies, assisted by the adaptive optics system on the Subaru 8.2 m telescope. We investigate the presence and frequency of red K – L' compact sources, which are sensitive indicators of active galactic nuclei (AGNs), including AGNs that are deeply buried in gas and dust. We observed 29 merging systems and confirmed at least one AGN in all but one system. However, luminous dual AGNs were detected in only four of the 29 systems (∼14%), despite our method's being sensitive to buried AGNs. For multiple nuclei sources, we compared the estimated AGN luminosities with supermassive black hole (SMBH) masses inferred from large-aperture K-band stellar emission photometry in individual nuclei. We found that mass accretion rates onto SMBHs are significantly different among multiple SMBHs, such that larger-mass SMBHs generally show higher mass accretion rates when normalized to SMBH mass. Our results suggest that non-synchronous mass accretion onto SMBHs in gas- and dust-rich infrared luminous merging galaxies hampers the observational detection of kiloparsec-scale multiple active SMBHs. This could explain the significantly smaller detection fraction of kiloparsec-scale dual AGNs when compared with the number expected from simple theoretical predictions. Our results also indicate that mass accretion onto SMBHs is dominated by local conditions, rather than by global galaxy properties, reinforcing the importance of observations to our understanding of how multiple SMBHs are activated and acquire mass in gas- and dust-rich merging galaxies.

  5. THE GRAY NEEDLE: LARGE GRAINS IN THE HD 15115 DEBRIS DISK FROM LBT /PISCES/Ks AND LBTI /LMIRcam/L' ADAPTIVE OPTICS IMAGING

    SciTech Connect

    Rodigas, Timothy J.; Hinz, Philip M.; Vaitheeswaran, Vidhya; Skemer, Andrew J.; Su, Kate Y. L.; Bailey, Vanessa; Schneider, Glenn; Close, Laird; Apai, Daniel; Leisenring, Jarron; Skrutskie, Michael; Mannucci, Filippo; Esposito, Simone; Arcidiacono, Carmelo; Pinna, Enrico; Argomedo, Javier; Agapito, Guido; Bono, Giuseppe; Briguglio, Runa; Boutsia, Kostantina; and others

    2012-06-10

    We present diffraction-limited Ks band and L' adaptive optics images of the edge-on debris disk around the nearby F2 star HD 15115, obtained with a single 8.4 m primary mirror at the Large Binocular Telescope. At the Ks band, the disk is detected at signal-to-noise per resolution element (SNRE) {approx} 3-8 from {approx}1 to 2.''5 (45-113 AU) on the western side and from {approx}1.''2 to 2.''1 (63-90 AU) on the east. At L' the disk is detected at SNRE {approx} 2.5 from {approx}1 to 1.''45 (45-90 AU) on both sides, implying more symmetric disk structure at 3.8 {mu}m. At both wavelengths the disk has a bow-like shape and is offset from the star to the north by a few AU. A surface brightness asymmetry exists between the two sides of the disk at the Ks band, but not at L'. The surface brightness at the Ks band declines inside 1'' ({approx}45 AU), which may be indicative of a gap in the disk near 1''. The Ks - L' disk color, after removal of the stellar color, is mostly gray for both sides of the disk. This suggests that scattered light is coming from large dust grains, with 3-10 {mu}m sized grains on the east side and 1-10 {mu}m dust grains on the west. This may suggest that the west side is composed of smaller dust grains than the east side, which would support the interpretation that the disk is being dynamically affected by interactions with the local interstellar medium.

  6. Lens-based wavefront sensorless adaptive optics swept source OCT

    NASA Astrophysics Data System (ADS)

    Jian, Yifan; Lee, Sujin; Ju, Myeong Jin; Heisler, Morgan; Ding, Weiguang; Zawadzki, Robert J.; Bonora, Stefano; Sarunic, Marinko V.

    2016-06-01

    Optical coherence tomography (OCT) has revolutionized modern ophthalmology, providing depth resolved images of the retinal layers in a system that is suited to a clinical environment. Although the axial resolution of OCT system, which is a function of the light source bandwidth, is sufficient to resolve retinal features at a micrometer scale, the lateral resolution is dependent on the delivery optics and is limited by ocular aberrations. Through the combination of wavefront sensorless adaptive optics and the use of dual deformable transmissive optical elements, we present a compact lens-based OCT system at an imaging wavelength of 1060 nm for high resolution retinal imaging. We utilized a commercially available variable focal length lens to correct for a wide range of defocus commonly found in patient’s eyes, and a novel multi-actuator adaptive lens for aberration correction to achieve near diffraction limited imaging performance at the retina. With a parallel processing computational platform, high resolution cross-sectional and en face retinal image acquisition and display was performed in real time. In order to demonstrate the system functionality and clinical utility, we present images of the photoreceptor cone mosaic and other retinal layers acquired in vivo from research subjects.

  7. Lens-based wavefront sensorless adaptive optics swept source OCT

    PubMed Central

    Jian, Yifan; Lee, Sujin; Ju, Myeong Jin; Heisler, Morgan; Ding, Weiguang; Zawadzki, Robert J.; Bonora, Stefano; Sarunic, Marinko V.

    2016-01-01

    Optical coherence tomography (OCT) has revolutionized modern ophthalmology, providing depth resolved images of the retinal layers in a system that is suited to a clinical environment. Although the axial resolution of OCT system, which is a function of the light source bandwidth, is sufficient to resolve retinal features at a micrometer scale, the lateral resolution is dependent on the delivery optics and is limited by ocular aberrations. Through the combination of wavefront sensorless adaptive optics and the use of dual deformable transmissive optical elements, we present a compact lens-based OCT system at an imaging wavelength of 1060 nm for high resolution retinal imaging. We utilized a commercially available variable focal length lens to correct for a wide range of defocus commonly found in patient’s eyes, and a novel multi-actuator adaptive lens for aberration correction to achieve near diffraction limited imaging performance at the retina. With a parallel processing computational platform, high resolution cross-sectional and en face retinal image acquisition and display was performed in real time. In order to demonstrate the system functionality and clinical utility, we present images of the photoreceptor cone mosaic and other retinal layers acquired in vivo from research subjects. PMID:27278853

  8. Holographic fluorescence microscopy with incoherent digital holographic adaptive optics

    NASA Astrophysics Data System (ADS)

    Jang, Changwon; Kim, Jonghyun; Clark, David C.; Lee, Byoungho; Kim, Myung K.

    2015-03-01

    Introduction of adaptive optics technology into astronomy and ophthalmology has made great contributions in these fields, allowing one to recover images blurred by atmospheric turbulence or aberrations of the eye. Similar adaptive optics improvement in microscopic imaging is also of interest to researchers using various techniques. Current technology of adaptive optics typically contains three key elements: wavefront sensor, wavefront corrector and controller. These hardware elements tend to be bulky, expensive, and limited in resolution, involving, e.g., lenslet arrays for sensing or multi-acuator deformable mirrors for correcting. We have previously introduced an alternate approach to adaptive optics based on unique capabilities of digital holography, namely direct access to the phase profile of an optical field and the ability to numerically manipulate the phase profile. We have also demonstrated that direct access and compensation of the phase profile is possible not only with the conventional coherent type of digital holography, but also with a new type of digital holography using incoherent light: self-interference incoherent digital holography (SIDH). The SIDH generates complex - i.e. amplitude plus phase - hologram from one or several interferograms acquired with incoherent light, such as LEDs, lamps, sunlight, or fluorescence. The complex point spread function can be measured using a guide star illumination and it allows deterministic deconvolution of the full-field image. We present experimental demonstration of aberration compensation in holographic fluorescence microscopy using SIDH. The adaptive optics by SIDH provides new tools for improved cellular fluorescence microscopy through intact tissue layers or other types of aberrant media.

  9. Quantum and Nonlinear Optical Imaging

    DTIC Science & Technology

    2007-11-02

    Quantum and Nonlinear Optical Imaging Final Report Robert W. Boyd, Institute of Optics, University of Rochester, Rochester, NY 14627 716-275-2329...boyd@optics.rochester.edu July 1, 2004 Year 1 Accomplishments This project is aimed at developing quantum and nonlinear optical techniques for...importantly began the experimental portion of the research. We showed theoretically that the quantum statistical features of spontaneous parametric

  10. Acousto-Optical Imaging Spectropolarimeter

    NASA Technical Reports Server (NTRS)

    Saif, Babak; Glenar, David; Zimmerman, Robert; Seery, Bernard

    1992-01-01

    Imaging spectropolarimeter designed around acousto-optical tunable filter (AOTF) takes polarization-specific spectral images of solid surfaces, aerosols, and absorption and emission phenomena in gas phase, at wavelengths from 500 to 1,000 nm. Produces side-by-side spectral images in two mutually perpendicular polarizations, one corresponding to ordinary, other corresponding to extraordinary waves in acousto-optical material. Offers large aperture, high resolving power, and rapid tunability, with no moving parts.

  11. Thin nearly wireless adaptive optical device

    NASA Technical Reports Server (NTRS)

    Knowles, Gareth J. (Inventor); Hughes, Eli (Inventor)

    2009-01-01

    A thin nearly wireless adaptive optical device capable of dynamically modulating the shape of a mirror in real time to compensate for atmospheric distortions and/or variations along an optical material is provided. The device includes an optical layer, a substrate, at least one electronic circuit layer with nearly wireless architecture, an array of actuators, power electronic switches, a reactive force element, and a digital controller. Actuators are aligned so that each axis of expansion and contraction intersects both substrate and reactive force element. Electronics layer with nearly wireless architecture, power electronic switches, and digital controller are provided within a thin-film substrate. The size and weight of the adaptive optical device is solely dominated by the size of the actuator elements rather than by the power distribution system.

  12. Thin, nearly wireless adaptive optical device

    NASA Technical Reports Server (NTRS)

    Knowles, Gareth (Inventor); Hughes, Eli (Inventor)

    2008-01-01

    A thin, nearly wireless adaptive optical device capable of dynamically modulating the shape of a mirror in real time to compensate for atmospheric distortions and/or variations along an optical material is provided. The device includes an optical layer, a substrate, at least one electronic circuit layer with nearly wireless architecture, an array of actuators, power electronic switches, a reactive force element, and a digital controller. Actuators are aligned so that each axis of expansion and contraction intersects both substrate and reactive force element. Electronics layer with nearly wireless architecture, power electronic switches, and digital controller are provided within a thin-film substrate. The size and weight of the adaptive optical device is solely dominated by the size of the actuator elements rather than by the power distribution system.

  13. Thin, nearly wireless adaptive optical device

    NASA Technical Reports Server (NTRS)

    Knowles, Gareth (Inventor); Hughes, Eli (Inventor)

    2007-01-01

    A thin, nearly wireless adaptive optical device capable of dynamically modulating the shape of a mirror in real time to compensate for atmospheric distortions and/or variations along an optical material is provided. The device includes an optical layer, a substrate, at least one electronic circuit layer with nearly wireless architecture, an array of actuators, power electronic switches, a reactive force element, and a digital controller. Actuators are aligned so that each axis of expansion and contraction intersects both substrate and reactive force element. Electronics layer with nearly wireless architecture, power electronic switches, and digital controller are provided within a thin-film substrate. The size and weight of the adaptive optical device is solely dominated by the size of the actuator elements rather than by the power distribution system.

  14. Adaptive optics requirements definition for TMT

    NASA Astrophysics Data System (ADS)

    Dekany, Richard G.; Britton, Matthew C.; Gavel, Don T.; Ellerbroek, Brent L.; Herriot, Glen; Max, Claire E.; Veran, Jean-Pierre

    2004-10-01

    The scientific return on adaptive optics on large telescopes has generated a new vocabulary of different adaptive optics (AO) modalities. Multiobject AO (MOAO), multiconjugate AO (MCAO), ground-layer AO (GLAO), and extreme contrast AO (ExAO) each require complex new extensions in functional requirements beyond the experience gained with systems operational on large telescopes today. Because of this potential for increased complexity, a more formal requirements development process is recommended. We describe a methodology for requirements definition under consideration and summarize the current scientific prioritization of TMT AO capabilities.

  15. Image processing for optical mapping.

    PubMed

    Ravindran, Prabu; Gupta, Aditya

    2015-01-01

    Optical Mapping is an established single-molecule, whole-genome analysis system, which has been used to gain a comprehensive understanding of genomic structure and to study structural variation of complex genomes. A critical component of Optical Mapping system is the image processing module, which extracts single molecule restriction maps from image datasets of immobilized, restriction digested and fluorescently stained large DNA molecules. In this review, we describe robust and efficient image processing techniques to process these massive datasets and extract accurate restriction maps in the presence of noise, ambiguity and confounding artifacts. We also highlight a few applications of the Optical Mapping system.

  16. Optical imaging probes in oncology

    PubMed Central

    Martelli, Cristina; Dico, Alessia Lo; Diceglie, Cecilia; Lucignani, Giovanni; Ottobrini, Luisa

    2016-01-01

    Cancer is a complex disease, characterized by alteration of different physiological molecular processes and cellular features. Keeping this in mind, the possibility of early identification and detection of specific tumor biomarkers by non-invasive approaches could improve early diagnosis and patient management. Different molecular imaging procedures provide powerful tools for detection and non-invasive characterization of oncological lesions. Clinical studies are mainly based on the use of computed tomography, nuclear-based imaging techniques and magnetic resonance imaging. Preclinical imaging in small animal models entails the use of dedicated instruments, and beyond the already cited imaging techniques, it includes also optical imaging studies. Optical imaging strategies are based on the use of luminescent or fluorescent reporter genes or injectable fluorescent or luminescent probes that provide the possibility to study tumor features even by means of fluorescence and luminescence imaging. Currently, most of these probes are used only in animal models, but the possibility of applying some of them also in the clinics is under evaluation. The importance of tumor imaging, the ease of use of optical imaging instruments, the commercial availability of a wide range of probes as well as the continuous description of newly developed probes, demonstrate the significance of these applications. The aim of this review is providing a complete description of the possible optical imaging procedures available for the non-invasive assessment of tumor features in oncological murine models. In particular, the characteristics of both commercially available and newly developed probes will be outlined and discussed. PMID:27145373

  17. Optical imaging probes in oncology.

    PubMed

    Martelli, Cristina; Lo Dico, Alessia; Diceglie, Cecilia; Lucignani, Giovanni; Ottobrini, Luisa

    2016-07-26

    Cancer is a complex disease, characterized by alteration of different physiological molecular processes and cellular features. Keeping this in mind, the possibility of early identification and detection of specific tumor biomarkers by non-invasive approaches could improve early diagnosis and patient management.Different molecular imaging procedures provide powerful tools for detection and non-invasive characterization of oncological lesions. Clinical studies are mainly based on the use of computed tomography, nuclear-based imaging techniques and magnetic resonance imaging. Preclinical imaging in small animal models entails the use of dedicated instruments, and beyond the already cited imaging techniques, it includes also optical imaging studies. Optical imaging strategies are based on the use of luminescent or fluorescent reporter genes or injectable fluorescent or luminescent probes that provide the possibility to study tumor features even by means of fluorescence and luminescence imaging. Currently, most of these probes are used only in animal models, but the possibility of applying some of them also in the clinics is under evaluation.The importance of tumor imaging, the ease of use of optical imaging instruments, the commercial availability of a wide range of probes as well as the continuous description of newly developed probes, demonstrate the significance of these applications. The aim of this review is providing a complete description of the possible optical imaging procedures available for the non-invasive assessment of tumor features in oncological murine models. In particular, the characteristics of both commercially available and newly developed probes will be outlined and discussed.

  18. KAPAO: A Pomona College Adaptive Optics Instrument

    NASA Astrophysics Data System (ADS)

    Choi, Philip I.; Severson, S. A.; Rudy, A. R.; Gilbreth, B. N.; Contreras, D. S.; McGonigle, L. P.; Chin, R. M.; Horn, B.; Hoidn, O.; Spjut, E.; Baranec, C.; Riddle, R.

    2011-01-01

    We describe our project (KAPAO) to develop and deploy a low-cost, remote-access, natural guide star adaptive optics system for the Pomona College Table Mountain Observatory (TMO) 1-meter telescope. The system will offer simultaneous dual-band, diffraction-limited imaging at visible and near-infrared wavelengths and will deliver an order-of-magnitude improvement in point source sensitivity and angular resolution relative to the current TMO seeing limits. In order to ensure reliability, minimize costs and encourage replication efforts, off-the-shelf components that include a MEMS deformable mirror, a Shack-Hartmann wavefront sensor and a piezo-electric tip-tilt mirror are being adopted for the core hardware elements. We present: the instrument design; performance predictions based on AO simulations; and the current status of the testbed instrument and high-speed control system. Beyond the expanded scientific capabilities enabled by AO-enhanced resolution and sensitivity, the interdisciplinary nature of the instrument development effort provides an exceptional opportunity to train a broad range of undergraduate STEM students in AO technologies and techniques. The breadth of our collaboration, which includes both public (Sonoma State University) and private (Pomona and Harvey Mudd Colleges) undergraduate institutions has enabled us to engage students ranging from physics, astronomy, engineering and computer science in the early stages of this project. This material is based upon work supported by the National Science Foundation under Grant No. 0960343.

  19. Pulse front control with adaptive optics

    NASA Astrophysics Data System (ADS)

    Sun, B.; Salter, P. S.; Booth, M. J.

    2016-03-01

    The focusing of ultrashort laser pulses is extremely important for processes including microscopy, laser fabrication and fundamental science. Adaptive optic elements, such as liquid crystal spatial light modulators or membrane deformable mirrors, are routinely used for the correction of aberrations in these systems, leading to improved resolution and efficiency. Here, we demonstrate that adaptive elements used with ultrashort pulses should not be considered simply in terms of wavefront modification, but that changes to the incident pulse front can also occur. We experimentally show how adaptive elements may be used to engineer pulse fronts with spatial resolution.

  20. Characterization and Operation of Liquid Crystal Adaptive Optics Phoropter

    SciTech Connect

    Awwal, A; Bauman, B; Gavel, D; Olivier, S; Jones, S; Hardy, J L; Barnes, T; Werner, J S

    2003-02-05

    Adaptive optics (AO), a mature technology developed for astronomy to compensate for the effects of atmospheric turbulence, can also be used to correct the aberrations of the eye. The classic phoropter is used by ophthalmologists and optometrists to estimate and correct the lower-order aberrations of the eye, defocus and astigmatism, in order to derive a vision correction prescription for their patients. An adaptive optics phoropter measures and corrects the aberrations in the human eye using adaptive optics techniques, which are capable of dealing with both the standard low-order aberrations and higher-order aberrations, including coma and spherical aberration. High-order aberrations have been shown to degrade visual performance for clinical subjects in initial investigations. An adaptive optics phoropter has been designed and constructed based on a Shack-Hartmann sensor to measure the aberrations of the eye, and a liquid crystal spatial light modulator to compensate for them. This system should produce near diffraction-limited optical image quality at the retina, which will enable investigation of the psychophysical limits of human vision. This paper describes the characterization and operation of the AO phoropter with results from human subject testing.

  1. Implementations of adaptive associative optical computing elements

    NASA Astrophysics Data System (ADS)

    Fisher, Arthur D.; Lee, John N.; Fukuda, Robert C.

    1986-01-01

    The present optical implementations for heteroassociative memory modules, which are capable of real time adaptive learning, are pertinent to the eventual construction of large, multimodule associative/neural network architectures that can consider problems in the acquisition, transformation, matching/recognition, and manipulation of large amounts of data in parallel. These modules offer such performance features as convergence to the least-squares-optimum pseudoinverse association, accumulative and gated learning, forgetfulness of unused associations, resistance to dynamic-range saturation, and compensation of optical system aberrations. Optics uniquely furnish the massive parallel interconnection paths required to cascade and interconnect a number of modules to form the more sophisticated multiple module architectures.

  2. Adaptive-optics optical coherence tomography processing using a graphics processing unit.

    PubMed

    Shafer, Brandon A; Kriske, Jeffery E; Kocaoglu, Omer P; Turner, Timothy L; Liu, Zhuolin; Lee, John Jaehwan; Miller, Donald T

    2014-01-01

    Graphics processing units are increasingly being used for scientific computing for their powerful parallel processing abilities, and moderate price compared to super computers and computing grids. In this paper we have used a general purpose graphics processing unit to process adaptive-optics optical coherence tomography (AOOCT) images in real time. Increasing the processing speed of AOOCT is an essential step in moving the super high resolution technology closer to clinical viability.

  3. Adaptive Optics at the World’s Biggest Optical Telescope

    DTIC Science & Technology

    2010-09-01

    bottom up. The reflective, and deformable, component of each of the LBT’s mirrors is a concave Zerodur shell, 1.6 mm in average thickness and 911 mm in...Physik, 85748 Garching, Germany ABSTRACT The Large Binocular Telescope (LBT) on Mt. Graham, Arizona, comprises two 8.4 m primary mirrors on a...adaptive optics (AO) was incorporated into the design through two adaptive secondary mirrors (ASM), each 91 cm in diameter with 672 actuators, which feed

  4. Free Space Optical Communications Utilizing MEMS Adaptive Optics Correction

    SciTech Connect

    Thompson, C A; Kartz, M W; Flath, L M; Wilks, S C; Young, R A; Johnson, G W; Ruggiero, A J

    2002-07-09

    Free space optical communications (FSO) are beginning to provide attractive alternatives to fiber-based solutions in many situations. Currently, a handful of companies provide fiberless alternatives specifically aimed at corporate intranet and sporting event video applications. These solutions are geared toward solving the ''last mile'' connectivity issues. There exists a potential need to extend this pathlength to distances much greater than a 1 km, particularly for government and military applications. For cases of long distance optical propagation, atmospheric turbulence will ultimately limit the maximum achievable data rate. In this paper, we propose a method to improve signal quality through the use of adaptive optics. In particular, we show work in progress toward a high-speed, small footprint Adaptive Optics system for horizontal and slant path laser communications. Such a system relies heavily on recent progress in Micro-Electro-Mechanical Systems (MEMS) deformable mirrors, as well as improved communication and computational components.

  5. Adaptive Optics Educational Outreach and the Giant Segmented Mirror Telescope

    NASA Astrophysics Data System (ADS)

    Sparks, R. T.; Pompea, S. M.; Walker, C. E.

    2008-06-01

    One of the limiting factors in telescope performance is atmospheric seeing. Atmospheric seeing limits the resolution of ground based optical telescopes. Even telescopes in good locations on top of mountains cannot achieve diffraction-limited resolution. Until recently, the only way to overcome this limitation was to use space-based telescopes. Adaptive Optics (AO) is a collection of technologies that measure the turbulence of Earth's atmosphere and compensate for the turbulence, resulting in high-resolution images without the expense and complexity of space based telescopes. Our Hands-On Optics program has developed activities that teach students how telescopes form images and make observations about the resolution of a telescope. We are developing materials for high school students to use in the study of adaptive optics. These activities include various ways to illustrate atmospheric distortion by using everyday materials such as bubble wrap and mineral oil. We will also illustrate how to demonstrate the workings of a Shack-Hartman sensor to measure atmospheric distortion through the use of a unique model. We will also show activities illustrating two techniques astronomers use to improve the image: tip-tilt mirrors and deformable mirrors. We are developing an activity where students learn how to use a tip-tilt mirror to keep an image focused at one point on a screen. The culminating activity has students learn to use a deformable mirror to correct a distorted wavefront. These activities are being developed in conjunction with the Education program for the Giant Segmented Mirror Telescope (GSMT).

  6. Optimization-based wavefront sensorless adaptive optics for multiphoton microscopy.

    PubMed

    Antonello, Jacopo; van Werkhoven, Tim; Verhaegen, Michel; Truong, Hoa H; Keller, Christoph U; Gerritsen, Hans C

    2014-06-01

    Optical aberrations have detrimental effects in multiphoton microscopy. These effects can be curtailed by implementing model-based wavefront sensorless adaptive optics, which only requires the addition of a wavefront shaping device, such as a deformable mirror (DM) to an existing microscope. The aberration correction is achieved by maximizing a suitable image quality metric. We implement a model-based aberration correction algorithm in a second-harmonic microscope. The tip, tilt, and defocus aberrations are removed from the basis functions used for the control of the DM, as these aberrations induce distortions in the acquired images. We compute the parameters of a quadratic polynomial that is used to model the image quality metric directly from experimental input-output measurements. Finally, we apply the aberration correction by maximizing the image quality metric using the least-squares estimate of the unknown aberration.

  7. Adaptive optics at the Subaru telescope: current capabilities and development

    NASA Astrophysics Data System (ADS)

    Guyon, Olivier; Hayano, Yutaka; Tamura, Motohide; Kudo, Tomoyuki; Oya, Shin; Minowa, Yosuke; Lai, Olivier; Jovanovic, Nemanja; Takato, Naruhisa; Kasdin, Jeremy; Groff, Tyler; Hayashi, Masahiko; Arimoto, Nobuo; Takami, Hideki; Bradley, Colin; Sugai, Hajime; Perrin, Guy; Tuthill, Peter; Mazin, Ben

    2014-08-01

    Current AO observations rely heavily on the AO188 instrument, a 188-elements system that can operate in natural or laser guide star (LGS) mode, and delivers diffraction-limited images in near-IR. In its LGS mode, laser light is transported from the solid state laser to the launch telescope by a single mode fiber. AO188 can feed several instruments: the infrared camera and spectrograph (IRCS), a high contrast imaging instrument (HiCIAO) or an optical integral field spectrograph (Kyoto-3DII). Adaptive optics development in support of exoplanet observations has been and continues to be very active. The Subaru Coronagraphic Extreme-AO (SCExAO) system, which combines extreme-AO correction with advanced coronagraphy, is in the commissioning phase, and will greatly increase Subaru Telescope's ability to image and study exoplanets. SCExAO currently feeds light to HiCIAO, and will soon be combined with the CHARIS integral field spectrograph and the fast frame MKIDs exoplanet camera, which have both been specifically designed for high contrast imaging. SCExAO also feeds two visible-light single pupil interferometers: VAMPIRES and FIRST. In parallel to these direct imaging activities, a near-IR high precision spectrograph (IRD) is under development for observing exoplanets with the radial velocity technique. Wide-field adaptive optics techniques are also being pursued. The RAVEN multi-object adaptive optics instrument was installed on Subaru telescope in early 2014. Subaru Telescope is also planning wide field imaging with ground-layer AO with the ULTIMATE-Subaru project.

  8. Melanoma associated retinopathy: A new dimension using adaptive optics.

    PubMed

    Dabir, Supriya; Mangalesh, Shwetha; Govindraj, Indu; Mallipatna, Ashwin; Battu, Rajani; Shetty, Rohit

    2015-01-01

    We report a 56-year-old male patient, complaining of metamorphopsia in his left eye nevertheless visual acuity, slit lamp, and fundus examinations were within normal limits. Microperimetry (MAIA, Centervue, Italy) revealed central field loss and spectral domain optical coherence tomography (Spectralis, Heidelberg, Germany) showed disrupted cone outer segment tip layer. The patient had a diagnosis of cutaneous melanoma in his foot for which an excision biopsy with lymph node dissection was performed 5 months earlier. Our clinical diagnosis was melanoma-associated retinopathy. Electrophysiology confirmed the diagnosis. Adaptive optics retinal imaging (Imagine eyes, Orsay) was performed to assess the cone mosaic integrity across the central retina. This is the first report on the investigation of autoimmune retinopathy using adaptive optics ophthalmoscopy. This case highlights the viability of innovative diagnostic modalities that aid early detection and subsequent management of vision threatening retinal.

  9. Adaptive MOEMS mirrors for medical imaging

    NASA Astrophysics Data System (ADS)

    Fayek, Reda; Ibrahim, Hany

    2007-03-01

    This paper presents micro-electro-mechanical-systems (MEMS) optical elements with high angular deflection arranged in arrays to perform dynamic laser beam focusing and scanning. Each element selectively addresses a portion of the laser beam. These devices are useful in medical and research applications including laser-scanning microscopy, confocal microscopes, and laser capture micro-dissection. Such laser-based imaging and diagnostic instruments involve complex laser beam manipulations. These often require compound lenses and mirrors that introduce misalignment, attenuation, distortion and light scatter. Instead of using expensive spherical and aspherical lenses and/or mirrors for sophisticated laser beam manipulations, we propose scalable adaptive micro-opto-electro-mechanical-systems (MOEMS) arrays to recapture optical performance and compensate for aberrations, distortions and imperfections introduced by inexpensive optics. A high-density array of small, individually addressable, MOEMS elements is similar to a Fresnel mirror. A scalable 2D array of micro-mirrors approximates spherical or arbitrary surface mirrors of different apertures. A proof of concept prototype was built using PolyMUMP TM due to its reliability, low cost and limited post processing requirements. Low-density arrays (2x2 arrays of square elements, 250x250μm each) were designed, fabricated, and tested. Electrostatic comb fingers actuate the edges of the square mirrors with a low actuation voltage of 20 V - 50 V. CoventorWare TM was used for the design, 3D modeling and motion simulations. Initial results are encouraging. The array is adaptive, configurable and scalable with low actuation voltage and a large tuning range. Individual element addressability would allow versatile uses. Future research will increase deflection angles and maximize reflective area.

  10. The ERIS adaptive optics system

    NASA Astrophysics Data System (ADS)

    Riccardi, A.; Esposito, S.; Agapito, G.; Antichi, J.; Biliotti, V.; Blain, C.; Briguglio, R.; Busoni, L.; Carbonaro, L.; Di Rico, G.; Giordano, C.; Pinna, E.; Puglisi, A.; Spanò, P.; Xompero, M.; Baruffolo, A.; Kasper, M.; Egner, S.; Suàrez Valles, M.; Soenke, C.; Downing, M.; Reyes, J.

    2016-07-01

    ERIS is the new AO instrument for VLT-UT4 led by a Consortium of Max-Planck Institut fuer Extraterrestrische Physik, UK-ATC, ETH-Zurich, ESO and INAF. The ERIS AO system provides NGS mode to deliver high contrast correction and LGS mode to extend high Strehl performance to large sky coverage. The AO module includes NGS and LGS wavefront sensors and, with VLT-AOF Deformable Secondary Mirror and Laser Facility, will provide AO correction to the high resolution imager NIX (1-5um) and the IFU spectrograph SPIFFIER (1-2.5um). In this paper we present the preliminary design of the ERIS AO system and the estimated correction performance.

  11. High-resolution adaptive optics findings in talc retinopathy.

    PubMed

    Soliman, Mohamed K; Sarwar, Salman; Hanout, Mostafa; Sadiq, Mohammad A; Agarwal, Aniruddha; Gulati, Vikas; Nguyen, Quan Dong; Sepah, Yasir J

    2015-01-01

    Talc retinopathy is a recognized ocular condition characterized by the presence of small, yellow, glistening crystals found inside small retinal vessels and within different retinal layers. These crystals can be associated with retinal vascular occlusion and ischemia. Different diagnostic modalities have been used previously to characterize the retinal lesions in talc retinopathy. Adaptive optics, a high resolution imaging technique, is used to evaluate the location, appearance and distribution of talc crystals in a case of talc retinopathy.

  12. Adaptive holography for optical sensing applications

    NASA Astrophysics Data System (ADS)

    Residori, S.; Bortolozzo, U.; Peigné, A.; Molin, S.; Nouchi, P.; Dolfi, D.; Huignard, J. P.

    2016-03-01

    Adaptive holography is a promising method for high sensitivity phase modulation measurements in the presence of slow perturbations from the environment. The technique is based on the use of a nonlinear recombining medium, here an optically addressed spatial light modulator specifically realized to operate at 1.55 μm. Owing to the physical mechanisms involved, the interferometer adapts to slow phase variations within a range of 5-10 Hz, thus filtering out low frequency noise while transmitting higher frequency phase modulations. We present the basic principles of the adaptive interferometer and show that it can be used in association with a sensing fiber in order to detect phase modulations. Finally, a phase-OTDR architecture using the adaptive holographic interferometer is presented and shown to allows the detection of localized perturbations along the sensing fiber.

  13. Performance of laser guide star adaptive optics at Lick Observatory

    SciTech Connect

    Olivier, S.S.; An, J.; Avicola, K.

    1995-07-19

    A sodium-layer laser guide star adaptive optics system has been developed at Lawrence Livermore National Laboratory (LLNL) for use on the 3-meter Shane telescope at Lick Observatory. The system is based on a 127-actuator continuous-surface deformable mirror, a Hartmann wavefront sensor equipped with a fast-framing low-noise CCD camera, and a pulsed solid-state-pumped dye laser tuned to the atomic sodium resonance line at 589 nm. The adaptive optics system has been tested on the Shane telescope using natural reference stars yielding up to a factor of 12 increase in image peak intensity and a factor of 6.5 reduction in image full width at half maximum (FWHM). The results are consistent with theoretical expectations. The laser guide star system has been installed and operated on the Shane telescope yielding a beam with 22 W average power at 589 nm. Based on experimental data, this laser should generate an 8th magnitude guide star at this site, and the integrated laser guide star adaptive optics system should produce images with Strehl ratios of 0.4 at 2.2 {mu}m in median seeing and 0.7 at 2.2 {mu}m in good seeing.

  14. Coronagraphy with the AEOS High Order Adaptive Optics System

    NASA Astrophysics Data System (ADS)

    Lloyd, J. P.; Graham, J. R.; Kalas, P.; Oppenheimer, B. R.; Sivaramakrishnan, A.; Makidon, R. B.; Macintosh, B. A.; Max, C. E.; Baudoz, P.; Kuhn, J. R.; Potter, D.

    2001-05-01

    Adaptive Optics has recently become a widely used technique to acquire sensitive, diffraction limited images in the near infrared with large ground based telescopes. Most astronomical targets are faint; driving astronomical AO systems towards large subapertures; resulting in a compromise between guide star brightness, observing wavelength, resolution and Strehl ratio. Space surveilance systems have recently been developed that exploit high order adaptive optics systems to take diffraction limited images in visible light on 4 meter class telescopes on bright (V<8) targets. There is, however, a particular niche that can be exploited by turning these visible light space surveillance systems to astronomical use at infrared wavelengths. At the longer wavelengths, the strehl ratio rises dramatically, thus placing more light into the diffracted Airy pattern at the expense of the atmospheric halo. A coronagraph can be used to suppress the diffracted light, and observe faint companions and debris disks around nearby, bright stars. Observations of these very high contrast objects benefit greatly from much higher order adaptive optics systems than are presently available to the astronomical commnunity. The National Science Foundation and Air Force Office of Scientific Research is sponsoring a program to conduct astronomical observations at the AEOS facility. We are presently developing an astronomical coronagraph to be deployed at the Air Force AEOS facility. We describe the coronagraph, and discuss the advantages and limitations of ground based high order AO for high contrast imaging.

  15. Optic Nerve Imaging

    MedlinePlus

    ... machines can help monitor and detect loss of optic nerve fibers. The Heidelberg Retina Tomograph (HRT) is a special ... keeping organized, you can establish a routine that works for you. Read more » Are You at Risk ...

  16. Development of large aperture composite adaptive optics

    NASA Astrophysics Data System (ADS)

    Kmetik, Viliam; Vitovec, Bohumil; Jiran, Lukas; Nemcova, Sarka; Zicha, Josef; Inneman, Adolf; Mikulickova, Lenka; Pavlica, Richard

    2015-01-01

    Large aperture composite adaptive optics for laser applications is investigated in cooperation of Institute of Plasma Physic, Department of Instrumentation and Control Engineering FME CTU and 5M Ltd. We are exploring opportunity of a large-size high-power-laser deformable-mirror production using a lightweight bimorph actuated structure with a composite core. In order to produce a sufficiently large operational free aperture we are developing new technologies for production of flexible core, bimorph actuator and deformable mirror reflector. Full simulation of a deformable-mirrors structure was prepared and validated by complex testing. A deformable mirror actuation and a response of a complicated structure are investigated for an accurate control of the adaptive optics. An original adaptive optics control system and a bimorph deformable mirror driver were developed. Tests of material samples, components and sub-assemblies were completed. A subscale 120 mm bimorph deformable mirror prototype was designed, fabricated and thoroughly tested. A large-size 300 mm composite-core bimorph deformable mirror was simulated and optimized, fabrication of a prototype is carried on. A measurement and testing facility is modified to accommodate large sizes optics.

  17. Adaptive optics assisted reconfigurable liquid-driven optical switch

    NASA Astrophysics Data System (ADS)

    Fuh, Yiin-Kuen; Huang, Wei-Chi

    2013-07-01

    This study demonstrates a mechanical-based, liquid-driven optical switch integrated with adaptive optics and a reconfigurable black liquid (dye-doped liquid). The device aperture can be continuously tuned between 0.6 and 6.9 mm, precisely achieved by a syringe pump for volume control. Adaptive optics (AO) capability and possible enhancement of the lost power intensity of the ink-polluted glass plate have also been experimentally investigated. While measuring power intensity with/without AO indicates only a marginal difference of ˜1%, a significant difference of 3 s in the response characteristic of "switching on" time can be observed. An extremely high contrast ratio of ˜105 for a red-colored light is achieved.

  18. The study on cloud masking of GOCI optical images by using adaptive threshold and BRDF-based NDVI profiles for the land application

    NASA Astrophysics Data System (ADS)

    Kim, H. W.; Yeom, J. M.; Woo, S. H.; Kim, Y. S.; Chae, T. B.

    2015-12-01

    Geostationary Ocean Color Imager (GOCI) which was launched on 27 June 2010, developed to detect, monitor, and predict the ocean phenomena around Korea. Although GOCI was developed to observe the ocean environment, GOCI has also enormous scientific data for land surface. However, it is extremely important to extract the cloud pixels over the land surface to utilize its data for the land application. Over the land surface, the reflectance variation is higher and the characteristic of surface is more various than those over the ocean. Furthermore, the infra-red (IR) channel is not included in 8 GOCI bands, which is useful to detect the thin cloud and the water vapor with cloud top temperature. Nevertheless, GOCI has potential to detect the cloud using the temporal variation due to the characteristics of geostationary satellite observation. The purpose of this study is to estimate the cloud masking maps over the Korean Peninsula. For cloud masking with GOCI, following methods are used; simple threshold with reflectance and ratio of bands, adaptive threshold with multi-temporal images, and stable multi-temporal vegetation image. In the case of adaptive threshold, high variable cloudy when comparing with surface reflectance is used by comparing the surface reflectance by temporal based analysis. In this study, the multi-temporal NDVI data processed by the bi-directional reflectance distribution function (BRDF) modeling also used to reflect the relative solar-target-sensor geometry during the daytime. This result will have a substantial role for the land application using GOCI data.

  19. Performance of a MEMS-base Adaptive Optics Optical Coherency Tomography System

    SciTech Connect

    Evans, J; Zadwadzki, R J; Jones, S; Olivier, S; Opkpodu, S; Werner, J S

    2008-01-16

    We have demonstrated that a microelectrical mechanical systems (MEMS) deformable mirror can be flattened to < 1 nm RMS within controllable spatial frequencies over a 9.2-mm aperture making it a viable option for high-contrast adaptive optics systems (also known as Extreme Adaptive Optics). The Extreme Adaptive Optics Testbed at UC Santa Cruz is being used to investigate and develop technologies for high-contrast imaging, especially wavefront control. A phase shifting diffraction interferometer (PSDI) measures wavefront errors with sub-nm precision and accuracy for metrology and wavefront control. Consistent flattening, required testing and characterization of the individual actuator response, including the effects of dead and low-response actuators. Stability and repeatability of the MEMS devices was also tested. An error budget for MEMS closed loop performance will summarize MEMS characterization.

  20. Discrete adaptive zone light elements (DAZLE): a new approach to adaptive imaging

    NASA Astrophysics Data System (ADS)

    Kellogg, Robert L.; Escuti, Michael J.

    2007-09-01

    New advances in Liquid Crystal Spatial Light Modulators (LCSLM) offer opportunities for large adaptive optics in the midwave infrared spectrum. A light focusing adaptive imaging system, using the zero-order diffraction state of a polarizer-free liquid crystal polarization grating modulator to create millions of high transmittance apertures, is envisioned in a system called DAZLE (Discrete Adaptive Zone Light Elements). DAZLE adaptively selects large sets of LCSLM apertures using the principles of coded masks, embodied in a hybrid Discrete Fresnel Zone Plate (DFZP) design. Issues of system architecture, including factors of LCSLM aperture pattern and adaptive control, image resolution and focal plane array (FPA) matching, and trade-offs between filter bandwidths, background photon noise, and chromatic aberration are discussed.

  1. Isoplanatism in a multiconjugate adaptive optics system.

    PubMed

    Tokovinin, A; Le Louarn, M; Sarazin, M

    2000-10-01

    Turbulence correction in a large field of view by use of an adaptive optics imaging system with several deformable mirrors (DM's) conjugated to various heights is considered. The residual phase variance is computed for an optimized linear algorithm in which a correction of each turbulent layer is achieved by applying a combination of suitably smoothed and scaled input phase screens to all DM's. Finite turbulence outer scale and finite spatial resolution of the DM's are taken into account. A general expression for the isoplanatic angle thetaM of a system with M mirrors is derived in the limiting case of infinitely large apertures and Kolmogorov turbulence. Like Fried's isoplanatic angle theta0,thetaM is a function only of the turbulence vertical profile, is scalable with wavelength, and is independent of the telescope diameter. Use of angle thetaM permits the gain in the field of view due to the increased number of DM's to be quantified and their optimal conjugate heights to be found. Calculations with real turbulence profiles show that with three DM's a gain of 7-10x is possible, giving the typical and best isoplanatic field-of-view radii of 16 and 30 arcseconds, respectively, at lambda = 0.5 microm. It is shown that in the actual systems the isoplanatic field will be somewhat larger than thetaM owing to the combined effects of finite aperture diameter, finite outer scale, and optimized wave-front spatial filtering. However, this additional gain is not dramatic; it is less than 1.5x for large-aperture telescopes.

  2. Simulating Astronomical Adaptive Optics Systems Using Yao

    NASA Astrophysics Data System (ADS)

    Rigaut, François; Van Dam, Marcos

    2013-12-01

    Adaptive Optics systems are at the heart of the coming Extremely Large Telescopes generation. Given the importance, complexity and required advances of these systems, being able to simulate them faithfully is key to their success, and thus to the success of the ELTs. The type of systems envisioned to be built for the ELTs cover most of the AO breeds, from NGS AO to multiple guide star Ground Layer, Laser Tomography and Multi-Conjugate AO systems, with typically a few thousand actuators. This represents a large step up from the current generation of AO systems, and accordingly a challenge for existing AO simulation packages. This is especially true as, in the past years, computer power has not been following Moore's law in its most common understanding; CPU clocks are hovering at about 3GHz. Although the use of super computers is a possible solution to run these simulations, being able to use smaller machines has obvious advantages: cost, access, environmental issues. By using optimised code in an already proven AO simulation platform, we were able to run complex ELT AO simulations on very modest machines, including laptops. The platform is YAO. In this paper, we describe YAO, its architecture, its capabilities, the ELT-specific challenges and optimisations, and finally its performance. As an example, execution speed ranges from 5 iterations per second for a 6 LGS 60x60 subapertures Shack-Hartmann Wavefront sensor Laser Tomography AO system (including full physical image formation and detector characteristics) up to over 30 iterations/s for a single NGS AO system.

  3. Extended depth of focus adaptive optics spectral domain optical coherence tomography

    PubMed Central

    Sasaki, Kazuhiro; Kurokawa, Kazuhiro; Makita, Shuichi; Yasuno, Yoshiaki

    2012-01-01

    We present an adaptive optics spectral domain optical coherence tomography (AO-SDOCT) with a long focal range by active phase modulation of the pupil. A long focal range is achieved by introducing AO-controlled third-order spherical aberration (SA). The property of SA and its effects on focal range are investigated in detail using the Huygens-Fresnel principle, beam profile measurement and OCT imaging of a phantom. The results indicate that the focal range is extended by applying SA, and the direction of extension can be controlled by the sign of applied SA. Finally, we demonstrated in vivo human retinal imaging by altering the applied SA. PMID:23082278

  4. Effectiveness of adaptive optics system in satellite-to-ground coherent optical communication.

    PubMed

    Jian, Huang; Ke, Deng; Chao, Liu; Peng, Zhang; Dagang, Jiang; Zhoushi, Yao

    2014-06-30

    Adaptive optics (AO) systems can suppress the signal fade induced by atmospheric turbulence in satellite-to-ground coherent optical communication. The lower bound of the signal fade under AO compensation was investigated by analyzing the pattern of aberration modes for a one-stage imaging AO system. The distribution of the root mean square of the residual aberration is discussed on the basis of the spatial and temporal characteristics of the residual aberration of the AO system. The effectiveness of the AO system for improving the performance of coherent optical communication is presented in terms of the bit error rate and system availability.

  5. Micro-optics for imaging.

    SciTech Connect

    Boye, Robert R.

    2010-09-01

    This project investigates the fundamental imaging capability of an optic with a physical thickness substantially less than 1 mm. The analysis assumes that post-processing can overcome certain restrictions such as detector pixel size and image degradation due to aberrations. A first order optical analysis quickly reveals the limitations of even an ideal thin lens to provide sufficient image resolution and provides the justification for pursuing an annular design. Some straightforward examples clearly show the potential of this approach. The tradeoffs associated with annular designs, specifically field of view limitations and reduced mid-level spatial frequencies, are discussed and their impact on the imaging performance evaluated using several imaging examples. Additionally, issues such as detector acceptance angle and the need to balance aberrations with resolution are included in the analysis. With these restrictions, the final results present an excellent approximation of the expected performance of the lens designs presented.

  6. Sensorless adaptive optics and the effect of field of view in biological second harmonic generation microscopy

    NASA Astrophysics Data System (ADS)

    Vandendriessche, Stefaan; Vanbel, Maarten K.; Verbiest, Thierry

    2014-05-01

    In light of the population aging in many developed countries, there is a great economical interest in improving the speed and cost-efficiency of healthcare. Clinical diagnosis tools are key to these improvements, with biophotonics providing a means to achieve them. Standard optical microscopy of in vitro biological samples has been an important diagnosis tool since the invention of the microscope, with well known resolution limits. Nonlinear optical imaging improves on the resolution limits of linear microscopy, while providing higher contrast images and a greater penetration depth due to the red-shifted incident light compared to standard optical microscopy. It also provides information on molecular orientation and chirality. Adaptive optics can improve the quality of nonlinear optical images. We analyzed the effect of sensorless adaptive optics on the quality of the nonlinear optical images of biological samples. We demonstrate that care needs to be taken when using a large field of view. Our findings provide information on how to improve the quality of nonlinear optical imaging, and can be generalized to other in vitro biological samples. The image quality improvements achieved by adaptive optics should help speed up clinical diagnostics in vitro, while increasing their accuracy and helping decrease detection limits. The same principles apply to in vivo biological samples, and in the future it may be possible to extend these findings to other nonlinear optical effects used in biological imaging.

  7. Extragalactic Fields Optimized for Adaptive Optics

    DTIC Science & Technology

    2011-03-01

    observatories (including those on Mauna Kea ). Before proceeding with a detailed analysis, it is instructive to note that many positions in the sky likely...4Gemini Observatory , Southern Operations Center, c/o AURA, Casilla 603,La Serena, Chile. sObservatories of the Carnegie Institution of Washington...United States Naval Observatory , 3450 Massachusetts Avenue, NW, Washington, DC 20392-5420. 348 galaxies in these fields require adaptive optics (AO

  8. Magellan adaptive optics first-light observations of the exoplanet β PIC b. I. Direct imaging in the far-red optical with MagAO+VisAO and in the near-IR with NICI {sup ,}

    SciTech Connect

    Males, Jared R.; Close, Laird M.; Morzinski, Katie M.; Skemer, Andrew J.; Kopon, Derek; Follette, Katherine B.; Hinz, Philip M.; Rodigas, Timothy J.; Wahhaj, Zahed; Liu, Michael C.; Nielsen, Eric L.; Chun, Mark; Puglisi, Alfio; Esposito, Simone; Riccardi, Armando; Pinna, Enrico; Xompero, Marco; Briguglio, Runa; Hayward, Thomas L. [Gemini Observatory, Southern Operations Center, c and others

    2014-05-01

    We present the first ground-based CCD (λ < 1 μm) image of an extrasolar planet. Using the Magellan Adaptive Optics system's VisAO camera, we detected the extrasolar giant planet β Pictoris b in Y-short (Y{sub S} , 0.985 μm), at a separation of 0.470 ± 0.''010 and a contrast of (1.63 ± 0.49) × 10{sup –5}. This detection has a signal-to-noise ratio of 4.1 with an empirically estimated upper limit on false alarm probability of 1.0%. We also present new photometry from the Gemini Near-Infrared Coronagraphic Imager instrument on the Gemini South telescope, in CH {sub 4S,1%} (1.58 μm), K{sub S} (2.18 μm), and K {sub cont} (2.27 μm). A thorough analysis of our photometry combined with previous measurements yields an estimated near-IR spectral type of L2.5 ± 1.5, consistent with previous estimates. We estimate log (L {sub bol}/L {sub ☉}) = –3.86 ± 0.04, which is consistent with prior estimates for β Pic b and with field early-L brown dwarfs (BDs). This yields a hot-start mass estimate of 11.9 ± 0.7 M {sub Jup} for an age of 21 ± 4 Myr, with an upper limit below the deuterium burning mass. Our L {sub bol}-based hot-start estimate for temperature is T {sub eff} = 1643 ± 32 K (not including model-dependent uncertainty). Due to the large corresponding model-derived radius of R = 1.43 ± 0.02 R {sub Jup}, this T {sub eff} is ∼250 K cooler than would be expected for a field L2.5 BD. Other young, low-gravity (large-radius), ultracool dwarfs and directly imaged EGPs also have lower effective temperatures than are implied by their spectral types. However, such objects tend to be anomalously red in the near-IR compared to field BDs. In contrast, β Pic b has near-IR colors more typical of an early-L dwarf despite its lower inferred temperature.

  9. The AVES adaptive optics spectrograph for the VLT: status report

    NASA Astrophysics Data System (ADS)

    Pallavicini, Roberto; Delabre, Bernard; Pasquini, Luca; Zerbi, Filippo M.; Bonanno, Giovanni; Comari, Maurizio; Conconi, Paolo; Mazzoleni, Ruben; Santin, Paolo; Damiani, Francesco; Di Marcantonio, Paolo; Franchini, Mariagrazia; Spano, Paolo; Bonifacio, P.; Catalano, Santo; Molaro, Paolo P.; Randich, S.; Rodono, Marcello

    2003-03-01

    We report on the status of AVES, the Adaptive-optics Visual Echelle Spectrograph proposed for the secondary port of the Nasmyth Adaptive Optics System (NAOS) recently installed at the VLT. AVES is an intermediate resolution (R ≍ 16,000) high-efficiency fixed- format echelle spectrograph which operates in the spectral band 500 - 1,000 nm. In addition to a high intrinsic efficiency, comparable to that of ESI at Keck II, it takes advantage of the adaptive optics correction provided by NAOS to reduce the sky and detector contribution in background-limited observations of weak sources, thus allowing a further magnitude gain with respect to comparable non-adaptive optics spectrographs. Simulations show that the instrument will be capable of reaching a magnitude V = 22.5 at S/N > 10 in two hours, two magnitudes weaker than GIRAFFE at the same resolution and 3 magnitudes weaker than the higher resolution UVES spectrograph. Imaging and coronographic functions have also been implemented in the design. We present the results of the final design study and we dicuss the technical and operational issues related to its implementation at the VLT as a visitor instrument. We also discuss the possibility of using a scaled-up non-adaptive optics version of the same design as an element of a double- or triple-arm intermediate-resolution spectrograph for the VLT. Such an option looks attractive in the context of a high-efficiency large-bandwidth (320 - 1,500 nm) spectrograph ("fast-shooter") being considered by ESO as a 2nd-generation VLT instrument.

  10. Imaging performance tests of diffractive optical system

    NASA Astrophysics Data System (ADS)

    Jiao, Jianchao; Su, Yun; Wang, Baohua; Wang, Chao; Zhang, Yue; Jin, Jiangao

    2016-10-01

    Diffractive optical imaging is a new method to realize high-resolution imaging from geostationary orbit(GEO). Technical advantages of diffractive optical imaging is analyzed in the field of space optics. For application of super large diameter space optical system, the system scheme and a new achromatic method is proposed. An imaging system is developed and tested, the result of optical system wavefront is 0.169λ(RMS), optical system MTF is 0.85, and the imaging system MTF is 0.19. Test results show the new achromatic method is feasible. The above conclusions have reference significance for the development of super large diameter diffractive optical imaging system.

  11. Phase Contrast Wavefront Sensing for Adaptive Optics

    NASA Technical Reports Server (NTRS)

    Bloemhof, E. E.; Wallace, J. K.; Bloemhof, E. E.

    2004-01-01

    Most ground-based adaptive optics systems use one of a small number of wavefront sensor technologies, notably (for relatively high-order systems) the Shack-Hartmann sensor, which provides local measurements of the phase slope (first-derivative) at a number of regularly-spaced points across the telescope pupil. The curvature sensor, with response proportional to the second derivative of the phase, is also sometimes used, but has undesirable noise propagation properties during wavefront reconstruction as the number of actuators becomes large. It is interesting to consider the use for astronomical adaptive optics of the "phase contrast" technique, originally developed for microscopy by Zemike to allow convenient viewing of phase objects. In this technique, the wavefront sensor provides a direct measurement of the local value of phase in each sub-aperture of the pupil. This approach has some obvious disadvantages compared to Shack-Hartmann wavefront sensing, but has some less obvious but substantial advantages as well. Here we evaluate the relative merits in a practical ground-based adaptive optics system.

  12. Optical image encryption via ptychography.

    PubMed

    Shi, Yishi; Li, Tuo; Wang, Yali; Gao, Qiankun; Zhang, Sanguo; Li, Haifei

    2013-05-01

    Ptychography is combined with optical image encryption for the first time. Due to the nature of ptychography, not only is the interferometric optical setup that is usually adopted not required any more, but also the encryption for a complex-valued image is achievable. Considering that the probes overlapping with each other is the crucial factor in ptychography, their complex-amplitude functions can serve as a kind of secret keys that lead to the enlarged key space and the enhanced system security. Further, since only introducing the probes into the input of common system is required, it is convenient to combine ptychography with many existing optical image encryption systems for varied security applications.

  13. Astronomical coronagraphy with high-order adaptive optics systems

    NASA Astrophysics Data System (ADS)

    Lloyd, James P.; Graham, James R.; Kalas, Paul; Oppenheimer, Ben R.; Sivaramakrishnan, Anand; Makidon, Russell B.; Macintosh, Bruce A.; Max, Claire E.; Baudoz, Pierre; Kuhn, Jeff R.; Potter, Dan

    2001-12-01

    Space surveillance systems have recently been developed that exploit high order adaptive optics systems to take diffraction limited images in visible light on 4 meter class telescopes. Most astronomical targets are faint, thus driving astronomical AO systems towards larger subapertures, and thus longer observing wavelengths for diffraction limited imaging at moderate Strehl ratio. There is, however, a particular niche that can be exploited by turning these visible light space surveillance systems to astronomical use at infrared wavelengths. At the longer wavelengths, the Strehl ratio rises dramatically, thus placing more light into the diffracted Airy pattern compared to the atmospheric halo. A Lyot coronagraph can be used to suppress the diffracted light from an on axis star, and observe faint companions and debris disks around nearby, bright stars. These very high contrast objects can only be observed with much higher order adaptive optics systems than are presently available to the astronomical community. We describe simulations of high order adaptive optics coronagraphs, and outline a project to deploy an astronomical coronagraph at the Air Force AEOS facility at the Maui Space Surveillance System.

  14. Specialized wavefront sensors for adaptive optics

    NASA Astrophysics Data System (ADS)

    Neal, Daniel R.; Mansell, J. D.; Gruetzner, James K.; Morgan, R.; Warren, Mial E.

    1995-08-01

    The performance of an adaptive optical system is strongly dependent upon correctly measuring the wavefront of the arriving light. The most common wavefront measurement techniques used to date are the shearing interferometer and the Shack-Hartmann sensor. Shack-Hartmann sensors rely on the use of lenslet arrays to sample the aperture appropriately. These have traditionally been constructed using MLM or step and repeat technology, and more recently with binary optics technology. Diffractive optics fabrication methodology can be used to remove some of the limitations of the previous technologies and can allow for low-cost production of sophisticated elements. We have investigated several different specialized wavefront sensor configurations using both Shack-Hartmann and shearing interferometer principles. We have taken advantage of the arbitrary nature of these elements to match pupil shapes of detector and telescope aperture and to introduce magnification between the lenslet array and the detector. We have fabricated elements that facilitate matching the sampling to the current atmospheric conditions. The sensors were designed using a far-field diffraction model and a photolithography layout program. They were fabricated using photolithography and RIE etching. Several different designs are presented with some experimental results from a small-scale adaptive optics brass-board.

  15. Electron density measurements for plasma adaptive optics

    NASA Astrophysics Data System (ADS)

    Neiswander, Brian W.

    Over the past 40 years, there has been growing interest in both laser communications and directed energy weapons that operate from moving aircraft. As a laser beam propagates from an aircraft in flight, it passes through boundary layers, turbulence, and shear layers in the near-region of the aircraft. These fluid instabilities cause strong density gradients which adversely affect the transmission of laser energy to a target. Adaptive optics provides corrective measures for this problem but current technology cannot respond quickly enough to be useful for high speed flight conditions. This research investigated the use of plasma as a medium for adaptive optics for aero-optics applications. When a laser beam passes through plasma, its phase is shifted proportionally to the electron density and gas heating within the plasma. As a result, plasma can be utilized as a dynamically controllable optical medium. Experiments were carried out using a cylindrical dielectric barrier discharge plasma chamber which generated a sub-atmospheric pressure, low-temperature plasma. An electrostatic model of this design was developed and revealed an important design constraint relating to the geometry of the chamber. Optical diagnostic techniques were used to characterize the plasma discharge. Single-wavelength interferometric experiments were performed and demonstrated up to 1.5 microns of optical path difference (OPD) in a 633 nm laser beam. Dual-wavelength interferometry was used to obtain time-resolved profiles of the plasma electron density and gas heating inside the plasma chamber. Furthermore, a new multi-wavelength infrared diagnostic technique was developed and proof-of-concept simulations were conducted to demonstrate the system's capabilities.

  16. Neptune and Titan Observed with Keck Telescope Adaptive Optics

    SciTech Connect

    Max, C.E.; Macintosh, B.A.; Gibbard, S.; Gavel, D.T.; Roe, H.; De Pater, I.; Ghez, A.M.; Acton, S.; Wizinowich, P.L.; Lai, O.

    2000-05-05

    The authors report on observations taken during engineering science validation time using the new adaptive optics system at the 10-m Keck II Telescope. They observe Neptune and Titan at near-infrared wavelengths. These objects are ideal for adaptive optics imaging because they are bright and small, yet have many diffraction-limited resolution elements across their disks. In addition Neptune and Titan have prominent physical features, some of which change markedly with time. They have observed infrared-bright storms on Neptune, and very low-albedo surface regions on Titan, Saturn's largest moon, Spatial resolution on Neptune and Titan was 0.05-0.06 and 0.04-0.05 arc sec, respectively.

  17. MEMS-based extreme adaptive optics for planet detection

    SciTech Connect

    Macintosh, B A; Graham, J R; Oppenheimer, B; Poyneer, L; Sivaramakrishnan, A; Veran, J

    2005-11-18

    The next major step in the study of extrasolar planets will be the direct detection, resolved from their parent star, of a significant sample of Jupiter-like extrasolar giant planets. Such detection will open up new parts of the extrasolar planet distribution and allow spectroscopic characterization of the planets themselves. Detecting Jovian planets at 5-50 AU scale orbiting nearby stars requires adaptive optics systems and coronagraphs an order of magnitude more powerful than those available today--the realm of ''Extreme'' adaptive optics. We present the basic requirements and design for such a system, the Gemini Planet Imager (GPI.) GPI will require a MEMS-based deformable mirror with good surface quality, 2-4 micron stroke (operated in tandem with a conventional low-order ''woofer'' mirror), and a fully-functional 48-actuator-diameter aperture.

  18. Neptune and Titan observed with Keck Telescope adaptive optics

    NASA Astrophysics Data System (ADS)

    Max, Claire E.; Macintosh, Bruce A.; Gibbard, Seran; Gavel, Donald T.; Roe, Henry; de Pater, Imke; Ghez, Andrea M.; Acton, Scott; Wizinowich, Peter L.; Lai, Olivier

    2000-07-01

    We report on observations taken during engineering science validation time using the new adaptive optics system at the 10-m Keck II Telescope. We observed Neptune and Titan at near- infrared wavelengths. These objects are ideal for adaptive optics imaging because they are bright and small, yet have many diffraction-limited resolution elements across their disks. In addition Neptune and Titan have prominent physical features, some of which change markedly with time. We have observed infrared-bright 'storms' on Neptune, and very low- albedo surface regions on Titan, Saturn's largest moon. Spatial resolution on Neptune and Titan was 0.05 - 0.06 and 0.04 - 0.05 arc sec, respectively.

  19. Nanolubrication of sliding components in adaptive optics used in microprojectors

    NASA Astrophysics Data System (ADS)

    Bhushan, Bharat; Lee, Hyungoo; Chaparala, Satish C.; Bhatia, Vikram

    2010-10-01

    Integrated microprojectors are being developed to project a large image on any surface chosen by the users. For a laser-based microprojector, a piezo-electric based adaptive optics unit is adopted in the green laser architecture. The operation of this unit depends on stick-slip motion between the sliding components. Nanolubrication of adaptive optics sliding components is needed to reduce wear and for smooth operation. In this study, a methodology to measure lubricant thickness distribution with a nanoscale resolution is developed. Friction, adhesion, and wear mechanisms of lubricant on the sliding components are studied. Effect of actual composite components, scan direction, scale effect, temperature, and humidity to correlate AFM data with the microscale device performance is studied.

  20. Phase in Optical Image Processing

    NASA Astrophysics Data System (ADS)

    Naughton, Thomas J.

    2010-04-01

    The use of phase has a long standing history in optical image processing, with early milestones being in the field of pattern recognition, such as VanderLugt's practical construction technique for matched filters, and (implicitly) Goodman's joint Fourier transform correlator. In recent years, the flexibility afforded by phase-only spatial light modulators and digital holography, for example, has enabled many processing techniques based on the explicit encoding and decoding of phase. One application area concerns efficient numerical computations. Pushing phase measurement to its physical limits, designs employing the physical properties of phase have ranged from the sensible to the wonderful, in some cases making computationally easy problems easier to solve and in other cases addressing mathematics' most challenging computationally hard problems. Another application area is optical image encryption, in which, typically, a phase mask modulates the fractional Fourier transformed coefficients of a perturbed input image, and the phase of the inverse transform is then sensed as the encrypted image. The inherent linearity that makes the system so elegant mitigates against its use as an effective encryption technique, but we show how a combination of optical and digital techniques can restore confidence in that security. We conclude with the concept of digital hologram image processing, and applications of same that are uniquely suited to optical implementation, where the processing, recognition, or encryption step operates on full field information, such as that emanating from a coherently illuminated real-world three-dimensional object.

  1. Optically detected magnetic resonance imaging

    SciTech Connect

    Blank, Aharon; Shapiro, Guy; Fischer, Ran; London, Paz; Gershoni, David

    2015-01-19

    Optically detected magnetic resonance provides ultrasensitive means to detect and image a small number of electron and nuclear spins, down to the single spin level with nanoscale resolution. Despite the significant recent progress in this field, it has never been combined with the power of pulsed magnetic resonance imaging techniques. Here, we demonstrate how these two methodologies can be integrated using short pulsed magnetic field gradients to spatially encode the sample. This result in what we denote as an 'optically detected magnetic resonance imaging' technique. It offers the advantage that the image is acquired in parallel from all parts of the sample, with well-defined three-dimensional point-spread function, and without any loss of spectroscopic information. In addition, this approach may be used in the future for parallel but yet spatially selective efficient addressing and manipulation of the spins in the sample. Such capabilities are of fundamental importance in the field of quantum spin-based devices and sensors.

  2. Establishing Information Security Systems via Optical Imaging

    DTIC Science & Technology

    2015-08-11

    for Fig. 13(b) is 6.83 dB. Figure 13(c) shows a recovered object , when only setup parameters are wrong (wavelength error of 10.0 nm and distance...The research goal is to establish information security systems via optical imaging, the primary objective is to develop optical imaging technologies...TERMS Optical Imaging, Optical Cryptosystems , Diffractive Imaging, Optical Encryption 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT SAR 18

  3. Programmable Iterative Optical Image And Data Processing

    NASA Technical Reports Server (NTRS)

    Jackson, Deborah J.

    1995-01-01

    Proposed method of iterative optical image and data processing overcomes limitations imposed by loss of optical power after repeated passes through many optical elements - especially, beam splitters. Involves selective, timed combination of optical wavefront phase conjugation and amplification to regenerate images in real time to compensate for losses in optical iteration loops; timing such that amplification turned on to regenerate desired image, then turned off so as not to regenerate other, undesired images or spurious light propagating through loops from unwanted reflections.

  4. Luminescent probes for optical in vivo imaging

    NASA Astrophysics Data System (ADS)

    Texier, Isabelle; Josserand, Veronique; Garanger, Elisabeth; Razkin, Jesus; Jin, Zhaohui; Dumy, Pascal; Favrot, Marie; Boturyn, Didier; Coll, Jean-Luc

    2005-04-01

    Going along with instrumental development for small animal fluorescence in vivo imaging, we are developing molecular fluorescent probes, especially for tumor targeting. Several criteria have to be taken into account for the optimization of the luminescent label. It should be adapted to the in vivo imaging optical conditions : red-shifted absorption and emission, limited overlap between absorption and emission for a good signal filtering, optimized luminescence quantum yield, limited photo-bleaching. Moreover, the whole probe should fulfill the biological requirements for in vivo labeling : adapted blood-time circulation, biological conditions compatibility, low toxicity. We here demonstrate the ability of the imaging fluorescence set-up developed in LETI to image the bio-distribution of molecular probes on short times after injection. Targeting with Cy5 labeled holo-transferrin of subcutaneous TS/Apc (angiogenic murine breast carcinoma model) or IGROV1 (human ovarian cancer) tumors was achieved. Differences in the kinetics of the protein uptake by the tumors were evidenced. IGROV1 internal metastatic nodes implanted in the peritoneal cavity could be detected in nude mice. However, targeted metastatic nodes in lung cancer could only be imaged after dissection of the mouse. These results validate our fluorescence imaging set-up and the use of Cy5 as a luminescent label. New fluorescent probes based on this dye and a molecular delivery template (the RAFT molecule) can thus be envisioned.

  5. First-order design of off-axis reflective ophthalmic adaptive optics systems using afocal telescopes.

    PubMed

    Gómez-Vieyra, Armando; Dubra, Alfredo; Malacara-Hernández, Daniel; Williams, David R

    2009-10-12

    Expressions for minimal astigmatism in image and pupil planes in off-axis afocal reflective telescopes formed by pairs of spherical mirrors are presented. These formulae which are derived from the marginal ray fan equation can be used for designing laser cavities, spectrographs and adaptive optics retinal imaging systems. The use, range and validity of these formulae are limited by spherical aberration and coma for small and large angles respectively. This is discussed using examples from adaptive optics retinal imaging systems. The performance of the resulting optical designs are evaluated and compared against the configurations with minimal wavefront RMS, using the defocus-corrected wavefront RMS as a metric.

  6. Adaptive optics for confocal laser scanning microscopy with adjustable pinhole

    NASA Astrophysics Data System (ADS)

    Yoo, Han Woong; van Royen, Martin E.; van Cappellen, Wiggert A.; Houtsmuller, Adriaan B.; Verhaegen, Michel; Schitter, Georg

    2016-04-01

    The pinhole plays an important role in confocal laser scanning microscopy (CLSM) for adaptive optics (AO) as well as in imaging, where the size of the pinhole denotes a trade-off between out-of-focus rejection and wavefront distortion. This contribution proposes an AO system for a commercial CLSM with an adjustable square pinhole to cope with such a trade-off. The proposed adjustable pinhole enables to calibrate the AO system and to evaluate the imaging performance. Experimental results with fluorescence beads on the coverslip and at a depth of 40 μm in the human hepatocellular carcinoma cell spheroid demonstrate that the proposed AO system can improve the image quality by the proposed calibration method. The proposed pinhole intensity ratio also indicates the image improvement by the AO correction in intensity as well as resolution.

  7. Wavefront sensorless adaptive optics temporal focusing-based multiphoton microscopy.

    PubMed

    Chang, Chia-Yuan; Cheng, Li-Chung; Su, Hung-Wei; Hu, Yvonne Yuling; Cho, Keng-Chi; Yen, Wei-Chung; Xu, Chris; Dong, Chen Yuan; Chen, Shean-Jen

    2014-06-01

    Temporal profile distortions reduce excitation efficiency and image quality in temporal focusing-based multiphoton microscopy. In order to compensate the distortions, a wavefront sensorless adaptive optics system (AOS) was integrated into the microscope. The feedback control signal of the AOS was acquired from local image intensity maximization via a hill-climbing algorithm. The control signal was then utilized to drive a deformable mirror in such a way as to eliminate the distortions. With the AOS correction, not only is the axial excitation symmetrically refocused, but the axial resolution with full two-photon excited fluorescence (TPEF) intensity is also maintained. Hence, the contrast of the TPEF image of a R6G-doped PMMA thin film is enhanced along with a 3.7-fold increase in intensity. Furthermore, the TPEF image quality of 1μm fluorescent beads sealed in agarose gel at different depths is improved.

  8. Performance evaluation of a sensorless adaptive optics multiphoton microscope.

    PubMed

    Skorsetz, Martin; Artal, Pablo; Bueno, Juan M

    2016-03-01

    A wavefront sensorless adaptive optics technique was combined with a custom-made multiphoton microscope to correct for specimen-induced aberrations. A liquid-crystal-on-silicon (LCoS) modulator was used to systematically generate Zernike modes during image recording. The performance of the instrument was evaluated in samples providing different nonlinear signals and the benefit of correcting higher order aberrations was always noticeable (in both contrast and resolution). The optimum aberration pattern was stable in time for the samples here involved. For a particular depth location within the sample, the wavefront to be precompensated was independent on the size of the imaged area (up to ∼ 360 × 360 μm(2)). The mode combination optimizing the recorded image depended on the Zernike correction control sequence; however, the final images hardly differed. At deeper locations, a noticeable dominance of spherical aberration was found. The influence of other aberration terms was also compared to the effect of the spherical aberration.

  9. The Adaptive Optics Summer School Laboratory Activities

    NASA Astrophysics Data System (ADS)

    Ammons, S. M.; Severson, S.; Armstrong, J. D.; Crossfield, I.; Do, T.; Fitzgerald, M.; Harrington, D.; Hickenbotham, A.; Hunter, J.; Johnson, J.; Johnson, L.; Li, K.; Lu, J.; Maness, H.; Morzinski, K.; Norton, A.; Putnam, N.; Roorda, A.; Rossi, E.; Yelda, S.

    2010-12-01

    Adaptive Optics (AO) is a new and rapidly expanding field of instrumentation, yet astronomers, vision scientists, and general AO practitioners are largely unfamiliar with the root technologies crucial to AO systems. The AO Summer School (AOSS), sponsored by the Center for Adaptive Optics, is a week-long course for training graduate students and postdoctoral researchers in the underlying theory, design, and use of AO systems. AOSS participants include astronomers who expect to utilize AO data, vision scientists who will use AO instruments to conduct research, opticians and engineers who design AO systems, and users of high-bandwidth laser communication systems. In this article we describe new AOSS laboratory sessions implemented in 2006-2009 for nearly 250 students. The activity goals include boosting familiarity with AO technologies, reinforcing knowledge of optical alignment techniques and the design of optical systems, and encouraging inquiry into critical scientific questions in vision science using AO systems as a research tool. The activities are divided into three stations: Vision Science, Fourier Optics, and the AO Demonstrator. We briefly overview these activities, which are described fully in other articles in these conference proceedings (Putnam et al., Do et al., and Harrington et al., respectively). We devote attention to the unique challenges encountered in the design of these activities, including the marriage of inquiry-like investigation techniques with complex content and the need to tune depth to a graduate- and PhD-level audience. According to before-after surveys conducted in 2008, the vast majority of participants found that all activities were valuable to their careers, although direct experience with integrated, functional AO systems was particularly beneficial.

  10. The CHARA Array Adaptive Optics Program

    NASA Astrophysics Data System (ADS)

    Ten Brummelaar, Theo; Che, Xiao; McAlister, Harold A.; Ireland, Michael; Monnier, John D.; Mourard, Denis; Ridgway, Stephen T.; sturmann, judit; Sturmann, Laszlo; Turner, Nils H.; Tuthill, Peter

    2016-01-01

    The CHARA array is an optical/near infrared interferometer consisting of six 1-meter diameter telescopes the longest baseline of which is 331 meters. With sub-millisecond angular resolution, the CHARA array is able to spatially resolve nearby stellar systems to reveal the detailed structures. To improve the sensitivity and scientific throughput, the CHARA array was funded by NSF-ATI in 2011, and by NSF-MRI in 2015, for an upgrade of adaptive optics (AO) systems to all six telescopes. The initial grant covers Phase I of the adaptive optics system, which includes an on-telescope Wavefront Sensor and non-common-path (NCP) error correction. The WFS use a fairly standard Shack-Hartman design and will initially close the tip tilt servo and log wavefront errors for use in data reduction and calibration. The second grant provides the funding for deformable mirrors for each telescope which will be used closed loop to remove atmospheric aberrations from the beams. There are then over twenty reflections after the WFS at the telescopes that bring the light several hundred meters into the beam combining laboratory. Some of these, including the delay line and beam reducing optics, are powered elements, and some of them, in particular the delay lines and telescope Coude optics, are continually moving. This means that the NCP problems in an interferometer are much greater than those found in more standard telescope systems. A second, slow AO system is required in the laboratory to correct for these NCP errors. We will breifly describe the AO system, and it's current status, as well as discuss the new science enabled by the system with a focus on our YSO program.

  11. Hadamard multimode optical imaging transceiver

    DOEpatents

    Cooke, Bradly J; Guenther, David C; Tiee, Joe J; Kellum, Mervyn J; Olivas, Nicholas L; Weisse-Bernstein, Nina R; Judd, Stephen L; Braun, Thomas R

    2012-10-30

    Disclosed is a method and system for simultaneously acquiring and producing results for multiple image modes using a common sensor without optical filtering, scanning, or other moving parts. The system and method utilize the Walsh-Hadamard correlation detection process (e.g., functions/matrix) to provide an all-binary structure that permits seamless bridging between analog and digital domains. An embodiment may capture an incoming optical signal at an optical aperture, convert the optical signal to an electrical signal, pass the electrical signal through a Low-Noise Amplifier (LNA) to create an LNA signal, pass the LNA signal through one or more correlators where each correlator has a corresponding Walsh-Hadamard (WH) binary basis function, calculate a correlation output coefficient for each correlator as a function of the corresponding WH binary basis function in accordance with Walsh-Hadamard mathematical principles, digitize each of the correlation output coefficient by passing each correlation output coefficient through an Analog-to-Digital Converter (ADC), and performing image mode processing on the digitized correlation output coefficients as desired to produce one or more image modes. Some, but not all, potential image modes include: multi-channel access, temporal, range, three-dimensional, and synthetic aperture.

  12. Non-iterative adaptive optical microscopy using wavefront sensing

    NASA Astrophysics Data System (ADS)

    Tao, X.; Azucena, O.; Kubby, J.

    2016-03-01

    This paper will review the development of wide-field and confocal microscopes with wavefront sensing and adaptive optics for correcting refractive aberrations and compensating scattering when imaging through thick tissues (Drosophila embryos and mouse brain tissue). To make wavefront measurements in biological specimens we have modified the laser guide-star techniques used in astronomy for measuring wavefront aberrations that occur as star light passes through Earth's turbulent atmosphere. Here sodium atoms in Earth's mesosphere, at an altitude of 95 km, are excited to fluoresce at resonance by a high-power sodium laser. The fluorescent light creates a guide-star reference beacon at the top of the atmosphere that can be used for measuring wavefront aberrations that occur as the light passes through the atmosphere. We have developed a related approach for making wavefront measurements in biological specimens using cellular structures labeled with fluorescent proteins as laser guide-stars. An example is a fluorescently labeled centrosome in a fruit fly embryo or neurons and dendrites in mouse brains. Using adaptive optical microscopy we show that the Strehl ratio, the ratio of the peak intensity of an aberrated point source relative to the diffraction limited image, can be improved by an order of magnitude when imaging deeply into live dynamic specimens, enabling near diffraction limited deep tissue imaging.

  13. The ESO Adaptive Optics Facility under Test

    NASA Astrophysics Data System (ADS)

    Arsenault, Robin; Madec, Pierre-Yves; Paufique, Jerome; La Penna, Paolo; Stroebele, Stefan; Vernet, Elise; Pirard, Jean-François; Hackenberg, Wolfgang; Kuntschner, Harald; Kolb, Johann; Muller, Nicolas; Le Louarn, Miska; Amico, Paola; Hubin, Norbert; Lizon, Jean-Louis; Ridings, Rob; Abad, Jose; Fischer, Gert; Heinz, Volker; Kiekebusch, Mario; Argomedo, Javier; Conzelmann, Ralf; Tordo, Sebastien; Donaldson, Rob; Soenke, Christian; Duhoux, Philippe; Fedrigo, Enrico; Delabre, Bernard; Jost, Andrea; Duchateau, Michel; Downing, Mark; Moreno, Javier; Manescau, Antonio; Bonaccini Calia, Domenico; Quattri, Marco; Dupuy, Christophe; Guidolin, Ivan; Comin, Mauro; Guzman, Ronald; Buzzoni, Bernard; Quentin, Jutta; Lewis, Steffan; Jolley, Paul; Kraus, Max; Pfrommer, Thomas; Garcia-Rissmann, Aurea; Biasi, Roberto; Gallieni, Daniele; Stuik, Remko

    2013-12-01

    The Adaptive Optics Facility project has received most of its subsystems in Garching and the ESO Integration Hall has become the central operation location for the next phase of the project. The main test bench ASSIST and the 2nd Generation M2-Unit (hosting the Deformable Secondary Mirror) have been granted acceptance late 2012. The DSM will now undergo a series of tests on ASSIST to qualify its optical performance which launches the System Test Phase of the AOF. The tests will validate the AO modules operation with the DSM: first the GRAAL adaptive optics module for Hawk-I in natural guide star AO mode on-axis and then its Ground Layer AO mode. This will be followed by the GALACSI (for MUSE) Wide-Field-Mode (GLAO) and then the more challenging Narrow-Field-Mode (LTAO). We will report on the status of the subsystems at the time of the conference but also on the performance of the delivered ASSIST test bench, the DSM and the 20 Watt Sodium fiber Laser pre-production unit which has validated all specifications before final manufacturing of the serial units. We will also present some considerations and tools to ensure an efficient operation of the Facility in Paranal.

  14. A beam halo monitor based on adaptive optics

    NASA Astrophysics Data System (ADS)

    Welsch, C. P.; Bravin, E.; Lefèvre, T.

    2007-06-01

    In future high intensity, high energy accelerators, beam losses have to be minimized to maximize performance and reduce activation of accelerator components. It is imperative to have a clear understanding of the mechanisms that can lead to halo formation and to have the possibility to test available theoretical models with an adequate experimental setup. Measurements based on optical transition radiation (OTR) provide an interesting opportunity for high resolution measurements of the transverse beam profile. An imaging system based on a beam core-suppression technique, in which the core of the beam is deflected by means of a micro mirror array, to allow for direct observation of the halo has been developed. In this contribution, a possible layout of a novel diagnostic system based on adaptive optics is presented and the results of first tests carried out in our optical lab are summarized.

  15. Guide star lasers for adaptive optics

    NASA Astrophysics Data System (ADS)

    Roberts, William Thomas, Jr.

    Exploitation of the imaging capabilities of the new generation of ground-based astronomical telescopes relies heavily on Adaptive Optics (AO). Current AO system designs call for sodium guide star lasers capable of producing at least eight Watts of power tuned to the peak of the sodium D2 line, with a high duty cycle to avoid saturation, and with 0.5-1.0 GHz spectral broadening. This work comprises development and testing of six candidate laser systems and materials which may afford a path to achieving these goals. An end-pumped CW dye laser producing 4.0 Watts of tuned output power was developed and used to obtain the first accurate measurement of sodium layer scattering efficiency. Methods of optimizing the laser output through improving pump overlap efficiency and reducing the number of intracavity scattering surfaces are covered. The 1181 nm fluorescence peak of Mn5+ ion in Ba5 (PO4)3Cl could be tuned and doubled to reach 589 nm. While efforts to grow this crystal were under way, the Mn5+ ion in natural apatite (Ca5(PO4)3F) was studied as a potential laser material. Fluorescence saturation measurements and transmission saturation are presented, as well as efforts to obtain CW lasing in natural apatite. A Q-switched laser color-center laser in LiF : F-2 was developed and successfully tuned and doubled to the sodium D 2 line. Broad-band lasing of 80 mW and tuned narrow-band lasing of 35 mW at 1178 nm were obtained with 275 mW of input pump power at 1064 nm. The measured thermal properties of this material indicate its potential for scaling to much higher power. A Q-switched intracavity Raman laser was developed in which CaWO 4 was used to shift a Nd:YAG laser, the frequency-doubled output of which was centered at 589.3 nm. To obtain light at 589.0 nm, a compositionally tuned pump laser of Nd : Y3Ga1.1Al3.9O 12 was produced which generated the desired shift, but was inhomogeneous broadened, limiting the tunable power of the material. Finally, temperature tuning of

  16. ALISA: adaptive learning image and signal analysis

    NASA Astrophysics Data System (ADS)

    Bock, Peter

    1999-01-01

    ALISA (Adaptive Learning Image and Signal Analysis) is an adaptive statistical learning engine that may be used to detect and classify the surfaces and boundaries of objects in images. The engine has been designed, implemented, and tested at both the George Washington University and the Research Institute for Applied Knowledge Processing in Ulm, Germany over the last nine years with major funding from Robert Bosch GmbH and Lockheed-Martin Corporation. The design of ALISA was inspired by the multi-path cortical- column architecture and adaptive functions of the mammalian visual cortex.

  17. Miniature hybrid optical imaging lens

    DOEpatents

    Sitter, Jr., David N.; Simpson, Marc L.

    1997-01-01

    A miniature lens system that corrects for imaging and chromatic aberrations, the lens system being fabricated from primarily commercially-available components. A first element at the input to a lens housing is an aperture stop. A second optical element is a refractive element with a diffractive element closely coupled to, or formed a part of, the rear surface of the refractive element. Spaced closely to the diffractive element is a baffle to limit the area of the image, and this is closely followed by a second refractive lens element to provide the final correction. The image, corrected for aberrations exits the last lens element to impinge upon a detector plane were is positioned any desired detector array. The diffractive element is fabricated according to an equation that includes, as variables, the design wavelength, the index of refraction and the radius from an optical axis of the lens system components.

  18. Miniature hybrid optical imaging lens

    DOEpatents

    Sitter, D.N. Jr.; Simpson, M.L.

    1997-10-21

    A miniature lens system that corrects for imaging and chromatic aberrations is disclosed, the lens system being fabricated from primarily commercially-available components. A first element at the input to a lens housing is an aperture stop. A second optical element is a refractive element with a diffractive element closely coupled to, or formed a part of, the rear surface of the refractive element. Spaced closely to the diffractive element is a baffle to limit the area of the image, and this is closely followed by a second refractive lens element to provide the final correction. The image, corrected for aberrations exits the last lens element to impinge upon a detector plane were is positioned any desired detector array. The diffractive element is fabricated according to an equation that includes, as variables, the design wavelength, the index of refraction and the radius from an optical axis of the lens system components. 2 figs.

  19. Optical Analysis of Microscope Images

    NASA Astrophysics Data System (ADS)

    Biles, Jonathan R.

    Microscope images were analyzed with coherent and incoherent light using analog optical techniques. These techniques were found to be useful for analyzing large numbers of nonsymbolic, statistical microscope images. In the first part phase coherent transparencies having 20-100 human multiple myeloma nuclei were simultaneously photographed at 100 power magnification using high resolution holographic film developed to high contrast. An optical transform was obtained by focussing the laser onto each nuclear image and allowing the diffracted light to propagate onto a one dimensional photosensor array. This method reduced the data to the position of the first two intensity minima and the intensity of successive maxima. These values were utilized to estimate the four most important cancer detection clues of nuclear size, shape, darkness, and chromatin texture. In the second part, the geometric and holographic methods of phase incoherent optical processing were investigated for pattern recognition of real-time, diffuse microscope images. The theory and implementation of these processors was discussed in view of their mutual problems of dimness, image bias, and detector resolution. The dimness problem was solved by either using a holographic correlator or a speckle free laser microscope. The latter was built using a spinning tilted mirror which caused the speckle to change so quickly that it averaged out during the exposure. To solve the bias problem low image bias templates were generated by four techniques: microphotography of samples, creation of typical shapes by computer graphics editor, transmission holography of photoplates of samples, and by spatially coherent color image bias removal. The first of these templates was used to perform correlations with bacteria images. The aperture bias was successfully removed from the correlation with a video frame subtractor. To overcome the limited detector resolution it is necessary to discover some analog nonlinear intensity

  20. Compensating Atmospheric Turbulence Effects at High Zenith Angles with Adaptive Optics Using Advanced Phase Reconstructors

    NASA Astrophysics Data System (ADS)

    Roggemann, M.; Soehnel, G.; Archer, G.

    Atmospheric turbulence degrades the resolution of images of space objects far beyond that predicted by diffraction alone. Adaptive optics telescopes have been widely used for compensating these effects, but as users seek to extend the envelopes of operation of adaptive optics telescopes to more demanding conditions, such as daylight operation, and operation at low elevation angles, the level of compensation provided will degrade. We have been investigating the use of advanced wave front reconstructors and post detection image reconstruction to overcome the effects of turbulence on imaging systems in these more demanding scenarios. In this paper we show results comparing the optical performance of the exponential reconstructor, the least squares reconstructor, and two versions of a reconstructor based on the stochastic parallel gradient descent algorithm in a closed loop adaptive optics system using a conventional continuous facesheet deformable mirror and a Hartmann sensor. The performance of these reconstructors has been evaluated under a range of source visual magnitudes and zenith angles ranging up to 70 degrees. We have also simulated satellite images, and applied speckle imaging, multi-frame blind deconvolution algorithms, and deconvolution algorithms that presume the average point spread function is known to compute object estimates. Our work thus far indicates that the combination of adaptive optics and post detection image processing will extend the useful envelope of the current generation of adaptive optics telescopes.

  1. Architectures for parallel DSP-based adaptive optics feedback control

    NASA Astrophysics Data System (ADS)

    McCarthy, Daniel F.

    1999-11-01

    We have developed a digital image processing system for real-time digital image processing feedback control of adaptive optics systems and simulation of optical image processing algorithms. The system uses multi-computer architecture to capture data from an imaging device such as a charge coupled device camera, process the image data, and control a spatial light-modulator, typically a liquid crystal modulator or a micro-electro mechanical system. The system is a Windows NT Pentium-based system combined with a commercial off-the-shelf peripheral component interconnect bus multi-processor system. The multi-processor is based on the Analog Devices super Harvard architecture computer (SHARC) processor, and field programmable gate arrays (FPGAs). The SHARCs provide a scalable reconfigurable C language-based digital signal processing (DSP) development environment. The FPGAs are typically used as reprogrammable interface controllers designed to integrate several off-the- shelf and custom imagers and light modulators into the system. The FPGAs can also be used in concert with the SHARCs for implementation of application-specific high-speed DSP algorithms.

  2. In vivo cellular visualization of the human retina using optical coherence tomography and adaptive optics

    SciTech Connect

    Olivier, S S; Jones, S M; Chen, D C; Zawadzki, R J; Choi, S S; Laut, S P; Werner, J S

    2006-01-05

    Optical coherence tomography (OCT) sees the human retina sharply with adaptive optics. In vivo cellular visualization of the human retina at micrometer-scale resolution is possible by enhancing Fourier-domain optical-coherence tomography with adaptive optics, which compensate for the eye's optical aberrations.

  3. The development of an adaptive optics system and its application to biological microscope

    NASA Astrophysics Data System (ADS)

    Hattori, Masayuki; Tamada, Yosuke

    2016-10-01

    The improvement of the optical devices in this decade, such as the MEMS-SLM ( Micro Electro Mechanical Systems- Spatial Light Modulator ) and wave front sensor with micro lens device, is making adaptive optics commonly available. It also gives the new basis of the design of adaptive optics with the improved accuracy and the compactness. We have developed an adaptive optics bench from such a point of view, and the application to the optical microscope has attained effective results in the observation of the live cell samples. In this presentation, our recent results will be shown. The result includes analysis of blur by the fine structures in biological sample and result of the image correction by the adaptive optics.

  4. Optical Imaging of Surface Scratches

    NASA Astrophysics Data System (ADS)

    Rangarajan, Pratima; Harding, Kevin; Watkins, Vicki

    2001-03-01

    This talk will describe a method to quantify the perceived scratch and mar susceptibility of polymeric and other surfaces. Visual perception of a discontinuity on a surface is based on the contrast between the damaged area and its surroundings. The observed contrast differences are a function of the way in which light is scattered from the damaged area, as well as the illumination and observation angles. We have developed an imaging system which uses two geometries (Setup-1 and Setup-2) to capture the major contrast elements differentiating a scratch from its surroundings. The imaging system uses a collimated light source to evenly illuminate the sample surface. The image of the surface is captured by a telecentric camera and lens system. In Image Setup-1, the camera is placed at the specular angle (with respect to the sample surface). In this case, the scratched/damaged area, which is not co-planar with the undisturbed area, appears dark against the bright reflected surface image. In Image Setup-2, the camera is displaced from the specular angle. Under these conditions, the damaged area, as well as other subsurface features, appears bright against the dark background image. The data from the two images are processed to extract values for reflectivity of the sample surface as well as that of the damaged area under the two observation conditions. The optical imaging data is subsequently related to data collected from visual assessments by test groups of people to generate a numeric assessment of Visual Quality.

  5. Speckle reduction in optical coherence tomography by adaptive total variation method

    NASA Astrophysics Data System (ADS)

    Wu, Tong; Shi, Yaoyao; Liu, Youwen; He, Chongjun

    2015-12-01

    An adaptive total variation method based on the combination of speckle statistics and total variation restoration is proposed and developed for reducing speckle noise in optical coherence tomography (OCT) images. The statistical distribution of the speckle noise in OCT image is investigated and measured. With the measured parameters such as the mean value and variance of the speckle noise, the OCT image is restored by the adaptive total variation restoration method. The adaptive total variation restoration algorithm was applied to the OCT images of a volunteer's hand skin, which showed effective speckle noise reduction and image quality improvement. For image quality comparison, the commonly used median filtering method was also applied to the same images to reduce the speckle noise. The measured results demonstrate the superior performance of the adaptive total variation restoration method in terms of image signal-to-noise ratio, equivalent number of looks, contrast-to-noise ratio, and mean square error.

  6. Adapted polarization state contrast image.

    PubMed

    Richert, Michael; Orlik, Xavier; De Martino, Antonello

    2009-08-03

    We propose a general method to maximize the polarimetric contrast between an object and its background using a predetermined illumination polarization state. After a first estimation of the polarimetric properties of the scene by classical Mueller imaging, we evaluate the incident polarized field that induces scattered polarization states by the object and background, as opposite as possible on the Poincar e sphere. With a detection method optimized for a 2-channel imaging system, Monte Carlo simulations of low flux coherent imaging are performed with various objects and backgrounds having different properties of retardance, dichroism and depolarization. With respect to classical Mueller imaging, possibly associated to the polar decomposition, our results show a noticeable increase in the Bhattacharyya distance used as our contrast parameter.

  7. Image reconstruction in optical tomography.

    PubMed Central

    Arridge, S R; Schweiger, M

    1997-01-01

    Optical tomography is a new medical imaging modality that is at the threshold of realization. A large amount of clinical work has shown the very real benefits that such a method could provide. At the same time a considerable effort has been put into theoretical studies of its probable success. At present there exist gaps between these two realms. In this paper we review some general approaches to inverse problems to set the context for optical tomography, defining both the terms forward problem and inverse problem. An essential requirement is to treat the problem in a nonlinear fashion, by using an iterative method. This in turn requires a convenient method of evaluating the forward problem, and its derivatives and variance. Photon transport models are described for obtaining analytical and numerical solutions for the most commonly used ones are reviewed. The inverse problem is approached by classical gradient-based solution methods. In order to develop practical implementations of these methods, we discuss the important topic of photon measurement density functions, which represent the derivative of the forward problem. We show some results that represent the most complex and realistic simulations of optical tomography yet developed. We suggest, in particular, that both time-resolved, and intensity-modulated systems can reconstruct variations in both optical absorption and scattering, but that unmodulated, non-time-resolved systems are prone to severe artefact. We believe that optical tomography reconstruction methods can now be reliably applied to a wide variety of real clinical data. The expected resolution of the method is poor, meaning that it is unlikely that the type of high-resolution images seen in computed tomography or medical resonance imaging can ever be obtained. Nevertheless we strongly expect the functional nature of these images to have a high degree of clinical significance. PMID:9232860

  8. New multiband IR imaging optics

    NASA Astrophysics Data System (ADS)

    Bayya, Shyam; Sanghera, Jasbinder; Kim, Woohong; Gibson, Daniel; Fleet, Erin; Shaw, Brandon; Hunt, Michael; Aggarwal, Ishwar

    2013-06-01

    We report new multispectral materials that transmit from 0.9 to < 12 µm in wavelength. These materials fill up the glass map for multispectral optics and vary in refractive index from 2.38 to 3.17. They show a large spread in dispersion (Abbe number) and offer some unique solutions for multispectral optics designs. One of the glasses developed is a very good candidate to replace Ge, as it has a combination of excellent properties, including high Abbe number in the LWIR, high index of 3.2, 60% lower dn/dT, and better thermal stability at working temperatures. Our results also provide a wider selection of optical materials to enable simpler achromat designs. For example, we have developed other glasses that have relatively high Abbe number in both the MWIR and LWIR regions, while our MILTRAN ceramic has low Abbe number in both regions. This makes for a very good combination of glasses and MILTRAN ceramic (analogous to crown and flint glasses in the visible) for MWIR + LWIR dual band imaging. We have designed preliminary optics for one such imager with f/2.5, 51 mm focal length and 22 degrees FOV using a spaced doublet of NRL's glass and MILTRAN ceramic. NRL's approach reduces the number of elements, weight, complexity and cost compared with the approach using traditional optics. Another important advantage of using NRL glasses in optics design is their negative or very low positive dn/dT, that makes it easier to athermalize the optical system.

  9. Performance of the Keck Observatory adaptive optics system

    SciTech Connect

    van Dam, M A; Mignant, D L; Macintosh, B A

    2004-01-19

    In this paper, the adaptive optics (AO) system at the W.M. Keck Observatory is characterized. The authors calculate the error budget of the Keck AO system operating in natural guide star mode with a near infrared imaging camera. By modeling the control loops and recording residual centroids, the measurement noise and band-width errors are obtained. The error budget is consistent with the images obtained. Results of sky performance tests are presented: the AO system is shown to deliver images with average Strehl ratios of up to 0.37 at 1.58 {micro}m using a bright guide star and 0.19 for a magnitude 12 star.

  10. Kalman filter based control for Adaptive Optics

    NASA Astrophysics Data System (ADS)

    Petit, Cyril; Quiros-Pacheco, Fernando; Conan, Jean-Marc; Kulcsár, Caroline; Raynaud, Henri-François; Fusco, Thierry

    2004-12-01

    Classical Adaptive Optics suffer from a limitation of the corrected Field Of View. This drawback has lead to the development of MultiConjugated Adaptive Optics. While the first MCAO experimental set-ups are presently under construction, little attention has been paid to the control loop. This is however a key element in the optimization process especially for MCAO systems. Different approaches have been proposed in recent articles for astronomical applications : simple integrator, Optimized Modal Gain Integrator and Kalman filtering. We study here Kalman filtering which seems a very promising solution. Following the work of Brice Leroux, we focus on a frequential characterization of kalman filters, computing a transfer matrix. The result brings much information about their behaviour and allows comparisons with classical controllers. It also appears that straightforward improvements of the system models can lead to static aberrations and vibrations filtering. Simulation results are proposed and analysed thanks to our frequential characterization. Related problems such as model errors, aliasing effect reduction or experimental implementation and testing of Kalman filter control loop on a simplified MCAO experimental set-up could be then discussed.

  11. Large aperture adaptive optics for intense lasers

    NASA Astrophysics Data System (ADS)

    Deneuville, François; Ropert, Laurent; Sauvageot, Paul; Theis, Sébastien

    2015-05-01

    ISP SYSTEM has developed a range of large aperture electro-mechanical deformable mirrors (DM) suitable for ultra short pulsed intense lasers. The design of the MD-AME deformable mirror is based on force application on numerous locations thanks to electromechanical actuators driven by stepper motors. DM design and assembly method have been adapted to large aperture beams and the performances were evaluated on a first application for a beam with a diameter of 250mm at 45° angle of incidence. A Strehl ratio above 0.9 was reached for this application. Simulations were correlated with measurements on optical bench and the design has been validated by calculation for very large aperture (up to Ø550mm). Optical aberrations up to Zernike order 5 can be corrected with a very low residual error as for actual MD-AME mirror. Amplitude can reach up to several hundreds of μm for low order corrections. Hysteresis is lower than 0.1% and linearity better than 99%. Contrary to piezo-electric actuators, the μ-AME actuators avoid print-through effects and they permit to keep the mirror shape stable even unpowered, providing a high resistance to electro-magnetic pulses. The MD-AME mirrors can be adapted to circular, square or elliptical beams and they are compatible with all dielectric or metallic coatings.

  12. Performance predictions for the Keck telescope adaptive optics system

    SciTech Connect

    Gavel, D.T.; Olivier, S.S.

    1995-08-07

    The second Keck ten meter telescope (Keck-11) is slated to have an infrared-optimized adaptive optics system in the 1997--1998 time frame. This system will provide diffraction-limited images in the 1--3 micron region and the ability to use a diffraction-limited spectroscopy slit. The AO system is currently in the preliminary design phase and considerable analysis has been performed in order to predict its performance under various seeing conditions. In particular we have investigated the point-spread function, energy through a spectroscopy slit, crowded field contrast, object limiting magnitude, field of view, and sky coverage with natural and laser guide stars.

  13. Computational adaptive optics for broadband interferometric tomography of tissues and cells

    NASA Astrophysics Data System (ADS)

    Adie, Steven G.; Mulligan, Jeffrey A.

    2016-03-01

    Adaptive optics (AO) can shape aberrated optical wavefronts to physically restore the constructive interference needed for high-resolution imaging. With access to the complex optical field, however, many functions of optical hardware can be achieved computationally, including focusing and the compensation of optical aberrations to restore the constructive interference required for diffraction-limited imaging performance. Holography, which employs interferometric detection of the complex optical field, was developed based on this connection between hardware and computational image formation, although this link has only recently been exploited for 3D tomographic imaging in scattering biological tissues. This talk will present the underlying imaging science behind computational image formation with optical coherence tomography (OCT) -- a beam-scanned version of broadband digital holography. Analogous to hardware AO (HAO), we demonstrate computational adaptive optics (CAO) and optimization of the computed pupil correction in 'sensorless mode' (Zernike polynomial corrections with feedback from image metrics) or with the use of 'guide-stars' in the sample. We discuss the concept of an 'isotomic volume' as the volumetric extension of the 'isoplanatic patch' introduced in astronomical AO. Recent CAO results and ongoing work is highlighted to point to the potential biomedical impact of computed broadband interferometric tomography. We also discuss the advantages and disadvantages of HAO vs. CAO for the effective shaping of optical wavefronts, and highlight opportunities for hybrid approaches that synergistically combine the unique advantages of hardware and computational methods for rapid volumetric tomography with cellular resolution.

  14. Optical design of the adaptive optics laser guide star system

    SciTech Connect

    Bissinger, H.

    1994-11-15

    The design of an adaptive optics package for the 3 meter Lick telescope is presented. This instrument package includes a 69 actuator deformable mirror and a Hartmann type wavefront sensor operating in the visible wavelength; a quadrant detector for the tip-tile sensor and a tip-tilt mirror to stabilize atmospheric first order tip-tile errors. A high speed computer drives the deformable mirror to achieve near diffraction limited imagery. The different optical components and their individual design constraints are described. motorized stages and diagnostics tools are used to operate and maintain alignment throughout observation time from a remote control room. The expected performance are summarized and actual results of astronomical sources are presented.

  15. Image-Specific Prior Adaptation for Denoising.

    PubMed

    Lu, Xin; Lin, Zhe; Jin, Hailin; Yang, Jianchao; Wang, James Z

    2015-12-01

    Image priors are essential to many image restoration applications, including denoising, deblurring, and inpainting. Existing methods use either priors from the given image (internal) or priors from a separate collection of images (external). We find through statistical analysis that unifying the internal and external patch priors may yield a better patch prior. We propose a novel prior learning algorithm that combines the strength of both internal and external priors. In particular, we first learn a generic Gaussian mixture model from a collection of training images and then adapt the model to the given image by simultaneously adding additional components and refining the component parameters. We apply this image-specific prior to image denoising. The experimental results show that our approach yields better or competitive denoising results in terms of both the peak signal-to-noise ratio and structural similarity.

  16. Manufacturing of the ESO adaptive optics facility

    NASA Astrophysics Data System (ADS)

    Arsenault, R.,; Madec, P.-Y.; Hubin, N.; Stroebele, S.; Paufique, J.; Vernet, E.; Hackenberg, W.; Pirard, J.-F.; Jochum, L.; Glindemann, A.; Jost, A.; Conzelmann, R.; Kiekebusch, M.; Tordo, S.; Lizon, J.-L.; Donaldson, R.; Fedrigo, E.; Soenke, C.; Duchateau, M.; Bruton, A.; Delabre, B.; Downing, M.; Reyes, J.; Kolb, J.; Bechet, C.; Lelouarn, M.; Bonaccini Calia, D.; Quattri, M.; Guidolin, I.; Buzzoni, B.; Dupuy, C.; Guzman, R.; Comin, M.; Silber, A.; Quentin, J.; La Penna, P.; Manescau, A.; Jolley, P.; Heinz, V.; Duhoux, P.; Argomedo, J.; Gallieni, D.; Lazzarini, P.; Biasi, R.; Andrighettoni, M.; Angerer, G.; Pescoller, D.; Stuik, R.,; Deep, A.

    2010-07-01

    The ESO Adaptive Optics Facility (AOF) consists in an evolution of one of the ESO VLT unit telescopes to a laser driven adaptive telescope with a deformable mirror in its optical train, in this case the secondary 1.1m mirror, and four Laser Guide Stars (LGSs). This evolution implements many challenging technologies like the Deformable Secondary Mirror (DSM) including a thin shell mirror (1.1 m diameter and 2mm thin), the high power Na lasers (20W), the low Read-Out Noise (RON) WaveFront Sensor (WFS) camera (< 1e-) and SPARTA the new generation of Real Time Computers (RTC) for adaptive control. It also faces many problematic similar to any Extremely Large Telescope (ELT) and as such, will validate many technologies and solutions needed for the European ELT (E-ELT) 42m telescope. The AOF will offer a very large (7 arcmin) Field Of View (FOV) GLAO correction in J, H and K bands (GRAAL+Hawk-I), a visible integral field spectrograph with a 1 arcmin GLAO corrected FOV (GALACSI-MUSE WFM) and finally a LTAO 7.5" FOV (GALACSI-MUSE NFM). Most systems of the AOF have completed final design and are in manufacturing phase. Specific activities are linked to the modification of the 8m telescope in order to accommodate the new DSM and the 4 LGS Units assembled on its Center-Piece. A one year test period in Europe is planned to test and validate all modes and their performance followed by a commissioning phase in Paranal scheduled for 2014.

  17. Pioneer imaging photopolarimeter optical system.

    PubMed

    Pellicori, S F; Russell, E E; Watts, L A

    1973-06-01

    The imaging photopolarimeter aboard the Pioneer 10 spacecraft en route to the vicinity of Jupiter is described. This instrument is capable of moderate resolution spin-scan imaging and high precision polarimetric and photometric mapping of Jupiter in red and blue light. The field of view can be selectively changed from 0.50 mrad square to 40 mrad square to accommodate resolution and radiance combinations ranging from the zodiacal background to that of Jupiter. The dynamic range (radiance) of the instrument is greater than 10(8). Optical materials were chosen to survive, with minimum degradation, the rigors of a nearly 2-year journey to Jupiter including transit through the Jovian trapped radiation belts. The optics are described in detail, and the operational system is outlined. The procedures for preflight and in-flight calibration are described, and some performance characteristics and preliminary flight results are presented.

  18. Daytime adaptive optics for deep space optical communications

    NASA Technical Reports Server (NTRS)

    Wilson, Keith; Troy, M.; Srinivasan, M.; Platt, B.; Vilnrotter, V.; Wright, M.; Garkanian, V.; Hemmati, H.

    2003-01-01

    The deep space optical communications subsystem offers a higher bandwidth communications link in smaller size, lower mass, and lower power consumption subsystem than does RF. To demonstrate the benefit of this technology to deep space communications NASA plans to launch an optical telecommunications package on the 2009 Mars Telecommunications orbiter spacecraft. Current performance goals are 30-Mbps from opposition, and 1-Mbps near conjunction (-3 degrees Sun-Earth-Probe angle). Yet, near conjunction the background noise from the day sky will degrade the performance of the optical link. Spectral and spatial filtering and higher modulation formats can mitigate the effects of background sky. Narrowband spectral filters can result in loss of link margin, and higher modulation formats require higher transmitted peak powers. In contrast, spatial filtering at the receiver has the potential of being lossless while providing the required sky background rejection. Adaptive optics techniques can correct wave front aberrations caused by atmospheric turbulence and enable near-diffraction-limited performance of the receiving telescope. Such performance facilitates spatial filtering, and allows the receiver field-of-view and hence the noise from the sky background to be reduced.

  19. Fluorescence imaging spectrometer optical design

    NASA Astrophysics Data System (ADS)

    Taiti, A.; Coppo, P.; Battistelli, E.

    2015-09-01

    The optical design of the FLuORescence Imaging Spectrometer (FLORIS) studied for the Fluorescence Explorer (FLEX) mission is discussed. FLEX is a candidate for the ESA's 8th Earth Explorer opportunity mission. FLORIS is a pushbroom hyperspectral imager foreseen to be embarked on board of a medium size satellite, flying in tandem with Sentinel-3 in a Sun synchronous orbit at a height of about 815 km. FLORIS will observe the vegetation fluorescence and reflectance within a spectral range between 500 and 780 nm. Multi-frames acquisitions on matrix detectors during the satellite movement will allow the production of 2D Earth scene images in two different spectral channels, called HR and LR with spectral resolution of 0.3 and 2 nm respectively. A common fore optics is foreseen to enhance by design the spatial co-registration between the two spectral channels, which have the same ground spatial sampling (300 m) and swath (150 km). An overlapped spectral range between the two channels is also introduced to simplify the spectral coregistration. A compact opto-mechanical solution with all spherical and plane optical elements is proposed, and the most significant design rationales are described. The instrument optical architecture foresees a dual Babinet scrambler, a dioptric telescope and two grating spectrometers (HR and LR), each consisting of a modified Offner configuration. The developed design is robust, stable vs temperature, easy to align, showing very high optical quality along the whole field of view. The system gives also excellent correction for transverse chromatic aberration and distortions (keystone and smile).

  20. The numerical simulation tool for the MAORY multiconjugate adaptive optics system

    NASA Astrophysics Data System (ADS)

    Arcidiacono, C.; Schreiber, L.; Bregoli, G.; Diolaiti, E.; Foppiani, I.; Agapito, G.; Puglisi, A.; Xompero, M.; Oberti, S.; Cosentino, G.; Lombini, M.; Butler, R. C.; Ciliegi, P.; Cortecchia, F.; Patti, M.; Esposito, S.; Feautrier, P.

    2016-07-01

    The Multiconjugate Adaptive Optics RelaY (MAORY) is and Adaptive Optics module to be mounted on the ESO European-Extremely Large Telescope (E-ELT). It is an hybrid Natural and Laser Guide System that will perform the correction of the atmospheric turbulence volume above the telescope feeding the Multi-AO Imaging Camera for Deep Observations Near Infrared spectro-imager (MICADO). We developed an end-to-end Monte- Carlo adaptive optics simulation tool to investigate the performance of a the MAORY and the calibration, acquisition, operation strategies. MAORY will implement Multiconjugate Adaptive Optics combining Laser Guide Stars (LGS) and Natural Guide Stars (NGS) measurements. The simulation tool implement the various aspect of the MAORY in an end to end fashion. The code has been developed using IDL and use libraries in C++ and CUDA for efficiency improvements. Here we recall the code architecture, we describe the modeled instrument components and the control strategies implemented in the code.

  1. The Tesat transportable adaptive optical ground station

    NASA Astrophysics Data System (ADS)

    Saucke, Karen; Seiter, Christoph; Heine, Frank; Gregory, Mark; Tröndle, Daniel; Fischer, Edgar; Berkefeld, Thomas; Feriencik, Mikael; Feriencik, Marco; Richter, Ines; Meyer, Rolf

    2016-03-01

    Tesat together with Synopta have built a Transportable Adaptive Optical Ground Station (TAOGS) under contract of German Aerospace Center DLR for communication with the 1st and 2nd generation of Tesat's spaceborne Laser Communication Terminals (LCTs), which employ coherent homodyne optical communication with 1064 nm and binary phase shift keying (BPSK) modulation. The TAOGS is able to communicate with space segments on low earth orbit (LEO, high pointing and tracking dynamics, 5.625 Gbps), and with space segments on geostationary orbit (GEO, low pointing dynamics, up to 40,000 km distance, optical data rate of 2.8125 Gbps and user data rate of 1.8 Gbps). After an alignment and testing phase at the location of Izana, Tenerife, using the TDP1 LCT on geostationary Alphasat as counter terminal, the TAOGS is now fully functioning. Several up-links, down-links and bi-directional links have been performed. Experimental results of some of these links are presented. An outlook to further activities is given.

  2. Contrast enhancement in microscopy of human thyroid tumors by means of acousto-optic adaptive spatial filtering

    NASA Astrophysics Data System (ADS)

    Yushkov, Konstantin B.; Molchanov, Vladimir Y.; Belousov, Pavel V.; Abrosimov, Aleksander Y.

    2016-01-01

    We report a method for edge enhancement in the images of transparent samples using analog image processing in coherent light. The experimental technique is based on adaptive spatial filtering with an acousto-optic tunable filter in a telecentric optical system. We demonstrate processing of microscopic images of unstained and stained histological sections of human thyroid tumor with improved contrast.

  3. Local image registration by adaptive filtering.

    PubMed

    Caner, Gulcin; Tekalp, A Murat; Sharma, Gaurav; Heinzelman, Wendi

    2006-10-01

    We propose a new adaptive filtering framework for local image registration, which compensates for the effect of local distortions/displacements without explicitly estimating a distortion/displacement field. To this effect, we formulate local image registration as a two-dimensional (2-D) system identification problem with spatially varying system parameters. We utilize a 2-D adaptive filtering framework to identify the locally varying system parameters, where a new block adaptive filtering scheme is introduced. We discuss the conditions under which the adaptive filter coefficients conform to a local displacement vector at each pixel. Experimental results demonstrate that the proposed 2-D adaptive filtering framework is very successful in modeling and compensation of both local distortions, such as Stirmark attacks, and local motion, such as in the presence of a parallax field. In particular, we show that the proposed method can provide image registration to: a) enable reliable detection of watermarks following a Stirmark attack in nonblind detection scenarios, b) compensate for lens distortions, and c) align multiview images with nonparametric local motion.

  4. Dual-thread parallel control strategy for ophthalmic adaptive optics.

    PubMed

    Yu, Yongxin; Zhang, Yuhua

    To improve ophthalmic adaptive optics speed and compensate for ocular wavefront aberration of high temporal frequency, the adaptive optics wavefront correction has been implemented with a control scheme including 2 parallel threads; one is dedicated to wavefront detection and the other conducts wavefront reconstruction and compensation. With a custom Shack-Hartmann wavefront sensor that measures the ocular wave aberration with 193 subapertures across the pupil, adaptive optics has achieved a closed loop updating frequency up to 110 Hz, and demonstrated robust compensation for ocular wave aberration up to 50 Hz in an adaptive optics scanning laser ophthalmoscope.

  5. Adaptive interferometric null testing for unknown freeform optics metrology.

    PubMed

    Huang, Lei; Choi, Heejoo; Zhao, Wenchuan; Graves, Logan R; Kim, Dae Wook

    2016-12-01

    We report an adaptive interferometric null testing method for overcoming the dynamic range limitations of conventional null testing approaches during unknown freeform optics metrology or optics manufacturing processes that require not-yet-completed surface measurements to guide the next fabrication process. In the presented adaptive method, a deformable mirror functions as an adaptable null component for an unknown optical surface. The optimal deformable mirror's shape is determined by the stochastic parallel gradient descent algorithm and controlled by a deflectometry system. An adaptive interferometric null testing setup was constructed, and its metrology data successfully demonstrated superb adaptive capability in measuring an unknown surface.

  6. Color image diffusion using adaptive bilateral filter.

    PubMed

    Xie, Jun; Ann Heng, Pheng

    2005-01-01

    In this paper, we propose an approach to diffuse color images based on the bilateral filter. Real image data has a level of uncertainty that is manifested in the variability of measures assigned to pixels. This uncertainty is usually interpreted as noise and considered an undesirable component of the image data. Image diffusion can smooth away small-scale structures and noise while retaining important features, thus improving the performances for many image processing algorithms such as image compression, segmentation and recognition. The bilateral filter is noniterative, simple and fast. It has been shown to give similar and possibly better filtering results than iterative approaches. However, the performance of this filter is greatly affected by the choose of the parameters of filtering kernels. In order to remove noise and maintain the significant features on images, we extend the bilateral filter by introducing an adaptive domain spread into the nonlinear diffusion scheme. For color images, we employ the CIE-Lab color system to describe input images and the filtering process is operated using three channels together. Our analysis shows that the proposed method is more suitable for preserving strong edges on noisy images than the original bilateral filter. Empirical results on both nature images and color medical images confirm the novel method's advantages, and show it can diffuse various kinds of color images correctly and efficiently.

  7. Design and progress toward a multi-conjugate adaptive optics system for distributed aberration correction

    SciTech Connect

    Baker, K; Olivier, S; Tucker, J; Silva, D; Gavel, D; Lim, R; Gratrix, E

    2004-08-17

    This article investigates the use of a multi-conjugate adaptive optics system to improve the field-of-view for the system. The emphasis of this research is to develop techniques to improve the performance of optical systems with applications to horizontal imaging. The design and wave optics simulations of the proposed system are given. Preliminary results from the multi-conjugate adaptive optics system are also presented. The experimental system utilizes a liquid-crystal spatial light modulator and an interferometric wave-front sensor for correction and sensing of the phase aberrations, respectively.

  8. Adaptive Optics at the World's Biggest Optical Telescope

    NASA Astrophysics Data System (ADS)

    Hart, M.; Esposito, S.; Rabien, S.

    2010-09-01

    The Large Binocular Telescope (LBT) on Mt. Graham, Arizona, comprises two 8.4 m primary mirrors on a common mount. The two apertures will be co-phased to create a single telescope with 110 m2 of collecting area and 22.7 m baseline. From the outset, adaptive optics (AO) was incorporated into the design through two adaptive secondary mirrors (ASM), each 91 cm in diameter with 672 actuators, which feed all of the instruments mounted at the telescope's four pairs of Gregorian foci. The first ASM has now seen first light on sky with natural guide stars. Strehl ratios at 1.6 μm under average seeing are estimated to be ~80%, and diffraction-limited performance is maintained for stars down to magnitude 15. At the same time, pioneering work at the 6.5 m MMT telescope has for the first time shown the compelling benefits of ground-layer AO compensation. This technique relies on the signals from multiple laser beacons to sense and correct aberration arising close to the telescope with the result that near IR seeing is reduced by a factor of 2-3 over a field of many arc minutes. Building on these efforts at both telescopes, a project is underway to enhance the LBT's AO capability by the addition of wavefront sensing with multiple laser guide stars. The Advanced Rayleigh Ground-layer adaptive Optics System (ARGOS) is now in the construction phase. We provide an overview of ARGOS and how it foreshadows AO systems destined for the 30 m class telescopes of tomorrow.

  9. Radio and optical interferometric imaging

    NASA Technical Reports Server (NTRS)

    Cornwell, Tim J.

    1992-01-01

    Since diffraction-limited imaging with a single aperture yields angular resolution approx. lambda/D, the attainment of high angular resolution with single apertures requires the construction of correspondingly large monolithic apertures, the whole surface of which must be figured to much less than a wavelength. At the longer wavelengths, it is impossible to build a sufficiently large single aperture: for example, at lambda 21 cm, arcsec resolution requires an aperture of diameter approx. 50 km. At the shorter wavelengths, the atmosphere imposes a natural limit in resolution of about one arcsec. However, another route is possible; that is, using synthetic apertures to image the sky. Synthetic apertures are now in use in many fields, e.g., radio interferometry, radar imaging, and magnetic-resonance imaging. Radio-interferometric techniques developed in radio astronomy over the past 40 years are now being applied to optical and IR astronomical imaging by a number of groups. Furthermore, the problem of figuring synthetic apertures is considerably simpler, and can be implemented in a computer: new 'self-calibration' techniques allow imaging even in the presence of phase errors due to the atmosphere.

  10. Radio and optical interferometric imaging

    NASA Astrophysics Data System (ADS)

    Cornwell, Tim J.

    1992-11-01

    Since diffraction-limited imaging with a single aperture yields angular resolution approx. lambda/D, the attainment of high angular resolution with single apertures requires the construction of correspondingly large monolithic apertures, the whole surface of which must be figured to much less than a wavelength. At the longer wavelengths, it is impossible to build a sufficiently large single aperture: for example, at lambda 21 cm, arcsec resolution requires an aperture of diameter approx. 50 km. At the shorter wavelengths, the atmosphere imposes a natural limit in resolution of about one arcsec. However, another route is possible; that is, using synthetic apertures to image the sky. Synthetic apertures are now in use in many fields, e.g., radio interferometry, radar imaging, and magnetic-resonance imaging. Radio-interferometric techniques developed in radio astronomy over the past 40 years are now being applied to optical and IR astronomical imaging by a number of groups. Furthermore, the problem of figuring synthetic apertures is considerably simpler, and can be implemented in a computer: new 'self-calibration' techniques allow imaging even in the presence of phase errors due to the atmosphere.

  11. Block adaptive rate controlled image data compression

    NASA Technical Reports Server (NTRS)

    Rice, R. F.; Hilbert, E.; Lee, J.-J.; Schlutsmeyer, A.

    1979-01-01

    A block adaptive rate controlled (BARC) image data compression algorithm is described. It is noted that in the algorithm's principal rate controlled mode, image lines can be coded at selected rates by combining practical universal noiseless coding techniques with block adaptive adjustments in linear quantization. Compression of any source data at chosen rates of 3.0 bits/sample and above can be expected to yield visual image quality with imperceptible degradation. Exact reconstruction will be obtained if the one-dimensional difference entropy is below the selected compression rate. It is noted that the compressor can also be operated as a floating rate noiseless coder by simply not altering the input data quantization. Here, the universal noiseless coder ensures that the code rate is always close to the entropy. Application of BARC image data compression to the Galileo orbiter mission of Jupiter is considered.

  12. Wavefront control for extreme adaptive optics

    NASA Astrophysics Data System (ADS)

    Poyneer, Lisa A.; Macintosh, Bruce A.

    2003-12-01

    Current plans for Extreme Adaptive Optics systems place challenging requirements on wave-front control. This paper focuses on control system dynamics, wave-front sensing and wave-front correction device characteristics. It may be necessary to run an ExAO system after a slower, low-order AO system. Running two independent systems can result in very good temporal performance, provided specific design constraints are followed. The spatially-filtered wave-front sensor, which prevents aliasing and improves PSF sensitivity, is summarized. Different models of continuous and segmented deformable mirrors are studied. In a noise-free case, a piston-tip-tilt segmented MEMS device can achieve nearly equivalent performance to a continuous-sheet DM in compensating for a static phase aberration with use of spatial filtering.

  13. Wavefront Control for Extreme Adaptive Optics

    SciTech Connect

    Poyneer, L A

    2003-07-16

    Current plans for Extreme Adaptive Optics systems place challenging requirements on wave-front control. This paper focuses on control system dynamics, wave-front sensing and wave-front correction device characteristics. It may be necessary to run an ExAO system after a slower, low-order AO system. Running two independent systems can result in very good temporal performance, provided specific design constraints are followed. The spatially-filtered wave-front sensor, which prevents aliasing and improves PSF sensitivity, is summarized. Different models of continuous and segmented deformable mirrors are studied. In a noise-free case, a piston-tip-tilt segmented MEMS device can achieve nearly equivalent performance to a continuous-sheet DM in compensating for a static phase aberration with use of spatial filtering.

  14. Fast, compact, autonomous holographic adaptive optics.

    PubMed

    Andersen, Geoff; Gelsinger-Austin, Paul; Gaddipati, Ravi; Gaddipati, Phani; Ghebremichael, Fassil

    2014-04-21

    We present a closed-loop adaptive optics system based on a holographic sensing method. The system uses a multiplexed holographic recording of the response functions of each actuator in a deformable mirror. By comparing the output intensity measured in a pair of photodiodes, the absolute phase can be measured over each actuator location. From this a feedback correction signal is applied to the input beam without need for a computer. The sensing and correction is applied to each actuator in parallel, so the bandwidth is independent of the number of actuator. We demonstrate a breadboard system using a 32-actuator MEMS deformable mirror capable of operating at over 10 kHz without a computer in the loop.

  15. ESO adaptive optics facility progress report

    NASA Astrophysics Data System (ADS)

    Arsenault, Robin; Madec, Pierre-Yves; Paufique, Jerome; La Penna, Paolo; Stroebele, Stefan; Vernet, Elise; Pirard, Jean-Francois; Hackenberg, Wolfgang; Kuntschner, Harald; Jochum, Lieselotte; Kolb, Johann; Muller, Nicolas; Le Louarn, Miska; Amico, Paola; Hubin, Norbert; Lizon, Jean-Louis; Ridings, Rob; Abad, Jose A.; Fischer, Gert; Heinz, Volker; Kiekebusch, Mario; Argomedo, Javier; Conzelmann, Ralf; Tordo, Sebastien; Donaldson, Robert; Soenke, Christian; Duhoux, Philippe; Fedrigo, Enrico; Delabre, Bernard; Jost, Andreas; Duchateau, Michel; Downing, Mark; Moreno, Javier R.; Dorn, Reinhold; Manescau, Antonio; Bonaccini Calia, Domenico; Quattri, Marco; Dupuy, Christophe; Guidolin, Ivan M.; Comin, Mauro; Guzman, Ronald; Buzzoni, Bernard; Quentin, Jutta; Lewis, Steffan; Jolley, Paul; Kraus, Maximilian; Pfrommer, Thomas; Biasi, Roberto; Gallieni, Daniele; Bechet, Clementine; Stuik, Remko

    2012-07-01

    The ESO Adaptive Optics Facility (AOF) consists in an evolution of one of the ESO VLT unit telescopes to a laser driven adaptive telescope with a deformable mirror in its optical train. The project has completed the procurement phase and several large structures have been delivered to Garching (Germany) and are being integrated (the AO modules GRAAL and GALACSI and the ASSIST test bench). The 4LGSF Laser (TOPTICA) has undergone final design review and a pre-production unit has been built and successfully tested. The Deformable Secondary Mirror is fully integrated and system tests have started with the first science grade thin shell mirror delivered by SAGEM. The integrated modules will be tested in stand-alone mode in 2012 and upon delivery of the DSM in late 2012, the system test phase will start. A commissioning strategy has been developed and will be updated before delivery to Paranal. A substantial effort has been spent in 2011-2012 to prepare the unit telescope to receive the AOF by preparing the mechanical interfaces and upgrading the cooling and electrical network. This preparation will also simplify the final installation of the facility on the telescope. A lot of attention is given to the system calibration, how to record and correct any misalignment and control the whole facility. A plan is being developed to efficiently operate the AOF after commissioning. This includes monitoring a relevant set of atmospheric parameters for scheduling and a Laser Traffic control system to assist the operator during the night and help/support the observing block preparation.

  16. FPGA-accelerated adaptive optics wavefront control

    NASA Astrophysics Data System (ADS)

    Mauch, S.; Reger, J.; Reinlein, C.; Appelfelder, M.; Goy, M.; Beckert, E.; Tünnermann, A.

    2014-03-01

    The speed of real-time adaptive optical systems is primarily restricted by the data processing hardware and computational aspects. Furthermore, the application of mirror layouts with increasing numbers of actuators reduces the bandwidth (speed) of the system and, thus, the number of applicable control algorithms. This burden turns out a key-impediment for deformable mirrors with continuous mirror surface and highly coupled actuator influence functions. In this regard, specialized hardware is necessary for high performance real-time control applications. Our approach to overcome this challenge is an adaptive optics system based on a Shack-Hartmann wavefront sensor (SHWFS) with a CameraLink interface. The data processing is based on a high performance Intel Core i7 Quadcore hard real-time Linux system. Employing a Xilinx Kintex-7 FPGA, an own developed PCie card is outlined in order to accelerate the analysis of a Shack-Hartmann Wavefront Sensor. A recently developed real-time capable spot detection algorithm evaluates the wavefront. The main features of the presented system are the reduction of latency and the acceleration of computation For example, matrix multiplications which in general are of complexity O(n3 are accelerated by using the DSP48 slices of the field-programmable gate array (FPGA) as well as a novel hardware implementation of the SHWFS algorithm. Further benefits are the Streaming SIMD Extensions (SSE) which intensively use the parallelization capability of the processor for further reducing the latency and increasing the bandwidth of the closed-loop. Due to this approach, up to 64 actuators of a deformable mirror can be handled and controlled without noticeable restriction from computational burdens.

  17. A New, Adaptable, Optical High-Resolution 3-Axis Sensor

    PubMed Central

    Buchhold, Niels; Baumgartner, Christian

    2017-01-01

    This article presents a new optical, multi-functional, high-resolution 3-axis sensor which serves to navigate and can, for example, replace standard joysticks in medical devices such as electric wheelchairs, surgical robots or medical diagnosis devices. A light source, e.g., a laser diode, is affixed to a movable axis and projects a random geometric shape on an image sensor (CMOS or CCD). The downstream microcontroller’s software identifies the geometric shape’s center, distortion and size, and then calculates x, y, and z coordinates, which can be processed in attached devices. Depending on the image sensor in use (e.g., 6.41 megapixels), the 3-axis sensor features a resolution of 1544 digits from right to left and 1038 digits up and down. Through interpolation, these values rise by a factor of 100. A unique feature is the exact reproducibility (deflection to coordinates) and its precise ability to return to its neutral position. Moreover, optical signal processing provides a high level of protection against electromagnetic and radio frequency interference. The sensor is adaptive and adjustable to fit a user’s range of motion (stroke and force). This recommendation aims to optimize sensor systems such as joysticks in medical devices in terms of safety, ease of use, and adaptability. PMID:28134824

  18. Adaptive optics observations of the core of Cygnus A

    NASA Astrophysics Data System (ADS)

    Max, C. E.; Whysong, D.; Antonucci, R.; Canalizo, G.; Macintosh, B. A.; Stockton, A.

    2001-12-01

    We report on near-infrared imaging and spectroscopy of the core of Cygnus A, using adaptive optics systems at the Lick and Keck Observatories. In our images, a V-shaped ionization cone structure is seen to the south-east of the nucleus, as in previous HST NICMOS observations. To the north-west of the nucleus are two diffuse emission regions. We have obtained K-band spectra of these regions and of the nucleus. Paschen alpha spectra show emission near the nucleus with FWHM 1000 km/s. The diffuse emission regions to the north-west and south-east have narrower linewidths. We interpret these data in terms of models for the core of Cygnus A. This work was performed under the auspices of the U.S. Department of Energy, National Nuclear Security Administration by the University of California, Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48, and was supported in part by the National Science Foundation Science and Technology Center for Adaptive Optics, managed by the University of California at Santa Cruz under cooperative agreement No. AST - 9876783.

  19. A New, Adaptable, Optical High-Resolution 3-Axis Sensor.

    PubMed

    Buchhold, Niels; Baumgartner, Christian

    2017-01-27

    This article presents a new optical, multi-functional, high-resolution 3-axis sensor which serves to navigate and can, for example, replace standard joysticks in medical devices such as electric wheelchairs, surgical robots or medical diagnosis devices. A light source, e.g., a laser diode, is affixed to a movable axis and projects a random geometric shape on an image sensor (CMOS or CCD). The downstream microcontroller's software identifies the geometric shape's center, distortion and size, and then calculates x, y, and z coordinates, which can be processed in attached devices. Depending on the image sensor in use (e.g., 6.41 megapixels), the 3-axis sensor features a resolution of 1544 digits from right to left and 1038 digits up and down. Through interpolation, these values rise by a factor of 100. A unique feature is the exact reproducibility (deflection to coordinates) and its precise ability to return to its neutral position. Moreover, optical signal processing provides a high level of protection against electromagnetic and radio frequency interference. The sensor is adaptive and adjustable to fit a user's range of motion (stroke and force). This recommendation aims to optimize sensor systems such as joysticks in medical devices in terms of safety, ease of use, and adaptability.

  20. Adaptive coded aperture imaging: progress and potential future applications

    NASA Astrophysics Data System (ADS)

    Gottesman, Stephen R.; Isser, Abraham; Gigioli, George W., Jr.

    2011-09-01

    Interest in Adaptive Coded Aperture Imagin